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PREFACE

This book is an outgrowth of a course which I have developed at Oberlin

College for advanced undergraduates. The purpose of the course is to

introduce students to the foundations of mathematics, to give them
initial training in the axiomatic method in mathematics, and to provide

them with the necessary tools to cope successfully with graduate level

courses having an abstract and axiomatic orientation. It may be in-

ferred that as I use the term “foundations of mathematics” I under-

stand it to mean an analysis of fundamental concepts of mathematics,

intended to serve as a preparation for studying the superstructure from

a general and unified perspective.

The book contains adequate material for any one of a variety of one-

year upper undergraduate courses with a title resembling “Introduction

to Foundations of Mathematics.” That is, there is sufficient material for

a year’s course in which the instructor chooses to emphasize the construc-

tion of standard mathematical systems, or the role of logic in connection

with axiomatic theories, or, simply, mathematical logic. Further, by

focusing attention on certain chapters, it can serve as a text for one-

semester courses in set theory (Chapters 1, 2, 5, 7), in logic (Chapters

1,4, 5, 6, 9), and in the development of the real number system (Chap-

ters 1, 2, 3, 5, 8).

The book has been organized so that not until the last chapter does

symbolic logic play a significant role.

Most of the material presented might be described as the mathematics

whose development was directly stimulated by investigations pertaining

to the real number system. That is, the development and the study of

the real number system serve as the underlying theme of the book. I

will elaborate on this statement after outlining the contents.

Chapter 1 is an introduction to so-called intuitive set theory. Along

with the algebra of sets the theory is developed to the point where the

notion of a relation can be defined. The remainder of the chapter is

concerned with the special types of relations called equivalence rela-

tions, functions, and ordering relations. Sufficient examples and exercises

are provided to enable the beginner to assimilate these concepts fully.

Chapter 2 begins with a discussion of a type of system (an “integral

system”) which incorporates several features of the natural number
vii
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sequence, as this notion is understood intuitively. Once it is proved that

there is essentially only one integral system, we take as our definition of

the natural number system some one integral system. After the arith-

metic of this system is developed, careful consideration is given to both

definition and proof by induction. There follows an account of C antor s

theory of cardinal and ordinal numbers. In Section 8 is introduced the

remaining principle of intuitive set theory, the axiom of choice, along

with several equivalent propositions. In Section 9, with the aid of the

axiom of choice, the arithmetic of infinite cardinals is reduced to a

triviality. Section 10 is devoted to propositions of a different kind which

are equivalent to the axiom of choice. Finally, in Section 1 1 ,
the classical

paradoxes (that is, bona fide contradictions) of intuitive set theory are

described.

In Chapter 3 the natural number sequence is extended to the real

number system via the integers and the rational numbers, with Cauchy se-

quences being used in the extension of the rationals to the reals. Repeti-

tious details have been cut to a minimum in the hope of relieving the

boredom of this essential chapter.

Chapter 4 is devoted to an intuitive exposition of symbolic logic. The

simplest part of the classical variety of this subject, the statement cal-

culus, is treated in some detail. Although the much more comprehensive

system, the first-order predicate calculus, is barely more than outlined,

by following the same pattern as that employed for the statement cal-

culus, it is hoped that the exposition will be intelligible. Probably every

serious student of mathematics should understand symbolic logic to the

extent it is presented here, if only to be able to take advantage ot its

symbolism and know how to form the negation of “the function / is con-

tinuous at v = a” in a mechanical way.

Chapter 5 consists of an exposition of the axiomatic method, the

notion of an axiomatic theory, and related topics as they are encountered

in everyday mathematics. It is only the italicized qualification that justifies

the inclusion of this chapter. For in view of the tremendous accomplish-

ments in the area ol the foundations of mathematics in lccent ycais, this

chapter is antiquated. An introduction to modern investigations appears

in Chapter 9.

Chapter 6 contains the first lull-blown development ot an axiomatic

theory. The theory that we have chosen for our prime example, that ot

Boolean algebras, is easily susceptible of investigation. Moreover, as we

show in the latter part of the chapter, it has close connections with some

of the logic discussed earlier.
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In Chapter 7 the Zermelo-Fraenkel theory of sets is outlined. In the

last section contact is made with another well-known axiomatization of

classical set theory—that due to von Neumann. Zermelo-Fraenkel set

theory was chosen for exposition because its development closely parallels

that of intuitive set theory. However, for transfinite arithmetic the von

Neumann theory of ordinal and cardinal numbers (which can be im-

bedded in every suitable axiomatization of set theory) was selected be-

cause of its elegance.

In Chapter 8 several axiomatic theories which fall within the realm

of modern algebra are introduced. The primary purpose is to enable us

to give self-contained characterizations in turn of the system of integers,

of rational numbers, and, finally, of real numbers. This is done in the

last three sections of the chapter.

Finally, there is Chapter 9, which is an introductory account of rela-

tively recent investigations of the foundations of mathematics. A dis-

tinctive feature of the modern approach is the explicit incorporation of

a theory of logic into an axiomatic theory. We restrict our attention to

so-called first-order theories, that is, those axiomatic theories for which

the predicate calculus of first order provides a logical base. Sections 4-7

give a rigorous account for first-order theories of the material discussed

at the intuitive level in Chapter 5. Much of this has been available here-

tofore only in more technically formidable accounts. In Sections 8-10

we round out our discussion of the axiomatic method with the presenta-

tion of three famous theorems about formal axiomatic mathematics.

One of these, obtained by Alonzo Church in 1 936, asserts that there is

no automatic procedure for deciding whether an arbitrary formula of

(an axiomatized version of) the predicate calculus of first order is a

theorem. One of the other two theorems (both obtained by Kurt Godel

in 1931) asserts that a sufficiently rich formal system of arithmetic, if

consistent, contains a statement which is neither provable noi refutable.

The last asserts that if such a system of arithmetic is consistent, then it

is impossible to prove just that.

Our account of these theorems is neither sell-contained noi i igoi ous,

but, we believe, adequate for the reader to gain an understanding of

their meaning and significance. In defense of such an approach we shall

say only that we believe this coverage will meet the needs of most stu-

dents. Those who desire a complete and rigorous account must be pre-

pared to spend a considerable amount ol time in mastering a vaiiety of

technical details.

We conclude our outline of the contents by substantiating an eai her
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remark that the real number system serves as the underlying theme of
the book. Indeed, apart from Chapter 6, all of the material discussed is

directly related to the real number system in the sense that it fits into
the category of (a) a preliminary to the development of the system, or (b)

developing some facet of either the system itself or an extension of it,

ot (c) developing tools to either characterize the system or study some
property of it.

A Note to the Instructor

Since mathematical logic is often not an outstanding feature of a
mathematician’s repertoire, it may be helpful to clarify its role in this

book. Chapter 4 should serve as an adequate introduction for a new-
comer into this discipline and be more than adequate to cope with the
references to logic which are made in Chapters 5 and 6. As has been
stated in the above, it is only in Chapter 9 that logic (in the form of
the first-order predicate calculus) enters explicitly into the mathematical
development. But even here, for the instructor who has just a modest
background in logic, with the standard texts by Church, Kleene, and
Rosser at his side, all will go well.

Fui thei
,
we call attention to the bibliographical notes which appear

at the end of most chapters. These give references to original papers or
to expositions which can serve as collateral reading material for students.

Numerous acknowledgments of assistance in this undertaking are in
order. First there are those which appear in my book titled Sets

,
Logic

,

and Axiomatic Theories (which is made up of some of the more elementary
portions ol this book)—to the National Science Foundation and Oberlin
College, for making it possible for me to devote full time to writing for
one year, and to Professor Angelo Margaris, for numerous helpful sug-
gestions. In addition, I gratelully acknowledge the constructive criticism
rendered in very precise form by Professor Anil Nerode, who read a
near-final version of the manuscript at the request of the publisher.
Professor Leon Henkin made numerous suggestions for the improvement
ol Chapter 9; any shortcomings that remain are my sole responsibility.
Finally, I am most grateful to my wife—not only lor her typing of the
manuscript again and again but also for managing to keep her family
intact at the same time.

January 1963 Robert R. Stoll
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CHAPTER Sets and Relations

The theory of sets as a mathematical discipline originated

with the German mathematician G. Cantor (1845-1918). A complete

account of its birth and childhood is out of the question here, since a

considerable knowledge of mathematics is a prerequisite for its compre-

hension. Instead, we adopt the uneasy compromise of a brief sketch of

these matters. If this proves too difficult for the reader, nothing is lost;

on the other hand, if it is at least partially understood, something may

be gained.

Cantor’s investigation of questions pertaining to trigonometric series

and series of real numbers led him to recognize the need for a means of

comparing the magnitude of infinite sets ol numbers. I o cope with this

problem, he introduced the notion of the power (or size) of a set by

defining two sets as having the same power if the members ol one can

be paired with those of the other. Since two finite sets can be paired if

and only if they have the same number of members, the power ol a finite

set may be identified with a counting number. Thus the notion ol power

for infinite sets provides a generalization ol everyday counting numbers.

Cantor developed the theory, including an arithmetic, of these gener-

alized (or transfinite) numbers and in so doing created a theory ol sets.

His accomplishments in this area are regarded as an outstanding ex-

ample of mathematical creativity.

Cantor’s insistence on dealing with the infinite as an actuality he

regarded infinite sets and transfinite numbers as being on a par with

finite sets and counting numbers—was an innovation at that time.

Prejudices against this viewpoint were responsible for the rejection of

his work by some mathematicians, but others reacted favorably because

the theory provided a proof ol the existence ol transcendental numbers.

Other applications in analysis and geometry were lound, and Cantor’s

theory of sets won acceptance to the extent that by 1890 it was recog-

nized as an autonomous branch ol mathematics. About the turn ol the

century there was some change in attitude with the discovery that con-

tradictions could be derived within the theory. I hat these were not

regarded as serious defects is suggested by their being called paiadoxes
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defects which could be resolved, once full understanding was acquired.
The problems posed by Cantor’s theory, together with its usefulness,

gradually created independent interest in a general theory of abstract

sets in which his ideas appeared in greatly extended form. That general
theory forms the basis of this chapter.

Specifically, this chapter discusses, within the framework of set theory,

three important mathematical concepts: function, equivalence relation,

and ordering relation. Sections 3-6 contain the necessary preliminaries,

and Sections 1 and 2 describe our point of departure for Cantor’s theory.

One might question the wisdom of choosing a starting point which is

known to lead ultimately to disaster. However, we contend that the
important items of this chapter are independent of those features which
characterize the Cantorian or “naive” approach to set theory. Indeed,
any theory of sets, if it is to serve as a basis for mathematics, will include
the principal definitions and theorems appearing in this chapter. Only
the methods we employ to obtain some of these results are naive. No
irreparable harm results in using such methods; they are standard tools

in mathematics.

In this chapter we assume that the reader is familiar with the systems
of integers, rational numbers, real numbers, and complex numbers.
Knowledge in these areas will enlarge the possibilities for constructing
examples to assist the assimilation of definitions, theorems, and so on.
We shall reserve the underlined letters Z, Q, R, and C for the sets of
integers, rational numbers, real numbers, and complex numbers, re-

spectively, and the symbols Z+
,
Q>+, and R+ for the sets of positive

integers, positive rationals, and positive reals, respectively.

1. Cantor’s Concept of a Set

Let us consider Cantor's concept of the term set and then analyze
briefly its constituent parts. According to his definition, a set A is any
collection ol definite, distinguishable objects of our intuition or of our
intellect to be conceived as a whole. The objects are called the elements
or members of S.

The essential point ol Cantor’s concept is that a collection of objects
is to be regarded as a single entity (to be conceived as a whole). The
transfer of attention from individual objects to collections of individual
objects as ( ntities is commonplace, as evidenced by the presence in our
language of such words as “bunch,” “covey,” “pride,” and “flock.”



1.1 Cantor's Concept of a Set 3

With regard to the objects which may be allowed in a set, the phrase

“objects of our intuition or of our intellect” gives considerable freedom.

First, it gives complete liberty so far as the nature ol the objc ( is c om-

prising a set is concerned. Green apples, grains of sand, or prime num-

bers are admissible constituents of sets. However, for mathematical

applications it is reasonable to choose as members such mathematical

entities as points, lines, numbers, sets of numbers, and so on. Second,

it permits the consideration of sets whose members cannot, for one

reason or another, be explicitly exhibited. In this connection one is

likely to think first of infinite sets, for which it is not even theoretically

possible to collect the members as an assembled totality. The set of all

prime numbers and the set of all points of the Euclidean plane having

rational coordinates in a given coordinate system are examples of this.

On the other hand, there are finite sets which display the same degree

of intangibility as any infinite set.

An old example which serves to bear out this contention begins with

the premise that a typesetting machine with 10,000 characters (these

would include the lower-case and capital letters of existing alphabets in

various sizes of type, numerals, punctuation, and a blank character foi

spacing) would be adequate for printing in any language. (The exact size

of the set of characters is not at issue; the reader may substitute lor

10.000 any integer greater than 1.) Let it be agreed that by a book

is meant a printed assemblage of 1,000,000 characters, including blank

spaces. Thus a book may contain from 0 to 1,000,000 actual characters.

Now consider the set of all books. Since there are 10,000 possibilities

available for each of the 1,000,000 positions in a book, the total number

of books is equal to lO^OO 1
-
000

-
000

. This is a large (but finite!) number. In

addition to books of gibberish there would appear in the set all textbooks

ever written or planned, all newspapers ever printed, all government

pamphlets, all train schedules, all logarithm tables ever computed, and

so on, and so on. The magnitude eludes comprehension to the same

degree as does that of an infinite set.

The remaining key words in Cantor’s concept of a set are “distin-

guishable” and “definite.” The intended meaning of the former, as he

used it, was this: With regard to any pair of objects qualified to appear

as elements of a particular set, one must be able to determine whether

they are different or the same. The attribute “definite” is interpreted

as meaning that if given a set and an object, it is possible to determine

whether the object is, or is not, a member of the set. The implication

is that a set is completely determined by its members.
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The Basis of Intuitive Set Theory

According to Cantor, a set is made up of objects called members or
elements (we shall use both terms synonymously). The assumption that
if presented with a specific object and a specific set, one can determine
whether or not that object is a member of that set means this: If the
first blank in “ is a member of ” is filled in with the name
o an object, and the second with the name of a set, the resulting sen-
tence is capable of being classified as true or false. Thus, the notion of
membership is a relation between objects and sets. We shall symbolize
this relation by (F and write

x C A
if the object * is a member of the set A. If * is not a member of A we
shall write

x A.
Further,

xb *2,
• •

•
,
xn C A

will be used as an abbreviation for £ A and x2 C A and • •
• and

Xn C A.”

In terms of the membership relation, Cantor’s assumption that a set
is determined by its members may be stated in the following form.
The intuitive principle of extension. Two sets are equal if (if and

only if) they have the same members.

The equality of two sets X and Y will be denoted by

x-r,
and the inequality of X and F by

X Z Y.

Among the basic properties of this relation are

a
;

= x,

X = F implies F = X,
X = ) and } = Z imply X = Z,

for all sets X, Y, and Z.

It Should be understood that the principle of extension is a nontrivial
assumption about the membership relation. In general, a proof of theOquahty of two specified sets A and B is in two parts: one part demon-
s ra cs t tat i £ A, then .v £ B; the other demonstrates that if v £ B
then x C A. An example of such a proof is given below.



5
1.2

|

The Basis of Intuitive Set Theory

That (uniquely determined) set whose members are the objects

* 1 ,
*2 ,

• •
•

, *n will be written

{*1 ,
*2 ,

* *
*

, *»}•

In particular, {*}, a so-called unit set, is the set whose sole member is x.

EXAMPLES
2.1. Let us prove that the set A of all positive even integers is equal to the

set B of positive integers which are expressible as the sum of two positive odd

integers. First we assume that x G A and deduce that x G B. If x G A, then

x = 2m
,
and hence x = (2m — 1) T 1, which means that x G B. Next, we

assume that x G B and deduce that x G A. U x C B, then x = (2p
- 1) +

(2 q
-

1), and hence x = 2 (p + q
-

1), which implies that x C A. Thus, we

have proved that A and B have the same members.

2.2. {2, 4, 6} is the set consisting of the first three positive even integers.

Since {2, 4, 6} and {2, 6, 4} have the same members, they are equal sets.

Moreover, {2, 4, 6} = {2, 4, 4, 6} for the same reason.

2.3. The members of a set may themselves be sets. For instance, the geo-

graphical area known as the United States of America is a set of 50 member

states, each of which, in turn, is a set of counties (except Alaska, which has

boroughs). Again, {{1, 3}, {2, 4), {5. 6)) is a set with three members, namely,

{1, 3}, {2, 4), and {5, 6}. The sets {{1,2}, {2, 3}} and {1, 2, 3} are unequal,

since the former has {1, 2} and {2, 3} as members, and the latter has 1, 2, and

3 as members.

2.4. The sets {{1, 2}} and {1, 2} are unequal, since the former, a unit set,

has {1, 2} as its sole member and the latter has 1 and 2 as its members. This

is an illustration of the general remark that an object and the set whose sole

member is that object are distinct from each other.

We digress briefly to comment on the alphabets which we shall em-

ploy in discussing set theory. Usually, lower-case italic English letters

will denote elements, and, for the time being, capital italic letters will

denote sets which contain them. Later, lower-case Greek letters will be

introduced for a certain type of set. If the members of a set are themselves

sets, and if this is noteworthy in the discussion, capital script letters will

be used for the containing set, and it will be called a collection of sets.

For example, we might have occasion to discuss the collection of all

finite sets A of integers x. As a rule of thumb, the level of a set within a

hierarchy of sets under consideration is suggested by the size and gaudi-

ness of the letter employed to denote it.

Although the brace notation is practical for explicitly defining sets

made up of a few elements, it is too unwieldly for defining sets having
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a large, finite number of elements and useless for infinite sets (sets
having infinitely many elements). How can sets with a large number
of elements be described? In this connection one instinctively tends to
differentiate between finite and infinite sets on the grounds that a finite
set can be realized as an assembled totality whereas an infinite set can-
not. However, a large finite set (for example, the set of books described
in Section 1) is as incapable of comprehension as is any infinite set.On the basis of such examples one must conclude that the problem of
how to describe efficiently a large finite set and the problem of how to
describe an infinite set are, for all practical purposes, one and the sameA commonly accepted solution, devised by Cantor, is based on the
concept of a “formula in x” At this time we offer only the following
intuitive description. Let us understand by a statement a declarative sen-
tence capable of being classified as either true or false. Then, by a
formula in * we understand a finite sequence made up from words and
t e symbol v such that when each occurrence of a is replaced by the
same name of an object of an appropriate nature a statement results,
roi instance, each of the following is a formula in a:

5 divides X‘ + x + 1 > x
,

x 2 = 2 .
x loves John;
x < a;

In contrast, neither of the following is a formula in x:

for all x, x 2 - 4 = (x - 2){x + 2);
there is an a such that a 2 < 0.

Rather, each is simply a statement. A grammarian might describe a
oimula m *, alternatively, as a sentence which asserts something about

*' C'early> each sentence of the first list above has this quality, whereas
neither of the second list has. A still different approach to this concept
is by way of the notion of function as it is used in elementary mathe-
matics A formula in .v may be described as a function of one variable
such that for a suitable domain the function values are statementsWe shall use a capital English letter followed by the symbol (x) to
cnote a formula in ,v. If, in a given context, P(x) stands for a particular

formula, then 1 (a) stands for the same formula with « in place of *.
)ur objective, that of describing sets in terms of formulas, is achievedby way oi the acceptance of the following principle.
The intuitive principle of abstraction. A formula P(x) defines a set A

by the convention that the members of A are exactly those objects a such that P(a)
is a hue statement.

K '
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Because sets having the same members are equal, a given formula

determines exactly one set which, in mathematics, is usually denoted by

{*|P(*)},

read “the set of all x such that P(x)T Thus a £ {*|P(x)( iff P{a) is a

true statement. It may be said that the decision as to whether a given

object a is a member of [x P{x)
}

is that of whether a possesses a certain

property (or quality). Because of this, when a formula in x, P(x), is

applied to a set construction it is commonly called a property of * and,

indeed, the defining property of {x|T(x) }. Further, our principle of abstrac-

tion is then described by the assertion that “every property determines

a set.”

We shall admit the possibility of the occurrence of symbols other than

x in a formula in x. If P(x) is a formula in x and y is a symbol that does

not occur in P(x), then, as properties, P(x) and P(y) are indistinguish-

able, and so {x\P(x)\ = [y\P{y)). This need not be the case, however,

if y does occur in P(x). For example,

{*1* is divisible by wj = \y\y is divisible by m),

but

{x|x is divisible by u
} ^ \u\u is divisible by u).

Again, if F(x) and G(x) are two properties such that F(x) holds for x

when and only when G(x) holds for x, then jx|F(x)} = {*|G(*)}, by an

application of the principle of extension. For example,

{x|x C A and x £ B) = {x|x £ B and x £ A],

and

{*1* £ Z+ and * < 5} = [x\x £ Z+ and (x + l)
2 < 29}.

EXAMPLES
2.5. The introduction of infinite sets by defining properties is a familiar pro-

cedure to a student of analytic geometry. One need merely recall the customary

definition of such geometric loci as the conic sections. For instance, the circle

of radius 2 centered at the origin is the set of all x such that x is a point in the

plane and at a distance of two units from the origin.

2.6. The following are examples of easily recognized sets defined by prop-

erties.

(a) {x\x is an integer greater than 1 and having no divisors less than or equal

to x1/2
}.

(b) {x|x is a positive integer less than 9}.

(c) {x|x is a line of slope 3 in a coordinate plane}.

(d) (xjx is a continuous function on the closed interval from 0 to 1}.
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2.7. {*[* = or x = X2 or • •
• or * = *n) is the set we earlier agreed to de-

note by {xh xo, •
•
•, xn}.

2.8. In some cases our language makes possible, by way of a property, a
briefei definition of a finite set than can be achieved by an enumeration of the
elements. For example, it is shorter to define a particular set of 100 people by
the property x is a senator than by enumerating names of the members.

2.9. If A is a set, then * £ d is a formula in x and may be used as a defining
property of a set. Since y £ {*|* £ A} iffy £ A, we have

A = {x\x £ A},

by virtue of the principle of extension.

Various modifications of the basic brace notation for sets are used.
For example, it is customary to write

{* £ A\P(x)}

instead of {*[* £ A and P(*)} for the set of all objects which are both
members of A and have property P(x). An alternative description of
this set is “all members of A which have property P(*),” and it is

this description that the new notation emphasizes. As illustrations,

f* £ R|0 < x < 1 }
denotes the set of all real numbers between 0

and 1, inclusive, and {x £ Q+
\x

2 < 2} denotes the set of all positive
rationals whose square is less than 2.

If P(x) is a property and / is a function, then

[f(x)\P(x)}

will be used to denote the set of all y for which there is an a such that
x ^as property P{x) and y = /(*). For example, instead of writing

\y\ there is an x such that x is an integer and y = 2x}

we shall write

{2*|* £ Z).

Again, {*
2
|* £ Zj denotes the set of squares of integers. Such notations

have natural extensions; in general, one’s intuition is an adequate guide
for interpreting examples. For instance, in a coordinate plane, where
the points are identified by the members of the set R 2 of all ordered
pairs <*, y)f of real numbers * and y, it is reasonable to interpret
{(*, y) £ R 2

|a = 2*j as the line through the origin having slope 2.

The principle ol set extension, the principle ol abstraction, and the
principle of choice (which will not be formulated until there is need for
it) constitute the working basis of Cantor’s theory of sets. It is of interest

f Here we are using a notation which will be discussed in detail later.
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to note that although we made an attempt, prior to introducing the

first two principles, to describe what a set is, neither ol these principles

nor the third includes a definition ol the word set. Rather, each is

merely an assumption about sets. The basic concept used to enunciate

these principles is membership. Consequently, the membership relation

for sets, rather than the notion of set itself, assumes the role of the prin-

cipal concept of set theory.

We have already mentioned that contradictions can be derived within

intuitive set theory. The source of trouble is the unrestricted use of the

principle of abstraction. Of the known contradictions the simplest to

describe is that discovered by Bertrand Russell in 1901. It is associated

with the set R having the formula x x as its defining property and

may be stated as: On one hand, R C R, and on the other hand, R R.

The reader can easily supply informal proofs of these two contradictory

statements.

EXERCISES

2.1. Explain why 2 C {1, 2, 3}.

2.2. Is {1, 2} C {{1, 2, 3}, {1, 3}, 1, 2}? Justify your answer.

2.3. Try to devise a set which is a member of itself.

2.4. Give an example of sets A, B, and C such that A G B, R C C, and

A$_C.
2.5. Describe in prose each of the following sets.

(a) {x C Z\x is divisible by 2 and x is divisible by 3}.

(b) {x\x C A and B)

.

(c) {x\x G A or x C B}

.

(d) {x C Z+ |* G {x C Z\ for some integer y, x = 2y} and x C {* C Z\ for

some integer y, x = 3y}}.

(e) {x 2
|x is a prime}

.

(0 {a/b G Q\a + b = 1 and a, b G Q) •

(g) C R 2
|x

2 + y
2 = I}-

(h) {(x, y) G R 2
|jV = 2x and y = 3x}.

2.6. Prove that if a, b, c, and d are any objects, not necessarily distinct from

one another, then {{a}, {a, b}} = {{r}, [c, d}} iff both a = c and b = d.

3. Inclusion

We now introduce two further relations for sets. If A and B are sets,

then A is included in B, symbolized by

A C B,
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ill each member of A is a member of B . In this event one also says that
/I is a subset of B. Further, we agree that B includes A, symbolized by

B D A,

is synonymous with A is included in B. Thus, A C B and B => A each
means that, foi all x, il x (El A, then x (7 B. I he set A is properly
included in B

,
symbolized by

A C B
(or, alternatively, A is a proper subset of B

,
and B properly includes

^)’ iff d C and A Z B. For example, the set of even integers is

properly included in the set Z of integers, and the set Q of rational
numbers properly includes Z.

Among the basic properties of the inclusion relation are

FCZ;
X C } and Y C Z imply X C Z\
X C Y and Y C X imply X = Y.

The last of these is the formulation, in terms of the inclusion relation,
of the two steps in a proof of the equality of two sets. That is, to prove
that Ar = Y, one proves that ACT and then that 7 C X.

For the relation of proper inclusion, only the analogue of the second
property above is valid. The proof that X C Y and Y C Z imply
A C Z is required in one of the exercises at the end of this section.
There the reader will also find further properties of proper inclusion,
so far as its relationship to inclusion is concerned.

Since beginners tend to confuse the relations of membership and
inclusion, we shall take every opportunity to point out distinctions.
At this time we note that the analogues for membership of the first two
of the above properties for inclusion are false. For example, if X is the
set of prime numbers, then X £ X. Again, although 1 C Z and

’
11 1S n0t the Case that 1 ^ since 2 is the sole member

of |Z).

We turn now to a discussion of the subsets of a set, that is, the sets
included in a set. I his is our first example of an important procedure
in set theory—the formation of new sets from an existing set. The
principle of abstraction may be used to define subsets of a given set.
ndecd, il 1 (x) is a formula in x and A is a set, then the formula

x £ A and P(x)

determines that subset of A which we have already agreed to write as
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\x G A\P(x)\. If A is a set and we choose P(x) to be x 7^ x, the result

is {* C A\x 5* *}, and this set, clearly, has no elements. The principle

of extension implies that there can be only one set with no elements.

We call this set the empty set and symbolize it by

0 .

The empty set is a subset of every set. To establish this it must be

proved that if A is a set, then each member of 0 is a member of A.

Since 0 has no members, the condition is automatically fulfilled. Al-

though this reasoning is correct, it may not be satisfying. An alternative

proof which might be more comforting is an indirect one. Assume that

it is false that 0 C A. This can be the case only if there exists some

member of 0 which is not a member of A. But this is impossible, since 0
has no members. Hence, 0 G A is not false; that is, 0 G A.

Each set A 0 has at least two distinct subsets, A and 0. More-

over, each member of A determines a subset ol A; if a C A, then

(
0

}
C A. There are occasions when one wishes to speak not of indi-

vidual subsets of a set, but of the set of all subsets of that set. The set

of all subsets of a set A is the power set of A, symbolized by

(9(A).

Thus, (9(A) is an abbreviation for

\B\B C A}.

For instance, A A = {1, 2, 3}, then

(9(A) = [A, {1,2}, {1,3}, {2,3}, {1}, {2}, {3}, 0}.

As another instance of the distinction between the membership and

inclusion relations we note that if B G A, then B G (9(A), and it a G A,

then {<2 } G A and {a} G (9 {A).

The name “power set of A” for the set of all subsets of A has its

origin in the case where A is finite; then (9(A) has 2" members if A

has n members. To prove this, consider the following scheme loi de-

scribing a subset B of A = {<21 ,

• •
•

,
On

\

'• a sequence of n 0 s and 1 s

where the first entry is 1 if a x G B and 0 if a x 0 B and where the second

entry is 1 if a2 G B and 0 if a 2 0 B, and so on. Clearly, the subsets of A

can be paired with the set of all such sequences of 0’s and Ts; for ex-

ample, if n = 4, then \au a*} determines, and is determined by, the

sequence 1010. Since the total number of such sequences is equal to

2-2 2 = 2", the number of elements of (P(/l) is equal to 2".
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EXERCISES

3.1. Prove each of the following, using any properties of numbers that may
be needed.

(a) {x C Z[ for an integer y, x = 6y} = {* G Z\ for integers u and v, x = 2

u

and x = 3r}

.

(b) {x C R| for a real number y, x = y
2
} = {x C R |at > 0}.

(c) {x G Z| for an integer y, x = 6y} C {x G Z| for arTintegery, x = 2y]

.

3.2. Prove each of the following for sets A, B, and C.
(a) If A C B and B C C, then ACC.
(b) If A C B and B C C, then d C C.

(c) If A C 5 and B C C, then d C C.

(d) If d C 5 and 5 C C, then ACC.
3.3. Give an example of sets A, 5, C, D

,
and £ which satisfy the following

conditions simultaneously: A C 5 £ C, C C A and D C £.
3.4. Which of the following are true for all sets A, B, and C?
(a) If A g £ and 5 g C, then d g C.
(b) If d ^ Z? and B 5* C, then A ^ C.

(c) If d £ £ and B ^ C, then A £ C.

(d) If A C B and B Q C, then C £ A.
(e) If d C 5 and B C C, then d g C.

3.5. Show that for every set d,dC0iffd = 0.
3.6. Let Ai, A 2 ,

• •
*, d w be n sets. Show that

AiCA2 C---CAn QA 1 iff A, = A 2 = • • • = A n .

3.7. Give several examples of a set A' such that each element of A' is a subset
of X.

3.8. List the members of (9(A) if A = {{1,2}, {3\ V
3 9 For each positive integer n, give an example of a set An of n elements

such that for each pair of elements of An ,
one member is an element of the other.

4. Operations for Sets

We continue with our description of methods for generating new sets
from existing sets by defining two methods for composing pairs of sets,
rhesc so-called operations for sets parallel, in certain respects, the
lamiliar operations of addition and multiplication for integers. The
union (sum, join) ol the sets A and B symbolized by A U B and read
-A union F o, -A cup *,» „ objcc„ Jhldl „c

“
ol either A or B; that is,

A U B =
j
x \x G A or a G B\.

Here the inclusive sense of the word “or” is intended. Thus, by defi-
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nition, xC^U^iff*isa member of at least one of A and B. For

example,

{1,2,31 U {1,3,4} = {1,2, 3, 4}.

The intersection (product, meet) of the sets A and /i, symbolized by

A n B and read “A intersection /T or “A cap B,” is the set of all

objects which are members of both A and B; that is,

A Pi B = {*|x £ A and x C B).

Thus, by definition, x A 0 B x A and x C B. For example,

{1,2,3} H {1,3,4} = {1,3}.

It is left as an exercise to prove that for every pair of sets A and B the

following inclusions hold:

0QADBQAQAUB.
Two sets A and B are disjoint iff A Pi B = 0, and they intersect

iff A n B 9* 0. A collection of sets is a disjoint collection iff each

distinct pair of its member sets is disjoint. A partition of a set A is a

disjoint collection d of nonempty and distinct subsets of X such that

each member of A is a member ol some (and, hence, exactly one)

member of a. For example, {{1,2}, { 3 } , {4,5}} is a partition ol

{1,2, 3,4, 5}.

A further procedure, that of complementation, for generating sets

from existing sets employs a single set. I he absolute complement oi

a set A, symbolized by

A,

is {a A 0 A}. The relative complement of A with respect to a set X is

X (A d; this is usually shortened to X — A, read “A minus AX Thus

X — A = \x CX\x 0 A},

that is, the set of those members of X which are not members of A. The

symmetric difference of sets A and B
,
symbolized by A + B, is defined

as follows:

A + B = (A - B) U (B - A).

This operation is commutative, that is, A + B — B + A, and associ-

ative, that is, (A + B) + C = A + (B + C). Further, A + A = 0,

and 4 - 0 = A. Proofs of these statements are left as exercises.

If all sets under consideration in a certain discussion are subsets of a

set £/, then U is called the universal set (for that discussion). As ex-

amples, in elementary number theory the universal set is Z, and in
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plane analytic geometry the universal set is the set of all ordered pairs
of real numbers. A graphic device known as a Venn diagram is used
lor assisting one’s thinking on complex relations which may exist among
subsets ol a universal set U. A Venn diagram is a schematic representa-
tion of sets by sets ol points: the universal set U is represented by the
points within a rectangle, and a subset A of U is represented by the
intei ioi ol a cnclc 01 some other simple region within the rectangle.
The complement of A relative to U, which we may abbreviate to A
without confusion, is the part of the rectangle outside the region repre-
senting A, as shown in Figure 1. If the subsets A and B of U are repre-

Figure 1 Figure 2 Figure 3

sented in this way, then A H B and A \J B are represented by shaded
regions, as in Figure 2 and Figure 3, respectively. Disjoint sets are repre-
sented by nonoverlapping regions, and inclusion is depicted by dis-
playing one region lying entirely within another. These are the
ingredients for constructing the Venn diagram of an expression
compounded lrom several sets by means of union, intersection, com-
plementation, and inclusion. The principal applications of Venn
diagiams are to problems ol simplifying a given complex expression
and simplifying given sets of conditions among several subsets of a
universe of discourse. Three simple examples of this sort appear below.
In many cases such diagrams are inadequate, but they may be helpful
in connection with the algebraic approach developed in the next
section.

EXAMPLES
4.1. Suppose A and B are given sets such that A — B = B — A = 0. Can

the relation of A to B be expressed more simply? Since A — B = 0 meansAn B =
=0, the regions representing A and B do not overlap (Figure 4 ).

Clearly, B = B, so we conclude (Figure 5) that A C B. Conversely, if A C B
,

it is clear that A — B = 0. We conclude that A — B = 0 iff A C B Inter-
changing A and B gives B - A = 0 iff B C A. Thus the given relations hold
between A and B iff A C B and B C A or, A = B.
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Figure 5

4.2. Let us investigate the question of whether it is possible to find tin ee sub-

sets A, B, and C of U such that

C ^ 0, A n B * 0, A n c = 0, (A n B) - C = 0.

The second condition implies that A and II intersect and, therefore, incidentally

that neither is empty. From Example 4.1 the fourth condition amounts to

A O B C C, from which it follows that the first is superfluous. The associated

Venn diagram indicates that A and C intersect; that is, the validity of the second

and fourth conditions contradicts the third. Hence, there do not exist sets satis-

fying all the conditions simultaneously.

4.3. Given that F, G
,
and L are subsets of U such that

F C G, G n L C F, L Pi F = 0.

Is it possible to simplify this set of conditions? The Venn diagram (figure 6)

represents only the first and third conditions. The second condition forces L

and G to be disjoint, that is, G Pi L = 0. On the other hand, if F Q G and

C p\
L = 0, then all given conditions hold. Thus F C G and G C\ L = 0

constitute a simplification of the given conditions.

EXERCISES

(Note: Venn diagrams are not to be used in Exercises 4. 1-4.8.)

4.1. Prove that for all sets A and B, 0QAHFQAUB.
4.2. Let Z be the universal set, and let

A = {x C Z| for some positive integer y, x = 2y},

B = {x CZ
|

for some positive integer y, x = 2y
— 1},

C = K Z\x < 10}.

Describe A, A{jB ,
C, A - C, and C - (A U B), either in prose or by a de^

fining property.

4.3. Consider the following subsets of Z+, the set of positive integers:

A = {x C Z+
|

for some integer y, x = 2y},

B = (x C Z+
j

for some integer y, x = 2y + 1},

C = {x C Z+
|

for some integer y, x = 3y}.

(a) Describe A D C, B U C, and B — C.

(b) Verify that A O (B U C) = (d fl U Pi Q-
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4.4. If A is any set, what are each of the following sets? A C\ 0 ,
A U 0,

A - 0, A - A, 0 - A.

4.5. Determine 0 D {0} , {0} f) {0}, {0, {0}} - 0, {0, {0}} -
{0 }, {0 , {0 }} - {{0}}.

4.6. Suppose A and B are subsets of U. Show that in each of (a), (b), and (c)

below, if any one ofjhe relations stated holds, then each of the others holds.
(a) A C B, A C B, A U B = B, A Pi B = A.

(b) A Pi B = 0, A C B, B C A.

(c) A U B = U,ACB,BCA.
4.7. Prove that for all sets A, B

,
and C,

(4flfi)UC=4n(«UC) iff CCA.
4.8. Prove that for all sets A, B, and C,

(A - B) - C = (A - C) - (B - C).

4.9.

(a) Draw the Venn diagram of the symmetric difference, A + B, of
sets A and B.

(b) Using a Venn diagram, show that symmetric difference is a com-
mutative and associative operation.

(c) Show that for every set A, A + A = 0 and A + 0 = A.
4.10. The Venn diagram for subsets A, B, and C of U, in general, divides

the rectangle representing U into eight nonoverlapping regions. Label each
region with a combination of A

,
B, and C which represents exactly that region.

4.11. With the aid of a Venn diagram investigate the validity of each of the
following inferences:

(a) If A, B, and C are subsets of U such that A Pi B C C and A U C C B
then A H C = 0.

(b) If A
,
B, and C are subsets of U such that A C B U C and B C A U C

then B = 0 .

5. The Algebra of Sets

If we were to undertake the treatment of problems more complex
than those examined above, we would feel the need for more system-
atic procedures for carrying out calculations with sets related by in-
clusion, union, intersection, and complementation. That is, what would
be called for could appropriately be named “the algebra of sets”—

a

development of the basic properties of U, fi,
~

,
and C together with

interrelations. As such, the algebra of sets is intended to be the set-
theoretic analogue of the familiar algebra of the real numbers, which
is concerned with properties of +, and < and their interrelations
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The basic ingredients of the algebra of sets are various identities

equations which are true whatever the universal set U and no matter

what particular subsets the letters (other than U and 0) represent.

Our first result lists basic properties of union and intersection. For

the sake of uniformity, all of these have been formulated lor subsets ol

a universal set U. However, for some of the properties this is a purely

artificial restriction, as an examination of the proofs will show.

THEOREM 5.1. For any subsets A, B
,
C of a set U the following

equations are identities. Here A is an abbreviation for U — A.

UU(5UC)
= (A U B) u c.

2. A U B = B U A.

3. A U (B pi C)

= (A u B) n (A U C).

4. A U 0 = A.

5. A U A = U.

i'. a n(B nc)
= (a n b) pc.

2'. A n B = B n A.

3'. A n (B u C)

= (a n b) u (a n c).

4'. A n U = A.

5'. A n A = 0.

Proof. Each assertion can be verified by showing that the set on

either side of the equality sign is included in the set on the other side.

As an illustration we shall prove identity 3.

(a) Proof that A U (B Pi C) C (A U B) P (A U C). Let * C A U
{B Pi C). Then x C A or x C B Pi C. If x C A, then x C A U B

and x C A U C, and hence * is a member of their intersection.

If x C B P C, then x C B and x C C. Hence x C A U B and

x C A U C, so again x is a member of their intersection.

(b) Proof that (A U B) P (A U C) C A U {B P C). Let x C
(4 U 5) P C4 U C). Then a: C ^4 U ^ and x C A U C. Hence

x C A, or x C B and x £ C. These imply that ^ G ^ U P C).

Identities 1 and 1' are referred to as the associative laws for union

and intersection, respectively, and identities 2 and 2 as the commuta-

tive laws for these operations. Identities 3 and 3' are the distributive

laws for union and intersection, respectively. 1 he analogy of proper-

ties of union and intersection with properties of addition and multipli-

cation, respectively, for numbers, is striking at this point. For instance,

3' corresponds precisely to the distributive law in arithmetic. 1 hat there

are also striking differences is illustrated by 3, which has no analogue

in arithmetic.
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According to the associative law, identity 1
,
the two sets that can

be formed with the operation of union from sets A, B
,
and C, in that

order, are equal. We agree to denote this set by A U B U C. Then the

associative law asserts that it is immaterial as to how parentheses are

introduced into this expression. Using induction, this result can be

generalized to the following. The sets obtainable from given sets A\,

A 2 ,
•

•
•

,
A n ,

in that order, by use of the operation of union arc all equal

to one another. The set defined by A h A 2 ,
•

•
•

,
A n in this way will be

written as

A! U A 2 u • •
• U An.

In view of identity V there is also a corresponding generalization for

intersection. With these general associative laws on the record we can

state the general commutative law: If Y, 2', • •

*, n are 1,2, •
• *, n in

any order, then

A,\J A 2 VJ • •
• U An = Av U Av U • •

• U A n/ .

We can also state the general distributive laws:

a u {b, n b2 n • •
• n Bn)

= (a u bo n (a u b2) n • •
• n (a u bh),

A n (£i U B2 U • •
• U Bn)

= (a n bo u (a n b2) u • •
• u (a p Bn).

These can also be proved by induction.

Detailed proofs of the foregoing properties of unions and intersec-

tions of sets need make no reference to the membership relation; that

is, these properties follow solely from those listed in Theorem 5.1. The

same is true of those further properties which appear in the next theo-

rem. Such facts may be regarded as the origin of the “axiomatic ap-

proach” to the algebra of sets developed in Chapter 6. One derivative

of this approach is the conclusion that every theorem of the algebra of

sets is derivable from 1—5 and Y—5
/

.

These ten properties have another interesting consequence. In Theo-

rem 5.1 they are paired in such a way that each member of a pair is

obtainable from the other member by interchanging U and Pi and,

simultaneously, 0 and U. An equation, or an expression, or a state-

ment within the framework of the algebra of sets obtained from an-

other by interchanging U and P along with 0 and U throughout is

the dual of the original. We contend that the dual of any theorem

expressible in terms of U, P, and
,
and which can be proved using

only identities 1-5 and U-5 7

,
is also a theorem. Indeed, suppose that

the proof of such a theorem is written as a sequence of steps and that
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opposite each step is placed the justification for it. By assumption, each

justification is one of 1-5, one of 1 '—5', or a premise of the theorem.

Now replace the identity or relation in each step by its dual. Since

1-5 and T-5' contain wilh each its dual, and the dual of each premise

of the original theorem is now a premise, the dual of each justification

in the original proof is available to serve as a justification for a step

in the new sequence which, therefore, constitutes a proof. 1 he last line

of the new sequence is, therefore, a theorem, the dual of the original

theorem. Accepting the fact that every theorem of the algebra of sets

is deducible from 1-5 and l'-5', we then obtain the principle of duality

for the algebra of sets: If T is any theorem expressed in terms of U, Pi,

and
,
then the dual of T is also a theorem. This implies, for instance,

that if the unprimed formulas in the next theorem are deduced solely

from Theorem 5.1, then the primed formulas follow by duality. The

reader should convince himself that all the assertions in Theorem 5.2

are true by using the definitions of U, P, and in terms of the member-

ship relation. Further, he might try to deduce some of them solely from

Theorem 5.1—that is, without appealing in any way to the membership

relation. Some demonstrations of this nature appear in the proof of

Theorem 6.2.1
. f

THEOREM 5.2. For all subsets A and B of a set £/, the following

statements are valid. Here A is an abbreviation for U — A.

6.

If, for all A, A U B = A, 6'. If, for all A, A P B = A
,
then

then B = 0. B = U.

7, 7'. If A U B = U and A P B = 0, then B = A.

8, 8'. 2 = A.

9.

0 = U.

10. A U A = A.

11. A U U = U.

12. A U (A P B) = A.

13. A U B = 7l p B.

9'. U = 0.
10'. A D A = A.

IT. A P 0 = 0.
12'. A P (A U B) = A.

13'. A P B = A\JB.

Some of the identities in Theorem 5.2 have well-established names.

For example, 10 and 10^ are the idempotent laws, 12 and 12 are the

t To refer to a theorem, example, exercise, or section in the chapter in which it appears,

we use only the number by which it is identified in the text. When a reference is made to

one of these items in another chapter we prefix its identifying number with a numeral that

identifies the chapter. For instance, in Chapter 1 we shall refer to the third example in Sec-

tion 2 as Example 2.3 and in another chapter we shall refer to the same example as Ex-

ample 1.2.3.
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absorption laws, and 13 and 13' the DeMorgan laws. The identities

7, 7' and 8, 8' are each numbered twice to emphasize that each is un-

changed by the operation which converts it into its dual; such formulas

are called self-dual. Note that 7, 7' asserts that each set has a unique
complement.

A remark about the form of the next theorem is in order. An asser-

tion of the form, “The statements Rh R2 ,

• •
•, Rk are equivalent to one

another,” means “For all i and j, R { iff /?
y
,” which, in turn, is the case

iff Ri implies R2 implies /?3 ,

• •
•, Rk_ i implies Rk ,

and Rk implies Ri. The
content of the theorem is that the inclusion relation for sets is definable

in terms of union as well as in terms of intersection.

THEOREM 5.3. The following statements about sets A and B are

equivalent to one another.

(I) A c B.

(II) A n B = A.

(Ill) A U B = B.

Proof. (I) implies (II). Assume that A C B. Since, for all A and B,
A Pi B C A, it is sufficient to prove that A C A O B. But if x £ A,
then x C B and, hence, x C A O B. Hence A C A Pi B.

(II) implies (III). Assume A O B = A. Then

A U B = (A n B) U B = (A U B) n (B U B)
= (A u B) n B = B.

(Ill) implies (I). Assume that A U B = B. Then this and the iden-
tity A C A U B imply A C B.

The principle of duality as formulated earlier does not apply directly
to expressions in which — or C appears. One can cope with subtrac-
tion by using the unabbreviated form, namely, A O 5, for A — B.
Similarly, by virtue of Theorem 5.3, A C B may be replaced by
A n B = A (or A U B = B). Still better, since the dual of A O B = A
is A U B = A, which is equivalent to A Z) B, the principle of duality
may be extended to include the case where the inclusion symbol is

present, by adding the provision that all inclusion signs be reversed.

EXAMPLES

5.E With the aid of the identities now available a great variety of complex
expressions involving sets can be simplified, much as in elementary algebra. We
give three illustrations.
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(a) A H B U B = A U B U B = A U_B.

(b) (^n^nc)u(/in5nc)unjc
= [(a u a) n a n c] u n u c

= [unBnc]{jBnc
= (bhqu bhc
= u.

(c) (^n^ncn X) u (a n c) u (b n c) u (c n ao

= wn^ncn^ui^u^u ao n c]

= [(^n^ni)u^nfinA']nc
= ^/nc
= c.

5.2. There is a theory of equations for the algebra of sets, and it differs con-

siderably from that encountered in high school algebra. As an illustration we

shall discuss a method for solving a single equation in one “unknown.” Such

an equation may be described as one formed using p|, U, and on symbols

Ai, Ao, • • A n ,
and A", where the ff’s denote fixed subsets of some universal set

U and X denotes a subset of U which is constrained only by the equation in

which it appears. Using the algebra of sets, the problem is to determine under

what conditions such an equation has a solution and then, assuming these are

satisfied, to obtain all solutions. A recipe for this follows; the proof required in

each step is left as an exercise (see Exercise 5.7).

Step I. Two sets are equal iff their symmetric difference is equal to 0.

Hence, an equation in A' is equivalent to one whose righthand side is 0 .

Step II. An equation in X with righthand side 0 is equivalent to one of

the form

(a n x) u (b n x) = 0,

where A and B are free of X.

Step III. The union of two sets is equal to 0 iff each set is equal to 0.

Hence, the equation in Step II is equivalent to the pair of simultaneous equa-

tions

A0X = 0, B 0X = 0.

Step IV. The above pair of equations, and hence the original equation,

has a solution iff B U A. In this event, any X, such that B C X C A, is a

solution.

We illustrate the foregoing by deriving necessary and sufficient conditions

that the following equation have a solution:

X u C = D,

[(x u c) n n]_u [d n (auj Q] = 0,
[(x u c) n d] u [dc\ x nc] = 0,

(A-nfl)U(cno)u (d nine) = 0 ,

(Dnx) u [(c n D) n {x u x)] u (cncn x) = 0.

(Step I)
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(T he introduction of X U A in the preceding equation is discussed in Ex-

ercise 5.7.)

(Sni)u(cnSnA)u(cn^n7)u(/)ncni) = 0 ,

{[d u (c n d)] nx} u {[(cn d) u (do c)] n = 0,
{D n X) U [(C + D) H AJ = 0, (Step II)

D n X = 0 and (C + D) H A' = 0. (Step III)

Thus, the original equation has a solution iff

C + /)CD. (Step IV)

It is left as an exercise to show that this condition simplifies to C C D.

EXERCISES

5.1. Prove that parts 3', 4', and 5' of Theorem 5.1 are identities.

5.2. Prove the unprimed parts of Theorem 5.2 using the membership rela-

tion. Try to prove the same results using only Theorem 5.1 . In at least one such
proof write out the dual of each step to demonstrate that a proof of the dual
results.

5.3. Using only the identities in Theorems 5.1 and 5.2, show that each of the
following equations is an identity.

(a) (a n b n x) u (a n b n c n x n y) u (a n x n a)

= ah bdx.
(b) (dn^nc) u_(d nBnc){jBuc = u.

(c) (a n b nc n x) u(dnc)u(^nc)u(cn x) = c.

(d ) [(a n b)u (adc)u (Anxn m
n Ua nBnc±u(Anxr)Y)u(AnBn t)]

= (a n b) u (a n b n v n n.
5.4. Rework Exercise 4.9(b), using solely the algebra of sets developed in

this section.

5.5. Let A h Ao, •
•

•, A n be sets, and define Sk to be di U A 2 U • •
• U A k for

k = 1
,
2

,

• •
•, n. Show that

® = (Al, A'2 — Si, A 3 — £2 ,

* •
*, A n — S’n-i}

is a disjoint collection of sets and that

Sn = Ai U (A 2 — U * •
• U (A n — Sn~ 1).

When is ft a partition of Sn?

5.6. Prove that for arbitrary sets Ah A2 ,
•

•
•, A n (n > 2 ),

A\ U A 2 U •
• U A n = (Ai — A 2 ) U (/I 2 — A-s) U • •

• U (A n~ 1 — A n)

u (d n - to u (d x n t2 n • •
• n A n).

5.7. Referring to Example 5.2, prove the following.

(a) For all sets A and B, A = B iff A + B = 0.
(b) An equation in A with righthand member 0 can be reduced to one of
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the form (

A

Pi X) U (B C\X) — 0 .
(Suggestion: Sketch a proof along

these lines. First, apply the DeMorgan laws until only complements of

individual sets appear. Then expand the resulting lefthand side by the

distributive law 3 so as to transform it into the union ot several terms l „

each of which is an intersection of several individual sets. Next, if in any

Ti neither X nor X appears, replace Ti by 7", P (X U X) and expand.

Finally, group together the terms containing X and those containing X
and apply the distributive law 3h)

(c) For all sets A and B, A = B = 0iftA{JB = 0. _
(d) The equation (A P X) U {B p X) = 0 has a solution iff B C A, and

then any X such that B C X C A is a solution.

(e) An alternative form for solutions of the equation in part (d) is X =

(B U T) P A, where T is an arbitrary set.

5.8. Show that for arbitrary sets A, 7i, C, D
,
and .V,

(a) [(A PI)U(^P X)] = (A P A) U (B P A),

(b) [{A P X) U (B P X)] U [(C P X) U (D P X)]

= [(

A

U C) n X] u [(B u D) P A],

(c) [(A P A) U {B P A)] P [(C P A) U (1) P A)]

= [(A P C) p A] U [(£ P Z)) P A].

5.9. Using the results in Exercises 5.7 and 5.8, prove that the equation

(.A P A) U (B P A) = (C P A) U (D P A)

has a solution iff 5 ~F 79 CZ /I -j- C. In this event determine all solutions.

6. Relations

In mathematics the word “relation” is used in the sense of relation-

ship. The following partial sentences (or predicates) are examples of

relations:

is less than, is included in,

divides, is a member of,

is congruent to, is the mother ol.

In this section the concept of a relation will be developed within the

framework of set theory. 1 he motivation lor the forthcoming definition

is this: A (binary) relation is used in connection with pairs ol objects

considered in a definite order. Further, a relation is concerned with

the existence or nonexistence of some type of bond between certain

ordered pairs. We infer that a relation provides a criterion lor dis-

tinguishing some ordered pairs from others in the following sense. 11 a

list of all ordered pairs for which the relation is pertinent is available

,
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then with each may be associated “yes” or “no” to indicate that a

pair is or is not in the given relation. Clearly, the same end is achieved

by listing exactly all those pairs which are in the given relation. Such
a list characterizes the relation. Thus the stage is set for defining a

relation as a set of ordered pairs, and this is done as soon as the notion

of an ordered pair is made precise.

Intuitively, an ordered pair is simply an entity consisting of two
objects in a specified order. As the notion is used in mathematics, one
relies on ordered pairs to have two properties: (i) given any two objects,

x and y, there exists an object, which might be denoted by (x, y) and
called the ordered pair of x and y, that is uniquely determined by x

and y ;
(ii) if (x , y) and (u, v) are two ordered pairs, then (*, y) = (u, v) iff

x = u and y = v. Now it is possible to define an object, indeed, a set,

which has these properties: the ordered pair of x and y, symbolized by

(*> y),

is the set

{{*}, \x>y}},

that is, the two-element set one of whose members, {*, y}, is the un-
ordered pair involved, and the other, {*}, determines which member
of this unordered pair is to be considered as being “first.” We shall now
prove that, as defined, ordered pairs have the properties mentioned
above.

THEOREM 6.1. The ordered pair of a and y is uniquely deter-

mined by * and y. Moreover, if (x, y) = (u, v), then x = u and y = v.

Proof. That x and y uniquely determine (x, y) follows from our
assumption that a set is uniquely determined by its members. Turn-
ing to the more profound part of the proof, let us assume that (x, y)

=
(u, v). We consider two cases.

(I) u = tcThen (u,v) = {{«}, {u,v)\ = {{«)}. Hence {{*}, \x,y)
j

= II »}}, which implies that {at} = \x, y j
=

{
u

}
and, in turn,

that x = u and y = v.

(II) u ^ v. Then {

u

}
{u, v) and {*} ^ {u, v}. Since {x} C {

{w},

{“,»})> ^ follows that {x} = {u} and, hence, .v = u. Since

!
w

,
v

\ C \
{x\, {*, y}j and [u, v

} ^ {vj, we have {w, v) =
{x,y}. Thus, {x} 5* {x,y}, so, in turn, x ^ y and y ^ u.

Hence y = v.

We call x the first coordinate and y the second coordinate of the
ordered pair (x,y). Ordered triples and, in general, ordered ^-tuples
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may be defined in terms of ordered pairs. The ordered triple of x, y,

and z, symbolized by (x, y, z), is defined to be the ordered pair ((x, y), z).

Assuming that ordered (n — l)-tuples have been defined, we take the

ordered w-tuple of x2 ,

• • x„, symbolized by (xi, x2 ,

• • xn ), to be

((Xi, X2 ,

* •
•

, X„_i), Xn).

We return to our principal topic by defining a binary relation as a

set of ordered pairs, that is, a set each of whose members is an ordered

pair. If p is a relation, we write (x, y) G P and xpy interchangeably, and

we say that x is p-related to y iff xpy. There are established symbols for

various relations such as equality, membership, inclusion, congruence.

Such familiar notation as x = y, x < y, and x = y is the origin of xpy

as a substitute for “(x, y) C p”

A natural generalization of a binary relation is that of an p-ary rela-

tion as a set of ordered p-tuplcs. The case n = 2 is, of course, the one for

which we have agreed on the name “binary relation. ” Similarly, in

place of 3-ary relation we shall say ternary relation.

EXAMPLES
6.1. {(2, 4), (7, 3), (3, 3), (2, 1)} as a set of ordered pairs is a binary relation.

The fact that it appears to have no particular significance suggests that it is not

worthwhile assigning a name to.

6.2. The relation “less than” for integers is {(x, y)\ for integers x andy, there

is a positive integer z for which x -j- z = y} . Symbolizing this relation in the

traditional way, the statements “2 < 5” and “(2, 5) C <” are synonymous

(and true).

6.3. If p symbolizes the relation of motherhood, then (Jane, John) G M

means that Jane is the mother of John.

6.4. Human parenthood is an example of a ternary relation. If it is sym-

bolized by p, then (Elizabeth, Philip, Charles) G P indicates that Elizabeth and

Philip are the parents of Charles. Addition in Z is another ternary relation;

writing “5 = 2 + 3” may be considered as an alternative to asserting that

(2, 3, 5) C +•
6.5. The cube root relation for real numbers is {(x 1/3

,x)| x C R} • One mem-

ber of this relation is (2, 8).

6.6. In trigonometry the sine function is defined by way of a rule for associ-

ating with each real number a real number between —1 and 1. In practical

applications one relies on a table in a handbook for values of this function for

various arguments. Such a table is simply a compact way of displaying a set of

ordered pairs. Thus, for practical purposes, the sine function is defined by the

set of ordered pairs exhibited in a table (together with a rule concerning the

extension of the table). We note that as such a table is designed to be read it



26 Sets and Relations CHAP. 1

presents pairs of the form (x, sinx); thereby the coordinates are interchanged

from the order in which we have been writing them for relations in general.

That is, for an arbitrary relation p we have interpreted (
a

,
b) £ p as meaning

that a is p-rclated to b, whereas the presence of (tt/2, 1) in a table for the sine

function is intended to convey the information that the second coordinate is

sine-related (is the sine of) the first coordinate.

Later vve shall find extensive applications for ternary relations, but

our present interest is in binary relations, which we shall abbreviate to

simply “relations” if no confusion can result. If p is a relation, then the

domain of p, symbolized by D p ,
is

{x| for somey, (x, y) £ p }

,

and the range of p, symbolized by R
p ,

is

\y\ for some x, (x, y) £ p}.

That is, the domain of p is the set whose members are the first coordi-

nates of members of p, and the range of p is the set whose members are

the second coordinates of members of p. For example, the domain and

range of the inclusion relation for subsets of a set U are each equal to

(P(U). Again, the domain of the relation of motherhood is the set of all

mothers, and the range is the set of all people.

One of the simplest types of relations is the set of all pairs (x, y), such

that x is a member of some fixed set X and y is a member of some fixed

set Y. This relation is the cartesian product, X X T, of X and T. Thus,

X X Y = {(x, y)|x £ X and y £ Y}.

It is evident that a relation p is a subset of any cartesian product X X Y,

such that X D p and Y T> R
p . If p is a relation and p Cl X X T, then

p is referred to as a relation from X to Y. If p is a relation from X to

Y and Z 3 X U Y, then p is a relation from Z to Z. A relation from

X to X will be called a relation in X. Such terminologies as “a rela-

tion from X to } ” and “a relation in X” stem from the possible applica-

tion of a relation to distinguish certain ordered pairs of objects from
others. II A is a set, then A' X X is a relation in X which we shall call

die universal relation in X; this is a suggestive name, since, for each
pair x, y of elements in A", we have x(X X X)y. At the other extreme is

the void relation in X, consisting of the empty set. Intermediate is the

identity relation in A', symbolized by l or lx ,
which is {(x, x)|x £ X\.

For x, y in X
,
clearly, xixy iff x = y.

If p is a relation and A is a set, then p[A] is defined by

p[A] = {y |

for some x in A, xpy}.
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This set is suggestively called the set of p-relatives of elements of A.

Clearly, p[Dp ]
= RPi

and, if A is any set, p[A] C R
p .

EXAMPLES
6.7. If Y ^ 0, then Dxxy = X, and if X X 0, then Rxxy = Y.

6.8. The basis for plane analytic geometry is the assumption that the points

of the Euclidean plane can be paired with the members of R X R, the set of

ordered pairs of real numbers. Thereby the study of plane geometric configura-

tions may be replaced by that of subsets of R X R, that is, relations in R. l or

geometric configurations which are likely to be of interest, one can anticipate

that the defining property of the associated relation in R will be an algebraic

equation in x and y, or an inequality involving x and y, or some combination

of equations and inequalities. In this event it is standard practice to take the

defining property of the relation associated with a configuration as a description

of the configuration and omit any explicit mention of the relation. 1 or example,

“the line with equation y = 2x T 1
5

is shorthand for the set of points which

are associated with {(x, y) £ R X R0 = 2x + 1}.” Again, “the region

defined by y < x” is intended to refer to the set of points associated with

{(x ,
y)CKXR\y< x}. Asa further example,

serves as a definition of a triangle-shaped region in the plane, as the reader cun

verify.

If relations in R, instead of sets of points in the plane, are the primary objects

of study, then the set of points corresponding to the members of a relation is

called the graph of the relation (or of the defining property of the relation).

Below appear four relations, and above each is sketched its graph. When the

graph includes a region of the plane, this is indicated by shading.

x < 0 and y > 0 and y < 2x -R 1

y y

{<*, y) CRX R|;y = *}

Figure 7

G R X Rb > *}

Figure 8
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y y
t ir

J

0
- x

0
L-v-" ^

5- X

{<*, jlCKX R|0 < * < 2 or «x, y) C R X R|0 < * < 2 and
0 < y < 1} 0 < y < 1}

Figure 9 Figure 10

If p is the relation in R with 0 < * < 2 as defining property and a is the
relation in R with 0 < y < 1 as defining property, then the relation accompany-
ing Figure 9 is equal to p {J a, and the relation accompanying Figure 10 is

p D a. 1 hus, Figures 9 and 10 illustrate the remarks that the graph of the union
of two lelations, p and <r, is the union of the graph of p and the graph of cr, and
the graph of p O <r is the intersection of the graphs of p and a.

6.9. Let p be the relation is the father of.” If A is the set of all men now living
in the United States, then p[A~\ is the set of all people whose fathers now live in
the United States. If A = {Adam, Eve}, then p[A] = {Cain, Abel}.

EXERCISES

6.1. Show that if (*, y, z) = (u ,
v, w), then x = u, y = v, and z = w.

6.2. Write the members of {1, 2} X {2, 3, 4}. What are the domain and
range of this relation? What is its graph?

6.3. State the domain and the range of each of the following relations, and
then draw its graph.

(a) {<*, F> C R X R
|

* 2 + 4y
2 = 1}.

(b) {(*, y) C R X R
|

x 2 = y
2
}

.

(c ) {( v 3 y) R X R
|

|at

J

+ 2|_y| = l}.

(d) {(x, y) C R X R
|

a:
2 + y

2 < 1 and a: > 0}

.

(e ) F> e R X R If > 0 and y < x and a- + y < 1}.
6.4. Write the relation in Exercise 6.3(c) as the union of four relations and

that in Exercise 6.3(e) as the intersection of three relations.

6.5. I he formation of the cartesian product of two sets is a binary operation
for sets. Show by examples that this operation is neither commutative nor
associative.

6.6. Let (3 be the relation “is a brother of,” and let <r be the relation “is a
sister of.” Describe jS U a, 0 D <r, and 0 - <r.
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6.7. Let |8 and <j have the same meaning as in Exercise 6.6. Let A be the set

of students now in the reader’s school. What is (3 [A]? What is ((3 U &)[A]?

6.8. Prove that if A, B, C, and D are sets, then (A O B) X (C Pi D) =
(A X C) Pi (

B

X D). Deduce that the cartesian multiplication of sets dis-

tributes over the operation of intersection, that is, that (A H B) X C =
(A X C) 0 (B X C) and A X (B Pi C) = (A X B) Pi (A X C) for all d, £,

and C.

6.9. Exhibit four sets A, B
,

C, and Z) for which (A U B) X (C U D) X
(AXC)U (BX D).

6.10. In spite of the result in the preceding exercise, cartesian multiplication

distributes over the operation of union. Prove this.

6.11. Investigate whether union and intersection distribute over cartesian

multiplication.

6.12. Prove that if A, B, and C are sets such that A X 0, B X 0, and

(A X B) U (B X A) = C X C, then A = B = C.

7. Equivalence Relations

A relation p in a set X is reflexive (in X) iiT xpx for each x in X. II no

set X is specified, we assume that X = Dp U Rp . A relation p is symmetric

if xpy impliesypx, and it is transitive iff xpy andypz imply xpz. Relations

having these three properties occur so frequently in mathematics they

have acquired a name. A relation p in X is an equivalence relation

(in X) iff p is reflexive (in X), symmetric, and transitive. If a relation p

in X is an equivalence relation in X, then Dp = X. Because of this we

shall henceforth use the terminology “an equivalence relation on X" in

place of “an equivalence relation in XX

EXAMPLES
Each of the following relations is an equivalence relation on the accompany-

ing set.

7.1. Equality in a collection of sets.

7.2. The geometric notion of similarity in the set of all triangles of the

Euclidean plane.

7.3. The relation of congruence modulo n in Z. This relation is defined for

a nonzero integer n as follows: x is congruent to y, symbolized x = y(mod n),

iff n divides x — y.

7.4. The relation cv> in the set of all ordered pairs of positive integers where

(x, y) ^ (u, v) iff xv = yu.

7.5. The relation of parallelism in the set of lines in the Euclidean plane.

7.6. The relation of having the same number of members in a collection of

finite sets.
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7.7. The relation of “living in the same house” in the set of people of the

United States.

The last example above illustrates, in familiar terms, the central

feature of any equivalence relation: It divides the population into

disjoint subsets, in this case the sets of people who live in the same
house. Let us establish our contention in general. If p is an equivalence

relation on the set X
,
then a subset A of X is an equivalence class

(p-equivalence class) iff there is a member x of A such that A is equal

to the set of all y for which xpy. Thus, A is an equivalence class iff there

exists an x in X such that A = p [{*}]. If there is no ambiguity about
the relation at hand, the set of all p-relatives of x in X will be abbrevi-

ated [x] and called the equivalence class generated by *. Two basic

properties of equivalence classes are the following.

(I) x £ [*].

(II) if xpy, then [*] = [y].

The first is a consequence of the reflexivity of an equivalence rela-

tion. To prove the second, assume that xpy. Then [y] C [x] since z £ [y]

(which means that ypz ) together with xpy and the transitivity of p yield

xpz or z £ [*]. The symmetry of p may be used to conclude the reverse

inclusion, and the equality of [x] and [y] follows.

Now property (I) implies that each member of X is a member of an
equivalence class, and (II) implies that two equivalence classes are

either disjoint or equal since if z £ [x] and z £ [y], then [x] = [z],

[y] = [z], and hence [*] = [y). Recalling the definition of a partition

of a nonempty set, we conclude that the collection of distinct p-equiv-

alence classes is a partition of X. This proves the first assertion in the

following theorem.

THEOREM 7.1. Let p be an equivalence relation on X. Then the

collection of distinct p-equivalence classes is a partition of X. Con-
versely, if (P is a partition of X, and a relation p is defined by apb iff

there exists A in (P such that a, b £ A, then p is an equivalence rela-

tion on X. Moreover, if an equivalence relation p determines the

partition (P ol Ar

,
then the equivalence relation defined by (P is equal

to p. Conversely, il a partition (P ol A determines the equivalence
relation p, then the partition of Ar

defined by p is equal to (P.

Proof. To prove the second statement, let (P be a partition of X.
I he relation p which is proposed is symmetric from its definition.

If a £ A, there exists A in (P with a £ A, so that p is reflexive. To
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show the transitivity of p, assume that apb and bpc. I hen there exists

A in (P with a, b G A, and there exists B in (P with b, c G B. Since

b C A and b G B, A = B. Hence ape.

To prove the next assertion, assume that an equivalence relation

p on X is given, that it determines the partition <P of X and, finally,

that (P determines the equivalence relation p"

.

We show that p = p*.

Assume that (x, y ) G P 1 hen x,y G [x] and [x] G (P- By virtue oi the

definition of p* it follows that xp*y or <x, y) G p*. Conversely, given

<.r, y) G p*, there exists A in (P with x, y G A. But A is a p-equivalence

class, and hence xpy or (x, y) G P- 1 bus
> P = P*-

The last part of the theorem is left as an exercise.

To illustrate part of the above theorem let us examine the equiva-

lence relation of congruence modulo n on Z which was defined in Ex-

ample 7.3. An equivalence class consists of all numbers a + kn with k

in Z. Clearly, therefore, [0], [1 ],•••,[«- 1 ]
are distinct classes. There

are no others, since any integer a can be written in the form a = qn + r,

0 < r < n, and hence a G H- A class of congruent numbers is often

called a residue class modulo n. The collection ol residue classes modulo

n will be denoted by Z „. We can use this example to emphasize the fact

that, for any equivalence relation p, an equivalence class is defined by

any one of its members, since if xpy, then [x] = [y\. 1 hus, [0] = [n] =

[2w], and so on, and [1 ]
= [n + 1 ]

= [1 — n], and so on.

If p is an equivalence relation on X
,
we shall denote the pai tition ol

X induced by p by X/p (read “Ar modulo p ) and call it the' quotient

set of X by p. The significance of the partition ol a set A accompanying

an arbitrary equivalence relation p on A is best realized by comparing

p with the extreme equivalence relation on A ol identity. \\ c classily

identity on X as an extreme equivalence relation because the only ele-

ment equal to a given element is itself, dhat is, the partition ol A deter-

mined by identity is the finest possible—the equivalence class generated

by x consists of x alone. In contrast, lor two elements to be p-equivalent

they must merely have a single likeness in common, namely, that chai-

acterized by p. A p-equivalence class consists of all elements ol A which

are indiscernible with respect to p. 1 hat is, an arbitrary equivalence

relation on A
r

defines a generalized form of equality on X. On turning
#

from the elements of X to the p-equivalence classes we have the effect

of identifying any two elements which are p-equivalent. It p happens

to preserve various structural features of X (assuming it has such), these

may appear in simplified form in X/p because ol the identification of
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elements which accompanies the transition to X/p. Examples of this

arise quite naturally later.

Among the applications of equivalence relations in mathematics is

that of formalizing mathematical notions or, as one often says, formu-
lating definitions by abstraction. 1 he essence of this technique is defining
a notion as the set of all objects which one intends to have qualify for

the notion. This seems incestuous on the surface, but in practice it serves
very nicely. For example, let us consider the problem of defining the
positive rational numbers in terms of the positive integers. Instead of
defining ratios of integers directly we introduce the notion of pairs of
integers having equal ratios by the definition

(x , y) <*> (u
9
v) iff xv = yu.

This is an equivalence relation on Z+ X Z+
,
and we can now define a

rational number as an equivalence class. That is, the notion of equiv-
alence ol pairs of integers amounts to imposing a criteria for indiscern-
ibility on Z+ X Z+ . Since this is an equivalence relation, a partition of
the universe ol discourse is at hand, and in an equivalence class we have
the abstraction of the property common to all of its members. Thus we
define a lational number to be such an equivalence class. The familiar
symbol x/y emerges as an abbreviation for the equivalence class [(x, y)].
That an equivalence class is defined by each of its members implies that
any other symbol u/v, where (u, v) £ [(*, y)], may be taken as a name
for the same rational number. For example, the statement 2/3 = 4/6 is

true because 2/3 and 4/6 are merely different names for the same ra-
tional number.

Another instance of definition by abstraction is that of direction based
on the equivalence i elation of parallelism: a direction is an equivalence
class of parallel rays. The notion of shape may be conceived in a like
fashion: geometric similarity is an equivalence relation on the set of
figures in the Euclidean plane, and a shape may be defined as an equiv-
alence class under similarity.

So far, the fundamental result concerning an equivalence relation p

—

that the collection ol all distinct p-equivalence classes is disjoint and xpy
iff * and y are members of the same equivalence class—has been em-
ployed solely in connection with applications of equivalence relations.
It can also be made the basis ol a characterization of equivalence rela-
tions among relations in general. This is done next.

1 HEOREM 7.2. A relation p is an equivalence relation iff there
exists a disjoint collection (P of nonempty sets such that

P = {(x,y) |

for some C in (P, (x,j>) £ C X C).
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Proof. Assume that p is an equivalence relation on X. 1 hen the

collection of distinct p-equivalence classes is disjoint, and we contend

that with this choice for (P, p has the structure described in the theo-

rem. We show first that {(#, y ) j

lor some C in (P, (*, y) C C X C
}
C p.

Assume that (*, y) is a member of the set on the left side ol the inclu-

sion sign. Then there exists an equivalence class [z] with x, y C [z].

Then zpx and zpy
,
and hence xpy, which means that (*, )) C p. 1 o

show the reverse inclusion, assume that (x, y) C P- Then x, y G [*],

and hence (a-, y) G [*] X [*].

The proof of the converse is straightforward and is left as an

exercise.

EXERCISES

7.1 . If p is a relation in R+
,
then its graph is a set of points in the first quad-

rant of a coordinate plane. What is the characteristic feature of such a graph if:

(a) p is reflexive, (b) p is symmetric, (c) p is transitive?

7.2. Using the results of Exercise 7.1, try to formulate a compact character-

ization of the graph of an equivalence relation on R+
.

7.3. The collection of sets {{1,3,4}, {2,7}, {5,6}} is a partition of

{1, 2, 3, 4, 5, 6, 7}. Draw the graph of the accompanying equivalence relation.

7.4. Let p and a be equivalence relations. Prove that p O a is an equivalence

relation.

7.5. Let p be an equivalence relation on X and let L be a set. Show that

p (A (Y X Y) is an equivalence relation on X X Y.

7.6. Give an example of these relations.

(a) A relation which is reflexive and symmetric but not transitive.

(b) A relation which is reflexive and transitive but not symmetric.

(c) A relation which is symmetric and transitive but not rcflcxix c in some set.

7.7. Complete the proof of Theorem 7.1.

7.8. Each equivalence relation on a set X defines a partition of X according

to Theorem 7.1. What equivalence yields the finest partition? the coarsest

partition?

7.9. Complete the proof of Theorem 7.2.

7.10. Let p be a relation which is reflexive and transitive in the set A. for

a, b E A, define a cv> b iff apb and bpa.

(a) Show that <x> is an equivalence relation on A.

(b) For [a], [b] E A/<*>, define [a]p'[b] iff apb. Show that this definition is

independent of a and b in the sense that if a' E M, b' G M, and apb,

then a pb'

.

#

(c) Show that p is reflexive and transitive. Further, show that if [a\p [b]

and [b]p'[a], then [a] = [£].

7.11. In the set Z+ X ZA define (a, b) co (q d) iff a + d — b -f c. Show that
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w is an equivalence relation on this set. Indicate the graph of Z+ X Z+ and
describe the co -equivalence classes.

8. Functions

It is possible to define the concept of function in terms of notions
already introduced. Such a definition is based on the common part of
the discussions about functions to be found in many elementary texts,

namely, the definition of the graph of a function as a set of ordered
pairs. Once it is recognized that there is no information about a function
which cannot be derived from its graph, there is no need to distinguish
between a lunction and its graph. As such, it is reasonable to base a
definition on just that feature of a set of ordered pairs which would
qualify it to be a graph of a function. I his we do by agreeing that a
function is a relation such that no two distinct members have the same
hist cooi dinate. Thus, / is a function iff it meets the following require-
ments.

(I) The members of/ are ordered pairs.

(II) If (x, y) and (x, z) are members of /, then y = z.

EXAMPLES
8.1. {(1, 2), (2, 2), (Roosevelt, Churchill)} is a function with domain

0, 2, Roosevelt} and range (2, Churchill}.

8.2. The relation {(1, 2), (1, 3), (2, 2)} is not a function, since the distinct
members (1, 2) and (1, 3) have the same first coordinate.

8.3. The relation {(*, x 2 + * + 1)|* £ R} is a function, because if x = u
then at

2 + x + 1 = u 2 + u + 1

.

8.4. The relation {(*
2

, *)|* £ R} is not a function, because both (1,1) and
(1, —1) are members.

Synonyms for the word "'function" are numerous and include trans-
formation, map or mapping, correspondence, and operator. If/ is a
function and (x, y) £ /, so that xfy, then v is an argument of/. There
is a great variety ol terminology fory; for example, the value of / at v,

th( image of \ under /, the element into which / carries x. There are
also various symbols for y: xf, f(x) (or, more simply, fx), xR The nota-
tion “/(a)” is a name for the sole member of/[{*}

], the set of/-relatives
of *. In these terms the characteristic feature of a function among rela-
tions in general is that each member of the domain of a function has a
single relative.

The student must accustom himself to these various notations, since
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he will find that all are used. In this book definitions and theorems

pertaining to functions will consistently be phiased using th< notation

/(*), or fx ,
for the (unique) correspondent of x in a function /. I he

notation f[A] for \y\ for some x in A, (x, y) £ f }
is in harmony with this.

However, in applications of functions we shall use a \ ai i< ty ol nota-

tions. When it is more convenient to use xf in place of fix), then [A])

will be used in place of f[A). If xf is used in place of/(x), then [A\ or

Af will be used in place of f[A].

Since functions are sets, the definition of equality of functions is at

hand : Two functions / and g are equal iff they have the same members.

It is clear that this may be rephrased / = g iff Df = D a and fix) = gix)

for each x in the common domain. Consequently, a function may be

defined by specifying its domain and the value of the function at each

member of its domain. The second part of this type ol definition is,

then, in the nature of a rule. For example, an alternative definition of

the function {(.*, x2
-f- x T l)|x £ R

j
is the function / with R as domain

and such that fix) = *2 + * + 1. When a function is defined by

specifying its domain and its value at each member of the domain,

the range of the function may not be evident. The above example

requires a computation to conclude that Rf = \x £ R|* ^ f! • On

the other hand, it is almost obvious that R, £ RR In general, one can

anticipate difficulty in determining the range, but no difficulty in

determining some set that includes the range. Thus, it is convenient

to have available the following terminology. A function / is into ) ill

the range of / is a subset of Y, and / is onto 1 ill Rf = I . For coi re-

sponding notation for the domain ol a function we shall say that / is

on X when the domain of / is X. The symbols

/: X -> Y and X -4- Y

are commonly used to signily that / is a function on the set X into the

set Y.

The set of all functions on X into Y, symbolized

r*

is a subset of <?(X X Y). If X is empty, then Yx consists of only one

member—the empty subset of X X I • This is the only subset ol A X 1

,

since when X is empty so is A X Y. If Y is empty and X is nonempty,

then Yx
is empty. In summary,

Y0 = {0}
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and

0X = 0 if X ^ 0.

If/: A" — } ,
and if A C A", then /H (i X T) is a function on A into

Y (called the restriction of / to A and abbreviated f\A). Explicitly,

f\A is the function on A such that (f\A)(a) = f(a) for a in A. A function

g is the restriction of a function / to some subset of the domain of / iff

the domain of g is a subset of the domain of / and g(x) = f(x) for

x C D„; in other words, g C /. Complementary to the definition of a

restriction, the function / is an extension of a function g iff g C /. In

order to present an example of the notion of a restriction of a function

we recall the earlier definition of the identity relation ix in X. Clearly,

this relation is a function, and hence, in keeping with our current

designation of function by lower-case English letters, we shall designate

it by i or ix . We shall call ix the identity map on X. If A C X, then
ix \A = iA . If ix \A is considered as a function on A into X, then it is

the injection mapping on A into X.

A function is called one-to-one if it maps distinct elements onto dis-

tinct elements. That is, a function / is one-to-one iff

*i x2 implies f(xi) ^ /(*2).

In demonstrating one-to-oneness it may prove to be more convenient
to use the contrapositive of the foregoing:

/(*i) = f(x2) implies xi = x2 .

For example, the function / on R such that f(x) = 2x -f 1 is one-to-one
since 2xi + 1 - 2x2 + 1 implies Xi = x2 .

If / is a one-to-one function on A onto } or, somewhat less awk-
wardly, if /: A —>- I is one-to-one and onto, then it effects a pairing of
the elements ol A with those ol I upon matching f(x) in Y with * in

X. Indeed, since / is a function, f(x) is a uniquely determined element
of I

,
since j is onto I

,
each y in ) is matched with some x

\

and since

/ is one-to-one, each y is matched with only one x. Because of the
symmetrical situation that a one-to-one map on X onto Y portrays, it

is often called a one-to-one correspondence between Ar
and Y. Also,

two sets so related by some function are said to be in one-to-one
correspondence.

EXAMPLES
8.5. The familiar exponential function is a function on R into R, symbolized

f : R — R with f{x)
= e

x
.
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We can also say, more precisely, that / is a function on R onto Rh In general,

if/: X }
r

,
then / is a function on A' onto /[X], that is, onto the range of /.

8.6. {a , 6, c} (1,2! is the set of all functions on {1, 2} into {a, c}. One mem-

ber of this set is {(1, a), (2, r)}.

8.7. If A and B are sets having the same number of elements, they clearly

are in one-to-one correspondence. Then it is an easy matter to show that for

any set X, Ax and Bx are in one-to-one correspondence. I his being the case,

it is customary to denote the set of all functions on X into any set of n elements

by nx . Thus, 2X denotes the set of all functions on X into a set of two elements,

which we will ordinarily take to be {0, 1}. If A C A', then one member of 2 A

is the function xa defined as

Xa (*) = 1 if x C A, and xa(x) = 0 if x C. X — A.

We call xa the characteristic function of A. Now let us define a function / on

<P(X) into 2X by taking as the image of a subset A of X [that is, a member of

(P(AT)] the characteristic function of A (which is a member of 2A'). It is left as

an exercise to prove that / is a one-to-one correspondence between (P(A') and 2 A
.

It is customary to regard (?(X) and 2X as identified by virtue of this one-to-one

correspondence, that is, to feel free to replace one set by the other when it is

convenient.

8.8. If / is a function and A and B are sets, then it can be proved that

J[A U B] = f[A ] U f[B] and that f[A Pi B] C f[A] P f[B]. The inclusion

relation in the case of A Pi B cannot be strengthened.

In elementary mathematics one has occasion to use functions of sev-

eral variables. Within the framework of our discussion a function of n

variables (n > 2) is simply a function whose arguments are ordered

72-tuples. We can include the case n —
1 if we agree that a 1 -tuple,

(x), is simply x. Introducing the notation Afn for the set of all ^-tuples

(xi, x2 ,

• •
•

,
x„), where each * is a member of the set X, a function,

whose domain is Xn and whose range is included in X, is an 72-ary

operation in X. In place of "T-ary we shall say " unary
;

lor ex-

ample, complementation is a unary operation in a power set. In place

of “2-ary” we shall say “binary.” This was anticipated in our discussion

of operations for sets; for example, intersection is a binary operation

in a suitable collection of sets. Also, addition in Z is a binary operation;

if x, y C Z, the value of this function at (x, y) is written x + y.

EXERCISES

8.1. Give an example of a function on R onto Z.

8.2. Show that if A C X, then ix\A = Ia-

8.3. If A and Y are sets of n and m elements, respectively, hA has how many

elements? How many members of (P (

X

X Y) are 1 unctions?
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8.4. Using only mappings of the form /: Z+ Z+ give an example of a
function which

(a) is one-to-one but not onto;

(b) is onto but not one-to-one.

8.5. Let A = {1,2, • •
•, n}. Prove that if a map /: A A is onto, then it is

one-to-one, and that if a map g: A —>- .4 is one-to-one, then it is onto.

/
x
dt— '

Show as best you can that / is a

one-to-one and onto function.

8-7. Pro\ c that the function / defined in Example 8.7 is a one-to-one corre-
spondence between (P(A

T

) and 2X .

8.8.

Referring to Example 8.8, prove that if / is a function and A and B are
sets, then f[A U B] = f[A] U /[£].

8.9.

Referring to the preceding exercise, prove further that f[Af~)B] C
/[d] H /[-#], and show that proper inclusion can occur.

8.10.

Prove that a function / is one-to-one iff for all sets A and B f\A D B] =
/Mow.

8.11.

Prove that a function /: X -+ Y is onto Y iff f[X - A] 3 Y - f[A]
for all sets A.

8.12.

Prove that a function/: X Y is one-to-one and onto iff f\X - A~\ =
y ~ fiA] for all sets A.

9. Composition and Inversion for Functions

To motivate our next definition, we consider an example Let the
functions / and g be defined as

/: R R with f(x) = 2x + 1,

g: R+ -+R+ with £(*) = x 1/2
.

It is a familiar experience to derive from such a pair of functions a
function h for which h(x) = g(f(x)). Since the domain of g is R+ by
definition, x must be restricted to real numbers such that 2^+1 > 0
for h(x) to be defined. That is, combining / and g in this way yields a
function whose domain is the set of real numbers greater than — J and
whose value at x is g(f(x)) = (2x + 1)

1/2
.

The basic idea ol this example is incorporated in the following defi-
nition. By using ordered pair notation (instead of the domain and
value notation) for functions, we avoid having to make any restriction
stemming from a difference between the range of / and the domain of
g. The composite of functions / and g, symbolized
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is the set

j
(x, z) |

there is a y such that xfy and ygz }.

It is left to the reader to prove that this relation is a function. 1 his

operation for functions is called (functional) composition. 1 he follow-

ing special case of our definition is worthy of note. If

/ : X -* Y and g : Y Z,

then

g ° /: X Z and (g ° /)(x) = #(/(*))•

The above example establishes the fact that functional composition

is not a commutative operation; indeed, rarely does fog = g ° f. How-

ever, composition is an associative operation. I hat is, if /, g, and h

are functions, then

fo (go h) = (fog)o h.

To prove this, assume that (x, u) G / ° (g 0 h). Then there exists a z such

that (x, z)Gg°h and (z, u) G /. Since (x, z) G 5 ° ^ there exists a >' such

that (x, y) C h and (y, z) G g. Now (y, z) G g and (z, u) C / imply that

(j;, u) G f ° g- Further, (x, y) C h and (y, u) G f ° g imply that (x, u) G

(/ o g) o h. Reversing the foregoing steps yields the reverse inclusion and

hence equality.

The foregoing proof will be less opaque to the reader if he rewrite s

it in terms of function values. The proof given is in accordance with

our definition of functional composition and has the merit that it avoids

any complications arising from a difference between tne lange of / and

the domain of g. From the associative law for composition follows the

general associative law, which the reader may formulate. The unique

function which is defined by composition from the functions/i, />, > fn

in that order will be designated by

fi ° fi 0 ’ * * °/n-

EXAMPLES
9.1. Let h: R —

R

+ where h(x) = (1 + x 2
)
1/2

. Then h = g ° f if/: R R+

with f(x) = 1 + x 2
,
and g: R+ R+ with^(x) = x 1 ' 2

. It is this decomposition

of h which is used in computing its derivative.

9.2. A decomposition of an arbitrary function along somewhat different lines

than that suggested by the preceding example can be given in terms of concepts

we have discussed. First we make a definition. If p is an equivalence relation

with domain X, then

j: X X/p with j(x) = [*]
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is onto the quotient set X/p; j is called the canonical or natural mapping on

X onto X/p. Now, if / is a mapping on X into F, the relation defined by

xipx2 iff f{x 1 ) = fix2)

is clearly an equivalence relation on X. Let j be the canonical map on X onto

X/p. We contend that a function g on X/p into /[A], the range of/, is defined

by setting g([*]) = /(*). To prove that g is a function, it must be shown that if

[x] =
[y ]

then f(x) = f(y). But [x] =
[y] iff xpy iff /(» = f{y); so g is a func-

tion. Finally, we let i be the injection of f[X] into Y. Collectively, we have de-

fined three functions j, g ,
i where

j: X-+- X/p with j(x) = W,
g: X/p f[X] with g( [x]) = f(x),

i: f[X] Y with i(y) = y.

Clearly, j is onto and i is one-to-one. It is left as an exercise to show that g is

one-to-one and onto and that

/ = i°g°j-

This equation is the whole point of the discussion. It proves to be a useful

decomposition for an arbitrary function /.

9.3. If / is a known function with domain X and with range a subset of Y,

then the notation /: X — Y for / includes superfluous information. However,

it does suggest the consideration of / as a function that is associated with the

pair (X, Y) of sets X and Y. If^: Y —

Z

is likewise associated with (T, Z), then

we associate the composite function g ° / with (.

X

,
Z). The association of each

function / with a pair of sets X and T, such that X is the domain of / and Y
includes the range of / and the agreement that the composite g ° / of /: X —

T

and^: W Z may be formed only if W = Y, has certain merits. For example,

within this framework it is possible to characterize “onto” (along with “one-

to-one”) as a property of functions. Further, it sets these forth as dual properties

in a sense that will be explained later.

The characterization of one-to-oneness that we can demonstrate is as follows.

(I) Let /: X — Y. Then / is one-to-one iff for all functions g and h such that

g: Z — X and h : Z — A", / ° g = f ° h implies that g = h. Indeed, sup-

pose that / is one-to-one and that g and h are mappings on Z into X for

which f°g = f o h. Then f(g(z)) — /(/;(z)) for all z in Z. With / one-

to-one it follows that giz) = h{z) for all z in Z. Hence, g = h. The proof

of the converse is left as an exercise.

A characterization of a function being “onto” can now be given by a simple

alteration of (I).

(II) Let /: X — Y. Then / is onto F iff for all functions g and h such that

g: Y — Z and h : Y-+Z,gof=h°f implies g = h. The proof is left

as an exercise.

With the above characterizations at our disposal the decomposition obtained

in Example 9.2 can be described more neatly as follows. For any function /
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there exists a function i which is one-to-one, a function j which is onto, and a

function g which is one-to-one and onto, such that f = i
0
g ° j.

If the coordinates of each member of a function / (considered as a

set of ordered pairs) are interchanged, the result is a relation g which

may not be a function. Indeed, g is a function iff (y, x) and (y, z) in g

imply that x = z. In terms of / this means that if (x, y) and (z, y) are

in /, then x = z, that is, / is one-to-one. If / is one-to-one, the function

resulting from / by interchanging the coordinates of members ol / is

called the inverse function of /, symbolized

t1
-

This operation, which is defined only for one-to-one functions, is called

(functional) inversion. If

/

_1
exists, then its domain is the range of /, its

range is the domain of /, and x = /
_1

(y) iff y = f(x). Further, /
_1

is

one-to-one and its inverse, (Z
-1

)

-1
?

IS equal to /. If / is a one-to-one

function on X onto Y, then /'_1 is a one-to-one function on Y onto X.

Moreover,

/
_1

o / = ix, and /° /
-1 = iy

There is another important connection between composition and

inversion of functions. If / and g are both one-to-one lunctions, then

g ° / is one-to-one, and

The proof is left as an exercise.

EXAMPLES
9.4. The function /: R R such that f(x) = 2x + 1 is one-to-one. The in-

verse of/ may be written {(2x + 1 , *)|* G R) • This is not very satisfying to one

who prefers to have a function defined in terms of its domain and its value at

each member of the domain. To satisfy this preference, we note that

{(2x + 1, x)\x G R} = {(t, h(t - \))\t € R}.

Thus

/

-1
is the function on R into R such that f~

l (x) — \{x — 1).

9.5. The function g: R+ -+ R+ such that g(x) = x 2
is one-to-one, since

x\ = xl, and both X\ and x2 positive imply that x\ = x2 . Then

g
-1

: R+ —

y

R+ where g~ l (x) = x 112
.

9.6. The function

/: R —

R

+ where f(x) = 10 x

is known to be one-to-one and onto. The inverse function is called the logarithm

function to the base 10, and its value at x is written logio x. The equations
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logio 10* = *, for X CR, and 10logl0X = a:, for * > 0,

are instances of equations (f~
l

° /)(*) = x, for a: C Df,
and (f°f~

l)(x) = x,

for x C Rj, which are true for any one-to-one function.

9.7. If the inverse of a function / in R exists, then the graph of f~
l may be

obtained from that of / by reflection in the line y = x. The proof is left as an
exercise.

9.8. From Example 8.8, if the inverse of a function / is defined, then

f~'[A U B}= f-'[A] U and f~
l [A D B] C f~

x [A] D The latter

identity can be sharpened to f~
l [A H B] = f~

l [A] pi f~
l [B

] for inverse func-
tions. The proof is left as an exercise. A set of the form f~

x [A] we call the
inverse or counter image of A under/.

EXERCISES

9.1. Let/: R —

R

where f(x) = (1 + (1 — x) 1/3
)
1/5

. Express / as the com-
posite of four functions, none of which is the identity function.

9.2. If/: A'

Y

and A C X, show that f\A = f ° zj.

9.3. Complete the proof of the assertions made in Example 9.2.

9.4. Complete the proof of (I) and supply a proof of (II) in Example 9.3.

9.5. Prove that/: A — B is a one-to-one correspondence between A and B iff

there exists a map g: B A such that g ° / = iA and f ° g = iB -

9.6. If/. A B and g : B — C are both one-to-one and onto, show that

g ° f: A -+ C is one-to-one and onto and that (g °/)
-1 = f~

l o g-\
9.7. For a function/: A A, f

n
is the standard abbreviation for / of «,

• • • of
with n occurrences of /. Suppose that f

n = iA . Show that / is one-to-one and
onto.

9.8. Justify the following restatement of Theorem 7.1. Let X be a set. Then
there exists a one-to-one correspondence between the equivalence relations on
X and the partitions of X.

9.9. Prove that if the inverse of the function / in R exists, then the graph of

f~
x may be obtained from that of / by a reflection in the line y = x.

9.10. Show that each of the following functions has an inverse. Determine
the domain of each inverse and its value at each member of its domain. Fur-
ther, sketch the graph of each inverse.

(a) /: R -* R where f{x) = 2x — \.

(b) /: R — R where f(x) = aT

(c) / = {<*, (1 - * 2
)
1/2

>|0 < x <\}.

(d) / = {<*, j£q)| - 2 < * < l}-

9.11. Establish the identity (g ° f)
1 = f~

x

° g~ x for one-to-one functions /
and g.

9.12. Prove that if the inverse of/ exists, then f~
x [A C\ B] = f~

x [A] O }~ X [B}.
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9.13. The definition of the composite of two functions is applicable to any

pair of relations. With this in mind, show that if / is any function and g
=

*)|(x, y) CL}} then g ° / is an equivalence relation.

9.14 Let A, B, A', and B' be sets such that A and A' are in one-to-one

correspondence and B and B' are in one-to-one correspondence. Show that

(a) there exists a one-to-one correspondence between A X B and A X B
;

(b) there exists a one-to-one correspondence between AB and A'B ;

(c) if, further, A Pi B = 0 and A' H B’ = 0, then there exists a one-to-

one correspondence between A U B and A U B .

9.15. For sets A, B, and C show that

(a) A X B is in one-to-one correspondence with B X A;

(b) (A X B) X C is in one-to-one correspondence with A X (B X C);

(c) A X (B U C) is in one-to-one correspondence with (A X B) U (

A

X C).

9.16. For sets A, B
,
and C show that

(a) (

A

X B) c is in one-to-one correspondence with A c X Bc
\

(b) (AB )
C

is in one-to-one correspondence with AByJ ;

(c) if, further, B H C = 0, then dBuC is in one-to-one correspondence with

AB X d c
.

10. Operations for Collections of Sets

In this section we generalize the binary operations ol union, intei sec-

tion, and cartesian product.

Let Ct be a collection of sets. 1 he union ol Ct is the set of all obje cts x

such that a; belongs to at least one set ol the collection Ct. That is, it is

{x|a: C X for some X in a}.

This set is symbolized by

U« or U(Z|XG«! or U.yg«V.

The earlier definition of A U B is seen to be simply the union of {A, B]

.

That is,

U{X\XC {
A

,
B }}

= A U B.

In Section 5, using the property of associativity ol union as a binary

operation, we defined what is immediately seen to be in oui present

terminology the union of a collection ol the type
(
A i, /I 2 , >

A n }. We

shall continue to use the denotation Ai U M U • *
* U ci n lor this union.

From the viewpoint of set theory, it was a waste of space to have

introduced this extension. However, from the viewpoint of the algebra

of sets, it was not.
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EXAMPLES

10.1. (J0 = 0.
10.2. U {A} = A.

10.3. If a = {{1, 2}, {3, 4}}, then Uci = {1, 2, 3, 4}.
{a, {{1, 2}}, {{3, 4}}, 0} and U CP(Ct) = {{1, 2}, {3, 4}} =
an exercise to show that U(P(a) = Cl is an identity.

Also, (P(Ofc) =
Cl. It is left as

4'he intersection of a nonempty collection Cl of sets is the set of all

objects x such that a belongs to every set of the collections a. That is, it is

{x\x c X for all X in Clj.

This set is symbolized by

da or D {X\X c a} or f)XCaX.

Earlier, A B was defined as the intersection of
{
A

,
B\. That is,

r\{X\XC
{
A, B}} = A r\B.

Fui thcr, the eailier definition of A\ C\ C\ • •
• C\ A n coincides with

what we may now call the intersection of the collection {A h A2 ,

• •
•

,
A n \

.

The question of why the definition of the intersection of a collection
of sets has been restricted to nonempty collections deserves an answer.
If the defining property for the intersection is applied to the empty
collection, we have

fl0 = {*1* £ X for all T in 0

}

.

It is left to the reader to convince himself that the defining property at
hand is satisfied by any object whatsoever. Clearly this is an unsatis-
factory situation. An alternative which may be offered is based upon the
assumption that there is a universal set U at hand. Then the inter-
section of a collection Cl (of subsets of U) is defined to be

{* C U\x C X for all X in a}

.

Foi a nonempty collection, the new definition agrees with the old. The
difference is the way in which they treat the empty collection; according
to the new definition,

n xc^x = u,

which seems to be a more reasonable result.

Alg< biaic pioperties ol unions and intersections will be presented in
teims of one ol the standard notations for designating collections of sets.
In this notation, a collection of sets appears as the range of a suitable
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function. To this end wc introduce some definitions. Suppose that y is a

function on a set 7 into a set Y. Let us call an element i of the domain 7

an index, 7 itself an index set, the range of y an indexed set, and the

function y itself a family. We shall denote the value of y at i by y

i

and

call yi the ith coordinate of the family. Thereby, we may write

y = {(i,yi)CIX Y\iCl\.

Actually, y is completely specified by \yi\i £ 7} ;
in this notation it is

the range of the function which is emphasized. In place of “ [yi\i £ /},”

it is common practice to write “ {yi} with i £ 7 or, if the domain is

clear from the context, simply Such notation has its origin in

that employed for sequences. By definition, a sequence is a family on

the set of positive (or, nonnegative) integers into a set Y. That is, a

sequence is a function for which {1,2, •••,«, •
•

•
j
or { 0, 1 ,

* *
*

}

serves as an index set. Hereafter we shall denote the latter set by N.

By the phrase “a family \A{\ of subsets of £7” we shall understand a

function A on some set 7 of indices into (P(U). The union of the range of

such a family is called the union of the family [A x \
or the union of the

sets A i. The standard notation for it is

U \
Ai\i £7} or UiciAi or UiA i}

where the last denotation suggests that the index set need not be empha-

sized. For the case of the union of a sequence \A\i £ N
j
of sets A i} each

of the notations

U\ZiAi and TUTU •••UTU •••

is also used. Similarly, the union of {Ah A 2 ,

• •
-

,
An j

is denoted by

Ujl\A{ or Ai U A 2 U • •
• U A n .

In every case it follows from the definition of unions that x £ U iA { iff

x belongs to A { for at least one i.

If we agree to use the second of the definitions given above for the

intersection of a family {Ai} of subsets of U
,
the terminology and nota-

tion for intersections parallel those for unions in every respect. Thus, the

intersection of the range of the family is called the intersection of the

family {
A { }

or the intersection of the sets A
t

. The standard notation for

this is

0 \A{i £ 7J or Mi ciT oi fli-dj.

If the family is nonempty, that is, ii 7 X 0, then x £ fli-T iff x is a

member of 7 for all i. If 7 = 0, then Pl tdi U.
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Incidentally, it should be noted that there is no loss of generality in

considering families of sets in place of arbitrary collections. As the reader
can easily show, every collection of sets is the range of some family.

In the following theorem appear several algebraic properties of unions
and intersections of families; others appear among the exercises. These
generalize properties of the operations of the operations of union and
intersection for pairs. The reader may supply the proofs.

THEOREM 10.1. Let
{ Ai }

with i C 7 be a family of subsets of U
and let B C JJ. Then

(I) B C\ U iAi = U;(£ C\ Ai) and B IJ = fl t-(5 U Ai).
(II) U — U iAi = n+U — Ai) and U — fl iA { = U*(77 — Ai).

(Ill) If T is a subset of /, then

UjcjAj Q UiCiAi and njcja j ^ ntciAi-

EXAMPLES

10.4.

In spite of the emphasis which has been given to the interpretation of
a collection of sets as the range of some family, it should not be inferred that the
accompanying notation is indispensable for stating results like those in The-
orem 10.1. For example, the first distributive law in (I) may be stated for a
collection Ct of subsets of U as

B n U {A\A G «} = U{5 n A\A G a}

and the first of the DeMorgan laws in (II) as

u - U {A\A c a} = 0{U - A\A e a}.

10.5. The following identities generalize those in Example 8.8. If/ is a func-
tion and {Ai} is a family with nonempty domain /, then

/[U-T] = Uif[Ai] and /[DiAi] C f| ,f[Ai].

Further, if/ is one-to-one, then equality holds in the second identity (see Exer-
cise 8.10).

10.6. The following compact formulation of Theorem 7.2 is now possible: A
relation p is an equivalence relation ifi there exists a disjoint collection (P of sets
such that p = U{C X C\C C <P}.

We shall use the notion ol a family to generalize the concept of the
cartesian product ol two sets. For this we note that an element (a u ad) of
the caitesian product A

{ X A 2 defines a family a with domain {1 2|
and whose values at 1 and 2 arc a, G A, and a-2 G A % , respectively. l( A is
the set of all families having

{ 1, 2 j
as domain and such that their value at

i is a member ol Ai lor i = 1,2, then the lunction /: A\ X A> —

1
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where f(a\, a*) = a as described above, is a one-to-one correspondence.

We take the existence of this one-to-one correspondence as the basis for

the assertion that the only difference between A\ X A 2 and A is a

notational one. As such, we shall henceforth not distinguish between

them. The generalization of A\ X A 2 ,
with A\ X A 2 regarded as A, is an

easy matter. If
{
Ai\ with 1 CL 7 is a family ol sets, then the cartesian

product of the family, in symbols

XMi|*G/} or XtdA i or XiA,

is the set of all families a with domain I and such that ai C Ai for

each i in I.

For the cartesian product of a sequence [Ai\i CN) of sets A { ,
the

notation

Xllo Ai or A 0 X Ai X • • • X A n X • • *

is used. Similarly, the cartesian product of {Ah A 2 ,
•

*
•, A n )

is denoted

by

XUidi or Ai X A 2 X • •
• X A n .

As the latter symbolism suggests, if I = {1, 2), we shall identily Xicnfi

with A\ X A 2 as dehned earlier and X%ciA i
with A\ il I = jl }. II eveiy

member of the family \Ai\ with 1 CL I is equal to the same set X, then

X, ^jAi = X1
,
the set of all functions on / into X. If I = (1,2, *

* •, n\,

then we identify X1 with as defined earlier. In particular, Z 1
is taken

to be X.

We introduce one more bit of terminology for cartesian products.

Let {Ai} with i C I be a family of sets and let A be its cartesian product.

If j is a subset of /, then there is a natural correspondence of the elements

of A with those of XiCJA i • To formulate this explicitly, we use the fact

that an element a of A is a family {a*} with I as domain. Then the ele-

ment b, let us say, of XiCJA i
which is thc natural correspondent of a is

the restriction of a to J

.

We shall write bi lor ai when 1 (L J

.

The func-

tion on A whose value at a is b is called the projection on A onto Xfe/^-

If J = [j] and pj is the projection on A onto Aj, then pj(a) = ajf
which

is called the j-coordinate of a.

EXERCISES

10.1. Let p be a relation, that is, a set each of whose members is an ordered

pair. Show that p is a relation in UUp.

10.2. Show that if a is a collection of sets, then

(a) a = U<P(a), and

(b) a c (?( Ua).
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Can the inequality in (b) be strengthened?

10.3. Supply proofs for the identities in Theorem 10.1.

10.4. Let
(
Ijj be a family ol sets with domain J

.

Let I = Uy/y and suppose
that l/Lj is a famil\ of sets with domain I. Prove the following associative laws.

(a) UiciAi = Uj£j(\Ji€IiAi).
(b) ni£lAi = nyo(fW<).
10.5. Prove each of the distributive laws,

(U.a) n (UjBj) = n b,)
and

(f~U) U = D ,j(Ai u Bj).

Here ij is to be understood that such a symbol as U,j is an abbreviation
for U(

ty) G/Xt/ .

10.6. (a) If A and B are sets and X is (A, B), prove that Ux = {A B\
9* = U} > UnT) = A

> H(nx) = A, U(U.A) = A u B, and flfU.Y) =

(b) Suppose that it is known that the set A is an ordered pair. Use the
results in (a) to recapture the first coordinate and the second coordinate of X.

10.7. Prove that X (UyRy) = U ij(Ai X Bj), as well as a like result
for intersections.

10.8. Let {Ij\j (X J} be a partition of the set I. Determine a one-to-one corre-
spondence between XieiAi and Xj^CXiCiA).

11. Ordering Relations

In this section we define several types of relations which have their
origin in the intuitive notion of an ordering relation (order of prec-
edence), that is, a relation p such that for an appropriate set X there
are various distinct members x and y of Ar

such that xpy, but it is not
the case that ypx. Then, by means of p, we could decide to put the *
and y in question in the order x, y rather than y, * because xpy, and it is
not the case that ypx. For a set of real numbers the familiar relations
<’ and > are used in this capacity. For a collection of sets the
relations C and CI serve similarly.

The first ordering relation we shall consider has as its defining prop-
erties the basic features common to the above relations of < for num-
bers and c for sets. We define a relation p as antisymmetric iff whenever
xpy and ypx then x = y. A relation p in a set X is called a partial
ordering (in X) iff p is rellexive (in X), antisymmetric, and transitive
II no set X is specified we assume X = D, U R,. For the consideration
o a partial ordering relation relative to various sets (for example, the
lamiliar ordering in Z relative to the set of even integers), it is convenient
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to make the further definition that a relation p partially orders a set

Y iff p 0 (T X Y) is a partial ordering in Y. The relation pH (f X 1 )

is the “restriction” of p to Y in the sense that it is reduced by all ordered

pairs either of whose coordinates are not members ol Y.

EXAMPLES
11.1. The relation “is an integral multiple of” in Z+ is a partial ordering.

11.2. A hierarchy or a table of organization in a business firm is determined

by a partial ordering in some set of positions.

11.3. If p is a partial ordering in X, then p O (A X A) partially orders the

subset A of X.

11.4. If p is a relation, the converse of p, symbolized by p, is the relation

such that ypx iff xpy. If p is a partial ordering, then so is its converse.

11.5. A relation p that is reflexive and transitive is a preordering. A poten-

tial shortcoming of such a relation, in connection with establishing an order of

precedence in a set X, is the possibility of p being “indifferent” to some distinct

pair x, y of objects in the sense that both xpy and ypx. For example, in some

population let w be the weight function and h be the height function of in-

dividuals so that w{x) and h(x) are the weight and height, respectively, of the

individual named x. Then the relation p such that xpy iff w(x) < w(y) and

h(x) < h{y) is a preordering, but is not a partial ordering if there are two in-

dividuals having the same weight and height.

If p is a preordering in X
,
then it determines a partial ordering in a partition

of X, according to Exercise 7.10. There it is asserted first that the relation co

such that * cv> y iff xpy and ypx is an equivalence relation. Secondly, it is stated

that the relation p such that [x] p' [y] iff xpy is a partial ordering having the

accompanying set of equivalent classes [x] as domain. In summary, if p is a pre-

ordering in X, then it is a partial ordering in the set obtained from X by identi-

fying elements to which it is indifferent.

The foregoing is nicely illustrated by taking p as the relation in the set of

complex numbers such that zpw iff the real part of 2 is less than, or equal to,

the real part of w.

We shall follow custom and designate partial orderings by the sym-

bol <. If the relation < partially orders X, and x and y are members

of X
,

it may or may not be the case that x < y. If it is not, we write

* <£ y. Also, we abbreviate x < y and x 7^ y to x < y and say x is

less than y, or x precedes y, or y is greater than x. We shall also use

y > x and y > x as alternatives for x < y and x < y, respectively, when

it is convenient.

Defining a relation p in X as irreflexive (in X) ill for no x in X is

xpx, we see that if < is a partial ordering in X, then < is irreflexive
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and transitive in Ar. Conversely, starting with an irreflexive and transi-

tive relation < in Ar

,
the relation < such that x < y iff x < y or x = y

is a partial ordering in X. 1 he proofs are left as an exercise. The deri-

vation ol < from <, and vice versa, can be illustrated in concrete
terms by the definition of proper inclusion for sets in terms of inclusion,

and vice versa. If < partially orders the finite set X, the relation <
can be expressed in terms of the following concept. An element y of

A is a cover of x in X iff .t < y and there exists no u in X such that

a < u < y. If a < y, then, clearly, elements xh x2 ,
•••,*„ of Ar

can be
found such that * = x\ < x2 < • •

• < xn = y, and each Xi+i covers
Conversely, the existence of such a sequence implies that x < y.

A relation p is a simple (or linear) ordering iff it is a partial order-
ing such that xpy or ypx whenever a and y are distinct members of the
domain (which is equal to the range) of p. A relation p simply orders
a set i ill p {} X I ) is a simple ordering in Y. The familiar ordering
of the real numbers is a typical example of a simple ordering. In con-
trast, inclusion for sets is not, in general, a simple ordering.

To point out the obvious, the applications of ordering relations are
concerned with the determinations of orderings in various sets. In prac-
tice, ordering relations for a given set X are usually generated by as-

signed or proven structural features of X. That is, certain features of
A, such as the existence of a particular type of operation or mapping
property, will permit the definition of an ordering relation for X; an
example of this nature appears in the exercises for this section. Prop-
erties of this ordering relation may then prove useful in deducing and
desci ibing iuither features of A. Therefore, it is convenient to have
available terminology which gives primary emphasis to the set rather
than to an ordering relation for it.

A partially ordered set is an ordered pair (A
r

, <) such that <
partially orders Ar

. A simply ordered set or chain is an ordered pair
(X, <) such that < simply orders X. For example, if is a collection
of sets, then (ff, C) is a partially ordered set. Again, if < is the usual
ordering for the integers, then (Z, <) is a chain. From the standpoint
of set theory, it is more economical to treat ordering relations than
ordei cd sets, that is, sets with accompanying order relations. For ex-
ample, ll (X, <) is a partially ordered set, then < n (X X X) is a
partial ordering relation in X. Thus, instead of dealing with X and a
relation < which partially orders it we can deal exclusively with the
ordering relation < n (A

r X A'), since it determines Ar

as its domain.
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That is, all statements about ordered sets are equivalent to statements

about their ordering relations, and vice versa.

As an illustration of the preceding remark we restate our earlier

characterization of < for a finite set X partially ordered by a relation

<. If (A, <) is a finite partially ordered set, then x < y ill there exists

a chain of the form a: = X\ < *2 < • •
• < xn = y in which each * 1+1

covers Xj. This result enables one to represent any finite partially ordered

set by a diagram. The elements of X are represented by dots arranged

in accordance with the following rule. The dot for x2 is placed above that

for *1 iff < x2 ,
and, if *2 is a cover of xh the dots are joined by a line

segment. Thus, x < y iff there exists an ascending broken line con-

necting a: with y. Some examples of such diagrams are shown below.

The first is the diagram of a chain with five members. Clearly, the dia-

gram of any chain has this form. The last one is that of the power set of

a set of three elements partially ordered by inclusion: the dot at the

lowest level represents the empty subset, the dots at the next level repre-

sent the unit subsets, and so on. Such diagrams not only serve to repre-

sent given partially ordered sets by displaying the ordering relation,

but, conversely, also may be used to define partially ordered sets; the

ordering relation is just that indicated by the various broken lines.

In preparation for our next definition in connection with partially

ordered sets we discuss an example. The set {1, 2, 3, 5, 6, 10, 15, 30},

whose members are the divisors ol 30, is partially ordered by the relation

< where x < y iff x is a multiple of y. It is left as an exercise to show

that the diagram of this partially ordered set is identical to that given

above for the subsets of a set of three elements partially ordered by

inclusion. Although these two partially ordered sets are obviously not

equal, they are indistinguishable so far as their structure as partially

ordered sets is concerned. This is the essence of the identity of their

respective diagrams. When this type ol relationship exists between two

partially ordered sets it is certainly worthy of note, since any property
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ol one that is expressible in terms of its ordering relation has an ana-
logue in the other. 1 hus, we propose to formalize this type of indiscern-

ibility. The identity of the diagrams ol the two partially ordered sets

mentioned above implies, first, the existence of a pairing of the mem-
bers ol the two sets. I his can be formulated as the existence of a one-
to-one correspondence, which has the advantage that it does not limit

us to finite sets. Next, it is implied that the relationship between a
pair of elements in one set, as specified by the ordering relation for

that set, is the same as that for the corresponding pair in the other set,

relative to its ordering relation. 1 he following definition is basic in the
precise formulation of this property. A function f: X — X' is order-
preserving (isotone) relative to an ordering fC for X and an ordering

— f°r X ilT at < y implies J(x) f(y). Then the likeness with which
we are concerned can be described as the existence of a one-to-one
correspondence such that it and its inverse are order-preserving. The
customary terminology in this connection follows. An isomorphism
between the partially ordered sets {X, < ) and {X '

,
< ;

) is a one-to-one
coi i espondence between X and X such that both it and its inverse
are order-preserving. If such a correspondence exists, then one partially
ordered set is an isomorphic image of the other, or, more simply, the
two partially ordered sets are isomorphic. Thus, the likeness which we
observed between the collection of subsets of a three-element set and
the set of divisors of 30, with their respective partial orderings, may be
expressed by saying that they are isomorphic partially ordered sets.

When the concept of a partially ordered set was defined it was stated
that a collection ol sets partially ordered by inclusion is a typical
example. This was rather loose talk, since the word “typical” has so
many shades ol meaning. One precise (and demanding) meaning that
might be given is this: Each partially ordered set is isomorphic to a
collection ol sets partially ordered by inclusion. This is proved next.

THEOREM 11.1. A partially ordered set {X, <) is isomorphic to a
collection of sets, indeed, a collection of subsets of Ar

,
partially ordered

by inclusion.

Proof. For a in Ar

define Sa to be {x C X\x < a}. Then the mapping
/ on X into {£a |a C A'} where f(a) = Sa verifies the assertion. The
details arc lei t as an exercise.

1 his it suit is oltcn stated as: “Each partially ordered set can be
represented by a collection ol sets (partially ordered by inclusion).”
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In effect, the theorem means that the study of partially ordered sets is

no more general than that of a collection of sets partially ordered by

inclusion. In practice the transfer to such a partially ordered set is

usually not carried out, since many individual partially ordered sets

would lose much of their intuitive content as a result. Finally, we point

out that the theorem does not assert that each partially ordered set is

isomorphic to a collection consisting of all subsets of some set. Such

partially ordered sets, that is, those of the form ((P(d), Q), do not

typify partially ordered sets in general, since they have special features.

For example, each contains an element (namely, 0) less than every

other element and an element (namely, A) greater than every other

element.

We conclude this section with the introduction of further terminology

for partially ordered sets that will be employed later. A least member

of a set X relative to a partial ordering < is a y in X such that y < x

for all x in X. If it exists, such an element is unique, so one should

speak of the least member of X. A minimal member of a set X relative

to < is a y in X such that for no x in X is x < y. A minimal member

need not be unique, as the second diagram above illustrates. A greatest

member of X relative to < is a y in X such that x < y for all x in X.

A greatest element, if it exists, is unique, so one should speak of the

greatest element of X. A maximal member of X relative to < is a y in

X
,
such that for no x in X is x > y.

A partially ordered set (X, <) is well-ordered iff each nonempty

subset has a least member. A familiar example of a well-ordered set is

the set of nonnegative integers relative to its natural ordering. Any well-

ordered set (

X

, <) is a chain, since for two distinct elements x and y

of X the set {x, y j
must have a first element, and hence either x < y

or y < x.

If
(
X

, <) is a partially ordered set and A C X, then an element x in

X is an upper bound lor A iff, for all a in A, a ^ x. Similarly, an cle-

ment x in X is a lower bound lor A ill, lor all a in A
}
x ^ a. A set may

have many upper bounds. An clement x in X is a least upper bound or

supremum for A (symbolized, lub A or sup A) ill x is an uppei bound

for A and x < y for all upper bounds for A. In other words, a supremum

is an upper bound which is a lower bound for the set ol all upper bounds.

An element x in X is a greatest lower bound or infinum for A (sym-

bolized, gib A or inf A) iff x is a lower bound for A and x > y for any

lower bound y for A. It is immediate that if A has a least upper bound,

then it is unique, and that the same is true for a greatest lower bound.
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EXERCISES

11.1. Show that if p is a partial ordering relation, then so is p.

11.2. For the set of real-valued continuous functions with the nonnegative

reals as domain, define / = 0(g) to mean that there exist positive constants M
and N such that f(x) < Mg(x) for all x > N. Show that this is a preordering,

and define the associated equivalence relation.

11.3. If < is a partial ordering in X, show that < is an irreflexive and trans-

itive relation in X. Conversely, if < is an irreflexive and transitive relation in X
,

show that the relation < such that x < jy iff x < y or * = y is a partial ordering

in X.

11.4. For what sets A is ((P(T), Cl) a simply ordered set?

11.5. Let (X

,

<) and (X', <') be partially ordered sets. Show that X X X'

is partially ordered by p where (x, x')p(y, y') iff x < y and x' <' y'. The partially

ordered set (X X X', p) is the (cartesian) product of the given partially ordered

sets.

11.6. The dual of a partially ordered set (X, p) is the partially ordered set

(X, p) (see Exercise 11.1). If (X, <) is a partially ordered set and a, b C X with

a < b, then the set of all x in X, such that a < x < b, is called the closed in-

terval [a, b]. Show that the set of intervals of a partially ordered set (X, <),
partially ordered by inclusion, is isomorphic to a subset of the product of (X, <)
and its dual.

11.7. A partially ordered set is self-dual if it is isomorphic to its dual. Show
that

(a) there are just two nonisomorphic partially ordered sets of two elements,

both of which are self-dual, and

(b) there are five nonisomorphic partially ordered sets of three elements,

three of which are self-dual.

11.8. Show by an example that if (X, <) and (X '
,
<') are partially ordered

sets and /: A’—»- X' is a one-to-one correspondence which preserves order, then

f~
1 need not preserve order.

11.9. Given that / is an isomorphism between the partially ordered sets

(

X

, <) and (X', <'), show that x < y iff f(x) <
' f(y) .

11.10. Supply details for the proof of Theorem 11.1.

11.11. Let (X, <) be a partially ordered set. Show that u is a maximal ele-

ment iff y C A' and y > u imply y = u. Show that v is a minimal element iff

y C X and y < v imply y = v.

11.12. Let fFn be the collection of all subsets of Z+ which have at most n

members for n a fixed positive integer, and let
LJ be the collection of all finite

subsets of Z+ . Show that, relative to inclusion,

(a) each element of having n members is maximal, and
(b) fF has no maximal elements.

11.13. As the elements ol a set A' we take all square regions which lie inside
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a given rectangular region which is itself not a square. Relative to inclusion,

what are the maximal elements of X?

11.14. Show that in a chain the notions of a greatest element and a maximal

element coincide, and show the same for a least element and a minimal element.

11.15. Let (X, <) be a partially ordered set with the property that each

nonempty subset which has an upper bound has a least upper bound. Show

that each nonempty subset of X which has a lower bound has a greatest lower

bound.

11.16. Show that if (X, <} is a well-ordered set, then it has the property

assumed for the partially ordered set in the preceding exercise.

11.17. Let X be a set and p an operation in X. (Thus, p is a function on

X X X into A'; let us denote the value of p at (x, y) by xy .) Suppose that p is

commutative, associative, and idempotent [that is, xy = yx, x(yz) = (xy)z ,
and

xx = x for all x, y, z C A']. For x, y G X define x < y iff x = xy. Show that

(a) < partially orders X
,

(b) if X has a least element 0, then Ox = 0,

(c) xy < x, y and, if z < x, y, then xy > z.

11.18. The relation < where m < n iff m divides n partially orders Z+ . Show

that each pair of integers has a least upper bound and a greatest lower bound

relative to this ordering.

11.19. Show that each subset of <9{A) partially ordered by inclusion has a

least upper bound and a greatest lower bound.
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CHAPTER The Natural

Number Sequence

and Its

Generalizations

This chapter begins with a formulation of a precise definition

of the natural number sequence

0
,

1
,
2

,

(where we rely on the dots “• • •” to suggest the continuation of the

sequence beyond the numbers displayed) from an intuitive description

of this set. This definition is taken as the basis for the definition of two
operations in this set. The result is the system consisting of the natural

numbers, the operations of addition and multiplication, and the famil-

iar ordering relation—all of which the reader has known since childhood.

Although in certain respects Section 1 adds nothing to his knowledge, it

should be of interest to him to find how few assumptions are required to

derive the familiar properties of the natural numbers. Section 2 discusses

definition and proof by induction. Section 3-Scction 7, and Section 9

give an account of Cantor’s transfinite arithmetic. This consists of the

continuation of the natural number sequence, first with respect to

magnitude alone, and then with an ordering taken into account. In

Section 8 and Section 10 appear an account of the axiom of choice,

including proofs of its equivalence to the well-ordering theorem, Zorn’s

lemma, and various statements about cardinal numbers. Finally, in

Section 11 the classical pitfalls of Cantor’s theory are described.

We call attention to the fact that Section 1 includes the first step in

the development of the real number system within the context of set

theory. The remaining steps are completed in Chapter 3. We regard
56
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Section 1 as our first reference to the number system, since the only

mention of it made in Chapter 1 was to peripheral material and may
be ignored. As we proceed we shall use only those properties which

have already been derived.

1. The Natural Number Sequence

We cannot expect that the natural number sequence can be defined

in terms of anything essentially more primitive than itself, but we can

elaborate on what our conception of it comprises in terms of notions

already developed, with the goal of clarifying our reasoning with it. As

our initial description of the natural numbers, we say that they are

exactly those objects which can be generated by starting with an initial

object 0 (zero) and from any object n already generated passing to

another uniquely determined object n\ the successor of n. Moreover,

objects differently generated are distinct. Here “ n ” may be thought of as

an alias for “n + 1.” The accent notation is used to emphasize that
'

(prime) is a primitive operation (or function), used in generating the

natural numbers and thus is not to be confused with addition, which

can be defined later as an operation in the set. The term “successor”

stems from the notion of “next after” that is associated with the counting

numbers. Thus, the natural numbers appear as a set of objects

0, 0
r

,
(O')', ((0

/

)

/

)

/

)

• • • or, more simply, 0, O', 0", O'",

The transition to the usual notation is made upon introducing

1,2, •
• •, 9 to stand for O', 0", • •

•,
0'"""", and then employing deci-

mal notation. The set of natural numbers will, from now on, be denoted

by N.

The above description implies that the relation {(/?, n')\n CN| is a

function. This we call the successor function and symbolize it by '. In

terms of this function the remainder of our description can be expressed

in two properties.

Ni. ' is a one-to-one mapping on N into N — {0j.

N 2 . If M is a subset of N, such that 0 £ M and m £ M whenever

m £ M, then M = N.

Property N2 (which has its origin in the assertion that the succession

of discrete steps—consisting of starting with 0 and repeatedly passing

from a number to its successor—yields all of the natural numbers) is
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chap. 2

the basis for the principle of induction. Writing P{n) for “the natural

number n has property P,” we state this as follows.

If P(0) and, for each natural number m
,
P(m) implies P(m '), then

P(n) for each natural number n.

The proof follows immediately from N2 upon consideration of

{
m £ N| P{rrt

) }

.

In order to arrive at a precise formulation of the natural number
system, starting from the foregoing description, it is convenient to make
the following definitions. A triple (

X

, g, *0), where A is a set, g is a unary

operation in X (that is, a function on X into X), and x0 is an element

of X
,

is a unary system. An integral system is a unary system (X, s, x0)

such that

11. s is a one-to-one mapping on X into X — {*0 }, and

1 2 . if Y is a subset of X such that x0 £ Y and ys £ Y whenever

y £ T, then Y = X.

Thus, our description of the natural number system may be sum-

marized by the assertion that (N, ', 0) is an integral system.

Before giving other examples of integral systems we call attention to

one consequence of T and I 2—that s is a mapping onto X —
{
at0 }

- This

follows from the fact that {v0 | U [X]s = X, which is a consequence

of I 2 .

EXAMPLES
1.1. In spite of the self-imposed restrictions stated in the introduction to this

chapter, we are free to use the real number system for illustrative purposes.

Thus we can introduce the following further examples of integral systems.

(a) The numbers a
,
a d, a + 2d, •

•
• of an arithmetic progression (in

which a, d are real numbers with d 0), the map ^ of this set into itself

with xs = x + d, and the number a.

(b) The members a, ar
,
ar 2

,

• •
• of a geometric progression (in which a, r are

real numbers with a ^ 0 and 0 < r 9̂ 1), the function s mapping ,v onto

xr, and the number a.

1.2. As a preliminary to the observation that—by virtue of our initial de-

scription—the natural number sequence qualifies as an integral system, we
might have mentioned that it has the following properties.

Pi. 0 is a natural number.

P2 . If n is a natural number, then n is a uniquely determined natural

number.

P3 . For all natural numbers m and n, if m' = n
,
then m = n.
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P4 . For each natural number n, n X 0.

P5 . IfM is a subset of N such that 0 £ M and m' £ M whenever m £ M,

then M = N.

These are the now famous Peano axioms for the natural number system. In

a book published in 1889, G. Peano took these as a point of departure for an

axiomatic development of the natural number systems. The axioms themselves

are actually due to R. Dedekind (1888). It is worthy of mention that each P,,

i = 2, 3, 4, 5 lists exactly one property of (N, ', 0) in addition to those appearing

in Pi—

P

t-_i. Properties P4-P4 are simply a breakdown of N\ into “atomic” in-

gredients while P5 is N2 . Conversely, starting with an integral system (X, j, x0),

properties that imitate Pi-P5 may be asserted.

Our immediate goal is to prove that any two integral systems, (X,
s, x0)

and (Y, t, y0), are isomorphic; that is, there exists a one-to-one corre-

spondence / between X and Y with /(x0) = yo and f(xs) =
(fx)t lor all

x in X. This means that the elements of X can be paired with those of Y

in such a way that successors of corresponding elements correspond. For

the proof a definition is required. Let (.X, g, x0) be a unary system. The

set of descendants of Xo under g (in symbols, D axo) is the intersection

of all subsets A of X, such that x0 £ A and xg £ A whenever x £ A.

(This latter requirement will often be phrased as “A is closed under g.”)

Such subsets A exist; indeed, X is one. Two characterizations of a set

of descendants are given next.

LEMMA 1.1. Let (X, g, x0) be a unary system. Then Dgx0 is the

smallest subset of X which contains x0 and which is closed under g.

Alternatively, x £ Dgx0 iff x = x0 or there exists a y in DgxQ such

that x = yg.

Proof. The proof of the first statement is left as an exercise. For the

second, consider an element x in D qxq. Either x = x0 or x ^ x0 . Sup-

pose x 9^ x0 and that there does not exist y in D gx0 such that x = yg.

Then D gx0 — {*} is a proper subset of D ox0 which contains x0 and

which is closed under g. This is a contradiction of the first statement

in the lemma.

LEMMA 1.2. Let (X, s, x0) be an integral system and (T, t, y0) be a

unary system. Define

sVt: XX E X X Y with (x,y)sVt = (xs, yt)

Then (X X Y, s V/, (x0 , yo)) is a unary system. If/ is the set of descend-

ants of (x0 , yo) under sVt, then
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(I) / is a function on X into Y,

(II) fxo = y0 and f(xs) =
(fx)t for all x in X, and

(III) / is uniquely determined by the properties in (II).

remark . lo assist with the understanding of (I), we suggest the
study oi an example such as the following. Let the integral sys-

tem be (N,
', 0) and the unary system be ({a, b, c, d], t, c) where

t = {(a, a), (b, c), (c ,
d), (d, a)}. Let us determine the set of descend-

ants of (0, c) under the function formed from ' and t by the rule given.

Along with (0, c) this set must contain (1, d) and hence, (2, a). Since
at = a

,

the only further members present are those of the form (n, a)

for n — 3, 4,
• • •

. Clearly, this set is a function on N into [a, b, c, d]

.

Proof. That (A
r X 1

,
s Vt, (x0 , yo)) is a unary system is clear. By

definition, / is the intersection of the collection a of all sets A, such
that A C X X Y, (x0 , y 0) £ A, and (x, y) £ A implies (xs, yt) £ A. That
/ is a function on X into Y is the fifth property of/ appearing below.
The first four are left to the reader to verify.

0 ) feei.

(2) / C A for each A in a.

(3) / is a relation with X as domain.

(4) u £ / iff u = (a0 , yo) or there exists (a, y) £ / with u = (xs, yt).

(5) / is a function on X into Y.

To establish (5) we prove by induction (that is, using the property I 2

of the integral system (X, s, x0)) that for all x in X, (x, y) and (a, z)

in / imply y = z. Let Z consist of all elements of X for which this is

true. Then Ao £ Z. Indeed, suppose that along with (ao, yo), which is

in / by (4), also (a0 , yi) £ /, where y i X yo. By (4), (a0, y\) = (xs, yt)

and hence a0 = xs, which is impossible. Hence, the basis for the
induction follows. Assume next that a £ Z. If (xs, yi) and (xs, y2) are
in /, then by (4) and the assumption that s is one-to-one, there
exist y3 , y 4 £ } ,

such that (a, y 3) and (a, y 4) are in /. From the in-

duction hypothesis it follows that y3 = y± and hence y\ = y This
completes the proof of the induction step. Hence Z = X and the
proof is complete.

For (II) there remains to prove that f(xs) = (fx)t for all a in Ar
. If

a £ X, then for exactly oney in Y, (x
, y) £ / and, further, (xs, yt) £ /.

Writing “/a” for "y” and “/(as)” for “y/,” we have f(xs) = yt = (fx)t

.

For (HI), let g: Y, such that gx0 = y0 and g(xs) =
(gx)t for

all a in Ar
. Let Z be the set of all a in A', such that fx = gx. Then

Ao£ Z. Assume that a £ Z. Then f(xs) = (fx)t = (gx)t = g(xs).
Hence, xs £ Z and hence, Z = X. That is / =

g-
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THEOREM 1.1. Any two integral systems are isomorphic.

Proof. Let (X, s, xf) and (Y, t, y0) be integral systems. According to

Lemma 1.2 there exists a function /: X —*- L, such that fxo = yo and

f(xs) = (fx)t and a function g : L — A such that gy 0 — *o and g(yO =

(gy)s. We contend that g ° f = ix, the identity function on X. Let Z be

the set of all x in X such that (g ° f)x = x. Clearly, C Z. Further, il

x C Z, then

(g « f)(xs) = g(f(xs)) = g((fx)t) = (g(fx))s = (0? « /)*)* = xs.

That is, if x C Z, then xs C Z. Hence Z = A and g °/ = ix . Sim-

ilarly, f ° g = ir- Together, these results imply that / is a one-to-one

correspondence between A and L. Finally, fxo =
y0 and f(xs) = (Jx)t,

so the systems are isomorphic.

This is a significant result for us. To insure that it is understood, let

us review the pertinent facts. Our initial (and purely intuitive) descrip-

tion of the natural number sequence led us to conclude that it is an

integral system. Such an observation in itself gives no indication of the

degree to which it captures those features and only those features which

wc intuitively assign to the natural number sequence. Theorem 1.1

gives us precise (and satisfying) information on this score, for it asserts,

in effect, that apart from notation used there is only one integral system.

Thus, the statement that the natural number sequence is an integral

system amounts to a complete description. This we take as our formal

definition of the natural number sequence. What this comes to is fixing on one

particular integral system and designating its initial element by 0, its

successor by O', and so on.

To expedite our development of properties of the integral system

(N, ', 0) wc derive another consequence of Lemma 1.2.

THEOREM 1.2. Let B be a nonempty set, c be an element of B,

and g be a function on N X B into B. Then there exists exactly one

function k: N -+ B such that

k(0) = c and k{n') = g(n, k(n)).

Proof. Define

/: N X B N X B where (n, b)t = (n, g(n, b)).

Applying Lemma 1 .2 to the integral system (N, 0) and the unary

system (N X B
,

t, (0, c)) yields a function

/: N N X B where /0 = (0, c) and fn' =
(}n)t

.
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Wc assert that

fn' =
(n',g(fn))

,

for n C N.

Since /O' = (fO )t = (0 ,
c)t = (O', g(0, c)), the assertion is true for

n = 0. Assume that it is true for n and consider it for n'. We have

fn' = (Jn')t = (n',g(fn))t = (n", g(n', g(Jn))) = (n",g(fn ')>,

as required.

Now define

k\ N B where k(0) = c and k(n') = (g°f)(n).

Then k(O') =
(

g

«/)(0) = g(f0) = g(0, c) = g(0, A(0)> and k(n") =
g(fn ') — g(n\ g(fnf) = g(n', k(n')). Hence, k(0) = c and k(n') =
g(n 9

k(n)) for nCN. That k is unique is shown by a straightforward
induction proof, which is left as an exercise.

We turn now to the definition of an ordering relation for N. The basis
for the intuitive ordering of the natural numbers is the order in which
they are generated. One says that m is less than n iff m is generated before
n in the course of generating n or, what amounts to the same, m is less

than oi equal to n iff n — m or n — m or n — m' or • • • . This phrasing
is the origin of our definition of < for the integral system (N, 0). For
m, n in N, we define

m < n

iff n G Dm, the set of descendants of m under '. Those properties of sets
of the type Dm which will prove useful in developing consequences of
this definition are listed next.

Dl Dn =
{/?} U Dn'.

D2 . Dn' C [Dn]'

,

the set ol successors of elements of Dn.
D3 . n Dn '

.

D 4 . Dm = Dn implies that m = n.

P5 - If 0 C M C N and M is closed under then M = Dk for a
uniquely determined k G N.

Proofs of D, and D2 arc left as exercises. We prove D 3 by induction.
It is true for n = 0, since the contrary (0 £ 7)0') implies that 0 is a
successor. Assume that n £ Dn'

; to prove that n' £ Dn"

.

Assume to the
contrary, that n' £ Dn"

.

Since Dn" C [Dn’}’ by D2) we have n' = q’
for ? 111 • Hence n( = q) £ Dn, contrary to the induction hypothesis.
Phis completes the proof of D3 .

To P10vc 1}
'. assume that Dm = Dn and m ^ n. In view of D, it
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follows that m C Dn' and hence that Dm C Dn'

.

Thus, Dn C Dn'

.

But

this contradicts the identity Dn C Dn, which follows from Dj and 1) 3 .

Thereby, D 4 is proved. Hints for proving I) 5 appear in an exercise.

We are now in a position to prove the basic property of the relation <

.

THEOREM 1.3. The relation < well-orders N.

Proof. The reflexivity and transitivity of < are immediate; its anti-

symmetry follows from 1) 4 . Thus, < partially orders N. It remains to

prove that a nonempty subset of N has a least member. Assume that

0 C T C N and that AP is the intersection of the collection of all

closed subsets of N which include P. Then AP is closed under ' and

hence, by D 5 ,
AP = Dk for a uniquely determined k. Now k G P,

since the contrary implies in turn that P C Dk'

,

AP C Dk'
,
Dk C Dk'

,

and this last inclusion is false. Further, if p ^ k and p G P, then

p O Dk'
\
that is, k' < p. Since k < k'

,

it follows that k < p, so k is

the least member of P.

Addition of natural numbers as understood intuitively, numbers

among its virtues the following two properties. For all natural numbers

m and n, 0 T n = n and m' + n = (m + n)'

.

According to the next

theorem it is possible to define exactly one operation a in N, regarding

(N, '
, 0) as an integral system, with these two properties. As such, a

takes on the role of the only possible candidate for an operation in N
which might have all the properties of intuitive addition. That it does

is anticipated by our calling a “addition” from the outset and designat-

ing the value of a at (m, n) by “m + nN

THEOREM 1.4. For the integral system (N, ', 0) there exists ex-

actly one function a \ N X N — N such that

(I) for each n in N, a(C, n) = n, and

(II) for all m and n in N, a(m', n) =
(a(m ,

n))' .

This function is addition in N; a(m, n) will be abbreviated to m + n.

Proof. Let n be a fixed element of N. Define g

:

N X N N where

g(x, y) = y’

.

According to Theorem 1.2 there exists exactly one

function

an : N N where o:n (0) = n and an (m') = g(m, an(m)) = (a n (m))'.

Now define a by a(m, n) = an(m) for m, n in N. Clearly this function

satisfies (I) and (II). To prove its uniqueness, let y be any function on
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N X N into N such that 7(0, n) = n and y{m', n) = (7(77?, n))
f

. For
each n define y n : N N by

7n(m) = 7 (m, n).

Then 7„(0) = 7(0, n) = n and

7n(m') = 7(m
f

,
n) = (7(m, n))' = (7 n(m))'.

It follows from Theorem 1.2 that yn = a n for each n. Thus, for m, n

in N, a(m, n) = an(m) = 7 n(m) = 7(777, n). Hence, a = 7.

THEOREM 1 . 5 . Addition in N has the following properties.

Ai. Associativity. For all 777, n, and p in N,

77? + (77 + p) = (777 + 72) + p.

Ao. Commutativity. For all m and n in N, m + n = n + 777.

A 3 . Cancellation laws. For all 77?, 72, and /> in N, p + m = p + n

implies m = n and m + p = n + p implies m = n.

A 4 . For all m and n in N, m < n iff there exists p in N such
that p + 777 = 72.

A 5 . For all m, 7?, and p in N, m < n iff p + m < p + 77.

A c . For all m and n in N, 777 4- n = 0 implies 777 = 0 and n = 0 .

Proof. We verify in turn Ai~A6 . In the notation adopted for addition,

its assigned properties appear as 0 + 72 = n and m f + n = {m + 72)'.

Ai. Let 72 and p be fixed and let

M =
J
772 d N|772 + (72 + p) = (t72 + 77) + p}.

Then 0 G M since 0 + (72 + p) = (0 + 77) + /;. Assume that

77? G M. Then

m' + in + p) =
[777 + (72 +/2)]

r =
[ (772 + 72) + p]'

= (m + 72)' + P —
(
772

' + 7?) + P

so that m' G Af. Hence AI = N and the proof is complete.
A2 . As a preliminary step we prove that for a fixed m, n' + m =

n + m' lor all n in N. This is true of 0
,
since 0 ' + 777 =

(0 + m)' = m —
0 T ni'

.

Further, if it is true of n then it is

true of 72/ since (72')' + m =
( 72 ' + m)' =

(72 + m')' = n' + ?n '

.

'The assertion then follows by I 2 . It is applied in the last

step ol the proof of the next statement. If for 72 fixed, Nn =
1
772 G N \ ni + 72 = 72 + 772

} ,
then N' C N„. Indeed, if m G Nn ,
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then m' + n = {m ri)' — (n + m)' = n' + m = n + m f

.

That is, m' G N„.

We can now prove A2 . Clearly 0 G N0 ,
and this with the

inclusion Nq Q N0 implies that N0 = N. Hence 0 G N n ,
and

this with N' C N„ implies that N n = N, which proves A2 .

A 3 . We prove the contrapositive of the first statement. If m, n are

distinct fixed natural numbers, then p + m 7^ p + n f°r all p

in N. Clearly 0 G \p G N |

p

+ m 7̂ p -f n] . Assume that p is a

member of this set. Then p + m p + n
,
from which it fol-

lows that (p + m) f

t* (p + w)', or p' + m ^ p' + w. This com-

pletes the proof that p + m = p + rc implies m = n. The

second assertion then follows, using A2 .

A 4 . Let m and n be natural numbers with m < n. Then

is nonempty (indeed, one can prove by induction that

n + m > n for all m and n) and consequently has a least

member p by Theorem 1.3. Either p -fi m = n or p + m > n.

Assume that p + m > n. Then clearly p ^ 0 and hence p is the

successor of a natural number q. Thus q' + m = (q + m)' > n,

which implies that q + m > n. Since q < q' = p, this yields a

contradiction. Hence p + m = n.

The converse, which asserts that if p + m = n then m < n,

follows from the relation m < p + m mentioned above.

A5 . If m < n, then d + m = n for some d ^ 0, using A4 . Hence

p + n = p + (d + m) = (p + d) + m
= {d + p) T m = d + (p + m)r

Thus, by A4 , p + m < p + n and, since d 0, the strict in-

equality p + m < p + n follows. The proof of the converse is

left as an exercise.

A6 . We shall prove the contrapositive statement. If m ^ 0 or

n 0, then m + n ^ 0. Assume that m ^ 0. Then there

exists p such that m = //. Hence m + n — (p -\- n)
f

and, con-

sequently, m -f- n 0, being a successor. Similarly, il n 7̂ 0,

then m + n 7̂ 0. Thus, if m or n is different from zero, so

is m + n.

Multiplication of natural numbers, as understood intuitively, enjoys

the following two properties, among others. For all natural numbers m
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and n, On = 0 and m'n = mn + n. According to the next theorem it is

possible to define exactly one operation /a in N, regarding (N, 0) as an

integral system, with these two properties. Accordingly, /jl takes on the

role of the only possible candidate for an operation in N which might

have all the properties of intuitive multiplication. That it does is

anticipated by our calling /x “multiplication” from the outset and

designating the value of /jl at (m, n) by mn.

THEOREM 1.6. For the integral system (N, ', 0) there is exactly

one function /jl : N X N — N such that

(I) for each n in N, /jl(0, n) = 0, and

(II) for all m and n in N, n(m\ n) = n{m, n) + n.

This function is multiplication in N; fji(m, n) will be abbreviated to

m • n or simply mn.

Proof. Let n be a fixed element of N and let g : N X N — N where

g(x, y) = y + n. According to Theorem 1.2 there exists exactly one

function

jun : N N where ju n (0) = 0 and tx n{m
r

)

— g(m, Hn(m)) = Hn(m) + n.

Now define /x by /x(m, n) = /JL n (m) for m, n in N. Clearly this function

satisfies (I) and (II). Its uniqueness may be inferred from that of /d n

for each n.

THEOREM 1.7. Multiplication in N has the following properties.

Mi. Associativity. For all m, n
,
and p in N, m(np) = {mn)p.

Mo. Commutativity. For all m and n in N, mn = nm.

M 3 . Cancellation laws. For all m, n, and p in N, p X 0 and
pm = pn or mp — np imply rn = n.

M 4 . Distributivity over addition. For all m
,

n, and p in N,

m(n + p) = mn + mp and (n + p)m = nm + pm.

M 5 . For all m, n
,
and p in N, p X 0 implies that m < n iff

pm < pn.

M () . For all m and n in N, mn = 0 implies that m = 0 or n = 0

or, what is equivalent, if m X 0 and n ^ 0, then mn ^ 0.

Proof. It is convenient to prove these properties in the order M 4 ,
M>,

Mi, Mg, M 3 ,
M 3 .
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M 4 . For fixed n and p, consider
j
m C N \m(n T p) — mn -f mp J.

Clearly 0 is a member of this set, and if m is a member then

so is m'

,

since

m'(n + p) = m{n + p) + 0 + p) = fan + **/>)

+ (n + p) — imn + n) + imP + p) ~ m '

n "F m P-

This establishes the first distributive law in M 4 . The second

follows from this and M 2 ,
which we prove next.

M>. It is left as an exercise to show by induction that lor all n

in N, nO = 0 and nO
f = n. Assuming these preliminaries, fix n

and consider
|
m C N|mn = nm\. This set contains 0 since

Qn = 0 = nO. Assume it contains m. Then it contains m'

,

since

m'n = mn + n = nm + n = nm + nO' = n(m + O')

= n(0' + m) = nm',

where we have used the preliminary result n'0 = n and the

one distributive law already proved. Hence M 2 follows by the

principle of induction.

Mi. For fixed n and p consider
{
m C N|m(np) =

(mn)p) . This set

contains 0, and if it contains m then it contains m
,
since

m '(np) = m(np) + np = (mn)p + np = (mn + n)p =
(m'n)p

.

M 6 . Assume that mn = 0 and m 9̂ 0.
r

Fhen m = p' for some p.

Hence 0 = mn = p'n = pn + n and n = 0 by A 6 .

M3. Assume pm = pn and p 7̂ 0. Since < simply orders N, either

m < n or n < m. If m < n, then by A4 ,
n = d + m lor some d.

Then

0 -fi pm = pm = pn = p{d m) = pd T pm.

Hence, by A3 ,
0 = pd. This and p 7* 0 imply that d = 0, by

M 6 . Hence m = n. The proof is similar starting with n < m.

The other cancellation law then follows, using M>.

M 5 . Assume that m < n. Then, by A3 ,
n = d + m for some d ^ 0.

Hence pn = pd -fi pm where pd ^ 0 by M c . Hence pm < pn

by A 4 . The converse is left as an exercise.

We have stressed the fact that the preceding definitions of an order

relation and the operations of addition and multiplication in N are

based solely on the assumption that (N, ', 0) is an integral system. It is in

order to prove that the indiscernibility of two integral systems, as
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described in Theorem 1.1, extends to the case where the ordering

relation, addition and multiplication are incorporated into each.

THEOREM 1.8. Let (X,
s, x0) and (X*, i

-

*, be integral systems.

Let + , •, and < be the addition, the multiplication, and the ordering

relation, respectively, in X which satisfy the earlier definitions. Let

+ *, • *, and < * be the corresponding relations in X Then there

exists a one-to-one mapping / on X onto X* which preserves each of

these relations in the following sense:

(1) f(x+y) =/(*) + */O0,
(2) f(x -y) = fix) .*/W,
(3) * < y iff f(x) <*f(y).

Proof. According to 1 heorem 1.1 there exists a one-to-one mapping

/ on A onto A* such that f(xf) = and f(xs) = (f(x))s*. This map-
ping fulfills the conditions (l)-(3). To prove that (1) holds we fix y
and consider Y = {x C X\f(x + y) = fix) + */OOI- Then xQ C Y,

since fixo + y) = f(y )
= x* + */O0 = f(x0) + */O0- Also, if x C Y,

then

f(xs + y) = /( (x + y)s) = (/(* + y))s*

= (fix) +*f(y))s* =
(.
f(x))s* +*f{y)

= f(xs) +*f(y),

so vj
- G Y. Hence Y = X.

The proof that (2) holds for / is left as an exercise. That f preserves

the ordering relation in both directions may be inferred from (1) and
the characterization of the ordering relation in terms of addition
given in A 4 of Theorem 1.5.

This concludes the first stage of the derivation of basic properties of
the natural number sequence regarded as an integral system. Upon
abbreviating O' by 1, the successor n' of n can be written as n + 1, since
n = (0 -f- n)

r = w + 0 / = w + l, and we shall henceforth do so. In the
next section deeper properties concerning definition and proof by in-

duction are considered. Among the applications discussed is the unique
factorization theorem for N. As a consequence of Theorem 2.2 there
follows the general associative laws lor addition and multiplication,
which generalize Ai and Nf. Among the exercises for Section 2 appears
the general commutative law for any commutative composition; this

yields commutative laws lor addition and multiplication which gen-
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eralize A 2 and M 2 . Finally, a general distributive law can be derived

from M 4 by induction.

In brief, regarding the natural number sequence as an integral system,

all of the familiar arithmetic of the natural numbers can be derived.

EXERCISES

1.1. Show that a set X, together with a function /, determines an integral

system provided that (i) / is a one-to-one map on X onto a proper subset of X,,

and (ii) whenever Y is a subset of X such that Y contains an element of X —

[X]f and [Y]f C Y, then Y = A\

1.2. This exercise is concerned with the Peano axioms in Example 1.2. So

they may be considered objectively, we rewrite them as assumptions about a

set X.

P*. *o £ X; that is, X is nonempty.

P2 .

'

is a mapping on X into X.

P.*. If x, y £ X, and x = y\ then x = y.

P 4 . If * £ A', then x' 9^ *0 .

P*. If Y C X and x0 £ Y and, whenever y £ Y then y' £ T, then Y = X.

Show that P*-P 4 imply that X, together with the function defined in P2 ,
and x0

form a unary system which satisfies Ij.

1.3. Construct examples of systems which satisfy each combination of four

of the five Peano axioms in Exercise 1.2 but violate the remaining one.

1.4. Complete the proof of Lemma 1.1.

1.5. Complete the proof of Lemma 1.2.

1.6. Complete the proof of Theorem 1.2.

1.7. Establish Di and D2 as properties of descendants.

1.8. Establish D5 as a property of descendants by first proving that if n M,

then M C Dn' . Deduce that if, in addition, n' £ M, then M = Dri . Then

proceed with the proof of D 5 by considering the case where 0 £ M and that

where 0 M

.

1.9. Let X be a set, g: X X, and n be a fixed element of N. Show that

Lemma 1 .2 implies that for each x in X there exists exactly one element y in X
such that (n, y) is a member of the set of descendants of (0, x) under Ng. The

resulting function on Ar

into X we designate by g
n

. Show that £
n = ix , g

l = g,

and g
n ' = g

n
° g for all n in N.

1.10. Let (3: NXN->N with /3(m, n )
= nsm where J is the successor func-

tion on N and s
n

is defined in Exercise 1.9. Show that (3 is addition in N.

1.11. Complete the proof of A4 and A 5 in I heorem 1.5.

1.12. For k in N define N N by at n = a + n. Show that the function

v: N X N — N with v(m, n) = 0C is multiplication in N.

1.13. Complete the proof of M & in Theorem 1.7.

1.14. Theorem 1.4 is applicable to any integral system. Determine the func-
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tion a of Theorem 1 .4 for each of the integral systems (a) and (b) defined in

Example 1.1.

1.15. Theorem 1.6 is applicable to any integral system. Determine the func-

tion /d of Theorem 1.6 for the same two integral systems.

1.16. Using Theorem 1.5, show that in N

(a) x = y -\- u and y — x + v, then x = y, and
(b) if x -\- u = y and y + v = x'

,

then either u = 0 or v = 0.

1.17. Prove that for a, b in N with b ^ 0, there exist unique elements q and r

of N, such that a = qb + r where r < b. This is the division algorithm for N.

1.18. Let S be a set such that there exists a one-to-one mapping F on S onto

a proper subset of S. Then F induces a mapping / on (?(£) into (P(.S') in an
obvious fashion and {(P(S), f, S) is a unary system. Form DfS and define

s : DfS —>- DfS by As = f(A). Show that (DfS, s, S) is an integral system.

2. Proof and Definition by Induction

In the preceding section we described and repeatedly used the prin-

ciple of induction as a method of proof. There is a second form of this

principle which also finds many applications. To distinguish the two, let

us call that one already discussed the principle of weak induction. In

weak induction, to prove that P(n) for all natural numbers n, one proves
P(0) and then derives P(m + 1) from the assumption that P(m). In the

second form of the principle, which we call the principle of strong in-

duction, one assumes each of P(0), P(l), • •
•

,
P(m) and uses them to

derive P(m + 1). With more assumptions, in general, it is easier to derive

P(m + 1). Hence, strong induction finds applications as a method of

proof where direct application of weak induction would be difficult. A
precise formulation of the principle follows; as before, P(n) stands for

“the natural number n has property P.”

If P(0), and if, for each natural number m, P(r) for all r < m implies

P(m + 1), then P(n) for each natural number n.

The validity is an immediate consequence of the following theorem
and is left as an exercise.

IHEOREM 2.1. Let M be a set of natural numbers such that

(I) 0 C M, and

(II) if r C M for each r < m
,
then m + 1 £ M.

Then M = N.
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Proof. Consider N — M. If this set is nonempty then it contains a

least member, by Theorem 1 .3. This number is not 0 by (I) and hence

may be written in the form m -f- 1 . Then, for each r < m, r C A/.

By (II) it follows that m + 1 £ M, contrary to the choice of m + 1.

Thus, the assumption that N — M is nonempty leads to a contra-

diction. Hence M = N.

Our formulation of both the principle of weak induction and that of

strong induction has been for the case where the induction begins with 0.

Each case can be generalized to start with any natural number nQ . In

this circumstance the conclusion reads
L

'for all natural numbers n > no,

P(n)”

EXAMPLES
2.1. As an illustration of a proof by strong induction we prove the theorem

that every integer greater than 1 has a prime factor, starting the induction

with 2. Obviously 2 has a prime factor. Assume the theorem for all m with

2 < m < n and consider n + 1. If n -f 1 has no factor a with 1 < a < n + 1,

then n -f- 1 is a prime and has itself as a prime factor. If n -f- 1 has a factor

a with 1 < a < n + 1, then 2 < a < n. By the induction hypothesis a has a

prime factor b, which is then a prime factor of « + 1. Thus, in every case,

n + 1 has a prime factor.

2.2. As a somewhat more important illustration of proof by strong induction,

we prove next what is often called the fundamental theorem of arithmetic:

Every natural number greater than 1 has a representation as a product o(

primes that is unique to within the order of the factors. Again we begin the

induction with 2. Clearly, 2 has such a representation. Assume that all num-

bers less than n have unique representations and consider n. 1 he set of divisors

of n which are greater than 1 is nonempty and, hence, has a least member p.

Then p is a prime since a divisor q of p with \ < q < p would be a smaller

divisor of n. If n = pnh then n x has a unique representation by the induction

hypothesis. Replacing n x by its unique representation as a product of primes

yields a representation of n = pn x as a product of primes, and this is the only

representation of n which contains p as a factor. II the theorem is false lor n

then it has a second representation. If q is the smallest prime present in this

second representation, then q > p, since this other representation of n does not

involve p and p is the smallest divisor (> 1) of 72. Let n = qn 2 and q = p + d.

Then n = pn2 + dn2 . Since p divides n, p divides dn2 . Now dn2 < n and, conse-

quently, has a unique representation. Hence, p divides d or p divides n2 . But p

is not a factor of n2 since it contains no factor less than q and q > p. 1 hus p

divides d. Let d = rp. Then q = p + rp =/>(!+ 0- Thi s is a contradiction
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since q is a prime. Thus n has no decomposition other than the essentially

unique decomposition with p as a factor.

We consider next definition by induction. Two examples which have

already been given arc that of addition and that of multiplication in N.

These were justified, we recall, by an appeal to Theorem 1.2. A defini-

tion which can be justified by an appeal to Theorem 1.2 is called a

definition by weak induction. Other examples of this type of definition

are that of b
n (for a real number b and a natural number n) as

b° = 1, b
n+1 = b • b n

,

and n\ (for a natural number n) as

0! = 1, (n + l)! = (« + l)*w!.

The reader may question the necessity of resorting in such cases to

Theorem 1.2 or, what amounts to the same, the complexity of the proof

ol Theorem 1.2. For he may be satisfied with the following argument
that the two conditions

k(0) = c,

k(n + 1) = g(n, k(n)),

where—restating the hypothesis of Theorem 1.2, c is a given constant,

and g is a specified function of two arguments—do define a function k.

Clearly (so the argument goes) the two conditions define k(0). Then
with the choice of 0 for n in the second, k( 1) is specified:

k{ 1) =g(0,m) = g(0, c).

Next, setting n = 1 in the second condition, k{2) is specified:

k(2) =g{l,k(l))=g(l
9
g(0,c)).

Proceeding in this manner, k(n) is uniquely specified for any given,

natural number and only such. Thus, a function whose domain is N
has been defined.

There is an error in this intuitive reasoning. To disclose it we recall

that a 1 unction is a set, so that to define a function is to define a set (of a
certain kind). The procedure just employed permits one to define as

many members as he chooses [namely, <0,*(0)>, <M(1)>, A(n)>,

for any preassigned n] of a certain set, but it does not yield a definition

of the set consisting ol all such ordered pairs, unless the function which
the intended set is to define is already known. In brief, the error consists

in using a lunction symbol without first giving a function for it to

denote.
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Admittedly, the intuitive argument does make it plausible that the

two conditions define exactly one function, and the proof ol 1 hcorcm 1 .2

settles the matter.

Another instance of a definition by weak induction (as well as a proof

by weak induction and one by strong induction) occurs in the derivation

of the general associative law for an arbitrary associative operation in a

set. Reference has already been made to this result. The setting in which

to view it may be described as follows. Up to this point we have con-

sidered several (binary) operations in various sets. By definition, these

are functions of the form /: X2 —>- X where X is some set and X2
is an

abbreviation for X X X. Each of the following notations has been used

for the image of {

a

,
b) under / at one time or another: a U b, a D b,

a ° b, ab, a + b. In order to achieve impartiality so far as notation is

concerned in this discussion, we shall use a * b for the image of (a, b).

In terms of /, two ternary operations in X—that is, mappings on A ’

into X—may be defined. One of these maps (a, b, c) onto (a * b) * c and

the other maps (a, b
,
c) onto a * (b * c). Similarly, a total of five 4-ary

operations in X may be defined in terms of /. These are the mappings

on XA into X, such that the image of (a, b , c, d) is one of

{fa * b) * c) * d, (a * (b * c)) * d, (a * b) * (c * d),

a * ((b * c) * d), a * (b * (c * d)).

In like fashion / serves to generate n-ary operations in X for n > 4. For

an arbitrary n (> 2) let us call the image in X of (ah a2 ,
•

•
*, a n) in Xn

under an n-ary operation originating with / a composite ol a i, a2 ,
•

•
•, a n

(in that order). Such an entity is simply the string a\ * a2 * • • • * an ,

together with sufficient parentheses to specify unambiguously n — 1

applications of/. If/ has the property that, for all a, b, and c in A',

a * (b * c) = (a * b) * c,

that is, / is an associative operation in A
r

(or satisfies the associative law,

as it is often expressed), then the various composites of a i, a2 ,
•

•
*, an are

all equal to each other. This is the general associative law, which we

now prove.

THEOREM 2.2. Let (a, b) a * b be an associative operation in

X. Then all composites of a\, a2 ,
•

*
•, a n are equal. The common value

will be written as a\ * a2 * • • • * a n .

Proof. We use weak induction to define a particular composite

IIiZidi, of ah a 2 ,
•

•
•, an for n > 1

:

n\z\ai = ah n = (IE:?*)
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Now we prove that for all m
,
n > 1,

04) (n?a f) * (U?an+j) = U^ai.

Let n be fixed; we prove by weak induction on m that the relation

holds for all m > 1. It is true for m = 1 by definition. Assume that

it is true for m and consider the case m + 1 . We have

*U?+1an+J = n\a t * ((Il;^«+;) *0»+m+i)

= ((n?fl 4) *n?an+J) *an+m+ 1

= (n? + m^0 *

= n? + m + l a h

as required. Thus (d) is valid for all m
,
n > 1.

This property of the particular composite defined is used to prove

next by strong’ induction on n that any composite of ah a?, , a„,

n > 1 , is equal to n?a.-. Clearly this is true for n = 1. Assume it true

for all composites of r elements ofX with r < n, and consider any com-

posite associated with (ah a2 ,
•

•
•

,
an+i)- By definition it is a composite b

* c, where b is a composite associated with (ah a2 ,

• *
•, «r) and c is a

composite associated with (ar+i, a r+2 ,
•*, «»+i)- If r = b ~~

IINf by the induction hypothesis, c = a n+ 1 ,
and /; * c = II? by

the definition of Ilfai. The proof is then complete for this case. Other-

wise, r < n and by the induction hypothesis

b = nia,-, c = n\
+l - r

a r+j

Then b * c = II by (A).

It follows that all composites of ah a 2 ,

• m
•

,
a n are equal, each being

equal to II^ t
-.

Theorem 1 .2 can be extended to the following result.

THEOREM 2.3. Let B be any nonempty set and c a given tunc-

tion on Bn~ l into B for n > 2. Let g be any function on N X Bn

into B. Then there exists exactly one function i: NX B"~' B

such that

'

*, *»),k(0, X2, •
•
•, Xn) — c(x2)

k(x', X2 ,
•

•
*, Xn) = g(x, k{x, X2 ,

X n), *2, *••>*»)•

The resulting function A; is said to be obtained from c and g by primitive

recursion. One may think of the earlier theorem as being the special

case which results when all “parameters” x2 ,
*

*
*, are absent; thus we

shall also say that the function k of Theorem 1.2 is obtained by primitive
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recursion. Hints for a direct proof of Theorem 2.3 are given in an exer-

cise.

There is considerable interest in the class of number-theoretic

functions (that is, functions on N p into N where p > 1), which can be

defined by induction in an elementary way. One motivation for this

lies in the possibility of computing values of such functions by purely

mechanical means—by a set of instructions which require no “creative”

thought in their execution. The operation of primitive recursion enters

naturally into such considerations, since if c and g are number-theoretic

functions which are computable by mechanical means, then the same

appears to be true of the function /: obtained from c and g by primitive

recursion. Another operation which appears to produce computable

functions from computable functions is that of composition in the follow-

ing extended sense of our earlier usage of this term: The function

h : N" — N is obtained by composition from functions /: Nm —>- N and

g%‘ Nn N, i = 1,2, •••,*!, if

h(x l,
• * *, Xn) = * * ’, Xn), *

* *, gm(x i,
* * ', *„)).

The function h obtained in this way will sometimes be written as

Sm(f, gi, •
•

•, gm)- If we specify an initial supply of functions which are

judged to be computable, then all functions obtainable by the operations

of composition and primitive recursion should be of the same sort. Such

considerations may be taken as motivating the definition of the following

class of functions.

As the initial supply of functions we take those of the following three

types.

(I) The successor function ^ on N : £(*) = x'.

(II) The constant functions Cn

Q : Nn N, where C”(* i,
• •

•, xf) = q,

n = 1,2, •

•

•

.

(Ill) The identity functions Uf: N n —>- N, where

U?(xh •
•

•, xn) = x i}

1 < i < n and n = 1,2,

We next define a primitive recursive derivation to be a finite se-

quence f0 , /i,
• •

•
, fk of functions, such that any member of the sequence

is either an initial function or else is obtained from preceding members

of the sequence by composition or primitive recursion. Then the class

that we have in mind, the primitive recursive functions, are those

functions / such that there is a primitive recursive derivation whose final
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member is /. This class contains all the numerical functions which one

ordinarily encounters, as well as others. Some examples follow.

EXAMPLES
2.3. Addition in N is a primitive recursive function. A derivation, wherein

we have used function values rather than functions in order to assist with the

understanding, is

S(j) = /, Ui(x, z, y)
= z, /(*, 2

, y)
= £(£/!(*, y)) = U\ (y) = y,

fa(0,y) = U\(y),

l<x{x\y) = /(*, a(x,y),y).

The first and second functions involved are initial functions, the third is obtained

by composition from them, the fourth is an initial function and, finally, a is

obtained by primitive recursion from the third and fourth. We leave for exer-

cises similar derivations for multiplication, the exponential function, and the

factorial function.

2.4. The predecessor of x, pd(x), is defined by pd(0) = 0 and pd(x') = x.

It is primitive-recursive by virtue of the primitive-recursive derivation:

Cl(x) = 0, Ui(x,y) = x
,

fpd(0) = Co
1

,

tpd(x') = Uj(x, pd(x)).

2.5. Proper subtraction, —
,

is defined by x — 0 = x and x — / =

pd(x — y). That is, * — y = y \i x > y and x — y = 0 if x < y. This is

a primitive-recursive function. To verify this we initially write b(y, x) for x — y

and obtain the following primitive-recursive derivation for 8:

Ul(j, z, x), pd(z), f(y, z, x) = pd(f/|(7 ,
z, x)), Ul{y,

z, x),

/5(0, x) = Uiiy, z, x),

\5(y, x) = f(y, 8(y, x), x).

Here we have taken a shortcut by listing the predecessor function as an initial

function instead of a derivation for it. To obtain x — y as the value of — at

(x, y) (instead of (y, x), as in 6), three further steps are necessary:

Ul{x,y), Ui(x, y), Al(5(x, y), U'i(x, y), Ui(x,y)).

The exercises include further instances of primitive-recursive func-

tions. In addition to those listed above and in the exercises, it is possible

to establish as being primitive-recursive, for example, the function whose

value at n is the (n + 1 ) th prime number, and the function fa (

a

> 0)

whose value at n is the exponent of the nth prime number (in order of

increasing magnitude) in the factorization of a into a product of primes,

where we regard the factorization a = 2no3ai5a2 - • • as extending in-

definitely, with all but a finite number of exponents being 0. Further,
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it is possible to show that all functions which can be obtained by the

procedure that is described next are primitive-recursive.

Another form of definition of functions by induction parallels the

principle of proof by strong induction. Thus, it is often called definition

by strong induction and has, as its distinguishing feature, the possi-

bility of defining a function k on N such that k(n + 1) is specified in

terms of some, or all, of the values k(0), /r ( 1 ) ,

• •

•, k(n). Specifically, the

circumstances take the following form: There is given a nonempty

set B and a function h, such that for each natural number n, h assigns

to each element of Bn+l an element of B. Then k: N —

B

is supposedly

defined by the two conditions

A;(0) = c (a given member of B),

kin T-
1) — h(k( 0), k( 1),

• •

*, k{n)).

As for //, it is convenient to think of it as a function whose range lies

in B and whose domain is the set $ of all functions j having as domain

N p = {0,1, ••*,/;} for some/; and, as range, a subset of B. For then the

intended value of k at n + 1 is simply h(k\N n ), where A |N n is the restric-

tion of k to (0, 1, ••*,«}. The theorem concerning such circumstances is

THEOREM 2.4. Let B be a nonempty set, let c be an element of B,

and let h be a function whose range lies in B and whose domain is

the set $ of all functions j having as domain N p for some natural

number /;, and as range a subset of B. Then there exists exactly one

function k: N B such that

k(0) = c and k(n + 1) = A(£|Nn)

for each natural number n. Here A|N n is the restriction ol k to the

domain Nn = {0, 1 , 2,
• •

*, n] .

Proof. We establish first the uniqueness by contradiction. Assume

that the functions k\ and fc2 satisfy the conditions and that k\ 7̂ k2 .

Then there exists a first natural number n for which kfn) 7^ k2 {n).

Since k x (0) = c = k2 (0), n > 0 and, hence, n = p + 1 for some/). But

then £i|N p = k2|NP ,
so that kfn) = h(k\\N p) = h{k2|NP)

= k2 («), a

contradiction.

Turning to the matter of existence, we propose lor the function in

question, the union k over the family X ol all 1 unctions ] in such

that /(0) = c and, if N n is the domain of /, then for each m < n,

j(m + 1) = h(j |Nm ). That k is a function on N satisfying the condi-
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tions of the theorem appear below as properties (3), (4), and (5) of k.

The proofs of properties (1), (2), and (3) are left as exercises.

(1) If j i and j2 are distinct members of JC, then either j\ Q j2 or

h C ji-

(2) k is a function.

(3) k(0) = c.

(4) The domain Dk of k is equal to N.

Proof. Clearly Dk Q N and, by (3), 0 C Dk . To prove equality we
assume the contrary. Then there exists a least member of N of the

form p + 1 which is not a member of Dk . Then p is the greatest

member of Dk and k U {{p + 1, h{k))) C 3C. Hence p + 1C Dk ,
a

contradiction.

(5) k(n -f 1) = h(k\Nn ) for n in N.

Proof. For each «CN, n T 1 C Dk by (4), and hence, for some j
in 3C, n + 1 C Dj. Then k(n + 1) = j(n + 1) = h(J\ N») = A(^|Nn).

EXERCISES

2.1. Deduce the principle of strong induction from Theorem 2.1.

2.2. The definition of b n given in the text has the following form. Given

gi‘ B —> B and c G B, there are set forth two conditions /(0) = c and

fin -f 1) = gi(J(n)) where / is a function which is supposedly being defined.

Deduce that these conditions do define exactly one function /: N — B as a

special case of Theorem 1.2.

2.3. Supply the independent proof of the result in Exercise 2.2 along the

following lines. Let us say that a natural number n has property E(f) in case /
is a function on N„ into B where

/(0) = c and f{k + 1) = g x (f(k)) for k < n.

Then prove that

(I) If n has property E(f) and m has property E(g) and n < m, then

fix) = g(x) for x C N n .

(II) {n C N| there exists a lunction fny such that n has property E(fn))
= N.

Infer that / may then be defined by choosing f(n) to be /„(«).

2.4. An operation * in X is commutative iff a * b = b * a for all a and b in X.
Prove the following general commutative law. Let * be an associative and
commutative operation in X. If T, 2', • •

•, n' is a rearrangement of 1, 2,

then a\ * • • • * an = ay * a2 ' * * * • * an >.

2.5. State and prove a generalization of M4 in Theorem 1.7.
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2.6.

Prove the existence of a function k satisfying the conditions of Theorem
2.3 by imitating the proof of (I) in Lemma 1 .2. That is, define k to be the inter-

section of the collection Ct of all sets A, such that

(i) ^CNX B n
,

(ii) for each choice of (x2 ,
•••,*») in B n~\ (0, x2 ,

• • •, xn ,
c(x2 ,

•
• •, xn)) C d,

and

(iii) for each choice of (x2 ,
•

•
•, xB ), if (x, x2 ,

• •
•, xn , 6) C d, then

(x', X2 ,
•

•

•, Xn , £0, 6, *2 ,

* *
•, *n)} C A.

2.7. Show that multiplication in N, the exponential function, and the fac-

torial function are each primitive-recursive.

2.8. Give primitive-recursive derivations for the functions designated by each

of the following.

(a) min (x, y).

(b) max (x, y).

(c) |x - y |.

(d) sg x =
0 if x = 0,

1 if x > 0.

(e) rm (x, y), the remainder upon division of x by y (see Exercise 1.17).

2.9.

Complete the proof of Theorem 2.4.

3. Cardinal Numbers

In Section 1 we ignored the role of the natural numbers in counting.

We considered them merely as a set of objects without intrinsic properties

individually and known only through their position in the natural

number sequence. In brief, we considered the natural number sequence

as an integral system. In this section we shall discuss the concept of a

number as a “measure of size” and it will scarcely be unexpected to find

that the natural numbers have an application.

The intuitive connotation of two exhibited sets having the same num-
ber of members is that the members of one can be paired with those of

the other. Since a pairing of the members of two sets is simply a one-

to-one correspondence between them, our basic definition in connection

with the problem at hand assigns a name to two sets so related. Two
sets A and B are similar or equinumerous, symbolized

A ~ B,

iff there exists a one-to-one correspondence between A and B. In any

nonempty collection of sets, similarity is an equivalence relation—the

rcflexivity and symmetry are obvious, and the verification of transitivity
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is left as an exercise. Thus it appears feasible to apply the method of

definition by abstraction (Section 1.7) to obtain the concept of a num-

ber as a similarity class. The obvious choice for the set to which to apply

the relation of similarity is the set of all sets. Then the concept that is

usually called a cardinal number may be defined to be a similarity class.

The modifying adjective “cardinal” is included here to distinguish the

concept under study from another that will follow, wherein not only

magnitude but also order is significant.

It will prove expedient to anticipate now that the set ol all sets has a

contradictory character. Thus we will be less grandiose and apply the

method of abstraction to a set U which we regard as a universal set;

that is, all sets which interest us are subsets of U. Then similarity is an

equivalence relation on (P(U) and by a cardinal number we shall

mean a similarity class. If A £ (P(£/), the cardinal number of A,

symbolized

A or card A,

is the cardinal number having A as a member. At the expense ol a

possible loss of generality entailed by the dependence on an underlying

universal set, we achieve a degree of precision that is lacking in Cantor’s

description of a cardinal number as “the general concept which, with

the aid of our intelligence, results from a set M when we abstract from

the nature of its various elements and from the order of their being

given.” This double abstraction—that is, the abstraction with respect to

the nature and the order ol the elements—is the origin ol his notation M
for the cardinal number of M.
There are other definitions of “cardinal number” which have been

adopted by different authors. G. Frege (1884) and B. Russell (1902)

identified the cardinal number M with the set ol all sets similar to

A/. On the other hand, J. von Neumann (1928a) suggested the selection

of a fixed set C from the set of all sets similar to M to serve as cardinal

of Al. With any one of these definitions one obtains what is essential

that an object is associated in common with those and only those sets

which arc similar to each other. That is, similar sets and only similar

sets have the same cardinal number. It can be successlully argued that

for mathematics it is immaterial as to what cardinal numbers are,

explicitly, so long as they have the property A = B iff A ~ B. Indeed,

by virtue of this property, we shall find that all questions regarding

equality and inequality of cardinals can be reduced to questions ot the

similarity or nonsimilarity of sets. That is, any property of cardinal
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numbers, however they be defined, can be translated into a property

about sets and their similarity.

In order to compare cardinals we define the notion of domination for

sets. If A and B are sets such that A is similar to a subset of B
,
we shall

write

A < B

and say that A is dominated by B or that B dominates A. Clearly this

is a preordering relation (see Example 1.11.5) in the power set of the

universal set we have adopted for our discussion of cardinal numbers.

In the terminology used in the same example, it is obvious that ^ is

indifferent to a pair of similar sets. The converse statement (which is

not obvious) is also true; this is the content of the following celebrated

theorem proved independently by E. Schroder and F. Bernstein in

the 1890’s.

THEOREM 3.1 (Schroder-Bernstein Theorem). If A ^ B and

B A, then A ~ B.

Proof. First we offer some remarks to motivate the proof which

follows. The assumptions amount to the existence of a one-to-one

map f on A into B and a one-to-one map g on B into A. To establish

the existence of one-to-one correspondence between A and B
,

it is

sufficient to determine a subset di of A such that g[B — /di] =
A — A\. For then the function h : A — B such that

hx = fx for x C Ai,

fix = g~ lx for v C A — A\
,

is of the type desired. Concerning a method for constructing any

subset Aq of A which could serve as an A i, clearly Ao should include

A — gB. Also, since g[B — /d 0 ]
should include A — A 0 , (g °f)A 0

should be included in A0 . In addition, since we actually want

g[B — //1 0 ]
= A — d 0 ,

the smallest such d 0 is required. Thus we are

led to consider the collection <2 of all subsets d 0 of d such that

(I) d — gB C d 0 ,
and

(II) (gof)AuQ do.

Since d £ &, & is nonempty. As A\ we choose flffi Clearly A\ satis-

fies (I). Moreover, since (g ° f)A i Q (g ° /)d 0 Q d 0 for all d 0 in Cfc,

(g ° f)A i — PI Ct = A\. Hence A\ satisfies (II) and is, consequently, a

member of (t and, indeed, its least member.
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The proof that the set A\ just defined has the required property X.

in two parts. First, since A — gB C A\, A — A\ C gB. This implies,

since (g ° f)A\ C Ah that A — A\ C g[B — //h]. To establish the

reverse inclusion we prove first that

(.A - gB) U (g -/K = ^i.

Since /li C ft, ^ - gB C /ff and (g ° /)/h C yl x and hence (A — gB)

U (g ° f)A l
C A\. Also (g o /) [(4 - U (g o f)A x ]

C o /)Tj, from

which it follows that (A — gB) U (g °f)A\ C Recalling the defini-

tion of Ai, the equality in question then follows. But this implies that

Ai and g[R — fAi) are disjoint, so g[B — fA\\ C A — A\. Hence
g[B — fAi] = A — Ai. This completes the proof in view of our initial

remarks.

Combining the observations made so far, it follows from the result

obtained in Example 1.11.5 that induces a partial ordering of sim-

ilarity classes, that is, of cardinal numbers. We shall symbolize this

relation by < ;
thus, for cardinal numbers a and b,

a < b

iff there exist representatives A and B of a and b respectively, such that

A B. The strict inequality of cardinals is defined in arithmetical

fashion

:

a < b

iff a < b and a ^ b. In order to characterize this relation in terms of

representatives we define

A < B

for sets A and B to mean that A <, B and not B A (abbreviating “it is

not the case that B <, A” to “not B <, A”). The second of the following

two lemmas is the desired result. The proofs are left as exercises.

LEMMA 3.1. For sets A and B A < B iff either A ^ B or A < B.

LEMMA 3.2. For cardinal numbers a and b, a < b iff there exist

respective representatives A and B such that A < B.

Is the partial ordering relation for cardinal numbers a simple order-

ing? To analyze this question let a and b be cardinals and assume that

A = a and B = b. Then either A is dominated by B or not. Vice versa,

either B is dominated by A or not. Combining these two pairs of

alternatives gives four cases, exactly one of which must apply to A and B.
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(I) A < 5 and B< A.

(II) A B and not B A.

(III) Not A < B and B <^A.

(IV) Not A < B and not B < A.

In case (I), a = b according to Theorem 3.1. In case (II), a < b and

in case (III), b < a according to Lemma 3.2. It is only case (IV) that

cannot be resolved with results that are available now. Later there is

introduced an assumption which rules out this case. At that time we
may conclude, as a consequence, that < is a simple ordering relation.

Our next objective is to show how the familiar symbols for the natural

numbers can be adopted as symbols for the cardinal numbers of certain

sets, or, what amounts to the same, we make an application of the natural

numbers in which they become cardinals. To this end we make the

following definitions. The cardinal number of the empty set we call 0,

and the cardinal number of any set A U jrj, where c 0 A, we call

A -f 1. It must be proved that these concepts are well defined in terms

of our basic principle: A = B iff A ~ B. Clearly 0 is well defined since

the only set similar to 0 is itself. That A T 1 is well defined is shown

as a consequence of the following result, whose proof is left as an exer-

cise. If A U {c} ~ B and c 0 A, then B = B0 U {
d\ where d 0 B0 and

Bo ~ A. From this it follows that if B ^ A U {rj where c 0 A, then B
determines the cardinal number Bo + 1, which is equal to A + I (that

is, A U jcj) since B0 = A. The converse is trivial by virtue of the

definition of A + 1

.

The two definitions just given—together with the understanding that

in case A — n, a natural number, then A + 1 = n + 1 should receive

its usual symbol, such as 4 + 1 = 5—lead to an assignment of each

natural number as a cardinal number for certain sets. The natural

numbers in the role of cardinal numbers are the finite cardinals, and

sets which have these cardinals are finite sets.

In their new role as cardinals, the natural numbers are subject to the

ordering of cardinal numbers generally, as defined above, following

Cantor; this ordering we write temporarily as < <?• In their original

role as members of N, the natural numbers possess the familiar ordering,

which we write as <n, for the moment. If it were the case that these

two orderings did not coincide on N, a confused situation would result.

That they are in agreement on N and thereby no awkwardness results,

can be proved after two preliminary theorems are established.
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THEOREM 3.2. For each natural number n
,
the finite cardinal n

is the cardinal of the set of natural numbers which precede n in the

natural ordering.

Proof. The proof is by weak induction on n. If n = 0, there are no

natural numbers preceding n in the natural ordering, and hence the

set referred to in the theorem is 0 and 0 = 0 by definition. Thus

the theorem is true for n = 0.

Assume that n = card {0, 1, 1 } ;
to prove that n + 1 =

card {0, 1, •••,«}. Since n 0 {0, 1, 1 j, and

)0,
• •

•, n - 1, n] =
{0, 1, — 1}U{«},

we have n + 1 = card {0, 1,
• •

•, n) by the definition of A -f- 1.

THEOREM 3.3. For each natural number n
,

if A = n
,
then A is

not similar to a proper subset of itself.

Proof. We shall prove by weak induction on n that for all n GL N,

if A = n then it is false that A ~ A\ C A. For n = 0, A = 0 and

A = 0. Then A has no proper subsets and so no proper subset of A
is similar to A.

Assume the theorem for any set of cardinal number n\ we prove it

for a set A with A = n + 1 . Our method of proof calls for obtaining

a contradiction of the induction hypothesis upon assuming that A
does include a proper subset A i such that there exists a mapping /:

A A i, which is one-to-one and onto. Since A = n + 1, A = B U 0}
where B = n and b 0 B. There are three possibilities to consider.

(I) b 0 A\. Then b j* f{b) and we conclude that the restriction

of / to B is a one-to-one correspondence between B and

A\ — \f(b) }
where the latter set is a proper subset of the for-

mer. Since B = n, this contradicts the induction hypothesis.

(II) b C Ai and f(b) = b. Again f\B yields a contradiction of the

induction hypothesis.

(Ill) b C A\ and f{b) ^ b. Let f(b) = bi and f~
l

(b) = a. Then
consider the mapping g : A A\

t
which differs from / only

in that g(b) = b and g(a) = b\. Clearly g is one-to-one and

onto and is the type of correspondence considered in (II).

Thus in all possible cases a contradiction of the induction hypothesis

results from the assumption that if A = n + 1, then A is similar to a

proper subset of itself. Hence, if the assertion of the theorem is true
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for sets of cardinal number n
,

it is true for sets of cardinal number
n + 1 .

THEOREM 3.4. The natural ordering and the cardinal ordering

agree on N. That is, for all natural numbers p and q ,

q <n/; iff q <cp.

Proof. We shall prove first that if q <up, then q <cp- Let P =
jo, 1, 1} andQ = {0, 1,

• •
•, q - 1 |

(or 0, if q = 0). Then
P = P and Q, = q. Assuming q < up, each of 0, 1, , q

—
1 precedes

p
—

1 in the natural ordering, so P = {0,1, •
•

•

,

q
—

1
,

•
- p — 1 }

.

Thus QC P, and since we haveQ~QC P. Further, for no

Q,o is P ^ Q,o Q Q, since otherwise it would follow that P is similar

to a proper subset of itself, contradicting Theorem 3.3. Hence q < c p
by Lemma 3.2.

Next, assume that q < c p \
we deduce that q < n p as follows. Since

<a simply orders N, it suffices to show that q = p and p <&q are

incompatible with our assumption. If q
=

/;, then Q = P and so, as

cardinals, q = p = Q = P, which is incompatible with q < c p. If

p < n we apply the first part of the theorem to conclude that p < c q,

which is incompatible with the assumption that q < c p.

We turn our attention next to the nonfinite cardinals. A nonfinite

cardinal is an infinite or transfinite cardinal. If the cardinal number
of a set is infinite the set is called infinite. The cardinal number of the

set of natural numbers is symbolized by

No-

THEOREM 3.5. If rc is a finite cardinal, then n < Xo-

Proof. Since n = card {0, 1,
• • , n — 1

}
by Theorem 3.2, n < by

the definition of < for cardinals. Assume that n — SS 0 . Since n + 1 is

also a finite cardinal, we conclude similarly that n + 1 < N 0 ,
which

with n = Ko gives n + 1 < n. Since this contradicts the valid result

n < n + 1, the assumption n = No is untenable and the remaining

alternative n < No is established.

Thus No is an infinite cardinal. So, along with the finite cardinals, we
now have an infinite one. If it were the case that all infinite sets were

similar, so that No would be the only infinite cardinal, the theory of

cardinal numbers would contribute nothing to mathematics not already

known, and hence would scarcely be worthy of mention. That more
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than one infinite cardinal exists—that is, that there exist infinite sets

which are not similar—is an immediate consequence of the next theorem.

THEOREM 3.6 (Cantor). For every set A, A < 6>(A) or, in other

words, A < (9(A).

Proof. The mapping on A into (9(A), which takes a in A into {a} in

(9(A), is a one-to-one mapping on A into <9{A). Thus, A ^(P(/l). To

prove that A < (9(A), we show that the assumption A ~ (9(A) yields

a contradiction. Let f: A (9(A) demonstrate the assumed similarity

of A and (P(T) and consider A\ = |aC A\a f(a)\. Since A\ G (9(A),

there exists a\ in A such that f(af) — A\. Now either a\ G A\ or a\ A\.

If ai G Ai, then a x f(a x ) and hence a l Ah which yields a contra-

diction. Similarly, a\ A\ implies that a\ G f(a i) or a \ C A i, and again

a contradiction results. Thus we have proved that A <j (9(A) and not

A ~ (9(A). This gives the desired conclusion.

Cantor’s theorem uncovers a hierarchy of distinct infinite cardinals.

Just as the set of finite cardinals is unending, so also is the set of infinite

cardinals of the form

(However, this is not the end of the matter, as we shall see in Theo-

rem 9.2.)

EXERCISES

3.1. Show that similarity is an equivalence relation on any collection of sets.

3.2. Show that ;< is a preordering relation.

3.3. The closed unit interval
,
written [0, 1], is [x G R|0 < * 5^ 1}- The open

unit interval
,
written (0, 1), is {x G R|0 < * < 1}. The half-open unit intervals

,

written (0, 1] and [0, 1), are {.* G R |0 < x < 1} and {.v G R [0 < .v < 1},

respectively. Show that these sets are similar to each other.

3.4. LTsing the function /: R — R, where

show that R is similar to (0, 1).

3.5. Show that R and R+ are similar.

3.6. Referring to the proof of Theorem 3.1, what is the function h if A =

[0, 1], B = R+
, /(*) = x + 1, and g(x) = x/(\ + *)?

3.7. Prove Lemmas 3.1 and 3.2.

3.8. Deduce from Theorem 3.1 that if A, B, and C are sets such that A D
B D C and A ~ C, then A

N = No, <P(N), CP(S>(N)), •••.
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3.9. Prove that if A D B and B ~ B U C, then A ~ A U C.

3.10. Prove that if A, B, C, and D are sets such that A DC, B C Z), and

CU/1~C, then U B ~ A.

3.11. Prove the result stated in the text that if /l U {c} ^ B and c A, then

B = Bq\J {(d} where d Bo and Z?0 ~ A.

3.12. Let X be a set which is similar to none of its proper subsets. Without

using any theorems in this section, prove that the same is true of X U {a}

where a X.

3.13. Of the given definitions of a finite set and of an infinite set, we have

taken the former as primary; the infinite sets are the nonfinite sets. Dedekind

proceeded in the complementary way by initially defining an infinite set as one

that is similar to a proper subset of itself; then the finite sets are the noninfinite

ones. Show that a set which is infinite in the sense of Dedekind is infinite in our

sense. The converse can be proved, using the axiom of choice; see Corollary 2

of Theorem 9.1

.

3.14. Tarski (1924) has given the following definition of a finite set: The set

S is finite iff in each nonempty collection 3 of subsets of S there exists one mem-
ber T such that no proper subset of T belongs to 3. Prove that this definition

is equivalent to that in the text.

3.15. Let 5 be a nonempty collection of sets such that for each A in 31 there

exists a B in J with B > A. Prove that cardU^ > A for each A in 57.

4. Countable Sets

The smallest infinite cardinal number that we have turned up so far

is No- A surprisingly large variety of sets in mathematics have this

cardinality, as we will proceed to show after introducing some further

terminology.

A set is denumerable iff it has cardinal number No- A set is countable

iff it is either finite or denumerable. An enumeration of a denumerable

set A is a specific one-to-one correspondence between N and A.

EXAMPLES
4.1 . Among infinite sets of numbers which are denumerable we mention first

Z, the set of all integers. The following enumeration shows this:

4.2. More surprising, the set £) of rational numbers is denumerable. This

result follows easily once it is known that f)
+

,
the set of positive rationals, is

denumerable. Indeed, if a one-to-one correspondence g : Z+ —*- is given,

then it may be extended to a one-to-one correspondence g* between Z ai d O

/: N — Z where
n 1 , 3, 5,

’ •
•

,

n = 0, 2, 4,
• •

•

.
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bv mapping 0 in Z onto 0 in O and —k in Z onto — (p/

q

) in Q if k is mapped

onto p/q by g. Then g* ° f, where / is defined above, is a one-to-one correspond-

ence between N and Q. A standard intuitive proof that Q+
is denumerable goes

as follows. Imagine that the members of Q/* are displayed (with repetitions) in

a quarter-plane as

1/1 1/2 1/3 1/4

2/1 2/2 2/3 2/4

3/1 3/2 3/3 3/4

4/1 4/2 4/3 4/4

Then an “enumeration” of these numbers is obtained by following the sequence

of expanding diagonals from the first row to the first column. That is, the in-

dicated display is arranged as

1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, • • •.

Here r/s is the [^(r + s — l)(r + s — 2) + r]th entry. The subsequence of the

above, which results upon deletion of those fractions which are equal to one

listed previously, is an “enumeration” of Q+. This demonstration is due to

Cantor, and we have put the word “enumeration” above in quotation marks

to indicate his usage of the word and not ours. By our definition of a function,

the foregoing arguments merely make plausible the statement that there exists

a one-to-one correspondence between Z+ and Q/\
4.3. Another of Cantor’s demonstrations purports to prove that the more

extensive set A of all real algebraic numbers is denumerable. By definition, this

is the set of all real roots of all polynomial equations

f(x) = a0x
n + a xx

n~ l + • •
• + an = 0, a0 ^ 0,

where each coefficient is an integer. Since the rational number r/s is a root of

the equation i* — r = 0, Q Cj A. Since 2 1/2
,
as a root of x 2 — 2 = 0, is a real

algebraic number which is known to be irrational, the inclusion is proper.

Cantor’s technique to show that A is denumerable follows the same pattern as

his above proof— to divide A into finite ordered subsets. For this there is no loss

of generality in assuming that > 1 in an equation of the above form, and we
shall do so. By the index i of the polynomial /(*) is meant the natural number

n + tfo T |tfi| + • •
• + |tfn|.

Since n > 1 and oq > 1
,
the index of any polynomial is at least 2. There is only

one polynomial of index 2, namely, .v. The polynomials of index 3 are x2
,
x + 1,

x — 1, 2.r. In general, the same index i is possessed by only a finite number of

polynomials because n < i and every |a*| < i. Combining this with the fact

that a given polynomial of index i has at most i real roots, we conclude that

only a finite number of real algebraic numbers occur as roots of all equations



2.4 Countable Sets 89

f(x) = 0, where f(x) has index i. By assigning to i the values 2, 3, 4,
• •

•, in

turn, and listing the new algebraic numbers obtained at each step in some
order, there results an enumeration of the distinct algebraic numbers. No alge-

braic number escapes being assigned to a natural number since every poly-

nomial has an index. Beginning terms in one such enumeration are

0, -1, 1, -2, 2, -3, 4(1 ~ 5 1/2
),
-2 1/2

, ~i • 2 1/2
,
•••.

As in the case ofQ+
,
this type of argument makes it plausible that A is denumer-

able.
r

I o put such matters on a firm footing, we need to prove some theorems.

THEOREM 4.1. A subset of a countable set is countable.

Proof. By definition, il A is countable and not denumerable, then
it is finite. If B C A, then B < A, so B is finite and B is a finite and
hence a countable set. Next, suppose that A is denumerable; let

/: N -* A be one-to-one and onto. If B C A, then the restriction off to

f~
l [B] is a one-to-one mapping on a subset of N onto B. If we can

show that f~
l [B] is countable, then a one-to-one mapping onto B

can be constructed by composition. Thus the proof reduces to showing
that an arbitrary subset C of N is countable.

To prove this, let g(0) be the first member of C. Proceeding induc-

tively, for n in N, let g(n + 1) be the least member of C different from

g(0), g(l), • •
•, g(n). If this is impossible for some n, then g is a func-

tion on {0, 1,
• •

*, n] onto C, and C is finite. Otherwise, according

to Theorem 2.4, there is a function g onto N into C such that for

each n in N, g{n) is the least number of C different from g( 0), ^(1), • • •,

g{n — 1). Clearly g is one-to-one. It remains to show that its range
is C. For this we point out that g(n) > n for all n; the proof is left as

an exercise. Consequently, each number c in Cis one of^(0), g(l), • • •,

g{c). Thus g is onto C.

THEOREM 4.2. If the domain of a function is countable, then its

range is also countable.

Proof. As in the case of the preceding theorem, the proposition now
at hand can be reduced to the case of a function whose domain is a

subset of N. So consider / : A —

B

where A Cl N and B is the range

of/. It is to be shown that B is countable. Let C be the set of all mem-
bers x of A such that \f y £ A and y < x, then f{x) ^ f(y). That is, C
consists of the least member of each of the sets f~

l
(b) for b in B. Then

f\C maps C onto B in a one-to-one manner. Since C is countable by
Theorem 4.1, so is B.
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THEOREM 4.3. N X N is denumerable.

Proof.] Eet /:NXN->-N, where f{m, n) = (m + n){m + n + 1)

+ 2m. Then / is one-to-one. For assume that f(m, n) = f(m, n); that is,

(m + n){m + n + 1) + 2m = (m + n)(m + n + 1) + 2m.

Setting a = m + n and x = m + n, this becomes

x(x + 1) + 2m = x(x + 1) + 2m.

Now exactly one of x < x, x = x
}
x > x holds. Assume that x < x.

By A 4 of Theorem 1.5, x = x d -\- \ for some d in N. After substi-

tution in the above equation and simplification, one finds that

x(x + 1) = x(x + 1) + 2x(d + 1) + (d
2 + 3d + 2),

and hence

x(x + 1) > x(x + 1) + 2x.

Since x = m + n implies that x > m, it follows that

x(x + 1) > + 1) T 2m,

and hence

x(x + 1) + 2m > x(x + 1) + 2m,

contrary to the assumption that f(m, n) = f(m, n). The assumption
that x < x leads to a similar contradiction. It follows that x = x,

and hence, in turn, m = m, n = n, and (m, n) = (m, n) as desired.

Let A be the range of /. Then f~
l maps A onto N X N in a one-to-

one manner. By Theorem 4.1, A is countable and hence, by Theo-
rem 4.2, N X N is countable. Since NX {0[ is a denumerable subset

of N X N, it follows that N X N is denumerable.

COROLLARY. If X is a denumerable set, then so is X X X.
More generally, il n is a natural number, then A"'

i+l
is denumerable.

The proof is left as an exercise.

f The proof is adapted from Rosser’s Logic for Mathematicians, p. 439. If we felt free to use

rational numbers in our proofs at this point we would set /

<

m,n)
= i (m -f n)(m -f n -f- 1

)

+ rn.

1 his is precisely the enumeration of N X N which results from arranging the elements in

a sequence by proceeding down the successive diagonals in the display

(0 ,
0) (0 ,

1 ) (0 ,
2) (0 ,

3 )
•••

( 1
,
0) ( 1 ,

1 ) ( 1
,
2 ) ( 1

, 3 )
•••

(2 ,
0 ) (2 ,

1 ) (2 ,
2 ) (2 ,

3 )

(3 ,
0 ) (3 ,

1 ) (3 ,
2

) (3 ,
3 )

...
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EXAMPLE

4.4. Using the preceding theorem, the denumerability of the positive

rationals can be established. Clearly, the function /, such that f(m ,
n )
=

(m + 1 )/{n + 1) maps N X N onto Qf. Hence Q+ is countable by Theorem

4.2. Since Qf has a denumerable subset, it is not finite, and hence it is de-

numerable.

THEOREM 4.4. If CL is a nonempty finite collection of denumer-

able sets, then Ud is denumerable. If CL is a nonempty finite collection

of countable sets, then UCL is countable.

Proof. The proof of the first statement is by weak induction on n

where n + 1 is the number of members of <2. For n — 0 the result is

obvious. Assume that A 0 U A\ U • •
• U A n is denumerable when each

Ai is denumerable and consider A 0 U Ai U • •
• U A n U An+i where

each Ai is denumerable. Since

A 0 U Ai U • •
• U A n+l = (4oU AiU • •

• U An) U A n+h

the induction step is established as soon as it is known that if A and B
are denumerable then so is A U B. We prove this now.

Assume that A and B are denumerable. Then there exists a function

/o mapping NX j 0 {
onto A in a one-to-one manner and a function /

1

mapping N X { 1 }
onto B in a one-to-one manner. Then / = /o U /i

maps NX {0,1} onto A U B. As a subset of N X N, N X { 0, 1 (
is

countable, and hence A U B is countable by Theorem 4.2. Since

A C A U B, the union is actually denumerable.

The proof of the second statement in the theorem is left as an

exercise.

There is a rather obvious possibility for extending the method used

above to prove that if A and B are denumerable then so is A U B. This

is to prove that the union over a denumerable collection of denumerable

sets is denumerable, and proceeds as follows. If a is a denumerable

collection of denumerable sets, then there exists a function g on N
onto Gt. Since, for each n in N, g(n) is denumerable, there exists a func-

tion fn on N X {«} onto g(n) for each n in N. Then / = U \fn\n C N
j

is a function on N X N onto Uct. Applying Theorem 4.3 and Theorem

4.2 we conclude that Ua is countable and, actually, denumerable.

But there is an argumentative point involved in this reasoning. To ex-

plain it we define F„, for n in N, as the set of all functions on N X j
n\

onto g(n). By hypothesis, Fn is nonempty for each n in N. Also, the Fn*
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are disjoint in pairs. Thus, in \fn \n £ NJ we have a set of functions with

exactly one from each member of the family \Fn \n G N
j . Now—and this

brings us to the heart of the matter

—

[fn \n G NJ is not a defined set

until fn is uniquely specified for each n. In general, there is no procedure

to attain uniqueness. In effect, what we did to arrive at {fn \n G NJ
was to assume that one can choose a unique member of each of the Fn s.

That is, we employed the (denumerable) axiom of choice, a principle

which, beginning in Section 8, we officially accept. In Section 8 the

principle and its ramifications are discussed in detail. It will involve us

in no circular arguments and there will incur certain advantages to

accept the above proof now. It is left as an exercise to supply the neces-

sary modifications for the version that we state next.

THEOREM 4.5. If is a countable collection of countable sets,

then Uct is countable.

Our principal reason for the acceptance of this theorem now is that

it implies the following result: Any set which can be formulated as the

union of a countable collection of countable sets is countable. Hence,
any set which can be divided into a denumerable collection of finite sets

is denumerable. For instance, the set of all real algebraic numbers is

denumerable. Again, the same is true of the collection of all finite subsets

of N. It should be at least mentioned, however, that the denumerability
of each of these sets can be established without using the axiom of choice.

Further examples of denumerable sets appear among the exercises for

this section.

To say that a set is uncountable means that it is infinite and non-
denumerable. We have already noted, as an application of Theorem 3.6,

that card <P(N) > fr$ 0 ,
so <P(N) is an uncountable set. We shall denote

card (P(N) by

N
According to the result stated in Example 1.8.7, <p(N) ~ 2H

,
the set of

all functions on N into {0, 1 j
or, in other words, the set of all infinite

sequences [an \n G N
}
where an — 0 or a n = 1 for each n. Consequently,

2- is an uncountable set. It is instructive to give a direct proof of this

fact by the classical Cantor ‘'diagonal” procedure. This is a process for

deriving, under the assumption that an enumeration of a set is given, a
member different from all those in the enumeration. This, of course,
renders it absurd that the given enumeration is one of all members of the
set. So assume that an enumeration of 2— is given. Since each member of
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2- is a sequence of 0’s and l’s, it is possible to indicate all members of

2- in a table of the form

000, 001, 002,

010, 011, 012,

020,

•

021,

•

022, Gij = 0 or 1

•

•

•

•

• • • •

Now consider the sequence {1 — ann \n C N}. Clearly this sequence is

in 2^ and is different from each of the above, since it differs from the

wth member in the «th place. Thus the enumeration is not exhaustive

and this is the desired contradiction. We state this result as our next

theorem and also provide a compact proof.

THEOREM 4.6. 2- is an uncountable set.

Proof. Assume to the contrary that there exists a one-to-one cor-

respondence / between N and 2-. Then a :N — {0, 1 j, where an =
1 — f(n ) n ,

is a member of 2-. But a ^ fin) for all n because a n ^ /(w) n .

Thus the enumeration does not exhaust 2-.

EXAMPLE

4.5. We assume as known the following property of the real number system.

Each real number x, 0 < at < 1, has an r-adic expansion
°
n ir~

i

,
where r is a

natural number greater than 1 and is an integer such that 0 < ni < r — 1

;

this expansion is unique unless * is a nonzero number of the form nr~\ in which

case there exists exactly two expansions, one finite and the other infinite. For

r = 2 we obtain the dyadic expansion of x:

x = .a\a<i • •
•

,
= 0 or 1.

This representation is unique if we agree to always use the infinite one when-

ever a choice exists. Defining C to be {x C RjO < x < 1}, it follows that

C C 2^ and hence C < X.

On the other hand, using the decimal expansion (r = 10) for the numbers of

C, the subset of C consisting of those numbers having _expansions composed

exclusively of 3’s and 4’s is similar to 2^. Thus X < C. By Theorem 3.1 it

follows that C =

Each finite cardinal n has an “immediate” successor, n + 1. This

suggests the question of whether N 0 also has this property. One candidate

for the immediate successor of Nu is ft. The question of whether N is the
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smallest cardinal greater than No is known as the continuum problem.

This terminology suggests that < simply orders any set of cardinals,

which we shall prove later, and that the answer is not as yet known,

which is a fact. Since X is the cardinal number ol R (this appears among

the exercises for this section), the problem may be formulated as the

query: Has every infinite subset of R either the cardinal number No or

N? It has been discovered that a number of theorems, some of them

important, can be based on the hypothesis that the answer to the con-

tinuum problem is in the affirmative. This conjecture is known as the

continuum hypothesis.

EXERCISES

4.1. Supply the missing part of the proof of Theorem 4.1 namely, that

g(ri) > n for all n.

4.2. Show explicitly that the proof of Theorem 4.2 can be reduced to that

of a function whose domain is a subset of N.

4.3. Prove the Corollary to Theorem 4.3.

4.4. Prove the second statement in Theorem 4.4.

4.5. Assuming that the union of a denumerable family of denumerable sets

is denumerable, prove Theorem 4.5.

4.6. Show that N can be represented as a union of a denumerable family of

denumerable disjoint sets.

4.7. Give an intuitive proof that any infinite set includes a denumerable

subset. From this deduce that (I) No is the least infinite cardinal, and (II) an

infinite set is similar to a proper subset of itself.

4.8. Show that any set of circles, no two of which overlap and all located

within a fixed circle in the plane, is countable.

4.9. Show that U”.i(z+)» (the set of all ordered ^-tuples of positive integers

for n = 1,2, •
• •) is denumerable by mapping (rh r2 ,

• •
*, rk) onto 2

n
• 3

r;

p
T

k
k

,
where pk is the kth prime.

4.10. Show that the set of all complex algebraic numbers (the roots of poly-

nomial equations having integral coefficients) is denumerable.

4.11. Show that the set of real numbers in the closed unit interval having a

decimal expansion which ends in an infinite sequence consisting solely of 9 s is

denumerable.

4.12. Prove that the set of all infinite sequences of natural numbers is un-

countable.

4.13. Prove that the set of all finite sequences of rational numbers is de-

numerable.

4.14. Show that if D is a denumerable set of points in a coordinate plane,

then D is the union of two sets Dx and Dy ,
let us say, such that the intersection
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of Dx and each line parallel to the x-axis is a finite set, and the intersection of

Dy and each line parallel to the jy-axis is also a finite set.

4.15. Prove that the set of all straight lines in a coordinate plane, each of

which passes through at least two distinct points with rational coordinates, is

denumerable.

4.16. Let A
,
B

,
and C be sets such that C C A, A p| B = 0, and B and C

arc denumerable. Prove that A U B ~ A.

4.17. Deduce from the preceding exercise that a set which contains a de-

numerable subset is similar to the set obtained by adding to it a denumerable set.

4.18. Deduce from the preceding result that if A is uncountable and B is

denumerable, then A — B is uncountable.

5. Cardinal Arithmetic

In this section we shall define the operations of addition, multiplica-

tion, and exponentiation for arbitrary cardinal numbers, and sketch

briefly the properties of each. It will be left to the reader to convince

himself that these definitions, when applied to the finite cardinals for

which we have found it possible to use the natural numbers as labels,

are in agreement with those for addition, multiplication, and exponentia-

tion of natural numbers. Thus the definitions given below are exten-

sions of those for natural numbers.

The sum, u -f- v, of the cardinal numbers u and v is A U B, where A

and B are disjoint representatives of u and v, respectively. (The required

disjointness can always be realized by replacing, if necessary, given

representatives A and B by A X {0} and B X {1}.) It is immediate

that the definition of the sum u -f- v is independent of the choice of

representatives for u and v. Moreover, it is an easy matter to verify the

properties stated in the following theorem.

THEOREM 5.1. For cardinal numbers u, v, and w,

(I) U + V = V + w,

(II) U + (b + w) = (u + v) + w,

(III) u < v implies u + w < v + w.

The proof is left as an exercise.

The product, uv
,
of the cardinals u and v is A X B, where A and B

are representatives of u and v, respectively. This definition is independent
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of the choice of representatives for u and v. Multiplication has the prop-
erties listed below.

THEOREM 5.2. For cardinal numbers u, v, and w
,

(I) uv = vu
,

(II) u(vw) = (uv)w,

(III) u < v implies uw < vw,

(IV) (u + v)w — uw + vw.

The proof is left as an exercise.

Properties of addition and multiplication of infinite cardinal numbers
lose much of their interest as a consequence of a theorem which will

be proved later, using the axiom of choice. This theorem asserts that

the sum or product of two cardinals, at least one of which is infinite,

is simply the greater of the two. Important instances of this result can
be proved without appeal to this axiom, however. Several results of

this kind follow.

EXAMPLES
5.1. If n is a finite cardinal, then

n + No = No

since n + No = card {0, 1, •••,«- 1} + card {n, n + 1,
• •

•} = N; also,

No + No = No

since card {1, 3, 5,
• • •} + card {0, 2, 4,

• • •} = N.

5 -2 - «No = No and NoNo = No

are true by virtue of Theorem 4.4 and Theorem 4.3. It is left as an exercise to

show that, similarly,

»N = NoN = N-

5.3. The relation

NN = N

may be established as follows. Using the open unit interval S\ as a representative
of N (see Exercise 3.4), the product NN may be represented as the set S2 of all

ordered pairs (x, y) of real numbers * and y, such that 0 < x, y < 1, that is, the
interior of the unit square in the plane. If x and y are written in decimal nota-
tion (where, to achieve uniqueness, the infinite expansion is chosen when there
is a choice), then the correspondence

(x, y) = (.XiX2 • •
•

, .yij>2 • *
•

)

.*1yiX2j>2 • • •



2.5 Cardinal Arithmetic 97

is a one-to-one mapping on 62 into .9j, so .92 < S\. But .9i < .92 by virtue of tlie

correspondence x — (x, ^). Thus the assertion follows.

Turning to the operation of exponentiation, if u and v arc cardinals,

the rth power of u
,
in symbols u v

,
is card AB where A and B are repre-

sentatives of u and v
9
respectively. The independence of this definition

upon the representatives for u and v is easily verified, as are the following

properties of exponentiation.

THEOREM 5.3. For cardinal numbers u, v
3
and w %

(I) u
vu w = uv+w

,

(II) (uv)
w = uwvw

,

(III) (u
v
)
w = uvw

,

(IV) u 1 = u and \
u = 1

,

(V) u < v implies wu < wv
,

(VI) u < v implies uw < v
w

.

Again the proof is left as an exercise.

Since (P(d) ^ 2 A and 2 A
is an abbreviation for {0, 1 }

A
,
it follows from

the definition of exponentiation that

(P(A) = 2J.

Thus, in particular, we may now write

N = 2"\

Also, if u is a cardinal and n is a finite cardinal, u n may be given its

familiar interpretation, since, from (I) and (IV) above,

un = u xu x • • -u
x = uu •

• u. (n factors)

In particular, recalling the definition of A n in Section 1.8,

yR = (A) n
.

EXAMPLE
5.4. The following are sample computations which may be carried out with

cardinal numbers, using exponentiation.

X2 = (2
H
d

2 = 22No = 2 *° = X.

= (2**°)**° = 2** = 2 Xu = X.

K and hence = ft.
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EXERCISES
Note: The results of Exercises 1.9.13-1.9.16 should be used whenever pos-

sible in the proofs required in these exercises.

5.1. Show that the definition of the sum u -f- v of two cardinals u and v is

independent of the representatives used.

5.2. Prove Theorem 5.1.

5.3. Prove Theorem 5.2.

5.4. Prove that n ft = = X for n C N and n ^ 0.

5.5. Show that the definition of u v for cardinals u and v is independent of the
representatives used.

5.6. Prove Theorem 5.3.

6. Order Types

The theory of similarity of sets and cardinal numbers ignores the
possible existence of an ordering relation on sets under consideration.
Indeed, in the language of Cantor, one arrives at the notion of a cardinal
number by an abstraction from the nature of the elements of sets and
from any existing ordering. Taking orderings into account, similar sets

may show much diversity. This contention is illustrated by the similar
sets N and Q with their familiar orderings

;
N has a least member and

Q, d°es not. Further, each member of N has a covering element while
no member ol Q has this property. The notion of ordinal similarity to
be discussed in this section is that ol similarity applied to simply ordered
sets (or chains) with the respective ordering relations being taken into
account. To ease the notation lor such sets, we shall suppress the symbol
for the ordering relation and speak of “the chain XT When explicit
mention of the ordering relation is called for, the symbol “<” will be
used. In particular, this symbol will designate possible different order-
ings in different contexts.

Two chains X and I are called ordinally similar, symbolized

r,

iff they are isomorphic ordered sets. This means (Section 1.11) that
there exists a one-to-one correspondence, say /, on X onto Y such that
both / and /“ 1 are order-preserving. In the case of chains, the condition
that /- 1 be order-preserving can be dropped, since it follows from the
others. Both an isomorphism and its inverse preserve < and, conversely,
a function that maps one chain onto another is an isomorphism if it

and its inverse preserves <. Ordinal similarity is an equivalence rela-
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lion on any collection of chains. An equivalence class under ordinal

similarity is called an order type. Order types of infinite sets will

generally be designated by lower case Greek letters. If the ordered set A

is a representative of the order type a
,
we shall say that A is of order

type a and sometimes write A for a. With regard to our definition of

an order type, remarks corresponding to those accompanying that of a

cardinal number are appropriate. What an order type is, is immaterial

so long as it is an object associated in common with those and only

those simply ordered sets which are ordinally similar. That is, ordinally

similar simply ordered sets, and only such, have the same order type:

A = B iff A = B.

Ordinal similarity implies similarity, and hence A = B implies A = B.

In particular, therefore, for finite chains A and B, A = B implies A = B.

Conversely, for finite chains A and /i, A = B implies that each is

similar to {0, 1, •••,« — 1 }
for some natural number n and, indeed,

is ordinally similar to {0, 1,
• •

*, n — 1 }
with its natural ordering. That

is, A = Id implies A = B, and hence two finite chains are of the same

order type iff they have the same cardinal number. Thus there is but

one order type corresponding to any set of n elements (n a natural

number) and this order type will also be designated by n.

As a trivial consequence of this, a given finite set determines a single

order type. This is not true of an infinite set, which admits of a simple

ordering; relative to various orderings there will correspond different

order types. For the purpose of illustrating this remark, as well as for

later examples, it is convenient to employ our notation (• •

•) for an

ordered w-tuple to indicate the ordering intended for a given set. For

example,

(0 ,
1

,
2

,
•••,«, • • •)

will serve to denote the natural number sequence. We denote the order

type of N with its natural ordering by co. As our first example of an

infinite set which, relative to different simple orderings, represents

different order types, we take N. The chains

(0, 1, 2,
• •

•, n, •
• •) and (•••,«, •

•
•, 2, 1, 0)

are not ordinally similar. Indeed, assume the contrary and let the

mapping / on the first onto the second demonstrate their ordinal sim-

ilarity. Then there exists k in the first set such that f(k) = 0 and hence,

since k + 1 > k (according to the first ordering), f(k + 1) must be

greater than 0 according to the second ordering. This is a contradiction,
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since 0 is the greatest element under the second ordering. Thus the

chains in question are not ordinally similar. Again,

(0, 1, 2, •••,??, •
• •) and (1, 3, 5,

• • •, 0, 2, 4,
• • •)

are not ordinally similar, since the contrary assumption implies the
existence in the first set of infinitely many elements less than k, the ele-

ment which maps onto 0 in the second set. This is a contradiction.

There is an arithmetic for order types—one that is more interesting

than that for cardinals. Tet A and B be disjoint sets of order types a
and fi. Then the sum, a + (3, of a and (3 is the order type of A U B

,

simply ordered as follows. Pairs in A and pairs in B are ordered accord-
ing to the simple orderings of A and B respectively, and each a in A
precedes each b in B. The product, <*/3, of a and is the order type of
A X B ordered by

(a, b ) < {a', b') iff b < b\ or b = b' and a < a'

.

It is left as an exercise to show that both of these definitions are inde-
pendent of the representatives used in their formulation. Although the
commutative law is valid for addition and multiplication of finite order
type, the same is not true in general. For example,

n + a) = (0, 1,
• •

•, n — 1) + (n, n -f 1,
• •

•) = (0, 1 ,

• •
•

,
n, •

•
• )
= co,

but

co + n = (n, n + 1,
• •

•) + (0,1, •••,«— 1)

= (n, n + 1,
* • •

, 0, 1 ,

• •
*, w — 1) ^ co,

since the representative of co -f- n has a greatest element but that of
n + co does not. Also,

co2 = (0, 1,
• •

•) X {a, b)

=
((0, a), (1, a), • •

•, (0, b), b), • •

•) = co + co

while

2^ = 0), (b, 0), (fl , 1), (/;, 1>,
• •

•) = co.

r

I hus co2 ^ 2 co, since the member (0, b) of the representative of co2 is

preceded by infinitely many elements unlike any member of the rep-
resentative of 2co.

The exercises for this section call for proofs of the associative laws
for both addition and multiplication of order type. The general associ-
ative law for each operation then follows by Theorem 2.2. The distribu-
tive law

<x {/3 + 7) = a/3 + ay
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and consequently its general form holds, but (/3 + y)a 5* (3a + 7a in

general, as shown by the example

(co + 1)2 = (co+l) + (o> + l) — co ~f- [(1 + co) ~b 1 ]

= co -j- (co + 1) = co2 + 1 ^ co2 -I
- 2.

We shall pursue the study of the arithmetic of arbitrary order types

no further. However, additional properties will be obtained for the

arithmetic of a restricted class of order types, namely, those which are

represented by well-ordered sets. These appear in the next section after

the derivation of some fundamental properties of such sets.

EXERCISES

6.1. Show that the definitions of a -f- (3 and a/3 for order types a and (3 are

independent of the representatives used.

6.2. Prove the associative law for addition and for multiplication of order

types.

6.3. Prove the distributive law a (ft + 7) = a/3 + ay for order types.

6.4. Supply the details of the example in the text which demonstrates that

(/3 + 7)0: 9̂ (3a + ya for all order types a, (3, 7.

6.5. Let A be a chain. A subset B of A—such that if b (T B, a (T A, and

a < b, then a G B—is a segment of A. Clearly, 0 and A are segments of A;

other segments are proper segments. Prove that if B and C are segments of A,

then one is a subset of the other.

6.6. Prove that a chain is of order type co iff it is infinite and every proper

segment is finite.

6.7. From a chain (A, <), a chain (A, < *) can be derived upon defining

a < * b iff b < a. If the original set has order type a
,
that of the new chain is

denoted by a*. For example, ( • •
•

, 2, 1 , 0) is of order type co*. Give two reasons,

each of which is adequate, to justify the assertion that co + co* ^ co* + co.

6.8. Prove that for any order types a and (3, (a + /3)* = (3* + a*.

6.9. Prove that for an order type a, a = a* iff a has the form (3 + /3* or

/3 + 1 + /3* for some order type (3.

6.10. Given 1 + a = a for an order type a iff a = co + (3 for some /3, prove

that ot —F 1 =aiffa! = /3 + co* for some (3.

6.1 1 . The order type of the set of rational numbers with its familiar order-

ing is designated by 77. It can be proved that a chain is of order type 77 iff it

(i) has neither a first nor a last element, (ii) is dense (that is, between each pair

of distinct elements there is a further element of the set), and (iii) is denumer-

able. Use this result to prove that

(a) if a and b are rational numbers with a < b, then the set of all rationals

between a and b has order type 77, and
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(b) if from an ordered set of order type rj there is removed a finite number of

elements, the remaining set has order type rj.

7. Well-ordered Sets and Ordinal Numbers

We recall that a well-ordered set is a partially ordered set such that

each nonempty subset has a least (or, first) element. Such a set is a

chain, among other things. To ensure that a relation p well-orders a

set A, it is sufficient that p (restricted to A) be antisymmetric and that

in each nonempty subset A i there exist an element a x such that a {pb for

every b £ A\. The proof is left as an exercise.

EXAMPLES
7.1. The empty set is well-ordered relative to any simple ordering. Every

subset of a well-ordered set is well-ordered relative to the same ordering relation

as for the original set.

7.2. It is left as an exercise to prove that a simply ordered set which is

ordinally similar to a well-ordered set is itself well-ordered. It follows that any
simply ordered set of order type to is well-ordered.

7.3. The simple ordering of the set of natural numbers given by
(1,3, 5,

- * 0, 2, 4, ..•) is a well-ordering. Thus, sets of order type to -j- to are

well-ordered.

7.4. The ordering of the set of positive rationals

(1/1, 2/1, 3/1, • •

•, 1/2, 3/2, 5/2, • •
•, 1/3, 2/3, 4/3, • • •>

is a well-ordering, since any nonempty subset contains fractions with a smallest

denominator, and among these is one fraction with smallest numerator. This
fraction is the least member of the subset. The order type of this ordered set is

found to be toto or to
2
,
following the conventional abbreviation. Thus, sets of

order type to
2 are well-ordered.

7.5. A set of order type to* (see Exercise 6.7) is not well-ordered since it has
no first element. It is left as an exercise to show that any infinite chain, no
infinite subset of which has a first element, is of order type to*.

7.6. Any simple ordering of a finite set is a well-ordering.

7.7. Well-ordered sets have many properties in common with the natural
number sequence. However, N has two properties not shared by well-ordered
sets in general, first, N has no last element—as does, for instance, the well-
ordered set (0, 1, 2, ••*,<»). Second, each element n of N, apart from its first

element, has an immediate predecessor n — 1 . This is not true of the element oo

in the set above; nor is it true of the element 0 in Example 7.3.

Both proofs and definitions by induction can be carried out in any
well-ordered set. Their respective formulations are entirely analogous
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to those of proofs and definitions by strong induction, given in Section 2.

The principle of proof by transfinite induction is as follows, where,

as earlier, P(x) stands for “the element * has the property PP
If P(xo), where x0 is the first element of the well-ordered set X, and

if for all z in X
,
P(y) for ally < z implies P(z), then P(x) for all x in X. f

A demonstration of this principle is simply a repetition of the argu-

ment used to substantiate the earlier statement of proof by strong in-

duction. This result is seldom used since, in practice, it is usually as

easy to carry out the proof of the principle for the case at hand as to

apply the principle.

In order to state the generalization to any well-ordered set of our

earlier result (Theorem 2.4) concerning definition by induction, it is

convenient to introduce two auxiliary concepts. If A is a well-ordered

set and if x G A, then [a G A\a < x\ is called the initial segment

determined by x; we shall denote it by A x . If B is an arbitrary nonempty

set, then by a sequence of type x in B we shall mean a function on A x

into B. Then the principle of definition by transfinite induction may
be stated as follows.

Let A be a well-ordered set having a0 as its least element, let B be a

set, and let c be a member of B. If h is a function whose range is included

in B and whose domain is the set $ of all sequences j of type x in B for

some x ^ tfo, then there exists exactly one function k: a -+ B such that

k(ao) = c and k(x) — h(k\Ax)

for each x in A other than a0 .

The proof is left as an exercise. It involves a slight modification of

that given for Theorem 2.4 because of the possible variance of an arbi-

trary well-ordered set A with N, noted in Example 7.7.

We turn our attention next to the derivation of structural features

of well-ordered sets. Three basic results (Theorems 7.2-7. 4) in this

category follow easily from the next theorem.

THEOREM 7.1. If A is a well-ordered set and / is an isomorphism

of A into itself, then a < f(a) for each a in A.

Proof. Assume that for some element a in A we have a > f(a). Let B
be the subset of A of all such elements and b its least member. Since

b > f(b) it follows that f(b) > f(J(b)). T hus f(b) C B, which is a

contradiction.

f The hypothesis that *o have property P is redundant, for it is that instance of the second

hypothesis which results upon choosing z as atq.
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THEOREM 7.2. A well-ordered set is not ordinally similar to any

of its initial segments.

Proof. Assume, to the contrary, that / is an isomorphism of the well-

ordered set A and one of its initial segments A x . Theorem 7.1 is

applicable and, consequently, x < /(*). Thus, /(*) A x ,
which is a

contradiction.

COROLLARY. IfA is a well-ordered set and ifA x — A y,
then a = y.

Proof. We assume that A x — A y along with x ^ y and derive a

contradiction. If x ^ y, then either x <. y or y < v. Suppose that

x < y. Then A x is an initial segment of the well-ordered set A y and
is ordinally similar to A y . This is a contradiction of Theorem 7.2.

The assumption that y < x yields a similar contradiction.

THEOREM 7.3. If A and B are ordinally similar well-ordered

sets, then there exists exactly one isomorphism between them.

Proof. Assume that g and h are isomorphisms of A onto B. Then

/ = g~ l
° h is an isomorphism of A onto itself. According to Theorem

7.1 this implies that a < (g
-1

° h)(a) for each a in A and, conse-

quently, that g(a) < h(a). Reversing the roles of g and h, we may
also conclude that h(a) < g(a) for all a in A. Hence, g = h.

THEOREM 7.4. If A and B are well-ordered sets, then exactly

one of the following hold : A is ordinally similar to B, A is ordinally

similar to an initial segment of B
,
B is ordinally similar to an initial

segment of A.

Proof. The conclusion is trivially true if A or B is empty. So as-

sume that neither set is empty and that neither is ordinally similar

to an initial segment of the other. We shall prove that, in these cir-

cumstances, A ~ B. I.et x be a member of A distinct from the least

element, a0 ,
of A, and let j be a sequence of type * in B. If the range

of j has an upper bound in B
,
let h(j) be its least upper bound, while

if the range of j has no upper bound, let h(j) = b0 ,
the least element

of B. Finally, let h(af) = b 0 . Then h is a function of the type described

in our formulation of the principle of definition by transfinite induc-

tion. Hence, there exists a function k on A into B such that k(af) = b 0

and k(x) = h(k\A x) lor each .v in A other than a0 . It is left as an exer-

cise to prove by transfinite induction that, for each .r in A, the func-

tion k maps the initial segment determined by * in A onto the initial
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segment determined by k(x) in B in a one-to-one fashion. Then it is

another easy exercise to conclude that h is an isomorphism of A
onto B.

COROLLARY. For well-ordered sets A and B
,
exactly one of

A = B, A < B, B < A holds. In other words, any two cardinal

numbers which have well-ordered sets as representatives are com-

parable.

The order type of a well-ordered set is called an ordinal number, or

simply an ordinal. Since a chain which is ordinally similar to a well-

ordered set is itself well-ordered, every representative of an ordinal is

well-ordered. Among the specific order types mentioned so far, some

may be classified as ordinals. This is true of the order types represented

by finite simply ordered sets, since such an ordering is automatically a

well-ordering. Thus the natural numbers may henceforth be called

ordinal numbers. The ordinals which are not natural numbers are

called transfinite ordinals. The one-to-one correspondence between

finite cardinal and ordinal numbers is due to the fact that, not only can

any finite set A be simply ordered, but that all orderings of A are similar

(and, indeed, well-orderings). In contrast, one cannot expect that in-

finite cardinals can serve as ordinals, because a given inhnite set which

can be well-ordered, can be at least simply ordered in a variety ol

ways and, consequently, determines a variety of order types, some ol

which may be different ordinals. The state of affairs is adequately illus-

trated by the set of natural numbers. Below are indicated seven simple

orderings of N, each having a different order type

:

(0 ,
1

,
2

,
3

,

...)

(•••,3, 2,1,0),

(1, 3, 5,
• •

•, 0, 2, 4,
• •

•),

(• •
•

, 4, 2, 0,
• •

•
, 5, 3, 1),

<1,3, 5, •••,4, 2, 0),

(...,5, 3,1,0, 2, 4, •••),

<0, 3, 6, 9, •••,1,4,7,10, •••,2, 5, 8,
• • •).

Of these, the first, third, and last determine ordinals (namely co, co2,

and w3 respectively). This suggests what is indeed the case: the infinite

ordinals are much more abundant than the infinite cardinals.

If a and (3 are ordinals, we shall say that a is less than /3, symbolized

ot < P,
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iff there exists a representative of a which is ordinally similar to an
initial segment of one for /3. Certainly this relation is transitive and, ac-

cording to Theorem 7.2, is irreflexive. Hence, the relation < partially

orders any set of ordinals. Theorem 7.4 yields the further result that

this partial ordering relation is actually a simple ordering; that is, any
two ordinals are comparable. The still stronger result, that the order-

ing relation for ordinals well-orders any set of ordinals, can be proved.

As a preliminary to the proof of this fundamental result we derive a

special case of it.

THEOREM 7.5. The set s(a) of all ordinals less than the ordinal a
is a well-ordered set of ordinal number a.

Proof. Let /3 £ s(a). Then there exist representatives A of a and
B oi (3 such that B ~ A x for some a in A. The element a is uniquely

determined by fi in view of the Corollary to Theorem 7.2. Hence, a

mapping f:s(a)-*-A is defined by setting /(/3) = a. Clearly / is

one-to-one. Moreover, / is onto A, since given y in A, if we set f3
= A y ,

then £ s(a) and f(/3) = y. Finally, it is clear that / is order-pre-

serving. Thus, we have proved that s(a) ~ A
;
since A is well-ordered,

so is s(a) and s(a) = A = a.

This result gives a certain “normal” representation for ordinal num-
bers

;
whenever it is permissible to replace a set A by one that is ordinally

similar to it, we may use s(a) if a = A.

THEOREM 7.6. Any set of ordinals is well-ordered.

Proof. It must be shown that each nonempty set A of ordinals has
a least member. Let a £ A. If a is not the least member of A, then
A £ s{a) 9* 0. Then A £ s(a), as a subset of j(qj), is well-ordered,

and thus has a first member (3. If 5 £ A, then <5 < /3 implies 8 < a
and, hence, 8 £ A H s(a), which contradicts the choice of /3. As
members of the simply ordered set A, (3 and 8 are comparable, so we
may conclude that (3 < 8 for all 8 in A. Thus (3 is the least member
of A.

I HEOREM 7.7. If A is any set of ordinals, then there exist ordinals

greater than any ordinal of A. Indeed, there exists a smallest such
ordinal.

Proof. Let A' = A U U I'KoOl** G AJ. By Theorem 7.6, A' is well-
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ordered. If a C A, s(a) C A' and s(a) = A'a . Hence a = s(a) < A'.

Thus a < A' for each a in A.

Since ordinal numbers are order types, the sum, a + /3, of ordinals

a and (3 is defined. It is left as an exercise to show that this sum is an

ordinal number. That the product, a/3, of a and fi as order types is an

ordinal is proved as follows. II either of the ordinals ex and (3 is equal to

zero, then so is a($ and the proof is complete. So assume that a > 0

and (3 > 0. Let A and B be well-ordered sets such that A = a and

B = |8. Then, by definition, cx(3 = A X B if in A X B we define

(a, b) < (a, b') iff b < b' or b = b' and a < a'. It suffices to prove that

A X B is well-ordered by this relation. Let C be a nonempty subset ol

A X B and let (a\, bi) be some member of C. Let bo be the least member

of \b C B\(ah b)CC] and, in turn, let a0 be the least member of

[a C A\(a, b 0) £ C \ . It is an easy exercise to prove that (a 0 , ^o) is the

least element of C, and this completes the proof.

Our first result relating addition and ordering of ordinals is

THEOREM 7.8. If a and /3 are ordinals and f3 > 0, then a +
13 > OL.

Proof. Let C be a well-ordered set of ordinal numbers a + Then

C = A U B where A = a, B = (3, and since MO. Hence

A is a segment of C. It follows that C > A
;
that is

,
ex. (3 > oi.

The above result implies that a + 1 > ol for every ordinal a. It is

left as an exercise to prove further that <x + 1 is the successor of a\

that is, there is no ordinal £ such that a<£<a + LWe have already

seen, in contrast to this, that there are ordinals having no predecessor.

Ordinals having a predecessor are ordinal numbers of the first kind

and those having no predecessor are ordinal numbers of the second

kind. For example, 5, w + 2, and w2 + 3 are ordinals ol the first kind

while co, co2, and co
2 are ordinals of the second kind.

THEOREM 7.9. Let a and (3 be ordinals with a < (3. 1 hen there

exists exactly one ordinal 7 > 0 such that a + 7 = /3.

Proof. Let A and B be well-ordered sets with A = a and B = (3.

The assumption that a < /3 implies that A ~ Bx C B. Let C = B — Bx

and 7 = C. Then Bx U C = B and Bx H C = 0, so a + 7 = /3.

To prove the uniqueness, suppose that both a + 71 = /3 and

<x T 72 =
(3, where 71 9^ 72- Let us say that 71 < 72. 1 hen there
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exists a 8 > 0 such that 72 = 71 + <5. Hence (3 = a A~ y* = a -\-

(7i + 5) = (a + 7O + 8 = (3 + 5, which is a contradiction of The-
orem 7.8.

EXAMPLES
7.8. According to Theorem 7.9, the equation « + £ = (3 has a unique solu-

tion for given ordinals a and (3 with a < (3. This solution is denoted by (3 — a.
On the other hand, the equation £ + a = (3 may not have any solution for
given a and (3 with a < (3. An example is £ T 1 = co.

7.9. As with order type generally, addition of ordinals is not a commutative
operation. Indeed, it may be, for ordinals a and (3, that a + (3 < (3 + a or that
a + (3 > p + a. For example, co > 1 and 1 + co < co + 1 while co + 2 > co + 1

and (co + 1) + (w + 2) > (co + 2) -f- (co + 1).

7.10. According to Theorem 7.5, if the well-ordered set A is of order type
then A ~ s(a), the set of ordinals less than a. Hence this set of ordinals may be
used to index the members of A. That is, we may describe A as t

J £ <
where < a v iff £ < 77. In this connection it is desirable to note the first mem-
bers of a set s(a) for sufficiently large a. First come the natural numbers; their
ordeiing, as dictated by their role as ordinals, coincides with that in their
original role as members of the natural number sequence. After the set of all
finite ordinals, occurs the first transfinite ordinal. According to Theorem 7 5 it

is the order type of <0, 1, 2,
• •

•>, that is, co. There follows its successor co + 1,
then co + 2, and so on. So far we then have

0, 1, 2,
• •

•, co, co + 1, co + 2,
• • •.

This sequence has order type co + co = co2, so the number following these is co2
Continuing in this fashion we arrive at the sequence

0
,

1
,
2

,

• •
•

,
co, co + 1 ,

CO + 2,

oon, con -f- 1 ,

• • •

}

’ *

'» "2, co2 + 1,
• •

*, co3, co3 T 1 ,

• *
’

j

co
2
,
co

2 + 1,
• •

•, co
2 + co,

• •
•, co

2 + con1 + w0 ,
•.

This sequence consists of two sequences of order type co
2 in juxtaposition and

hence, as a whole, it represents the ordinal co
2
2, which is then the next ordinal

Later ordinals include all those of the form

Nnk + co
A x

Uk-\ +•••-}- ami -f- /?0 ,

with finite k and w’s. Still greater ordinals can be secured by exponentiation, an
operation that we have not defined.

7.11.

Let cp be a given transfinite ordinal. The sequence {m|£ < v?} of or-
dinals is increasing i(T whenever | < f < < „f . Let X be the least ordinal
greater than every a (Theorem 7.7). Suppose that <p is an ordinal of the second
kind (that is, the sequence has no last term) and let n be any ordinal less than X.
hen n cannot be greater than every a; thus there exists an index v such that

U < oc„. That is,

M < at < X for v < £ <
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In other words, for every ordinal /x < X, all terms of (cq|£ < <p] ,
from some

point on, are between jx and X. Thus, X has a property analogous to that ol the

limit of an increasing sequence of real numbers. Thus it is natural to call X the

limit of the increasing sequence {cq|£ < <f) and to write X = lim cq. The num-
t <«?

ber X is obviously of the second kind. Conversely, for any ordinal X of the second

kind we have X = lim £. As such, ordinals of the second kind are often called

limit ordinals.

Because of the comparability theorem for ordinals, the properties of

addition and multiplication of ordinals are more extensive than for

order type generally. Some of these are collected in the next theorem;

proofs are left as exercises.

THEOREM 7.10. For ordinal numbers a
, /3 ,

and 7 ,

(I) a < (3 implies 7 + a < 7 + (3 and conversely;

(II) a < (3 implies a + 7 < /3 + 7 ;
conversely, a + 7 < P + 7

implies a < (3;

(III) a < (3 and 7 > 0 imply 70: < 7 /
3

;
conversely, 70; < 7/3

implies a < /3;

(IV) a < (3 implies 0:7 < (3y ;
conversely cry < (3y implies a < 7 ;

(V) 7 + a = 7 + (3 implies a =
/3;

(VI) 7a = 7/3 and 7 > 0 imply a =
/3.

The equality signs in (II) and (IV) cannot be dropped; for example,

1 < 2 but 1 + co = 2 -f co and lco = 2co. The equality 1 + co = 2 + co

also illustrates that (V) has no right-hand analogue. There is a right-

hand analogue of (VI)—if a, (3, and 7 are ordinal numbers such that

exy — (3y and 7 is a number of the first kind, then a = (3. A prool is

suggested in an exercise.

In Example 7.8 we mentioned subtraction for ordinals. The following

result is basic in formulating the concept and properties of division.

However, we shall not pursue this matter.

THEOREM 7.11. If a and /3 are ordinals and /3 > 0, then a has

a unique representation in the form

a =
/3£ + p where 0 < p < /3.

Proof. Let /3 > 0. Then /3 > 1 and hence (3a > \a = a. II (3a = a,

this is a representation of the desired kind. Otherwise (3a > a. Now,

if a, (3, and 7 are ordinals with (3a > 7 ,
then 7 has a unique repre-
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scntation in the form y =
-f- (3\ where oq < a and (3i < (3. The

proof is left to the reader. We apply this result with a as 7 to obtain
a — Pa x + pi where Pi < p. Again we have a representation of the
type d( sii ed. The proof of uniqueness is left as an exercise.

EXAMPLES
7.12. Ordinal arithmetic presents a wide assortment of oddities. There follows

a sketchy sampling.

(a) For n > 1, = (co» + „)* - (w »)«. However, it can be shown that u>

cannot be represented as a difference of squares of ordinals.
(b) The ordinal or has infinitely many representations as a difference of

squares: co
2 = [«(« + l)] 2 - (co/z)

2 for n = 1,2, —

.

(c) For every n > 1, (co + l)"co" is an wth power of an ordinal, namely co
2

.

On the other hand, co"(co + 1)” has no such representation. Indeed, since
co

n
(co + 1)" = CO

2 " + CO
2 " 1 + •••-}- co",

(co
2 4- co)" = CO

2 " + CO
2 "' 1 < co"(co + 1)" < CO

2 " + co
2 "-1 + • • •

+ CO + 1 = (co
2 + co + 1)".

That is, co"(co + 1)" lies between the nth powers of two successive ordinals
and hence cannot be an wth Dower.

(d) If a = co
3 " + co"” 1 and (3 = co

2 " + co for n > 1, then a 2 = /3
3

;
yet there

is no ordinal y such that a = 7 3 and P = y 2
.

7.13. With p — 2 in Theorem 7.11 we may conclude that every ordinal can
be represented either as 2* or 2* + 1, that is, is either even or odd. For example
(co + 1)2 = 2(co2) + 1 is odd!
Again, with p = co, we may conclude from Theorem 7.11 that any ordinal

a can be represented as a = co£ + p where p is finite. If p > 0, then a is a num-
ber of the first kind since a = co* + (p - 1) + 1 . It follows that every ordinal
o the second kind is of the form co£. The converse statement is easily established
yielding a characterization of ordinals of the second kind as those having oi as
a left-hand divisor.

EXERCISES

.

7,1 ' Prove that if a relation p (restricted to a set A) is antisymmetric and if
in each nonempty subset A x of A there exists an element a x such that alPb for
every b GL A x ,

then p well-orders A.
7.2. Prove that a simply ordered set which is ordinallv similar to a well-

ordered set is well-ordered.

7.3. Show that any infinite chain, no infinite subset of which has a first ele-
ment, is of order type co*.

7.4. Establish the principle of definition by transfinite induction given in
the text.
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7.5. Supply the missing details in the proof of Theorem 7.4.

7.6. In the text we inferred from Theorem 7.4 that any two ordinals are

comparable. Give an independent proof of comparability, using Theorem 7.5.

7.7. Prove that the sum of two ordinals is an ordinal.

7.8. Complete the proof of the assertion that the product of two ordinals is

an ordinal.

7.9. Find how many different values are assumed by the sum of the ordinals

1, 2, 3, 4, and w in all possible arrangements.

7.10. Determine an arrangement of co, u>2 + 1, co3, co5, and a

r

for which their

sum is co
2 + col 1 + 1 .

7.11. Prove Theorem 7.10 by first proving the forward implications in

(I)-(IV).

7.12. Prove that if a and (3 are ordinals with a > /3, then a -f- n > (3 T n for

n = 1
, 2,

• • •
.

7.13. Prove that 1 + a = a for an ordinal a iff a > co.

7.14. Find ordinals a and (3 such that (a — (3) + (3 9̂ a.

7.15. Show that if a, (3, 7 ,
and 5 are ordinals such that a > 0 and y > 5,

then ay > (35 . Use this to prove that if a > /3 and 7 is an ordinal of the first

kind, then ay > (3y. Then show that if 0:7 = (3y and 7 is of the first kind,

a = (3. This is a right-hand analogue of (VI) in Theorem 7.10.

7.16. Show that (to
3 + co)

5 = (to
5 + to

3
)
3

.

7.17. Suppose that a and are positive ordinals with a -f /3 = to. What

is a(3?

7.18. Give an example of two ordinals a and (3 such that a (3 = (3 T a

but a 2
-f (3

2 Z (3
2 + a2

.

7.19. Prove that for ordinals a and /3, a/3 = (3a implies a 2
/3

2 = (3
2a 2

.

7.20. Prove that an ordinal /3 is of the second kind iff n(3 = for n = 1 , 2,
• • •

.

7.21. Prove that the product of two nonzero ordinals is a number of the first

kind iff both factors are of the first kind.

7.22. Complete the proof of Theorem 7.11.

8. The Axiom of Choice, the Well-ordering Theorem,

and Zorn’s Lemma

A theorem to the effect that all sets occurring in mathematics can be

well-ordered would be extremely valuable. Then, for instance, defini-

tions and proofs could be formulated by induction for all sets, just as

for the natural number sequence. In 1904, Zermelo gave a demonstra-

tion of the well-ordering theorem which asserts that every set can be

well-ordered. Soon after its publication it was pointed out by E. Borel,

that the proof employed a property of sets which may be deduced easily

from the well-ordering theorem, thereby making the two properties
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equivalent. The property assumed by Zermelo has become known as

the axiom of choice. One of its formulations is the following.

(ACi) If a is a disjoint collection of nonempty sets, then there exists

a set B such that for each A in Ct, B H A is a unit set.

In other words, if Ct is a disjoint collection ol nonempty sets, then

there exists a set which has a single member in common with each

member of Ct. Since a disjoint collection ol nonempty sets is a paitition

of the union of the collection, (ACi) is clearly equivalent to. Foi each

partition a of a set U there exists a subset of U consisting of exactly one

member of each member of Ct. Such a set is called a representative set

for the partition as well as for the associated equivalence relation. The

restriction in (ACi) to disjoint collections may be circumvented by formu-

lating it for families of sets. This version reads: II {A,} is a family of

nonempty sets indexed by a nonempty set /, then there exists a family

{*;} with i C I such that G Ai for each i G I-

Intuitively, one thinks of arriving at a set B ol the type mentioned in

(ACi) by a constructive process; one chooses, in turn, an x from each

of the sets A; this accounts for the presence of the word ‘'choice” in the

name. That it should be named an axiom is simply an indication that

no one has been able to infer the existence of such a set, in general

(other than from an equivalent property of sets).

The axiom of choice has been the subject of serious controversy among

mathematicians. Some reject it totally on such grounds as the utter

impossibility of making infinitely many selections (needless to say, it is

only the case where Ct is infinite that the axiom injects anything new) or,

on the lack of precise definition of a representative set. Others accept

the axiom for the case where a is denumerable and reject it in the

uncountable case. Many accept it without any reservation. Ol those to

whom the plausibility of (ACi) is indisputable, some revise their attitude

when propositions which can be proved equivalent are encountered.

Several equivalent forms, which are in the nature of more useful work-

ing forms, are derived in this section.

There is another category of propositions equivalent to the axiom ol

choice which might be catalogued as illuminating. For example, in

Section 10 it will be shown that it is equivalent to the assertion that the

ordering of cardinal numbers, discussed in Section 3, is a simple order-

ing. This is not a useful version of the choice axiom, but rather serves to

point out that someone who “believes” that cardinals should be simply

ordered must also “believe” the axiom of choice. Thus, such equivalent
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formulations serve primarily to sharpen the delineation between the two

schools of thought. Because of the diversity of opinion about the axiom of

choice, it is common practice for some present-day authors to point out

the occurrences of their usages of it. In cases where a new result rests on

some classical mathematics this may amount to merely superficial

honesty, since in much of classical mathematics the axiom of choice has

slipped into proofs without being noticed, and no one has ever combed
through all of it and sorted out the tainted theorems from the untainted.

To the best of our knowledge the axiom of choice has been employed

in the foregoing only in the proof of Theorem 4.4. Henceforth, we accept

the axiom of choice as a valid principle of intuitive set theory and use

it without reservation. In this matter we are guided by Cantor, who
tacitly accepted the axiom. For intuitive set theory it has the same status

as the principles of extension and abstraction (Section 1 .2) ;
collectively,

these three assumptions serve as a basis for the theory.

Turning to the derivation of propositions which are equivalent to

the axiom of choice, we present first two variations which are so closely

related to (ACi) that they are also known by the same name.

(AC2) For every set X there exists a function / on the collection,

(P(X) — j0}, of nonempty subsets of X such that f(A) £ A.

Such a function is a choice function for X. Thus, (AC2) asserts that

every set has a choice function.

(AC 3) If [Ai] is a family of nonempty sets indexed by a nonempty

set /, then X is nonempty.

The equivalence of (ACi)-(AC 3) is easily established. That of (ACi)

and (AC 3) follows directly from the formulation of (ACi) for a family of

sets and the definition of cartesian product. Further, it is clear that

(ACi) implies (AC2). To complete the proof of the equivalence of

(ACi)-(AC3) it is sufficient to prove that (AC2 ) implies (ACi). The

reader can do this easily.

To bridge the gap between the axiom of choice and other useful

equivalent forms, we prove a fixed point theorem due to N. Bourbaki

(1939). Before tackling its proof, as well as the statement and proof of

the theorem that follows it, the reader would do well to refresh his

memory with regard to the definitions given at the end of Section 1.11.

THEOREM 8.1. Let E be a nonempty partially ordered set such

that every chain included in E has a least upper bound in E. If
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f:E-*-E has the property that /( x) > * for all * in E
,
then there

exists at least one x in E such that f(x) = x.

Proof. Let a be a fixed element of E. A subset A of E will be called

admissible (relative to a) if it has the following properties.

(1) a G A.

(2) f(A) C A.

(3) If F is a chain included in A, then lub F G A.

Clearly E is admissible. Moreover, it is easily verified that Af,

the intersection of all admissible subsets, is admissible. Thus M is the

smallest admissible subset. It follows that if a subset A/o of M can

be shown to be admissible, then Af0 = M. This technique is used to

derive each of three properties of M (designated by Roman numer-

als), from which the theorem follows easily.

(I) The element a is the first element of M. It is sufficient to prove

that the subset A — {* G M\x > a] of M is admissible. For this we
verify, in turn, properties (1), (2), and (3) of an admissible set.

(1)

' Since a G M and a > a, a G A.

(2)

'

Let x C A; to prove f(x) G A. Now * G A implies * G M,
and hence, f(x) G M by (2). Also, x C A implies x > a and

this, with f(x) > x
,
yields f(x) > a. Thus f(x) G A.

(3)

' Let w = lub F, where F is a chain included in A. Since

A C A/, we have F C M and hence w G M by property (3)

of admissible sets. Also, F C A implies x > a for all x G F, and

hence w > a.

Thus A is admissible, A — A/, and (I) is proved.

Before continuing, we make a definition. An element x of E is

said to have property P
,
in symbols P(x), if y C M and y < ,v implies

f(y) < x.

(II) If x G M and P(x), then for each z G M either z < .y or

z > fix). It is sufficient to prove that the subset B = [z C M\z < *

or z > /(v)

}

is admissible.

(1)

" a G M and a < x [indeed for each x C M by (I)], so a C B.

(2)

" Let z G B\ to show that /(z) G /L As in (2)', f(z) G A/. Also,

z EL B implies z < .v or z > /(.v) by definition. If ^ = a:, then
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f(z) = fix) so that f{z) > f{x) and hence f(z) £ B. If z < x,

then since Pix), fiz) < x and fiz) £ B. Finally, if z > /(*),

then /(z) > z > fix) and, again, /(z) C
(3)" Let w = lub F

,
where F is a chain included in F. As in (3)',

w £ Af. Also, for each z £ F either z < x or z > fix). If the

first alternative holds for all z £ F, then x is an upper bound

for F, and hence w < x, so w £ B. Otherwise, there exists a

z £ F such that z > fix). Then w > z > fix) and, again,

w £ B.

Thus B is admissible, B = M, and (II) is proved.

(Ill) Every element of M has property P. It is sufficient to prove

that the subset C = {x £ M\P(x)
}

is admissible.

(1)

'" a £ M and is, moreover, the least element of M. Thus, for

no z of M is z < a. Hence, a satisfies P vacuously and, conse-

quently, is in C.

(2)

" / Let x d C; to show that fix) £ C. As in (2)', fix) £ M. It

remains to prove that fix) has property P, that is, y £ M
and y < fix)

imply fiy) < fix). Applying (II) to * we have

either y < x or y > fix). The second possibility cannot hold,

for y > fix) with y < fix) is impossible. Thus y < x. If

y < x, then fiy) < x, using property P for x. This, with

x < fix), implies fiy) < fix), as required. Also it is immedi-

ate that if y = x the same conclusion holds. Thus fix) £ C.

(3)

'" Let w = lub F, where F is a chain included in C. As in (3)',

w £ M. Thus it remains to show that Piw), that is, y £ M
and y < w imply fiy) < w. For this we show first that for

such a y there exists y\ £ F such that y < y\. Indeed, if no

such yi £ F exists, then by (II) [Note: yi £ F implies that

Piyi) },y> fiyi) > yi for all jyi £ F. Theny is an upper bound

for F and hence, y > w, which contradicts the assumption

that y < w. Thus a y\ £ F with y < yi exists. If y < y i, then

by property P for y\, fiy) < yi < w, so that fiy) < w as re-

quired. If y = yh then Piy) and hence, by (II), either w < y

or fiy) < w. The first possibility is excluded and hence, again,

/(y) < w.

Thus C is admissible, C = M, and (III) is proved.

Now for the coup de grace. From (II) and (III) it follows that if *,
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y G M, then either y < x or y > f(x) > x, so M is simply ordered.

Let x0 = lub M. Since M is admissible, x0 G M and, moreover,

f(xo) G M. Thus f(xo) < ,v0 . But x0 < f(x0) by hypothesis. It follows

that /(.Vo) = x0 .

THEOREM 8.2. The following statements arc equivalent to one

another.

(I) Zcrmelo’s axiom of choice: For every set X there exists a

function / on the collection of nonempty subsets A of X into

X, such that for each A, /(A) G A.

(II) HausdorfTs maximal principle: Every partially ordered set

includes a maximal chain, that is, a chain which is not a

proper subset of any other chain.

(III) Zorn’s lemma: Every nonempty partially ordered set in

which each chain has an upper bound contains a maximal

element.

(IV) Every set can be well-ordered.

Proof. (I) implies (II). Let (P, <) be a partially ordered set and as-

sume that (II) is false for it. This means, if a is the family of all sub-

sets X of P which are simply ordered by < ,
that for each X in a there

exists T in a with X G Y. That is,

ax =
{
Y G a\X G Y]

is nonempty for each X in a. By (I) there exists a function / on

{ax\X G a} into a such that /(ax) G ax- Thus

g: a a with g(A
r

) = /(ax)

has the property that X G g(A") for all Ar
in a. As such, the partially

ordered set (a, C), together with the function g, satisfies the hypotheses

of Theorem 8.1
.
(It is left as an exercise to show that if a* is a subset

of a which is simply ordered by C, then Ua* = lub a*). But

X G g(X) for all X in a is a contradiction of the conclusion of The-

orem 8.1. Thus, since (I) and the denial of (II) lead to a contradic-

tion, (I) does imply (II).

(II) implies (III). Assume that the partially ordered set (P, <)

satisfies the hypothesis of (III). By (II), there exists a maximal sub-

set A of P
,
simply ordered by <. Let a be an upper bound lor A.

Then a is a maximal element for P. Indeed, assume that a < x lor

some x in P. Then A U (*} is a simply ordered subset which properly

includes A. This is a contradiction.
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(III) implies (IV). Let X be any set. We consider ordered pairs

(A, p) where A C X and p simply orders A. Let g be the set ol all

(A, p) such that p well-orders A. If (Ai, pi) and (A 2 , pi) are members

of §, define (Ah pi) < (A 2 , p2> iff

(a) A !
C ^ 2 ,

(b) pi C p2 ,
and

(c) if C <22 C A 2 ,
and a2 0 di, then 0i, tf 2) C p2 -

In other words, we require that A\ be a subset of /L, that the ordering

of A 2 be an extension of that of A h and that the elements of A 2 ,

not in A h be greater than the elements of A h relative to the ordering

of A 2 . It is immediate that < partially orders §.

We prove next that (§, <) satisfies the hypothesis of (III); that is,

a chain included in g has an upper bound in g. For a chain 6C§,

we propose as an upper bound, (A*, p*), where

A* = U {A\(A, p) C ej and p* = \J {p\(A, p) C &}

•

Clearly the only question is whether (A*, p*) C g. To show this we

prove that (A*, p*) satisfies the conditions stated at the beginning ol

Section 7. The proof that p* is antisymmetric is left as an exercise.

It remains to prove that if B is a nonempty subset of A*, then there

exists b0 C B such that (bo, b) C P* for each b C B. For such a B

there exists (A h pi) C C such that B H A i ^ 0. In turn, there exists

bo C B Pi Ai such that (b 0 ,
b) C Pi for all b £ B Pi A Y . More generally,

for each b in B there exists p with (A, p< C 6 such that \bo, b) G p.

Indeed, given b in B, there exists (A, p)C6 with b G A. If A Q Ah

then (bo, b) C Pi- Otherwise, A D A\ and, hence, p D pi. I hen

(bo, b) C P and so (£ 0 , C P*, as desired.

Since the hypothesis of (III) is satisfied, we may infer the existence

of a maximal element {A, p) of §. The proof will be complete if it

can be shown that A = X. I o this end assume the contrary, that

x C X — A. We now adjoin * to A and extend the ordering p of A

to one of A U {*} by defining * to be greater than each element of A.

This yields the ordered pair (A', p), where A' = A U (*} and

p' = p (j j
(a, x)\a C A } . Then p' well-orders A' and hence, (A', p) C §•

Moreover, (A, p) < (A', p'), which is a contradiction, since (A, p) is

a maximal element. Hence, A = X.

(IV) implies (I). Let X be any set. By (IV), X can be well-ordered,

so we assume that this is given. If A is a nonempty subset ol A, let

f(A) be the first element of A. Then / is a choice function for X.
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In mathematics, labeling a proposition with the name of an individual

usually indicates his priority to that result. This is not the case in the

assignment of names to be found in the literature to the above equivalent

formulations of the axiom of choice or in the extensive variety of other

formulations which have proved to be useful. We have made what is a

relatively common assignment of names.

It should be mentioned that prior to the emergence of a variety of

statements equivalent to the well-ordering theorem, transfinite induction

was a standard proof technique. This has now given way to the use of

some form of Zorn’s lemma or a maximal principle.! Usually the modern

procedure yields a shorter proof.

EXERCISES

8.1. Establish the axiom of choice in the form (AC3) for finite collections of

sets by proving, by induction, that if Ai X A2 X • •
• X A n is empty, then at

least one Ai is empty.

8.2. The following is known as Hilbert’s axiom. If (? is the set of all proper-

ties P such that there exists at least one object having property P, then there

exists a function e whose domain is (P and such that e(P) is an object having

property P. Prove that this axiom is equivalent to the axiom of choice (AC2).

8.3. Following A. Mostowski, let us denote by [n] for n = 1,2, * * * the follow-

ing case of (ACi) : For every disjoint collection d of ^-element sets A, there exists

a set B such that, for each A in (2, B (~) A has exactly one member. Without

using the axiom of choice, prove that [2] implies [4].

8.4. Referring to the proof that (I) implies (II) in Theorem 8.2, show that

Ua* = lub <2*.

8.5. In the proof that (III) implies (IV) in Theorem 8.2, show that p* is

antisymmetric.

8.6. Demonstrate the equivalence of the axiom of choice with the following

statement: If A and B are nonempty sets and p is a relation with domain A
and range B, then there exists a function /: A B such that / Cl p.

8.7. Show that if p partially orders A, then there exists a simple ordering

relation p such that p E) p and p simply orders A. (Hint: Consider the collec-

tion of partial ordering relations which include p and use Zorn's lemma.)

9. Further Properties of Cardinal Numbers

With the axiom ol choice available, some extensions and some simplifi-

cations of properties of infinite cardinals are at hand. It will be recalled

f Of course, Zorn’s lemma is not a substitute for transfinite induction in cases of justifying

definitions.



2.9 Furthei Properties of Cardinal Numbers 119

that for reasons of expediency one application has already been made

—

to the proof of Theorem 4.4. Another occurs in our next result.

THEOREM 9.1. Any infinite set includes a subset of cardinal

number Xo-

Proof. Let X be an infinite set. It is sufficient to exhibit a func-

tion g on N into X which is one-to-one. Let / be a choice function

for X. Then we define g(0) = f(X) and, proceeding inductively, let

g(n T 1) = f(X — |g(0), •••, g(n) }). This is possible for each n, since

otherwise X would be finite, which is contrary to assumption. Ac-

cording to Theorem 2.4 there exists a function g on N into X such

that, for each n in N, g(n) = f(X — jg(0),
• • m

,
g(n — 1)}). Now g is

one-to-one. For consider r and ^ in N with r ^ s. It is no loss of

generality to assume that r < s and we do so. Then g(r) X —

|g(0),
• • *,g(r), •

•
- ,g(s — 1)} and hence g(s), as a member of this

set, is necessarily distinct from g(r).

COROLLARY 1. If A is an infinite set then A > Xo-

The proof is left as an exercise.

Combining Corollary 1 with Theorem 3.5, Xu is established as the

least infinite cardinal. Theorem 9.1 has another interesting consequence,

which places in sharp relief a basic difference between finite and infinite

sets.

COROLLARY 2. An infinite set is similar to a proper subset of

itself.

Proof. Let A be an infinite set. According to Theorem 9.1 we may

write A as the union of disjoint sets
j
an \n G Nj and B. Then the set

A x = \an \n G N — |0j j U B is a proper subset of A. Moreover,

/: A A i, where f(x) = a n+

1

if x = a n and fix) = x if * G B, is a

one-to-one correspondence between A and A x .

We infer from this corollary and Theorem 3.3 that a set is infinite iff

it is similar to a proper subset of itself. What is for us a characterization

of an infinite set, has been taken as the definition of an infinite set in

some treatments (l)edekind, 1883).

Another simple application of the axiom of choice produces for

cardinal numbers the analogue of Theorem 7.7 for ordinals.
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THEOREM 9.2. If C is a set of cardinal numbers, then there

exists a cardinal number greater than each cardinal in C.

Proof. A (nonempty) set C of cardinal numbers is a disjoint collec-

tion of sets. With the axiom of choice it is possible to define a repre-

sentative set of the form & = [A u \u £ C) where A u = u. Clearly,

card U (£ > u for each u in C. Hence card 2UQ > u for each u in C.

The hierarchy of infinite cardinals in order of increasing magnitude

which was mentioned in Section 3 can now be described with more
accuracy. First there is the natural number sequence according to

Theorem 3.4. Next we have No, by Corollary 1 of Theorem 9.1 and

Theorem 3.5. Then we get successively greater cardinals 2 So(= N),

2K
,

• •
• by application of Theorem 3.6. After all of these we get a still

greater one, say p, by application of Theorem 9.2. Then Theorem 3.6

may be applied again to extend the array by 2 P
,
2 2p

,

• •

*, and so on.

A more profound consequence of the axiom of choice is that every

set of cardinal numbers is well-ordered by the ordering relation < in-

troduced for cardinals. To prove this, along with related properties of

cardinals, we employ the fact that the axiom of choice implies the well-

ordering theorem which, in turn, implies that every cardinal number
can be represented by a well-ordered set. From this it follows, first,

that any two cardinals are comparable in view of the Corollary to

Theorem 7.4. Second, it establishes a correspondence between cardinal

numbers and ordinal numbers whereby with a cardinal number is

associated the (nonempty) set Z(c) of all ordinals having a representa-

tive of cardinality c . Specifically, if C is a given set of cardinals,

{(r, ac)\c £ C and ac is the least member of Z(c)
[

is a function, /, with C as domain and a set A of ordinals as range.

Clearly, / is one-to-one and consequently a one-to-one correspondence

between C and A. Further, it is easily shown that / is an order-preserving

map. It follows that the simply ordered sets C and A are isomorphic

and since one is well-ordered, so is the other. We record this result as

our next theorem.

THEOREM 9.3. Any set of cardinal numbers is well-ordered.

This property of cardinals is the basis of the following notation for

infinite cardinals. If a is the ordinal number of the set of infinite cardinals

less than an infinite cardinal u, then u is designated by N* The desig-
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nation of N as is an instance of this notation. Again, X, stands for the

immediate successor of and consequently the continuum hypothesis

may be phrased as the assertion that 2 Xo = Ki. This has been extended to

the generalized continuum hypothesis which asserts that 2Na = N*+1 .

Another consequence of the axiom of choice is that multiplication

and addition of infinite cardinals arc idempotent operations; that is,

if u is an infinite cardinal, then u 2 = u and 2u = u. To prove these

results we use the fact that the axiom of choice implies Zorn’s lemma.
The following proof of the idcmpotency of multiplication is due to

Zorn (1944).

To facilitate the exposition we introduce a temporary definition: To
say that a set A has property 4, symbolized 4(d), shall mean that A
has at least two distinct members and A 2 = A. Additional properties

of such sets, as well as some properties of related sets, are derived below.

11. If 4(d), then A is infinite.

The proof is left as an exercise.

1 2 . If 4(d) and d > B, then d + B = A.

Proof. Let a0 and a\ be distinct members of d and suppose that

B ^ d 0 C d. Then

2 < 2 + Ti = A X |floi U A 0 X t«i} < AX A = 2,

and it follows that d + B — A.

13. If 4(d), then d + d = d.

Proof. The assertion is a corollary of I 2 .

1 4 . If 4(d) and 0 < B < d, then AB = A.

Proof. Let b G B and let B ~ A' C A. Then

2 = AX \b\ < AX B = 22' = ITxT < A X A = 2,

which yields the asserted conclusion.

1 5 . If 4 (do), d 0 C d, and d — d 0 < d 0 ,
then 4(d).

The proof is left as an exercise.

I c . Let d be a set with disjoint subsets d 0 and di such that (i) there

exists a one-to-one correspondence / between d 0 and d 0 X d 0 ,

(ii) 4(di), and (iii) d 0 < A\. Then there exists a one-to-one correspond-

ence g between C = d 0 U A\ and C X C such that g O f-
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Proof. Such a correspondence exists provided there is a one-to-one

correspondence between the sets C — d 0
= d 4 and C X C — d 0 X

A 0 — (A 0 X A\) U (di X d 0) U (di X Ai). In turn, this is the case if

do X Ai + di X d 0 + A\ X di = di. This is trivial if d 0 = 0. If

d 0 ^ 0, its validity follows from I 4 and I 3 .

The next two results are special cases of I 6 . That is, both assert the

existence of a one-to-one correspondence between a subset C of d and

C X C which properly extends a given mapping of the same variety.

1 7 . Assume that d 0 is a finite subset of the infinite set d and that /
is a one-to-one correspondence between d 0 and d 0 X d 0 (so that d 0

has at most one member). Then there exists a proper extension g of

/

of the type described in I 6 .

Proof. As an infinite set, d has a denumerable subset and, therefore,

a subset di such that 4(di) (Theorems 9.1 and 4.3). Since d 0 is finite,

we may assume that d 0 Pi di = 0. Moreover d 0 < di. Thus, I 6

may be applied and provides the desired extension.

1 8 . Assume that d 0 C d, 4(d 0), d — d 0 > d 0 ,
and that /: d 0 ->

d 0 X d 0 is a one-to-one correspondence. Then / has a proper exten-

sion g of the type described in I 6 .

Proof. In view of T and T it is sufficient to determine a subset A\

of d — d 0 which has d 0 as cardinal number. Such a set exists by vir-

tue of the assumption that d — d 0 > d 0 .

We can now quickly dispose of the principal theorem.

THEOREM 9.4. If d is an infinite set, then 4(d). In other words,

if u is an infinite cardinal, then u 2 = u.

Proof. Consider the collection of all one-to-one correspondences:

/: A' A' X A', where A' C A. This collection is nonempty since

d has a denumerable subset and, as a collection of sets, is partially

ordered by inclusion. Each chain e included in has an upper bound
in $ ;

indeed, Ue qualifies. The proof of this is left as an exercise.

Hence, by Zorn’s lemma, $ has a maximal element /0 . Now f0 is a

one-to-one correspondence between a subset d 0 of A and d 0 X d 0

having no proper extension. In view of I 7 the set d 0 is not finite

and, therefore, is idempotent. So, according to I 8 ,
it is false that
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A — Ao > Aot and hence A — A 0 < A 0 according to Theorem 9.3.

Since 3(A Q), the last inequality implies, using I 5 ,
that 3 (A).

THEOREM 9.5. If u is an infinite cardinal, then 2u = u.

Proof. In view of the preceding theorem this follows from I 3 .

It is left as an exercise to deduce from this theorem the following,

whereby the arithmetic of infinite cardinals is reduced to a triviality.

THEOREM 9.6. If u and v are infinite cardinals, then u + v «

uv = max
{
u, v\.

EXERCISES

9.1. Consider the following three assertions about a set X.

(i) X is infinite.

(ii) There exists a one-to-one mapping on A' onto a proper subset.

(iii) There exists a one-to-one mapping on N into X.

Show that each of these assertions implies the other two if the axiom of choice

may be used. Which of these six implications can be proved without the axiom

of choice?

9.2. Expand the proof in the text that any set of cardinals is well-ordered.

9.3. Prove property Ii.

9.4. Prove property I 5 .

9.5. Supply the missing part of the proof of Theorem 9.4.

9.6. Prove Theorem 9.6.

9.7. Extend Theorem 9.6 to the case where only one cardinal is infinite.

9.8. Give a proof, using Zorn’s lemma but no properties of well-ordered sets,

that any two cardinal numbers are comparable. Hint: Recalling the analysis

in Section 3, it is sufficient to prove that if A and B are sets, then there exists

subsets A o and B0 of A and B respectively such that Aq ~ B0 and either Ao = A

or B0 = B. Prove this by applying Zorn’s lemma to the partially ordered set

C>, where is the collection of all one-to-one correspondences/: A' B'

with A' C A and B' C B.

9.9. Devise a direct proof that if u is an infinite cardinal, then 2u = u. Hint:

Let S = u and T = {0, 1}. Let g be the collection of all pairs (A, fA ) where A

is a subset of .S’ such that A X T = A and fA is a fixed mapping which demon-

strates the similarity of A X T and A. Show that § is nonempty and is partially

ordered by the relation <, where (A, fA ) < (/?,/#) means that A C B and

fu\A X T = fA . Then deduce that Zorn’s lemma may be applied.

9.10. Deduce from the result in Exercise 9.9 that if the set B has an infinite

subset A such that A < B, then B — A = B.
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9.11. Use the results of Exercises 9.9 and 9.10 to give another proof of Theo-
rem 9.4. Hint: Let u be an infinite cardinal and S = u. Then consider the collec-

tion of all pairs (A, fA ), where A is a subset of S such that A X A = A and fa
is a fixed mapping which demonstrates the similarity of A X A and A.

9.12. Show that for infinite cardinals r, s, u, and v, if r < and u < v, then

r -f u < s T v and ru < sv.

10. Some Theorems Equivalent to the Axiom of Choice

In the preceding section we proved, among other things, that the

axiom of choice implies that (i) any two cardinals are comparable,
(ii) if u is an infinite cardinal, then u 2 = u, and (iii) if u and v are infinite

cardinals, then u + v = uv. It is a remarkable fact that each of (i),

(ii), and (iii) is equivalent to the axiom of choice. As a preliminary to

the proofs required to substantiate this statement, we return to the

discussion of the relation between cardinal and ordinal numbers which
appears prior to Theorem 9.3. If we understand by an aleph a trans-

finite cardinal number which has a well-ordered set as a representative,

then the first step in the proof of Theorem 9.3 amounts to the observa-

tion that the axiom of choice implies that every transfinite cardinal is

an aleph. The converse of this implication is easily verified, so the axiom
of choice is equivalent to the assertion that every transfinite cardinal

is an aleph. Without using the axiom of choice it is possible to prove
the following results concerning alephs.

THEOREM 10.1. To each cardinal number c there corresponds
an aleph ^(r), which is not less than or equal to c.

Proof. If c is a finite cardinal, we may choose for the cardinal

in question. So assume that c is transfinite. We now make a definition.

For an ordinal number a
,

all sets of order type a are similar; we
denote the common cardinality of such sets by a and call this the

power ol a. Now let A be the set of all ordinals a such that a < c.

I hen A is an infinite set because every natural number belongs to it

and A is well-ordered, being a set of ordinals. Hence the order type of

A is a transfinite ordinal £ and £ is some aleph, K(c). We prove that

K(c) is not less than or equal to c by deriving a contradiction from the

contrary assumption. So assume N(c) < c. Then, since N(r) = £, we
have £ < c, whence £ C A. Hence B = \(3\(3 < £} C A, since 0 < £
implies that (3 < £ < c and £ £ B. Now B = £ by Theorem 7.5 and
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A = £ by the definition of £. It follows that A is ordinally similar to

one of its initial segments, contradicting Theorem 7.2.

THEOREM 10.2. Let c be a transfinite cardinal number and N
an aleph. If = c + then either c > X or c <

Proof. Let C and A be disjoint representatives of c and S, respectively.

By assumption we may take A to be well-ordered. Then

C X A = cH = c + N,

and hence there exist disjoint subsets Cj and A\ of C X A such that

Ci U Ai = C X A, C\ = c, and A x = K.

Now, either (i) there exists an element b\ of C such that for all a in A,

(bh a) G Cj, or (ii) for every element h of C, there exists an element a of

A such that (b, a) Cj. If (i) holds, let A2 be {(&i, a)\a G A}. Then

A 2 C Ci, A 2 = A, and hence c > ft. If (ii) holds, let <p(b) be the least

element of A such that (b, (f(b)) G Tfi and let C2 be {(b, <p(b))\b G C\.

Then C2 C A\, C2 = C, and hence, c < K.

We can now prove the theorems in question.

THEOREM 10.3 (Hartogs). The axiom of choice is equivalent to

the assertion that any two cardinal numbers are comparable.

Proof. It remains to prove that if any two cardinals are comparable,

then the axiom of choice is valid. Let C be a given set and c = C.

In view of Theorem 10.1 and the assumed comparability of cardinals,

there exists an aleph such that c < It follows that C is

similar to a subset of a well-ordered set, whence follows the existence

of a relation that well-orders C.

THEOREM 10.4 (Tarski). The axiom of choice is equivalent to

the assertion that if u and v are infinite cardinal numbers, then

u + v = uv.

Proof. It remains to deduce the axiom of choice from the hypothesis

u -f- v = uv for infinite cardinals u and v. Let c be an infinite cardinal

and K(r) be the aleph of Theorem 10.1. Theorem 10.2 is applicable

and we conclude that either c > N(c) or c < X(r). The inequality

c > X(t) is impossible in view of Theorem 10.1. Hence c < K(r),

from which it follows that every transfinite cardinal is an aleph. This,

in turn, yields the axiom of choice.
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THEOREM 10.5 (Tarski). The axiom of choice is equivalent to

the assertion that if u is an infinite cardinal number, then u 2 = u.

Proof. It remains to deduce the axiom of choice from the assumption
that u~ = u lor infinite cardinals u. Let c and d be infinite cardinals.

I hen c
2 = c, d2 = d

,
and (c + d) 2 = c + d. Since {c + d) 2 = c

2 +
led + d2

,
it lollows that c + d = c + 2cd + d, whence

cd ^ 2cd ^ t -f 2cd -\- d — c d.

But we may also set c = C\ T 1 and d = d\ + 1 for cardinals C\ and
dh to conclude that

cd = (ri T 1)(4 -f 1) = C\d\ + Ci + d\ -f~ 1

> 1 + ri + + 1 = c T d.

Hence our assumptions imply that c + d = cd for infinite cardinals.

But this implies the axiom of choice according to the preceding
theorem.

EXERCISES

10.1. Deduce the axiom of choice from the hypothesis that every transfmite

cardinal is an aleph.

10.2. Another of Tarski’s results concerning the axiom of choice asserts that

it is equivalent to the proposition

if 2u < u H- v, then u < v
,

while the proposition

if 2u > u + v, then u > v

can be proved without the axiom of choice. Prove this result.

10.3. Still another of Tarski’s theorems states that the axiom of choice is

equivalent to the assertion that for any cardinals u, v, and w, the inequality

u H- iv < v -f- w implies that u < v. Prove this.

10.4. Prove Tarski’s theorem stating that the axiom of choice is equivalent

to the assertion that for any cardinal numbers u
,

v, and w, the inequality

mv < vw implies u < v.

10.5. It is not known whether the formula 2u = u, which follows from the

axiom of choice (Theorem 9.5), implies the axiom of choice. Attempt a proof

of this.

11. The Paradoxes of Intuitive Set Theory

The theory of sets which has been presented so far is that used by

mathematicians in their daily work. Many theorems which are accepted

by a majority of the mathematical community, both past and present,
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rely on this theory. Unfortunately, it is not free of difficulties. Indeed,

as mentioned earlier, it yields contradictions. However, matters are not

as bad as this fact might indicate. This is suggested, at least, by its very

inclusion in a present-day text. A firm vantage point from which to view

the “reliability” of Cantor’s theory is one of the axiomatizations which
have been devised. The version of axiomatic set theory which we shall

discuss later (Chapter 7) is based on the conclusion that the known
contradictions of Cantor’s theory are associated with “too large” sets.

These are not the sort which occur ordinarily in mathematics.

Before discussing the best-known contradictions, a preliminary remark

is in order. A cornerstone of Cantor’s theory is that we are guided by
intuition in deciding which objects are sets and which are not. For this

reason the name “intuitive set theory” is often applied to it. The
implicit faith that individuals have in their intuition seems to be re-

sponsible for the contradictions of intuitive set theory commonly being

called paradoxes. This is a misnomer, since the connotation of the

word “paradox” is that of a seemingly, or superficial, contradiction,

whereas the examples in question are bona fide contradictions. As such,

they should be labeled “antinomies,” which is the correct technical

word to describe their status. Few do this, however.

The principle of intuitive set theory which asserts that every property

determines a set may be regarded as its Achilles’ heel. Indeed, when used

without restriction, this principle yields at least three sets from which

logical contradictions can be derived. The three which we shall discuss

are called the Russell paradox, the Cantor paradox, and the Burali-

Forti paradox.

The simplicity of the Russell paradox is apparent from the fact that

it was possible to mention it as early as Section 1.2. We consider it now
in more detail. The formula which Russell considered is

x <$_ x or —i
{x C x)

where, in the second version, we have used one of the standard symbols

for negation (—i). According to the principle of abstraction, this formula

determines a set R such that * C R iff —
i
(x C x). In particular,

RCR iff -i (RCR),

which is logically equivalent to the contradiction

RCR and -n(RCR).

We note that R (assuming that it exists) is a very large set. For example,

its defining property is satisfied by all objects which are not sets, since
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such objects can have no members and in this event cannot be members
of themselves. Moreover, the property is satisfied by most sets; to men-
tion two examples, the set of even integers is not an even integer, nor

is the set of all polynomial functions a polynomial function. It is only

when one turns to such figments of the imagination as the set of all sets,

or the set of all abstract ideas, that violations of the defining property

of R can be found.

The Cantor paradox, which was discovered by Cantor in 1899 but

which was first published only with his correspondence in 1932, is

derived from the set defined by the formula

x is a set.

Let e be the set defined by this formula. Then Q is the set of all sets.

By Theorem 3.6, (P(e) > e. Also, since Q is the set of all sets and (P(e)

is a set (the set whose members are the subsets of e), (P(e) Cl q . Hence,

cP(e) < e or, in other words, it is false that (P(e) > Q. Thus, it follows

that both “(P(e) > e” and the negation of this statement are valid. This

is a contradiction.

The Burali-Forti (1897) paradox, which was known to Cantor as

early as 1895, is derived from the set defined by the formula

x is an ordinal number.

The set T, which it determines by virtue of the principle of abstraction,

is that of all ordinal numbers. As a set of ordinals, T is well-ordered

according to Theorem 7.6, and hence has itself an ordinal number 7 .

By Theorem 7.5, ^(7 ) is a well-ordered set of ordinal number 7 ;
hence

s(7 ) is ordinally similar to T. With F as the set of all ordinals, 7 £ T
and hence *(7 ) is an initial segment of I\ Thus, we have proved that T
is ordinally similar to one of its initial segments. This is a contradiction

of Theorem 7.2.

Instead ol offering the above paradoxes as proofs of the assertion that

the unrestricted use ol the principle of abstraction yields a contradictory
theory, we may say that if we adhere to ordinary logic, then the
paradoxes demonstrate that it is ialse that corresponding to every
property there is a set ol objects having that property. Interestingly

enough, the converse is also false. That is, it is false that every set has a
defining property. The well-known proof of this is due to Skolcm (1929)
and is as lollows. It is possible to map the set ol real numbers into a
collection ol sets in a one-to-one fashion. For example, we can assign
to a real number * the set of all real numbers less than a. Since the set



Bibliographical Notes 129

of all real numbers is uncountable, it follows that there exists an un-

countable collection of sets. So, if every set has a defining property, the

set of defining properties is uncountable. On the other hand, a property

(written in English) is a finite sequence of letters of the English alphabet.

The set of all such sequences is denumerable so that, in particular, the

set of all properties is denumerable. Hence, there exist sets without

defining properties.

Intuitive set theory with its paradoxes certainly invites a critical

examination with the goal of creating a theory which is both consistent

and which enjoys as many features of the intuitive theory as is possible.

Of the points of departure which may be taken in this matter, that of

developing set theory as a formal axiomatic theory has been popular.

The present-day status of such axiomatic theories is this: they are

flexible enough to permit one to carry on essentially as in intuitive set

theory, and they circumvent the classical paradoxes (and thus suggest

that they are consistent)
;
however, no one of them has been proved to

be consistent.
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CHAPTER The Extension of the

Natural Numbers to

the Real Numbers

In this chapter we carry out another variety of extension of

(N, + , , <),f the system discussed in Sections 2.1 and 2.2. Three
successive extensions are made, the last of which yields the real number
system. The first of these may be described as the completion of N with

respect to addition—that is, the minimum enlargement of N to insure

the solvability of all equations of the type x n = m with n, m C. N.

The extended set is the set Z of integers. The second extension amounts
to the completion of Z with respect to multiplication—that is, the

minimum enlargement of Z to attain the solvability of all equations of

the form xb = a with <2
,
£ G Z and b ^ 0. The resulting set is the set Q

of rational numbers. The third extension amounts to the completion
°f Q, with respect to order—that is, the minimum enlargement of Q,
which provides least upper bounds for nonempty subsets of Q which
have upper bounds.

In addition to those theorems which are of permanent interest, any
development of the real number system includes a great number of

results having just temporary interest (for example, results which justify

various definitions). Each statement of the latter sort is labeled a lemma
,

and if no proof is in evidence the reader can count on his being asked

to supply one in an exercise.

Finally, we mention that elementary properties of operations and
relations for natural numbers are used without explicit reference.

1. The System of Natural Numbers

On the basis of definitions and theorems appearing in Sections 2.1

and 2.2, the natural number sequence (N, ', 0) determines the system

f It better suits our presentation to adopt <, instead of <, as the basic ordering relation
in N.

130
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of natural numbers, (N, + ,
•, <), by which we mean the set N together

with the two binary operations and ordering relation which have been

defined in this set. Below is a list of those properties of +, •, and < and

their interrelations upon which this chapter is based. These were all

derived as theorems in Sections 2.1 and 2.2 from the assumption that

(N, 0) is an integral system. Thus, for one who has studied Sections 2.1

and 2.2, this section (which is preliminary to the developments described

in the above summary) is simply an abstract of already demonstrated

properties of the system of natural numbers. For anyone who, for some

other reason, admits the following as valid properties of (N, +, •, <),

the chapter is self-contained.

The properties of (N, +, •, <) to which we call attention are the

following.

Ai. x (y z) = (x + y) + z.

a2 . * + y — y + x.

a3 . o + * =

A 4 . x+z=y-{-zorz-\-x=z-\-y implies that x = y.

Mi. x(yz) = (xy)z.

M 2 . xy = yx.

M 3 . \x = x.

M 4 . xz = yz or zx = zy, and z 9^ 0, imply that x = y.

D. x(y + z) — xy + xz.

Further, the relation < has the following properties.

01. x < y and y < z imply that x < z (transitivity).

0 2 . For each pair x, y of natural numbers, exactly one of x < y,

x = y, y < x hold (trichotomy).

0 3 .
(N, <) is a well-ordered set.

OAi. x < y implies that * + z < y + z and z -j- x < z + y (mon-

otonicity of + with respect to <).

OA2 . x-\-z<y JrzoYZ-\-x<z+y implies that x < y (can-

cellation property of + with respect to <).

OMi. If z > 0, then x < y implies that xz < yz and zx < zy

(monotonicity of • with respect to <).

OM 2 . If ; > 0, then xz < yz or zx < zy implies that x < y (can-

cellation property of • with respect to <).

A comment about some of the terminology used above is in order.

The meaning of the statement that an operation has the cancellation
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property with respect to some relation at hand can be inferred im-
mediately from OAo. (Although OM2 involves a restriction, no special

terminology will be introduced as a reminder of this restriction.) When
we state simply that an operation has the cancellation property, we
shall mean with respect to the equality relation. Thus a binary opera-
tion has the cancellation property iff each of x * z = y + z and
z * x = z y implies that x = y. Further, the meaning of the statement
that some binary relation is trichotomous or that a binary operation is

monotonic with respect to some relation should be clear from the above
examples.

Although the less than relation was given a central position in our
development ol the theory of the natural number system, it can be
introduced as an offshoot ol the operations of addition and multiplica-

tion and the notion ol positiveness which stems from the definition of a
positive natural number as a nonzero natural number. Indeed, since

x < jy ifl there exists a positive natural number z such that a + z = y,
this characterization of less than may be taken as the definition of less than

in terms of addition and positiveness. Then properties of less than can be
derived as consequences of properties of positive elements, properties of
addition, and properties of multiplication. In such a treatment, parts
A 6 and M 6 of Theorems 2.1.5 and 2.1.7 respectively (which may be
stated as The sum and the product of two positive natural numbers
is a positive natural number' 5

) occupy a key role. As an illustration we
derive Oi within this framework. Assume that x < y and y < z. Then
there exist positive natural numbers u and v such that x + u = y and
y v = z. Hence x + {u + v) — z. Since u positive and v positive
imply that u + v is positive, it follows that x < z.

We have called the reader s attention to the foregoing approach to
the theory ol order for the natural numbers because we shall employ it

in each of the forthcoming extensions of the system of natural numbers.

2. Differences

This section includes the necessary preliminaries for a definition of
the integers and a rapid development of their properties, all of which is

presented in the next section. In this section the letters “m,” “n,” “pf
and LL q" will designate natural numbers. The intuitive motivation for
our point of departure is the observation that a solution of .v + n = m
is determined solely by m and n in a specific order. Thus ordered pairs
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of natural numbers become the object of study. The way in which one

might naively expect such objects to behave in view of their intended

role is the source of the succession of definitions which we make.

By a difference we shall mean an ordered pair (m, n). In the set

N X N of all differences we introduce the relation (the subscript is

for “difference”) by defining

(rn, n) ~d (p , q) iff m + q = p + n.

LEMMA 2.1 . is an equivalence relation on N X N.

We shall call a difference (m, n) positive iff m > n. Two fundamental

properties of positive differences are stated next.

LEMMA 2.2. If (m, n) is positive and (m, n) ^d (p , q), then (p, q) is

positive. If (m, n) is positive, then there exists a difference (p, 0), with

p > 0, such that (rn, n) ~ d (p, 0).

An operation, which we call addition and symbolize by +, is defined

for differences by

(m, n) + (p, q) = (m + p, n + q).

Clearly, addition is a binary operation in N X N. The motivation for

the definition is the expectation that if x + n = m and y + q = p, then

it should follow that (x + y) + (n + q) = m + p. Properties of addi-

tion which interest us are given next.

LEMMA 2.3. If x, y, u, and v are differences and a: ~d u and y
~

d v
,

then x + y
~d u + v.

LEMMA 2.4. Addition of differences is associative and commuta-

tive. The sum of two positive differences is a positive difference.

Further, addition is cancellable with respect to ~d .

LEMMA 2.5. If* and y are differences, then there exists a differ-

ence z such that z + * ~d y.

Another binary operation in N X N, which we call multiplication

and symbolize by *, is defined for differences by

(m, n) • (p, q) = (mp + nq
,
mq + np).

Usually we shall write “*/’ instead of “x • /’ for a product of differences.
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LEMMA 2.6. If x, y, u, and v are differences and a ^d u and y ~d v,

then xy ~d uv.

LEMMA 2.7. Multiplication of differences is associative and com-
mutative, and distributes over addition. The product of two positive

differences is a positive difference. Further, multiplication is cancel-
lable with respect to ~d for differences other than those of the form

(m ,
m).

EXERCISES

2.1. Prove Lemma 2.1.

2.2. Prove Lemmas 2.2 and 2.3.

2.3. Prove Lemma 2.4.

2.4. Prove Lemma 2.5.

2.5. Prove Lemma 2.6.

2.6. Prove Lemma 2.7.

3. Integers

Recalling Lemma 2.1, we define an integer to be a '^^-equivalence
class. We shall write

Mi
for the equivalence class determined by the difference a. (The new
subscript is for “integer. 55

) The set of integers will be symbolized by Z.
We shall call an integer positive iff one of its members is a positive

diffei ence. It follows fiom Lemma 2.2 that if [#],• is positive, then every
member of M» is positive. The set of positive integers will be symbolized
by Z+
We consider next a relation from Z X Z into Z

:

{((Mi) [y]i), [x + y]i)\ X and y are differences).

According to Lemma 2.3 this relation is a function which, by virtue of
its form, is a binary operation in Z. We call this operation addition
'and symbolize it by +. Thus,

M< + [y ] i = [x + Mi-

lemma 3.1

.

Addition of integers is associative and commutative,
and has the cancellation property. Further, the sum of two positive
integers is a positive integer.
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LEMMA 3.2. If a: and y are integers, then there exists exactly one

integer z such that z -\- x = y.

From this result it follows that if x is an integer, then there exists

exactly one integer, which we call the negative of x and symbolize by

— x
,
such that

(
— x) + x = X + (— x) =

[(0, 0)],.

Finally, we consider the following relation from Z X Z into Z:

{(([*]*> M*)> Mf> I

x and y are differences}.

According to Lemma 2.6 this relation is a function which, by virtue of

its form, is a binary operation in Z. We call this operation multiplica-

tion and symbolize it by •. Thus

Mi * [y]i = Mi-

LEMMA 3.3. Multiplication is associative and commutative, dis-

tributes over addition, and has the cancellation property if (0, 0) is

not a member of the factor to be canceled. Further, the product of

two positive integers is a positive integer.

Now let us tidy up our notation for the integers. The first step is the

observation that the set Z° of integers of the form [(w, 0)]»- with «£N
and the set of integers of the form [(0, m)]< with m C N — {0} are dis-

joint and exhaust Z. The former statement is obvious. To prove the

latter, consider any integer [{p, q)]i. Exactly one of p > q and p < q

holds. In the former case, p = q T n with «£N, and hence [{p, q)]i =

[(n, 0)] C Z°. In the latter case, q = p + m with m £ N — {0} and

[(/?, q)]i = [(0, m)
] i, which completes the proof.

It is a straightforward exercise to demonstrate that the ordered triple

whose coordinates are, in turn, Z°, the map on Z° which takes [(«, 0)]»

into [(n + l,0)]i, and [(0, 0)]» is an integral system. Theorem 2.1.8

implies that the mapping / on N into Z such that f(n) = [(n, 0)]< i?

one-to-one, onto Z°, and preserves addition, multiplication, and less

than.| We summarize these properties of/ by calling it an order-isomor-

phism of N onto Z° and indicate the relationship of Z° to N by referring

to Z° as an order-isomorphic image of N (or, saying that Z° is order-

isomorphic to N). Parenthetically we remark that it should be clear

t To be precise, Theorem 2.1.8 states that f(x +>) = f(x) +/(>), f(xy) = f(x)f(y), and

X < y iff/(x) < /(>). The last property implies, in turn, that x <y ifff(x) </(>), according

to Exercise 1 .1 1 .9.
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that these definitions are applicable to any two systems each of which

consists of a set along with two binary operations and an ordering rela-

tion in that set. Thus we may apply the definitions to other such pairs

of systems. The order-isomorphism of N onto Z° suggests that we call

the members of Z° the integers which correspond to the natural numbers

and adopt u
0 t

,” “1*,” “2*,” • •
• as names for them. We shall do this,

which means we agree that

n { = [(w, 0)]t if nC N.

Since the remaining integers (that is, the members of Z — Z°) have the

form [(0, m)]i with m £ N — {0}, and since

[(0, m)]i = - [(m, 0)],- = -m t ,

we acquire “ — 1
“ — 2<,” ••• as names for the so-called negative

integers. Henceforth we may write, therefore,

—?• — 1 - 0 1 2 • • • 1

We summarize our results concerning (Z, +, *, Of, 1

Z

+
), the system

of integers, in the following theorem. The theorem does not include all

the properties which have been stated. However, in the exercises for

this section, the reader is given the opportunity to show that the prop-

erties listed in the theorem are complete in the sense that from them
follow as logical consequences all others which have been mentioned or

might be expected. In particular, it is implied that from the properties

listed it may be inferred that for each integer x the equation z + x = Ch-

in part (4) has a unique solution (which we have already agreed to

symbolize by —x). Then the notation “y — x” [which appears in

part (14) of the theorem] may be introduced as an abbreviation for

“y + (
— x).” Further, the exercises call for the derivation of all expected

properties of less than
,
as defined in part (14).

THEOREM 3.1. The operations of addition and multiplication for

integers, together with 0;, 1 ,,
and the set Z+ of positive integers, have

the following properties for all integers v, y, and z.

(1) v + (y + z) = (x + y) + z.

(2) x + y = y + x.

(3) 0,- + v = *.

(4) There exists an integer z such that z + * = 0*.

(5) x(yz) =
(.xy)z .

(6) xy = yx.
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(7) 1 iX = x.

(8) x(y + z) — xy + xz.

(9) xz = yz and z 9* 0* imply that x = y.

(10) 0i 5^ 1

(11) ,v,)C Z+ imply that x + y G Z+ .

(12) y G Z+ imply that xy G Z+ .

(13) Exactly one of x C Z+
,
x = 0, —a: G Z+ holds.

(14) If <

i

is defined by x <iy iff y — x G Z+
,
then < , simply

orders Z and well-orders {

0

1 } U Z+ .

EXERCISES

3.1. Prove Lemma 3.1.

3.2. Prove Lemma 3.2.

3.3. Prove Lemma 3.3.

3.4. Prove part (13) of Theorem 3.1.

Remark. Exercises 3. 5-3. 8 are concerned with proving that from the prop-

erties of (Z, + ,
*, 0;, 1 i, Z+> in Theorem 3.1 can be deduced the other proper-

ties mentioned in this section and the familiar properties of less than.

3.5. From properties (1), (3), and (4) of addition, prove that

(i) addition has the cancellation property,

(ii) for each x the solution of 2 + x = 0 4 is unique, and

(iii) for each x and y, the equation z x = y has a unique solution.

3.6. Prove each of the following properties of negatives of integers:

— (x+y) = -x - y, (~x)y = - (xy), (~x)(-y) = xy.

3.7. Using properties of addition and multiplication, prove that

(
— li)x = — x.

3.8. Prove each of the following properties of the system of integers.

(i) x is positive iff 0 < t x.

(ii) The square of a nonzero integer is positive.

(iii) < i is transitive.

(iv) For each pair x, y of integers, exactly one of x <iy, x = y, y <iX holds.

(v) x < iy iff x + z < iy + z.

(vi) If 0 <i z, then x < t y iff xz < t yz.

4. Rational Numbers

The steps which precede the definition of a rational number parallel

those which lead to the definition of an integer. Now we concern

ourselves with the solution of equations ol the form xb = a where a
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and b aic integers and b 9̂ O t
-. So again we consider ordered pairs of

the numbers at hand but with the quotient (instead of the difference)
in mind as the intended interpretation. Since the formal developments
ai c so similar to those in the two preceding sections, our treatment will
be rather summary. The letters “a,”

l

‘b ,” ‘V,
55 and “</” will designate

integers in this section.

An ordered pair (<a ,
b) with b 9̂ 0* will be called a quotient. The

quotient (<a ,
b) will be written as

a

b

The relation is introduced into the set of all quotients by defining

7 iff ad = be.
b d

This is an equivalence relation on the set of all quotients and has the
further property that

ac a

be *b
lf C ^ 0i -

We shall call a quotient - positive iff ab is a positive integer. Further,

we introduce operations of addition and multiplication into the set of
quotients by way of the following definitions:

a
1

c _ ad T be

b ' d ~
bd

~~
9

a c _ ac

b d~ bd

Since b 9̂ 0; and d 9̂ 0 t imply that bd 9̂ 0*-, these are operations in the
set of quotients.

L EMMA 4 . 1

.

If x, y, u, and v are quotients and a u and y ~ q v,

then x + y ~q u + u, xy ~ q uV and, if x is positive, then u is positive.

In summary, this lemma asserts that the equivalence relation defined
for quotients has all expected substitution properties. We forego proving
for quotients the analogues of the properties derived in Section 3.2 for
addition, multiplication, and positive elements. Instead, we turn to the
^-equivalence classes to obtain the rational numbers.
A rational number is a ^-equivalence class of quotients. The ra-
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tional number having the quotient * as a representative we write, for

the moment, as

[*]*•

The letter ‘V’ is intended to refer to “rational”; we do not use

since we want to reserve it for real numbers. The set of rational numbers

will be symbolized by Q,.

We shall call [x], positive iff it contains a quotient y such that y is

positive. It follows from Lemma 4.1 that if [*], is positive then each of

its members is positive. The set of positive rationals we symbolize by QL
The definitions of addition and multiplication for rationals are

Ms + [y]» = [x + y]

Ms • bis = [xy ]s.

Of course, Lemma 4.1 plays a crucial role in these definitions.

Next we make a further definition:

a* for aC Z.

Clearly, {(a, a 8)\a C Zj is a function on Z into Q. Further, it is one-

to-one and, since

a s + b s = (a + b),

,

a 8b 8 (ab) 8 ,

the operations of addition and multiplication are preserved under this

mapping. Finally, the image a s of an integer a is a positive rational

number iff a is a positive integer. This last property implies that if < s

is the ordering relation which can be defined in in tei ms ol its positiv

e

elements (see below), then a <^ib iff a s b 8 . Thus, the mapping

a a s is an order-isomorphism. The members a s of this order-iso-

morphic image of Z in Q, we shall call integral rational numbers.

There follows one comprehensive theorem concerning properties of

(n -f } 0„ la, Q,
+

), the system of rational numbers.

THEOREM 4.1. The operations of addition and multiplication for

rational numbers, together with 0 S ,
l s ,

and the set ot positive

rationals have the following properties for all rationals a:, y, and z.

(1) x + (j> + z) = (x + y) + z-

(2) x + y = y + x.

(3) 0 S T x = x.

(4) There exists a z such that z + x = 0 a .
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(5) x{yz) = (xy)z.

(6) xy = yx.

(7) \ sx = x.

(8) U x ^ 0 S ,
there exists a z such that z* = 1 3 .

(9) x(y + z) = xy + xz.

(10) 1 3 5^ 0 3 .

(11) x, y £ Q,
+ imply that a + y £ £)+.

(12) x,yCQ+ imply that xy £ Q+.
(13) Exactly one of a £ Q+ x = 0 3 ,

-x £ Qf holds.

(14) If P is the intersection of all subsets of Qf which contain 1 3

and are closed under addition, then, for each a £ Q+
,
there

exist a, b £ P such that xb = a.

In the exeicises the reader is asked to prove the various parts of this
theorem [including a more familiar formulation of (14)] and to derive
some of the immediate consequences of these properties of the system
of rational numbers. Certain results in the latter category are worthy of
comment. First, since addition of rationals enjoys the same properties as
does addition of integers [properties (l)-(4) of Theorems 4.1 and 3.1,
respectively], the results [derived from (l)-(4) of Theorem 3.1] which
appear in Exercises 3.5 and 3.6 hold for rationals.

Next, since the basic properties of multiplication [parts (5), (7),
and ( 8) of Theorem 4.1

]
for nonzero rationals mimic properties (1), (3),

and (4) of addition, with l s in place of 0., we may infer the following
multiplicative analogues of the results in Exercise 3.5.

(i) *z = yz and z 0 S imply that x = y.

(n) For each x
^ 0S the solution o{ zx =

1 , is unique. This solution
is called the inverse of x and is symbolized by x~'.

(ni) For given x andy with x ^ 0„ the equation zx = y has a unique
solution.

Finally, we call attention to the fact that if less than, which we symbolize
by < s ,

is defined in Q by

x < s y iff y - x £ Q+,
then it enjoys all of those properties stated in Exercise 3.8 for < t-, since
the earlier proofs carry over without change.
We are now in a position to simplily the notation for rationals The

string of identities

a a "ir a ~b~
_b_ S _u_ s _b_ s _h_ S .1 f. S
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shows that each rational can be written in terms of integral rational

numbers.

We shall drop the subscript ‘V’ from now on (the context should

make plain whether a s or a is the appropriate entity) and further, agree

that

- or (when convenient) a/b
b

is another name for ab~ l
. In this way we obtain the familiar notation

for rationals.

In practical terms this means that we agree to adopt names of repre-

sentatives (that is, members) of rational numbers as names of rational

numbers. To clarify this remark, let us consider, for example, the

rational number
~

[(2, o)ir

.[(3, 0>]J.

By our convention, “2/3” is a name of this rational number. 'The

statement “2/3 = 4/5” means that “4/5” is another name of the same

number. This is true iff
~2~ "4

_3_ s _5_

which, in turn, is true iff 2 • 5 = 4 • 3. Since 2 • 5 ^ 4 • 3, the original

statement is false. In general, the same type of analysis yields the follow-

ing results for rational numbers:

a/b = c/d iff ad = cb,

a/b T- c/d = (ad + bc)/bd,

(a/b) • (c/d) = ac/bd.

We derive next two significant properties for rational numbers. At

this point we begin to use elementary properties of rationals without

explicit references.

THEOREM 4.2. Between any two distinct rational numbers there

is another rational number.

Proof . Suppose that r, s C Q with r < s. It is sufficient to prove that

r < (r + s)/2 and (r + s)/2 < s. To prove the first inequality we

start with r < s and infer, in turn, r r < r s, 2r < r s, and

r < (r + s)

/

2. The second inequality is derived similarly.

THEOREM 4.3. (Archimedean property). If r and s are positive

rational numbers, then there exists a positive integer n (properly, a

positive integral rational number n) such that nr > s.
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Proof. Let r — a/b and s = c/d where <z, b
,

c
,
and d are positive

integers. If n is a (rational number corresponding to a) positive

integer, then nr > j iff nad > be. If for n we choose 2 be, this inequality

is satisfied, since ad > 1 .

We conclude our discussion of rational numbers with the introduction

of two functions pertaining to rational numbers. The first has gd" as

domain and as its value at x, which we symbolize by [*], the greatest

integer equal to or less than a. For example,

[2] = 2 and = 2 .

The second function has Q, as domain. Its value at x
,
which we symbolize

by |*| and call the absolute value of *, is defined as

f x if x > 0,

l—x if * < 0.

THEOREM 4.4. If x and y are rational numbers, then

(I) |*| > 0
,

+ \y\,

X - y\.

(II) xy\ = M \y\

(III) x + y < *

(IV) *|
—

y\ <

EXERCISES

4.1. Prove Lemma 4.1.

4.2. Prove that the mapping a —»- as on Z into g, introduced prior to Theo-
rem 4.1, is an order-isomorphism.

4.3. Prove Theorem 4.1. As for part (14) of this theorem, show that P is

simply the set ol rationals which correspond to the positive integers.

4.4. Write a short paragraph to substantiate the assertion made after Theo-
rem 4.1 that the properties of multiplication listed may be inferred without
giving new proofs.

4.5. Prove that the relation <„ for rational numbers may be characterized
as follows:

4.6.

Prove Theorem 4.4.

iff abd2 <i b 2
cd.

5. Cauchy Sequences of Rational Numbers

I he set ol rational numbers includes nonempty sets which have an
upper bound but fail to have a least upper bound. One of these is
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= ixcgv < 3 1

,

as we proceed to prove. Clearly, any positive rational number whose

square is greater than 3 is an upper bound. On the other hand, no posi-

tive rational number whose square is less than 3 (that is, no member
of S) is an upper bound, since, if j- C S, then

s + 3 — j-2

5 + 2s

is obviously greater than s and, as a direct calculation shows, is a

member of .S. Since there exists no rational whose square is equal to 3,

it follows that those positive rationals whose square exceeds 3 exhaust

the set of upper bounds for S. Now this set has no least member. Indeed,

if u is a positive rational such that u~ > 3, then

u -f- 3 /u

2

is positive, less than u (since 3/u < u2/u = m), and its square is greater

than 3, since

u — 3/m

9La

It follows that S has no least upper bound.

The failure of the rational number system to include the least upper

bound of every nonempty set having an upper bound may be taken as

the motivation for the extension of Q, that is presented in the next

section. We now set the stage for this by developing the theory of

Cauchy sequences of rational numbers.

We recall that a sequence is a function having Z° (or, when con-

venient, Z+
) as its domain. The value of the sequence x at n will be

denoted by xn . A sequence of rational numbers is a sequence x such

that xn C. Q, for every n. A Cauchy sequence of rational numbers is a

sequence x of rational numbers such that for every positive rational

number e there exists a positive integer N such that for every m, n > N
I
Xn Xm I

^ €•

EXAMPLES
5.1. The sequence x such that

n + 1

Xn =
n

is a Cauchy sequence (of rational numbers). To prove this we must exhibit for

each positive rational number t an integer A such that for m, n > N
bn «^m| ^
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Since

1

m — n 1 1

mn n m
<

1

min (m, n)

if we let AT = [1/e] + 1, then for all m, n > N,

\

min (m ,
n)

<i

<
1

1/e

< e.

5.2. The sequence * such that

*o = 0, ati = 1, and = i(xn-i + xn-z) for n > 2

is a Cauchy sequence. To prove this we note first that

(-D n

Xn-j-1 Xn —
2 "

This can be established by induction. Further, from the recursive definition of

x„ it is clear that for all m > n, xm falls between xn and *n+i- So, if e is a positive

rational number and we choose Ar so that 2N > 1/e, then, for all m, n > Ar

,

|
Xm Vn

[
^ Xnl

<
2A

< €.

We define the operations of addition and multiplication for se-

quences of rational numbers in the following way:

a + y = u where u n = xn + y n ,

a:y — v where vn = xnyn .

Clearly, i( a and y are secjuences of rational numbers, then so are

a 4~ y and xy. It is an important fact that if* andy are Cauchy sequences

of rational numbers, then so are x y and xy. In other words, addition

and multiplication are binary operations in the set of all Cauchy
sequences of rational numbers. The proof for the case of multiplication

requires the following preliminary result.
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LEMMA 5.1 . If x is a Cauchy sequence of rational numbers, then

there exists a positive rational number <5 such that for every n

|*n| <

Proof. Corresponding to the positive rational number 1 there exists

by assumption an integer N such that for every m, n > N

(
1
) |

Xn Xm
|

^ 1 •

Let

(2) 8 = max (|*0 |, |*i|,
* •

*, \xN \, |*at+i|) + L

Clearly, if n < N + 1, then |.vn
|

< 8. Suppose then that n > AT + 1.

By virtue of (/), \xn — *jv+i| < 1 and, hence,

^ I'TiV+ll ""b L

According to (2), |^+ i| + 1 < 8. Hence, for all n, |*„| < 8.

LEMMA 5.2. If x and y are Cauchy sequences of rational numbers,

then x + y and xy are Cauchy sequences of rational numbers.

Proof. (Sum.) Let e > 0. By hypothesis there exist N\ and N2 such

that for all m, n > N1

Xrr\ ^/2,

and for all m, n > Rr
2

Iyn ym.
|

^ €/ 2.

Then for all m, n > max (N\, N2)

l^n y-n i^Xm ~b y-m)
| |

(^n Xw) ~b (_^n JVw)|

^
|

Xn Xm
|
"b

|y n ym |

< e/2 + e/2

< e.

(Product.) Let e > 0. By virtue of the preceding lemma, there

exist positive rational numbers 8 1 and 8 2 such that for all n

|*»| < 5i,

\yn\ ^ ^2*

Further, there exist integers N\ and Rr
2 such that for all m, n > N1

|^n Xm
|

<C €/ (26*2),

and for all m, n > N2

|yn — ym |

< e/(25i).
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Then for all m, n > max (Nh Nf)

Xmym
| |

Xny n Xmy n
~
f" Xmy n X m,y n

|

— W \Xn •^’m|
—

1
“ [*^m|

|
y?i ym

|

< e.

The basic properties of addition and multiplication may be sum-

marized by the statement that they satisfy properties (l)-(8) of Theo-

rem 3.1, where the distinguished elements in (3) and (7) are taken to

be the sequence 0 C (whose value is 0 for all n) and the sequence l c

(whose value is 1 for all w), respectively. Again, the results stated in

Exercises 3. 5-3. 7 hold. The negative of the Cauchy sequence x is the

sequence — * such that (
— x) n — —xn for all n.

We introduce next a relation, which we symbolize by ~ c ,
in the set

of all Cauchy sequences of rational numbers. If x and y are Cauchy
sequences of rational numbers, then

x ~c y

iff for every positive rational number e there is an integer N such that

for every n > N,

\xn — y n
\

< €.

As an illustration, consider the sequences * and y such that xn =
(n + 2)/{n + 1) and yn = 1 foi all n. These are Cauchy sequences and
clearly * ~ c _y, since xn — yn = l/(w + 1). It is an easy matter to estab-

lish the following property of this relation.

LEMMA 5.3. The relation is an equivalence relation on the set

of all Cauchy sequences of rational numbers.

If x is a Cauchy sequence of rational numbers, then * is called positive

iff there is a positive rational number e and an integer N such that for

every n > N
Xn > e.

The expected substitution properties of the equivalence relation with
respect to addition, multiplication, and positivencss are stated next.

LEMMA 5.4. If x, y, u, and v are Cauchy sequences of rational

numbers and x u and y ^ c v
,
then x y ^ c u T v

,
xy uv and,

il * is positive, then u is positive.
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Proof. The proof that * + y
~

c u + v is left as an exercise. Turning

to the result concerning multiplication, let e be a positive rational

number. By Lemma 5.1 there exist positive rational numbers o i

and S 2 such that for every n

\j>n\ < 5i,

\un
\
< 5 2 .

Since a: u, there exists an integer Afi such that for every n > N\

|

Xn Wn
|

€/2 5 1

,

and since y v, there exists an N2 such that for every n > Ar
2

|yn — vn
\

> e/25 2 .

Then, for every n > max (Afi, N2)

|>Vn_^n unOn\ = xnyn unyn
~

l

- uny n u nvn
\

— _^n l I

Xn U n
\

~
l

-
jWjx|

|

yn ^
' n 1

< 6i(e/25i) + 5 2(e/252)

< e.

That if x is positive and a: w, then u is positive is shown as

follows. By assumption, there exists a positive rational number 2e and

an integer Afi such that for every n > N
x

xn > 2e,

and there exists an N2 such that for every n > N2

|

Xn Un
\

f.

Hence, for n > max (Afi, N2),

Un ^ Xn ^

> 2e — e

> e.

LEMMA 5.5. The sum and the product of two positive Cauchy

sequences are positive Cauchy sequences. Further, if * is any Cauchy

sequence, then exactly one of the following hold : * is positive, x ~ c 0 C ,

— X is positive.

Proof. We shall prove only the last statement. Clearly, at most one

of the three possibilities for * can hold. So we need to prove that at

least one holds.

Suppose that x is not equivalent to 0 C . By the definition of x ~ c 0 C ,

this means that there is a positive rational number 2e such that for

every integer N there is an n > N such that

(7) |*»| > 2e.
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Since a is a Cauchy sequence there is an integer N\ such that if

m, n > Nh then

(2) |^n ^m| ^

From our observation which led to (7), it follows that there exists an

integer p > N\ such that

(,3)
|ap |

> 2e.

Since (3) implies that ap ^ 0, either ap > 0 or ap < 0. Suppose that

xp > 0. Then
xp > 2e

by (3), and, as a consequence of (2), for every n > p

|

Xn Xp |

< 6

.

Hence, for every n > p
X fi Xp €

> 2e — e

> e.

Thus, if Xp > 0, then x is positive.

By a similar argument it can be proved that if xp < 0, then — x is

positive.

With the foregoing result available it is easy to prove the following

lemma, which is of basic importance when we turn our attention to the

^
c-equivalence classes of Cauchy sequences (that is, real numbers).

LEMMA 5.6. If the Cauchy sequence * is not equivalent to 0 C ,

then there is a Cauchy sequence z such that z* l c .

Proof. The preceding lemma implies that for an x which is not

equivalent to 0 C there is a positive rational e and an N such that for

every n > N
| |

> €.

Consider now the sequence x' such that x'n = € if n < N and x'n = xn

if n > N. Clearly, x' is a Cauchy sequence, x ' x, and for all n

(/) i*:i > e.

Since x'n 9^ 0 for every n, the sequence z where zn — 1 /
x'
n is a sequence

of rational numbers. Further, z is a Cauchy sequence as we proceed

to prove. Let rj be a positive rational number. Since C is a Cauchy

sequence, there exists an N such that for every m, n > N

(2) \Xn - X'M \
< T)t~.
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Further, by virtue of (/), we have

1

/ /

From (2) and (3) it follows that for all m, n > N

|
Zm Zv\ V)

which proves that z is a Cauchy sequence. It is clear that zx

Finally, since x' it follows that zx ^ c 1 c-

C •

EXERCISES

5.1.

Prove that the sequence x such that

3^5 T
In + 1

is a Cauchy sequence.

5.2.

Prove that the sequence x such that

Xn = 1 + + + .. .

n i

is a Cauchy sequence.

5.3. Prove that addition and multiplication for Cauchy sequences satisfy

parts (l)-(8) of Theorem 3.1.

5.4. Prove Lemma 5.3.

5.5. Complete the proof of Lemma 5.4.

5.6. Complete the proof of Lemma 5.5.

6. Real Numbers

As promised earlier, we define a real number as a ^^equivalence

class of Cauchy sequences of rational numbers. The ical number having

the Cauchy sequence x as a representative we write as

[x] r ,

for the time being. The set of real numbers will be symbolized by R.

We shall call a real number positive iff it contains a positive Cauchy

sequence. In view of Lemma 5.4, if [x] r is positive, then each ol its

members is positive. The set of positive real numbers we symbolize

by R +
.

The following definitions of addition and multiplication lor ical num-

bers will scarcely offer any surprise:

[x] r + [y)r = [x y]r,

[X]r • [y]r = Mr.
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Of course, it is Lemma 5.4 which ensures that these are binary opera-

tions in R.

Next we call attention to a distinguished set of real numbers—those

which correspond to rational numbers in a natural way. If a is a rational

number, then (a, a, •••,«, •
• •) is a Cauchy sequence of rational num-

bers. Since R is a partition of the set of all such sequences, there exists

exactly one real number, let us call it a r ,
which contains (a, a, •

•
•

,
a, •

•
• ).

This means that

{(a, a r)\a C Q}

is a function on £) into R. It is easily proved that this function is one-

to-one and, moreover, that the operations of addition and multiplication

are preserved by this mapping. Finally, a rational number is positive iff

its correspondent in R is positive. Thus, R includes an order-isomorphic

image of Q^. Members of this image of £) will be called rational real

numbers. The rational real number corresponding to the rational num-

ber 0 S we again call zero and symbolize by 0 r . Thus,

Or = [(Os, 0 S ,

• •
•, Os, • • •)]»•

The rational real number corresponding to the rational number l s we
again call one and symbolize by l r . Thus,

lr =
[(1*> L, '

* L) * *
*)]r*

The first major theorem concerning the real number system

(R, +, •, Or, l r ,
R+

> is the following. Its proof relies entirely on those

properties of the rational number system appearing in Theorem 4.1, the

properties of Cauchy sequences appearing in Lemmas 5.5 and 5.6, and

the definitions of addition, multiplication, and positiveness for real

numbers.

THEOREM 6.1. The operations of addition and multiplication for

real numbers, together with 0 r ,
l r ,

and the set of positive reals, have

properties (1)-(13) listed in Theorem 4.1.

Those further properties of addition and multiplication for rational

numbers which are listed immediately after Theorem 4.1 are enjoyed by

the corresponding operations for real numbers. If less than
,
which we

symbolize by < r ,
is defined in R by

x < r y iff y — x C R+
,

then it has all those properties which < s possesses Also, the definition
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of the absolute value function extends to the real numbers and Theorem

4.4 applies.

Our results up to this point may be summarized by the statement that

the extension of £) to R has resulted in no loss of ground. That a gain

has been made will be demonstrated when we have proved that every

nonempty set of real numbers which has an upper bound has a least

upper bound. The proof of this property of the real number system

requires some other results which are important in their own rights. 1 he

first of these is usually phrased as the statement that the rational num-

bers are dense in the set of real numbers.

THEOREM 6 . 2
.

t

Between any two distinct real numbers there is

a rational real number. Precisely, if x and y are distinct real numbers,

then there exists a rational real number z such that if x < y, then

x < z < y while if y < x, then y < z < x.

Proof. We shall consider the case x < y. Let a C x and b G y- f hen

x < y implies the existence of a positive rational 4e and an integer Ar

i

such that for every n > N\

(/) bn — a n > 4e.

Further, since a and b are Cauchy sequences, there exist integers N2

and Nz such that for every m, n > N2

(2) j

Un Um\ ^

and for every m, n > Nz

(.3) |

b n ~ bm
\
< e.

Let N = max (Nh N2 ,
Nz) + 1 and let s be a rational number such

that e < s < 2e (see Theorem 4.2). Now consider the real number z

corresponding to the rational number an + We contend that * < z

and z < y. From (2) we may conclude that for every n > N
an — cl

n

< t-

Hence, aN - a n > — c and, therefore, for every n > N
(un T s) — an > s € > 0.

This means that the Cauchy sequence

(ujv 4“ s, au T s, •
•

•, On T $•>
' ' ’) a

is positive. Since this sequence is a member ol z — x, the real number

z — x is positive, and hence * < z.

t In the remainder ol this chapter we shall omit the letter “r” as a subscript for the symbols

used in connection with real numbers.
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Using the identity

bm (un "f* s) = (Jon — <2iv) (bm — bN) — s,

it follows by a similar argument [which employs (/) and (J)] that

y — z is positive, and hence z < y.

The following theorem is a generalization of the corresponding

property (Theorem 4.3) for the system of rational numbers.

THEOREM 6.3 (Archimedean property). If x and y are positive

real numbers, then there exists a positive integer n (properly, a real

number n which corresponds to a rational which, in turn, corre-

sponds to a positive integer) such that nx > y.

Proof. Let b £ y. According to Lemma 5.1, there exists a positive

rational number 6 such that for every n

b n < 5.

If d is the real number corresponding to (6, 5,
• •

*, 5,
• •

•), then

y < d.

Also, by assumption,

0 < .v.

By the preceding theorem there exist rational real numbers s and t

such that

0 < s < x,

y < t < d.

By the Archimedean property of rationals (which obviously carries

over to rational reals) there exists a positive integer n such that

It follows that

ns > t.

nx > ns > t > y.

THEOREM 6.4. A nonempty set of real numbers which has an
upper bound has a least upper bound.

Proof. In the proof which follows, if * is a real number and a is a
rational number such that * < ar ,

we shall abbreviate this to simply

< aP
Let A be a set which satisfies the hypothesis of the theorem. Ac-

cording to Theorem 6.3 there exist integers m and M such that m is

not an upper bound of A and M is an upper bound of A. (To obtain
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an m, select an element a of A, apply Theorem 6.3 to secure an

integer n such that n > —a, and then let m — —n.) Then we may

infer the existence of an integer b 0 such that bo is an upper bound of A

while bo — 1 is not. We now define b n inductively as follows:

_ cb n-i — 2~n if b n-i — 2-n is an upper bound of A
,

° n ~
(J> n— i

if b n~ i
— 2~n

is not an upper bound of A.

For all n
,
b n is an upper bound of A and, as may be proved by an

induction argument, b n - 2~n
is not an upper bound. Hence, for

every m > n

(/) bn - 2~n < bm .

Further, it is clear that for every m > n,

(2) b rn ^ bn-

Combining (/) and (2) gives

|

b n - bm
\
< 2-\

It follows that if N is a positive integer and m, n > N, then

\bn — bm
\

< 2~N
,

whence b is a Cauchy sequence of rational numbers. Let u be the real

number which it determines. Then by virtue of (/) and, in turn, (2),

for every n

(3) bn - 2~ n < u,

(4 )
u < bn.]

We shall now prove that u is an upper bound of A. Assume to the

contrary that a > u for some a in A. Then there exists an n such

that 2 n > (a — w)
-1

or

2~n < a — u

Addition of this to (3) yields the inequality bn < a, a contradiction

of the fact that bn is an upper bound of A.

Finally we prove that u is the least upper bound of A. Assume to

the contrary that v is a smaller upper bound. As above, there then

exists an n such that

(5) 2
~n <u - v.

f That (2) implies (4) is a consequence of the following result. If x and y are Cauchy se-

quences and there exists an integer N such that for all n > N, xn < yn ,
then [x] r < r[y]r. For

the contrary implies that the Cauchy sequence z such that zn = xn — yn is positive and hence

there exists an e > 0 and an N\ such that for all n > Ni, xn — yn > «• If we choose n —

N + N\ we are led to a contradiction of the hypotheses. We note lurther that x„ < yn does

not imply [x] T < r[y]r but only [x] T [y]r

•
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Since bn — 2~n
is not an upper bound of A, there exists an a in A such

that b n — 2~n < a
,
which implies that

b n — 2~n < v.

Addition of this to (5) yields the inequality

b n < u,

which contradicts (4).

Later we shall prove that the properties of the real number system

stated in Theorems 6.1 and 6.4 characterize it to within an order-

isomorphism.

EXERCISES

6.1. Prove that the system of rational real numbers is order-isomorphic to Q^.

6.2. Prove Theorem 6.1

.

6.3. Prove the assertion made in the proof of Theorem 6.4 that b n — 2~ n
is

not an upper bound of A.

6.4. Derive as a corollary to Theorem 6.4 that a nonempty set of real num-
bers which has a lower bound has a greatest lower bound.

6.5. Let / be a real function—that is, a function whose domain and range

are each a set of real numbers. Such a function is called continuous at a member
a of its domain iff for every e > 0 there exists a 5 > 0 such that for |A| <5 and

a. T h in the domain of /

\f(a + h) - f{a)
|

< e.

Prove that if / is a continuous at each point of the closed interval [4, b] and

f(a) < 0 and f(b) > 0, then there exists a c such that a < c < b and f{c) = 0.

Hint: Define c to be the least upper bound of all .v between a and b for which

/M < 0.

6.6. Assume that it has been shown that a real polynomial function is con-

tinuous. Let / be the polynomial function such that for all real numbers .v,

f(x) = x n — a where n is a positive integer and a is a positive real number.

Prove that there exists exactly one positive real number c such that f(c) = 0.

This number is called the «th root of a and symbolized by Va or a l,n
.

6.7. If a > 0, b > 0, and n is a positive integer, prove that

ValTb = V7b.

7 . Further Properties of the Real Number System

A sequence x of real numbers is a sequence such that xn C R for

every n. A Cauchy sequence of real numbers is a sequence x of real
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numbers such that for every positive real number e there exists a positive

integer N such that for every m, n > N

|

Xn
~~~ X jyi

]

€ •

We define next the notion of limit. This notion is the cornerstone of

the calculus and, indeed, of analysis in general. The real number y is a

limit of the sequence x of real numbers iff for every positive real num-

ber e there exists a positive integer N such that for every n > N

|*n — y| < €.

The proof of the following lemma is left as an exercise.

LEMMA 7.

1

. A sequence of real numbers has at most one limit.

Thus, if the sequence x of real numbers has y as a limit, then y is

its only limit, and we are justified in introducing the following familiar

notation for y :

lim xn = y or simply lim xn = y.

n—>

»

LEMMA 7.2. Let a be a sequence of rational numbers and let x be

the sequence of real numbers such that for every n, xn = (an) r ,
the

real number corresponding to a n . Then r is a Cauchy sequence ill a

is a Cauchy sequence. Further, if a is a Cauchy sequence and y is

the real number which it defines, then lim xn = y.

Proof. We shall consider only the second assertion. Let e be a

positive real number and let 5 = be a rational real number such

that 0 < 5 < e. Since a is assumed to be a Cauchy sequence, there

exists an N such that for all m, n > N

|

d n dm
|

^ d-

Since a n — am < d it follows that

[(dn ,
d n ,

' ‘
*, dn ,

’ ’ ') “ («1, a 2 ,

* *
'

,
a n ,

'
'

*)]r ^

(see the footnote in the proof of Theorem 6.4) or, in other words, that

xn — y < 5.

Similarly, the inequality dm — an < d implies that

y
— xn < 5 .

Hence, for all m, n > N
\xn — y\ <
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THEOREM 7.1. (Cauchy convergence principle). A sequence of

real numbers has a limit iff it is a Cauchy sequence.

Proof. It is left as an exercise to prove that if a sequence of real

numbers has a limit, then it is a Cauchy sequence.

Turning to the converse, assume that u is a Cauchy sequence of

real numbers. The strategy for proving that u has a limit calls for the

determination of a sequence a of rational numbers which approximates
u sufficiently closely that a is a Cauchy sequence and the real number
which it defines is the limit of u.

For each positive integer n, un < u n + 1 /n, and hence (Theorem
6.2) there exists a rational real number xn such that

Un < <C un -f- \/n.

Let e be a positive real number. Then there exists an integer Ni such
that Ni < 3/e and, hence, for every n >

(7)
|

un — *„| < e/3.

Further, a is a Cauchy sequence, since

|

Arc Xffi
|
Nz

|

U n
|

“(“
|

Un Um
]

—1~
|

Ufn

and for m and n sufficiently large each summand on the right side of

the inequality is less than e/3.

Let a n be the rational number to which *n corresponds. By Lemma
7.2, a is a Cauchy sequence of rational numbers and hence defines a

real number y. Further, by Lemma 7.2,

lim xn = y.

Hence, there exists an integer iV2 such that for n > N2

(2)
|

xn — y\ < e/2.

We infer from (/) and (2) that for n > max (Nh N2)

I

un ~ y |

<
|

un — xn
| + \xn — y| < e/3 + e/2 < e,

which establishes that y = lim u n .

We establish next the possibility of representing a real number by a
nonterminating decimal. A precise formulation of this, generalized to

any integer radix greater than or equal to 2, is given in the following

theorem.

THEOREM 7.2. Let r be an integer greater than or equal to 2.

Corresponding to each nonnegative real number x there is a sequence
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(a, dh d2 ,
•

•
*, dn ,

•
• •) of integers which is uniquely determined by a

(relative to r) such that

(i) a = [*], the largest integer less than or equal to a,

(ii) 0 < dn < r for all n
,

(iii) the sequence whose terms are defined inductively by

Jo = a,

Jn+l = Jn + dn+l/r
n+l

is a Cauchy sequence and limjyn =

Proof. Let r be an integer greater than or equal to 2, * be a non-

negative real number, and a — [a]. Then

at = ar -f- Ai

for some number Ai such that 0 < x\ < r. Let d\ = [*i] so

A^ = d\T + a

2

for some number A2 such that 0 < A2 < r. Let d2
= [*2 ]

so

A2r = d2r + a3

for some number a3 such that 0 < a3 < r.

In general, define xn by

n—J — dn-\f T %n

and set dn = [*n ]- Then

* = a + - + \ +
r r-

where 0 < A n+i < r. Hence

j

dn
|

An-)-l

^ / 1
d 1 ,

d2
,

0 < a — ( a 4 h — +
r r“

+ dn

n+1

< 1 .

j-n

According to the definition ofyn given in (iii), this may be written as

0 < a - < r~n .

It follows that
|

a - y n
|

< r
~ n

,
whence limy n = a.

The proof of the uniqueness (relative to r) of the sequence corre-

sponding to a is left as an exercise.

If r = 10 in the preceding theorem we obtain the familiar repre-

sentation of a nonnegative real number as a nonterminating decimal

upon writing a — [a] in decimal notation. Of the two possible decimal

representations of numbers of the form 1 • 10~; where 1 and j are non-



158 Extension of the Natural Numbers to the Real Numbers
|

chap. 3

negative integers, the theorem chooses that one which consists of all

zeros after a certain point.

The proof of the converse of Theorem 7.2 is left as an exercise.

THEOREM 7.3. Let (<

a

,
dh d2 ,

• •
*, dn,

•••) be a sequence of non-

negative integers such that for some integer r > 2, 0 < dn < r for

all n. Then there exists a unique nonnegative real number * such that

the sequence whose terms yn are defined inductively by y0 = a and

yn+ i = yn -f- dn+\/r
n+l

is a Cauchy sequence having a as its limit.

We conclude our development of the real number system by calling

attention to a common feature of the three extensions whereby R is ob-

tained from N. If the details (see Sections 2 and 3) of the first extension

are reviewed, it will become evident that it could be mimicked using

integers instead of natural numbers as the initial elements. Suppose this

construction is carried out to obtain what might be called the system of

superintegers. Then this system has all those properties which the sys-

tem of integers possesses. Moreover, the system of superintegers has an

additional property—one which destroys any further interest in it.

Namely, as the reader can readily prove, it is order-isomorphic to the

system of integers. In other words, the extension of Z by the method
used to extend N to Z yields nothing essentially different from Z. A
corresponding result holds for the second type of extension we intro-

duced: the extension of Q, by the method used to extend Z to O is a

system which is order-isomorphic to Finally, let us consider the ex-

tension of R, which can be made in terms of Cauchy sequences. We
shall call the numbers we get in this way superreal numbers. Thus, a

superreal number is an equivalence class of Cauchy sequences of real

numbers. Corresponding to the results stated above, it is possible to

prove that the system of superreal numbers is order-isomorphic to the

system of real numbers. In other words, essentially nothing new results

if R is extended by the method used to extend Q to R. To prove this

we point out first that, as discussed in Section 6, there is a one-to-one

map on the initial system (which is now R) into the extended system SR.
This map determines an order-isomorphic image of R in SR. Suppose
now that X is any superreal number. Let a £ X,

which means that a is

a Cauchy sequence ol real numbers. According to Theorem 7.1, x has a

limit y, whence * is ^v-equivalent to (y,y, •
•

- ,y,
• •

•), which implies

that X = y 8r . This means that the image of R in SR exhausts SR or, in

other words, that SR is an order-isomorphic image of R.
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EXERCISES

7.1. Prove Lemma 7.1.

7.2. Prove the first assertion made in Lemma 7.2.

7.3. Prove that if a sequence of real numbers has a limit, then it is a Cauchy

sequence.

7.4. In the proof of Theorem 7.2, show that an explicit definition of dn is

dn = [xr 11

]
— r[xr n~ 1

].

7.5. Prove Theorem 7.3.

7.6. Prove that the system of superintegers is order-isomorphic to the system

of integers.

BIBLIOGRAPHICAL NOTES

The two basic set-theoretical methods of constructing the system of real num-

bers from the system of natural numbers are due to Cantor and Dedekind. The

difference in these methods appears in the extension of the rational numbers

to the real numbers. The extension of the rationals to the reals via Dedekind’s

method is given in Landau (1930) and in N. H. McCoy (1960).



CHAPTER

Als we shall study it, mathematical or symbolic logic has two

aspects. On one hand it is logic—it is an analytical theory of the art

of reasoning whose goal is to systematize and codify principles of valid

reasoning. It has emerged from a study of the use of language in argu-

ment and persuasion and is based on the identification and examination

of those parts of language which are essential for these purposes. It is

formal in the sense that it lacks reference to meaning. Thereby it

achieves versatility: it may be used to judge the correctness of a chain

of reasoning (in particular, a “mathematical proof”) solely on the basis

of the form (and not the content) of the sequence of statements which

make up the chain. There is a variety of symbolic logics. We shall be

concerned solely with that one which encompasses most of the deduc-

tions of the sort encountered in mathematics. Within the context of

logic itself, this is “classical” symbolic logic.

The other aspect of symbolic logic is interlaced with problems relat-

ing to the foundations of mathematics. In brief, it amounts to formu-

lating a mathematical theory as a logical system augmented by further

axioms. The idea of regarding a mathematical theory as an “applied''

system of logic originated with the German mathematician G. Frege

(1848-1925), who developed a system of logic for use in his study of

the foundations of arithmetic. The Principia Mathematica (1910-1913) of

Whitehead and Russell carried on this work of Frege and demonstrated

that mathematics could be “reduced to logic.” In the later chapter

treating axiomatic theories some indication will be given of this approach

to mathematical theories.

1. The Statement Calculus. Sentential Connectives

In mathematical discourse and elsewhere one constantly encounters

declarative sentences which have been formed by modifying a sentence

with the word not or by connecting sentences with the words and
,

or, if

. . . then (or implies), and if and only if. These five words or combina-
160
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tions of words are called sentential connectives. Our first concern

here is the analysis of the structure of a composite sentence (that is,

a declarative sentence in which one or more connectives appear) in

terms of its constituent prime sentences (that is, sentences which

either contain no connectives or, by choice, are regarded as “indi-

visible”). We shall look first at the connectives individually.

A sentence which is modified by the word “not” is called the nega-

tion of the original sentence. For example, “2 is not a prime” is the

negation of “2 is a prime,” and “It is not the case that 2 is a prime and

6 is a composite number” is the negation of “2 is a prime and 6 is a

composite number.” It is because the latter sentence is composite that

grammatical usage forces one to use the phrase “It is not the case that”

instead of simply the word “not.”

The word “and” is used to join two sentences to form a composite

sentence which is called the conjunction of the two sentences. For ex-

ample, the sentence “The sun is shining, and it is cold outside” is the

conjunction of the sentences “The sun is shining” and “It is cold out-

side.” In ordinary language various words, such as “but,” are used as

approximate synonyms for “and”; however, we shall ignore possible

differences in shades of meaning which might accompany the use of

one in place of the other.

A sentence formed by connecting two sentences with the word “or”

is called the disjunction of the two sentences. We shall always assume

that “or” is used in the inclusive sense (in legal documents this is often

expressed by the barbarism “and/or”). Recall that we interpreted

“or” in this way in the definition of the union of two sets.

From two sentences we may construct one of the form “If . . . ,

then . . .”; this is called a conditional sentence. The sentence im-

mediately following “If” is the antecedent, and the sentence immedi-

ately following “then” is the consequent. For example, “If 2 > 3,

then 3 > 4” is a conditional sentence with “2 > 3” as antecedent

and “3 > 4” as consequent. Several other idioms in English which we

shall regard as having the same meaning as “If P, then Q” (where P
and Q are sentences) are

P implies Q,

P only if Q,

P is a sufficient condition for Q,

Q, provided that P,

QifT,

Q is a necessary condition for P.



162 Logic
|

chap. 4

The words “if and only if” are used to obtain from two sentences a

biconditional sentence. We regard the biconditional

P if and only if Q

as having the same meaning as

if P, then Q, and if Q, then P

;

Q is a necessary and sufficient condition for P .

By introducing letters “P,” ... to stand for prime sentences, a

special symbol for each connective, and parentheses, as may be needed

for punctuation, the connective structure of a composite sentence can

be displayed in an effective manner. Our choice of symbols foi the

connectives is as follows:

for “not,”

A for “and,”

V for “or,”

—> for “if . . . ,
then . . .

,”

<-» for “if and only if.”

Thus, if P and Q are sentences, then

-,P, PA Q, PV Q, P->Q, P*~>Q

are, respectively, the negation of P, the conjunction of P and Q, and

so on. Following are some concrete examples of analyzing the connec-

tive structure of composite sentences in terms ol constituent prime

sentences.

EXAMPLES
1.1. The sentence

2 is a prime, and 6 is a composite number

may be symbolized by

P A C,

where P is “2 is a prime” and C is “6 is a composite number.”

1.2. The sentence

If either the Pirates or the Cubs lose and the Giants win, then the

Dodgers will be out of first place and, moreover, I will lose a bet

is a conditional, so it may be symbolized in the form

R ->S.

The antecedent is composed from the three prime sentences P (“The Pirates

lose”), C (“The Cubs lose”), and G (“The Giants win”), and the consequent
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is the conjunction of D (“The Dodgers will be out of first place") and B (“I

will lose a bet”). The original sentence may be symbolized in terms of these

prime sentences by

((P V C) A G) -* (D A B).

1.3. The sentence

If either labor or management is stubborn, then the strike will be

settled iff the government obtains an injunction, but troops are

not sent into the mills

is a conditional. The antecedent is the disjunction of L (“Labor is stubborn”)

and M (“Management is stubborn”). The consequent is a biconditional whose

left-hand member is S (“The strike will be settled”) and whose right-hand mem-

ber is the conjunction of G (“The government obtains an injunction”) and the

negation of R (“Troops are sent into the mills”). So the original sentence may

be symbolized by

(P V M) —» (S <—
> (

G

A (—|P))).

To avoid an excess of parentheses in writing composite sentences in

symbolic form, we introduce conventions as in algebra. We agree that

is the strongest connective (that is, it is to encompass most), and then

follows — Next in order are V and A, which are assigned equal

strength, and then follows -i
,
the weakest connective. For example,

P A Q —> R means (P A Q) —> R,

P <—
» Q —> R means P <-» (Q —> R),

-i P A Q means ( — i P) A Q,

and the sentence in Example 1 .3 may now be symbolized as

L V M —
> (S G A —i R)'

EXERCISES

1.1. Translate the following composite sentences into symbolic notation,

using letters to stand for the prime components (which here we understand to

mean sentences which contain no connectives).

(a) Either it is raining or someone left the shower on.

(b) If it is foggy tonight, then either John must stay home or he must take

a taxi.

(c) John will sit, and he or George will wait.

(d) John will sit and wait, or George will wait.

(e) I will go either by bus or by taxi.

(f) Neither the North nor the South won the Civil War.

(g) If, and only if, irrigation ditches are dug will the crops survive; should

the crops not survive, then the farmers will go bankrupt and leave.
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(h) If I am either tired or hungry, then I cannot study.

(i) If John gets up and goes to school, he will be happy; and if he does not

get up, he will not be happy.

1 .2. Let C be “Today is clear,” R be “It is raining today,” S be “It is snowing

today,” and T be “Yesterday was cloudy.” Translate into acceptable English

the following.

(a) C -> -,(/? A S). (d) (T -+R)VC.
(b) Y <—> C. (e) C <—

> (R A —16”) V Y.

(c) Y A (C V R). (0 (C <-» /?) A (-iS V Y).

2. The Statement Calculus. Truth Tables

Earlier we agreed that by a statement we would understand a

declarative sentence which has the quality that it can be classified as

either true or false, but not both. That one of “truth” or “falsity”

which is assigned to a statement is its truth value. Often we shall

abbreviate “truth” to T and “falsity” to F. If P and Q are statements,

then, using the everyday meaning of the connectives, each of

-iP, PA Q, PV Q, P-^Q,P~Q

is a statement. Let us elaborate.

On the basis of the usual meaning of “not,” if a statement is true,

its negation is false, and vice versa. For example, if S is the true state-

ment (has truth value T) “The moon is a satellite of the earth,” then

—]S is false (has truth value F).

By convention, the conjunction of two statements is true when, and

only when, both of its constituent statements are true. For example,

“3 is a prime, and 2 + 2 = 5” is false because “2 + 2 = 5” is a false

statement.

Having agreed that the connective “or” would be understood in the

inclusive sense, standard usage classifies a disjunction as false when,

and only when, both constituent statements are false.

Truth-value assignments of the sort which we are making can be

summarized concisely by truth tables wherein are displayed the truth-

value assignments for all possible assignments of truth values to the

constituent statements. Below are truth tables for the types of composite

statements we have already discussed, as well as those for conditional

and biconditional statements.
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Negation Conjunction Disjunction

p -iP P Q P A Q P Q PV Q

T F T T T T T T

F T T F F T F T

F T F F T T

F F F F F F

Conditional Biconditional

P Q P-^Q P Q P +-> Q

T T T T T T

T F F T F F

F T T F T F

F F T F F T

The motivation for the truth-value assignments made for the con-

ditional is the fact that, as intuitively understood, P —> Q is true iff Q

is deducible from P in some way. So, if P is true and Q is false, we want

p —> Q to be false, which accounts for the second line of the table.

Next, suppose that Q is true. Then, independently of P and its truth

value, it is plausible to assert that P —> Q is true. This reasoning sug-

gests the assignments made in the first and third lines ol the table. lo

justify the fourth line, consider the statement P A Q —5 P- We expect

this to be true regardless of the choice of P and Q. But, if P and Q are

both false, then P A Q is false, and we are led to the conclusion that

if both antecedent and consequent are false, a conditional is true.

The table for the biconditional is determined by that for conjunction

and the conditional, once it is agreed that P <-> Q means the same as

(P-> Q) A (Q ->/>).

These five tables arc to be understood as definitions; they are the

customary definitions adopted for mathematics. We have made merely

a feeble attempt to make them seem plausible on the basis of meaning.

It is an immediate consequence of these definitions that it P and Q are

statements, then so are each ol —\P, P A Q, P V Q, P > Q, an<^ T Q.

It follows immediately that any composite sentence whose prime com-

ponents are statements is itself a statement. II the truth values of the

prime components arc known, then the truth value of the composite

statement can be determined in a mechanical way.
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EXAMPLES2.1.

Suppose that a composite statement is symbolized by

P V Q -iS)

and that the truth values of P, Q, R, and S are T, F, F, and T, respectively. Then

the value of P V Q is T, that of —i-S is F, that of R > —
i
S is T, and, hence, that

of the original statement is T, as a conditional having a true antecedent and a

true consequent. Such a calculation can be made quickly by writing the truth

value of each prime statement underneath it and the truth value of each com-

posite constructed under the connective involved. Thus, for the above we would

write out the following, where, for study purposes, we have put successive steps

on successive lines.

P V Q —»(/?<—> —i£)
T F F T

T F

T

T

2.2.

Consider the following argument.

If prices are high, then wages are high. Prices are high or there

are price controls. Further, if there are price controls, then there

is not an inflation. There is an inflation. Therefore, wages are

high.

Suppose that we are in agreement with each of the first four statements (the

premises). Must we accept the fifth statement (the conclusion)? To answer this,

let us first symbolize the argument using letters “P,” “IV,” “C,” and “/” in the

obvious way. Thus, P is the sentence “Prices are high.” Then we may present

it as follows:

P -> W
P V c
C-> -,/

I_

W
To assume that we are in agreement with the premises amounts to the assign-

ment of the value T to the statements above the line. The question posed then

can be phrased as: If the premises have value T, does the conclusion have value

T? T he answer is in the affirmative. Indeed, since I and C —> —\I have value T,

the value of C is F according to the truth table for the conditional. Hence, P has

value T (since P V C is T) and, therefore, W has value T (since P —» W is T).

2.3.

We consider the conjunction

(P V C) A (C-> -,/)

of two of the statements appearing in the preceding example. In general, the
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truth value which such a statement will receive is dependent on the assignments

made to the prime statements involved. It is realistic to assume that, during

periods of changing economic conditions, the appropriate truth value assign-

ments to one or more of P, C, and / will change from T to F or vice versa. Thus

the question may arise as to combinations of truth values of P, C, and I for which

(P v C) A (C —> —17 ) has value T or value F. This can be answered by the

examination of a truth table in which there appears the truth value of the com-

posite statement for every possible assignment (2
3

) of truth values to P, C, and /.

This is called the truth table for the given statement, and it appears below.

Each line includes an assignment of values to P, C, and /, along with the asso-

ciated value of (P V C) A (C -> -i/). The latter may be computed as in the

first example above. However, short cuts in filling out the complete table will

certainly occur to the reader as he proceeds.

2.4. If P is “2 is a prime” and L is “Logic is fun,” there is nothing to prohibit

our forming such composite statements as

Since both P and L have truth values (clearly, both are T), these composite

statements have truth values which we can specify. One s initial reaction to

such nonsense might be that it should be prohibited that the formation of

conjunctions, conditionals, and so on, should be permitted only if the com-

ponent statements are related in content or subject. However, it requires no

lengthy reflection to realize the difficulties involved in characterizing such

obscure notions. It is much simpler to take the easy way out: to permit the

formation of composite statements from any statements. On the basis of mean-

ing, this amounts to nonsense sometimes, but no harm results. Our concern is

with the formulation of principles of valid reasoning. In applications to sys-

tematic reasoning, composite statements which amount to gibberish simply

will not occur.

EXERCISES

2.1 . Suppose that the statements P, Q, R
,
and S are assigned the truth values

T, F, F, and T, respectively. Find the truth value of each of the following state-

ments.

P C I {P V C) A (C -4 —,/)

T T T

T T F

T F T

T F F

F T T

F T F

F F T
F F F

F

T

T
T
F

T

F

F

P V L, P —> L, if -+P v L.
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(a) (P V Q) V R. (f) P V R P A -iP.

(b) P V (Q V P). (g) P<->P-^ (-.P V S').

(c) R —
> (S’ A P). (h) Q A -iS

1 -* (P<->P).

(d)P ->(/?-> 5). (i) PAS'—>(P-»-iQ VP).

(e) P -> (P V P). (j) (P V -iQ) V P -> (P A -iP).

2.2. Construct the truth table for each of the following statements.

(a) P -> (P Q). (d) (P-^Q)^nPV Q.

(b) PVQ^QVP. (e) (P -> Q A P) V (—iP A Q).

(c) P-> -,(Q A P). (f) P A Q -> (Q A -,Q -> P A Q).

2.3. Suppose the value of P —» Q is T ;
what can be said about the value of

—i
P A Q ^ P V Q?

2.4. (a) Suppose the value of P <-> Q is T; what can be said about the

values of P <-> —
i Q and —\P <-> Q?

(b) Suppose the value of P<-^Q is F; what can be said about the

values of P *-» —
i Q and —i

P Q?

2.5. For each of the following determine whether the information given is

sufficient to decide the truth value of the statement. If the information is enough,

state the truth value. If it is insufficient, show that both truth values are possible.

(a) (P -> Q) - P.

T

(b) P A (Q -> P).

T

(c) P V (Q -> P).

T

(d) —i
(P V Q) <-> —i P A —iQ.

T

(e) (-,Q ->-./>)•

T

(f) (PAQ)-t(PV 5).

T F

2.6.

In Example 1.3 we symbolized the statement

If either labor or management is stubborn, then the strike will be

settled iff the government obtains an injunction, but troops are

not sent into the mills

as

L V M —> A -i P).

By a truth-value analysis, determine whether this statement is true or false

under each of the following assumptions.

(a) Labor is stubborn, management is not, the strike will be settled, the

government obtains an injunction, and troops are sent into the mills.

(b) Both labor and management are stubborn, the strike will not be settled,

the government fails to obtain an injunction, and troops are sent into

the mills.

2.7.

Referring to the statement in the preceding exercise, suppose it is agreed

that
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If the government obtains an injunction, then troops will be sent

into the mills. If troops are sent into the mills, then the strike will

not be settled. The strike will be settled. Management is stubborn.

Determine whether the statement in question is true or not.

3. The Statement Calculus. Validity

The foregoing is intended to suggest the nature of the statement

calculus, namely, the analysis of those logical relations among sentences

which depend solely on their composition from constituent sentences

using sentential connectives. The setting for such an analysis includes

the presence of an initial set of sentences (the “prime sentences’’) and

the following two assumptions.

(i) Each prime sentence is a statement; that is, there may be assigned

to a prime sentence a truth value.

(ii) Each sentence under consideration is composed from prime

sentences using sentential connectives and, for a given assignment

of truth values to these prime sentences, receives a truth value in

accordance with the truth tables given earlier for negation, con-

junction, and so on.

With this in mind, let us make a fresh start on the statement calculus.

Suppose there is given a nonempty set of distinct sentences and that

we extend this set by adjoining precisely all ol those sentences which

can be formed by using, repeatedly and in all possible ways, the various

sentential connectives. Then the extended set has the following prop-

erty. If A and B are members, then so are each of -\A, A V B, A A B,

A —> B
,
and A <-> B. We shall call the members of the extended class

formulas. The members of the initial set are the prime formulas, and

the others are composite formulas. 1 he prime iormulas which appear

in a composite formula arc said to be contained in that for mula and

are called its prime components. lo display a composite formula un-

ambiguously, parentheses are used. However, to avoid excessive use of

parentheses, the conventions introduced earlier will be employed.

The classical statement calculus, which is the only one we treat,

assumes that with each prime formula there is associated exactly one

member of { T, F}. Further, it assumes that it is irrelevant if it is T or F

that is associated with a prime formula. Thereby, maximum versatrlrty

in the applications is achieved—truth values may be assigned as the
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occasion demands. The truth value of a composite formula is defined

inductively in accordance with the following tables.

A B A A B A V B A-> B A*-* B A -iA

T T T T T T T F

T F F T F F F T

F T F T T F

F F F F T T

EXAMPLES
3.1. If the prime components in a formula A are Pi, P2 ,

• Pn ,
then the

definition of the truth value of A in terms of truth values of Pi, P2 ,

• •
*, Pn can

be exhibited in a truth table, as described earlier. There are 2 n rows in such a

table, each row exhibiting one possible assignment of T’s and F’s to Pi,P2,"-,Pn.

3.2. Let A be a formula having Pi, P2 ,

• •
*, Pn as its prime components. Then

A provides a rule for associating with any ordered rc-tuple of T’s and F’s, whose

zth coordinate is the assignment to P t-, for i = 1,2, • •
•, n, one of T and F. If we

set V = {T, F}, then we can rephrase our observation: A defines a function on

Vn into V. A function on Vn into V we shall call a truth function (of n argu-

ments). Truth functions will be designated by such symbols as

f(php2 ,
•

‘
*

,
pn) 5 g(qi, q-2 ,

•
•
*, q n), and so on.

Note that we depart from our practice of designating functions by single letters

and use notation heretofore reserved for function values. Our excuse is that

composition of functions can be described more simply. For example, the

notation

f(pl) "
"

‘ipi—1 ?
"5 q*n)i Pi+h ' '

*
) Pn)

is self-explanatory as a function obtained by composition from the truth func-

tion / of n arguments and g of m arguments. We shall refer to this function as

that obtained by substitution of g for the zth variable in /. Clearly, such com-
binations of truth functions are again truth functions.

An alternative approach to the statement calculus can be given in terms of

truth functions: There are 2
2n

different truth functions of n arguments. Of the

four for n = 1, that whose value at T is F, and whose value at F is T, we shall

denote by —
\p. Among the sixteen truth functions of two arguments appear the

four listed below in tabular form. The reason for the denotations chosen should

be clear.

A (p, q) v (P, q) 7) q)

(T, T> T T T T
(T, F) F T F F

<F, T> F T T F

<F, F) F F T T
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Since the outfix notation for these functions seems unnatural, we shall put the

reader at ease by employing the more familiar infix notation [for example,

p A q instead of A (p, <7)].

It is of interest that by using just those functions which have been mentionc d

so far and the operation of function composition in the form mentioned above,

all truth functions of any number of arguments can be obtained. Indeed, the

three functions p, p V q, and p A q suffice. To prove this, let f(ph p2, • “,pn)

be some truth function. If the value of / is F for all values of p\, /2, ’
5 pn (that

is, / is the constant function F), then it is equal to

(pi A ~ip\) A (p2 A —1/2) A • * A (pn A -
1
pn)-

Otherwise, / assumes the value T at least once. For each element of the domain

of / such that / takes the value T, let us form the function

?1 A ?2 A • *
• A qn ,

where is pi (or -1p t) when pi has the value T (or F). Then we contend that/

is equal to the function obtained “by disjunction from all such functions. For

example, iff(p, q) takes the value F when p = q = T and the value T otherwise,

then

/(/, q) = (p A -i/) V (-1p A q) V (-1P A -1 q)-

The reader can verify this and supply a proof of the general statement.

Actually, each of the pairs —ip, p A q and —1/,/ V q is adequate to generate

all truth functions, using the operation of function composition, since p V q
=

(_,

p

A —
, q) and p A q

= -1 (1/ V -1 q). The same is true of the pair -1p,

p —> q ?
as the reader can verify. Although no member of any of the three pairs

mentioned can be discarded to obtain a single function which generates all truth

functions, such functions do exist. For example, the function p\q (as it is cus-

tomarily written) of two arguments, whose value is T except at (T, T), where its

value is F, suffices. To prove this it is sufficient to show (for example) that both

—ip and p V q can be expressed in terms of it.

As we have already observed, each formula of the statement calculus defines

a truth function. It should be clear that it is only the structure of a composite

formula A regarded as a truth function that one considers when making a truth

value assignment to A for a given assignment of truth values to its prime com-

ponents. When it is convenient, we shall feel free to regard a formula as a truth

function. In such an event, the prime components (statement letters) will be

considered as variables which can assume the values T and F.

The statement calculus is concerned with the truth values of com-

posite formulas in terms of truth-value assignments to the prime com-

ponents and the interrelations of the truth values of composite formulas

having some prime components in common. As we proceed in this

study it will appear that those formulas whose truth value is T for every
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assignment of truth values to its prime components occupy a central

position. A formula whose value is T, for all possible assignments of truth

values to its prime components, is a tautology or, alternatively, such

a formula is valid (in the statement calculus). We shall often write

t= A

for “A is valid” or “A is a tautology.”! Whether or not a formula A
is a tautology can be determined by an examination of its truth table.

If the prime components in A are Pi, Pu •••, P„, then A is a tautol-

ogy iff its value is T for each of the 2 n assignments of T’s and F’s to

Pi, Pi, *
•

*, Pn • For example, P —> P and P A (P —» Q) —> Q are tau-

tologies, whereas P —> (Q —» R) is not. These conclusions are based on

an examination of Tables I, II, and III, below.

Table I Table II Table III

p P-+P P Q PA (P -» Q) -»Q P Q R P-> (Q-*R)

T T T T T T T T T T T T

F T T F F F T T T F F F

F T F T T T F T T T

F F F T T T F F T T

F T T T T

F T F T F

F F T T T

F F F T T

The definition of validity provides us with a mechanical way to

decide whether a given formula is valid—namely, the computation and
examination of its truth table. Although it may be tedious, this method
can always be used to test a proposed formula for validity. But, clearly,

it is an impractical way to discover tautologies. This state of affairs has

prompted the derivation of rules for generating tautologies from tau-

tologies. The knowledge of a limited number of simple tautologies and
several such rules make possible the derivation of a great variety of

valid formulas. We develop next several such rules and then imple-

ment them with a list of useful tautologies.

THEOREM 3.1. Let B be a formula and let B* be the formula

resulting from B by the substitution of a formula A for all occur-

rences of a prime component P contained in B. If B, then fz B*.

t This symbol for validity (|=) appears to be due to Kleene.
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Proof. For an assignment of values to the prime components of

B * there results a value v(A) of A and a value v(B*) ol B*. Now
v(B*) = v{B), the value of B for a particular assignment of values

to its prime components, including the assignment of v{A) to P. If

B is valid, then v(B) and hence v(B*) is always T. That is, il B is

valid, then so is B*.

EXAMPLES
3.3. From Table IV below it follows that \= PVQ<->QVP. Hence, by

Theorem 3.1, t= (/?—>£) V Q <-> Q V (R —> S). A direct verification of this

result (Table V), using the reasoning employed in the proof of Theorem 3.1,

should clarify matters, if need be. To explain the relationship of Table V to

Table IV, we discuss the displayed line of Table V.

Table IV Table V

p Q P V Q <-> Q V P R S Q (/!-.5)VQh(JV (R ->S)

T T T

T F T

F T F T T T T T F TFT FT T F

F F T

There was entered first (at two places) the value F of R —> S for the assignment

of T to R and F to S. Then the value T assigned to Q was entered twice. The

rest of the computation is then a repetition of that appearing in the third line

of Table IV after the entries underlined there have been made.

3.4. The practical importance of Theorem 3.1 is that it provides a method

to establish the validity of a formula without dissecting it all the way down to

its prime components. An illustration will serve to describe the application we

have in mind. Suppose the question arises as to whether the formula

(R V S) A ((/? V S) -> (P A Q)) -> (P A Q)

is a tautology. The answer is in the affirmative, with Theorem 3.1 supplying

the justification, as soon as it is recognized that the formula in question has the

“same form as” the tautology PA (P —> Q) —* Q (Table II), in the sense that

it results from P A (P —
> Q) —* Q upon the substitution of R V S for P and

P A Q for Q.

We introduce next a relation for formulas. For the definition it is

convenient to interpret formulas as truth functions and observe that

a formula whose prime components are Ph P2 ,

* *
*

,
Pn may be regarded

as a function of an extended list Ph •
•
•, Pn ,

• •
•, Pm of variables. Let us

now agree to call formula A equivalent to formula B, symbolized

A eq B,
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iff they are equal as truth functions of the list of variables Ph P2 ,

• •
*, Pm,

where each P occurs as a prime component in at least one of A and B.

In terms of truth tables, the definition amounts to this. Suppose that

{Pi, P2 ,

• •
*, Pm }

is the union of the sets of prime components contained

in A and P, respectively, and that we compute the truth tables of A and

of B as if both contained Pi, P2 ,
•••,/» as prime components. Then

A eq B iff the resulting truth tables are the same. For example, from

Tables VI and VII below we infer that (P —-> Q) eq —iP V Q and

PeqP A (Q V -iQ).

Table VI Table VII

p Q P —> Q nPVQ P Q P P A (Q V -,Q)

T T T T T T T T

T F F F T F T T

F T T T F T F F

F F T T F F F F

It is left as an exercise to prove that eq is an equivalence relation on

every set of formulas and, further, that it has the following substitutivity

property: If Ca is a formula containing a specific occurrence of the

formula A and CB is the result on replacing this occurrence of A by a

formula P, then
if P eq A, then CB eq Ca-

Henceforth, equivalent formulas will be regarded as interchangeable,

and the substitution property will often be employed without comment.

Equivalence of formulas can be characterized in terms of the concept

of a valid formula, according to the following theorem.

THEOREM 3.2. bd^Piffdeq P.

Proof. Let Pi, P2 ,

• •
•

,
Pm be the totality of prime components ap-

pearing in A and P. For a given assignment of truth values to these

components, the first part of the computation ol the value of A «-> P
consists of computing the values of A and P, after which the compu-

tation is concluded by applying the table lor the biconditional. Ac-

cording to this table, the value of A <-> P is T ill the values computed

for A and B are the same.

COROLLARY. Let Ca be a formula containing a specified occur-

rence of the formula A and let CB be the result of replacing this

occurrence of A by a formula P. If 1= A <-> P, then CA «-» CB .

If 1= A «-» B and t= CA ,
then 1= CB .

This proof is left as an exercise.
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THEOREM 3.3. If t= A and 1= A -> B, then 1= B.

Proof. Let Ph P2 , *, Pm be the totality of prime components ap-

pearing in A and B. For a given assignment of truth values to these,

the first part of the computation of the value of A —» B consists of

computing the values of A and B
,
after which the computation is

completed by applying the table for the conditional. The assump-

tions 1= A and V A —> B imply that both the value obtained for A

and that for A B are T. According to the table for A —> B, this

implies that B must also have the value T. Since this is the case for

all assignments of values to Pi, P2 ,
•

•

•, Pm ,
B is valid.

As the next theorem we list a collection of tautologies. It is not in-

tended that these be memorized; rather, they should be used for ref-

erence. That many of the biconditionals listed are tautologies should

be highly plausible on the basis of meaning, together with Theorem 3.1

.

That each is a tautology may be demonstrated by constructing a truth

table for it, regarding the letters present as prime formulas. Then,

once it is shown that the value is T for all assignments of values to the

components, an appeal is made to the substitution rule of Theorem 3.1

to remove the restriction that the letters be prime formulas. In the

exercises for this section the reader is asked to establish the validity of

some of the later formulas by applying one or more of Theorems

3. 1-3. 3 to tautologies appearing earlier in the list.

THEOREM 3.4.

Tautological Conditionals

1. t= A A (A —> B) B.

2. 1= —\B A (A —> B) ——iT

3. —iA A (A V B)-> B.

4. A —> (B —> A A B).

5. t= A A B —> A.

6. 1= A —> A V B.

7. 1— (A —> B) A (B —> C) —> (A > C).

8. f= (M A B —» C) —» (A —> (B —» C)).

9. 1= (A —

>

(

B

—> C)) —> (A A B > C).

10. t= (A —* B A —i
B) —» —\A.

11. t= (A -> B) -> (A V C —> B V C).

12. 1= (A B) (A A C-> B A C).

13. 1= (A -> B) -> ((£ -> C) -*
(A -> C)).

14. t= {A <-> B) A {B C) —> (A «-> C).
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Tautological Biconditionals

15. 1= A *-> A.

16. E —i

—
\
A 4—> A.

17. 1= (A 5) (B<r+A).

18. 1= (A-> A) A (C->

19. 1= (A -> A) A (A ->

20. 1= (A —> A) 4-> (

—

i
A

21. 1= iV AhA V A
22. t= (d V A) V C* 4—

>

A V (A

23. t= d V (A A C) 4->

(A V A) A (d

24. t= A V A 4-> A.

25. t=
—

i
(d V A) 4—

>

-i A A

5) <-> (A V C-> 5).

C) (A —> 5 A C).

—> —i
d).

21'. 1= /l A
22'.

1= {A A
V C).

23'.
1
= A A

V C).

24'. NA
25'. t= -i (A

—i
A.

B <r-+ B A A.

B) A C*->

4 A (5 A C).

(A V C) ~
(4 A 5) V (i A C).

yl 4—» /l

.

A 5) *->

—i
/l V -i

A,

Tautologies for Elimination of Connectives

26. t= A -> 5 4-> -,d V 5.

27. E d —» B <-* —
i

(d. A —i 5).

28. t 4 V 5 4-> —i /l —> B.

29. t 4 V A <-> (id A —i A).

30. E ^4 A A <-> —i
(d —> —i

A).

31. 1= 4 A A<-> —
i

( —i
^4 V -

1
A).

32. 1= (A ^ A) <-> (A -> A) A (A -> /l).

We conclude this section with the description of a powerful method

for obtaining tautologies from scratch. Initially we consider only for-

mulas composed from prime formulas Pi, P-2 ,
•

•
•

,
P» using —

i ,
A

,
and

V. The denial, Ad ,
of such a formula A is the formula resulting from

A by replacing each occurrence of A by V and vice versa and replacing

each occurrence of P
t
by an occurrence of —|P» and vice versa. As

illustrations of denials in the present context we note that the denial

of P V Q is —|P A —
i Q and the denial of —

1 (—iP A Q) is —
i

(P V -iQ).

The theorem relating denials and tautologies lollows.

THEOREM 3.5. Let A be a formula composed from prime com-

ponents using only —i, A, and V. Let Ad be the denial of A. Then

1= —i
A 4 > A d .
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A proof of this assertion can be given by induction on the number of

symbols appearing in a formula. We forego this, but do include in the

first example below a derivation of an instance of the theorem. An-

other example describes the extension of the theorem to the case ol a

formula which involves —> or <->.

EXAMPLES
3.5.

An instance of Theorem 3.5 is the assertion that

1= -,((-,

P

V Q) V (Q A (P V -i P))) <-> (P A -iQ) A (-i Q V (—i/? A P)),

or, in other words, that the left-hand side and the right-hand side of the bi-

conditional are equivalent formulas. Using the properties of transitivity and

substitutivity of equivalence, this is established below. Each step is justified by

the indicated part of Theorem 3.4 (in view of theorem 3.2).

n(hP V Q) V (Q A (P V -.P)))
,

eq -,(-, P V Q) A -i(Q A (P V -iP)) (25)

eq (_, n p A -,Q) A (-.Q V -i(P V -i P)) (25, 25')

eq (-i-iP A -i Q) A (-iQ V (-i R A -i-iP)) (25)

eq (P A —iQ) A (—iQ V (—iP A P)) (^)

3.6. Using tautology 32 in Theorem 3.4 we can derive from a formula in

which <—

>

appears an equivalent formula in which <—> is absent. For instance,

P <-> (Q A P) eq (P —> Q A P) A (Q A P P).

That is, ^ can be eliminated from any formula. Similarly, using tautology

26 or 27, —> can be eliminated from any formula. Thus, any formula A is

equivalent to a formula B composed from prime components using —i, A,

and V . Then we may define the denial of A to be the denial of B.

3.7. According to the preceding example, <-> and —> can be eliminated

from any formula. Using tautology 29 it is possible to eliminate V or (with

tautology 31), equally well, A. That is, any formula is equivalent to one com-

posed from prime components using -i and V or using —i
and A . This con-

clusion should be recognized as merely another version of a result obtained in

Example 3.2.
.

3.8. From tautology 22 follows the general associative law for V ,
which

asserts that however parentheses are inserted in A\ V Ai V • * * V A n to render

it unambiguous, the resulting formulas are equivalent. From tautology 22

follows the corresponding result for A

.

EXERCISES

3.1 . Referring to Example 3.2, write each of the following formulas as a truth

function in outfix notation. For example —,P—>(QV (PAS)) becomes

—
* (—|P, V (Q, A (P> S)).
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(a) P A -iQ. (e) P (Q -* R) ^ Q (?-» ^)-

(b) _,P_^Q. (f) P V R —> (R A (S V —iP)).

(c) P V (Q V /?). (g) (P -» Q) -» OS' A -,P-* Q).

(d) P A (Q -» P).

3.2. (a) Referring to Example 3.2, complete the proof that every truth func-

tion can be generated from —

i

p, p V q ,
and p A q.

(b) Referring to the same example, show that every truth function can

be generated from p\q.

3.3. Suppose that Ph P2 ,
• • Pn are prime components of A. Show that the

truth table of A, regarded as having Ph • •
•, Pn ,

• •
•, Pm as prime components

can be divided into 2m_n parts, each a duplicate of the truth table for A com-

puted with Ph P2 ,

• •
•, Pn as the prime components.

3.4. Prove that eq is an equivalence relation on every set of formulas and

that it has the substitutivity property described in the text.

3.5. Prove the results stated in the Corollary to Theorem 3.2.

3.6. Derive each of tautologies 28-31 from earlier tautologies in Theorem

3.4, using properties of equivalence for formulas. As an illustration, we derive

tautology 27 from earlier ones. From 26, A-+—\Beq—\A\/ —\B, and, in

turn, —\A V —i
B eq —i

{A A B) by 25'. Hence, A —> —i —i
B eq —

i
(A A —i

B).

Using 16 it follows that A —* B eq -i (A A -i B), which amounts to 27.

3.7. Instead of using truth tables to compute the value of a formula, an arith-

metic procedure may be used. The basis for this approach is the representation

of the basic composite formulas by arithmetic functions in the following way.

Formula
Arithmetical

representation

-i P 1 + P
P A Q P + Q + PQ
PVQ PQ
P—>Q (1 + P)Q

Q P + Q
When the value T (respectively, F) is assigned to a prime component in a for-

mula—for example, P—the value 0 (respectively, 1) is assigned to the variable

P in the associated arithmetical representation. Further, values of the arith-

metical functions are computed as in ordinary arithmetic, with one exception

:

namely, 1+1=0.
In each case a simple calculation shows that when the formula takes the

value T (respectively, F), then its arithmetical representation takes the value 0

(respectively, 1). In these terms, tautologies are represented by functions which

are identically 0. For example, that 1- P W -]P is clear from the fact that

P V —\P is represented by P(1 + P). To prove that the formula in 1 of Theo-

rem 3.4 (regarding A and B as prime components) is a tautology, we form first

[corresponding to A A (A —* £)],
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A 4- (1 + A)B + A{\ + A)B
,

which reduces to A + (1 + A) B since A(\ + A) is identically 0. Then to the

entire formula in 1 corresponds the function

(1 + A + (1 + A)B)B
,

which, as one sees immediately, is identically 0.

In the algebra at hand, 2x = 0, x(x + 1) =0, and x 2 = x for all x. These

facts make the simplification of long expressions an easy matter.

Prove some of the tautologies in Theorem 3.4 by this method.

3.8. (a) With Exercise 3.7 in mind, show that the function (1 + P)(l + Q)

is an arithmetical representation of the truth function P\Q defined

in Example 3.2.

(b) The result in (a), together with that in Exercise 3.2(b), may be re-

formulated as follows: Every mapping on {0, l} n into {0, 1} can be

generated from the mapping /: {0, l} 2
{0, 1} such that /(x, y) =

(1 + x){\ + y). Show that the same is true of g: (0, l} 3
{0, 1},

where g(x, y, z) = 1 + x -f- y + xyz.

4. The Statement Calculus. Consequence

In the introduction to this chapter we said that it was a lunction ol

logic to provide principles of reasoning—that is, a theory ol inference.

In practical terms this amounts to supplying criteria lor deciding in a

mechanical way whether a chain of reasoning will be accepted as

correct on the basis of its form. A chain of reasoning is simply a finite

sequence of statements which are supplied to support the contention

that the last statement in the sequence (the conclusion) may be inferred

from certain initial statements (the premises). In everyday circum-

stances the premises of an inference are judged to be true (on the basis

of experience, experiment, or belief). Acceptance of the premises of an

inference as true and of the principles employed in a chain of reason-

ing from such premises as correct commits one to regard the conclusion

at hand as true. In a mathematical theory the situation is different.

There, one is concerned solely with the conclusions (the so-called

“theorems” of the theory) which can be inferred from an assigned in-

itial set of statements (the so-called “axioms” of the theory) according

to rules which are specified by some system of logic. In particular, the

notion of truth plays no part whatsoever in the theory proper. The

contribution of the statement calculus to a theory ol inference is just

this: It provides a criterion, along with practical working forms thereof,

for deciding when the concluding sentence (a statement) of an argu-
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ment is to be assigned the value T if each premise of the argument is

assigned the truth value T. This criterion is in the form of a definition.

The statement B is a consequence of statements A i, A 2 ,
• • A rn (by the

statement calculus), symbolized

A i, A2 ,
•

•
•, Am 1= B,

iff for every truth-value assignment to each of the prime formulas

Ph A, • •
•, Pn occurring in one or more of A i, A 2 ,

•
•

•, Am ,
and B, the

formula B receives the value T whenever every A receives the value T.

In terms of truth tables, “Ah A 2 ,
•••, Am t= P” means simply that if

truth tables are constructed for A i, A 2 ,
•

•
*, Am ,

and B
,
from the list

P\, Pi, •
•

•
,
Pn of prime formulas occurring in one or more of these

formulas, then B receives the value T at least for each assignment to

the P’s which make all ff’s simultaneously T.

EXAMPLE
4.1. From an inspection of Table VIII below we obtain the following three

illustrations of our definition:

P, P, Q A P -> -i R 1= —
i Q, (line 3)

P, P —> P, R t= P V Q —> R, (lines 1 and 3)

QAP—>-iP, -i Q, P-*Pt= -i(PAQ). (lines 3, 7, 8)

Table VIII

p Q R QaP-*->R -1

Q

R P V Q —> R -1 (P A Q)

T T T F F T T F

T T F T F F F F

T F T T T T T T

T F F T T F F T

F T T T F T T T

F T F T F T F T

F F T T T T T T

F F F T T T T T

THEOREM 4.1.

(I) A t= Biff t= A-> B.

(II) A i, Ao, •
•
•, Am t= B iff Ai A A 2 A • •

• A Am 1= B or, iff

1= Ai A A2 A • •
• A —> P(m > 2).

Proo/. For (I), let A 1= B. By the table for —>,
—> P receives the

value F iff receives the value T, and, simultaneously, P receives the

value F. From the hypothesis, this combination of values does not
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occur. Hence A —> B always receives the value T, that is, L A > B.

For the converse, let t= A —> B
,
and consider an assignment of

values to the prime components such that A receives the value T.

Since A —> B receives the value T, it follows from the table for —

>

that B takes the value T, whence, A t= B.

The first assertion in (II) follows from the table for A, and the

second follows from the first by an application of (I).

COROLLARY. A h •
• •, Am-i, Am t= B iff A h •

• •, A m-i ^ Am -+ B.

More generally, A\, • • Am-1 ,
Am 1

- B iff 1= A\ —> (A 2
—>(•••

(A m —> B) • • •))•

Proof. For m = 1, the first assertion is (I) of the theorem. So, assume

that Ah • • q Am-1 ,
Am 1= B for m > 1. Then t= (A x A • • • A Am-1)

A dm —> according to the theorem. From tautologies 8 and 9 of

Theorem 3.4 and the Corollary to Theorem 3.2, we deduce that

t= (A 1 A * * * A /l m_0 -> (dm -* B). According to (I) of the theorem,

it follows that 4i A • •
• A Am-i L Am > B and hence, by (II), that

Ah •
• •, Am-1 t= ^4m —> /^.

r

Fhe converse is established by reversing

the foregoing steps.

Finally, the second assertion follows by repeated application of the

first.

Thus, the problem of what statements are consequences of others

(by the statement calculus) is reduced to the problem of what state-

ments are valid (which accounts for the importance of tautologies). On

the other hand, there is something to be said for approaching the con-

cept of consequence directly. One reason is the possibility of conveiting

the definition into a working form which resembles that used in math-

ematics to infer theorems from a set of axioms. Indeed, we can sub-

stantiate a working form as a sequence of formulas (the last formula

being the desired consequence of the premises) such that the presence

of each is justified by a rule, called a rule of inference (lor the state-

ment calculus). The basis for the rules of inference which we shall

introduce is the following theorem.

THEOREM 4.2.

(I) Ah A tf
•

•
•, Am 1= Ai for i = 1,2, -

- *, m.

(II) If Mi, At, •
•
*, Am t= Bj for j

= 1, 2,
• • -,p, and if Bh B2)

•
•

Bp fz C, then A\, /I 2 ,

• •
*, Am 1= C.
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Proof. Part (I) is an immediate consequence of the definition of

“Au A 2 ,
•

•

•, Am t= BP For (II) we construct a truth table from the

list Pi, P2 ,
•

•
•

,
Pn of all prime components appearing in at least one

of the M’s, the P’s, and C. Consider any row in which Ah A 2 ,
•

•
*, Am

each receive the value T. Then, by the hypotheses, each P has the

value T, and hence C has the value T. That is, for each assignment

of values to the P’s such that every A takes the value T, formula C

receives the value T. This is the desired conclusion.

With this result, a demonstration that a formula P (the conclusion)

is a consequence of formulas A i, A 2 ,
•

•
•, Am (the premises) may be pre-

sented in the form of a string (that is, a finite sequence) of formulas,

the last of which is P and such that the presence of each formula E is

justified by an application of one of the following rules.

Rule p : The formula E is a premise.

Rule t : There are formulas A, •••,/) preceding E in the string such

that t A A • •
• A D E.

That is, we contend that Ai, A 2 ,
•

•

•, A m P if we can concoct a

string

Pi, E2 ,
•••,Pr(= P)

of formulas such that either each E is a premise (rule p) or there are

preceding formulas in the string such that if C is their conjunction,

then C->£ (rule t). Indeed, assuming that each entry in the dis-

played sequence can be so justified, we shall prove that

Ai, A 2 ,
•

•
•, Am 1= (any E in the sequence).

This is true of Pj by Theorem 4.2(1). Assume that each of Pi, P2 ,

• • *,

Ek-

1

is a consequence of the d’s
;
we prove that the same is true of the

next formula Ek. If Ek is a premise, then Theorem 4.2(1) applies.

Otherwise, there are formulas preceding Ek such that if C is their con-

junction, then t= C —> Ek . Let us say

tn Eh A Eit A • •
• A Pi. —> Ek .

Then, by Theorem 4.1(11),

P P
1 )

Ei, t= Ek ,

and, by assumption,

A { ,
A 2 ,

•
•
•, Am 1= Pi,-, j

= 1
, 2, •••,*.

Hence, by Theorem 4.2(11),

A\, A 2 , *
j Am Ek .
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We note, finally, that by an application of rule t any tautology may

be entered in a derivation. Indeed, if t= D ,
then for any formula A we

have A —> D. Thus, D may be included in a derivation by an appli-

cation of rule t wherein we take any premise as the “4.”

The examples which follow illustrate the foregoing method for demon-

strating that some formula is a consequence of given formulas. To make

the method entirely definite, let us agree that when applying rule t,

only the tautological conditionals which appear explicitly in The-

orem 3.4 or are implicit in the biconditionals of that theorem (for ex-

ample, 1= A <-» A yields the tautological conditional t= A —> A and

fz —
| —

i

A <-> A yields t= —\—\A —> A and 1= A —> —i —i ^4) may be used.

Admittedly, this is an arbitrary rule. Our excuse for making it is that

it serves to make the game to be played a definite one.

EXAMPLES
4.2. We demonstrate that

A V B, A —> C, B —> D C V D.

An explanation of the numerals on the left is given below.

{ 1 } 0 ) A —

>

c

{ 1 } (2 ) A V B - V B

{3} ( 3 ) B D
{ 3} (

4 ) C V B - V D

0 ,
3} (5 ) A V B - V D

{6} (6) A V B

0 ,
3

,
6} (7 ) C V D

Rule p
Rule t; 1= (1) -> (2) by

tautology 11.

Rule p
Rule /; 1= (3) —> (4) by

tautology 11.

Rule /; t= (2) A (4) -> (5) by

tautology 7.

Rule p
Rule /; t= (5) A (6) -> (7) by

tautology 1.

The numbers in parentheses adjacent to each formula serve to designate that

formula as well as the line of the derivation in which it appears. The set of

numbers in braces for each line corresponds to the premises on which the for-

mula in that line depends. That is, the formula in any line n is a consequence

of the premises designated by the numbers in braces in that line. Thus, the

formula in line 5 is a consequence of the premise in line 1 and the premise in

line 3, and the formula in line 7 is a consequence of the premises in lines 1, 3,

and 6—that is, of all the premises. In particular, for a line which displays a

premise there appears in braces at the left just the number of that line, since

such a formula depends on no other line. Using the brace notation in connec-

tion with the numerals on the left is deliberate in that it suggests that the loi-
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mula in that line is a consequence of the set of premises designated by those

numbers.

We now rewrite the above derivation, incorporating some practical abbre-

viations. In this form the reader is called on to supply the tautologies employed.

{1} (1) A —> C p

{1} (2) A V B -> C V B It

{3} (3) B D p
{3} (4) C V B -> C V D 3 t

{1, 3} (5 ) A V B ->C V D 2,4 t

{6} (6) A V B p
{1, 3, 6} (7) C V D 5, 6 t

4.3. As a more elaborate illustration we prove that

W V P —» /, / -> C V S, S -> U, -,C A

by the following string of thirteen formulas.

U t= -i W

{1} (1) n C A —
\ U p

{1} (2) -1 v 1 t

{3} (3) s-^u p
0,3} (4) ~i

s 2, 3 t

0) (5) —1 c 1 t

0,3} (6) ~i C A ~i
S 4, 5 t

0,3} (7) —
i
(C V S) 6 t

{8} (8) W V P -* I P
{9} (9) I->C V s P

{8, 9} (10) W V P -> C V s 8, 9 t

{1,3, 8, 9} (ID (-1 W V P) 1, 10 t

{1, 3, 8, 9} (12) -iW A -iT 11 t

0,3, 8, 9} (13) 1 w 12 t

We note that the foregoing takes the place of a truth table having 2 6 = 64

lines for the purpose of verifying that

{IV V P -> /) A (/ -> C V S) A (S -> U) A (nC A -i U) -> W.

4.4. Many theorems in mathematics have the form of a conditional, the

assumptions being the axioms of the theory under development. The symbolic

form of such a theorem is

A\, Ao, • •
*, Am B —> C,

where the /I’s are the axioms and B —» C is the consequence asserted. In order

to prove such a theorem it is standard practice to adopt B as a further assump-

tion and then infer that C is a consequence. Thereby it is implied that

A\, Ao, • •

', Afn 1= B —> C iff A\, Ao, •
•

•, Am ,
B |z: C.

1’his is correct according to the Corollary to Theorem 4.1. It is convenient to
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formulate this as a third rule of inference, the rule of conditional proof, for the

statement calculus.

Rule cp: The formula B —» C is justified in a derivation having A i, A 2 ,

• • •,

A m as premises if it has been established that C is a consequence of A 1 ,
A 2 ,

•
• •,

dm ,
and B.

As an illustration of the use of this rule we prove that

{1}

{2 }

{3}

{4}

{2, 4}

0,2, 4}

0,2, 3, 4}

0,2, 3}

(B —> C), -,£> V A, B (= D -> C.

(1) A —> (B -

(2)
—

1
Z) V T

(3) B
(4) Z)

C) p

P

P

p (introducing “Z)” as an

additional premise)

(5) T 2, 4 t

(6) Z? —> C 1,5/

(7) C 3, 6 t

(8) Z) —> C 4, 7 cp

The usefulness of the braced numbers to show precisely what premises enter

into the derivation of the formula in that line is clear.

4.5. Even if an alleged consequence of a set of premises does not have the

form of a conditional, the application of the strategy as described in the pre-

ceding example may simplify a derivation. As an illustration we rework the

first example, starting with the observation that the conclusion C V D is equiv-

alent to —\C —> D. This suggests adding —\C as a premise and hoping that D
can be derived as a consequence of this and the other premises. An advantage

gained thereby is the addition of a simple assumption. The derivation follows.

0} (1) A V B P

{2} (2) A -*C P

{3} (3) B -> D P

{4} (4) ~i C P

{2, 4} (5) —,A 2, 4 t

{1,2, 4} (6) B 1,5 t

{1,2, 3, 4} (7) D 3, 6 t

(1,2, 3} (8) -,C-*D 4, 7 cp

{1,2, 3} (9) CVD 8 t

4.6. Each of the tautological implications in 'Theorem 3.4 generates a rule

of inference, namely, the instance of rule /, which is justified by reference to

that tautology alone. For example, tautology 1 in Theorem 3.4 determines

the rule

from A and A —> B to infer B.

This is called the rule of detachment or modus ponens. In a textbook devoted

to logic, names for many rules of inference of this sort will be found. Probably

modus ponens is the one used most frequently in derivations.
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EXERCISES

Note: It is intended that the restrictions described prior to Example 4.2 shall

apply to applications of rule t.

4.1 . By an examination of Table VIII in Example 4.1
,
justify the conclusions

drawn in that example.

4.2. Complete each of the following demonstrations of consequence by sup-

plying the tautologies employed and the numbering scheme discussed in Ex-

ample 4.2.

(a) 4 —» B, —i
(B V C) t —\A

A -* B
—i (

B

V C)

—i
B A —i

C

-i B
-i A

(b) A—>B,C—*B,D—>A V C,

D t= B
D A W C
D
AW C
A -> B
C -» B
AW C -> B
B

(c) (A A B) V (C A D),

A —* —i
A t C

A —> —14
—i
A V —i

A

i
A

-nAW-nB
—\(AAB)
(A A B) V (C A /))

cad
c

(d) A -> (C-> 5), -i£> V 4
C i= £> -> 5

—i
D V 4

D
A
A —> (C —> B)

C-+B
C
B
D —> B

4.3. Justify each of the following, using only rules p and t.

(a) —iA V B, C —> -i B t= A —> -jC.

(b) A —> (B C), (C A D) —> E, —iF —> (D A —\E) 1= A —> (B —> F).

(c) AW B—>C AD, DWE-+F\=A-J>F.

(d) A -> (B A C), ifl V D, (E-* -,F) -> nA -* (4 A -i£)

(e) (4 —> 5) A (C —> D), (B —> E) A (L> —> F), (E A F), A —> C -,4.

4.4. Try to shorten your proofs of Exercise 4.3(a), (b), (c), (d) using rule cp

(along with rules p and t).

4.5. Can the rule of conditional proof to be used to advantage in Exercise

4.3(e)? Justify your answer.
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5. The Statement Calculus. Applications

We now turn to some household applications ol the theory ol iniei-

ence which we have discussed. Usually the circumstances accompany-

ing the presentation of an argument include the audience having the

privilege of accepting or rejecting the contention that some statement

B is a consequence of statements A h A 2 ,

• • A m In this event, the man

who thinks for himself will want to prove either that B is a consequence

of the ^4’s or that the argument is invalid, that is, that there can be

made an assignment of truth values to the prime components at hand

such that simultaneously each A receives value T, and B receives value F.

The most expedient way to cope with the entire matter is this: Assume

that B has value F and that each A has value T, and analyze the conse*-

quences so far as necessary assignments of truth values to prime com-

ponents are concerned. Such an analysis will lead to either a conti adic-

tion. which proves that B is a consequence of the A 1

s, or an assignment

to each prime component such that all assumptions ai e satisfied, which

proves that the argument is invalid.

The foregoing method for proving that some formula is a consequence

of others undercuts that promoted in the preceding section since it

proceeds so quickly. However, the earlier method has (at least peda-

gogical) merits. For example, it leads to an acquaintance with the tau-

tologies in Theorem 3.4. Instances of these are commonplace in proofs

in mathematics, and the reader should learn to recognize them as such.

As an illustration, tautology 20 justifies the familiar conclusion that if

the contrapositive, Q -> -i P, of P -> Q is a consequence of A, then

so is P —» Q.

EXAMPLES
5.1. Consider the following argument.

If I go to my first class tomorrow, then I must get up early, and

if I go to the dance tonight, I will stay up late. If I stay up late

and get up early, then I will be forced to exist on only five hours

of sleep. I simply cannot exist on only five hours of sleep. There-

fore, I must either miss my first class tomorrow or not go to the

dance.

To investigate the validity of this argument, we symbolize it using letters for

prime statements. Let C be “I (will) go to my first class tomorrow," G be “I

must get up early,” D be “I (will) go to the dance tonight,” S be “I will stay
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up late,” and E be “I can exist on five hours of sleep.” Then the premises may
be symbolized as

(C —> G) A (D -+S),

SAG > E
,

~i Ey

and the desired conclusion as

—iC V —

i

D.

Following the method of analysis suggested above, we assume that —i C V —
1 D

has value F and that each premise has value T. Then each of C and D must have

value T. Further, according to the first premise, both G and S have value T.

This and the second premise imply that E has value T. But this contradicts the

assumption that the third premise has value T. Thus we have proved that
—

i
G V —\D is a consequence of the premises.

5.2. Suppose it is asserted that

A -> B, C -> D, A V C i= B A D.

Assume that BAD has value F and each premise has value T. The first assump-
tion is satisfied if T is assigned to B and F is assigned to D. Then C has value F,

and A has value T. With these assignments, each premise receives value T, and
BAD takes value F. Hence the argument is invalid.

Related to the foregoing, but distinct from it, is the question of the

satisfiability of a set of statements which is proposed as the set of prem-
ises for an inference. A set [Ah A 2 ,

•
•
•, Am }

of statements is satisfiable

(within the statement calculus) iff there exists at least one assignment

of truth values for the prime components such that the H’s simultane-

ously receive value T. It is clear that {Ah A 2 ,
•

•

•, Am }
is satisfiable if

Ai A A2 A • • • A Am is T for at least one combination of truth-value as-

signments to the prime components and is not satisfiable if A x A A 2 A
• •

• A Am is F for all combinations of truth-value assignments to the

prime components.

The nonsatisfiability of a set of statements can be established within
the framework of the methods described in the preceding section as

soon as the following definition is made. A contradiction is a formula
which always takes the value F (for example, A A —i A).

THEOREM 5.1

.

A set {A\, A 2 ,
• • •, Am }

of statements is not satis-

fiable if a contradiction can be derived as a consequence of the set.

Proof. Assume that Ai, A 2 ,

• •

•, Am B A —
\
B for some formula B.

I hen t= Ai A A 2 A • •
• A A,n —» B A —i

B, and the conclusion follows

from the truth table for the conditional.
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Contradictions also play an important role in the method of indirect

proof (also called proof by contradiction or reductio ad absurdum

proof). The basis for this type of proof is the following result.

THEOREM 5.2. A u A 2 ,
•••, A m t= B if a contradiction can be

derived as a consequence of A h A2 ,

• •
•, Am and —i B.

Proof. Assume that A i, A 2 ,

• •
*, A m ,

—i
B t= C A —i

C for some for-

mula C. Then Ah A2 ,
•••, Am t= -iB -> C A -i C. Consider now an

assignment of values to the prime components at hand such that

every A receives value T. Then —i
B —> C A —i C has value T. This and

the fact that C A -i C receives value F imply that -i B has value F

and hence that B has value T.

EXAMPLES
5.3. We illustrate the usefulness of Theorem 5.1 in proving the nonsatis-

fiability of a set of statements. Such a proof follows the same pattern as one

devised to establish the correctness of an argument in all but one respect: in a

proof of the correctness of an argument the final line, which is the conclusion,

is assigned in advance, whereas, in a proof of nonsatisfiability the final line is

any contradiction. For example, suppose that it is a question of the satisfiability

of a set of statements which may be symbolized as

A<-> B, B -> C, -iC V D, -,A -> D, -,D.

We adopt these as a set of premises and investigate what inferences can be made.

{1} (1) A<-> B P

{2} (2) B -> C P

{3} (3) C V D P

{4} (4) —iA—>D P

{5} (5) -.£» P

{4, 5} (6) —i —i
A 4, 5 t

{4, 5} (7) A 6 t

0,2} (8) A —> C 1, 2 t

0,2, 4, 5} (9) C 7, 8 t

(3, 5} (10) —i
C 3, 5 t

0,2,3, 4, 5} (11) C A -iC 9, 10/

We conclude that the set is not satisfiable.

5.4. We could introduce a further rule of inference based on Theorem 5.2.

Alternatively, we may employ the rule of conditional proof and the tautology

C A —\C) —» B to justify an indirect proof. As an illustration, we

rework Example 5.1 in this section, starting with the negation of the desired

conclusion as an additional premise.



190 Logic CHAP. 4

(1) (C G) A (D —> S) p

(2) S A G -> E p

(3) P

(4) —1(—i C V —\D) p

(5) CAD
(6) C
(7) C-^G
(8) G
(9) D ->S

(10) D
(11) S

(12 ) SAG
(13) E
(14) E A —\E

(15) —

1

(—\C V —

i

D) > E A i
E

(16) —i C V —i
D

It is left as an exercise to supply the missing details.

EXERCISES

Use the method discussed in this section to prove the validity or invalidity,

whichever the case might be, of the arguments in Exercises 5.1—5.12 below. For

those which are valid, construct a formal proof. In every case use the letters

suggested for symbolizing the argument.

5.1. Either I shall go home or stay and have a drink. I shall not go home.

Therefore I shall stay and have a drink. (//, S)

5.2. If John stays up late tonight, he will be dull tomorrow. If he doesn’t

stay up late tonight, then he will feel that life is not worth living. Therefore,

either John will be dull tomorrow or he will feel that life is not worth living.

(S, D, L)

5.3. Wages will increase only if there is inflation. If there is inflation, then

the cost of living will increase. Wages will increase. Therefore, the cost of living

will increase. (IF, /, C )

5.4. If 2 is a prime, then it is the least prime. If 2 is the least prime, then 1

is not a prime. The number 1 is not a prime. Therefore, 2 is a prime. (T, E, A )

5.5. Either John is exhausted or he is sick. If he is exhausted, then he is con-

trary. He is not contrary. Therefore, he is sick. (E, S, C)

5.6. If it is cold tomorrow, I’ll wear my heavy coat if the sleeve is mended.

It will be cold tomorrow, and that sleeve will not be mended. Therefore, I’ll

not wear my heavy coat. (C, //, S)

5.7. If the races are fixed or the gambling houses are crooked, then the

tourist trade will decline, and the town will sufler. II the tourist trade decreases,

then the police force will be happy. The police lorce is never happy. Therefore,

the races are not fixed. (/?, //, D, S, P)
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5.8. If the Dodgers win, then Los Angeles will celebrate, and if the White

Sox win, Chicago will celebrate. Either the Dodgers will win or the White Sox

will win. However, if the Dodgers win, then Chicago will not celebrate, and if

the White Sox win, Los Angeles will not celebrate. So, Chicago will celebrate

if and only if Los Angeles does not celebrate. (/9, L, IV, C)

5.9. Either Sally and Bob are the same age or Sally is older than Bob. If

Sally and Bob are the same age, then Nancy and Bob are not the same age.

If Sally is older than Bob, then Bob is older than Walter. Therefore, either

Nancy and Bob are not the same age or Bob is older than Walter. (£, 0, N, IT)

5.10. If 6 is a composite number, then 12 is a composite number. If 12 is a

composite number, then there exists a prime greater than 12. If there exists a

prime greater than 12, then there exists a composite number greater than 12.

If 2 divides 6, then 6 is a composite number. The number 12 is composite.

Therefore, 6 is a composite number. (S, W, P, C, D )

5.11. If I take the bus, and the bus is late, I’ll miss my appointment. If I

miss my appointment and start to feel downcast, then I should not go home.

If I don’t get that job, then I’ll start to feel downcast and should go home.

Therefore, if I take the bus, and the bus is late, I will get that job. (B, L, M, D,

U, J)

5.12.

If Smith wins the nomination, he will be happy, and if he is happy, he

is not a good campaigner. But if he loses the nomination, he will lose the con-

fidence of the party. He is not a good campaigner if he loses the confidence of

the party. If he is not a good campaigner, then he should resign from the party.

Either Smith wins the nomination or he loses it. Therefore, he should resign

from the party. (A', H, C, P, R)

5.13.

Investigate the following sets of premises for satisfiability. If you con-

clude that a set is not satisfiable by assigning truth values, then reaffirm this

using Theorem 5.1 and vice versa. Substantiate each assertion of the satisfi-

ability of a set of premises by suitable truth-value assignments;

(a) A —* —
i (B A C)

D V E ->G
G —* —i {H V I)

n C A E A H

(b) A V B -> C A D
D V E
A V —\G

(c) (A - B) A (C -> D)

(

B

—* D) A (—\C * A)

(E ->G) A (G -> -i D)

-yE-*E

(d) (A -> B A C) A (D -» B A E)

(G —* —i
A) A H > I

(H -> I) -» G A D
-i^C-^E)

(e) The contract is fulfilled if and only if the house is completed in February.

If the house is completed in February, then we can move in March 1.

If we can’t move in March 1, then we must pay rent for March. If the

contract is not fulfilled, then we must pay rent for March. We will not

pay rent for March. (C, //, M, R)
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5.14. Give an indirect proof of the validity of the argument in the following.

(a) Example 4.3. (d) Exercise 5.7.

(b) Example 4.4. (e) Exercise 5.11.

(c) Example 5.1. (f) Exercise 5.12.

5.15. Prove that if A, -iB 1= C (a contradiction), then A t= B.

6. The Predicate Calculus. Symbolizing

Everyday Language

The theory of inference supplied by the statement calculus is quite

inadequate for mathematics and, indeed, for everyday arguments. For

example, from the premises

every rational number is a real number,

3 is a rational number,

certainly

3 is a real number

is justified as a conclusion. Yet the validity of this argument cannot be

established within the context of the statement calculus. The reason is

that the statement calculus is limited to the structure of sentences in

terms of component sentences, and the above inference requires an

analysis of sentence structure along the subject-predicate lines that

grammarians describe. In other words, the statement calculus does not

break down a sentence into sufficiently “fine” constituents for most

purposes. On the other hand, with the addition of three additional

logical notions, called terms, predicates, and quantifiers, it has been

found that much of everyday and mathematical language can be sym-

bolized in such a way as to make possible an analysis of an argument.

We shall describe these three notions in turn.

It is standard practice in mathematics to introduce letters such as

and to reserve a place for names of individual objects. For

example, in order to determine those real numbers such that the square

of the number minus the number is equal to twelve, one will form the

equation x 2 — X = 12, thereby regarding “x” as a placeholder for the

name of any such (initially unknown) number. Again, as it is normally

understood, the “x” in such an equation as

sin- x q- cos- x = 1

reserves a place for the name of any real or, indeed, complex number.

As it is employed in “x 2 — x = 12,” one is accustomed to calling “x”
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an unknown, and in “sin 2 x 4* cos 2
a: = 1” one is likely to refer to “*”

as a variable. The usage we shall make of letters from the latter part

of the alphabet in symbolizing everyday language shall be like that

just described—that is, as an unknown or a variable. In logic it is cus-

tomary to employ the word “variable” for either usage; the decision

as to whether “*” is intended to be a variable in the intuitive sense or

an unknown is made on the basis of the form of the expression in which

it appears. Since, ultimately, we intend to strip all symbols of any

meaning whatsoever, it is simplest to do this at the outset for variables.

This we do by defining an individual variable to be a letter or a letter

with a subscript or superscript. Variables constitute one class of terms.

We shall also find use for letters and symbols as names of specific,

well-defined objects; that is, we shall use letters and symbols for proper

names. Letters and symbols used for this purpose are called individual

constants. For example, “3” is an individual constant, being a name

of the numeral 3. Again, “Winston Churchill” is an individual con-

stant. In order to achieve a compact notation we shall use a letter from

the beginning of the alphabet to stand for a proper name if there is

no accepted symbol for it. For example, we might let

a = Winston Churchill

if we intend to translate the sentence

Winston Churchill was a great statesman

into symbolic form.

Proper names are often rendered by a “description,” which we take

to be a name that by its own structure unequivocally identifies the

object of which it is a name. For example,

the first president of the United States

and

the real number a: such that for all real numbers y, xy = y

are descriptions. If we let

b = George Washington,

then we may write

b = the first president of the United States.

Further, we have

1 = the real number x such that for all y, xy = y.

Collectively, individual variables and individual constants (either in
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the form of proper names or descriptions) are classified as terms. The

grammatical function of variables is similar to that of pronouns and

common nouns in everyday language, and the function of individual

constants is similar to the role of proper nouns.

We now turn to the notion of predicates. In grammar a predicate is

the word or words in a sentence which express what is said of the sub-

ject; for example, “is a real number,” “is black,” “is envious.” In logic

the word “predicate” has a broader role than it has in grammar. The

basis for this is the observation that if a predicate is supplemented by

including a variable as a placeholder for the intended subject (for ex-

ample, “a is a real number”), the result behaves as a “statement func-

tion” in the sense that for each value of * (from an appropriate domain)

a statement results. Although “John loves” is not a predicate in gram-

mar, if “a” is introduced as a placeholder for the object (of John’s

affections), which yields

John loves x,

the result is a statement function in the sense just described. An obvious

generalization is at hand, namely, the extension to statement functions

of more than one variable. Examples are

x is less than y,

x divides y,

z is the sum of * and y.

The upshot is the notion of an n-place predicate P(x 1 ,
*2 ,

* •
*, Xn) as an

expression having the quality that on an assignment of values to the

variables xi, x2 ,

• •
•

,
xn from appropriate domains, a statement results.

For convenience we include 0 as a value of n
,
understanding by a

0-place predicate a statement.

We now consider some examples of translations into symbolic form.

EXAMPLES
6.1. The sentence

(/) Every rational number is a real number

may be translated as

(2) For every x, if at is a rational number, then * is a real number.

In ordinary grammar, “is a real number" is the predicate of (/). In the transla-

tion (2) the added predicate “x is a rational number" replaces the common
noun “rational number.” Using “Q(x)” for “x is a rational number” and “/?(*)”

for “x is a real number,” we may symbolize (2) a*
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(3)
For every x, QM —* /?(*)

Further, the statement “3 is a rational number” may be symbolized by

(4) QG*)-

In terms of symbolism available at the moment, (3) and (4) are the translations

of the premises of the argument appearing at the beginning of this section.

6.2. The sentence

Some real numbers are rational

we translate as

For some x, x is a real number and x is a rational number.

Using the predicates introduced above, this may be symbolized as

For some x, R(x) A QM-

6.3. The sentence

(6)
For some x, R(x) —> QM

should have the same meaning as

(7)
For some x, —

i R(x) V QM>

since we have merely replaced “R(x) -> QM” by its equivalent “-MM V

QM-” Now (7) may be translated into words as

There is something which is either not a real number or is a ra-

tional number.

Certainly, this statement [which has the same meaning as (<5)] does not have

the same meaning as (5). Indeed, as soon as we exhibit an object which is not

a real number we must subscribe to (6). In summary, (6) and (5) have different

meanings.

By assumption, on suitable assignments of values to the variables in

a predicate, a statement results. For example, it S(x) is “x is a sopho-

more,” this predicate yields the statement “John is a sophomore.” A

statement may also be obtained from S(x) by prefixing it with the

phrase “for every x”

:

^ For every x, x is a sophomore.

No doubt, one would choose to rephrase this as

(pj
Everyone is a sophomore.

The phrase “for every x” is called a universal quantifier. We regard

“for every x,” “for all x,” and “for each x” as having the same meaning

and symbolize each by
(Vx) or (x).
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Using this symbol we may symbolize (8

)

or (9) as

(x).S'(x).

Similarly, prefixing iS’(x) with the phrase “ there exists an * (such
that)” yields a statement which has the same meaning as “There are

sophomores.” The phrase “there exists an x” is called an existential

quantifier. We regard “there exists an x,” “for some x,” and “for at

least one x” as having the same meaning, and symbolize each by

(3x).

Thus, “(3x)iS*(x)” is the symbolic form of “There are sophomores.”
In each of Examples 6. 1-6.3 above a quantifier prefixes not merely a

predicate but a “formula in x,” by which we shall understand for

the time being an expression compounded from one-place predicates
P(x), • • • using sentential connectives. Using the symbol introduced
for the universal quantifier, we can now render “Every rational number
is a real number” in its final form:

(79) (*)(Q(x) -> R(x)).

Possibly it has already occurred to the reader that this means simply
that Q, Q R. Indeed, if one recalls the definition of the inclusion rela-

tion for sets, it becomes clear that (70) is an instance of that definition.

Further, we note that (10) is characteristic of statements of the form
“Every so and so is a such and such.”

Similarly, the sentence “Some real numbers are rational” may be
translated as

(77) (3x)(R(x) A Q(x)).

The meaning of this sentence is simply that R O £) is nonempty; that

is, it is a symmetrical form of the original sentence. A mistake commonly
made by beginners is to infer, since a statement of the form “Every so

and so is a such and such” can be symbolized as in (10), that the state-

ment “Some so and so is a such and such” can be symbolized by

(3x)(/?(x) —
> Q(x)).

However, as is pointed out in Example 6.3, this should have the same
meaning as

(3x)(—i R(x) V Q(x)).

This should be accepted as true as soon as we exhibit an object which
is not a real number. In particular, therefore, it has no relation to what
it is intended to say, namely, that some real numbers are rational.
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EXAMPLES
6.4. The notion of a formula in x, as (vaguely) described above, is the same

as that given in Chapter 1. There it was stated that such an expression is often

called a property (of x). Associated with a property is a set, according to the

intuitive principle of abstraction. Extending in the obvious way the notion of

a formula in x to that of a formula in x and y, one can associate with a formula

A(x, y) those ordered pairs (a, b) such that A (a, b ) is true. I hat is, a formula in x

and y may be used to define a binary relation. This being so, formulas in two

variables are often called binary relations, those in three variables are called

ternary relations, and so on.

6.5. If A(x) is a formula in x, consider the following four statements.

(a) (x)/l(x). (c ) (*)(”'i^(x))-

(b) GxMM- (d ) (3*)(-wl(*))-

We might translate these into words as follows.

(a) Everything has property A.

(b) Something has property A.

(c) Nothing has property A.

(d) Something does not have property A.

Now (d) is the denial of (a), and (c) is the denial of (b), on the basis of everyday

meaning. Thus, for example, the existential quantifier may be defined in terms

of the universal quantifier by agreeing that “Q*M(x)” is an abbreviation for

i W - ...

6.6.

Traditional logic emphasized four basic types of statements involving

quantifiers. Illustrations of these along with translations appear below. Two of

these translations have been discussed.

All rationals are reals.

No rationals are reals.

Some rationals are reals.

Some rationals are not reals.

M (Q(x) ->/?(*)).

(x)(Q(x) —» —\R(x)).

Gx)(Q(x) A R(x)).

Gx)(Q(x) A -I /?(*)).

6.7.

If the symbols for negation and a quantifier modify a formula, the order

in which they appear is relevant. For example, the translation of

—i (x) (x is mortal)

is ‘‘Not everyone is mortal” or “Someone is immortal,”

tion of

(x) (—i
(x is mortal))

whereas the transla-

is “Everyone is immortal.”
_ #

6.8.

By prefixing a formula in several variables with a quantifier (of either
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kind) for each variable, a statement results. For example, if it is understood that

all variables are restricted to the set of real numbers, then

(*)«(*)((* +j) + * = * + (7 + *))

is the statement to the effect that addition is an associative operation. Again,

0) (3)902 - y = y
2 - x)

translates into “For every (real number) x there is a (real number) y such that

x 2 — y = y
2 — x.” This is a true statement. Notice, however, that

(3y)(x)(x
2 - y = y

2 - x),

obtained from the foregoing by interchanging the quantifiers, is a different

—

indeed, a false—statement.

6.9. We supplement the first remark in the preceding example with the ob-

servation that a formula in several variables can also be reduced to a statement

by substituting values for all occurrences of some variables and applying quan-

tifiers which pertain to the remaining variables. For example, the (false)

statement

MO < 3 )

results from the 2-place predicate “x < y” by substituting a value for y and

quantifying at.

We conclude this section with the remark that there are no mechani-

cal rules for translating sentences from English into the logical notation

which has been introduced. In every case one must first decide on the

meaning of the English sentence and then attempt to convey that same

meaning in terms of predicates, quantifiers, and, possibly, individual

constants.

Beginning with the exercises below we shall often omit parentheses

when writing predicates. For example, in place of “A(*)” we shall

write “Ax,” and “A(x,y)” will be written simply as “Axy”

EXERCISES
6.1. Let Px be “x is a prime,” Ex be “x is even,” Ox be “x is odd,” and Dxy

be “x divides jy.” Translate each of the following into English.

(a) PI. (e) (*)(-|£.y —> -yD2x).

(b) E2 A P2. (f) (x)(Ex -> {y){Dxy Ey)).

(c) (x) (D2x -» Ex). (g) (x)(Px -> (3y)(Ey A Dxy)).

(d) (3x)(Ex A Dx6). (h) (x)(Ox -> 09 (Py -> Dxy)).

(i) G*)(£* A Px) A -iQ.v)((Ev A Px) A {3y)(x 5* y A Ey A Py)).

6.2. Below are twenty sentences in English followed by the same number of
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sentences in symbolic form. Try to pair the members of the two sets in such a

way that each member of a pair is a translation of the other member of the pair.

(a) All judges are lawyers. (Jx ,
Lx)

(b) Some lawyers are shysters. (6x)

(c) No judge is a shyster

(d) Some judges are old but vigorous. (Ox, Vx)

(e) Judge Jones is neither old nor vigorous, (/)

(f) Not all lawyers are judges.

(g) Some lawyers who are politicians are Congressmen. (Px, Cx)

(h) No Congressman is not vigorous.

(i) All Congressmen who are old are lawyers.

(j) Some women are both lawyers and Congressmen. ( Wx)

(k) No woman is both a politician and a housewife. (Hx)

(l) There are some women lawyers who are housewives.

(m) All women who are lawyers admire some judge. (Axy)

(n) Some lawyers admire only judges.

(o) Some lawyers admire women.

(p) Some shysters admire no lawyer.

(q) Judge Jones does not admire any shyster.

(r) There are both lawyers and shysters who admire Judge Jones.

(s) Only judges admire judges.

(t) All judges admire only judges.

(a)' Qx)(Wx A Cx A Lx).

(by -i Oj A —i Vj.

(c) ' (x) (Jx —> —i Sx).

(d) ' Qx)(Wx A Lx A Hx).

(e) ' (x) (Ajx —> —i Ax).

(f) ' (x) (Jx —> Lx)

.

(g)

;

—i (x) (Lx > Jx).

(h) ' (x) (Cx A Ox — Lx).

(i) ' (Jx) (Lx A Sx).

(j)

' (Jx)(Tx A Px A Cx).

(k) ' (x)

(

Wx —> —i (Px A Hx)).

( l

)

' (x)(Cx —> Vx).

(m) ' (Jx) (Jx A Ox A Vx).

(n) ' (x) (7)
(Ayx A Jx * Jy)-

(o) '
(Jx) {Sx A (

y)(Axy -* -,Ly)).

(p)

' (Jx) (Jy) {Lx A Sy A Axj A Ay]).

(q)

' (x)

(

Wx A Lx -> Qy)(Jy A Axy)).

(r) ' (Jx) (Lx A Qy)(Wy A Axy)).

(s) ' (x) (Jx -> (j)(Axy -* Jy)).

(t)
# (Jx)(Cx A (y)(Axy —* Jy)).
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7. The Predicate Calculus. A Formulation

The examples and exercises of the preceding section serve to sub-

stantiate the contention that if the sentential connectives are supple-

mented with predicates and quantifiers, much of everyday language can

be symbolized accurately. Predicate calculus is concerned with a theory

of inference based on the structure of sentences in terms of connectives,

predicates, and quantifiers. In particular, therefore, it is an extension

of the statement calculus. The type we shall discuss admits of quantifi-

cation only of individual variables. To distinguish this simple type from

others, it is usually called restricted predicate calculus or predicate

calculus of first order. Incidentally, it is not our intention to develop

the restricted predicate calculus to the same degree of completeness as

we did the statement calculus. Rather, we shall merely formulate it

and sketch how it might be developed and applied. A formulation

which is comparable to that of the statement calculus in Section 3 is

our starting point.

We assume that for each of n = 0, 1,2, • • • there is given an un-

specified number of rc-place predicates (or, statement functions of n var-

iables). These we shall denote by such symbols as P(x, y) (to stand for

some one 2-place predicate), P(x,y,z) (to stand for some one 3-place

predicate which would necessarily represent a predicate different from

that symbolized by P(x,y), being a function of a different number of

variables), Q(x, y, z) (to stand for another 3-place predicate), R (to stand

for some one 0-place predicate, that is, a statement), and so on. It is

assumed that the set of all rc-place predicates for n = 1,2, •
•

• is non-

empty. Henceforth we shall call the given predicates predicate letters.

From the given set of predicate letters we generate those expressions

which we shall call “formulas (of the predicate calculus).” A prime
formula is an expression resulting from a predicate letter by the sub-

stitution of any variables, not necessarily distinct, for those variables

which appear in the predicate letter. For example, some of the prime for-

mulas which the predicate letter P(x, y, z) yields are P{x
, y, z), P(x , y , y),

P(y, x, x), and P(u, u
,
u). We extend the set of all prime formulas by ad-

joining all those expressions which can be formed by using, repeatedly

and in all possible ways, the sentential connectives and quantifiers. Pre-

cisely, we extend the set of all prime formulas to the smallest set such
that each oi the following holds. II A and B are members of the set, then

so are -i (d), (A) A (.B) } (
A

) V (/?), (A) -> (B), and (A) <-> (B). Also,
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if A is a member of the set and x is a variable, then (x)A and (3x)A are

members of the set. The members of this extended set are called for-

mulas. Those which are not prime formulas are called composite

formulas.

Parentheses arc inserted automatically in a formula, but in some

cases are unnecessary. (Indeed, the sole purpose of such lavish use of

parentheses is to make possible the formulation of a mechanical pi o-

cedure for demonstrating that some juxtaposition of symbols is a lor-

mula.) In other cases parentheses can be omitted by the same con-

ventions established earlier. We extend those conventions by agreeing

that quantifiers, along with —i, have the least possible scope. For

example, (dxM V B stands for (Qx)(A)) V (B).

The foregoing description is vague only with respect to the nature

of a predicate letter. From the standpoint of the theory of the first-

order predicate calculus, the nature of predicate letters is irrelevant,

for there they are treated in a purely formal way, that is, simply as

certain strings of letters, parentheses, and commas. From the stand-

point of the applications, the vagueness is deliberate, for thereby ver-

satility is achieved. The examples which follow may serve to sub-

stantiate this assertion. Each example describes the initial steps which

one might take in axiomatizing a mathematical theory.

EXAMPLES
7 . 1 . Suppose that a practitioner of the axiomatic method were to set out to

reconstruct the set theory of Chapter 1 as an axiomatic theory. After analyzing

how that subject matter was developed, he might conclude that all concepts

stemmed from the membership relation—that is, the 2-place predicate is a

member of.” This might motivate the practitioner to set up a system of the type

introduced above, one having a single predicate letter C(*, y) intended to

denote the membership relation. Of course, the intended interpretation of

individual variables would be as sets. The prime formulas of the system would

consist of all expressions of the form (EC*? y ) or, using more suggestive notation,

x O y- Then, for convenience, further predicates could be introduced by defini-

tion. Following are some instances:

x tf_y for —
i
(x £ y),

* Q y for {a) (a £ x —> a G y)»

x = y for (x O yi) A (_y Q x),

X 5* y for -1 (x = y),

* C y for (* Q y) A (x y).

The next step would be the adoption of certain formulas as axioms.
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7.2. As every high school student knows, the basic ingredients of elementary

geometry are “points,” “lines,” and the relation of incidence, “ lies on

.” In formulating an axiomatic theory intended to have intuitive geom-

etry as an interpretation, one might choose as primitive terms a list of individual

variables (intended to range over points and lines), two 1 -place predicate letters,

P(x) and L(x), and one 2-place predicate letter, I(x,y). These might be read,

in turn, “x is a point,” “x is a line,” and “x is on;/.” Among the axioms might

appear the following:

0x)P(x), Qx)L(x),

M (j)(I(x, y) <->/(jr, *)),

(x)(P(x) Qy)(L(j) A I(x,y))).

7.3. As the first step in axiomatizing the theory of partially ordered sets as

described in Chapter 1, one might introduce as the primitive terms a list of

individual variables and two 2-place predicate letters, = (x, y) and < (x, jy)

.

Then the prime formulas would consist of all expressions of the form x = y and

x < y, using more familiar notation. As nonlogical axioms for the theory (that

is, those axioms which serve as a basis for the intended mathematical structure),

we might then take

MO = *), 0) 0)0 = y ->y = *)> MO00)0 = yAy = z-+x = z)

(which mean that = is an equivalence relation),

0)000)0 = y A x < z -+y < z), (x)0)(z)(x = yAz<x->z<y)
(which assert that “equals may be substituted for equals”), and, finally,

(x) -i (x < x), (x) 0) 0) (x < y Ay < z —> x < z)

(which establishes < as an ordering relation).

As part of the formulation of the predicate calculus there must be

introduced definitions for distinguishing between the circumstances in

which a variable is intended to play the role of a variable or an un-

known in the intuitive sense. As a preliminary to this we define the

scope of a quantifier occurring in a formula as the formula to which

the quantifier applies. A possible ambiguity is removed by use of pa-

rentheses. Below are several examples illustrating the scope of the

quantifier “(x),” in which the scope is indicated by the line underneath:

(x)P(x) A Q{x),

Qy)(x) (P(x,y) —
> Q)QM) ,

MOOMMjO a Q(y,z)) A Qx)P(x,y),

(x) {P(x) A Qx)Q(x,z) —> (3y)R(x, y)) V Q(x,y).
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It is now possible to give the key definitions in connection with the

matter at hand. An occurrence of a variable in a formula is bound ill

this occurrence is within the scope of a quantifier employing that

variable or is the explicit occurrence in that quantifier. An occurrence

of a variable is free iff this occurrence of the variable is not bound.

For example, in

0)P(x, y)

both occurrences of x are bound, and the single occurrence of y is free.

Again, in the formula

Oy)(x)(P(x,y)-+(z)Q(z))

each occurrence of every variable is bound. A variable is free in a

formula iff at least one occurrence of it is free, and a variable is bound

in a formula iff at least one occurrence of it is bound. A variable may

be both free and bound in a formula. This is true of z in the formula

(z)(P(z) a (3*)Q(*,*) -> Qy)R(z,y)) v Qfe *)•

If a variable is free in a formula, then, on an assignment of meaning

to the predicates involved, that variable behaves as an unknown in the

familiar sense, since the formula becomes a statement about that var-

iable. The formulas x <1 and (3)00 < *), in each of which x is free,

serve to illustrate this point. The formula

(3)0 O' < x) A (*)(* > 0),

wherein the first occurrence of x is free and the other two are bound,

illustrates the remark that insofar as meaning is concerned, the free

and bound occurrences of the same variable in the same formula have

nothing to do with each other. Indeed, the formula ( v)(.v > 0) is

simply a statement and has the same meaning as (u)(u > 0) and

(w)(w > 0). .

In bound occurrences in a formula a variable behaves like a vanab e

in the intuitive sense. For example, in

(x)(x 2 — 1 = (x — 1)0 -T 1))

all occurrences of * are bound and, clearly, x serves as a variable.

That a: in the formula

(3x)(j 5^ X)
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serves as a variable is made more plausible on recalling that this formula

has the same meaning as

-i (*) -i (y 5* x).

In conclusion, we note that it is now possible to give a precise defi-

nition of the word “statement.” A statement is a formula which has

no free variables.

EXERCISES

7.1. List the bound and the free occurrences of each variable in each of the

following formulas.

(a) (x)P(x). (d) G*M(*) A B(x).

(b) (x)P(x) ->P(y). (e) (3*)O0(P(*) A —
> (x)R(x).

(c) P(x) -> Qx)Q(x). (f) QxJQy) (/>(*, A Q(z)).

7.2. Using the letters indicated for predicates, and whatever symbols of arith-

metic (for example, and “<”) may be needed, translate the following.

(a) If the product of a finite number of factors is equal to zero, then at least

one of the factors is equal to zero. (Px for
“
x is a product of a finite num-

ber of factors,” and Fxy for “x is a factor ofy.”)

(b) Every common divisor of a and b divides their greatest common divisor.

{Fxy for “x is a factor ofy,” and Gxyz for “z is the greatest common divisor

of * and yP)

(c) For each real number x there is a larger real number y. (Rx)

(d) There exist real numbers x,y, and z such that the sum of * andy is greater

than the product of x and z.

(e) For every real number x there exists a y such that for every z, if the sum
of z and 1 is less than y, then the sum of x and 2 is less than 4.

7.3. An abelian group may be defined as a (nonempty) set A together with

a binary operation + in A which is associative, commutative, and such that for

given x andjy in A the equation x + z = y always possesses a solution z in A. A
familiar example is that of Z with ordinary addition as the operation.

A formulation within the predicate calculus can be given by taking as primi-

tive terms a list of variables, a 2-place predicate letter = (x, y), and a 3-place

predicate letter S(x, y, z). The prime formula x = y is read “x equals y” and
the prime formula S(x, y, z) is read “z is the sum of x andyU’ As axioms we take

the following formulas.

(x)(x = x).

(x)OO(x = y ->y = x).

(x)WW(x = yAy = z-+x = z).
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(u)(v)(w)(x)(y)(z)(S{u, v, w)/\u = x/\y-v/\w-z S(x, y, z)).

WWGz)S(x, y 9
z).

(x) (y) (z) (w) (S(x, y, z) A S(x
9
y,w)->z = w).

(u)(v)(w)(x)(y)(z)(S(u, v, w ) A S(w, x
, y) A S(v, x, z) > S{u

,
z, y)).

(x) (y) (z) (S(x, y 9
z) —> £(>, *, 2)).

WWQ^, A y)-

Write a paragraph in support of the contention that, collectively, these

axioms do serve to define abelian groups.

8. The Predicate Calculus. Validity

The system described in the preceding section is essentially the com-

mon starting point in the formulation of various predicate calculi.

Distinguishing features of the classical predicate calculus (which is our

concern) include further assumptions which extend the oik 1 assumption

made in Section 3 for the statement calculus, namely, that with each

prime formula there is associated exactly one ol T and F. 1 lie corres-

ponding assumption about a prime formula in the sense ol the predicate

calculus is much more complicated. We shall introduce it in several

steps. First, it is assumed that with the system described in the pre-

ceding section there is associated a nonempty set D
,
called the domain,

such that each individual variable ranges over D. Further, it is assumed

that with each rc-place predicate letter there is associated a logical

function, that is, a function on D n into { T, F}. (For 0-place predicates

the associated function is assumed to be a constant, one of T or F.)

Finally, it is assumed that a truth-value assignment to a prime formula

P(yh y2 ,
•

• ’,y n ) can be made, relative to an assignment ol an element

in D to each distinct variable among yh y2i
•

*
*

, y», m the following way.

If to y% is assigned di in D and ii to the predicate letter 1 ( ai, a >, >
xn)

is assigned X: D n
{T, F } ,

then the truth value of P(yu y 2i
• * J») is

\(du d2 ,
•

• •,</„). For example, if P(x, y, x) is the prime formula and X

is assigned to P(x
9 y, z)

9
then the truth value of P{x

9 y 9
x)

9
relative to the

assignment of x to a and y to b
,
is X(<2, b, a).

For the theory of the statement calculus, that one of T and F which

is assigned to a prime formula is assumed to be irrelevant. In the predi-

cate calculus this is extended to the assumption that the theory is

independent of the domain D and the assignment ol functions to pred-

icate letters.
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The foregoing is the basis of the valuation procedure for a formula

C of the predicate calculus. For this it is assumed that (i) a domain D
is given, (ii) a function is assigned to each predicate letter appearing

in C, and (iii) to each distinct free variable in C is assigned a value in

D. Collectively, these constitute an assignment to C. A truth value is

assigned to C by a procedure which parallels the formation of C.

(I) lfP(yi, y2 ,
•

•
•

, y n) is a prime formula in C and X is assigned to

P(*i, x2 ,
• • *n ) and di is assigned toy;, then the truth value of

P(yuy%, •
*

- ,yn) is \(dh d2 ,
•

•
*, dn).

(II) For a given assignment of values to the predicate letters and

free variables of —i
A, the value of —i

A is F if the value of A is T,

and the value of —\A is T if the value of A is F. Similarly, for a

given assignment of values to the predicate letters and free

variables of A V B, A A B, A —» B, and A <-> B, the truth

tables from the statement calculus apply.

(Ill) For a given assignment of values to the predicate letters and

free variables of (x)A, the value of (x)A is T if the value of A
is T for every assignment to x, and the value of (x)A is F if the

value of A is F for at least one assignment to *. For a given

assignment of values to the predicate letters and free variables

of (4x)A, the value of (TyM is T if the value of A is T for at least

one value of *, and otherwise it is F.

As an illustration, we consider the problem of the assignment of

truth values to the formula

(x){P(x) —> Q) V (Q A POO).

Although the domain D is fixed, it is unknown. Suppose D = {a, b}.

By assumption there is associated with P(x) a logical function on D
into { T, FJ and with Q a truth value. Further, the free variable y may
assume any value in D. The possible logical functions which may be

associated with P(x) are tabulated here:

X M*) X2 (*) x3 (*) X4 (x)

a T T F F

b T F T F

The possible values which may be associated with Q are T and F, and

to y may be assigned the value a or b. Thus, we may fill out a table

with 16(= 4 • 2 • 2) entries exhibiting the truth-value assignment in all

possible cases:
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P(x) Q y (x)(P(x) •-> Q) V (Q A P(y))

Xi(x) T a T T T

Xi(x) T h T T T

X\(x) F a F F F

Xi(x) F b F F F

X2 (x) T a T T T

X2 (x) T b T T F

X2 (x) F a F F F

X2 (x) F b F F F

X3 (x) T a T T F

X3 (x) T b T T T

X3 (x) F a F F F

X3 (x) F b F F F

X4 (x) T a T T F

X4 (x) T b T T F

X4 (x) F a T T F

X4(x) F b T T F

The entries appearing under P(x)
} Q, and y in a fixed row make up

an assignment to the formula under consideration. The de tails ol the

computation accompanying the assignment given in the ninth iow ol

the table are as follows. First we substitute the assignments into the

formula to obtain
,

W(X3 (x) —> T) V (T A X3 (a)).

In order to evaluate (x)(X3 (x) -> T) we must compute X3(» -> T as a

logical function of *. The table for this is

* X3(x) —> T

a F T T

b T T T

Since the value of the conditional is T for all assignments to x in D,

(x)(X3 (x) -> T) is evaluated as T. Since X3 (a)
= F, the value of T A X3 (a)

is F. Finally, by the table for V, the value of the entire formula is T.

We summarize these steps in tabular form:

(x)(P(x) -> Q) V (Q A P(y))

(x)(X3 (x) —* T) V (T A X3 (a))

T V (T A F)

F

T

Our description of the predicate calculus is intended to parallel that

of the statement calculus beginning with Section 3. So tar, lor the
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predicate calculus, we have introduced the symbols to be employed,

given the definition of a formula, and described a valuation procedure.

We imitate the next step in the earlier theory by defining validity in

the predicate calculus. A formula is valid in a given domain iff it

takes the value T for every assignment to the predicate letters and free

variables in it. A formula is valid iff it is valid in every domain. For

“A is valid” we shall write

1= A.

It is appropriate to use the same terminology and symbolism as before,

since this definition of validity is an extension of the earlier one. It is

obvious that to establish the validity of a formula, truth tables must

give way to reasoning processes. On the other hand, to establish non-

validity, just one D and one assignment based on this domain will suf-

fice. For example, the fourth line of the above table demonstrates

that the formula considered there is not valid. The ease with which

the validity of some formulas can be established may come as a surprise.

EXAMPLES
8.1. Let us illustrate the assignment of functions to predicate letters in an

application of the predicate calculus. Suppose that Z is the domain and that

we are told that P(x, y, z) is to be interpreted as “2 is the sum of * and^.” Then

to this predicate letter we would assign the function X: Z 3 — {T, F} such that

X(a, b, c) — T if a + b = c, and X(a, b, c) = F otherwise. If, on the other hand,

we are told that P(x
, y, z) is to be interpreted as “z is the product of x and y,”

then we would define X(a
,
b, c) to be T if ab = c, and to be F otherwise.

8.2. We prove that

(x)P(x) ->P(y).

A prerequisite for the formula to take the value F is that P{y) receive the value

F for some assignment in some domain. But in that event, (x)P(x) receives the

value F. Hence, (x)P(x) —> P{y) always receives the value T.

8.3. Let us prove that

P(j) -> Qx)P(x).

As in the preceding example, we need concern ourselves only with assignments

in some domain D such that Qx)P(x) takes value F. This is the case iff P(x)

receives value F as x ranges over D. But then P(y) must receive the value F.

8.4. Let us establish the nonvalidity of the formula (ffv)P(x) —» (x)P(x). Let

D contain at least two individuals, a and b. Assign to P(x) a logical function X

such that X(a) = T and X(b) = F. Then (3x)P(x) receives the value T and (x)P(x)

receives the value F. Hence, the entire formula receives the value F.

8.5. A proof that

1= (x)P(x) V WQ(x) -> (x)(P(x) V Q(x))
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may be given as follows. Suppose that the consequent takes the value F for an

assignment Xi, X 2 ,
and a to P(x), Q(x), and x

,
respectively. 1 hen, lor this assign-

ment, P(x) V Q(x) takes the value F. Hence, Xi (a) = F and X 2 {a) = F, from

which it follows that (x)P(x) and (x)Q(x), and hence their disjunction, each

take the value F.

We turn now to the question of general methods for proving validity,

looking first at what we can take over from the statement calculus.

Theorem 3.2 (with “A eq B” now assigned a meaning in terms of our

present valuation procedure) and Theorem 3.3 carry over unchanged.

The proofs employ essentially the earlier reasoning. The substance of

Theorem 3.1 is the possibility of proving validity of a formula without

dissecting it into prime components. This same technique has applica-

tions in the predicate calculus. To proceed with our first illustration,

let us call a formula of the predicate calculus prime for the statement

calculus if no sentential connectives appear in it. In terms ol the

composition of a formula from such prime formulas we can intioducc

the notion of tautology into the predicate calculus. For example,

P(x) —> P(x) is a tautology, and we may recognize tautologies (for

example, A —> A) even when the prime formulas are not displayed.

Clearly, a tautology is a valid formula. In particular, Theorem 3.4

holds for the predicate calculus.

In order to illustrate further the technique under discussion some

definitions are required. I o substitute a variable y for a variable .v in a

formula A means to replace each free occurrence of x in A by an oc-

currence of y. If y is to be substituted for x in A
}

it is convenient to

introduce a composite notation such as
“A(x)” for the substituend and

then write “d(y)” for the result of the substitution. Such notation as

“A(x)” for the formula A is used solely to show the dependence of A

on * and is not to be confused with the notation for predicate letters;

indeed, we do not require that * actually occur free in A and do not

exclude the possibility that A(x) may contain free variables other than

x. In the future we shall often use such notations as A (v) 01 A (v, y )

instead of “A” when we are interested in the dependence of A on a

variable x or variables x and y, whether or not we plan to make a sub-

stitution. Let us consider an example. If A{x) is

(7) (x = 1) A (3)0 O' ** x),

then, clearly, A(y) says something different about y than A(x) says

about ;t. The reason is that the occurrence of * in Qy) 0> ^ x) is free,

whereas an occurrence of y in the same position is bound. In everyday
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mathematics we are not likely to make a substitution which changes

the meaning of a formula. A safeguard against inappropriate substitu-

tions in purely formal situations can be given. A formula A(x) is free

for y if no free occurrence of * in A(x) is in the scope of a quantifier (y)

or (Ty). For example, if A(x) is P(x, y) A (y)Q(y), then it is free for y,

whereas if A(x) is (/), above, then it is not free for y. It substitutions

for x in A(x) are restricted to variables y such that A(x) is free for y,

difficulties of the sort mentioned are avoided.

We turn now to Example 8.3, where we proved that P(y) >

(3x)P(x) for a predicate letter P(x). Using the same reasoning we can

prove that A(y) —> (3*)^(*)> where A{x) is any formula which is free

for y. The computation of the value of the formula at hand for a given

assignment consists of (i) the computation ol a value ot the logical

function assigned to A, and (ii) the computation of the value of the

formula. The second step will coincide with that by which the value of

P(y) —> (3x)P(x) is computed for some assignment; this, as we have

seen, is always T. In general, although a formula A may contain several

prime formulas, we may consider A as a prime formula and speak of

“the logical function assigned to A” We state the result just derived

along with a companion valid formula as our next theorem.

THEOREM 8.1. Let A{x) be a formula which is free for y. Then

(I) t= (TMO) -» A(y).

(II) 1= A{y) —> (:R)d(*).

COROLLARY. If 1= (*)d(x), then 1= A(x).

Proof. We apply (I) of the theorem, taking * as the y to obtain

1= (*)d(*) —> A{x). Now assume that 1= (*)d(*). Then we may con-

clude that 1= A{x) by the extension of Theorem 3.3 mentioned above.

THEOREM 8.2. Let a: be any variable, B be any formula not

containing any free occurrence of x, and A{x) be any formula. Then

(I) If t= B —> A(x), then t= B —> (jv)T(^).

(II) If 1= A(x) —> B, then (3a).4(v) —> B.

Proof. To prove (I), we assume that 1= B —> d(.v). Let D be any

domain and for this domain consider any assignment a to the formula

B —> (*)/1(a:). Note that since .v does not occur free in either B or

(*)4(*), & does not include an assignment of a value in D to ,v. For a,
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B takes either the value F or T. If B takes the value F, then B —> (x)A(x)

takes the value T. If B takes the value T, then this is still the case

when a is extended to include any assignment of a value in D to *.

Hence, for a so extended, A[x) receives the value T, since, by assump-

tion, B-*A(x) has value T. That is, for each assignment to x along

with the given assignment a, A(x) receives the value T. It follows

that B — (x)A(x).

The proof of (II) is similar and is left as an exercise.

COROLLARY. If 1= A(x), then 1= (*M(x).

Proof. Assume that t= A(x). Since L B —> (C —> B), if P is any

0-place predicate letter, then t= A(x) —> (P V -i P-*A(x)). Hence,

E p V -^P-> A(x) by Theorem 3.3. By (I) of the above theorem,

it follows that 1-PM -iT-> (x)A(x). Finally, since 1= P V -i P, an-

other application of Theorem 3.3 gives 1= (*)/l(*).

An illustration in familiar terms of the above corollary is this. A

proof of “For all real numbers x, sin 2 * + cos 2 * = 1” begins by re-

garding x as some unknown (but fixed) real number. After proving

that, for this *, sin 2 x + cos 2 * = 1, it is argued that since * is any real

number, the assertion follows. Note that this involves the transition

from the consideration of * as a free variable to that of a bound variable.

When we initially raised the questions of what methods for proving

validity in the statement calculus carry over to the predicate calculus,

we ignored the possibility of a direct generalization of Theorem 3.1. It

has generalizations to the predicate calculus, but they are complicated

because of the necessity of the avoidance of binding, in a way which

is not intended, of free variables by quantifiers which may be present.

In order to present one theorem of this type, we must describe the

mechanics of substituting in a formula for all occurrences of prime

formulas resulting from a particular predicate letter. We begin with

an illustration. In the formula (x)P(x) -> P(y) there are two occurrences

of prime formulas resulting from the predicate letter P{w). By the

result of substituting a formula A(w) for the predicate letter P(w) in

(x)P(x) —> P(y) we shall mean the result of replacing P(x) by A(x) and

P(y) by A(y). For instance, if we take A(w) to be Qz)Q(w
9

then the

result of the substitution is

(*)G*)Q(*, *)>
(2)
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and if we take A(w) to be (Ty)Q(tfy y), then the result of the substitu-

tion is

(3) (x)(3y)Q(x,y) -» (3y)Q(y,y).

There is a basic difference between results (2) and (3). Namely, the

free y in P(y) remains free in (2) but in (3) it becomes bound by the

quantifier (Ty) of our second choice for A{w). The effect of binding y

in (3) is disastrous as may be seen by considering, for instance, the inter-

pretation of (3) which results on choosing Z as the domain and Q(x, y)

as a < y. Such mixups in the way the variables are bound after a sub-

stitution can be avoided by observing two restrictions. To formulate the

substitution process and these restrictions in general, let us suppose the

substitution is of the formula A(w\, w2 ,
•

•
•, Wk) for the predicate letter

P(w\, w 2 ,

• •
’, Wk) in a formula B not containing any one of w i, w2 ,

• •
*, The substitution with result B* is effected by replacing each

part of B of the form P(r i, r2 ,

• •
•, r*) by A(r i, r2 ,

• •
•, r&), where

A{r\, r2 ,
•

• •

,
rk) is the result of substituting r i, r2 ,

• • •

,
for w\, w2 ,

•
• •

, Wk

in A(wi, wo, • • Wk). The substitution is called admissible iff none of

the variables in B occur bound in A(w i, w2 ,
• • Wk) and none of the

free variables in A(wi, w2 ,
•

•
•, Wk) occur bound in B. The generaliza-

tion of Theorem 3.1 which we have in mind can then be stated as

follows (the proof is omitted).

THEOREM 8.3. Let B be a formula containing a prime formula

resulting from the predicate letter P(wh w2 ,
•

•
•, wk) and let B* be

the formula resulting from B by an admissible substitution of the

formula A(wh w2 ,
• • wk) for P{wu w2 ,

• •

•, wk). If 1= B, then B*.

Although this theorem is not the most general of its kind, it serves

to reduce the proof of the validity of each of the formulas in the next

theorem to the case of prime formulas in place of arbitrary formulas.

Since the formulas of Theorem 3.4 extend to the predicate calculus, we
continue the numbering used there to emphasize that we are introducing

additional valid formulas for the predicate calculus.

THEOREM 8.4. Let a andjy be distinct variables, d(v), B(x), and
A(x,y) be any formulas, and A be any formula not containing any
free occurrences of a. Then

33. t= (3*)(3y)d(*,y) <-» (3y)(lv)ff(*, y).

33'. t= <-+ (j) (*)/!(*, j).
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34. t= (3x)/l(x) «-» iW —i^W'
34'. 1= (x)/l(x) <-> -i (3x)

35. 1= -i(3x)/l(x) ^ (x) -i/l (x)-

35'. 1= -i (x)/l(x) <-» (3x) -iA(x).

36. t= (3x)(y)A{x,y) O0(3x)/l(x, y).

37. 1= (3x)(/lM V B(x)) <-> (3x)/l(x) V (3x)B{x).

37'. 1= (x)(A(x) A B(x)) <-> (x)A(x) A (x)B(x).

38. 1= (x)/l(x) V (x)B(x) -» MUM V BM)-
38'. 1= (3*)UM A B(x)) -> 0*MM A

39. 1= (3x) (/I V B(x)) <-> A V (3x) B(x)

.

39'. 1= MU A B(x)) *-> t /l A (x)B(x).

40. 1= MU V B(x)) <-> /l V (x)B(x).

40'. 1= 0*)U A B(x)) <->A A (3*)BM.

The proofs of the validity of these formulas are left as exercises. That

some of the formulas are valid should be highly plausible on the basis

of meaning; formulas 33 and 33', which mean that existential (or

universal) quantifiers can be interchanged at will, are in this category.

Again formulas 34 and 34', which describe how an existential quan-

tifier can be expressed in terms of a universal quantifier and vice versa,

were discussed in the preceding section. Formulas 35 and 35 provide

rules for transferring across quantifiers. Formulas 37, 37 ,
38, and

38' are concerned with transferring quantifiers across V an A

general, and formulas 39, 39', 40, and 40' treat special cases of such

transfers.

EXAMPLES
8.6. We consider some practical illustrations of the use of formulas jd and

35' in arithmetic. That is, we take as the domain D the set of natural num rers.

Further, let < and + have their familiar meanings; thus <(x,y) is a --P ace

predicate letter, and +(x, y, z) is a 3-place one. The (true) statement ere

does not exist a greatest natural number” may be symbolized by

(x)(3y)(x < y)-

Its negation,

(x)(3y)(x <y),

may be rewritten, using 35', as

Qx) -i (Gy)0 <>>))•

In turn, using 35, this may be rewritten as

Q*)O0 —
i

(x < y) or (3x)W(x>y).
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In English this last formula reads “There exists a greatest natural number.”
1 he (false) statement “For every pair m

,
n of natural numbers there is a natural

number p such that m -j- /> = w” may be symbolized by

(m)(n)Qp){m + p = n).

Its negation may be transformed into

(:M(:]n)(p)(m + p n).

The reader can translate this into acceptable English.

8.7. Take for D the set R of real numbers. The definition of continuity of a

function / at a
,
namely, “/ is continuous at a iff for every e > 0 there exists a

5 > 0 such that for all *, if \x — a\ < 5, then |/(*) — f{a)
|

< e” can be trans-

lated into the symbolic form

M(e > 0 -> (05) (5 > 0 A (*)(|* - a\ < 8 \f(x) - f(a)\ < €)))).

This can be shortened considerably using the notion of restricted quantifica-

tion, which in practical terms amounts to restricting the range of e and <5 to the

set R +
. Then the above may be contracted to

(e)0<$)(*)(|* — a\ < 8 —>
|
f(x) — }{a)\ < e).

With mild restrictions, the valid formulas of Theorem 8.4 remain valid when
some quantifiers are restricted. This makes it possible, for example, to obtain

the negation of complicated formulas quickly and in greatly abbreviated form.

As an illustration, the reader is asked to form the negation of the original for-

mula above and show that, in terms of restricted quantifiers, it reduces to the

negation of the abbreviation of the original formula, which is

0c) (5)0*) (|* — a\ < 5 A
|
f{x) — /(a)

|

> e).

EXERCISES

8.1. For a domain of two elements, construct a truth table for the formula

M (P V Q(x)) <-> L V (x)Q(x).

8.2. Prove that the formula in Example 8.4 is valid in a domain consisting

of one element.

8.3. Establish the validity of formulas 34, 35, and 36 in Theorem 8.4, regard-

ing all constituent formulas as primes.

8.4. Establish the validity of formulas 37, 38, and 39 in Theorem 8.4, regard-

ing all constituent formulas as primes.

8.5. Supply an example to show that the converse of formula 36 in Theorem
8.4 is nonvalid.

8.6. Prove Theorem 8.2 (II).

8.7. As in Example 8.6, let us take for D the set of natural numbers. Usin"O
I heorem 8.4, justify the equivalence ot the left-hand and right-hand members
of each of the following pairs of formulas.
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(a) G*)O0 -i O' > *)> G*) "I GW O' > *)•

(b) GMOOC? > x v “i (y > o)), (3W(WO > 0 > *)•

(c) (*)GWGZ)(* < y A 2 2 > y), (x)(J9(* < y A Qz)(z2 > >)).

8.8. Let a 0 ,
fli,

• •
•, fl»,

• * be a sequence of real numbers. Using restricted

quantification, translate into symbolic form

(a) the assertion that a is the limit of the sequence,

(b) the assertion that the sequence has a limit,

(c) the assertion that the sequence is a Cauchy sequence (that is, given e > 0

there exists a positive integer k such that if n, m > k, then \an — am
\

< «)•

8.9. Write the negation of each of the formulas obtained in the preceding

exercise.

8.10. With R as domain, translate each of the following statements into sym-

bolic form, write the negation of each (transferring -i past the quantifiers), and

translate each resulting formula into English.

(a) For xjCEandzC R+
,

= yz implies x = y.

(b) The number a is the least upper bound of A C R.

(c) The set A has a greatest element.

9. The Predicate Calculus. Consequence

The concept of consequence for the predicate calculus is an extension

of that for the statement calculus as given in Section 4. In this exten-

sion, statement letters give way to predicate letters, and assignments

of truth values give way to the more elaborate assignments o( the pred-

icate calculus. In addition, a further ingredient appears for the first

time: the possibility that an assumption formula contains a free occur-

rence of a variable. For example, in a theorem in arithmetic, an assump-

tion may have the form “Let x be an integer greater than 0” or “Sup-

pose that x is divisible by 3.” An examination of how such an x is

“treated” in a proof reveals that it is regarded as a constant; that is,

it is regarded as a name of one and the same object throughout the

proof. Outside of the context of the proof, however, it is a variable.

(For example, having proved some result concerning an .v which is

divisible by 3, one feels free to apply it to all such numbers.) The

reader is familiar with such names as “parameter
1

' and “arbitrary

constant” for symbols employed in this way.

This brings us to our basic definition. The formula B is a consequence

of formulas Ah At, Am (in the predicate calculus), symbolized by

A I, Az, ’
*
’i A m U By
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iff for each domain D and for each assignment to the ff’s in D the

formula B receives the value T whenever each A receives the value T.

Further, if a variable * occurs free in any A, then in each assignment

to the ff’s one chooses for all free occurrences of * one and the same

value in D; that is, in making an assignment to the A’ s, such an a is

regarded as a constant.

The statement and proof of Theorem 4.1 and its Corollary carry

over unchanged to the present case. Thus, these results are available.

In particular, to conclude that Ah A 2 ,
•

•
•, Am 1= B, it is sufficient to

prove that t= A x A A 2 A • •
• A A n

—» B. Since Theorem 4.2 likewise

extends to the predicate calculus, it is possible to give a demonstration

that a formula B is a consequence of A i, A 2 ,

• •
•

,
Am in the form of a

finite sequence of steps, the last of which is B. In addition to the two

basic rules p and t, which in the statement calculus serve to justify the

appearance of a formula E in a demonstration, we may introduce

others for the predicate calculus. The most fundamental of these are

the following two.

Rule (of universal specification) us: There is a formula (*).<4(*) pre-

ceding E such that E is A(y), the result of substituting y for * in A(x),

such substitutions being restricted by the requirement that none of

the resulting occurrences ofy is bound.

Rule (of universal generalization) ug : E is of the form (*)/I(a:) where
A{x) is a preceding formula such that a is not a variable having a free

occurrence in any premise.

The state of affairs regarding a demonstration of consequence in the

predicate calculus is then this. We contend that Ah A 2 ,
•

•

•, A m B if

we can devise a string

Eh E2)
• - .,£,(= B)

of formulas such that the presence of each E can be accounted for on
the basis of one of the rules /?, t, us

,
or ug. Indeed, as in Section 4, it is

possible to prove that if the presence of each E can be so justified, then

A i, A 2 ,
•

•

*, Am t= (any E in the sequence).

The earlier proof carries over (using the extended form of Theorem 4.2)

to dispose of the case where the presence of an E is justified by either

rule p or rule /. The cases which involve rule us or ug are dispatched
using Theorem 8.1(1) and Theorem 8.2(1). The details are left as an
exercise.

We are now in a position to construct formal derivations of simple

arguments in the style developed in Section 4.
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EXAMPLES
9.1. Consider the following argument.

No human beings are quadrupeds. All women are human beings.

Therefore, no women are quadrupeds.

Using the methods of translation of Section 6, we symbolize this as follows.

(x) (Hx -> -i Qx)

(x) (Wx Hx)

(*)(Wx —

i

Qx)

The derivation proceeds as follows.

{1} (1) (x) (Hx-t-nQx) p

{2} (2) (x)(Wx->Hx) p

{2} (3) Wy —* Hy 2 us

{1} (4) Hy-> -iQy 1 us

{1,2} (5) Wy-*-nQy 3,4

{1, 2} (6) (x)(Wx -> -i Qx) 5 ug

9.2. The following argument is more involved.

Everyone who buys a ticket receives a prize. Therefore, if there

are no prizes, then nobody buys a ticket.

If Bxy is “x buys y,”

receives y,” then the

Tx is “x is a ticket,” Px is “x is a prize,” and Rxy is “x

hypothesis and conclusion may be symbolized as follows.

(x)(Gy)(£*y A Ty) -> Gy) (Py A Rxy))

-1 Qx)Px —>
(x)(j)(Bxy —> -I Ty)

Since the conclusion is a conditional, we employ the rule cp in the derivation

below. The deduction of line 3 from line 2, that of line 7 from line 6, and that

of line 11 from 10 should be studied and justified by the reader.

{1} (1) (x)Qy)(Bxy A Ty) -> Gy)(Py A Rxy) p

{2} (2) -i Qx)Px P

{2} (3) (x) Px 2t

{2} (4) —iPy 3 us

{2} (5) -nPy V -nRxy

{2} (6) CrX-i^y V -i Rxy) 5 US

{2} (7) ^Qy)(Py A Rxy) 6/

{1} (8) (3y) (Bxy A Ty) -> Gy) (Py A Rxy) 1 us

(1, 2} (9) -,(3\y)(Bxy A Ty) 7
,
8 t

{1,2} (10) (7) (—,
Bxy V —

1
Ty) 9t

{1 ,
2} (U) (y)(Bxy -nTy) 10 ^

{1, 2} (12) (x)(_y)(/^xy —> -1 Ty) ^
{1} (13) -iGx)Px —>

(x)(j^)(7?xy —> -1 Ty) 2, 12 cp
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9.3. Once the reader has subscribed to the soundness of the derivation in the

preceding example, he has, in effect, endorsed further rules of inference which

serve to expedite derivations. We introduce two further derived rules of in-

ference which render the same service. These are formal analogues of two

familiar everyday occurrences in mathematics. If one is assured that “Qx)T(x)”

is true, one feels at liberty to “choose” a y such that A(y). Thenjy is an unknown

fixed quantity such that A (y). Conversely, given that there is somey such that A (y),

one does not hesitate to infer that “(3yM(*)” is true. In the predicate calculus

the rule which permits the passage from QyM(x) to A(y) is called the rule (of

existential specification) es. The rule which permits the passage from A(y) to

(3*M(x) is called the rule (of existential generalization) eg. These are the ana-

logues for existential quantifiers of the rules us and ug for universal quantifiers.

We shall not validate these rules nor even discuss the restrictions which must

be observed in using them. In the following simple example illustrating them

we employ a lower-case Greek letter to designate an object which is involved

in the “act of choice” accompanying an instance of the rule es.

Every member of the committee is wealthy and a Republican.

Some committee members are old. Therefore, there are some old

Republicans.

{1} 0) (x) (Cx —» Wx A Rx) P

{2} (2) 'hO<<3TTm P
{2} (3) Ca A Oa 2 es

0) (4) Ca —> W

a

A Roc 1 us

{2} (5) Ca It

0,2} (6) Wa A Ra 4, 5 t

{2} (7) Oa 3 t

0,2} (8) Ra 6 t

0,2} (9) Oa A Ra 7, 8 t

0,2} (10) Qx) (Ox A Rx) 9 eg

9.4. The derivation corresponding to the following argument employs all of

the rules which we have described.

Some Republicans like all Democrats. No Republican likes any

Socialist. Therefore, no Democrat is a Socialist.

The reason for the introduction of “x” in line 3 below is this. By virtue of the

form of the conclusion, (x)(Dx —> —\Sx), a conditional proof is given. Thus, Dx
is introduced as a premise in line 3. Since .v occurs free here, we note its presence

(as well as in subsequent lines which depend on this premise) to assist in avoid-

ing any abuse of rule ug.
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{ 1 }

{2}

{3}

0 }

0 }

{ 1 }

0,3}

{2}

( 1 )

0 ,
2}

{ 1
,
2}

0,2, 3}

0 ,
2}

0 ,
2}

The foregoing examples lend plausibility to the contention that the

predicate calculus is adequate for formalizing a wide variety of argu-

ments. Lest there be concern over the lengths of derivations ol such

simple arguments as those considered, we assure the reader that an ex-

tended treatment would include the introduction of further derived

rules of inference to streamline derivations. I he outcome is the concept

of an “informal proof.” In mathematics this amounts to a derivation in

the conversational style to which one is accustomed: mention of rules

of inference and tautologies used is suppressed, and attention is drawn

only to the mathematical (that is, nonlogical) axioms and earlier theo-

rems employed. (Further details of this are supplied in the next chapter.)

The principal advantage accrues in having informal proofs as the evolu-

tion of formal derivations is this : One has a framework within which it

can be decided in an objective and mechanical way, in case of disagree-

ment, whether a purported prool is truly a proof.

EXERCISES

Construct a derivation corresponding to each of the following arguments.

9.1. No freshman likes any sophomore. All residents of Dascomb are sopho-

mores. Therefore, no freshman likes any resident of Dascomb. (Fx, Lxy
,
Sx, Dx )

9.2. Art is a boy who does not own a car. Jane likes only boys who own cars.

Therefore, Jane does not like Art. (Bx, Ox, Lxy, a, ])

9.3. No Republican or Democrat is a Socialist. Norman 1 homas is a Socialist.

Therefore, he is not a Republican. (Rx ,
Dx, >Sx, t)

9.4. Every rational number is a real number, lhere is a rational number.

Therefore, there is a real number.

(1) G*)(/?* A (y)(Dy —> Lxy))

(2) (x)(Rx -> (Sy -> Lxy))

(3) Dx

(4) Ra A 0>) (Dy — Lay)

(5) 0) {Dy —> Lay)

(6) Dx —> Lax

(7) Lax

(8) Ra —> 0) (Sy —> —i Lay)

(9) Ra

(10) 09 (Sy -> -i Lay)

(11) Sx —> -i Lax

(12) —i
Sx

(13) Dx —» —\Sx

(14) (x) (Dx —> —i
Sx)

P

P
x, p
1 es

4 t

5 us

x, 3, 6 t

2 us

4 t

8, 9 t

10 us

x, 7, 1 1 t

3, 12 cp

13 ug
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9.5. All rational numbers are real numbers. Some rationals are integers.

Therefore, some real numbers are integers. (Qx ,
Rx

,
Zx )

9.6. All freshmen date all sophomores. No freshman dates any junior. There
are freshmen. Therefore, no sophomore is a junior.

9.7. No pusher is an addict. Some addicts are people with a record. There-
fore, some people with a record are not pushers.

9.8. Some freshmen like all sophomores. No freshmen likes any junior. There-
fore, no sophomore is a junior. (Fx, Lxy

,
Sx, Jx)

9.9. Some persons admire Elvis. Some persons like no one who admires Elvis.

Therefore, some persons are not liked by all persons. (Px, Ex, Lxy )

BIBLIOGRAPHICAL NOTE
Extended treatments of symbolic logic, pitched at approximately the same

level as that of this chapter, appear in Copi (1954), Exner and Rosskopf (1959),

Suppes (1957), and Tarski (1941). Formulations of both the statement calculus

and the first-order predicate calculus as axiomatic theories are given in Chap-
ter 9 of this book. The bibliographical notes for that chapter include references

to more comprehensive accounts of this subject matter.

I



CHAPTER Informal Axiomatic

Mathematics

One of the striking aspects of twentieth century mathematical

research is the enormously increased role which the axiomatic approach

plays. The axiomatic method is certainly not new in mathematics,

having been employed by Euclid in his Elements. However, only in

relatively recent years has it been adopted in parts ol mathematics

other than geometry. This has become possible be cause of a fuller

understanding of the nature of axioms and the axiomatization ol logic.

The axiomatization (in the way we shall discuss it presently) of

various fragments of mathematics was the main subject ol studies ol the

foundations of mathematics, from the late 1880’s until the 1920 s. At

that time the present-day approach began to flourish. Distinctive ea-

tures of this modern approach include the explicit incorporation into

the set of axioms of a theory, those which provide lor a built-in

theory of inference, and the concentration on the theory ol models lor

structures characterized by sets of axioms. Chapter 9 is devoted to an

introduction to this modern approach. The present chapter, when

judged relative to standards imposed by the present stage of investi-

gations of the foundations of mathematics, belongs to the past. But, we

repeat, it expounds the axiomatic method as it is used currently in

everyday mathematics.

1. The Concept of an Axiomatic Theory

The concept to be described is an outgrowth of the method used by

Euclid in his Elements to organize ancient Greek geometry. The plan o

this work is as follows. It begins with a list ol definitions ol such notions

as point and line; for example, a line is defined as length without

breadth. Next appear various statements, some ol which are labe ed

axioms and the others postulates. It appears that the axioms are intended

to be principles of reasoning which are valid in any science (lor example
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one axiom asserts that things ec[ual to the same thing arc equal to each

other) while the postulates are intended to be assertions about the

subject matter to be discussed—geometry (for example, one postulate

asserts that it shall be possible to draw a line joining any two distinct

points). From this starting point of definitions, axioms, and postulates,

Euclid proceeds to derive propositions (theorems) and at appropriate

places to introduce further definitions (for example, an obtuse angle is

defined as an angle which is greater than a right angle).

Several comments on Euclid’s work are in order. It is clear that his

goal was to deduce all of the geometry known in his clay as logical

consequences of certain unproved propositions. On the other hand, we

can only conjecture as to his attitude toward other facets of his point of

departure. From a modern viewpoint it may be said that he ti eated

point and line essentially as primitive or undefined notions, subject only to

the restrictions stated in the postulates, and that his definitions of these

notions offer merely an intuitive description which assists one in thinking

about formal properties of points and lines. However, since the geometry

of that era was intended to have physical space as an interpretation, it

is highly plausible that Euclid assigned physical meaning to these no-

tions. Further evidence to support this conclusion is to be lound in some

proofs where Euclid made assumptions that cannot be justified on the

basis of his primitive notions and postulates, yet which, on the basis ot

the intended interpretation of his primitive notions, appear to be evi-

dent. If, indeed, Euclid was confused between formal or axiomatic

questions and problems concerning applications of geometry, then herein

lies the source of the only flaws in his work as judged by modern stand-

ards. Concerning the postulates, he probably believed them to be true

statements on the basis of the meaning suggested by his definitions of

the terms involved. Since proofs were not provided for the postulates,

they acquired the status of '"self-evident truths.’ I his attitude with

respect to the nature of postulates or axioms (now, incidentally, no

distinction is drawn between these two words) still persists in the minds

of many. Indeed, in current nonmathematical writings it is not uncom-

mon to see such phrases as “It is axiomatic that’ and ‘'It is a funda-

mental postulate of” used to mean that some statement is beyond all

logical opposition. Within mathematics this point of view with respect

to the nature of axioms has altered radically. The change was gradual

and it accompanied the full understanding of the discovery by J. Bolyai

and (independently) N. Lobachevsky of a non-Euclidean geometry. Let

us elaborate on this matter.
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In the traditional sense a non-Euclidean geometry is a geometry

whose formulation coincides with that ol Euclidean geometiy with the

one exception that Euclid’s fifth postulate (the parallel postulaU )
is

denied. The fifth postulate is “If two lines are cut by a third so as to

make the sum of the two interior angles on one sick' less than two i ight

angles, then the two lines, if produced, meet on that side on which the

interior angle sum is less than two right angles. An equivalent loi mu-

lation, in the sense that either, together with the remaining postulates,

implies the other, and one which is better suited for comparison purposes,

is “In a plane, if point A is not on the line /, then there is exactly one

line on A parallel to This is one of many axioms equivalent to the

parallel postulate which were obtained as by-products of unsuccessful

attempts to substantiate the belief that the parallel postulate could be

derived from Euclid’s remaining axioms. Bolyai and Lobachevsky dis-

pelled this belief by developing a geometry in which the parallel postu-

late was replaced by the statement “In a plane, il the point A is not on

line /, then there exists more than one line on A parallel to /.” Ap-

parently, the “truth” of this new geometry was initially in doubt. But

on the basis of measurements that could be made in the portion ol

physical space available, there appeared to be no measurable differences

between the predictions of the Bolyai-Lobachevsky geometry and those

of Euclidean geometry. Also, each geometry, when studied as a deductive

system, appeared to be consistent so far as not yielding contradictoi y

statements. The ability to examine these geometries from the latter

point of view represented a great advance, for, in essence, it amounted

to the detachment of physical meaning from the primitive notions ol

point, line, and so on.

A second advance in the attitude toward the axiomatic method ac-

companied the creation of various models in Euclidean geometry of the

Bolyai-Lobachevsky geometry. A typical example is the model proposed

in 1871 by Felix Klein, for which he interpreted the primitive notions

of plane, point, and line, respectively, as the interior of a fixed ciicle in

the Euclidean plane, a Euclidean point inside this ciicle, and an open-

ended chord of this circle. If, in addition, distances and angles are

computed by formulas developed by A. Cayley, in 1859, then all axioms

of plane Bolyai-Lobachevsky geometry become true statements. I he

immediate value of such an interpretation was to establish the relative

consistency (a concept which will be described in detail later) of the

Bolyai-Lobachevsky geometry. That is, il Euclidean geometry is a con-

sistent logical structure, then so is the Bolyai-Lobachevsky geometry.
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Of greater significance, so far as understanding the nature of axiomatic

theories, was the entertainment of the possibility of varying the meaning

of the primitive notions of an axiomatic theory while holding fixed its

deductive structure.

This evolution in the understanding of the nature of the axiomatic

method set the stage for the present-day concept of an axiomatic

theory. In its technical sense the word “theory” is applied to two sets

of statements, of which one is a distinguished subset of the other. The

entire set of statements defines the subject matter of the theory. In the

sciences, apart from mathematics, the members of the distinguished

subset are those statements which are classified as true statements about

the real world, with experiment the ultimate basis for the classification.

In sharp contrast, it is a characteristic feature of an axiomatic theory

that the notion of truth plays no role whatsoever in the determination

of the distinguished subset. Instead, its members, which are called

theorems or provable statements, are defined to be those statements of

the theory that can be deduced by logic alone from certain initially

chosen statements called axioms (or postulates). A precise definition of

theorem can be given in terms of the notion of proof. A (formal) proof

is a finite column (Si, S2 ,
•

•
•

,
Sk) of statements of the theory such that

each S either is an axiom or comes from one or more preceding S '

s

by the rules of inference of the system of logic employed. A theorem

or provable statement is a statement which is the last line of some

proof. Note that, in particular, an axiom is a theorem with a one-line

proof.

In the consideration of an axiomatic theory the notion of truth is

relegated to possible applications of the theory. In any circumstance in

which the axioms are accepted as true statements and the system of

logic is accepted, then the theorems must be accepted as true statements

since the theorems follow from the axioms by logic alone. That is, it is

the potential user of an axiomatic theory who is concerned with the

question of the truth of the axioms of the theory.

Today, axiomatic theories are usually presented in essentially the

same way that Euclid began his development of geometry—by listing

the primitive notions and the axioms of the theory. However, in order

to meet one of the present-day requirements of an axiomatic theory

—

that truth play no role—the primitive notions are taken to be undefined

and the axioms arc taken as simply an initial stock of theorems. We shall

elaborate on these matters in connection with a discussion of the evolu-
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tion of axiomatic theories from intuitive theories (which constitute a

primary source of axiomatic theories).

Usually one’s first exposure to some branch of science is >y way o

an intuitive approach; subjects such as arithmetic, geometry, mechanic.

and set theory, to cite just a few, are approached in this way. An ax-

iomatization of such an intuitive theory can be attempted when l ie

fundamental notions and properties are believed known and the thcoi y

appears to be sound to the extent that reliable predictions can be mac e

with it. The first step in such an attempt is to list what are judged to be

the basic notions discussed by the theory together with what are judgec

to be a basic set of true statements about these notions. In order to

carry out this step efficiently, one often elects to presuppose certain

theories previously constructed. In most axiomatic work in mathematics

it is customary to assume a theory of logic along with a theory of sets, t

In axiomatic work in an empirical science such as economics or physics

it is standard procedure to assume, in addition to logic and genera

set theory, parts of classical mathematics. Once it has been decided

what theories will be assumed, the key steps in the axiomatizat.on can

be carried out. The first of these is the introduction of symbols (includ-

ing possibly, words) as names for those notions which have been judgee

to be basic for the intuitive theory. These are called the primitive sym-

bols (or, terms) of the axiomatic theory. The only further symbols

which are admitted (aside from symbols of the presupposed theories)

are defined symbols, that is, expressions whose meaning is exp lcit y

stated in terms of the primitive symbols. (The intuitive theory in mind

often suggests the introduction of some such symbols.) The next step

is the translation of those statements that were singled out as expressing

fundamental properties of the basic notions of the intuitive theory

into the language which can be constructed from just the primitive

and defined terms (and those of any theory which is presupposed )

.

To obtain an example of a language of the sort mentioned above let

us consider an axiomiatization of intuitive set theory with the first-order

predicate calculus as the only presupposed theory. In addition to logical

symbols, only one further (primitive) symbol, the familiar one for the

membership relation, shall be employed. Then the language which is

available is that described in Section 4.7, with expressions oi the form

xC)

tRv a theory of sets we mean some development which includes roughly the content of

Chapters 1 2 aVd 3. Often a theory of sets which encompasses this material is referred to as

“general set theory.”
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constituting the totality of prime sentences (formulas). A list of useful

defined symbols for the theory appears in Example 4.7.1. If some theory

of logic is not assumed for an axiomatization, then one must include in

the presentation of the theory an axiomatized version of a theory of

inference. A detailed discussion of this begins in Section 9.3.

In a program of the sort we have described for axiomatizing an

intuitive theory, there is often considerable leeway in the choice of

primitive notions. Different sets may be suggested by various combi-

nations of notions which occur in the intuitive theory. In the modern

axiomatization of Euclidean geometry devised by D. Hilbert there are

six primitive notions: point, line, plane, incidence, betweenness, and

congruence. On the other hand, in that created by M. Pieri there are

but two primitive notions: point and motion. Obviously the choice of

primitive notions for an axiomatic theory influences the choice of axioms.

A great variety of more subtle remarks can be made concerning the

selection of axioms for a particular theory. Some are presented in

Section 4.

While we are dealing in generalities we will mention another stimulus

for the creation of axiomatic theories—the observation of basic like-

nesses in the central features of several different theories. This may
prompt an investigator to distill out these common features and use

them as a guide for defining an axiomatic theory in the manner described

above. Any one of the theories which an axiomatic theory is intended to

formalize serves as a potential source of definitions and possible theorems

of this axiomatic theory. An axiomatic theory which successfully for-

malizes an intuitive theory is a source of insight into the nature of that

theory, since the axiomatic theory is developed without reference to

meaning. One which formalizes each of several theories to some degree

has the additional merit that it effects simplicity and efficiency. Since

such an axiomatic theory has an interpretation in each of its parent

theories (on a suitable assignment of meaning to its primitive terms), it

produces simplicity because it tends to reduce the number of assumptions

which have to be taken into account for particular theorems in any one

of the parent theories. Efficiency is effected, because a theorem of the

axiomatic theory yields a theorem of each of the parent theories. Herein

lies one of the principal virtues of taking the primitive terms of an

axiomatic theory as undefined.

A by-product of the creation of an axiomatic theory which is the

common denominator of several theories is the possibility of enriching

and extending given theories in an inexpensive way. For example, a
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theorem in one theory may he the origin of a theorem in the derived

theory and it, in turn, may yield a new result in another parent theory.

In addition to the possible enrichment in content of one theory by

another, by way of an axiomatic theory derived from both, there is

also the possibility of “cross-fertilization” insofar as methods of attack

on problems are concerned. That is, a method of proof which is standard

for one theory may provide a new method in another theory with a

derived theory serving as the linkage.

A full understanding of such remarks as the foregoing cannot possibly

be achieved until one has acquired some familiarity with a variety ol

specific theories and analyzed some successful attempts to bring diverse

theories under a single heading. The field of algebra abounds in such

successful undertakings. Indeed, it is perhaps in algebra that this type

of genesis and exploitation of theories has scored its greatest successes.

Several important examples of algebraic (axiomatic) theories are chs-

cussed later.

2. Informal Theories

In this section we shall discuss the formulation of axiomatic theories

when a theory of inference and general set theory are presupposed as

already known. Such axiomatic theories will be called informal theo-

ries. As has already been mentioned, it is common practice in mathemat-

ics to present axiomatic theories as informal theories.

The first matter to be thoroughly understood about informal theories

is the working forms which are adopted for the assumed theories of

inference and of sets—that is, the actual settings in which informal

theories are presented. Concerning the theory ol inference, it is simp y

the intuitive theory which one absorbs by studying mathematics. That

this theory is clearly defined is suggested by the fact that what is judge

to be a proof by one competent mathematician is usually acceptable to

other mathematicians. This is not the end of the matter however. T he

contents of Chapter 4 indicate that there is a system of logic (the first-

order predicate calculus) which is adequate for much of mathematics

and which can be described in precise terms. Both the preciseness an

adequacy of the first-order predicate calculus take on sharp forms ater

when we give an axiomatized version of this theory (Section 9.3) and

then prove its completeness in the sense that every valid formula is a

theorem. Further, there is considerable evidence to support the conten-

tion that the definition of logical correctness which is supplied by this
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symbolic logic is closely attuned to the corresponding intuitive notion

which mathematicians acquire. Such a book as Logic for Mathematicians
,

by J. B. Rosser (1953), is rich in examples which illustrate his thesis that

logical principles which are judged correct by most mathematicians are

classified as correct by symbolic logic and vice versa. That is, there is

considerable evidence in support of the thesis that the system of logic

which is presupposed for an informal theory is a clearly defined theory

which can be spelled out if necessary. This empirical conclusion does not

evidence itself in mathematicians giving formal proofs and then using

the mechanical procedures provided by the predicate calculus for testing

their correctness. However, it is usually not difficult to convince oneself

that an accepted, informal proof could be formalized if demanded.
The set-theoretical framework which is assumed for an informal theory

is the general set theory developed in Chapters 1-3. Although contra-

dictions can be devised within this intuitive theory, that part which is

employed in developing informal theories does not lead to such dif-

ficulties so far as is known. For the moment we shall support this latter

statement with only the following remark. The intuitive set theory we
have discussed can be axiomatized in such a way that (i) so far as is

known, all undesirable features (that is, the known paradoxes) are

avoided, and (ii) all desirable features consonant with (i) are retained.

An outline of such a development is given in Chapter 7.

We turn now to some examples of informal theories. These will serve

to illustrate the two circumstances described at the end of the preceding

section under which axiomatic theories are devised (namely, to axio-

matize some one intuitive theory and to formalize simultaneously several

theories). Further, they will serve to illuminate our later discussion of

informal theories.

EXAMPLES
2.1. In Example 2.1.2 appears what is essentially Peano’s axiomatization of

the natural number system. The primitive notions are natural number
,
zero (0),

and successor ('), and the axioms are the statements Pi-P5 appearing there.

2.2. Immediately following Theorem 3.4.1 we called attention to certain like-

nesses in the properties of the rational numbers and integers. Specifically, we
noted that the system consisting of £), the operation of addition, and 0„ as well

as the system consisting of Q — {0J, multiplication, and \ s share, with the sys-

tem made up of Z, addition, and 0„ properties (l)-(4) of Theorem 3.3.1. Thus,
we argued, any further properties of the integers which can be derived from
(1)— (4) (for example, those mentioned in Exercise 3.3.5) also hold for the other
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two systems. In terms of our current discussion we may classify that argument

as a bit of axiomatic mathematics. Before formulating explicitly the axiomatic

theory involved we remark that for the derivation of the results stated in Ex-

ercise 3.3.5 the property of commutativity of addition is not required (we

“allowed” the reader to use this property because simpler proofs can be given

with it). Essentially the same simplifications in the proofs can be achieved if

commutativity is assumed only in part, as in the axioms below.

The axiomatic theory to be described is called group theory. 1 he primitive

notions are an unspecified set G, a binary operation in G, for which we use mul-

tiplicative notation (that is, the operation will be symbolized by • and the value

at (a, b) of this function onGXG into G will be designated by a • b), and an

element e of G. The axioms are the following.

Gi. For all a
,
b

,
and c in G, a • (b • c) = (a • b) • c.

G 2 . For all a in G, a • e = e • a = a.
, ,

G 3 . For each a in G there exists an a in G such that a • a = a • a — e.

The above is a formulation of group theory as one might find it in an algebra

text. In harmony with the agreement to write the value of • at (a, b) as a b,

we call this element the product of a and b. Henceforth we shall use the simpler

notation ab for it. An element which has the property assumed for e in G2 is

called an identity element and an element which satisfies G :1
for a given a is called

an inverse of a (relative to e).
,

A few theorems of group theory, including those to which reference has been

made in connection with number systems, are proved next.

G4 . G contains exactly one identity element.

Proof. In view of G 2 ,
only a proof of the uniqueness is required. Assume that

each of ei and *2 is an identity element of G. Then exa = a for every a, and

ae

2

= a for every a. In particular, e xe2 = e2 and e xe2 = ex . Hence, e x - e2 y

properties of equality.

G5 . Each element in G has exactly one inverse.

Proof. Since G, asserts the existence of an inverse for each element a, only the

proof of its uniqueness remains. Assume that both a' and a" are inverses of a.

Then a"

a

= a and aa' = a. By G„ (a"a)a' = a"(aa')> and, hence, ra = a e.

Using G 2 it follows that a a .

In multiplicative notation the inverse of a is designated by “a p
’

;
thus a la =

aa-i = e (the unique identity element of G).

G6 . For every a, b
,
and c in G, if ab = ac

,
then b = e

9
and, if ba = ca,

then b = c.
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Proof. Assume that ab = ac. Now a~ 1 (ab ) = (a~
1a)b = eb = b. On the other

hand, a~ 1 (ab) = a~ l (ac) = (a~
xa)c = ec — c. Hence, b — c. The proof of the

remaining assertion is similar.

Proofs of the next two theorems are left as exercises.

G7 . For all a and b in G
,
each of the equations ax = b and ya = b has a

unique solution in G.

Gg. For all a and b in G
, (ab)~

l = b~ la~ l
.

2.3. The theory to be described has its origin in Euclidean plane geometry.

It is that generalization of Euclidean geometry known as affine geometry. The
primitive notions are a set (P (whose members are called points and will be de-

noted by capital letters), a set <£ (whose members are called lines and will be

denoted by lower-case letters), and a set $ called the incidence relation. The
axioms are as follows.

AGi. 0 C (P X £. ({P, /) £ is read “P lies on /,” or “/ contains P,” or

‘7 passes through PP)
AG2 . For any two distinct points P and Q there is exactly one line passing

through P and Q. (This line will be denoted by P + Q.)

Before stating the next axiom we make a definition. If / and m are two lines

such that either / = m or there exists no point which lies on both l and m, then

/ and m are called parallel.

AG3 . For any point P and any line / there exists exactly one line m passing

through P and parallel to /.

AG4 . If A, B, C, D, E, and F are six distinct points such that A + B is

parallel to C + D, C + D is parallel to E + F, A + C is parallel

to B + D, and C -f- E is parallel to D + F, then A + E is parallel

to B + F.

AG5. There exist three distinct points not on one line.

Proofs of a few simple theorems are called for in the following exercises.

Since axiomatic theories are often elaborate structures, they deserve

elaborate symbols as names. To our mind, capital German letters

suffice. Consider now an informal theory X. Associated with it is a

language which can be constructed from the primitive and defined

terms of X and the terminology of set theory and logic. We shall call

this language the X-language and its member sentences T-sentences.

Those ^-sentences which involve no free variables shall be called

T-statements. (Parenthetically we remark that T-sentences are usually
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written using a combination of words and symbols, as in the fon going

examples, instead of the purely symbolic style of Examples 4.7. 1-4.7. 3.)

An interpretation of X consists of selecting a particular nonempty

set D (called the domain of the interpretation) as the range lot the

individual variables of X and assigning to each primitive term an object

of the same “character” constructed from D\ that is, to a binary rela-

tion symbol we assign a binary relation in D
,
to a binary operation

symbol we assign a binary operation in Z), to an individual constant

we assign an element of Z), and so on. 1 his can scarcely be regarded

as a definition of an interpretation in view of its vagueness. Until such

time as we correct this deficiency we shall rely on the reader’s intuition

and the examples below. If I is an interpretation of X in a system

ancJ if S is a X-sentence, then we shall call the sentence, which

results on the assignment of meaning (as specified by Z) to the primitive

terms of X that occur in S, an interpretation of S in If an interpreta-

tion of S in 502 is a true statement of 9ft, we shall say that .S’ is true in

fW 9
or that 9ft is a model of S. If S is a set of X-sentences, then SOl is

called a model of 2 iff it is a model of each member of 2. If SOl is a

model of the set of axioms of X, then 9ft is called a model of X. Notice

that such definitions are relative to some one interpretation of X in 9ft.

As our first illustration of the notion of a model we note that each of

the progressions described in Example 2.1.1 is a model of the Peano

axioms under the obvious interpretations of natural number, zero, and

successor. Next, the set G(X) of all one-to-one mappings on a nonempty

set X onto itself together with function composition and ix is a model ol

the theory of groups or, more simply, is a group. Again, the power set of

any set together with the symmetric difference operation and the empty

set is a group. As for models of affine geometry, one who is familiar, to

some degree, with intuitive Euclidean geometry will undoubtedly accept

it as an affine geometry. A radically diflerent model results on setting

(P = {1,2, 3,4},£ = {{1,21, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}} and

defining P to be on / iff P C /. The verification that all axioms are

satisfied is left as an exercise.

It is an accepted property of a model 9ft of an informal theory X that

each theorem of X is true in 9ft. t The supporting argument is simply that

(by definition of a model of X) each axiom is true in 9ft and each

theorem of X is derived from the axioms by logic alone. An illustration

may be given in terms of Theorem Gs of Example 2.2. The inteipieta-

f A 2-sentence in which an individual variable * has a free occurrence is interpreted as if

the quantifier “For all *” were prefixed to the sentence.
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tion of G 8 in the group G{X) of mappings is the statement that if

b C G(X) then (a ° b)~ l = b~ l
° a

-1
,
which is an important property

of functional inversion. The interpretation of G8 in the group consisting

of Z, addition, and 0 is the statement that — (a + b) = (
— b) + (

— a).

I hus, these two results, diverse in appearance, are interpretations of a

single statement of group theory.

EXERCISES

2.1. Prove Theorems G7 and G8 in Example 2.2.

2.2. The theory of commutative groups differs from the theory of groups in

that it includes one further axiom:

G9 . For all a and b in G, ab = ba.

It is common practice to use additive notation for the operation in a commu-
tative group (that is, to write a -f b instead of ab), to write 0 instead of e, and
to write —a instead of a~ l

.

Suppose that G together with + and 0 is a commutative group. Prove each
of the following theorems.

(a) — (a + b) =
(
— a) + (

— b).

(b) If “a — b” is an abbreviation for “a + (
— A),” then a + b = c b =

c — a.

(c) a — (
— b) = a + b and — (a — b) = b — a.

(d) Iff:G-+-G where f(a) = —a, then / is a one-to-one and onto mapping.

2.3. Let Z n be the set of residue classes [a] of Z modulo n (see Section 1.7).

Show that the relation {(([a], [£]), [a + [b~\ C Zn} is a binary opera-
tion in Z n . Show that Z„ together with this operation and [0] is a commutative
group.

2.4. Show that an operation + can be introduced in the set / of equiv-
alence classes defined in Exercise 1.7.11, by the definition [a, b] + [c, d] =
[a + c, b + d], where [a, b] is the equivalence class determined by (a, b), and
so on. Prove that / together with this operation and [1, 1] is a commutative
group.

2.5. Show that R together with the operation such that x * y = (*
3
-f

y*)i/s

and 0 is a group.

2.6. Write out the elements of G(X) for X = {1,2} and for X =
{1, 2, 3}.

Show that the group associated with the latter set of mappings is not commu-
tative.

2.7. Let G be a nonempty set and • be a binary operation in G such that

Gi and G7 hold. Prove that G, *, and a suitable element of G is a group.
2.8. Let G be a nonempty finite set and • be a binary operation in G such

that G) and G6 hold. Prove that G, •, and a suitable element of G is a group.
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2.9. This exercise is concerned with affine geometry as formulated in Ex-

ample 2.3.

(a) Prove that “is parallel to” is an equivalence relation on £. An equivalence

class is called a pencil oi lines.

(b) Let 7r i and 7t2 be two distinct pencils of lines. Using only AG 2 and AGa ,

prove that the number of points on any line / of 7Ti is the same as the

number of lines of 7t2 .

(c) Using (b), prove that if there exist three distinct pencils of lines, then all

lines have the same number of points, all pencils have the same number

of lines, and every pencil has the same number of lines as the number ol

points on every line.

(d) From AG5 infer that there exist at least three distinct pencils of lines.

(e) Show that the set of four points and six lines given in the text is a model

of the theory.

(f) Show that any affine geometry contains at least four points and six lines.

2.10. Let 0 be the axiomatic theory having as its primitive notions two sets

P and L and as its axioms the following.

Ai. If / C L, then / C P.

A2 . If a and b are distinct elements of P, then there exists exactly one

member / of L such that a, b (E /.

A 3 . For every l in L there is exactly one /' in L such that / and l' are

disjoint.

A4 . L is nonempty.

A6 . Every member of L is finite and nonempty.

Establish the following theorems for 0.

(a) Each member of L contains at least two elements.

(b) P contains at least four elements.

(c) L contains at least six elements.

(d) Each member of L contains exactly two elements.

3. Definitions of Axiomatic Theories by Set-theoretical

Predicates

We continue our discussion ol the axiomatization of intuitive theoiies

with a description of a uniform approach which takes lullti advantage

of the expressive powers of general set theory. I he point ol departure

is the observation (which is substantiated, in part, by those theoiies

discussed in Examples 2.1—2.3) that the primitive notions ol a great

variety of mathematical theories consist oi a set A and certain constants
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associated with X. These constants may be of various types: elements

of X (such as the identity element of a group), subsets of X, collections

of subsets of X (such as the lines of an affine geometry), subsets of Xn

for some n (which include relations in X and operations in X), and so

on. Collectively, the constants serve as the basis for imposing a certain

structure on X (which is the object of study of the theory). The structure

itself is given in the axioms, which are the properties assigned to X and

the constants (including, possibly, the existence of inner relations among

them).

The approach to the axiomatization of theories which stems from the

foregoing observations calls for definitions of axiomatic theories by way

of set-theoretical predicates. A consideration of several examples will

serve to bring the procedure into focus. In our first example we consider

the theory of partially ordered sets. The purely set-theoretical character

of the predicate “is a partially ordered set,
5

' which is defined should be

apparent.

DEFINITION A. 91 is a partially ordered set iff

there is a set X and a binary relation p such that

91 = (X, p) and

Oi. p is reflexive in X,

00. p is antisymmetric in X,

0 3 . p is transitive in X.

This definition illustrates a convention which we shall follow in this

discussion, namely, to exhibit the basic set as the first coordinate of an

ordered rc-tuple, and the associated constants, in some order, as the

remaining coordinates.

The sentence in Definition A may be regarded as being in need of

recasting if it is to appear in the running text since it begins with a

symbol. The following version meets this objection.

A partially ordered set is an ordered pair (X, p) where

A is a set, p is a binary relation, and the following

conditions are satisfied.

01. p is reflexive in X.

02 . p is antisymmetric in X.

03 . p is transitive in X.
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An alternative to Definition A, which is closer to standard mathe-

matical practice, is a conditional definition.

DEFINITION B. Let X be a set and p be a binary

relation. Then (X, p) is a partially ordered set iff

01. p is reflexive in X
,

0 2 . p is antisymmetric in .Y,

0 3 . p is transitive in X.

This definition is conditional in the sense that the proper definition is

prefaced by a hypothesis. When a definition is so formulated it is com-

mon practice to omit the hypothesis in stating theorems of the theory.

Our second example is a definition of group theory along the lines

suggested by the axiomatization appearing in Example 2.2.

DEFINITION C. © is a group iff there is a set X,

a binary operation • in X, and an element e of X such

that © = (X, • ,
e) and

Gi. for all a, b, and c in X, a • (b • c) = (a • b) • c,

G 2 . for all a in X, a • e = e • a — a,

G3 . for each a in X there exists an a in X such

that a • a' = a' • a = e.

When a theory X is axiomatized by defining a set-theoretical predi-

cate, what we have called up to this point the primitive symbols (or

terms) of the theory appear in the running text immediately preceding

the axioms. Also in this circumstance models of I are simply those

entities which satisfy the predicate. For the theory of groups, for exam-

ple, the point can be put quite trivially as follows: II (X, e) is a group,

then (X,
•

,
e) is a model for the theory ol groups.

EXERCISES

These exercises are concerned with the theory of simply ordered commutative

groups, which may be defined as follows: ® is a simply ordered commutative

group \s.o.c.g.) iff ® = (G, +, 0, <>, where

SGi.

SG2 .

sg 3 .

(G, + , 0) is a commutative group,

(G, <) is a simply ordered set,

for all a, b
,
and c in G, ifa < b

,
then a + r < b + c. (Here, a < b

is an abbreviation for
u
a < b and a ^ b.”)
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All results obtained earlier for groups, in particular, commutative groups,

may be used when needed. Also, properties of simply ordered sets may be used.

3.1. Find two s.o.c.g. within the real number system.

3.2. If {G, +, 0, <) is a s.o.c.g., define G+ to be {a G G|0 < a). Prove the

following properties of G+ .

(a) If a G G+
,
then —ad£_ G+ .

(b) If a 0, then either a G G+ or -a G G+ .

(c) If, a, b G G+, then a + b C G+ .

3.3. Prove the following theorems for a s.o.c.g.

(a) If a < b, then a — c < b — c.

(b) If a -f- c < b + c, then a < b.

(c) If a < b and c < d, then a + c < b + d.

(d) If a < b, then —b < —a.

3.4. Prove the following theorem. If G has more than one element and

(G, +, 0, <) is a s.o.c.g ., then G has infinitely many elements.

4. Further Features of Informal Theories

In this section we introduce a variety of notions which have relevance

to informal theories. Most of these serve to provide a classification

scheme for a given theory. Thereby its status and its merits can be

summarized concisely.

Suppose that A is a formula of some theory X and that both A and

—i A are theorems. Then, if the system of logic employed includes the

statement calculus with modus ponens as a rule of inference, any formula

B of the theory is a theorem. Indeed, d —> (
—\A —> B) is a theorem

since it is a tautology, and two uses of modus ponens establish B as a

theorem. A theory X is called inconsistent if it contains a formula A
such that both A and —i

A are theorems. A theory is called consistent

if it is not inconsistent—that is, if it contains no formula A such that

both A and —\A are theorems.

Since in any theory which we shall consider the logical apparatus will

include what was used above, we regard an inconsistent theory as

worthless, since every formula is a theorem. Thus, the question of

establishing the consistency of a theory becomes of primary importance.

A moment’s reflection will point out the high degree of improbability of

reaching an answer by direct application of the definition and, con-

sequently, of the need for a “working form” of the definition of con-

sistency. That which is usually adopted in mathematics is : the existence
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of a model of a theory implies the consistency oi the theory. The sup-

porting argument is based on (i) the property of a mode l mentioned at

the end of Section 2, namely, if 93? is a model of the theory X, then each

theorem of X is true in 93?, and (ii) the assumption that if S is a 2-state-

ment then not both of S’ and -vS are true in 93?. Indeed, assuming (l)

and (ii), suppose that X has a model 9)?. If both of the Statements S

and -i S are theorems, then both S and —i
S are true in 93? by (i) and

this is a contradiction by (ii). Hence, if X has a model, then X is

consistent.

In essence, the foregoing working form of consistency merely sub-

stitutes an inspection of true statements about a model of a theory for

an inspection of theorems of the theory. If a model of a theory (A, • • •)

can be found such that the interpretation of X is a finite set, one may

expect that the question of whether it is free from contradiction can be

settled by direct observation. For example, the fact that ({e\, -,e),

where e • e = e, is a model of group theory establishes the consistency

of group theory beyond all doubt.

If on the other hand, a theory has only infinite models (that is,

models where the interpretations of the basic set are infinite), then no

net gain results upon substituting an inspection ol true statements about

a model for that of theorems of the theory. Such models ol a given

theory X really amount to interpretations of X in another theory such

that the interpretation of each axiom of X is a theorem ol the other

theory. If this other theory is consistent, then X must be. For suppose

that a contradiction were deducible from the axioms of X. Then, in the

other theory, by corresponding inferences about the objects constituting

the model, a contradiction would be deducible from the corresponding

theorems. Such demonstrations of consistency are merely relative: The

theory for which a model is devised is consistent if that from which the

model is taken is consistent. Let us consider some examples. As described

in Section 1 ,
the plane geometry of Bolyai-Lobachevsky has a model in

Euclidean plane geometry. Thereby the relative consistency ol this non-

Euclidean geometry is established in the form: If Euclidean geometry

is consistent, then so is the Bolyai-Lobachevsky geometry. A prool ol

the consistency of Euclidean geometry, as precisely formulated in

Hilbert (1899), can be given by interpreting a point as an ordered pair

of real numbers and a line as a linear equation; in more familiar guise

this is simply the standard coordinatization ol the Euclidean plane.

However, since the theory of real numbers has never been proved
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consistent, one may conclude merely that if the theory of real numbers

is consistent, then so is Euclidean geometry. In other words, we obtain

a relative consistency proof. In turn, since we have seen that a construc-

tion of the real numbers can be given, starting from Peano s axioms,

within a sufficiently rich theory of sets, a consistency proof of the theory

of real numbers can be given relative to a theory which embraces both

Peano’s theory and this theory of sets.
.

Assuming that the consistency of a theory has been settled in the

affirmative by proof or by faith, the question of its completeness may

be raised In rough terms, a theory is called complete ll it has cnoug

theorems for some purpose. The variety of purposes which may enter

in this connection are responsible for a variety of technical meanings

being assigned to this notion. However, most definitions of complete-

ness fit into either the category which corresponds to a positive approach

or that which corresponds to a negative approach to the question ol a

sufficiency of theorems. We shall give one definition in the first cate-

gory and two in the second. The setting for the first of these, which is

in the positive vein, is as follows. We know that ll He is a model o a

theory 2 and T is a theorem of Z, then T is true in 9)1. We might

regard 2 as being complete with respect to 9)1 if, conversely, whenever a

T'-statement has a true statement of 9)1 as its interpretation, then that

2-statement is a theorem. This suggests calling 2 complete it it is

complete with respect to every model. If we understand by a (uni-

versally) valid statement of a theory one which is true in every model,

then the notion of completeness which we have in nnnd may be formu-

lated as: A theory 2 is deductively complete ill every valid statement

of 2 is provable. The statement calculus can be formulated as an

axiomatic theory which is complete in this sense (see Section 9.2);

that is, every tautology is a theorem.

If we approach the question of a sufficiency of theorems in a negative

fashion, we are led to a second category ol iormulations ot complete-

ness. For example, we might say that a theory is complete if the axioms

provide all theorems we can afford to have without some dire conse-

quence (such as inconsistency) ensuing. A circumstance which might

suggest this interpretation of completeness is an attempt to devise an

axiomatic theory intended to formalize some intuitive theory, l or then

one strives to include sufficient axioms that as many as possible true

propositions of the intended model can be obtained as interpretations

of theorems of the theory. Hence, one keeps adding, as axioms, formulas
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which express true propositions of the model up to the point that an

inconsistent theory results. This approach to completeness may be

crystallized in the following definition. An axiomatic theory X is

formally complete provided that any theory X^ which results from X

by the adjunction to the axioms of X of a statement ol X which is not

already a theorem of X, is inconsistent. A theory which is formally

complete may be said to have maximum consistency.

An axiomatic theory X is said to be negation complete if, for any

statement A of the theory, either 4 or —id is a theorem. It is clear that

negation completeness implies formal completeness. Conversely, il the

theory of inference employed in developing an axiomatic theory includes

a deduction theorem—that is, a theorem which asserts that if a formula

B is deducible from formulas A i, A<l, •
•

*, Am ,
then A rn

—> B is deducible

from A h d 2 ,

• •
•, Am- 1—then formal completeness implies negation com-

pleteness. To show this, suppose that a theory X is formally complete

and that the X-statement d is not a theorem. Thm the theory which

results on the adjunction of d as an axiom is inconsistent. That is, ii F

is the set of axioms of X, then a contradiction C can be derived from

TU (dj, whence d —> C can be derived from F. In turn, since

(d —> C) —> —i d is a theorem (being a tautology), —id can be derived

from d —> C. Hence, -i d can be derived from F
;
that is X is negation

complete.

We may loosely relate consistency and completeness in the following

way. An axiomatic theory is consistent if it does not have too many

theorems and it is complete if it does not have too few. If an axiomatic

theory is both consistent and negation complete, then all questions

which arise within the framework of the theory are theoretically decid-

able in exactly one way. For any statement of the theory is either prov-

able or refutable (that is, its negation is provable) because of com-

pleteness, and cannot be both proved and refuted because of consistency.

Such a state of affairs for a theory does not always imply that proofs or

refutations of specific statements of the theory are automatically made

available, but in some interesting cases it does. 1 hat is, for some con-

sistent and complete theories there exists a method which can be

described in advance for deciding in a finite number of steps whether

a given formula of the theory is a theorem. Such theories are called

decidable (see Section 9.5).

Notions of the sort which we have introduced so far in this section as

well as that of categoricity (which is described next) cannot, in general,
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be discussed in a precise and definitive way at our present intuitive level

of discourse. A precise account is possible only when the theory of

inference is explicitly incorporated into an axiomatic theory. In Chap-

ter 9 we shall show how this can be done for an important class of

theories. Then we shall re-examine for this class the concepts of con-

sistency, completeness, categoricity, and decidability, including intei-

relations which exist among them.

The remaining notion which we shall introduce as an ingredie nt of a

classification scheme for informal theories arises in connection with the

purpose for which a theory is devised. If it is intended that an axiomatic

theory formalize some one intuitive theory, a natural requirement foi

the successfulness of the axiomatization is the pi esence of a thcoi cm to

the effect that any two models of the theory are indistinguishable apart

from the terminology they employ. In other words, the theoiy has

essentially only one model. For example, one would certainly hope to

have such a theorem for any theory designed to formalize Euclidean

geometry or the real number system, since we think of each of these

as a single clearly delimited theory. A theoiy is called categoiical if it

has essentially only one model. This will qualify as a definition as soon

as the vague notion that models of a theory are indistinguishable is

made precise.

The sort of indiscernibility of models which is involved is known as

isomorphism. A definition which could cover all conceiv able situations

would be too unwieldy to attempt. This is the reason for the repeated

occurrence of definitions bearing this name. Each is tailoied to fit the

distinguishing features of the theory under consideration. Already we

have given three such definitions : one for partially ordered sets, one for

integral systems, and another which is applicable to systems consisting

of a set with two binary operations and an ordering relation. In order

to further strengthen the reader’s comprehension of the concept and to

serve as a vehicle for several general comments, we offer definitions in

three specific cases (labeled l h I 2 ,
and I 3). These together with those

definitions given earlier should serve to clarify the essence of isomorphism.

I 1# Let (Xh pi) and (X2i p2) be two models of a theory having a set

and a pertinent relation as primitive notions. Then (Xh pi) is isomorphic

to (X2 , P 2) iff there exists a function / such that

(i) / is a one-to-one correspondence between X\ and A'2 ,

(ii) if x, y C Ar

! and * pi y, then f(x) p2 /O0,

(iii) if *, y £ A'2 and * p2 y, then /
-1

(x) Pi/
_1
W-
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This definition is patterned after that of isomorphism for partially

ordered sets (Section 1.11). It is applicable to the case where p t is a

function on Xi into Xi, i
= 1, 2. In this event the definition of isomor-

phism can be simplified to the following, as the reader can verify.

Let (A”i,/i) and (X2 , f2) be models of a theory whose primitive notions

are a set and a function on that set into itself. Then (Xh fi) is isomorphic

to (X2,f2) iff there exists a function / such that

(i) / is a one-to-one correspondence between Xi and X2 ,

(ii) if * C Xh then /(/,(*)) = /i (/(*))•

Thus, in this case only one of the two requirements for isomorphism

must be proved; the other, which completes the symmetry inherent in

the concept of isomorphism, necessarily follows.

1 2 . Let (Xh °i) and (X2 ,
of) be two models of a theory having a set

and a binary operation in that set as its primitive notions. Then (Xh °i)

is isomorphic to (X2 ,
° 2)

iff there exists a function / such that

(i) / is a one-to-one correspondence between X\ and X2 ,

(ii) if x, y C Xh then f(x °iy) = f(x) ° 2 f(J).

It is left as an exercise to show that this formulation of isomorphism is

an equivalence relation in any collection of models of the theory de-

scribed. In particular, therefore, as in the specialized version of L given

above, the symmetric nature of the concept follows automatically.

1 3 . Let (Xh Ti, pi) and (X2 ,
Y2 , p 2) be two models of a theory having

as its primitive notions two sets and a relation whose domain is the first

set and whose range is the second set. Then {Xh Y\, pi) is isomorphic to

(X2 ,
Y2 , p2) iff there exists a function / such that

(i) / is a one-to-one correspondence between Xi U Yi and X2 U Y2

such that f{Xi) = X2 and f(Yi) = T2 ,

(ii) / preserves the relations pi and p2 in the sense of definition L.

This is not the only definition of isomorphism which might be made

under the circumstances. The one given takes into account the preser-

vation of set-theoretical interconnections between Xi and Tt-, i
= 1,2.

We now define an informal theory to be categorical iff any two

models of it are isomorphic. In view of Theorem 2.1.8, the theory of

integral systems, which was devised to axiomatize the natural number
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sequence, is categorical, f This result is one which might be hoped for

since the theory is intended to formalize just one intuitive theory. An

elementary example of a categorical theory is obtained by adding to

the five axioms for affine geometry (Example 2.3), the following.

AGC . The set <? has exactly four members.

The resulting theory is consistent by virtue ol the model given in

Section 2. The proof that it is categorical is left as an exercise.

Analogous to the acceptance of the existence of a model as a criterion

for consistency, the existence of essentially only one model (that is,

categoricity) is often accepted as a criterion lor negation complc teness.

To state the pertinent result we make a definition. A statement of a

consistent theory X will be called a consequence of -L it it is true in

every model of X . Then, if X is a consistent and categorical theory
,
for each

X-statement S, either S is a consequence of X or —i
S is a consequence of X. This,

it will be noted, amounts to negation completeness with provability

replaced by a weaker notion. The proof makes use of the following

property of models. If 9D?i and 9J? 2 are isomorphic models of a theory X ,

then for every ^-statement S, either S is true in both 99? i and s
93? 2 or S

is false in both. Assuming this as proved, the main result can be derived

as follows. Suppose that the T-statement S is not a consequence of the

consistent theory T. Then, by the definition ol consequence, there

exists a model 90? i of X which does not satisfy S. Let 90? be any model

of X. Then, since 90? is isomorphic to 93?i, S is not true in 90?, and, hence

—
!

S

is true in 90?. Since 90? is any model of X
,
this means that —iS is a

consequence of X.

A theory which is consistent and noncategorical has essentially dif-

ferent (that is, nonisomorphic) models. This is precisely what should be

anticipated for a theory intended to axiomatize the common part of

several different theories. The theory of groups is an excellent example.

Because it has such a general character it has a wide variety ol models,

which means that it has a wide range ol application.

We conclude this section with several miscellaneous remarks. I he

first involves assigning a precise meaning to the word ‘"formulation”

which we have used frequently. As we described it, an informal theory

X includes a list of undefined terms, a list T\ ol defined terms, a list

P0 of axioms, and a list Pi of all those other statements which can be

inferred from Po in accordance with some system ol logic. 1 he set 1 0

t Later we shall find it necessary to modify this assertion.
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serves to generate T0 U Yj, the set of all technical terms of X; the set

serves to generate P
() U Pi, the set of all theorems of X. For the ordered

pair (Y"o, Po) we propose the name of a “formulation” for X. A study of

X may very well culminate in the discovery of other useful formulations.

To obtain one amounts to the determination of: (i) a set Y)j which is a

subset of To U T\ (which may or may not differ from To), and (ii) a

subset P'o of Po U Pi whose member statements are expressed in terms of

the members of T'
{)
and from which the remaining theorems of the theory

can be derived. For a pair of the form {T[h P'0) to be a formulation of X,

it is clearly sufficient that the members of To can be defined by means

of those in T'0 and that the statements of P0 can be derived from those

of P'o. For many of the well-known axiomatic theories there exists a

variety of formulations. This is true, for example, of the theory of

Boolean algebras discussed in Chapter 6. A rather trivial example appears

in Section 1.11, and we may rephrase it to suit our present purposes:

As a different formulation of the theory of partially ordered sets we may
take that consisting of a set X together with a relation that is irreflexive

and transitive on X (see Exercise 1.11.3). Another example is implicit

in a remark made in Section 1 ;
rephrased, it amounts to the assertion

that Flilbert and Pieri gave different formulations of a theory which

axiomatizes intuitive plane geometry.

Different formulations of a theory amount to one variety of possible

approaches which can be made to one and the same mathematical

structure. Depending on the criteria adopted, one may show a marked

preference for one formulation over others. Aesthetic considerations may
influence one’s judgment, and the simplicity of the set of axioms in

conjunction with the elegance of the proofs may also play an important

role. One may prefer a particular formulation because he feels it has a

“naturalness” that others lack. He may favor a formulation which

involves the fewest number of primitive notions or axioms.

A notion which is pertinent to a formulation of an informal theory

is that of the independence of the set of axioms. A set of axioms is

independent if the omission of any one of them causes the loss of a

theorem; otherwise it is dependent. A particular axiom (considered

as a member of the set of axioms of some formulation) is independent

if its omission causes the loss of a theorem; otherwise it is dependent.

Clearly, an independent axiom cannot be proved from the others of a

set of which it is a member, and conversely. Further, the set of axioms

of a formulation is independent iff each of its members is independent.

Models may be used to establish the independence of axioms. For
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example, the independence of the axioms Oi, O2 ,
O3 for the theory of

partially ordered sets (see Section 3) may be shown by constructing a

model of each of the three theories having exactly two of Oi, 0 2 ,
and O3

as axioms and in which the interpretation oi the missing axiom is false.

Otherwise expressed, the independence of 0 3 ,
for example, is equivalent

to the consistency of the theory having Oi, 02,
and the negation of 03

as axioms. The independence of a set of axioms is a matter ol elegance.

A dependent set simply contains one or more redundancies; this has no

effect on the theory involved.

The foregoing concepts of independence for both individual axioms

and sets of axioms have analogues for primitive terms. A given primitive

term (considered as a member of the set of primitive terms in a formula-

tion of a theory) is independent if it cannot be defined by relation to

the remaining primitive terms and a set of primitive terms is independ-

ent if each of its members is independent. Models are also used to show

such independence in the following way. To prove that a particular

primitive symbol Q of some formulation of a theory X is independent

of the remaining primitives, we exhibit two models and 9)22 ol -L

which have the same domain and in which the interpretation ol each

primitive term except Q is the same but which give different interpreta-

tions to the symbol Q. This is known as Padoa’s method lor demon-

strating definitional independence. A complete account of this method,

which is due to the Italian logician, A. Padoa, is given in J. C. C.

McKinsey (1935); we shall be content to consider an example. In the

exercises for Section 3 is a formulation of the theory of simply ordered

commutative groups. We will show that the binary relation < is an

independent primitive. For this we introduce the interpretations 9)ti

and 90^2 in both of which we take G as Z, + as ordinary addition, 0 as

zero and, in 9)2i we take < to be the familiar relation of less than or

equal to, while in 9)t 2 we take < to be the familiar relation of greater

than or equal to. Then, clearly, the interpretations oi < are different

(for example, 2 < 3 is true in but false in s))c 2). We conclude that <
cannot be defined in terms of the remaining primitives, for otherwise

its interpretation would have to be the same in both models since the

other primitives are the same.

In order to motivate the final remark we recall Theorem 1.11.1, which

asserts that every partially ordered set is isomorphic to a collection of

sets partially ordered by inclusion. That is, to within isomorphism, all

models of the theory of partially ordered sets are furnished by col-

lections of sets. In general, a theorem to the effect that lor a given
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axiomatic theory X a distinguished subset of the set of all models has

the property that every model is isomorphic to some member of this

subset is a representation theorem for X. Analagous to the case of the

theory of partially ordered sets where, from the outset, collections of

sets constitute distinguished models, in the case of an arbitrary theory X,

even though it is noncategorical, one particular type of model may
seem more natural. In this event a representation problem arises

—

the question whether there can be proved a representation theorem

for X which asserts that this type of model yields all models to within

isomorphism. When such a problem is answered in the affirmative,

new theorems may follow for X by imitating proof techniques that

have proved useful in those theories which, in effect, supply all models.

EXERCISES
4.1. (a) Establish the consistency of the theory of partially ordered sets by

way of a model.

(b) Show that this is a noncategorical theory.

(c) Show that the set of axioms {Oi, O2 ,
Oa } for partially ordered sets

is independent.

4.2. (a) Show that the theory of groups is noncategorical.

(b) Defining a group as an ordered triple (G, *, e) such that Gi, G 2 ,
and

G 3 of Example 2.2 hold, establish the independence of {Gi, G2 ,
G3}.

(Suggestion: Use a multiplication table for displaying the operation

which you introduce into any set.)

4.3. Consider the axiomatic theory having as its primitive notions two sets

A and (B and having as axioms the following.

(i) Each element of (B is a two-element subset of A.

(ii) If a
,
a' is a pair of distinct elements of A, then {a, a'} C (B.

(iii) A g (B.

(iv) If B
,
B' is a pair of distinct elements of (B, then B H B' C A.

Show that this theory is consistent. Is it categorical?

4.4. Consider the axiomatic theory whose primitive notions are a nonempty

set A and a binary operation (x, y) —>- x — y (that is, we write the image of (x , y)

as x — y) in A, which satisfies the identity

y = x — [(x - z) — (y
- z)].

Show that this theory is consistent.

4.5. Consider the axiomatic theory whose primitive notions are a nonempty

set A, a binary operation (x, y)—^x Xy in A, and a unary operation x— x
f

in A. The axioms are the following.

(i) X is an associative operation.

(ii) (* X yY = / X
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(iii) 1 1 x X V = 2 X A for some 2
,
then x = /.

(jv ) If * = then x X y = z X z' for all z.

(a) Show that the theory is consistent.

(b) Show that this set of axioms is dependent.

4 6. Prove the assertion made in the text to the effect that if p t
- is a function

on A ,
into X{,

i = 1,2, then (Xh pi) is isomorphic to (A/, p2), provided there

exists a one-to-one correspondence/: X\-+ A/ such that /(pi(x)) = p2 (/C*)) for

all x in X\.

4.7. Prove that the type of isomorphism labeled I 2 is an equivalence relation

in any set whose members are systems consisting of a set together with an

operation in that set.

4.8. Assume that of two isomorphic models of the theory considered in Ex-

ercise 4.4, one is a group. Prove that the other is a group.

4.9. The set {e, a
,
b, c} together with the operation defined by the following

multiplication table is a group. Determine six isomorphisms of this group with

itself.

e

a

b

c

e a b c

e a b c

a e c b

b c e a

c b a e

4.10. Devise a definition of isomorphism for systems consisting of a set to-

gether with two operations.

4.11. Consider an axiomatic theory X formulated in terms of two sets, whose

members are called points and lines, respectively, and whose axioms are as

follows.

(i) Each line is a nonempty set of points.

(ii) The intersection of two lines is a point.

(iii) Each point is a member of exactly two lines.

(iv) There are exactly four lines.

(a) Show that X is a consistent theory.

(b) Show that there are exactly six points in a model of X.

(c) Show that each line consists of exactly three points.

(d) Find two models of X.

(e) Is X categorical? Give reasons for your answer.

4.12. Show that the axiomatic theory defined in Exercise 4.4 is a formulation

of the theory of commutative groups.

4.13. Show that the axiomatic theory defined in Exercise 4.5 is a formulation

of the theory of groups.

4.14. Show that the following is another formulation of the theory of groups.
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A group is an ordered triple (G, •, ') such that G is a set, • is a binary operation

in G
,

'

is a unary operation in G
,
and

(i) G is nonempty,

(ii) • is associative,

(iii) a' • (a • b) = b = (b • a) • a' for all a and b.

4.15. Show that the following is another formulation of the theory of groups.

A group is an ordered triple (G, *, e) such that G is a set, • is a binary operation

in G, e is a member of G, and

(i) • is an associative operation,

(ii) for each a in G, e • a = a, and there exists a' in G such that a' • a = e.

4.16. Consider the theory whose primitive notions are a set X, a binary opera-

tion • in X, and whose axioms are the following.

(i) X is nonempty.

(ii) • is an associative operation.

(iii) To each element a in X there corresponds an element e of X such that

e • a = a • e = a, and a possesses an inverse a' relative to e in X (that is,

a • a = a' • a = e).

Show that if (

S

,
•) is a model of the theory, then there exists a partition of S

such that each member set determines a group.

4.17. Consider the theory X whose primitive notions are the power set of a

set S and a mapping / on (P(S) into itself, and whose axioms are as follows.

(i) For all X in (P(S), Xf 3 X.

(ii) For all X in (P(S), (AT)' = AT.

(iii) For all X and Y in (P(A), A' 3 Y implies X! 3 YP

Show that another formulation of X results on adopting as the sole axiom:

(X U YY 3 (XfY U Yf U Y, for all Z and Y in (P(S).

BIBLIOGRAPHICAL NOTE
Discussions of axiomatic theories and the axiomatic method, pitched at about

the same level as ours, appear in R. L. Wilder (1952), E. R. Stabler (1953),

and A. Tarski (1941).



CHAPTER Boolean A Igebras

The theory of Boolean algebras has historical as well as pres-

ent-day practical importance. For the beginner its exposition should

prove a serviceable vehicle for assimilating many of the concepts dis-

cussed in relation to informal theories in Chapter 5. Moreover, it

illustrates the important type of axiomatic theory known as an “algebraic

theory.” The theory of Boolean algebras is, on one hand, relatively

simple and, on the other hand, exceedingly rich in structure. Thus, its

detailed study serves in some respects as an excellent introduction to

techniques which one may employ in the development ol a specific

axiomatic theory. The only possible shortcoming is that the ease with

which it may be put into a relatively completed form is somewhat

misleading, so far as axiomatic theories in general are concerned.

This chapter presents first a natural formulation of the theory. Then

a formulation which is commonly regarded as being more elegant is

given. This second formulation is used in the development of the next

topic, the representation of Boolean algebras as algebras of sets. Next, it

is shown that a statement calculus determines a Boolean algebra in a

natural way. It is by way of this Boolean algebra associated with a

statement calculus that statement calculi can be analyzed by so-called

Boolean methods and interconnections be established between the theory

of Boolean algebras and that of statement calculi. This is developed in

the last three sections of the chapter.

1. A Definition of a Boolean Algebra

By an algebra of sets based on U we shall mean a nonempty collec-

tion Ct of subsets of the nonempty set U such that if A
,
B £ Ct, then

A U B, A O B £ Ct, and if A £ (i, then A £ Ct. For example, the power

set of U, <?(£/), is an algebra of sets. However, certain proper subsets of

(5>(U) may be an algebra of sets (see Exercise 2.6). If Ct is an algebra of

sets based on U, then U £ Ct (since if A £ Ct, then U = A U A £ a)

and 0 £ C£ (since if A £ Ct, then 0 = A p| A £ Ct). Further, Theorem
248
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1.5.1 may be interpreted as a list of properties of an algebra of sets.

That this is a fundamental list of properties is suggested by the variety

of other properties (for example, those in Theorem 1.5.2) which may be

deduced solely from them. As formulated below, the theory of Boolean

algebras may be regarded as the axiomatized version of algebras of sets

when viewed as systems having the properties appearing in Theorem
1.5.1.

A Boolean algebra is a 6-tuple (B , U, fi, 0, 1), where B is a set, U is

a binary operation (called union or join) in B, fi is a binary operation

(called intersection or meet) in B, ' is a binary relation in B having B
as its domain, 0 and 1 are distinct elements of B

,
and the following

axioms are satisfied.

(i) Each operation is associative: for all a, b, c C B,

a U (b U c) = (a U b) U c and a fi (b Pi c) = (a H b) Pi c.

(ii) Each operation is commutative: for all a, b £ B,

a U b = b U a and a fi b — b fi a

(iii) Each operation distributes over the other: for all a, b, c G B
,

aU (b (Ac) = (a [J b) (A (a U c)

and

a O (b U c) = (a fi 6) U (a p| c).

(iv) For all a in B,

a U 0 = a and a fi 1 = a.

(v) For each a in B there exists a '-related element a' such that

a yj a = \ and a (~\ a = 0.

The consistency of the theory that we have just formulated can be

established by choosing for B the power set of a nonempty, finite set £/,

taking U and fi as set-union and set-intersection, respectively, ' as

complementation relative to U, and, finally, choosing 0 and 1 as 0
and U, respectively. The uniqueness of the elements 0 and 1 is estab-

lished in Theorem 2.1. These uniquely determined elements are called

the zero element and unit element, respectively, of a Boolean algebra.

It was in anticipation of this uniqueness and terminology that the sym-

bols “0” and “1” were used in the axioms. We might have postulated

their uniqueness; however, we would then be obligated to prove unique-

ness as part of any verification that an alleged Boolean algebra is truly

just that. An element which is '-related to an clement a is called a

complement of a
;
that each element has a unique complement (and,
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hence, that ' is a function having B as its domain) is proved below. The

set of axioms is not independent, since the two associative laws can be

derived from the remaining axioms. A hint as to how this can be done

is given in an exercise accompanying the next section. II the set of

remaining axioms is regarded as having seven members, which is the

case when each of (ii)-(iv) is divided into two parts, then it is an in-

dependent set of axioms. This fact, which is interesting but unimportant,

was established by E. V. Huntington (1904) with appropriate models.

EXERCISES

1.1. Accepting for the moment the fact that the associative laws (i) in the

formulation of the theory of Boolean algebras are redundant, the independence

of the remaining set of seven axioms can be demonstrated by a collection of

seven systems of the form (B, U, fV, 0, 1), one of which satisfies (ii)-(v) ex-

cept the commutativity of U> another of which satisfies (ii)—(v) except the com-

mutativity of Pi, and so on. For a B having just a few elements, an operation

in B can be defined by means of a ‘"multiplication table, that is, a square array

whose rows and columns are numbered with the elements of B and such that at

the intersection of the ath row and the 6th column the composite of a and b

appears. For example, the following two tables define two operations in the set

u a b n a b

a a b a a a

b b a b a b

Show that (B, U, H, 0, 1)—where B = {a, b}, U and H are defined as

above,
'

is the relation {(a, 6), (6, «)} (that is, a! — b and b = a), 0 is a and 1

is b—satisfies all of (ii)-(v) except the first half of (iii), thereby demonstrating

the independence of this axiom. Next, show that the system which iesults horn

the foregoing upon substituting the multiplication tables

U a b n a b

a a b a b a

b b b b a b

for U and Pi establishes the independence of the second half of (iii).

1.2. Construct five other systems which demonstrate the independence of the

other axioms.

2. Some Basic Properties of a Boolean Algebra

The properties of a Boolean algebra which are derived in this section

are the abstract versions of the results obtained in Section 1.5 lor an
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algebra of sets. The only essential difference is that now the set of

axioms of a Boolean algebra is used in place of the first theorem of that

earlier section.

We begin by describing the principle of duality lor Boolean alge-

bras. By the dual of a statement formulated within the framework ol

a Boolean algebra is meant the statement that results from the original

upon the replacement of U by H and H by U, 1 by 0 and 0 by 1. We
observe that each axiom is a dual pair of statements, with (v) regarded

as self-dual. Hence, if T is any theorem of Boolean algebras, then the

dual of T is a theorem, the duals of the steps appearing in the proof

of T providing a proof of the dual. This is the principle of duality for

the theory at hand
;

it yields a free theorem for each theorem which

has been obtained, unless that theorem happens to be its own dual.

Turning to theorems of the theory of Boolean algebras, we mention

first the validity of the general associative law and the general com-

mutative law for each operation, as well as the general distributive law

for each operation with respect to the other. Theorem 2.2.2, Exercise

2.2.4, and Exercise 2.2.5 dispose of these matters. The next group of

results, which make up our next theorem, is the Boolean algebra version

of Theorem 1 .5.2.

THEOREM 2.1. In each Boolean algebra (B, U, Pi, 0, 1) the

following hold.

(vi) The elements 0 and 1 are unique.

(vii) Each element has a unique complement.

(viii) For each element a
, (a ')' = a.

(ix) 0' = 1 and 1' — 0.

(x) For each element a, a U a = a and a C\ a = a.

(xi) For each element a, a U 1 =1 and a O 0 — 0.

(xii) For all a and b, a {J (a (A b) = a and a O (« U b) = a.

(xiii) For all a and b
, (a U b)

f = a' Pi b' and (a O b)' = a’ U b'.

Proof. For (vi) assume that 0i and 0 2 are elements of B such that

a ij 0i = a and a U 0 2 = a for all a. Then 0 2 U 0i = 0 2 and 0i U
02 = 0i. By axiom (ii), 02 U 0i = 0i U 0 2 ,

and, hence, 02 = 0i. Thus

there is a single element in B satisfying the first property in (iv). (The

uniqueness of 1 follows by the principle of duality.)

For (vii) assume that a[ and a2 are both complements of a. Then

a[ = a[ U 0, by (iv)

;

= a[ U {a Pi tf2 ),
since a H a2 = 0;
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= M U a) n (a[ U a2), by (iii)

;

= (a U a[) Pi («! U a'i), by (ii);

= 1 n («! U a'2 ), since a\J a[ =

= (aj U a’2) H 1, by (ii)

;

= a[ U a<t, by (iv).

By a similar proof we get
r t i i

/

a2 = a2 U fli-

Hence, by (ii), a[ = a2 .

For (viii), by definition of the complement of a, a U
a O a* = 0. Hence, by (ii), a U a — 1 and a' (A a =

(a'Y = bY (vii )-

The proof of (ix) is left as an exercise.

The proof of (x) is the following computation.

a U a = (a U a) fl 1, by (iv)

;

= (flUfl)O(flU a'), by (v)

;

= a U (a O a), by (iii)

;

= a U 0, by (v)

;

= a. by (iv).

The proofs of the remaining parts of the theorem are left as exercises.

The property of complementation stated as (vii) means that

{(a, a')\a C B\ is a function on B into B (that is, complementation is a

unary operation in B). According to (viii) this function is oi period 2

and, consequently, one-to-one and onto.

It is possible to introduce into the set B of an arbitrary Boolean

algebra (B, U, Pi, 0, 1) a partial ordering relation which resembles

that of set inclusion. The characterization of inclusion in Theorem 1.5.3

in terms of set intersection is the origin of the following definition. II

(B, u, n, o, 1) is a Boolean algebra, then for a, b G B

a < b iff a (A b = a.

There is no need to give preference to the meet operation, since, just as

for the algebra of sets,

a (A b = a iff a U b = b.

The proof of this as well as the proofs of such related facts as

a < b iff a C\ b' = 0 and a < b iff b' < a'

are left as exercises. Important features of the new relation are stated in

the next theorem.
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THEOREM 2.2. If (B, U, H, 0, 1) is a Boolean algebra, then

(B , <) is a partially ordered set with greatest element (namely, 1)

and least element (namely, 0). Moreover, each pair
j
a, b

j
ol elements

has a least upper bound (namely, a\J b) and a greatest lower bound

(namely, a C\ b).

The proof is straightforward and is left as an exercise.

EXERCISES

2.1. Referring to Theorems 1.5.2 and 2.1, it is obvious that (viii)— (xiii) of

Theorem 2.1 are the abstract versions of 8, 8'-13, 13' of Theorem 1.5.2. Show

that (vi) and (vii) of Theorem 2.1 are the abstractions of 6, 6' and 7, 7', respec-

tively, of Theorem 1.5.2.

2.2. Supply proofs for parts (ix), (xi), (xii), and (xiii) of Theorem 2.1.

2.3. In regard to a proof of the assertion that the associative laws for U and

Pi can be derived from the remaining axioms for a Boolean algebra, we observe

first that the given proofs of (vi)-(viii) and (x) do not employ (i). Further, the

proofs of (ix), (xi), and (xii) called for in the preceding exercise need not use (i).

Hence, (ii)-(xii) are available to prove (i). Supply such a proof. Hint: Given

a
,
b

,
and c, define

x = a U {b U c) and y — (a U b) U c,

and then deduce, in turn, that a P x = a P y, a' P x = a P y, x = y.

2.4. Establish each of the following as a theorem for Boolean algebras.

(a) a < b iff a U b = b.

(b) a < biff a P V = 0 iff a' U b = 1.

(c) a < b iff b' < a'.

(d) For given x and y, x = y iff 0 = (a
- P y') U {y Pi *')•

2.5. Prove Theorem 2.2. _
2.6. Let a be the collection of all subsets A of Z+ such that either A or A is

finite. Show that (G, U, P, ”, 0, Z+),
where the operations are the familiar

set-theoretical union and intersection, is a Boolean algebra.

Remark. The remaining problems in this section are concerned with a type

of generalization of a Boolean algebra called a lattice. A lattice is a triple

(X, U, P), where X is a nonempty set, U and P|
are binary operations in X

(read “union” and “intersection,” respectively), and the following axioms are

satisfied. For all a, b, c C X,

u. a U (b U c) = {a U b) U c, L{. a P {b P c) = {a P 6) P c,

Lo. a U b = b U <3, v2 . a P b = b P a,

L,. {a U b) P a = a, U (a p b) U 4 = cl-
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2.7. State and prove a principle of duality for a lattice.

2.8. Derive the following properties of a lattice.

(a) For all a, a U a = a and a f~] a = a.

(b) For all a, b, the relations a U b = a and a D b = b are equivalent.

(c) For all a
,
b, the relations a p| b = a and a U b = b are equivalent.

2.9. Let (X, <) be a partially ordered set such that each pair of elements has

a least upper bound and a greatest lower bound in X. Thus, if we set a U b =

lub {a, b} and a p| b = gib {a, b}, then U and H are operations in X. Prove

that (X, U, H) is a lattice. Next, prove that, conversely, if in a lattice (X, U, Pi)

we define the relation < by a < b iff a fi b = a, then (X, < ) is a partially

ordered set such that each pair of elements has a least upper bound (namely,

a U b) and a greatest lower bound (namely, a P) b).

Remark. This result gives, in effect, a second formulation of the axiomatic

theory called lattice theory. Thus, one may think of a lattice in either way. If

the formulation is in terms of <, then, by U and P|, one understands the opera-

tions in Exercise 2.9. If the formulation is in terms of U and P|, then, by <,

one understands the ordering relation defined, again, in Exercise 2.9.

2.10. Let (.X, U, fi) and (X', U', fY> be lattices. Show that they are iso-

morphic (using the definition of isomorphism suggested by I 2 in Section 5.4)

iff the associated partially ordered sets (X, <) and {X', <') are isomorphic

(using the definition in Section 1.11).

2.11. Show that there are exactly five nonisomorphic lattices of fewer than

five elements and that there are exactly five nonisomorphic lattices of five ele-

ments. (Hint: For this problem it is more convenient to think of a lattice as a

partially ordered set.)

3. Another Formulation of the Theory

The formulation which we have given of the theory of Boolean alge-

bras has much to recommend it. The primitive notions are few, and the

simplicity and symmetry of the axioms lend aesthetic appeal. Moreover,

if the associative laws are omitted, the resulting set is independent.

Finally, the formulation clearly reflects the type of system that moti-

vated it. However, it is always a challenge to see if a formulation can

be pared down in one or more respects. In the case of Boolean algebras

this challenge has been successfully met by a great variety of formu-

lations. We shall describe one that has become quite popular. It achieves

for arbitrary Boolean algebras the analogue of the familiar fact for an

algebra of sets that either of the operations of union and intersection

can be eliminated in terms of the other together with complementation

[for example, A U B = (^4 O /?) ]

.
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If (B , U, P, 0, 1) is a Boolean algebra, then D is a set with at least

two distinct members. Moreover, the binary operation P and the unary

operation
'

have the following properties.

P is commutative.

n is associative.

For a, h in B, if a P b' = c P c' for some c in Z?, then a C\b = a.

For a, b in B, if a P b = a, then a C\h' — c P c' for all c in B.

The first two properties are axioms, and the last two follow from the

facts that for all c in B, c P c' = 0, and a P h' = 0 iff a P h — a. We
shall prove next that a triple (B, n, ') having the properties mentioned

above (a precise description appears in the next theorem) may be taken

as a formulation of the theory of Boolean algebras. That is, the primitive

notions of the initial formulation of the theory can be defined and the

axioms (i)-(v) can be derived as theorems.

THEOREM 3.1. The following is a formulation of the theory of

Boolean algebras. The primitive notions are an unspecified set B of at

least two elements, a binary operation P in B
,
and a unary opera-

tion
'

in B. The axioms are as follows.

Bi. fi is a commutative operation.

B2 . Pi is an associative operation.

B3 . For all a, b in B, if a Pi F = c P c' for some c in B, then

a n b = a.

B4 . For all <2
,
b in B, if a P h = <2

,
then a (A b' = c P c' for all c

in B.

Proof. It remains to prove that the primitive notions of the original

formulation can be defined and the axioms derived from a triple

(B, n, ') satisfying B 1-B 4 . As the undefined set, the meet operation,

and the binary relation
'

of the original formulation we take B
, pi,

and respectively. A join operation and the distinguished elements 0

and 1 are defined below. The first ten results (T1-T10) which we
prove about (B , Pi,

/

), together with Bi and B 2 ,
establish the validity

of all axioms of the original formulation except the distributive laws.

The remainder of the proof is concerned with them. A telegraphic

style of presentation is used for ease in reading.

T1 . a p a = a.

Pr. a P a' = a P a . Now apply B3 .

T2. a P a' = b P b'

.

Pr. T1 and B4 .
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This result justifies the following definition.

Dl. 0 = a O a and 1 = O'.

T3. a n o = 0.

Pr. a n o = « n («

n

a), by Di;

= (a n a) n a', by B2 ;

= 0, by T1 and Dl

.

T4. a" = a.

Pr. 1 . a" C\ a = 0, from Dl and Bi.

2. a" Pi a = a"

,

from 1 by B3 .

3. a"" H a" = a!"\ from 2.

4. a"" Pi a = a from 2 and 3, by B 2 .

5. a"" O a' = 0, from 4, by B 4 and Dl.

6. a n from 5, by Bi and B 3 .

7. a'" n fl' = a'", from 2.

8. a'" = a', from 6 and 7.

9. # n a
7" = o, from 8 and Dl.

10. a n ^ from 9 by B3 .

11. a" = a, from 2 and 10, by Bi.

T5. <3 0 1 — <3.

Pr. flOfafi a')" = 0, by T4, Tl, and DU
a O (a O cl)’ = a, from the above, by B 3 .

a n i = a, by Dl.

T6. 0 tM.
Pr. 1. Assume 0=1.

2. a O 0 = <3, from 1 and T5.

3. a O 0 = 0, by T3.

4. a = 0, from 2 and 3.

5. This contradicts the assumption that there exist at least

two distinct elements ini B.

D2. a U b = (a' O
T7. (a U b)' = a' O b' and {a O b)' = a' U b\

Pr. Both follow from D2 and T4.

T8. a U b = b U a and a U (b U c) = (a U b) U c.

Pr. The first follows from B>, and the second follows from B3

and T4.

T9. a U a' = 1

.

Pr. This follows from D2, T4, B 1? and Dl.

T10. a U 0 = a.

Pr. This follows from D2. Dl. and T4.
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Til.

Pr.

T12.

Pr.

T13.

Pr.

T14.

Pr.

a Pi (a U b) = a.

1 . b' H {a H Cl') = 0, by T3 and D1 .

2. an w n b') = 0, from 1
,
by B t and B 2

3. a pi W n b')" = 0, from 2, by T4.

4. a Pi (a
'

Pi b'Y = a
,

from 3, by B 3 .

5. a n (a U b) = a, from 4, by D2.

a n {a n b)' = a n b' .

1 . a n b" n (a n b)' = 0, by D1 and T4.

2. a n (a n b)' H b" = 0, from 1
,
by Bi.

3. an (an by n b'

= a n (a n by, from 2, by B3 .

4. anb' n (a H b)
f

= a n (a n b)', from 3, by Bi.

5.an b' n (a n by

= a nb' n (// U a), by T7 and Bi.

6. a n b' Pi (b' U a) = a O b\ by Til.

7. a n (a n by = a n b\ from 4, 5, and 6.

a n c = a, a (A c' = 0 and a U c = c are equivalent

properties.

Left as an exercise.

a O c = a and b Pi c = b imply (a U b) O c = a U b.

Assume that a C\ c = a and b O c = b. Then a U c = c and

b U c = c, by T13. By Til,

(a U b) H [(« U b) U c] — a U b.

Two substitutions within the brackets give the desired

result.

T15. a Pi (b U c) = (a H b) U (a O c) and

a U (b O c) = {a U b) O (a U c).

Pr. i
.
(flnWn[fln(^uc)]
= a n b n (b U c) = a O b, by B2 ,

T1
,
and T1 1

.

2. (a n c) n [a n (b U c)
]
= a n C, similarly.

3. [(a H b) U (a O c)] H [flO^Uf)]
= [(# H b) U (a O ^)], from 1, 2, and T14.

4. [a O (b U c)] H [(a Pi b) U (a U c)]'

= an(buc) n(anby cy,

by T7

;

= a n b' n c' n (!> u c), by Bi and T12;

= Cl n c)' n (b{J c),

= 0 .
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5. [a n (b U c)] n [(a O b) U (a O f)l

= flfi(iUf), from 4 W Ti3.

6. an(/>uc)
= (a n b) U (a n c), from 3 and 5 by Bi.

The proof of the other distributive law is left as an exercise.

The set of axioms in the new formulation of the theory of Boolean

algebras is independent. A proof of this requires the determination of a

system (B, O, ')i, which satisfies all the axioms except B„ i = 1, 2, 3, 4.

Below are defined four systems which demonstrate the independence of

the axiom with the corresponding label.

B = {a, b, c\ (BO B = [a, b, c
j

(B3 ) b = {a,

n a b c n a b c n a

a a a a a a c b a a

b a b b b c b a b b

c a c c c b a c

/ /

a b a a a b

b a b c b b

c a c b

(B4 ) B = [A C (P(Z+)|Z+ — A is a finite setj.

Pi is set intersection.

' is defined as follows. We note that for each A in B there exists

a least positive integer a such that [«, the set of all integers * > a, is

included in A. Then A is the disjoint union of [a and do, a subset of

{1,2, •
• •, a — 2} (unless A = Z+

,
in which case A = [1). Now we

define A' to be A'0 U [{a + 1), where do is the complement of d 0 in

{1,2, *
• •, a — 1

J
(unless d = Z+

,
in which case A' = [2).

Some hints for the analysis of this example, which establishes the

independence of B 4 ,
appear in Exercise 3.2. Possible substitutes for B 4

are described in Exercise 3.3.

EXERCISES

3.1. Prove T13 and the remaining distributive law in the proof of Theo-

rem 3.1

.

3.2. Regarding the system (B, H, '), which, it is asserted, establishes the

independence of B4 ,
it is clear that Bi and B 2 hold. Prove that the system
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satisfies B3 but not B 4 . Hint: for B 3 ,
show that if C = Co U [e, then C f~) C' =

[(

c

+1), and, if A = A 0 U [a and B = B0 U A then

a n B' = I
(A n Bi) u K* + 1} if * ^ b

l(^on^')U[« if a>b

3.3. Show that each of B5 ,
B6 ,

• •
•

, Bio defined below implies B4 in the presence

of Bi, B2 ,
and B3 . Infer that each of B5 ,

B 6 ,

• •

•, B9 together with Bi, B2 ,
and B3

yields a formulation of the theory of Boolean algebras. For some calculations

it is convenient to use the fact that if (B, H, ') satisfies Bi, B2 ,
and B

;j ,
then

(B, <), where a < b means a (~) b = a, is a partially ordered set. So prove this

first.

B 5 . For all a and b, a O a = b H b
r

.

Be. For all a
,
a" — a.

B 7 . There exists in B an element m such that whenever x D m = x, x = m.

B 8 . There exists an integer n > 1 such that for all a
,
the nth iteration of a

under ' is equal to a.

By. For all a and b, a < b implies b’ < a'.

Bio. B is finite.

4. Congruence Relations for a Boolean Algebra

We turn to an examination of an aspect of the two given sets of

axioms for a Boolean algebra that has not been touched on. It is suf-

ficient to consider the second set of axioms, since the reader will readily

see what alterations are required for our remarks to apply to the first

set. When the statements labeled Bi, B2 ,
B3 ,

and B 4 were introduced, no

mention was made of the precise meaning to be assigned the relation

symbolized by “ = rather, it was intended that the reader supply his

own version of equality. Suppressing any preconceived notions that we
might have in this connection, let us determine a set of conditions which

are adequate for our purposes. An analysis of the proofs of T1-T15 in

the proof of Theorem 3.1 reveals that the following is a sufficient set

of conditions.

(E) “ =” is an equivalence relation.

(S) Let F be an element of the Boolean algebra (B , n, ') resulting

from elements a, b, •
•

• of B using the operations in B
,
and let

a = fli, b = bi, •
•

•
. Then, if /q is an element which results from

F by the replacement of some or all occurrences of a by b by

b\
f

•
•

•
,
then F = B\.
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Now (S) can be derived from the following two simple instances of this

substitution principle.

If a = b, then a P c = b P c for all c.

^ If a = b, then a = b'.

The proof, which we forego, is by induction on the number of symbols

in the element F. Thus (E) and (C) insure (E) and (S), and, hence (E)

together with (C), which are clearly necessary properties of equality,

are also sufficient for our purposes. As such, equality is an instance of a

congruence relation for a Boolean algebra, a notion which we discuss

next.

Before focusing our attentions on congruence relations for Boolean

algebras we make several remarks about this concept in a general set-

ting. When one is presented with, or constructs, some specific mathe-

matical system, there is among its ingredients a “natural” congruence

relation either explicitly or implicitly defined. This means that theie is

present an equivalence relation which is preserved under the operations

at hand in the sense suggested by (C) above. Normally one symbolizes

this relation by “ = calls it equality, and uses it without comment.

For example, in the case of sets, the relation is that of set equality; it

is a congruence relation on any collection oi sets. If one is attempting to

demonstrate that a particular system (E has properties Bi~B 4 ,
he will

interpret the occurrences of the equality sign in these as the natuial

equality for (E. For example, in the verification that (<P(X), Pi, ) is a

Boolean algebra, “=” will be taken to denote set equality. In sum-

mary, the equality symbol, as used in Br-B4 need have no absolute

nature, but merely a relative one. It suffices that it stand loi some

congruence relation.

We return to the general discussion with the remark that when one

is studying any specific mathematical system (X,

• •
•), there are often

compelling reasons lor identifying elements ol A which aie distinct i da-

tive to the natural congruence relation. 1 his amounts to the introduc-

tion of an equivalence relation p other than the natuial one. Oik then

directs his attention to X/p, whose elements are the p-equivalence

classes, and regards it as the basic set. 11 p is not merely an equivalence

but a congruence relation, then it is possible to introduce into A p

faithful analogues of whatever operations and relations are defined for

X. We proceed to discuss this matter in detail for the case of Boolean

algebras.
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Let (B, O, ') be a Boolean algebra, and let 0 be a congruence relation

on it; that is, let 0 be an equivalence relation on B such that the following

hold.
i

(Ci) If a 0 b, then a H c 0 b O c for all c.

(C2) If a 0 b, then a' 0 b
r

.

We shall be concerned solely with proper congruence relations, that

is, those congruence relations different from the universal relation on B.

We now derive from (Ci) an instance of the earlier substitutivity

property (S).

(C3) If a 0 c and b 0 d, then a O b 0 c Pi d.

For proof, assume that a 0 c and b 6 d. Then a (A b d c C\ b and b C\ c 0

d n c, by (Ci). Since the meet operation is commutative and 0 is tran-

sitive, the result follows. The derivation of the dual of (C3 ) is left as an

exercise. If B/0 is the set of ^-equivalence classes a
,
then in B/6 the

foregoing result (C3 ) becomes the following.

If a = c and b = d, then a O b — c P d.

This means that the relation

{((a, b ), a n b)\a C B/0 and b C B/6\

is a function on (B/6) X (B/6) into B/0, that is, an operation in B/0.

We shall denote this operation in B/0 by H and its value at (a, b) by

a Ob. So, by definition,

a Ob = a O b.

Next, it follows directly from (C2 ) that if a = b, then a' = V. Hence,

the relation {(a, ~a)\a C B/0
J

is a function on B/0 into B/0. We denote

this function by ' and its value at a by a'. So, by definition,

_/ ~i
a = a .

It is a straightforward exercise to verify that (B/0, O,
r

) is a Boolean

algebra. For example, to verify B3 ,

in turn,

a H b
f = c n

a O b' = c O c',

a Ob' Oc Oc f

,

(a O b')' 0(cOc')',

assume that a Ob' = c O c . Then,

by definition of x '

;

by definition of x OJ',

x 0 y iff x = y,

by (C2 )

;
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a' U b 6 1, by property of (B, O, '};

(a U b) (A a d \ D a, by (Ci)

;

a n b 6 a, by property of (B , O, ');

= X =J iff X 6 y;

a (~)b = a, by definition of x Pi J-

In summary, we have shown that from a Boolean algebra (B, O, )

and a proper congruence relation 6 on it one may derive a Boolean

algebra (B/6, Pi, ') whose elements are ^-equivalence classes and whose

operations are defined in terms ol those of the original algebra using

representatives of equivalence classes. II 6 is different from the equality

relation in B
,
then the derived algebra may be essentially different from

the parent algebra. This is true in the first of the following examples.

EXAMPLES
4.1. Consider the Boolean algebra ((P(Z), Pi, ') whose elements are the sub-

sets of Z, the set of integers, f We recall the definition of the symmetric differ-

ence, A + B, of two sets as the set of all objects which are in one of A and B

but not both. For A and B in (P(Z) let us define Ad B to mean that A + B

has a finite number of elements. It is easily verified that 6 is an equivalence

relation on (P(Z). Further, if A d B, then A fj C d B O C, since, for all A, B,

and C,

(a n c) + (b n c) = (a + b) n c,

and, hence, if A + B is finite, then so is (A P| C) + (B O C). Finally, if A d B,

then A’ d B', since A + B = A' + B'

.

Thus, d is a proper congruence relation

on the given algebra, and a new Boolean algebra whose elements are 0-equiv-

alence classes results on defining

A n B = AO B and A' = A'.

That a substantial collapse of elements has taken place on transition from the

first to the second algebra is indicated by the fact that, in the first the zero

element is 0, whereas in the second the zero element, 0, is the collection of all

finite subsets of Z.

4.2. The symmetric difference operation used in the preceding example can

be defined in any Boolean algebra. By the symmetric difference of elements

* and y of a Boolean algebra, symbolized x T y, we understand the element

(xOy f

) U (*' n y).

It is an easy exercise to prove that this operation is commutative, associative,

and nilpotent (x + x = 0). Other properties which we shall need later are

t We prefer to use prime symbols to denote the operation of complementation relative to

Z in this example, so the bar symbol will be available to denote equivalence classes.
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x + 0 = x,

(x + y) D z = (x n z) -j- (y D z),

x' ~h y' = X + y.

Further, since the symmetric difference is defined in terms of union, intersection,

and complementation, if 6 is a congruence relation on a Boolean algebra, then
x 6 y implies that x -J- z d y -f- z.

At this point it becomes desirable to simplify our notation by identi-

fying an algebra simply by its basic set. Thus, we shall use the phrase
“the Boolean algebra Z?” in place of “the Boolean algebra (B, O, V’
Let us consider now the relationship of a Boolean algebra B/0 to the

algebra B from which B/6 is derived using a proper congruence relation.

Let p be the natural mapping (see Section 1.9) on the set B onto the

set B/6, that is, the mapping

p : B B/0, where p(b) = b.

Since a C\b = a Pi b and a' = a\

p{a Pi b) = p(a) H p{b) and p{a!) =
(p(a))\

That is, p is a “many-to-one” mapping (unless 0 is the equality relation

on B) which preserves operations. A mapping g on one Boolean algebra,

B
,
onto another, C, which takes meets into meets and complements into

complements, that is,

g(a C\b) = g(a) pi g(b),

gW) = (*(«))',

is called a homomorphism of B onto C, and C is called a homomorphic
image of B. If, in addition, g is one-to-one, then g is called an iso-

morphism of B onto C. If g is an isomorphism of B onto C, then

(which exists) is easily proved to be an isomorphism of C onto B
,
and

each algebra is called an isomorphic image of the other and each is

said to be isomorphic to the other. Returning to the case at hand, we
may say that p is a homomorphism and B/6 is a homomorphic image
of B. That is, each proper congruence relation on a Boolean algebra

determines a homomorphic image. Conversely, each homomorphic im-

age C of a Boolean algebra B determines a proper congruence relation

on B. Indeed, if/: B — C is a homomorphism, then the relation 0

defined by a 0 b iff f(a) = f(b) is a proper congruence relation on B.

The proof is left as an exercise. We continue by showing that B/6
,
the

algebra of ^-equivalence classes, is isomorphic to C. For this we introduce

the relation g, which is defined to be
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{<*,/(*)>

It is easily seen that g is a function which maps B/8 onto C in a one-to-

one fashion and that

g(x n y) = ^OTfvy) = /(* n y) = fix) n/OO = g(d n g(y),

g(x') = g(x') = fix') = (/(*))
=

G>(*)) >

that is, g is an isomorphism. Moreover, if p is the natural mapping on B

onto B/8, then we observe that for the given homomorphism/: B -* C

we have f = g ° p- The next theorem summarizes our results.

THEOREM 4.1. Let B be a Boolean algebra and 0 be a proper

congruence relation on B. Then the algebra B/ 6 of ^-equivalence

classes is a homomorphic image of B under the natural mapping on B

onto B/8. Conversely, if the algebra C is a homomorphic image of B,

then C is isomorphic to some B/8. Moreover, if/: B C is the homo-

morphism at hand, then / = g ° p> where p is the natural mapping

on B onto B/8 and g is an isomorphism of B/8 onto C.

It should be clear from the foregoing results that the homomorphisms

(onto) of a Boolean algebra are in one-to-one correspondence with the proper con-

gruence relations on the algebra. The importance of the role which proper

congruence relations play suggests the problem ol practical ways to

generate them. One way is provided by a distinguished type of subset

of a Boolean algebra, which we define next. A nonempty subset I of a

Boolean algebra B is called an ideal iff

(i) x £_ I and y £/ imply * U y £ Z and

(ii) x £ / and y £ B imply x Pi y £ I-

For example, if a £ B
,
then {x £ 5 |.y ^ a

}
is an ideal, this is the

principal ideal generated by <3, symbolized (a), lo show that (a) is

an ideal, we note that if * £ (a) and y £ (a), then a is an upper bound

of {*, y \
and, consequently, is greater than or equal to * U), the least

upper bound of x and y (see Theorem 2.2). Thus, x U y £ (a)- Finally,

if x £ (a) and y £ B, then x (A y < a, since * < a. Two trivial ideals of

B, namely, 1 0 }
and B, are both principal; indeed, {0} = (0), and

B = (1). The ideal (0) is the zero ideal, and the ideal (1) is the unit

ideal of B. An ideal of B which is different from B is called a proper

ideal. The relationship between proper ideals of B and proper con-

gruences on B is given in the following theorem.
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TH EOREM 4.2. If 0 is a proper congruence relation on a Boolean
algebra B

,
then I = \x £ /i|* 0 0} is a proper ideal of B and x 6 y

iff .v+)C/. Conversely, if / is a proper ideal of /i, then the relation 0

defined by x 6 y ifT * + y CL / is a proper congruence relation on B
such that / = {x G #|.v0O}. Thus, the proper congruence relations

on B are in one-to-one correspondence with the proper ideals of B;
each 0 corresponds to the ideal / of elements 0-related to 0.

Proof. Let 0 be a proper congruence relation on B and let I =
{* C B\x 0 0}. Then I C B and, if x, y £ /, then, in turn,

x 6 0, x' 6 1, x' Pi y' 0 1 H y\ x' C\ y' 6 y', x U y 0 y.

The last fact, when combined withy 0 0, implies that rU)0O, which
proves that I satisfies the first of the defining conditions for an ideal.

Next, let x I and y £ B. Since a: 0 0 implies x O y 0 0, the second

condition is also satisfied, and / is an ideal.

We prove next that xOy iff x + y C /. Let x + y C I; that is,

* A~ y 0 0. I hen (* -by) + y 0 0 -by, and hence x 6 y (where we have
used properties of the symmetric difference stated in Example 4.2).

Conversely, x 6

y

implies that * + y 0y -by; that is, x + y 0 0.

Turning to the converse of the foregoing, let / be an ideal of B
and define 0 as stated in the theorem. Then 0 is reflexive (since

* -b x = 0 C /), symmetric (since x -by = y -f x), and transitive

(since the symmetric difference of two elements of I is in /). Further,

* 6y implies that x Pi z Oy O z, since if x 6y, then, in turn, x +y C /,

(x “b y) Hz Cl, and (x H z) + (y Pi z) C /. Finally, x 6 y implies

that x 0y', since x -by = x' -by
r

.

To complete the proof of the converse we must show that *00
iff * C /. This follows from the identity * + 0 = *.

From the two preceding theorems there follows the existence of a

one-to-one correspondence between the homomorphisms of a Boolean

algebra and its proper ideals. If / is a homomorphism of an algebra B
onto an algebra C, the associated ideal /, which is called the kernel
of /, is the set of all elements of B which / maps onto the zero element

of C. If 0 is the congruence relation on B that corresponds to /, then we
will often write

B/I

instead of “fi/0,” and call the algebra so designated (an isomorphic
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image of (?) the quotient algebra of B modulo I. Ii / is an isomorphism,

then 6 is the equality relation on B and I is the zero ideal. Conversely,

it is clear that if the kernel of a homomorphism f can be shown to be the

zero ideal, then J is an isomorphism. A herclore, a homomorphism is an

isomorphism iff its kernel is the zero ideal.

We conclude this section with several general remarks about homo-

morphisms. Since the operations ol union and symmetric difference and

the ordering relation are expressible in terms of intersection and comple-

mentation, it follows that a homomorphism of a Boolean algebra pre-

serves each of the former. Further, the fact that if/ is a homomorphism,

then f(a H a') = f(a) Pi (f(a))', implies that/(0) is the zero element of

the image algebra. By a dual argument, /(l) is the unit element ol the

image algebra.

EXERCISES

4.1. Prove the dual of property (C 3 ) for a congruence relation 6
,
namely,

(C3
)' U ad c and b 6 d, then

4.2. Complete the proof of the assertion in the text that (.B/6 , Pi,
;

) is a

Boolean algebra if (B, Pi, ') is a Boolean algebra and 6 is a proper congruence

relation on B.

4.3. Prove that the symmetric difference operation has the properties stated

in Example 4.2.

4.4. Prove that if g is an isomorphism of the Boolean algebra B onto the

Boolean algebra C, then g~ l
is an isomorphism of C onto B.

4.5. Prove the assertion prior to Theorem 4.1 that if /: B C is a homo-

morphism, then the relation 6 defined in B by a 6 b iff f(a) = f{b) is a proper

congruence relation on B. Further, prove that f = g ° p, where g and p are the

mappings defined in the text.

4.6. Prove the assertion following Theorem 4.1 that the homomorphisms

(onto) of a Boolean algebra B are in one-to-one correspondence with the proper

congruence relations on B.

4.7. Draw the diagram of the algebra Ct of all subsets of {a ,
b

,
c

,
^/}. Locate

the members of the ideal ({a}) on the diagram. Then use the diagram to deter-

mine the ^-equivalence classes of the relation 6 corresponding to ({a}) in accord-

ance with Theorem 4.2. Finally, draw the diagram of the algebra Ot/0.

4.8. In the next section an atom of a Boolean algebra is defined to be nonzero

element a such that if b < a, then either b = 0 or b = a. Show that there are

no atoms in the Boolean algebra of equivalence classes defined in Example 4.1.

4.9. Referring again to Example 4.1, let A 0\ B mean that Ad B and that 3

is not a member of A + B. Prove that 9
X

is a congruence relation on (P(Z).

Determine the atoms of (P(Z)/0i.
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5. Representations of Boolean Algebras

r

l he set-theoretical analogue of our second formulation of the theory
of Boolean algebras is that of an algebra of sets. Since it was essentially

the structure of such a system that motivated the creation of the axio-

matic theory under discussion, an obvious representation problem arises:

Is every Boolean algebra isomorphic to an algebra of sets? This we can
answer in the affirmative.

We shall begin with the case where the set B has a finite number of

elements, although our first definition is applicable to any Boolean
algebra. An element a of a Boolean algebra is an atom iff a 7^ 0 and
b < a implies that either b = 0 or b = a. For x in B let A(x) denote the

set of all atoms such that a < a
-

. We next derive several properties of

atoms and of the sets A(x) for the case of an algebra (B, n/) such that

B is finite.

Ai. If v ^ 0, there exists an atom a with a < x.

Proof. This is a direct consequence of the finiteness assumption. The
details are left as an exercise.

A2 . If a is an atom and * G B, then exactly one of a < x and
a n x = 0 holds. Alternatively, exactly one of a < x and a < x holds.

Proof. Since a P x < a, either a(Ax = a or a(~\x = 0. Moreover,

both cannot hold, since a 9^ 0.

A3 . A{x Py) = A(x) Pi A(y).

Proof. First we note that x Pi y is the meet of two elements in B
,

and A(x) Pi A(y) is the set of those elements common to A(x) and
A(y). Now, assume that a £ A(x Py). Then a < x P y, and hence

a < x and a < y. Thus a C A(x) P A(y). Hence A(x P y) C A{x) P
A(y). Reversing the foregoing steps establishes the reverse inequality,

and hence equality.

A 4 . A(x') = A( 1) - A(x).

Proof. First we note that A( 1) is the set of all atoms of B. Now let

a C A(x'). Then, by A 2 ,
it is false that a C A(x). Hence, a C A{\) —

A(x). Conversely, if a £ ^f(l) — A(x), then a §£ A{x). Hence, by A2 ,

a C A{x').
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A5 . A{x) = ^4(jy) ifT a: = y.

Proof. Assume x 9^ y. Then at least one of * < y and y < x is false.

Suppose that a < y is false. Then * O y' ^ 0, so that by Ai there

exists an atom a < a Pi y'

.

By A3 ,
a £ A(x) and a £ A(y'). Thus,

a £ A{x) and, by A 4 ,
a A{y). Hence, A{x) ^ A(y). The same con-

clusion follows similarly if it is assumed that y < a is false.

A c . If ah a2 ,
•

•

•, ak are distinct atoms, A(a\ U a2 U * * * U cik) —

|
flj,

j
eik

j
•

Proof. Clearly, \a\, a2 ,
•••,«*} Q A{a\ U a2 U • •

• U «*)• For the con-

verse, assume that a £ A(a\ U a2 U • •
• U af) and a 9*- a i — 1,

2,
• •

*, k. Then, by A2 ,
a C\ ai = 0, i = 1,2, •••,£, and hence a =

« n («i u «2 u • •
• u at) = (a ri aO u (a n u • •

• u (« n «*) = o,

which is impossible.

THEOREM 5.1. Let B be a Boolean algebra of n elements. Then
B is isomorphic to the algebra of all subsets of the set of atoms of B.

If m is the number of atoms of B
,
then n = 2m .

Proof. Let T be the set of m atoms of B. Then the mapping A:

B ®{T) is one-to-one by A 5 and onto <?(T) by A6 . According to A 3 ,

the image of a meet in B is the meet of the corresponding images in

(P(T). According to A 4 ,
the image A(x r

) of x' is the complement of the

image of x, that is, the relative complement of A(x) in T. Thus, A is

an isomorphism.

Then n = 2m follows from the fact established earlier that the

power set of a set of m elements has 2m members.

COROLLARY. Two Boolean algebras with the same finite number
of elements are isomorphic.

The proof is left as an exercise.

EXAMPLE

5.1. For B we choose {1, 2, 3, 5, 6, 10, 15, 30}, the set of divisors of 30. For

a and b in B define a H b as the least common multiple of a and b and a' as

30/a. It is an easy matter to verify that (B, £, ') is a Boolean algebra. The
partial ordering relation introduced for the elements of a Boolean algebra takes

the following form for this algebra: a < b ilT a is a multiple of b. Thus, 30 is the

least (and zero) element, and 1 is the greatest (and unit) element of the algebra.

The atoms are 6, 10, and 15, and, consequently, the algebra is isomorphic to
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that determined by all subsets of {6, 10, 15} with the usual operations. The
mapping which establishes this isomorphism matches 2 with {6, 10} and 30

with 0, for example. It is left as an exercise to verify that a\J b, which in our

second formulation of a Boolean algebra is defined as (a

'

Pi b')', is the greatest

common divisor of a and b. Thus, if at the outset we had introduced in If along

with the operation P, a second binary operation U by defining a U b as the

greatest common divisor of a and b
,
the outcome would have been the same.

However, in the process we would have had to verify the distributive laws,

which, in this case, is not a particularly simple matter.

Before continuing with the representation theory we urge the reader

to pause and reflect on the extent to which Theorem 5.1 clarifies the

structure of finiie Boolean algebras (that is, algebras having a finite

number of elements). Indeed, it leaves nothing to be desired in the

way of a representation theorem. Possibly its definiteness, both with

respect to its arithmetical aspect and the inclusion of an explicit recipe

for constructing the asserted isomorphism, will be more fully appreciated

when the corresponding result for the infinite case is obtained. For this,

a different approach must be supplied, since there exist Boolean algebras

without atoms (see Exercise 4.8). In the infinite case the substitute for

an atom is a distinguished type of ideal, which we describe next. Let

g be the set of all proper ideals in the Boolean algebra B. Since |0} £ g,

it is nonempty. Further, the members of g may be characterized as the

ideals of B which do not contain 1 . As is true of any collection of sets,

g is partially ordered by the inclusion relation, and the concept of a

maximal element of g is defined. A maximal element of § is a maximal
ideal of B. The existence of maximal ideals in an infinite Boolean alge-

bra is secured by an application of Zorn’s lemma.

THEOREM 5.2. Maximal ideals of a Boolean algebra exist. In-

deed, there exists a maximal ideal which includes any preassigned

proper ideal.

Proof. We consider the partially ordered set (g, C) defined above.

If 6 is a simply ordered subset of g, then the union, A say, of the

collection e is clearly an upper bound for e. It is a straightforward

exercise to verify that A is an ideal. Moreover, A £ g, since 1 appears

in no member of C and, consequently, does not appear in A. Thus,

since every chain in g has an upper bound in g, Zorn’s lemma may
be applied to conclude the existence of a maximal element. The same

argument when applied to {/ £ g| / 3 T}, where J is a given proper

ideal, yields the existence of a maximal element which includes J.
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We prove next a sequence of theorems about maximal ideals of a

Boolean algebra B which closely parallels that derived earlier for atoms.

Mi. If v ^ 1, there exists a maximal ideal P with P (x) or,

what amounts to the same, * £ P-

Proof. This follows directly from the final statement of Theorem 5.2,

choosing (*) as the given ideal.

M 2 . For each maximal ideal P and each element x of B
,
exactly

one of a £ P and x' £ P holds.

Proof. We note first that for no x is x £ P and x' £ P, since it would

then follow that 1 ( = x U x') £ P, which is impossible. Now assume

that x (£ P, and consider the set Q of all elements of B of the form

b U p with b < x and p £ P- Then Q is an ideal, since

(i) (bi U pi) U (b2 U pf) = Oi U b 2 ) U (pi U pf) = b3 U pz, and

(ii) if y £ B, then (b U p) Pi y = (b O y) U (p Pi y) = h U pi.

Also, P £ Q, since, clearly, P C Q and * £ Q, while x P. Thus,

Q = B, since P is maximal. Hence, for some b < x and p £ P,

b U p = 1. It follows that x VJ (b VJ p) =xVJ\, or xKJp = 1. Then

x' = x
r n i = x' n u p) = n x) u n p) = x c\p.

By the second part of the definition of an ideal it follows that x' C P-

To continue with the derivation of properties of maximal ideals which

parallel, in a complementary sort of way, those for atoms, we introduce

the analogue of the sets A(x). If x G B, let M (x) be the set of all maximal

ideals P such that x P or, what amounts to the same by virtue of M2 ,

x £ P. The sets M (x) have the following properties.

M 3 . M(x C\y) = M(x) Pi M(y).

Proof. Let P £ M(x O y)- Then (x H y)' — x' U y' £. P- Since x' =

x' Pi (•^
/ U y') and y' = y' C

\

(V U y'), it follows that x' £ P and
y' £ P. Hence P £ M(x) and P £ M(y), or P £ M(x) O M(y). Since

each of these steps is reversible, the asserted equality follows.

M.}. M(x) = M( 1) — M(x), where A/(l) is the set of all maximal
ideals of the algebra.

Proof. We have P £ M(x') iff x' (£ P iff.v £ P iff P £ Af( 1) - M(x).

M b . M (x) = M(y) iff x = y.
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Proof. Assume x ^ y. Then at least one of x < y and y < x is false.

It is sufficient to consider the consequences of one of these. Let us

say y < x is false. Then x U y' ^ 1, so there exists a maximal ideal P
such that x U y' C P. Now (xU/) / — x’ Pi y (fL P, and, hence, by

M 3 ,
P C Mix') and P C M(j), or P £ Mix) and P £ M(j). Thus,

M(x) ^ M(y).

The promised representation theorem follows easily from MrM5 . It

is valid for an arbitrary Boolean algebra, but, in view of the more precise

result for finite algebras, it is of interest only in the infinite case. The
first proof of this result was given by the American mathematician,

Marshall Stone (1936).

THEOREM 5.3. Every Boolean algebra B is isomorphic to an

algebra of sets based on the set of all maximal ideals of B.

Proof. Let 9TC denote the collection of all sets of ideals of the form

M{x) for some x in B. According to M3 and Mj, 9fll is an algebra of

sets. The mapping M : B —»- 3U is onto by the definition of 9TT and

one-to-one by M 5 . Finally, in view ofM 3 and Mi, M is an isomorphism.

With the representation theorem for the finite case in mind, it is

natural to ask whether the above result cannot be sharpened to read,

“Every Boolean algebra is isomorphic to the algebra of all subsets of

some set.” To discuss this matter we make two definitions. A Boolean

algebra B is called atomic iff for each nonzero element b of B there

exists an atom a of B with a < b. A Boolean algebra B is called com-

plete iff for each nonempty subset A of B, lub A exists relative to the

standard partial ordering of B. This definition has significance only

when A is infinite, since in any Boolean algebra each pair, and con-

sequently each finite set of elements, has a least upper bound. Now it

is clear that the algebra of all subsets of a set is both atomic and complete.

It is left as an exercise to prove that each of these properties is preserved

under an isomorphism. Hence, an algebra which fails to have either

property cannot be isomorphic to an algebra of all subsets of a set.

Since, as noted earlier, the algebra described in Example 4.1 is not

atomic, the question in mind is settled in the negative. The same

conclusion is provided by the algebra defined in Exercise 2.6, since, as

the reader may prove, it is not complete.

The above pair of conditions which are necessary in order that a
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Boolean algebra be isomorphic to the algebra of all subsets of a set are

also a sufficient set. This is our next theorem.

THEOREM 5.4. Necessary and sufficient conditions that a Boolean

algebra be isomorphic to the algebra of all subsets of some set are

that B be complete and atomic. In this event, B is isomorphic to the

algebra of all subsets of its set of atoms.

Proof. Since the necessity of these conditions has already been ob-

served, we turn to a proof of their sufficiency. Suppose, therefore,

that B is complete and atomic and let T be the set of all atoms of B.

As in the proof of the finite case, let A(x) denote the set of atoms a for

which a < x. Then, exactly as in the finite case, it can be proved that

the mapping A on B into (P(T) has properties A 3 and A4 (now, of

course, property Ai is an assumption). This means that A is a homo-

morphism on B onto an algebra of subsets of T. If U is an arbitrary

subset of T, then, by the assumed completeness, U has a least upper

bound, u say, in B. Then A(u) = U (this is a generalization of A6 for

the finite case), so A is onto (P(T).

All that is needed to complete the proof is to show that A is one-

to-one—that is, that the kernel of A is the zero ideal. This follows

from the atomicity of B; if x 0, then A(x) 0, so A{x) = 0
iff v = 0.

EXERCISES

5.1. Prove property A 4 of atoms in a finite Boolean algebra.

5.2. Prove the Corollary to Theorem 5.1.

5.3. Referring to Example 5.1, verify that the set of divisors of 30 determine

a Boolean algebra. Verify that in this algebra a U b is the greatest common
divisor of a and b.

5.4. Referring again to Example 5.1, show that the set of divisors of any

square-free integer determines a Boolean algebra in exactly the same way as

does the set of divisors of 30. What does this result imply regarding the number

of divisors of a square-free integer?

5.5. (a) Prove the converse of property M2 of maximal ideals to obtain a

characterization of maximal ideals among the set of proper ideals,

(b) Prove that maximal ideals can also be characterized as those ideals

1 of a Boolean algebra B such that B/I has just two elements.

5.6. (a) In Exercise 2.6 there is defined the Boolean algebra ft of all subsets

A of Z+ such that either A or A is finite. Prove that the collection C
of all finite subsets of Z+ is a maximal ideal of ft.
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(b) The same collection C is an ideal of the algebra (?(

Z

+
). Prove that Q

is not a maximal ideal of this algebra and determine a maximal
ideal which includes Q.

5.7. Devise a proof of Theorem 5.3 for the case of a denumerable Boolean

algebra B that does not employ Zorn’s lemma. (Hint: Prove by induction that

if B is denumerable then there exists a maximal ideal which includes any pre-

assigned ideal.)

5.8. Prove that the Boolean algebra in Exercise 5.6(a) above is not complete

by showing that the collection of all unit sets of positive even integers has no

least upper bound.

5.9. Prove that an isomorphic image of a complete Boolean algebra is com-

plete and that an isomorphic image of an atomic algebra is atomic.

5.10. Prove that every ideal of a Boolean algebra B is principal iff B is finite.

(Note: The proof that B is finite if every ideal is principal is difficult.)

6. Statement Calculi as Boolean Algebras

Statement calculi, as described in Section 4.3, yield models of the

theory of Boolean algebras. One need merely restrict his attention to

the algebraic character of a statement calculus as we now discuss it.

According to Section 4.3, the core of a statement calculus is a non-

empty set So of statements. This set is extended to the smallest set .S' of

statements (that is, formulas) such that the negation of each member of

S is a member of .S' and each of the conjunction, disjunction, conditional,

and biconditional of any two members of S is a member of S. Since it

was observed that the disjunction, conditional, and biconditional of two

statements can be defined in terms of negation and conjunction, we may
and shall assume that S is simply the closure of .So with respect to these

connectives. Then A takes on the role of a binary operation in S and '

(which we shall use as the symbol for negation) that of a unary operation

in S.

In order to state precisely the structure of the system (S, A, '), that is,

the set S together with its two operations, we must decide on the “nat-

ural” congruence relation for it. The obvious choice is the eq relation.

With the adoption of eq as the equality relation on S we assert that

(iS
,
A, ') is a Boolean algebra. For proof we note first that eq is a proper

congruence relation for the system. Indeed, we already know that it is

an equivalence relation and, using truth tables, it is an easy matter

to prove that A eq B implies that (

A

A C) eq (B A C) and A' eq B r

.

Moreover, it is a straightforward exercise to verify that Bi-B4 of The-
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orem 3.1 are satisfied; that is, (A A B) eq (B A A), and so on. The

zero element of the Boolean algebra (S, A, ) is A A A for any for

mula A, and the unit element is {A A A')'. Frequently the result which

we have obtained is stated as “The statement calculus under the con-

nectives ‘and’ and ‘not’ is a Boolean algebra.” This is somewhat mis-

leading, since there is a statement calculus for each set S0 . Actually, it

is only the cardinal number of So that matters; two calculi for which

the respective sets of basic statements have the same cardinal number

differ only in verbal foliage. Thus, a more accurate assertion, in the

sense that it recognizes the existence ol different statement calculi and

the congruence relation employed, is “A statement calculus under the

connectives ‘and
5 and ‘not

5

is a Boolean algebra with respect to equiv-

alence.” The Boolean algebra obtained from a statement calculus by

the identification of equivalent formulas will be called the Lindenbaum

algebra of that statement calculus. Such algebras are discussed in the

next section.

7. Free Boolean Algebras f

The preceding section provides the genesis of a method for construct-

ing, in a purely formal way, a Boolean algebra from any nonempty set.

This involves the use of congruence relations in a way which extends

that described in Section 4. Let us dispose ol this matter fiist.

In Section 4 the rough assertion was made that it (X, •
•

• ) is a mathe-

matical system and p is a congruence relation for it, then, corresponding

to each operation (or relation) in X, there can be defined in A p an

operation (or relation) having all the properties ol the oiiginal. (This

was stated precisely and proved in the case ol a Boolean algebra.) Now

it can happen that the resulting system with Ar

, p as basic set has addi-

tional properties besides those inherited from the original system. In-

tuitively, this seems quite plausible; if X is collapsed appropriately,

irregular behavior present in the original system may be smoothed out

in the derived one. An instance of this occurs below; a system which

has some requisites ol a Boolean algebra is loiced into detei mining one

by introducing a suitable congruence relation.

The system with which we begin is the abstraction of the most ob-

vious features of an intuitive statement calculus. We proceed with its

t In the remainder of this chapter there are several forward references to Section 9.2. A

mere perusal of that section will suffice for an understanding of the applications to be made

to Boolean algebras.
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definition. Let S0 be an arbitrary nonempty set and A and ' be two
symbols which do not designate elements of S0 . We give an inductive
definition of a set .S whose elements are certain finite sequences of ele-

ments of .So U (
A, '] together with parentheses.

(I) If s £ So, then j £ S.

(II) If t £ S, then (/)' £ S.

(III) If s, t £ .S’, then (s) A (/) £ S.

(IV) The only members of S are those resulting from a finite number
of applications of (I), (II), and (III).

As a direct consequence of the definition of S we may regard A as

a binary operation in S and ' as a unary operation in S. In these formal
circumstances the natural congruence relation for the system (S, A, ') is

that of elements having identical form. As such, (.S’, A, ') is surely not a
Boolean algebra. Can a congruence relation be defined for the system
such that a Boolean algebra will result? On the basis of the discussion

in Section 4, necessary and sufficient conditions which such a relation 6

must satisfy are that it be an equivalence relation different from the

universal relation on S (the latter requirement reflects the fact that a

Boolean algebra has more than one element) and that the following hold
for all elements of S.

If s 6 t, then j A u 0 t A u for all u. f

If s 6 t, then s' 0 t
'

.

/p\ s A t 6 t A s.

s A (t A u) 6 (s A t) A u.

If s A t' 6 u A u' for some u
,
then s A t d s.

If s A t 6 s, then s A t' 6 u A u' for all u.

In defense of our assertion we note that the first two parts of (C) are

necessary and sufficient conditions that the operations in S induce opera-

tions in S/d in a natural way, and the remaining four parts constitute a

minimal set of conditions which insure that the resulting system is a

Boolean algebra. Parenthetically, we remark that at times, when an
equivalence relation satisfying (C) is introduced into (S, A, '), it is more
natural to continue with the elements of S (instead of those of S/d) as

the basic objects. 1 his attitude is reflected in referring to the system

(S, A, ') as a Boolean algebra with respect to d.

There is no question concerning the existence of equivalence rela-

t Here we begin to follow the usual mathematical conventions of omitting superfluous
parentheses.
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tions satisfying (C), since if members of 5 are interpreted as truth func-

tions, then, as observed in the preceding section, the eq relation satis-

fies (C). We consider now the set e of all equivalence relations satisfy-

ing (C) and let /x denote the intersection of the collection C. It is left

as an exercise to prove that /i C e and, consequently, is the smallest

member of e in the sense that it relates the fewest possible pairs of ele-

ments of S’. The Boolean algebra S/ix is called the free Boolean algebra

generated by S0 . In this context the word “free” is intended to suggest

that the elements of the algebra are as unrestricted as is possible if they

are to have the structure of a Boolean algebra. Intuitively this is clear,

since the only relations which have been imposed upon them aie a

necessary and sufficient set to insure that they do have that structure.

There are alternative definitions of a free Boolean algebra that are more

exotic
;
our old-fashioned one has the merit that it simultaneously dis-

poses of the existence of such algebras.

For an application in the next section, we note the relationship of

the algebra S/d determined by an arbitrary member 6 of e to S, fx. Since

s n t implies s 6 t, a ^-equivalence class is a union ol /x-cqui\ alence

classes. Thus it is possible to define a mapping / on S/n onto S/ 6 by

/(Mm) = M«-

That is, the image of the /^-equivalence class determined by s is the

^-equivalence class determined by s. Clearly, / is a homomorphism

onto S/6; for example, the calculation

f{[s\

a

A [/] M ) =/([* A *]M) = [s A t] e = Me A Mo

shows that / preserves intersections. Since the zero element of .S /x is

[u A u'
] M

for any u in S, the zero element ol S 6 is [u A u'] e .

It is possible to give an interesting characterization of the congruence

relation /jl. To this end we consider the /^-equivalence class

V = [{u A m')']m

for some u in S. This class is independent of u since it includes all mem-

bers of S having the same form. This follows from the fact that it 0 C e,

then 0 A s')' 6 (u A u')' for all j in S, and hence (s A s')' /x (u A u')'

for all ^ in S. Since the zero element of S /x is [u A m']m> v 1S tlic unit

element of S/fx. It is left as an exercise to prove that if j, t C S, then

s fx t iff (s A t')' A (/ A /)' C 'U

or, introducing s t as an abbreviation lor (s A t')' A {s' A t)
,

s fx t iff s / C
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This characterization of /z in terms of V is opaque until S is interpreted

as the set ol formulas of a statement calculus. Then it will be recognized

that [i is to be interpreted as the eq relation and that becomes the set

ol valid formulas of S. Finally, the characterization of /x in terms of V
is simply the formal version of Theorem 4.3.2 (namely, s eq t iff 1= s *-> t).

J he same interpretation of S suggests, as an alternative approach to

the definition of the free Boolean algebra generated by S0 ,
the introduc-

tion ol the set V first, followed by the definition of /z in terms of TJ. This

is possible using some formulation of a statement calculus as an axiomatic

theory.
r

l he starting point is the inductive definition of the set S in terms

of the elements ol A0 U j
A, 'j, just as before. We now wish to obtain

the set 1) as that subset ol S which, under the interpretation of S
,
con-

stitutes the tautologies. This is possible using the results of Section 9.2.

Introducing s —> t as an abbreviation for (j A t')\ we define a subset V
of S as follows.

(I) Any member of S that has one of the following three forms is a

member of V:

s->(t->s),

(u —» (s —» /)) —> ((u —> s) -> (u —> /)),

(/ —> t') —> {t —> j).

(II) 11 s and t are members of S such that both s and s —> t are

members of V, then / is a member of V.

(Ill) An element of S is a member of V ill it can be accounted for

using (I) or (II).

The desired conclusion, that V = V, is then secured via the com-
pleteness theorem (Theorem 9.2.3) and its converse (Theorem 9.2.4). In

terms of V, the relation jjl may now be defined by

s /ji t if! s <-» t C V.

Although statement calculi served as our inspiration for introducing

the concept of a free Boolean algebra, now that the latter concept has

been firmly established, we may turn matters around and describe the

Lindenbaum algebra of a statement calculus as simply the free Boolean

algebra generated by the set of prime formulas of the calculus in

question.

EXERCISES

7.1. Show that the relation /x is a member of C.

7.2. Show that s /j t iff s <-> t C V.



278

7.3. Investigate the question

set X is a free Boolean algebra.

Boolean Algebras
|

chap. 6

of whether or not the algebra of all subsets of a

8. Applications of the Theory of Boolean Algebras

to Statement Calculi

It is by way of the Lindcnbaum algebra ot a statement calculus that

the techniques and results of the theory of Boolean algebras can be

applied to the study of statement calculi. The applications include

elegant characterizations of various concepts that arise in the study ol

statement calculi and simple proofs of important metatheoi ems, as we

shall show in this and the next section.

We begin by analyzing the theory of deducibility for statement calculi

in terms of the theory of Boolean algebras. The first step is to obtain a

characterization of the algebraic structure of a statement calculus when

a set of formulas is singled out to serve as a set of assumptions. Foi this

let us consider the formal analogue of a statement calculus as described

in the preceding section; that is, let us consider the system (S, A, ')

generated by the set 6V In it we imitate the designation of a set ol

formulas of a statement calculus as a set of assumptions by selecting a

subset T of S and adjoining to the set (C) of conditions given earlier

one of the form

a 6 (u A u)'

for each element a of T. Here u is any member of S. (Notice that the

interpretation of this condition is that a is “true.”) Let (C r) denote the

resulting set of conditions and Qr denote the set ot all equivalence

relations on S which satisly (C r ). Further, let denote the intersection

of er . Then /z r C Cr and, indeed, is its least member. Each ^.-equiva-

lence class is the union of /x-equivalence classes. In particular, the

/i, -equivalence class
eU r ,

let us call it, which includes V, also includes 1

and, hence, each /^-equivalence class of the lorm
[
a

] M with a Cl.
Assuming that there are at least two /^-equivalence classes, the system

S/n r is a Boolean algebra and V r is its unit element. According to an

observation made in the preceding section, S//jl v is a quotient algebra

of S/ijl. Using the characterization given in Theorem 4.2 ol the con-

gruence relation which is determined by the. associated homomorphism,

we conclude that s /zr t iff s T / C [w A u Vr ;
that is, ill (i

1 T 0 £! L r .

In turn, this condition translates into

s n r t iff s «-> t C T r ,
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which generalizes the earlier characterization of \x as s /x t ifT s <-+ £ D.

Before continuing we note that D r has the following closure properties.

(i) If s, t £ 'Ur, then s A t £. D r .

(ii) If s £ 'Up and t £ S, then s V / £ 'Up.

To prove (i) observe that if j, / £ D r ,
then s fxr (u A u')' and t fir (u A u')\

so s A t fly (u A u')'

.

To prove (ii) let s £ D r and t £ S be given. Then,

in turn, s /xr (t A t')'
,
s' fir t A t F A t' /xr t A t\ and (F A F)' Mr (* A F)',

which means that j V t £ Dp.

We continue with our generalization of the results of Section 7 by

showing that it is possible to reach D r independently of /d v and then

define /x r in terms of D r . To accomplish this we define the subset Fr of S
by modifying part (I) of the earlier definition of F to include T in Vr .

Then it is clear that Vr may be characterized as the smallest subset of S
that includes V and F and contains the element t whenever it contains s

and —> t for some s. On the other hand, D r ,
as we have noticed,

includes V (
= V) and V. Further, if i

- and s —» t (that is, s' V t) are in

Dp, then so is t V (s A (s' V t )), according to the closure properties

which we derived for Dp. A calculation shows that / V (s A (s' V /)) jx v t,

so we may conclude that if j
-

,
^ —> t £ Dp, then / £ D r . Finally, in view

of the minimality of
fj. r (in terms of which D r was defined), we conclude

that Dp has exactly the same characterization as does Vr . Thereby we
infer that D r = Vr . It follows that fi r may be defined (or, characterized,

at one’s preference) as

s /ip t iff <-» t £ Fr .

Now let us interpret the foregoing from the standpoint of the statement

calculus. If we regard (S, A, ') as a statement calculus, then the role of F

is that of a set of premises. Under this circumstance, the free Boolean

algebra S/fj. (the Lindenbaum algebra of the calculus) is supplanted by

the quotient algebra S/fxr and the set V of provable formulas is enlarged

to Fr ,
the set of all formulas which are deducible from T. The set Fr ,

which is the unit element of S//jl v ,
may be described as the smallest set

which includes F and F and is closed under modus ponens. The above

characterization of /z r in terms of Fr amounts to this: Two formulas are

in the same member of S//jl v iff each is deducible from the other relative

to F as a set of assumptions. Finally, we note that a necessary and

sufficient conditions that S//JLr be a Boolean algebra (an assumption

which we have made) is that F be a consistent set of formulas.

Further insight into the notion of provability and the nature of so-
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called deductive systems at the statement calculus level can be obtained

by reversing our point of view. For this our starting point is the con-

sideration of a Boolean algebra (P, Pi, ') whose elements are to be

thought of, intuitively, as the statements of some theory. Further, as-

sume that P is a specified nonempty subset of B whose elements are to

be regarded as the provable statements of that theory. With this in-

terpretation of P in mind, it is reasonable to make the following assump-

tions about P. If and t are members of P, then so is .y Pi t (that is,

“j and f”) and, if s is in P, then so is s U t (that is, “j or t”) for any

choice of t. Nonempty subsets of a Boolean algebra which satisfy these

conditions are called filters. That is, a nonempty subset F of a Boolean

algebra B is called a filter iff

(i) x £ F and y G F imply x P y £ F, and

(ii) x £ F and y £ B imply xU)CF
Before considering the set P as a filter we discuss a few properties of

filters.

Since the defining conditions of a filter are the duals of those for an

ideal of a Boolean algebra, the term dual ideal is often used in place

of filter. Filters and ideals occur in dual pairs. The pairing is easy to

describe: if / is an ideal of P, then {* £ B\x' £ /} is a filter; il F is a

filter, then {x £ B\x' £ Pj is an ideal, as is easily proved. This pairing

provides a bridge for transferring observations about ideals to filters.

For example, both B and {1} are filters of B. Again, if a £ P, then

{
x £ B\x > a) is a filter; this is the principal filter generated by a.

A filter of P which is different from P is called a proper filter. A proper

filter may be characterized as a filter which does not contain 0. A max-

imal member (with respect to inclusion) of the set of proper filters of P
is called a maximal filter. For example, in the Boolean algebra of all

subsets of a nonempty set A, the collection of all those subsets of A that

contain a fixed element of A is a maximal filter. The dual of the earlier

proof, that if M is a maximal ideal of a Boolean algebra P and ,v £ P,

then exactly one of * and x' is in M, yields the same conclusion about

maximal filters. Proofs of the foregoing assertions are left as exercises.

Finally, it is left as an exercise to prove that a filter F of P may be

characterized as a subset of B such that 1 £ F and, if x, x' U y £ F,

then y £ F. Introducing x —*

y

as an abbreviation for x' U y, the latter

condition may be rewritten as: if x, x —>y £ F, then yCF.
We return to the discussion that we began by defining a Boolean logic
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to be an ordered pair (53, P), where 53 = (B, P, ') is a Boolean algebra

and P is a filter ol the algebra. The elements of B will be called statements

and those of the filter P will be called provable statements. We shall

abbreviate “j is in P” by “h s.” As the first logical concept that we
shall introduce into a Boolean logic, we choose that of consistency. A
Boolean logic (53, P) is called consistent iff for no in B both ^ and s'

belong to P. Since P is a filter, (53, P) is consistent iff P is a proper filter.

Next, let us call (53, P) negation complete iff for every j" in B
,
either s or s'

is provable. We contend that (53, P) is negation complete and consistent

ill P is a maximal filter. For the proof assume first that the logic is

consistent and negation complete. Consistency implies that P is a proper

filter and hence has a chance to be maximal. To show that it is maximal,
suppose that Q is a filter which properly includes P, and let i be a

member of Q that is not in P. Negation completeness implies that

s' CP and hence that s' C Q . But s and s' in Q imply that 0 = ^0 s'CQ,
which means that Q = B. The converse is an immediate consequence

of an earlier remark that for each clement * of a Boolean algebra exactly

one of x and x belongs to a maximal filter. We state our result as the

next theorem.

THEOREM 8.1. A Boolean logic (53, P) is consistent and negation

complete iff P is a maximal filter of 53.

The next logical notion that we discuss for a Boolean logic (53, P) is

that of deducibility. If T is a subset of B
,
then we shall say that a state-

ment j- of B is deduciblefrom E iff there exists a finite sequence uh w2 ,

• •
•

,
un

of statements of B such that un is ^ and if for each i, 1 < i < n, either u
t

is in E or P or there exist j < i and k < i such that Uk is Uj —> iq-. Since

P is a filter we know that 1 CP and y C P whenever x, x —> y C P. It

follows that P satisfies the axioms of a statement calculus [that is,

conditions (I) and (II) for V in the preceding section] and, hence, the

deduction theorem (Theorem 9.2.1 ) in the form proved for the statement

calculus is available. In the present context we may state it in the fol-

lowing form: If F C B
,
then .s

-

is deducible from T iff there exists a finite

subset [rh r2 ,

• •
*, r*} of F such that \- r\ Pi r2 P •

• Pi r* — s. We shall

denote the set of statements deducible from F by V
;
of course, F depends

on both F and the choice of P.

THEOREM 8.2. The set F of statements deducible from F is the

smallest filter that includes both F and P.
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Proof. Clearly this is true if V is the empty set, since then F = P. Sup-

pose that F is not empty and let Q be any filter that includes T and P.

If C r, then there exist elements ri, r2 ,

• •
*, of T such that 1— r\ ft r2

O • •
• Pi rk —* s, by the deduction theorem. Hence n O r2 Pi

• •
• O

rk C Q and n Pi r2 H * •
• O rk -> s C Q, so s £ Q. Thus we have

proved that every filter which includes T and P also includes T. It

remains to prove that F is a filter which includes both T and P. This

is left as an exercise.

We shall call a subset A of B a deductive system iff if includes A. By the

previous theorem, A C A, so A is a deductive system iff A = A and this

implies that A is a filter including P. Conversely, if A is a filter that

includes P, then A = A, by the same theorem. Thus, the notion of

deductive systems coincides with that of filters that include P.

EXERCISES

8.1. Show that the relation /xp is a member of Cp.

8.2. Show in detail that s/j.yt iff .y <-> t £ 'Or.

8.3. Write an expanded version (supplying all proofs) of the paragraph in

which Vy is defined and the result that Vy = Vy is obtained.

8.4. Prove the assertion in the text that two formulas are in the same member

of S/nr iff each is deducible from the other relative to F as a set of assumptions.

8.5. Prove the assertion in the text that S/fiy is a Boolean algebra iff T is a

consistent set of formulas.

8.6. Show that a proper filter may be characterized as a filter which does

not contain 0.

8.7. Show that a filter F of B may be characterized as a subset of B such

that 1 £ F and *, x' U y £ F imply that y G F.

8.8. Show that a maximal filter can be characterized as a filter such that for

each v exactly one of * and x' is in it.

8.9. Rewrite the proof of Theorem 5.3, using filters in place of ideals.

8.10. Complete the proof of Theorem 8.2.

9. Further Interconnections between Boolean Algebras

and Statement Calculi

The two-element set {T, F} determines a Boolean algebra having T

as unit element and F as zero element. By a two-valued homomorphism
of a Boolean algebra B we shall mean any homomorphism of B onto a

two-element Boolean algebra. Since all two-element Boolean algebras

are isomorphic, we may always use {T, Fj in considering a two-valued
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homomorphism of B and, thereby, regard such a homomorphism as

providing a “truth-valuation” of the elements of B.

There is a natural one-to-one correspondence between the set of

maximal ideals and that of maximal filters and between each of these

and the set of two-valued homomorphisms of B. In fact, if 7 is a maximal

ideal of B
,
then the dual of I (that is, the set of all a' where a C /) is a

maximal filter and the formula

if b ci
if b£ I

defines a two-valued homomorphism of B. Similarly, if F is a maximal

filter of B, then the dual of F (that is, the set I of all a

'

such that a C F)

is a maximal ideal and (1) defines a two-valued homomorphism corre-

sponding to F. On the other hand, if v is a two-valued homomorphism
of B

,
then the set

I = {bC B\v(b) =
FJ

is a maximal ideal and the set

F = [be B\v(b) = T}

is a maximal filter dual to I.

By virtue of these natural correspondences, the following assertions

are equivalent to each other.

(2)

For every proper ideal 7 there exists a maximal ideal which

includes I.

(3) For every proper filter F there exists a maximal filter which

includes F.

(4) For every proper ideal 7 [proper filter F
]
there exists a two-valued

homomorphism v such that v(b) = F for b C 7 [v(b) = T for b C F\.

Now (2) is simply our Theorem 5.2, so the validity of (3) and (4)

then follow.

As an application of the foregoing we analyze the nature of truth-value

assignments to the formulas of a statement calculus. If S0 is the set of

prime formulas of the statement calculus (S, A, '), then an assignment

of truth values to the elements of S amounts to the extension of a given

mapping on £0 into { T, Fj to one on S onto [T, Fj, in accordance with

the inductive definition given in Section 4.3. Thereby it is insured that

equivalent formulas are assigned the same value. Ffence, the extended
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mapping may be construed as a mapping v on the Lindenbaum algebra

(S/11 ,
A, ') onto {T, Fj, and the definition of v implies that it is a two-

valued homomorphism of the Lindenbaum algebra. The kernel of v is

the maximal ideal which is related to v in the natural correspondence

mentioned above. On the other hand, any two-valued homomorphism

v of (S/fJL, A, ') (regarded as simply a free algebra) yields a truth-

valuation of the elements of S//jl and hence of the elements of S upon

assignment of T or F to a formula according as the ^-equivalence class

to which it belongs is assigned T or F. It is easily shown that this is a

truth-value assignment in the sense of Section 4.3. In summary, truth-

value assignments to the formulas of a statement calculus coincide with

two-valued homomorphisms of the Lindenbaum algebra of the calculus.

Furthermore, the existence of truth value assignments to a statement

calculus is insured by the existence of maximal ideals in a Boolean

algebra, and conversely.

The existence of maximal ideals that include a preassigned proper

ideal of a Boolean algebra also insures the existence of an isomorphic

image of the algebra in the form of an algebra of sets. Indeed, the

existence of such maximal ideals is the basis for the proof of Stone’s

representation theorem! Conversely, from the assumption that

(5) For every Boolean algebra there is an isomorphic algebra of sets.

may be inferred the existence of maximal ideals in Boolean algebras.

This result, which is also due to Stone (1936), follows immediately from

the existence of maximal ideals in an algebra of sets. To prove this, in

turn, let us consider an algebra G of sets based on U. Let V be any

subset of U and let G(F) be the collection of all elements of G which

are included in V. Then it is possible to prove that G(F) is an ideal

of G and that G(F) is a maximal ideal of G iff U — V has exactly one

member. Since the proof makes an interesting exercise, we shall allow

the reader to carry this out.

The completeness theorem (Theorem 9.2.3) for the statement calculus

can also be obtained from the theorem on the existence of maximal

ideals, and hence filters, in a Boolean algebra. To show this let us

consider a statement calculus 0 = (S, A, ') and its Lindenbaum algebra

51 = (S/ijl, A, '). In Section 9.2 we prove that the completeness theorem

for 0 is equivalent to the property that for every formula s
,

if jj} is

consistent, then ^ is satisfiable. In turn, since jjj is consistent iff not

h s', the consistency of j^} means simply that is not a member of the

zero clement of 51. Further, in view of our above analysis of truth-value
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assignments to elements of a statement calculus, the satisfiability of .r

corresponds to the existence of a two-valued homomorphism v of 31

such that z>([.r]M)
= T. Thus, the completeness theorem may be trans-

lated into the following form: For any nonzero element a ol 31 there

exists a two-valued homomorphism v of 31 such that v(a) = T. An
equivalent statement, which results upon considering the principal filter

generated by a and then the equivalence of propositions (3) and (4), is:

Each nonzero element of 31 is a member of a maximal filter of 31. It is

this proposition which we shall take as the Boolean translation ol the

completeness theorem. Then the completeness theorem follows immedi-

ately from the theorem on the existence of maximal filters. We note that

this derivation of the completeness theorem does not involve any restric-

tion on the cardinality of the set of primitive symbols of the statement

calculus. In particular, therefore, the set of primitive symbols may be

assumed to be uncountable.

Conversely, the existence of maximal filters can be deduced directly

from the completeness theorem formulated in a stronger form. To be

precise, we can prove the equivalence of the existence of maximal filters

and the strong completeness theorem for the statement calculus (with

no restrictions on the cardinality of the set of primitive symbols). For

this we use the fact (see Section 9.2) that the strong completeness theo-

rem for © is equivalent to the proposition that

(6) Every consistent set of formulas is simultaneously satisfiable.

Now assume that T is a consistent set of formulas of © and let Vr denote

the set of all formulas which are dcducible from T. 'lhen Fr//x is a

proper filter of 31, as we shall show. To prove that Vv/ii is a filter we

use the characterization of a filter given earlier as a subset F of a Boolean

algebra B such that (i) 1 C F and (ii) if a and a -» b are in F, then so

is b. In the case at hand, (i) is satisfied because the set of theorems of ©
is included in Vr ,

and (ii) is satisfied because Vr is closed under modus

ponens. Finally, the consistency of F implies that Vv//x is a proper filter.

Next, analyzing the satisfiability of F as we did above for the case of a

single formula, we infer that as the Boolean translation ol the strong

completeness theorem we may take the statement

(7) Every proper filter of the Lindenbaum algebra of a statement

calculus is included in a maximal filter.

Since (7) is a special case of (3), to prove the equivalence of (7)

and (3) it must only be shown that (7) implies (3). For this let B be a
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Boolean algebra and I be some proper ideal of B. We now form the

statement calculus {S, A ,
') generated by a set £0 whose members px are

in one-to-one correspondence with the elements * of B. Now consider

the mapping f on S onto B given by the following inductive definition

:

f(px) = X
,

/(/) = (f(s))' f
for all j in S

,

f(s A t) = f(s) A fit), for all s and t in S.

It is seen immediately that if t is a theorem of S, then /(/) = 1 and for

all s and t in £,/(*<-*/) = 1 iff /CO = /(0- These facts imply (recalling

Section 7) that if s /* t, then f(s) = /(/)• Hence, / induces a mapping g

on S/n, the Lindenbaum algebra of S, onto B. Clearly, g is a homo-

morphism onto B, so B is isomorphic to a quotient algebra (S//jl)/J.

Now let K denote the counterimage in S/fx of the given proper ideal I

of B. Then K 3 J since / includes { 0 }

.

From our assumption (7) follows

the existence of a maximal ideal M that includes K, and consequently J.

Now M
,
as an ideal, is a Boolean algebra and J is an ideal of this

algebra. It is left as an exercise to prove that M/J is a maximal ideal

of (S/fx)/J

.

But then the isomorphic image of M/J in B is a maximal

ideal of B that includes I. This shows that (2), and hence its equivalent

(3), holds.

From the results which have been obtained it is clear that the state-

ments (2)-(5) about Boolean algebras are equivalent to each other.

Moreover, the equivalence of each pair has been established without

recourse to the axiom of choice. On the other hand, all known proofs

of (2), for example, are based upon the axiom of choice or an equivalent

principle of set theory. A problem arises as to whether (2) is really

dependent on the axiom of choice. This problem has been responsible

for the derivation (without use of the axiom of choice) of a great variety

of statements about Boolean algebras which are equivalent to (2) and,

also, the investigation of specialized forms of the axiom of choice which

are consequences of (2). The most comprehensive treatment of these

matters to date is due to J. Tos and G. Ryll-Nardzewski (1954-1955).

The strongest result which they found is that (2) implies the axiom of

choice for the case of a collection of nonempty finite sets. The question

as to whether the axiom of choice is independent of (2) is as yet unsolved;

the evidence suggests that the answer is in the affirmative, f

f (Added in proof.) It has just come to my attention that a further contribution to this

matter appears in J. D. Halpern (1961). There it is asserted that in certain models of set

theories (2) is true but the axiom of choice is not.
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We conclude by remarking that the demonstration of the strong

completeness theorem [in the form (6)] for the statement calculus is not

the end of the applications of Boolean methods to mathematical logic.

Many fundamental theorems about the predicate calculus and about

first-order theories can be easily proved by applying Boolean methods

to appropriate “Lindenbaum algebras” associated with such theories.

An outline of such applications appears in R. Sikorski (1960).

EXERCISES

9.1. Show that if v is a two-valued homomorphism of the Lindenbaum alge-

bra of a statement calculus, then it provides truth value assignments to the

elements of the statement calculus in the sense of Section 4.3.

9.2. Complete the proof of the result that (5) implies (2).

9.3. Show in detail that we may take (7) as the Boolean translation of the

strong completeness theorem for a statement calculus.

9.4. Fill in the details of the proof in the text that (7) implies (3).

BIBLIOGRAPHICAL NOTES

Sections 1-3. An introductory account of Boolean algebras appears in

E. R. Stabler (1953). A more sophisticated treatment is to be found in P. C.
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Section 4. A discussion of congruence relations for Boolean algebras
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consulted.
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,
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Section 9. The application of Boolean methods to mathematical logic

was the subject of many papers in the early 1950’s. Many of these papers were

published in Fundnmenta Alathematicae. Exact references are given in Sikorski s

book.



CHAPTER Informal Axiomatic

Set Theory

T, e™ omiesof intuitive set theory pose the problem of pro-

viding a theory of sets which is free of contradictions. The analysis of

the well-known antinomies (Section 2.11) for the purpose ol determin-

ing possible fallacies in methods of constructing and reasoning about

sets—methods which had seemed convincing before they were lound to

generate contradictions—has led to several reconstructions ol set theory

along axiomatic lines. This chapter is devoted to outlining that one

known as Zermelo-Fraenkel set theory [although it would be moie ap-

propriate to call it Zermelo-Fraenkel-Skolem set theory, since it is the

theory of E. Zermelo (1908) as modified by both A. Fraenkel and

T. Skolem]. In the last section fleeting contact is made with the other

axiomatization of set theory with which mathematicians feel comfor t-

able—the von Neumann-Bernays-Godel theory.

Since that part of Zermelo-Fraenkel set theory which reconstructs

the theory of Chapter 1 and Chapter 2, up to cardinal numbers, closely

parallels the earlier intuitive development, we shall, so to speak, merely

provide the axiomatic underpinnings for it. Then, for Cantor’s theory

of transfinite arithmetic, we substitute the theory of ordinal and cardinal

numbers due to von Neumann.

1. The Axioms of Extension and Set Formation

The recipe in Section 5.2 for presenting an informal theory cannot be

used here since it calls for a “general theory of sets” as an ingredient.

An obvious alternative, which we shall adopt, is to presuppose only a

system of logic. As the primitive notions ol Zermelo-Frankel set theory,

which we shall symbolize by 0, we take set and (the 2-place predicate)

membership. We shall denote the relation ol membership by C and, at

the outset, denote sets by lower-case letters. Before describing the prime
289
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formulas of 0 a decision must be reached as to whether the i elation

of equality shall be taken as part of the underlying logic or introduced

as a defined relation of the theory; either is possible. In Example 4.7.1

the latter point of view is adopted. Here we elect the foimer viewpoint.

This is in keeping with the procedure in Zermelo (1908).

With the equality relation included in the underlying logic it is pos-

sible, in an interpretation of the theory, to admit nonsets (that is, ob-

jects which, like the empty set, have no members but are distinct from

the empty set) in the domain of the relation assigned to £. [Such objects

are commonly called individuals; Suppes (1960) and Fraenkel-Bar-

Hillel (1958) discuss this matter.] Although we intend that in the theory

which we shall formulate all variables shall denote sets, initially we

shall suggest a possible distinction between sets and objects which may

be members of sets by using “a,” “b” • • • to denote the former and

“y,” • • • to denote the latter.

With equality included as part of the system of logic, the prime

formulas of 0 have the form

(7) x C a

or the form

(2) a = b.

The first of these we shall read as “* is an element of a” or “x is contained

in a For a precise definition of a (composite) formula of 0, we now

refer the reader to the beginning of Section 4.7. However, in order to

avoid completely any illusion that we are setting up a formal theory,

the only symbolism that we shall employ in writing formulas is of the

sort displayed in (7) and (2), along with

x a and a b

for “not (x C a)” and “not (a = b)” respectively. Thus, we shall not

use the symbolism of the predicate calculus but, instead, the (meaning-

ful) English equivalents of connectives and quantifiers. In harmony

with this agreement, we shall use the word “sentence” in place of the

word “formula.” In particular, a formula (in the technical sense)

which contains a free occurrence of x will be called a “condition on x”

or a “property of *” and symbolized

A{x).

A statement (in the technical sense) we take to be true or false, since

we assume that each prime formula is either true or false.
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This completes our description of the ground rules. We proceed with

our first two axioms.

(ZF1) (Axiom of extension). If a and h are sets and if, for all at,

* C ci iff * C then a = h.

(ZF2) (Axiom schema of subsets). For any set a there exists a

set b such that, for all x, x G b iff x C a and A(x). Here, A(x) is any

condition on x which (considered as a formula in the technical sense)

contains no free occurrence of b.

In contrast to (ZF1), which is a statement, (ZF2) is an infinite collec-

tion of statements. That is, it is a scheme for producing axioms, one

for each choice of A{x). This accounts for (ZF2) being called an axiom

schema. As in intuitive set theory, to indicate the way b is obtained from

a and A(x) we shall write

b =
j
x C ci

|

A (*) }

.

It is an immediate consequence of (ZF1) that the axiom schema of

subsets determines b uniquely. The usage of the term “subset” here

anticipates the introduction of

a C b (read: a is a subset of b, or, a is included in b)

as an abbreviation for “all x, if a: TL a then x G b ”

At this point we might derive familiar properties of the inclusion

relation and continue with the definition of proper inclusion and prop-

erties of this relation. Both here and subsequently, when we have car-

ried a notion or topic belonging to the general set theory of Chap-

ters 1-3 to a point where the earlier definitions and proofs are applicable,

we shall drop the matter. Our emphasis will be directed principally

toward notions and procedures of intuitive set theory which apparently

cannot be carried out within the axiomatic framework.

Our first illustration of the last remark can be given now. It is clear

that (ZF2) is a substitute for the intuitive principle of abstraction (Sec-

tion 1.2) and that (ZF2) is more restrictive in this respect. Whereas

the earlier principle provides a set for each condition or property, the

present version only provides the existence of a set corresponding

to a condition and which is a subset of an existing set. With this restric-

tive feature, Russell’s paradox cannot be reconstructed, so far as we

know. What can be produced by imitating the earlier argument is the

following. According to (ZF2), with A(x) as x £ x, for any set a
,

if

b = {x C a\x *|, then, for all y,
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(3) y C b iff y G a and y (£y-

It follows that b a. The proof is by contradiction. Assume that b G #•

Now either b G b or b tf_b. If b G b, then in view ol our assumption

and (3), we have b b and hence a contradiction. If b b, then this

and our assumption yield, in view of (3), b G b, a contradiction. The as-

sumption that b G a having led to a contradiction, we may conclude

that b a. Since the set a was unspecified in reaching this result, we

infer that there is no set that contains every set. In Halmos (1960)

this is paraphrased as “nothing contains everything.”

The axiom schema of subsets is often referred to by its German name

Axiom der Aussonderung (axiom of “singling out’ or “separation ). This

name is suggestive since it does permit us to single out or separate off

those elements of a given set which satisfy some condition and form the

set consisting of just those elements. Incidentally, this axiom schema

may be considered as characterizing Zermelo’s attitude with regard to

a reconstruction of set theory which avoids the classical antinomies. His

analysis of these contradictions led him to conclude that they resulted

from the admission into intuitive set theory of "too large sets. This led

him to limit severely, by means of axioms, allowable methods of form-

ing sets from existing sets and, in addition, to modify the principle that

every condition determines a set.

2. The Axiom of Pairing

The goal of anyone who aspires to axiomatize set theory has already

been mentioned: To create a consistent theory within which as much

as possible of the general set theory of Chapters 1-3 can be developed

and, if a proof of consistency is not within reach, to incorporate ade-

quate safeguards to insure that the classical antinomies cannot be

derived. Axiom schema (ZF2) has both a constructive as well as a

restrictive quality, the latter evidencing itself in its conditional nature.

In order to imitate the intuitive set theory of Chapter 1, further means

of constructing sets from existing sets must be introduced. The next

three axioms are in this category. In this section we introduce one of

them.

(ZF3) (Axiom of pairing). If a and b are sets, then there exists

a set c such that a G t and b G c.
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Using the instance of (ZF2) obtained by taking A(x) to be “x = a

or * = b” and c to be a set such that a G c and b C c, we infer the exist-

ence of the set

C t|.v = a or a: = b\.

Clearly this set contains just a and b and (ZF1) implies there is only one

such set. We shall denote it by the symbol

{
a

,
b\

and call it the (unordered) pair formed by the sets a and b.

As is easily shown, an equivalent formulation of (ZF3) is the state-

ment that for sets a and b there exists a set c such that x G c iff x = a or

x = b. If we take A(x) to be condition “x = a or x = b” the foregoing

remark means that we may express (ZF3) as: There exists a set d

such that

(7) x C d iff A(x).

Now (ZF2), applied to a set c, asserts the existence of a set d such that

(2) x G d iff (* C c and d(x)).

Comparing (7) with (2) may suggest that (7) is a special case of (2)

and, in turn, that (ZF3) is superfluous. This reasoning is spurious; for

it is only when the existence of a set which contains a and b is assured

that (2) yields (7), and it is precisely (ZF3) which gives this assurance.

With the notation of intuitive set theory in mind, it seems natural

to denote the set d described in (7) by jv|d(x)
} ;

that is, to write

{a, b) = {x|* = a or x = b).

Henceforth we shall use this symbolism when it is convenient and per-

missible. That is, if A{x) is a condition on x such that those *’s which

A(x) specifies do constitute a set, then we may denote that set by

{*|^4 (*) }

.

With this convention we may rewrite {x C a\A(x)}, where a is a set,

as {x\x C a and A(x)}, but we shall not do so since the latter denotation

is longer than the former.

If a is a set, we may form the pair
{
a

,
a). This set we denote by

{«)

and call the unit set of a. As an illustration of the notation agreed upon

in the preceding paragraph, we may write

[
<2

1
= {*|* = a j.
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The specialization of (ZF3) which yields the unit set of a set insures

that every set is an element of some set and (ZF3) in its general form

insures that any two sets are elements of some one set. Thereby, given

a set a
,

it becomes possible to manufacture a variety of sets such as {<2 ),

{a, {a}}, {{a}, {{a}}}, and soon.

3. The Axioms of Union and Power Set

None of the axioms up to this point assert the existence of any sets.

It will prove to be expeditious to anticipate a later axiom which does

this (and more), by introducing as a temporary axiom:

there exists a set.

Then we can establish the existence of a set without elements. Indeed,

let a be a set and take A(x) to be “x ^ x” Then, according to (ZF2),

there exists the set

{x G a\x 5^ x}.

This (uniquely determined) set has no elements. We shall call it the

empty set and adopt the familiar symbol

0
for it.

We now turn to the first business of this section by observing that it c

is a nonempty set
,
that is, if c ^ 0, then there exists a set a such that

x C a iff x G y for every y which is a member of c. In other words, for

each nonempty set there exists a set that contains exactly those elements

that belong to every member (set) ol the given set. To prove this asser-

tion, let b be any member (set) of c and define

a = {* G b\ for all y (if y G c, then xG;)!-

The set a is independent of the element b since it is easily shown that

a = {x\ for all y (if y G c, then x G y) }
•

The set a is called the intersection of c. For a discussion of the notation

used for intersections we refer the reader to Section 1.10. Here we shall

only call attention to the notation

a H b,

where a and b are sets, for the set defined by

a O b = [x G a\x G b}.
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Since x£iaC\biRx(Ta and * G b, it follows that

a O b = {*|* C a and * G b\.

In contrast to the situation for intersection, we require a further

axiom to be able to produce in @ the notion of the union of a set. The

following is a generous form of the necessary axiom.

(ZF4) (Axiom of union). For every set c there exists a set a such

that if a: G b for some member b of c
,
then x G a.

If c is a set and a is a set of the kind specified in (ZF4), then we may

apply (ZF2) to form the set

{* G a\ for some y(x G y and y C c) }

.

Clearly, for all x, x is contained in this set, which we call the union

of c, iff a; is an element of an element of c. We may then write the union

of c as

{*| for some y (x G y and y G c) }

.

The notation

a U b
,

where a and b are sets, will be used for the union of the set [a, b). By

virtue of the definition of the union of a set, xG^U^iff^isa member

of a or x is a member of b. Thus

a U b = G a or x G b\.

For a discussion of the notation used for unions we again refer the reader

to Section 1.10.

With the aid of (ZF4) it is possible to generalize pairs. For instance,

the (unordered) triple formed by sets a, b, and c, symbolized

{a, b, c},

may be defined by

{a, b, c
)
= O! U {*}) U {c}.

Then it follows easily that

{a, b, c
j
= {x\x = a or x = b or x = c]

.

The extension of the notation and terminology to the case of further

terms is clear.

It is now possible to introduce, for sets a and b the relative comple-

ment of b in a as the set a — b, defined by

a — b = {x C a\x b\,
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and, in turn, the symmetric difference of a and b as the set a + b,

defined by
a -f- b = (a — b) U (b — a).

At this point it is possible to derive all the results listed in Chapter 1

concerning properties of union, intersection, relative complement, and

symmetric difference, including their interrelations.

To complete the reconstruction of the intuitive theory of Chapter 1

within 0, we need the theory of relations, for which the starting point is

the notion of an ordered pair. Since the (unordered) pair formed by

two sets as well as the unit set of a set can be constructed, the ordered

pair of sets a and b (with first coordinate a and second coordinate b)

can be introduced as the set (<

a

,
b), defined by

(a, b) =
{
{a), {a, b) j,

just as in Chapter 1. The earlier proof carries over: if (#, b) and (c ,
d)

are ordered pairs and if (a, b) = {

c

,
d), then a = c and b = d. However,

the existence in 0 of what we called earlier the cartesian product of

two sets requires a principle of set construction which the axioms at

hand do not seem to permit. We can dispose of the matter at hand as

well as the existence of the power set of a set with the aid of the following

axiom.

(ZF5) (Axiom of power set). For each set a there exists a set

b such that, for all *, if * C a, then a £ b.

To secure the existence of the power set of a set from this axiom is

an easy matter. If a is a set and b is a set which contains all of the sub-

sets of a as members, then we apply (ZF2) to form the set {* £ b\x Q a).

For all a, a is a member of this set iff x is a subset of a. We call this set

the power set of a
,
symbolized

<P(a).

Thus,

(p(fl) =
j
.xj* C a }

.

To establish the existence of the cartesian product of sets a and b
,

we notice first that if x £ a, and y £ b, then {*} C a, {y} C b
,
and

hence the sets jvj and {*, y} arc included in a U b. In turn, {*} and

jv, yj are members of (9 (a U b), which implies that ){*}, {*, y }

}

=
(x, y) is a subset of &(a U b). It follows that (x, y) £ (P((P (a U b)). We
infer that the set we want can be obtained by an application of (an in-

stance of) (ZF2) to (P((P(a U b)). The appropriate condition is quite



7.4 The Axiom of Infinity 297

long; for the sake of both brevity and clarity we shall write it in sym-

bolic form. The cartesian product of sets a and b is the set a X b

defined by

{

w

C <P((P{a U ^))|(3*)(3.y)(* ^yAxCaAy€.bA (z)(z C w
z — {a:} V z =

{ x, yj)) V (3*)(* C a A x C b A
(z) (z C w z = {*}))}.

Since w C a X b iff w = (x, y) for some x in a and some y in b,

a X b = |zc| for some x in a and some y in b, w = (x, y)}.

Defining a (binary) relation as a set each of whose members is an

ordered pair, it is of importance to know that we can prove that a

relation is a subset of the cartesian product of two sets. In this connec-

tion we recall Exercise 1.10.1, where it is asserted that if r is a relation,

then (using notation introduced in Section 1.10) r is a subset of the

cartesian product of uur with itself. We may apply (ZF2) to this car-

tesian product, taking for the condition first “for some x ((x, y) C r),”

and secondly “for some y ((x, y) C r),” to produce the sets

{*| for some x ((*, y) C r
)

}

and

{

y

|

for some y ((*, y ) C 0 j

,

which we call the domain and the range, respectively, of r. In partic-

ular, the domain and the range of a relation are sets and a relation is

a subset of the cartesian product of its domain and its range.

At this point it is possible to complete the reconstruction of the set

theory of Chapter 1 ,
obtaining the theory of equivalence relations,

functions, and partial ordering relations found there.

4. The Axiom of Infinity

Let us consider for a moment the theory of sets based on just the

axioms (ZF1)-(ZF5) plus the temporary axiom that a set exists. The

presence of the axiom of pairing makes possible the formation of an

arbitrary large number of distinct (two-element) sets. We infer that

the domain of any model of the theory must be infinite. On the other

hand, since the union of a finite collection of finite sets and the power

set of a finite set are finite sets, it does not appear that the axioms are

adequate to prove the existence of an infinite set. The correctness of

this surmise may be demonstrated by way of a model devised by

W. Ackermann (1937).
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The domain of the interpretation which can be shown to be a model

is N. In order to define the relation of membership, we shall need the

fact that a positive natural number a has a unique representation in the

form
a = 2X

* + 2*2 + • •
• + 2Xr

,

where the *’s are natural numbers and X\ < x2 < • • • < xr . Then, for

natural numbers (that is, sets) x and a
,
we define x C a as true iff a ap-

pears as an exponent in the representation of a in the form exhibited

above. Thus, each set has only a finite number of elements. It is left

as an exercise for the reader to prove that this interpretation is indeed a

model of the theory under discussion. Actually, this system is a model

of the theory whose axioms are all such that they will eventually be

assigned to @ except the axiom of infinity which is introduced below.

Thereby the system provides a proof of the independence of this axiom.

Ackermann, however, devised it for a more profound purpose, namely,

to provide the basis for a finitary consistency proof of the theory having

(ZF1)—(ZF5) together with the axiom of choice (see Section 5) as

axioms.

There are compelling reasons for strengthening the set of axioms

introduced thus far, to provide for the existence of an infinite set.

Specifically, the existence of the set of natural numbers is essential for

the theory of denumerable sets and for the theory of real numbers.

Although we have not as yet given a precise definition ot infinity, it

seems plausible that sets of the kind which are postulated by the fol-

lowing axiom merit being called infinite on intuitive grounds.

(ZF6) (Axiom of infinity). There exists a set a such that 0 G a

and, if * G a, then a: U {*} G a.

Zermelo was the first to recognize the necessity of such an axiom;

earlier workers regarded the existence of infinite sets as evident. He

constructed the natural numbers as 0, {0 } , j{0}}, •••, which is a

satisfactory approach but one that does not generalize to the construc-

tion of infinite ordinals as easily as that adopted below.

For every set a we define the successor v+ of .y by

A+ = X U {

X

}
.

Further, we shall say that a set a is a successor set iff 0 C a and if

x+ G a whenever v G a. In this terminology, (ZF6) says that there exists

a successor set. We shall now prove the existence of a unique minimal
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successor set. It is left as an exercise to prove that the intersection of a

nonempty collection of successor sets is again a successor set. So, if a

is some successor set, then the intersection of the (nonempty) collection

of successor sets which are included in a is a successor set which we
denote by co (with the notation introduced in Section 2.6 in mind).

The set co is a subset of every successor set. To prove this, consider an

arbitrary successor set h. Then a O h is a successor set which is included

in a. It follows that co 0 a 0 b, and hence co C b. In turn, the min-

imality of co characterizes it uniquely. For if co' is a successor set which

is included in every successor set, then we have co C co' and co' C co.

Then (ZF1) implies that co = co'. We now define a natural number
to be an element of the minimal successor set co. Further, we define

0, 1, 2,
• •

•, 9 by writing

0 = 0 ,

1 = 0+(={ 0 (),

2 = l
+(= (0, 1 }),

9 = 8+(={0, 1,2, 3, 4, 5, 6
, 7,8)).

For other natural numbers we employ the usual decimal notation.

We continue by proving that (co,
+

, 0), where now we regard + as

a function on co into co, is an integral system or, what amounts to the

same, that this system satisfies Peano’s axioms P1-P5 in Example 2.1.2.

Since co is a successor set, O(=0) C co [that is, Pi is satisfied] and, if

n £ co, then n+ £ co [that is, P2 is satisfied]. Moreover, n+ 7^ 0 for all

n in co, since «C«+ and n 00 [that is, P4 is satisfied]. The minimality

property of co can be expressed as: If a subset a of co is a successor set,

then a = co. But this means that P5 is satisfied. It remains to prove that

P4 (if m+ = n+
,
then m = n) is satisfied. This requires two preliminary

results which we state as lemmas.

LEMMA 4.1. No natural number is a subset of any of its elements.

Proof. Let a be the set of those natural numbers that are not included

in any of their elements. Thus, n C a iff n C co and, if x G n, then

n £ x. Clearly, 0 £ a, since 0 has no elements. We assume next that

n G a and consider n+ . Since n+ = n U {«), the elements of n+ are n

and the elements of n. Now n+ £ n for, since n C n (and, n G a),

n 0 n. Moreover, n+ is not included in any member of n, since if

n+ C x, then n Q x (because n Q n+), which implies (since n C a)
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that x (f/L n. Therefore, n+ is not a subset of any of its elements and

consequently iT £ a. By the principle of induction (P5 ), it follows

that a — co, and this completes the proof.

In order to state the next lemma it is convenient to make a definition.

A set a is called complete iff each member ol a is a subset of a. Expressed

otherwise, a is complete iff y £ x and x £ a imply that y £ ci.

LEMMA 4.2. Every natural number is a complete set.

A proof by induction can be supplied by the reader.

We now prove that il m and n arc natural numbers such that m 1 = n\

then m = n. For this we assume that m+ = n+ and m ^ n, and derive

a contradiction. From m+ = n+ it follows that m £ n+
,
and hence

either m = n or m £ n. Similarly, either n = m or n £ m. Assuming, as

we are, that m 7^ n
,
we infer that both m £ n and n £ m hold. Hence,

by Lemma 4.2, n £ n. Combining this with the fact that n Q n, we

conclude that n is a subset of one of its members, which contradicts

Lemma 4.1

.

With the proof now completed that 00 satisfies the Peano axioms, the

stage is set for a development of the arithmetic of co. If, as in Chapter 2,

the definition of a relation that well-orders co is taken as the first order

of business, then there is the following alternative to the procedure

followed in Chapter 2. The first step is to prove (an exercise for the

reader) the following result.

LEMMA 4.3. For each pair m, n of natural numbers, either m £ n

or m = n
,
or n £ m.

Using Lemmas 4.1 and 4.2, it is then an easy matter to show that

exactly one of these three alternatives holds. A further consequence ol

Lemma 4.3, in conjunction with Lemma 4.2, is stated next; the proof

is left to another exercise.

LEMMA 4.4. Urn and n are distinct natural numbers, then m £ n

iff m C n.

We now define m to be less than n
,
symbolized

m < n,

iff w £ rc or, equivalently, m £ n. Defining m < n in the usual way,

one may then go on to show that < well-orders co.
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Next in order is the introduction of Theorem 2.1.2, so inductive

definitions of addition and multiplication can be given.

Turning to other definitions and results in Chapter 2 which pertain

to natural numbers, we recall that there are several in Section 2.3

phrased in the language of cardinal numbers. All such can be handled

easily in the present development in terms of the notion of the similarity

of two sets (that is, the existence of a one-to-one correspondence be-

tween them) and the properties of natural numbers sketched so far.

Preparatory to what we have in mind we state the following two results.

Each can be proved by induction.

LEMMA 4.5. Each proper subset of a natural number is similar to

some smaller natural number.

LEMMA 4.6. No natural number is similar to a proper subset of

itself.

We may infer from Lemma 4.6 that a set can be similar to at most

one natural number. Then, defining a set to be finite ill it is similar

to some natural number (and to be infinite, otherwise), it follows that

a finite set is not similar to any one of its proper subsets (Theorem 2.3.3)

and, in turn, that oo is an infinite set. Also, Lemma 4.5 implies that

every subset of a finite set is finite. Once the Schroder-Bernstein theorem

(Theorem 2.3.1) is proved, it can also be shown that a set a is finite iff

a < oo.

In concluding this section we note that the theory of countable sets,

including Cantor’s theorem (Theorem 2.3.6) stated in the form a < (9(a),

could now be presented. Also it is possible to carry out the extension

of oo to the system of real numbers, as described in Chapter 3.

EXERCISES

4.1. Prove that Ackermann’s system satisfies axioms (ZF1)-(ZF5).

4.2. Show that the intersection of a nonempty collection of successor sets is

a successor set.

4.3. Prove Lemma 4.2.

4.4. Prove Lemma 4.3.

4.5. Prove Lemma 4.4.

4.6. Prove that < well-orders co.

4.7. Prove Lemma 4.5.

4.8. Prove Lemma 4.6.

4.9. Let us define the number of elements in a finite set a
,
symbolized n(a),
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to be the unique natural number similar to a. Prove the following statements

for finite sets a and b.

(a) If a Q b, then n(a) < n(b).

(b) The set a fi b is finite and n(a D b) < n(a) and n(a H b) < n(b ).

(c) The set a U b is finite and n(a U b) < n(a) -f n(b).

(d) The set a X b is finite and n(a X b) = n(a)n(b ).

(e) The set a b
is finite and n{ah

)
= n(a )

n(b)
.

(f) The set (P{a ) is finite and n((?(a)) = 2 n(a)
.

5. The Axiom of Choice

In order to clean up some details in connection with the subject

matter sketched at the end of the preceding section and to develop a

reasonable theory of cardinal numbers when they are defined as certain

ordinals, the axiom of choice is required. With these applications in

mind, we shall state it in the following form. An indication ol a prefer-

ence in this connection has no foundation, however, for within the

framework of 0 it is possible to derive as equivalent statements those

appearing in Section 2.8.

(ZF7) (Axiom of choice). For each set a there exists a function/

whose domain is the collection of nonempty subsets ol a and, lor

every b Q a with b ^ 0, f{b ) C h.

Concerning applications of this axiom to topics touched on in Sec-

tion 4, we note first that every known proof that an infinite set is sim-

ilar to a proper subset of itself (Corollary 2 of Theorem 2.9.1) requires

the axiom of choice. Also we recall that this axiom was needed to prove

the law of trichotomy for sets; that is, for any two sets a and b, exactly

one of a < b, a ~ b, b < a holds. This is the content of the Corollary

to Theorem 2.7.4, once the well-ordering theorem has been derived

from (ZF7).

Looking ahead to the theory of ordinal numbers which follows, when

cardinal numbers are defined as certain ordinals, the axiom ol choice

is needed to show that every set has a cardinal number.

6. The Axiom Schemas of Replacement and Restriction

In this section we complete the description of Zermelo-Fraenkel set

theory by introducing two further axiom schemas. One ol these serves

to guarantee the existence of “larger” sets than can be constructed on
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the basis of the earlier axioms—sets which must exist if a full-blown

theory of transfinite ordinal and cardinal numbers is to be possible.

The other schema, whose role has not as yet been fully explored, serves

to exclude the existence of certain objects as sets.

To create some interest in the axiom schema of replacement consider

the theory of sets based on just (ZF1)-(ZF7). Then, as we have seen,

u is a set. In turn, by virtue of (ZF5), (P(w), <?((P(co)), • • • are sets. In

general, defining (P°(co) to be co and (P
kn

(co) to be (P((P
fc

(c*i)), each ol

co, cP(co), (P
2
(co), • •

•, (P”(co), • • • is a set. Now, can we establish the ex-

istence of a set whose members are precisely these sets? I hat is, can we

establish the existence of

COi = {co, cp(co), (P
2
(co), • •

*, (P
n (w), • *

•
}

as a set? Since it does not appear possible to achieve this desirable state

of affairs on the basis of just (ZF1)-(ZF7), a further axiom or (in order

to cope with other similar situations) axiom schema is in order. A suit-

able candidate was first proposed by Fraenkel (1922), and independently

by Skolem (1922). As modified by von Neumann (1928), it says, roughly,

that if with each element of some subset of a set there is associated some

one set, then the collection of the associated sets is itself a set. I he in-

stance of this schema which results upon choosing co as the initial set

and associating with each n in co the set <P"fco), declares that coi is a set.

In the following official version of the schema in question, the hypothe-

sis of the axiom means that for each x in a there is at most one y such

that B(x, y).

(ZF8) (Axiom schema of replacement.) If B(x, y) is a sentence

(formula) such that for each x in a set a
,
B(x

, y) and B(x, z) imply

that y = z, then there exists a set b such thaty C b iff there exists an x

in a such that B(x,y).

It is of interest that the axiom schema of subsets, (ZF2), can be

derived from (ZF8). Indeed, given a set a and a sentence A(x), take

B(x,y) to be “* = y and A(x)” The hypothesis of the axiom which

results is satisfied, so we may infer the existence ol a set b such that

y b iff there exists an x in a such that x = y and A{x). 1 hat is, given

a and A(x), there exists a set b such thaty G b iffjy C a and A(y ), which

is (ZF2).

The axiom of pairing, (ZF3), can also be derived from the axiom

schema of replacement and (ZF5), the axiom of power set. This result
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appears in Zermelo (1930). To prove it, let c and d be two sets whose

pair is to be formed. As the set a in (ZF8) we select the power set

(P((P(0)) = {0, {01! and as B(x, y) we take = 0 and y = c or,

x = \0) and y = dT Then, for each x in <?((P(0)) there is exactly one

y such that B(x,y). Hence, by (ZF8), there exists a set b such that

y G b iff there exists an x in (P (<?(0)) such that x = 0 and y = c or

x = \0\ and y = d. Thus, b is the set having just c and d as members.

Next let us indicate how we can prove the existence of coi as a set

with (ZF8). The intuitive idea, as we have already noted, is to replace

the element n of to by (P
n
(co) for n = 0, 1, 2,

• • *. A suitable choice for

B(x, y) in (ZF8) is the following formula, which, for the sake of clarity,

we will write in terms of the symbolism of the predicate calculus

:

(0(((0, co) C U A (v)(w)((v, w) c u—> (v+, (?(w)) G u)) —> (x,

The reader may ponder our contention that this is a suitable choice

for B(x, y).

In contrast to the axiom schema of replacement which, as wc shall

show later, provides for the existence of enough sets to reproduce all

of Cantor’s theory of transfinite arithmetic, the final axiom schema has

a restrictive character. Since the theory based on axioms (ZF1)-(ZF8)

appears to be sufficiently comprehensive for mathematics, it is natural

to consider the inclusion of an axiom which would serve to limit the

theory to the minimal extension embracing these axioms. There are

reasons to believe that this is too ambitious a goal. However, various

axioms of a restrictive nature suggest themselves if it is desired to exclude

as sets certain models of (ZF1)-(ZF8) having features that run counter

to the intuition. One such feature is the possibility of a set which is a

member of itself or, more generally, a collection of n sets a i, a», •
•

*, a n

such that

a\ G a n ,
a n G an- 1 ,

• •
*, <23 G # 2 ,

a* G <21 .

The existence of such collections—even that of an infinite descending

sequence of sets (that is, a sequence such that a i+ \ G for i = 1,2, •
• •)

—is consistent with the theory having (ZF1)-(ZF8) as axioms. It is pos-

sible to prevent finite cycles of membership as well as infinite descending

sequences of sets by means of an axiom. Such an axiom was initially

proposed by D. Mirimanoff (1917) as a consequence of his discovery

that descending sequences of the type just mentioned might exist. It

is an instance of the axiom schema which we adopt. Von Neumann

(1925) was the first to introduce it.
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(ZF9) (Axiom schema of restriction). Let A(x) be any condition

on a: which (considered as a formula) has no free occurrences ol y

or z. If there exists an x such that ff(x), then there exists a y such

that A(y) and, for all z, if z £ y then it is not the case that A(z).

If we take A(x) to be “x C a. ” where a is a set, the resulting axiom,

which is called the axiom of regularity is: Every nonempty set a con-

tains an element b such that a (A b = 0

.

1 his axiom is due to Zermelo

(1930); it is a simplified version of an essentially equivalent axiom

given in von Neumann (1929). The axiom of regularity is sufficient to

exclude phenomena of the type mentioned above. We substantiate, in

part, this claim by deducing from it the following two results.

LEMMA 6.1. For each set a, a 0 a.

Proof. Assume, to the contrary, that a is a set such that a G a.

Then, on the one hand,

(7) a C M C\a

since a C {«}• On the other hand, by (ZF9), there is a member of

{a

}

whose intersection with [a] is the empty set. Since the only mem-

ber of {a} is a
,

it follows that [a] Pi a = 0, which contradicts (7).

LEMMA 6.2. For no two sets can each be a member of the other.

Proof. Assume, to the contrary, that a and b are sets such that

aCi and b C a. Then

(2) a C [a, b) Pi b and b C [a, b\ Pi a.

The axiom of regularity implies the existence of an element x in

[a,b] such that {a, b\ 0 x = 0. But since we must have either

x = a or x = b, it follows that either {a, b] 0 a = 0 or {a, b
j
Pi

b = 0, which contradicts (2).

In order to give an application of the axiom schema of restriction of a

different nature, we recall that prior to the statement of (ZF8) we men-

tioned that there appears to be no way to obtain wj as a set on the basis

of (ZF1)-(ZF7). When these axioms are augmented with (ZF9) it can

be proved
,
by way of a model, that a>i cannot be shown to be a set

;

this

was done first by von Neumann (1928). For convenience in discussing

this matter, let us denote the theory whose axioms are those of 0, except

for (ZF8), by 0O . Consider the interpretation of 0O ,
whose domain is

the union of coi. We contend that it is a model of wo* First, it is clear

that (ZF1) and (ZF4)-(ZF6) are satisfied and, since (ZF2) requires
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only the existence of certain subsets of a given set, it also is satisfied.

To prove that (ZF3), the axiom ol pairing, is fulfilled, considei two

members a and b of Utoi. Then there exist m and n such that a £ (P"'(co)

and b £ (P
n
(co). Hence, both a and b are members of (P

m+ra
(co). Thus

{a, b] is a member of (P
w+n+1

(co) and, therefore, a member of Ucoi.

A proof that the interpretation under consideration satisfies (ZF7) is

complicated and we omit it.

To prove that (ZF9) is satisfied we assume, to the contrary, that it

is not fulfilled and derive a contradiction. So, by hypothesis, there

exists a condition A{x) such that (i) there is an x such that A(x) holds,

and (ii) for all y, if A(y) holds, then there is a z such that z £ y and A(z)

holds. Let x0 be an x which satisfies (i) and take it as y in (ii). Let *1

be a set which satisfies (ii)
;
hence Xi £ *0 and A(xi) holds. Ihus, by

(ii) again, there exists an x2 such that x2 £ *1 and A(x2) holds. Contin-

uing in this fashion yields a sequence x0 ,
* 1 ,

x2 ,
•

• • such that • •
•

,
x2 £ *1 ,

Xi £ *0 . Now there exists an n such that x0 £ (P”(co). It follows that, in

turn, *1 £ v2 £ (P
n_2

(w), •••,*„£«. Finally, we conclude that

for some m, xn+m £ 0, which is impossible.

Now we raise the question of whether Ucoi is a set in this model.

The answer is “no” by virtue of Lemma 6.1. Therefore, since there is

a model of ©0 in which IU is not present, 0O is not sufficiently strong

for proving the existence of coi as a set. Furthermore, it follows that o
is a stronger theory since, as observed earlier, we can prove the existence

in it of coi.

In conclusion, we call attention to Section 9.11, wherein appear some

remarks about Zermelo-Fraenkel set theory when formulated as a

formal axiomatic theory.

EXERCISES

6.1. By imitating the proof of Lemma 6.2, prove the nonexistence of three

sets a, b, and c such that a £ b, b £ c, and c £ a.

6.2. Use the axiom of regularity to prove that if a is a set such that a £ a X a,

then a = 0.
6.3. Prove Lemma 6.1, using the instance of (ZF9) corresponding to the

condition, “there exists an x such that x £ X.”

7. Ordinal Numbers

In this and the following section we shall outline the theory ol ordinal

numbers due to von Neumann (1928a) as simplified by R. M. Robinson
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(1937). We shall presuppose familiarity with several definitions and

theorems in Chapter 2. The definitions that we have in mind are those

of a well-ordered set, an initial segment of a well-ordered set, and ordinal

similarity (symbolized ~) of two well-ordered sets. The results which

we shall presuppose are (i) for each set there is a relation which well-

orders it, (ii) the principles of proof and definition by transfinite induc-

tion, (iii) the existence of exactly one isomorphism between ordinally

similar well-ordered sets, (iv) a well-ordered set is not ordinally similar

to any of its initial segments, and (v) for well-ordered sets a and (3,

exactly one of the following hold: a is ordinally similar to an initial

segment of (3, a ~ (3, (3 is ordinally similar to an initial segment of a.

Also we shall use the fact that if a is a well-ordered set, then a+ =

a U {a:} is a well-ordered set when we order the elements of a in the

given way and, further, require that £ < a for all £ in a.

In the von Neumann theory, an ordinal number is a specific well-

ordered set of a particular kind. Thereby the concept of order type

(which, at best, is a hazy notion) is avoided completely. \ he defining

property of those well-ordered sets which are called ordinal numbers

may be thought of as qualities which well-ordered sets should have if

they are to serve as ‘‘counting numbers" in the sense that the natural

numbers serve this end. We begin by calling attention to several prop-

erties of natural numbers, relative to the ordering relation <, which

culminate in one observation which is crucial for the generalization in

mind. A natural number n is a set whose members are natural numbers;

indeed, n = {x £ o>\x < n), since x < n means x C n. In particular, as

a subset of the well-ordered set w, n is a well-ordered set. Suppose that

m C n. Then the initial segment j(w)t of n which is determined by m is

{* C n\x < m\ = m. That is, a natural number is a well-ordered set such

that the initial segment determined by each of its elements is equal to that element.

This is the property on which the extended counting process is based.

We now define an ordinal number as a well-ordered set a such that

for all £ in a, s(^) = £.

In addition to the natural numbers qualifying as ordinal numbers,

a) does also. Moreover, co
+

,
(co

+
)+, • • • are ordinal numbers, since we

can prove that if a is an ordinal number then so is a+ . The proof goes

as follows. If £ C ot
+

,
then either £ C <*, in which case s(%) =

£, by

assumption, or else £ = cq in which case s(!j) = oi\ that is, ^(q:) oc
,

f This notation for initial segments of well-ordered sets is better suited for our present

exposition. We may recall at this point that an clement of the initial segment determined by

a member £ of a well-ordered set is called a predecessor of £.
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by the definition of order in a+ . Anticipating notation from ordinal

arithmetic, we shall denote the ordinal numbers co, co
+

,
(co

+
)
f

,

• • • by

co, co + 1 ,
co + 2,

Applying (ZF8) with a as co and B(x, y) as y
= co T x we may infer

that co, co + 1, co -f 2,
• • • form a set. The union of this set and co we

shall denote by

co2.

Is co2 an ordinal number? The answer would appear to depend on the

choice of the definition of order in co2. Actually, the question is settled

automatically without any human intervention. The facts are these.

The condition that a well-ordered set a must satisfy in order to qualify

as an ordinal number, namely, j(£) = £ for each £ in a, serves to specify

the collection of initial segments determined by the elements of a. But,

as the reader can easily show, even a simple ordering relation in a set is

uniquely defined by the collection of initial segments determined by the

elements of the set. (That is, if < and <
' are simple orderings of a set

/

3

and, for each x in j3, the initial segment determined by * relative to < is

equal to that determined by v relative to < ', then < = < /

.) Hence,

since j(£) = £ means that the set of predecessors of £ must be the ele-

ments of £, the only possible ordering of a which can lead to the con-

clusion that a is an ordinal number is the relation < such that for all £

and r] in a, £ < rj iff £ C V- Now either this relation is a well-ordering

of a such that j(£) = £ for each £ in a or it is not. In the first case a is

an ordinal number and in the second case it is not. In particular, it is

now an easy matter to see that co2 is an ordinal number.

After the ordinal number co2 comes its successor co2 + 1 ,
followed by

the successor co2 + 2 of co2 + 1 ,
and so on. Next, after all terms of the

sequence with this beginning comes co3
;
this set is secured by the ap-

plication of another axiom of replacement. There follows in turn

co3 + 1, co3 + 2,
• • • and immediately after these comes co4. In this

manner we get successively co, co2, co3, • • •
. Then with the application

of another axiom of replacement we get an ordinal number which

follows the members of this sequence in the same sense that co follows

the natural numbers. This ordinal number is co'
2

. Continuing in this

manner (and, continuing to anticipate the notation of ordinal arith-

metic) we can secure all “polynomials” in co as ordinal numbers, in a

manner parallel to that discussed in Example 2.7.10.

We derive next several basic properties of ordinal numbers.
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LEMMA 7.1. Each element of an ordinal number is itself an ordinal

number.

Proof. Let £ be an element of the ordinal number a. Then £ is a

subset of a
,
since from the fact that j(£) = £ it follows that an ele-

ment of £ is a predecessor of £, and hence an element of a. Therefore,

as a subset of a well-ordered set, £ is well-ordered. Now consider an

element rj of £. The initial segment determined by rj in £ coincides

with the initial segment determined by rj in a and, since the latter

is equal to r
/,
so is the former. Thus, in £, s(rj) = rj for all rj.

LEMMA 7.2. If two ordinal numbers are ordinally similar, then

they are equal.

Proof. Let a and /3 be ordinal numbers and suppose that / is an

ordinal similarity on a onto /3. It is left as an exercise to prove by

transfinite induction that /(£) = £ for each £ in a. This implies that

a = (3.

The next result asserts that every set of ordinal numbers is well-

ordered. As in Chapter 2, we first prove that any two ordinal numbers

are comparable. If a and /3 are ordinal numbers, then, as well-ordered

sets, either they are ordinally similar or one is ordinally similar to an

initial segment of the other. In the first case a = (3, by Lemma 7.2. To

examine the consequences of the other possibilities, assume that a is

ordinally similar to an initial segment of (3. Now an initial segment of (3

is an element of /3 and hence an ordinal number, by Lemma 7.1. Using

Lemma 7.2 again, it follows that a is an element of /3; so we may write

a < (3.

Similarly, if (3 is ordinally similar to an initial segment of a, then f3 < a.

Thus, for ordinal numbers a and 0, exactly one of a = (3, a < (3,

(3 < a holds. Moreover, the conditions aCft and a < (3 are

equivalent to each other. Since the proof of the well-ordering of any

set of ordinal numbers parallels that given for the earlier statement of

this result (Theorem 2.7.6), we shall leave it as an exercise. For com-

pleteness we record the conclusion again.

LEMMA 7.3. Any set of ordinal numbers is well-ordered.

To establish the next property of ordinal numbers it is convenient

to make a definition in connection with well-ordered sets. 11 a and b
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arc well-ordered sets, we shall call b a continuation of a if a is an initial

segment of b and if the ordering of the elements in a is the same as their

ordering in b. For example, if a and /3 are distinct ordinal numbers,

then one of them is a continuation of the other. Now let Q be a collec-

tion of well-ordered sets such that for each distinct pair of elements of Q,

one is a continuation of the other. This condition may be expressed by

saying that Q is a chain with respect to continuation. It is a straight-

forward exercise to prove the following property of such a chain.

LEMMA 7.4. Let Q be a collection of well-ordered sets that is a

chain with respect to continuation. Then there exists a unique well-

ordering of c, the union of C
,
such that c is a continuation of each set

(other than c) in the collection Q.

LEMMA 7.5. Every nonempty collection of ordinal numbers has a

least upper bound.

Proof. Let e be a collection of ordinal numbers. Then 6 satisfies

the hypothesis of Lemma 7.4, as noted above. Hence the union y
of C is a well-ordered set such that 7 is a continuation of each £ in e,

other than 7 itself. Actually, 7 is an ordinal number, since the initial

segment determined by an element of 7 is equal to the initial segment

determined by that element in whatever set of Q it occurs. If £ C C,

then £ < 7 ,
which means that 7 is an upper bound for Q. Indeed, 7 is

the least upper bound for e, since if <5 is an upper bound for C then

£ C 8 whenever £ £ e and, therefore, 7 C 6.

As in the case of the Russell paradox, the Burali-Forti paradox is

avoided in Zermelo-Fraenkel set theory by our ability to prove that

the troublesome set of the intuitive theory is not a set of the axiomatic

theory. In the present case we can argue that if there were a set whose
members consisted of all ordinal numbers, then we could form its least

upper bound. That ordinal number would be greater than or equal to

every ordinal number. But for each ordinal number there exists a

greater one—its successor, for example. This contradiction rules out

the existence of the proposed set.

In our concluding result we bring the present theory in still closer

agreement with the intuitive theory.

LEMMA 7.6. Each well-ordered set is ordinally similar to exactly

one ordinal number.
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Proof. The uniqueness is clear, since, for ordinal numbers, ordinal
similarity is the same as equality. The major step in proving the
existence of a suitable ordinal number for a given well-ordered set is

the preparation lor an application of the principle of transfinite in-

duction to show that each initial segment of a well-ordered set is

oidinally similar to some ordinal number, bet a be a well-ordered set

and suppose that c is an element of a such that the initial segment
determined by each predecessor of c is ordinally similar to some ordinal
number. There exists a set e whose members are precisely all such
ordinal numbers (that is, which are ordinally similar to the initial

segment determined by some element of s(c). This follows from the
axiom of replacement corresponding to the set j(c) and the sentence
B(x, a), which says, “a is an ordinal number and s(x) ~ a.” [This
sentence does satisfy the hypothesis of (ZF8) in view of Lemma 7.2.]

Now either c is the immediate successor of one of its predecessors or
c = lub sic). 11 the first possibility is true and c is the immediate suc-

cessor ol <7, then sic) ~ o f

,
where 6 is the ordinal number to which

s(d) is ordinally similar. 11 the remaining possibility is true, then
s(c) ~ lub e. Therefore, in every case, s(c) is ordinally similar to an
ordinal number.
Now consider the well-ordered set i of all initial segments of a

(that we may do this follows from Lemma 7.4), and let;' be that sub-
set consisting of those initial segments which are ordinally similar to

some ordinal number. Then the result obtained above comes to this:

If x is a member ol i such that six) (L ], then x €1]. By the principle

of transfinite induction we then have j = i. That is, each initial

segment of a is ordinally similar to an ordinal number. From the

axiom of replacement corresponding to the set a and the sentence
B(x, a) used above, it follows that there exists a set £> whose members
are precisely those ordinal numbers which are similar to an initial

segment of a. Then it is an easy matter to justify the conclusion that a

is ordinally similar to an ordinal number by the same argument em-
ployed above to show that j-(r) has the same property.

For a well-ordered set a we shall symbolize the unique ordinal num-
ber which is ordinally similar to a (that is, its ordinal number) by

ord a.

If a is finite then ord a is the same as the natural number n(a) defined

in Exercise 4.9. The natural numbers arc, of course, the finite ordinal
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numbers; the others are called transfinite. As in Chapter 2, those

ordinal numbers which have an immediate predecessor (as is the case

for each finite ordinal number other than 0) are called ordinal numbers

of the first kind and those (like w) which do not are called ordinal

numbers of the second kind or limit ordinals.

EXERCISES

7.1. Prove the assertion made in the text that an ordering relation in a set a

is uniquely determined by the collection of initial segments of the members of a.

7.2. Complete the proof of Lemma 7.2.

7.3. Prove Lemma 7.3.

7.4. Prove Lemma 7.4.

8. Ordinal Arithmetic

There are two standard approaches to definitions of arithmetical

operations for ordinal numbers: one relies on set theory and the other

on the principle of definition by transfinite induction. The set-theoretical

approach is based on formulating arithmetical operations in terms of

operations of set theory; illustrations are provided by the definitions in

Section 2.6 of addition and multiplication for order types. The inductive

approach follows the pattern we employed to define operations for

natural numbers with the principle of definition by induction replaced

by that of definition by transfinite induction. Whichever approach one

elects, the definitions in one can be proved as theorems in the other.

Illustrations are suggested by results which are at hand. For example,

from the inductive definitions of addition and multiplication for nat-

ural numbers, the reader proved in Exercise 4.9 that the number of

elements in the cartesian product of two finite sets a and b is equal to

n{a) • n(b). This result could be used instead to define multiplication

of natural numbers. That is, for natural numbers r and s we could

define their product by choosing sets a and b such that n(a) — r and

n(b) = s and writing r • s = n{a X b). Since we wish to maintain as

close contact with intuitive set theory as possible, we shall emphasize

the set-theoretical approach.

As a preliminary to defining operations for ordinal numbers, we
recall the technique introduced in Section 2.5 for obtaining from two

given sets a and b, possibly not disjoint, sets which have the same struc-

tural features as a and b and which are disjoint: replace a by a X { 0

}
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and b by b X ( 1 | . I he obvious one-to-one correspondence which exists

between such pairs as a and a X {0} may be used to transfer whatever
structure is assigned to a to its replacement. This leads to the conclusion

that if we are given two sets having possibly some structure we may as-

sume at the outset, without loss of generality, that they are disjoint.

This conclusion can be generalized to arbitrary families of sets. If

[ax \x £ i) is a given family, then replace each ax by ax X {*} to obtain

a disjoint family which may be assigned all features of the original.

1 he definition of addition for ordinal numbers follows the same
pattern as that given in Section 2.6 for addition of order types. Let a

and b be disjoint well-ordered sets. In their union a U b we define an
ordering relation as follows: Pairs in a and pairs in b are ordered ac-

cording to the given orderings in a and b
,
respectively, and each element

of a precedes each element of b. The assumption that a and b are well-

ordered implies that a [J b is well ordered. This well-ordered set we
call the ordinal sum of the well-ordered sets a and b.

The concept of the ordinal sum of two well-ordered sets extends

directly to an arbitrary (well-ordered) family of well-ordered sets.

First, a word about the notation for such families. In view of Lemma 7.6

we may take the indexing set to be an ordinal number. We shall do
this and use notation like

l«sl£ G X)

for such a family. If, then, £ X} is a disjoint family of well-ordered

sets, indexed by (the ordinal number) X, we define its ordinal sum as

Ugz* ordered as follows: If x and y are members of the union and

in the same set then the order in prevails; if x £ and y £ a
v ,

where £ < 77, we take x < y.

To define the sum of ordinal numbers a and (3 we introduce disjoint

well-ordered sets a and b such that ord a = a and ord b = (3. Let c be

the ordinal sum of a and b. 'File sum, a + (3 ,
is defined to be ord c. It is

left as an exercise to prove that a + (3 is independent of the choice of

the sets a and b (provided, of course, that each has the correct ordinal

number). Analogues of this remark hold for the other arithmetic opera-

tions for ordinal numbers; they will be omitted.

The definition of sum extends without difficulty to an arbitrary family

jaf{|£ £ X} of ordinal numbers. Let {a$|£ £ X} be a disjoint family of

well-ordered sets a
£
such that ord = a

$
for each £ and let a be the

ordinal sum of {«*|£ £ Xj. The sum is defined to be ord a.
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The ordinal product of two well-ordered sets a and b is defined to

be the cartesian product a X b ordered as follows:

(x, y) < (x\ y') iff y < y' or y = y' and a < x'.

It is left as an exercise to prove that an ordinally similar set (and

hence an alternative definition of the ordinal product of a and b) can

be obtained as follows. Let ay = a X {y} for eachy in b
,
and order ay in

the obvious way. Then the family \ay \y £ b\ is disjoint and its ordinal

sum is ordinally similar to a X b. This approach to the ordinal product

of a and b has intuitive appeal since it corresponds to adding a to itself

b times.

To define the product of ordinal numbers a and (3 we introduce

well-ordered sets a and b such that ord a = a and ord b = (3. Let c be

the ordinal product of a and b. The ordinal product, a(3, is defined to

be ord c. For properties of finite products and sums of ordinal numbers

we refer the reader to Sections 2.6 and 2.7.

Since it is not necessary, for the definition of the product a(3 of the

ordinal numbers a and (3 ,
to employ disjoint well-ordered sets whose

ordinal numbers are a and /?, it is permissible to choose the most easily

available well-ordered sets whose ordinal numbers are a and (3—namely,

a and /5 ! Similarly, for the definition of product for a family of ordinal

numbers it is not necessary to use disjoint “representatives.” We take

advantage of this fact by choosing ordinal numbers to be their own rep-

resentatives. The first step in defining the product of a family {aT£ £ X}

of ordinal numbers is to form the cartesian product of this family of

well-ordered sets. [We recall that an element of this set is a function /
on X such that /(£) £ a$.

]
Let (P be the subset of this cartesian product,

which consists of all functions which have only a finite number of values

different from 0. We order 6* in reverse lexiographical ordering. Let /
and f

f

be two distinct members of (P. Then they take different values

for only a finite number of arguments, and hence there exists a last

argument, £0 ,
for which /(£0) ^ /'(£o). If /(£o) < /'(£o), then we set

/</'; if /'(So) < /(£o), then we set /' < /. It is left as an exercise to

prove that this is a well-ordering of (P. We now define the product

ILa:j to be ord (P.

Among the immediate consequences of this definition we note that

if X (the indexing set) is the empty set, then ITat = 1, since the car-

tesian product of the family is \0\. Further, the product of a nonempty

set of ordinal numbers is equal to 0 iff at least one of the factors is equal

to 0.
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Finally, we define exponentiation as iterated multiplication. If a. and

P arc ordinal numbers, then we set

a? = II
£03aq,

where = a for all £ G P- That is, a8 is the ordinal number of the

set of all functions on p into a which assume only a finite number of

values different from 0 ,
ordered in reverse lexiographical ordering.

Among the laws of exponents which hold there arc the following:

OL = a
ol

0 = 1

00 = 0

= 1

at)+y = a l3a y

a07 = (a8)y

for all a
,

for all a,

for all P > 1
,

for all P,

for all a
, P, y,

for all a
, p, 7 .

From the first and the fifth of these properties it follows that a • a •

• • • • a (n lactors) = an for each natural number n (including n = 0 ).

Since multiplication of ordinal numbers is not commutative, no an-

alogue from elementary arithmetic to the identity (ab)
c = a cb

r can be

expected. A comparison of (co2)
2 = co(2co)2 = co

22 and co
22 2 — co

24

settles the matter.

We conclude our introduction to the theory of ordinal numbers by

listing a “few” of them in order. Each number which appears immedi-

ately after a sequence of three dots is the least upper bound (indeed,

the limit, in the sense explained in Example 2.7.11) of those which

precede it; the letters of the English alphabet which appear denote

finite ordinals. The creation by Cantor of this so-called series of ordi-

nals certainly ranks as an outstanding achievement:

0,1, •
•

•

,

n, •
• • co, co -fi 1 ,

• •
•

,

co T n, •
•

• co2, co2 -f 1,
• •

• co3,

• •
•, COW + 7W, • • • CO

2

,

• •
•

,
CO

2 + COW + 772,
• •

• C0
2
W, • *

• CO
3

,

* * * C0
n

,

• •
•, cc

nm n + co
n_1m n_i + • •

• + mo, •
•

• co“, • •
• co“w, • •

• cow+1
,

• •
• (c0“)

n
,

• •
• (co*)", ' '

' ((60“)“)“,

The next ordinal number after all of these is usually denoted by €0 .

It may be “reached” more directly as the least upper bound of the

sequence 1
,

co, co", (co“)“, • •
•

;
the proof that it is a set is left as an exer-

cise. Further ordinal numbers, beginning with e0 ,
include

Co, Co + 1,
• • • 60 + CO, ' • • 6o + Co2, • ' • €u T CO *•*€<)+ C0 “,

• •
• e02 ,

' ' • 6uCO, • * • €0CO“, •••€,“,,

Cantor called any solution of the equation co
f = e an epsilon number.

It is left as an exercise to prove that ey is the least epsilon number.
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EXERCISES

8.1. Show that the definition of order which was adopted for the union of

well-ordered sets a and b may be stated as follows. If p and a are the given well-

ordering relations in a and b, respectively, then order a \J b by p U o' U
{a X b).

8.2. Show that the sum a + fi of two ordinal numbers is independent of the

choice of well-ordered sets a and b such that ord a = a and ord b = ($.

8.3. Show that the ordinal product of two well-ordered sets a and b, as de-

fined in the text, is ordinally similar to the ordinal sum of the family {av \y G b}

.

8.4. Prove that the ordering assigned to the subset (P of the cartesian product

of a family {a$]£ C X} is, in fact, a well-ordering.

8.5. Prove each of the laws of exponents displayed in the text.

8.6. Show that e0 is the least epsilon number.

9. Cardinal Numbers and Their Arithmetic

Although in Section 2.3 we gave a definition of the concept of a

cardinal number, we emphasized there that we would rely on only that

consequence of the definition to the effect that

card a = card b iff a ^ b.

Using just this property of cardinal numbers it is possible to reproduce,

with the framework of Zermelo-Frankel set theory,

(i) the definition of the order relation < for cardinal numbers, the

proof (after the Schroder-Bernstein theorem is established) that

card a < card b iff a < b, and that of Cantor’s theorem;

(ii) the definitions of addition and multiplication for cardinal num-
bers (Section 2.5) and the proofs of the properties of these

operations stated in Theorems 2.5.1 and 2.5.2;

(iii) the definition of exponentiation and the proofs of those properties

stated in Theorem 2.5.3.

Defining a cardinal number as finite iff it is the cardinal number of a

finite set and as infinite iff it is the cardinal number of an infinite set,

we may continue by proving the following results: The arithmetic of

finite cardinal numbers is the familiar finite arithmetic and, if u is an
infinite cardinal number, then u • u = u and u + u = u.

We now consider a suitable definition of the cardinal number of a set.

From earlier results we know that every set is similar to some ordinal

number. In general, a set is similar to many ordinal numbers. The result
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on which the von Neumann definition of the cardinal number of a set

leans is that for each set a
,
the ordinal numbers which arc similar to

a form a set. We begin the proof by observing that it is possible to find

an ordinal number greater than all ordinal numbers similar to a. An

ordinal number (3 which is similar to (9(a) will serve. 1 hen, for each ordi-

nal number a similar to a
,
the set a is less numerous than the set (3,

and hence card a < card (3 . Hence, it is not the case that < a, and

therefore a < /3. In turn, this means that a £ (3. Thus, /3 is a set that

contains every ordinal number similar to a and the existence of such a

set implies that the ordinal numbers similar to a form a set.

In view of this result, a natural choice for card a is the least ordinal

to which a is similar. This is the motivation for a consideration of the

following definition: A cardinal number is an ordinal number a. such

that if (3 is an ordinal number similar to a, then a < /3. That is, a cardi-

nal number is an ordinal number which is not similar to any smaller

ordinal number. If a is a set, then card <2
,
the cardinal number of a, is the

least ordinal similar to a. That this definition is satisfactory follows from

the fact that we can prove that card a = card b iff a ~ b. Indeed,

since each set is similar to its cardinal number, it follows that if card a =

card b
,
then a ~ b. For the converse, we assume that a ^ b and infer

that card a = card b. Since card a is the least ordinal similar to a, cer-

tainly card a < card b and, upon interchanging a and b in this argu-

ment, also card b < card a. Hence, card a = card b.

Since a finite ordinal number (that is, a natural number) is not similar

to any different ordinal number, the set of ordinal numbers similar to a

finite set is a unit set. Hence, the cardinal number and the ordinal num-

ber of a finite set are the same. Notice that we are now entitled to infer

from the similarity of (9(a) and 2a
,
where a is a set, that card (?(«) = 2a

,

since we now know that 2 is a cardinal number. Also, we may state

Cantor’s theorem in its familiar form: a < 2a .

The above inequality brings to mind one of the last two questions

which should be raised regarding the definition of cardinal number. We
recalled at the beginning of this section that on the basis of the identity

that card a = card b iff a ~ b, an ordering relation can be defined for

cardinal numbers and that it follows from this definition that card a <

card b iff a < b. Now ordinal numbers have already been outfitted with

an ordering relation. Fortunately, there is no collision ol the two pos-

sible meanings of card a < card b
,
since they coincide. We leave the

details as an exercise. The other question concerns the status ol Cantor’s
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paradox. Its fate is settled in much the same way as the Burali-Forti

paradox. Every set of cardinal numbers, as a set of ordinal numbers,
is well-ordered. Moreover, we know that every set of cardinal numbers
has an upper bound and that for every set of cardinal numbers there

is a cardinal number greater than each member of the set (see Sec-

tion 2.9). It follows that there is no largest cardinal number or, what is

equivalent, there is no set that consists precisely of all the cardinal

numbers.

As the smallest transfinite ordinal number, co is a cardinal number
and, when playing the role of a cardinal number, is denoted by N 0 .

Since Theorem 2.9.3 (every set of cardinal numbers is well-ordered),

holds in Zermelo-Fraenkel set theory, we can define the alephs in gen-

eral as in Section 2.9. The immediate successor, of K 0 in the order-

ing of cardinal numbers may be described as the least uncountable
ordinal number, or as an uncountable well-ordered set each of whose
initial segments is countable. It may come as a surprise to learn that

this ordinal number is greater than all of those explicitly named in

Section 8, for they are all countable!

EXERCISES

9.1. Give definitions of addition and multiplication for an arbitrary family
of cardinal numbers by imitating corresponding definitions for ordinal num-
bers.

9.2. Show that the two possible meanings of card a < card b coincide.

10. The von Neumann-Bernays-Godel Theory of Sets

In this section we shall describe the theory in question (and, for

brevity, refer to it simply as von Neumann set theory) only to the point
where we can indicate the essential differences between it and Zermelo-
Fraenkel set theory. The original version of von Neumann set theory
appeared in von Neumann (1925, 1928a, 1929), and in simplified
form in R. M. Robinson (1937). Since a distinguishing feature of this

original version was its adoption of the notion of function, rather than
that of set, as primitive, it differed considerably from other axiomatiza-
tions ol set theory. In a series of seven papers, beginning in 1937 (see

References), P. Bernays formulated a modification of the von Neumann
approach which brought it in much closer contact with Zermelo set

theory. In turn, in Godcl (1940) the theory is further simplified.

One essential difference between the von Neumann theory and the
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Zermelo-Fraenkcl theory reflects a difference in attitudes toward the

question of how to cope with the “too large” sets of intuitive set theory.

In the Zermclo theory it is possible to prove the existence of most of

the sets which arc necessary for mathematics, but the axioms which

are concerned with the existence of sets are so designed that it seems

impossible to construct any “troublesome” sets. In brief, the theory 3
is a conservative one! The von Neumann theory, on the other hand,

reflects the attitude that it is not the existence of too large sets as such

which leads to contradictions but rather their being taken as members

of other sets. In the von Neumann theory a technical distinction is

drawn between sets and classes. Every set is a class, but the converse is

not true. Those classes which are not sets are called proper classes and

their distinguishing feature is that they are not members of any other

class. The class of all ordinals, for example, exists, but it is a proper

class. Thus the Burali-Forti paradox cannot be constructed, since it

requires that the class of all ordinals be a member of a class. The other

paradoxes meet with a similar fate.

In Godel (1940) three primitive notions are adopted: class, set, and

the binary relation of membership. A slight modification of the theory

allows one to reduce the number of primitive notions to one—the

binary relation £. Then elements of the union of the domain and the

range of £ are called classes and elements of the domain are called

sets. The axioms of the theory, as stated in Godel (1940), fall into sev-

eral groups. The first consists of the axioms of extension and that of

pairing. Using lower-case letters as set variables and capital letters as

class variables, the axiom of extension is

(w) (w £ X u £ Y) —> X = Y.

The axiom of pairing provides for the existence of the set whose members

are just the sets x and y. This is formulated as

WW(MW(“ Cz^>u = xVu=y).

The eight axioms of the second group are concerned with the exist-

ence of classes. These axioms, which are due to Bernays, replace an

axiom schema in the original von Neumann theory. From them Bernays

proved the general existence theorem (a metatheorem), which asserts

that for any formula Fix) which contains no bound class variables there exists a

class Y that contains just those x's which satisfy F(x). This result, which is

referred to as the class theorem, bears a strong resemblance to the

principle of abstraction of intuitive set theory; the sole difference is



320 Informal Axiomatic Set Theory chap. 7

that “defining conditions” determine classes and not necessarily sets.

The class theorem yields as a by-product the fact that classes in the

von Neumann theory play the role that formulas do in the Zermelo-

Fraenkel theory.

The remaining axioms of the von Neumann theory coincide with

the remainder of those for 0 [that is, (ZF4)-(ZF9) ], with the one im-

portant distinction that none of the former are axiom schemas. For

example, in place of (ZF8), the axiom schema of replacement, there is

the axiom of replacement which is the formula

(*)(jy)(z)(((*,y) C X A (x, z) C X) -+y = z) —>

(3_)0 (*) (x (3w)(w C z A (w, x) C X)).

Thus, by way of the theorem schema described above, this axiom yields

all instances of the axiom schema (ZF8). This brings us to the second,

and last essential difference between the two theories: von Neumann
set theory is finitely axiomatized. That is, no axiom schema of set

construction is required; instead, a finite number of specific set and

class constructions is adequate.

BIBLIOGRAPHICAL NOTES
In Fraenkel (1961) general set theory is developed at a level which is be-

tween that of Chapters 1 and 2 and that of this chapter. Fraenkel’s excellent

book, Abstract Set Theory
,

is a thoroughly revised (and greatly improved) edition

of an earlier book. The book by Fraenkel and Bar-Hillel (1958) complements

Abstract Set Theory in the same way that the present chapter complements our

earlier coverage of intuitive set theory. In addition, it considers other approaches

(for example, Quine’s New Foundations) to set theory. Zermelo-Fraenkel set

theory is also expounded in Suppes (1960). An interesting feature of this book

is an elegant unorthodox treatment of finite sets by means of Tarski’s definition

(see Exercise 2.3.14), which allows Suppes to develop the theory of finite sets

before the theory of finite ordinals. Another treatment of Zermelo-Fraenkel set

theory appears in Halmos (1960). This is a beautiful presentation.

An outline of von Neumann-Bernays-Godel set theory is given in Godel

(1940) and in Bernays and Fraenkel (1958). The latter book presents a modi-

fication of the system developed by Bernays in the series of seven papers men-
tioned in the text. For a high-level development of transfinite arithmetic

beginning with the theory of ordinal numbers, H. Bachmarm (1955) should

be consulted.



CHAPTER Several Algebraic

Theories

It is perhaps in algebra that the axiomatic method has scored its

greatest successes. The majority of axiomatic theories which are re-

garded as belonging to algebra are noncategorical. This is by design,

since the goal of algebra is a systematic analysis of various combina-

tions of central features common to a variety of specific algebraic sys-

tems. This modern approach to algebra yields theorems which not only

illuminate a multitude of classical examples by displaying them in the

most general light without foreign hypotheses, but also it contributes

formalism and powerful tools which are indispensable to a large part

of mathematical research, including that in the theory ol numbers,

algebraic geometry, functions of several complex variables, integration

theory, and topology. Thus, algebra is not merely a branch of math-

ematics, for it plays within mathematics a role analogous to that which

mathematics itself has played with respect to physics for centuries.

As is the case with most branches of mathematics, it is foolhardy to

attempt a definition of algebra. It is possible, however, to suggest a

characterization by describing basic features of those theories which

may be called “algebraic theories,” that is, axiomatic theories which, it

is generally agreed, belong to the province of algebra. Some such fea-

tures are discussed in Section 1 . The theory of Boolean algebras qualifies

as an example and serves to illustrate some of the concepts introduced.

The brief introduction to semigroups which appears in Section 2 is

included simply because this theory can be used as a vehicle to intro-

duce a variety of definitions that are applicable to the algebraic theories

with which the remainder of the chapter is concerned. Each of these

theories, apart from that of groups, had its origin in one of the number

systems constructed in Chapter 3. That is, each is founded on the basic

properties of one of the system of integers, the system of rational num-

bers, the system of real numbers. When it is realized that these theories

321
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form the backbone of modern algebra, the fundamental role played by

the familiar number systems in stimulating the development of modern

algebra becomes apparent. Exposing the role of the familiar number

systems as a source for algebraic theories is one goal of this chapter.

The other is to provide ways and means for characterizing, in turn,

these number systems as models of certain algebraic theories. These

characterizations are presented in the last three sections of the chapter.

1. Features of Algebraic Theories

Ordinarily, algebraic theories are presented as informal theories

within the context of set theory. That is, as explained in Section 5.3,

an algebraic theory is formulated in terms of a nonempty set X and

certain constants associated with X. These constants may be of various

types: elements of X
,
subsets or collections of subsets of X, unary opera-

tions on X (that is, functions on X into X), binary relations or operations

in X, and so on. Collectively, the constants serve as the basis for imposing

a certain structure on X. The structure is given in the axioms—that is,

the properties assigned to X and the constants. It is principally the

form of the axioms that distinguishes algebraic theories among ax-

iomatic theories in general. The axioms pertaining to binary operations

imitate, in part at least, the basic properties of addition and multipli-

cation and include, possibly, the existence of interrelations such as dis-

tributive laws. Those pertaining to any binary relations present may
imitate properties of “less than” for number systems. If unary operations

are present, they are often called (left or right) operators.

As an indication of the form that axioms pertaining to operators

might have, the properties of scalar multiplication in an elementary

treatment of vector algebra are suggestive. These include

a(oi T (3)
= aa T #/3,

(.a + b)a = aa. + ba,

a(ba) =
(ab)a

for all vectors a and (3 and all scalars (real numbers) a and b. The first

of these is a property of individual scalars (left operators). In contrast,

the others are interrelations between combinations of operators and
combinations of vectors and, as such, presuppose the existence of opera-

tions for the set of scalars. In general, a set of operators may or may not

have some assigned structural features.

The theory oi Boolean algebras qualifies as an algebraic theory. If
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the theory is formulated as in Theorem 6.3.1, then the constants associ-

ated with the basic set B are one binary operation and a single operator.

We turn next to the description in general terms of two notions which
occur so consistently in algebraic theories that they may be considered

as serving to further delineate algebraic theories. If we agree that by

an algebra is meant any model of some algebraic theory, then one of

the notions is that of a subalgebra of an algebra. This requires two pre-

liminary definitions. Let / be an operation in a set X and A be a non-

empty subset of X. Then A is said to be closed under / iff the restric-

tion of/ to A X A is an operation in A or, in other words, the range of

j\A X A is included in A. If A is closed under /, the operation J\A X A
is said to be that induced in A by /. Althoughj A X A X /(assuming

that A C X), if instead of “/” a familiar symbol like or “ •” is used

for the initial operation, it is customary to designate that operation

which it may induce in a subset by the same symbol. Next, let g: X X
and A be a nonempty subset of X again. We shall say that A admits

g iff g[A] C A. Now suppose that (X,

• •

•) is an algebra having X as its

basic set and that A is a nonempty subset of X which admits each oper-

ator on X and is closed under each operation in X. Then it may be the

case that A, together with the constants induced in it by those of X, is

a model of the theory of which (X, •
•

•) is a model. In this event, (A, •
• •)

is called a subalgebra of (X, •
• •).

According to the foregoing, if (X, •
•

•) is a model of an algebraic

theory, then subsets of X which are closed under the operations in X
and so on provide a potential source of further models of the same

theory. Another possible means for deriving further models from given

models of an algebraic theory is by way of congruence relations. This

notion for an arbitrary algebra is a direct generalization of that given

in Section 6.4 of congruence relations for Boolean algebras. A congru-

ence relation on an algebra (X, •
•

•) is an equivalence relation 6 on

X such that if * is a binary operation in X, then for all a, b, and c in X,

(Ci) a 6 b implies c * a 6 c * b and a * c 6 b * c

and, if/ is an operator on X, then for all a and b in X,

(C2 ) a 6 b implies f(a) 0 f{b ),

and, if < is an ordering relation, then for all <2
,
b

,
c, and d in X

,

(C3 ) a 6 b, c 6 d, and a < c imply b < d.

Upon reviewing the discussion of congruence relations for Boolean alge-

bras it should be clear that requirements (Ci)-(C3 ), whenever applicable,
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are sufficient (and, indeed, necessary) conditions that each operation

and so on defined for X induces a corresponding constant for X/0 by

way of representatives of ^-equivalence classes (that is, if * is a binary

operation in X
,
defining a * b to be a * b, and so on). If 6 is a congruence

relation on the algebra (X, •
•
•), then it may be the case that X/6,

together with the constants induced by those associated with X in the

way described, is a model of the theory at hand. In this event, (X/6, •
• •)

is called a quotient algebra of (X, •
• •).

In conclusion, it will do no harm to rephrase for algebras in general

a remark made earlier for Boolean algebras. Namely, the description

of any algebra (X, •
•

•) includes (usually implicitly) an equality relation

on X and this is taken to be a congruence relation on X. That is, equal-

ity is assumed to satisfy whichever of (Ci)—(C3) are applicable.

2. Definition of a Semigroup

A semigroup (with neutral element) is an ordered triple (X, *, e),

where A is a set, * is an associative binary operation in X, and e is a

member ofX such that

e*x=x*e=x
for all x in X. Our sole purpose in touching on this theory is to derive

a few basic properties and introduce some terminology and notations.

This will prove to be efficient, since we shall find a variety of applica-

tions for these items later. It is with the diversity of the applications

in mind that we have adopted the neutral symbol “*” for the operation

in X.

The property enjoyed by the element e of the semigroup (X, *, e) char-

acterizes this element, since if e' * * = x * e' = * for all *, then e' * e = e

and e' * e = e
f

,
whence e = e

f

. We shall call e the neutral element

for the operation in X.

EXAMPLES
2.1. If A is a nonempty set, then ((P(A), U, 0) and (<P(d), O, A) are semi-

groups.

2.2. If, as usual, N is the set of natural numbers, then (N, +, 0) and (N, •, 1)

are semigroups.

2.3. If A is a nonempty set, then (A A
, °, i'a) is a semigroup.

An algebra (X, • •
• ) is often identified by merely its basic set, if no

confusion can arise. For example, we shall often use the term “the semi-
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group A” in place of “the semigroup (

X

, *, e)” If there is need to men-

tion the operation, “

X

is a semigroup under *” may be used in place

of “(X, *, e) is a semigroup.” For example, we may say “the set Z of

integers is a semigroup under addition” in place of “(Z, +, 0) is a

semigroup.”

In subsequent instances of semigroups the notation for the composite

of a and b will usually be a + b (read: the sum of a and b) or ab (read:

the product of a and b). In the first case we say that we have an addi-

tive operation and in the latter case, a multiplicative operation. The
neutral element for an additive operation is always denoted by “0”

and called the zero element of the semigroup; the neutral element for a

multiplicative operation is usually designated by “1” and called the

unit or identity element of the semigroup. One theorem that we have

already proved for a semigroup is the general associative law (Theo-

rem 2.2.2), which asserts that all composites that can be associated with

an ft-tuple (a\, a2 ,

• •
*, a„) of elements of a semigroup are the same ele-

ment of the semigroup. For an additive operation this element is de-

noted by
fii + a2 + • •

• + a n or 2 t

n
=i fi t

while for a multiplicative operation it is denoted by

a\d2
•

• • a n or II?=1 a*.

If a\, a2 ,

• •
•, fin are all equal to the same element a, then the composite

of (fix, fi2 ,

• •

•, fin) is denoted by “rca” and “a n” in the additive and multi-

plicative cases, respectively. For n = 1 we agree that both na and a n are

simply fi.

We extend the definition of na and an to all natural numbers by defin-

ing Ofi to be 0 and fi° to be 1—that is, the neutral element in each case.

Then, for all natural numbers m and n and all elements fi of a semi-

group X,

(7) Ofi = 0, lfi = fi, (m + n)a = ma + na
,
(mn)a = m(na),

if the operation in X is additive. If the operation is multiplicative, then

(2) a0 = 1, fi
1 = fi, fi

m+n = ama n
,
amn = (fi

w
)
n

.

These formulas follow from our definitions and the general associative

law.

A semigroup (X, *, e) is commutative or Abelian iff fi *b = b * a

for all fi and b in X. For commutative semigroups we have the general

commutative law stated in Exercise 2.2.4: II aj, a2i
•••,«» are elements
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of a commutative semigroup and it l
r

,
2

r

,

• •

•, n is some rearrangement

of the numbers 1,2, •
•

•

,

n, then

a\ * ao * * * * * an = ay * Q-v * ‘ * * * an'-

From this it follows easily that for a commutative semigroup the string

of formulas (/) may be supplemented by

(,3)
n(a + b) = na + nb,

and those in (2) by

(.4 )
{ab) n = an

b
n

.

Further notation and computational rules enter in connection with

our next definition. An element a of a semigroup X is invertible iff

there exists an element a of X such that a * a — a * a = e. In that

event there is just one such element a! with this property. For if with a"

we can also demonstrate that a is invertible, then

a" = a" * e = a" * (a * a') =
(a

"

* a) * a = e * a' = a .

The element a is the inverse of a. If a is invertible and a' is its inverse,

so that a * a' = a' * a = e, then these equations demonstrate that a is

invertible and that a is its inverse. Another important property of

invertible elements is proved next.

THEOREM 2.1. If a and b are invertible elements of a semigroup

(.X, *, e), then a * b is invertible. If a and b' are the inverses of a

and b
,
then b' * a' is the inverse of a * b.

Proof. It is sufficient to show that (a * b) * (b' * a') = e and

(b
r

* a') * {a * b) = e. The first of these, for example, is shown as

follows

:

(a * b) * (b' * a') = a * (b * b') * a' = a * e * a' = e.

COROLLARY. If ah a2 ,
•

• •, a n are invertible elements of a semi-

group and a[, a2 ,

• •
•, a'n their inverses, then a\ * a2 * • • • * an is in-

vertible and #' * * • • • * a[ is its inverse.

The notation involved in discussing further properties of invertible

elements is sufficiently different in the additive and multiplicative cases

as to warrant separate treatments. Let us consider an additive notation

first. If a is an invertible element of a semigroup (X, +, 0), then negative

multiples of a can be defined. Namely, we observe that if a' is the inverse

of a (thus, a + a — a + a = 0), then

(5) ma = (m + \)a + a'
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for all nonnegative m. This equation we take as the basis for an inductive

definition of ma for negative m. Then we observe that the third formula
in (7) above is true for any fixed m and n = 0; it can be proved for all

natural numbers n by induction from n to n + 1 and for all negative n

by induction from n T 1 to n
,
using the following consequence of (5)

:

(m + 1 )a = ma + a.

One instance of the formula thus obtained is

na + (
— n)a = 0a = 0 = ( — n)a + na

for an arbitrary n. This means that for all n
,
na is invertible and {

— n)a

is its inverse. It follows that m(na ) and (mn)a are defined for every m.

1 he equality of these two elements for arbitrary m and n can then be

proved by the two inductions used before. Thus the fourth formula in

(7) and thereby all formulas in (7) hold for all integers m and n.

If a is an invertible element of (X, + , 0), then, according to (5),

(— 1 )a is the inverse of a. We abbreviate “( — l)a” by a” and call it

the negative of a. The earlier result that the inverse of the inverse of a

is equal to a then takes the form

~(~a) = a

and Theorem 2.1 translates into

— {a + b) =
(
— b) T (

— a)

for invertible elements a and b. For an arbitrary b and an invertible ele-

ment a of X, b + (
— a) £ X; this element will be designated by b — a.

Thus, (b — a) + a = b. Further, the element
(
— a) + b will be denoted

by — a T 7>, so that a — a f- b) = b. These definitions lead to the

following computational rules which are easily verified:

— {a — b) = b — a, —( — a + b) = —b -f a.

Finally, if the semigroup is commutative, (3) holds for arbitrary n.

All the foregoing definitions and results have multiplicative analogues.

The starting point for their derivation is the observation that if a' is the

inverse of a
,
then

06) am = am+la'

for all nonnegative m. This equation we take as the basis of an inductive

definition of am for negative m. It is left as an exercise to verify that the

third and fourth equations in (2) above are true for arbitrary integers

m and n. According to (6), a~ x
is the inverse of a. Moreover,

(<2
-1

)

-1 = a
, fb)~ l = b~ 1a~ l

i
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and, if the semigroup is commutative, (4) holds for all integral values

EXAMPLES
2.4. The semigroup (N, T> 0) is commutative

;
0 is the only invertible ele-

ment. In contrast, each element of the semigroup (Z, +, 0> is invertible.

2.5. In the multiplicative semigroup Z the only invertible elements are 1

and —1.

2.6. Let A be a nonempty set. Then (<P(T), +, 0), where + is the symmetric

difference operation, is a commutative semigroup. Each element B is invertible;

indeed, — B = B.

2.7. The semigroup of all mappings on a set of at least two elements into

itself (see Example 2.3) is not commutative. The invertible elements are the

one-to-one and onto mappings.

EXERCISES

2.1. Let • be an associative operation in a nonempty set A. An element a in

X such that x • a = x for all x is a right identity element.

(a) Give an example of such a system that has more than one right identity

element.

(b) Show that if more than one right identity element is present in A, then

no identity element is present.

2.2. In a nonempty set X introduce the operation (a ,
b) ab = a. Show

that this is an associative operation and that every element is a right identity.

When is X a semigroup?

2.3. Show that (N, *
5 0), where a * b = a -f b + ab, is a semigroup.

2.4. We define N (2) to be the set of all objects of the form ^ where

a, b, c, d C N. A multiplication is defined for these elements as follows:

Show that N (2) is a semigroup under this multiplication. \\ hat elements are

invertible? Defining an element x of a semigroup as idempotent iff x 2 = x,

determine the idempotents of N l2)
.

2.5. Establish each of the identities appearing in (/) and (2) in the text for

natural numbers m and n.

2.6. Establish the identities (J) and (4) for commutative semigroups.

2.7. Give a detailed account of the extension of the identities in (7) to the

case of arbitrary integers m and n.

2.8. Give a detailed account of the extension of the identities in (2) to arbi-

trary integers m and n.

of n.

aa! + be' ah' + bd
f

ca T dc' cb
r + dd'
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3. Definition of a Group

In spite of the repetition which results, we start afresh with the theory

of groups for the sake of completeness. Our initial formulation is the

one appearing in Exercise 5.4.15.

A group is an ordered triple (G, *, e), where G is a set, • is a binary

operation in G, e is a member of G, and the following axioms are satis-

fied.

Gi. • is an associative operation.

G2 . For each a in G, e • a = a.

G3 . For each a in G there exists an element a in G such that

a' • a = e.

Two properties of a group follow directly from the axioms: An ele-

ment e satisfying G 2 is a neutral element for the operation (and hence

is unique) and, each element of G is invertible. For proof, let a be a

member of G. By G3 there exists an element a in G such that a'a = e

and there exists in element a" in G such that a"a' = e. Then

aa = e(aa') = {a"a')(aa') = a'\{a'a)a')

= a'fea') = a"a' = e.

Then e is a neutral element since, for any a, ea = a by G2 and ae = a
,

since

ae = a{aa) = (aa')a = ea = a.

Further, a is invertible since aa = a a = e. Thus, we have proved the

following result.

THEOREM 3.1. If (G, •
,
e) is a group, then it is a semigroup

such that each element is invertible.

In accordance with conventions introduced for semigroups, if multi-

plicative notation is used for a group operation we shall write “1”

for the identity element and “a-1” for the inverse of a. If additive nota-

tion is used instead, then “0” and 0” will be used in place of “1”

and “a-1 .” In either case the definitions and properties pertaining to

powers and multiples given in Section 2 are available for use.

The converse of Theorem 3.1 is obviously true and consequently

another formulation of the theory of groups is at hand: A group is a

semigroup such that each element is invertible. We prefer the initial

one, however, since it is clearly a weaker formulation, which means
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that there are fewer steps in the verification that a given system is a

group.

The set of axioms in the explicit formulation ol the theory of groups

as a semigroup in which each element is invertible is simply the result

of supplying the “left-right” symmetry which the initial formulation

lacks. This symmetrical set of axioms is, like jGi, G 2 ,
G3 }, independent.

A third formulation in which symmetry is an inherent part is given

next.

THEOREM 3.2. An ordered pair (G, •), where G is a set and • is

a binary operation in G
,
defines a group iff

G0 . G is nonempty,

Gi. • is associative,

G4. each of the equations a - x = b and y • a = b has a solution

in G for all elements a and b in G.

Proof. Assume that (G, *, 1) is a group. Then obviously (G, •) satis-

fies G0 and Gi. Moreover, G 4 is valid since, for given elements a and b

in G, a(a~ 1 b) = b and (ba~
l)a = b.

For the converse, let (G, •) be a system satisfying G0 ,
Gi, and G4 .

According to G0 there exists an element c in G. According to G4 there

exists an element e in G such that ec = c. Moreover, by G4 ,
if a is

any element of G, then there exists an element d in G such that

cd = a. Hence
ea = e(cd) = {ec)d = cd = a,

so e satisfies G2 . As for G 3 ,
it is a consequence of the solvability of

xa = e for each a. Hence, (G, *, e) is a group.

Each of the equations ax = b and ya = b has a unique solution in a

group. This is an immediate consequence of

THEOREM 3.3. For all elements a, b, and c in a group, each of

ab = ac and ba = ca implies that b — c.

Proof. Assume, for example, that ab = ac. Then a~ 1 (ab) = a~ l

(ac),

whence b = c.

If finiteness is assumed for the set G in Theorem 3.2, then G4 can be

replaced by the, in general, weaker cancellation laws.

THEOREM 3.4. A pair (G, •), where G is a finite set and • is a

binary operation in G, defines a group iff



8.3 Definition of a Group 331

G0 . G is nonempty,

Gi. • is associative,

G5 . each of a • b = a • c and b • a = c • a implies that b = c.

Proof. In view of Theorem 3.2 it is sufficient to prove that G5 implies

G 4 in the presence of Go and Gi. Let a be an element ol G and con-

sider the mapping fa : G —*- G such that fa (x) = ax. By G 5 , fa is one-

to-one and hence onto, since G is finite. That is, for each b in G,

ax = b has a solution in G. The solvability of ya = b is shown sim-

ilarly.

We forego giving examples of groups until we have given several

more definitions. If for group elements a and b, ah = ba, then a and b

commute; if every pair of elements of a group commute, then the group

is called commutative or Abelian. Examples that we shall encounter

will demonstrate not only the consistency and independence of the set

of axioms for a group but also the independence ol the set of axioms

for a commutative group. If the elements of a group are finite in num-

ber then the group is finite and the number of elements is the order

of the group. If a group is not finite, then it is infinite. Finally, we

mention that analogous to the convention introduced for semigroups,

we shall frequently use “G” as a name of the group (G, *, 1) if the opera-

tion involved is unambiguous.

EXAMPLES
3.1. If A is a nonempty set, then the set of all one-to-one mappings on A

onto itself, symbolized G(A), together with function composition and the iden-

tity map fi, is a group. This conclusion simply summarizes basic properties of

one-to-one correspondences. We shall call this group the group of one-to-one

transformations on the set A.

3.2. If n is a positive integer, then congruence modulo n is a congruence rela-

tion on the additive group of integers. Consequently an operation -f i s defined

in Z „, the set of equivalence classes a
,
by choosing a + l to be a + b. It is an

easy matter to prove that (Z n , T, 0) is a commutative group ol order n.

3.3. Congruence modulo n is also a congruence relation on the multiplica-

tive semigroup of integers. 1 his leads to the commutative semigroup (Z *, I)

where, by definition, a • b = ab. The identity element for the operation is I and

since 0 has no inverse, the semigroup is not a group. Discarding 0 does not

always overcome the difficulty, since the resulting set may not be closed under

multiplication; for example, in Z6 ,
2 • 3 = 0. '1 his difficulty is absent if n is a

prime p, since then a • b = 0 implies in turn that ab = 0(mod p), p divides a

or b, either a or b is equal to 0. That is, multiplication is an operation in Z* =
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Z p — {0} . With I the identity element, to conclude that the system is a group,

it remains to prove that each element has an inverse or, in other words, that

the equation ax=\ with a 9̂ 0 has a solution in Z£. Now ax = I with a 9̂ 0

is equivalent to ax = 1 (mod p ) where p does not divide a. If p does not divide

a
,
then a and p are relatively prime and there exist integers r and j such that

ra — 5p
—

l. But then ra = 1 (mod p) or 7a = T, and a has an inverse. Thus,

(Zp, •, I) is a commutative group.

3.4. For groups of small order a multiplication table, as described earlier for

Boolean algebras, is a practical device for exhibiting the group operation,

inverses, and so on. As an illustration, consider the set F of six functions /1 ,

/2 ,

• • *,/6 of a complex variable z, where

fa(z) = z, fa(z) = 7-^—’ fa(z)
= ’

I z z

Mz) = MZ) = 1 - Z, Mz) = ~ ”-T ,

z z — 1

with the composite of /» and fj taken to be fj ° /*. Since fx is an identity element

for the operation and ° is associative, (F, °,/i) is certainly a semigroup. The

following multiplication table shows that actually it is a group and, further,

that the group is noncommutative.

h fa fa ft fa ft

u h fa fa ft fa ft

h fa ft /. fa ft fa

fa fa /. fa fa fa ft

u U fa h h ft ft

fa fa fa ft fa ft fa

h /« u fa fa fa ft

There is also the possibility of using this device to concoct groups of sma’l

order. For this we start with a nonempty set S of letters a, b, •
•
•, k, which are

to be the group elements, and fill out a multiplication table in such a way that

all the group axioms are fulfilled. The table will exhibit an operation in S iff

each entry is a member of S. A much stronger requirement is given by condition

G 4 in Theorem 3.2. The unique solvability of ax = b for all a and b in S means

that in each row of the multiplication table each element of S must appear

exactly once. Similarly, the unique solvability of ya = b implies that each

column in the table is simply S in some order. A table whose rows and columns

fulfill these conditions defines a group iff the operation is associative. Unfortu-

nately, it is not easy to check the associative law directly from a multiplication

table unless special preparations are made.

3.5. Let G be the set of all rotations about the origin in a cartesian plane.

An element of G is a mapping of the form (.v, y) — (U, y'), where

x — x cos 0 — y sin 0,
y' = x sin d + y cos 0.
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Here 6 is the angle of rotation. Then (G, °, z), where ° is a function composition

and i is the identity map, is a group.

EXERCISES

3.1. (a) For the real number a
,
let ta : R —

^ R be such that xta = x a for

each real number x. Show that (T, °, z), where 7 = {G a £ R! ,
° is

function composition, and i is the identity map on R, is a group,

(b) For the real number a
,
let sa

' R — R be such that xsa = xa for each

real number x. Show that (

S

, °, z), where .S' = {sa \a C E ~ {0}},

o is function composition, and z is the identity map on R, is a group.

3.2. For real numbers a and b with <2^0, let [a, b ]
be the mapping on R into

itself such that x[a, b] = xa + b. Show that A = {[a ,
b]\a, ft C R and a ^ 0}

is a group under function composition.

3.3. Show that {(1 -f 2m)/(l + 2n)\m, n £ Z} is a group under ordinary

multiplication.

3.4. Show that {cos r + i sin r\r £ Q} is a group under ordinary multipli-

cation.

3.5. Write out a multiplication table for Z*.

3.6. An operation in {e,f} may be defined as follows: ee = fe = £, */ =//=/.
Show that this system satisfies the group axioms Gi and G 2 ,

but not G 3 . Con-

struct two other systems to complete the proof of the assertion that the set of

axioms for a group are independent.

3.7. In the text an Abelian group is defined to be a group having the further

property that ab = ba for all a and all b. Prove that an Abelian group can be

characterized as an ordered triple (G’, •, ') where G is a nonempty set, • is a

binary operation in G,
'

is a unary operation in G, and the following property

holds

:

if (aa')b' =
(rs')t' ,

then b = (tr')s

.

4. Subgroups

A group H is a subgroup of a group G iff H C G and the restriction

of the operation in G to Ii X H is equal to the operation in H. In other

words, the subgroups of a group G are the closed subsets that satisfy

the group axioms. Let H be a subgroup of the group G and 1
' and 1 be

the identity elements of H and G respectively. Then l'-l' = 1' and

1 •
1 ' = 1 so l'-l' = 1 •

1
'. By the cancellation laws it follows that 1

1 — 1

;

thus the identity element of a group G is the identity element of any

subgroup II of G. This result is a consequence of the following necessary

and sufficient conditions that a subset of a group determine a subgroup.

We have derived it independently in order that it be available for use

in the proof.
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THEOREM 4.1. A nonempty subset H of a group G determines a

subgroup of G iff

(i) H is closed, and

(ii) the inverse (in G) of each member of H is a member of H

.

Proof. Let H be a nonempty subset of G having the two stated prop-

erties. Then there is in H an element a of G and hence aa~ x = 1 is in

H by (i) and (ii). Since \x = x for v in G, lx = x for x in H and for

each a in H there is in H an element a ', namely a
-1

,
such that aa — 1

.

Thus H satisfies G2 . Since H is closed under the operation in G, that

operation restricted to H X H is certainly an associative operation

in II. Hence, H is a group.

Conversely, if H is a nonempty subset of G which determines a

subgroup of G, then (i) must hold. Since 1 C H, as observed above,

the equation ax = 1 has a solution in H. Since the only solution ol

this in all of G is a~ l
,

(ii) must hold for II.

COROLLARY. A nonempty subset H of a group G determines a

subgroup of G iff for all a and b in H, ab~ l
is in II.

THEOREM 4.2. A nonempty subset II of a finite group G deter-

mines a subgroup of G iff H is closed.

Proof. This follows from the definition of a subgroup and Theo-

rem 3.4.

THEOREM 4.3. The intersection of a nonempty collection of sub-

groups of a group G is a subgroup of G.

The proof is left as an exercise.

Every group G includes two subgroups, namely G and { 1 } ;
these are

the improper subgroups of G. Any other subgroup ol G is a proper

subgroup. Proper subgroups can usually be obtained by the following

technique. Let S be a subset of a group G. Then the intersection of all

subgroups of G which include S is a subgroup of G which includes S.

This is called the subgroup of G generated by S and is symbolized

by [S]. The set [S] has the following properties: (i) it is a subgroup

of G, (ii) it includes S and (iii) is included in any subgroup of G that

includes S. It is easily seen that these three properties characterize [A].

This characterization can be used to obtain an explicit description of

the elements of [b’J as the finite products <2^2 • • • a n (n arbitrary), where
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at C S or ai is the inverse of an element of .9. To prove this assertion,

let II be the set of such products. In view of Theorem 4.1, II is a

subgroup of G and, clearly, //D5. If K is a subgroup of G that

includes S
,
then K contains each member and the inverse of each mem-

ber of .9. Hence, K 3 //. Thus //satisfies the properties which character-

ize [.9], whence [.9] = II. The subgroup generated by the unit set {#}

will be called the subgroup generated by d and symbolized by [d]. It

consists of all integral powers of a; <2° is the unit element and d~m is the

inverse of dm . The group [a] is commutative since dmd n = dmJrn = d ndm .

A group C is called a cyclic group iff there exists an element d of C
such that C = [d]. For example, the additive group of integers, (Z, +, 0),

and the additive group of integers modulo r, (Z r , +, 0), are cyclic

groups; the first is generated by 1 and the second by \. The multiplica-

tive group (ZJ, •, I) is also cyclic, but to prove this requires a few facts

from number theory. The cyclic groups Z and Z r ,
r = 1,2, •

• •, exhaust

the collection of all essentially different cyclic groups in a sense which

we now explain.

An isomorphism of a group G onto a group G' is a one-to-one map-

ping f on G onto G' such that for all x and y in G,

f(xy) = /(x)/(j)

where, on the left, the operation in G is in force while on the right it is

that in G f

. Thus, a one-to-one mapping on G onto G' is an isomorphism

if the imdge of d product is the product of the images . If there exists an iso-

morphism / of G onto G then G f

is called an isomorphic image of G.

In this event it is clear that /
-1

is an isomorphism of G' onto G so that

if G' is an isomorphic image of G
,
then G is an isomorphic image of G' .

We say then that G and G' are isomorphic groups. For example, the

mapping

/ : R+ R where fix) = logio x

is well known to be one-to-one and onto and, since

logio xy = logio x + logio y,

it is an isomorphism of the multiplicative group of positive real numbers

onto the additive group of real numbers. Isomorphism is an equivalence

relation on any collection of groups and, from the standpoint of group

theory, members of an isomorphism-equivalence class are indiscernible.

The sense in which the cyclic groups Z and Z r ,
r = 1, 2,

•
• yield all

cyclic groups can be inferred from the following theorem.
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THEOREM 4.4. An infinite cyclic group is an isomorphic image of

the additive group of integers and a cyclic group of order r is an iso-

morphic image of the additive group of integers modulo r.

Proof. If C = [a] is a cyclic group, then the mapping /: Z C such

that f(n) = an is onto C. If it is not one-to-one, then ar = a 8 for

some distinct pair of integers r and s. We may assume that r > s.

Then a r~s = 1 ,
so there exists a positive integer p such that a p = 1

.

Let n be the smallest positive integer such that a n = 1. Then 1 = a°
y

a
,

• •
•

,
a n
~

l are distinct from each other, since a r = a 8 with 0 < s, r < n

implies that ar~s = 1 with 0 < r — s < n, which contradicts the

choice of n. Moreover, all distinct powers of a appear among a 0
,

a
,

• •
•, an

~ l
. For since any integer m can be written in the form

m = nq + r, 0 < r < n,

we may conclude that

am = anq+r = {a
n
)
qar = ar

.

Thus, if/ is not one-to-one, then C has finite order. It follows that if

C has infinite order, then / is one-to-one and onto C. Finally, since

f(m + n) — am+n — 0 >

we have shown that an infinite cyclic group is an isomorphic image

of Z.

Next assume that C = [a] has order r. According to the preceding

part of the proof, r is the least positive integer such that a r = 1 and

C = jl, a, •
•
•, a r~ l

}. It is left as an exercise for the reader to com-

plete the proof by proving that C is an isomorphic image of Z r .

The notion of a cyclic group provides one means of classifying the

elements of any group G. If a £ G, then a is of infinite order or finite

order r, according as [a] is infinite or is finite of order r. In the first

case, an 1 if n is any nonzero integer; in the second case, a r = 1 and

r is the least positive integer such that a r = 1

.

By virtue of the simplicity of cyclic groups it is possible to determine

all subgroups of a cyclic group in a straightforward way. We discuss

this next. Let C =
[<?] and let H be a subgroup different from {1}.

Then H contains a power am of a
,
where m ^ 0. Since, if am £ H, then

a-m follows that there exists a positive integer rn such that

am £ II. Let ^ be the smallest positive integer such that a 8 £ H. We
shall show that II = [<2

8

]
and that the mapping g on the set of all sub-
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groups II
j 1 }

into Z+ such that g(II) = s is one-to-one. To prove

the first assertion let am be any element of II and write m in the form

m = sq + u, 0 < u < s.

Then a u = am (a
8)~ q £ H

,

and hence, by the minimality of i-, u = 0.

Thus a Tn =
(a

8

)
q

. Since, on the other hand, any power of a 8
is in II,

II = [a
H
\. That g is one-to-one is clear, because if g(H) = s = g(II'),

then II =
[,a

8

]
= II'.

To complete the investigation of the subgroups of C = [a\, we con-

sider separately the cases where C has infinite order and has finite

order. If C is infinite, then the mapping g is onto Z+
,
because if s £ Z+

,

then g [<2
8

]
= s, since the smallest positive power of a in [a

8

]
is s itself.

II C has finite order r, then g is onto the set of positive divisors of r

which are less than r. To prove this we observe that 1 = a r £ H and
then repeat an argument used above to conclude that r is a multiple

of j
-

;
that is, s divides r. On the other hand, let s be any positive divisor

of r which is less than r. If r = st
,
then (a

8

)
1 = 1 and (a

8

)
1
'

^ 1 if

0 < l' < t. Hence t is the order of [a*]. Ifg[<2 8

]
= s', then [a

8
'] = [a

8

],

and hence [a
8 ’] has order t. It follows in turn that a 8

’
1 = \, s't > r = st,

and s' > s. Since s' < s by the definition of s, we have s' = s.

If C is infinite, the one-to-one correspondence g can be extended to

one between the set of all subgroups and the set of natural numbers by

choosing 0 as the image of { 1 J
. If C has finite order r, then g has a cor-

responding extension whose range is the set of all positive divisors of r

upon choosing r as the image of {1 j. In the finite case, if H corresponds

to i
-

,
so that II = [a

8

], then the order of H is r/s. Hence another one-

to-one correspondence between the subgroups of C and the positive

divisors of r results if with each subgroup we associate the order of that

subgroup. We summarize our results in the next theorem.

THEOREM 4.5. A subgroup H of a cyclic group C is cyclic. If

C = [a] and H ^ { 1 } ,
then H = [a

8

], where s is the least positive

integer such that a 8 £ H. If C is infinite, then the subgroups [a
8

]
of C

are in one-to-one correspondence with the set of natural numbers.

If C is finite of order r, its subgroups are in one-to-one correspondence

with the positive divisors of r. Alternatively, in the finite case the

order of a subgroup is a divisor of r and corresponding to each divisor

t of r there is exactly one subgroup of order t; it is generated by arlt
.

A subgroup of the group of one-to-one transformations on a set A
is called a transformation group on A. Since the theory of groups had
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its origin in the study of certain groups of this type, a representation

problem arises: Is every group isomorphic to a transformation group.

This question has an affirmative answer, which was first supplied jv

Cayley. We state it as our next theorem.

THEOREM 4.6. For every group G there is an isomorphic trans-

formation group.

Proof. As the set on which the transformations shall be defined, we

take the set G itself. Consider the mapping ta \ G G defined by the

group element a as
.

ta (x) = ax for all x in G.

Since the equation ax = b has a solution in G for given a and b in G,

this map is onto G. Since the cancellation laws hold, ta is one-to-one.

Thus is a member of the group of one-to-one transformations on

the set G. We show now that \ta\a C G\ is a transformation group L

on G. Since

(ta ° tb) 0) = ta(tb(x)) = ta(bx) = a{bx) = tab(x)

,

ta .t b = U and L is closed. Further, C L, since it is easily shown

that t~
1 = Hence L is a group by Theorem 4.1.

Next we prove that L is an isomorphic image of G under the cor-

respondence a ta- By definition of L, this map is onto L. It is one-

to-one since, if a and b are distinct elements of G, then a 1 ^ b 1,

and hence ta * t b . The validity of the relation «„•<> = U completes

the proof.

EXERCISES

4.1. Prove the Corollary to Theorem 4.1.
. .

4.2. Find two proper subgroups of each of the groups defined in Exercise 3.1.

4.3. Prove Theorem 4.3.

4.4. Complete the proof of Theorem 4.4.

4.5. Let G be the subset of the set A in Exercise 3.2, consisting ol those map-

pings with a = ±1 and b (E Z.

(a) Show that G determines a subgroup of A.

(b) Is G Abelian? Is G cyclic?

(c) Determine the orders ol [1,1] anc^ [
— E — ^] -

(d) Specify all values of a and b for which [a, b] is a member of H, the sub-

group of G that is generated by [1, 2] and [ 1, 6].

(e) Specify two members of G which, taken together, generate G.
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4.6. Show that a group of even order has an odd number of elements of

order 2.

4.7. Show that if a
,
b and ab are group elements each of order 2, then ab = ba.

4.8. Prove that if a and b are elements of a group, then ab and ba have the

same order.

4.9. Let a and b be elements of a group such that ba = amb n for integers m
and n. Show that the elements amb n

~ 2
,
am

~ 2b n
,
and ab~ l have the same order.

4.10. Let a and b be elements of a group such that b~ xab = ak for some in-

teger k. Show that b~Ta sb r = a*
kr

.

4.11. Show that in an Abelian group the product of an element a of order n

and an element b of order m is an element of order mn, provided that m and n

are relatively prime.

5. Coset Decompositions and Congruence Relations

for Groups

Let G be a group and II a subgroup. A subset of G of the form

\gh\h £ II }, where g is a fixed element of G, is abbreviated to gll and
called a left coset of H in G. Left cosets, along with their “right” an-

alogue, are distinguished types of subsets of a group, as we shall show.

Their basic properties include the following.

(I) For any subgroup II of G, each element of G is a member of a

left coset of II. Two left cosets of II are either disjoint or equal.

(II) All left cosets of H have the same cardinal number as the set H.

To prove (I) we observe first that, since the unit element 1 of G
is in H, an element g of G is a member of the left coset gH. Next, sup-

pose that two cosets all and bll have a common element c. Then
c = ahi = bh2 ,

and hence a = bhz, where hz £ H. Hence ah £ bH for all

h in //, which means that all C bH. Reversing the roles of a and b

gives bH £ aH and hence aH = bH. Property (II) is established by

the mapping h gh on H into gH.

From (I) it follows that there exists a family \gjd\i £ I\ of left cosets

of II that is a partition of the set G. This is the left coset decomposition

of G modulo H. Clearly the set G is the union over a left coset decompo-

sition of G. The cardinal number of the left coset decomposition of G
modulo II is the index of H in G, symbolized (G: H). In view of (II)

we have the following relation among the cardinal numbers G, H,

and (G: H) :

<3 = {G\H)TJ.
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Now the cardinal number of any group G may be written as an index,

indeed (G: {1}). This is usually shortened to (G : 1). With this notation

the above relation may be written as

(G: 1) = (G: 11) (IT. 1).

It is left as an exercise to prove the following generalization. If G is a

group, II is a subgroup of G, and K is a subgroup of H, then K is a suit-

group of G and

(G: K) =
(G:H){H : K ).

If G is a finite group of order n and H a subgroup of order m
,
we have

n = (G: H)m, which implies that m divides n. This is a famous result

due to Lagrange. We state it along with two immediate consequences

as our next theorem.

THEOREM 5.1. The order of a subgroup of a finite group divides

the order of the group.

COROLLARY 1. The order of an element of a finite group divides

the order of the group.

COROLLARY 2. A group whose order is a prime is cyclic.

If G is a group and H a subgroup, then a subset ol G ol the loim

[hg\h C H) where g is a fixed element of G is abbreviated to Hg and

called a right coset of H. Properties (I) and (II) above hold loi light

cosets. The family [Hgj\j G J] ol right cosets ot II that is a partition

of G is the right coset decomposition of G modulo H. It is left as an

exercise to show that the set of inverses of the members ol a lelt coset

of H is a right coset of H and that, consequently, the left and right coset

decompositions of G modulo H are similar sets. Therefore the index

(G: H) can also be determined from the right coset decomposition.

For later applications we introduce some notation which extends that

used for cosets. Let A and B be subsets of a group G. By AB we shall

mean \ab\a C A and b G B\. If one of these subsets, for instance A,

is simply {#J, then we shall write aB instead ol
(
a]B . lhc extension of

this notation to more than two subsets is clear. In additive notation we

shall write A + B in place of AB. In particular, a left coset modulo a

subgroup II will be written as a T II and a right coset as II T
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EXAMPLES
5.1. Referring to the group F whose multiplication table is given in Example

3.4, II = {/], /4} is a subgroup. The left coset decomposition of F modulo II is

{//, Rip j,ii) =
{ f/,, u) , {/,, /.} , {/,,M }

and the right cosct decomposition modulo II is

{H,HfcHft} = {{/„/4}, {/2 , /5} , {/a,/.}}.

It should be observed that these are different partitions of F. In a commutative

group, the left cosets and right cosets of a subgroup are identical, of course. For

example, in (Z 12 , +, 0) the left and right coset decomposition modulo the sub-

group II = {0, 4, 8} is {//, I + H, 2 + H, 3 + H}

.

5.2. In the multiplicative group C* of nonzero complex numbers re
ie

(r > 0, 6 real), the subset R+ of all positive real numbers is a subgroup. The
coset decomposition of C* modulo R+ can be described geometrically as the

collection of rays, with initial point deleted, issuing from the origin in the com-
plex plane. If instead of R+ we start with the subgroup U of all complex num-
bers such that r = 1, then the coset decomposition of C* modulo U can be

described geometrically as the collection of all circles with positive radii and

centered at the origin in the complex plane.

Given a group G and a subgroup //, let 6 be the equivalence relation

on G corresponding to the left coset decomposition of G modulo H.

Thus, by definition, ad b iff a and b are in the same left coset of II or,

what is easily proved to be the same, ifT a~ x

b G H. The relation 0 has

the further property that a 6b implies that ca 6 cb for all c in G. That is,

6 satisfies one of the two requirements [see (Ci) in Section 1 ]
for a

congruence relation on G. We shall call 6 a left congruence relation

on this account. How left congruence relations on G and subgroups of

G are related is described next.

LEMMA 5.1. Let G be a group and 6 be a left congruence relation

on G. Then H = {x G G\x 6 1
}

is a subgroup of G and a 6 b iff a~ l b G H
(or, alternatively, iff a and b are members of the same left coset of H).

Conversely, if II is a subgroup of G, then the relation 6 such that

a 6 b iff a~ l b C II is a left congruence relation on G. The correspond-

ence of subgroups to left congruence relations is a one-to-one cor-

respondence between the set of left congruence relations on G and

the set of subgroups of G.

Proof. Let 6 be a left congruence relation on G and consider II =
{*£G|*0 1}. Since 1 G If this set is nonempty. Assume that a,
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b G H. Then b 6 1 and hence ab 6 a. Since a d 1 and 6 is transitive,

it follows that ab 6 1, whence H is closed. If a G H, so that ad 1,

then a~ la 6 a~\ whence a" 1 6 1 or a" 1 G H. Therefore H is a subgroup.

Next, if a 6 b, then, in turn, a~ la 6 a7 x
b

,
a~ x b 6 1, aT x

b G H. Each of

these steps is reversible, so that a 6 b iff a~ ]

b C H.

Turning to the converse, the fact that a~ }

b G H iff a and b are in

the same left coset of H, coupled with the fact that the left coset

decomposition of G modulo II is a partition ol G
,
implies that the

relation 6 defined in the lemma is an equivalence relation on G.

That, in addition, a 6 b implies ca 6 cb
,
is a consequence of the identity

a~ lb = (ca)~ l (cb).

The proof of the last assertion of the lemma is left as an exercise.

The preceding lemma has an analogue for right congruence rela-

tions (that is, equivalence relations 6 such that if ad b then ac d be) lor

a group G. They determine and are determined by right coset decom-

positions of G modulo subgroups H of G. Now let d be a congruence

relation on G (that is, simultaneously a left and right congruence rela-

tion). As a left congruence relation, d determines a subgroup II ot G

such that the equivalence class determined by an element g in G is gH.

As a right congruence relation, d determines the same subgroup H
(note that H is defined independently of left congruency) and the equiv-

alence class determined by g is Hg. Hence, for all g in G, Hg = gH or,

what is equivalent, g~ lHg = H. A subgroup H of G such that g~ lHg = H
for all g in G is a normal or invariant subgroup ol G. 1 hus a congru-

ence relation d on a group G determines a normal subgroup H ot G.

Indeed, from Lemma 5.1 it is immediate that the congruence relations

on G are in one-to-one correspondence with the normal subgroups ol G.

If to the congruence relation 6 on G corresponds the normal subgroup H
of G, it is customary to denote the quotient set G/d by G/H. We shall

do this. Further, we shall often write the element gH of G/H as g. We
already know (see Section 1) that an operation is defined by G/H by

the rule

a • 1) = a • b

and proceed to show that {G/H, •, I) is a group, the quotient or factor

group G modulo H. The associativity of the operation in G/H is

inherited from that of the operation in G, the element I is clearly an

identity element, and, finally, (T 1
is a solution of the equation xa = I.

The operation in G/H admits of an alternative description. Cosets of H
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are subsets of G, and hence can be composed using the operation in G
as described prior to Example 5.1. With //normal the product (all)(bll

)

is equal to abl/ as the reader can prove. But the element ah1

1

of G/JI
is the product of the elements all and bll of G/II. Thus, the operation

in G/H may be interpreted as one for (restricted) subsets of G.

EXAMPLES
5.3. Suppose that G is an additive commutative group. Then our foregoing

results take the following form. If 6 is a congruence relation on G
,
then

H — {a CL G'|<20O}

is a subgroup of G and adb iff — a + b (or, equivalently, a — b) is in H. Con-
versely, if H is a subgroup of G

,
then the relation 6 such that adb iff a — b CL //

is a congruence relation on G. In the quotient group G/H (or what is often

called the difference group, G —
//, in this case) the operation reads

(a + H) + (b + //) = (a + b) + //.

5.4. To assist the reader in acquiring familiarity with the additive notation

introduced in the preceding example, we reestablish the fact that (Zn, +, 0)

(see Example 3.2) is a group. The normal subgroup corresponding to congru-

ence modulo n in the additive group of integers is the cyclic group [w]. Its

cosets are

M ,
1 + M, •••,(«-!) + M

and these are the elements of (Z /[/?], +, [/?]).

5.5. It is left as an exercise to show that the intersection of a collection of

normal subgroups of a group is a normal subgroup. For a group G we may
then define the normal subgroup generated by a subset S as the intersection of

all the normal subgroups that include S. It is left as another exercise to prove

that the normal subgroup generated by S is the subgroup generated by the

subset T of G consisting of all elements of the form g~*sg for some g in G and

some s in S.

To describe the relationship of a quotient group G/H to G
,
a defi-

nition is needed. A homomorphism of a group G onto a group G' is

a mapping/ on G onto G' such that for all x and y in G, f(xy) = f(x)f(y).

That is, a homomorphism onto differs from an isomorphism onto only

in that a homomorphism need not be one-to-one. If there exists a homo-

m jrphism of G onto G', then G' is called a homomorphic image of G.

By virtue of the definition of the operation in a quotient group it is

clear that if G is a group and G/H a quotient group, then G/II is a

homomorphic image of G under the natural mapping on G onto G/H—
that is, the mapping p on G onto G/H such that p(x) = xH. We con-
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sider next the converse situation. Let G' be a given homomorphic image

of G and / the accompanying homomorphism. Then the equivalence

relation 6 on G associated with /, namely, ad b iff /(a) = fib), is a con-

gruence relation on G. 1 he corresponding normal subgroup A ol G,

namely, {a C G\f(a) = 1 }, is called the kernel of the homomorphism/.

The quotient group G/K is isomorphic to G'. Indeed, the relation g,

which we define as

{(*,/(*)>!* C G/K],

is a function on G/K onto G' such that

g{xy) = g(xy) = f(xy) = f(x)f(y) = gix)g(y)-

That is, g is an isomorphism. Further, if p is the natural mapping on G

onto G/K, then / = g ° p. That is, any homomorphic image of a group

G can be duplicated to within an isomorphism by some quotient group

of G. We state our results in our next theorem.

THEOREM 5.2. If G is a group and K a normal subgroup, then

the quotient group G/K is a homomorphic image under the natural

mapping on G onto G/A. Conversely, it the group G' is a homomorphic

image of G, then those elements which are mapped onto 1 determine

a normal subgroup A of G and G/K is isomorphic to G'

.

If /: G — G'

is the given homomorphism, then / = g ° p where p is the natural

mapping on G onto G/K and g is an isomorphism of G/K onto G'.

EXAMPLES
5.6. We illustrate the above theorem by using it to derive again Theorem 4.4

concerning the structure of cyclic groups. Let G be a multiplicative cyclic group

generated by a. The mapping m am is a homomorphism of the additive group

of integers onto G. Hence G is isomorphic to Z/K, where K is the kernel of the

homomorphism and, in particular, a subgroup of Z. Now it is easily proved that

the only subgroups of Z are the cyclic groups [w]. If A = [0], then m —>- am is

an isomorphism and G is isomorphic to Z. Otherwise G is isomorphic to Z/\n\,

a cyclic group of order n. It follows immediately that two cyclic groups are iso-

morphic if they have the same order. For this reason it is common to speak of

“the” cyclic group of infinite order and “the” cyclic group of order n.

5.7. Every subgroup of a commutative group is normal and consequently

determines a quotient group. Thus, the subgroup R 4 ol all positive real num-

bers of the multiplicative group C* of nonzero complex numbers determines a

quotient group; C*/R+
is isomorphic to the additive groups of real numbers.

Again, the quotient group of C* modulo U, the subgroup of complex numbers
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of absolute value 1, is isomorphic to the multiplicative group R* of nonzero

real numbers.

5.8. We note that with the above theorem a homomorphism can be shown
to be an isomorphism by proving that its kernel is {1}.

5.9. If/: G G' is a homomorphism of the group G onto the group G'
,
then

/( 1) = V, the identity element of G' and f{a~
x

)
=

5.10. Suppose that G is a group, G' is a set in which a binary operation is

defined, and / is a mapping on G onto G' such that f(ab) = f{a)f{b). Then G'

is a group.

EXERCISES

5.1. Verify the relation (G\ K) =
(G : H){H\ K), given in the text.

5.2. Establish the two Corollaries to Theorem 5.1.

5.3. Prove the assertion made in the text that if G is a group and H is a sub-

group, then there exists a one-to-one correspondence between the left coset

decomposition of G modulo H and the right coset decomposition of G modulo H.

5.4. Let G be a group and H and K be subgroups of finite orders. Show that

if these orders are relatively prime, then H Pi K = {1}.

5.5. Let G be a group having Ii and K as subgroups. Show that any left coset

of II P K is the intersection of a left coset ofH and one of K. Use this to deduce

that if H and K have finite index in G then so has II P K.

5.6. Let II and K be two finite subgroups of a group G. Show that the subset

HK of G contains precisely (//: l)(/f: 1 ) / (// P K: 1) distinct elements.

5.7. Let G be a group having H and K as subgroups. Show that HK is a sub-

group iff HK = KH.
5.8. Supply the missing part of the proof of Lemma 5.1.

5.9. Let G be a group and II a subgroup. Under what circumstances is

xH Hx a mapping on the left cosets of H onto the right cosets of H?
5.10. Show that if for a subgroup H of a group G, g~ lHg C //, for all g in G,

then II is normal in G.

5.11. Show that if II is a subgroup of a group G
,
then g~ lHg, for g G G, is a

subgroup isomorphic to II. Let N = fl {g~ lHg\g C G} and show that N is a

normal subgroup of G, indeed the largest normal subgroup of G included in II.

5.12. Prove that if II is a normal subgroup of a group G
,

then

0aH)(bH

)

= abH.

5.13. Establish the assertions made in Example 5.5.

5.14. Let 5 be a collection of distinct subsets Si of a given group G with the

following properties.

(a) Every element of G is in at least one Si.

(b) No Si is a proper subset of an Sj.

(c) The product of any two members of JF is included in a member of £F.

Show that J is the coset decomposition of a normal subgroup of G.
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5.15. Let C* be the set of nonzero complex numbers z = re
2* 1

*, U be the set

of complex numbers of absolute value 1, and R, C, and R* have their usual

meanings. Investigate each of the following mappings—deciding which are

homomorphisms, which are isomorphisms, and so on.

(a) /: (R+ •, 1) (R, + , 0) where f(x) = In *,

(b) /: (C*, *, 1) *, 1> where /(z) = e
2irl

*,

(c) /: (R, +, 0) (U, •, 1) where f(<p)
= e

2iri
*,

(d) /: (C*, •, 1) <R+
,

•, 1) where /(z) = |z|.

5.16. If G is a group, elements of the form x~ly~ xxy are called commutators.

Prove that the subgroup C generated by the set of all commutators of G is a

normal subgroup, that G/C is Abelian, and, if N is any normal subgroup of G
such that G/

N

is Abelian, then C C7 N.

6 . Rings, Integral Domains, and Fields

A ring (with identity element) f is an ordered quintuple (R , +, •, 0, 1),

where R is a set, + and • are binary operations in R, 0 and 1 are dis-

tinct members of R, and the following conditions are satisfied.

Ri. (R, +, 0) is a commutative group (the additive group of the

ring).

R 2 .
(R, •, 1) is a semigroup with identity element (the multi-

plicative semigroup of the ring).

R3 . The following distributive laws hold

:

a(b + c) = ab + ac
,

(b T c)a = ba + ca.

EXAMPLES
6.1. The statement that (Z, +, •, 0, 1) is a ring summarizes many of the

basic properties of the system of integers. To be precise, it is a concise formula-

tion of properties (1
)—(5) , (7), and (8) in Theorem 3.3.1 of this system.

6.2. The system of rational numbers and that of the real numbers provide

further models of the theory of rings.

6.3. The set Z[V5] of all real numbers of the form m + n\
/
5, where m,

n GL Z, together with the familiar operations and 0 and 1, is a ring.

6.4. (Z r , +, •, 0, 1) (see Examples 3.2 and 3.3) is an example of a finite ring,

that is, a ring such that the basic set has a finite number of elements.

f The usual definition of a ring does not require the existence of an identity element.

However, since those rings which interest us have an identity element, we have incorporated

this requirement into our definition at the outset. The assumption that 0 and 1 are distinct

elements of R serves to rule out the extreme and trivial case of a ring such that R consists

of a single element.
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6.5. If (B , O,
/

, 0, 1) is a Boolean algebra, then it is possible to introduce

operations in B such that the resulting system is a ring. For addition in B we

choose the symmetric difference operation; that is, if a, b £ B, we define

a + b = {a Pi b') U (b H a).

For multiplication in B we take P| and henceforth use the customary ring

notation ab for a fi b. Then (B, +, •, 0, 1) is a rfcig. The reader is asked to

prove this and derive properties of such a ring in the exercises for this section.

Many of the computation rules of ordinary arithmetic carry over to

arbitrary rings. First of all, the definitions and properties in Section 2

pertaining to powers of an element and those pertaining to multiplica-

tion apply to the additive group and the multiplicative semigroup,

respectively, of any ring. In addition to the earlier rules for multiples

we have the rules

(7) n(ab) = a{nb) =
(na)b

.

These follow from the general distributive laws

a 2”=1 bi = 2”=1 abi, (2?=1 b t) a = 2?=1 b {a,

which, in turn, are easily proved by induction. We call attention to the

fact that the multiple na of a ring element a should not be confused

with a ring product. Flowever, since we are assuming that a ring always

has an identity element, we can write

na = la + \a + • •
• + lfl(« summands) = (1 + 1 + •

• + 1 )a = (n\)a

and the last is a product.

The distributive laws hold for subtraction in a ring:

(2) a{b — c) = ab — ac, (b — c)a = ba — ca.

To prove, for example, the first of these, we must show that a(b — c) +
ac = ab. But this follows directly from the first distributive law in R 3 ,

since (b — c) -f c = b.

For b = c identities (2) yield the following important properties of

the ring element 0:

(3) aO = 0a = 0,

for all a in R. In particular, 0a is equal to the ring element 0 whether

“0” in 0a is the ring element or the natural number zero.

If in (2) we set b = 0, we get

ai^— c) = —ac, (
— c)a = —ca,
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and if in the first of these identities we replace a by —a we obtain

(
— a)( — c) = —( — a)c = ( a)c, whence

( — a)( — c) = ac.

An element a of a ring 7?f is called a left (or right) zero-divisor

if there exists in R an element b 9^ 0 such that ab = 0 (or ba = 0 ).

By (3) the element 0 is both a left and right zero-divisor, since by as-

sumption our rings contain more than one element. A proper zero-

divisor is a zero-divisor which is different from 0 . A ring has a proper

zero-divisor iff it contains a pair a, b of nonzero elements such that

ab = 0 . We shall say that a ring is without zero-divisors if it has no

proper zero-divisors.

Since an element of the ring R is an element of the semigroup (R,

,

1 ),

the definition of an inverse of a ring element is at hand. A ring element

is called a unit if it has an inverse. According to Section 2
,

if a has an

inverse, it is unique; the inverse of a will be denoted by a~ l
. Again ac-

cording to Section 2
,

if a and b are units then also a
-1 and ab are units,

which implies that the set of units of a ring form a group. The element 0

is not a member of the group of units of a ring since for every element a

in 7?, tfO = 0a = 0 5^ 1

.

Various specialized types of rings are obtained by imposing condi-

tions on the multiplicative semigroup at hand. For example, a ring is

said to be commutative if its multiplicative semigroup is commutative.

A commutative ring R (with identity element) having no proper zero-

divisors is called an integral domain. The latter condition means

simply that the set R* of nonzero elements of R is closed under multi-

plication. A ring R is called a division ring (or skew field) iff R* is

closed under multiplication and ( 7?*, *, 1) (where now the domain of •

is restricted to R* X R *) is a group. Finally, a division ring is called a

field if multiplication is a commutative operation. Referred back to the

definition of a ring, the field (R , +, •, 0, 1) is a ring such that the set

R * = R —
(0j is closed under multiplication and (R*, *, 1 ) is a com-

mutative group.

EXAMPLES
6.6. For any ring R we now define the ring 7t*

(2) of 2 X 2 matrices with ele-

ments in R. The elements of 7? (2) are all arrays or matrices

a 12

flo
t

floo

f Henceforth we shall often call the ring (R, +, 0, 1) simply ‘‘the ring /?.”
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of two rows and columns with elements aij in the ring R. The element a,j

located at the intersection of the zth row and 7th column of (a ) will be called

the z,/-element of (a). Two matrices (a) and (b) are defined to be equal iff

a ij
= bij for all z and 7. Addition of matrices is defined by the formula

/a 11 tf]2\
,

/b 11 /?i2\ _ /flu + bn #12 T* b)2

\ Z?2 i <222 / \^21 ^22 / \<?21 + ^21 0-22 + b22

It is easily proved that (R (2)
, + ,

0 ), where 0 is the matrix all of whose elements

are 0
,

is a commutative group. The negative of (a) is the matrix having —an
as its z,/-element. Multiplication of matrices is defined by the formula

/an #i2\ / bn ^i2\ _ / <211^11 T #12^21 ^11^12 T <212^22

\fl21 #22/ \^21 ^22/ \ #21^11 ~b <222^21 <221^12 T <222^22

That is, the i
,
/-element of the product is the sum of the products of the elements

of the zth row of (a) and the corresponding elements of the 7th column of (b).

The matrix

1

0

1

is an identity element for this operation and (R (2)
,

‘, 1 ) is a semigroup (see

Exercise 2 .4 ). Further, the distributive laws R 3 hold, so R (2>
is a ring. This ring

is not commutative, since

The second equation exhibits two proper zero-divisors in R (2)
.

6 .7 . A characterization of integral domains among commutative rings can

be given in terms of the (restricted) cancellation law for multiplication:

ac = be and c 7^ 0 imply that a = b.

Indeed, if for elements a, b, and c in any ring without zero-divisors, ac = be

and c 7^ 0
,
then (a — b)c = 0 where c ^ 0 . It follows that a — b = 0

,
whence

a = b. Conversely, if the above cancellation law holds in a ring, then ab = 0

and b ^ 0 imply that ab = 0b and b ^ 0, whence a = 0. In summary, a com-

mutative ring is an integral domain iff the cancellation law for multiplication

holds.

The system of integers is an integral domain. This statement summarizes

parts (l)-(9 ) of Theorem 3 . 3 . 1 .

6.8. A ring R such that every element is idempotent (a
2 = a ) is commutative

and each element is equal to its negative. To prove this we notice that for all

elements a and b of such a ring

a -f- b = {a T b) 2 = a 2 T ab + ka -f- b 2 = a -f ab + ba + b,

whence

(d) ab T ba = 0.
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Setting b — a in this identity yields the identity a 2 + a 2 = 0. Since a 2 = a, it

follows that a + a = 0 or, in other words, each element is its own negative. In

particular, the negative of ab is ab and this fact, together with (4), implies that

ab = ba, thereby completing the proof.

6.9. The ring Z n of integers modulo n is a field if the modulus is a prime (see

Example 3.3).

6.10. According to Theorem 3.4.1 the system of rational numbers is a field.

This is a restatement of parts (1)-(10) of that theorem. According to Theorem
3.6.1,

the system of real numbers is a field.

EXERCISES

6.1. Show that in the definition of a ring R (with identity element 1) the

requirement that 0^1 may be replaced by the requirement that R contain

an element different from 0.

6.2. Prove that the set Z[V5] of all real numbers of the form a -fi b^/5

where a, b © Z, together with addition, multiplication, 0, and 1, is a ring.

6.3. Which of the following sets, together with addition, multiplication, 0,

and 1, is a ring?

(a) The set of all real numbers of the form a + b^/2, where a, b G Z.

(b) The set of all real numbers of the form a T b^/2 TrV7
4 where a, b,

c c z.

(c) The set of all rational numbers which can be expressed in the form m/n,

where m is an integer and n is a positive odd integer.

6.4. Suppose that (R, +, •, 0, 1) is a ring and that in R we introduce new
operations © and O by way of the following definitions.

a®b = a-\~b — l,aOb = a-\~b — ab.

Show that (R, ©, O, 1, 0) is a ring. Describe the ring which results from this

ring if new operations are introduced in R by repeating the same definitions.

6.5. Referring to Example 6.5, prove that
(
B

, +, *, 0, 1) is a ring, all of

whose elements are idempotent.

6.6. By a Boolean ring is meant a ring (with identity), all of whose elements

are idempotent. According to Exercise 6.5, a Boolean algebra determines a

Boolean ring. Using the results in Example 6.8, show that, conversely, a Boolean

ring determines a Boolean algebra upon defining

aVJb = a-\~b-\~ ab
,
a Pi b = ab.

Further, show that the processes of deriving a Boolean algebra from a Boolean

ring and of deriving a Boolean ring from a Boolean algebra are inverses of each

other. Thereby a one-to-one correspondence between Boolean algebras and
Boolean rings is established, a result which was first proved by Stone (1936).

6.7. Prove that a finite integral domain is a division ring.
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6.8. Referring to Example 6.6, prove that if R is a commutative ring and

(a){b )
= 1 for (a), (b) C Rw

,
then (b){a )

= 1.

6.9. We assume it known that the set C of complex numbers forms a field.

Show that the set of all matrices of C (2) having the form

where x is the complex conjugate of x, forms a division ring which is not a field.

6.10. If a is a ring element, then an element b of that ring, such that ab = 1,

is called a right inverse of a. Prove that the following conditions on a are equiv-

alent.

(a) a has more than one right inverse.

(b) a is not a unit.

(c) a is a left zero-divisor.

6.11. Prove that if a ring element has more than one right inverse, then it

has infinitely many. {Hint: Consider the set of ring elements b + (1 — ba)a n
,

where ab = 1 and n = 0, 1, 2,
• • •.)

6.12. Prove that a ring R is an integral domain iff for all a
,

b
,
and c in R

and b 0, ba = cb implies that a — c.

7. Subrings and Difference Rings

A ring S is a subring of a ring R iff S C R and the restriction of addi-

tion and multiplication in R to S X S are equal, respectively, to addi-

tion and multiplication in S. Having chosen to restrict our attention to

rings with an identity element, we shall insist further that a subring S

of a ring R contain an identity element. It follows that if a subset S

of a ring R is a subring, then (see the Corollary to Theorem 4.1) it

must satisfy the following conditions.

(i) If a, b G S
,
then a — b £ S.

(ii) If a, b C S, then ab C S.

(iii) There exists an element l s in S such that \ sx = x\ 8 = x for all *

in S.

Conversely, it is clear that these conditions are sufficient to insure that

a subset S of a ring R form a subring.

It is possible for the identity element l s of a subring S to be different

from the identity element 1 of R (see Example 7.4 below). In that event

l a is a zero-divisor of R. For by assumption there exists in R an element a

such that 1 aa — b 9̂ a. Since

1 8b = 1,(1,a) = 1 8a = b,
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it follows that 1 sa = 1 sb, and hence 1 8 (a - b) = 0. Thus, l s is a (proper)

zero-divisor of R since a ^ b. As a corollary there is the fact that if R

is an integral domain, then the identity element of a subring is neces-

sarily the identity element of R.

A field S is a subfield of a field F iff S C F and the restriction of addi-

tion and multiplication in F to S X S are equal, respectively, to addition

and multiplication in S. Since a field is an integral domain, the identity

element of S is the identity element of S. This also follows from the fact

that the multiplicative group of S must be a subgroup of the multiplica-

tive group of F. This condition, together with the condition that S be

a subgroup of the additive group of F, characterizes the notion of a sub-

field. Hence, S is a subfield of F iff the following conditions hold.

(i) a, b G S imply that a — b G S.

(ii) #, b C S and b 9^ 0 imply that ab~ l G S.

EXAMPLES
7.1. The set of all matrices in R (2) (see Example 6.6) of the form

e °)

determines a subring of R (2)
.

7.2. The field of rational numbers is a subfield of the field of real numbers.

7.3. The intersection of any nonempty collection of subfields of a field F is a

subfield of F.

7.4. Let A and B be rings with identity elements \a and 1 b, respectively, and

let R be the set of all ordered pairs (a, b) where a C A and b G B. We define

operations in R as

(a, b) + (a', b') = (a + a', b + b'),

(a, b)(a b') = (aa bb').

It is an easy calculation to prove that R is a ring having (Ti, 1#) as identity

element. Further it is clear that Ra = {{a, 0)|a G 4} is a subring of R having

(1,4, 0) as identity element. Thus the identity element of Ra is distinct from

that of R.

The definition of a congruence relation for an algebra (Section 1)

takes the following form in the case of a ring. A congruence relation 6

on a ring R is an equivalence relation on R such that for all a
,
b

,
and c

in R
,

(C B) a 0 b implies that c + a 6 c + b,

(C„,i) a 6 b implies that ca 0 cb,

(C mT) a 6 b implies that ac 6 be.
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The right-hand analogue of (C a) is superfluous since addition is com-

mutative. The condition that multiplication preserve equivalent ele-

ments has been written in two parts for easy reference. Now (C a) means

that 0 is a congruence relation on the group (R, T, 0). Hence, (i) 0 deter-

mines (and, is determined by) the subgroup S =
{
s G R\s 0 0} of R (see

Example 5.3), (ii) a 0 b iff a - b G S, and (iii) 0-equivalence classes are

left ( = right) cosets a + S of S in R. Addition can be defined in R/S in

terms of representatives [that is, (a + S) -f (b + S) = {a + b) + .S’] and

(Cm i) and (C mr) are additional necessary and sufficient conditions that

multiplication can be defined similarly. Let us translate these into condi-

tions for S. From (Cm i) we infer that if r G R and s (7 S, then rs G S
,

since s C S means s 6 0, and hence rs 0 rO or rs 0 0. Conversely, if a

subgroup S' of R has the property that r G R and s G S imply that

rs' G S', then the additive congruence relation 6' which S' determines

satisfies (Cm i), since if a 6'b then, in turn, a — b G S', c{a — b) G S',

ca - cb G S', ca 6 'cb. Similarly, (C mr)
holds for a relation 0 which sat-

isfies (C a) iff the subgroup S corresponding to 0 has the property that

r G R and s G S imply that sr G S. There follows the existence of a

one-to-one correspondence between the congruence relations on R and

the subgroups S of the additive group of R such that r G R and s G S

imply that rs
,
sr G R-

A subset S of a ring R such that A is a subgroup of the additive group

of R and, for all r in R and s in S, both rs and sr are in S, is called an

ideal of R. Thus, a nonempty subset S of R is an ideal ill

(i) s G S and t G S imply that s — t G S,

(ii) s G S and r G R imply that rs, sr G S.

The results obtained above may now be summarized by the statement

that the congruence relations on R are in one-to-one correspondence

with the ideals of S. As one might suspect, ideals are the analogue ior

rings of normal subgroups for groups. Every ring R has at least two

ideals, namely, the entire ring and {0}. The ideal R ol R corresponds

to the universal relation on R and the ideal [0] corresponds to the

equality relation on R.

EXAMPLES
7.5. If R is a commutative ring (with identity element) and a G R, then

Ra = [ra\r G R} is an ideal called the principal ideal generated by a. Since

R = R\ and {0} = R0, both R and {0} are principal ideals.

7.6. A field F has only two ideals, F and {0}, for if I is an ideal of F and
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I ^ {0}, then I contains a nonzero element a and hence I contains a~ 1a = 1,

whence I = F.

7 .7 . If a commutative ring R has only two ideals, then it is a field. For let a

be a nonzero element of R and consider Ra. This principal ideal contains

1 a = a and hence is different from {0} ;
hence, it is equal to R. But this implies

that the equation xa = 1 has a solution for every a 0.

7.8. We recall that in Section 6.4 we defined the notion of an ideal of a

Boolean algebra. It is left as an exercise to prove that the ideals of a Boolean

algebra B coincide with the ideals of the corresponding Boolean ring B (see

Exercise 6.6).

Now we can get to the whole point of this discussion. Let R be a ring

and S be an ideal of R which is distinct from R. Then we know that

operations can be introduced in R/S, the collection of cosets a + S of S

in R (that is, the ^-equivalence classes where d is the congruence rela-

tion corresponding to S) by the following definitions:

(a + S) + (b + S) = (a + b) + S,

(a + S)(b +S) = ab +S.

Further, we know that (R/S, + ,
S) is a commutative group. Also, since

S 9̂ R by assumption, 1 + S ^ S and 1 + S is an identity element for

multiplication. Finally, it is a straightforward exercise to prove that

(R/S, + ,
•, S, 1 + S) is a ring, the so-called difference (quotient,

residue class) ring of R modulo the ideal S.

EXAMPLES
7.9. It is an easy matter to determine all ideals of the ring Z of integers.

Since an ideal of Z is a subgroup of (Z, +, 0) it has the form [r], that is, the set

of all multiples of r (see Section 4). But it is clear that each such subset is an

ideal, indeed, the principal ideal Zr. (That is, Zr in ring notation is [r] in group

notation.) Since Zr = Z
(— r), it follows that Zr for r = 0, 1, 2,

• •
• exhaust the

ideals of Z. The difference ring Z/Zr is Z if r = 0. Since Z1 = Z we exclude the

value 1 for r. If r > 2, Z/Zr has r elements

0 = Zr, I = 1 + Zr, • •
•, 7~=1 = r - 1 + Zr.

This is the ring we denoted by Z n earlier.

If r is a composite number, say r = mn with m > 1 and n > 1, then m ^ 0

and n ^ 0, but mn = f = 0. This shows that Z/Zr is not an integral domain if

r is composite. On the other hand, if r is -a prime then we know (see Example

3.3) that Z/Zr is a field.

7.10. Some properties of rings carry over to each of their difference rings.

For example, if R is a commutative ring then R/S is commutative. But if R is an
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integral domain, then the same need not be true of a difference ring, as the

preceding example shows.

A homomorphism of a ring R onto a ring R' is a mapping / on R

onto R' such that for all x and y in R,

fix +y) = fix) +f{y),fixy) = fix)fiy).

If there exists a homomorphism of R onto R ', then R' is called a homo-

morphic image of R. A homomorphism of R onto R' which is one-to-

one is called an isomorphism and R' is called an isomorphic image

of R. If / is an isomorphism of R onto R', then /
-1

is an isomorphism of

R onto R' and hence each ring is an isomorphic image of the other. In

this event we shall refer to R and R' simply as isomorphic rings. By

virtue of the definition of operations in a difference ring it is clear that a

difference ring R/S of a ring R is a homomorphic image under the

natural mapping a —

a

+ .S’ on R onto R/S.

We go on to show next that, conversely, every homomorphic image

of a ring R is isomorphic to a difference ring of R. Let /: R —*- R' be a

homomorphism of the ring R onto the ring R'

.

Then / is a homomor-

phism of the additive group R onto the additive group R', and hence

(Theorem 5.2) if S is the kernel of / (thus S is the inverse image of the

zero element of R'), f = g 0 p, where p is the natural map on R onto

(the additive group) R/S and g is an isomorphism of R/S onto R'

[indeed, g{a + S) = f(a)]. The further property of /, that it preserves

multiplication, implies that S is an ideal of R. Indeed, if r £ R and

s C S, then f(rs) = f{r)f(s) = f(r) O' = O', whence rs £ S. Similarly, if

r £ R and s £ S, then sr £ S. Hence, g establishes R' as an isomorphic

image of R/S. We summarize our results in the next theorem.

THEOREM 7.1. The difference ring R/S of the ring R modulo

the ideal S of R is a homomorphic image of R. Conversely, any

homomorphic image of R is isomorphic to the difference ring R/S,

where S is the kernel of the homomorphism regarded as a homomor-

phism of the additive group R.

We conclude this section with the introduction of some terminology

which will have applications later. A ring R is said to be imbedded

in a ring S if S includes an isomorphic image R' of R. If R is imbedded

in S then S is called an extension of R. If R is imbedded in S it is possible

to construct a ring isomorphic to S which actually includes R as a sub-

ring. One rarely bothers to do this, however, since usually it is not
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necessary to distinguish between isomorphic rings. Instead, one Cw
iden-

tifies” R with R' which, practically speaking, means that henceforth

one regards S as actually including R. Alternatively, one can think ol

discarding /?, using R' in its place, and appropriating the names of

elements of R for use as names of the respective image elements in S.

It was this latter point of view which was adopted in Chapter 3 in the

successive extensions of the natural number system to the real number

system.

EXERCISES

7.1. Prove that the intersection of a nonempty collection of subfields of a

field F is a subfield of F.

7.2. If a and b are distinct elements of a field F
,
we define a new addition

© and a new multiplication O in Fas

x ® y = x -\- y — a, x O y = a (x — a)(y — b)(b — a)~ l
.

Prove that (F, ©, O, a, b) is a field.

7.3. Prove the assertion made in Example 7.8.

7.4. Prove that under a homomorphism the zero and identity element of a

ring map onto the zero and identity element, respectively, of the image ring

and that negatives map onto negatives.

Remark. For the remaining exercises assume that the definition of a ring is

modified by discarding the requirement that an identity element be present.

Then, for example, the set of even integers forms a ring. Further, assume that

by an integral domain is meant simply a ring (in the above sense) with no proper

zero-divisors.

7.5. Show that a ring A can be imbedded in a ring with identity element.

Hint: In B — Z X A introduce the operations

(m ,
a) + (n ,

b) = (m + n, a -f b ),

(m ,
a)(n, b) = (mn ,

na + mb + ab ),

where na and mb are the nth multiple of a and the /nth multiple of b
,
respectively.

Prove that B with these operations forms a ring having (1, 0) as identity element

and that A is imbedded in B.

7.6. If the ring A of Exercise 7.5 is an integral domain, then the ring B need

not be an integral domain. Establish this fact by taking for A the ring of even

integers.

Remark. The next three exercises are devoted to proving that it is possible

to imbed an integral domain in an integral domain with an identity element.

7.7. Let A be an integral domain containing elements a and b, with b ^ 0,

such that ab mb = 0 for some integer m. Prove that ca -f- me = 0 = ac -j- me

for all c in A.
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7.8. Let A be an integral domain and let B be the ring obtained from A and
Z by the construction of Exercise 7.5. The mapping on A into B such that

a -+•
(0, a) demonstrates that A is imbedded in B and the mapping on Z into

B such that m (m, 0) demonstrates that Z is imbedded in B. Let us identify

A with its image and Z with its image. That is, we shall write simply a for

(0, a) and m for (m, 0). Then, by virtue of the definition of addition in B
,

B = {m -f- a\m CL Z and a CL A } . Show that C — {b C B\ba = 0 for all a CL A}

is an ideal of B and that B/C is an integral domain with identity element.

7.9. Prove that the set A' = [a T C CL B/C\a C A} forms a subring of B/C
isomorphic to A.

8. A Characterization of the System of Integers

The statement that the system of integers is an integral domain sum-

marizes many properties of, but does not characterize, this system.

The latter assertion is substantiated by the existence of finite integral

domains (see Example 6.9). An additional property of Z, which one

might at least suspect would serve to distinguish it among integral do-

mains in general, is the presence of a simple ordering relation which is

preserved under addition and under multiplication by positive integers.

Since this ordering relation can be formulated in terms of the set of

positive integers it is natural to consider integral domains which include

a distinguished subset having properties (1 1
)— (1 3) of Theorem 3.3.1,

in connection with an attempt to characterize the system of integers.

This is the motivation for our next definition.

An ordered integral domain is an integral domain D which includes

a subset D+ with the following properties.

01. If a, b CL then a + b CL D+
.

0 2 . If a, b C then ab C D+
.

0 3 . For each element a of D, exactly one of a = 0, a CL

—aC holds.

The elements of Z)+ are called the positive elements of D. The elements

a such that —a CL D+ are called the negative elements of D. Further,

the members of D U } 0 }
are called the nonnegative elements of I).

The relation less than, symbolized by <, is defined in an ordered

domain by

a < b iff b — a C C>+ .

As usual, a < b means that a < b or a = b and b > a means that

a < b. It is clear that a > 0 iff a CL C) v and that a < 0 iff —a CL In
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terms of less than, properties O1-O3 of D can be restated in the following

Oi. If a > 0 and b > 0, then a + b > 0.

Oo. If a > 0 and b > 0
,
then ab > 0 .

0 3 . If a C D, then exactly one of a = 0, a > 0, a < 0 holds.

Additional properties of less than include the following.

04 . If a < b and b < c, then a < c.

05. For all a and b in D, exactly one of a < b, a = b, b < a holds.

O e . If a < b, then a + c < b + c.

0 7 . If a < b and c > 0, then ac < be.

O s . If a 0
,
then a 2 > 0 .

To prove 0 4 let us assume that a < b and b < c. Then b — a and c — b

are positive, and hence, by Oi, so is their sum c a. But this means

that a < c. Proofs of O5-O7 are left as exercises. To prove 08 let us

assume that a 9^ 0. By O3 ,
either a > 0 or a <C 0. If a > 0, then a > 0

by 02 . If a < 0, then -a > 0 and (-a) 2 > 0, by 02 . But (- a )
2 = a 2

for any ring element. So, in all cases, if a 9^ 0 then a 2 > 0.

From 04 and 05 it follows that less than is irreflexive and transitive

and hence < is a partial ordering relation. Supplementing this observa-

tion with 0 5 ,
06 ,

and 0 7 ,
we infer that < is a simple ordering relation

which is preserved by addition and by multiplication with positive ele-

ments. It is left as an exercise to show that, conversely, it D is an integral

domain which is endowed with a simple ordering relation ^ which is

preserved under addition and under multiplication by elements a such

that 0 < a, then D is an ordered domain.

At this point the reader who has studied Chapter 3 will recognize

that we have established for the ordering relation in an arbitrary ordered

domain all but one of the properties which we proved for the ordering

relation in Z. The exception is concerned with the well-ordering of the

nonnegative elements.

We continue to imitate the developments in Chapter 3 by defining

the absolute value ol an element .v oi an ordered domain as

It is left as an exercise to prove that the absolute value function on an

form:

x, if x > 0
,

— .v, if .v < 0 .
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arbitrary ordered domain has all the properties which hold in the case

of familiar ordered domains (see Theorem 3.4.4).

If D and D' are ordered domains and / is a one-to-one mapping

on D onto D' which preserves addition and multiplication and maps

positive elements onto positive elements, then / is called an order-

isomorphism of D onto D' . It is left as an exercise to prove that an

order-isomorphism / of D onto D' does preserve ordering, that is,

* < y iff/O) < /O'),

and that f~
l

is an order-isomorphism of D' onto D. If there exists an

order-isomorphism of D onto D' we shall say that D is order-isomorphic

to D' or that D and D' are order-isomorphic. Illustrations of order-

isomorphisms occur in Chapter 3, where we proved that Z is order-

isomorphic to a subset of Q and, in turn, that Q is order-isomorphic

to a subset of R. Further, if we stretch the basic definition under con-

sideration a little, we can reformulate Theorem 2.1.8 in terms of an

order-isomorphism.

We turn now to the derivation of certain structural properties of

ordered domains which yield as a by-product a characterization of the

ordered domain of integers. In preparation for the first result the reader

should review the discussion of integral systems in Section 2.1.

THEOREM 8.1. An ordered domain D includes a unique subset

consisting of 0 and positive elements which, together with the func-

tion s such that xs = x + 1 and 0, forms an integral system.

Proof. Setting D0 = {0} U D+,
we note that (i) 0 G Do, (ii) * G D0

implies that G D0 ,
(iii) xs ^ 0 for all x in D0 ,

and (iv) xs- = ys

implies that x = y. Hence, (D0 ,
s

, 0) is a unary system which satisfies

condition R (that is, j- is a one-to-one mapping on D0 into D0 — { 0 }

)

for an integral system. Hence the collection D of all subsets of Z) 0 ,

which together with i and 0 satisfy R, is nonempty. Let ND be the

intersection of the collection £). Then (ND ,
s

, 0) is a unary system

satisfying R. We claim, further, that (ND ,
s

, 0) satisfies I 2 ,
and there-

fore is an integral system. To prove this, consider any subset M of ND

such that 0 G Tf, and if * G M then xs G M. Clearly, M G £> and

therefore Nd Q A/, whence M = No-

To prove the uniqueness of ND suppose that I is a subset of D
consisting of 0 and positive elements and such that (/, s, 0) is an inte-

gral system. Then I G 3D and so Nd Q /• Since 0 G Nd and x G ND

implies that xy G ND ,
it follows that ND = L
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Since for the integral system (AT, s, 0) defined in the above theorem,

addition, multiplication and less than satisfy the defining properties of

addition, multiplication, and less than, respectively, in N, it follows

from Theorem 2.1.8 that an ordered domain D includes a unique sub-

system which is order-isomorphic to the system of natural numbers.

This is not the end of the matter. In order to state the final result it is

convenient to make a definition. If D is an integral domain and E is

a subring of D, then it is clear that E is an integral domain which we

shall call a subdomain of D. If D is ordered, then so is E. I he refinement

of the preceding theorem can now be stated as

THEOREM 8.2. An ordered domain D includes a subdomain

order-isomorphic to Z.

Proof. Let AT be the subsystem of D which is order-isomorphic to

the system of natural numbers. If a, b G AT, then D contains a — b,

the solution of x + b = a. Let Zd = [a — b\a, b G AT}- Then lor all

a — b, c — d £ ZD ,

(7) a — b — c — d iff a + d = b + c,

(2) (a — b) + (c — d) = {a + c) — (b + d),

(3) (a — b)(c — d) = (ac + bd) — {ad + be).

(4) 0 < a — b iff a — b EL AJD — { 0 j

.

Recalling the definition of an element of Z (see Section 3.3), it follows

from (7) that if a, b £ AT and a a and b b' under the isomor-

phism between ND and N, then the correspondence a — b [{a', b')]i

is a mapping on Zd into Z. Indeed, it is seen immediately that this

is a one-to-one and onto mapping. Moreover, (2) and (3) imply

that this mapping preserves operations, and (4) implies that positive

elements map onto positive elements, whence order is preserved. In

summary, Zd is orcler-isomorphic to Z.

THEOREM 8.3. An ordered domain D with the property that

the set Do of nonnegative elements of D is well-ordered is order-

isomorphic to Z.

Proof. Again let AT be the subsystem of D which is order-isomorphic

to N. We shall prove first that, by virtue of the added assumption,

AT exhausts the set Do of nonnegative elements of D. Indeed, as-

sume to the contrary that Do — AT ^ 0- Then this is a set ol posi-

tive elements and has a least member a. Now a Z 1 (since 1 C AT),

so a > 1 since 1 is the least positive element in D (see Exercise 8.5

in this section). Then a — 1 £ Do — A d, since if a — 1 C Ac then
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{a — 1) + 1 = a d Nd, contrary to the choice of a. However, since

a = (a — 1 ) + 1 and 1 > 0, it follows that a — 1 < a and this con-

tradicts the fact that a is the least element of 79,
,

— Nd. Thus, the

assumption that /9 0
— ND is nonempty leads to a contradiction, so

we may conclude that 79,, = ND .

According to Theorem 8.2, 79 includes along with Nd an ordered-

domain ZD which includes ND and is order-isomorphic to Z. Our
proof is completed by showing that ZD exhausts 79. For this we use

the fact that if d d 79, then exactly one of d = 0, d > 0, d < 0 holds.

In the first two cases d d ND while in the last —dd ND ,
and therefore

-(-d) = dd ZD . Thus, 79 = ZD .

As we learned in the foregoing theorem, the system of integers may
be characterized to within isomorphism as the only ordered domain

with the property that the set of its nonnegative elements is well-

ordered. What amounts to the same, the fourteen properties of Z listed

in Theorem 3.3.1 characterize Z to within an order-isomorphism.

EXERCISES

8 . 1 . Prove properties O5-O 7 of the ordering relation in an ordered domain.

8.2. Let 79 be an integral domain in which there is defined a simple ordering

relation < such that if a < b then a + c < b -f- c and if a < b and c > 0 then

ac < be. Prove that 79 is an ordered domain.

8.3. Let D be an ordered domain. Prove the following properties of the

absolute value function on 79.

(i) \a + b\ < |o| +
|

6 |.

(ii) \ab\ = |tf|| 6 |.

8.4. Prove that if 79 and 79' are ordered domains and / is an order-iso-

morphism of 79 onto 79', then f[D+ ] = (79')+
, / preserves ordering, and /

-1
is

an order-isomorphism of 79' onto 79.

8.5. Let 79 be an ordered domain whose nonnegative elements form a well-

ordered set. Prove that 1 is the least positive element of 79.

8 . 6 . Prove that a z = b z implies that a — b in an ordered domain.

8.7. Prove that the cancellation law for multiplication can be deduced from

the other assumptions for an integral domain if the domain is ordered.

8 . 8 . In an ordered domain prove that a~ — ab + b
2 > 0 for all a and b.

9. A Characterization of the System of

Rational Numbers

In Section 6 a field was defined as a ring F such that the set F* of

nonzero element is closed under multiplication and (F •, 1) is a com-
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mutative group. The latter condition implies that each equation of the

form bx = a
,
with both a and b nonzero has a unique solution, namely

b~ la (= ab~ l

). We shall also designate this element by

7 or a/b.
b

The equation bx = 0 with b 0 also has a unique solution, namely,

x = 0, since b is not a zero-divisor. For this reason we make the defi-

nition

J (= 0/b) =0 if b ^ 0.
b

Computations with field elements written in the form a/b may be car-

ded out exactly as with elements of the field of rational numbers. For

example,

J_ = b^

a a

b

a
,

c _ ad -f be

! ~d bd

a c _ ac

i d bd

The first of these, for instance, is simply the identity (ab~
l)~ l = a~ lb

written in the new notation.

Another important rule is the following:

7 = - iff' ad = be.
b d

To prove this let us assume first that a/b = c/d, that is, that ab~ l = cd~\

Multiplication by bd yields ad = be. Conversely, if ad = be, then multi-

plication by b~ ld~ l gives ab~ l = cd~ l or, otherwise expressed, a/b = c/d.

Since our only concern with the theory of fields is to obtain a char-

acterization of the field Q of rational numbers, we turn directly to a

consideration, in abstract form, of the relationship of Q, to the ring Z
which was used to construct Q. The obvious feature of this relationship

is that Q is an extension of Z in which division by nonzero elements

can be carried out (that is, the equation bx = a has a solution for b ^ 0).

What conditions if any, we ask, must a ring R satisfy in order that there

exist an extension of R in which division by nonzero elements can be

carried out? In other words, what rings can be imbedded in some field?
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Obvious necessary conditions are that the ring be commutative and

that it have no proper zero-divisors. Collectively, these conditions mean

that the ring is an integral domain. We shall prove that, conversely,

these conditions are sufficient.

Although there is no reason to separate the finite case from the infinite

one in proving that an integral domain can be imbedded in a field,

it is worthy of note that there is nothing to prove in the finite case,

since a finite integral domain is a field (see Exercise 6.7). Further, we

argue, the proof which must be supplied in the infinite case has already

been given. Indeed, if the construction in Section 3.4 of the field of

rational numbers from Z is reviewed, suppressing all mention of posi-

tive elements and positiveness, it will be found that only properties of Z

as an integral domain are employed. That is, the construction described

in Section 3.4 may be carried out starting with any integral domain D
and the result is a field Qd [that is, a system having properties (1)-(10)

of Theorem 3.4.1 ], which includes an isomorphic image of D. We inter-

rupt our discussion to state this as our next theorem.

THEOREM 9.1

.

An integral domain can be imbedded in a field.

The extension QD of an integral domain D which is secured by the

construction in Section 3.4 is called the field of quotients (or quotient

field) of D. An element of QD is an equivalence class of ordered pairs

(a, b), where a, b £ D and b ^ 0 and the subset of QD which is iso-

morphic to D consists of those equivalence classes having representatives

of the form (a, 1). The isomorphism in question maps a onto [(a, 1)].

We shall identify a and [(a, 1)] which implies, since an arbitrary ele-

ment [(a, b)] of Qd can be written as [(<

a

, 1 )][(/>, 1)]
_1

,
that the elements

of Qd consist of all quotients a/b where a, b G D with b ^ 0 and

a/b = c/d iff ad = be.

The field Qd is the smallest field in which D is imbedded, in the sense

that any field F in which D is imbedded includes a subfield isomorphic

to QD . To prove this, let us assume that D is imbedded in F. We shall

prove that Qd is also imbedded in F. Eet O' be the isomorphic image

of D in F and consider the subset F' of F where

F' = {«'(£')“V, b' c D' and b' ^ Oj.

It is a routine exercise to prove that F' is a subfield of F. Assuming that

this has been done, we go on to show that F' is an isomorphic image of

Qd under the mapping / on Qd onto F' such that

f{a/b) = a\b')~\
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where x' is the image in D' of x in D under the given isomorphism of D
onto D'

.

From the definition of F', / is onto F'

.

Further, / is one-to-one

since if a'{b')~ l = c'{d')~ l then, in turn, ad.' — b'c'
,
ad = be

,
a/b = c/d.

Finally, we note that

a/b + c/d = {ad + bc)/bd {ad + bc)'{(bd)')~ l

= {ad’ + b'c'){b')-\dO"
1

= a'{b')~ l + c'{d')~ l

and

{a/b){c/d) = ac/bd-+ {ac)' {{bd)')~ l = a'c' {b')~ 1 {d')~ l

= {a’{b'rW(d')-')-

Hence, /is an isomorphism of Qd onto F'

.

A held is said to be an ordered field if, when considered as an integral

domain, it is an ordered domain. In the event that an integral domain D
is ordered, then its held of quotients, Qd, is an ordered held. That is,

Qd includes a subset Q/ which is closed under addition and multiplica-

tion and has the property that if v £ Qd, then exactly one of * = 0,

x £ Qi, —x £ Qd holds. Our candidate for Q/ is

{a/b C Qo\ab > 0}

.

It is closed under addition since if a/b, cjd £ Q/, then

{ad + bc)bd = abd2 + b
2cd > 0,

since ab > 0
,
cd > 0, and so on, whence a/b + c/d £ Qj. It is closed

under multiplication, since if ab > 0 and cd > 0, then abccl > 0. Finally,

it is immediately seen that if a/b £ Qd, then exactly one ot ab = 0,

ab > 0, ab < 0 holds. Hence, Q£ has the three required properties and

the held Qd is ordered.

We note that what we have done is to make use of the given ordering

of D to define an ordering of its quotient held. Since we have identihed

the element a in D with the element a/ 1 of Qd, it is clear that a is a

positive element of D iff a is a positive element of Qd. That is, our

ordering of the quotient held is an extension of the given ordering ol D.

We can prove further that the ordering which wc have introduced for

Qd is the only ordering which extends that of D. For this we recall that

in an ordered domain a nonzero square is always positive. If the quo-

tient a/b is positive, then the product {a/ b)b 2 = ab must be positive,

and conversely. Hence, in any ordered field,

a/b > 0 iff ab > 0.

This completes the proof of
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THEOREM 9.2. The quotient field QD of an ordered integral

domain I) is ordered upon defining a/b as positive if! ab is a positive

element of D. This is the only way in which the ordering ol D can

be extended to an ordering of Qd .

In an ordered field the relation of less than is defined as in any ordered

domain; that is, a < b iff b — a is positive. In addition to the properties

Oi-Os in Section 8, there are the following for the ordering relation of

an ordered held.

0 < 1 /# iff <2 > 0.

a/b < c/d iff: abd 2 < bhd.

0 < a < b implies 0 < \/b < 1 /a.

a < b < 0 implies 0 > \/a > 1 /b.

a\ + a\ + • •
• +a 2

n > 0.

Our next theorem yields a characterization of the field of rational

numbers.

THEOREM 9.3. An ordered field F includes a subfield order-

isomorphic to the field of rational numbers.

Proof. Since an ordered field is an ordered domain, Theorem 8.2

is applicable and we may conclude that an ordered field F includes

a subdomain D order-isomorphic to Z. From the argument after

Theorem 9.1 it follows that F includes an isomorphic image of the

quotient field of Z
;
that is, F includes an isomorphic image of Q.

This result gives a characterization of Q as the smallest ordered field

(to within isomorphism, naturally). The statement that Q, is an ordered

field summarizes properties (1)— (13) ol 1 heorem 3.4.1. I he ‘‘smallness
’

ofQ is the content of (1 4) of that same theorem.

If F is an ordered field, then the ordered subfield of F which is iso-

morphic to Q is called the rational subfield of F. It should be clear

that it consists of just those elements of F having the form

m 1 /n 1

,

where 1 is the identity element of F and m and n are integers with

n 9̂ 0.

We conclude this section with the introduction of one further notion

for ordered fields. The ordering of an ordered field F is said to have

the Archimedean property iff for every pair a
,
b of elements ol F with
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a > 0, there exists a positive integer n such that na > b. The origin of

this definition is the property of the ordered field Q, which is stated in

Theorem 3.4.3 and of the ordered field R stated in Theorem 3.6.3.

Although in the statement of Theorem 3.4.3, “wr” is interpreted to be

a product of field elements, such a product has an interpretation in

any field as an /2th multiple, and this is the interpretation intended in

the general case. Since in the case of Q the interpretation of nr as a

field product and as the /2th multiple of r coincide, the ordering of the

field of rational numbers has the Archimedean property in the sense

of the general definition.

If the ordering of an ordered field F has the Archimedean property,

we shall refer to F as an Archimedean-ordered field. If F is Archi-

medean-ordered, then its rational subfield is dense in F in the same

sense that is dense in R (Theorem 3.6.2). We prove this next.

THEOREM 9.4. If F is an Archimedean-ordered field and a and

b are in F and a < b, then there exists an element c of the rational

subfield Q of F such that a < c < b.

Proof. Consider first the case where a > 0 . Since b — a > 0
,
there

exists a positive integer n such that n(b — a) > 1, so

(/) nb > na + 1 .

Also, there exists a positive integer m such that ml > na. Supposing

m to be the smallest such positive integer,

ml > na > (m —
1 ) 1

,

since 1 is positive. In view of (7) it follows that

nb > (m — 1)1 +1 = ml > na.

Hence, b > ml/nl > a, which is the desired conclusion.

If a < 0
,
then there exists a positive integer p such that pi > — a

,

and then a + pi > 0. By the first part of the proof, there is an ele-

ment c in Q such that a pi < c < b pi - Hence, a < c — pi < b,

where c — pi £ Q.

EXERCISES

9.1. Prove those properties of less than which are stated immediately follow-

ing Theorem 9.2.

9.2. Prove that the positive elements of an ordered field are not well-ordered

by the given ordering relation.

9.3. Let P be the set of all sequences

(ak) = (a0,
0 i,

• •
*, 0n,

* • *)
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of rational numbers having only a finite number of nonzero members. We
define (ak ) = (bk ) iff ak = bk for all k. We introduce operations into P by the

following definitions:

(ak ) + (bk) = (sk) where sk = ak + bk ,

(ak)(bk) = (pk) where pk — 2 aibj.
i+j = k

(a) Prove that (P, + ,
•, 0, 1), where 0 = (0, 0,

• •
•, 0,

• • •) and 1 =

(1,0, • •
•, 0,

• •
•), is an integral domain.

(b) Defining P+ to be the set of all elements (ak ) of P such that the last non-

zero member of (ak) is a positive rational, show that P is an ordered

domain.

(c) Using Theorem 9.2, the quotient field Qp of P is an ordered field. Show

that this ordering does not have the Archimedean property by proving

that if x = (0, 1, 0,
• •

•, 0,
• •

•), then for no positive integer n is n\ > x.

9.4. Prove that the ordering of an ordered field F has the Archimedean

property iff for each element a of F there exists a positive integer n such that

n\ > a.

9.5. Prove that if F is an Archimedean ordered field, then for each element

a in F there exists a positive integer n such that — n\ < a and there exists a

positive integer n such that \/n\ < a if a is positive.

10. A Characterization of the Real Number System

An ordered field F is called complete iff every nonempty subset of F
which has an upper bound has a least upper bound. According to

Exercise 1.11.15, an ordered field F is complete iff every nonempty

subset of F which has a lower bound has a greatest lower bound. Thus

the notion of completeness takes a symmetric form which is seemingly

lacking in its definition. According to Theorems 3.6.1 and 3.6.4, the

real number system is a complete ordered held. In this section we shall

prove that these properties of R characterize it to within isomorphism.

As the first step in this direction we prove three results about complete

ordered fields.

THEOREM 10.1. If F is a complete ordered held, then the order-

ing has the Archimedean property.

Proof. Assume to the contrary that there exists a pair a
,
b of elements

of F with a > 0 such that for all positive integers n, b > na. Then b

is an upper bound of {na G F\n C Z+ |- Since F is complete, this set

has a least upper bound c. Then every positive multiple of a is less

than or equal to c, so that (m + \)a < c for every positive integer m.
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This implies that ma < c — a, so c — a is an upper bound for

[na C F\n C Z+ (. Since c — a < c, this contradicts the property of c

of being the least upper bound.

COROLLARY. If F is a complete ordered field, then its rational

subfield is dense in F.

Proof. This follows from Theorem 9.4.

THEOREM 10.2. Let F be a complete ordered field and Q be

its rational subfield. For a member c of F let

A c = \a £ Q[a < c) and Bc = [b G Q\b > c }.

Then both the least upper bound of A c and the greatest lower bound

of Bc exist and

lub A c = c = gib Bc .

Proof. By the Corollary above there is in Q an element a such that

c — 1 < a < r, so A c is nonempty. Also, c is an upper bound for Ac ,

and hence the least upper bound of A c exists and is less than or equal

to c. To prove equality we assume that lub A c < c and derive a con-

tradiction. If lub A c < c, then there exists an a' G Q such that

lub A c < a' < c. This is a contradiction since, on one hand, it implies

that a C A c and, on the other hand, it asserts that a > lub A c .

The proof that the greatest lower bound of Bc exists and is equal to c

is similar.

We are now in position to prove the main theorem of this section,

namely, that to within isomorphism there is only one complete ordered

field.

THEOREM 10.3. Any two complete ordered fields are order-

isomorphic.

Proof. Let F and F' be complete ordered fields and Q and Q' their

respective rational subfields. Then Q and Q' are order-isomorphic

since each is order-isomorphic to the field of rational numbers. If /
is the isomorphism of Q onto Q' we shall write x' for f(x) and X' for

f[X] if X C Q. Further, we shall denote members and subsets of Q'

by primed letters and their counterimages in Q by the same letters

without primes.

The strategy of the proof is to define an extension of / having F
as domain and which can be proved to be an order-isomorphism of F
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onto F'

.

To this end, consider an element c of F. Defining A c and Bc

as in Theorem 10.2, we know that lub A c = c = gib Bc . If b
r G B[,

then for each a' G A'c ,
a

'

< b' since a < c and c < b. Hence, 1/ is

an upper bound for A'c ,
so the least upper bound of A'c exists and is

less than or equal to //. Since this holds for each // in B'n lub A c is

a lower bound for B'c, and then the greatest lower bound of B'c exists

and lub A'c < gib B'c . We establish equality here by showing that

the other possibility leads to a contradiction. Indeed, the assumption

that lub A'c < gib B'c implies that there exists a d' in Q' such that

lub A'c < d' < gib B'c .

If r C Q, so that c' would be a possible choice for d'

,

we select a d'

different from c' . It follows that for the corresponding element d of Q
we have

(/) a < d < b

for every a in A c and every b in Bc . Since either d < c or c < d, either

d G A c or d G Bc ,
which, in view of (/), yields the contradiction d < d.

Thus, we have proved that

lub A'c = gib B'c .

In case c G Q, it is clear that lub A'c < c' < gib B'c ,
and hence

(2) lub A'c = c' = gib B'c .

In case c G F — Q, we define c' by (2). It is this extension of / which

we shall prove is an order-isomorphism of F onto F'.

We show first that this mapping preserves ordering. Let ci, c<iCL F
and Ci < c2 . Then there exist a, b C Q such that

Ci < a < b < C2 ,

whence a C B
Cl
and b C A Ci ,

so that a' G B'Cl and b' C A'
Ci . By (2),

c[ = gib B'c
l
and c'2 = lub A'

C2
so

c[ < a' < b' < ev-

idence, ei < e2 implies that c[ < c'2 . As a by-product of this we have

the result that the mapping c —>- c is one-to-one. The proof that it is

also onto F' is left as an exercise.

We show next that the mapping in question preserves addition;

that is, if Ci, c2 G F, then (Ci + c2)' = c[ + c2 . Let a[ and a2 be mem-

bers of A'c, and A'C2 ,
respectively. Then ai and a2 are members of Q

such that ai < Ci and a2 < c2 . Further, a\ + a2 < C\ + a 2 < C\ + c2i

so that ai a2 < Ci c2 . Hence
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a[ + #2 = (fli a‘t)' < fa +
and, consequcndy,

< fa + C2)' ~~ a2 •

Since is an arbitrary element of A'Cl ,
we infer that

c[ = lub A'Cl < fa + c2)' — a2 >

which implies that

«2 < fa + C'l)'
~~ c '\

for all a2 in A'Ci . Hence, in turn,

c2 = lub A'Cl < fa + 02)' — Ci,

c[ + c2 < fa + c2)'.

A similar argument, in which c[ and c2 are interpreted as greatest

lower bounds, establishes the reverse inequality. Thus, we have

proved that

c[ T c2 = fa + c2)
r

.

The proof that the mapping c c' preserves multiplication is some-

what more complicated. We consider first the case of positive ele-

ments. Suppose that C\ and c2 are positive elements of F and let

a'i and a2 be positive elements of A'Cl and A'w respectively. Then a x

and a2 are positive elements of Q such that a\ < C\ and a2 < c2 .

Further, a xa2 < C\C2 < CiC2 ,
so that a xa2 < CiC2 . Hence

a[a2 = (aia^i)' < far2y

.

Thus, for each positive element a2 in A'Ct ,

a ; < (cic2y(a')~
l

for all positive a[ in A'Cl . Hence

c[ = lub A'Cl < (cic2)'(a2) \

which implies that

a2 < fac2)'fa)
1

for all a2 in A'w and then

c'2 = lub A'Ci < fac2)'fa)
-1

-

Thus, c[c2 < fac2)'. A similar argument, in which c

[

and c2 are in-

terpreted as greatest lower bounds, establishes the reverse inequality.

Thus

fa)

where c 1 > 0 and c2 > 0.

C\C2 (^ 1^2) ,
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Finally, we extend (3) to all C\ and c2 . If one or both of C\ and c2

is equal to 0, then (3) is true trivially. If C\ > 0 and c2 < 0, then the

restricted version of (3) applies to Ci and — c2 . This, together with the

fact that c — c' is an isomorphism of the additive group F onto the

additive group E\ justifies the following computation:

to =c[(-(-c')) = -W(-r'))
= —(ci(— c2))' = —(-(C1C2))' = -(-(cic2)

r

) = 0ir2
)'.

The proof of (3) for the case C\ < 0 and c2 < 0 is left as an exercise.

There are other characterizations of R
;
these stem from other methods

of extending Q to obtain a system with the least upper bound property

(that is, the existence of least upper bounds for nonempty sets having

an upper bound). Before describing one of these we call attention to the

point of view adopted in the constructions of Chapter 3. There, in

order to correct a “deficiency” of N, of Z, and of Q^, we constructed

in turn a new system designed to avoid the deficiency at hand and simul-

taneously to include a subsystem isomorphic to the parent system. The

characterizations of Z, Q, and R obtained so far in this chapter estab-

lish the fact that in each case we obtain a minimal extension with the

desired property (as asserted in the introduction to Chapter 3). An

alternative point of view for these constructions includes taking into

account from the outset the desired feature of minimality of the exten-

sions. For instance, in the extension of N to Z, this point of view mani-

fests itself by adjoining to N a suitable disjoint set to serve as the negatives

of the nonzero natural numbers. Similarly, the third extension is ap-

proached as the problem of constructing a minimal extension of £),

considered merely as a dense chain, having the least upper bound

property. The first step in the solution is the construction of an exten-

sion of Q, (that is, a dense ordered chain which includes Q, and which

preserves the given ordering of the elements oi Q), having the least

upper bound property. The second step is the proof that, within

isomorphism, there is only one such extension E which is a part of any

suitable extension and which has the following two properties: (i) an

element of Q which is a least upper bound of a subset S of continues

to be a least upper bound of S in E
,
and (ii) every element of E is a

least upper bound of some set of rationals having an upper bound

in Q. Finally, such a minimal set is selected and the operations of addi-

tion and multiplication extended to it from its subsystem £). The result

is a complete ordered field and, hence, R.
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Apart from this approach leading to, what is from our viewpoint, a

characterization R, it is of interest that there exist extensions of Q>

which lack either property (i) or (ii) above. Such extensions when

equipped with operations become fields which fail to have the Archi-

medean property (and so are called non-Archimedian ordered fields).

EXERCISES

10.1. Prove that every Archimedean-ordered field is isomorphic to a subfield

of R.

10.2. Supply the missing parts of the proof of Theorem 10.2.
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Section 2. A more comprehensive introduction to the theory of semigroups

appears in C. Chevalley (1956).

Sections 3-5. There are several excellent textbooks devoted to group theory.

W. Ledermann (1953) is an introductory account of the theory of finite groups.

More complete accounts of the entire theory appear in M. Hall, Jr. (1959) and

A. G. Kurosh (1955).

Sections 6-7. Accounts of the topics treated appear in every textbook of

modern algebra.

Sections 8-10. Most of the notions discussed are treated in textbooks de-

voted to modern algebra. The proof of Theorem 10.3, that any two complete

ordered fields are order-isomorphic, is taken from E. J. McShane and T. A.

Botts (1959).



CHAPTER First-order Theories

In this chapter wc give an introductory account of modern in-

vestigations pertaining to formal axiomatic theories—that is, axiomatic

theories in which there is explicitly incorporated a system ol logic.

Particular attention is paid to those theories for which the logical base

is the predicate calculus of first order. These are described in Section 4

after disposing of a necessary preliminary in Sections 2 and 3, namely,

an axiomatization of the first-order predicate calculus. Section 7 gives

an account of the notions of consistency, completeness, and categoricity

for first-order theories, using results obtained in Section 6. After a brief

introduction to recursive functions in Section 8, the notion of decid-

ability for first-order theories is examined in Section 9. In this section

there is sketched a proof of the famous theorem, due to Church, which

asserts the unsolvability of the decision problem for the first-order

predicate calculus. In Section 10 appear two other famous theorems

about formal axiomatic mathematics. These are the Godel theorems of

1931. One asserts that a sufficiently rich formal theory of arithmetic is

either inconsistent or contains a statement that can neither be proved

nor refuted with the means of the theory. The other asserts the im-

possibility of proving the consistency of such a theory, if, indeed, it is

consistent. Such results may be interpreted as establishing definite lim-

itations for the axiomatic method in mathematics. Section 1 1 is con-

cerned with a brief discussion of the Skolem paradox for a formulation

of set theory as a first-order theory.

1. Formal Axiomatic Theories

In order to achieve precision in the presentation of a mathematical

theory, symbols are used extensively. A formal theory carries symboliza-

tion to the ultimate in that all words are suppressed in favor of symbols.

Moreover, in a formal theory the symbols are taken to be merely marks

which are to be manipulated according to given rules which depend

only on the form of the expressions composed from the symbols. Thus,
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in contrast to the usual usage of symbols in mathematics, symbols in a

formal theory do not stand for objects. One further distinguishing

feature of a formal theory is the fact that the system of logic employed

is explicitly incorporated into the theory.

We require additional properties of the formal theories which we
shall discuss. These involve an auxiliary notion which we dispose of

first. In nontechnical terms, an effective procedure is a set of instruc-

tions that provides a mechanical means by which the answer to any

one of a class of questions can be obtained in a finite number of steps.

An effective procedure is like a recipe in that it tells what to do at

each step and no intelligence is required to follow it. In principle, it is

always possible to construct a machine for the purpose of carrying out

such instructions.

The formal theories with which we shall be concerned are axiomatic

theories. In such theories formulas are certain strings (that is, finite

sequences) of symbols. We require the following properties of formulas.

(I) The notion of formula must be effective. That is, there must be

an effective procedure for deciding, for an arbitrary string of

symbols, whether it is a formula.

(II) The notion of axiom must be effective. That is, there must be

an effective procedure for deciding, for an arbitrary formula,

whether it is an axiom.

(Ill) The notion of inference must be effective. That is, there must

be an effective procedure for deciding, for an arbitrary finite

sequence of formulas, whether each member of the sequence

may be inferred from one or more of those preceding it by a

rule of inference.

In such a formal axiomatic theory the notion of proof is effective; that

is, there is an effective procedure for deciding, for an arbitrary finite

sequence of formulas, whether it is a proof. Such an effective procedure

does not furnish a method for discovering proofs. It merely enables one

to decide whether a purported proof is, in fact, a proof.

We do not require the notion of theorem to be effective. If there can

be found for a theory an effective procedure for deciding, for an arbitrary

formula, whether it is a theorem, the theory often loses its appeal to

mathematicians. For the implication of the notion of theorem being

effective is that one can devise a set of preassigned instructions for a
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machine such that it could check formulas of the theory to determine

whether they are theorems. Mathematical logicians have shown that

for many interesting axiomatic theories the notion ol theorem is not

effective. We emphasize that this means the nonexistence of effective

procedures for “thcoremhood” has been proved for some theories and

not merely the nondiscovery to date of effective procedures. It follows that

human inventiveness and ingenuity is necessary in mathematics.

A problem which must be faced in presenting a formal axiomatic

theory is how to specify the system of logic to be used. One obvious way

is to give the rules of inference. In all interesting systems the set of rules

is infinite, and there arises the problem of how to specify the set in such

a way that one can determine whether a particular rule is in the set.

The solution we shall employ calls for specifying a finite set of rules of

inference and adding logical axioms to those of the axiomatic theory

for the purpose of generating theorems which express further logical

principles. That is, the solution calls for the fusion of an axiomatized

system of logic with an axiomatic theory to produce a formal axiomatic

theory. Of the systems of logic which might be used in this connection,

we shall choose the predicate calculus of first order. Our justification

for this choice is that it formalizes most of the logical principles accepted

by most mathematicians and that it supplies all the logic necessary for

many mathematical theories. In the next two sections we describe an

axiomatization.

2. The Statement Calculus as a Formal Axiomatic Theory

In view of the role of the statement calculus in a theory of inference

(Section 4.4), the goal of an axiomatization is a formal axiomatic theory

in which the theorems are precisely the tautologies. This was first

achieved by Frege, in 1879. Since then, many formulations have ap-

peared. That which we shall present is the simplification of liege s

formulation due to Tukasiewicz. The primitive symbols (or formal

symbols) are

a (B e Qi ©1 Ci

The symbols in the second row arc called statement variables. The

three dots, which are not symbols, indicate that the list continues

without end. We define formula inductively as follows.



376 First-order Theories chap. 9

(I) Each statement variable alone is a formula.

(II) If A and B are formulas, then (A )
—

» (B) is a formula.

(III) If A is a formula, then —i (A ) is a formula.

(IV) Only strings of primitive symbols are formulas. A string is a

formula only if it is the last line of a column of strings, each

either a variable or obtained from earlier strings by (II) or (III).

As in the definition of formula, we shall use capital English letters as

variables for arbitrary formulas. It can be proved that the notion of

formula is effective. In applications the statement variables are replaced

by the prime formulas, and hence are interpreted as designating the

values of the prime formulas (that is, the truth values T and F). In terms

of the definitions made in Section 4.3, a truth value may be assigned to

any formula A for a given assignment of values to the variables of A.

When writing formulas, the conventions described earlier regarding the

omission of parentheses will be followed. Also, we introduce the following

abbreviations for certain formulas:

A V B for —]A —> B,

A A B for —
i
(A —> —i

B ),

A^B for (A -> B) A {B A).

The axioms for the theory are the following formulas, where A, B
,

and C are any formulas:

(PCI) A -> (B —> A),

(PC2) (C -> (A - B)) -» ((C -» A) -» (C -> B)),

(PC3) ( —i
A —> —i

B
)
—

»
(

B

—> A) .

Writing the axioms with variables for arbitrary formulas means that

each of (PCI)—(PC3) includes infinitely many axioms, one for each

assignment of formulas to the variables occurring. [This agreement is

signaled by referring to each of (PC1)-(PC3) as an axiom schema.]

For example, by virtue of (PCI), each of

—i Ct —> (ft —> —iff),

(a -» <Bi) -» (® -> (a -> ®0)

is an axiom. Even though there are infinitely many axioms, the notion

of axiom is effective, since each axiom must have one of three forms.

The only rule of inference is modus ponens (see Example 4.4.6) : From
formulas A and A —» B the formula B may be inferred.

The exact form which the definition of proof (Section 5.1) takes for
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the statement calculus is as follows. A (formal) proof is a finite column
of formulas, each of whose lines is an axiom or may be inferred from

two preceding lines by modus ponens. A (formal) theorem is a formula

which occurs as the last line of some formal proof. We shall symbolize

the assertion that A is a theorem by

A.

An illustration of a formal proof is given next. It is a proof of the formula

CE —> <jt. It follows that \- ft —> ft.

(0

(2)

(.
3)

(4)

(5)

(a -> ((® -> a) -> a)) -> ((a

a -» ((« -> a) -> a)

(a -» (® —> a)) —> (a —> a)

a ->(«-> a)

ft —> ft

(® -> a)) -> (a -> ft))

Axiom schema (PC2)

Axiom schema (PCI)

1 ,
2 modus ponens

Axiom schema (PCI)

3, 4 modus ponens

When a proof is given, an analysis is usually given in parallel, as

above. This is not required, however, because there is an effective

procedure for supplying an analysis.

We observe that we can just as easily prove |— © —» (B or \- (e A ft) —

>

(e A ft) by repeating the above sequence of formulas with (B or Q A ft

in place of ft. Indeed, if in the above formal proof we substitute

any formula A for the statement variable ft, we get a formal proof of

the formula A —» A. But if, instead, we substitute the variable “A” for

ft (and,
“ B” for (B) we get a proof schema of the theorem schema

“A —> AC A theorem schema, like an axiom schema, has the merit

that a theorem results when the same formula is chosen for all occur-

rences of any letter that appears in it.

We now extend the definition of theorem to that of deduction from

assumptions. If F is a (possibly infinite) set of formulas and 4 is a

formula, then we define /XT, A) to be the set of those finite columns X
of formulas whose last line is A, such that each line ol X is either an

axiom or an element of F or else may be inferred from two earlier lines

of X by modus ponens. If, for given F and A, D( F, A) is nonempty, then

A is said to be deducible from assumptions F, symbolized

r h a,

and a member of /XF, A) is called a (formal) demonstration of A

from r. Basic conditions which these definitions satisfy include the

following.
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(i) If there is an effective procedure for deciding whether a given

formula is a member of the set T, then, for each A, there is an

effective procedure for deciding whether a column ol lormulas is

or is not a member of Z)(r, A) [that is, is a demonstration of A

from T].

(ii) Y \- A whenever A is a member of F or an axiom.

(iii) If T b A and T b A B
,
then Y \- B.

(iv) If T b A, then, for each set A of formulas, Y U A b A.

(v) If r I
— ^4 and Y is the empty set, then 1- A.

(vi) If T b A, then there exists a finite subset Ti of Y such that

r ! b a.

Condition (iii), for example, follows from the fact that if X C T)(Y, A)

and Y C £)(r, A —> B), then (X,
Y, B), the column consisting of the

formulas of X in order, followed by those ol 1 in order, followed by B
,

is a member of Z) (T, B ).

If in a formal axiomatic theory the notion of deducibility is analyzed

into simple steps and the axioms (or, axiom schemas) are few in num-

ber, then formal demonstrations and formal proofs ol even quite an

elementarv character tend to become long. However, having once

given an explicit definition of what constitutes a deduction from as-

sumptions (and, hence, a formal proof) it is not always necessary to

appeal directly to the definition. The alternative is to establish theorems,

called derived rules of inference, which assert the existence ol proofs

under various conditions. An illustration of such a rule for the state-

ment calculus is provided by (iii) above. A useiul instance ol (iii) is

the derived rule

If l- A and b A —> B, then b B.

An application of this rule or of the generalization [which follows from

(iii) and (iv)],

If T b A and b A —> B
,
then F b B

,

is commonly called “modus ponens” because of the similarity of each

to the rule of inference, which has a like form. Another derived rule,

one which plays a crucial role in the proot that the lormalized statement

calculus fulfills its intended role (and which appears later in an extended

form), is given in

THEOREM 2.1 (the deduction theorem for the statement calculus).

If F is a set of formulas and A and B are formulas, then

F U [A] b B implies Y b A —» B.
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Proof Assume that T, A 1- B and let the column

X = (Ch C2 ,

* •
•, Cn)

be a formal demonstration of B from Y U [A]. For each i = 1

,

2, •••,« we define by induction a column Ft
- as follows.

Case 1 . If Ci is an axiom or an element of F, let Fy be the column

(Cy, Ci -> (A -> Ci), d -> Cf).

2. If C t
- is /I and Case 1 does not hold, let Fy be the column

whose lines in order are the proof, given earlier, of A —> A.

Case 3. If Ci is inferred from two earlier lines Cy and Cy —> Cy

of X by modus ponens, and the preceding cases do not hold, and j

is the least index for which there is such a Cy, let Fy be the column

(Fy, Yk , (A -> (Cy -» C<)) - ((d -> Cy) (d -> Ci)),

(A -> Cy) (d -> Cy)
,
d -> Cy).

Flere /j is the least index for which Ck is Cy —> Cy.

It is left as an exercise to prove by induction that for each i
= 1,

2, ••,*, Fy is in 79(r, d -> Cy). Since Cn is /?, this gives the desired

result that r l— A —> B.

COROLLARY. If A u A 2 ,
•

• •, h 7^, then

1— A\ —» (d 2
—>(••• (dm — B) •

• •))•

Repeated application of the theorem gives the corollary. The con-

verse of this result is the next theorem. Its proof is left as an exercise.

THEOREM 2.2. If b- A l -> (A2 -» (• •
• (Am -> B) •

• •))> then Ah

A‘2, *
‘

'
,
Am H B.

In view of property (vi) of deducibility, d heorems 2.1 and 2.2 accom-

plish the reduction of the notion of deducibility to that of provability.

A comparison of these theorems with the Corollary to Theorem 4.4.1

shows the parallel between this result and the reduction ol the notion

of valid consequence to the notion of validity. It follows that il we can

show that a formula A is a theorem ill it is a tautology, we will have

demonstrated the equivalence of the informal and the lormal statement

calculus, both by themselves and when applied under a set of assumption

formulas. We do this in the next two theorems. First, it may be noted

t Hereafter wc shall abbreviate ‘T U Ml 1- B”

t- E" to “Au A 2,
• •

•
,
Am h- B.”

to “T, A h B” and “ Mi> A2, Am 1
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that in the present circumstances we understand a tautology to be a

formula such that for each assignment of truth values to its constituent

statement variables, it is assigned truth value T in accordance with the

truth tables for —

1

and —
The theorem which asserts that every tautology is a theorem is an

example of a completeness theorem in the positive sense, as discussed

in Section 5.4. It can be derived easily from the following lemma.

LEMMA 2.1. Let A be a formula of the statement calculus in which
occur only statement variables from the list Ph P2 ,

•
•

*, Pk . Define P[

to be Pi or —i Pi according as Pi takes the value T or F and A' to be A
or —i

A according as A takes the value T or F for an assignment of

truth values to Ph P2 ,
•

•
•

,
Pk . Then

(?) P[, P'2 ,
P'k \- A'

for every assignment of truth values to Ph P2 ,
•

•
•

,
Pk .

Proof. The proof is by induction on the number of symbols in A
,

counting each occurrence of -i or —> as a symbol. If n = 0, then A
is some Pi. Then A' is P[ and (7) is immediate. Assume the lemma
true for all formulas with less than n symbols and consider A with n

symbols.

Case 1 . A is of the form —i
B. Then, by the induction hypothesis,

(2) P[,P'2 ,
•••,/*!- B'

for all assignments of truth values to Ph P2 ,

•
•

,
Pk .

Subcase 1.1. B takes the value T. Then A takes the value F, B' is B
,

and A' is —id, that is, —i —i
B. Now 1— B —> —i —i

B (see Exercise 2.3)

and (2) reads P[, P'2 ,
•

•
•

,
P'k \- B; then, by modus ponens, P[,

P'2 ,
•••,/* F- -i-i B, which is (7).

Subcase 1.2. B takes the value F. Then A takes the value T, B' is

~i and A' is A, that is, —i
B. Then (2) gives P[, P '

2 ,

• •
•, P'k |- —

,
B

,

which is (7).

Case 2. A is B —» C. Then, by the induction hypothesis,

0) P'„ Pi, •yP’lth B',

W P[,Pi ,P't h C'.

Subcase 2.1. C takes the value T. Then A takes the value T, C'
is C and A' is A, that is, B -> C. Hence, (4) is P[, K,
and (PCI) gives \- C —> (B —> C), so that, by modus ponens, P[,

P'2 >

• *
•, P'k I

- B —> C, which is (7).

Subcase 2.2. B takes the value F. Then A takes the value T, B' is
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—i B, and A' is A, that is, B —> C. Hence, (3) is P[, P2 ,

• •
•, P[ F- —i P

and this, with 1

- —i
B —> (B —> C) [see Exercise 2.3], yields (/) again

by modus ponens.

Subcase 2.3. B takes the value T and C takes the value F. 1 hen A

takes the value F, B' is P, C is —iC, and A' is —i
A, that is, —i

(B * C).

Hence, (3) is P
[ ,

P', •
•
•, P' F- P and (4) is P[, P', •••,/* F- iC.

These, together with the theorem P —» (—iC —» —
i

(P —> C)), yield

p;, «,•••,« H -1 (P c), which is (/).

THEOREM 2.3 (the completeness theorem for the statement calcu-

lus). If A is a tautology, then A is a theorem; that is, if t= d, then

F- A.

Proof. Let Pi, P2 ,

• •
•, Pk be the distinct statement variables occur-

ring in A and define PJ, P'2 ,
•

•
*, P'k and A' as in Lemma 2.1. Since

t= A ,
/l' is always d, and then, by Lemma 2.1, P[, P2 ,

• •
*, P* H -4 for

every assignment of truth values to Pi, P2 ,

• • Pfc. In particular,

(5) p;, p2 , •••,p;_i,p* f- 4
(<?) p;, ->p* f- /i

for every assignment of truth values to Pi, P2 ,

• •
•, P,k-1 - From the

deduction theorem it follows that

(7) PI, P2 ,

• • P*-i F Pk->A,

(8

)

Pi, P2 ,

' •
•

»
P*-

1

F- —

1

Pfc —> ^4.

These deductions, together with the theorem

(P,->d) ->

which the reader may prove, give P[, P2 ,

• •
*, P'k - 1 F- Thus the

assumption Pfc is eliminated. Repeating this process k —
1 times

eliminates all the assumptions, so that F- A.

The converse of the completeness theorem is easily proved as we

show next.

THEOREM 2.4. If A is provable, then A is a tautology; that is,

if 1

- A, then t= A.

Proof. We observe first that each instance of an axiom schema is a

tautology; that is, the theorem is true for the axioms. Further, by

Theorem 4.3.3, if t= A and 1
= A -> P, then t= P. Since every theorem

is either an axiom or comes from the axioms by one or more uses ol

modus ponens, every theorem is a tautology.
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That is, the notions of validity and provability for the statement

calculus are coextensive. This result was proved first in 1921 by the

American logician, Emil Post.

There is more to be said about the foregoing result. We first remark

that we assume it clear that the process provided in the definition

(Section 4.3) for determining the truth value of a formula A for a given

assignment of truth values to the statement variables in A is effective.

Since any A has only a finite number of variables, and hence only a

finite number of sets of values of its variables, this leads to an effective

procedure for deciding whether A is a tautology or not. Hence, since

b- A iff t= A, there is an effective procedure for determining whether a

formula of the statement calculus is a theorem; that is, the notion of

theorem is effective. More generally, the notion of provability is effec-

tive; that is, there is an effective procedure for obtaining a proof of a

theorem (which is known to be such because it has been shown to be a

tautology). This follows from the fact that the procedures given in the

proofs of Theorem 2.3 and Lemma 2.1 are effective. We shall sub-

stantiate this, in part, by showing that the proof of Lemma 2.1 pro-

vides an effective procedure for finding a proof of A' from assumptions

Pi, P2 ,

• *
*, P't- If A has no occurrence of — this is provided directly.

If A has occurrences of —
>, the proof provides directly an effective re-

duction of the problem of finding a proof of A' to the two problems of

finding proofs of B' and C' from assumptions Pj, • •
*, P*. The same

reduction can then be repeated upon the latter two problems, and so

on. Since the reduction process terminates after a finite number of

repetitions, there results an effective proof of A' from P[, Pi2 ,
•

•
•, P'k .

A similar analysis can be made of the proof of Theorem 2.3.

Our next theorem follows directly from the Corollary to Theorem 2.1

and Theorems 2.2-2. 4. Its application to obtaining derived rules of

inference for the statement calculus is illustrated in the examples which

follow.

THEOREM 2.5. Ah A 2 ,
•••, Am \- Biff

A\ —> (T2
—>(••• (Am —> B) •

•
• ))

is a tautology.

EXAMPLES
2.1. Theorem 2.5 enables one to establish derived rules of inference with

appropriate tautologies for justification. Below are listed a few such rules, with

the tautology which justifies each placed opposite.
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A h A V B,

A V B
,
—1/1 |— Z?,

.<4, Z? |— /l,

—i B —» —i
^4 I
— ^4 —» Z?,

—i
B —> —i

A, A \— B,

t= A->(A V B).

t A V B-+ ( i
A -* B).

t= A -*(£-> A).

t ( —i
B —

>

—i
A) —> (A —* B).

t= (-iB->-,A)->(A->B).

2.2. As an illustration of imbedding a system of logic in an axiomatic theory,

an idea which was proposed at the end of Section 1, we outline how the state-

ment calculus can be imbedded in an axiomatic theory. This may be accom-

plished by

(i) including among the formation rules for formulas of the theory the

following:

If A and B are formulas, then so is (A )
—

> (B ),

If A is a formula, then so is —
j
(A )

;

(ii) adding to the axioms of the theory the three axiom schemas we have

chosen for the statement calculus (where ‘‘formula” is now taken in the

extended sense of “formula of the theory”);

(iii) adding modus ponens to the rules of inference.

Formulas of the theory may then be regarded as formulas of a statement calculus

in which the role of the statement letters is played by those formulas which are

not of the form {A) —> (B ) or —
t (A ) (that is, formulas which cannot be de-

composed into further formulas using —> and —i
in the way shown).

As a result of the imbedding, every tautology will be a theorem of the theory.

More important, the statement calculus is available as a theory of inference.

This theory is adequate to provide the logical skeleton of various kinds of proofs

that are encountered frequently. A few examples follow.

(a) To establish that a formula B of a theory in which the statement calculus

is imbedded is a theorem, it is sufficient to prove that —\B—>—\A and A
are theorems. This procedure is justified by the fifth instance of Theorem

2.5 in Example 2.1. Similarly the rule —\B—^—\A f- A —> B justifies a

proof by contraposition.

(b) Let us use “C” to denote a contradiction. In formal terms, the proof of a

formula A by contradiction may be stated as

If —

i

A I— C, then 1—A.

This rule stems from the tautology (—\A —» C) —» A. In practice, such a

proof may take the following form. One shows that —[A\-B and f- —i
B

and infers that —i
A H B A —i

B, and then 1— A.

(c) To establish that a conditional A —> B is a theorem with a proof by con-

tradiction, the following rule is often used:

If A, —
\
B \

— C (a contradiction), then |— A —» B.

The reader may justify this.
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(d) A “proof by cases” is not uncommon in mathematics. Such a proof of a

formula B begins with the enumeration of a finite set A\, A 2 ,
• • Am of

formulas which are exhaustive in the sense that h Ai V A 2 V • •
• V Am .

Then proofs of Ai —> B, A 2
—>> B, •

•
•

,
A m —> B are provided and it is con-

cluded that B is a theorem. The rule at hand is

If \— Ai V A 2 V • •
• V Am , I

- A\ —> B, • 1— Am-i —> B
,

and 1— Am —> B, then 1— B.

Upon combining Theorem 2.5 and the Corollary to Theorem 4.4.1

we obtain

THEOREM 2.6. Ah A2 ,
• •

•, Am t= B iff Ah A 2 ,
•

•
•, Am t- B.

As the reader may verify, the implication

(1) If Ai, A 2 ,
•

•
*, Am t= B ,

then Ah A2 ,

• • h R,

which is included in the theorem is equivalent to the completeness

theorem. We wish to show that (1) can be extended to

(2) For any set T of formulas, if T i= B
,
then T |— B,

which is known as the strong completeness theorem for the statement

calculus. We begin with some definitions. A set E of formulas of the

statement calculus is called inconsistent iff for some formula B we
can deduce both B and —\B (and, hence, B A —

1
B) from T. If E

is not inconsistent, then it is called consistent. We extend a definition

given in Section 4.5 by calling any set T of formulas (simultaneously)

satisfiable iff there exists truth-value assignments to the statement

variables such that each member of T receives truth value T. In

more detail, a truth-value assignment to the formulas of the state-

ment calculus is simply a mapping v on the set of formulas onto

jT, Fj such that (i) for each formula A, v(—i A) is T or F according as

v(A) is F or T, and (ii) v(A —> B) = F iff v(A )
= T and v(B) = F.

Then E is simultaneously satisfiable iff there exists a v satisfying (i), (ii),

and (iii) for all A in E, v(A )
= T.j For the case where T consists of

a single formula A, satisfiability and validity are connected by

(3) 1= A iff
‘ {

—
1
A

}

is not satisfiable,

and provability and consistency are connected by

f The same description of a truth-value assignment may also be used to clarify the meaning
of the notation “P p: B” used in (2) above.
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(4) j
A) is consistent iff not R —

i

A.

Using (3) and (4), it is easily shown that the completeness theorem

is equivalent to

(5) Every consistent formula is satisfiable.

In a similar manner we shall prove that the strong completeness

theorem (2) is equivalent to

(6) Every consistent set of formulas is simultaneously satisfiable.

Further, we shall provide a proof of (6), and thereby (2) will be

established.

In order to prove the equivalence of (2) and (6), we shall need the

following generalizations of (3) and (4).

(7) r t= a ifrr u {-1,4} is not simultaneously satisfiable.

(8) If F is consistent and C G T, then not T 1— —iC.

To prove (7), assume first that not T A. Then there exists a truth-

value assignment v such that v{C)
= T for each C in F and v(A) = F.

Then it is clear that v demonstrates that F U { —i
A

}
is simultaneously

satisfiable. For the converse, assume that T t= A. If F is a’consistent set

of formulas, then for each truth-value assignment such that every mem-
ber of T takes the value T, A also takes the value T, and hence T U { —i A

}

is not simultaneously satisfiable. If F is inconsistent, then it is not

simultaneously satisfiable (for this the reader is asked to either sup-

ply a proof or look ahead to the proof of Theorem 6.1) and, trivially,

F U { —i
A

\
is not simultaneously satisfiable.

The proof of (8) is left as an exercise. We continue by proving the

equivalence of (2) and (6). Assume that (2) holds and let Y be a con-

sistent set of formulas. If CC T, then, by (8), not F 1— —\C. Hence, by

(2), not F —

i

C. From (7) it then follows that T U {—i—\C) = F is

simultaneously satisfiable. For the converse, we assume that (6) holds

and that F B. Then (7) implies that F U { —i
B) is not simultaneously

satisfiable, so that, by (6), F U {—\B) is inconsistent, whence F 1- B.

Finally, to complete our objective we prove (6). This is our next

theorem.

THEOREM 2.7. If Y is a consistent set of formulas of the state-

ment calculus, then F is simultaneously satisfiable.

Proof. Since the primitive symbols of our system are denumerable,

and its formulas are certain strings of primitive symbols, it is possible
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to enumerate the formulas. Let some enumeration be given, so that

we may speak of “the first formula,” “the second formula,” and so

on, referring to this enumeration of the formulas. We shall use this

enumeration to derive from T a maximal consistent set ol formulas,

that is, a set F such that F is consistent and, if A is any formula such

that P U jd} is consistent, then A C F.

Given T, we define an infinite sequence To, Ti, r 2 ,

• • • as follows:

r 0 = r and, if the (n + 1 ) th formula is A, then rn+ i
= T n U {d} if

this is a consistent set. Otherwise rn+ i
= T n . It follows by induction

that r„, Ti, r2,
• • • are consistent sets, since T0 is consistent. Let F be

the union of the sets To, Ifi, T2 ,

• • *. Then T is a consistent set. For

the contrary assumption implies the inconsistency of some finite subset

of T and hence that of some r<, contrary to what was observed above.

Moreover, F is a maximal consistent set. For let A be any formula

such that F U {d} is consistent. Say that A is the (n + l)th formula.

The consistency of F U {A} implies that T n U {A} is a consistent set.

Hence, by the definition of r„+i, A is a member of rn+ i and hence a

member of F.

We list next five consequences of the maximal consistency of T.

(i) a c r iff r h a.

(ii) If B is any formula, then exactly one of the pair B, —i
B is in F.

(iii) If B C F, then A —> B £ F for any formula A.

(iv) If A F, then A —> B £ F for any formula B.

(v) If A £ F and B gP, then A -> B g F.

To prove (i), let us assume first that A £ F. Then T \— A since A 1— A.

For the converse, assume that F 1— A. This means that Fi 1— A for

some finite subset of F. Then the set F U {d} is consistent. For

the contrary assumption implies that there exists a finite subset F 2

of F and a formula B such that F2 ,
A B A —

i B. But then Ffi,

Fo \- B A —i B ,
which contradicts the consistency of F. Finally, the

maximal consistency ol F implies that A C F. The proofs ol (ii)— (v)

are left as exercises.

Now consider the mapping v on the set of formulas onto {T, F}

such that

if A C F,

if A £ F.

This qualifies as a truth-value assignment since v(—iA) is T or F

according as p(/l) is F or T in view of (ii) above, and ^(d —> B) = F
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ifT v(A) = T and v(B) = F in view of (iii)-(v). Thus P, and con-

sequently the subset F of P, is simultaneously satisfiable.

EXERCISES

2.1. Complete the proof of Theorem 2.1.

2.2. Prove Theorem 2.2.

2.3. Provide a proof of each of the following formulas of the statement cal-

culus (where A and B are any formulas).

(a) (A —> B). (d) 04 —> Z?) —> ( -! Z? —> ~^A).

(b) —i —i
A —> A. (e) B >(—|C > —\ (B > C)).

(c) A A. (f) (B-+A)-+((^B->A)-+A).

2.4. The theorem “If a and b are numbers such that ab = 0, then a — 0 or

b = 0” is usually proved by assuming that ab = 0 and a ^ 0 and deducing

that b = 0. Show how to obtain a formal proof from such an informal argument.

2.5. Show that the completeness theorem is equivalent to proposition (5).

2.6. Prove proposition (8).

2.7. Referring to the proof of Theorem 2.7, show that T has properties

(ii)-(v).

2.8. Referring again to the proof of Theorem 2.7, it should be clear that the

possibility of proving by induction the existence of a maximal consistent set of

formulas which includes a given consistent set rests with the assumption that

the set of statement variables is denumerable. Discarding this assumption

—

that is, admitting the possibility of an uncountable set of statement letters

—

prove the existence of a maximal consistent set which includes a given consistent

set of formulas using Zorn’s lemma.

3. Predicate Calculi of First Order as Formal

Axiomatic Theories

Predicate logic of first order, in addition to having notations of the

statement calculus, also has individual variables (and, possibly, indi-

vidual constants), quantifiers, and predicate variables or predicate con-

stants. Statement variables are not necessarily included, but there must

be a complete set of connectives for the statement calculus. Various

different predicate calculi of first order are distinguished according to

just which of these notations are introduced. In this section we shall

present a particular formulation of each of the predicate calculi of

first order. By being sufficiently ambiguous, they can be treated simul-

taneously without confusion. Later, certain of these will be assigned

special names. Where it is unnecessary to distinguish the various predi-

cate calculi, we speak simply of “the predicate calculus of first order.”
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The axiomatization of the predicate calculus of first order which we

present is taken from Church (1956). The axioms and rules of inference

are essentially those in Russell (1908) but with Russell’s axioms for the

statement calculus replaced by (PCI)—(PC3) of Section 2. The primitive

symbols are

—i

—
^ ( ) >

and certain sets of symbols as follows.

(i) Individual symbols, some of which are classed as variables

and others of which may be classified as constants. The set of

variables must be infinite.

(ii) Statement symbols, some of which may be classed as variables

and the others as constants.

(iii) For each positive integer n, a set of n-place predicate symbols,

some of which may be classed as variables and the others as

constants.

Formula is defined inductively as follows.

(I) If P is an rc-place predicate symbol and *i, x2}
•

•
*, xn are indi-

vidual symbols, then P(x i, x2 ,
••*, xn) is a formula. (Such a

formula is called prime.)

(II) If A and B are formulas, then so is {A) —> (B).

(III) If A is a formula, then so is —i
{A).

(IV) If A is a formula and a is an individual variable, then (x)T is

a formula.

(V) Only strings of primitive symbols are formulas. A string is a

formula only if it is the last line of a column of strings, each

either a prime formula or obtained from earlier strings by

(II)-(IV).

As in part (I) of the definition of formula, we shall use lower-case

letters, with or without subscripts, from the latter part of the alphabet

for individual variables and, as in parts (II)-(IV) of the same defi-

nition, we shall use capital English letters from the first part of the

alphabet for arbitrary formulas. It can be proved that the notion of

formula is effective. We make the same conventions regarding the omis-

sion of parentheses when writing formulas, and introduce the same ab-

breviations for certain formulas as in the statement calculus. Further,
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we introduce (^x)A as an abbreviation for —
] (x) ~\A. Any occurrence

oi the variable * in the formula (x)A is called bound. Any occurrence
ol a symbol which is not a bound occurrence of an individual variable

according to this convention is called free. The valuation procedure
of Section 4.8, with the following modification is applicable to formulas:

The statement constants are to denote one of the truth values T or F

and the statement variables are to have
}
T, Fj as their range. An

individual constant (like an individual variable with a free occurrence

in a formula) is assigned a value in the domain under consideration and
to a predicate constant is assigned a particular logical function. As
earlier, the valuation procedure leads to the notion of a valid formula.

The axioms for the predicate calculus are given by the axiom schemas
(PC1)-(PC3) of the statement calculus, with “d,” “Z?,” and “C” now
ranging over formulas of the new theory plus at least the following two
schemas.

(PC4) (x){A —» B) —
> {A —» (*)/?), where * is an individual vari-

able with no free occurrences in A.

(PC5) (x)A —» B, where a: is any individual variable, y any indi-

vidual symbol, and B is obtained by substituting y for each free

occurrence of * in A, provided that no free occurrence of a: is in a

part of A that is a formula of the form (y)C

.

With the applications in mind, it is desirable to include the possibility

that there is present in the predicate calculus of first order the formal

analogue of the notion of equality. As it is intuitively understood,

“at = y” means that x and y are the same object or that “a” and “y”

are the names of the same object. For mathematical purposes, all that

is required of equality is that (i) it be an equivalence relation, and (ii)

it have the following substitution property: If x = y and B is the result

of replacing one or more occurrences of “aT in a statement A by occur-

rences of “_y,” then B has the same meaning as A. Now the properties

of symmetry and transitivity can be derived from those of reflexivity

and substitution. We take this into account in defining a predicate

calculus of first order with equality. Such a predicate calculus is one of

the sort described thus far with the addition of (i) the 2-place predicate

constant “ = ” to the formal symbols, (ii) the clause, “if a: and y are

individual symbols, then (a: = y) is a formula” to the definition of

formula, and (iii) the following axiom schemas.
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(PC6) If x is an individual symbol, then x = x.

(PC7) If x and y are individual symbols, and A is a formula, then

(x = y) —* (A —> B), where B is obtained from A by replacing some

free occurrence of x by a free occurrence ofy.

When it is necessary to distinguish between a predicate calculus with

equality and one in which there is no 2-place predicate constant satis-

fying (PC6) and (PC7), the latter will be called a “predicate calculus

without equality.”

For the predicate calculus of first order there are two formal rules of

inference.

Modus ponens: To infer B from any pair of formulas A, A —> B.

Generalization: To infer (x)A from A, where x is any individual

variable.

A (formal) proof is a finite column of formulas, each of whose linea

is either an axiom or may be inferred from two preceding lines by modus

ponens or may be inferred from a single preceding line by generaliza-

tion. As in the statement calculus, a (formal) theorem is a formula

which occurs as the last line of some formal proof. Again we shall

symbolize the assertion that A is a theorem by

\— A.

In order to extend the earlier definition of a deduction from a set of

assumption formulas to the predicate calculus, we make an auxiliary

definition. A column Y of formulas is called a subcolumn of the col-

umn X of formulas iff the formulas of Y appear among those of X in

the same order which they have in Y. Then, if T is a set of formulas

and A is a formula, we define D(Y, A) to be the set of those finite col-

umns X of formulas whose last line is A such that each line of X is either

an axiom or an element of F, or else may be inferred from two preceding

lines by modus ponens, or may be inferred from a preceding line B
of X by generalization on any variable—provided that B is the last

line of a subcolumn of X which is a formal proof. If, for given Y and

A, Z)(r, A) is nonempty, then A is said to be deducible from assump-

tions r, symbolized

r \— a,

and a member of /)(r, A) is called a (formal) demonstration of A
from r.

Basic properties of deducibility include the six listed in Section 2

(prior to Theorem 2.1) for the same notion at the statement calculus
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level. Furthermore, the earlier deduction theorem can be extended to

the predicate calculus. This general form, which we establish next, was
first proved by J. Herbrand (1930).

THEOREM 3.1 (the deduction theorem for the predicate calculus).

If T is a set of formulas and A and B are formulas, then

T, A h B implies Y 1— A —> B.

Proof. The proof is that given for Theorem 2.1, with the following

additional case inserted after Case 3.

Case 4. If C* is inferred from an earlier line Cj of A by general-

ization on some variable and Cj is the last line of a subcolumn Z of X
which is a formal proof (and, if the preceding cases do not hold), let

Yi be the column (Z, C», Cx
—» (A —» Cf), A —> Cx).

Of course the presence of this case necessitates an extension of the

final step of the earlier proof—namely, the proof by induction that

each Yx is a member of D{Y
,
A —> C x ).

Using Theorem 3.1 we derive next another property of deducibility.

For this we first define inductively the conjunction, /\TA X ,
of any string

A i, A 2 ,
• • A m of formulas:

A\A% is A\; Ai
+1
Ai is Aj+1 A AiAi, j

= 1, 2,
• •

•
,
m -

1

.

LEMMA 3.1. Ah A 2 ,
•••, Am h B iff h f\?Ai~> B.

Proof. Hints for constructing a proof are given in Exercise 3.1.

We use this lemma to prove the following important result.

THEOREM 3.2. If T 1— A and x is an individual variable not free

in any formula of T, then Y 1— {x)A.

Proof. Assume that r h A and that i is a variable not free in

any formula of F. By property (vi) of deducibility (Section 2)

there exists a finite subset Y i = \Ah A 2 ,

• •

•, Am \
of F such that

A i, A 2 ,

• •
*, Am 1— A. Then Ai

nAi —> A is a formal theorem by Lemma
3.1. Let A be a proof of this theorem. Since x is not free in /\TA Xy

the column

A

-> ^4) (Ar^i -»

C

x)A

)

A!'Ai (x)A
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is easily seen to be a formal proof. Hence, by Lemma 3.1, Ti 1— (x)A

and, in turn, by property (iv) of deducibility, T j— (*)zl, as required.

We interrupt our discussion at this point to note that our presentation

of the notion of deducibility has been taken from R. Montague and

L. Henkin (1956). Apparently their development was motivated by the

observation that one of the standard definitions of D(r, A) in the

literature fails to satisfy property (iv) of deducibility. In this paper the

following further result is obtained. Suppose that Hi and H 2 are rela-

tions, each satisfying the conditions (ii)-(vi) plus the two conditions ol

Theorems 3.1 and 3.2. Then T H 1 A iff T H 2 A for each formula A and

each set of formulas. Thereby the relation H is characterized by this

set of seven conditions.

As another aspect of the notion of deducibility we note that if A(x)

is a formula in which the variable x has a free occurrence, then in a

demonstration which involves A(x) as an assumption formula, one is

not permitted to generalize on this x. That is, a is treated as a constant.

Intuitively we may say that a free occurrence of a variable in an as-

sumption formula is employed to denote an arbitrary but fixed indi-

vidual. In informal mathematics, when a variable x is employed in

this way, one says that x has the conditional interpretation. In con-

trast, if x has a free occurrence in a formula A{x) which is an axiom of

the theory under consideration, then A(x) is intended to mean the same

as (*)T(*). In circumstance one says that x has the generality

interpretation. If A is any formula and its free variables in order of

first free occurrence are *1 ,
*2 ,

then by the closure! of A we mean

the formula (*i)(*2)*
• -(xn)A, sometimes abbreviated

VA.

Under the generality interpretation of free variables, A and VA are

synonymous.

The deduction theorem can be extended so as to give the generality

interpretation to some or all of the variables having free occurrences in

one or more assumption formulas. For example, there is the following

result: If T, A R B
,
then T H VA —> B. For proof, assume that T, A R B.

Now VA R A by repeated use (possibly) of (PC5) together with modus

ponens. So, by the property of deducibility stated in Exercise 3.2 (b),

r, VA R B. Hence, by Theorem 3.1, T R VA —> B.

f In harmony with the definition of closure, a formula containing no free variables, that

is a statement according to an earlier definition, is often called a closed formula.
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The reduction of the notion of deducibility to that of provability in

the case of the predicate calculus can be shown in a manner parallel to

the corresponding reduction in the statement calculus, since the corollary

to 1 heorcm 2.1 and Theorem 2.2 carry over to the predicate calculus.

Or, more simply, Lemma 3.1 may be called upon. It follows that if we
can show that t= /I iff h d, we will have demonstrated the equivalence

of the informal and the formal predicate calculus, both by themselves

and when applied under a set of assumption formulas. As in the state-

ment calculus, the proof is easy in one direction.

THEOREM 3.3. If I— A in the predicate calculus, then h A.

Proof. As in the proof of the corresponding assertion for the statement

calculus (Theorem 2.4), we observe first that the assertion is true for

each instance of each axiom schema. In this connection, Theorem
4.8.1 is pertinent. Further, by virtue of Theorem 4.3.3 (extended to

the predicate calculus) and Theorem 4.8.2, if C is any theorem which
has been obtained from a theorem B by application of a rule of

inference, and t= B, then C is valid. Hence, if any formula A is a

theorem, then A is valid.

The converse of this result is a consequence of a theorem first proved

by K. Godel (1930). Although it is not his most celebrated theorem, it

is a remarkable result. We state it as the next theorem. A proof is given

in Section 6.

THEOREM 3.4 (Godefs completeness theorem for the predicate

calculus). For each formula A in the predicate calculus, if t= A,

then \- A.

We conclude this section with an assignment of names to certain

predicate calculi of first order. The pure predicate calculus of first

order is that in which the primitive symbols include an infinite list of

statement variables and, for each positive integer n, an infinite list

of n-place predicate variables, but no statement constants, no individual

constants, and no predicate constants. A predicate calculus of first

order in which at least one kind of constant appears is called an applied

predicate calculus of first order.

EXERCISES

3.1. Prove Lemma 3.1 by induction. In the inductive step the following

tautologies are useful:
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(Ai Ai (Aj+1
-> 5)) -> (Ai

+1
A- -> 5),

(A'r
1

A-- B) -> (A'i a -> (A+i -> £))•

3.2. Establish the following additional properties of the relation b

.

(a) If A is a formal theorem and T is any set of formulas, then T b A.

(b) If T b A and if A b B for every formula B in T, then A b A.

3.3. Show that the ordering of lines in a formal proof can be avoided, by

proving that the theorems of the predicate calculus constitute the smallest set

of formulas containing certain formulas and closed under certain operations.

4. First-order Axiomatic Theories

A first-order theory (or, a theory with standard formalization) is

a formal theory for which the predicate calculus of first order suffices as

the logical basis. Those with which we shall be concerned are also

axiomatic theories.

An intuitive understanding of the essence of such theories is desirable

before technical details are discussed. As our starting point for this we

take the description in Section 5.3 of an informal theory as one whose

primitive notions consist of a set X
,
certain of its members (individuals)

and certain subsets of Xn for various choices of n (primitive relations

and operations in X). Now, in place of relations or operations in X,

predicates may be used. For example, in place of an n-ary relation p

in X we may introduce the rc-place predicate P such that a (prime)

formula P(x i, x2 ,
•

•
•, xn ) is assigned the value T for an assignment of U{

in X to x i} i = 1,2, •
• •, n, iff (uh u2 ,

• • *, w») £ p. In place of an n -ary

operation in X (that is, a function / on Xn into X) we may introduce

the (n + l)-place predicate Q such that a formula Q(x i, x2 ,
•

•
•, xn+i) is

assigned the value T for an assignment of Ui in X to X{ ifff(x i, x2 ,
•

•
•, xn)

It is possible (as we shall show) to cope with n-ary operations in a

more natural manner by introducing a further class of primitives, called

“operation symbols”; these are the direct formal analogues of functions

whose domain is Xn
. Now, with a specific informal theory in mind,

suppose we formulate the applied predicate calculus whose individual

symbols are variables and a set of constants in one-to-one correspondence

with those individuals ofX which are primitive and whose only predicate

symbols are constants which, in an interpretation having X as domain,

denote the primitive relations and operations in X. (Alternatively,

operation symbols may be used in place of predicates which are intended

to denote operations in Ar

.) Finally, as axioms we take the axiom
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schemas of the predicate calculus with equality together with the for-

malizations of those (mathematical) axioms of the informal theory. As

rules of inference we take those of the predicate calculus. The result is a

first-order axiomatic theory!

We now turn to a precise description of a first-order theory X. The

primitive symbols are the following.

(l s) An infinite sequence of individual variables, a0 , <21 ,
« 2 ,

* • *.

(ii.) A set of logical constants consisting of

(a) the logical symbols of the predicate calculus, parentheses,

and a comma,

(b) the equality symbol “ = .”

(III S) A set of mathematical constants consisting of

(a) a set of individual constants,

(b) for each positive integer n
,
a set of n -place predicate (or rela-

tion) symbols,

(c) for each positive integer n
,
a set of rc-place operation sym-

bols.

The equality symbol, although regarded as a logical constant, is included

in the set of 2-place predicate symbols. Statement symbols may also be

included; any such may be regarded as 0-place predicate symbols. In

this same spirit, individual constants may be regarded as 0-place opera-

tion symbols.

The description of X further includes the definition of a term. This

is given inductively as follows.

(l t)
An individual variable and an individual constant are each

terms.

(II t) If ri, r2 ,

• •
•, rn are terms and A is an rc-place operation symbol,

then A(/i, r2 ,

• • rn ) is a term.

(Hit) The only terms are those given by (I t) and (lit).

Although some repetition is involved we give an inductive definition

of formula.

(If) If A is an rc-place relation symbol and ri, r2 ,

• • r n are terms,

then A(ri, r2 ,

• •
*, r n) is a formula. (Such a formula is called

prime.) In particular, if r and s are terms, then (r = s) is a

prime formula.
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(Ilf) If A and B arc formulas, then so are —i(d), and (A )
—

> (B).

(I I If) If A is a formula and x is a variable,! then (x)A is a formula.

(IV f) Only strings of primitive symbols are formulas. A string is a

formula only if it is the last line of a column of strings, each

either a prime formula or obtained from earlier strings by

(II f) or (Illf).

We carry over to X all of the abbreviations, conventions, and defini-

tions employed in the predicate calculus. Further, (r = /) will be ab-

breviated to r = j and -i (r = j) to r ^ j. The only part of the foregoing

for which we did not prepare the reader is the notion of a term. Under

the intended interpretation, a term is the name of an object of the

domain, that is, an individual. In addition to variables and individual

constants being terms, strings composed from variables and individual

constants using operation symbols should be terms, since in the intended

interpretation they denote function values.

The theory X becomes an axiomatic theory when the axioms are

given and provability is defined. The axioms are of two kinds, logical

and mathematical. As the logical axioms for X we take all instances

of the axiom schemas for the predicate calculus of first order with

equality, with the following modifications. We now permit as the “y”

of (PC-5) any term r such that when it is substituted for (the free occur-

rences of) x in A, no occurrence of a variable in r becomes a bound

occurrence. As the mathematical axioms we select some set of closed

formulas (that is, statements) of X; these axioms are intended to provide

the mathematical content of the theory. As rules of inference we take

those of the predicate calculus of first order. The definitions of provabil-

ity and deducibility remain unchanged from the predicate calculus but

these notions are strengthened by the added mathematical axioms.

EXAMPLES
4.1. The formulation of group theory given in Exercise 5.4.15 leads to the

following description as a first-order axiomatic theory. To the logical constants

(including the equality symbol) we adjoin one individual constant e and one

2-place operation symbol *. The terms of the theory are defined as follows:

Each variable and each constant is a term, and if r and j- are terms, then r • s

is a term. The formulas of the theory are those as defined in a predicate calculus

plus (r = s), where r and s are terms. The mathematical axioms are

f Generally we shall use letters “x,” “y,” • • • as (metamathematical) variables which range
over the variables of the theory under discussion.
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(x)(y)(z)(x • (y • z) = (x • y) • 2),

(*)(* * * = *)>

MG.jOO' • * = *)

Alternatively, if we start with the formulation which is implicit in Exercise 5.2.7,

we are led to the following description. The only mathematical constant is a

binary operation symbol •, and the mathematical axioms are

0) (y) (z) (x • (y • z) = (x • y) • 2),

MOOG*)(* =7 ‘ z)>

M0)Gy)(* = y • 2).

Each of the foregoing is a formulation of the elementary theory of groups.
The word “elementary” signals that the first-order predicate calculus is the

system of logic employed and that theorems of the theory are restricted to those

which can be expressed by first-order formulas. Not all of group theory, as a

mathematician knows this discipline, can be formalized by the elementary
theory of groups. The state of affairs is that in any first-order theory one can
quantify only with individual variables, and this is inadequate to formalize

certain theorems.

4.2. We shall call the arithmetic of the system of natural numbers, when
formalized as a first-order theory, elementary number theory, and symbolize
it by N. One version (based on Peano’s axioms) is the following. The mathe-
matical constants consist of the individual constant 0, two 2-place operation

symbols -f- and *, and the 1 -place operation symbol '

.

The mathematical axioms
consist of the following six ax’oms and one axiom schema.

M OO 0' = y' x = y),

(x)(x + 0 = x),

M(* *9 = 0),

(*)(*' 7* 0),

MOO(* +/ = 0 + yY),

M 00 (x • y' = x • y + x),

A(0) A (x) (T(x) —> A(x')) —> A(x),

where x is any variable, A{x) is any formula, and .4(0), A{x r

) are the results of

substituting 0, x' respectively for the free occurrences of * in A(x).

The intended interpretation of the mathematical constants is the obvious one.

It is intended that 0 be the integer zero, that x' be the successor of x, that x + y
be the sum of x and y, and that x • y be their product. The axiom schema ex-

presses the principle of mathematical induction to the extent possible in a first-

order theory.

4.3. Since we have assumed that the equality relation is incorporated in a

first-order theory, it is possible to replace an n -ary operation symbol in such a

theory by an (n + l)-ary relation symbol. The following example indicates how
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this can be clone. Suppose that -f- is a 2-place operation symbol in a first-order

theory X. This may be replaced by the 3-place relation symbol S [where

S(x
, y, z) is to be read “z is the sum of x and/’] and the inclusion of the axioms

MOOG^M y, z),

(x)(y)(z)(u)(S(x, y, z) A S(x, y, u) —> z = u),

which express the existence and uniqueness, respectively, of the sum of any

two elements. Thus, for theoretical considerations, we may assume that no

operation symbols are present in a first-order theory.

In a similar manner, individual constants may be eliminated from a first-

order theory. For example, to eliminate the individual constant c
,
we introduce

a new unary relation symbol C and the axioms

Qx)C(x),

MOO (COO A C(y)-*x=y).

When operation symbols and individual constants are eliminated from a theory,

it is necessary to modify formulas in which they appear in an appropriate way.

For example, A(c) becomes

M(CM ~> T(x)).

4.4. The agreement that the mathematical axioms of a first-order theory X
be closed formulas (rather than simply formulas) may seem to entail some loss

of generality. That this is not the case is an immediate consequence of the follow-

ing result: A formula A of X is a theorem iff its closure is a theorem. Indeed, if

A is a theorem, then generalization on each variable, in turn, which is free in A,

yields Vd as a theorem. Conversely, if V.4 is a theorem, then any universal

quantifier in front of A can be removed, using (PC5).

4.5. The deduction theorem of the predicate calculus of first-order and its

converse have the following application to first-order theories: If T is a set of

formulas of X and Ah A 2 ,

•

•, Am are formulas of X, then a formula B is de-

ducible from F \J {A h A 2 ,
•

•
*, Am} iff T h- /\™ A {

—> B. In particular, B is a

theorem of X (that is, deducible from the set A of logical axioms and the set of

mathematical axioms) iff B is deducible from A alone or there exist mathemat-

ical axioms A i, A 2 ,
•

•

•, Am such that A 1— /\i" Ai —> B.

The last fact, taken together with the definition of deducibility, implies that

a formula B is a theorem of X iff B is deducible from the set of mathematical

axioms (as a set of assumption formulas) in the theory Xi which coincides with

X except that its axioms are just the logical axioms of X. In this way the in-

vestigation of various properties of first-order theories can be reduced to that of

theories having a common set of axioms—to wit, those of the predicate calculus

with equality. We shall take advantage of this possibility later.

For first-order theories it is assumed that the mathematical constants

have an interpretation in some nonempty domain 1). Roughly, this

means that each individual constant is interpreted as denoting a fixed
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member of D
,
that each individual variable has D as its range, that

^-place relation symbols have interpretations as subsets of D n
,
and that

77-place operation symbols have interpretations as functions on l)
n into 1).

We turn now to a detailed description of this, along with a valuation

procedure (which extends that given in Section 4 . 8 ).

As the starting point for the valuation procedure for a first-order

theory X we assume that all mathematical constants of X can be ar-

ranged without repetition in an a-termed sequence (C0 ,
Cx ,

•
•

•
,
Cv ,

•
• •)

for some ordinal a. f Let D be a nonempty set and let (e0 ,
Gi, • •

•
,
e„, • •

•

)

be a sequence which has the same number of terms as the foregoing-

sequence. The nature of each e„ depends on the nature of the corre-

sponding constant C„. If Cv is an 777-place relation symbol, then e„ is a

subset of Dm
\

if Cv is an 777-place operation symbol, then e„ is a function

on Dm into D\ if, finally, Cv is an individual constant, then e„ is an

element of D. The sequence

D = (D, Co, Ci, • •

•, e„ • • •>

is called an interpretation of X having D as its domain: this is a pre-

cise version of the definition of the same notion given in Section 5 . 2 .

If X is an interpretation of X with domain D
,
we wish to de-

fine next the circumstances under which a (denumerable) sequence

(7/0, di, •
•

•
,
dn ,

•
•

•) with (/,• C D, in brief, a /^-sequence is said to

satisfy a formula A (of X) in X . For this we need a preliminary concept.

To each D-sequence d = (d0 ,
di, •

•

•, dn ,
•

• •) and each term r we as-

sociate an element r(d) of D by the following recursive rule.

(i) If r is the individual variable ak, then r(d) = dk.

(ii) If r is the individual constant Ci, then r(d) =

(iii) If r is the term C,(r 1, r2 ,

• •
•, rn ), where Cj is an 77-place operation

symbol and r\, r2 ,

• •
•

,
rn are terms, then

7'(d) = Qj(ri(d), r2 (d), •
•

•, rn (d)).

The element r(d) of D is called the value of the term r for the D-se-

quence d. Using this concept, for each D-sequence d = {do, dh •
•

•
,
dn ,

•
•

•

)

and each formula A we specify whether or not d satisfies A by the

following recursive rule.

(I B) If A is a prime formula Cj(rh r2 ,
•••, r„), where Cj is an

7?-place relation symbol and r\, r2 ,
••*, rn are terms, then d

satisfies A ill' (7'i(d), r2 (d), •
•
•, rn (d)) G

t The reader who is not familiar with the notion of an ordinal number may assume, with

little loss of generality, that the set of mathematical constants is countable.
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(H B) If A is a prime formula r = s, where r and s are_ terms,

then 7 satisfies A iff r(d) is the same element of D as s(d).

(HI S) If A is B, then d satisfies A iff d doesjiot satisfy B.

(IVs) If A is B —> C, then d satisfies A iff d satisfies C or satisfies

neither B nor C.

(V s)
If A is (ak)B, then 7 satisfies A iff for every d C D we have

that (d0 ,
•

•
•

,
dk- 1, d, dk+h •

•
• )

satisfies B.

As an illustration of the definition, we apply it to show that if Cj is a

unary operation symbol and Co is a binary relation symbol, then loi

any D, a /9-sequence d satisfies

(/) (3 <23)C2 (<32, C\a$)

iff there exists a d £ D such that (d2 ,
Qid) £ e2 . The reader should

justify each of our steps. In unabbreviated form, (/) is

(2)
—

1 (03) 1
Ci(a-2, C\Qz )

.

Then d = (do, d\
,
do, • • </n,

• • *) satisfies (7) iff it does not satisfy

(03) C2 (a2 ,
Cia3). This means there exists d C D such that

(fl'o, dh d2 ,
d, dh •

• •)

does not satisfy -|C2 («2 , Ci«8), and hence satisfies C2 (a2 ,
Cia3)- Thus

(</2 ,
Cirf) C e2 .

The proof of the following theorem is left as an exercise for the reader.

THEOREM 4.1 . If d = (do, dh •
• •, dn ,

•
• •) and

d' = (do, d[, •
• •, d'n ,

•
• •)

are /9-sequcnces and if A is any formula such that lor every variable

ak with free occurrences in A, dk = d'k ,
then d satisfies A iff d satisfies A.

From this theorem it follows that il A is a statement, its satisfaction

by a /9-sequence does not depend on any clement of the sequence;

that is, a statement either is satisfied by every /7-sequence or by no

/9-sequence. We shall call a formula true in an interpretation T with

domain Z9 iff it is satisfied by every /9-scquence. If A is a statement,

then either A is true in T) or —

1

A is true in T. If A is true in T\ then we

shall say that T) is a model of A. A formula which contains free variables

is true in iff its closure is true in 3). It follows that the set oi all for-

mulas of X which are true in X) is characterized by the statements which

it contains. This accounts for the fact that statements occupy' a central

role in the study of first-order theories (and those theories introduced

in the next section).
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The foregoing amounts essentially to nothing more than an alterna-

tive description of the earlier valuation procedure for the predicate

calculus, f Agreement with this statement will come as soon as it is

recognized that an interpretation X) with domain D of a theory X
includes the equivalent of an assignment of logical functions (relative to

D as domain) to the predicate symbols of X. The circumstances under
which a formula A of X is classified is true in X) is a slight extension of

those under which a formula receives truth value T relative to some
assignment of logical functions.

Having made contact with the earlier valuation procedure, we shall

take over some of the terminology introduced in Sections 4.8 and 4.9.

If D is a nonempty set and A is a formula of X, then we shall say that

A is valid in D iff it is true in every interpretation with D as domain;
A is valid, symbolized

t=/l,

ill it is valid in every D. Further, a formula A is said to be a conse-

quence of a set F of formulas, symbolized

r i= a,

iff for every interpretation X) and every /^-sequence 2 such that 2
satisfies each formula of F, we also have that 2 satisfies A.\ In the case

where all formulas are statements, F |= A iff A is true in every interpreta-

tion in which each member of F is true. If we understand by a model
of a set F of formulas an interpretation which is a model of each member
of r, then r 1= A iff every model of F is a model of A.

EXERCISES

4.1. Formulate the theory of simply ordered commutative groups (see the

Exercises for Section 5.3) as a first-order theory.

4.2. Prove Theorem 4.1

.

5. Metamathematics

The principal reason for formulating intuitive theories as formal

axiomatic theories and, in particular, as first-order theories, is that such

fundamental notions as consistency and completeness can be discussed

in a precise and definitive way. This is possible because the notion of

f I he justification for presenting two descriptions of a valuation procedure is the author’s

belief that each is the natural one in the setting in which it finds application.

t We note that a valid formula may be characterized as one which is a consequence of the

empty set of formulas.
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proof is made explicit. Before turning to theorems related to such mat-

ters it is desirable to have some understanding of how such matters are

studied and why such methods are used. In this section we shall describe

the admissible methods for the study of formal theories as advocated by

the school of formalists (founded by Hilbert) and then prove some

theorems in accordance with these methods.

A formal theory is a completely symbolic language built according

to certain rules from the alphabet of specified primitive symbols. When

a formal theory becomes the object of study it is called an object

language. 1 o discuss it, which includes defining its syntax, specifying

its axioms and rules of inference, and analyzing its properties, anothei

language—the metalanguage or syntax language is employed. Our

choice of a metalanguage is the English language. In general terms the

contrast between a metalanguage and the object language which is

discussed in terms of this metalanguage is parallel to the conti ast

between the English language and the French language for one whose

native tongue is English and who studies French. At the outset, vocab-

ulary, rules of syntax, and so on, are communicated in English (the

metalanguage). Later, one begins to write in French. That is, one forms

sentences within the object language. To give a concrete example,

consider the elementary theory of groups as formulated in the preceding

section. The statement “The elementary theory of groups is an un-

decidable theory” is about group theory and written in the English

language—that is, in the metalanguage. In contrast,

u
{a)(b)(c)(a • b = a • c —> b = c)”

is a statement of group theory—that is, ol the object language.

A theorem about a formal theory is called a metatheorem and is to be

distinguished from a theorem of the theory. It is easy to make this

distinction since a theorem of the theory is written in the symbolism of

the theory, whereas a metatheorem is written in English. In the preced-

ing paragraph the statement in English regarding group theory is a

metatheorem, and that written in terms of *, =, and so on, is a theorem

of group theory. Since the proof of a metatheorem requires a system of

logic, a description of the system of logic should be available for the

prospective user of the metatheorem. One possibility is to formalize the

metalanguage as we have formalized the predicate calculus. But this

entails the use of a metametalanguage, and the beginning of an un-

ending regress is established. The alternative, which was proposed by
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Hilbert, may be summarized roughly: In the metalanguage employ an
informal system of logic whose principles arc universally accepted.
More generally, Hilbert took the position that a metatheory (that is,

the study of a formal theory in the metalanguage selected) should have
the following form. First of all, it should belong to intuitive and in-

formal mathematics; thus, it is to be expressible in ordinary language
with mathematical symbols. Further, its theorems (that is, the meta-
theorems of the formal theory) must be understood and the deductions
must carry conviction. To help ensure the latter, all controversial prin-

ciples of reasoning such as the axiom of choice must not be used. Also,

the methods used in the metatheory should be restricted to those called

Jimtary by the formalists. 1 his excludes consideration of infinite sets as

“completed entities” and requires that an existence proof provide an
effective procedure for constructing the object which is asserted to exist.

Mathematical induction is admissible as a finitary method of proof,

since a proof by induction of the statement “For all n, P(n)” shows that

any given natural number n has the property expressed by P by reason-
ing which uses only the numbers from 0 up to n\ that is, induction does
not require one to introduce the classical completed infinity of the

natural numbers. Finally it is assumed that if, for example, the English

language is taken as the metalanguage, then only a minimal fragment
will be used. (The danger in permitting all of the English language to

be used is that one can derive within it the classical paradoxes, for

example, Russell’s paradox.) By metamathematics or proof theory is

meant the study of formal theories using methods which fit into the

foregoing framework. In brief, metamathematics is the study of formal

theories by methods which should be convincing to everyone qualified

to engage in such activities.

Before discussing some metamathematical notions and proving some
metatheorems, we outline the reasons which led Hilbert to formulate

metamathematics as he did. The introduction of general set theory with
its abstractness and its treatment of notions (such as the completed
infinite), which are inaccessible to experience, yet with its fruitful ap-

plications to concrete problems of classical mathematics, provided the

stimulus for investigations of the foundations of mathematics in the

sense that this subject matter is now known. The discovery of contra-

dictions within set theory served to strengthen and accelerate these

investigations. The initial reaction to the antinomies of intuitive set

theory was a reconstruction of set theory as an axiomatic theory, placing
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around the notion of set as few restrictions to exclude too large sets as

appear to be required to prevent the known antinomies (see Chapter 7).

Some felt that even if this venture should prove to be successful, it

would not provide a complete solution to the problem because, they

argued, the paradoxes raised questions about the nature of mathe-

matical proofs and criteria for distinguishing between correct and in-

correct proofs for which satisfactory answers had not been provided.

Russell, for example, judged the cause of the paradoxes to be that each

involves an impredicative procedure.! This led Russell to formulate a

system of logic (his ramified theory of type
,
1908) in which impredicative

procedures are excluded and, with Whitehead, to attempt to develop

mathematics as a branch of logic (Principia Mathematica). Both the logistic

school and the advocates of the axiomatic approach to set theory,

initiated by E. Zermelo, were in need of proofs of the consistency of

their theories. It was recognized that the classical method of providing

a proof—the exhibition of a model within the framework of a theory

whose consistency was not in doubt—could not be applied. Further,

finite models were clearly inadequate, and no conceptual framework

within which an infinite model might be constructed could be regarded

as “safe” in view of the antinomies. It was Hilbert who contributed the

idea of making a direct attack upon the problem of consistency by

proving as a theorem about each such theory that contradictions could not

arise. Hilbert recognized that in order to carry out such a program,

theories would have to be formalized so that the definition of proof

would be entirely explicit. To this end he brought the notion of a formal

axiomatic theory to its present state of perfection. To prove theorems

about such theories—in particular, to attack the problem of consistency

•—Hilbert devised metamathematics. By restricting the methods of proof

to be finitary in character, he hoped to establish the consistency of theo-

ries such as N with the same degree of impeachability as is provided by

proofs of consistency via finite models when the latter technique is

possible (as in group theory for instance).

So much for the raison d'etre of metamathematics. We shall anticipate

the results appearing in Section 10 by mentioning now the impossibility of

metamathematics fulfilling the role which Hilbert intended for it. This was

t A procedure is said to be impredicative if it provides a definition of a set A and a specific

object a such that (i) a G A and (ii) the definition of a depends on A. For example, the pro-

cedure which leads to Cantor’s paradox is impredicative: The collection a of all subsets of

the set A of all sets is both a member of A and depends upon A for its definition.
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established as a consequence of theorems proved by Godel (1931). The

specific circumstances were these. Hilbert’s program slowly took form

during the period 1904-1920, and in the 1920’s he and his co-workers

undertook its execution. Their initial goal was to prove the consistency

of elementary number theory. This was a natural objective in view of

the fundamental role of elementary number theory plus the possibility

of the reduction of other portions of classical mathematics to that of N,

via models (see Section 5.4). After some partial successes, the endeavor

came to a halt in 1931 with the demonstration by Godel of the im-

possibility of proving the consistency of any formal theory which includes

the formulas of N by constructive methods, “formalizable within the

theory itself.” Regarding such methods, it suffices for the moment to

say that so far as is known, they incorporate all methods which Hilbert

was willing to permit in metamathematics. This state of affairs does not

foretell the doom of metamathematics but has served to indicate its

limitations. In what follows, we shall occasionally see methods of proof

which lie outside the domain of metamathematics. When this is done we

shall call attention to the fact.

For our first example of a metamathematical notion we choose con-

sistency. The definition in Section 5.4 (a theory is consistent iff for no

formula A both A and -i A are provable) is applicable to any formal

theory having the symbol —i
for negation. It is metamathematical since

it refers only to the formal symbol -i and the definitions of formula

and provability. A metatheorem concerning a class of theories to which

the definition is applicable is proved next.

THEOREM 5.1. Let X be a formal theory which includes the

statement calculus. Then X is consistent iff not every formula of X
is a theorem.

Proof. Suppose that X is inconsistent and that A is a formula such

that both h A and 1

1
A. Now A —

>

( -i A —> B) is a theorem for

any B since it is a tautology. Hence B (that is, any formula) is a

theorem by two applications of modus ponens. For the converse,

assume that every formula of X is a theorem. 1 hen il A is any formula,

both A and —\A are theorems. Thus, X is inconsistent.

Henceforth it will be assumed that all formal theories include the

statement calculus so that Theorem 5.1 will always hold. Our next

result is a metathcorem about the statement calculus.
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THEOREM 5.2. The statement calculus is a consistent theory.

Proof. Let A be a theorem. Then, in turn, A is a tautology, —\A is

not a tautology, and —id is not a theorem.

The foregoing is a metamathematical proof. To substantiate this

assertion we note first that the computation process lor filling out a

truth table for a given formula (regarded as a truth function) is meta-

mathematical. Hence the property of being a tautology is a metamathe-

matical property of formulas of the statement calculus. It follows that

the proof of Theorem 2.4 (if A is a theorem, then A is a tautology) is

metamathematical. Since the proof in question relies solely on Theo-

rem 2.4, it also is metamathematical.

A similar chain of reasoning (now using Theorem 3.3) gives a proof

of the consistency of the predicate calculus as soon as a formula which is

not valid is exhibited. Although the valuation procedure on which the

proof of Theorem 3.3 depends is not effective in general, we apply it

relative to a fixed interpretation whose domain is finite. Under these

circumstances it is admissible in metamathematics, so the proof is meta-

mathematical. The idea behind the proof is the fact that an /z-place

formula, with or without quantifiers, behaves like a statement in the

sense that it assumes either the value T or F, when valuated in a domain

of just one element. We begin the proof by defining for each formula A
the associated statement calculus formula (a.s.c.f.) as the formula

obtained from A by deleting all quantifiers, deleting all individual

variables, and treating the predicate variables as statement variables.

Now we observe that the a.s.c.f. of each axiom of the predicate cal-

culus is a tautology and that the two rules of inference preserve the

property of having a tautology as an a.s.c.f. Hence, a formula is prov-

able only if it has a tautology as its a.s.c.f. Consider now the formula

Q}{a) A —i(d(tf), where Cl
1

is a 1 -place predicate variable and a is an

individual variable. Its a.s.c.f. is Ct
1 A —iCt

1 and is not a tautology, and

hence the original formula is not provable. An application of Theorem
5.1 completes the proof. We state this result as

THEOREM 5.3. The predicate calculus of first order is a consistent

theory.

Sometimes the notion of completeness, in the sense of one or more of

die definitions given in Section 5.4, may be treated in metamathematics.

For example, Theorem 2.3, which asserts the completeness of the state-
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mcnt calculus in a positive sense (as this was explained in Section 5.4),
belongs to metamathematics. On the other hand, GodePs completeness
theorem for the predicate calculus is outside the realm of metamathe-
matics. I he statement, calculus is also complete in a sense which exhibits
a negative approach to a sufficiency of theorems. The next result, which
belongs to metamathematics, is of this sort.

THEOREM 5.4. If A is any formula of the statement calculus, then
either it is a theorem or else an inconsistent theory results by adding
as additional axioms all formulas resulting from A by substituting
arbitrary formulas for its statement variables.

Proof. Let A be a formula which is not a theorem, and let us augment
the axiom schemas of the statement calculus with all formulas resulting
from A by substituting arbitrary formulas for its statement variables.

Since A is not a theorem, it is not a tautology. Therefore, it takes the
value F for some row of its truth table. Referring to one such row, we
choose an instance ol A as follows. Substitute (2 V —i

(2- for the prime
formulas of A which are T, and substitute a A -i (2 for those prime
formulas which are F. The resulting axiom, If will always take the

value F. Then —i
B is a tautology, and hence a theorem. Thus, both B

and —i
B are theorems.

One might apply the definition of negation completeness (given in

Section 5.4), with “statement'
1

replaced by “formula,” to both the state-

ment calculus and the predicate calculus. Neither is complete in this

sense. For the statement calculus this conclusion follows from the con-
sideration of any formula A whose truth table has neither all T’s not
all F’s; for clearly neither A nor —\A is a theorem. This is a reflection

ol the fact that in the statement calculus no formula corresponds to a
particular statement. We may substitute any statement for a statement
variable. For a similar reason the predicate calculus is not negation

complete. As an example, neither Of '(a) nor its negation is a theorem
because neither is valid. In this case Cd(<2 ) does not stand for a particular

statement (which one expects to be true or false) but for any statement
in which (2

1

is interpreted as a 1 -place predicate and a as an individual.

Actually, the metamathcmatical notion of negation completeness is

intended for only formal axiomatic theories such as N and there its

restriction to closed formulas is essential in order that it have the

intended significance. For example, in N we would not want either



408 First-order Theories
[

chap. 9

(3y)(* = y • y) (which expresses, under the generality interpretation of

the free variable present, “every natural number is a square”) or

(3y)(x = y • y) (“every natural number is not a square”) to be prov-

able. However, one of (*) (Ty) (* = y * y) and —

1

(*)(3y)(* = y • y) should

be true, and hence provable.

As background for the final metamathematical notion which we shall

discuss, we recall the definition of an effective procedure as given in

Section 1. In brief, an effective procedure—or, as it is often called, a

decision procedure—is a method which can be described in adv ance

for providing in a finite number of steps a “yes or no answer to

any one of a class of questions. Such a class of questions can be iden-

tified with a predicate in the metalanguage in the obvious way. For

example, the predicate “p and q are relatively prime” embraces the

class of questions concerning the relative primeness of pairs ot integers.

Thus we may speak of a decision procedure for a predicate. (Inci-

dentally, the Euclidean algorithm provides a decision procedure for

the predicate mentioned.) The problem of discovering a decision pro-

cedure for a predicate is called the decision problem lor that predicate

and, if a decision procedure is found, the predicate is said to be effec-

tively decidable; if there does not exist such a procedure the predicate

is undecidable. Although we require of a formal axiomatic theory that

there be a decision procedure for the notion of proof
,
we do not require

the same for provability . In contrast to the question ol whether a given

sequence of formulas is a proof (which requires merely the examination

of a displayed finite object), the question of whether a given formula is

a theorem requires looking elsewhere than within the given object for

an answer. Further, the definition of a proof sets no bounds on the

length of a proof, and to examine all possible prools without bound on

their length is not a procedure which yields an answer to the question

in a finite number of steps in the event the formula is not a theorem.

This being the state of affairs, the decision problem for provability

has special significance for formal theories. Accordingly, it is olten called

the decision problem for a theory. A theory lor which the decision prob-

lem can be answered in the affirmative is said to be decidable; other-

wise, it is undecidable. An example ol a decidable theory is the state-

ment calculus, for since a formula is a theorem ill it is a tautology, the

method of truth tables provides a decision procedure. Some other

decidable theories are described at the end ot Section 9.

So long as attention is restricted to results ot a positive character
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concerning decidability, an intuitive understanding of this concept suf-

fices. It is up to the creator of a theorem which asserts that some theory

is decidable to provide and establish a decision procedure. The situation

changes radically, however, if one proposes to prove a result of a negative

character, namely, that a theory is undecidable. Clearly, a precise

definition of a decision procedure is indispensable in this connection. A
definition which is generally agreed on is given in Section 8.

6. Consistency and Satisfiability of Sets of Formulas

In this section we derive some properties of a class of theories for

which the axioms are those of the pure predicate calculus (without and,

later, with the axioms of equality). By being sufficiently ambiguous in

the description of these theories we obtain results which have applica-

tions to both the predicate calculus and, in view of the remark made in

Example 4.5, first-order theories. The applications to first-order theories

consist of more definitive results concerning consistency, completeness,

and categoricity than were obtained earlier for informal theories.

We begin by fixing our attention on a particular theory Xo which

may be the pure predicate calculus of first order, or some first-order

theory with the symbol for equality deleted, or some theory in between

these extremes. If Xo is not the pure predicate calculus, then it is deter-

mined by some definite choice of primitive symbols which includes

individual symbols (including a denumerable set of individual variables

0 O ,
tfi, ^2 ,

• •

•)> possibly some predicate symbols, and possibly some oper-

ation symbols, f but without equality. The definition of an interpretation

of Xo may be obtained from that given for this notion in the case ol a

first-order theory. The definition of satisfaction ol a formula by a

/9-sequence is obtained from the earlier one by deleting references to

equality. Then it is clear that the remaining definitions given for first-

order theories apply to Xo.

In order to launch our discussion of Xo, further definitions arc needed.

These extend some for the statement calculus given in Section 2. A
formula A is satisfiable in a nonempty set D iff there exists an interpreta-

tion X) of Xo with domain D such that A is satisfied in X. Notice that

satisfiability of A in D hinges on the possibility ol making some assign-

ments of values to the free variables in A such that there results satis-

f Of course, we assume that the union of the set of predicate symbols (some of which may

be classified as variables and others as constants) and the set of operation symbols is nonempty.
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faction by a D-sequence which exhibits this choice of values. A formula

of X0 is satisfiable iff it is satisfiable in some D. Just as the notion of the

validity of a formula may be regarded as the analogue, for Xo, of the

notion of being a tautology in the statement calculus, so may satis-

fiability be regarded as the analogue of not being a contradiction. It is

clear that a formula is satisfiable (in a given domain) iff its negation

is not valid (in that domain), and a formula is valid (in a given domain)

iff its negation is not satisfiable (in that domain). A set of formulas is

simultaneously satisfiable iff each formula is satisfiable in some domain

by some ZTsequence. The definitions of an inconsistent and of a con-

sistent set of formulas of Xo read the same as for the case of the state-

ment calculus. It is left as an exercise to prove that a set of formulas is

consistent iff every finite subset is consistent.

The main results which we shall derive in this section concern prop-

erties of a set T of formulas of Xo- Since, for applications to first-order

theories, T will be the set of mathematical axioms, and since, as men-

tioned in Example 4.4, we may take such formulas to be statements, we
shall express most of our results for a set of statements. VVe begin by

extending the result obtained in Section 2 to the effect that the notions

of consistency and satisfiability of a set of formulas of the statement

calculus are equivalent to the case of a set of statements of Xo-

THEOREM 6.1. If the set T of statements of Xo is simultaneously

satisfiable, then T is consistent.

Proof. Assume that T is an inconsistent set of statements. Then there

exists a finite subset {Ah A*, •
*
*, Am )

of T and a formula B such that

Ai, Ao, •
•
*, Am R B A —i

B. By Theorem 5.3, m > 0. Then the

deduction theorem and the statement calculus give R —i
The

reasoning in the proof of Theorem 3.3 may be applied to this result

to conclude that —
i f\['Ai is valid. Hence, A % is not satisfiable,

which means that [A\, A2,
• •

•, Am )
is not satisfiable in view of the

definition of conjunction. It follows that E is not satisfiable.

The reader is asked to convince himself that this proof is not admis-

sible in the sense of Hilbert’s metamathematics. In fact, the definition

of satisfiability of a set of formulas is probably not admissible.

The converse of Theorem 6.1 is a much deeper result. We state it

in a sharp form due to L. Henkin (1949). The proof that we shall
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give—a refinement of Henkin’s original proof—appears in a paper by

G. Hasenjaeger (1953), who attributes the idea to Henkin. It is an

elaboration of that given for Theorem 2.7.

THEOREM 6.2. If E is a consistent set of statements of To, then E

is simultaneously satisfiable in a domain whose cardinal number is

equal to the cardinal number of the set ol primitive symbols ol Xo.

Proof. We shall carry out the proof for the case where the set of

primitive symbols of Xo is denumerable and indicate afterward the

modifications needed in the general case.

Let Mi, m2 ,

• • • be symbols which do not occur among the symbols

of Xo- Let X be the theory whose primitive symbols are those of X0

augmented with mi, w2 ,

* * * as individual constants. The set ol foi -

mulas of X is denumerable and there is an effective procedure for

listing them. This induces an effective enumeration of the statements

of X and, in turn, of those statements of the form Gx)T(x).t Suppose

that (lv)/E(x), for i = 1,2, •
• •, is an enumeration of all such state-

ments.

We shall use this last ordering to construct a consistent set of

statements of X that includes T. We begin by defining a sequence

E 0 ,
Ti, r2 ,

• • • of sets of statements of X by induction. Let E0 be E.

In the list uh m2 ,

• •
•, let uh be the first constant that does not occur

in (3*);4i00. Then take r i to be the set whose members are

(3x)Afx) —> Afuf

and the members of To. Assuming that has been defined, let Uji+l

be the first constant in the list Mi, m2 ,

• • • that does not occur in

Afuf, •
•
•, Afuf, Qx)A i+l (x). Then take T i+1 to be the set whose

members are

and the members of

Then each (i = 0, 1, 2,
• • •) is consistent. Lor example, to show

that Ti is consistent, assume to the contrary that To, (3*)4i(*) —

>

Afuj) |— B A —i
B for some formula B. Then, by the deduction

theorem,
To h (Qx)Ai(x) —> Ai(ua))

—> B A -i B.

In some demonstration of ((2^)/liG) * Afuj^) > B A —i
B, leplace

Uh by a new variable y which does not occur in any formula of the

f The notation “T(x)” for the type of formula under consideration is a convenient one for

exhibiting the result of substituting some individual symbol for the free occurrences of x.
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deduction. Since does not occur in any member of T0 or in (Tv)Ti(*),

we then have

r0 b ((3x)di(x) —> Ai(y)) —> B A -i B.

From this can be inferred, by the machinery of the predicate calculus,

To I- ((3FMi(*) —> Qy)Ai(y)) —> B a -i B.

Then a change of bound variable f gives

r 0 b ((3x)/li(x) —> (Tv)/h(*)) —> B a —i
B.

But since (3*)^4i(*) —> (:b)di(x) is a theorem, we have T0 b B A —

i

contrary to the supposed consistency of ro .

Similarly, the consistency of r ?+ i follows from that of T*, and
thereby the consistency of each T* is established by induction. Let T
be the union of the sets r0 (= T), Th T 2 ,

• • •. Then T is a consistent

set. For the contrary assumption implies the inconsistency of some
finite subset of T, and hence that of some r t-, contrary to what was
proved above.

Next we shall construct a set A of statements of X which includes T
(and hence T) and which is maximal consistent in the sense explained

in the proof of Theorem 2.7. For this purpose we define an infinite

sequence of sets A 0 ,
Ai, A2 ,

• •
• as follows. Let A 0 be the same as T.

Then, if the (

n

+ l)th statement A of X (in the chosen enumeration
of these statements) is consistent with A n (that is, if A„ U M} is a
consistent set), let An+i be the set whose members are A and the

members of A n ;
otherwise take A n+1 to be the same as A n . It follows

immediately by induction that each of these sets is consistent. Let A
be the union of the sets A 0 ,

Ah A 2 ,

• •
•

. Clearly, A includes T. More-
over, it has the following two properties, which is all we shall use to

show that A, and hence T, is simultaneously satisflable in a denumer-
able domain.

(i) A is a maximal consistent set of statements of X.

(ii) II a formula of the form (3x)d(,r) is in A, then for some
constant Uj, A(uj) is in A.

For the proof of (i) we note first that the consistency of A is shown
by the same argument as was used above to establish the consistency

t This is an application of a theorem about the predicate calculus which may be stated
as follows: Ify is an individual variable which is not free in a formula C and a: is an individual
variable which docs not occur in C, il h. results from D by substituting x fory in C for an occur*
rence of C in D, and if P0 D, then P0 b E.
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of P. Next, let A be any statement that is consistent with A. Suppose

that A is the (n + 1 ) th statement of X. Then A n U {A} is a consistent

set. Therefore, by the definition of A n+i, A is in An+i and hence in A.

The proof of (ii) is left as an exercise.

Next we mention five further properties of A which stem from (i)

and which we will need.

(iii) A statement A is a member of A iff A 1— A.

(iv) If B is any statement, then exactly one of the pair B, —i
B

is in A.

(v) If B C A, then A —> B G A for any statement A.

(vi) If A g A, then A —> B £ A for any statement B.

(vii) If A G A and B A, then A —> B
(f_

A.

These five properties of a maximal consistent set were listed in the

proof of Theorem 2.7. The earlier proof of the first carries over

directly to A. Proofs of the earlier statements of the remaining four

(which the reader was asked to provide) also carry over directly to A.

Thus, we feel free to continue.

This we do by introducing an interpretation, Xs

,
of X. As its

domain, D, we take the set of individual constants of X. We order all

constants (individual and predicate) of X in a sequence

(C0 ,
Ci, C2 ,

• • •)

and then, corresponding to this, we form a sequence (e0 ,
Ci, C2 ,

* * *)

as follows. If Ci is an individual constant we take Ci to be Ci, and

if Ci is an rc-place predicate constant we take C* to be the n-ary

relation in D such that for individual constants dh d2 ,
•••,</» we have

(dh d2 ,
•

•
•, dn) C iff A h Ci(dh d2 ,

•
•
•, dn). The key property of X

is the following: Each statement A of X is true in X iff A H A. 1 he proof

(sketched for an A containing no operation symbols) is by induction on

the number m of symbols in A, counting each occurrence of -i ,

—

and a universal quantifier as a symbol. If m = 0, then A has the form

P(dh d2 ,
•

•
•

,
dn), where P is a predicate symbol and the d's are in D. If

A H P(d\, d2 ,
•

*
*, dn),

then, clearly, every 79-sequence satisfies A since (di, d2 ,
•

•
*, dn) is a

member of the n-ary relation assigned to P. The converse is equally

obvious. Assume next that the assertion holds for all statements with

fewer than m symbols and consider A with m symbols.

Case 1. A is Assume that A 1 \B. Then it is not the case
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that Ah B, by (iii) and (iv). From the induction hypothesis it

follows that B is not true and, hence, —i
B is true in T). The converse,

that —i
B is true in T) implies A h —i

B, follows by reversing this

argument.

Case 2. A is B —> C. This is disposed of by properties (v)-(vii)

of A. I he details are left as an exercise.

Case 3. A is (x)B(x). II A h (x)B(x), then by (PC5) and modus
ponens, A h B(d) where d is any individual constant. The induction
hypothesis and clause (Vs) of the definition of satisfaction then imply
that (x)B(x) is true in 5D. For the converse, assume that we do not
have A h (x)B(x). Then —

i
(x)B(x) and, hence, (3x) —i

B(x)—by the
definition of the latter formula together with modus ponens—is in A.

From (ii) it follows that there exists Ui such that —
, B(ui) £ A, so we

do not have A h- B(ui). Hence, by the induction hypothesis, B(u
tj is

not true in T), which implies that (x)B(x) is not true in T) by the
definition of truth for (x)B(x).

In view of the result just proved, all formulas of A are true in £)

and so are simultaneously satisfiable in D. Since T is a subset of A,
the theorem is proved for the case of a To whose primitive symbols
are denumerable. The only modifications necessary for the proof of
the general case are (i) the replacement of the u/s by symbols ua ,

where a. ranges over a set with the same cardinal number as the set

of primitive symbols of T0 ,
and (ii) the selection of some one well-

ordering of the formulas of the new T in place of the standard enumer-
ation used above.

The depth of this result may be inferred from the fact that several
profound theorems pertaining to both the pure predicate calculus and
applied predicate calculi can be derived easily from it. We state as the
first result in this category the completeness theorem for such theories.

THEOREM 6.3 (the completeness theorem). If A is a valid for-

mula of To, then b- A.

Proof. Assume that A is valid and consider the closure VA of A. As
observed earlier, VA is then valid and, in turn, VA is not satisfi-

ablc. Hence, by Theorem 6.2, {—iVd
j

is inconsistent. Therefore, for
some formula B, —i VA b- B A —i B, and then, by the deduction
theorem and the statement calculus, b- VA. Then, by (PC5) and
modus ponens we may clear away any universal quantifiers to
obtain \- A.
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If To is taken to be t lie predicate calculus, then 1 hcorem 6.3 becomes
Coders completeness theorem (Theorem 3.4). Godel, it may be noted,
proved the completeness of the pure predicate calculus and then indi-

cated how the method used can be extended to obtain Theorem 6.2
for the pure predicate calculus.! Incidentally, for the pure predicate
calculus, Theorem 6.2 may be phrased in the following somewhat
more striking form: Every consistent set of statements of the pure
predicate calculus is simultaneously satisfiable in the set N of natural
numbers. This version follows from the fact that the cardinality of the
set of primitive symbols in this case is No and, since only the cardinality
of a set matters when it is being considered as the domain of an inter-

pretation, N may be used under the circumstances.

THEOREM 6.4. If I is a set of statements of Xo which is simul-

taneously satisfiable, then F is simultaneously satisfiable in a domain
whose cardinal number is equal to the cardinality of the set of prim-
itive symbols of X (J

.

Proof. Apply Theorem 6.1 and then Theorem 6.2.

From Theorems 6.1 and 6.2, when stated for the case of sets of

arbitrary formulas (instead of statements) of the pure predicate calculus,

follows the Skolem-Lowenheim theorem: If a set of formulas of the pure
predicate calculus is simultaneously satisfiable, then it is simultaneously

satisfiable in N. Lowenheim first proved this for the case of a single

formula. Skolem (1 929) generalized this result to the case of simultaneous

satisfaction of a countable set of formulas.

THEOREM 6.5. Let F be any set of statements of Xo such that

every finite subset of F is simultaneously satisfiable. Then T is simul-

taneously satisfiable in a domain whose cardinality is equal to that of

the set of primitive symbols of Xo.

Proof. Assume that F is not simultaneously satisfiable. Then T is

inconsistent, by Theorem 6.2. Hence, there is a formula B such that

both F h- B and F p- —i
B. Since the demonstrations of B and —i

B
from F are finite sequences of formulas, we see that some finite subset

of F is already inconsistent. This conclusion is incompatible with the

hypothesis, according to F'heorem 6.1.

t However, Godel’s proof does not extend to the case of a theory which has uncountably
many primitive symbols.
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It is possible to deduce from Theorem 6.2 an extended version of

Theorem 6.3, which is known as the strong completeness theorem:

For any set T of statements of Xo, if T t= B ,
then T B. Conversely,

the strong completeness theorem implies Theorem 6.2 and thereby

follows the equivalence of these two results. This equivalence extends

one obtained in Section 2 for the statement calculus. We shall establish

the strong completeness theorem next and leave the proof of the converse

as an exercise.

THEOREM 6.6. For any set T of statements of X0 ,
if F B,

then r |— B.

Proof. Assume that r t= B. Then the set T U { -i B) is not simul-

taneously satishable. To prove this we note first that if F is inconsistent,

then (Theorem 6.1) it is not simultaneously satishable, and hence

T U {-i#| is certainly not satishable. If T is consistent, then (Theo-

rem 6.2) it is simultaneously satishable and any model of T is a

model of B, so again HJ {—ii?) is not satishable. From the non-

satishability of T U { —i
B) follows the inconsistency of this set. Hence,

by the deduction theorem and the statement calculus, T H B.

Theorem 6.2 holds for a theory Xi like X0 but with equality, if we

replace “a domain whose cardinal number is equal to'" by “a domain

whose cardinal number is less than or equal to.” Before we prove this

we note that the dehnition of “simultaneous satisfaction in a domain D”
now includes clause (II S) of the dehnition of satisfaction of a formula

by a D-sequence. That is, the symbol “=” must denote the relation of

equality between individuals of D. (It is because of this indexible

interpretation of the relation of equality that it is classihed as a logical

constant.) To begin the proof, let Zq and Zq be the set of the closures of

all instances of the axiom schemas (PC6) and (PC7), respectively, lor

equality. Given a set F of statements of Xi, we consider the set

ruhU Zq of statements of the theory Xo obtained from Xi by drop-

ping the axiom schemas (PC6) and (PC7). Since Theorem 6.2 is appli-

cable to this Xo, there exists an interpretation of Xo with domain D in

which T U Ei U Zq is simultaneously satished, provided that it is con-

sistent in Xo (which is the case if F is consistent in Xi). To “=” there

is assigned by this interpretation some binary relation <3* in I). Since

from Ei and Zq one can deduce in Xo that (.v)(jv)(.v = y y = x) and

(*) (y) (z) (x = y A y = z —> x = z), e* is an equivalence relation on D.

The relation Ck has the additional property that for any «-ary relation
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of the interpretation of Xo, d2Qkd2 ,
•• •, </„©*</' imply that

{d\, d2 ,
•

•
•, ^n) C C

;
- iff (d/I, d2 ,

•
•

*, </') C Cy. This is guaranteed because
in X 0 we can deduce the formula

(7) A *2 = x2 A • •
• A xn = xn —

>

(Cj(x i, *2 ,

* •
•, *«) <-» QW, *2 ,

* •
•, *0)

from assumptions 7q U £2 - Now let D' be the set of equivalence classes

modulo e k . Then for each subset of D n the canonical mapping on 79

onto D' determines a subset of (.D') n
. Consequently, to each constant Cj

of ~Li may be assigned a relation in D' in the natural way. By this route

we are led to an interpretation of Xi with domain D' . If c is an individual

constant to which is assigned d in 79, then to c is assigned the equivalence
class (element of D'

) determined by d. Hence, the relation of equality

of individuals of D' is assigned to the equality symbol in Xi. Further,

T is simultaneously satisfied in D’ since F U £1 U E2 is satisfied in D
and because of the property (noted above) of ek ,

which stems from
formula (7).

From the foregoing modification of Theorem 6.2 may be inferred

Theorem 6.3 in the form: If A is a valid formula of Xi, then A. This
result includes Godel’s completeness theorem for the pure predicate

calculus with equality. Theorems 6.4 and 6.5 also hold for Xi when
“equal to” is replaced by “less than or equal to.”

EXERCISES
6.1. Prove that a set of formulas of Xo is consistent iff every finite subset is

consistent.

6.2. Referring to the proof of Theorem 6.2, prove that A has property (ii).

6.3. Referring to the proof of Theorem 6.2, the reader should agree that the

proof-outline of the key property of X (that a statement A of X is true in X iff

A |— A) is lacking in precision. He can correct matters by proving by induction

on the length of A the following

LEMMA : For every 79-sequence d = (d0,
dh d2 ,

•
•

•) and every formula A of

X, A(d) C A iff 7 satisfies A, where A(d) is the result of substituting dk for all

free occurrences of ak in A, k = 0, 1, 2,

6.4. Write out an expanded version of the proof given of Theorem 6.3, sup-

plying all missing details.

7. Consistency, Completeness, and Categoricity
of First-order Theories

In this section we shall discuss the notions mentioned in the section

heading for an arbitrary first-order theory X having a set F of statements
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as its mathematical axioms. The results of Section 6 become available

for use in our discussion simply by changing the status of T from that

of a set of axioms to a set of assumption formulas. To explain this in

detail, let Xi be the theory which coincides with X except that the axioms

of Xi are just the logical axioms of X. Then, as shown in Example 4.5,

the theorems of X are precisely those formulas of Xi which are deducible

(in Xi) from F as a set of assumption formulas. The transition from X
to Xi amounts to nothing more than the change in status of T men-

tioned above. When X is regarded as Xi it qualifies as a theory of the

type considered in the latter part of Section 6, so the results obtained

there may be applied to X.

When discussing X in this way, the definition of a model of X coincides

with that of a model of T. For, by definition, a model of X is a model

of the set of axioms of X, but this amounts to an interpretation which

is a model of T, since the remaining (logical) axioms of X are true in

every interpretation. Likewise, when our earlier definition of the con-

sistency of a theory is applied to X, it is seen to coincide with the more

recent definition of consistency for T. The definitions given earlier in

this chapter of negation completeness and of categoricity of an axiomatic

theory may also be applied to T instead of X. In summary, the notions

which are uppermost in our mind now may be formulated at one’s

pleasure for either X or its set of mathematical axioms. Sometimes

there are psychological reasons for having a preference.

Our first concern is the extension of Godel's completeness theorem

and its converse to X, thereby establishing the correctness and adequacy

of the deductive apparatus which is available for X.

THEOREM 7.1 . A model of X is a model of the set of theorems

of X.

Proof. Let B be a theorem of X. Then F 1— B in Xi, which means

that A i, A‘2 ,
•

•
•, Am H B for members Ah A2 ,

• • Am of T. In turn,

/\\
nA{ —» B is a theorem of Xi. If X) is a model of X, then X is a model

of [Ai, A‘2 ,
•

•
•, Am ]

and hence of /\”
l

Ai. Further, as a theorem of Xi,

f\?Ai —> B [which may be reformulated as ( —
i

/\?*T t) V B] is a valid

formula and hence has X as a model. Thus, X is a model of B.

An alternative version of Theorem 7.1 is: If B is a theorem of X,

then B is true in every model of X. We continue by proving the converse

statement. Assume that B is true in every model of X. Then V

B

is true

in every model of X. Thus F U {“iVZ?} has no model, and consequently



9.7 Consistency
,
Completeness

,
and Categoricity 419

is inconsistent by Theorem 6.2. Thus, for some formula C we have T,

—|V# h 6 A —|C, and then, by the deduction theorem and the state-

ment calculus, r \— W

B

and, in turn, T f- B, which completes the

proof. Taken together, these two results mean that the theory ol inference

at hand (that is, that of the predicate calculus) enables one to establish

as theorems of X only and all those formulas which are valid con-

sequences of the mathematical axioms of X. We summarize this conclu-

sion in our next theorem.

THEOREM 7.2. A formula B is a theorem of X iff B is true in

every model of X.

We take up next the question of the consistency of (the set of mathe-

matical axioms of) X. For such a theory, with its formal definition of

deduction, consistency becomes amenable to exact discussion. Indeed,

according to Theorems 6.1 and 6.2, X is consistent iff it has a model,

thereby establishing that consistency and satisfiability are entirely equiv-

alent notions. We recall that in Section 5.3 we gave a heuristic argument

that in informal theories satisfiability implies consistency. Now we have

an exact form for both that argument and the meaning of the concepts

involved. A further gain that is achieved by formalization is the converse,

which is a striking result when stated as, “If the set of axioms of a theory

is not satisfiable, then a contradiction can be derived.” Certainly this

is by no means clear when operating at the intuitive level. Unfortunately,

we feel obliged to detract from these lofty observations by mentioning

that although in principle a model exists for every consistent first-order

theory, finding or describing a model may be difficult, and it is a fact

of life that many mathematical axiomatic theories are not of first order.

We consider next the question of completeness of a first-order theory

X. Theorem 7.2 gives an affirmative answer in the sense that validity

implies provability, so we turn to the concept of negation completeness.

As with consistency, this has a characterization in terms of models.

THEOREM 7.3. Xis negation complete iff every statement of X
which is true in one model of X is true in every model of X.

Proof. If X is inconsistent, then the left-hand side ol the biconditional

is trivially true and the right-hand side is vacuously true. So assume

that X has a model. Breaking the biconditional of the theorem into

two conditionals, we shall prove both parts by contraposition.

Suppose there is a statement A and models Xh and X2 ol X such



420 First-order Theories chap. 9

that A is true in £)i and not true in $)2 * Then neither A nor —id is a

theorem, by Theorem 7.2, and X is not negation complete. Conversely,

assume that X is not negation complete; let A be a statement such

that neither A not —id is a theorem. Adjoin d to the set T of axioms

of X

.

The set T U { d }
is consistent, for otherwise we could deduce

from this set a formula of the form B A —iB, and then, by the deduc-

tion theorem and the statement calculus, T f— -id, which is contrary

to assumption. Similarly, T U I —id} is consistent. Hence, there exist

models X)\ and T) 2 of T U [A] and T U { —id}, respectively, by
Theorem 6.2. These are also models of T (that is, of X) and d is

true in Xi and not true in T)2 .

We assume that our earlier discussion of isomorphism is adequate
for gathering the meaning of this notion for the case of models of first-

order theories. It is left to the reader to prove that if a statement is

true in one model of X, then it is true in any isomorphic model. We
can now prove the following

THEOREM 7.4. If T is categorical, then X is negation complete.

Proof. Assume that X is categorical. Then a statement which is

true in one model of X is true in every model. Hence, X is negation

complete, by Theorem 7.3.

Parenthetically we note at this point that from each of Theorems 7.3

and 7.4 we may infer the completeness of a theory which has no model

—

that is, a theory which is inconsistent. (Of course, the completeness of

an inconsistent theory is also an immediate consequence of incon-

sistency.) This triviality having been uncovered, henceforth we shall

consider completeness only for consistent theories.

From the next two theorems we may infer that the range of applicabil-

ity of Theorem 7.4 is rather limited, since together they imply that

practically no first-order theory is categorical.

THEOREM 7.5. If X has an infinite model, then for every infinite

cardinal number c which is greater than or equal to the cardinality

of the set of formulas of X, X has a model of cardinality c.|

Proof. Let X) be an infinite model of X and let A be a set of cardin-

ality c. Adjoin to X one new individual constant a for each element

t When speaking of the cardinal number of a model we have in mind the cardinal number
of its domain.
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of /I and adjoin to the set F of mathematical axioms of I all formulas

of the form a /3 for distinct a and 0. Let X' denote this extension

of X and let T' denote the set of its mathematical axioms (thus, F'

is the union of F and the set of all axioms of the form a 5* (3). Since

the cardinal number of the set of primitive symbols of X cannot

exceed c, the cardinal number of the set of primitive symbols of X'

is equal to c. Further, X) is a model of any finite subset of F', since

(i) it is a model of F, and (ii) being infinite, we can assign to any

finite number of distinct a’s distinct elements of the domain of X.

It follows from Theorem 6.5 (taking into account the presence of

the equality relation) that T' has a model X' whose cardinality

call it c
'—is less than or equal to c. But since to the equality symbol

is assigned the relation of equality ol individuals in the domain ol X ,

c' > c. Flence, X' is a model of X
,
having cardinality c.

THEOREM 7.6. If X has models of arbitrarily large, finite car-

dinality, then it has an infinite model.

Proof. For any positive, finite cardinal number n, the domain of

any model of the formula

Cn : (3 flo)(3 ai) * *
• (3 fln-i)(ao ^ ai A a0 5* a2 A • • • A aQ

9^ an- 1 A a\ 7^ a<L A • •
• A an-2 5^ a-n- 1)

has at least n elements. Let us adjoin to the set F all statements of

the sequence C), C2 ,

• •
•

,
Cn ,

• • • and call the augmented set ol axioms

r'. Then, if X has models of arbitrarily large, finite cardinality,

each finite subset of T' has a model, and hence T' has a model X
by Theorem 6.5. Since to the equality symbol is assigned the rela-

tion of equality of individuals in the domain ol X
,
this domain must

be infinite if every Cn is to be true in X. Since every Cn is true in X
,

it is an infinite model.

The two preceding theorems imply that unless a finite upper bound

on the cardinality of models of X can be exhibited, then 4. has models

of any preassigned infinite cardinality. Such a theory cannot be cat-

egorical, for since isomorphic models always have the same cardinality,

the existence of models of X having dilferent cardinalities excludes the

possibility of every pair of its models being isomorphic. Even when a

finite upper bound on the cardinality ol models of 4. can be lound, if

models of different cardinalities exist, then ^ is not categorical lor the

same reason as above. Hence, a necessary condition for categoricity ol
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a first-order theory X is that every model have the same finite car-
dinality. But even this condition is not sufficient. To prove this we note
first that it is possible to augment the set T of axioms of X with an axiom
that restricts the domain of any model to have a preassigned cardinal
number. For example, the conjunction of the formula Cn (used in the
proof of Theorem 7.6) and the formula —i

Cn+

1

suffices to ensure that
the domain of every model has exactly n elements. Suppose now that
we adjoin to the mathematical axioms of elementary group theory, as

formulated in Example 4.1, the axiom which expresses the fact that
there exist exactly four objects. Then every model of this theory has
cardinal number 4. After the reader has studied a bit of the theory of
groups presented in Chapter 8, he will be able to construct two non-
isomorphic models of the theory just defined. So the condition that
every model of a theory have the same finite cardinality, which is

necessary for categoricity, is not sufficient.

Although categoricity has essentially no applications to questions of
completeness, the following generalization does lead to significant results

in this area. If c is a cardinal number, a first-order theory is called
categorical in power c iff any two models of cardinality c are iso-

morphic. The following result concerning such theories was obtained
independently by R. L. Vaught (1953) and J. Los (1954).

THEOREM 7.7. f If all models of X are infinite and if, for some
infinite caidinal c greater than or equal to the number of formulas
of -i, X is categorical in power c, then X is negation complete.

Proof. If X is inconsistent, the theorem is true in a trivial way, so
assume that X is consistent. We shall prove that for any given state-

ment of either it or its negation is a theorem of X, by assuming
the conti ai y and deriving a contradiction. So let S be a statement
of X such that neither iS” nor

i
V is a theorem. Let X 7

be the theory
which results from X by adjoining S as an axiom and let X" be the
theory which results from X by adjoining S as an axiom. Since
is not a theorem of X, X' is consistent, and, since S is not a theorem
of X, X" is consistent. Hence, X' has a model X)' and X" has a model
X)

,
according to Theorem 6.2. Since X' and X" are models of X

as well, both are infinite by assumption. Let c be an infinite cardinal
such that any two models of X of cardinality c are isomorphic. Then,

t (Added in proof.) In M. D. Morley (1962) there is announced the following theorem
which meshes very nicely with the above result: If a first-order theory is categorical in one
uncountable power, then it is categorical in every uncountable power.
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by Theorem 7.5, X' has a model (S' and X" has a model (2", both of

cardinal number c. Again, (S' and (2" are also models of X, and con-

sequently they are isomorphic. However, this is impossible, since .S’

is true in (S' while —i.S’is true in (2".

This theorem can be used to establish the completeness of a variety

of theories. Some examples follow.

EXAMPLES
7.1. The elementary theory of densely ordered sets is a first-order theory in

which the 2-place predicate < is the only mathematical constant and whose
mathematical axioms are the following.

01. (x)
i (x < x).

02 . (x) {y)(x 5^ y —> x < y V y < x).

03 . (x)(y)(z)(x <yAy<z—+x<z).
04 . (x)(y)Qz)(x < y x < z A z < y).

0 5 . G*)(3)9(* < y).

Oe . (x)(3y)(3z)(y < X A X < z).

The models of this theory are precisely all simply ordered dense sets of at least

two different elements and have neither a least nor a greatest element. Since

Q and R, each with its natural ordering, are models, the theory is not cate-

gorical. However, according to the result stated at the beginning of Exercise

2.6.11, any two denumerable models are isomorphic (since each is isomorphic

to Q with its natural ordering). It follows that Theorem 7.7 is satisfied with

c = Xo, and thus the theory is negation complete.

7.2. The elementary theory of atomless Boolean algebras is the first-order

theory described in Chapter 6 with the axioms given there supplemented by
one which implies that each model (that is, each Boolean algebra) has no atoms.

All such algebras are infinite, and it can be proved that any two denumerable
atomless algebras are isomorphic. Hence, the theory is negation complete.

7.3. The elementary theory of infinite commutative groups in which every

element different from the identity has a given prime order p is the theory

defined in Example 4.1, with the necessary additional axioms to ensure that

every model has the distinguishing features stated. For example, among these

axioms will appear the formulas Ci, C2 ,

• •
*, Cn ,

* • • mentioned in the proof of

I heorem 7.6. It can be shown that any two models of this theory which have
the same cardinal number are isomorphic. That is, the second condition of

I heorem 7.7 is satisfied for an arbitrary infinite cardinal c. Hence, for each p,

the theory is negation complete.

7.4. I he elementary theory of algebraically closed fields of given character-

istic p may be described as follows, first, the theory of fields as defined in Chap-
ter 8 is formalized as a first-order theory. Then, ifp > 0, the formula Xp which,
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translated into everyday language, states that the successive addition of any

element to itselfp times yields the zero element, is added as an axiom. If p = 0,

we add instead the sequence of formulas —\X2 ,
—|V3 , —iW, •••, —

i

XPf
•••.

Finally, to restrict models to fields which are algebraically closed (which

means that every polynomial equation with coefficients in the field has a root

in the field), we add another infinite sequence of axioms, A 2 ,
A 3 ,

• •
•, A n ,

•
•

where A n expresses the fact that every polynomial of degree n has at least one

root.

There are pairs of denumerable algebraically closed fields of any given char-

acteristic which are not isomorphic. However, it is known that any two un-

countable algebraically closed fields of the same cardinality and the same

characteristic are isomorphic. So, again, the conditions of Theorem 7.7 are

satisfied for every c > and the theory, for each choice of p, is complete.

The above proofs of negation completeness are all due to Vaught;

however, the results themselves are known earlier, having been ob-

tained by other methods. We remark further that each of these theories

is decidable. This matter is discussed in Section 9.

We conclude the section with the unraveling of a paradox that can

be derived from two of our earlier theorems. On the one hand, Theorem
2.1.8 seems to imply that the arithmetic of the natural numbers is a

categorical theory (since it asserts that any two models are isomorphic),

while on the other hand Theorem 7.5 implies that it cannot be cate-

gorical. To bring this conflict into sharp focus we prove a version of

Theorem 7.5 which is tailored specially for the matter at hand: The

theory N is not categorical. To prove this we introduce the first-order

theory N' which coincides with N except that it has a further individual

constant, 11
,
and the following additional mathematical axioms:

U 7^ 0

u 9̂ 0 + 1

• • •

u 9̂ 0 + 1 +1 + ••• +1 (with n occurrences of “1”)

Now let A be any finite subset of the set T' of mathematical axioms

of N' and consider the following interpretation of A. As the domain of

the interpretation we choose N, and to -f, •, 0, and 1 we assign the

familiar meaning, and, if “w ^0 + 1 + • •
• +1” (with m occurrences

of “1”) is the last member of the above sequence of axioms that occurs

in A, then to u we assign rn . Clearly this interpretation is a model of A.

Hence, by Theorem 6.5, F ;

,
that is, N', has a model. This model is not
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isomorphic to (N, + , 0, 1) (for what would be the image of u under
a proposed isomorphism?). This completes the proof.

The fact that this theorem is not in conflict with Theorem 2.1.8 be-

gins to take form when one attempts to formalize the proof of The-
orem 2.1.8. It is found that the first-order predicate calculus is inade-

quate to carry out this proof because use is made of bound occurrences

of predicate variables. That is, the formalization requires the so-called

predicate calculus of second order, which, unlike that of first order,

admits quantification of both individual and predicate variables. At
this point one might conclude that the state of affairs might be sum-

marized by the assertion that when the arithmetic of the natural num-
bers is formalized as a first-order theory it is not categorical but when
formalized as a “second-order theory” it is. Matters are even more
complicated than this, however, since the latter part of the assertion

must be qualified before it becomes correct. The following is an indi-

cation of the precise state of affairs.

Suppose that arithmetic is formalized as a second-order theory N".

In rough terms this means that we start with the first-order pure pred-

icate calculus with equality, adjoin the constants introduced for N,

and alter the definition of formula to admit as a formula (.x)A for any

formula A and any individual or predicate variable x. Finally, adjoin as

the mathematical axioms those introduced for N except that the axiom

schema for induction is replaced by a single axiom prefixed with the

quantifier “(d).” The definition of an interpretation is as before.

However, a description of the valuation procedure relative to an in-

terpretation with domain D must specify the range of each rc-place

predicate variable for n =
1

, 2,
• •

•
. We select as this range some non-

empty collection (Pn of sets of ^-tuples of elements of D. If every formula

of N ;/
is to be meaningful in an interpretation, the sets (P„ cannot be

chosen in an arbitrary manner. For example, if A is a 1 -place predicate

variable and A(x) is interpreted as meaning that x is in the set S, then

—i A(x) means that x is in the complement of S
;
hence the range for

1 -place predicate variables should be closed under complementation.

In general, each method of compounding formulas has associated with

it some operation on the sets <P„, with respect to which these sets must

be closed. f We shall assume that the <P„’s satisfy all such closure condi-

tions. The earlier definition of a model is then applicable to N". If

f It is not really necessary to postulate these closure conditions, as is explained in Henkin

( 1953 ).
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an interpretation of N 7/
such that, for each n

,
(Pn is the collection of all

sets of ^-tuples of D (that is, each rc-place predicate variable ranges

over all subsets of Dn
) is a model, it is called a standard model. All

other models are called nonstandard models. T he existence of non-

standard models—indeed, ones in which all of the domains D, (Pi, <P2 ,

are denumerable—can be proved. Finally, we are in a position to

describe precisely the meaning of Theorem 2.1.8. It is the assertion that

any two standard models of N /r

are isomorphic; that is, if only standard

models of N" are admitted as models, then N" is categorical. Thus the

formulation of the arithmetic of natural numbers as a second-order

theory is stronger than the formulation as a first-order theory. But the

existence of nonstandard models of N" means that even this theory is

not categorical. This was discovered by Henkin (1950).

EXERCISES

7.1. Formalize the theory of partially ordered sets, using a 2-place relation

symbol as the only mathematical constant. Augment the axioms with one that

means that there exist exactly three distinct objects, and then show that this

theory is not categorical.

7.2. Given any finite set of positive integers, devise a statement such that,

when it is adjoined as an axiom to elementary group theory, the cardinal num-

ber of any model of the resulting theory is one of the members of the set (and

vice versa).

8. Turing Machines and Recursive Functions f

Of the metamathematical notions which we have promised to discuss

for first-order theories, there remains that of decidability. As we have

already pointed out in Section 5, a precise definition of a decision pro-

cedure is necessary if one hopes to prove that some theory is undecidable.

In this section we develop a tool for coping with decision problems in

general. Then, in the next section, questions of decidability and unde-

cidability are discussed.

We begin with a sketch of how the type of metamathematical problem

at hand can be recast in arithmetical form. The objects of a formal theory

are various symbols, various finite sequences of symbols (the formulas

of the theory), and various finite sequences of formulas (such as deduc-

tions). Since the set of symbols of those theories with which we are con-

i'
In the remainder of the chapter vve do not maintain the level of rigor and degree of self-

containment exhibited up to this point. Results from without are introduced and some argu-

ments are purely intuitive in nature.
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cerned is denumerable, so is (Theorem 2.4.5) the set of all objects. Now
suppose that we provide a particular enumeration of the set of all objects

ol such a theory. If we let a metamathematical statement of the theory

refer to the indices in the enumeration instead of to the objects enumer-

ated, a statement of number theory results. More generally, a predicate

of the metalanguage of a first-order theory can be transformed into a

number-theoretic predicate, that is, a function on the set N n of all

^-tuples of natural numbers into jT, Fj. Now with each number-theo-

retic predicate may be correlated a function on N n into N, the so-called

characteristic function of the predicate, which takes the value 0 or 1

according as the predicate is true or false. If by the computation

problem for a number-theoretic function / is understood the problem

of discovering a procedure describablc in advance for computing the

value of/ for any given argument in a finite number of steps, each deter-

mined by the preassigned recipe, then the decision problem for a

predicate in the metalanguage is transformed into the computation

problem for some number-theoretic function. Thus, in particular, by

way of an arithmetization of the metalanguage of a theory, the decision

problem for that theory reduces to the computation problem for a

number-theoretic function.

The process of the arithmetization of the metalanguage of a theory,

which was devised by Godel for the purpose of establishing the theorems

which are discussed in Section 10, is analogous to the arithmetization

of Euclidean geometry via the introduction of a coordinate system. A
typical example is afforded by the following arithmetization of the

metalanguage of N. The starting point is a correlation of certain nat-

ural numbers with the formal symbols of N
;
for example, the following

might be adopted

:

3 5 7 9 11 13 15 17 19 21

—i

—
> , ( ) 0 ' + • =

and, to the zth individual variable, the zth prime greater than 22.

Having assigned numbers to symbols, we next assign numbers to for-

mulas as follows. Let wi, ;?•>,
• •

•, iik be the numbers of the symbols of a

formula A in the order in which they occur in A. Let pi(= 2), p 2 ,
•

•
•

, pk

be the first k primes in order of increasing magnitude. Then the number
assigned to A is p\' • p2 pl

k
. For example, the numbers of the

symbols of the formula

—i (x) —
i

(x = O'),

which translates into “0 has a successor,” are successively 3, 9, 23
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(assuming that “*” is the first variable), 11, 3, 9, 23, 21, 13, 15, and 11.

So the number of the formula is

2 3
. 3 9

. 523 . 711 . 113 . 139 . 17 23
• 19 21

• 23 13
• 29 15

• 31 11
.

The numbers assigned to symbols and formulas in such a way as this

are called the Godel numbers of the symbols and formulas. Every

formula has a Godel number but not all numbers are assigned to for-

mulas. For example, the number 4( = 2 2
) is not assigned to any formula.

If a number is assigned to a formula, the formula can always be found

as follows. Factor the number into its prime factors. Then the number

of 2’s occurring in the factorization is the number of the first symbol

of the formula, the number of 3’s occurring in the factorization is the

number of the second symbol, and so on. The fundamental theorem of

arithmetic implies that this method of numbering is a one-to-one map-

ping on the set of symbols and formulas of N into N. Finally, to any

string of formulas we may correlate a unique number 2 ni
• 3”5

pl
k

,

where ri\, n2 ,
•

•
•

,
rik are the successive Godel numbers of the formulas

of the string. In particular, to every formal proof corresponds a num-
ber, the so-called Godel number of the proof. We conclude our exam-

ple of arithmetization with the observation that the predicate “A is a

theorem” is representable by the arithmetic sentence “There exists a

number x which is the Godel number of a proof such that the Godel

number of A is the power of the largest prime number in the decomposi-

tion of x into a product of prime powers.”

Returning to the discussion prior to the example we note that if a

computation procedure of the sort described can be found for a number-

theoretic function, the function is said to be effectively calculable.

It was the close relation between decision problems and the finding of

effectively calculable functions that first aroused the interest of workers

in the foundations of mathematics in the question of what functions

are effectively calculable. On the basis of the foregoing intuitive descrip-

tion of effective calculability we can certainly agree that such functions

as v + 1 and xv (committing the “abuse of language” whereby a func-

tion is designated by its value—a practice which we shall find convenient

to follow in this section) are effectively calculable. But to prove that a

given function is not effectively calculable requires an exact definition.

We need now to review the historical situation in the 1930’s. In his

famous paper ol 1931 (see Section 10) Godel employed a class of number-

theoretic functions, which are now called the primitive recursive func-

tions (see Section 2.3), and which by their very nature are seen to be
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effectively calculable. In 1934 Godel, building on a suggestion of Her-

brand, extended this class of functions to that of general recursive

functions, and these, it was agreed, are also effectively calculable. About

the same time (1932-1935) Church and Kleene defined a class of func-

tions (the X-definable functions) which, on the basis of their investiga-

tions, they proposed might be regarded as embracing all functions which

should be classified as effectively calculable. This proposal took on

more significance when Kdeene proved that this class of functions is the

same as Godel’s class. In particular, it led Church to formulate the

following thesis: Every effectively calculable function is \-defmable or
,
equiv-

alently, general recursive. Since the converse of this statement clearly

holds, Church’s thesis served to give an exact mathematical meaning

to the vague intuitive notion of a number-theoretic function being

calculable by preassigned instructions. A little later (1936-1937) a

paper by A. Turing appeared, in which was given an exact definition

of a class of functions (we shall call these Turing-computable, or

simply computable) along with the proposal that these be identikit d

with those functions which are effectively calculable. Shortly thereaftc r,

Turing proved that his class of functions was the same as the class of

X-definable functions, and hence the same as the class of general re-

cursive functions, f This result, which implies that Tuiings thesis is

equivalent to Church’s, tends to make more reasonable the identifica-

tion of this class of functions with that of effectively calculable functions.

For these reasons almost all research workers in foundations make this

identification.

Actually, an extension of the above is generally accepted. To describe

this we make a definition. By a partial function is meant a function

whose domain is some set of rc-tuples of natural numbers and whose

values arc natural numbers. 1 hat is, a partial function is a partially

defined” number-theoretic function. The distinction between partial

functions and what we have called number-theoretic functions is oiu n

made by calling the latter “total functions.” (Note that a partial func-

tion may be a total function.) The various classes ol functions mentioned

above can all be extended to classes of partial functions and the exten-

sion of the Church-Turing thesis to partial functions leads to the iden-

tification of the class of effectively calculable partial functions with the

class of partially recursive functions.

Turing’s conception of computability arose as a result of an analysis

f It should also be noted that E. Post (1936), independent of Turing, formulated a

of functions essentially the same as I uring’s.
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of computation procedures (as we know them intuitively) into “atomic”
acts, sufficient repetitions of which Turing believed would suffice for
any possible computation. Because of the naturalness of this approach
we shall give it preference in our discussion. This centers on giving
a mathematical characterization of a class of objects which we shall
call I uring machines. These are defined by analogy with physical
digital computers. In rough terms, a Turing machine may be described
as an imaginary digital computer which is not liable to error and which
has a potentially infinite memory. In somewhat more detail, but still

at the intuitive level, we imagine a computing machine through which
luns a linear tape, assumed to be infinite in both directions and ruled
into a two-way infinite sequence of blocks as indicated by the diagram

Initially the input, in the form of a finite number of symbols which
the machine recognizes,” with one symbol to a block, is placed on this
tape, the other blocks being blank. The “moments” for the operation
of the machine are numbered 1, 2,

• • *. To the machine is assigned a
finite number of internal states” (in the nature of simple bookkeeping
instructions) and the ability to “scan” a single block of the tape at each
moment of operation. The machine is deterministic in the sense that
at each moment its next act is completely determined by its internal
state at that moment and the symbol printed on the block scanned at
that moment. Specifically, in terms of a finite alphabet of symbols
which the machine is able to recognize, the machine is capable of the
following atomic acts, given an internal state and a symbol on the
scanned block.

(i) Erase that symbol, print a new symbol from its alphabet, and
(possibly) go into a different predetermined internal state.

(ii) Move one block to the right (that is, scan the block located
immediately to the right ol the original scanned block) and
(possibly) go into another predetermined internal state.

(hi) Move one block to the left and (possibly) go into another pre-
determined internal state.

(iv) ( tome to a complete halt of operations.
In order to represent these concepts symbolically, we shall use the

symbols qh q2 ,
•

•
• to denote internal states of machines. The symbols

•So, S\, •
•

• will be regarded as the alphabet which various machines are
capable of printing; the symbols R and L will represent a move of one
block to the right and to the left, respectively. By an expression we
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shall mean a finite sequence (possibly empty) of symbols chosen from
the foregoing. A quadruple is an expression having one of the following

forms

:

(7) Qi Si Sk Qi

(2) Qi Si R Qi

(3) Qi Si L q t

Quadruples serve to specify the next act of a Turing machine when in

internal state <7* and scanning a block on which appears the symbol Sj.

One of the form (/) indicates that the next act is to replace Sj by Sk

on the scanned block and to enter the internal state q t . One of the

form (2) indicates that the next act is a motion of one block to the right

followed by the entry into internal state q t . One of form (3) has a similar

meaning but with a motion to the left.

We now define a Turing machine to be a nonempty, finite set of

quadruples such that no two distinct members have the same first

two symbols. (The restriction is to avoid the possibility of a machine
assuming a “confused state” !) The q’s and S’s which appear in the

quadruples of a Turing machine are called its internal states and its

alphabet, respectively.

In order to motivate the formulation for Turing machines of the

formal analogue of a physical machine performing atomic acts in se-

quence, let us consider an example. Suppose that Af0 is the Turing

machine which consists of the following quadruples:

q i So Si q%

(4) q\ Si R q-i

<72 A’i R q2

The following diagram is intended to indicate that A/0 is in the initial

state qi and scanning a block in which So is entered. The string of S'

s

are initially printed on successive blocks of the tape:

£3 Si Su S'2 Si St

(5) T

<7i

Since there is a quadruple of A/
(, beginning with q ()So the machine per-

forms an atomic act after which it is in state q-> scanning S\ now printed

on the same block. This is summarized by the next diagram:

63 1S1 £1 1S2 ^1 ^3

T

<72

(6)
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Then, because q2Sx Rq2 C Mo, there is a move to the right and a con-

tinuation of state q2 . Because there is no quadruple of the form q2S%

in Mo, the machine “stops.”

In place of diagrams of the type used above to describe machine

configurations, expressions can be used. For example, the expression

(7) 1S3 S’! q2 Sr S2 Sr Sz

when interpreted as meaning that the 6” s shown are printed on the

tape and the machine is in state q2 scanning the symbol Si, conveys the

same information as (6). An expression like (7) containing neither R
nor L and containing exactly one q and with it not the rightmost symbol,

is called an instantaneous description. If M is a Turing machine and

D is an instantaneous description, then D is called an instantaneous

description of M iff the q that occurs in D is an internal state of M
and the S’ s that occur in D belong to the alphabet of Al. An expression

composed entirely of members of the letters S t is called a tape expres-

sion.

As just defined, a tape expression is a finite sequence of symbols

whereas the intuitive analogue is a finite sequence of symbols flanked

on either side by an infinite sequence of blank blocks. To obtain the

equivalent, in the formal setting, of this additional feature of an intui-

tive tape expression, we assign the symbol £0 ,
which henceforth will

also be written as B
,
the special role of serving as a blank. Then, roughly

speaking, we arrange for the adjunction of a B to an end of a tape

expression when the machine is about to run off that end of the (finite)

tape expression. A precise description is embodied in the following

definition, which, in its entirety, is the formal analogue of the perform-

ance of an atomic act. Let D and E be instantaneous descriptions and

M be a Turing machine. Then we shall write

D tmE
to mean that one of the following alternatives holds. Here, X and Y
denote tape expressions.

(8)
D is XqiSjY

,
qXjSkqi C A/, and E is Xq

tSk Y.

{9) D is XqXAY, q tSjRqi C M, and E is XSjqiSR Y.

{10) D is XqiSj
,
qiSjRqi C M, and E is XSjqiB.

{11) D is XSkqiSjY, q lSJLq l C M, and E is Xq,SkSjY.

{12) D is qiSjY, q t
SjLq

/ C M, and E is q /
BS

}
T.

An operation with input Dr of a Turing machine M is a finite

sequence D2 ,

• •
•

,
Dk of instantaneous descriptions such that
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Di Tm D i+ 1 for * = 1
,
2

,

• • • k — 1 . An instantaneous description D is

called terminal for M iff for no instantaneous description E is D ]mE.

An operation D\, Z)2 ,

• •
*, Dk of M is called a computation of M with

output Dk if D k is terminal for M. In this terminology the example

above employing the machine Mo is the (see Exercise 8.1) computation

of Mo with input SsSiqiSoS2SiS3 and output If A/0 is mod-

ified by adjoining q2S2Lqi to it, then it is easily seen that an operation

with the same input has no terminal instantaneous description. Thus an

operation with this input does not yield a computation.

In order to have Turing machines perform numerical computations

and, thereby, to define partial functions, it is necessary to introduce a

symbolic notation for natural numbers. For this we shall write the

symbol Si as the tally mark “|.” Then we shall represent the natural

numbers by strings of tallies,
|
for 0, ||

for 1, |||
for 2, and so on. Further,

with the w-tuple (mi, m 2 ,
•

•
•

,
m n) of natural numbers we shall associate

the tape expression
|

• •
•

\
B\ •

•
•

|

• • • B\ •
•

•
|,

where first (from left to

right) appears the representation of mi (as mi + 1 tallies), then B,

then the representation of m 2 ,
•

•
•

,
then B

,
and then the representation

of m*. We shall abbreviate this tape expression by

|WU+1^|W2+1 . . .^| m"+h

An operation of a machine M having

^ 1 |

mi+ 1
Z?|"

l2+ 1 • • • /i|
Wn+ 1

as input will be called an application of M to (mh m2 ,

• •
•, m n). Then,

for each positive integer /?, we associate with M the partial function 7 j?

of n variables defined as follows. Given (mi, m2 ,
• * m n), if there exists

an application of M to (mi, m2 ,
•

•
•, mn) which is a computation, then

Tm (mi, m2 ,
•

•
*, m n )

is equal to the number of tallies in the output of

the computation; if no application of M to (mi, m 2 ,
•

•
*, m n ) is a compu-

tation, then 71? is undefined at (mi, m2 ,

• •
•, m n). A partial function of

n variables is partially computable if there exists a I uring machine M
such that the function 71? which M defines is equal to /. If, in addition,

/ is a total function, then / is called computable.

EXAMPLES
8.1. The successor function is computable. Let M = {<7i|

|

^

2} • When A1 is

applied to m, there is the following computation:

q<i
|

w+1

Hence, T {u(m) = m + 1.
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8.2. Let

M = {qi\Bq2 ,
q*BRqh qz\BqA , qzBBqh q4BRqi}.

Then the function of one variable which M defines is the partial function/ such

that f(m) = 0 if m is odd and J{m) is undefined if m is even. Indeed, if m is an

odd natural number there is the following computation when M is applied

to m :

?il"
+i

£?3 |

m

BmqAB
Bm+l

q x B

Since there are no tallies in the output, /(m) = 0. It is left as an exercise for

the reader to prove that no application of A1 to an even natural number is a

computation. Thus/ is undefined in this case.

8.3. Addition of natural numbers is a computable function. To prove this,

consider the machine

M = {qx\Bqh qiBRq2 , q2\Rq2, q2BRqh qz\BqJ\

.

It is left to the reader to show that Tff (mh m2)
= mi + m 2 .

We are relying on the definition of a computable function and the

equality of the class of computable functions and that of recursive func-

tions to give the reader some “feeling” for the concept of a recursive

function. However, it may be worthwhile to examine the latter concept

directly. An informal definition of the class of (general) recursive

functions is obtained by adding to the schemes listed in Section 2.2

for generating primitive recursive functions (namely, composition and

primitive recursion) the following:

k{x i, *2 ,

• *
*, xn) = iiy{a[xh *2 ,

• •
•, xn,J>) =0},

where the symbol on the right denotes the smallest y such that

a(x i, v2 ,

• • xn,y)
= 0, assuming that for each (*i, ,t2 ,

• •
•, xn) there is

such a y and that a is any primitive recursive function. This is not the

original Herbrand-Godel definition, but one which was proved by

Kleene (1936) to be equivalent to the original. If the assumption that

the symbol on the right is defined for all /^-tuples is dropped, the result

is a definition of the (more extensive) class of partial recursive func-
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tions. As is easily imagined, it is a nontrivial matter to show the equality

of the class of computable functions and that of recursive functions and,

more generally, the equality of the class of partially computable func-

tions and that of partially recursive functions. Accepting these results,

along with the Church-Turing thesis, provides us with the precise

concept of computability, or, equivalently, general recursiveness, as a

substitute for the intuitive notion of effective calculability. Thereby, in

turn, the decision problem for a predicate becomes amenable to exact

investigation.

In the terminology of recursive functions, a predicate is called

(primitive) recursive iff its characteristic function is (primitive) re-

cursive. If a positive solution of the decision problem for a predicate

is found, the decision problem for that predicate is called recursively

solvable; otherwise the decision problem for the predicate is called

recursively unsolvable.

We conclude this section with the formulation of some other notions

pertaining to formal theories in the language of the theory of recursive

functions. A set of natural numbers is called a recursive set iff its char-

acteristic function is recursive. A set S of natural numbers is called

recursively enumerable iff either S = 0 or S is the range of a re-

cursive function. It can be shown that a set of natural numbers is re-

cursive iff it and its complement are both recursively enumerable. An
example of a set which is recursively enumerable but not recursive can

be effectively constructed. A set S of formulas of a formal theory is

called recursive iff the set of natural numbers correlated with the mem-
bers of S by means of a Godel numbering is recursive. The notion of

the recursiveness of a set of formulas of a formal theory can be extended

to that of operations on formulas and relations between formulas. In

terms of recursiveness, the requirements which we specified in Section 1

for formal axiomatic theories may be restated as (i) the set of formulas

must be a recursive set, (ii) the set of axioms must be a recursive set,

and (iii) the rules of inference must determine recursively derivability

relations.

EXERCISES

8.1. Prove that if D ]mE and D |a/F, then E = F. Deduce that if there

exists a computation of a machine M corresponding to a given input, then it

(and hence the output) is uniquely determined.

8.2. Show that the function /of Example 8.2 is undefined for even arguments.

8.3. Show that the function defined in Example 8.3 is addition.
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8.4. Let n and i be given integers with 1 < i < n. Let M be the Turing

machine consisting of all quadruples of the form

qi\Bq*n+i> qjBRqj+h q^n+jBRqj,

where; ranges over all integers between 1 and n other than z, together with the

following four quadruples:

(]iBRg2n+i) q2n+i\Rq2n-{-i « q2n+iBR

q

j-f-1.

Show that Tm is equal to the identity function t/” defined in Section 2.2.

9. Some Undecidable and Some Decidable Theories

The first objective of this section is to sketch a proof of Church’s

theorem, which asserts the undecidability of the predicate calculus.

The initial step is the construction of a number-theoretic function which

is not computable. That such functions exist is clear as soon as the

Church-Turing thesis is adopted. For, on the one hand, the set of all

possible Turing machines, and hence the set of all computable functions,

is denumerable. On the other hand, Theorem 2.4.6 implies that the

set of number-theoretic functions is uncountable. Thus, the illustration

is of interest primarily because it is a specific and simple example of

such a function.

A preliminary for this is the arithmetization of the theory of Turing

machines, following the same pattern as that described for first-order

theories in Section 8. The starting point is some assignment, such as

the following, of certain natural numbers to the symbols of the theory:

3 5 7 9 11 13 15 17 19
• • •

R L So q\ Si q -2 S2 63

Then, numbers are assigned to expressions in the following way. Let

Hi, n^, •
•
*, tu be the numbers corresponding to the symbols of an

expression E in the order in which they occur in E. Then to E is as-

signed p\' • p
n

p p
n
k
k where, as before, pi is the zth prime. Numbers

assigned to symbols and expressions in this way are called the Godel
numbers of the symbols and expressions. For example, the Godel
number of the quadruple q2BRqz is

2 13
• 3 7

• 5 3
• 7 17

This method of numbering is a one-to-one mapping on the set of symbols
and formulas of the theory of Turing machines into N.
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By the Godel number of a finite sequence Zq, Zq, • •
•

,
Zq of expressions

we understand the number

Pi ‘ PS K
where g { is the Godel number of E, for i = 1,2, •

•
•

,

k. This assignment
determines a one-to-one mapping on the set of expressions into N. In

particular, every computation of each Turing machine has a Godel
number and this number uniquely determines the computation. Finally,

Godel numbers can be assigned to Turing machines. If Zq, Zq, • •
•, Zq is

any arrangement of the quadruples of a machine M, then the Godel
number of this sequence is called a Godel number of M. Although M
has a Godel number corresponding to each arrangement of its defining

quadruples, each such number uniquely defines M. It may be noted
that there exists an effective procedure for obtaining the Godel number
of an expression and for obtaining an expression from its Godel number.

In order to define the function promised we introduce the predicate

T(m, x,y): m is a Godel number of a Turing machine
M such that the application ofM to x is a

computation having Godel number y.

Intuitively this number-theoretic predicate is effectively decidable. For
suppose that values of m, x, and y are given. Upon decomposing m
into a product of primes we can decide whether it is a Godel number
of a machine. If it is not, then the predicate is false for this triple. If m
is a Godel number of a machine M, then we decompose y into a product
of primes and determine whether it is the Godel number of a finite

sequence of expressions. If it is not, then T(m, x, y) is false. If y is the

Godel number of the sequence Zq, Zq, • •
•

,
En of expressions, then we

compare Zq with D\ = q\\
x+l

. If Zq Dh then T(m, x, y) is false. If

Zq = D i we then “supply” M with D\ as input and compare each suc-

cessive instantaneous description of M which can be formed with the

corresponding E. By making at most n such comparisons, we can deter-

mine whether T(m, x, y) is true or false.

Agreement that T(m, x, y) is effectively decidable implies, via the

Church-Turing thesis, that its characteristic function is computable. A
full treatment of this matter would not make an appeal to the Church-
Turing thesis in order to show the computability of this function;

instead, a direct proof that it is primitive recursive would be given.

Such a proof appears in Chapter 4 of M. Davis (1958).

Each Turing machine determines a partial function of one variable
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in the manner explained prior to Example 8.1. If m is a Godel number

of the machine and * is in the domain of the associated function of one

variable, we shall denote the value of this function at x by tm (Y). We
shall also employ this notation for the partial function of two variables

whose domain is the set of ordered pairs (m, x) such that m is a Godel

number of a machine M and a: is in the domain of the function of one

variable defined by M. Thus the function tm0) is defined for given m

and a: iff there exists a y such that T{m, x,y). Let us symbolize “there

exists a y such that T(m, x, y)” by

(Ey)T(m, x, y).

Here we intend that the expression “(£y)” shall symbolize the informal

(and meaningful) phrase “there exists a y such that.” Then we may

say that tm (x) is defined iff (Ey)T{m ,
x,y).

Consider now the total function / such that

t{x) = +
\

lf

10 otherwise.

(Ey) T{x, x,y).

[So t(x) = tx (x) -f- 1 if a: is a Godel number of a machine whose appli-

cation to a: yields a computation with output tx(x) ;
otherwise, t(x) = 0.]

We contend that t is not computable; the proof is by contradiction,

employing Cantor’s diagonal procedure. Assume that t is computable.

Then there exists a machine M with Godel number n, let us say, which

computes it. That is, using the notation agreed upon earlier, there

exists a function tn ,
such that t(x) = tn (x) for all numbers x. Hence

t(n) = tn (n).

Now to say that M computes t implies that for all a; there exists a y

such that T(n, x, y) and, in particular, there exists a y such that T(n, n,y )

;

that is, (Ey)T(n ,
n,y). Hence, by the definition of t,

t{n) = tn (n) + 1,

and the two displayed equations furnish the contradiction. We state

this result as our next theorem.

THEOREM 9.1. The total function t defined by

= GxW + 1 if (Ey)T(x,x,y),

10 otherwise,

is not computable.
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From this result follows easily the undecidability of the predicate

(Ey) T(x
,
x

, jy). This is our next theorem.

THEOREM 9.2. The predicate (Ey) T(x, x, y) is undecidable.

Proof. We shall show that the decidability of (Ey)T(x ,
x, y) implies

the computability of the function t of Theorem 9.1. So assume that

(Ey)T(x, x, y) is decidable—that is, there exists a decision procedure

such that for each x we can decide whether or not (Ey) T(x
,
x, y). If for

a given x this procedure leads us to the conclusion that (Ey) T(x, x, y ),

then we continue the calculation by imitating the application of the

machine with Godel number x (this yields a computation by assump-

tion) to compute tx (x) and, finally, add 1 to the result. If for the

given x the assumed decision procedure leads to the conclusion that

it is not the case that (Ey)T(x, x, y), then we write 0. Thereby we

have a computation procedure for t.

An alternative formulation of Theorem 9.2 is: The decision problem

for the predicate (Ey)T(x
,
x, y) is recursively unsolvable. This result is essen-

tially the theorem proved in Church (1936). The only difference is

that we have constructed an example in terms of Turing computability

whereas Church devised one in terms of X-definability.

We continue with an outline of how Church inferred from this

theorem the undecidability of both elementary number theory and the

predicate calculus. A prerequisite for clarity in this matter is the intro-

duction of extensive symbolism. Three kinds of symbols are required:

Symbols of N (formal symbols), symbols which stand as names of formal

symbols (metamathematical symbols), and symbols of intuitive number

theory. The symbols of N consist of the mathematical constants listed

in Example 4.2, the usual logical constants, and a list of individual

variables which we take to be

a, 5, ?,
• • • .

Formulas of N are certain strings of formal symbols. For example,

(5) a =b,

(6) (3c)(a = 0" • *),

(7) Oc)(c' a = b)

are formulas of N.

To speak about formulas we shall need metamathematical symbols.

As names for variables we shall use

x, xi, x2 ,

• •
•

,



440 First-order Theories chap. 9

and as names for formulas we shall use capital script letters. Further,

we shall use a composite notation such as

(8) *2 ,

* •
•

, *»)

instead of “<P” for a formula when we are interested in the dependence

of (P on (distinct) variables xh x2 ,
•

•
•

,
xn as well as when a substitution

is to be performed for some of the variables.

Any formula of N can be interpreted as expressing a predicate in

intuitive number theory under the usual number-theoretic meaning of

the symbols. The intuitive predicate corresponding to the formula (8)

we shall denote by

(9) P(x 1 , *2,
• • Xn).

Here, x\, x2 ,
•

•

•, xn are intuitive variables which range over N; we shall

say that x% “corresponds to” the formal variable X{, i = 1,2, •
• •, n. As

illustrations, formula (6) expresses a is even [if (6) were designated by

“8(a),” then its interpretation would be designated by “E(a)”], and

formula (7) expresses a < b.

A term of N can be interpreted as expressing an intuitive natural

number. The terms 0, O', 0", • •
•, which represent the various natural

numbers under the intended interpretation, are called numerals and

will be abbreviated by the same symbols “0,” “1,” “2,” • • • as we use

for the natural numbers intuitively. If we introduce an italic letter

such as “n” to designate an intuitive natural number, then the cor-

responding boldface italic letter “n” will designate the corresponding-

numeral O' - • •

'
(with n accents).

With these specifications about symbolism, let us get on with some
definitions. An intuitive number-theoretic predicate P(xl5 x2 ,

• •
•

,
xn) is

said to be numeralwise expressible in N iff there exists a formula

<p(xi, x2)
•

•
•

,
xn) [related to the predicate as (8) is to (9) ]

with no free

variables other than the distinct variables 3Pi, x2 ,
•

•
•

,
xn ,

such that for

each rc-tuple (xi, x2 ,
•

•
•
,
xn) of natural numbers,

(70) if P(x i, *2 ,

• •
•, xn ) is true, then 1- (P(.vi, *2 ,

• •
-

,
*n),

and

(7 7) if P(x i, x2 ,
•

•
-

,
xn ) is false, then h —i (P(jci, x2 ,

•
•

-, xn).

For example, it can be shown that the formula (6) numeralwise ex-

presses a < h and that (5) expresses a = b.

The following basic property of primitive recursive predicates first

appeared in Godel (1931).
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LEMMA 9.1. Every primitive recursive predicate is nuineralwise

expressible in N.

The following remarks are pertinent to the proof of this result. The
notion of numeralwise expressibility of number-theoretic predicates has

the following analogue for functions. A number-theoretic function

fix i, x2 ,
•

•

•, xn ) is said to be numeralwise representable in N iff there

is a formula (P(*i, x2 ,
•

•
•

,
3c», x) containing no variables free other

than the distinct variables Xi, x2 ,
•

• •

,
xn ,

x such that for each w-tuple

(xi, x2j
•

•

*, xn) of natural numbers, if f(x i, x2 ,
• xn) = *, then

x2 ,
•••,*„,*) is provable and, moreover, the formal analogue of

“there exists a unique x such that P(x i, x2 ,
•

•

•, xn ,
*)” is provable. It

can be proved that every primitive recursive function is numeralwise repre-

sentable in N. The proof is by induction, first showing how to represent

numeralwise the three initial types of functions admissible in a primitive

recursive derivation and then showing how to build up formulas which

numeralwise represent functions obtained from initial functions by

composition and primitive recursion. Lemma 9.1 follows from the

result in italics by an application to the characteristic function of a

primitive recursive predicate.

The theorem whose proof we would like to sketch may be stated as:

If the theory N is consistent
,
then N is undecidable. However, for technical

reasons, we must settle for a result which is weaker in the sense that

undecidability is inferred from the stronger assumption of co-consistency,

a notion introduced in Godel (1931). The theory N, or one which in-

cludes the symbolism of N, is called co-consistent iff for no variable x

and formula Cl (3c) are all of

(72) (x)Q(x), G(O), Gt(l), Ct(2), • • •

provable or, in other words, iff not both —
i
(*)&(*) and 1— Ct(n) for

every natural number n. If N is co-consistent, then it is consistent, for

if N is inconsistent then all formulas, in particular those in (12) for some

x and Cl (3c), are provable in N. However, the converse is false, so co-con-

sistency is stronger than (simple) consistency.

THEOREM 9.3 (Church). If the theory N is co-consistent, then it

is undecidable; that is, if N is co-consistent, then the decision problem

for N is unsolvable.

Proof. Our point of departure is the result stated earlier without

proof that the predicate T(m, x, y) is primitive recursive. It follows
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that the predicate T(x, x, y) is primitive recursive, so by Lemma 9.1

there exists a formula a(x, y), having only * and y as free variables,

such that

(13) if T(x, x,y) is true, then h Gt(*, y),

and

(14) if T(x, x
, y) is false, then 1- —i

Ct(rc, y).

We now define ®(*) to be

(3y)a(x,y)

and note that

(15) if (Ey)T(x, x, y) is true, then b ©(*)

and, conversely,

(16) if b ®0t), then (Ey)T(x, x, y) is true.

To establish (15) assume that (Ey)T(x, x, y) is true. Then there exists

a y such that T(x, x, y) is true. Applying (13) for * and this y gives

b Ct(s, y), so, by the predicate calculus, b (3y) Ct(x,y). That is,

b ©(*). To establish (16), assume that (Ey)T(x, x, y) is false. Then

T(x, x, y) is false fory = 0, 1, 2,
• •

• and, hence by (14), I 1
Gt(x, 0),

I 1
a(.r, 1), I 1

Ct(jc, 2),
• •

•
. It follows from the assumed co-consist-

ency of N that —i (y) —iCt(.r, y), and hence y) is not provable.

That is, ($>(x) is not provable and (16) follows by contraposition.

Using (15) and (16) it is possible to give an indirect proof of the

theorem by showing that the assumptions of both the co-consistency

and decidability of N yield a contradiction. Indeed, assuming that N
is decidable implies that for each * there is a decision procedure for

($>(x). If &(x) is provable, then (Ey)T(x, x, y) is true by (16). If

is not provable, then (Ey)T(x, x, y) is false by (15). That is, there is a

decision procedure for (Ey) T(x, x, y) for each *, contrary to Theorem

9.2.

The first step in Church’s proof of the undecidability of the predicate

calculus is the translation of N into a theory without the operation

symbols +, *, and ' and the individual constant 0. This can be done

in the manner suggested in Example 4.3. Each of the 2-place operation

symbols is replaced by a ternary relation symbol,
'

is replaced by a

binary relation symbol, and 0 is replaced by a unary relation symbol,

together with an appropriate alteration of the mathematical axioms.

Then the formula (fi(jc) (defined above) transforms into a formula 6(x)
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of the pure predicate calculus with equality. The next (and major)

step is the demonstration that an informal proof of (Ey) T(x, x, y) for an *

such that (Ey)T(x ,
x,y) is true, can be formalized as a deduction from

a suitable finite list of closed statements (independent of x) of the pred-

icate calculus. (To lend plausibility to this step we recall an analogous

result discussed earlier for applied predicate calculi : A theorem of such

a theory can be regarded as a deduction, within the predicate calculus,

from a suitable finite list of assumption formulas.) If 33 is the conjunction

of this set of formulas, this step may be summarized as

(77) if (Ey)T(x ,
x, y) is true, then 33 b e(x) in the predicate calculus.

Further, a metamathematical proof of the converse of (77) can be given:

(78) if 33 b e(x) in the predicate calculus, then (Ey)T(x ,
a:, y) is true

By the deduction theorem and its converse, (77) and (18) yield

(19) (Ey)T(x, x, y) is true iff b 33 —» 6 (3c) in the predicate calculus.

The theorem in question follows immediately from (19). For if there

were a decision procedure for provability in the predicate calculus with

equality, then applying it for given x to decide whether 33 —» Q(x) is

provable, we could decide in view of (19) whether (Ey)T(x ,
x,y) is true.

But this is contrary to the known undecidability of (Ey)T(x ,
a:, y).

A similar method of proof yields the undecidability of the predicate

calculus without equality. We record these results, which were obtained

independently by both Church (1936a) and Turing (1936-1937), as our

next theorem.

THEOREM 9.4. The decision problems for the pure predicate

calculus and the pure predicate calculus with equality are unsolvable.

COROLLARY. There is no decision procedure for validity in the

pure predicate calculus.

Proof. This follows from the theorem by way of Theorems 3.3 and 3.4.

Since these initial results of undecidability, the decision problem has

been settled in the negative for a great variety of formalized theories.

Two different methods of attack have been found to be successful. One
of these, which is called the direct method by Tarski (who administers

a “school of undecidability” at Berkeley), is essentially based on ideas

created by Godel (1931) and is applicable to those theories in which
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considerable number-theoretic apparatus can be developed. The proof

of Theorem 9.3, when given in detail, is of this kind.

The other method, called the indirect method by Tarski, consists in

reducing the decision problem for a theory Ti to that for some other

theory X2 for which the decision problem has been solved. The proof

of Theorem 9.4 is of this sort. With the indirect method the undecidabil-

ity of a great variety of algebraic theories, including the elementary

theories of groups, rings, fields, and lattices, have been proved.

In order to present concluding remarks about undecidable theories,

several definitions are required. A first-order theory Xi is called a sub-

theory of a first-order theory T2 iff every theorem of Xi is a theorem

of T2 . Under the same circumstances, X2 is referred to as an extension

of Ti. A first-order theory X is called essentially undecidable iff X is

undecidable and the same holds true of every consistent extension of X
which has the same constants as X. Some undecidable theories have

decidable extensions. For example, the predicate calculus with equality

becomes a decidable theory upon adding as an axiom

0)000 = y)-

On the other hand, in Rosser (1936) it is proved not only that if the

theory N is consistent then it is undecidable (thereby strengthening

Theorem 9.3) but that it is essentially undecidable.

The next definition requires a preliminary remark. For the most part,

our discussion of first-order theories has included the assumption either

implicitly or explicitly that they are axiomatic theories. However, it is

possible to formulate first-order theories without a set of mathematical

axioms. In that event the notion of theorem is replaced by that of

valid statement. No uniform method for defining this notion is avail-

able. The only general condition which such a definition should fulfill

is that any statement that is derivable from valid statements by the

rules of inference should be a valid statement. Sometimes it is agreed

to consider as valid those and only those statements which are true in a

given model. A first-order theory X in which validity has been defined

in some way is said to be axiomatizable iff there exists a recursive set S
of valid statements of X such that every valid statement is derivable

from the set S; if S is finite, then X is said to be finitely axiomatizable.

Thus, every axiomatic theory is axiomatizable in the sense just defined,

and every axiomatizable theory can be represented as an axiomatic

theory.

There are numerous interrelations among the notions which we now
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have available for first-order theories. We shall content ourselves with

the following, all of which are to be found in Tarski, Mostowski, and

Robinson (1953).

THEOREM 9.5. For a negation complete first-order theory X, the

following three conditions are equivalent: (i) X is undecidable,

(ii) X is essentially undecidable, (iii) X is not axiomatizable.

Proof. The result that (i) implies (iii) for a complete theory is a

consequence of a result due to Kleene (1943). The remaining parts

of the theorem follow directly from the definitions of the notions

involved.

THEOREM 9.6. A first-order theory X is essentially undecidable

iff X is consistent and no negation complete extension of X which

has the same constants as X is axiomatizable.

The necessity of the condition follows immediately from Theorem 9.5

and the definitions of the concepts involved. A proof of the sufficiency

of the condition is given (in the book just mentioned) in the following

equivalent form.

THEOREM 9.7. Every consistent and decidable first-order the-

ory X has a consistent, negation complete, and decidable extension

X' which has the same constants as X.

We turn now to a brief survey of decidable theories. From Theorem 9.5

one can infer that a complete and axiomatizable first-order theory is de-

cidable. This provides the justification for our earlier statement that

each of the theories defined in Examples 7. 1-7.4 is decidable. More gen-

erally, any first-order theory X which satisfies the hypotheses of Vaught’s

theorem (Theorem 7.7) and, in addition, is axiomatizable, is decidable.

If it is assumed that X is finitely axiomatizable, as well as categorical

in power c for some infinite cardinal c greater than or equal to the

number of formulas of X, then the decidability of X follows. This result

is due to Henkin (1955). This is a modification of Vaught’s theorem in

the sense that it is not required that all models of X be infinite. From

Henkin’s result it follows that the theory considered in Example 7.3 is

still decidable when the requirement that all models be infinite is

dropped (since this theory is finitely axiomatizable).

In Tarski (1951) is presented a decision method for elementary

algebra, which is that part of the theory of real numbers which can be
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formalized as a first-order theory. Roughly speaking, this restricts one

to the portion of the general theory of real numbers which can be

formulated and established without the help of any set-theoretical

devices. For instance, the variables in elementary algebra always stand

for arbitrary real numbers and cannot be supposed to take values in

specific sets (such as the set of integers) of real numbers. From the

decidability of elementary algebra Tarski inferred the decidability (via

the introduction of a coordinate system) of that part of traditional

geometry which can be formalized as a first-order theory. This includes

most of elementary geometry in the everyday meaning of the term.

In conclusion we mention that from a result of M. Presburger (1930)

metamathematical proofs of consistency and completeness, and a decision

procedure, can be given for the first-order theory obtained from ele-

mentary number theory by omitting the formation rules and axioms

for *. In other words, this theory is the elementary theory of addition

for natural numbers.

10. Gbdel’s Theorems

The theorems in question are the two main results in GodePs paper

of 1 931 . We shall designate them as “GodePs first theorem” and “GodePs

second theorem.” In rough terms, the first theorem (which is often

referred to simply as “GodePs theorem”) asserts for any formal theory

X rich enough to include all the formulas of formalized elementary

number theory (that is, all formulas of N) that if it is consistent, then

it is (negation) incomplete. Defining a closed formula S of a formal

theory as an undecidable formula iff neither S nor its negation is a

theorem, the theorem asserts, alternatively, the existence of undecidable

formulas in X if X is consistent. GodePs second theorem, which is a

corollary of the other, asserts the impossibility of proving the consistency

of X by methods “formalizable within the theory,” where the qualifying

clause in quotation marks has a technical meaning which we shall

discuss later.

On account of their great importance for the whole program of

metamathematics, it is worthwhile to sketch GodePs original proofs and
then outline a later proof of his first theorem and a generalization of it,

based on Church’s theorem. To simplify the presentation we shall

restrict our attention principally to the theory N.

GodePs prool of his first theorem, as he himself pointed out, is modeled
on the reasoning involved in the logical antinomy known as the Richard
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paradox, devised by the French mathematician J. Richard in 1905. To
discuss this antinomy, which deals with the notion of finite definability,

we consider the English language with (i) the 26 Latin letters, the

comma, and the blank space as alphabet, (ii) a preassigned dictionary,

and (iii) a preassigned grammar. By an “expression” in this language

we understand any finite sequence of these 28 symbols not beginning

with a blank space. The set of expressions is denumerable; an enumera-

tion can be given by, for example, specifying that expression Ei pre-

cedes expression Ej if Ei contains fewer symbols than does Ej and, if

they contain the same number of symbols, then precedence is deter-

mined by lexicographic ordering. Upon striking from the specified

enumeration of all expressions those which do not define an arith-

metic property of natural numbers, we obtain an enumeration (say,

Eo, Ei, E2 ,
•

•
•) of those which do. Then, for arbitrary numbers n and p ,

one of the following cases must occur:

(i) n possesses the property determined by Ep or, more simply,

Ep is true for n
,
in which case we write t= Ep (n)

;

(ii) Ep is not true for n
,
in which case we write —

1
1= Ep (n).

Now consider the expression “the natural number n does not have the

property determined by the expression which corresponds to n in the

enumeration Eo, Eh E2 ,
•

•
• The mention in this expression of the

enumeration Eo, E\, E2 ,
•

• • can be replaced by an explicit definition of

it, and if this replacement is made the result is an expression in terms of

the given alphabet which defines a property of natural numbers. Hence,

there is a q such that the quoted expression is Eq . On the other hand, the

same expression may be symbolized by —
1

En (n). Thus, there exists a

q such that for each n, Eq {n) iff -it En (n). Setting n = q we obtain

the contradiction

t Eg (q) iff -i t Eq (q).

Godel’s proof that if N is consistent then it is incomplete may be

described (with some oversimplification) as the determination of a

statement of N which behaves like the quoted expression above with

respect to provability
;
that is, it has the quality that it is provable iff its

negation is provable. To this end, Godel created the ingenious device,

which we described earlier, of an arithmetization of the metalanguage

of N. Then he constructed the crucial sentence to be one which, inter-

preted by a person who knows the enumeration, asserts its own un-

provability.
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The proof of the original form of GodePs first theorem hinges on the

next lemma, for which we introduce the following notation. Relative

to any specified Godel numbering, for any n which is the Godel num-

ber of a formula, let “en
” designate the formula. If it is desirable to

indicate that this formula contains a free variable z, we may also write

en as “e„Ce).”

LEMMA 10.1. There is a Godel numbering of the formal symbols

of N such that the predicate A(x, y) defined by

A(x, y): x is the Godel number of a formula Cx (^) and

y is the Godel number of a proof of the formula ex (^)

is numeralwise expressible in N.

The proof consists of showing that the predicate A(x, y) is primitive

recursive and then applying Lemma 9.1.

Let Ct (3c, y) be a particular formula which numeralwise expresses

A(x,y) for the Godel numbering employed in the lemma, so that if

A(x,y) is true, then &(x, y), and if A(x,y) is false, then I— —i(i(.v, y).f

Now consider the formula

V) -iQj)a(x,y),

which contains x and no other variable free. Let p be the Godel number

of (/). Then (/) is the same as the formula that we have agreed to

designate as “ep (*).” Since this formula expresses the metamathematical

statement that there is no proof of Qx(x), the closed formula

(2) -i (3j)a(p,j),

which is Qp (p), expresses the statement that there is no proof of Qp (p).

That is, (2) expresses its own unprovability. The formal counterpart of

this is the first part of the next theorem.

THEOREM 10.1 (Godcl’s first theorem in the original form). If N
is consistent, then Qp (p) is improvable, and if N is co-consistent, then

—i QP (p) is unprovable. Thus, if N is co-consistent, then it is negation

incomplete, with QP {p) as an example of an undecidable formula.

f Electing as we have to outline Godel’s original proof leads to some duplication of results

stated in Section 9. Indeed, instead of introducing the predicate y), we could continue

with the predicate 7’(at, x, y). It is because of this fact that we have chosen the same designa-

tion for a formula which numeralwise expresses /l(.v, y ) as we did for a formula which ex-

presses 7\x, x, y). Further, we call attention to the fact that formula (/), in the symbolism
of Section 9, is —|(B(*).
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Proof

.

lo establish the first assertion we assume that N is consistent
and that ep (p) is provable, and derive a contradiction. The provabil-
ity of (2) implies the existence of a proof of it

;
let k be the Godel

number of some proof. Then A(p, k) is true and, in turn, b- dip, k).
Hence, by the predicate calculus, b- that is, -iQp(p) is

provable. This contradicts the assumed consistency of N.
I o prove the second assertion, assume that N is ^-consistent. Then

N is consistent, and hence, by the foregoing, Qp (p) is unprovable.
This implies that no natural number is the Godel number of a proof
of Qp(p ) ;

that is, for every natural number n
,
A(p, n) is false. Hence,

foi e\ ei y natural number zz, 1— —i
Gt{p, n). But then the assumed

co-consistency of N implies that —
i (y) —, d(p 9 y) is unprovable. By the

predicate calculus it follows that —
i Qp (p) is unprovable.

Rosser (1936), using a more complicated example of an undecidable
foi mula, proved that consistency alone implies the incompleteness of N.
We state this as

THEOREM 10.2 (Rosser’s form of Godebs first theorem). If N is

consistent, then it is negation incomplete.

It was this form of the theorem that we had in mind when describing
the heuristic motivation. We have emphasized the original form of the
theorem because the proof is intuitively simpler. The example of an
undecidable formula which Rosser’s proof employs may be interpreted
as asserting that for any proof of it there exists a proof of its negation
with an equal or smaller Godel number. With the help of the same
formula the hypothesis of Theorem 9.3 can also be simplified to “If N
is consistent.”

Next we shall sketch the derivation of Godel’s second theorem from
I heorem 10.1. We begin by assuming that there exists an informal
proof of the consistency of N. If to this we append the proof which we
gave that the unprovability of Qp (j>) follows from the consistency of
N the composite proof will be one of the unprovability of Qp (p) from
scratch. Upon replacing the symbols and formulas of N in this proof
by their Godel numbers, it could be transformed into one in informal
number theory. Now we ask whether this proof in informal number
theory could be formalized in N. If it could, then the formula Qp (p)
would itself be the formalized version of the resulting theorem, that is,

that Gp ( p) is unprovable. I hus, a formal proof that Qp(p) is unprovable
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would be a formal proof of Qp (p). By Theorem 10.1 such a proof cannot

exist if N is consistent. That is, if N is consistent, then a formal proof

within N having the form of (i) a proof of the consistency of N extended

by (ii) a proof of the unprovability of Qp (p) if N is consistent, does not

exist. By showing that part (ii) does exist, we have a method of showing

that part (i) does not
;
that is, there exists no proof within N of the con-

sistency of N, if N is consistent.

To make the foregoing argument convincing, the first step is to

devise a formula of N which expresses the consistency of N. (This is

an easy matter for one who is familiar with the technique of Godel

numbering of formulas.) Let us call one such formula, “Consis.” The

second step is the formalization in N, via the Godel numbering, of the

metamathematical proof of “N is consistent implies that Qp(p) is un-

provable.” [This is a long and tedious affair; an account is given in

Hilbert and Bernays (1939).] The result is I— Consis —> Q p (p). Finally,

the following metamathematical proof by contradiction is supplied.

Suppose that I— Consis. Then, by the statement calculus, we infer that

I— Qp (p). But this is impossible by Theorem 10.1 if N is consistent.

Hence not \- Consis. We state this result as

THEOREM 10.3 (Godel’s second theorem). If N is consistent,

then there is no proof of its consistency by methods formalizable

within the theory.

Since we have already discussed the significance of consistency the-

orems for Hilbert’s program of metamathematics, we shall merely add

a few further remarks at this point. According to Theorem 10.1, the

formulation of elementary number theory that we have given is not

adequate to ensure that every formula or its negation can be deduced

by explicitly stated rules from explicitly stated axioms. It is natural to

ask if this deficiency could not be corrected by extending the set of

axioms. For instance, if the formula QP (p) were adjoined as an axiom,

then Theorem 10.1 would have no significance. Godel proved that

completeness cannot be achieved in this way. The pertinent result is

as follows. So long as the axioms of N are extended by a set of formulas

whose Godel numbers constitute a recursive set, the resulting theory is

incomplete if it is consistent. As for extensions of N with sets of axioms

whose Godel numbers do not form a recursive set, they are unacceptable
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since there is then no effective procedure for deciding whether a given

formula is an axiom, f

Theorem 10.1 demonstrates the incompleteness of N in another sense,

namely, that there are expressible in it statements which are true on
finitary grounds but unprovable formally. The formula Qp(p) serves to

bear this out.

1 he consistency of N can be proven using transfinite induction up
to a sufficiently great ordinal. This was shown by G. Gentzen (1936,

1938).

We conclude this section with the proof of a generalized form of

Godel’s first theorem. Results of this sort, which rely on the Church-
Turing thesis, are due to Kleene (1936, 1943). As background we recall

that in the proof of Theorem 9.3 there was introduced a formula ©(*)

of N corresponding to the predicate (Ey) T(x, x, y) such that b- ©(*)
iff (Ey) T(x

,
x, y) is true. The theorem which we shall present is applic-

able to hrst-order theories in which there can be found a formula which
‘‘expresses” (Ey)T(x

:>

x, y) in essentially this way.

THEOREM 10.4. Let I be a first-order theory which includes

enough of the symbolism of N so there can be found a formula ©(*)

such that, for each natural number x, (i) if 1- ffi(jc), then (Ey) T(x, x, y)

is true, and (ii) if b —
1 ©(#), then (Ey)T(x ,

x, y) is false. Then there

exists a number q such that (.Ey)T(q
, q, y) is false and neither © (q)

nor —jffi(q) is provable.

Proof. With X a first-order theory, there is an effective procedure

for listing its proofs. Assuming, as we are, that X contains a formula

©(*) having properties (i) and (ii), we can set up the following com-

putation procedure. Given x, search in order through the proofs of X
for one of —iffi(jc) and, if such a proof is found, write 0.

By the Church-Turing thesis there exists a Turing machine M
with Godel number q, let us say, to carry out this procedure. Now
apply M to q as argument. Then b -iffi(r/) iff M applied to q com-

putes a value. Since by the definition of (Ey)T(q , q,y), M applied to

q computes a value iff (Ey)T(q , q, y) is true, it follows that

(3) (Ey)T(q , q, y) is true iff
I iffi(r/).

f Actually axiom sets which are only recursively enumerable are acceptable since it is

known that if a theory has a recursively enumerable axiomatization, then it has a recursive

axiomatization.
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Now assume that I i(B(Y/). Then, by assumption (ii), (Ey)T(q , q, y)

is false, and hence, by (3), -i ®>(q) is not provable, contradicting our

assumption. So by reductio ad absurdum —i(B (//) is not provable. In

turn, it follows from (3) by contraposition that (Ey) T(q
, q , y) is false.

In turn, by assumption (i) is not provable.

11. Some Further Remarks about Set Theory

It should be clear that Zermelo-Fraenkel set theory (Chapter 7) can

be formalized as a first-order theory having only one mathematical

constant, namely, the two-place relation symbol £. Indeed, the axioms

and axiom schemas are stated in Chapter 7 in a form which makes

their translation into symbols form a routine matter. The von Neumann-

Bernays-Godel theory of sets can also be formalized as a first-order

theory with the same relation symbol as its only mathematical constant.

This may be done by admitting class variables X, Y, Z, •
• • along with

set variables *, y, z, •
• • and including as prime formulas (in addition to

those of the form x £ x, x £ y, •
•

•
, y £ z) ,

x £ X, x £ Y, • •
•

, y £ Z,

• • • . Set variables are tacitly assumed to range over individuals ot a

special kind, called sets, and therefore the corresponding quantifiers,

such as (a) and (3x) must be interpreted as abbreviations for (x)(S(x) —>

• • •) and Q*) (»£(*) A • • •), respectively. Here the predicate S can be

taken to be defined by

S(x) ~ QX)(* £ X).

The only existing results pertaining to the consistency of these two

theories are of a relative nature. In Godel (1940) it is proved that if

von Neumann set theory without the axiom of choice is consistent, then

consistency is preserved when the axiom of choice as well as Cantor’s

generalized continuum hypothesis are adjoined as axioms. This is, in

other words, a proof of the relative consistency of the axiom of choice

and the generalized continuum hypothesis with the other axioms of

von Neumann’s set theory. Results concerning the relative “strengths”

of these two theories of sets with their respective axioms of choice

neglected have been obtained. In I. L. Novak (1950) and Rosser and

Wang (1950) it is proved that von Neumann set theory is relatively

consistent to Zermelo-Fraenkel set theory; that is, if Zermelo-Fraenkel

set theory is consistent, then so is the von Neumann theory. In the same

paper Rosser and Wang prove that any theorem of von Neumann set

theory which involves only set variables is a theorem of Zermelo-Fraenkel
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set theory. Taking these two results into account, Rosser and Wang
conclude that the two theories arc of “essentially equal strength.”

If the set theories under consideration are consistent, then they are

incomplete. This conclusion is a consequence of GodePs first theorem,

since elementary number theory can be derived within each of them.

In turn, it follows that neither theory is categorical. This is also a direct

consequence of the existence of an infinite model for each theory.

Finally, since elementary arithmetic is essentially undecidable and can

be developed in both theories, if they are consistent then they too are

essentially undecidable. The von Neumann theory, being finitely ax-

iomatizable, thereby establishes the existence of essentially undecidable

and finitely axiomatizable theories.

In conclusion we shall discuss Skolem’s paradox for Zermelo-Fraenkel

set theory. We choose this theory of sets because we have given its

axioms; the paradox applies equally well to von Neumann set theory.

From the assumption that Zermelo-Fraenkel set theory, which we shall

symbolize ©, is consistent, it follows, using results appearing in Section 6,

that © has a model whose domain I) is a countable set. From the ob-

servations made at the end of Section 7.2, the axioms rule out the pos-

sibility that D is finite, and consequently D is denumerable. But one

axiom of © postulates the existence of an infinite set and another the

existence corresponding to any set, of a set which includes all subsets of

that set. From Cantor’s theorem there follows the existence of an un-

countable set of sets. In summary, © is a theory which, on the one hand,

has a denumerable model and, on the other hand, contains a theorem

which asserts the existence of uncountably many sets. This is Skolem’s

paradox (1922-1923).

An explanation of sorts can be given. We begin with the observation

that within © one can define only those subsets of a given set which

can be constructed by operations or singled out in the set by properties

(in other words, predicates). Now the basic operations for set formations,

together with the processes for constructing predicates which are pro-

vided by the axioms, are countable in number; hence their iteration

provides the means for defining only a denumerable collection of sub-

sets of a given set. Thus it appears possible to have a denumerable

model of ©.

Now suppose that 9J? is such a model and that D is its domain. Further,

let x be the set of all subsets of some infinite set defined in ©. Since an

enumeration of the elements of D can be given, there is an enumeration

f of those elements of D which represent the elements of x within the
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model 90F One escape from an outright contradiction at this point is

for it to turn out that the enumeration /, which (being a function) is a

set, is not definable within 0. That is, we are suggesting the possibility

of the set x of all subsets of a given infinite set definable within 0 being

denumerable from without 0 while being uncountable within 0, because

no enumeration is among the sets definable with 0.

If we accept this “explanation” of Skolem’s paradox, then we are

faced with the following alternatives. One is that any axiomatization

of set theory as a first-order theory must fail to capture fully the notions

of the set of subsets of a given set, one-to-one correspondence, and un-

countability. Consequently, these concepts must be given a prior status

independent of axiomatic theories. If this conclusion is disagreeable (as

it may well be in view of the classical set-theoretic paradoxes), then we
must be content with the set theory which can be explicitly character-

ized within the framework of first-order theories. This brings us to the

second alternative. Set-theoretic notions such as uncountability must be

accepted as relative in nature; a set which is uncountable in a given

axiomatization may prove to be denumerable in another. In brief,

such a notion as absolute uncountability is nonexistent. This relativiza-

tion of set theory was proposed by Skolem.

Finally, we mention another explanation of Skolem’s paradox: There
is no collection of objects which satisfies the axioms of 0. This would
imply the inconsistency of 0 and hence the existence of a contradiction

within 0. As yet, one has not been found.

BIBLIOGRAPHICAL NOTES
Sections 1-3. There exist a great variety of formulations of the statement

calculus as an axiomatic theory. Those of the first-order predicate calculus are

not as numerous. In this connection A. Church (1956) should be consulted. For
extended treatments of the statement calculus and the predicate calculus there

are several excellent texts available. In addition to the book by Church just

cited we mention those by S. C. Kleene (1952), Rosser (1953), and Hilbert and
Ackermann (1950). Even better than the English edition of Hilbert and Acker-
mann is the third German edition (1949).

Section 4. A concise description of first-order theories appears in A. Tarski,

A. Mostowski, and R. M. Robinson (1953). A variety of algebraic systems,

formulated as first-order theories, appears in A. Robinson (1951) and A. Robin-
son (1956).

Section 5. 1 he magnum opus of the Hilbert school of formalism is Hilbert
.and Bernays (1934, 1939). Less comprehensive but adequate accounts of meta-
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mathematics appear in Kleene (1952) and A. A. Fraenkel and Y. Bar-Hillel

(1958).

Section 6. This section is essentially an account of Henkin’s paper of 1949.
Many of the definitions and theorems also appear in Church (1956). For an
account of some applications of Henkin’s principal theorem to problems in

modern algebra, see Henkin (1953).

Section 7. Church (1956) and Kleene (1952) were used as references for

this section. Although the idea of nonstandard models of a theory originated

with Skolem, Henkin was the first to investigate them in a systematic way. For
this see Henkin (1947) and (1950) or the account in Church (1956).

Sections 8-9. Self-contained and complete accounts of the material dis-

cussed in these sections are to be found in Kleene (1952) and, from a somewhat
different viewpoint, in M. Davis (1958). An informative and nontechnical

account of Turing machines and recursive functions appears in H. Rogers, Jr.

(1959). For proofs of the undecidability of a variety of algebraic theories, see

Tarski, Mostowski, and Robinson (1953).

Section 10. A complete account of Godel’s theorems and their conse-

quences is given in Kleene (1952). Another high-level development is given in

Mostowski (1952). For semitechnical accounts, see Rosser (1939) and G. Kreisel

(1952-1953). For a semipopular account, see E. Nagel and J. Newman (1958).

Our presentation draws on that which appears in mimeographed notes entitled

Sets, Logic, and Mathematical Foundations by Kleene.
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SYMBOLS AND NOTATIONS

Symbol Page

Z 2

a 2

R 2

C 2

Z+ 2

a+ 2

R+ 2

a C A 4

X\
,
A2 ,

' •
•

,
Xn C d 4

A ^ /I 4

{ Aij A2 ,

* '
’

5
An j

5

!a|p(a)} 7

{a C A\P(x)
j

8

A Q B 9

B 3 A 10

A C B 10

0 11

V(A) 11

A U B 12

A OB 13

A 13

X - A 13

A + B 13

(x,y) 24

(ai, A2j
•

•
•

, An) 25

D p 26

R, 26

xxr 26

ix 26

p[A] 26

Zn 31

x/p 31

/[A] 35

Symbol Page

f: X^Y 35
yx 35

ix 36

1/A 36

n x 37

Xa 37

X" 37

g °f 38
/“ 41

U« 43

n« 44

N 45

X{Ai\i C I\ 47

lub A 53

gib A 53

DgX 59

A '— B 79

2 80

card A 80

A<B 81

A < B 82

No 85

N 92

X « Y 98

CO 99

a* 101

j(a) 106

K* 120

HA) 121

x ~dy 133

Wi 134

a ~ qy 138

M. 139
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Symbol Page Symbol Page

x ~ cy 146 x+ 298

Mr 149 ord a 311

P 162 331

P A Q 162 (G:H) 339

P V Q 162 h A 377

P^Q 162 r h a 377

P^> Q 162 D(T
,

377

T 164 ^1, ^2, * *
*
, -dm I

- P 379

F 164 V4 392

1= A 172 N 397

A eq B 173 P ] mE 432

A i, Ao, •
•

•
,
Am t B 180 T(m, x,y) 437

(Vjt) 195 (Ey) 438

(3.v) 196 A(x
sy) 448

B/I 265
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SUBJECT INDEX

Abelian group, 204

Absolute complement, 13

Absolute value, 142, 358

Absorption laws, 20

Affine geometry, 230, 233

Aleph, 124

Algebra, 323; Lindenbaum, 274; of sets, 16,

248; quotient, 266, 324

Antecedent, 161

Antisymmetric relation, 48

Applied predicate calculus, 393

Archimedean property: for ordered fields,

365; for rational numbers, 141; for real

numbers, 152

Archimedean-ordered field, 366

Assignment, 206

Associative law, 73

Associative operation, 73

Atom, 267

Atomic Boolean algebra, 271

Axiom: of choice, 92, 112 ff., 302; of exten-

sion, 291; of infinity, 298; of pairing, 292;

of power set, 296; of regularity, 305; of re-

placement, 303; of subsets, 291; of union,

295

Axiom schema, 291, 376; of replacement,

303; of restriction, 305; of subsets, 291

Axioms: dependent set, 243; independent set,

243

Axioms for affine geometry, 230

Axioms for Boolean algebras, 249, 255

Axioms for densely ordered sets, 423

Axioms for fields, 348

Axioms for groups, 229, 329-331, 397

Axioms for integral domains, 348

Axioms for natural numbers, 58-59, 397

Axioms for ordered integral domains, 357

Axioms for partially ordered sets, 202

Axioms for predicate calculi, 389-390

Axioms for rings, 346

Axioms for set theory, 291-303

Axioms for statement calculi, 376

Biconditional, 162; truth table for, 165

Binary operation, 37

Binary relation, 25

Bolyai-Lobachevsky geometry, 222-223, 237

Boolean algebras: atom of, 267; atomic, 271;

complete, 271; congruence relation for,

259-262, proper, 262; filter of, 280, maxi-

mal, 280, principal, 280; formulation of,

249, 255; free, 276; homomorphic image,

263; homomorphism of, 263-266, kernel

of, 265; ideal of, 264; maximal, 269, proper,

264, unit, 264, zero, 264; isomorphic im-

age of, 263; ordering relation for, 252;

principle of duality for, 251
;
quotient alge-

bra of, 266; representation of, 267-272;

two-valued homomorphism of, 282; unit

element of, 249; zero element of, 249

Boolean logic, 280

Boolean ring, 350

Burali-Forti’s paradox, 128, 310, 319

Cancellation property, 132

Canonical mapping, 40

Cantor’s paradox, 128, 317-318

Cantor’s theorem, 86

Cardinality of a model, 420

Cardinal numbers, 80, 317; addition of, 95;

exponentiation for, 97; finite, 83; infinite,

85; multiplication of, 95; natural numbers

as, 83; ordering of, 82, 120, 317

Cartesian product, 26, 297 ;
of a family of

sets, 47

Categoricity in power, 422

Cauchy convergence principle, 1 56

Cauchy sequences of rational numbers, 143;

addition of, 144; multiplication of, 144;

positive, 146

Cauchy sequences of real numbers, 154

Chain, 50

Characteristic function, 37 ;
of a predicate,

427

Choice function, 113

Church’s theorem, 443

Church-Turing thesis, 429, 435

Class theorem, 319

Classes, 319; proper, 319; residue, 31

Closed formula, 392

469



470 Subject Index

Collection of sets, 5; disjoint, 13

Commutative group, 204, 331; simply or-

dered, 235

Commutative law, 78

Commutative operation, 78

Complement, 249; absolute, 13; relative, 13,

295

Complete Boolean algebra, 271

Complete ordered field, 367

Complete set, 300

Completeness theorem, 414; for the predicate

calculus, 393, 415, 417; for the statement

calculus, 381

Composite, 73

Composite function, 38

Composite sentence, 161

Composition of functions, 38, 75

Computable function, 429

Computation problem, 427

Conditional, 161; truth table for, 165

Congruence relations: on a Boolean algebra,

216 ff.; on a group, 341-342; on an alge-

bra, 323

Conjunction, 161, 391; truth table for, 165

Consequence, 180, 215

Consequent, 161

Constant: individual, 193, 388; logical, 395;

mathematical, 395

Continuum hypothesis, 94; generalized, 121

Continuum problem, 94

Contradiction, 188

Converse relation, 49

Coset, 339

Coset decomposition, 339 ff.

Countable set, 87

Cover, 50

Cyclic group, 335

Decidable predicate, 408

Decidable theories, 408, 445 ff.

Decision problem: for a predicate, 408; for a
theory, 408

Decision procedure, 408

Deduction from assumptions, 377, 390
Deduction theorem: for the predicate calcu-

lus, 391; for the statement calculus, 378
Defining property, 7

Definition by induction, 72, 76

Definition by transfinite induction, 103

Demonstration, 377, 390

DeMorgan laws, 20, 46

Dense chain, 101

Densely ordered set, 423

Denumerable set, 87

Difference group, 343

Difference ring, 354

Disjoint collection of sets, 13

Disjoint sets, 1

3

Disjunction, 161; truth table, 165

Division algorithm, 70

Division ring, 348

Domain, 205; of a relation, 26

Domination, 81

D-sequence, 399

Dual, 18

Dual ideal, 280

Dyadic expansion, 93

Effective procedure, 374

Effectively calculable function, 428
Effectively decidable predicate, 408
Effectively decidable theory, 408
Elementary number theory, 397

Elementary theory of groups, 397
Empty set, 1 1, 294

Enumeration, 87

Epsilon number, 315

Equivalence class, 30

Equivalence relation, 29

Existential quantifier, 196

Expression, 430

Family, 45

Field, 348; Archimedean-ordered, 366; of

quotients, 363; ordered, 364
Filter, 280

Finite cardinal, 83

Finite set, 83, 301

First coordinate, 24

First-order theory, 394; axiomatizable, 444;
essentially undecidable, 444; finitely axio-

matizable, 444; formula of, 395-396; inter-

pretation of, 399; logical axioms of, 396;
logical constants of, 395; mathematical
axioms of, 395; mathematical constants of,

395; terms of, 395

Formal proof, 224, 377, 390
Formulas (of a first-order theory), 395-396;

consequence of a set of, 401
; model of, 400-

401; satisfaction by a D-sequence, 399;
satisfiable, 410, 415; satisfiable in a do-
main, 401 ; true, 400; valid, 401 ; valid in a

domain, 401
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Formulas (of the predicate calculus), 201,

388; closed, 392; composite, 201; conse-

quence of a set of, 215, 401
;
model of, 400;

prime, 200, 388; substitution in, 209, ad-

missible, 212; true in an interpretation,

400; valid, 208, 401; valid in a domain,

208, 401

Formulas (of the statement calculus), 169,

375-376; arithmetical representation of,

178; composite, 169; consequence of a set

of, 180; consistent set of, 384; deducible

from assumptions, 377; denial of, 176;

equivalent, 173; inconsistent set of, 384;

maximal consistent set of, 386; prime, 169;

satisfiable set of, 188, 384; string of, 182;

valid (tautological), 172

Free Boolean algebra, 276

Function, 34; argument of, 34; characteristic,

37; choice, 113; composite, 38; composi-

tion, 39, 75; computable, 429; effectively

calculable, 428; extension of, 36; identity,

36; inverse, 41; X-definable, 429; logical,

205; number-theoretic, 75; one-to-one, 36;

on X into Y, 35; on X onto Y, 35; order

preserving, 52; partial, 429; partial recur-

sive, 434-435; partially computable, 433;

primitive recursive, 75; recursive, 434; re-

striction of, 36; successor, 57; total, 429;

truth, 170

Fundamental theorem of arithmetic, 71

Generalized continuum hypothesis, 121

Godel numbers, 428, 436

Godel’s completeness theorem for the predi-

cate calculus, 393

Godel’s first theorem, 446, 448-449

Godel’s second theorem, 446, 449-451

Graph of a relation, 27

Greatest lower bound, 53

Greatest member, 53

Group, 329 ff.
;
Abelian, 204, 331 ;

commuta-
tive, 331; cyclic, 335; difference, 343; ho-

momorphic image of, 343; homomorphism
of, 343; infinite, 331; isomorphic, 335; of

one-to-one-transformations, 331; order of,

331; quotient, 342; transformation, 337

Group theory, 229, 232, 397

Hartog’s theorem, 125

Hausdorff’s maximal principle, 116

Hilbert’s axiom, 118

Homomorphism: of Boolean algebras, 263;

of groups, 343; kernel of, 265, 344; of rings,

355; two-valued, 282

Ideal: dual, 280; of a Boolean algebra, 264;

of a ring, 353

Idempotence: of intersection, 19; of union, 19

Identity function, 36

Identity relation, 26

Image, 34

Inclusion, 9-10; proper, 10

Independent primitive term, 244

Index, 45, 339

Index set, 45

Indexed set, 45

Individual constant, 193, 388

Individual symbol, 388

Individual variable, 193, 388; bound occur-

rence of, 203, 389; conditional interpreta-

tion of, 392; free occurrence of, 203, 389;

generality interpretation of, 392; substitu-

tion for, 209

Individuals, 290

Induction: definition by strong, 77 ;
definition

by weak, 72; proof by strong, 70; proof by

weak, 70; see also Transfinite induction

Infinite cardinal, 85

Infinite set, 85, 301

Infinum, 53

Informal axiomatic theories, 227 ;
categori-

cal, 241; consequence of, 242; consistent,

236; deductively complete, 239; definitions

of, 233 ff.; formulation of, 242; inconsist-

ent, 236; interpretation of, 231; language

of, 230; model of, 231; negation complete,

239; representation problem for, 245; rep-

resentation theorems for, 245; sentence of,

230; statement of, 230

Informal theories, 227

Injection mapping, 36

Integer, 134; negative of, 135; positive, 134

Integral domain, 348: ordered, 357

Integral rational number, 139

Integral system, 58 ff.

Interpretation, 231 ;
of first-order theory, 399

Intersection, 1 3, 294; of a collection of sets, 44

Invalid argument, 187

Inverse function, 41

Inverse image, 42

Inversion of functions, 41

Invertible element, 326



472 Subject Index

Irreflcxive relation, 49

Isomorphism, 240-241
;
of Boolean algebras,

263; of groups, 335; of integral systems, 59,

68; of ordered domains, 359; of partially

ordered sets, 52; of rings, 355

Kernel, 265, 364

X-definable functions, 429

Lattice, 253-254

Least member, 53

Least upper bound, 53

Left coset, 339; decomposition, 339

Limit, 155

Lindenbaum algebra, 274

Logical constant, 395

Logical function, 205

Lower bound, 53; greatest, 53

Mapping: see Function

Mathematical constant, 395

Matrix, 348

Maximal member, 53

Membership, 4, 9, 289

Metalanguage, 402

Metamathematics, 401 ff.

Metatheorem, 402

Minimal member, 53

Model, 231-236, 273, 297, 401; cardinality

of, 420; nonstandard, 426; standard, 436

Modus ponens, 185, 376, 378, 390

n-ary operation, 37

n-ary relation, 25

Natural mapping, 40

Natural numbers, 299 ff.; as cardinal num-
bers, 83; definition of, 299; Peano’s axioms

for, 59; recursive set of, 435; recursively

enumerable set of, 435; see also Natural

number sequence

Natural number sequence, 57 ff.
;
definition

of, 61; ordering relation for, 62; addition

in, 63; multiplication in, 66

Negation, 161; truth table for, 165

von Neumann set theory, 318, 452-453

Neutral clement, 324

Nonstandard model, 426

Normal subgroup, 342

n-place operation symbol, 395

n-place predicate symbol, 388, 395

Number-theoretic function, 75; computation

problem for, 427; numcralwise represent-

able, 441

Number-theoretic predicate, 427

Numeral, 440

Numeralwise-expressible predicate, 440

Object language, 402

w-consistency, 441

One-to-one correspondence, 36

One-to-one function, 36

Operation: associative, 73; binary, 37; com-

mutative, 78; induced, 323; n-ary, 37;

neutral element of, 324; ternary, 73; unary,

37

Operation symbol, 395

Operators, 322

Order: of a group, 331 ;
of a group element,

336

Ordered field, 364; rational subfield of, 365;

complete, 367

Ordered integral domain, 357; absolute

value in, 358; order-isomorphic, 359;

order-isomorphism of, 359

Ordered n-tuple, 25

Ordered pair, 24, 296

Ordered set: partially, 50; simply, 50

Order-isomorphic domains, 359

Order-preserving function, 52

Order types, 99; addition of, 100; multiplica-

tion of, 100

Ordinal numbers, 105 ff., 307 ff.
;
exponenti-

ation of, 315; limit, 109; natural numbers

as, 105; of the first kind, 107; of the second

kind, 107; ordering of, 105, 309; product

of, 107, 314; series of, 315; sum of, 107,

313; transfinite, 105, 312

Ordinally similar chains, 98

Padoa’s method, 244

Pair, 293; ordered, 24, 296

Paradox: Burali-Forti’s, 128, 310, 319; Can-

tor’s, 128, 317-318; Richard’s, 446-447;

Russell’s, 9, 127, 291; Skolem’s, 453-454

Partial function, 429

Partial ordering relation, 48

Partial recursive function, 434-435

Partially computable function, 433

Partially ordered set, 50, 202; dual of, 54;

product of, 54; self-dual, 54

Partition, 13
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Peano’s axioms, 58-59, 69, 228, 231, 299, 397

Power set, 1 1 ,
296

Predecessor, 76

Predicate: decision problem for, 408; effec-

tively decidable, 408; n-place, 194, 200;

number theoretic, 427; numeralwise ex-

pressible, 440; primitive recursive, 435; re-

cursive, 435; recursively solvable, 435;

recursively unsolvable, 435; undecidable,

408

Predicate calculus of first order, 200 ff.,

387 ff.
;

applied, 393; axioms for, 389;

completeness theorem for, 393, 415, 417;

deduction theorem for, 391; pure, 393;

rules of inference for, 390; with equality,

389

Predicate calculus of second order, 425

Predicate letter, 200

Predicate symbol, 388, 395

Preordering relation, 49

Prime formula: of first-order theory, 395; of

predicate calculus, 200, 388; of statement

calculus, 169

Prime sentence, 161

Primitive recursion, 74

Primitive recursive derivation, 75

Primitive recursive function, 75, 434

Primitive recursive predicate, 435

Principle: of abstraction, 6; of definition by

induction, 72-78; of definition by trans-

finite induction, 103; of duality, 19, 251;

of proof by induction, 70; of proof by

transfinite induction, 103

Projection, 47

Proof: by contradiction, 189; formal, 224,

377, 390; indirect, 189; by induction, 70;

by transfinite induction, 103

Proof schema, 377

Proof theory, 403

Proper inclusion, 10

Proper subset, 10

Proper subtraction, 76

Provable statement, 224

Pure predicate calculus, 393

Quadruple, 431

Quantifier, 192; existential, 196; scope of,

202; universal, 195

Quotient algebra, 266, 324

Quotient field, 363

Quotient group, 342

Quotient set, 31

Range of a relation, 26

Rational number, 38; integral, 139; positive,

139

Rational real number, 150

Real number, 149; positive, 149; rational,

150

Recursive function, 434; partial, 434-435;

primitive, 75

Recursive predicate, 435; primitive, 435

Recursive set, 435

Reflexive relation, 29

Relation, 23 ff.; antisymmetric, 48; binary,

25, 297; converse of, 49; domain of, 26;

equivalence, 29; from X to Y, 26; graph
of, 27; identity, 26; in X, 26; irreflexive,

49; n-ary, 25; partial ordering, 48; pre-

ordering, 49; range of, 26; reflexive, 29;

simple ordering, 50; symmetric, 29; ter-

nary, 25; transitive, 29; universal, 26; void,

26

Relative complement, 13, 295

Residue class, 31

Restricted quantification, 214

p-relatives, 27

Richard’s paradox, 446-447

Right coset, 340; decomposition, 340

Ring, 346 ff.
;
Boolean, 350; commutative,

348; difference, 354; division, 348; exten-

sion of, 355; homomorphic image of, 355;

homomorphism of, 355; ideal of, 353; im-

bedded, 355; isomorphic image of, 355

Rosser’s form of Godel’s first theorem, 449

Rules of inference, 181; cp, 185; derived,

378; detachment, 185; eg, 218; es, 218;

generalization, 390; modus ponens, 185,

376, 378, 390; p, 182; t, 182; ug, 216

Russell’s paradox, 9, 127, 291

Satisfiable formula, 410; in a domain, 409

Satisfiable set: of formulas, 410; of state-

ments, 188

Schroder-Bernstein theorem, 81

Second coordinate, 24

Second-order theory, 425

Self-dual formula, 20

Semigroup, 324-328; Abelian, 325; commu-
tative, 325; identity element of, 325; neu-

tral element of, 324; unit element of, 325;

zero element of, 325
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Sentential connectives, 161

Sequence, 45

Sequence function, 103

Series of ordinals, 315

Set of descendents, 59

Similar sets, 79 ff.

Simple ordering relation, 50

Simply ordered set, 50

Simply ordered commutative groups, 235

Skolem’s paradox, 453-454

Standard model, 426

Statement, 6, 204; refutable, 239

Statement calculi, 273 ff.

Statement calculus, 160 ff., 375 ff.; axioms

for, 376; completeness theorem for, 284-

285, 381; deduction theorem for, 378;

Lindenbaum algebra of, 274; rule of infer-

ence for, 376

Statement variables, 375

Stone’s theorem, 271

String, 182

Strong completeness theories, 416-417

Subalgebra, 323

Subfield, 352

Subgroup, 333; generated, 334; improper,

334; normal (invariant), 342; proper, 334

Subring, 351

Subset, 10; proper, 10

Successor function, 57

Successor set, 298

Supremum, 53

Symbols: defined, 225; primitive, 225

Symmetric difference, 13, 262, 296

Symmetric relation, 29

Tautology, 172

Term, 194, 395; value of, 399

Ternary operation, 73

Ternary relation, 25

Theorem, 224, 377, 390

Theorem schema, 377

Theory: decidable, 408, 445 ff.; first-order,

394 ff.; second-order, 425; with standard

formalization, 394; undecidable, 408,

436 ff.

Total function, 429

Transfinite induction: definition by, 103;

proof by, 103

Transformation group, 337

Transitive relation, 29

Triple, 295

Truth function, 170

Truth table, 164

Truth value, 164

Turing machine, 431; alphabet of, 431; com-

putation of, 433; instantaneous description

of, 432, terminal, 433; internal state of,

431 ;
operation of, 432; tape expression for,

432

Unary operation, 37

Unary system, 58

Uncountable set, 92

Undecidable formula, 446

Undecidable predicate, 408

Undecidable theory, 408, 436 ff.

Union, 12, 295; of a collection of sets, 43

Unit, 348

Unit set, 5, 293

Universal quantifier, 195

Universal relation, 26

Universal set, 1

3

Upper bound, 53; least, 53

Valuation procedure, 206

Venn diagram, 14-15

Void relation, 26

Well-ordered sets, 53, 102 ff.; initial segment

of, 103; ordinal product of, 314; ordinal

sum of, 313

Zermelo-Fraenkel set theory, 289 ff., 452-

453; axioms of, 291, 292, 295, 298, 302,

303; prime formulas of, 290, 296

Zorn’s lemma, 116 ff.
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