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PREFACE

'This book is an outgrowth of a course which I have developed at Oberlin
College for advanced undergraduates. The purposc of the course is to
introducc students to the foundations of mathematics, to give them
initial training in the axiomatic method in mathecmatics, and to provide
them with the necessary tools to cope successfully with graduate level
courses having an abstract and axiomatic orientation. It may bc in-
ferred that as I usc the term “foundations of mathematics” I under-
stand 1t to mcan an analysis of fundamental concepts of mathematics,
intended to serve as a preparation for studying the supcrstructurc from
a general and unified perspective.

The book contains adcquate matcrial for any one of a variety of onc-
year upper undergraduatc courscs with a title resembling “Introduction
to Foundations of Mathematics.” That is, therc is sufficicnt material for
a year’s coursc in which the instructor chooses to ecmphasizc the construc-
tion of standard mathcmatical systems, or the role of logic in connection
with axiomatic theorics, or, simply, mathcmatical logic. Further, by
focusing attention on certain chapters, it can serve as a text for one-
scmester courses in set theory (Chapters 1, 2, 5, 7), in logic (Chapters
1,4,5,6,9), and in the development of the real number system (Chap-
ters 1, 2, 3, 5, 8).

The book has been organized so that not until the last chapter docs
symbolic logic play a significant role.

Most of the material presented might be deseribed as the mathematics
whosc devclopment was directly stimulated by investigations pertaining
to the real number system. That is, the development and the study of
the real number system serve as the underlying theme of the book. 1
will elaborate on this statement after outlining the contents,

Chapter 1 is an introduction to so-called intuitive set theory. Along
with the algebra of sets the theory is developed to the point where the
notion of a relation can be defined. The remainder of the chapter is
concerned with the special types of relations called equivalence rela-
tions, functions, and ordering relations. Sufficient examples and exercises
arc provided to cnable the beginner to assimilate these concepts fully.

Chapter 2 begins with a discussion of a type of system (an “integral
system’’) which incorporates several features of the natural number
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sequence, as this notion 1s understood intuitively. Once it is proved that
there is essentially only one integral system, we take as our definition of
the natural number system some onc integral system. After the arith-
metic of this system is developed, careful consideration is given to both
definition and proof by induction. There follows an account of Cantor’s
theory of cardinal and ordinal numbers. In Section 8 is introduced the
remaining principle of intultive set theory, the axiom of choice, along
with several equivalent propositions. In Section 9, with the aid of the
axiom of choice, the arithmetic of infinite cardinals is reduced to a
triviality. Section 10 is devoted to propositions of a different kind which
are equivalent to the axiom of choice. Finally, in Section 11, the classical
paradoxes (that is, bona fide contradictions) of intuitive set theory ar
described.

In Chapter 3 the natural number sequence is extended to the real
number system via the integers and the rational numbers, with Cauchy se-
quences being used in the extension of the rationals to the reals. Repeti-
tious details have been cut to a minimum in the hope of relieving the
boredom of this essential chapter.

Chapter 4 is devoted to an intuitive exposition of symbolic logic. The
simplest part of the classical variety of this subject, the statement cal-
culus, is treated in some detail. Although the much more comprchensive
system, the first-order predicate calculus, is barely more than outlined,
by following the same pattern as that employed for the statement cal-
culus, it is hoped that the exposition will be intelligible. Probably every
serious student of mathematics should understand symbolic logic to the
extent it is presented here, if only to be able to take advantage of its
symbolism and know how to form the negation of “‘the function f 1s con-
tinuous at x = &’ in a mechanical way.

Chapter 5 consists of an exposition of the axiomatic method, the
notion of an axiomatic theory, and related topics as they are encountered
in everyday mathematics. It is only the italicized qualification that justifies
the inclusion of this chapter. For in view of the tremendous accomplish-
ments in the area of the foundations of mathematics in recent years, this
chapter is antiquated. An introduction to modern investigations appears
in Chapter 9.

Chapter 6 contains the first full-blown development of an axiomatic
theory. The theory that we have chosen for our prime example, that of
Boolean algebras, is casily susceptible of investigation. Morcover, as we
show in the latter part of the chapter, it has close connections with some
of the logic discussed carlier.
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In Chapter 7 the Zermelo-Fraenkel theory of scts is outlined. In the
last section contact is made with another well-known axiomatization of
classical set theory—that due to von Neumann. Zcrmelo-Fraenkel sct
theory was chosen for exposition because its development closely parallels
that of intuitive set theory. However, for transfinite arithmetic the von
Neumann theory of ordinal and cardinal numbers (which can be im-
bedded in every suitable axiomatization of set theory) was sclected be-
causc of its elegance.

In Chapter 8 several axiomatic theorics which fall within the realm
of modern algebra are introduced. The primary purpose is to enable us
to give self-contained characterizations in turn of the system of integers,
of rational numbers, and, finally, of real numbers. This is done in the
last three sections of the chapter.

Finally, there is Chapter 9, which is an introductory account of rcla-
tively recent investigations of the foundations of mathematics. A dis-
tinctive feature of the modern approach is the explicit incorporation of
a theory of logic into an axiomatic theory. We restrict our attention to
so-called first-order theories, that is, those axiomatic theories for which
the predicate calculus of first order provides a logical base. Sections 4-7
give a rigorous account for first-order theories of the material discussed
at the intuitive level in Chapter 5. Much of this has been available here-
tofore only in more technically formidable accounts. In Sections 8-10
we round out our discussion of the axiomatic method with the presenta-
tion of three famous theorems about formal axiomatic mathematics.
One of these, obtained by Alonzo Church in 1936, asserts that there is
no automatic procedure for deciding whether an arbitrary formula of
(an axiomatized version of) the predicate calculus of first order 1s a
theorem. One of the other two theorems (both obtained by Kurt Gédel
in 1931) asserts that a sufficiently rich formal system of arithmetic, if
consistent, contains a statement which is neither provable nor refutable.
The last asserts that if such a system of arithmetic is consistent, then it
is impossible to prove just that.

Our account of these theorems is neither sclf-contained nor rigorous,
but, we believe, adequate for the reader to gain an understanding of
their meaning and significance. In defense of such an approach we shall
say only that we belicve this coverage will meet the nceds of most stu-
dents. Those who desire a complete and rigorous account must be pre-
parcd to spend a considerable amount of time n mastering a variety of
technical details.

We conclude our outline of the contents by substantiating an earlier



X Preface

remark that the real number system serves as the underlying theme of
the book. Indeed, apart from Chapter 6, all of the material discussed is
directly related to the real number system in the sense that it fits into
the category of (a) a preliminary to the development of the system, or (b)
developing some facet of either the system itself or an extension of it,
or (c) developing tools to cither characterize the system or study some
property of it.

A Note to the Instructor

Since mathematical logic is often not an outstanding feature of a
mathematician’s repertoire, it may be helpful to clarify its role in this
book. Chapter 4 should serve as an adequate introduction for a new-
comer into this discipline and be more than adequate to cope with the
references to logic which arc made in Chapters 5 and 6. As has been
stated in the above, it is only in Chapter 9 that logic (in the form of
the first-order predicate calculus) enters explicitly into the mathematical
development. But even here, for the instructor who has Just a modest
background in logic, with the standard texts by Church, Kleene, and
Rosser at his side, all will go well.

Further, we call attention to the bibliographical notes which appear
at the end of most chapters. These give references to original papers or
to expositions which can serve as collateral reading material for students.

Numerous acknowledgments of assistance in this undertaking are in
order. First there are those which appear in my book titled Sets, Logic,
and Axiomatic Theories (which is made up of some of the more clementary
portions of this book)—to the National Science Foundation and Oberlin
College, for making it possible for me to devote full time to writing for
one ycar, and to Professor Angelo Margaris, for numerous helpful sug-
gestions. In addition, I gratefully acknowledge the constructive criticism
rendered in very precise form by Professor Anil Nerode, who read a
near-final version of the manuscript at the request of the publisher.
Professor Leon Henkin made numerous suggestions for the improvement
of Chapter 9; any shortcomings that remain are my sole responsibility.
Finally, T am most grateful to my wife—not only for her typing of the
manuscript again and again but also for managing to keep her family
intact at the same time.

January 1963 RoBERT R. StoLL















cuarter 1 | Sets and Relations

TH E THEORY OF SETS as a mathematical discipline originated
with the German mathematician G. Cantor (1845-1918). A complete
account of its birth and childhood is out of the question here, since a
considerable knowledge of mathematics is a prerequisite for its compre-
hension. Instead, we adopt the uncasy compromise of a brief sketch of
these matters. If this proves too difficult for the reader, nothing is lost;
on the other hand, if it is at lcast partially understood, something may
be gained.

Cantor’s investigation of questions pertaining to trigonometric series
and series of real numbers led him to recognize the need for a means of
comparing the magnitude of infinite sets of numbers. To cope with this
problem, he introduced the notion of the power (or size) of a set by
defining two sets as having the same power il the members of onc can
be paired with those of the other. Since two finite sets can be paired if
and only if they have the same number of members, the power of a finite
sct may be identified with a counting number. Thus the notion of power
for infinite sets provides a generalization of everyday counting numbers.
Cantor developed the theory, including an arithmetic, of these gener-
alized (or transfinite) numbers and in so doing created a theory of sets.
His accomplishments in this arca are regarded as an outstanding ¢x-
ample of mathematical creativity.

Cantor’s insistence on dealing with the infinite as an actuality—he
regarded infinite sets and transfinite numbers as being on a par with
finite scts and counting numbers—was an innovation at that time.
Prejudices against this viewpoint were responsible for the rejection of
his work by some mathematicians, but others reacted favorably because
the theory provided a proof of the existence of transcendental numbers.
Other applications in analysis and geometry were found, and Cantor’s
theory of sets won acceptance to the extent that by 1890 it was recog-
nized as an autonomous branch of mathematics. About the turn of the
century there was some change in attitude with the discovery that con-
tradictions could be derived within the theory. That these were not
regarded as scrious defects is suggested by their being called paradoxes—
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2 Sets and Relations cHap. 1

defeets whieh could be resolved, once full understanding was acquired.
The problems posed by Cantor’s theory, together with its uscfulness,
gradually ereated independent interest in a general theory of abstraet
scts in whieh his ideas appcared in greatly extended form. That general
theory forms the basis of this chapter.

Speeifically, this chapter diseusses, within the framework of set theory,
three important mathematieal eoncepts: function, equivalence rclation,
and ordering relation. Seetions 3-6 contain the neeessary preliminaries,
and Sections 1 and 2 describe our point of departure for Cantor’s theory.

One might question the wisdom of choosing a starting point which is
known to lcad ultimately to disaster. However, we eontend that the
important items of this chapter are independent of those features which
characterize the Cantorian or “naive” approach to sect theory. Indeced,
any theory of sets, if it is to serve as a basis for mathematics, will inelude
the prineipal definitions and theorems appearing in this chapter. Only
the methods we employ to obtain some of these results are naive. No
irreparable harm results in using sueh methods; they are standard tools
in mathematies.

In this ehapter we assume that the reader is familiar with the systems
of integers, rational numbers, real numbers, and eomplex numbers.
Knowledge in these arcas will enlarge the possibilities for construeting
examples to assist the assimilation of definitions, theorems, and so on.
We shall reserve the underlined letters Z, Q, R, and C for the sets of
Integers, rational numbers, real numbers, and complex numbers, re-
spectively, and the symbols Z*, Q* and R* for the sets of positive
integers, positive rationals, and positive reals, respectively.

1. Cantor’s Concept of a Set

Let us eonsider Cantor’s coneept of the term set and then analyze
briefly its constituent parts. Aceording to his definition, a set .S is any
collcetion of definite, distinguishable objects of our intuition or of our
intelleet to be conceived as a whole. The objects are ealled the elements
or members of .S.

The essential point of Cantor’s coneept is that a eollection of objeets
Is to be regarded as a single entity (to be conecived as a whole). The
transfer of attention from individual objeets to eolleetions of individual
objeets as entities is commonplace, as evideneed by the presence in our
language of such words as “buneh,” “covey,” “pride,” and “flock.”
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With regardto the objects which may be allowed in a set, the phrase
“objects of our intuition or of our intellect’” gives considerable freedom.
First. it gives complete liberty so far as the nature of the objects com-
prising a set is concerned. Green apples, grains of sand, or prime num-
bers are admissible constituents of sets. However, for mathematical
applications it is reasonable to choosc as members such mathematical
entities as points, lines, numbers, scts of numbers, and so on. Second,
it permits the consideration of sets whose members cannot, for onc
reason or another, be explicitly exhibited. In this conncction onc 1s
likely to think first of infinite scts, for which it is not even theorctically
possible to collect the members as an asscmbled totality. The sct of all
prime numbers and the set of all points of the Euclidean planc having
rational coordinates in a given coordinate system are examples of this.
On the other hand, there are finite scts which display the same degree
of intangibility as any infinite sct.

An old example which serves to bear out this contention begins with
the premise that a typesctung machinc with 10,000 characters (these
would include the lower-case and capital letters of existing alphabets 1n
various sizes of type, numerals, punctuation, and a blank character for
spacing) would he adequate for printing in any language. (The exact size
of the set of characters is not at issue; the rcader may substitute for
10,000 any integer greater than 1.) Let it be agrced that by a “book”
is meant a printed asscmblage of 1,000,000 characters, including blank
spaces. Thus a book may contain from 0 to 1,000,000 actual characters.
Now consider the set of all books. Since there are 10,000 possibilities
available for cach of the 1,000,000 positions in a book, the total number
of books is equal to 10,000"900.9% This is a large (but finite!) numbcr. In
addition to books of gibberish there would appear in the sct all textbooks
ever written or planned, all ncwspapers ever printed, all government
pamphlets, all train schedules, all logarithm tables cver computed, and
so on, and so on. The magnitude cludes comprehension to the same
degree as does that of an infinite set.

The remaining key words in Cantor’s concept of a set are “‘distn-
guishable” and “definite.” The intended meaning of the former, as he
used it, was this: With regard to any pair of objects qualified to appcar
as clements of a particular set, one must be able to determine whether
they are different or the same. The attribute “definite” is interpreted
as mcaning that if given a set and an object, it is possible to determine
whether the object is, or is not, a member of the set. The implication
is that a sct is completely determined by 1ts members.
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2. The Basis of Intuitive Set Theory

According to Cantor, a set is made up of objects called members or
clements (we shall use both terms synonymously). The assumption that
if presented with a specific object and a specific set, one can determine
whether or not that object is a member of that set means this: If the
first blank in “_____is a member of __ * ig filled in with the name
of an object, and the second with the name of a set, the resulting sen-
tence 1s capable of being classified as true or false. Thus, the notion of
membership is a relation between objects and sets. We shall symbolize
this relation by € and write

x € A
if the object x is a member of the set A. If x is not a member of A, we
shall write

x & A.
Further,

X1, X2, * - ,x, € A

will be used as an abbreviation for “x1€ Aand 2 € 4 and - - - and
xn € A

In terms of the membership relation, Cantor’s assumption that a set
is determined by its members may be stated in the following form:.

The intuitive principle of extension. 730 sets are equal iff (if and
only if) they have the same members.

The equality of two sets X and ¥ will be denoted by

/Yv - )f,
and the inequality of X and ¥ by
X # VY.
Among the basic properties of this relation are
X =X
X = Vimplies }" = Y.
X=Yand ¥ = 7 mply "= 7,
for all sets X, V', and Z.

It should be understood that the principle of extension is a nontrivial
assumption about the membership relation. In general, a proof of the
Cquality of two specified sets 4 and 5 is in (WO parts: one part demon-
strates that if v € A, then € 55 the other demonstrates that if v € B,
then v € 4. An cxample of such a proof is given below.

I



1.2 | The Basis of Intuitive Set T heory 5

That (uniquely determined) set whose members are the objects
x1, X2, + ++ , &, will be written

{xl) Xo, * x"}‘

In particular, {x}, a so-called unit set, is the sct whose sole member is x.

EXAMPLES

2.1. Let us prove that the set A of all positive even integers is equal to the
set B of positive integers which are expressible as the sum of two positive odd
integers. First we assume that x € A4 and deduce that x € B. If x € A, then
x = 2m, and hence x = (2m — 1) + 1, which means that x € B. Next, we
assume that x € B and deduce that x € 4. If x € B, then x = (2p — 1)
(2¢ — 1), and hence x = 2(p + ¢ — 1), which implies that x € A. Thus, we
have proved that 4 and B have the same members.

2.2. {2, 4,6} is the set consisting of the first three positive even integers.
Since {2,4,6} and {2, 6,4} have the same members, they are equal sets.
Morecover, {2, 4, 6} = {2, 4, 4, 6} for the same reason.

2.3. The members of a set may themselves be sets. For instance, the geo-
graphical area known as the United States of America is a set of 50 member
states, each of which, in turn, is a set of counties (except Alaska, which has
boroughs). Again, {{1, 3}, {2, 4}, {5. 61} is a set with three mcmbers, namely,
{1, 3}, {2, 4}, and {5, 6}. The sets {{1, 2}, {2, 3}} and {1, 2, 3} are unequal,
since the former has {1, 2} and {2, 3} as members, and the latter has 1, 2, and
3 as members.

2.4. The sets {{1, 2}} and {1, 2} are unequal, since the former, a unit set,
has {1, 2} as its sole member and the latter has 1 and 2 as its members. This
is an illustration of the general remark that an object and the set whose sole
member is that object are distinct from each other.

We digress briefly to comment on the alphabets which we shall em-
ploy in discussing set theory. Usually, lower-case 1talic English letters
will denote elements, and, for the time being, capital italic letters will
denote scts which contain them. Later, lower-case Greek letters will be
introduced for a certain type of set. If the members of a set are themselves
sets, and if this is noteworthy in the discussion, capital script letters will
be used for the containing set, and it will be called a collection of sets.
For example, we might have occasion to discuss the collection § of all
finite sets A of integers x. As a rule of thumb, the level of a sct within a
hicrarchy of sets under consideration is suggested by the size and gaudi-
ness of the letter employed to denote it.

Although the brace notation is practical for explicitly defining sets
made up of a few elements, it is too unwicldly for defining sets having
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a large, finite number of elements and useless for infinite sets (sets
having infinitely many clements). How can sets with a large number
of elements be described? In this connection one 1nstinctively tends to
differentiate between finite and infinite sets on the grounds that a finite
sct can be realized as an assembled totality whereas an infinite set can-
not. However, a large finite set (for example, the sct of books deseribed
in Section 1) is as incapable of comprchension as is any infinite set.
On the basis of such cxamples one must conclude that the problem of
how to describe efficiently a large finite set and the problem of how to
describe an infinite set are, for all practical purposes, one and the same.
A commonly accepted solution, devised by Cantor, is based on the
concept of a “formula in x.”” At this time we offer only the following
Intuitive description. Let us understand by a statement a declarative sen-
tence capable of being classified as either true or false. Then, by a
formula in x we understand a finite sequence made up {from words and
the symbol x such that when each occurrence of v is replaced by the
same name of an object of an appropriate nature a statement results.
For instance, each of the following is a formula in x:
5 divides x; x4 1>
x loves John; 2
xr < x;
In contrast, neither of the following is a formula in x:
for all x, x* — 4 = (v — 2)(x 4+ 2);
there is an x such that 12 < 0.

=
=4

Rather, each is simply a statement. A grammarian might describe a
formula in «, alternatively, as a sentence which asserts something about
x. Clearly, each sentence of the first list above has this quality, whereas
neither of the sccond list has. A still different approach to this concept
1s by way of the notion of function as jt 1s used in elementary mathe-
matics. A formula in x may be deseribed as a function of one variable
such that for a suitable domain the function values are statements.

We shall use a capital English letter followed by the symbol (x) to
denote a formula in x. If, in a given context, P(x) stands for a particular
formula, then P(a) stands for the same formula with « in place of .

Our objective, that of describing sets in terms of formulas, is achieved
by way of the acceptance of the following principle.

The intuitive principle of abstraction. . Jormula P(x) defines a set A
by the convention that the members of A are exactly those objects a such that P(a)

s a lrue statement.
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Because sets having the same members are equal; a given formula
determines exactly one set which, in mathematics, is usually denoted by
{elP(x) ],
read “the set of all x such that P(x).” Thus a € {x/P(x)| Uf P(a) is a
true statement. It may be said that the decision as to whether a given
object @ is a member of {x P(x)| is that of whether @ possesses a certain
property (or quality). Because of this, when a formula mn x, P(x), 1s
applied to a set construction it is commonly called a property of x and,
indeed, the defining property of {x!P(x){. Further, our principle of abstrac-
tion is then described by the assertion that “every property determines

a set.”
We shall admit the possibility of the occurrence of symbols other than

x in a formula in x. If P(x) is a formula in x and y is a symbol that does
not occur in P(x), then, as properties, P(x) and P(y) arc indistinguish-
able, and so {x/P(x)| = {»P(»){. This nced not be the case, however,
if y does occur in P(x). For example,

fxlx is divisible by «} = {y|yis divisible by u},
but

{xlx is divisible by u} 5 {ulu is divisible by uf.
Again, if I/(x) and G(x) arc two properties such that I"(x) holds for x
when and only when G(x) holds for x, then {x]F(x)} = {xG(x)}, by an
application of the principle of extension. For example,

{xlx € Aand x € B} = {x|x € Band x € 4],

and
{xlx € Ztand x < 5} = {x[x € Z" and (x + 1)* < 29].

EXAMPLES

2.5. The introduction of infinite sets by defining properties is a familiar pro-
cedure to a student of analytic geometry. One need merely recall the customary
definition of such geometric loci as the conic sections. For instance, the circle
of radius 2 centered at the origin is the set of all x such that x is a point in the
plane and at a distance of two units from the origin.

2.6. The following are examples of easily recognized sets defined by prop-
erties.

(a) {x|xisan integer greater than 1 and having no divisors less than or cqual
to x'17;.

(b) f{x|x is a positive integer less than 9} .

(¢c) {xlxis a line of slope 3 in a coordinate planej.

(d) {x|x is a continuous function on the closed interval from 0 to 1}.
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2.7. {x|]x = xyorx = xp0r -+ or x = x,} is the set we earlier agreed to de-
note by {xi, x2, + -, x,}.

2.8. In some cases our language makes possible, by way of a property, a
briefer definition of a finite set than can be achieved by an enumeration of the
clements. For example, it is shorter to define a particular set of 100 people by
the property “x is a senator” than by enumerating names of the members.

2.9. If Ais aset, then x € 4 is a formula in x and may be used as a defining
property of a set. Since y € {x|x € A} iff y € A4, we have

A= {x|x € 4},

by virtue of the principle of extension.

Various modifications of the basic brace notation for sets are used.
For example, it is customary to write

{x € A|P(x)]}

instead of {xlx € A4 and P(x)} for the set of all objects which are both
members of A and have property P(x). An alternative description of
this set is “all members of 4 which have property P(x),” and it is
this description that the new notation emphasizes. As illustrations,
{x € R0 < x < 1} denotes the set of all real numbers between 0
and 1, inclusive, and {x € Q*|x? < 2} denotes the set of all positive
rationals whose square is less than 2.
If P(x) is a property and f is a function, then

H(0)1P(x)]

will be used to denote the set of all y for which there is an x such that
x has property P(x) and y = f(x). For example, instead of writing

{»] there is an x such that x is an integer and y = 2x}

we shall write
12xlx € Z}.

Again, {x*x € Z} denotes the set of squares of integers. Such notations
have natural extensions; in general, one’s intuition is an adequate guide
for interpreting examples. For instance, in a coordinate plane, where
the points are identified by the members of the set R? of all ordered
pairs (x, y)T of rcal numbers x and Y, 1t Is reasonable to interpret
{(x, ») € R¥» = 2x} as the line through the origin having slope 2.

The principle of set extension, the principle of abstraction, and the
principle of choice (which will not be formulated until there is need for
it) constitute the working basis of Cantor's theory of sets. It is of interest

T Here we are using a notation which will be discussed in detail later.
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to note that although we made an attempt, prior to introducing the
first two principles, to describe what a set is, neither of these principles
nor the third includes a definition of the word set. Rather, each 1s
merely an assumption about sets. The basic concept used to enunciate
these principles is membership. Consequently, the membership relation
for sets, rather than the notion of set itself, assumes the role of the prin-
cipal concept of set theory.

We have already mentioned that contradictions can be derived within
intuitive sct theory. The source of trouble is the unrestricted use of the
principle of abstraction. Of the known contradictions the simplest to
describe is that discovered by Bertrand Russell in 1901, It is associated
with the set R having the formula x & x as its defining property and
may be stated as: On one hand, # € R, and on the other hand, R &€ R.
The reader can casily supply informal proofs of these two contradictory
statements.

EXERCISES

2.1. Explain why 2 € {1, 2, 3}.

2.2. Is {1,2} € {{1,2,3}, {1, 3}, 1, 2}? Justify your answer.

2.3. Try to devise a set which is a member of itself.

2.4. Give an example of sets 4, B, and C such that 4 € B, B € C, and
A& C.

2.5. Describe in prose each of the following sets.

(a) {x € Z|x is divisible by 2 and x is divisible by 3}.

(b) {x|x € 4 and x € Bj.

(c) {x|x € 4 or x € B}.

(d) {x € Z*|x € {x € Z] for some integer y, x = 2y} and x & {(x € Z| for

< » 1 PR L)
some integer y, x = 3y; .

(¢) {x?|x is a primej.

(f) {a/b€ Qla+b=1anda, b€ Q.

(g) {(x,y) € RYx* +y* = 1.

(h) {(x,y) € Ry = 2x and y = 3x}.

2.6. Prove that if a, b, ¢, and d arc any objects, not necessarily distinct from
one another, then {{a}, {a, b}} = {{c}, {c,d}} iff botha = cand b = d.

3. Inclusion

We now introduce two further relations for sets. If 4 and B are scts,
then A is included in B, symbolized by

A C B,
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ifl'cach member of A is a member of B. In this event one also says that
A 1s a subset of B. Further, we agree that B includes A, symbolized by

B D A4,

is synonymous with A is included in B. Thus, 4 € B and B 2 4 each
means that, for all x, if x € 4, then x € B. The set A is properly
included in B, symbolized by

ACB

(or, alternatively, 4 is a proper subset of B, and B properly includes
A), i A € B and 4 # B. For cxample, the set of even integers is
properly included in the set Z of integers, and the set Q of rational
numbers properly includes Z.

Among the basic properties of the inclusion relation are

XCYand VY C 7 imply X C 7;
XC Yand Y C Ximply X = }.

The last of these is the formulation, in terms of the inclusion relation,
of the two steps in a proof of the cquality of two sets. That is, to prove
that X = ¥, one proves that X € ¥ and then that c X.

For the relation of proper inclusion, only the analogue of the second
property above is valid. The proof that X C } and I C 7 imply
X C Z is required in one of the exercises at the end of this section.
There the reader will also find further propertics of proper inclusion,
so far as its relationship to inclusion is concerned.

Since beginners tend to confuse the relations of membership and
inclusion, we shall take every opportunity to point out distinctions.
At this time we note that the analogues for membership of the first two
of the above properties for inclusion are false. For example, if X is the
sct of prime numbers, then X ¢ X. Again, although 1 € Z and
Z € {Z}, it is not the case that 1 € {Z}, since Z is the sole member
of {Z}.

We turn now to a discussion of the subsets of a set, that is, the sets
included in a set. This is our first example of an important procedure
in sct theory—the formation of new sets from an existing set. The
principle of abstraction may be used to define subsets of a given sct.
Indeced, if P(x) is a formula in x and A is a set, then the formula

v € Aand P(x)

determines that subset of A4 which we have alrcady agreed to write as
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fx € AlP(x)!. If 4 is a set and we choose P(x) to be x # x, the result
is {x € Alx # x!, and this set, clearly, has no elements. The principle
of extension implies that there can be only one set with no clements.
We call this set the empty set and symbolize it by

.

The empty set is a subset of every set. To establish this it must be
proved that if A is a sct, then each member of & is a member of A.
Since & has no members, the condition is automatically fulfilled. Al-
though this reasoning is correct, it may not be satisfying. An alternative
proof which might be more comforting is an indirect one. Assume that
it is false that @& € A. This can be the case only if there exists some
member of & which is not a member of A. But this is impossible, since
has no members. Hence, @ € 4 is not false; thatis, &g < .

Each set A # & has at least two distinct subsets, A and &. More-
over, ecach member of A determines a subset of A; if a € A, then
{a! € A. There are occasions when one wishes to speak not of indi-
vidual subsets of a set, but of the set of all subsets of that set. The sect
of all subsets of a sct A4 is the power set of A, symbolized by

®(A4).
Thus, ®(A4) is an abbreviation for
(B|B C A}
For instance, if A = {1, 2, 3}, then
e(4) = {4, {1,2}, {1, 3}, 12, 3}, {1}, {2}, 13}, F1.

As another instance of the distinction between the membership and
inclusion relations we note that if 8 € A4, then B € ®(A), and if a € A4,
then {a} € A and {a] € @(4).

The name “power sct of A7 for the set of all subsets ol A has its
origin in the case where A is finite; then ®(A) has 2" members if 4
has n members. To prove this, consider the following scheme for de-
scribing a subset B of A = {ay, -, an}: a sequence of n 0’s and I’s
where the first entry is 1 if @, € Band 0if a; € B and where the second
entry is 1 if ax € B and 01l a & B, and so on. Clearly, the subsets of A
can be paired with the set of all such sequences of 0’s and 1’s; for ex-
ample, if n = 4, then tai, a3} determines, and 1s determined by, the
sequence 1010. Since the total number of such sequences is cqual to
2.2.....2 = 2 the number of clements of @(1) 1s cqual to 2",
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EXERCISES

3.1. Prove cach of the following, using any properties of numbers that may
be needed.

(a) {x € Z[for an integery, x = ¢y} = {x € Z| for integers « and v, x = 2u

and x = 30},

(b) {x € R| for a real number y, x = y2} = x € Rlx > 0).

(c) {x € Z| for an integer y, x = 6y} C {x € Z| for an integer y, x = 2y}.

3.2. Prove each of the following for sets A, B, and C.

(a) If A € Band B C C, then 4 C C.

(b) If A€ Band B C C, then 4 C C.

(c) f 4 C Band BZ C, then 4 C C.

(d) If 4 C Band B C C, then 4 C C.
3.3. Give an example of sets A4, B, C, D, and E which satisfy the following

conditions simultancously: 4 C B, B C,CCD,and D C E.
3.4. Which of the following are true for all sets A, B, and C?

(a) IfAQBandBQC,thenAQC.
(b) If A 5 Band B 2 C. then A 2 C.

(c) If 4 € Band BZ C, then 4 & C.

(d) If A C B and B C C, then C < A.

() If A4S Band B € C, then 4 & C.

3.5. Show that for every set 4, 4 C &F iff 4 = .
3.6. Let Ay, Ao, -+, A, be n sets. Show that

Alg.A2g g.AngAl iff Ay =A‘.2= =An-
3.7. Give several examples of a set X such that each element of X is a subset
of X.
3.8. List the members of ®(4) if 4 = {{1, 2}, {3}, 1).
3.9. For each positive integer », give an example of a set A, of 7 elements
such that for each pair of elements of A, one member is an element of the other.

4. Operations for Sets

We continue with our description of methods for generating new sets
from existing sets by defining two methods for composing pairs of sets.
These so-called operations for sets parallel, in certain respects, the
familiar operations of addition and multiplication for integers. The
union (sum, join) of the sets A and B, symbolized by 4 U B and read
“A union B” or “A cup B,” is the set of all objects which are members
of either 4 or B; that s,

AU B={xx € dorx & B,

Here the inclusive sense of the word “opr” 1s intended. Thus, by defi-
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nition, x € A U Biff x is a member of at least onc of A4 and B. For
example,

{1,2,3} U {1,3,4} = {1, 2,3, 4}.

The intersection (product, meet) of the sets A and B3, symbolized by
A N B and read “4 intersection B or “A cap B,” is the set of all
objects which are members of both 4 and B; that is,

AN B ={xl]x € A4and x € BY.
Thus, by definition, x € 4 N Biff x € A and x € B. For example,
{1,2,3} N {1,3,4} = {1,3].

It is left as an exercise to prove that for every pair of sets 4 and B the
following inclusions hold:

FCSANBCACAU B

Two scts A and B arc disjoint ifl 4 N B = &, and they intersect
T A N B # &. A collection of sets is a disjoint collection iff cach
distinct pair of its member sets is disjoint. A partition of a set X'is a
disjoint collection @ of nonempty and distinct subsets of X such that
cach member of X is a member of some (and, hence, exactly one)
member of @. For example, {{1,2}, {3}, {4,5}} is a partition of
(1,2, 3, 4, 54.

A further procedure, that of complementation, for gencrating scts
from existing sets employs a single set. The absolute complement of
a sct A, symbolized by

A
is {xx & A}. The relative complement of A4 with respect to a sct X is
X (M A: this is usually shortened to X — A, read “X minus A.” Thus

X — A ={xr€Xlx & A},

3

that is, the set of those members of X" which are not members of A. The
symmetric difference of scts 4 and 1, symbolized by A4 4 B, is defined
as follows:

A+ B=(1—-B)U(B—=A.

This operation is commutative, that is, 4 + B = B + A, and associ-
ative, that is, (A + B) + C = 4 + (B + (). Further, 4 + A=,
and A + g = A. Proofs of these statements are left as exercises.

If all sets under consideration in a certain discussion are subsets of a
set U, then U is called the universal set (for that discussion). As ex-
amples, in elementary number theory the universal set 1s Z, and 1n
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planc analytic gecometry the universal set is the set of all ordered pairs
of real numbers. A graphic device known as a Venn diagram is used
for assisting one’s thinking on complex relations which may exist among
subsets of a universal set /. A Venn diagram is a schematic representa-
tion of sets by sets of points: the universal set U is represcnted by the
points within a rectangle, and a subset 4 of U is represented by the
interior of a circle or some other simple region within the rectangle.
The complement of 4 relative to U, which we may abbreviate to A
without confusion, is the part of the rcctangle outside the region repre-
senting A, as shown in Figure 1. If the subsets A4 and B of U/ are repre-

A shaded ANEB shaded AUB shaded
Figure 1 Figure 2 Figure 3

sented 1n this way, then 4 N B and 4 U B are represented by shaded
regions, as in Figure 2 and Figure 3, respectively. Disjoint sets arc repre-
sented by nonoverlapping regions, and inclusion is depicted by dis-
playing one region lying entirely within another. These are the
ingredients for constructing the Venn diagram of an expression
compounded [rom several sets by means of union, intcrscction, com-
plementation, and inclusion. The principal applications of Venn
diagrams are to problems of simplifying a given complex expression
and simplifying given sets of conditions among several subsets of a
universe of discourse. Threc simple cxamples of this sort appcar below.
In many cases such diagrams are inadequate, but they may be helpful
In connection with the algebraic approach developed in the next
section.

EXAMPLES

4.1. Suppose 4 and B are given sets such that 4 — B = B — 4 — &. Can
the relation of 4 to B be expressed more simply? Since 4 — B = & means
AN B = &, the regions representing 4 and B do not overlap (Figure 4).
Clearly, B = B, so we conclude (Figure 5) that 4 C B, Conversely, if 4 C B,
it is clear that 4 — B = @&. We conclude that 4 — B = @ it 4 C B. Inter-
changing 4 and B gives 5 — A4 = it B C A. Thus the given relations hold
between 4 and B il 4 € B and B C A or, A = B.
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Figure 4 Figure 5 Figure 6

4.2. Let us investigate the question of whether it is possible to find three sub-
sets A, B, and C of U such that

CE T, ANB#= B, ANC=Z, (ANB) —C=&.

The second condition implies that 4 and Bintersect and, therefore, incidentally
that ncither is empty. From Example 4.1 the fourth condition amounts to
AN B C C, from which it follows that the first is superfluous. The associated
Venn diagram indicates that 4 and Cintersect; that is, the validity of the second
and fourth conditions contradicts the third. Hence, there do not exist sets satls-
fying all the conditions simultancously.

4.3. Given that F, G, and L arc subsets of U such that

FCGGNLCFLNF=d.

Is it possible to simplify this set of conditions? The Venn diagram (Figure 6)
represents only the first and third conditions. The second condition forces L
and G to be disjoint, that is, G N\ L = &. On the other hand, if /< G and
G N L= &, then all given conditions hold. Thus CGand GNL=O
constitute a simplification of the given conditions.

EXERCISES

(Note: Venn diagrams are not to be used in Exercises 4.1-4.8.)
4 1. Prove that for all sets A and B, @3 S AN BS AU B.
4.2. Let 7 be the universal set, and let

A = {x € Z| for some positive integer y, x = 2y},
B = {x € Z/| for some positive integer y, x = 2y — 1},
C = {x € Zlx <10;.

Describe 4, 4 J B, C, 4 — C, and C — (4 U B), cither in prosc or by a de-

fining property.
43 Consider the following subsets of Z*, the set of positive integers:

A = {x € Z*| for some integer y, x = 2y},
B = {x € Z*| for some integer y, x = 2y + 1},

C = {x € 7*| for some integer y, x = 3y].

(a) Describe A N C, BU C, and B — C.
(b) Verify that A N (BU () = (AN B)U ANC).
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4.4. If A is any set, what are each of the following sets? A N &, A U &,
A— O, A— A & — A
g}, {2, 1)) — {{g)).

4.6. Suppose A4 and B are subsets of U. Show that in each of (a), (b), and (c)
below, if any one of the relations stated holds, then each of the others holds.

(@) ACSB,ADB AUB=B ANEB = A.

(b ANB=g, AC B BC 4.

(c) AUB=UAC B, BC A.

4.7. Prove that for all sets 4, B, and C,

ANBUC=4N(BUC) if CC 4.
4.8. Prove that for all sets 4, B, and C,
(A—B)—C=(A—C)—(B—C).

4.9. (a) Draw the Venn diagram of the symmetric difference, 4 + B, of
sets 4 and B.
(b) Using a Venn diagram, show that symmetric difference is a com-
mutative and associative operation.
(c) Show that for every set 4, 4 + A = G and A + & = A.

4.10. The Venn diagram for subsets A, B, and C of U, in general, divides
the rectangle representing U into eight nonoverlapping regions. Label each
region with a combination of 4, B, and C which represents exactly that region.

4.11. With the aid of a Venn diagram investigate the validity of each of the
following inferences:

(a) If 4, B, and C are subsects of U such that 4 NBCS Cand 4 C C B,

then 4 N C = &.

(b) If 4, B, and C are subsets of U such that A CBUCand BC AUC,

then B = (.

5. The Algebra of Sets

If we were to undertake the treatment of problems more complex
than those examined above, we would fecl the need for more system-
atic procedures for carrying out calculations with sets related by in-
clusion, union, intersection, and complementation. That 15, what would
be called for could appropriately be named “the algebra of sets”—a
development of the basic properties of U, N, , and C together with
interrelations. As such, the algebra of sets is intended to be the set-
theorctic analogue of the familiar algebra of the real numbers, which
1s concerned with properties of +, », and < and their interrelations
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The basic ingredients of the algebra of sets are various identities—-
equations which are true whatever the universal set U and no matter
what particular subscts the letters (other than U and &) represent.
Our first result lists basic properties of union and interscction. For
the sake of uniformity, all of these have been formulated for subsets of
a universal set U. However, for some of the properties this is a purely
artificial restriction, as an examination of the proofs will show.

THEOREM 5.1. For any subsets A, B, C of a sct U the following
equations are identities. Here A is an abbreviation for U — 4.

1. AU (B UC) 1. AN (BN C)
— (AU B UC. = (4N B)NC.
2. AU B = BU 4. 2. AN B = BN A
3. AU (BN C) 3. 4N (BUCQO)
=AU B)NUAUCO). = AN B)UMUANCAO).
4. AU & = A 4. AN U= A
5. AUAd=U. 5 ANAd= .

Proof. Each assertion can be verified by showing that the set on
cither side of the equality sign is included in the set on the other side.
As an illustration we shall prove identity 3.

(a) Proof that A U (BN C) S (AU B)NAUC) Letx € AU
(BN C). Thenx € Aorx € BN C.Ifx € A;thenxy € AU B
and x € A U C, and hence x is a member of their intersection.
Ifx € BN C, then x € Band x € C. Hence x € 4 U B and
x € A U C, so again x is a member of their intersection.

(b) Proof that (4 U B) N (4 U C)cAU BNC). Let x €
(AU B NAUC). Thenx € AU Bandx € 4 U C. Hence
x € A,orx € Bandx € C. These imply that x € AU (B NCO).

Identities 1 and 1’ are referred to as the associative laws for union
and intersection, respectively, and identities 2 and 2’ as the commuta-
tive laws for these operations. Identities 3 and 3 arc the distributive
laws for union and intersection, respectively. The analogy of proper-
ties of union and intersection with properties of addition and multpli-
cation, respectively, for numbers, is striking at this point. For instance,
3’ corresponds preciscly to the distributive law in arithmete. That there
are also striking differences is illustrated by 3, which has no analogue
in arithmetic.
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According to the associative law, identity 1, the two sets that can
be formed with the operation of union from sets 4, B, and C, in that
order, arc equal. We agree to denote this set by A U B U €. Then the
associative law asserts that it 1s immaterial as to how parentheses are
introduced into this expression. Using induction, this result can be
oeneralized to the following. The sets obtainable from given sets A,
Ay, -+, A,, in that order, by use of the operation of union are all equal
to one another. The set defined by 4, Ay, -+, A, in this way will be
written as

AU 42 U -+ U 4.
In view of identity 1’ there is also a corresponding generahization for
interscction. With these gencral associative laws on the record we can
state the general commutative law: If 1,2’ .-+ 'n" are 1,2, -+, n in
any order, then
AUA U - Udp =40 U A U -+ U 4a.

We can also state the general distributive laws:

AU (Blm B, oo N Bn)

=AU B)NAUB)N - N (AU By,
AN (BrU By U -+ U By

=ANB)UMANB)U - - UN By.
These can also be proved by induction.

Detailed proofs of the foregoing properties of unions and intersec-
tions of sets need make no reference to the membership relation; that
is, these propertics follow solely from those histed in Theorem 5.1. The
same 1s true of those further properties which appear in the next theo-
rem. Such facts may be regarded as the origin of the “‘axiomatic ap-
proach” to the algebra of sets developed in Chapter 6. One derivative
of this approach is the conclusion that every theorem of the algebra of
sets is derivable from 1-5 and 1'-5".

These ten properties have another interesting consequence. In Theo-
rem 5.1 they are paired in such a way that each member of a pair is
obtainable from the other member by interchanging U and (M and,
simultancously, ¢ and U. An equation, or an expression, or a state-
ment within the framework of the algebra of sets obtained from an-
other by interchanging U and M along with @ and U throughout 1s
the dual of the original. We contend that the dual of any theorem
expressible in terms of U, N, and , and which can be proved using
only identities 1-5 and 1'-5) is also a theorem. Indeed, suppose that
the proof of such a theorem is written as a sequence of steps and that
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opposite each step is placed the justification for it. By assumption, cach
justification is one of 1-5, one of 1’-5', or a premise of the theoreimn.
Now replace the identity or relation in each step by its dual. Since
1-5 and 1’-5" contain with each its dual, and the dual of each premise
of the original theorem is now a premise, the dual of each justification
in the original proof is available to serve as a justification for a step
in the new sequence which, thercfore, constitutes a proof. The last line
of the new sequence is, therefore, a theorem, the dual of the original
theorem. Accepting the fact that every theorem of the algebra of sets
is deducible from 1-5 and 1’-5’, we then obtain the principle of duality
for the algebra of sets: If 7" is any theorem expressed in terms of U, M),
and , then the dual of 7 is also a theorem. This implics, for instance,
that if the unprimed formulas in the next theorem are deduced solely
from Theorem 5.1, then the primed formulas follow by duality. The
reader should convince himself that all the assertions in Theorem 5.2
arc true by using the definitions of U, M, and  in terms of the member-
ship relation. Further, he might try to deduce some of them solely from
Theorem 5.1—that is, without appealing in any way to the membership
relation. Some demonstrations of this nature appear in the proof ol
Theorem 6.2.1.7

THEOREM 5.2. For all subsets 4 and B of a set U, the following
statements are valid. Here A is an abbreviation for U — A.

6. If, forall A, AU B=4, 6. If,foralld, 4 N B = 4, then

then B = (. B =U.

7.7. fAUB=Uand AN B =, then B = 4.
8,8. A= A.

9. & = U. 9 W =7

10. AU 4 = A. 10). AN A=A

11. AU U= U. M. ANG =&
12. AU (AN B) = A. 12. AN AU B) =4
13. AU B =4nN B 13. AN B=A4U B.

Some of the identities in Theorem 5.2 have well-established names.
For example, 10 and 10" are the idempotent laws, 12 and 12" are the

t To refer to a theorem, example, exercise, or section in the chapter in which it appears,
we use only the number by which it is identified in the text. When a reference 1s made to
one of these items in another chapter we prefix its identifying number with a numeral that
identifies the chapter. For instance, in Chapter 1 we shall refer to the third example in Sec-
tion 2 as Example 2.3 and in another chapter we shall refer to the same example as lux-

ample 1.2.3.
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absorption laws, and 13 and 13’ the DeMorgan laws. The identities
7, 7" and 8, 8 are ecach numbered twice to emphasize that each is un-
changed by the operation which converts it into its dual; such formulas
are called self-dual. Note that 7, 7" asserts that cach set has a unique

complement.
A remark about the form of the next theorem is in order. An asser-
tion of the form, “The statements Ry, R,, - - -, R, are equivalent to one

b

another,” means “For all 7 and j, R; iff R;” which, in turn, is the case
ift Ry implies Ry implies Rg, - -+, Ry implies R, and R; implies R,. The
content of the theorem is that the inclusion relation for sets is definable
in terms of union as well as in terms of intersection.

THEOREM 5.3. The following statements about sets 4 and B are
equivalent to one another.
(I) A C B.
(I1) A N B = A.
(I11) 4 U B = B.

Proof. (1) implies (II). Assume that 4 € B. Since, for all A and B,
AN B C A, it is sufficient to prove that 4 € A N B. Butif v € A,
then x € B and, hence, x € 4 N B. Hence 4 € A4 N B.

(II) implies (I1I). Assume 4 N B = A. Then

AUB=ANB)UB=AUB N(BUDB)
=(dUB NB=BA8

(ITT) implies (I). Assume that A \J B = B. Then this and the iden-
tity 4 € AU Bimply 4 C B.

The prineiple of duality as formulated earlier does not apply direetly
to expressions in which — or C appears. One can cope with subtrac-
tion by using the unabbreviated form, namely, A N B, for 4 — B,
Similarly, by virtue of Theorem 5.3, A4 C B may be replaced by
AN B=4(rdU B = B). Still better, since the dual of A N B = A
is 4 U B = 4, which is equivalent to 4 D B, the principle of duality
may be extended to inelude the case where the inelusion symbol is
present, by adding the provision that all inclusion signs be reversed

EXAMPLES

5.1. With the aid of the identities now available a great variety of complex
expressions involving sets can be simplified, much as in clementary algebra. We
give three illustrations.
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Q) ANBUB=4AUBUB=A4U B.
by UNBNCOUANBNC)UBUC
=AU NBNCIUBUC
(UNBNCIUBNC
=(BNCOUBNC
= U.

) ANBNCNXHYUANC)UBNC)UCNAX)
=ANBNCNX)U (AU BUA)NC]
=[ANBNX)UANBNI]NC
=UNC
= C.

5.2. There is a theory of equations for the algebra of sets, and it differs con-
siderably from that encountered in high school algebra. As an illustration we

<

shall discuss a method for solving a single equation in one “unknown.” Such

an equation may be described as one formed using (M, U, and on symbols
Ay, Aoy -+
U and X denotes a subset of U which is constrained only by the equation in

-, A, and X, where the A’s denote fixed subsets of some universal set

which it appears. Using the algebra of sets, the problem is to determine under
what conditions such an equation has a solution and then, assuming these are
satisfied, to obtain all solutions. A recipe for this follows; the proof required in
cach step is left as an exercise (see Exercise 5.7).

Step 1. Two scts are equal iff their symmetric difference is equal to .
Hence, an equation in X" is equivalent to one whose righthand side 1s .

Step 1. An cquation in .\ with righthand side & is equivalent to one of
the form

ANXHUBNAI) =T,
where A and B are free of .
Step 111, The union of two sets is equal to & iff each set is equal to .

Hence, the equation in Step II is equivalent to the pair of simultaneous equa-
tions

ANX=g BNX=(.

Step IV.  The above pair of equations, and hence the original equation,
has a solution iff 8 C A. In this event, any A, such that BT XY C 4, is a
solution.

We illustrate the foregoing by deriving necessary and suflicient conditions
that the following equation have a solution:

(Yuo)Nnos
(Yue)NnbljubNINC
xXNbuEenNnbuwnNninNc
ONnxuiecNdHNnE@u»HumwNeNX

: (Step 1)
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(The introduction of X' \U X in the preceding equation is discussed in Ex-
crcise 5.7.)

@mxnﬂmﬂﬁmmuaxuww>u(oé
{DUCND]INXUICND) U DN C)]

A
—

,  (Step II)
(Step IIT)

DONY)U )ﬂ =
EﬂX—t,@’and( )mx:

Thus, the original equation has a solution iff
C+DCD. (Step IV)

It is left as an exercise to show that this condition simplifies to C & D.

EXERCISES

5.1. Prove that parts 3’, 4’, and 5" of Theorem 5.1 are identities.

5.2. Prove the unprimed parts of Theorem 5.2 using the membership rela-
tion. Try to prove the same results using only Theorem 5.1. In at least one such
proof write out the dual of each step to demonstrate that a proof of the dual
results.

5.3. Using only the identities in Theorems 5.1 and 5.2, show that each of the
following equations is an identity.

(@ ANBNX)UMUNBNACNINYHUUANXNA
=AN BN X.
) ANBNCOU@ANBNCUBUC=U.
© ANBNCNAX)UEANCOUBNCOU(KCNRX) =
d) [ANBUUNCOUANTNT)]
NANBNCOUEANINTYHUENBNT)]
=ANBUMENBNINY).
5.4. Rework Exercise 4.9(b), using solely the algebra of sets developed in
this section.
5.5. Let 4y, As, - - -, A, be sets, and define S to be 4, U 4 U - - - \U 4, for
k=1,2, .- n Show that

CE — {.’11, 11-’ _

Sl, A3 - S:z, Tty An - Sn—l}
Is a disjoint collection of sets and that

Sp = A4, U (A‘.’ - Sl) U U (An - Sn—l)-
When is @ a partition of .S,,?
5.6. Prove that for arbitrary sets 4y, As, -+, A, (n > 2),
AU AU - Udy= (= A) U (Ao — A) U - U (A — A
U (4'111 — Al) U (*’11 ﬂ "12 ﬂ c m An)~
5.7. Referring to Example 5.2, prove the following.
(a) Forallsets Aand B, 41 = Bif 4 + B = .
(b) An equation in X" with righthand member & can be reduced to one of



1.6 l Relations 23

the form (A N X) U (BN X) = &. (Suggestion: Sketch a proof along
these lines. First, apply the DeMorgan laws until only complements of
individual sets appear. Then expand the resulting lefthand side by the
distributive law 3 so as to transform it into the unmion ot several terms /
each of which is an intersection of several individual sets. Next, if in any
T"; neither A nor X appears, replace 7, by 7. N (A" U Y) and expand.
Finally, group together the terms containing X" and those containing X
and apply the distributive law 3'.)
(c) For allsets A and B, A= B = ZFilTAU B =.
(d) The equation (A N X) U (BN X) = & has a solution iff B & A, and
then any X such that 3 € X C A is a solution.
(e) An alternative form for solutions of the equation in part (d) is X' =
(B\U 7T) M A, where T is an arbitrary set.
5.8. Show that for arbitrary sets A, B, C; D, and .\,
@ [(MNDHUBNX)]=HAN)UBNI),
b) [(UNX)UBNTDIUNCNY)UMDNI)]
= [(4UC)NXTU [(BU D) N ],
©) [(ANX)UBNTINHCNN) UMD NT)]
— (1N C) N XU (BN D) N T

5.9. Using the results in Exercises 5.7 and 5.8, prove that the equation
ANXHUBNT)=CNYHUDNI)

has a solution iff B + D € A4 + C. In this event determine all solutions.

6. Relations

In mathematics the word “relation’ is used in the scnse of relation-
ship. The following partial sentences (or predicates) arc cxamples of
relations:

is less than, is included 1n,
divides, i1s a member of|
Is congruent to, is the mother of.

In this section the concept of a relation will be developed within the
framework of set theory. The motivation for the forthcoming definition
is this: A (binary) relation is used in connection with pairs of objects
considered in a definite order. Further, a relation 1s concerned with
the existence or nonexistence of some type of bond between certain
ordered pairs. We infer that a relation provides a criterion for dis-
tinguishing some ordered pairs from others in the following sense. If a
list of all ordered pairs for which the relation s pertinent is available,
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(44 »

then with cach may be associated “yes” or “no’” to indicate that a
pair 1s or 1s not in the given relation. Clearly, the same end is achieved
by listing exactly all those pairs which are in the given relation. Such
a list characterizes the relation. Thus the stage is set for defining a
rclation as a set of ordered pairs, and this is done as soon as the notion
of an ordered pair is made preeise.

Intuitively, an ordered pair is simply an entity consisting of two
objects in a spceified order. As the notion is used in mathematics, one
relies on ordered pairs to have two properties: (i) given any two objects,
x and y, there exists an objeet, which might be denoted by (v, y) and
called the ordered pair of x and y, that is uniquely determined by x
and y; (ii) if (x, y) and (u, v) are two ordered pairs, then (x, y) = (4, v) iff
x = w and y = v. Now it is possible to define an object, indeed, a set,
which has these properties: the ordered pair of x and y, symbolized by

(x, ),

tixd, tx o},

that is, the two-element set one of whose members, {x, y}, is the un-
ordered pair involved, and the other, {x}, determines which member
of this unordered pair is to be considered as being “first.” We shall now
prove that, as defined, ordered pairs have the properties mentioned
above.

THEOREM 6.1. The ordered pair of x and y is uniquely deter-
mined by x and y. Moreover, if (x, y) = (4, ¢), then x = v and y = o.

1s the set

Proof. That x and y uniquely determine (x, y) follows from our
assumption that a set is uniquely determined by its members. Turn-
ing to the more profound part of the proof, let us assume that (x, y) =
(u, v). We consider two cascs.
(I) u = v. Then (u,v) = {{u}, {u,z}} =
=} {u} i, which implies that {x}
that v = vandy = v
(I1) w7 v. Then {uf # {u, v} and {x} = {u, ¢}. Sinee {x] € {{ul,
{u, v}}, it follows that 1.\} = (u} and, hence, x = w. Since
tu, 0f € Had, tx v} and {u, o) # {x}, we have {u, 0] =
tv, yd. Thus, {x] # {x, y}, so, in turn, x £ y and y # u.
Henee y = v

}. Henee {{x}, {x,9})
l

b
x, v} = {u} and, in turn,

We call x the first coordinate and y the second coordinate of the
ordered pair (v, y). Ordered triples and, in general, ordered n-tuples
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may be defined in terms of ordered pairs. The ordered triple of x, y,
and z, symbolized by (x, y, z), is defined to be the ordered pair ((x, y), 2).
Assuming that ordered (n — 1)-tuples have been defined, we take the
ordered n-tuple of xy, xs, - - -, x,, symbolized by (xj, x2, =+, x,), to be
((x1, X9, ** +) Xn—1), Xn).

We return to our principal topic by defining a binary relation as a
set of ordered pairs, that is, a sct cach of whose members is an ordered
pair. If p is a relation, we write (x, y) € p and xpy interchangeably, and
we say that x is p-related to y iff xpy. There are established symbols for
various relations such as equality, membership, inclusion, congruence.
Such familiar notation as x = y, x <y, and x = y is the origin of xpy
as a substitute for “(x, y) € p.”

A natural generalization of a binary relation is that of an n-ary rela-
tion as a sct of ordered n-tuples. The case n = 2 is, of course, the one for
which we have agreed on the name “binary relation.” Similarly, in
place of 3-ary relation we shall say ternary relation.

EXAMPLES

{2, 4), (7, 3), (3, 3), (2, 1)} as a set of ordered pairs is a binary relation.
The fact that it appears to have no particular significance suggests that it 1s not
worthwhile assigning a name to.

6.2. The relation “less than® for integers is {(x, y)| for integers x and y, there
is a positive integer z for which x 4 z = y;. Symbolizing this relation in the
traditional way, the statements “2 < 5 and (2, 5) € < are synonymous
(and true).

6.3. If u symbolizes the relation of motherhood, then (Jane, John) € u
means that Jane is the mother of John.

6.4. Human parenthood is an example of a ternary relation. If 1t Is sym-
bolized by p, then (Elizabeth, Philip, Charles) € p indicates that Elizabeth and
Philip are the parents of Charles. Addition in Z is another ternary relation;
writing “5 = 2 + 3” may be considered as an alternative to asserting that
(2,3,5) € +.

6.5. The cube root relation for real numbers is {(x'%x)| + € R}. One mem-
ber of this relation is (2, 8).

6.6. In trigonometry the sine function is defined by way of a rule for associ-
ating with each real number a real number between —1 and 1. In practical
applications one relies on a table in a handbook for values of this function for
various areuments. Such a table is simply a compact way of displaying a set of
ordered pairs. Thus, for practical purposes, the sine function is defined by the
set of ordered pairs exhibited in a table (together with a rule concerning the
extension of the table). We note that as such a table is designed to be read it
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presents pairs of the form (x, sin x); thereby the coordinates are interchanged
from the order in which we have been writing them for relations in general.
That is, for an arbitrary relation p we have interpreted (a, b) € p as meaning
that a is p-related to b, whereas the presence of (w/2, 1) in a table for the sine
function is intended to convey the information that the second coordinate is
sine-related (is the sine of) the first coordinate.

Later we shall find extensive applications for ternary relations, but
our prescnt interest is in binary relations, which we shall abbreviate to
simply “‘rclations’ if no confusion can result. If p is a rclation, then the
domain of p, symbolized by D, is

{x| for some y, (x, y) € p},
and the range of p, symbolized by R, is
{ 9| for some x, (x, y) € p}.

That 1s, the domain of p is the sct whose members are the first coordi-
nates of members of p, and the range of p is the sct whose members arc
the second coordinates of members of p. For example, the domain and
range of the inclusion relation for subsets of a set U are each equal to
®(U). Again, the domain of the relation of motherhood is the set of all
mothers, and thc range is the set of all people.

One of the simplest types of relations is the set of all pairs (x, y), such
that v is a member of some fixed set X and y is a member of some fixed
set }. This relation is the cartesian product, X' X }, of X and 1. Thus,

AXXY={xyx€ Xandy € T},
It 1s evident that a relation p 1s a subsct of any cartesian product X X Y,
such that A" © D, and V" 2 R,. If p is a relation and p € X X 1}, then
p is referred to as a relation from X to Y. If p is a relation from X to
YVand 7 O X U Y, then p is a relation from 7 to Z. A relation from
Z to Z will be called a relation in /. Such terminologics as “‘a rela-
tion from X to 1”7 and “a relation in 27" stem from the possible applica-
tion of a relation to distinguish certain ordered pairs of objects from
others. If V' is a set, then .\ X X 1s a relation in .Y which we shall call
the universal relation in .\; this is a suggestive name, since, for cach
pair x, y of elements in .Y, we have v(\ X .X)y. At the other extreme is
the void relation in .\, consisting of the empty set. Intermediate is the
identity relation in .\, symbolized by ¢ or vy, which is {{x, ¥)[x € X}.
For x, y in X clearly, xixy ifl x = y.
I p1s a relation and A is a set, then p[A] is defined by

pl4] = {y| for some x in A, xpy!.
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This sct is suggestively called the set of p-relatives of clements of A.
Clearly, p|D,] = R,, and, il A is any set, p[d] & R,.

EXAMPLES
6.7. If ¥ # &, then Dyyy = X, and if X # &, then Ry,.y = Y.

6.8. The basis for plane analytic geometry is the assumption that the points
of the Euclidean plane can be paired with the members of R X R, the set of
ordered pairs of real numbers. Thereby the study of plane geometric configura-
tions may be replaced by that of subsets of R X R, that is, relations in R. For
gcometric configurations which are likely to be of interest, one can anticipate
that the defining property of the associated relation in R will be an algebraic
cquation in x and y, or an inequality involving x and y, or some combination
of equations and inequalities. In this event it is standard practice to take the
defining property of the relation associated with a configuration as a deseription
of the configuration and omit any explicit mention of the relation. IFor example,
“the line with equation y = 2x + 17 is shorthand for *“‘the set of points which
are associated with {(x,y) € R X R|y = 2x 4+ 1}.” Again, ‘“‘thc region
defined by y < x7 is intended to refer to the sct of points associated with
{x, y) € R X R|y < x}. As a further example,

x<0Oandy > 0Oandy < 2x + 1

serves as a definition of a triangle-shaped region in the plane, as the reader can
verify.

If relations in R, instead of sets of points in the plane, are the primary objects
of study, then the set of points corresponding to the members of a relation is
called the graph of the relation (or of the defining property of the relation).
Below appear four relations, and above cach is sketched its graph. When the
graph includes a region of the planc, this is indicated by shading.

Y y

{{x, ) CR X Ry = x} {(x,9) €R X R|y 2 ¥}
Figure 7 Figure 8
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-~ X

{(x,y}CRX_{I <x<2o0r %, € R X R|0 < x < 2and
0<y <1 0<y <1}
Figure 9 Figure 10

If p is the relation in R with 0 < x < 2 as defining property and ¢ is the
relationin R with0 <y < 1 as defining property, then the relation accompany-
ing Figure 9 is cqual to p U o, and the relation accompanying Figure 10 is

p () o. Thus, Figures 9 and 10 illustrate the remarks that the graph of the union
of two relations, p and o, is the union of the graph of p and the graph of ¢, and
the graph of p (M ¢ is the intersection of the graphs of p and o.

6.9. Let p be the relation ““is the father of.”” If A is the set of all men now living
in the United States, then p[A4] is the set of all people whose fathers now live in
the United States. If 4 = {Adam, Eve}, then p[4] = {Cain, Abel}.

EXERCISES

6.1. Show that if (x, y, 2) = («, o, w} then x = u, y = v, and z = w.

6.2. Write the members of {1, 2 2} X {2,3,4}. What are the domain and
range of this relation? What is its graph?

6.3. State the domain and the range of each of the following relations, and
then draw its graph.

w{mﬁegx3l+®

(b) 1, ) €ER X R |+ =

(©) «r ) €RXR|¢ + ”lyl =

(d) «x ) € R X R|x2+y2 <1andx>0)

() v, » €CRXR[y>0andy < xand x +y < 1},

6.4. Write the relation in Exercise 6. 3(c) as the union of four relations and
that in Exercise 6.3(¢) as the intersection of three relations.

6.5. The formation of the cartesian product of two sets is a binary operation
for sets. Show by examples that this opcration is neither commutative nor
associative.

6.6. Lect B be the relation ““is a brother of,” and let ¢ be the relation ““is a
sister of.” Describe 8 U o, 8 N o, and 8 — 0.

~ |
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6.7. Let B and ¢ have the same meaning as in Exercise 6.6. Let A be the set
of students now in the reader’s school. What is 8[A]? What is (8 U ¢)[A4]?

6.8. Prove that if 4, B, C, and D are sets, then (AN B) X (CN D) =
(A X C)N (B X D). Deduce that the cartesian multiplication of scts dis-
tributes over the operation of intersection, that is, that (1M B) X C =
(AXC)NBXC)and A X (BNC)=(AXB)N A XC) for all 4, B,
and C.

6.9. Exhibit four sets A4, B, C, and D for which (4 U B) X (CU D) #
(AXC)U (B XD).

6.10. In spite of the result in the preceding exercise, cartesian multiplication
distributes over the operation of union. Prove this,

6.11. Investigate whether union and intersection distribute over cartesian
multiplication.

6.12. Prove that if A, B, and C are sets such that 4 # J, B # J, and
(AXB)U(BXA) =CXC, thenAd=8B=2C.

7. Equivalence Relations

A relation p in a set X is reflexive (in .Y) iff xpx for cach v in X If no
set X is specified, we assume that X' = D, U R,. A relation p is symmetric
if xpy implies ypx, and it is transitive iff xppy and ypz imply xpz. Relations
having these three properties occur so frequently in mathematics they
have acquired a name. A relation p in X is an equivalence relation
(in X) iff p is reflexive (in X)), symmetric, and transitive. If a relation p
in X is an equivalence relation in .X| then D, = X. Because of this we
shall henceforth use the terminology ‘“‘an equivalence relation on A7 in
place of “an equivalence relation in X.”

EXAMPLES

Each of the following relations is an equivalence rclation on the accompany-
ing set.

7.1. Equality in a collection of sets.

7.2. The geometric notion of similarity in the set of all triangles of the
Euclidean plane.

7.3. The relation of congruence modulo n in Z. This relation is defined for
a nonzero integer n as follows: x is congruent to y, symbolized x = y(mod n),
ifl n divides x — y.

7.4. The relation o in the set of all ordered pairs of positive integers where
(x, y) & (u, v) ff x0 = yu.

7.5. The relation of parallelism in the set of lines in the Euchdean plane.

7.6. The relation of having the same number of members in a collection of
finite sets.
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7.7. The relation of “living in the same house” in the set of people of the
United States.

The last example above illustrates, in familiar terms, the central
feature of any equivalence relation: It divides the population into
disjoint subsets, in this casc the sets of people who live in the same
house. Lct us establish our eontention in general. If p is an equivalenee
relation on the set X, then a subset 4 of X is an equivalence class
(p-cquivalenee elass) iff there is a member x of A such that A is equal
to the set of all y for whieh xpy. Thus, 4 is an equivalence class iff there
exists an x in A" such that 4 = p[{x]]. If there is no ambiguity about
the relation at hand, the set of all p-relatives of x in X will be abbrevi-
ated [x] and called the equivalenee elass generated by x. Two basie
propertics of equivalenee classes are the following.

(I) x € [x].

(II) if xpy, then [x] = [y].

The first is a eonsequence of the reflexivity of an equivalenee rela-
tion. To prove the second, assume that xpy. Then [y] € [v]sincez € [y]
(which means that ypz) together with xpy and the transitivity of p yiceld
xpz or z € [x]. The symmetry of p may be used to econclude the reverse
inclusion, and the equality of [x] and [y] follows.

Now property (I) implies that each member of X is a member of an
cquivalenee elass, and (II) implies that two equivalence elasses are
cither disjoint or equal since if z € [v] and z € [y], then [x] = [2],
[#] = [z], and hence [x] = [y]. Recalling the definition of a partition
of a nonempty sct, we eonclude that the collection of distinet p-equiv-
alence classes is a partition of .X. This proves the first assertion in the
following theorem.

THEOREM 7.1. Let p be an equivalence relation on .. Then the
collection of distinet p-cquivalence elasses is a partition of \\. Con-
versely, if @ is a partition of X, and a relation p is defined by apb iff
there exists 4 in @ such that @, b € A, then p is an cquivalence rela-
tion on X. Morcover, if an equivalenee relation p determines the
partition @ of .Y, then the equivalence relation defined by @ is equal
to p. Conversely, if a partition @ of X determines the cquivalenee
relation p, then the partition of . defined by p is equal to .

Proof.  To prove the second statement, let @ be a partition of Y.
The relation p which is proposed is symmetrie from its definition.
If @ € X, there exists A in @ with ¢ € A, so that p is reflexive. To



k7 Equivalence Relations 31

show the transitivity of p, assume that apb and bpc. Then there exists
Ain ® with a, b € A, and there exists B in @ with b, ¢ € B. Since
b€ Aand b € B, A = B. Hence apc.

To prove the next assertion, assume that an equivalence relation
p on X is given, that it determines the paruuon ¢ of X and. finally,
that @ determines the equivalence retation p*. We show that p = p*.
Assume that (x. y) € p. Then x,y € [x]and [x] € ¢. By virtue of the
definition of p* it follows that xp*y or (x, y) € p*. Converscly, given
(x, y) € p*, there exists A in @ with v,y € 4. But A is a p-equivalence
class, and hence xpy or (x, y) € p. Thus, p = p*.

The last part of the theorem is left as an exercise.

To illustrate part of the above theorem let us examine the cquiva-
lence relation of congruence moduto n on Z which was defined in Fix-
ample 7.3. An equivalence class consists of all numbers a + kn with £
in 7. Clearly, therefore, [0], [1], -+, [ — 1] are distinct classes. There
are no others, since any integer @ can be written in the forma = gn + 1,
0 <r < n and hence a € [r]. A class of congruent numbers 1s often
called a residue class moduto n. The coltection of residue classes modulo
2 will be denoted by Z,. We can use this example to emphasize the fact
that, for any equivalence relation p, an equivalence class is defined by
any onc of its members, since if xpy, then [x] = [»]. Thus, [0] = [z] =
[21], and so on, and [1] = [n + 1] = [1 — ], and so on.

If p is an equivatence relation on X, we shall denote the partition of
X induced by p by X/p (read “X modulo p”) and call it the quotient
set of X by p. The significance of the partition of a sct X accompanying
an arbitrary equivalence relation p on A"is best realized by comparing
p with the extreme cquivalence refation on X of identity. We classify
identity on X as an extreme equivalence relation because the only cle-
ment equal to a given element is itsell. That s, the parution of X" deter-
mined by identity 1s the finest possible—the equivalence class gencrated
by x consists of x alone. In contrast, for two clements to be p-cquivalent
they must merely have a single likeness in common, namely, that char-
acterized by p. A p-cquivalence class consists of all elements of .Y which
are indiscernible with respect to p. That is, an arbitrary cquivalence
relation on X defines a generalized form of equality on X, On turning
(rom the clements of X to the p-equivalence classes we have the effect
of identifying any two elements which are p-cquivalent. Il p happens
{0 Preserve varlous structural features of X (assuming it has such), these
may appear in simplified form in X/p because of the identification of
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clements which accompanies the transition to X7/p. Examples of this
arise quite naturally later.

Among the applications of equivalence relations in mathematics is
that of formalizing mathematical notions or, as one often says, formu-
lating definitions by abstraction. The essence of this technique is defining
a notion as the set of all objects which one intends to have qualify for
the notion. This seems incestuous on the surface, but in practice 1t serves
very nicely. For example, let us consider the problem of defining the
positive rational numbers in terms of the positive integers. Instead of
defining ratios of integers dircetly we introduce the notion of pairs of
integers having equal ratios by the definition (x, y) o (, o) iff xv = yu.
This is an equivalence relation on Z+ X 727", and we can now define a
rational number as an equivalence class. That is, the notion of cquliv-
alence of pairs of integers amounts to imposing a criteria for indiscern-
1ibility on Z* X Z7*. Since this is an cquivalence relation, a partition of
the universe of discourse is at hand, and in an cquivalence class we have
the abstraction of the property common to all of its members. Thus we
define a rational number to be such an equivalence class. The familiar
symbol x/y emerges as an abbreviation for the cquivalence class [(x, y)].
That an equivalence class is defined by each of its members implies that
any other symbol /v, where (u, v) € [{x, y)], may be taken as a name
for the same rational number. For example, the statement 2/3 = 4/6 is
true because 2/3 and 4/6 are merely different names for the same ra-
tional number.

Another instance of definition by abstraction is that of direction based
on the equivalence relation of parallelism: a direction is an cquivalence
class of parallel rays. The notion of shape may be conceived in a like
fashion: gcometric similarity is an equivalence relation on the set of
figures in the Euclidean plane, and a shape may be defined as an equiv-
alence class under similarity.

So [ar, the fundamental result concerning an equivalence relation p—
that the collection of all distinet p-cquivalence classes is disjoint and xpy
I v and y are members of the same cquivalence class—has been em-
ployed solely in connection with applications of cquivalence relations.
It can also be made the basis of a characterization of cquivalence rela-
tions among relations in general. This is done next.

THEOREM 7.2, A relation p is an equivalence relation iff there
exists a disjoint collection @ of noncmpty sets such that

p = {(x, ] for some Cin @, (v, € C X C}.
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Proof. Assume that p is an equivalence relation on X, Then the
collection of distinct p-equivalence classes is disjoint, and we contend
that with this choice for ®, p has the structure described in the theo-
rem. We show first that {{x, y)| for some C'in @, (x, y) € € X Cj < p.
Assume that (x, y) is a member of the set on the left side of the inclu-
sion sign. Then there exists an equivalence class [z] with v, y € [].
Then zpx and zpy, and hence xpy, which means that {x,y) € p. To
show the reverse inclusion, assume that (x, y) € p. Then x, y € [x],
and hence (x, y) € [x] X [x].

The proof of the converse is straightforward and is left as an
CXCreise.

EXERCISES

7.1. 1If pis a relation in R, then its graph is a set of points in the first quad-
rant of a coordinate plane. What is the characteristic feature of such a graph if:
(a) p is reflexive, (b) p is symmetric, (c) p is transitive?

7.2. Using the results of Exercise 7.1, try to formulate a compact character-
ization of the graph of an equivalence relation on R,

7.3. The collection of sets {{1, 3, 4}, {2, 7, {5 6j} is a partition of
{1,2,3,4,5, 6, 7;. Draw the graph of the accompanying equivalence relation.

7.4. Let p and ¢ be equivalence relations. Prove that p () @ is an equivalence
relation.

7.5. Let p be an equivalence relation on A" and let ¥ be a set. Show that
o N (Y X Y) is an equivalence relation on .\ X Y.

7.6. Give an example of these relations.

(a) A relation which is reflexive and symmetric but not transitive.

(b) A relation which is reflexive and transitive but not symmetric.

(c) A relation which is symmetric and transitive but not reflexive in some set.

7.7. Complete the proof of Theorem 7.1.

7.8. Each equivalence relation on a set . defines a partition of .\" according
to Theorem 7.1. What equivalence yields the finest partition? the coarsest
partition?

7.9. Complete the proof of Theorem 7.2.

7.10. Let p be a relation which is reflexive and transitive in the set A. For
a, b € A, define a o b iff apb and bpa.

(a) Show that e is an equivalence relation on A.

(b) For [a], [0] € A/, define [a]p’[b] iff apb. Show that this definition is
independent of @ and b in the sense that if o' € [a], ' € [b], and apb,
then a’pb’.

(c) Show that p’ is reflexive and transitive. Further, show that if [a]p'[/]
and [b]p[a], then [a] = [b].

711. In the set Z+ X 27 define (a, b) © (¢, d) iff a + d = b + ¢. Show that
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© is an equivalence relation on this set. Indicate the graph of Z* X Z*, and
describe the o -equivalence classes.

8. Functions

It is possible to define the concept of function in terms of notions
already introduced. Such a definition is based on the common part of
the discussions about functions to be found in many elementary texts,
namely, the definition of the graph of a function as a sct of ordered
pairs. Once it is recognized that there is no information about a function
which cannot be derived from its graph, there is no need to distinguish
between a function and its graph. As such, it is reasonable to base a
definition on just that feature of a set of ordered pairs which would
qualify it to be a graph of a function. This we do by agreeing that a
function is a relation such that no two distinct members have the same
first coordinate. Thus, f is a function iff it meets the following require-
ments.

(I) The members of f are ordered pairs.
(II) If (v, y) and (x, z) are members of /, then y = 2.

EXAMPLES

8.1. {(1,2), (2, 2), (Roosevelt, Churchill)} is a function with domain
{1, 2, Roosevelt} and range {2, Churchilll.

8.2. The relation {(1, 2), (1, 3), (2, 2)} is not a function, since the distinct
members (1, 2) and (1, 3) have the same first coordinate.

8.3. The relation {(x, x? 4 x + 1)|x € R} is a function, because if x —= u,

then x> +x +1 = 2 + u + 1.
8.4. The relation {(x*, x)|x € R} is not a function, because both (1, 1) and

(1, —1) are members.

Synonyms for the word “function” are numerous and include trans-
formation, map or mapping, correspondence, and operator. If f is a
function and (x, y) € f, so that xfy, then v is an argument of /. There
Is a great variety of terminology for y; for cxample, the value of f at x,
the image of x under f, the element into which / carries x. There are
also various symbols for y: af, f(x) (or, more simply, fx), »/. The nota-
tion “f(x)” is a name for the sole member of /[{x}], the set of f-relatives
of x. In these terms the characteristic feature of a function among rela-
tions in general is that cach member of the domain of a function has a
single relative.

The student must accustom himself to these various notations, since
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he will find that all are used. In this book definitions and theorems
pertaining to functions will consistently be phrased using the notation
f(x), or fx, for the (unique) correspondent of x 1n a functon f. The
notation f[A4] for {y| for some x in 4, (x, y) € {1} is in harmony with this.
However, in applications of functions we shall use a varicety of nota-
tions. When it is more convenient to use xf in place of f(x), then [A]f
will be used in place of f[4]. If #/ is used in place of f(x), then [A} or
A7 will be used in place of f[A].

Since functions are sets, the definition of equality of functions is at
hand: Two functions f and g arc equal iff they have the same members.
It is clear that this may be rephrased [ = g iff Dy = D, and f(x) = g(x)
for cach x in the common domain. Consequently, a function may be
defined by specifying its domain and the value of the function at each
member of its domain. The second part of this type of definition is,
then, in the nature of a rule. For example, an alternative definition of
the function {(x, x* + x + 1)lx € R} is the function f with R as domain
and such that f(x) = x* +x + 1. When a function is defined by
specifying its domain and its value at cach member of the domain,
the range of the function may not be cvident. The above example
requires a computation to conclude that Ry = (x&€ Rlx > 4}. On
the other hand, it is almost obvious that Ry & R*. In general, one can
anticipate difficulty in determining the range, but no difficulty in
determining some set that includes the range. Thus, it is convenient
‘o have available the following terminology. A function [ is into I’ ift
the range of [ is a subset of Y, and fis onto Y iff R; = Y. For corre-
sponding notation for the domain of a function we shall say that [ is
on X when the domain of fis X. The symbols

i X—>Y and XV

are commonly used to signify that fis a function on the sct X into the
set Y.
The set of all functions on X into Y, symbolized
yx,

is a subsct of ®(X X Y). If X is empty, then }¥ consists of only one
member—the empty subset of X X 1. This 1s the only subset of & X VY,
since when X is empty so is X X }. If ¥ is empty and X 1s nonempty,
then Y¥ is empty. In summary,

Ye = {g]
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and
g¥ =g I X#dJ.

If f: X—> Y and if A C X, then fN\ (4 X Y) is a function on 4 into
Y (called the restriction of f to A and abbreviated f|4). Explicitly,
/14 1s the function on A such that (f|A4)(a) = f(a) for a in A. A function
g 1s the restriction of a function f to some subsct of the domain of f iff
the domain of g is a subsct of the domain of f and g(x) = f(x) for
v € Dy; in other words, ¢ € f. Complementary to the definition of a
restriction, the function f is an extension of a function g iff ¢ C /. In
order to present an example of the notion of a restriction of a function
we recall the carlier definition of the identity relation ty in X. Clearly,
this relation is a function, and hence, in keeping with our current
designation of function by lower-case English letters, we shall designate
1t by 7 or 7x. We shall call 7y the identity map on X. If 4 C X, then
ix|A = i,. If ix|A is considered as a function on A into X, then it is
the injection mapping on 4 into .X.

A function is called one-to-one if it maps distinct elements onto dis-
tinct elements. That is, a function [ is one-to-one iff

xp 7 xp implies  f(xg) 5 f(x).
In demonstrating one-to-oneness it may prove to be more convenient
to use the contrapositive of the foregoing:

f(x) = f(x2) implies x = xo.
For example, the function f on R such that f(x) = 2x + 1 is one-to-one
since 2xvy + 1 = 2x; + 1 implies x; = xo.

If / is a one-to-one function on X onto ) or, somewhat less awk-
wardly, if /: X' =} is one-to-one and onto, then it effects a pairing of
the elements of X with those of }” upon matching f(x) in } with v in
A. Indced, since fis a function, f(x) is a uniquely determined element
of I'; since fis onto Y, each y in 1" is matched with some A3 and since
[ s onc-to-one, cach y is matched with only one x. Because of the
symmetrical situation that a one-to-one map on .\ onto }° portrays, it
is often called a one-to-one correspondence between .\ and V. Also,
two sets so related by some function are said to be in one-to-one
correspondence.

EXAMPLES
8.5, The familiar exponential function is a function on R into R, symbolized

S iR >R with f(x) = ¢~
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We can also say, more precisely, that f is a function on R onto R*. In general,
if /: X' = Y, then f is a function on X onto f[.X], that is, onto the range of /.

8.6. {a, b, c} 12! is the set of all functions on {1, 2} into {a, b, c;. One mem-
ber of this set is {{1, a), (2, ¢); .

8.7. If A and B are sets having the same number of elements, they clearly
are in one-to-one correspondence. Then it is an easy matter to show that for
any sct X, AY and BY are in one-to-one correspondence. This being the case,
it is customary to denote the set of all functions on A" into any set of n elements
by n¥. Thus, 2¥ denotes the set of all functions on X into a set of two clements,
which we will ordinarily take to be {0, 1}. If 4 € X then one member of 2%
is the function x4 defined as

x4(x) = 1if x € A, and xa(x) = 0if x € X — A.

We call x4 the characteristic function of 4. Now let us define a function f on
®(X) into 2% by taking as the image of a subset 4 of A" [that is, a member of
®(X)] the characteristic function of A4 (which is a member of 2%). Tt is left as
an exercise to prove that f is a one-to-one correspondence between ®(Y) and 28,
It is customary to regard @(X) and 2% as identified by virtue of this one-to-one
correspondence, that is, to feel free to replace one set by the other when it is
convenient.

8.8. If [ is a function and 4 and B are scts, then it can be proved that
/AU B] = flA] U f[B] and that f[4 N B] € 4] N /[B]. The inclusion
relation in the case of 4 () B cannot be strengthened.

In elementary mathematics one has occasion to use functions of sev-
cral variables. Within the framework of our discussion a function of »
variables (n > 2) is simply a function whose arguments are ordered
n-tuples. We can include the case n = 1 if we agree that a 1-tuple,
(x), is simply x. Introducing the notation X™ for the sct of all n-tuples
(x1, X2, * -+, %), Where each x is a member of the set X, a function,
whose domain is X" and whose range is included in X, is an n-ary
operation in X. In place of “l-ary” we shall say “unary’’; for ex-
ample, complementation is a unary operation in a power sct. In place
of “2-ary” we shall say “binary.”” This was anticipated in our discussion
of operations for sets; for example, intersection is a binary operation
in a suitable collection of sets. Also, addition in Z is a binary opcration;
if x, y € Z, the value of this function at (x, y) is written x + .

EXERCISES

8.1. Give an example of a function on R onto Z.

8.2. Show that if A € X, then ix|4 = 4.

8.3. If X and Y are sets of n and m elements, respectively, '+ has how many
clements? How many members of @(A" X }) are functions?
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8.4. Using only mappings of the form f: Z+ — Z*, give an example of a
function which

(a) is one-to-one but not onto;

(b) is onto but not one-to-one.

8.5. Let 4 = 1,2, - -+, nj. Prove that if a map f: 4 = 4 is onto, then it is
one-to-one, and that if a map g: 4 = A4 is one-to-one, then it is onto.

‘x
dt. :
8.6. Let f: Rt = R, where f(x) = / n Show as best you can that f is a
1

o/

one-to-one and onto function.
8.7. Prove that the function f defined in Example 8.7 is a one-to-one corre-

spondence between @ (X)) and 2.

8.8. Referring to Example 8.8, prove that if f1s a function and 4 and B are
sets, then f[4 U B] = f[4] U f[B].

8.9. Referring to the preceding exercise, prove further that flAN B] C
flA] M f[B], and show that proper inclusion can occur.

8.10. Prove that a function fis one-to-one iff for all sets 4 and B, f[AN B] =
f14] N f1B].

8.11. Prove that a function f: X = ¥ is onto ¥ Hf flY — 4] DV — f[4]
for all sets A.

8.12. Prove that a function f: X = Y is one-to-one and onto T flX — 4] =

Y — f[A4] for all sets A.

9. Composition and Inversion for Functions

To motivate our next definition, we consider an examptle. Let the
functions f and g be defined as

ft R—=>R with f(x) = 2x + 1,

g: Rt —> Rt with g(x) = xl/2,

It is a familiar experience to derive from such a pair of functions a
function % for which A4(x) = g(f(x)). Since the domain of g 1s R* by
definition, x must be restricted to real numbers such that 2v 4+ 1 > 0
for £(x) to be defined. That is, combining f and ¢ in this way yields a
function whose domain is the set of real numbers greater than —1 and
whose value at v is g(f(x)) = (2xv + 1)V2,

The basic idea of this example is imcorporated in the following defi-
mtion. By using ordered pair notation (instead of the domain and
value notation) for [unctions, we avoid having to make any restriction
stemming [rom a difference between the range ol f/ and the domain of
g. 'The composite of functions f and g, symbolized

o

Pag

o
O
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1s the set
{(x, z)| there is a y such that xfy and ygz{.
It is left to the reader to prove that this relation is a function. This
operation for functions is called (functional) composition. The follow-
ing special case of our definition is worthy of note. If
f: A= VYand g: ¥V = 7,
then
gof: X — Zand (g-f)(x) = g(f(x)).

The above example establishes the fact that functional composition
is not a commutative operation; indeed, rarely does [- ¢ = ¢ > f. How-
ever, composition is an associative operation. That is, if f, g, and A
arc functions, then

folgeoh) = (fog)h

To prove this, assume that (x, u) € f - (g - h). Then there exists a z such
that (x, z) € g hand (z, u) € [. Since (x, z) & g - h, there exists a y such
that (x, y) € & and (y, 2) € g. Now (3, 2) € g and (z,u) € [ imply that
(9, u) € f-g. Further, (x,y) € k and (y, u) € fo g imply that (x, u) €
(f o ¢) o h. Reversing the foregoing steps yiclds the reverse inclusion and
hence equality.

The foregoing proof will be less opaque to the reader if he rewrites
it in terms of function values. The proof given is in accordance with
our definition of functional composition and has the merit that it avoids
any complications arising from a difference between the range of f and
the domain of g. From the associative law for composition follows the
general associative law, which the reader may formulate. The unique
function which is defined by composition from the functions fi, fo, ***, fu
in that order will be designated by

Jfl °f2° e Of.n,

EXAMPLES

91. Let #: R = R+ where h(x) = (1 +2%)V2 Thenh =g~ f if f: R > R*
with f(x) = 1 + x% and g: R" —- R+ with g(x) = x!'/2 It is this decomposition
of h which is used in computing its derivative.

9.2. A decomposition of an arbitrary function along somewhat different lines
than that suggested by the preceding example can be given in terms of concepts
we have discussed. First we make a definition. If p is an equivalence relation
with domain X, then

j: X > X/p with j(x) = [«]
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is onto the quotient set X/p; j is called the canonical or natural mapping on
X onto X/p. Now, if f is a mapping on X into Y, the relation defined by

X1PX2 lfff(ﬁ) = f(’c_z)

is clearly an equivalence relation on X Let j be the canonical map on A" onto
X/p. We contend that a function g on X/p into f[X], the range of f, is defined
by setting g([x]) = f(x). To prove that g is a function, it must be shown that if
[x] = [y] then f(x) = f(y). But [x] = [y] iff xpy iff f(x) = f(y); so g is a func-
tion. Finally, we let 7 be the injection of f[\'] into }. Collectively, we have de-
fined three functions j, g, ¢ where

J: A= X/p with j(x) = [x],

g: X/p— f[X] with g([x]) = f(x),

i f[X]=> 1 with (y) = y.
Clearly, j is onto and ¢ is one-to-one. It is left as an exercise to show that g is
one-to-one and onto and that

f=t080]

This equation is the whole point of the discussion. It proves to be a useful
decomposition for an arbitrary function f.

9.3. If f 1s a known function with domain X" and with range a subset of ¥,
then the notation f: X — ¥ for f includes superfluous information. However,
it does suggest the consideration of f as a function that is associated with the
pair (X, ¥') of sets X and }". If g: ¥ — Z 1s likewise associated with (1, Z), then
we associate the composite function g o f with (X, Z). The association of each
function f with a pair of sets A" and Y, such that A" 1s the domain of f and Y
includes the range of / and the agreement that the composite g o fof f: X' =
and g: W — Z may be formed only if /" = ¥ has certain merits. For example,
within this framework it is possible to characterize “onto” (along with “‘one-
to-one’’) as a property of functions. F'urther, it sets these forth as dual properties
in a sense that will be explained later.

The characterization of one-to-oneness that we can demonstrate is as follows.

(I) Let f: X' = }. Then [ is one-to-one iff for all functions ¢ and 4 such that
g:Z—>Xand h: Z—> X, fog = f-himplies that g = /A. Indeed, sup-
pose that f 1s one-to-one and that ¢ and / are mappings on Z into X for
which fog = foh Then f(g(z)) = f(h(z)) for all z in Z. With f one-
to-one it follows that g(z) = 4(z) for all zin Z. Hence, ¢ = A. The proof
of the converse is left as an exercise.

A characterization of a function being “onto” can now be given by a simple
alteration of (I).

(IT) Let f: XY= Y. Then f is onto ¥ iff for all functions g and / such that
g Y—>Zand h: Y > Z, gof = hofimplies g = h The proof is left
as an excercise.

With the above characterizations at our disposal the decomposition obtained

in Example 9.2 can be described more neatly as follows. For any function f
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there exists a function 7 which is one-to-one, a function j which is onto, and a
function g which is one-to-one and onto, such that f = 7° g °J.

If the coordinates of each member of a function f (considered as a
set of ordered pairs) are interchanged, the result is a relation ¢ which
may not be a function. Indeed, g is a function iff (», x) and (y, z) in g
imply that x = z. In terms of f this means that if (v, y) and (z, y) arc
in /, then x = z, that is, [ is one-to-one. If f is one-to-one, the funcuon
resulting from / by interchanging the coordinates of members of f 1s
called the inverse function of /, symbolized

/7
This operation, which is defined only for one-to-one functions, is called
(functional) inversion. If /7! exists, then its domain is the range of /, its
range is the domain of f, and x = [71(y) iff y = f(x). Further, /7 is
onc-to-one and its inverse, (/7')71 is equal to f. If f 1s a one-to-one
function on X onto Y, then /7' is a onc-to-one function on } onto X,
Morcover,

f—l of = ¢y, and fof—l = Iy.
There is another important connection between composition and

inversion of functions. If / and g are both one-to-one functions, then
g - [ 1s one-to-one, and

(g-f)~'=/"tegh.

The proof is left as an excercise.

EXAMPLES

9.4. The function f: R = R such that f(x) = 2x + 1 is one-to-one. The in-
verse of f may be written {(2x + 1, x)lx € Rj. This is not very satisfying to one
who prefers to have a function defined in terms of its domain and its value at
cach member of the domain. To satisfy this preference, we note that

{2x + 1, 0)lx € R} = {4, 3¢ — 1))t € R}.
Thus /! is the function on R into R such that [7'(x) = 3(x — 1).
9.5. The function g: Rt — R* such that g(x) = x* is one-to-one, since
x¥ = x3, and both x; and x; positive imply that x; = x2. Then
g7l Rt = Rt where g7l(x) = x'/2
9.6. The function
f: R = R* where f(x) =107

is known to be one-to-one and onto. The inverse function is called the logarithm
function to the base 10, and its value at x is written logy x. The cquations
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logiy 107 = x, for x € R, and 10"*"* = x, for x > 0,

arc instances of equations (f1o f)(x) = x, for x € D;, and (fo [~)(x) = X,
for v € R, which are true for any one-to-one function.

9.7. If the inverse of a function fin R exists, then the graph of /! may be
obtained from that of f by reflection in the line y = x. The proof is left as an
exercise.

9.8. I'rom Example 8.8, if the inverse of a function f 1s defined, then
S7HAY B] = fA[4] U f~'[B] and f~'[4 N B] C f~'[4] N f~'[B]. The latter
identity can be sharpened to f~'[4 N B] = f~1[4] N f~'[B] for inverse func-
tions. The proofl is left as an exercise. A set of the form f~'[4] we call the
inverse or counter image of 4 under f.

EXERCISES

9.1. Let f: R = R where f(x) = (1 4+ (1 — )35, Express [ as the com-
posite ol four functions, none of which is the identity function.

9.2. If f: Y = Y and 4 C X show that f|4 = foi,.

9.3. Complete the proof of the assertions made in Example 9.2.

9.4. Complete the proof of (I) and supply a proof of (II) in Example 9.3.

9.5. Prove that f: 4 = B is a one-to-one correspondence between 4 and B iff
there exists a map g: B —- 4 such that g o f = 7, and f - g = ip.

9.6. If f A — B and g: B— C are both one-to-one and onto, show that
g e f+ 4 —-Cis one-to-one and onto and that (g f)~! = f~1, gL

9.7. Yor a function f: 4 —- A4, f* is the standard abbreviation forfofo - vof
with n occurrences of f. Suppose that f* = 7. Show that / 1s onc-to-one and
onto.

9.8. Justify the following restatement of Theorem 7.1. Let .\ be a set. Then
there exists a one-to-one correspondence between the cquivalence relations on
A" and the partitions of X

9.9. Prove that if the inverse of the function f in R exists, then the graph of
/7! may be obtained from that of f by a reflection in the lincy = x.

9.10. Show that each of the following functions has an inverse. Determine
the domain of cach inverse and its value at cach member of its domain. Fur-
ther, sketch the graph of cach inverse.

(a) f: R =R where f(x) = 2x — 1.

(b) f: R = R where ) = b

(€) f={(x 1 =)0 < x < 1},

(d) f = {(x, t—iﬁ)] —2<=x< l}'

9.11. Establish the identity (go f)~! = f-1 °¢~! for one-to-one functions f
and g.

9.12. Prove that if the inverse of f exists, then /~1[4 N Bl = A4l N f~B].
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913. The definition of the composite of two functions is applicable to any
pair of relations. With this in mind, show that if fis any function and g =
{ly, x)|(x, y) € f} then g o f is an equivalence relation.

9.14. Let A, B, A', and B’ be sets such that 4 and A’ are in one-to-one
correspondence and B and B’ are in onc-to-one correspondence. Show that

(a) there exists a one-to-onc correspondence between A X Band A" X B';

(b) there exists a one-to-one correspondence between AB and A'F;

(c) if, further, AN B = and A" (N B’ = J, then there exists a one-to-
one correspondence between A\ Band 4" U B'.

9.15. For sets A, B, and C show that

(a) A X B is in one-to-one correspondence with B X 4;

(b) (4 X B) X C'is in one-to-one correspondence with 4 X (B X C);

(¢) A X (B C)isinone-to-one correspondence with (4 X B) U (4 X C).

9.16. For scts A, B, and C show that

(a) (4 X B)C is in one-to-one correspondence with A¢ X B¢;

(b) (AB)C is in one-to-one correspondence with ABXC,

(¢) if, further, BN C = J, then ABUC is in one-to-one correspondence with
AB X A°.

10. Operations for Collections of Sets

In this section we gencralize the binary operations of union, intersec-

tion, and cartesian product.
Let G be a collection of sets. The union of @ is the set of all objects
such that x belongs to at least onc set of the collection @. That is, it is

{x]x € X for some X in @,
This set 1s symbolized by
U@ or U {A’!/X’ E G,} or U_\' CuX.

The carlier definition of A U B is seen to be simply the union of {4, Bj.
That 1s,
Uixlx € {4, B}} = AU B.

In Section 5, using the property of associativity of union as a binary
operation, we defined what is immediately seen to be in our present
terminology the union of a collection of the type {4y, Ao, - -, A}, We
shall continue to use the denotation A, U Ax U -+ U A, for this union.
From the viewpoint of set theory, it was a waste of space to have
ntroduced this extension. However, from the viewpoint of the algebra

of sets, it was not.
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EXAMPLES

101. Ug = &.

10.2. U{4) = 4.

10.3. If @ = {{1, 2}, {3,4}}, then Ua = {1,2,3,4}. Also, ®(Q) =
{@, 11, 2}}, {{3,4}}, &} and Ue(@) = 11, 2}, {3, 4} = @. It is left as
an exercise to show that U(P(Cﬁ) = (@ is an identity:.

The intersection of a nonempty collection @ of sets is the set of all
objects x such that x belongs to every set of the collections @. That 18, 1t 18

vy € Xfor all Yin @,
This set is symbolized by
Na or N YY€ al or n_\-.;:(t‘Y.
Earlier, A M B was defined as the intersection of {4, B}. That is,
N{X|X€ {4, B}} = AN B.

Further, the ecarlier definition of A, N\ A, M -+ N A, coincides with
what we may now call the intersection of the collection VAL Asy oo AL

The question of why the definition of the intersection of a collection
of scts has been restricted to nonempty collections deserves an answer.
If the defining property for the intersection is applied to the empty
collection, we have

Ny = {xlx € X for all X in a1

It is left to the reader to convince himself that the defining property at
hand is satisfied by any object whatsoever. Clearly this is an unsatis-
factory situation. An alternative which may be offered is based upon the
assumption that there is a universal set 7 at hand. Then the inter-
section of a collection @ (of subsets of U) is defined to be

T Upx &€ Xforall Vin @ }.
For a nonempty collection, the new definition agrees with the old. The
difference is the way in which they treat the empty collection according
to the new definition,
ﬂ‘\'cc‘x - L,

which seems to be a more reasonable result.

Algebraic properties of unions and intersections will be presented in
terms of one of the standard notations for designating collections of sets.
In this notation, a collection of sets appears as the range of a suitable
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function. To this end we introduce some definitions. Suppose that y is a
function on a set 7 into a set Y. Let us call an element 7 of the domain /
an index, [ itself an index set, the range of y an indexed set, and the
function y itself a family. We shall denote the value of y at ¢ by y; and
call y; the ith coordinate of the family. Thereby, we may write
y =G,y €1 X Yi € 1.

Actually, y is completely specified by {y:.¢ € I}; in this notation 1t is
the range of the function which is emphasized. In place of “Ipi € I},”
it is common practice to write “{y.f with ¢ € 7 or, if the domdm 1S
clear from the context, simply ““{y:{.” Such notation has its origin 1n
that employed for sequences. By definition, a sequence is a family on
the set of positive (or, nonnegative) integers into a set Y. That 1s, a
sequence is a function for which (1,2, ---.n, -~} or {0, 1, 1, o
serves as an mdc\ set. Hercalter we shall denote the latter set bv N.

By the phrase “a family }A.§ ol subscts of U” we shall understand a
function A on some sct I of indices into ®(U/). The union of the range of
such a family is called the union of the family tA,{ or the union of the

sets ;. The standard notation for it 1s
U tAli e Iy or U;gAi or U4,
where the last denotation suggests that the index set need not be empha-

sized. For the case of the union of a sequence {A; i € Nj of sets A, cach
of the notations

Uiz74; and 40U AU - - U AU
is also used. Similarly, the union of {Ay, Az, -+, A} is denoted by
Uizid;, or 44U AU - U A

In every case it follows from the dehnition of unions that x € U4, iff
x belongs to /A, for at least one ¢

If we agree to use the %ccond of the definitions given above for the
intersection of a family {A,{ of subsets of U, the terminology and nota-
tion for intersections parallel those for unions in every respect. Thus, the
intersection of the range of the family is called the intersection of the
family {A,} or the intersection of the sets A,. The standard notation for

n{/l,-iz'Elﬂ or ﬂ‘-r_,;li or ﬂ,.-li.

If the family is nonempty, that is, il [ 7# &, then » € A iff x is a
member of [ for all 7. If I = &, then nt./lt- =ul.

this 1s
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Incidentally, it should be noted that there is no loss of generality in
considering families of sets in place of arbitrary collections. As the reader
can casily show, every collection of sets is the range of some family.

In the following theorem appear several algebraic properties of unions
and intersections of families: others appear among the exercises. These
generalize properties of the operations of the operations of union and
intersection for pairs. The reader may supply the proofs.

THEOREM 10.1. Let {4;} withi € I'be a family of subscts of U
and let B C U. Then .
(D BN Ui, = UBN 4) and BU Nid; = NJ(B U 4)).
(ID) U~ Uid; = NU - 4)and U — N4, = U U — 4,).
(IIT) If Jis a subset of I, then

Uiesd; € Uicsd: and  Njes4; 2 NiciAe.

EXAMPLES

10.4. In spite of the emphasis which has been given to the interpretation of
a collection of sets as the range of some family, it should not be inferred that the
accompanying notation is indispensable for stating results like those in The-
orem 10.1. For example, the first distributive law in (I) may be stated for a
collection @ of subsets of U as

snUdaca =UBN 441
and the first of the DeMorgan laws in (II) as
U-Udla€a = NU - 44€ a).

10.5. The following identities generalize those in Example 8.8. If f is a func-
tion and {4;} is a family with nonempty domain 7, then

flUA] = Uif[4:] and  f[Nids] C N,/

Further, if f is one-to-one, then equality holds in the second identity (see Exer-
cise 8.10).

10.6. The following compact formulation of Theorem 7.2 js now possible: A
relation p is an equivalence relation iff there exists a disjoint collection @ of sets

such that p = U{C X ¢|¢ € ¢).

We shall use the notion of a family to generalize the concept of the
cartesian product of two sets. For this we note that an element {ay, ay) of
the cartesian product A, X A, defines a family « with domain {1, 2!
and whose values at 1 and 2 are ¢y € A, and a0 € Ay, respectively, If A is
the set of all families having {1, 2! as domain and such that their value at

0 1s a member of A; for i = 1,2, then the function [ X Ay > A,
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where fla), ax) = a as described above, 1s a onc-to-onc correspondence.
We take the existence of this one-to-one correspondence as the basis for
the assertion that the only difference between Ay X As and A 1s a
notational one. As such, we shall henceforth not distinguish between
them. The generalization of A, X Ay, with A; X As regarded as 4, 1s an
casy matter. If {A;} with i € [is a family of scts, then the cartesian
product of the family, in symbols
X{/ltlll € ]} or XiE'_IAi or Xi/li,

is the set of all families @ with domain / and such that a; € A; for
each 7 in 1.

For the cartesian product of a sequence {A]i € Nj of sets 4, the

notation
XizeAd: or AgX Ay X -0 X Ag X -

is used. Similarly, the cartesian product of (A, Ay, -+, A} 1s denoted
by
Xichd; or Ay X Ay X - X A

As the latter symbolism suggests, if / = {1, 24, we shall identify Xicr4;
with A; X A, as defined carlier and X;erd; with Ay if [ = {1}. If every
member of the family {4, with i € I is equal to the same set &, then
X;crA; = X7, the set of all functions on [ into X. 11 =112, -+, nj,
then we identify X7 with X" as defined earlier. In particular, X 1s taken
to be X.

We introduce one more bit of terminology for cartesian products.
Let { A} with 7 € I be a family of sets and let 4 be its cartesian product.
If J is a subset of 7, then there is a natural correspondence of the elements
of A with those of XiesA4:. To formulate this explicitly, we use the fact
that an element a of 4 is a family {a;} with I as domain. Then the ele-
ment b, let us say, of X;es4; which is the natural correspondent of a 1s
the restriction of ¢ to J. We shall write b, for a; when 7 € J. The func-
tion on A whose value at a is b is called the projection on 4 onto Xics4:.
If J = {7} and p; is the projection on A onto 4, then pi(a) = a;, which
is called the j-coordinate of a.

EXERCISES

10.1. Let p be a relation, that is, a set each of whose members is an ordered
pair. Show that p1s a relation 1n UUp

10.2. Show that if @ is a collection of sets, then

(a) @ = Ue(@), and

b) @ € ¢(Ua).
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Can the inequality in (b) be strengthened?
10.3. Supply proofs for the identities in Theorem 10.1.
10.4. Let {/;} be a family of sets with domain J. Let / = U,z and suppose
that {A,} is a family of sets with domain 7. Prove the following associative laws.
(a) U,'QIA.,- = UJ'C,/(U,'CIIA ,-).
(b) Micrds = Nies(Nicp4,).
10.5. Prove each of the distributive laws,
U4y N U;B)) = U. (4. N B;)
and
(Nea) U (N;B) = N, j(4: U By).
Here it is to be understood that such a symbol as U., is an abbreviation

7

for U(,’j)CIXJ.

10.6. (a) If 4 and B are sets and X is (4, B), prove that Ux = {4, B},
Ny = {4, UNx) = 4, N(Ny) = 4, UUUx) = 4 U B, and NUx) =
AN B.

(b) Suppose that it is known that the set .\ is an ordered pair. Use the
results in (a) to recapture the first coordinate and the second coordinate of X

10.7. Prove that (U;4;) X (UJ-BJ-) = U, ;4; x B;), as well as a like result
for intersections.

10.8. Let {Z;[j € J} be a partition of the set 7. Determine a one-to-one corre-
spondcnce between X’iCIAi and XJ'CJ(XiCI,-Ai)~

11. Ordering Relations

In this section we define several types of relations which have their
origin in the intuitive notion of an ordering relation (order of prec-
cdence), that is, a relation p such that for an appropriate set X” there
are various distinct members ¥ and y of X such that xpy, but it is not
the case that ypx. Then, by means of p, we could decide to put the x
and y in question in the order «, y rather than y, x because xpy, and it is
not the case that ypx. For a set of real numbers the familiar relations
<, <, and > are used in this capacity. For a collection of sets the
relations C and C serve stmilarly.

The first ordering relation we shall consider has as its defining prop-
certies the basic features common (o the above relations of < for num-
bers and € for sets. We define a relation p as antisymmetric iff whenever
xpy and ypx then x = y. A relation p in a set X is called a partial
ordering (in .X) iff p is reflexive (in X), antisymmetric, and transitive,
If no set X' is specified we assume ¥ = D,U R,. For the consideration
of a partial ordering relation relative to various sets (for example, the
familiar ordering in Z relative to the set of even integers), it is convenient
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to make the further definition that a relation p partially orders a sct
Y iff p N (¥ X ¥) is a partial ordering in V. The relation p (" (1" X V)
is the “restriction” of p to Y in the sense that it is reduced by all ordered
pairs cither of whose coordinates arc not members of 1.

EXAMPLES

11.1. The relation “is an integral multiple of”” in Z*% is a partial ordering.

11.2. A hierarchy or a table of organization in a business firm is determined
by a partial ordering in some set of positions.

11.3. If p is a partial ordering in .Y, then p M (4 X A) partally orders the
subset 4 of A",

11.4. If p is a relation, the converse of p, symbolized by p, is the relation
such that ypx iff xpy. If p is a partial ordering, then so is its converse.

11.5. A relation p that is reflexive and transitive is a preordering. A poten-
tial shortcoming of such a relation, in connection with establishing an order of
precedence in a set A, is the possibility of p being “indifferent” to some distinct
pair x, y of objects in the sense that both xpy and ypx. For example, in some
population let w be the weight function and 4 be the height function of in-
dividuals so that w(x) and A(x) are the weight and height, respectively, of the
individual named x. Then the relation p such that xpy iff w(x) < w(y) and
h(x) < h(y) is a preordering, but is not a partial ordering if there are two in-
dividuals having the same weight and height.

If p is a preordering in Y, then it determines a partial ordering in a partition
of X, according to Exercise 7.10. There it is asserted first that the relation o
such that x o y iff py and ypx is an equivalence relation. Secondly, it is stated
that the relation p’ such that [x] p’ [»] ifl xpy is a partial ordering having the
accompanying set of equivalent classes [x] as domain. In summary, if pis a pre-
ordering in X, then it is a partial ordering in the set obtained from .\ by 1denti-
fying elements to which it is indifferent.

The foregoing is nicely illustrated by taking p as the relation i the set of
complex numbers such that zpw iff the real part of z is less than, or equal to,
the real part of w.

We shall follow custom and designate partial orderings by the sym-
bol <. If the relation < partially orders .X, and v and y are members
of X, it may or may not be the case that v+ <y. Ilit Is not, we write
x € y. Also, we abbreviate x <y and x 7y to v <y and say x 1s
less than y, or x precedes y, or y is greater than x. We shall also use
y > xandy > x as alternatives for x <y and x < y, respectively, when
it is convenient,

Defining a relation p in X as irreflexive (in X) iff for no x in X 1s
xpx, we see that if < is a partial ordering in A, then < is irreflexive
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and transitive in .X. Conversely, starting with an irreflexive and transi-
tive relation < in X, the relation < such that x < y iff ¥ < yorx =y
18 a partial ordering in .X. The proofs are left as an exercise. The deri-
vation of < from < and vice versa, can be illustrated in concrete
terms by the delinition of proper inclusion for sets in terms of inclusion.
and vice versa. If < partially orders the finite set X, the relation <
can be expressed in terms of the following concept. An element y of
X 1s a cover of x in X iff v < y and there exists no « in .Y such that
x <u <y. If x <y, then, clearly, clements xy, x, - -, v, of X can be
found such that v = &) < vy < -+ <y, = ¥, and cach x.; covers x..
Conversely, the existence of such a sequence implies that ¥ < y.

A relation p is a simple (or linear) ordering iff it is a partial order-
ng such that xpy or ypx whenever x and y arce distinct members of the
domain (which is cqual to the range) of p. A relation p simply orders
aset Y'iff p M (Y X ¥) is a simple ordering in . The familiar ordering
of the real numbers is a typical example of a simple ordering. In con-
trast, inclusion for sets is not, in general, a simple ordering.

To point out the obvious, the applications of ordering relations are
concerned with the determinations of orderings in various sets. In prac-
tice, ordering relations for a given set X are usually generated by as-
signed or proven structural features of X. That is, certain features of
&, such as the existence of a particular type of operation or mapping
property, will permit the definition of an ordering relation for X an
cxample of this nature appears in the exercises for this section. Prop-
erties of this ordering relation may then prove useful in deducing and
describing further features of X. Thercfore, it is convenient to have
available terminology which gives primary cmphasis to the set rather
than to an ordering relation for it.

A partially ordered set is an ordered pair (.Y, <) such that <
partally orders X. A simply ordered set or chain is an ordered pair
(X, <) such that < simply orders X. For example, if § is a collection
of scts, then (F, ©) is a partially ordered set. Again, it < is the usual
ordering for the integers, then (Z, <) is a chain. From the standpoint
of sct theory, it is more cconomical to treat ordering relations than
ordered sets, that is, sets with accompanying order relations. For ex-
ample, if (X, <) is a partially ordered set, then < N (XX JX)is a
partial ordering relation in .Y. Thus, instead of dealing with X" and a
relation < which partially orders it we can deal exclusively with the
ordering relation < N (X X X)), since it determines X as its domain.
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That is, all statements about ordered sets are equivalent to statements
about their ordering relations, and vice versa.

As an illustration of the preceding remark we restate our carlier
characterization of < for a finite set X partially ordered by a relation
<. If (X, <) is a finite partially ordered set, then v < y iff there exists
a chain of the form v = v, < 1y < -+ < x, = y in which cach x;,
covers v;. This result enables one to represent any finite partially ordered
set by a diagram. The elements of X are represented by dots arranged
in accordance with the following rule. The dot for x. is placed above that
for x; iff ¥y < xs, and, if xy is a cover of x;, the dots are joined by a line
segment. Thus, » < y iff there exists an ascending broken hne con-
necting x with y. Some cxamples of such diagrams are shown below.

)

/N

The first is the diagram of a chain with five members. Clearly, the dia-
gram of any chain has this form. The last one is that of the power set of
a set of three elements partially ordered by inclusion: the dot at the
lowest level represents the empty subset, the dots at the next level repre-
sent the unit subsets, and so on. Such diagrams not only serve to repre-
sent given partially ordered sets by displaying the ordering relation,
but, conversely, also may be used to define parually ordered sets; the
ordering relation is just that indicated by the various broken lines.

In preparation for our next definition in connection with partally
ordered sets we discuss an example. The set {1, 2,3, 5,06, 10, 15, 304,
whose members are the divisors of 30, is partially ordered by the relation
< where x < y iff x is a multiple of y. It is left as an excrcise to show
that the diagram of this partially ordered set is identical to that given
above for the subsets of a set of three elements partially ordered by
inclusion. Although these two partially ordered sets are obviously not
cqual, they are indistinguishable so far as their structure as partally
ordered sets is concerned. This is the essence of the identity of their
respective diagrams. When this type of relationship exists between two
partially ordered sets it is certainly worthy of note, since any property
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of onc that is expressible in terms of its ordering relation has an ana-
logue in the other. Thus, we proposc to formalize this type of indiscern-
ibility. The identity of the diagrams of the two partially ordered sets
mentioned above implies, first, the existence of a pairing of the mem-
bers of the two sets. This can be formulated as the existence of a one-
to-onc correspondence, which has the advantage that it docs not limit
us to finite sets. Next, it is implied that the rclationship between a
pair of clements in onc set, as specified by the ordering relation for
that set, is the same as that for the corresponding pair in the other sct,
relative to its ordering relation. The following definition is basic in the
precise formulation of this property. A function /: X — X’ is order-
preserving (isotone) relative to an ordering < for X and an ordering
<" for X" iff v <y implies f(x) <’ /(). Then the likencss with which
we are concerned can be described as the existence of a one-to-one
correspondence such that it and its inverse are order-preserving. The
customary terminology in this connection follows. An isomorphism
between the partially ordered sets (X, <) and (X', <') is a one-to-one
correspondence between X and X’ such that both it and its inverse
arc order-preserving. If such a correspondence exists, then onc partially
ordered sct is an isomorphic image of the other, or, more simply, the
two partially ordered sets are isomorphic. Thus, the likeness which we
observed between the collection of subscts of a three-clement set and
the sct of divisors of 30, with their respective partial orderings, may be
expressed by saying that they are isomorphic partially ordered sets.
When the concept of a partially ordered set was defined it was stated
that a collection of sets partially ordered by inclusion is a typical
example. This was rather loose talk, since the word “typical” has so
many shades of mcaning. One precise (and demanding) mcaning that
nmight be given is this: Each partially ordered set is 1somorphic to a
collection of sets partially ordered by inclusion. This is proved next.

THEOREM 11.1. A partially ordered set (X, <) is isomorphic to a
collection of sets, indeed, a collection of subsets of A, partially ordered
by nclusion.

Lroof.  For a in X define S, to be {x € Xx < af. Then the mapping

fon Xinto {S.]a € X} where f(a) = S, verifies the assertion. The
details are left as an exercise.

This result is often stated as: “Each partially ordered set can be
represented by a collection of sets (partially ordered by inclusion).”
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In effect, the thcorem means that the study of partially ordered sets is
no more general than that of a collection of scts partially ordered by
inclusion. In practice the transfer to such a partially ordered set is
usually not carried out, since many individual partally ordered scts
would lose much of their intuitive content as a result. Finally, we point
out that the theorem does not assert that cach partially ordered set 1s
isomorphic to a collection consisting of all subsets of some set. Such
partially ordered scts, that is, those of the form (®(A), ), do not
typify partially ordered sets in general, since they have special features.
For example, each contains an element (namely, ) less than every
other clement and an element (namely, A) greater than cvery other
clement.

We conclude this section with the introduction of further terminology
for partially ordered sets that will be employed later. A least member
of a set X relative to a partial ordering < is a y in A" such that y < x
for all » in X. If it exists. such an clement is unique, so one should
speak of the least member of X. A minimal member of a sct A" relative
to < is a y in X such that for no x in X is x < y. A minimal member
need not be unique, as the second diagram above illustrates. A greatest
member of X relative to < is a y in X such that x <y for all x in .X.
A greatest clement, if it exists, is unique, so onc should speak of the
greatest clement of X. A maximal member of X relative to < is ay in
X, such that for no x in X'1s x > y.

A partially ordered set (X, <) is well-ordered iff cach noncmpty
subset has a least member. A familiar example of a well-ordered set 1s
the set of nonnegative integers relative to its natural ordering. Any well-
ordered set (X, <) is a chain, since for two distinct clements x and y
of X the set {x, y} must have a first clement, and hence either x <y
ory < x.

If (X, <) is a partially ordered set and 4 & X, then an element x In
X is an upper bound for A iff, for all ¢ in A4, a < x. Similarly, an cle-
ment x in X is a lower bound for A iff, for all ¢ in A, x < a. A set may
have many upper bounds. An element v in X'is a least upper bound or
supremum for /A (symbolized, lub 4 or sup A) iff x is an upper bound
for A and x < y for all upper bounds for 4. In other words, a supremum
is an upper bound which is a lower bound for the set of all upper bounds.
An element x in A is a greatest lower bound or infinum for /1 (sym-
bolized, glb A or inf A) iff x is a lower bound for /A and v > y for any
lower bound y for A. It is immediate that if A has a least upper bound,
then it is unique, and that the same is true for a greatest lower bound.
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EXERCISES

11.1. Show that if p 1s a partial ordering relation, then so is p.

11.2. For the set of real-valued continuous functions with the nonnegative
reals as domain, define f = O(g) to mean that there exist positive constants M
and N such that f(x) < Mg(x) for all x > N. Show that this is a preordering,
and define the associated equivalence relation.

11.3. If < is a partial ordering in X, show that < is an irreflexive and trans-
itive relation in X. Conversely, if < is an irreflexive and transitive relation in X,
show that the relation < such that x < yiff x < y or x = y is a partial ordering
in X"

11.4. For what sets A4 is (®(A4), &) a simply ordered set?

11.5. Let (X, <) and (X", <’) be partially ordered sets. Show that X' X X’
is partially ordered by p where (x, x")p(», ") iff x < y and x" <’y’. The partially
ordered set (X' X X7, p) is the (cartesian) product of the given partially ordered
sets.

11.6. The dual of a partially ordered set (X p) is the partially ordered set
(X, p) (see Exercise 11.1). If (X, <) is a partially ordered set and a, b6 € X with
a < b, then the set of all x in X, such that ¢ < x < b, 1s called the closed in-
terval [a, b]. Show that the set of intervals of a partially ordered set (X, <),
partially ordered by inclusion, is isomorphic to a subset of the product of (X, <)
and its dual.

11.7. A partially ordered set is self-dual if it is isomorphic to its dual. Show
that

(a) there are just two nonisomorphic partially ordered sets of two elements,

both of which are self-dual, and

(b) there are five nonisomorphic partially ordered sets of three elements,

three of which are self-dual.

11.8. Show by an example that if (Y] <) and (X", <’) are partially ordered
sets and f: X'—= Y’ is a one-to-one correspondence which preserves order, then
/7! need not preserve order.

11.9. Given that f is an isomorphism between the partially ordered sets
(X, <) and (X7, <), show that x < y iff f(x) <’ f(»).

11.10. Supply details for the proof of Theorem 11.1.

11.11. Let (X, <) be a partially ordered set. Show that « is a maximal ele-
ment iff y € X" and y > « imply y = «. Show that v is a minimal element iff
y &€ XNand y < vimply y = o,

11.12. Let F, be the collection of all subsets of Z1t which have at most »
members for n a fixed positive integer, and let 5 be the collection of all finite
subsets of Z*. Show that, relative to inclusion,

(a) each element of ¥, having n members is maximal, and

(b) F has no maximal clements.

11.13. As the elements of a set .\ we take all square regions which lie inside
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a given rectangular region whieh is itself not a square. Relative to inelusion,
what are the maximal elements of ?

11.14. Show that in a ehain the notions of a greatest element and a maximal
element coincide, and show the same for a least element and a minimal element.

11.15. Let (\, <) be a partially ordered set with the property that each
nonempty subset which has an upper bound has a least upper bound. Show
that each nonempty subset of .\ which has a lower bound has a greatest lower
bound.

11.16. Show that if (Y, <) is a well-ordered set, then it has the property
assumed for the partially ordered set in the preeeding exereise.

11.17. Let X be a set and p an operation in X. (Thus, p is a funetion on
X X X into X let us denote the value of p at (x,y) by xy.) Suppose that p is
commutative, assoeiative, and idempotent [that is, xy = yx, x(yz) = (xy)z, and
xx = x for all x, y, z € X]. For x, y € X define x < y iff x = xy. Show that

(a) < partially orders A,

(b) if X has a least element 0, then Ox = 0,

(e) xy < x,yand, if z < x, 9, then xy 2 =

11.18. The relation < where m < n iff m divides n partially orders Z*. Show
that each pair of integers has a least upper bound and a greatest lower bound
relative to this ordering.

11.19. Show that each subset of ®(A) partially ordered by inclusion has a
least upper bound and a greatest lower bound.

BIBLIOGRAPHICAL NOTES

Sections 1-2. For a detailed historical survey of Cantor’s work see the intro-
duetion by Jordain in Cantor (1915).

Sections 3-10. An exeellent aceount of elementary set theory appears in
Hamilton and Landin (1961).

Section 11. A high-level account of the theory of partially ordered sets may
be found in Birkhoff (1948).
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Generalizations

Ims CHAPTER BEGINS with a formulation of a precise definition
of the natural number sequence

O,],2>...

L

(where we rely on the dots to suggest the continuation of the
sequence beyond the numbers displayed) from an intuitive description
of this set. This definition is taken as the basis for the definition of two
operations in this set. The result is the system consisting of the natural
numbers, the operations of addition and multiplication, and the famil-
1ar ordering relation—all of which the reader has known since childhood.
Although in certain respects Section 1 adds nothing to his knowledge, it
should be of interest to him to find how few assumptions are required to
derive the familiar properties of the natural numbers. Section 2 discusses
definition and proof by induction. Section 3-Scction 7, and Section 9
give an account of Cantor’s transfinite arithmetic. This consists of the
continuation of the natural number sequence, first with respect to
magnitude alone, and then with an ordering taken into account. In
Section 8 and Section 10 appear an account of the axiom of choice,
inctuding proofs of its equivalence to the well-ordering theorem, Zorn’s
lemma, and various statements about cardinal numbers. Finally, in
Section 11 the classical pitfalls of Cantor’s theory are described.

We call attention to the fact that Section 1 includes the first step in
the development of the real number system within the context of set
theory. The remaining steps are completed in Chapter 3. We regard
56
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Section 1 as our first reference to the number system, since the only
mention of it made in Chapter 1 was to peripheral material and may
be ignored. As we proceed we shall use only those properties which
have alrecady been derived.

1. The Natural Number Sequence

We cannot expect that the natural number sequence can be defined
in terms of anything essentially more primitive than itself, but we can
claborate on what our conception of it comprises in terms of notions
already developed, with the goal of clarifying our reasoning with it. As
our initial description of the natural numbers, we say that they are
exactly those objects which can be generated by starting with an iniaal
object 0 (zero) and from any object n alrcady generated passing to
another uniquely determined object 7', the successor of n. Morcover,
objects differentiy generated are distinct. Here ““n””” may be thought of as
an alias for “n + 1.7 The accent notation is used to emphasize that
" (prime) is a primitive operation (or function), used in generating the
natural numbers and thus 1s not to be confused with addition, which
can be defined later as an operation in the set. The term “successor™
stems from the notion of ““next after” that is associated with the counting
numbers. Thus, the natural numbers appear as a set of objects

0, 0", (0", ((0")")!, -++ or, more simply, 0, 0", 0", 0", ---.

The transition to the usual notation 1s made upon introducing
1,2, -+, 9 tostand for 0", 0", -+, 0”""""""" and then employing deci-
mal notation. The set of natural numbers will, from now on, be denoted
by N.

The above description implies that the relation {(n, n’)in € N} is a
function. This we call the successor function and symbolize it by ', In
terms of this function the remainder of our description can be expressed
In two propertces.

N,. ' 1is a one-to-one mapping on N into N — {0,
N.. If M is a subset of N, such that 0 € M and m" € M whenever
m € M, then M = N.

Property N. (which has its origin in the assertion that the succession
of discrete steps—consisting of starting with 0 and repecatedly passing
from a number to its successor—yields all of the natural numbers) is
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the basis for the principle of induction. Writing P(n) for “the natural
number n has property P, we state this as follows.

If P(0) and, for cach natural number m, P(m) implies P(m’), then
P(n) for cach natural number n.

The proof follows immediately from N, upon consideration of
{m € NI[P(m)}.

In order to arrive at a precise formulation of the natural number
system, starting from the foregoing description, it is convenient to make
the following definitions. A triple (X, g, x¢), where X is a set, g is a unary
operation in X (that is, a function on X into X)), and xy is an element
of X, is a unary system. An integral system is a unary system (X s, x¢)
such that

I,. sis a onc-to-one mapping on X into X — {xy}, and
I,. 1if Y 1s a subset of X such that xo € ¥ and ys € ¥ whenever
y € Y, then V' = X,

Thus, our description of the natural number system may be sum-
marized by the assertion that (N, ’, 0) is an integral system.

Before giving other examples of integral systems we call attention to
one consequence of I and I,—that s is a mapping onto X — {x,}. This
follows from the fact that {x¢} U [X]s = X, which is a consequence
of L.

EXAMPLES

1.1. In spite of the self-imposed restrictions stated in the introduction to this
chapter, we are free to use the real number system for illustrative purposes.
Thus we can introduce the following further examples of integral systems.
(a) The numbers a, a 4+ d, a + 2d, --- of an arithmetic progression (in
which a, 4 are real numbers with 4 # 0), the map s of this set into itself
with xs = x + 4, and the number a.

(b) The members a, ar, ar?, -- - of a geometric progression (in which a, r are
real numbers with @ # 0 and 0 <7 # 1), the function s mapping x onto
xr, and the number a.

1.2. As a preliminary to the observation that—Dby virtue of our initial de-
seription—the natural number sequence qualifies as an integral system, we
might have mentioned that it has the following properties.

P;. 0 1s a natural number.

Po. If n 1s a natural number, then »n" is a uniquely determined natural
number.

P;. For all natural numbers m and n, if m" = 2/, then m = n.



o

1 The Natural Number Sequence 59

P,;. For each natural number n, n" # 0.
Ps;. If Af is a subset of N such that 0 € Af and m” € A whenever m € A,
then Af = N

T
|
.

These are the now famous Pecano axioms for the natural number system. In
a book published in 1889, G. Peano took these as a point of departure for an
axiomatic development of the natural number systems. The axioms themselves
are actually due to R. Dedekind (1888). It is worthy of mention that cach P,

i = 2,3, 4, 5 lists exactly one property of (N, ’, 0) in addition to thosc appcaring
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in P;—P,_,. Properties P,—P; arc simply a breakdown of N} into atomic’’ 1n-
gredients while Py is No. Conversely, starting with an integral system (X, 5, x0),
properties that imitate P—Py may be asserted.

Our immediate goal is to prove that any two integral systems, (X, s, X)
and (Y, t, yo), arc isomorphic; that is, there exists a one-to-onc corre-
spondence f between X and 1 with f(xg) = yo and f(xs) = (fx)¢ for all
x in X. This mcans that the elements of X can be paired with those of ¥
in such a way that successors of corresponding elements correspond. For
the proof a definition is required. Let (X, g, xg) be a unary system. The
set of descendants of x, under g (in symbols, D,xy) is the intersection
of all subscts A4 of X, such that x; € A and xg € A whenever x € 4.
(This latter requirement will often be phrased as “A is closed under g.”)
Such subscts A exist; indeed, X is onc. Two characterizations of a sct

of descendants are given next.

LEMMA 1.1. Let (X, g, x9) be a unary system. Then Dyxg is the

smallest subsct of X which contains xy and which is closed under g.
Alternatively, x € D,x iff x = xo or there exists a y in Dyxy such
that x = yg.
Proof. The proof of the first statement is left as an excrcisc. For thce
sccond, consider an element x in D x. Either x = xo or x # xo. Sup-
pose x 5 x and that there does not exist y in Dyx such that x = yg.
Then Dyxg — {x} is a proper subset of D,x, which contains xg and
which is closed under g. This is a contradiction of the first statement
in the lemma.

LEMMA 1.2. Let (X, s x be an integral system and (Y, ¢, yo) be a
unary system. Definc
sVE: XX Y= X XY with {(x ys Vi = (xs,y0)
Then (X X Y, s Vi, (xy, yo)) is a unary system. If fis the set of descend-
ants of (xq, yo) under s V¢, then
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(I) fis a funetion on X into Y,

(IT) fxo = yo and f(xs) = (fx)¢ for all x in X, and

(ITI) fis uniquely determined by the properties in (11).
REMARK. To assist with the understanding of (I), we suggest the
study of an example such as the following. Let the integral sys-
tem be (N,’,0) and the unary system be ({a, b, ¢, d}, t, ¢) where
t = {(a, a), (b, c), (¢, d), (d, a)}. Let us determine the set of deseend-
ants of (0, ¢) under the function formed from ’ and ¢ by the rule given.
Along with (0, ¢) this set must eontain (1, d) and henee, (2, a). Sinee
at = a, the only further members present are those of the form (n, «)
forn = 3,4, ... Clearly, this sct is a function on N into {a, b, ¢, d}.

Proof. "That (X X Y, s Vi, (v, y)) is a unary system is elear. By
definition, f is the intersection of the collection @ of all sets A, sueh
that 4 € X X Y, (xo, yo) € 4, and (x, y) € A implies (x5, 1) € A. That
/[ 1s a funetion on X into Y is the fifth property of f appearing below.
The first four arc left to the reader to verify.

1) f € a.

(2) f € A for each 4 in @.

(3) fis a relation with X as domain.

(4) w € fiff u = (xo, yo) or there exists (x, y) € [ with u = (x5, yt).

(5) fis a funetion on X into Y.
To establish (5) we prove by induetion (that is, using the property I,
of the integral system (Y| s, x)) that for all v in X, (, y) and {x, z)
in fimply y = z. Let Z consist of all clements of X for which this is
true. Then xo € Z. Indeed, suppose that along with (x, yo), which is
in f by (4), also (x, y1) € f, where y, # y,. By (4), (xo, y1) = {xs, yt)
and henee x; = x5, whieh is impossible. Hence, the basis for the
induetion follows. Assume next that x € Z. If (xs, y1) and (xs, y.) are
in f, then by (4) and the assumption that s is onc-to-one, there
exist ys, y; € Y, such that (x, y;) and (v, y;) arc in f. From the in-
duction hypothesis it follows that y; = y; and henee y1 = y2. This
completes the proof of the induetion step. Henee Z = X and the
proof is eomplete.

For (II) there remains to prove that f(vs) = (fx)t for all x in X. If
v € A, then for exactly one y in ¥, (v, y) € f and, further, (xs, yty € f.
Writing “fx” for “y” and “f(xs)” for “y/,” we have flxs) =yt = (fo)t.

For (I11), let ¢: X' — ¥, sueh that gy, = vo and g(xs) = (gx)¢ for
all ¥ 1in Y. Let 7 be the set of all x in X, such that fx = gx. Then
xo € Z. Assume that ¥ € Z. Then f(xs) = (fx)t = (gx)t = g(xs).
Hence, x5 € Z and hence, Z = X. That Is f = g.
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THEOREM 1.1. Any two integral systems are isomorphic.

Proof. Let (X, s, x,) and (Y, ¢, y,) be integral systems. According to
I.emma 1.2 there exists a function f: X — Y| such that fx, = y, and
f(xs) = (fx)t and a function g: } — X such that gy, = x,and g(yt) =
(gy)s. We contend that g » f = 1y, the identity function on X, Let Z be
the set of all x in X such that (g - f)x = x. Clearly, xy € Z. Further, 1f
x € 7, then

(g0 f)lxs) = g(f(xs)) = g((fx)1) = (g(fx))s = ((ge flx)s = xs.
That is, if x € Z, then xs € Z. Hence 7 = X and g f = ix. Sim-
ilarly, f - g = iy. Together, these results imply that / is a one-to-one
correspondence between X and Y. Finally, fxy = yo and f(xs) = (fx)t,
so the systems are isomorphic.

This is a significant result for us. To insure that it is understood, let
us review the pertinent facts. Our initial (and purely intuitive) descrip-
tion of the natural number sequence led us to conclude that 1t 1s an
integral system. Such an observation in itself gives no indication of the
degree to which it captures those features and only those features which
we intuitively assign to the natural number sequence. Theorem 1.1
gives us precise (and satisfying) information on this score, for it asserts,
in effect, that apart from notation used there is only one integral system.
Thus, the statement that the natural number sequence is an integral
system amounts to a complete description. Tis we lake as our formal
definition of the natural number sequence. What this comes to is fixing on onc
particular integral system and designating its initial element by 0, its
successor by 0') and so on.

To expedite our development of propertics of the integral system
(N, ’, 0) we derive another consequence of Lemma 1.2.

THEOREM 1.2. lLet B be a nonempty set, ¢ be an element of B,
and g be a function on N X B into B. Then therc exists exactly onc
function £: N — B such that

k(0) = ¢ and k(n") = gln, k(n)).
Proof.  Define
t: N X B—N X B where (n b)t = &', gln, b)).

Applying Lemma 1.2 to the integral system (N, ', 0) and the unary
system (N X B, (, (0, ¢)) yields a function

f: NN X B where f0={0,¢) and fu' = (fn)t.

'
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We assert that
fa' = (', g(fw). for n€ N.

Since f0" = (f0)t = (0, )t = (0, (0, ¢)), the assertion is true for
n = 0. Assume that it is true for » and consider it for n’. We have

= ()=l g(fa)yt = (0", gy g(fn))y = (n”, g(fn')),
as required.
Now define

ki N— B where £(0) =¢ and k(n') = (g f)(n).

Then £(0") = (g-/)(0) = g(f0) = ¢(0, ¢) = g(0, k(0)) and k(n"") =
g(fn') = gln’, g(fn)) = g(n’, k(n')). Hence, k(0) = ¢ and k(') =
g(n, k(n)) for n € N. That £ is unique is shown by a straightforward
induction proof, which is left as an exercise.

We turn now to the definition of an ordering relation for N. The basis
for the intuitive ordering of the natural numbers is the order in which
they are generated. One says that m is less than n iff m is gencrated before
n in the course of generating n or, what amounts to the same, m is less
than or equal to n iff n = morn = m" orn = m” or - --. This phrasiny
is the origin of our definition of < for the integral system (N, ’, 0). For

m, n in N, we define
m < n

if n € Dm, the set of descendants of m under . Those properties of sets

of the type Dm which will prove useful in developing consequences of
this definition are listed next.

D, Dn = {n} U Dv'

D.. Dn’ C [Dn]’, the set of successors of elements of Dn.

Ds. n& Dn'.

Dy Dm = Dn implies that m = n.

Ds. If & CMCN and A is closed under ’; then M = DF for a
uniquely determined 4 € N.

Proofs of Dy and D, are left as exercises. We prove Dj; by induction.
It is true for n = 0, since the contrary (0 € DO") implies that 0 is a
successor. Assume that n & Dn’; to prove that n’ & Dn'. Assume, (o the
contrary, that n” € Dn”. Since Dn”" C [Dn'] by D., we have n’ = ¢

~ S / - Y -— / e ~y7 N . . :
for ¢ in Dn’. Hence n(= ¢) € Dn » contrary to the induction hypothesis.
This completes the proof of D,

To prove Dy, assume that Dm = Dn and m # n. In view of D, it
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follows that m € Dn’ and hence that Dm € Dn'. Thus, Dn € Dn’. But
this contradicts the identity Dn’ C Dn, which follows from D, and D,
Thereby, Dy i1s proved. Hints for proving D; appear in an exercise.

We are now in a position to prove the basic property of the relation <.

THEOREM 1.3. The relation < well-orders N.

Proof. The reflexivity and transitivity of < are immediate; its anti-
symmetry follows from Dj. Thus, < partially orders N. It remains to
prove that a nonempty subsct of N has a least member. Assume that
7 C PC N and that AP is the intersection of the collection of all
closed subsets of N which include P. Then AP is closed under * and
hence, by D;, AP = Dk for a uniquely determined £. Now £ € P,
since the contrary implies in turn that 2 & DA', AP C DK, Dk © DI,
and this last inclusion 1s false. Further, if p # £ and p € P, then
p € DE'; that is, £” < p. Since £ < K/, it follows that £ < p, so k is
the least member of P.

Addition of natural numbers as understood intuitively, numbers
among 1ts virtues the following two properties. FFor all natural numbers
m and n, O +n =n and m" 4+ n = (m + n)’. According to the next
theorem it is possible to define exactly one operation « in N, regarding
(N, 7, 0) as an integral system, with these two properties. As such, «
takes on the role of the only possible candidate for an operation in N
which might have all the properties of intuitive addition. That 1t does
is anticipated by our calling « “addition” from the outset and designat-
ing the value of a at (m, n) by “m + n.”

THEOREM 1.4. TFor the integral system (N, ’ 0) there exists ex-
actly one function a: N X N — N such that

(I) for cach nin N, «(C, n) = n, and
(IT) for all m and nin N, a{m’, n) = (a(m, n))’.
This function is addition in N; a(m, n) will be abbreviated to m 4 n.

Proof. Let n be a fixed element of N. Define g: N X N — N where
alx,y) = 9'. According to Theorem 1.2 there exists exactly one
function

a,: N — N where «,(0) = n and a,(m’) = glm, a,(m)) = (a,(m))’.

Now define a by alm, n) = a,(m) for m, n in N. Clearly this function
satisfies (I) and (I1). To prove its uniqueness, let v be any function on
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N X N into N such that v(0, n) = n and v(m’, n) = (v{m, n))’. For
cach n define y,: N = N by

Yu(m) = ~v(m, n).
Then v,(0) = v(0, n) = n and
Yu(m') = v(m', n) = (vm, n))" = (vu(m))’.

[t follows from Thecorem 1.2 that v, = «, for cach n. Thus, for m, n
in N, a(m, n) = a,(m) = v,(m) = v(m, n). Hence, a = 7.

=V

THEOREM 1.5. Addition in N has the following propertics.

A1 Associativity. For all m, n, and p in N,

m—+ (n4p) = (m+n) + p.
A,.  Commutativity. For all m and » in N, m—+n=n-+ m.
Az Cancellation laws. For all m, n, and pImMN p+m=p-+n
implies m = n and m + p = n + p implies m = n.
Ay For all m and n in N, m < n iff there cxists p in N such
that p + m = n.
As. Forallm,n,and pin Nym < niff p+m < p + n.
Ag. Forallmand nin N, m + n = 0 impliesm = 0 and n = 0.
Proof.  We verify in turn A=A;. In the notation adopted for addition,
its assigned propertics appear as 0 + 7 = nand m’ +n = (m + n)’.

A;. Let n and p be fixed and let
M = {m& Nlm + (n +p) = (m + n) + p}.

Then 0 € M since 0 + (n 4+ p) = (0 + n) + p. Assume that
m & M. Then

m +n+p)=Im+ n+p) = [(m+n + pl
=m+n)+p=m4+n +p

so that m" € M. Hence M = N and the proof is complete.
Az As a preliminary step we prove that for a fixed m, n’ + m =
n—+ m’ for all » in N. This is true of 0, since 0/ 4+ m =
(0 4+ m)" = m’ = 0+ m'. Further, if it is true of » then it is
truc of n"since (') 4+ m = (' +m) = (n + m’") = n' + m'
The assertion then follows by 1. It is applied 1n the last
step of the proof of the next statement. 1f for n hxed, N, =
tm € Nlm + n = n 4 m}, then N, C N,. Indeed, if m € N,
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thenm’ +n=m+n) = mw+m =n+m=n-+4+m
That is, m" € N,.
We can now prove A, Clearly 0 € Ny, and this with the
inclusion Ny € N, implies that Ny = N. Hence 0 € N, and
this with N;, € N, implies that N,, = N, which proves A,.
A;. We prove the contrapositive of the first statement. If m, n are
distinct fixed natural numbers, then p 4+ m # p -+ n for all p
in N. Clearly 0 € {p € N'p 4 m 5 p 4 n{. Assume that pisa
member of this set. Then p 4+ m # p + n, from which 1t fol-
lows that (p 4+ m)" ## (p + n)';or p" + m 5 p’ + n. This com-
pletes the proof that p 4+ m = p 4+ n implies m = n. The
second asserton then follows, using A..
A, Let m and n be natural numbers with m < n. Then

{x € Nlx 4+ m > n}

is nonempty (indeed, one can prove by induction that
n+ m > n for all m and n) and consequently has a least
member p by Theorem 1.3. Either p +m =norp +m > n
Assume that p 4+ m > n. 'Then clearly p # 0 and henee pis the
successor of a natural number ¢. Thus ¢' + m = (¢ 4 m)" > n,
which implies that ¢ + m > n. Since ¢ < ¢' = p, this yields a
contradiction. Hence p + m = n.
The converse, which asscrts that if p 4+ m = n then m < n,
follows from the relation m < p + m mentioned above.
As. If m < n, then d + m = n for some d # 0, using A;. Hence

p+n=p+Wd+m=(p+d +m

=d4+p)+m=d+ (p+ m).
Thus, by Ay, p +m < p + n and, since d 7 0, the strict in-
cquality p + m < p + n follows. The proof of the converse 1s
left as an exercise.

As. We shall prove the contrapositive statement. 1t m 7 0 or
n# 0, then m + n # 0. Assume that m % 0. Then there
exists p such that m = p’. Hence m +n = (p + n)” and, con-
sequently, m + n ¥ 0, being a successor. Similarly, if n 7 0,
then m + n # 0. Thus, if m or n is different from zero, so
1s m + n.

Multiplication of natural numbers, as understood intuitively, enjoys
the following two properties, among others. Ior all natural numbers i
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and n, On = 0 and m'n = mn 4 n. According to the next thcorem it is
possible to define exactly one operation u in N, regarding (N, ’, 0) as an
integral system, with these two properties. Accordingly, u takes on the
role of the only possible candidate for an opcration in N which might
have all the properties of intuitive multiplication. That 1t does 1is
anticipated by our calling p “multiplication” from the outset and
designating the value of u at (m, n) by mn.

THEOREM 1.6. For the integral system (N, ’, 0) there is exactly
one function u: N X N — N such that

(I) for ecach nin N, u(0, n) = 0, and
(II) for all m and n in N, u(m’, n) = u(m, n) + n.

This function is multiplication in N; u(m, n) will be abbreviated to
m + n or simply mn.

Proof. Let n be a fixed element of N and let g: N X N — N where
g{x,y) = y + n. According to Theorem 1.2 there exists exactly one
function

pn: N—>N  where w,(0) =0 and wu,(m)
= g(m, un(m)) = w.(m) + n.

Now define u by u(m, n) = w,(m) for m, n in N. Clcarly this function
satisfies (I) and (II). Its uniqueness may be inferred {rom that of u,
for cach n.

TITEOREM 1.7. Multiplication in N has the following properties.

M. Associativity. For all m, n, and p in N, m(np) = (mn)p.

M,. Commutativity. For all m and n in N, mn = nm.

M;.  Cancellation laws. For all m, n, and p in N, p # 0 and
pm = pn or mp = np imply m = n.

M;. Distributivity over addition. For all m, n, and p in N,
m(n -+ p) = mn 4+ mp and (n 4+ pym = nm + pm.

M;. For all m, n, and p in N, p # 0 implies that m < n iff
pm < pn.

M;. For all m and nin N, mn = 0 implies thatm = Oor n = 0
or, what i1s equivalent, if m 5 0 and n # 0, then mn # 0.

Proof. It is convenient to prove these properties in the order M, M.,
M,, Mg, M;, M.
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For fixed n and p, consider {m € Nim(n + p) = mn -+ mpy.
Clearly 0 is a member of this set, and if m is a member then
so is m’, since

m'(n+p) =mn+p) +0t+p = (mn -+ mp)
+n+p)=(mn+n) + (mp+p) = m'n 4+ m'p.

This establishes the first distributive law in M. The second
follows from this and M., which we prove next.

[t is left as an exercise to show by induction that for all n
in N, n0 = 0 and n0" = n. Assuming these preliminaries, fix n
and consider {m € Nlmn = nm}. This set contains 0 since
On = 0 = n0. Assume it contains m. Then it contains m’,

since

mn = mn+n=nm-+n=nm-+n0" =n(m—+ 0")
= n(0" 4+ m) = am’,

where we have used the preliminary result 2’0 = n and the
one distributive law already proved. Hence M, follows by the
principle of induction.

For fixed n and p consider {m € Nim(np) = (mn)p}. This set
contains 0, and if it contains m then it contains m’, since

m' (np) = mnp) + np = (mn)p + np = (mn + n)p = (m'n)p.
Assume that mn = 0 and m # 0. Then m = p’ for some p.
Hence 0 = mn = p'n = pn + nandn =0 by Asg.

Assume pm = pn and p # 0. Since < simply orders N, either
m < norn < m. Ifm < n then by Ay, n = d -+ mfor some d.
Then

0+ pm = pm = pn = p(d + m) = pd + pm.

Hence, by As, 0 = pd. This and p # 0 imply that d = 0, by
M,. Hence m = n. The proof is similar starting with n < m.
The other cancellation law then follows, using M..

Assume that m < n. Then, by Ag, n = d + m for some d # 0.
Hence pn = pd + pm where pd 5% 0 by M. Hence pm < pn
by A;. The converse is left as an exercise.

We have stressed the fact that the preceding definitions of an order
relation and the operations of addition and multiplication in N are
based solely on the assumption that (N, 7, 0) is an integral system. [tisin
order to prove that the indiscernibility of two integral systems, as
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described in Theorem 1.1, extends to the case where the ordering
relation; addition and multiplication are incorporated into each.

THEOREM 1.8. Let (X] s, x) and (X* s* x§) be integral systems.
Let 4, -, and < be the addition, the multiplication, and the ordering
rclation, respectively, in X which satisfy the carlier definitions. Let
+* % and <* be the corresponding relations in X*. Then there
eXists a one-to-one mapping f on X onto X* which preserves each of
these relations in the following sense:

(1) flx +y) = flx) +7 f(»),
(2) flx - 3) = flx) ¥ f(y),
(3) x < vifl f(x) <*f()).

Proof.  According to Theorem 1.1 there exists a onc-to-onc mapping
Jon X onto X* such that f(x)) = xf and f(xs) = (f(x))s*. This map-
ping fulfills the conditions (1)=(3). To prove that (1) holds we fix y
and consider ¥ = {x € X|/(x +y) = f(x) +%f(y)}. Then x, € 1,
since f(xo +y) = f(y) = x5 +*f(y) = flxo) +*f(3). Also, if x € 1,
then

Jxs +y) = f((x +3)s5) = (fx + y))s*
(f(x) +757(0))s* = (f(:))s* +* /()
= flxs) +% (),

soxs € Y. Hence YV = X

The proof that (2) holds for / is left as an exercisc. That f preserves
the ordering relation in both directions may be inferred from (1) and
the characterization of the ordering relation in terms of addition
given in Ay of Theorem 1.5.

Il

This concludes the first stage of the derivation of basic propertics of
the natural number sequence regarded as an integral system. Upon
abbreviating 0" by 1, the successor 2’ of n can be written as n + 1, since
n=04+n"=n+0 =n+ 1, and we shall henceforth do so. In the
next section deeper properties concerning definition and proof by 1in-
duction are considered. Among the applications discussed is the unique
factorization theorem for N. As a consequence of Theorem 2.2 there
follows the general associative laws for addition and multiplication,
which generalize Ay and M. Among the exercises for Section 2 appcars
the general commutative law for any commutative composition; this
yields commutative laws for addition and multplication which gen-
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eralize A, and M,. Finally, a general distributive law can be derived
from M, by induction.

In brief, regarding the natural number sequence as an integral system,
all of the familiar arithmetic of the natural numbers can be derived.

EXERCISES

1.1. Show that a set X, together with a function f, determines an integral
systern provided that (i) fis a one-to-one map on A onto a proper subset of .Y,
and (i1) whenever 1 is a subset of X" such that }" contains an clement of X' —
[X]fand [V]f C }, then ¥V = A,

1.2. This exercise is concerned with the Peano axioms in Example 1.2. So
they may be considered objectively, we rewrite them as assumptions about a
set X

Pr. xo € X; thatis, A 1s nonempty.

P%. ’/is a mapping on X into X',

Pi. If x, y € X, and x’ = y/, then x = y.

Pi. If x € X, then x’ # x.

P:. If ¥ C X and xy € } and, whenever y €} then y € F, then V' = .

Show that P3P imply that .Y, together with the function defined in P35, and xo
form a unary system which satisfies 1.

1.3. Construct examples of systems which satisfy each combination of four
of the five Peano axioms in Exercise 1.2 but violate the remaining one.

1.4. Complete the proof of Lemma 1.1.

1.5. Complete the proof of Lemma 1.2.

1.6. Complete the proof of Theorem 1.2.

1.7. Establish D; and D. as properties of descendants.

1.8. Establish Ds as a property of deseendants by first proving thatif n & M,
then Af C Dn’. Deduce that if, in addition, n’" € A, then M = Dn’. Then
proceed with the proof of Dy by considering the case where 0 € M and that
where 0 & A.

1.9. Let X be a set, g0 X — X, and n be a fixed element of N. Show that
Lemma 1.2 implies that for each x in Y there exists exaetly one clement y in .\’
such that (n, y) is a member of the set of descendants of (0, x) under 'Vg. The
resulting function on X into X" we designate by g”. Show that ¢ = u, gt =g,
and g’ = g" o g for all nin N.

1.10. Let B: N X N = N with (m, n) = ns" where s is the successor func-
tion on N and s* is defined in Exercise 1.9. Show that 3 1s addition 1in N.

1.11. Complete the proof of A; and A in Theorem 1.5.

1.12. For n in N define t,: N = N by at, = a + n. Show that the function
y: N X N — N with v(m, n) = 04 is multiplication in N.

1.13. Complete the proof of Mj in Theorem 1.7

1.14. Theorem 1.4 is applicable to any integral system. Determine the func-
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tion a of Theorem 1.4 for cach of the integral systems (a) and (b) defined in

Example 1.1.
1.15. Theorem 1.6 is applicable to any integral system. Determine the func-

tion u of Theorem 1.6 for the same two integral systems.
1.16. Using Theorem 1.5, show that in N

(a) ifx =y +wandy = x + v, then x = y, and
(b) if x +u =y and y + » = «/, then either « = 0 or » = 0.

1.17. Prove that for a, b in N with b = 0, there exist unique elements ¢ and r
of N, such thata = ¢gb 4+ r where r < b. This is the division algorithm for N,

1.18. Let S be a set such that there exists a one-to-one mapping F on S ono
a proper subset of §. Then /7 induces a mapping f on ®(S) into @(S) in an
obvious fashion and (®(S), f, §) is a unary system. Form D,S and define
52 DpS = DpS by As = f(A4). Show that (D,S, 5, .S) is an integral system.

2. Proof and Definition by Induction

In the preceding section we described and repeatedly used the prin-
ciple of induction as a method of proof. There is a second form of this
principle which also finds many applications. To distinguish the two, let
us call that one already discussed the principle of weak induction. In
weak induction, to prove that P(n) for all natural numbers », one proves
P(0) and then derives P(m + 1) from the assumption that P(m). In the
sccond form of the principle, which we call the principle of strong in-
duction, onc assumes cach of P(0), P(1), ---, P(m) and uses them to
derive P(m + 1). With more assumptions, in general, it is casier to derive
P(m + 1). Hence, strong induction finds applications as a method of
proof where direct application of weak induction would be difficult. A
precise formulation of the principle follows; as before, P(n) stands for
“the natural number n has property P.”

If P(0), and if, for cach natural number m, P(r) for all » < m implies
P(m + 1), then P(n) for cach natural number n.

The validity is an immediate consequence of the following theorem
and 1s left as an exercise.

THEOREM 2.1. Let M be a set of natural numbers such that

(I) 0 € M, and
(I1) if r € M for each r < m, then m + 1 € M.

Then M = N.
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2.2 I Proof and Definition by Induction /1
Proof. Consider N — M. If this set is nonempty then it contains a
least member, by Theorem 1.3. This number is not 0 by (1) and hence
may be written in the form m 4 1. Then, for cach r < m, r < M.
By (I1) it follows that m + 1 € A, contrary to the choice of m + 1.
Thus, the assumption that N — Af is nonempty leads to a contra-
diction. Hence M = N.
Our formutation of both the principle of weak induction and that of

strong induction has been for the case where the induction begins with 0.

FEach case can be generalized to start with any natural number ny. In

this circumstance the conclusion reads ““for all natural numbers n = ny,

P(n).”

EXAMPLES

2.1. As an illustration of a proof by strong induction we prove the theorem
that every integer greater than 1 has a prime factor, starting the induction
with 2. Obviously 2 has a prime factor. Assume the theorem for all m with
2 < m < n and consider n + 1. If n 4 1 has no factor a with 1 < a <n + 1,
then n + 1 is a prime and has itself as a prime factor. If n» + 1 has a factor
a with 1 < a <n-+ 1, then 2 < a < n. By the induction hypothesis @ has a
prime factor b, which is then a prime factor of n + 1. Thus, in every case,
n + 1 has a prime factor.

2.2. As a somewhat more important illustration of proof by strong induction,
we prove next what is often called the fundamental theorem of arithmetic:
Every natural number greater than 1 has a representation as a product of
primes that is unique to within the order of the factors. Again we begin the
induction with 2. Clearly, 2 has such a representation. Assume that all num-
bers less than n have unique representations and consider n. The set of divisors
of n which are greater than 1 is nonempty and, hence, has a least member p.
Then p is a prime since a divisor ¢ of p with 1 < ¢ <p would be a smaller
divisor of n. If n = pmy, then my has a unique representation by the induction
hypothesis. Replacing ny by its unique representation as a product of primes
yields a representation of n = pny as a product of primes, and this is the only
representation of n which contains p as a [actor. If the theorem is false for n
then it has a second representation. If ¢ is the smallest prime present in this
second representation, then ¢ > p, since this other representation of n does not
involve p and p is the smallest divisor (> 1) of n. Let n = gns and ¢ = p + d.
Then n = pns + dne. Since p divides n, p divides dna. Now dnz < n and, conse-
quently, has a unique representation. Hence, p divides 4 or p divides no. But p
is not a factor of ne since it contains no factor less than ¢ and ¢ > p. Thus p
divides 4. Let d = 1p. Then ¢ = p +1p = p(1 +r). This is a contradiction
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since ¢ is a prime. Thus n» has no decomposition other than the essentially
unique decomposition with p as a factor.

We consider next definition by induction. Two examples which have
alrecady been given are that of addition and that of multiplication in N.
These were justified, we recall, by an appeal to Theorem 1.2. A defini-
tion which can be justified by an appeal to Theorem 1.2 is called a
definition by weak induction. Other examples of this type of definition
arc that of 4 (for a real number 4 and a natural number ») as

bO — 1) bn—i—l — b k. bn’
and n! (for a natural number 2) as
0! =1, m+D!'=m+1)-nl

The reader may question the necessity of resorting in such cases to
Theorem 1.2 or, what amounts to the same, the complexity of the proof
of Theorem 1.2. For he may be satisfied with the following argument
'that the two conditions
k(0) = ¢,
k(n + 1) = gln, k(n)),
where—restating the hypothesis of Theorem 1.2, ¢ is a given constant,
and g is a specified function of two arguments—do define a function £.

Clearly (so the argument gocs) the two conditions define £(0). Then
with the choice of 0 for » in the second, £(1) is specified :

k(1) = g(0, £(0)) = £(0, ¢).

Next, setting n = 1 in the second condition, £(2) is specified :
k(2) = &1, k(1)) = g(1, g0, o).

Procceding in this manner, 4(n) is uniquely specitied for any given.
natural number and only such. Thus, a function whose domain is N
has been defined.

There is an error in this intuitive reasoning. T'o disclose it we recall
that a function is a set, so that to define a function is to define a set (of a
certain kind). The procedure just employed permits one to define as
many members as he chooses [namely, (0, £(0)), (1, (1)), -, (n, k(n)),
for any preassigned n] of a certain set, but it does not yield a definition
of the set consisting of all such ordered pairs, unless the function which
the Intended sct is to defince is already known. In brief, the error consists

in using a function symbol without first giving a function for it to
denote.
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Admittedly, the intuitive argument does make it plausible that the
two conditions define exactly one function, and the proof of ‘Theorem 1.2
settles the matter.

Another instance of a definition by weak induction (as well as a proof
by weak induction and one by strong induction) occurs in the dertvation
of the general associative law for an arbitrary associative operation in a
set. Reference has already been made to this result. The setting in which
to view it may be described as follows. Up to this point we have con-
sidered several (binary) operations in various sets. By definition, these
are functions of the form f: X% — X where X is some set and X* 1s an
abbreviation for X X X. Each of the following notations has been used
for the image of <a, b) under [ at one time or another: @ U b, a N0,
a-b, ab, a -+ b. In order to achieve impartiality so far as notation 1s
concerned in this discussion, we shall use @ » b for the image of (a, b).
In terms of /, two ternary operations in .Y —that is, mappings on X”
into X—may be defined. One of these maps {a, b, ¢) onto (@ * b) * ¢ and
the other maps (a, b, ¢) onto a * (b * ¢). Similarly, a total of five 4-ary
operations in X" may be defined in terms of /. These are the mappings
on X into X, such that the image of {(a, b, ¢, d) is onc of

((a *b) *¢) *d, (a (b *c)) *d, (@ *b) * (c *d),
ax ((bxc)*d), ax (b *(cxd)).

In like fashion f scrves to generate n-ary operations in X for n > 4. For

an arbitrary n (> 2) let us call the image in X of {4y, @, -+ -, a,) in X"
under an n-ary operation originating with / a composite of ay, as, -+ -, a,
(in that order). Such an entity is simply the string ay * ay * -+ - * a,,

together with sufficient parentheses to specify unambiguously n — 1
applications of /. If [ has the property that, for all a, b, and ¢ in A

ax*(bxc) = (axb)x*c,
that is, /is an associative operation in .\ (or satisfies the associative law,
as it is often expressed), then the various composites of ai, ag, - - -, an arc
all equal to cach other. This is the general associative law, which we
now prove.
THEOREM 2.2. lLet {(a, b) > a * b be an associative opcration 1n

X. Then all composites of ay, as, - - -, a, are equal. The common value
will be written as ay * as * + -+ * a,.
Proof. We use weak induction to define a particular composite
iz%a;, of a1, as, -+, an forn 2 1:

Iz 1a: = ay, [Mizntlg, = (TI{Z%a;) * @y
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Now we prove that for all m, n > 1,
(A) (M7a,) *+ (Mans;) = 0 ™ as

et n be fixed; we prove by weak induction on m that the relation
holds for all m > 1. It is true for m =1 by definition. Assume that
it is true for m and consider the case m + 1. We have

(Ila,) « 1y *a, ;= Ha * ( (17a, ;) * Unimi1)
= ((I}a,) * UV a,.;) * Ansmtr
= (H’l’*"’(l,-) * Uy pm 41
= Iy a,

as required. Thus (A4) is vahd for all m, n > 1.

This property of the particular composite defined is used to prove
next by strong induction on 7 that any compositc of ai, @, ***, an,
n > 1, is equal to ITfa;. Clearly this is truc for n = 1. Assume 1t true
for all composites of r elements of A’ with r < n, and consider any com-

posite associatcd with {ay, az, =+ 5 any1). By definition it is a composite b
x ¢, where b is a composite associated with {ay, @, -+, a) and ¢cisa
composite associated with (@riry Qrazy © 0y Gnpr). 10T =1 then 6 =

"a; by the induction hypothesis, ¢ = an41, and b *c = M 'a; by
the definition of Il%a;. The proof is then complete for this case. Other-
wise, r < n and by the induction hypothesis

b = Il as, ¢ = It ap g
Then b = ¢ = %a; by (A4).
It follows that all compositcs of ai, a», - -+, an arce cqual, each being

equal to 1l1a..

Theorem 1.2 can be extended to the following result.

THEOREM 2.3. Let B be any nonempty set and ¢ a given func-

re
ca
sh

ton on B* ! into B for n > 2. Let g be any function on N X B*
‘nto B. Then there exists exactly one function A: N X B '— B
such that

’1‘7<0> N2y ° n) = C('\"la T .\‘,,),

ceLX
k(', x3, * * -, & g, k(x, xay -0y X)), X2yt )

The resulting function 4 is said to be obtained from ¢ and ¢ by primitive

cursion. One may think of the carlier theorem as being the special
se which results when all “parameters’™ xy, -« -, x, arc absent; thus we

all also say that the function £ of "Theorem 1.2 is obtaincd by primitive
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recursion. Hints for a direct proof of Theorem 2.3 are given in an exer-
cise.

There 1s considerable interest in the class of number-theoretic
functions (that is, functions on N” into N where p > 1), which can be
defined by induction in an elementary way. One motivation for this
lies in the possibility of computing values of such functions by purely
mechanical means—by a set of instructions which require no “creative”
thought in their execution. The operation of primitive recursion enters
naturally into such considerations, since if ¢ and ¢ are number-theoretic
functions which are computable by mechanical means, then the same
appears to be true of the function £ obtained from ¢ and ¢ by primitive
recursion. Another operation which appears to produce computable
functuons from computable functions is that of composition in the follow-
ing extended sense of our earlier usage of this term: The function
h: N* — N is obtained by composition from functions f: N” — N and
gieN*—=>N =12, --- mif

/l'(.xla Tty ) = /(\gl(cxlz T .’C"), T g"l(.'\"la T .\',,)).

The function £ obtained in this way will sometimes be written as
Se(f, a1, - -+, ). I we specify an initial supply of functions which are
judged to be computable, then all functions obtainable by the operations
of composition and primitive recursion should be of the same sort. Such
considerations may be taken as motivating the definition of the following
class of functions.

As the initial supply of functions we take those of the following three

types.

(I) The successor function .S on N : .S(x) = x".
(II) The constant functions C? : N* — N, where Cj(xy, - -+, x,) = g,
n=1,2 ---.
(I11) The identity functions Uy: N* — N, where

(';'ll’l (.\‘l> o .’ ./\..“ = .\.‘ 1‘,

1 <i<nandn=1,2,  --.

We next define a primitive recursive derivation to be a finite se-
quence fo, fi, - -+ . fi of functions, such that any member of the sequence
is either an initial function or else is obtained from preceding members
of the sequence by composition or primitive recursion. Then the class
that we have in mind, the primitive recursive functions, are thosc
functions / such that there is a primitive recursive derivation whose final
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member is f. This class contains all the numerical functions which one
ordinarily encounters, as well as others. Some examples follow.

EXAMPLES

2.3. Addition in N is a primitive recursive function. A derivation, wherein
we have used function values rather than functions in order to assist with the
understanding, is

S() =y, Usx, 2, 9) = 2 [(x, 2, 3) = S(Uiy, z,9)) = 2, Ui(y) =y,
[a(0,y) = Ui(y),
La('\‘/’ y) - f(.l', O((.\', ,"’)) )‘)
The first and sccond functions involved are initial functions, the third is obtained
by composition from them, the fourth is an initial function and, finally, a 1s
obtained by primitive recursion from the third and fourth. We leave for exer-
cises similar derivations for multiplication, the exponential function, and the
factorial function.

2.4. The predecessor of x, pd(x), is defined by pd(0) = 0 and pd(x’) = .
It is primitive-recursive by virtue of the primitive-recursive derivation:

Ci(x) = 0, Ui(x, y) = x,
{pd(O) = G,
pd(x") = Ui(x, pd(x)).

2.5. Proper subtraction, =, is defined by x -0 =x and «x -~y =
pd(x = ). Thatis, x =y =x —yif x > yand x ~y =0 if v <y. This 1s
a primitive-recursive function. To verify this we initially write 6(y, x) for x =y
and obtain the following primitive-recursive derivation for 6:

Ui(y, z, %), pd(2), f(3, z, x) = pd(U3(y, z, x)), Us(y 2, x),
‘fé(O, x) = U3(y, z, x),
160, %) = 00, 303, 2), .
Here we have taken a shorteut by listing the predecessor function as an initial
function instcad of a derivation for it. To cobtain x = y as the value of = at

(x, y) (instead of (y, x), as in §), three further steps are necessary:

Us(x, 9), U3Cs, 3), S36(x, 1), Us(e, ), Ui, ).

The exercises include further instances of primituve-recursive func-
tions. I'n addition to those listed above and in the exercises, 1t 1s possible
to establish as being primitive-recursive, for example, the function whose
value at n is the (n 4+ 1)th prime number, and the function f, (@ > 0)
whose value at n is the exponent of the nth prime number (in order of
increasing magnitude) in the factorization of @ into a product of primes,
where we regard the factorization a = 2%3%5%... as extending in-
definitely, with all but a finite number of exponents being 0. Further,
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it 1s possible to show that all functions which can be obtained by the
procedure that i1s described next are primitive-recursive.

Another form of definition of functions by induction parallels the
principle of proof by strong induction. Thus, it is often called definition
by strong induction and has, as its distinguishing feature, the possi-
bility of defining a function £ on N such that £(n 4 1) is specified in
terms of some, or all, of the values £(0), £(1), - -, k(n). Specifically, the
circumstances take the following form: There i1s given a nonempty
set B and a function £, such that for each natural number n; A assigns
to cach element of B! an element of B. Then £: N — B is supposedly
defined by the two conditions

k(0) = ¢ (a given member of ),
k(n + 1) = h(k(0), (1), -, k(n)).

As for A, it is convenient to think of it as a function whose range lies
in B and whose domain 1s the set § of all functions 7 having as domain
N, = {0, 1, -+, p} for some p and, as range, a subsct of B. For then the
intended value of £ at n + 1 is simply 4(£|N,), where AN, is the restric-
tion of £ to {0, 1, -+ n}. The theorem concerning such circumstances is

I

THEOREM 2.4, Let Bbeanonempty set, let ¢ be an element of B,
and let 4 be a function whose range lies in B8 and whose domain 1is
the set g of all functons j having as domain N, for some natural
number p, and as range a subsct of B. Then there exists exactly onc
function £: N — B such that

k(0) =¢ and k(n + 1) = Ak

Ny)

for each natural number n. Here AN, is the restriction ol £ to the
domain N,, = {0, 1,2, -+, n}.

Proof. We establish first the uniqueness by contradiction. Assume
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