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PREFACE 

The notions of set and function are introduced here and are 

discussed in some detail. 

Although we make several remarks concerning various axioms 

of set theory, we do not explicitly base our presentation on a set of 

axioms. While the reader should be warned about the non-validity 

of certain statements that may seem intuitive (for instance, there is 

no set containing as its elements all the sets), it is difficult, at this 

level, to present set theory axiomatically. * A thorough presentation 

of axiomatic set theory requires a description of formal systems. 

The main purpose of this text is to provide a basis for the study 

of various other fields of mathematics. The material we present is 

divided into thirteen chapters and two appendices. 

In Chapter 1 we introduce the notion of a set. After clarifying 

its meaning by a series of examples, we describe the use of the 

symbols “e” and 

In Chapter 2 we define the union, the intersection and the 

difference of two sets. We also define the complement of one 

set with respect to another. We establish various properties, for 

instance, the distributivity of intersection with respect to union 

and the duality (or de Morgan) formulas. 

In Chapter 3 we introduce the Cartesian product of two sets 

and the Cartesian product of n (n > 1) sets. 

In Chapter 4 we introduce the notion of function. A function 

is essentially defined as a subset of a Cartesian product, having- 

certain properties. A long series of examples of functions is given. 

* The interested reader may consult [1], [2], [7] and [10]. 

iii 



iv PREFACE 

We also show how to represent by a table a function having finite 

domain. 

In Chapter 5 we introduce the image and the inverse image of 

a set by a function, and we establish a series of results that will 

have useful applications. 

Chapters 6 and 7 deal with the composition of two functions 

and with the notion of inverse function. 

Chapter 8 deals with families, and in particular with families 

of sets. We define the union, the intersection and the Cartesian 

product of a family of sets and we establish various properties. 

In Chapter 9 we define equipotent sets. We give a series of 

examples and we establish the Schroeder-Bernstein theorem. 

Chapter 10 deals with relations. We discuss in some detail the 

notion of equivalence relation, since it is very often used in mathe¬ 

matics. 

In Chapter 11 we introduce and discuss order relations and 

state Zorn’s lemma, which has many applications in mathematics. 

Cardinal numbers are discussed briefly. 

Chapter 12 deals with mathematical induction in the setting 

of countable sets. 

Chapter 13 is concerned with combinatorial analysis. We 

establish here, as an application of the notions that were previously 

introduced, various elementary formulas. 

In Appendix I we discuss some of the properties of real numbers 

that we use in this text. 

In Appendix II we introduce the signature of a permutation. 

Although it is not necessary that the proofs in this Appendix be 

studied on a first reading, it is recommended that the statements of 

Theorem II. 10, Corollary 11.12, and Proposition II.6 be retained. 

The content of this Appendix (as well as some of the formulas in 

Chapter 13) is useful in multilinear algebra, which in turn is basic, 

for instance, in the study of multidimensional calculus. 

At the end of each chapter there are exercises, the solving of 

which will yield additional insight to the material. It will be very 

useful if the student tries to formulate and solve related problems. 

The authors wish to express their thanks to the Editorial staff 

of the Saunders Company for their cooperation and especially to 

Mr. George Fleming for his helpful suggestions concerning both the 

form and content of the manuscript. They also wish to thank 

Mrs. Pamela Frye and Mrs. Mae Leeds for their faithful and 

accurate typing of the manuscript. 



SOME REMARKS 

ABOUT NOTATION 

1. Passages appearing between the triangles ▼ and a may be 

omitted on a first reading. 

2. The symbol is sometimes used to indicate a statement 

the understanding of which may cause difficulty. 

3. The more difficult exercises are denoted by an asterisk. 

The Greek Alphabet 

The Greek alphabet is listed below since some of its letters are 

used in the text. 

A a alpha N V nu 

B P beta E 1 xi 

r r gamma O 0 omicron 

A s delta n 77 Pi 
E s epsilon p P rho 

Z i zeta 2 a sigma 

H V eta T T tau 

0 6 theta T V upsilon 

I i iota 0 V phi 

K K kappa X X chi 

A X lambda VF V psi 

M fX mu O CO omega 
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Chapter I 

Sets 

In this book we are basically concerned with the notion of 

set. We shall consider this notion to be primitive, and shall 

clarify its meaning by several examples. 

(1) Consider the set of all books in a certain bookstore. Each 

book in the store is an object of this set. 

(2) Consider the set consisting of the four letters u, v, w, z. The 

letter u is an object of this set; the letters v, w, z are also objects of 

this set. 

(3) The set consisting of the integers 1, 2, 3, , will 

be denoted N. The integers in this set are called natural integers or 

natural numbers. 

(4) The set of all integers . . . , —3, —2, —1, 0, 1, 2, 3, ... , 

will be denoted Z. 

(5) The set of all rational numbers will be denoted Q. 

(6) The set of all real numbers will be denoted R. 

We assume in this text that the sets N, Z, Q, and R and their 

usual properties are known. For more discussion and a bibliography 

on the subject, see Appendix I. 

It is often convenient to exhibit a set by displaying its objects 

between brackets. Thus, the set we gave in Example (2) can be 

written {u, v, w, z}.* Concerning this notation, we note that the 

order in which the objects are written is not relevant. For instance, 

{u, v, w, z} and {«, w, z, v} represent the same set. 

* Whenever we use this notation, we agree that we may list the same element more 
than once. For instance, {1, 1, 2, 3, 3} is the set whose elements are 1, 2, and 3; hence 

{1, 1,2, 3,3} = {1,2, 3}. 

1 



2 SETS 

(7) The set {a, — 1, 4, 7, d, 0} consists of the letters a and d and 

the numbers —1, 4, 7, and 0. Note that 

{a, -1, 4, 7, d, 0} = {a, d, -1, 4, 7, 0}. 

If t is an object, then we denote by {4} the set consisting of the 

single object t. We distinguish, therefore, between the object t and 

the set {t}. We will give a justification for this practice later. A 

helpful non-mathematical example was suggested by P. R. Halmos: 

A box containing a hat is not the same thing as a hat. 

Besides having sets consisting of one object, we shall consider a 

set that “does not contain any object.” This set will be denoted 0 

and is called the void set or the empty set. It will be seen later how 

convenient this set is. 

We shall now introduce and discuss certain notations. 

We shall usually denote sets by capital roman letters; objects 

(at least in theoretical discussions) will often be denoted by small 

roman letters. Instead of object we shall sometimes say element. For 

instance, in Example (2), given earlier, u is an element of the con¬ 

sidered set. 

Let now A be a set and a an object. The notation 

1.1 a e A 

means that a is an object of A. The notation 1.1 is read, “a is an 

element of A,” or “a is in A,” or even “a in A.” 

The notations a e A and Asa are considered to be equivalent. 

The notation Asa is read “A contains a (as an element).” 

If we consider the set {u, v, w, zj, we have, for instance, u e 

{u, v, w, zj. If we consider the set Z, for instance, then — 1 e Z. 
The notation 

1.2 a p A 

means that a is not an object of A. The notation 1.2 is read, “a is not 

an object of A,” or “a is not in A,” or “a not in A.” 

The notations a p A and A p a are considered to be equivalent. 

The notation A p a is read, “A does not contain a.” 

Example 1.—We have \ p Z, — 1 e Q, Z p }, Z s 5, Q s p. 

We have V2 e R and V2 p Q (see Appendix I). If B — {1, 2, 3, 

4, 5, 6, 7}, then x e B if and only if x is one of the numbers 1, 2, 3, 4, 

5, 6, 7. 
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Note also that x e {£} if and only if x = t. Also, y p 0 (or 

equivalently, 0 py) for any objecty. 

Let now A and B be sets. The notation 

1.3 A c B 

means that 

x e A implies x e B* 

Hence, A <= B if and only if every element of A is an element of B; 

there can be, of course, elements of B that are not elements of A. 

The notation 1.3 is read, “A is contained in B.” If A <= B, then we 

say that A is a part or a subset of B. 

The notations A c= B and B ^ A are considered to be equivalent. 

The notation B == A is read, “B contains A.” 

Remarks.—(i) Let A be a set and a an object. Then a e A if and 

only if {a} c: A. 

(ii) If a is any object, we have a e {a}; we do not have a <= {a}. 

(iii) For every set A, we have A => 0 and A ^ A. 

Example 2.—We have {1, 2, 3, 4} <= {1, 2, a, 3, 4}. We have 

0 £ {0, {0}}. 

Let again A and B be two sets. The notation 

1.4 AT B 

means that A is not contained in B. This, of course, means that there 

exists an object that belongs to A and that does not belong to B. The 

notation 1.4 is read, “A not contained in B.” 

The notations A T B and B 4> A are considered to be equiva¬ 

lent. The notation B T A is read, “B does not contain A.” 

Example 3.—We have Q. However, 0 4^ since, for 

instance, p £ Q but | p N. We have Q c R and Qyti R (notice that 

V2 £ R and V2 p Q). 

Two sets, A and B, are equal if they consist of the same objects. 

Therefore, they are equal if x £ A implies x £ B and x £ B implies 

* A statement such as “xG/1 implies x £ B" is equivalent to “for every x, xG-4 

implies x £ B.” 
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x e A. Henge: 

1.5 A = B if and only if A c B and B c /l. 

Before proceeding further, we state the following properties: * 

1.6 Let A, B, and C be three sets. Then 

(i) Ac A; 

(ii) A = B if and only if B c A and Ac B; 

(iii) Ac B and B c C implies Ac C. 

For every set X, we denote by £A(X) the set of all subsets of X. 

Note that the elements of £A{X) are also sets (namely, sets that are 

subsets of X). Note that: 

0 e &{X) and X e 

Example 4.—If) If X = {1, 2, 3}, then &■ (X) = {0, {1}, {2}, 

{3}, {2,3}, {1,3}, {1,2}, {1,2,3}}. 

(ii) If Y = {a}, then SP{Y) = {0, {a}}. 

(iii) If Z = 0, then YP(Z,) = {0}. Note that 3P{Z) 0. 

Sets of the form 3P{X) will often be used in what follows. 

We shall now explain three symbols that will frequently be 

used to abbreviate certain statements. The symbols are given on the 

left of the page; on the right we indicate the word or words that 

these symbols may replace. 

=s> implies 

<= is implied by 

o if and only if or is equivalent to 

Example 5.—Let A, B, and C be three sets. Then 

Ac B and BcC^AcC; 

a e A and Ac B => a £ B; 

A = B o Ac B and Be A; 

Ac B o (x £ A ^ x e B); 

t is an object => t p 0 ; 

a p B <=> B p a. 

(8) We denote by Z the set of all positive integers. 

(9) We denote by Q+ the set of all positive rationals. 

(10) We denote by R+ the set of all positive real numbers. 

* The first two have been already discussed above. The proof of the third is obvious 
and is left to the reader. 
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In our terminology, the number 0 is positive. A number 

(integer, rational, or real) is strictly positive if it is positive and ^ 0. 

A number is negative if it is not strictly positive. A number is strictly 

negative if it is negative and ^ 0. 

The positive integers are the numbers 0, 1,2,.... The 

strictly positive integers are the numbers 1,2,.... A rational 

number is positive if and only if it can be written in the form n/m 

with n G Z+, m e TV. A rational number is strictly positive if and 

only if it can be written in the form n/m with n e N, m G N. 

Certain sets can be conveniently written by using the following 

notation. After several examples, the reader should understand 

how to use this notation. 

(i) The notation {x \ x e N, x >4} represents the set con¬ 

sisting of the integers 4, 5, 6, 7, ... . 

(ii) The notation {x | x G N, 0 < x <5} represents the set 

{0, 1,2,3, 4, 5}. 

(iii) {x | X g Z, X2 = 4} = {-2, +2}. 

(iv) {x | x G Q, x2 = 2} = 0 (see Appendix I). 

(v) (x j x g/?, x2 = 2} = {-A/2, V2}. 

(vi) {x | x G Z, x > 1} = N. 

(vii) If X is any set, then {A | A <= X} = SP^X). 

The set {x | x g N, x > 4} is read, “the set of all x g TV such that 

x > j-.” The set {x | x e Q, x2 = 2} is read, “the set of all x g Q 

such that x2 = 2.” In a similar way, we read the other sets just 

given. 

Exercises for Chapter 1 

1. Decide whether the following assertions are true or false: 

(a) {l, a, 2,3}c {1,2, 3, a}; 

(b) {l,a}G{l,fl,2}; 

(c) {y, x}c {x,j}; 

(d) {x,j}c= {{x}, {x,y}}; 

(e) x G {{x}, {x,y}}. 

2. Decide whether the following assertions are true or false: 

(a) 0 e 0 ; 

(b) 0 <= 0 ; 
(c) 0 e {{0}, x}; 
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(d) 0 e {0}; 

(e) {0, {0}} g {0, {0}, {0, {0}}}; 

(f) {0, {0}}c {0, {0}, {0, {0}}}; 

(g) 0>{X) c {^(Jf)} where X is a set. 

3. Define ,40 = 0, J1 = {0}, ^2 = {0,{0}}, A3 = {0, 

{0},{0, {0 }}} and A4 = { 0, { 0 }, { 0, { 0 }}, { 0, { 0 }, { 0, { 0 }}}}. 

Decide whether the following statements are true or false: 

(a) A2 g A3; 

(b) i2C 

(c) A, eA3; 
(d) A,<= A3; 

(e) A2 e A4; 

(f) A2 <= A4. 

4. Let X and Y be two sets. Show that 

Ic Y o 0>{X) c 

5. Construct the sets 

(a) 0>({a, {a, b}}); 

(b) ^(^(^(0))). 

6. Show that 

{{*}> {x,y}} = {{«}, {a, b}} o x = a and y = b. 



Chapter 2 

Union, Intersection, 

Difference, 

Complement 

We shall define and discuss in this section the union, the 

intersection, and the difference of two sets. We shall also define and 

discuss the complement of a set (with respect to a set containing the 

given set). 

Union.—Let A and B be two sets. We define the set A U B by 

2.1 xeAuB o x e A or x e B. 

Hence, Avj B is the set of all objects that are at least in one of 

the sets, A or B. 

The set Au B is called the union of A and B; it is read, “A 

union B.” 

Example l.—(i) {1, 4} u {2, 5} = {1, 2, 4, 5}. 
(ii) {1, 3, 4} u {2, 3} = {1,2, 3, 4}. 

(hi) (1, 2} u {{1, 2}} = {1,2, {1,2}}. 

Intersection.—Let A and B be two sets. We define the set 

A n B by 

2.2 xeAnBoxeA and xgB. 

7 



8 UNION, INTERSECTION, DIFFERENCE, COMPLEMENT 

Hence, A n B is the set of all objects that belong to both sets, 

A and B. 

The set A n B is called the intersection of A and B; it is read, 

“A intersection B.” 

Example 2.—(i) {1, 2, 3} n {1, 5} = {1}. 

(ii) {l,3}n {5, 7,6} =0. 

(Note that this intersection could not have been expressed without 

using the set 0.) 

(iii) Nn Z = N. 

(iv) Zn Q = Z\ Qn R = Q. 

The sets A and B are said to be disjoint if A B = 0. Hence, 

the sets in Example 2(ii) are disjoint. The sets A1} A2, . . . , Av 

are said to be pairwise disjoint if At n T,- = 0 for all 1 < i < n, 

1 <j < n, i ^j. 

We shall now illustrate the union and intersection of two sets 

in the following way: Suppose A and B are as illustrated in Figure 1; 

then A U B is the shaded part. Suppose now that A and B are as 

illustrated in Figure 2; then A n B is the shaded part. If A and B 

are as in Figure 3, then A n B = 0. 

We shall give now some properties of the union and intersection 

of sets. We shall not prove here all the properties we state; however, 

FIGURE 3 



UNION, INTERSECTION, DIFFERENCE, COMPLEMENT 9 

we recommend that the reader write the proofs of all the assertions 

(even when these assertions seem obvious). 

2.3 Let A be a set. Then 

(i) A u 0 = A, A n 0 = 0 ; 

(ii) Au A = A, An A = A. 

For example, by 1.5, A U 0 = A if and only if A U 0 t A 

and A c A U 0. Let x e A U 0. Then x e A or x e .0. Since 

the set 0 contains no element, we must have xeA; therefore 

A U 0 c A. Conversely, if x e A, then x e A or x E 0 ; hence 

x e A U 0 ; therefore A c A U 0. This completes the proof. 

2.4 Let A and B be two sets. Then 

(i) Au B = Bu A, An B = B n A; 
(ii) Ac Au B, A=> An B; 

(iii) Ac B o Au B = A; 
(iv) Ac B o An B = B. 

2.5 Let A, B, and C be three sets. Then 

(i) Au {BuC) = [Au B) uC; 

(ii) An (B nC) = (A n B) n C. 

The assertions in 2.4(i) express the commutative property of 

the union and the intersection. Assertion 2.5(i) expresses the 

associative property of the union; assertion 2.5(ii) expresses the 

associative property of the intersection. 

2.6 Let A, B, A', and B' be four sets such that Ac A' and B c B'. 

Then: 

AuBcA'uB', AnBcA'nB'. 

It follows immediately from 2.6 and 2.3 that if A, B, and C are 

sets, Ac B and Ac C, then Ac B n C. 

2.7 Let A, B and C be three sets. Then 

An {Bu C) = (An B) u (A n C). 

Proof—Let X = An (Bu C) and Y = (An B) u {An C). 
By 1.5 (Chap. 1), we have to show that Xc Y and Yc X. 

We shall show first that Xc Y. Let tel; then x e A and 

x e B U C. Since x e B U C, it follows that x e B or x e C. If x e B, 

then x E An B, whence 

x e (A n B) u (A n C); 
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if x £ C, then x e A n C, whence 

x e (An B)u (An C). 

Hence, x e X => x e Y. 

We shall now show that 7c J, For this, we reason as follows. 

From 2.4 and 2.6 we know that: 

BuC^B; hence A Pi (B U C) => A n B; 

Bu C; hence An (5uC)=> A n C. 

By 2.6 and by 2.3 

X = An (BuC)^ (AnB)u (A n C) = Y, 

thus, 7 c z. 
Since Ic 7 and 7c I, we conclude X — Y. 

2.8 Let A, B, and C be three sets. Then 

Au (Bn C) = (Au B) n (Au C). 

Proof.—Let X = A U (B n C) and 7 = [A U B) n (4uC). 

By 1.5 (Chap. 1), we have to show that Jc 7 and 7c X. 

We shall show first that Ic 7, We have A<^ Au B and A c 

A U C, whence 

A c (Au B) n (Au C). 

Also, B n C c ^c Au B and 5 n C c Cc T U C; hence 

BnC^ (Au B) n (Au C). 

We deduce 

X = A u (5 n C) c (T u 5) n (A u C) =7, 

hence, Ic 7. 

W? shall show now that Y c X Let jy e 7; then j e A U 5 and 

jeAuC. Ify eA, theny eAu (BnC); that is, j e X. Suppose 

now that y £ A. Since yeAuB, it follows that yeB; since 

y e A U C, it follows that y eC. Hence, y e B n C, and hence 

y eAu (Bn C); that is, y e X. Therefore, 7c X 

Since Xc7 and X=> 7, we conclude X = 7. 

The assertion in 2.7 expresses that the intersection is distributive 

with respect to the union; assertion 2.8 expresses that the union is 

distributive with respect to the intersection. 
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Difference.—Let A and B be two sets. We define the set A — B 
by: 

2.9 x e A — B o x e A and x p B. 

Hence, A — B is the set of all objects that belong to A but do not 

belong to B. The set A — B is called the difference of A and B; it is 

read, “A minus B.” 

Example 3.—(i) {1, 2, 5} — {1, 2} = {5}. 

(ii) {1,2, 3} -{2, 4} = {1,3}. 

Note that for every set A and B, we have A — B^z A. Also, 

for every set A: 

A — 0 = A, A — A = 0. 

If A is a set and a e A, then A — {a} is the set of all elements 

x G A that are distinct from a. 

A 

A 

FIGURE 4 

'If A and B are as illustrated in Figure 4, then A — B is the 

shaded part. Likewise, if A and B are as illustrated in Figure 5, 

then A — B is the shaded part. 

Complement.—Let X be a set and let A ci X. We define the set 

CXT by: 

2.10 C xA=X-A. 

The set C XA is called the complement of A with respect to X. When 

there is no ambiguity as to what set X is, we write CA instead of 

CXA and we call CA the complement of A. The notations CXA and 

C A are read, respectively, “complement of A with respect to X” 

and “complement of A.” 

We shall now give some properties concerning the complement 

of a set. In 2.11 and 2.12 we consider a fixed set X and subsets A and B 

of X. The complements are complements with respect to X. 



12 UNION, INTERSECTION, DIFFERENCE, COMPLEMENT 

2.11 (i) An CA = 0, A u CA = X. 
(ii) C(04) = A. 

(iii) C0 = X, CX=0. 
(iv) A^ B oCA^ CB. 

The proofs of (i), (ii), and (iii) are left to the reader. 

Proof 0/2.11 (iv).—Suppose A c: B. Then 

x 6 C B =>x<£B=>x<£A (since A <= B) => x e CA. 

Hence 

ic B=> 06 c CA. 

Suppose now 06 c: CA. Using what we have already proved 

(note that A <= X and B <= X were arbitrary) and 2.11 (ii), we obtain: 

Hence 

A = C(04) c C(CB) = B. 

CB c C/1 /I c B. 

Hence, 2.11 (iv) is proved. 

2.12 (i) C{A u B) = (04) n (06). 

(ii) C(T n B) = (04) u(CB). 

Proof of 2.12 (i). Let x e C{A U B); then x hi U B, and thus 

x A and x f B (if x e A or x e B we get a contradiction). Thus, 

x e CA and x e CB; that is, x e (Chi) n (06). Hence 

x g C(A u B)=> xe {CA) n (CB) 
and hence 

C(A u B) c (04) n (06). 

Now let x g (04) n (06); then xgC4 andxG 06, and thus 

x (fc A and x ^ B. Thus, x £ A u 5, so x g C(4 u 5). Hence 

x g (04) n (06) => x g C(H u B) 
and hence 

(Chi) n (06) c C(4u£). 

This completes the proof of 2.12 (i). 

Proof of 2.12(ii). Let A — Chi and B' = CB. Then, using 
2.12(i), we deduce 

(04) u (06) = A' u B' = C(C(hL u B')) 

= C((ChL) n {CB')) = C{A n B) 

This completes the proof of 2.12(ii). 
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The results in 2-12(i) and 2.12(ii) (as well as certain generaliza¬ 

tions that will be indicated later) are usually called the duality 

formulas or De Morgan?s formulas. 

▼ The properties given in 2.12 can be used to obtain new prop¬ 

erties concerning sets from known ones. Suppose, for instance, that a 

certain relationship is true for any three sets. Then, it can be 

shown, using 2.12, that if we replace U by n and n by U we 

obtain a new relationship, which again is valid for any three sets. 

As an example concerning these remarks, note that, by 2.7, we have 

A n (B u C) = (A n B) u {A n C) 

for any three sets A, B, and C. If we replace U by n and n by U, 

we obtain 

A u {B n C) =(iu£)n(iuC) 

that is, 2.8. A 

Let now A1} An be n [n e N) sets. In the same way 

as we defined A'U B and A n B, we may define the sets 

Axu . . .'U An and Ax C\ . . . nAn. 

Thus, we define Ax U . . . U An by: x e Ax U . . . U An if and 

only if there exists i e {1, . . . , n) such that x e At. 

We define Ax n . . . n An by: x e Axn . . . D An if and only if 

x e Aj for every j g (1 

The set Ax U . . . U An is called the union of the sets Ax, . . . , An; 

the set Ax n . . . n An is called the intersection of the sets Ax, . . . , An. 

The way in which these sets are read is obvious and will not be 

discussed here. 

Exercise.—For any three sets A, B, C we have 

Au Bv C = Au(Bu C) = (Avj B) yj C, 

AnBnC = An(BnC) = {AnB)nC. 

Example 4.—(i) {1} u {2} u {3} u {4} = {1, 2, 3, 4}. 

(ii) {1, 2, 3} n {0, 1, 2} n {2, 3, 4} = {2}. 

Unions and intersections of arbitrary “families” of sets will be 

discussed in a later paragraph. 

With the notation introduced at the end of Chapter 1, we can 

write 

(i) {x | x e A or x e B} = A U B. 

(ii) {x \ x e A and x e B] = A n B. 

(iii) {x \ x e A and x p B) = A — B. 

(iv) {x| x e X, x p A) = C YA (here A c= A). 
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Exercises for Chapter 2 

1. Perform the indicated operations: 

(a) {1, 2, 3, 4} u {1,5} = ? 

(b) {1, 2, 3} U Z = ? 

(c) {a,b}n{ 1,2} = ? 

(d) ({1, 2} n {1,2,4}) u {1,2,3} = ? 

(e) {1, 2} n ({1, 2, 4} u {1, 2, 3}) = ? 

(f) {0, (!}}n 0 = ? 

(g) A2KJ A3 = ? (See Exercise 3, Chap. 1.) 

(h) A2 n A3 = ? 

2. Let A and B be two sets. Show that A\J B = A n B o 

3. Let A and B be two subsets of a set X. Show that 

(a) A n CB = 0 and (C^4) n B = 0 <=> A = B. 
(b) ((CA) n (du B)) u (An B) = B. 

4. Let A, B, and C be three arbitrary subsets of a set X. Show 
that 

(An B)uC = An (Bu C) o C<= A. 

5. Give an example of a set X having two subsets, A and B, 
satisfying: 

X - (A n B) ^ (X - A) n (X - B). 

6. Let X be a set and suppose {E,F, G} c 0»(X). Show that 

(E - G) n (F - G) = (EnF) - G. 

7. Define, for each two sets A,B: A A B = (A — B) u (B — A). 

(a) Let A = {1, 3, 4}, B = {1, 5, 7}. Write out the set 
A A B. 

(b) Write out the set &(A) A 0>(B) when A and B are as 
in 7(a). 

(c) Write out the sets Ax A A2, A2 A A3, and A, A A3 for 

which A1} A2, and A3 are defined as in Exercise 3, 
Chapter 1. 



Chapter 3 

The Cartesian 

Product 

Given two objects, x and y, we may form a new object, which 

we shall denote (x,y). We shall call this new object* a couple. 

Two couples, (x',y) and (x",y"), are identical if and only if 

x' = x" and y' — y". 

For example, (x,y) == (y, x) o x — y. 

The reader should note that the notion of couple and that of 

set containing two elements are distinct; he should not write (x,y) = 

{x,y}. 
s 

Example 1.—(i) (1, 2) y (2, 1). 

(ii) (1,2) = (a, /?) <=> 1 = a and 2 = /?. 

(iii) {1,2} = {2, 1}. 

Product.—Let A and B be two sets. We define A x B by 

3.1 z e A x B o z = (x,y) with x e A and y e B. 

Hence, A x B is the set of all couples (x,y) such that x e A 

andjy e B. 

The set A x B is called the Cartesian product of A and B or simply 

the product of A and B; it is read “A times B.” 

Note that if A and B are two sets, then A X B = 0 if and only 

if at least one of the sets, A or B, is void. Thus, ^4x0 = 0 and 

0 x A = 0 for every set A. 

* Actually, the couple (x,y) may be defined to be the set {pc}, {x,y}}', then the 
property (x',y') = (x",y") <=>*' = x" and =y" follows from Exercise 6, Chapter 1. 

15 
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Example 2.—(i) Let A = {1} and B = {2}; then A X B = 

{(1,2)}. 

(ii) Let A — {1, 2} and B — {a, b, c}. Then 

A x B = {(1 ,a), (2,«), (1, b), (2, b), (\,c), (2, c)}. 

Note that A x B has 6 (= 2 X 3) elements if a f b, b ^ c, and c f a. 

The product of sets is not “commutative.” For instance, if A 

and B are as in Example 2(i), then A X B = {(1, 2)} and B x A = 

{(2, 1)}; then A x B f B x A because (1, 2) f (2, 1). 

Among the properties of the product of two sets, we shall state 

here the following: 

3.2 (i) Let A, B, A', B’ be four sets such that A x B 0. Then 

A x B<= A' x B’ o 4c A' and B c B'. 

(ii) Let A, B, C be three sets. Then 

{A u B) x C = (A x C) u (B xC). 

(iii) Let A, B, A', B' be four sets. Then 

(A x B)n (A' x B') = (An A') x (B n B’). 

(iv) Let A, B, C be three sets. Then 

(A - B) x C = A x C - B x C. 

As an example, we shall prove 3.2(h); we leave the proofs of 

the other three assertions to the reader. 

Proof of 3.2(ii).—Let L = (A u B) x C and K = (A xC)u 

(B x C). By 1.5 (Chap. 1), we have to show that La K and Kc L. 

We shall show first that fc K. Let z e L. Then z = (x,y) with 

x e A U B andy e C. Since x e A U B we have either x e A or x e B, 

whence (x,y) e A x C or (x,y) e B x C. We deduce 

z = (x,y) e (A x C) u (B x C), 
that is, L^ K. 

We shall now show that L. Let z e K. Then z = (x,y) with 

(x,y) gA x C or (x,y) e B x C. If (x,y) e A x C, then x e A and 

y gC, whence x e A u B andj e C; hence (x,y) g (T U B) x C — L. 

If (x,y) G B x C, then x e B and y e C, whence x g A U B and 

y gC; hence (x,y) e (A U B) x C = L. Thus z e K => z e L, that 
is, Ic L. 

Hence f c K and K c L, whence L = K. 

Exercise.—(i) Let A, B, A', and B' be non-void sets. Then 

A x B = A' x B' if and only if A = A' and B = B'. 
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(ii) Let A, B, C be non-void sets. Then (A x B) x C ^ A x 

(B x C). 

The notion of couple can be extended as follows. If x1} x2, x3 

are three objects, we define a new object (xl5 x2, x3) by 

(x 15 X2) xz) — ((Xl> ^2)5 Xz)' 

Such an object is called a triple. Two triples, (x',y', z') and (x",y", z"), 

are identical if and only if (x',j') = (x",y") and z' = z"; hence, if 

and only if x' = x",y' = y" and z' — z". 

If xx, x2, x3, and x4 are four objects, we define a new object 

(xj., x2, x3, x4) by 

(*l, *2, *3, X4) = ((xx, x2, x3), x4). 

Such an object is called a quadruple. Two quadruples, (x',y', z', t') 

and (x",y", z", t"), are identical if and only if (x',j/, z') — (x",y", z") 

and t’ = t"; hence, if and only if x' = x",y' =y", z' — z" and t' — 

t". 

Example 3.—We have (1, 2, 3, 4) ^ (2, 1, 3, 4). We have 

(1, 1, 1, 1) = (a, b, c, d) if and only ifa=b=c = d= \. 

Now let xl5 x2, . . • , x.„ be n(n > 1) objects. Supposing that* 

(xx, x2, . . . , xn_1) was already defined, we then define a new object 

(*i, x2, . . . , xn) by 

(xl5 x2, . . . , xn) = ((xl5 x2, . . . , xB_i), xn). 

Such an object is usually called an n-tuple (hence, a triple is a 3-tuple; 

a quadruple is a 4-tuple). As in the case of triples or quadruples, we 

show that two ra-tuples (xx', x2', . . . , xn') and (x/, x2", . . . , xn") are 

identical if and only if 

^ _ A/t ^ A/) ^ A/I A/I - /yi 

a1 2 5 • • • 5 ^ n An * 

Now let Aj, T2, . . . , An be n sets. In the same way as we 

defined A x B, we may define the set Tx x A2 x . . . X Thus, 

we define Ax X A2 x . . . x by 

z g dj x d2 x . . . x An 

if and only if z — (zl5 z2, . . . , zn) with 

Zi £ A-x, Z2 G A2, . . . , Zn G Tn. 

* For n = 1 we simply write x instead of (x). 
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The set Ax x A2 X . . . X An is called the Cartesian product, or simply 

the product, of the sets Ax, A2, . . . , An. 

Cartesian products of arbitrary “families” of sets will be 

discussed in a later section. 

With the notation introduced at the end of Chapter 1, we can 

write 

(1) A x B = {(x,y) \ x e A and y e B}. 

(2) Ax x A2 x . . . x An = {(xx, x2, . . . , xn) | Xj e Ax for all 

j = 1 ? 2, . . . ,n}. 

If Ax — A2 = . . . =■An = A, we shall sometimes write An 

instead of Ax x A2 x . . . x An. Thus 

A1 = A, A2 = A x A, A3 = A x A x A. 

Exercises for Chapter 3 

1. Let A — {1} and B = {2, 3}. List the elements of 

8P{A x B). List the elements of A x BA[A x B). 

2. Perform the indicated operations: 

(a) {(1, 2), (2, 3), (3, 1)}U {(2, 2), 3}; 

(b) {(2, 3)} n {(3,2)}; 

(c) (N x Q)n(Q xZ). 

3. Let A, B, and C be three sets. Show that A x (B n C) == 

(A x B)n (A x C). 

4. Find four sets, A, B, A', and B', such that 

{A x B) u (A' x B') ^ (Hu A') x (Bu B'). 

5. * Let X and Y be two sets. Any subset R of X x 7 is said 

to be a relation between X and 7f; hence 3P{X x Y) is the set of all 

relations between X and 7. Let Z be another set. If 5 is a relation 

between X and 7, and R is a relation between 7 and Z, we denote 

by R ° S the set {(*, z) | x e X, z e Z, there isj> e 7 such that (x,y) e 

S, and (y, z) e R}. Clearly, R ° S is a relation between X and Z. 

t H X = Y, we usually say that R is a relation in X, instead of saying that R 
is a relation between X and Y (see also Chapter 10). Notice that R is a relation 
between X and Y if and only if (X,Y,R) is a correspondence (see Exercise 18 in the 
section titled Supplementary Exercises). 
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Let X — Y — Z = {0, 1, 2, 3, 4}. Construct R ° S and S ° R 
in each of the following cases: 

(a) R = {(0, 1), (1, 2)}, S = {(1, 2), (2, 3)}. 

(b) R = {(0, 1), (1, 2)}, S = {(0, 1), (1, 2)}. 

(c) R = {(0, 0), (1, 2)}, S = {(1, 2), (1, 0)}. 

(d) R = {(0, 1), (0, 2), (0, 3)}, 5 = {(1, 0), (2, 0), (3, 0)}. 

6. * Let W, X, Y, and Z be four sets, and suppose T e SA(W x 

X), 5 e 0>{X x Y), R e SP{Y x Z). Is it true that 

(R ° S) o T = R ° (S ° T) ? 

7. * Let X and Y be sets and suppose R^ X x Y. 

(a) For each A <= X, define /(’[H] to be the set {y | there is 

x e A such that (x,y) e Rj. R[A~] is called the image of 

A by the relation R. 
(b) For each 5 e 0>(X x Y), define S”1 e 0>{Y x X) 

to be the set {{y, x) \ (x,y) e S}. 
(c) Show that for each B e &(Y), is!-1 [.5] = {x | there is 

y e B such that (x,y) e R}. 



Chapter 4 

Functions 

We now introduce the notion of function. We shall give a 

series of examples. 

4.1 Definition.—A function is a triple f = (A, B, G) such that: 

(i) A, B, G are sets; 

(ii) G<= A x B; 

(iii) for each x e A there exists one and only one y e B such that 

fay) e G. 

The reader should pay special attention to condition 4.1 (iii). 

The set A is called the domain of/; the set B is called the range* off 

We usually write, A = dom / and B = rng/. The set G is called the 

graph\ off; instead of G we shall sometimes write Gf. 

Let f = [A, B, G) be a function. If x e A, then, by 4.1 (iii), 

there exists one and only one y e B such that (x,y) e G; this unique y 

will be denoted / (*) and will be called the value off at x (or the value 

off for x). We note that 

4.2 G — {(*,/(#)) | x e A}. 

Let/and g be two functions. Hence,/and g are triples: 

/= (W, Y',G'), g = (X", Y",G"). 

* Instead of domain off we may say departure set off; instead of range off we may say 
arrival set of f. 

f For the general notion of graph, the reader may consult the Supplementary 
Exercises. 

20 
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Therefore (see Chap. 3),/ = g if and only if X' = X", Y' = 7", and 

G' = G"; thus two functions are equal if and only if they have the same 

domain, the same range, and the same graph. 

We denote by 

4.3 BA or 2F(A, B) the set of all functions having A for domain 

and B for range. 

Let f and g be two elements of 2Y{A, B). In this case, / = g if 

and only if Gf = Gg. Using 4.2, we deduce that f = g if and only if 

4.4 /(*) — g(x) for all xeA. 

Note that to define a function/, it is enough (and necessary) to 

define its domain, its range, and for each x e dom/, the element 

/(/ erng/ 

Example 1.—Let A = {1}, B = {1,2} and G — A x B. Then 

(A, B, G) is not a function. In fact, (1, 1) e G and (1,2) e G; hence, 

there is more than one y eB such that (l,jy) e G. Hence, 4. l(iii) 

is not satisfied, and hence (A, B, G) is not a function. 

Example 2.—Let A = {0, 1, 2, 3}, B = {a, b, r} (we assume 

a / b, b c and c a), and G = {(0, a), (1, a), (2, a), (3, c)}. 

Then (A, B, G) is a function. If we write / = {A, B, G), then 

/(0) =<*,/( 1) =«,/( 2) =a,f( 3) =c. 
/ 

Example 3.—Let G = {(*, x2) | x e R}. Then the triple g = 

(■R, R, G) is a function. For each x e R, we have g(x) —■ x2. 

Example 4.—For each x e R, let 

|*| = x if x >0 

= —x „ if x < 0. 

(The number \x\ is called the absolute value of * e R.) Clearly 

B = (R, R, {/, |*|) |*6/?}) 

is a function.. We have B(0) =0, B(x) = |*|, B(—x) = B{x) for 

x e R. 

Example 5.—Let X be a set. Then/ = ( O', Ar, O) is a function, 

dom/ = 0, rngf = X, Gf — 0. 
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Example 6.—Let A be a set and let A = {(x, x) | x 6 A}.* 1 hen 

(A, A, A) is a function. 

Properties 4.1 (i) and 4.1 (ii) are clearly satisfied. We shall 

now verify 4.l(iii). Let x e A. Then (x, x) e A; thus, for each 

x e A there isj e A such that (x,j>) e A. Suppose now that (x,/) e A 

and (x,y") e A. Since (x,y') e A, it follows that there is t e A such 

that (x,y) = (t, t), whence x = t and y' = t; that is, x =_/. In 

the same way, we see that x — y"■ We deduce^' — y" • Hence, there 

is at most one y e A such that (x,y) e A, and hence 4.1 (iii) is 

satisfied. 

The function (A, A, A) is usually denoted by jA; hence, we 

have jA(x) = x for all x £ A. 

Example 7.—Let Y be a set, Z a subset of Y, and G — {(x, x) | 

x e X}. Then (X, Y, G) is a function. 

Example 8.—Let IT be a set and let G = {(4,CT) | A e 

Then -if = (^(W), 88{W), G) is a function and 

dom tp = mg ip = 8P[W). 

For each A e &(W), we have ip (A) = CA. 

▼ Example 9.—Let Y be a set, and let X = 2P{W) x &IW) and 

Y = 8P(W). (Hence, an object belongs to X if and only if the object 

is of the form (A, B) with A and B subsets of W.) Now let 

Ga = {((4, B),A'JB) \Ae &(}T), B e &(W)}\ 

Gi = {((^, B),AnB) \Ae 0>{W), B e 0>{W)}; 

G, = {((/l, B), A - B) | A 6 0>(W), B e »(W)}. 

Then 

/ = (Z, Y, Gu), g = (X, Y, Gh), h = (Z, 7, Gd) 

are functions. These three functions have the same domain, namely 

SP[W) x PP(W); they have also the same range, namely 8P[W). 

For every (A, B) e @*{W) X SP[W), we have 

/((T, 5))=4u B, g((A, B)) = An B, h((A, B)) — A — B a 

If/is a function, and if its domain consists of rc-tuples (n e N), 

then we shall usually write/(xl5 x2, . . . , xn) instead of/((x1} x2, . . ., 

* The set A is called the diagonal of A. 
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xn)) for (x1} x2, ... , xn) 6 dom /. A function the domain of which 

consists of ^-tuples is sometimes called a. function of n variables. 

▼ For instance, the elements in the domain of the functions/', g, h 

in Example 9 are couples (2-tuples). Hence, we may write 

f(A, B) = A u B, g{A, B) = A n B, h(A, B) ■ = A - B 

for (A, B) e ^(W) X SPlfV). With this notation, we can express 

2.7 and 2.8 (Chap. 2) as follows (here A, B, and C belong to SP[W)) 

g(A,f{B, C)) —f(g(A, B), g(A, C)), 

and 

f(A,g(B,C)) = g(f(A, B),f{A, C)). a 

Example 10.—Let A and B be two sets and let A x B be their 

product. Let 

Gi = {(M, *) | eA x B} 

and 

G2 = {{(x,y),y) | eA x Bj. 

Then (A x B, A, Gx) and (A x B, B, Gz) are functions. We 

usually denote (A x B, A, Gy) by prx and call it the projection of 

A X B onto A. Note that 

dom prx = A X B, rng prx = A 

and that 

Pri(x,y) = x for all (x,y) e A x B. » 

We usually denote (A x B, B, G2) by pr2 and call it the projection 

of A x B onto B. 

Note that 

dom pr2 = A x B, rng pr2 = B 

and that 

prfx,y) =j> for all (x,y) e A x B. 

Note also that, for every z e A X B, we have 

z = (prfz),prfz)). . 

If Gc A x B is such that 4.l(iii) is satisfied, then (A, B, G) 

is a function. Moreover, iff = (A, B, G), then we have (see Chap. 5) 

dom / = prfG) 

/(dom/) =prt{G). 
and 
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Example 11.—Let A = {ax, a2, ... , av) (we assume ai aj if 

i fj) and B be two sets, and let f be a function with domain A x A 

and range B. For every (i,j), where 1 <i <p and 1 <j < p, let 

bu =fiai, ao)- 

The function f can be conveniently “represented by means of a 

table” as follows. 

/ «1 #2 CL ^ 

a1 *11 bi2 bip 

b 21 b 22 ^2r> 

bp i bp 2 b vp 

An element in the column under f is to be considered as the first 

element of an ordered pair in the domain off, while an element in 

the row to the right off is to be considered as the second element in 

an ordered pair in the domain off. If (at, a,) is such a pair, then the 

value of/at (ai} a,) is the element of B that appears at the “inter¬ 

section of the z'th row and the/h column.” 

For instance, if A = {0, 1} and B = {0, 1}, then the tables 

M 0 1 m 0 1 

0 0 1 and 0 0 0 

1 1 1 1 0 1 

represent respectively the functions 

M = (A x A, B, {((0, 0), 0), ({0, 1), 1), ((1, 0), 1), ((1, 1), 1)}) 

and 

m = (A x A, B, {((0, 0), 0), ((0, 1), 0), ((1, 0), 0), ((1, 1), 1)}). 



FUNCTIONS 25 

A function/" = (X, 7, Gf) is said to be a constant function if there 

exists A e Y such that* 

f(x) = A for all x e X. 

Note then that 

Gf = {(*, A) | x £ X}. 

Conversely, any function the graph of which is of this form is 

clearly a constant function. 

Whenever we say that/ is a function on X to Y, we mean that f 

is a function with domain X and range Y. The notation 

f-X^Y 

(which is sometimes read, “f Xinto 7”) is very useful; it will always 

mean that/is a function with domain X and range 7. Occasionally, 

the notations 

X 4 7 or 7 4 X 

are used instead of/: X -> 7. 

Instead of function, we shall sometimes say mapping. Thus, 

whenever we say that f is a mapping of X into Y (or from X into 7), we 

mean that/ is a function with domain X and range 7. 

Let / be a function with domain X and range 7. Sometimes 

we shall say that f is the mapping x \->f(x) of X into 7. 

Whenever we say, “Consider the mapping x !-> d(x) of X into 

7,”f we mean that we consider the mapping 

f=(X,Y,{(x, 0(*))|*eX». 

Other notations than 0(x) can be used for x £ X. For instance, 

whenever we say, “Consider the mapping * b-» x3 of R into R,” we 

mean that we consider the mapping 

(.R, R, {(*, *3) | x e R}). 

Whenever we say, “Consider the mapping (x,j>) b> x + y of R x R 

into R,” we mean that we consider the triple 

(R x R, R, {{(x,j>), x +j>) | (x,y) eR x R}). 

The reader should notice that we use two types of arrows, 

namely and —Whenever we write f: X -> 7, we mean that X 

* Such a function is frequently denoted X. 

f Here d(x) £ Y for all x £ X. 
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is the domain off and Y is the range. The notation f:x\-> 0(x) or 

x h> 6(x) means that x belongs to the domain of the considered 

function and 6(x) is the value of the function at x. 

Exercises for Chapter 4 

1. Is {(0, 1), (1, 2), (2, 3), (3, 1)} the graph of some function? 

2. Is ({0, 1}, {0}, {(0, 0), (1, 0)}) a function? Is ({0}, {0, 1}, 

{(0, 0,) (0, 1)}) a function? 

3. Write down two distinct functions that have {(1, a), (2, a)} 

as their graph. 

4. Let A = B = C = D = {1, 2}. Is (A x B, C x D, {(2, 2, 1, 

1)}) a function? Is (I x5,C x D, {(2,0), (1,2)}) a function? 

Is (B X C, A x D, {(2, 1), (2, 2)}) a function? 

5. Let X = {a, b} and denote by ea the function {^{X, X), X, 

{(/>/(«)) |/e ^Q})- List the elements of dom ea and find the 
value of ea at f for each f e dom ea. 

6. Construct the set {1, 2}{1>x<1>2}. 

7. Let A = B = {0, 1}. Does the table 

c 0 1 

0 1 1 

1 0 1 

“represent” (see Example 11) a function? If so, write the function 
as a triple. 



Chapter 5 

The Image and 

the Inverse Image 

of a Set by 

a Function 

Let f:X-*-Y be a function. For every A <= X, we write* 

5.1 f(A) = {/(*) \ x eA}. 

Hence,/(d) <= Y and an object y belongs to/(d) if and only 

if there exists x e A such that f(x) =y. 

/he set/(d) is called the image of A by/ Notethat/(0) = 0 

and that/({*}) = {/(*)} for all x e X. 

Example 1.—Let / be the function in Example 2 of Chapter 4. 

Then 

f(A)={a,c), /({0, 1» = {a}. 

Note that dom f = A — {0,1, 2, 3}, rng/ = B = {a, b, c} and that 

f(A) = {a, c). 

Example 2.—Let jA be the function in Example 6 of Chapter 4.. 

Then///)) = D for all D <= A. 

It is apparent from 5.1 that if/ = (X, Y, G) is a function, and 

if D c= C <= Z, then 

5.2 f(D)^f{C). 

* This is an “abuse of notation” because the domain of/is and not 3P(X). 
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Among other properties that are useful and easy to establish, 

we mention the following. 

5.3 Let f = (X, Y, G) be a function and let A ^ X and B <= X be 

two sets. Then: 

(i) f(AuB) =f(A)uf(B); 

(ii) f(AnB)czf(A)nf(B); 

(iii) f(A) — f(B) e f{A -B). 

Proof of 5.3(i).—Since A c A u B and B- A u B, we have 

(using 5.2) 

f (A \J B) f (A) and f{A'uB)=>f(B). 
Hence 

f{A kjB) / [A) Kjf (B). 

Now let j ef(A U B). Then there is x e A U B such that f(x) =y. 

Since xgAkjB, we have either x e A or x e B. If x e A, then 

y =/(*) e/(^), whencey ef{A) U/(2?); if x e we deduce that 

y =/(*) e/(^), whence jy e/(A) U/(£). Hence, j s/(i4 u 5) => 
je/(A) Uf(B), and hence 

f(Au B)<=f (A) uf(B). 

We conclude that 5.3(i) holds. 

Proof of 5.3(ii). Since A Pi B c A and /l n \ve have 
(using 5.2) 

f{AnB)^f{A) c\f(B). 

Proof of 5.3(iii). Let yef(A) —f(B). Then ysf{A) and 

y^f(P)- Hence,j = f(x) with x e A; since jy $f(B), it follows that 

x $B. Hence, x e A - B, and hencey =f{x) ef(A - B). There¬ 

fore, y ef(A) - f(B) =>y ef(A - B). We conclude that 5.3(iii) 
holds. 

We note here that it is not necessarily true that f(A n B) = 

f {A) C\f{B) for all f A c dom^fand Z? cr dom f For instance, let 

f'.Z—>Z be defined by 

f(x) =0 for all x e Z. 

Let A = (0, 1} and B = {2, 3, 4}; then 

f(A n B) =/( 0) = 0 ^ {0} = /(T) n/(£). 
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We leave it to the reader to show that it is not necessarily true 

that/(T) —f(B) —f(A — B) for all f A dom f and dom/. 

Again, let f = (X, Y, G) be a function. For every Y, we 

shall write 

5.4 f-i(B) = {x |/M e B}. 

Hence,f~1(B) <= X, and an object, x, belongs to f~1(B) if and 

only if x g X and f(x) e B. 

The set f~1(B) is called the inverse image of B by/. If b e Y, 

then we shall write sometimes/~x(£) instead of/-1({£}). 

Note that/_1( 0) = 0. 

Example 3.—Let f be the function in Example 2 of Chapter 4. 

ThCn ={0,1,2}; 

f~\{c}) = {3}; 

f-im) = 0. 

Note that we may have/_1(.5) = 0 even if B ^ 0. Note also 

that if j> e Y, then /_1({j;}) may contain more than one element; 

it may also happen that/-1({_y}) is void. 

It is immediate from the definition that if f = (X, Y, G) is a 

function, and if E <= E ^ Y, then 

5.5 f~\E)c:f-^F). 

Among other properties that are useful and easy to establish, 

we mention the following. 

5.6 Let f — (X, Y, G) be a function and let A cl and B czY be 

two sets. Then: 

(i) f-'(AuB) = f-i(A)uf-i(B); 

(ii) f~i(AnB) = f-i(A) nf ~i(B); 

(iii) f-'(A-B) =f~i(A) -f~'(B)i 

(iv) f-i(CrB) = Cxf~i(B). 

Proof of 5.6(i).—Since A^ Avj B and B<= Akj B, we have 

(using 5.5) 

f~i(A U B) => f~x(A) and /_1(T u£)= /-x(5). 

Hence /-i(iuii)=/-.(i)u/-'(J). 
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Now let x ef f(TuP). I hen f(x) eAuB. Hence, either 

f (x) g A and then x ef~1{A), or /(x) gP and then x ef~1(B). 

Therefore, in either case, x ef~x{A) U f~1(B). Hence 

x ef-^A u B)=> x ef~fA) uf-fB), 
and hence 

/-1(T u B) C/_1(T) u/_1(P). 

We conclude that 5.6(i) holds. 

Proof of 5.6(h). -Since Ac\B^ A and A Pi B c 2?, we have 
(using 5.5) 

f~1{Ar\B)<=:f-x(A) and /-/T n P) cr/-*(P). 

Whence 

f~fA n P) <= /-/T) nf~i(B). 

Now let x 6/-!(T) n/-i(£). Then x g/-*(4) and x ef~\B). 

Hence /(x) gT and /(x) e 5, and hence /(x) e T n 5. Hence 

x g/_1(T n 5). Therefore 

x ef-^A) n/-*(P) => x g/-!(4 n 5), 
whence 

/_1(T) nf~1(B) c f~1(A n B). 

We conclude that 5.6(h) holds. 

Pm?/ of 5.6(hi).—Let x ejf-i(4 - P). Then /(x) e A - B, 

whence/(x) gT and/(x) £ P. Therefore 

xef-fA) and x £/-i(P), 
hence 

xef-fA) -/-1(P). 

Since x g/~1(T — P) was arbitrary, we deduce 

/-/T -B)^f~fA) -/-i(P), 

Now let x G/-/T) f 1 (P)• Then x ef~1{A) and x ^f~1{B), 
whence/(x) g ^ and/(x) £ P. Therefore 

/(x) g T — P, hence x g/'/T — P). 

Since x g/-/T) — /_1(P) was arbitrary, we deduce 

Z-1^) - f-\B) cz f-fA -B). 

We conclude that 5.6 (iii) holds. 
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ProoJ of 5.6(iv).—This follows immediately from 5.6(iii). 

Note that if f — (A, 7, G) is a function and A ci Y, B c Y, 

then we have 

f~1(A n £) =f-fA)nf~\B) 

and 

However, as we have seen, we do not necessarily have 

f(AnB) — f{A) nf(B) and f(A - B) =f{A) -f(B) 

if A c A, B <= A (see Exercise 5). 

Exercise — Let /: A -> Y be a function, A <=: X and B <= Y. 

Then 

/(f-HB)) c ^ and => A. 

Show that “ c and => ” cannot be replaced by “ =” for all/, /I and B. 

If-8 c f(X), then f(f~l(B)) = i? (see Exercise 6). 

A function f:X-+Y is said to be surjective (or a surjection) if 

5.7 /(A) = Y. 

Instead of saying that f is a surjection, we may say that f is a 

mapping of A onto Y. 

A function f: A—> 7 is said to be injective (or an injection) if 

5.8 V e A, x" e X, x' f x" => f(x') ffj- 

Instead of saying that/'is an injection, we may say that / is a 

one-to-one mapping. Notice that a constant function cannot be 

injective if its domain contains more than one object. 

A function/: A—> 7 is said to be bijective (or a bijection) if/is 

both a surjection and an injection. Hence, 

5.9 /is a bijection <=>/is an injection and a surjection. 

Let A be a set. A bijection a: A-> A is sometimes called a 

permutation of A. Note that if o' is a permutation of A, then 

dom o' = rng a = A. 

The set of all permutations of A will be denoted clearly hx c; 

#-(A, A). 

If A = (1, 2, . . . , n) (n £ N) and if a £ is defined by 

<*{j) =at (1 <j < n), 
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we shall write 

5.10 

This notation is often useful, If 

then a e S{12 3} and cr( 1) =3, <r(2) = 2, <r(3) = 1. 

Example 4.—Let Z and 7 be two sets. Consider the mapping 

f H> Gy of X, T) into &[X x T). Clearly, this mapping is 

injective. In fact, iff e J/Z, Y) and g e J^/Z, 7), then (see 4.2) 

/ = (X, Y, Gj and g = (X, Y, G"). 

Hence/ ^ g => G' ^ G" => Gf ^ G„. 

▼ The injection / h>G;, of J*(Z, 7) into ^(Z x 7), identifies 

J/Z, 7) with a subset of £^(Z x 7). A 

The results of 5.3(i), 5.3(ii), 5.6(i), and 5.6(ii) can be easily 

generalized to n [n e Z) sets. Letf:X-+ 7 be a function. Then, if 

Tx, Ta, . . . , An are « subsets of Z, we have: 

5.7 /(A u A2 u . . . u An) =f[Aj) u/(T2) u . . . u/(Tn);' 

5.8 /(T1n T2n .. . n Hw) <=/(4x) n/(T2) n .. . nf(An). 

If B1, B2, . ... B rL are n subsets of Y, we have: 

5.9 /-■(i1ufi,u..,ui.) 

5.10 n i?2 n . . . n 2? J 

n/-i(Z2) n . . . n/-*(£„). 

We shall return to these generalizations later. 

Exercises for Chapter 5 

L Let Z = {0, 1,2, 3, 4}, Y={a,b,c,d}, 

/ = A. U {(0, a), (1, a), (2, 5), (3, c), (4, c)». 
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Construct the following sets: 

(a) /({0,3}); 

(b) /(0); 

(c) f-W, 
(d) f~x({a, c}); 

(e) /({l}n{2}); 

.(f)/“1(0 - Y). 

2. In 5.1, a function/= (X, 7, Gf) is used to define another 

function with domain SA[X). Write the triple that is this new 

function. 

3. * Denote by F the triple (function) you wrote for Exercise 2. 

Denote by H the function 

(&(Y), I 5c 7}). 

Show that: 

(a) H is surjective of is injective o F is injective; 

(b) H is injective o f is surjective oF is surjective; 

(c) H is bijective <=> f is bijective o- F is bijective. 

4. Let a be the permutation of (1, 2, 3, 4, 5} given by 

1 2 3 4 5 

2 14 5 3 

' (a) Write out the sets cr({l, 3}), c~'1({2, 3, 4}) and (r-1({l}) U 

(b) Construct the set cr({1}) U u({2}). 

5. * Let f = (X, Y, G) be a function. Show that: 

(a) f(A n B) =f{A) nf(B) for all A c X and B a X 

if and only if /is injective; 

(b) f(A - B) =f(A) — f{B) for all A c Z and B a X 

if and only if /is injective; 

(c) f{CA) = Cf(A) for all A «= X if and only if / is 

bijective. 

6. * Let/ = (X, Y, G) be a function. Show that: 

(a) /(/-1/?)) == B for all B c: 7 if and only if /is sur¬ 

jective; 

(b) f~x(f(A)) = A for every A <= X if and only if / is 

injective. 



Chapter 6 

Composition of 

Functions 

Let f :X —Y and g: 7 —> Z be two functions. We shall define 

a new function h: X —> Z by 

h(x) = for x e X. 

The function h will be denoted by g of and called the composition of 

g and f. The notation g °f is read “g composition/.” 

Example 1.—Let/:R ->• R and g:R R be defined by 

f(x) = 100 + x for x e R 

and 

g(x) = x100 for x e R. 

Then 

g °f(x) = (100 + x)100 for x £ R. 

Iff '-X -> Y, g:Y -* Z, and h:Z T are functions, then 

6.1 h o o/) = {hog) of. 

34 
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In fact, let x e X. Then 

h ° (g »/)(*) = h(g off)) = h(g(ff))) 

and 

(h og) o/(*) = h °£(/(*)) = h(g(f {*)))• 

Since x e X was arbitrary, we deduce 6.1 (see 4.4). 

For f g, and h, as above, we may write h ° g °f instead of 

h o (g of) or (h ° g) of 

6.2 Now let f:X-+Y and g:Y -> Z be two functions and let 

A <= X and C c~ Z. Then 

(i) g°fW — g(f(A)); 

(ii) (r/)-1^) =/-1(^1(G))- 

Proof of 6.2 (i).—Let z e g °f (A). Then there is x e A such that 

z — g{f{x)). Since ff)ef{A), we have zeg(f(A)). Since 

z eg of (A) was arbitrary, we deduce 

g°f(A) <=g(f(A)). 

Now let z e g(f(A)). Then there is yef(A) such that z = 

g(f). Sincey ef(A), there is x e A such thatjy == ff). Hence 

2 = g[y) — g(f(x)) = g off) => zegof{A). 

Since z e g(f (A)) was arbitrary, we deduce 

g{f(A))^ gof(A). 

We conclude that 6.2(i) holds. 

Proof of 6.2(ii).—Let x e (g °/)_1(C). Then g °f(x) eC; that 

Is, g(ff)) eC. Hence, f(x) eg-fC), and hence x ef-fg-fC)). 

Since x e (g °/)_1(L) was arbitrary, we deduce 

(g c/_1(^”1(c’))- 

Let xef-fg-fC)). Then f(x)eg-fC) and g{ff))eC. 

Since g°ff) = g{ff)) e C, we have x e (g °/)_1(C'). Since x e 

y_1(g_1(C)) was arbitrary, we deduce 

f-'irHC)) <= (^Z)-1^)- 

We conclude that 6.2(ii) holds. 

6.3 Letf :X -> Y and g:Y -> Z be two functions. Then: 

(i) g of is a surjection if g and f are surjections ; 

(ii) g °f is an injection if g and f are injections; 

(iii) g of is a bijection if g and f are bijections. 
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Proof of 6.3 (i).—By 6.2 (i), we have 

g°f(X) =g(fW) =g(Y) = Z, 

whence g °f is surjective. 

Proof of 6.3 (ii).—Let x' e X, x" e X such that x' f x". Since f 

is injective, we have f(x') ^ f{x”). Since g is also injective, 

£(/(*')) £(/(*")); that is> g °f(x') Vg °f(x")- Hence, g of is 
injective. 

Proof of 6.3 (iii).—The assertion in 6.3 (iii) follows from 6.3 (i) 

and 6.3(h). 

Remark.—Iff and g are as in 6.3, and if g °f is an injection, then f 

is necessarily an injection. In fact, suppose that g of is injective and that 

f is not injective. Then there are x' e X, x" e X, x' ^ x" such that 

/O') =/(*")• Hence g(f(x’))=g(f(x")); that is, g °f(x') = 

g°f{x"). Clearly, this is a contradiction, since g °f is injective. 

Since the assumption that f is not injective leads to a contradiction, 

it follows that f is injective. 

We now introduce some useful notations: Suppose, for instance, 

thatf:X-^~ Yx and g:X—*■ Y2 are two functions. The mapping 

6.4 *•->(/(*),£(*)) 

of X into Yx x T2 will be denoted usually by (f,g).* 

If <P'-Y1 X Y2 —► 7, then we shall sometimes write <p(f g) instead 

of (p ° (f g). Hence 

<p(f>g) 0) = <p(f(x),g(x)) 

for all x e X We can use similar notations for more than two 

functions. For instance, if f g, h, k are the functions, on R to R, 
defined by 

f{x) = x, g(x) — x2, h{x) = x3, k(x) = x4 

for x e R, then (f g, h, k) is the mapping 

X l-» (x, X2, X3, V4) 

of R into R* = RxRxRxR. If <p: Ri -> R is defined by 

cp(x,y, z,t) = x + 2y + 3z + it 

* We note that the same notation was used for representing the couple formed with 
the objects/and g. Clearly the couple(/, g) is not the same thing as the function (/, g). 
The meaning of the notation will always be clear from the context. 
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for (x,y, z, t) e Ri, then cp{f, g, h, k) is the mapping 

+ 2x2 + 3a:3 + 4x4 

of R into R. 

If f:X1—> Yl and g\X2-^-Y2 are two functions, then the 

mapping 

(xl5 X2) P* (/(%), g{x2)) 

is usually denoted/ x g. 

We have already defined (following the proof of 6.1) h ° g °/ 

Suppose now that /•: Xj Xj+1 (j = 1, 2, . . . , n, n > 1) are n 

mappings. If we have already defined/^ °. . . °/1} then we define 

In °fn-i ° • • • °/i by 

fn °fn-l 0 • • • °/l =fn ° (fn-1 ° • • • °/l) • 

The mapping fn °fn_x ° • • • °fi has domain Xx and range Xn+1; 
it is called the composition of the mappings/re,/n_l5 . . . 

The following result, which we state without proof, is a gener¬ 

alization of 6.1. 

If/i,/2, . . . ,fn are as above, and if 1 < p < n, then* 

6.5 fn o . . . ofl = (/„ O . . . Of9 + 1) o (/, o . . . o/l}. 

This assertion can be justified by mathematical induction 

(see Chap. 12). 

Let f:X->- Y be a mapping and let A <= X. We may then 

consider the function f^.A T defined by 

/i(x) =f(x) for x e yl. 

Clearly, dom fx=A and rng/ = T. The function / is called the 

restriction of/ to ^4; it is usually denoted/| T. 

As we noted above, / and /1 A differ only in that they have 

distinct domains. Clearly,/ =/1 X. 

For every set X and A c X denote by jA ^ the function on A 

to X defined by 

jA x(x) = x for all x e A. 

Then 

6.6 f\A =f°jA,x- 

* In 6.5, if />+!=» we replace /„ ° • • • °/„+i by /„ ; if p = 1 we replace 

fv° ■ • • °/i,by/i- 
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In fact, f | A and f °jAX both have domain A and range 7. 

If x e A, then 

(f\A)(x)=f(x) and f°jAtX{x) =f{jA>x{x)) =/(*), 

hence (see 4.4), 6.6 is proved. 

IfA=X—Y, then, as we indicated in Example 6 of Chapter 4, 

the function jAA is often denoted jA. 

We shall close this section with the following remarks: Let 

f:X^Y and g: W ^ Z be two functions. Note that we defined the 

composition g °f only in the case in which Y — W. We may, 

however, weaken this condition. In fact, if 

6.7 f(X) c W, 

then we may still define g °f by 

g °/M = £(/(*)) for x eX. 

Note that 6.7 means that 

6.8 x e X /(x) eW. 

Example 2.—Let f :R R be defined by 

/(#) = x2 + 1 

for x e R. Let JR* = {x | x s R, x #0} and letg:7?* -> R be defined 

by g(x) = 1/x 

for x eR*. Clearly, 6.8 is satisfied, since x2 + 1 yi 0 for x e R. 

Hence, g °f can be defined (as a mapping of R into R): 

g °f(x) = l/(*2 + 1) for x e R. 

Exercises for Chapter 6 

1. Let X — Y = Z = (1, 2, 3, 4}, and define: 

f=(X, 7, {(1,1), (2, 1), (3, 1), (4, 2)}); 

g = (Y,Z, {(1,4), (3, 2), (2, 3), (4, 3)}). 

Construct the functions g °f and f ° g. 

2- If f = Y, G) and f = (X7', G') are functions such 

that X X, Y ^ 7, and G' G, we say that f is an extension off. 

Suppose h — (A, B, H) and h' = (A', B', H') are functions such 

that A c A' and B c B'. Show that In' is an extension of h oh' ° 

Ja,a- = Jb,b' ° h. 
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3. * Let f = (X, 7, G) be a function. Suppose that In 

&>[X') = 0. Show that 

<P='(X v 0>{X), Y u 0»(7), Gu {(Z,/(Z)) | Z <= Z}) 

is an extension of/. 

4. Let f — ({0}, {0}, {(0, 0)}) and g = ({0}, {0, 1}, {(0, 0), 

(0, 1)}). Is g an extension of/? 

5. * Let X be a set. Is 

mx.x) I (f,g)ESr(X,X)}) 

a function ? 

6. * Let N denote the function ({0, 1}, {0, 1}, {(0, 1), (1, 0)}). 

Let 5 be a set and suppose that r is any function with domain S 

and range {0, 1}. In Chapter 4, Example 11 and Exercise 9, we 

discussed the functions represented by the tables 

M 0 1 m 0 1 C 0 1 

0 0 1 0 0 0 0 1 1 

1 1 1 1 0 1 1 0 1 

Let a be the function defined by the table 

a 0 1 

0 1 1 

1 1 0 

Show that: 

(a) N ° r = cr ° (t, t) ; 

(b) M ° (t X t) = o' o (o' ° (t, t) X a o (r, t)); 

(c) m ° (t x t) = o' o (o' o (t x t), o' o (t x t)); 

(d) C o (t X r) —Mo ((TV o t) X t); 

(e) C°(r x t) — M ° m o (t x (iV ° r))j 

(f) Co(t X t) = o' ° (a o (t, t) X o' o (t, t)) o(o'o(t, t) X t). 

7.* Let X, 7, and Z be sets and suppose/ = (X, Y, F) and 

g — (7, Z, G) are functions. Show that g °f — (X, Z, G ° F) (see 

Exercise 5, Chap. 3). 



Chapter 7 

The Inverse Function 

Recall that if A is a set, then jA is the function x x on A to A. 

The following theorem is a useful one. 

7.1 Theorem.—Let f:X—>Y be a mapping. Suppose that there are 

two mappings, g:Y -> X and h:Y —> X, such that 

7.2 g°f=jx and f°h=jY. 

Then f is a bijection and g — h. 

Note that 

g °f =jx o g(f(x)) = x for all xeX 
and 

f°h=jyof(h(j>))=j! for all yeY. 

Proof.—Let x' e X, x" e X, x’ f x". Then 

g(f(*’)) = jx(*') =*' **' =jx(x") =gtf(x")). 

Since g{f(x')) f g(f(x")), we deduce f{x') f f(x"); hence /is an 

injection. 

Now let y e Y; then h(y) e X and 

f(h(y)) = f°Ky) —jr(y) =y- 

Hence, given y e Y, the element x = k(y) eX satisfies f(x) =y; 

whence/is a surjection. Hence,/is both an injection and a surjection; 

therefore it is a bijection. 

Note now that 

g(y) =g(f°Ky)) = (g°f){Ky)) =jx{h{y)) = h{y) 

for all y e Y; we conclude g = h. 

40 
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Hence, 7.1 is completely proved. 

Remark.—Obviously, Theorem 7.1 shows also thatg (g = h) is a 

bijection (why?). 

7.3 Theorem.—Let f\X—>Y be a bijection. Then there is a 

unique function g:Y —> X such that: 

7.4 g(f{x)) — x for x g X; 

7.5 f(g{y)) =y for y e Y. 

The function g is a bijection. 

Proof.—Once the existence of g is proved, then the uniqueness 

assertion and the fact that g is a bijection follow from Theorem 7.1 

(see the remark following Theorem 7.1). 

Hence, to prove Theorem 7.3, it remains to prove the existence 

of the function g. For this, we reason as follows: Let y e Y. Since 

f{X) = Y, there is x e X satisfying/{x) =y; since f is an injection, 

there is only one such x e X. Denote this unique x e X by g(y). 

We define in this way a mappings i->g(jy) of Y into X. From its 

definition, it follows that 

f(g{y)) =y for a11 y e Y- 

Furthermore if x e X and_y = /(*), then x is the unique element in 

X satisfyingy = f(x); whence x = g(y); that is 

g(f{*)) = g{y) = *• 

Hence, Theorem 7.3 is proved. 

Let now/ :X ^ Y be a bijection. The unique function g:Y -> X 

satisfying 

7.6 g{f{*)) = * for x eX 
and 

7.7 f(g(y)) =y for jgY 

is called the function inverse to f {or the inverse function off). 

The function inverse to/is denoted/_1; with this notation, 7.6 

and 7.7 become, respectively 

/-1(/(x)) —x for xeX 7.8 
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and 

7.9 /(/_1(j)) =y for JeY- 

Note that 

xLy and xCy. 

Note also that f~x was defined above only for f:X—>Y a bi¬ 

jection, and thatf~x: Y -> X is also a bijection. 

Therefore, if f:X->Y is a bijection, and g:Y-+X satisfies 

7.6 and 7.7, then g — f~x. This remark will be used often in what 

follows. 

Example 1.—Let f .R-^R and g\R-+R be defined by 

/(#) — x + 1 for x e R and g(x) — x — 1 for x e R. Then 

g(f(x)) ?= g(x + 1) ■— (x + 1) — 1 = x for x e R 

and 

f(g{y)) =f(y - i) = (j> - i) + i =y for y & R. 

We conclude that g .R —>■ R is a bijection and that g =f~1. 

Example 2.—Let R* = {x | x e R, x ^ 0} and let f: R* R* 

and g: R*->/?* be defined by f(x) — g(x) = 1 jx for ^ e R*. Then 

g(f(x)) =£(1/*) =1/(1/#) =x for xeR*. 

Since g = f, we also have /(g(*)) = x for x e R*. We conclude that 

f: R* -+ R* is a bijection and that/-1 =/. 

Example 3.—Let A and B be two sets and let f be the function 

(a, b) i-> (b, a), on A x B to B x A. Then f is a bijection and^f-1 

is the function (b, a) (-> {a, b), on B x A to A X B. 

Remarks.—(1) If f‘.X—>Y is an injection, and if there is a 

mapping g: 7 -► X such that 7.7 is satisfied (that is,f(g[y)) =y for 

y g 7), then we deduce that/is a surjection (why?). Hence,/is a 

bijection, and then 7.1 shows that g =f~1. 

(2) Let/:X-> 7 be an injection. We noted in (1) that if we 

can show that there is g\Y -> X such that f(g(y)) =y for y e Y, 

then/is a bijection and g =J~1. Hence, if we can find “a solution 
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g'Y-+X of the equation f ° g — jy” we conclude that / is a 
bijection. 

For instance, let / be the mapping * 2x + 3 of R into R. 

Clearly,/is an injection. A mapping g:R-+ R satisfies f(g{x)) = x 

for x e R if and only if 

2g(x) + 3 = x for x e R. 

Now, for x e R, 

2g(x) + 3 = x o g(x) = i(x - 3). 

Since the mapping g:x H- \{x — 3) of R into R satisfies /° g =jY, 

we deduce that/is a bijection and/-1 = g. 

7.10 Theorem.—Let f:X-^-Y and g'.Y^-Z be two bijections. 

Then g °f is a bijection and 

(g °/)_1 =/_1 °g~1- 

Proof.—By 6.3, g of is a bijection. Also, u =f~1°g~1 is a 

well-defined mapping of Z into X. Furthermore 

u ° (g °f) = (/_1 °^_1) ° (g °f) =f~x ° Gr1 °g) °f 

= f~x °Jy °f =f~x °f = jx 
and 

" {g °f) 0 « = (g of) ° (/_1 0 = g°(f °f~x) 0 g”1 

= g ojX og-1 = g °g-X =jy. 

Hence, 7.10 is proved. 

We close this section with the following remarks: Let X and Y 

be two sets, let A <= X, and let/: A —> Y be a function. Suppose that 

there is a function g: f(A) —> X such that: 

7.11 g(f(x)) =x f°r x e A; 

7.12 f(g(x))=x for xef(A). 

(Note that 7.12 implies that g(j>) £ A forjv e/(^4); in fact, dom/ = 

A, and hence/(z) is defined only for z e A.) In this case, we shall 

also say that g is the function inverse to / or the inverse function of /. 

Note that g considered as a function on/(A) to A is the function 

inverse to the mapping it->/(x) on A to f{A). 
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Exercises for Chapter 7 

1. Let X = {1, 2, 3} and let a be the bijection 

(X, X, {(1, 2), (2, 1), (3, 3)}). 

Express cr-1 as a triple. 

2. Let / = (X, Y, G) be a bijection. Express/-1 as a triple. 

3. * Let f = (X, X, G) be a function and suppose there is 

n e N such that/" = jx (for n e N we denote/" =/if n — 1 and 

/" =f°...°f(n times) if ra > 1). Show that/is a bijection. 



Chapter 8 

Unions and 

Intersections of 

Families of Sets 

A function f = (/, X, G) is sometimes called a family of elements 

of X. In this case, we say that / is the set of indices of the family. 

We write ft instead of/(i) (for i e I) and / = (f)ieI. The set 

/(/) = {ft | i.el) 

is called the set of elements of the family. 

Notations like {xt)ieI are often used to represent a family of 

elements of a set X. * 

Let (xt)ieI be a family of elements of X; for each i e /, we call x{ 

the term of index i or the Wth component” of the family. If (xt)ieI is a 

family, and J <= /, we often say that {xt)iGj is a subfamily of (*,•) fe/. 

A sequence of elements of A is a family of elements of X having 

for set of indices a part of Z. 
Notations such as those indicated below are often used for 

representing sequences: 

(*<)<>i instead of (xt)ieN; 

(*<)i<<<® instead of p}. 

Example 1.—(i) (2n + l)nejv is a sequence of elements of R; 

the term of index n e N of this sequence is the number 2n + 1. 

(ii) (2n)neZ is a sequence; the term of index 3 of this sequence 

is 6. 

* When a family is represented by such a notation, i h+ .v, is a mapping of 1 into A*. 
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If Y is a set and (dt)ie/ is a family of elements of &(Y), we 

often say that {A{)ieI is a family of subsets {or parts) of Y (or simply a 

family of sets). 

In Chapter 2 we defined the union and the intersection of two 

sets. We shall now define the union and the intersection of a family 

of sets. 

Union.—Let X be a set and let (Al)ieI be a family of parts of X. 

We define the set U Ai by 
iel 

8.1 x e \J Ai o there exists iel such that x e At. 
iel 

Hence, an object, x e X, belongs to (J Ai if and only if x 
iel 

belongs to at least one At, iel. If/ = 0, 

8.2 U A, = 0. 
iel 

The set (J Ai is called the union of the family (AfeI; it is 
iel 

read “union i in I, A 

Intersection.—Let X be a set and let (Ai)ieI be a family of parts 

ofX We define the set p Ai by 
iel 

8.3 xef]AioxeX and x 6 Ai for all i e I. 
iel 

Hence, an object xel belongs to p Ai if and only if the 
iel 

condition x e Af\s satisfied for all iel. If / = 05 

8.4 p A< = X. 
iel 

The set p Ai is called the intersection of the family (Ai)iel; 
iel 

it is read “intersection i in 7, Af 

Example 2.—(i) For each p e N, let Ap = {n \ n e N, n >p}; 
then p Ap = 0. 

yeN 

(ii) Let X be a set containing at least two elements; let a e X 

and I = X — {a}. For each x e I, let Ax = X — {x}. Then 

n ax = {«}. 
xel 

▼ The set y At does not depend on X. The set p Ai does not 
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depend on X either, if 7^0. It does depend on X (see 8.4) if 

1=0. A 

Notations such as those indicated below are often used in the 

case of sequences: 

U Ai instead of (J A{; 
i>l ieN 

(J Ai instead of (J At. 
2 6{ 1, ... j V) 

It is easy to see that the definitions given in Chapter 2 are 

particular cases of 8.1 and 8.3. 

For instance, let A and B be two subsets of X and let / = {A, B}. 

Let XA = A and XB = B. Then, clearly 

(J X8 = A u B and f| Xs = Ar\ B. 
Sel Sel 

Now let Ax, . . . , An be n sets. The set Ax U . . . U An, as 

defined in Chapter 2, coincides with (J A{ as defined in 8.1; 
ie{ 1.n} 

also, Ax n . . . n An as defined in Chapter 2 coincides with 

n Ai 
ie{l> •■•>«} 

as defined in 8.3. Hence, we may write 

|J At = A1 u . . . u An and f) At = Ax n . . . n An. 
ie{l,...,«} ie{l, . . . , n] 

Now let X be a set and J5" cz ^(JF) (hence & is a set of subsets 

of X). For each A e let XA = A. Then (XA)AeS? is a family, the 

set of indices of which is We write 

8.5 U A = \J JA 

and we call (J A the union of ; we also write 
AaSF 

8.6 n a = n xA 
Ae^ Ae^ 

and call f) A the intersection of 3P. 
AnSF 

▼ In this section, we defined the union and the intersection of a 

family of sets (Tj)ieZ. Note that here we have always supposed that 

the sets Afi el) are subsets of a given set. When we defined the 

union and the intersection of two sets in Chapter 2, we did not 

suppose a priori that the considered sets were subsets of a given set. 

It follows, however, from the usual axioms of set theory, that if 
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is a set the elements of which are sets, then there exists a set X 

such that 3F <^SP(X). It also follows from these axioms that if x 

andjy are two “objects”, then there exists a set the “objects” of which 

are just x and y. 

The union, |J Aif can be defined without supposing a priori 
iel 

that Ai} i e I, are subsets of a given set. The same is true for p| A{ 
iel 

if If 0. However, f| At is not defined if I = 0. This is due to the 
iel 

fact that there is no set Y such thatjy e Y for every y. A 

We shall now discuss the Cartesian product of a family of sets. 

Let X be a set and let (Aj)ieI (/^ 0) be a family of parts of X. 

We define the set Jby 
iel 

8.7 x e Y[ Ai o x = (x*)i6/ with xt e Ai for all i e I. 
iel 

Hence, (Q At is the set of all families (^)ie7 of elements of X 
iel 

such that xt e Af for all i e I. Hence, 114 is the set of all functions 

f:I -> X such that leI 

f (i) e Ai for all i e I. 

It follows that if Tj = X for all i e /, then (see 4.3) 

U^ = xp 
iel 

The set is called the Cartesian product or the product of the 
iel 

family (Tt-)*6/; it is read “product i el, Ai.” If / = {1},/ = {1, 2}, 

or I = {1,2then we identify At with ^4X, Ax x A2, or 

At x A2 X ... X An respectively. ieI 

For each k e I, we denote by prk the mapping (xt)ieI xk of 

into Ak; this mapping is called the projection of index k, or 
iel 

the projection onto Ak. 

▼ The assertion, n At f 0 if Ai f 0 for all i e I, is an axiom 
iel 

called the Axiom of Choice. It says, in fact, that if {Aj)ieI is a 

family of non-void sets, then there exists a family (xj)ieI such that 

Xi e Ai for all iel. A 

We shall close this paragraph by listing (without proofs) 

several results concerning unions and intersections of families; 

they can easily be proved. 
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We denote, by X and Y, two sets. 

8.8 Let A c X and (AP)ieI a family of parts of X. Then: 

(i) An(UAt) = U (AnAj; 
iel iel 

(ii) A\j (n At) = n (AuAJ. 
iel iel 

The results in 8.8 generalize assertions 2.7 and 2.8 (Chap. 2). 

8.9 Let {Ai)ieI be a family of parts of X. Then: 

(i) C(U A,) = n CA,; 

(ii) C(n A,) = U CAt. 
iel iel 

The results in 8.9 generalize assertion 2.12. 

8.10 Let f:X-*-Y and let (At)ieI be a family of parts of X. 
Then: 

(i) /(U At) = U/W; 

(n) m At) <= n m<)- 
iel iel 

The results in 8.10 generalize assertion 5.3. 

8.11 Let J :X -*■ Y and let (Bi)ieI be a family of parts of Y. 
Then: 

'(i) /_1(U Bi) = U f-W, 
iel iel 

(ii) f-\C\Bt) =n/-w 
iel iel 

The results of 8.11 generalize 5.6. 

We wish to point out some notations that are frequently 

encountered (note that {A | A e = J*): 

(J {A | A e instead of (J A; 

(J {A{ | iel} instead of U At; 
iel 

D {A I A e #”} instead of D A; 
ac.r 

D {A{ | iel} instead of f| Av 
iel 

T Example 3.—Let Z and T be two sets and let 

X= U {^{A, T)\Ae0>(Z)}. 
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An object of A is a function (A, T, G) with A e ^(Z). Let h be the 

mapping (A, T, G) l-> A of X into 0>{Z) (thus h(A, T, G) = 

pr^A, T, G)). Clearly, then, for every /el, we have h(f) — 

dom f. A 

Exercises for Chapter 8 

1. Let Ax — {2, 1}, A2 = {3, 2}, A3 = {4, 3} and in general 

An = {n + 1, n). Write explicitly the sets: 

(a) u A; 
l<i<5 

(b) ljAt; 
ieN 

(c) n A; 
is(1,2} 

(d) UA; 
5 

(e) fj CA{ (here CAt = CNAt); 
ieN 

(f) U CA; (here CA{ =CNAi); 
ieN 

(g) II A; 
i s(l,2} 

(h) Prs(YlA)- 
ieN 

2. Write a bijection with domain Ai and range A± x A2, 
where Ax and A2 are as above. <e{i.2> 

3. Let I and A be sets, and suppose Ai (= A for each i el. 
Show that 

{/} x {A} x &{I x A) => A1 = &(I, A)^Y\Ai 
iel 

4. Give a simple example of a set /, a set A, and a family 

((^i)ie/) of subsets of A such that ]/[ At is properly contained in 
iel 

I>A); be., JJ Ai is not equal to «F(/, A). Also, give an example 
iel 

in which JJ A{ = J^/, A). 
iel 

5. Let f: N —> N be defined by f(n) = n2 for each n e N, i.e., 

f = {N, N, {(n, n2) | n e N}). Let An be defined as in Example 1 
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for n > 1. Write explicitly the sets: 

(a) U MtY> 
l<i<5 

(b) n B, where B, = A, u f(A,), i e N; 

(c) U (A.nftA,)); 
ieN 

(d) u(AuCf(A,)); 

(e) D(J,nC/W); 
i >5 

(f) Pric (n/W), k e N. 
ieN 

6. Let X be a set and let ^ <= 0>{X). Recall that = U ^ 

and = fl G. Let Z = {1, 2, 3, 4} and 
Ge3? 

& = {{1, 2, 3}, {2, 3}, {1,3, 4}}; 

determine \J@ and f)@. Let 

X = N, & = {{n | n > 2k} \ k e N}; 

determine \J@ and 

7. * Let (Jx)XeI be a family of sets and let J = (J J Let 

(Ai)ieJ be a family of parts of a set X. Then: AeZ 

(a) (J At = U ( U Ai) (associativity); 
iej As/ ieJ^ 

(b) f| Ai = n ( U Ai) (associativity). 
iej AgI iej 

8. * Let (Ai)i6i and (7?t-)i€>/ be two families of parts of X. Then: 

(a) (U Ai) n (U Bj) — U Ain Bj (distributivity); 
iel ieJ (i,j)eIXJ 

(b) (n^i)u(fl^)’= PI AiKJ Bj (distributivity). 
iel ieJ (i,j)eIXJ 
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Equipotent Sets 

Let A and B be two sets. We say that A and B are equipotent 

if there exists a bijection/ :A—>B. 

Note that if f:A-*B is a bijection, then f~x\B-+A is a 

bijection too. 

If A and B are equipotent and B and C are equipotent, then A 

and C are equipotent. In fact, since A and B are equipotent, there 

exists a bijection f:A-+B; since B and C are equipotent, there 

exists a bijection g:B^C., Since g°f:A->C is a bijection (see 

6.3 (iii)), it follows that A and C are equipotent. 

Example 1.—Let A — {5, 9, 10} and B = (1, 2, 3}. Let f :A —*■ 

B be defined by /(5) = 1, /(9) = 2, /(10) =3. Then f is a bi¬ 

jection; hence, A and B are equipotent. 

Example 2.—(i) Let N' = {2n \ n e TV} and let /: N —► N' be 

the mapping defined by f[n) = 2n for n e N. Then f is a bijection; 

hence, N and N' are equipotent. (Note that although N and Ar' are 

equipotent, we have N' c N and N ' *N.) 

(ii) Let B — {n\n e N, n >2} and let h: ./V —>■ B be the mapping 

defined by h(n) = n + 1 for n e N. Then h is a bijection; hence, 

B and N are equipotent. 

Example 3.—Let h:Z-+ N be defined by 

h(n) = 2n + 1 if n = 0, 1, 2, ... ; 

= —2n if n = —1, —2, .... 

Then h\Z -► N is a bijection, whence N and Z are equipotent. 

52 
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Example 4.—If A and B are sets and f:A-+B\s an injection 

then A and f{A) are equipotent. In fact, the mapping g: A -+f(A), 

defined by g(x) — f(x) for x e A, is a bijection. 

▼ Example 5.—Let X and 7 be two equipotent sets. Then 2A and 

2y are equipotent. 

Let/: X -> Y be a bijection and let g = f~x. Now let y: 2 Y -*■ 
be defined by 

<p(«) =g°u°f {XUy^Y^X) 

for u 6 2F. Since f u, and g are bijections, it follows that <p(u) £ 2 A- 

(see 6.3(iii)). Hence, u f-> cp(u) is a mapping ofhY into 2X. 

Iff eSj, then 

u =f°vog 7) 

belongs to 2F, and 

cp[u) = g ° U of = g o (/ o v o g) of 

= (g °f) o v o (g of) = y. 

Hence, 9? u a surjection. 

Now let eSF, u2 e 2F, ^ w2. Then there is jy e 7 such 

that wx(jv) 7^ Let x £ X, satisfy/(*) = jy; then 

“i °/(*) = «i( 7) ^ u2{y) = m2 °/(*); 
therefore 

g ° u\ °/(*) = g ° “i(J’) ^ 5 ° “2(7) = g 0 «2 °/(*); 

that is, g 0 u-l °f g ° u2 ° f. Thus, 9?(zq) =£ 99(1*2); hence 99 is an 

injection. 

We conclude that q> is a bijection, and therefore that 2A and 2F 

are equipotent. ▲ 

Example 6.—Let A, B, A', and B' be four sets. Suppose that A 

is equipotent to A' and B is equipotent to B'. Then A x B is 

equipotent to A' x B'. 

Since A is equipotent to A', there is a bijection f:A->A'. 

Since B is equipotent to B', there is a bijection g\B-+B'. Let 

h’.A x B —> A' X-5'be defined by 

h{x,y) = g(y)) 

for (x,y) £ A x B. Then h is a bijection (why?). Hence, A x B 

and A' x B' are equipotent. 
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From the results in Examples 3 and 6, it follows that Z x Z, 

Z x N, N x Z and N x N are equipotent. 

We shall say that a set S is finite if S = 0 or if there exists p e N 

such that S is equipotent to {1, 2, ... , p). Clearly, if S is finite and 

if S is equipotent to T, then T is finite also. 

If S = 0, we say that the number of elements of S is 0; if S 

is equipotent to {1, . . . , p} (p e N), we say that* the number of 

elements of S is p. The number of elements of a finite set S is denoted 

c(S). 

If S is a finite set and A <= S, then A and S — A are finite and 

9.1 e(S) =c(A) + c(S - A). 

A set S is said to be countable if it is equipotent to Z. If S is 

countable and if S is equipotent to T, then T is also countable. 

The result of Example 3 shows that N is countable. 

A set S is said to be infinite if it is not finite. Clearly, if S is 

infinite and if S is equipotent to T, then T is also infinite. In what 

follows, we shall accept the following results: 

9.2 The set Z is infinite. 

9.3 A set is infinite if and only if it contains a countable part. 

Theorem 9.4 is useful for showing that two sets are equipotent. 

9.4 Bernstein-Schroeder Theorem.—Let X and Y be two sets. 

Suppose that: 

(i) there exists an injection f\X-+ Y; 

(ii) there exists an injection g:Y —*■ X. 

Then X and Y are equipotent. 

▼ The proof of 9.4 is based on the following result, which will be 

established first: 

9.5 Let X be a set and let cp: 0>(jX) -> £P{X) be a mapping 

satisfying the condition 

4C B => cp{A) c: cp(B). 

Then there is D e 0>{X) such that <p(D) = D. 

* Here (and in what follows) we shall accept certain results (which are intuitively 
obvious) concerning finite sets. For instance, we accept that: If nEN, mE N and if 

and {1, . . . , m} are equipotent, then n — m. 
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Proof.—Let XT = {N | S c X, S c: y(S)} and define 

9.6 D = U S. 
SeX 

Since S <= D for each S g YY we have, using the hypothesis on 99, 

(p(S) c 99(D) for each 5 6 J7. From the definition of Jf, we have 

Sc: 99(5) for each S G JY; thus S' <= 99(D) for each S e JY. Hence 

99(D); that is, 
SejT 

9.7 Dc 99(D). 

Using 9.7 and the hypothesis on 99 again, we obtain 99(D) <= 99(99^)), 

hence 99(D) e JT. Therefore 

9.8 9>(D) c D. 

Comparing 9.7 and 9.8, we conclude 99(D) = D. 

Proof of Theorem 9.4.—Let 99: 0>{X) -> PP{X) be the mapping 

defined by 99(5) = £(C/(CS)) for 5 e 0>{X). Then 

CT => CB^>f(CA) =>f(CB) => C/(CT)) c C/(CD)). 

Hence, 

9>04) = ^(C/(CT)) <= *(C/(C5)) = 99(D); 

that is, 99 satisfies the condition of 9.5. Hence, there is a set D e 

&(X) such that 99(D) = D, that is 

9.9 D=g(Cf(CD)). 

Note that 9.9 shows that g(7)=> D. Thus, for each x e D, 

there is a uniquey e T satisfying g(y) = x, hence j = g_1(x). 

Define now ip:X -> Y by 

ip[x) = g_1(tf) if xgD, 

ip(x) =f{x) if x e CD. 

By 9.9, 

V(D) = = C/(CD) 

and 

V’(CD) =/(CD). 

Hence 

y(Z) = 99(D) U ip(C*D) = C/(CD) u/(CD) = 7; 

that is, 99 L surjective. 

Now let U G X, x" g X, x' f x". If x' and x" belong to D, then 

9>(*') f y{x"), since g is injective; if x' and x" belong to CD, then 
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ip(x') 7^ y{x"), sincef is injective. Now suppose x' e D and x" e CD. 

Then yj(x') £^(D) - C/(GD) and y>(x") e y»(C£>) = f(D); hence 

ip(x') 7^ xp(x"). Therefore, ip is injective. 

We conclude that ip is bijective, and hence that the theorem is 

proved. A 

9.10 Corollary.—Every infinite part of Z is equipotent to Z. 

Proof.—Let A <= Z be an infinite part. Then the mapping 

f\A—>Z defined by f(x) = x for x £ A is an injection. By 9.3, A 

contains a countable set A0. Hence, there is a bijection g' :Z —>- A0. 

If g:Z^A is the mapping * l-> £'(*) of Z into A, then g is an 

injection. By Theorem 9.4, Z and A are equipotent. 

9.11 Corollary.—A subset of a countable set is finite or countable. 

Proof.—Let X be a countable set and let A <= X. Suppose A is 

not finite. Since X is countable, there is a bijection/ :X —> Z. Now 

f[A) is equipotent to A and f{A) c= Z. By 9.10,/(T) is countable; 

hence A is countable. 

9.12 Theorem.—If X is countable and f:X—>Y is a surjection, 

then Y is finite or countable. 

Proof—For each y e Y, f^1(y) ^ 0, since f is a surjection; 

then letg(_y) £f~1(y). Consider the mappings P»g(jy) of Y into X. 

If y' £ Y, y" e Y and y' =fiy", then f~1(y') n f~1{y") = 0 ; since 

g{y) ef~x{y) and g(s") eZ-^y) we deduce g(y') # g(y"). 
Hence, g is an injection, and hence Y is equipotent to g(Y). Since 

g(Y) <= X and X is countable, we deduce that g(T) is finite or 

countable (see 9.11). Hence Y is finite or countable. 

Example 7.—-The set N x ./Vis countable. 

▼ Let f'.N x N —► N be defined by* 

f(x,y) = \{x +j>)(* +Y + 1) +J 

for (x,y) e N x N. We shall show that/is an injection. Let (x,y) £ 

N x A^and {x',yj £ N x N be such that (x,y) # (xjyj. We shall 

distinguish three cases: 

* At least one of the numbers x-\-y or x-\-y-\- 1 is even, whence \{x + y)(x + 

; + l)6JV. 
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Case I: x -f jy = x' y'. Thenj f=y' (otherwise, x = x' too). 

We deduce 

-/y,y) -y ^ o 

that is,f(x,y) ^f{x',y'). 

Case II: * + jy < x' + y. Since x + jy and + y belong to 

A, we have x + jy + 1 ^ x’ + y. Hence: 

= i(* +j>) (* + j + i) +y < i(* + y y +y) +jy 
= t(* +y)(*' +y + i) — +y +jy 

< $y +yjy +y + i) 

- $y +y + i) - k* +y +j 

< i(*' +yjy +y +1) — (* +y +y 

= iy + y)y +y + i) - * 

< iy +y)y +y + i) +y 

=/y,y); 

and hence,/(x,y ff(x',y'). 

Case III: x + jy > *' + y. Reasoning as in Case II, we show 

that/yy #/y,y). 

We deduce that f is injective. Therefore, A x A' is equipotent 

to/(AT x A) <= A. By 9.11,/(A’ x A) is finite or countable. Since 

/(Ax A) contains a set equipotent to {(«, 1) | n e A} (which is clearly 

equipotent to A), it follows that /(A x A) is infinite (using 9.1). 

Hence, A x A is countable. ▲ 

Exercise 1.—Show that if A1} A2, . . . , An are countable sets, 

then Ax x A2 X . . . x An is countable. 

Exercise 2.—Show that if (Tf)t.gN is a family of countable sets, 

then U Ai is countable. 
ieN 

Example 8.— The set Q of rational numbers is countable. 

The set Z x A is equipotent to A x A (see Example 6) and 

A x A is countable. The mapping 

(n, m) E* n(m 

of Z x A into Q is a surjection; hence (using 9.12) the set Q is 

finite or countable. Since Q => A, we deduce that Q is countable. 

It will be shown below that there are infinite sets that are not 

countable. 
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For every a e R, b e R, a < b we write 

9.13 [a, b'] = {x | a < x < b}. 

A set of this form is called a (bounded) closed interval (see Appendix I). 

9.14 Theorem.—Let I c= r be a closed interval. Then the set 1 
is infinite and not countable. 

For the proof, we note that given a closed interval J c R and 

x e R, there exists a closed interval J' such that 

x £ J' and J' <= J. 

Proof.—By 1.3 of Appendix I, the set I is infinite. If I were 

countable, there would be a bijection n t-> xn of N onto /. Let I1 

be a closed interval such that 

xx p Ix and Ix c= /. 

Let I2 be a closed interval such that 

x2 I2 and I2 ci /x. 

Continuing in this way,* we obtain a sequence (In)nsN of closed 

intervals such that (denote I by I0) 

9.15 xn $ In and In c In l for all n e N. 

By 1.4 (Appendix I), there is t e P) In, and hence (since clearly 
neN 

t g I) there is k e N such that t = xk. But xk Ik, thus 

n /«. 
neN 

Hence, the hypothesis that I was countable led to a contra¬ 

diction; therefore / is not countable. 

9.16 Corollary.—The set R of real numbers is infinite and 

not countable. 

Proof.—By 9.2, R is infinite. By Corollary 9.11, it is not 

countable. 

Therefore, Z <= R, and both sets are infinite, although they are 

not equipotent. For a long time, mathematicians tried to establish 

the continuum hypothesis, that is, to establish that every set such that 

* See Chapter 12. 



EQUIPOTENT SETS 59 

Z^A^R is either equipotent to Z or equipotent to R. Recently, 

it has been shown ( see [2] and [3] ) that neither the continuum 

hypothesis nor its negation can be proved on the basis of the usual 

axioms of set theory. Actually, if either the continuum hypothesis 

or its negation is added as an axiom, the theory obtained remains 

“consistent” (if the previous one is). 

Exercises for Chapter 9 

1. Let I = {1, 2, 3, 4, 5}, X = (0, 1}, Y = X5. Define a 

mapping cp by 

<P = (Y, {(*, {i \prt{x) = 1}) | x e 7}). 

Is cp a bijection? 

2. Show that 0))) is equipotent to (see Exercise 3, 

Chap. 1). 

3. Let A, B, and C be three sets such that Bn C = 0. Show 

that A-Bucis equipotent to Av x Ac. 

4. Show that the set S = {n2 | n e X} is infinite. Show that S 

is countable. 



Chapter 10 

Relations in a Set 

Let A be a set. A relation in A is a subset 

R c X x A. 

Given x e X andjy e A, we say that x is /^-related tojy if (x, y) £ R. 

Example 1.—Let A be a set and let A = {(x, x) | x £ A}. Then 

A is a relation in A. Clearly 

(x,y) e A <=> x —y. 

Example 2.—Let A be a set, Y be a set, and cp: X —*■ Y be a 

function. Let 

R = {(.x,y) | x e A, y £ A, <p(x) = <p(y)j. 

Then R is a relation in A. We emphasize that 

(x,y) £ R o q>(x) = <p(y). 

Example 3.—Let A be a set and f:X —»• A. Then (= the 

graph of/) is a relation in A. Note that 

(x,j) eGfoy =f(x) 

Example 4.—Let 

R = {(x,y) | x £ J?, j £ R,y - x e R+}. 

Then R is a relation in R. Note that 
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(x,y) £ R oy — x £ /?+. 
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Let X be a set and let R be a relation in X. Then we say that: 

10.1 R is reflexive if (x, x) e R for all x e X; 

10.2 R is symmetric if (x,y) e R implies (y, x) e R; 

10.3 R is transitive if (x,y) e R and (y, z) e R implies (x, z) e R. 

Let X be a set and R a relation in X. We say that R is an 

equivalence relation in X if R is reflexive, symmetric, and transitive. Since 

equivalence relations are important in mathematics, we shall study 

them here in some detail. 

If R is an equivalence relation in X, we often write 

x =y (mod R) 

(read, “x equivalent tojy modulo R”) instead of (x,y) e R. We also 

write x y (mod R) instead of (x,y) $ R. 

Example 5.—The relations in Examples 1 and 2 are equivalence 

relations. As we shall see below, for every set X and equivalence 

relation R in X, there is a set Y and a function cp:X —*■ Y such that 

(x,y) eR <=> <p(x) = <p(y). 

Example 6,—Lttp e Z and let Rv be the set of all (x,y) e Z x Z 
such that 

x — y — np for some n e Z. 

Then RP is an equivalence relation in Z. 
Let x e Z. Then x — x = 0 ■ p; hence (*, *) e Rp] thus Rv is 

reflexive. Now let (x,y) e Rv. Then x — y = np for some n e Z and 

thus 

y - x = -(x -y) = -(np) = (~n)p; 

hence (y, x) e Rp; thus Rv is symmetric. Finally, let (x,y) e Rp and 

(y,z) e Rv. -Then 

x — y = np and y — z = mp 

for some n e Z, m e Z; whence x — z = (n + m)p; that is, 

(x, z) 6 Rv, so Rv is transitive. We conclude that Rv is an equivalence 

relation in Z. 
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Example 7.—Let X — Z x N, and let R be the set of all pairs 

((p, q), (n, m)) E X x X such that 

pm = qn. 

Then R is an equivalence relation in Z x N. Note that 

p n 
( p, q) = (n, m) (mod R) o - = —. 

q m 

Example 8.-—Let X be a set, Ac: X, and 

R = (A x A) u (CA x CA). 

Then R is an equivalence relation in X. 

If x,y, u, v, s, t are as in Figure 7, then 

x =y (mod R), u = v (mod R), s ^ t (mod R). 

Hence, two elements, x and y, are equivalent modulo R if they are 

both either in A or in CA. 

Example 9.—Let X be a set and let R be the set of all couples 

(A, B) such that: 

(i) A e B e SA(X); 
(ii) A and B are equipotent. 

Then R is an equivalence relation in 8P{X). 

Let I be a set and R an equivalence relation in X. For each 

x e X, let 

C(x) = {y \y e X,y = x (mod R)}. 

Then C(x) e &{X). The set C[x) is called the equivalence class of 

x E X. 

The basic properties of equivalence classes are given in Theorem 

10.4. 
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10.4 Theorem.—Let a e X and b e X. Then the following 

assertions are equivalent: 

(i) a = b (mod R); 
(ii) C(a) = C(b); 

(iii) C(a) n C(b) f 0. 

Proof of 10.'4 (i) => 10.4(ii).—Let xeC(a). Then x = amod(R). 

Since a = b (mod R), and since R is an equivalence relation we, 

deduce x = b (mod R), whence x eC(b). Since x eC(a) was arbit¬ 

rary, we deduce C(a) d C(b). In the same way, we show that 

C{b)^C(a). We conclude that C(a) —C(b). 

Proof of 10.4(ii) => 10.4(iii),—Obvious, since C(a) = C(b) 3 b. 

Proof of 10.4(iii) => 10.4(i).—Let c e C(a) n C(b). Then 

a = c (mod R) and c = b (mod R), 

whence a = b (mod R). 

Hence, Theorem 10.4 is proved. 

10.5 Theorem.—Let R be an equivalence relation in a set X. There 

exists then a set and surjection such that 

(x,j>) eR o <p(x)= cp{y). 

Proof—Let ^ be the set of all A s PP[X) having the property: 

There exists xeX such that A =C(x). Hence, ^ is the set of 

elements of the family (C(x))xeX. 

Let (p:X be the mapping defined by 

<p(x) = C(x) 

for x G X. Clearly, by its definition, cp :X is a surjection. Further¬ 

more, if 

{x,y)eR, then C(x) = C(j>) that is, <p{x)=cp{y). 

Conversely: 

cp{x) = <p(y) implies C(x) = C(y)- that is, (x,y)eR. 
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Hence 

(x,J>) eR o <p(x) - 

and hence Theorem 10.5 is proved. 

The set ^ constructed in Theorem 10.5 is usually denoted by 

X/R and is called the quotient set of X by R. The mapping cp:X -> X/R 

is called the canonical mapping associated with R. As we have seen, cp 

is a surjection. 

If x e X, then cp~1{cp{x)) = C(x) (here C(x) is considered as a 

subset of X). 

Exercises for Chapter 10 

1. Let X = {1, 2, 3, 4}. Determine whether the following 

relations in X are reflexive, symmetric, or transitive. 

(a) {(1,2), (2,1), (1,1)}= A; 

(b) {(1, 2), (2, 1), (1, 1), (4, 3)} = B; 

(c) {(1, 2), (3, 4), (1, 1), (2, 2), (3, 3), (4, 4)} = C; 
(d) X x X; 

(e) 0; 

(f) Au Bu C. 

2. Let X, A, B, and C be as in Exercise 1. Determine whether 

the following relations are reflexive, symmetric or transitive, (see 

Exercise 5, Chap. 3) 

(a) A oB\ 

(b) A °C; 

(c) Bo A; 

(d) Co A; 

(e) BoC; 
(f) (Z x X) o A. 

3. Let X be a set and let A and B be relations in X. 

(a) Suppose A and B are reflexive. Are Au B and A n B 

reflexive? 

(b) Suppose A and B are symmetric. Are Au B and A n B 

symmetric ? 

(c) Suppose A and B are transitive. Are 4u B and Ar\ B 

transitive ? 



Chapter 11 

Order Relations 

In this chapter, we introduce the notion of order relation. We 

also introduce the notion of inductive set and state Zorn’s lemma, 

which has many applications. We close with a brief discussion of 

cardinal numbers. 

Let X be a set and let R be a relation in X. Then 

11.1 R is antisymmetric if 

, (*,y) e R and (y, x) e R => x =y. 

Again, let A be a set and R a relation in X. We say that R is an 

order relation in X if R is reflexive, anti-symmetric, and transitive. 

» If R is an order relation in X, we often write x <y or y > x 

instead of (x,y) e R. We also write x <y or y > x instead of 

(x,y) e R and x ^y. 

With the notation just given, we may formulate the definition of 

an order relation in the following way: 

Let A be a set and R a relation in X. Then R is an order relation 

in X if and only if: 

(1) x < x for all x e X; 

(2) x <y and y < x => x — y, 

(3) x <y and y < z => x < z. 

We shall often use the expression, “Let X be a set endowed with 

an order relation.” Whenever we use this expression, we consider 

a certain given order relation in X and we fix our attention on the 

set X and on the considered order relation in X. By an ordered set 

we mean a set endowed with an order relation. 

65 
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Example 1.—The relation in Example 4, Chapter 10 is an order 

relation in R. This is the order relation R is usually endowed with. 

Let X be a set, R an order relation in X, and x, y, and z three 

elements of X. It is then easy to see that the following hold: 

11.2 

VI 
*

 and y < z => * < 2; 

11.3 x <y and y 
it 

VI x < 2; 

11.4 x <y and y < z => X < z. 

Again, let A be a set and R an order relation in X. Let A <= X; 

then b e X is a majorant of A if b > x for all x e A. A set A <= X is 

said to be bounded above if it has a majorant. 

Now let A c X, A 0. We say that /3 is a supremum of A if: 

11.5 /? is a majorant of A; 

11.6 if b is a majorant of A, then b > /?. 

A set A (even bounded above) does not have necessarily a 

supremum. 

Notice that if^ and are supremums of A, then by 11.6 above 

we have < fi2 and p2 < /?x; whence by (2) fa = fa. Hence a 

set A has at most one supremum. The supremum of a set A will be 

denoted (when it exists) by 

11.7 sup A. 

Again, let A <= X; then, a e X is a minor ant of A if a < x for all 

x G A. A set A is said to be bounded below if it has a minorant. 

Now let 4 c J, 4 ^ 0. We say that a is an injimum of A if: 

11.8 a is a minorant of A; 

11.9 if a is a minorant of A, then a < a. 

As in the case of supremums, it follows immediately that a set 

A has at most one infimum. It might have none, even if it is bounded 

below. The infimum of a set A will be denoted (when it exists) by 

11.10 inf A. 

A set 4 c Zis said to be bounded if it has both a majorant and a 
minorant. 
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A relation R in a set X is said to be a total order relation if it is an 

order relation and if it satisfies the following condition: 

(4) We have either x <,y or y < x for all x e X and y e X. 

A totally ordered set is a set endowed with a total order relation. 

Remark.—The order relation in R mentioned in Example 1 is a 

total order relation. 

Example 2.—Let Y be a set and let 

R = {{A, B) \Ac B c Y}. 

Then R is an order relation in 2P[Y). Moreover, R is a total order 

relation if and only if either X = 0 or A contains only one element. 

A relation R in a set X is said to be a well-order relation if it is an 

order relation and if it satisfies the following condition: 

(5) Every non-void part of X contains a smallest element. 

This means that if A 0 is a part of X, then there exists (a 

smallest element) a such that a e A and a < x for all x e A. 

A well-ordered set is a set endowed with a well-order relation. 

Example 3.—The set N endowed with the order relation 

R — i{x,y) | x e N,y e N, x —ye Z+j 

is well-ordered. 

Example 4.—The set R (endowed with the usual order relation) 

is not well-ordered. In fact, let 

R* — {x | v e R, x > 0}. 

If a e Rl, then a/2 e R* and a/2 < a. We conclude that Rl 

does not contain a smallest element. 

It is easy to see that a well-ordered set is totally ordered. In 

fact, let x e X, y e X, and A = {x,y}. Then A <= X, and hence it 

contains a smallest element; hence either x <y or y < x. Hence, 

X is totally ordered. That a totally ordered set is not necessarily 

well-ordered was shown in Example 4. 

A set X is said to be directed (or filtering) if every non-void finite 

part of X is bounded above. 

A set X is said to be a lattice if every non-void finite part has an 

infimum and a supremum. 

Clearly, a totally ordered set is a lattice and a lattice is filtering. 
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Before proceeding further, we shall indicate a simple method 

of giving examples of finite ordered sets by certain drawings (Figs. 

8-13). 1 

The elements of such finite sets are represented by circles, while 

a pair (x,y) is a member of the considered order relation if and only 

if x =jv or x can be “connected” to y by a descending sequence of 

line segments. For example, the order relation R corresponding to 

Figure 8 is A U A' where 

A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} 

and 

A' = {(1, 3), (1, 5), (1, 4), (2, 3), (2, 5), (2, 4), (3, 4), (3, 5)}. 

Figure 10 represents a lattice. Figure 12 represents a totally 

ordered set. Figure 9 represents a directed set having a supremum but 

not an infimum; this is not a lattice. Figure 11 represents a set 

having an infimum but not a supremum. The subset {3, 4} of the 

ordered set represented by Figure 13 is bounded above but has no 

supremum. 

Let X be a set and R an order relation on X. If A c X, then 

clearly 

Ra = (A x A) r\ R 

is an order relation on A. It is called the order relation induced on 

A by R. Whenever we consider A as a subset of X, we suppose 

(unless we mention explicitly the contrary) that A is endowed with 

the order relation RA. 

It follows immediately that if X is totally ordered, then A is 

totally ordered; if X is well-ordered, then A is well-ordered. 

Let X be an ordered set. We say that A cr X is a cofinal part 

of X if for every x e X there exists ax e A such that ax > x. If X is a 

directed set and A <= X is cofinal, then A is directed. 

Exercise.—Show that if X is directed and A c: X is arbitrary, 

then A is not necessarily directed. Show that if X is a lattice and 

A <= X is arbitrary, then A is not necessarily a lattice. 

Let X be an ordered set. Then: 

11.11 An element j3 e X is said to be maximal if there is no y e X 

such thaty > /?. 
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11.12 An element a e X is said to be minimal if there is no x e X 

such that x < a. 

Hence, an element e X is maximal if and only if y e X and 

y > /3 implies y = /?. An element a el is minimal if and only if 

x G X and x < a implies x = a. 

Clearly, if X has a supremum b, then b is a maximal element of 

X and is the only maximal element of X. 

The set in Figure 8 has neither supremum nor infimum. How¬ 

ever, 1 and 2 are maximal elements and 3 and 4 are minimal 

elements. The set in Figure 9 has a supremum, but has no infimum. 

The elements 2 and 5 are minimal. 

We shall now introduce the following: 

11.13 Definition.—An ordered set X is inductive if every totally 

ordered subset of X has a major ant. * 

■ 

Example 5.—Any finite ordered set is inductive. 

Example 6.—The ordered set Z is not inductive. 

Example 7.—Let S and T be two sets and let X be the set of all 

injections having for domain a subset of S and for range T. For f 

and g in A, we write 

f 
if: 

(i) dom/ <= domg; 

(ii) f{x) = g(x) for all x e dom/; 

Hence, / < g if and only if Gr<= Gg. It is easy to show that 

R = {(/.«) | fcX,geX,f<g} 

is an order relation on X. We shall now show that X is inductive. 

Let K c X be a totally ordered part. Let 

A — (J dom/. 
feK 

Define h:A -> T as follows: If x e A, then there is/e K the domain 

of which contains x; we write h(x) = f(x). It is easy to see that h 

is well defined, that h is injective, and that h is a majorant of K (in 

fact, here h = sup K). Hence, X is inductive. 

* Notice that we do not suppose that every totally ordered subset of X has a 
supremum. 
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We shall now state (without proof*) an important result that 

has many applications: 

11.14 Zorn’s Lemma.—Every non-void, inductive set has a maximal 

element. 

Some applications of Zorn’s lemma will be indicated as we go 

along. 

T Zorn’s lemma is “equivalent” to the Axiom of Choice, which 

was stated near the end of Chapter 8. Hence, Zorn’s lemma can be 

taken as an axiom. In any case, it is preferable (when possible) 

to take for axioms statements that intuitively are more readily 

acceptable, and the Axiom of Choice is clearly such a statement. 

We would like, however, to take this opportunity to make the 

following remarks concerning the Axiom of Choice. Given a finite 

number of sets, it is “easy” to choose an element in each of them. 

But what about making the same choice in the case of an infinite 

family of sets? After long discussions (at the beginning of the 

century), it was finally recognized that the possibility of making 

such a choice is based on an axiom, namely, the Axiom of Choice. 

We would like to mention here that the following assertion 

is “equivalent” with the Axiom of Choice and Zorn’s lemma. 

11.15 The Well-ordering Lemma.—Every set X can be endowed 

with a well-order relation. 

-For further details concerning these remarks, the reader may 

consult [10]. A 

Consider the ordered set X in Example 7. Let u e X. Then the 

following assertions are equivalent: 

(i) u is maximal; 

(ii) dom u — S or u (dom u) = T. 

Proof of (i) => (ii).—Let u be maximal and suppose dom u ^ S 

and u (dom u) # T. Let 

s e S — dom u and t e T — u (dom u). 

Define v: {y} U dom u -* T by: 

v(x) — t if x = s; 

v(x) = u(x) if x e dom u. 

* The interested reader may consult, for instance, [1] or [6] . 
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Clearly, v e X and v > u. Since u is maximal, this leads to a con¬ 

tradiction; hence the implication (i) (ii) is proved. 

Proof of (ii) => (i).—Let u e X be such that dom u — S. If 

h > u, then dom h dom «, that is, dom h = S. We deduce h = u, 

and hence u is maximal. Now let u e X be such that u (dom u) — T. 

lik e X and k >u, then dom k dom u and £(dom u) = T. Hence 

A(dom u) — «(dom u) — T. 

Since k is an injection, we deduce dom k — dom u. Hence k — u, 

and hence u is maximal. Hence, (ii) => (i) is proved. 

As a first application of Zorn’s lemma we shall prove the follow¬ 

ing theorem. 

11.16 Theorem.—Let S and T be two sets. Then, one of the 

following assertions holds: 

11.17 There is an injection of S into T; 

11.18 There is an injection of T into S. 

Proof—Let X be the set of all injections having for domain a 

subset S and range T, endowed with the order introduced in Example 

7. Then X is inductive. By Zorn’s lemma, there exists a maximal 

element u e X. By the previous discussion, either dom u — S or 

M(dom u) = T. If dom u = S, then u is an injection of S' into T, and 

hence 11.17 holds. Ifw(domM) = T, then v.T —> S, defined by 

v(x) — u~1(x) for x e T 

is an injection of T into S, and hence 11.18 holds. Hence, Theorem 

11.16 is proved. 

If there is an injection of S into T and an injection of T into S, 

then by the Bernstein-Schroeder theorem (see Theorem 9.4) the 

sets S and T are equipotent. 

Hence, if S and T are two sets, then one of the following 

assertions holds: 

11.19 S and T are equipotent; 

11.20 S is equipotent to a part of T; 

11.21 T is equipotent to a part of S. 
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Clearly, S and T are equipotent if and only if S is equipotent to 

a part of T and T is equipotent to a part of S. 

In dealing with equipotent sets, the following theorem is 

sometimes useful. 

11.22 Theorem.—Let X be an infinite set. Then there exists a 

partition* of X consisting of countable sets. 

▼ Proof.—Let be the set of all parts srf c 3>(X) having the 

properties: 

(i) A g sY and B e sY and A ^ B => A n B = 0. 

(ii) A g sY => A countable. 

We shall “order by inclusion”; hence, if sY and 3ft belong 

to JF, then sY < 38 if and only if sY c: It is easy to see that 

is inductive when endowed with this order relation. Let sY' be a 

maximal element of sY and let 

Z = X - U A. 
Aej>/' 

If z = 0, then the theorem is proved (notice that if XA = A for 

all A g jaF, then {XA)Aej^, is a partition of X). If Z is finite, we pick 

A e , and we denote by s3" the set obtained from srf' by re¬ 

placing the element A by A U Z. Clearly then, srf" e 3T and 

U A =X. 
ierf' 

Hence, Theorem 11.22 is again proved. If Z is infinite, then there 

exists a countable set Z0 <= Z (see 9.3). Since s3'n — s3’ U {Z0} e JF 

and stf"' > jaF, we arrive at a contradiction. Hence, the only 

possible cases are Z = 0 or Z finite, and then the assertion in the 

theorem holds. ▲ 

To each set A, an object, which we denote Card A (and call the 

cardinal number of A), can be associated such that: 

Two sets X and Y are equipotent if and only if Card X = Card Y. 

If there were a set U such that every element of U is a set, and 

every set is an element of U, then we could consider the relation 

R {(j4? B) | A g U, B e U, A and B are equipotent}. 

* A partition of A' is a family °f non-void parts of X such that [J — X 
and At (X A} = 0 if i j. iel 
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As we have seen in Example 9, Chapter 10, R is an equivalence 

relation in U. We could then have defined Card d, for each set A, 

as the equivalence class of A. However, as we indicated in Chapter 

8, such a set U does not exist. Other methods are used to define 

Card A for a set A (the interested reader may consult, for instance, 

[1])' U K In this volume, the numbers 0, 1,2,... were supposed to be 

known. However, once the cardinal numbers are introduced, we 

may define 0, 1, 2, ... as the cardinal numbers of finite sets. We 

could define 

0 = Card 0, l=Card{0}, 2 = Card {0, {0}}, . . . 

Once the numbers 0, 1, 2, . . . are introduced, we can successively 

construct Z and Q, and then R (see, for instance, [4]). 

Exercises for Chapter 11 

1. Let X be an ordered set and A c: X a non-void set having 

both an infimum and a supremum. Then inf A < sup A. (If X 

has a smallest element m and a largest element M, and if A = 0, 

we define inf A = M and sup A = m.) 

2. Let A be a set and R an order relation in X. Then R~x 
(= | (j, x) e R}) is an order relation in X. If 4cJ, then* 

supfid exists if and only if inf^-id exists; if sup^d exists then 

sup^d = inf^-iA. Also, inf^d exists if and only if sup^-id exists; 

if inf^d exists then infKd = sup^-id. 

3. Let X be an ordered set, I a set, and />■ X. We say that 

/ has a supremum on dc/ if/(d) has a supremum. If / has a 

supremum on d, we write sup f{x) = sup/(d).f Let (d3)3St/ be 
xeA 

a family of parts of / the union of which is I. Suppose that sup /(x) 

xeAj 

exists for all j in J. Then / has a supremum on I if and only if 

* Let Y be a set and S an order relation on Y and A C Y. If the supremum of A 
“with respect to S” exists, we may write sups A instead of sup A. Similarly, if the infimum 

of A “with respect to S” exists, we may write infg A instead of inf A. 
'(■ In a similar way we introduce inf j (x). 
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j h> sup /(*) has a supremum on J. If f has a supremum on 7, 
xeAj 

then: 

sup f(x) = sup (sup f(x)). 
xsl jej xeAj 

4. Discuss Exercise 3 in the case in which / = X and f = jx 

(jx is the identity mapping of X onto X). 

5. Let X be a well-ordered set such that every non-void subset 

of X has a largest element. Show that X is finite. 



Chapter 12 

Mathematical 

Induction 

We shall often make use in this volume of the following, which 

we accept without proof. 

12.1 Theorem (Mathematical Induction).—Let S ^ N be a set 

satisfying the following two conditions: 

12.2 1 g S; 

12.3 n £ S =>■ n -fi 1 g S. 

Then S — N. 

Note that ./V satisfies 12.2 and 12.3. 

Proofs that make use of 12.1 are called proofs by mathematical 

induction or simply proofs by induction. 

Example 1.—Let A be a set and let/:NA, g:N -* A be two 

functions. Suppose that: 

12.4 /(i)=*(i); 

12.5 n e N and f(n) = g(n) =>f(n + 1) = g(n + 1). 

Then 

12.6 f = g. 

In fact, let 

S = {n\ne N,f(u) = g(u)}. 

By 12.4, S 9 1. If n e S, then/(n) = g{n); by 12.5 we deduce 

f[n + 1) = g(n + 1). Hence, K6^n-fle5. Hence, S satisfies 

76 
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12.2 and 12.3, and hence S — N. Therefore, f{n) = g(n) for all 

n e N\ that is, f — g. 

Example 2.—We have 

12.7 1 -f 2 -f .,. -f b = 
n(n + 1' 

for all neN. 

Let f and g (on N to N) be defined by 

f{n) =1+2 +...+« and gin) 
n{n + 1) 

for neN. Clearly, /(1) =^(1). Suppose now that neN and 

f[n) = g{n); then 

fin + 1) = ff) + (» + 1) = g(n) + [n + 1) 

_nfn + 1) + 2f + 1) _ (n + 1)(« + 2) 

“2 2 
= gin + 1). 

Hence,/and g satisfy 12.4 and 12.5, whence f — g. We conclude 

that 12.7 holds for all neN. 

Example 3.—We have 

12.8 2n > n 

for all neN. 

Let 

S — [n | n e N, 2n > n}. 

Clearly, 21 —2 > 1, whence 1 e S. Suppose further that n e S. 

Then 2" > n; hence 

2n+1 = 2-2" >2 • n = n n > n + 1. 

Therefore, 2n+1 > n + 1; that isn + 1 e S. By mathematical 

induction, we conclude that S = N; that is, that 12.8 holds for all 

neN. 

Example 4.—If x e R, x > —1, and neN, then 

12.9 (1 + x)n >1 + nx. 

Inequality 12.9 is called Bernoulli's inequality. 

Let 

S = [n I n e N, (1 + *)" ;> 1 + nx). 
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Clearly, 1 £ since (1 + x)1 = 1 + x = 1 + 1 • x. Suppose now 

that n £ S. Then 

(1 + X)n+1 = (1 + *)«( 1 + x) > (1 + nx){ 1 + x) 

= 1 + nx -f- x + nx2 >1 + nx + * 

= 1 + (n + 1)*. 

Hence n + 1 £ S. By mathematical induction we conclude that S = N, 

that is, that 12.9 holds for all n £ N. 

Exercise.—For every n £ N, we have 

n(n + 1)(2» + 1) 
l2 + 22 + . . . + n* = K ^. 

o 

(Hint: Use mathematical induction.) 

Exercise.—If x £ R, x ^ — 1, then for every n £ ./V we have 

1 +*+...+ Xn-1 = (1 — *")/(1 — x). 

(Hint: Use mathematical induction.) 

Exercise.—Let A be a finite set and let p = c{A). Show that 

c(&(A)) = V. 

(Hint: Use mathematical induction.) 

An important consequence of the induction theorem is the 

following theorem. 

12.10 The Recursion Theorem.—Let X be a set and a £ X. 

Suppose that f:X—> X. Then there is a function F:N —> X such that: 

(i) F( 1) = a; 

(ii) F(n + 1) = f{F{n)) for every n £ N. 

T Proof.—Let srf be the set of all A <= x X having the prop¬ 

erties: 

12.11 (1 ,a)eA; 

12.12 (n, x) £ A => (n + 1 ,f(x)) £ A. 

We have N x X £ s/; hence s# ^ 0. Now let E = f) stf. We will 

show that (N, X, E) is a function; i.e., that prfE) = N, and that 

(p, x) £ E and (p,y) e E => x = y. Let 

S = {n | (n, x) £ E for one and only one *}. 
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We know that (1, a) e E. Suppose there were an element b =£ a 

such that (1, b) e E. Consider the set Ex = E — {(1, b)}. We have 

(1, a) e Ev If {n, x) e £j, then (n + 1 ,/(*)) eE; hence (n + 1, 

f{x)) e Ex (because n + 1 =£ 1). This shows that Ex e sf. Since 

this contradicts the definition of E, we deduce that 1 e S. 

Assume now that n e S. Then there is a unique x e X such that 

(n, x) e E. By 12.12, [n + 1 ,/(*)) e E. Suppose that there is 

y £ X such that y ^f(x) and (n + 1 ,y) e E. Consider the set 

En = E — {(n + l,j>)}. We have (1, a) e En. Suppose (p, z) e En. 

If p # n, then p + 1 ^ n + 1; hence (p + 1 ,f{z)) e En. If 

p = n, then (by the definition of S) z = x; therefore/(z) =f[x) ^ 

y and (p + l,/(z)) e En. This shows that En e s#. Since this 

contradicts the definition of E, we deduce that n + 1 e S whenever 

n 6 S. 

Thus, S = N by Theorem 12.1. We conclude that prxE = N 

and that (N, X, E) is a function. Denote this function by F. Let 

n eiVbe arbitrary. Since (n, F(n)) e E, we have [n + 1 ,f(F(n))) e 

E%, that is, F{n + 1) = f(F(n)). Since, obviously, T(l) = a, the 

theorem is proved. 

Theorem 12.10 is often used, although not always explicitly. 

For instance, it can be used to justify the construction of the sequence 

(In)neN in Theorem 9.14. We proceed as follows: Let X = N X 

when if is the set of all closed intervals contained in I. For each 

(n, J) £ X, let f(n,J) — (n + 1, J') where J' e «/, J' c: J} and 

xn pJ\ We define in this way a function f'.X—> X. By Theorem 

12.10, there is F:IV —> X such that F(l) = (1,7) and F(n + 1) = 

f(F(n)) for every neN. If we define 7n_x =pr2(F(n)) for every 

neN, then (In)neN satisfies the conditions in Theorem 9.14. ▲ 

Exercises for Chapter 12 

n(n + 1)(2n + 1) 
1. Show that l2 + 22 + 32 + . . . + n2 = --^- 

b 
for neN. 

2. Show that 1 + 3 + . . . + (2n — 1) = n2 for n e N. 

n2(n + l)2 
3. Show that l3 + 23 + 33 + . . . n3 =---for neN. 

4. Show that for each neN, there is n' e N such that (4" — 

1) = 3 ri. 



Chapter 13 

Combinatorial 

Analysis 

Let A be a finite set having p elements. Then there exists a 

bijection cp\{1, !..,/>} -> A. If we write as = <p(j) for 1 < j < p, 

then 

A — {#1, 0*2) • • • ? 

(note that here ^ ai if i //). Recall that if A is a finite set, then 

we denote by c(A) the number of elements of A. Recall that (see 9.1) 

if A is a finite set and B c: A, then B and A — B are finite and 

13.1 c(A) = c(B) + c(A — B). 

Let A and B be two sets and let f: A —► B be an injection. Then 

A is finite o J(A) is finite. 

Moreover, if A and f (^4) are finite, they have the same number of 

elements. It also follows that A is finite if B is. 

If A and B are finite sets having the same number of elements, 

and f :A —► B is an injection, then/is a bijection. In fact, as we have 

seen, A and f(A) have the same number of elements; that is, 

c(A) = c(f(A)). Now 

c(B) = c(f(A)) + e(B -f (A)) 

= <A) + c{B —/(A)) 

= c(B) + e(B —/(A)); 

hence c(B —f(A)) = 0; that is, B —f(A) = 0. We deduce that 

f(A) — B. Hence f is a surjection, and hence/is a bijection. 

80 
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We can generalize 13.1 as follows: Let A be a finite set and let 

A1} A2, . . . , An(n > 1) be pairwise disjoint sets whose union is A. 

Then 

13.2 C{A) =*= + £(^4) + • • • + c(Afi). 

T The assertion 13.2 can be proved by mathematical induction. 

Let S be the set of all m e N such that if Bu B2, . . . , Bm+1 are 

disjoint parts of A whose union is A, we have 

c(A) — c(B1) + c(B2) + • • • + c{Bm+1). 

From 13.1, we deduce that 1 G .S’ (note that BXC\ B2 = 0, Bx U 

B2= A o Bx c A, and B2 — A — Bx). Suppose now that m e S. 

Let D1} D2, . . . , Dm+2 be pairwise disjoint parts of A whose union is 

A. Then 

(D1vD2 u ... u Dm+1) n Dm+2 = 0 

and 

c(Dx u Z)2 U . . . U Dm+1 u Dm+2) 

= O Z)2 O . . . U L)to+1) T c(Dm+2). 

Since m e S, 

c(D1 u D2 u . . . u Dm+1) = c(Z)x) + c(D2) + . . . + c(Dm+1); 

hence 

c{D1 u Z)2 u . . . u Dm+a) 

= + ^(-^2) + • • . + c(Dm+1) + c(Dm+2). 

Since Z)l5 D2, . . . , Dm+2 were pairwise disjoint parts of A whose 

union is A, we deduce m + 1 e S. By mathematical induction, we 

conclude S = N. Hence 13.2 is true if Au A2, . . . , An[n > 1) are 

arbitrary pairwise disjoint parts of A, whose union is A. A 

The reader should convince himself that: If A1} . . . , An are 

finite sets, then: 

13.3 A1U . . . U An is finite; 

13.4 Ax X ... X An is finite and 

c(Ax x ... x An) = c(Ax) x ... x c(An). 

Hint for the proof of 13.4: We notice that 

A1 x A2 = \f Ax x {x} 
xeAz 

and that (Ax X {*}) n (A2 x {j}) = 0 if x e A2,y e A2 and x fy. 



82 COMBINATORIAL ANALYSIS 

13.5 Theorem.—For every finite set X, the set SP{X) is finite and 

c(&{X)) = 2c(X). 

▼ Proof.—The assertion of the theorem is obvious if X = 0 or if 

c(X) =1. In fact, in the first case, 0>(X) = {0}, while in the 

second case £P(X) = {0, X}; whence c(^(X)) =1=2° XX = 0 

andc(^(Z)) = 2 = 21ifc(X) = 1. 

To prove the theorem in general, we shall use mathematical 

induction. We denote by S the set of all m E N such that if X is a 

finite set having m elements, then ^(X) is finite and c{0t{X’)\ = 

2C(X). By the previous remarks, 1 £ X. Now suppose that m £ S, 

and let I be a finite set having m + 1 elements. Let a e X and 

X' = X — {a}\ then c(X') = m, and hence 

c{&{X')) = 2m. 

Note that A £ &{X) means that either A e 0>{X') or A £ 0”, where 

SP' is defined by 

A e 3P' o A = B U {a} with B e PP[X'). 

Now, SP[X') n 0>' = 0, (since a if A e &{X') and a £ A if 

A £ PP'), also PP' is finite and c(&') — 2m. Hence 

c( PP{X)) - c{0>{X')) +c(&>') = 2m + 2m = 2 ■ 2m = 2m+1. A 

13.6 Corollary.—Let A and B be two finite sets. Then the set 

B) is finite. 

Recall that tF(A, B) is the set of all mappings on A to B. 

Proof.—Since A x B is finite, it follows from Theorem 13.5 that 

SP{A x B) is finite. By the result of Example 4 in Chapter 5, the 

mapping/—>- Gf is an injection of ^(A, B) into PP{A x B). Since 

SP^A x B) is finite, we deduce that ^(A, B) is finite. 

13.7 Theorem*.—Let X and Y be finite sets and f\X->Y a 

surjection. Suppose that c(/_1(jy)) = a for some a e N and all y £ Y. 

Then 

c(X) = c{Y) • a. 

* This result is sometimes called “The shepherd’s theorem.” 
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Proof.—Let Y = {yu . . . ,yn} (withyi fyj if i fiz j) and let 

A1 = /_1(jl), • • • , An =/_1(j«)- 

Then (see 5.9 and 5.10) Ak n A} = 0 if k fj, and 

Ai U . . . u An = X. 
By 13.2, we conclude 

^(T) = c(^4i) T . . . -j- c(^4„) — n • a — c(X) • a. 

Thus, Theorem 13.7 is proved. 

For every integer p >0 we define p\ by the equations: 

0! = 1 

1! = 1 

p\ = \ • 2 ... p if p > 1. 

Thus 3! = 1*2-3 =6, 2!/0! =2/1=2, 5! = 1 • 2 • 3 • 4 • 

5 = 120. 

For every pair of sets, X and Y, we denote by </(T, Y) the set 

of all injections of X into Y. Since J{X, Y) c: PF{X> Y), we deduce 

from Corollary 13.6 that ^{X, Y) is finite if X and Y are. 

Before stating and proving the next theorem, we note that: 

1-3.8 IfX = {x} and Y is a finite set having m(e N) elements, then 

c{J{X, Y)) = m 
ml 

(m — 1)! 

Proof.—Since X has only one element, every mapping of X into 

Yis an injection; whence J’fX, Y) = ^{X, Y). If Y = {yx . . . ,ym} 

(with yi t^y} if i fj), then f e !F{X, Y) if and only if there is 

1 <j < m such that 

f = (W» Y, {(*>.?*)})• 

We deduce that c{3?{X, 7)) = m; hence 13.8 is proved. 

13.9 Theorem.—Let X and Y be finite sets such that 1 < c(X) < 

c{Y). Then 

c{J{X, Y)) 
<Y)\ 

(c(7) -*(*))!’ 
13.10 
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Proof.—-We shall prove this theorem by mathematical induction. 

We reason as follows: 

Let S be the set of all m e A'’such that whenever X is a finite set 

having m elements and 7 is a finite set having n > m elements, 

we have 13.10. 

By 13.8, 1 Suppose now that m e S, and let X be a finite 

set having m + 1 elements and Y be a finite set having n > m + 1 

elements. Let x0 6 X and X' — X — {x0}; then X' has m elements. 

Clearly, /H>/1 X' is a mapping of J{X, Y) into J{X\ Y); 

denote this mapping by <p. If g e J[X', Y), then g(X') <= Y has m 

elements. Hence, there is b G Y — g(X'). If we define/ :X —> 7 by 

13.11 
f{x)=b if x = x0 

— g(x) if x g X’, 

then/e J(X, Y) and/ \ X' = g. Therefore cp is a surjection. 

Now let g g J{X\ Y). If Jg cp~1{g), then clearly f\ X' = g 

and f(x0) £ Y — g{X'). Conversely, if b g Y — g(X') and if / is 

defined by 13.11, then f gJ(X, Y) and q>{f) = g. This shows that 

c{<P~\g)) — c(Y — g(X')). 

By Theorem 13.7, we have (note that c(Y — g(X')) = c(Y) 

c(g{X’)) and e(g(X’) = c(X’)) 

c(S{X,Y)) =c(J{X', Y))c{Y - g{X')) 

c{Y)\ 
c{Y~g{X')) 

(c(T) -c(X'))\ 

<Y)\ _ 

(c(Y) -c{X') - 1)! (c(7) — c(X))! 

c(Y) 

We conclude that m + 1 e S, hence, by mathematical induction, 

S = N. Thus, the proof is complete. 

If X is a set, we denote by the set of all permutations of X. 

Recall that a permutation of X is a bijection of X into X. If X — 

(1, 2, . . . , n), we shall sometimes write instead of Sx. 

13.12 Corollary.—If X is a set having m g N elements, then 

c(Yx) = n\. 

Proof—If X is a finite set, then any injection f:X->X is a 

bijection; hence = ^{X, X). By Theorem 13.9, we have 

c&x) = <S{Xt X)) 
c(X)! c(X)! 

W ~<X))\ ~ 0! 
= c(X)!. 
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For every set 7 and integer p > 0, we denote by &V{Y) the set 

of all parts of Y having p elements. Note that if/? = 0, then & V(Y) = 

{0}; hence in this case iPp{Y) is a finite set having one and only 

one element. 

13.13 Theorem.—For every finite set Y having n elements and 

integer p satisfying 0 <p <n, we have 

13.14 
n! 

p\(n — />)!’ 

Proof.—Ifp = 0, then c(&9) = 1 and 

n\ n! 
i; 0!(w — 0)! n\ 

hence 13.14 holds in this case. Suppose now p > 1 and let X — 

{1,2,...,/?}. For everyfe S{X, Y), the set f(X) e SPfiY). If 

we write 

<p(f) =f(X) for feS(X,Y), 

we obtain a mapping /H->/(X) of *?{X, Y) into 3PV{Y). This 

mapping is a surjection. In fact, let A = {y1} . . . ,yp} e FP %,(Y) 
(we havejj- ^yj if i ; if we define/:X —> Y by 

fU) for 1 <j<P, 

then/e/(Z, 7) and f(X) = A. 

Now let A £ fiY) and consider the set (p~l[A). Note that 

f £ (p~l(A) if and only if f e J (X, Y) and/(^T) = A. Obviously, 

then, the number of elements of cp~x{A) is the same as the number of 

elements of the set J*(X, A). By Theorem 13.9, this set has />! 

elements. By Theorem 13.7, we deduce 

c(J-(X,Y)) =plc(^p(Y)); 

therefore 

Hence the theorem is proved. 

Remark.—If 7 = {0} and p = 0, 13.14 still holds. In fact, in 

this case, c(^p(Y)) = 1 and 

0!(0 — 0)! 1-1 



86 COMBINATORIAL ANALYSIS 

For every two integers, p and n, such that 0 < p < n, we write 

(n\ n! nv n\ 

V -P\(n -~p)\ °r ” p\{n-p)\' 

These numbers are sometimes called binomial coefficients. 

13.15 Corollary.—For every two integers, n and p, satisfying 

0 < p < n, we have 

2n __ 

Proof.—Let Z = {1, 2, ... ,n). Clearly 

0>{X) = &0(X) u SPfX) u ... u &n{X). 

Since &t{X) n &fX) = 0 if i =£ j, the result in Corollary 13.15 

follows immediately from Theorems 13.4 and 13.14. 

Let X be a set. A mapping a: X —► X is a transposition of X if and 

only if there exists a set A = {a, b) c X consisting of two elements 

a b such that: 

(i) o(a) = b and o(b) = a; 

(ii) a(x) = x if x e X — {a, b}. 

Note that the existence of a transposition of X implies that X 

contains at least two elements. The set of all transpositions of X 

will be denoted by Jx. 
Note that if o is the transposition defined by (i) and (ii), then 

A = X — {x | o(x) = x}. 

Let a be a transposition of X. Then 

13.16 a is a permutation. 

(It follows from [i] and [ii] that if a is a transposition of X, then 

a is an injection and a surjection. Hence a is a bijection.) 

a 1 = cr. 13.17 

In fact, we have 

<t(ct(x)) = x if x e X — {a, b} 

o (<r(a)) = o(b) = a, o{a{b)) = a (a) = b. 
and 

Hence 

a(a(x)) — x for all x e X. 

By Theorem 13.2 and the definition of cr-1, it follows that a-1 = a. 
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13.18 Theorem.—Let X be a set and for each o e J x let 

9?(a) = X — {x | o{x) = *}. 

Then a (-> 97(a) is a bijection of J x into ■XjX). 

T Proof—Clearly, 99 is a mapping of Jx into IPfiX). Now let a, 

and a2 be two permutations and let 

A1 = X — {* | ofix) = x} and A2 — X — {x | afx) = x}. 

If A1 = A2 = {a, fij, then a^a) = /?, crf/3) = a, a2(a) = /?, 

a2(/S) = a; we deduce ax = a2. Hence 97 is an injection. From the 

definition of a transposition, it follows immediately that 97 is a sur¬ 

jection. Hence 99 is a bijection. A 

13.19 Corollary.—If X is a finite set having n > 2 elements, then 

c(J x) = 2 h{n — 1). 

Proof—By Theorems 13.18 and 13.14, we have 

c(Jx) — C(^2(X)) = 2^1 = 

Example.—Determine the transpositions of the set X = (1, 2, 3}. 

Let 

o-i 

2 

1 

2 3\ 

2 1/ ’ 

2 3\ 

3 2/ 

Clearly, al5 o2, and a3 are (distinct) transpositions of {1, 2, 3}. By 

Corollary 13.19 

c(Jx) = 13(3 - 1) = 3. 

Hence Jx = {al5 a2, a3}. 

13.20 Theorem.—Let p e N and q e N and let be the set °f 

all permutations a of X = (1, . . . ,p + q) satisfying 

a( 1) < . . . < o(p) and a(p + 1) < . . . < o(p + q). 

Then 

(2,..) (p + 9)! 
p\q\ 

Proof.—Let A e SAfX) and let 

A = {«i, . . . , if with ix < i2 < ... < ip 
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and 
X — A — {ip+1, . . . , iP+Q} with ip+l < . . . < ip+Q. 

Now let oA e be the permutation 

l\...p p + 1 ...p + 

\*1 ... ip ^33 + 1 • ' * ^V+Q / 

Clearly, oA e Note also that aAQ> • • • »P)) = If 

T e ^(AQ and 5 g ^(Af) then 

<M(1, • • • ,/»}) = 4 and crB({l, . . . ,p}) = B. 

Hence, oA # aB if A =£ 5. Hence A H- aA is an injection of ^%(Af) 

into 2d,5- 

Now let (T g 2s,,g and let 

^ = Ml), • • •, <j(P))- 

Then A e &P{X). Since 

<r(l) < . . . < cr( p) and a(p + 1) < . . . < a( p + q), 

we deduce that oA = a. Hence, A H> aA is a surjection and therefore 

a bijection. Hence, there is a bijection of &V{X) onto ^P Q, and hence 

(/> + ?)! (/> + ?)! 
PK(P + q)~P)\ p\q\ ' 

Exercises for Chapter 13 

1. Compute: 

(a) (5); 
(b) c(Jx) where X — {a, 3, 0}; 

(c) (a); 

(d) c(*f(X, Y)) where AT is as in 1(b) and Y = T4 (see 

Exercise 3, Chapter 1); 

(e) c(^(T4)); 

(f) r(T3). 

2. Show that ^ ^ ^ for « g A^, 1 < p <Ln. 

3. Show that for n e TV, 1 < p < n 

A- 
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Appendix I 

Real Numbers 

The purpose of this appendix is to gather some of the terminology 

we use and to state some of the properties of real numbers. 

The set of real numbers is denoted by R. The set R is endowed 

with two operations, an addition and a multiplication. The addition 

associates to every pair (x,y) of real numbers the sum x + jy; the 

multiplication associates to every pair (x,y) of real numbers the 

product xy. These operations have the following basic properties 

(x,y, z, belong to R): 

(1) x -\- y = y x (commutativity of addition); 

(2) x -f- (y + z) = (x +jy) + z (associativity of addition); 

(3) x + 0 = x (existence of the zero element); 

(4) x + (—x) — 0 (existence of the inverse element for 

addition); 

(5) xy —yx (commutativity of multiplication); 

(6) x(yz) = (xy)z (associativity of multiplication); 

(7) \x = x (existence of the identity element); 

(8) if* yt 0, then xx_1 = 1 (existence of the inverse element for 

multiplication); 

(9) x(y + z) = xy + xz (distributivity of multiplication with 

respect to addition). 

Let x andjy be real numbers. We may write x • y instead of xy. 

We also write x — y = x + (—y) and —x — y = (— x) + (—y). If 

y ^ 0, we write 1 jy — y~x. 

The set of the positive real numbers will be denoted R+. For 

x e R, the notation x > 0 (read, “x greater than or equal to 0”) is 
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equivalent to * £ R+. The set R+ has the properties: 

(10) 0 e R+; 
(11) if* gR+ andjv £ R+ then * + y £ R+ and xy gR+; 

(12) If* eR then x e R+ and -* e R+ if and only if* = 0; 

(13) if * e R then either * £ R+ or —* £ R+. 

Now let * andjy be in R. We write * > y (read, ‘ * greater than 

or equal to_y”) or y < * (read, “y less than or equal to * ) if and 

only if * — y £ R+. A real number, *, is negative if —* £ R+. It 

follows from (13) that every real number is either positive or negative. 

From (12), it follows that 0 is both positive and negative and is the 

only real number that has both these properties. We write x >y 

(read, “* greater thanjy”) or y < * (read, “y less than * ) if * 

and * ^ y. A real number, *, is strictly positive if * > 0; a real 

number is strictly negative if * <0. 

The properties (1)—(9) of R express that R is a field. The 

properties (1)"—(13) express that R is an ‘ ordered field. 

The set of all integers ... -2, -1, 0, 1, 2, . . . is denoted Z. 

The set of strictly positive integers 1, 2, 3, . . . is denoted N', the 

elements of TV are called natural numbers.* 

A real number is rational if it can be written in the form n[m 

with n £ Z, m e N. The set of all rational numbers is denoted Q. 

The set of all positive rational numbers is denoted Q+. The set of all 

positive integers is denoted Z+. Notice that Z+ = N'U {0}; Q+ = 

R+ n Q, and Z+ = R+ C\ Z — Q+ n Z. 

The properties (1)—(13) together with the property (14) 

below “characterize” the real numbers. 

(14) Every non-void set 4c R, bounded above, has a supremum. 

We wish to point out that we did not prove here that there 

exists a set R having the properties (1)—(14). Such a theorem can be 

proved, but the various proofs that have been devised are long and 

involved. The reader interested in a proof may consult, for instance, 

[4] or [7]. A new method of proof is developed in [9]. 

From (1)—(14) we can deduce several other properties, among 

which we shall give the following without proof.| 

1.1 Every non-void set, T <= R, bounded below has an infimum. 

* N can be shown to be the intersection of all subsets T of R such that 1 G T and 

x G T =>x + 1 6 T. 
•f With the exception of 1.6. 
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We notice that A is bounded below if and only if —A is bounded 

above, and that inf A = —sup (—A). 

1.2 The Property of Archimedes.—Let x e R, x > 0. For any 

y g R, there exists n e N such y < nx. 

▼ The property of Archimedes is essential in proving that the 

sequence (1 /n)neN converges to zero. ± 

1.3 For every a e R, b e R, a < b there exists r e Q satisfying 
a < r < b. 

For any a E R, b e R, a < b we shall write 

[a, £] = {x | a < x < b} 

We call such a set a closed (bounded) interval. 

1.4 (The nested interval property) Let (In)neN be a sequence of 

closed intervals such that 

• • .=> /„=- 

Then there exists cc e R such that a e /„ for all n e N. 

With the notations of Chapter 8, the conclusion of 1.4 can be 

expressed by writing p| In # 0- 
neN 

1.5 For any p e N andy e R+ there exists a unique x e Rh such that 

, xv =y. 

We usually write x =yllp = and call x the root of order 

p of y. For p = 2, we write Vy instead of Vy. 

1.6 The Theorem of Pythagoras.— There is no r e Q satisfying 

r2 = 2. 

The proof makes use of the following result: If p is an integer 

such that p* is even,* then p is even. In fact, suppose/?2 is even. I ip 

is not even, thenp is odd; that is,p = 2n + 1 for some n e Z. Then 

p2 = (2 n + l)2 = 4 n2 + An + 1 = 2(2 n2 + 2 n) + 1; 

that is, p2 is odd. But this leads to a contradiction. Since the 

hypothesis that p is not even leads to a contradiction, we conclude 

that the integer p is even. 

* The integer/) is even ifp = 2m for some mE Z. The integerp is odd if/) = 2m + 1 

for some mE Z. 
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Proof of I.6.—Suppose there were an r e Q satisfying r2 = 2. 

Let r = p\q where p and q f 0 are integers. We may and shall 

suppose that p and q are not both even. Since r2 = 2, we have p2jq2 = 

2; that is, p2 = 2q2. Hence, p2 is even, and hence (by the previous 

remark) p is even. Hence, p = 2m for some m £ Z. Then 4m2 = 

pi = 2q2, whence 2m2 = ?2. Thus q2 is even, which contradicts our 

assumption. Since the assumption that there is r £ Q satisfying 

r2 — 2 leads to a contradiction, it follows that there is no such 

r e Q. 

From 1.5 and 1.6, we deduce that Q # R. The real numbers 

in R — Q are called irrational numbers. 



Appendix II 

The Signature of 

a Permutation 

Let S be a set. We shall call law of composition on S (or binary 

operation on S) any mapping (x,y) l-> <p(x,y) of S x S into S; the 

element <p(x,y) will be called the composition of x and y (for the 

considered law of composition). 

Example 1.—Let R be the set of real numbers. Then (x,y) 

x + y and (x,y) t-> xy are laws of composition on R. 

Example 2.—Let ^Tbe a set. Then (A, B) f-> A U B and (A, B) l-> 

A n B are laws of composition on 2P{X). 

Example 3.—Let A be a set and S — 2A (= the set of all 

permutations of A). Then (f g) h->f ° g is a law of composition on S. 

Example 4.—Let R* = {* | x e R, z ^ 0}. Then (x,y) l-> x/y 

is a law of composition on R*. 

We shall now introduce the following: 

II.l Definition.—A set G endowed with a law of composition 

(x,y) h> x _|_ y is a group if: 

(i) x J_ (y _]_ z) = (x _Ly) J_ zfor all x e G,y e G, z e G; 

(ii) There exists e e G such that xfe = e_Ex=x for all x e G; 

(iii) For every x e G, there is x' e G such that x J_ x' = x' J_ ^ = e. 
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Remarks *—(1) There exists only one element e in G satisfying 

H.l(ii). In fact, suppose that e' and e" belong to G and that 

xjl_e'=e'_Lx=x and x ± e" = e" ± x = x 

for all x e G. Then 

e' = e' ± e" = e" => e' = e". 

(2) Given x e G, there is only one #' e satisfying H.l(iii). In 

fact, 

x' = x' _]_ e = x' _L [x _[_ x") = (*' _L *) _L * = e J_ x = x ; 

whence x’ = x". 

The mapping (x,y) i-> x _L y is called the law of composition of 

the group. The property II.l(i) asserts that {x,y)v->x ±y is 

associative. The property (n) asserts that it has a neutral element, and 

the property (iii) asserts that every x e G is invertible. The element, 

x , corresponding to x is called the inverse of x. Hence, a group is a 

set endowed with a law of composition that is associative, that has a 

neutral element, and that is such that every x e G is invertible. 

Notice that if G is a group, then G # 0, since G contains a neutral 

element. 
The law of composition of a group is often written (x,jy) xy. 

In this case, we say that we use the multiplicative notation. The 

neutral element is then called the unit element of G and is denoted 1. 

When we use the multiplicative notation, the inverse of an element 

x e G is denoted *-1. 

The group G is commutative ifx_Ljy — y ^ x for all x e G, y e G. 

The law of composition of a commutative group is often written 

(x,y) ix +y. In this case, we say that we use the additive notation. 

The neutral element is then called the zero element of G and is 

denoted 0. When we use the additive notation, the inverse of an 

element x e G is denoted —x. The use of the additive notation 

implies that the group is commutative. 

Example 5.—The set S in Example 3 is a group. The unit 

element of S is jA (recall that jA(x) = x for all x e A). The inverse of 

f g is the function/-1 (see Chapter 7). 

Exercise.—Show that the group S in the above example is not 

commutative if A contains at least three distinct elements. 

* In these remarks we assume that G is a group. 
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Example 6.—The set R* endowed with the law of composition 

(x,j) (-> xy is a (commutative) group. The unit element is the 

number 1. The inverse of x e R* is the number \/x. 

The groups in Examples 5 and 6 wiil be used in the following 

sections. 

Let G and G' be two groups.* A mapping f: G —► G' is a 

representation of G into G' if 

II.2 f(xy) =/(*)/( 

for all x 6 G, y e G. 

Remarks.—Let f :G —> G' be a representation. Let e be the 

unit element of G and e' the unit element of G'. Then: 

113 f(e)=e'; 

11.4 /(x-1) =f(x)~1 for all x e G. 

Proof of II.3.—We have 

f(e) = ef(e) = (f(e)~]f(e))f(e) 

= /W-1C/W/W) =f(e)-1f(ee) 

= f(e)~'f(e) = 

Proof of II.4.—Let x e G. We have 

f(x^)f(x) =/(x-1x) =f(e) = 

11.5 If x1} . . . , xn belong to G, then 

/(*i> • • • , xn) =f{*i) • • ■/(*»)• 

This can be proved by using mathematical induction and II.2, 

the defining property of a representation. 

Lor each neN, let Sn be the group of permutations of the set 

X = {1, 2, . . . , n). The identity mapping of X onto X is denoted 

jx; when X = {1, 2, . . . , n) we shall usually write jn instead of jx. 

We have (see Corollary 13.12) 

c(£J = nl. 

* We denote multiplicatively the laws of composition of the groups we consider here. 
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A mapping oX —> A is a transposition of X if and only if there 

exists a set {a, b} <= X, with a ^ b, such that: 

(i) a(a) = b and a(b) = a; 

(ii) a(x) = x for all x e X — {a, b}. 

A transposition a is a permutation and a~x = a (see 13.16 and 13.17). 

The signature of a permutation a e 2„ is introduced in Theorem 

II. 10. For its proof, we shall need two propositions, which we shall 

establish first. 

11.6 Proposition.—Let n e N, n >2, and let a e 2n. Then there 

exist transpositions t1} t2, . . . , tp belonging to such that 

11.7 O = t1 ° r2 ° . . • ° Tv. 

▼ Proof.—Notice first that if a e satisfies o[n) = n, then there 

are transpositions ax, . . . , aa belonging to such that if u = 

ax o . . . ° aa o o, then u[n) = n. In fact, for every 1 <j < n, let Sj 

be the transposition* satisfying 

11.8 si(j)=j+l. 

If a e and a{n) ^ n, then o(n) — j < n. Hence 

*»—i ° • ■ • 0 -b ° a(w) = Sn-1 ° • • • ° siU) = n 

and thus u(n) = n if u = sn_x ° ... ° Sj ° o. If, moreover, u = 

yx ° . . . o yr when y1} . . . , yr are transpositions belonging to £n, 

then 

Yi ° • • • 0 Yr = J*-i ° • • • ° Sf ° a 

and therefore 

O = fn-l ° • • • ° ^)_1 ° (Yi ° * * * ° Yr) 

= A1 ° ■ • • ° -C-i ° Yi ° • • • ° Yr. 

We conclude that to prove that an arbitrary permutation belonging to 

can be written in the form 11.7 it is enough to show that any a e satisfying 

a(n) = n can be written in the form 11.7. 

Now let A be the set of all p e N such that if creS1+J)then o 

can be represented in the form II.7. 

* Notice that there is one and only one transposition, s} 6 S„, satisfying II.8. We 
have Sj(j + 1) = j and Sj(m) = m for m j, m # j + 1. 
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If'P = 1, then E1+J, = S2 consists of the permutations 

Clearly, r is a transposition, j2 = T ° r and r = t ° t ° r-1. Hence, 

1 ed. 
Suppose now that peA and let a e H1+(p+1) be such that 

a(l +(/' + !)) =1 + (p + 1). Let a' e £1+J) be the permutation 

2 ... 1 + p \ 

°(2) • • • <*(1 + P)I 

Since p e A, there are transpositions <5/, . . . , <5/ belonging to 

S1+3) such that 

o' — <5/ o . . . o <5/. 

For each 1 <j < r, now let 

2 ... 1 +p 

V(2) ... V(1 +P) 

1 + (P + 1)\ 

!+(/> + l)/; 

then (5,- e S1+(„+1) and is a transposition. Clearly, also, 

a =* o . . . o 8r. 

Since a e 21+(p+1) was arbitrary, except for the hypothesis 

a(l +(* + 1)) =1 + (p + 1), 

we deduce that 1 + (p + 1) e A. 

By mathematical induction, A = N. Thus, Proposition II.6 

is proved. ▲ 

Let n ;> 2 and / = {(i,j) | 1 < i < j < n}. For a e let 

A(°) = {(hi) | ihj) e /, <r(t) < a(j)} 
and 

£(<*) = {(hi) | (hi) e/, cr(j) < <r(*)}- 
Clearly 

A(a) H B(o) — 0 and A(o) U i?(cr) = I. 

For a g 2„, let Ta: I -> / be defined by 

a(j)) if (*,i) 
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We leave it to the reader to verify that Ta is a bijection. 

For any / e Sn, we define 

F(j) = n (/u) - m 
(i,j)el 

and 
$(o) = (-1 yma)) 

for every a e 2n. Then: 

II.9 Proposition.—For every a and f in we have 

F(f°o) =g(o)F(f). 

T Proof.—Let / be the mapping (i,j) Hrf(j) —f(i) of X X X 

into R. Then, if a and / are in we have 

f(/-«) = n (/(<t(i» -/(<t(<)» = n/wo. «o'» 
(1.1) el (i.i)el 

= n /(»(*•). ®o)) n f(o®,ou)) 
(1.1) eAU) U.i)eB(o) 

= rr /mo. oooKt-i)'™"”) n /m/mo) 
(i,j) 6 A (<r) 

= «(”) n /(3t(i,j)) n /(A(i,i)) 
U,j)eA(<r) (i,i)eB(a) 

= n f(T„(i,j)) = <f(a) n /No 
(i,i)el (s,t)eT a(I) 

= *(<o n /Ch o = *(<w)- 
(s,t)el 

Since a and f were arbitrary, the proposition is proved. A 

We now give the main result of this Appendix. 

11.10 Theorem.—Let n e N. Then there exists one and only one 

representation S'. £„ —»■ R* such that 

11.11 <f(cr) = —1 whenever o is a transposition. 

Moreover, the image of by S is {— 1, +1}. 

For each a e the number <f(cr) is called the signature of a. 

By II. 11, the signature of a transposition is —1. Since S is a repre¬ 

sentation, the signature of jn is 1. 

A permutation a is said to be even if S(o) = 1; note that if 

a and p are even, then a ° p is even. A permutation a is said to be 

odd if S(o) = — 1; note that if a and p are odd, then a ° p is even. 



APPENDIX II 101 

If p is a permutation, then 

<?(p)(.p~l) =<?(/> °/>-‘) = *u.) = i. 

It follows that p is even if and only if p~l is even; p is odd if and 

only if p~l is odd. 

▼ Proof of Theorem II.10.—Define S :2„ —► R* by 

S{a) = (-1 )c(jB(<7)) 

for a e S„. Let/be the identity mapping/ of X onto X and let a 

and p be elements of 2n. By Proposition II.9, 

S(a o p)F(f) = F(f o (a o p)) 

= F((fo a) o p) = S(p)F(f° a) = S(o)S(p)F(f). 

Since, clearly, T(/) / 0, we deduce S(a ° p) = S{o)S(p). Since cr 

and p in £n were arbitrary, it follows that S is a representation of 

into R*. 

We shall show now that II. 11 is also satisfied. To do this, it is 

enough to show that c(B(a)) is odd if a is a transposition. In fact, if 

cr is a transposition, then there is (i,j) el such that a(i) =j, 

a(j) = i, and a(h) = h if h p {i,j}. Let 

Y = {(*, h) | i < h <j) U {(h,j) | i <h <j) u {(//)}• 

It is--clear that if (w, y) e Y, then a(u) > o(v); hence fc B(o). 

Now let 

Z = {(«, P)6/|« < z} U {(«, v) e I \j < y} U {(m, v) | i < u < v < i}. 

Then Zr\ B(a) = 0 and YU Z = I. Since B(o), we deduce 

Y — B(a). Now {(i, h) | i < h <j} and {(h,j) \ i < h < j} have 

the same number of elements. Hence, c(B(a)) is odd. 

The uniqueness assertion in the theorem can be proved as 

follows: Let S' and S" be two representations of into R* having 

the property 11.11. If n = 1, then 2n contains only the permutation 

jn, and hence in this case S' = S". Let n > 2 and let o e By 

II.6 

and t1} t2, . . . , tp are transpositions. By II.6, 

r(«) = f(T,)r(T,)...^(T,) = (-i)r 
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and 
<f» - r(TX)r(T2)... s'\rj - (-1/. 

Hence, «f'(<r) = <?"(a). Since a was arbitrary, we conclude S' = S". 

Since the image of £„ by S is obviously { 1, +1}, the theorem 

is completely proved * 

The representation of a permutation as a product of trans¬ 

positions (see Proposition II.6) is not unique. In fact, if o = 

Tj o r2 o . . . o t„ is such a representation for o, and if t is a trans¬ 

position, then t—1 is also a transposition and: 

a = rx ° r2 ° . . . o T„ o T o T-1. 

However, we have the following corollary: 

11.12 Corollary.—Let a £ ~Zn be a permutation and let 

a = ki0 ... o Kn = P1° ... ° Pm (n e N, m e N) 

where ... , oc„, pi} ... , Pm are transpositions. Then m is even if and 

only if n is even {whence m is odd if and only if n is odd). 

Proof.—Since S is a representation, and since II. 11 is satisfied, 

we have 

S{a) = ( — 1)” and S{a) — ( — l)m. 

Hence, ( — 1)" = ( — l)m, and hence m is even o n is even. 

Let G be a commutative group, the law of composition of which is 

written additively. If x e G, then ( — 1)* = — x and \x = x; 

recall that ( —1)(( — 1)*) = x. If a e 2„, then S{o) = —1 or 1; 

hence it makes sense to write S(o)x if a e 2„ and x e G. 

Now let 5 be a set. A mapping f:Sn -> G (see the end of 

Chapter 3 for the notation Sn) is said to be antisymmetric if 

f{Xo(l)> • • • } Xa(n)) = d>{o)f{x 1, • • • J Xn) 

for all a e and (xl5 . . . , xn) e Sn. 

We leave it to the reader to show that a mapping/:Sn -> G is 

antisymmetric if and only if 

f (xo(1)5 • • • > Xa(n)) ~ ~~f {X 1j • • • > Xn) 

for all transpositions a e SB and (x1} . . . , xn) e Sn (use Proposition 

II.6). 
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Example 7.—Let R be endowed with the composition law 

(x,y) l-> x +y; then R is a commutative group. For every (xl5 x2) e 

R2 and (jl5 j2) e R2, define 

Then the mapping 

x1 x2 

Ji y 2 
*1_72 - *2jbf 

((*i, *2), (ji,j2)) 

2 2 
of R x R 'into /? is antisymmetric. 

x2 

y2 

Exercise.—Show that 

2 €{a) =0 (if n >2). 
creSn 





Supplementary Exercises 

1. Let G be a set. We say that G is a graph if and only if every 

element of G is an ordered pair; i.e., 

G is a graph o z e G => z = (x,y) for some * and some y. 

Is the set {(a, b), (1, 2), (1, 3)} a graph? 

Is the set {(a, b), 2} a graph? 

Is {((a, b), 2)} a graph? 

Is ((a, b), 2) a graph? 

2. Let G be a graph. We denote by pr^G) the set 

{x j there exists y such that (x,y) e G}. 

We denote by pr2(G) the set 

{y | there exists x such that (x,y) e G}. 

Note that prx(G) is “the set of all first components of elements of G” 

and pr2(G) is “the set of all second components of elements of G ” 

Let: 

G1 = {(a, 1), (3, (3, 4))}; 

={(1,2), (1,3), (1,4)}; 

G. = {(«,(!, 2)), (a, (2, 3))}. 

Constructpr^G,) fori = 1,2 andj = 1, 2, 3. Constructprx(pr2(Gz)). 

set 

3. Let G be a graph, and X be a set. We denote by G[X] the 

{y | there exists x e X such that (x,y) e G}. 

Let Gu G2, Ga be as in Exercise 2 . Let X1 = {1,3} and X2 = {a}. 

Construct G^Xj] for £=1,2,3 and j = 1,2. 
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4. Let G be a graph. Define G 1 = {(jv, x) \ (x,j>) g G}. 

Construct G^1, i = 1, 2, 3 (see Exercise 2 ). Show that (G"1)-1 = G. 

5. Let G be a graph and A be a set. Show that 

G_1 [A] = {i' | there exists t e A such that (s, t) e G}. 

6. Let G be a graph. Show that G-1[G[/)r1(G)]] =pr1{G). 

7. Let R and S be graphs and let A and B be sets. Show that 

(a) Re S=> R[A]±S[A]; 

(b) A<=- B => c £[£]; 

(c) Rcz S=> R-1^ S-1; 

(d) R[A n B] c i?[^] n £[£]; 

(e) R[A UB]= R[A] u /?[£]; 

(f) => A if A <= prx{R). 
> 

8. Let R and S be graphs. Define a graph R ° S to be the set 

{(#, z) | there is y such that (x,y) g S and (y, z) e R}. 

Construct R ° S and S ° R in each of the following cases: 

. (a) R = {(0, 1), (1, 2)}, S = {(1, 2), (2, 3)}; 

(b) R = {(0, 1), (1, 2)}, S = {(0, 1), (1, 2)}; 

(c) R = {(0, 0), (1, 2)}, S = {(1, 2), (1, 0)}; 

(d) R = {(0, 1), (0, 2), (0, 3)}, S = {(1,0), (2, 0), (3, 0)}; 

(e) Show that if R and S are any two graphs, then 

R ° S = {(*,y) | £[{*}] n R-'Uy}} * 0}. 

9. Let Gl5 G2j and G3 be as in Exercise 2 . 

(a) Construct Gt ° G,- for i = 1, 2, 3, and j = 1, 2, 3; 

(b) Construct G^1 ° G3, Gx ° G71, G3 ° Gj*1, Gr1 ° G.; 

(c) Construct (G2 o gJ-1 and G^1 ° G2X; 

(d) Construct G3 o (G^1 ° G2) and (G3 ° Gp1) ° G2. 

10. Let i?, and T be graphs, and let A be a set. Show that: 

(a) R<=- S => R ° TS ° T; 

(b) Ra S=> To Re ToS; 

(c) R o£[>4] = i2[5[i4]]. 
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11. Let R, S, and T be graphs. Show that: 

(a) (RoSJ-1 = S-1 o/2-i; 

(b) (R oS) o T = R o (So T). 

12. Let G be a graph. We say that G is afunctional graph if and 

only if for every x, G[{x}] has at most one element. Let Gx, G2, and G3 

be as in Exercise 2 . Which of these are functional graphs ? 

13. For any set X, denote by A(A) the set {(t, t) | t e X} 

(see also Chapter 4). Let R be a graph. Show that: 

R is a functional graph o R ° R-1 c: A(jbr2(R)). 

14. Let R and S be functional graphs. Show that RoS is a 

functional graph. Show also that R n S is a functional graph. 

15. Give an example of two graphs, R and S, such that R is not 

a functional graph and S is not a functional graph, but RoS is a 

functional graph. 

16. Give an example of two functional graphs, R and S, such 

that R U S is not a functional graph. 

17. Let R and S be two functional graphs. Find a condition 

] involving R and S such that [ ] R U S 

is a functional graph. (There are several answers.) 

18. A correspondence is any triple (A, B, S) that satisfies: 

(i) A, B and S are sets; 

(ii) S c A x B. 

Let (C, D, T) be given. Show that (C, D, T) is a correspondence 

if and only if: 

(a) C and D are sets; 

(b) Tisagraph; 

(c) pr^T) <= Candpr2(T) D. 

19. Show that a triple (X, Y, F) is a function if and only if: 

(a) (X, Y, F) is a correspondence; 

(b) F is a functional graph; 

(c) prx(F) = X. 
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20. Let G be a functional graph. Show that (pr1(G), pr2(G), G) 

is a surjection.. 

21. Let G be a functional graph and E a set. Show that 

GfG-1^]] <= E. Give an example of a graph R and a set F such 

that i?[i?_1[F]] F. 

22. Let G be a functional graph, and £ be a set. Show that: 

(a) G-i[G[G-i[£]]] = G-i[£]; 

(b) Ec= pri(G) => G[G-i[G[£]]] = G[E]. 



Answers and Hints to 

Selected Exercises 

Chapter 1 

1. (a) true; (b) false; (c) true; (d) false; (e) false. 

2. (a) false; (b) true; (d) true; (e) true; (f) true; (g) false. 

3. (a) true; (b) true; (c) true; (d) true; (e) true; (f) true. 

4. Suppose X <= Y. Then A £ 0>{X) => A <= X => A <= Y => A £ SP(J), hence 

A°(X) c 0>{Y). Conversely suppose ^(X) <= 0>(Y). Then since X £ &*(X) 

we deduce X£ &(Y), hence X <=■ Y. 

5. (b) ={0,{0}, {{0}},{0,{0}}}- 

Chapter 2 

1. (a) {1,2, 3,4, 5}; (b) Z; (d) {1,2,3}; (e) {1,2}; (f) 0; (g) A3; 

(h) Av 

2. Suppose A kj B — A n5. Then x £ A => x £ A £> B => x £ A o B => x £ B 

hence A <= B. Similarly we show that 

B <= A. 

Thus A = B. If A = B, then A u B = A n B obviously. 

3. (b) ((ca) n {A £> B)) u (A n B) 

= (((CL4) n A) u ((Cd)) n B)) u(4nB) 
= (0 u ((CT) n 5)) u (a n 5) 
= ((Ca) n £) u (d n £) 
= ((CA) uA) riB=XnB=B. 

4. Suppose (A D B) £> C = A C\ {B £> C). Then x£C=>x£ (A r\B) £> C => 

x £ A n (B u C) => x £ A, hence C <= d. Conversely Cc4=>4riC = 

C => a n (5 u C) = (d n S) u (d n C) = (A n 5) u C. 

109 
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6. (E - G) n(F -G) = (E n CG) n (F n CG) = (E n F) n (CG n CG) = 

(£ n F) n CG = (E r\F) - G. 

Chapter 3 

1. »{A x B) = {0,{(1,2)},{(1,3)},A x B}. 

Ax&(AxB) = {(’1,0), (1, {(1, 2)}), (1, {(1, 3)}), (1, A x B)j. 

2. (b) {(2,3)} n{(3,2)} = 0; (c) (N x Q) n (Q x Z) = W x Z. 

5. (a) R o S = 0, So* ={(0,2), (1,3)}; (b) R o S = {(0, 2)}, S ° R = 

{(0,2)}; (c)HoS = {(1,0)}, So* =0; (d) R o 5 = {1, 2, 3} x {1, 2, 3}, 

SoR ={(0, 0)}. 

6. (w, z) E (To S) o R => there is * in X such that (w, x) E R and (x, z) E 

T o S => there is x in X andjy in Y such that (w, x) E R, {x,y) E S and (y, z) E 

T => there is y in Y such that (w,y) E S o R and (y, z) E T => (w, z) E T ° 

(SoR), hence.. (T o S o R cz To (SoR). Similarly (T o S) oR => To (SoR) 

7. zE R1 [R] <=> there is w in B such that (w, z) E R_1 O there is w in B such 

that (z, w) E R <=> z E {x| there isjy in B such that (x,y) E R}, hence i?_1[R] = 

{x| there is y in B such that (x,y) E R}. 

Chapter 4 

1. Yes, for example ({0, 1, 2, 3}, {1, 2, 3}, {(0, 1), (1, 2), (2, 3), (3, 1)}). 

2. Yes, No. 

4. No, No, No. 

5. Assuming a + b we have dom ea = 3V(X, X) — if,, /„ A, where 
fx = {X, X, {(a, a), (b, a)},/2 = (X, X, {(a, b), (b, b)}), 
/s = (X, X, {(a, a), (b, b)}) and/4 = (X, X, {(a, b), (b, a)}). 

Thus eff) =fx(a) = a, ea(ft) =f2(a) = b, ea(fz) =f3(a) = a and «0(/4) = 
fM = b. 

6. {1, 2}Wx(h2} = jr({(l, 1), (1, 2)}, {1, 2}) = {({(1, 1), (1, 2)}, {1, 2}, G«) | i £ 
{1, 2, 3, 4}} where Gx = {((1, 1), 1), ((1, 2), 1)}, 
G2 = {((1, 1), 2), ((1, 2), 2)}, G3 = {((1, 1), 1), ((1, 2), 2)} and 
G4 = {((1, 1), 2), ((1, 2), 1)}. 

7. Yes. C = (A, B, {((0, 0), 1), ((0, 1), 1), ((1, 0), 0), ((1, 1), 1)}). 



ANSWERS AND HINTS TO SELECTED EXERCISES 111 

Chapter 5 

1. (a)/({0, 3}) = {a, c}; (b)/(0) = 0; (c) f~\b) = {2}; 

(d)/ x(C{a, c}) = {2}; (e)/({l} n {2}) = 0 ; (f)f~1(0 - Y) = 0. 

2. ( &{X), &(Y), {{A,f{A)) |. A £ 

3. (a) Suppose H is surjective. Let ^ £ X, t e X, s A t. Then there is A <= Y 

and Bey such that H(A) = {.s} and H(B) = {t}. Since H is a function 

(verify) and {5} A {<} we have A ^ B. But since A = {/CO} and B = 

{/(<)} (verify) we may conclude/(0 ^=/(f). Now suppose /is injective, let 

A £ 2P(X). If we take B = {/(x) | * £ A} we have H{B) =/_1{/(*) | x £ 

^4} = ^4. Since A was arbitrary we conclude H is surjective. 

4. (b)0({l.» ua({2}) ={1,2}. 

Chapter 6 

1. gof= (X, Z, {(1,4), (2,4), (3,4), (4,3)}); 

f°g = (Y, Y, {(1, 2), (3, 1), (2,1), (4, 1)}). 

2. Suppose h' is an extension of h. Since h' ° k and l o h have the same domain 

and range we have to show that for each x in A h' o k(x) = l ° h{x). But 

h' o k(x) = h'(k(x)) = h\x) and l o h(x) = l(h(x)) = h(x). Since H' H 

we deduce h'(x) — h{x), hence h’ o k(x) =l°h(x). Conversely, suppose 

h' o k = l o h. We must show H' => H. If [x,y] £ H we have x E A and 

y = A(x). Then /(x) = h'{k(x)) = h' ° k(x) — l ° h(x) = l(h(x)) = h(x) = y, 
hence (x,y) £ H' = {(x, A'(x)) | x £ i4'}(l = and k =jA,A'). 

4. The definition is given in exercise 2 only for the case where / and g are 

functions. Since g is not a function we may not say that g is an extension off. 

6. (b) Let s and t be arbitrary elements of S. There are four cases according as 

(t(0, r(<)) = (0, 0), (0, 1), (1, 0), or (1, 1). In the chart below the values 

taken on by a given function in each case are written below the symbol 

representing that function: 

M o (r X r) (j, t) 
0 0 0 

1 0 1 

1 1 0 

1 1 1 

a o (<r o (T, r) X a o (T, t))(s, t) 

= a o (a o (T, t)(j), cr o (t, r)(f)) 

0 10 0 10 0 

110 0 011 

10 11 10 0 

10 11 011 
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Since the values given in the left-hand column are equal in each of the 

four cases we conclude that the two functions are equal. 

Chapter 7 

1. o-i = (X,X,{(2, 1), (1,2), (3,3)}). 

2. /_1 = (T, X, G_1) (see Ex 7, Section 3). 

3. Ifn = 1 the conclusion is obvious. Supposes > 1. Thenfn-1° f = f°fn~1 = 

jx and we may apply Theorem 7.1. 

Chapter 8 

1. (a) {1,2, 3, 4, 5, 6}; (b) N; (c) {2}; (e) 0 ; (f) TV; 

(g) {fvfvfvfi) where dom/) ={1,2} and mg/) ={1,2,3} for all i in 

{1, 2, 3, 4} and /4( 1) = 1, /4(2) = 2; /2(1) = 1, /2(2) = 3; /3(1) = 2, 

/3(2) =2; /4(1) =2,/4(2) =3; (h) d8. 

2. Denote the bijection by F with domF = (see Ex. 1) rng F = 

A x d2 and Gjr = {(/,, (1, 2)), (/2, (1, 3)), (/3, (2, 2)), (/4, (2, 3))}. 

3. Consult the definitions. 

5. (a) {1, 4, 9, 16, 25, 36}; (b) 0 ; (c) {1}; (d) TV; (e) 0 ; 

(f) {k\ (k + l)2}. 

6. |J ^ = {1, 2, 3, 4}, P| ^ = {3} for the first case; 

u V={n\n>2}, n 'S — 0 for the second case. 

Chapter 9 

1. Let u and v be elements of Y. If u v thenprk(u) ^ prk(v) for some k, 1 <i <5. 

For this k we have prK{u) = 1 and /rfc(z>) = 0, or prk(u) = 0 and prk(v) = 1. 

Thus {z'l/r/w) = 1} ^{i\pri(v) = 1} and cp(u) ^ cp{v). Therefore cp is 

injective. Now let Ae 8P(I). Define (<z4, a2, a3, a4, a5) in F by a,- = 1 if 

i S d and = 0 if i / d for each 1 in /. Then clearly cp (av a2, a3, av a5) = d, 

hence cp is also a surjection. 

Chapter 11 

1. Since d is not empty we can pick y e d. By the definition of inf and sup we 

have inf d < y and y < sup d. Since < is transitive we conclude inf d < 

sup d. 
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2. We show for example that R_1 is transitive: (x,y) £ R_1 and (jy, z) £ R_1 => 

(.y, x) £ R and' (z,y) £ R => (z, x) £ R => (x, 2) £ R_1. Let d <= A, and 

suppose infj-j-i A exists. Denote inf^-i A by a. Then {a, x) £ j?-1 for every 

x in A and if (b, x) £ f?-1 for every x in A we have (b, a) £ R~x. This means 

that (x, a) £ R for every x in A and if (x, b) £ R for every x in A we have (a, b) £ 

R. By the definition of sup we conclude that supfj A exists and sup^j A = a. 

Similarly, on the assumption that sup/j A exists, one shows that inf^-i A 

exists and infjj-i A = sup^j A. The last statement may be deduced by 

taking R = 51-1 (S is an order relation) and using the above result. 

Chapter 12 

1. Let S be the set of all n in TV such that 

^ n(n + 1)(2«+ 1) 
y i£ = -. 

Clearly 1 £ S. Suppose k £ S. Then 

fc+i / * \ k(k+ 1)(2k + 1) ft+l / k \ 1 

I = 2 *a +(k + i)2 = 
i=1 \i=1 / 

+ (* + 1 )2 

1 (k + \){k + 2)(2(A 
= g (A + \)(k{2k + 1) + 6(k + 1)) = ---^- 

1) + 1) 

hence (k + 1) £ S. By Theorem 12.1, S = TV. 

Chapter 13 

1. (a) 10; (b) assuming a 7^ 3, a/0, c(Jz) =3; (c) 35; (d) 24; 

(e) 16; (f) 3. 

3. Let n£ N and 1 < p < n. Then 

( n \ (n\ n\ n\ 

U - V + W = (P ~ ^ (" + 1 -P)! + P'- (» -P)! 

(n\)(p + («+!-/»)) 

/>! (ra +, 1 — p)! 

Tl -j- \ 

. P 
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Bernoulli’s inequality, 77 

Berstein-Schroeder Theorem, 54 
Bijection (bijective), 31 
Binary operation, 95 
Bounded, 66 

above, 66 

below, 66 

Canonical mapping, 64 
Cardinal number, 73 

Cartesian product, 15, 48 
Closed interval, 58 

Cofinal, 68 

Commutativity, 9, 91, 96 
Component, 45 
Composition, law of, 95 

of functions, 34 

Constant function, 25 
Continuum hypothesis, 58 

Correspondence, 107 

Countable, definition of, 54 

Couple, 15 

De Morgan’s formulas, 13 

Difference, 11 

Directed set, 67 
Disjoint, 8 

Distributivity, 10, 51, 91 
Domain, 20 

Duality formulas, 13 

Clement, 2 
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Empty set, 2 

Equal, definition of, 3 
Equipotent, 52 
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Equivalence relation, 61 
Extension, 38 

Family, 45 

Field, 92 
Filtering set, 67 

Finite, definition of, 54 
Formula. See names of specific for¬ 

mulas. 
Function, 20 

constant, 25 

of n variables, 23 
Functional graph, 107 

Graph, 20, 105 
functional, 107 

Group, 95 

Hypothesis. See names of specific hy¬ 
potheses. 
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Index, 45 

Induction, mathematical, 76 
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Inductive, 70 
Infimum, 66 

Infinite, 54 
Injection (injective), 31 

Integer, 1, 92 
Intersection, 7, 13, 46 

Interval, 58 
closed, 58 
nested, 93 

Inverse, 91, 96 
Inverse function, 40, 43 
Inverse image, 29 
Invertible, 96 
Irrational number, 94 

Lattice, 67 
Law of composition, 95 
Lemma, well-ordering, 71 

Zorn’s, 71 

Majorant, 66 

Mapping, 25 
Maximal, 68 
Minimal, 70 
Minorant, 66 
Modulo, 61 
Multiplicative, 96 

Negative, 5 
Neutral element, 96 

N-tuple, 17 
Number, cardinal, 73 

irrational, 94 
natural, 1, 92 
rational, 1, 57, 92 

real, 1, 91 

Object, 2 
Order relation, 65 

Ordered set, 65 

Product, cartesian, 15, 48 

Projection, 48 
Property of Archimedes, 93 

Pythagoras Theorem, 93 

Quadruple, 17 
Quotient set, 64 

Range, 20 
Rational number, 1, 57, 92 

Real number, 1,91 
Recursion Theorem, 78 

Reflexive, 61 
Relation, 18, 60 

equivalence, 61 

total order, 67 
well-order, 67 

Representation, 97 

Restriction, 37 

Sequence, 45 

Set, 1 
directed, 67 
empty, 2 

filtering, 67 
ordered, 65 

totally, 67 
quotient, 64 

void,2 
Shepherd’s Theorem, 82 
Signature, of permutation, 98 

Solution, 42 
Strictly positive, 5, 92 

Subfamily, 45 

Subset, 3 
Supremum, 66 
Surjection (surjective), 31 

Symmetric, 61 

Pairwise disjoint, 8 

Part, 3 
Partition, 73 
Permutation, 31 
Positive, definition of, 5 

strictly, 5, 92 

Table, 24 

Term, 45 
Theorem. See names of specific 

theorems. 
Total order relation, 67 
Totally ordered set, 67 
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