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Foreword
by Isaac Asimov

Mathematics is a unique aspect of human thought, and its history differs in
essence from all other histories.

As time goes on, nearly every field of human endeavor is marked by
changes which can be considered as correction and/or extension. Thus, the
changes in the evolving history of political and military events are always
chaotic; there is no way to predict the rise of a Genghis Khan, for example,
or the consequences of the short-lived Mongol Empire. Other changes are a
matter of fashion and subjective opinion. The cave-paintings of 25,000 years
ago are generally considered great art, and while art has continuously—even
chaotically—changed in the subsequent millennia, there are elements of
greatness in all the fashions. Similarly, each society considers its own ways
natural and rational, and finds the ways of other societies to be odd, laughable,
or repulsive.

But only among the sciences is there true progress; only there is the record
one of continuous advance toward ever greater heights.

And yet, among most branches of science, the process of progress is one
of both correction and extension. Aristotle, one of the greatest minds ever
to contemplate physical laws, was quite wrong in his views on falling bodies
and had to be corrected by Galileo in the 1590s. Galen, the greatest of ancient
physicians, was not allowed to study human cadavers and was quite wrong
in his anatomical and physiological conclusions. He had to be corrected by
Vesalius in 1543 and Harvey in 1628. Even Newton, the greatest of all
scientists, was wrong in his view of the nature of light, of the achromaticity
of lenses, and missed the existence of spectral lines. His masterpiece, the
laws of motion and the theory of universal gravitation, had to be modified
by Einstein in 1916.

Now we can see what makes mathematics unique. Only in mathematics
is there no significant correction—only extension. Once the Greeks had
developed the deductive method, they were correct in what they did, correct
for all time. Euclid was incomplete and his work has been extended enor-
mously, but it has not had to be corrected. His theorems are, every one of
them, valid to this day.

Ptolemy may have developed an erroneous picture of the planetary system,
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Preface to the
Second Edition

This edition brings to a new generation and a broader spectrum of readers a
book that became a standard for its subject after its initial appearance in
1968. The years since then have been years of renewed interest and vigorous
activity in the history of mathematics. This has been demonstrated by the
appearance of numerous new publications dealing with topics in the field,
by an increase in the number of courses on the history of mathematics, and
by a steady growth over the years in the number of popular books devoted
to the subject. Lately, growing interest in the history of mathematics has
been reflected in other branches of the popular press and in the electronic
media. Boyer’s contribution to the history of mathematics has left its mark
on all of these endeavors.

When one of the editors of John Wiley & Sons first approached me
concerning a revision of Boyer’s standard work, we quickly agreed that
textual modifications should be kept to a minimum and that the changes and
additions should be made to conform as much as possible to Boyer’s original
approach. Accordingly, the first twenty-two chapters have been left virtually
unchanged. The chapters dealing with the nineteenth century have been re-
vised; the last chapter has been expanded and split into two. Throughout, an
attempt has been made to retain a consistent approach within the volume and
to adhere to Boyer’s stated aim of giving stronger emphasis on historical
elements than is customary in similar works.

The references and general bibliography have been substantially revised.
Since this work is aimed at English-speaking readers, many of whom are
unable to utilize Boyer’s foreign-language chapter references, these have
been replaced by recent works in English. Readers are urged to consult the
General Bibliography as well, however. Immediately following the chapter
references at the end of the book, it contains additional works and further
bibliographic references, with less regard to language. The introduction to
that bibliography provides some overall guidance for further pleasurable
reading and for solving problems.

The initial revision, which appeared two years ago, was designed for
classroom use. The exercises found there, and in the original edition, have
been dropped in this edition, which is aimed at readers outside the lecture






Preface to the
First Edition

Numerous histories of mathematics have appeared during this century,
many of them in the English language. Some are very recent, such as
J. F. Scott’s A History of Mathematics'; a new entry in the field, therefore,
should have characteristics not already present in the available books.
Actually, few of the histories at hand are textbooks, at least not in the
American sense of the word, and Scott’s History is not one of them. It
appeared, therefore, that there was room for a new book—one that would
meet more satisfactorily my own preferences and possibly those of others.

The two-volume History of Mathematics by David Eugene Smith? was
indeed written “‘for the purpose of supplying teachers and students with a
usable textbook on the history of elementary mathematics,” but it covers
too wide an area on too low a mathematical level for most modern college
courses, and it is lacking in problems of varied types. Florian Cajori’s
History of Mathematics® still is a very helpful reference work; but it is not
adapted to classroom use, nor is E. T. Bell’s admirable The Development
of Mathematics.* The most successful and appropriate textbook today ap-
pears to be Howard Eves, An Introduction to the History of Mathematics
which I have used with considerable satisfaction in at least a dozen classes
since it first appeared in 1953. I have occasionally departed from the ar-
rangement of topics in the book in striving toward a heightened sense of
historicalmindedness and have supplemented the material by further ref-
erence to the contributions of the eighteenth and nineteenth centuries
especially by the use of D. J. Struik, A Concise History of Mathematics.®

The reader of this book, whether layman, student, or teacher of a course
in the history of mathematics, will find that the level of mathematical
background that is presupposed is approximately that of a college junior

'London: Taylor and Francis, 1958.
’Boston: Ginn and Company, 1923-1925.
3New York: Macmillan, 1931, 2nd edition.
‘New York: McGraw-Hill, 1945, 2nd edition.
New York: Holt, Rinehart and Winston, 1964, revised edition.
®New York: Dover Publications, 1967, 3rd edition.
Xi
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or senior, but the material can be perused profitably also by readers with
either stronger or weaker mathematical preparation. Each chapter ends
with a set of exercises that are graded roughly into three categories. Essay
questions that are intended to indicate the reader’s ability to organize and
put into his own words the material discussed in the chapter are listed first.
Then follow relatively easy exercises that require the proofs of some of
the theorems mentioned in the chapter or their application to varied sit-
uations. Finally, there are a few starred exercises, which are either more
difficult or require specialized methods that may not be familiar to all
students or all readers. The exercises do not in any way form part of the
general exposition and can be disregarded by the reader without loss of
continuity.

Here and there in the text are references to footnotes, generally biblio-
graphical, and following each chapter there is a list of suggested readings.
Included are some references to the vast periodical literature in the field,
for it is not too early for students at this level to be introduced to the
wealth of material available in good libraries. Smaller college libraries may
not be able to provide all of these sources, but it is well for a student to
be aware of the larger realms of scholarship beyond the confines of his
own campus. There are references also to works in foreign languages,
despite the fact that some students, hopefully not many, may be unable
to read any of these. Besides providing important additional sources for
those who have a reading knowledge of a foreign language, the inclusion
of references in other languages may help to break down the linguistic
proyincialism which, ostrichlike, takes refuge in the mistaken impression
that everything worthwhile appeared in, or has been translated into, the
English language.

The present work differs from the most successful presently available
textbook in a stricter adherence to the chronological arrangement and a
stronger emphasis on historical elements. There is always the temptation
in a class in history of mathematics to assume that the fundamental purpose
of the course is to teach mathematics. A departure from mathematical
standards is then a mortal sin, whereas an error in history is venial. I have
striven to avoid such an attitude, and the purpose of the book is to present
the history of mathematics with fidelity, not only to mathematical structure
and exactitude, but also to historical perspective and detail. It would be
folly, in a book of this scope, to expect that every date, as well as every
decimal point, is correct. It is hoped, however, that such inadvertencies
as may survive beyond the stage of page proof will not do violence to the
sense of history, broadly understood, or to a sound view of mathematical
concepts. It cannot be too strongly emphasized that this single volume in
no way purports to present the history of mathematics in its entirety. Such
an enterprise would call for the concerted effort of a team, similar to that
which produced the fourth volume of Cantor’s Vorlesungen iiber Geschichte
der Mathematik in 1908 and brought the story down to 1799. In a work of
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modest scope the author must exercise judgment in the selection of the
materials to be included, reluctantly restraining the temptation to cite the
work of every productive mathematician; it will be an exceptional reader
who will not note here what he regards as unconscionable omissions. In
particular, the last chapter attempts merely to point out a few of the salient
characteristics of the twentieth century. In the field of the history of math-
ematics perhaps nothing is more to be desired than that there should appear
a latter-day Felix Klein who would complete for our century the type of
project Klein essayed for the nineteenth century, but did not live to finish.
A published work is to some extent like an iceberg, for what is visible
constitutes only a small fraction of the whole. No book appears until the
author has lavished time on it unstintingly and unless he has received
encouragement and support from others too numerous to be named in-
dividually. Indebtedness in my case begins with the many eager students
to whom I have taught the history of mathematics, primarily at Brooklyn
College, but also at Yeshiva University, the University of Michigan, the
University of California (Berkeley), and the University of Kansas. At the
University of Michigan, chiefly through the encouragement of Professor
Phillip S. Jones, and at Brooklyn College through the assistance of Dean
Walter H. Mais and Professors Samuel Borofsky and James Singer, I have
on occasion enjoyed a reduction in teaching load in order to work on the
manuscript of this book. Friends and colleagues in the field of the history
of mathematics, including Professor Dirk J. Struik of the Massachusetts
Institute of Technology, Professor Kenneth O. May at the University of
Toronto, Professor Howard Eves of the University of Maine, and Professor
Morris Kline at New York University, have made many helpful suggestions
in the preparation of the book, and these have been greatly appreciated.
Materials in the books and articles of others have been expropriated freely,
with little acknowledgment beyond a cold bibliographical reference, and
I take this opportunity to express to these authors my warmest gratitude.
Libraries and publishers have been very helpful in providing information
and illustrations needed in the text; in particular it has been a pleasure to
have worked with the staff of John Wiley & Sons. The typing of the final
copy, as well as of much of the difficult preliminary manuscript, was done
cheerfully and with painstaking care by Mrs. Hazel Stanley of Lawrence,
Kansas. Finally, I must express deep gratitude to a very understanding
wife, Dr. Marjorie N. Boyer, for her patience in tolerating disruptions
occasioned by the development of yet another book within the family.

Carl B. Boyer
Brooklyn, New York
January 1968
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Did you bring me a man who cannot number his fingers?

From the Book of the Dead

THE CONCEPT OF NUMBER

Mathematicians of the twentieth century carry on a highly sophisticated
intellectual activity which is not easily defined. Much of the subject that
today is known as mathematics is an outgrowth of thought that originally
centered in the concepts of number, magnitude, and form. Old-fashioned
definitions of mathematics as a ‘“‘science of number and magnitude” are
no longer valid, but they do suggest the origins of the branches of math-
ematics. Primitive notions related to the concepts of number, magnitude,
and form can be traced back to the earliest days of the human race, and
adumbrations of mathematical notions can be found in forms of life that
may have antedated mankind by many millions of years. Darwin in The
Descent of Man (1871) noted that certain of the higher animals possess
such abilities as memory and imagination, and today it is even clearer that
the abilities to distinguish number, size, order, and form—rudiments of a
mathematical sense—are not exclusively the property of mankind. Exper-
iments with crows, for example, have shown that at least certain birds can
distinguish between sets containing up to four elements. An awareness of
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tions of nature. It is clear that originally mathematics arose as a part of
everyday life, and if there is validity in the biological principle of the
“survival of the fittest,” the persistence of the human race probably is not
unrelated to the development of mathematical concepts. At first the prim-
itive notions of number, magnitude, and form may have been related to
contrasts rather than likenesses—the difference between one wolf and
many, the inequality in size of a minnow and a whale, the unlikeness of
the roundness of the moon and the straightness of a pine tree. Gradually
there must have arisen, out of the welter of chaotic experiences, the re-
alization that there are samenesses; and from this awareness of similarities
in number and form both science and mathematics were born. The differ-
ences themselves seem to point to likenesses, for the contrast between one
wolf and many, between one sheep and a herd, between one tree and a
forest suggests that one wolf, one sheep, and one tree have something in
common—their uniqueness. In the same way it would be noticed that
certain other groups, such as pairs, can be put into one-to-one correspond-
ence. The hands can be matched against the feet, the eyes, the ears, or
the nostrils. This recognition of an abstract property that certain groups
hold in common, and which we call number, represents a long step toward
modern mathematics. It is unlikely to have been the discovery of any one
individual or of any single tribe; it was more probably a gradual awareness
which may have developed as early in man’s cultural development as the
use of fire, possibly some 300,000 years ago. That the development of the
number concept was a long and gradual process is suggested by the fact
that some languages, including Greek, have preserved in their grammar a
tripartite distinction between one and two and more than two, whereas
most languages today make only the dual distinction in “number’” between
singular and plural. Evidently our very early ancestors at first counted only
to two, and any set beyond this level was stigmatized as ‘““many.” Even
today many people still count objects by arranging them into sets of two
each.

EARLY NUMBER BASES

The awareness of number ultimately became sufficiently extended and vivid
so that a need was felt to express the property in some way, presumably
at first in sign language only. The fingers on a hand can be readily used
to indicate a set of two or three or four or five objects, the number one
generally not being recognized at first as a true “number.” By the use of
the fingers on both hands, collections containing up to ten elements could
be represented; by combining fingers and toes, one could count as high as
twenty. When the human digits were inadequate, heaps of stones could be
used to represent a correspondence with the elements of another set. Where
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nonliterate peoples used such a scheme of representation, they often piled
the stones in groups of five, for they had become familiar with quintuples
through observation of the human hand and foot. As Aristotle had noted
long ago, the widespread use today of the decimal system is but the result
of the anatomical accident that most of us are born with ten fingers and
ten toes. From the mathematical point of view it is somewhat inconvenient
that Cro-Magnon man and his descendants did not have either four or six
fingers on a hand.

Although historically finger counting, or the practice of counting by fives
and tens, seems to have come later than countercasting by twos and threes,
the quinary and decimal systems almost invariably displaced the binary
and ternary schemes. A study of several hundred tribes among the Amer-
ican Indians, for example, showed that almost one third used a decimal
base and about another third had adopted a quinary or a quinary-decimal
system; fewer than a third had a binary scheme, and those using a ternary
system constituted less than 1 percent of the group. The vigesimal system,
with twenty as a base, occurred in about 10 percent of the tribes.

Groups of stones are too ephemeral for preservation of information;
hence, prehistoric man sometimes made a number record by cutting
notches in a stick or a piece of bone. Few of these records remain today,
but in Czechoslovakia a bone from a young wolf was found which is deeply
incised with fifty-five notches. These are arranged in two series, with
twenty-five in the first and thirty in the second; within each series the
notches are arranged in groups of five. Such archaeological discoveries
provide evidence that the idea of number is far older than such techno-
logical advances as the use of metals or of wheeled vehicles. It antedates
civilization and writing, in the usual sense of the word, for artifacts with
numerical significance, such as the bone described above, have survived
from a period of some 30,000 years ago. Additional evidence concerning
man’s early ideas on number can be found in our language today. It appears
that our words “eleven” and “twelve” originally meant ‘“‘one over” and
“two over,” indicating the early dominance of the decimal concept. How-
ever, it has been suggested that perhaps the Indo-Germanic word for eight
was derived from a dual form for four, and that the Latin novem for nine
may be related to novus (new) in the sense that it was the beginning of a
new sequence. Possibly such words can be interpreted as suggesting the
persistence for some time of a quaternary or an octonary scale, just as the
French quatre-vingt of today appears to be a remnant of a vigesimal system.

NUMBER LANGUAGE AND THE ORIGIN OF COUNTING

Man differs from other animals most strikingly in language, the develop-
ment of which was essential to the rise of abstract mathematical thinking;
yet words expressing numerical ideas were slow in arising. Number signs

e
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probably preceded number words, for it is easier to cut notches in a stick
than it is to establish a well-modulated phrase to identify a number. Had
the problem of language not been so difficult, rivals to the decimal system
might have made greater headway. The base five, for example, was one
of the earliest to leave behind some tangible written evidence; but by the
time that language became formalized, ten had gained the upper hand.
The modern languages of today are built almost without exception around
the base ten, so that the number thirteen, for example, is not described
as three and five and five, but as three and ten. The tardiness in the
development of language to cover abstractions such as number is seen also
in the fact that primitive numerical verbal expressions invariably refer to
specific concrete collections—such as “two fishes” or “two clubs”—and
later some such phrase would be adopted conventionally to indicate all
sets of two objects. The tendency for language to develop from the concrete
to the abstract is seen in many of our present-day measures of length. The
height of a horse is measured in “hands,” and the words “foot” and “ell”
(or elbow) have similarly been derived from parts of the body.

The thousands of years required for man to separate out the abstract
concepts from repeated concrete situations testify to the difficulties that
must have been experienced in laying even a very primitive basis for math-
ematics. Moreover, there are a great many unanswered questions relating
to the origins of mathematics. It usually is assumed that the subject arose
in answer to practical needs, but anthropological studies suggest the pos-
sibility of an alternative origin. It has been suggested that the art of counting
arose in connection with primitive religious ritual and that the ordinal
aspect preceded the quantitative concept. In ceremonial rites depicting
creation myths it was necessary to call the participants onto the scene in
a specific order, and perhaps counting was invented to take care of this
problem. If theories of the ritual origin of counting are correct, the concept
of the ordinal number may have preceded that of the cardinal number.
Moreover, such an origin would tend to point to the possibility that count-
ing stemmed from a unique origin, spreading subsequently to other portions
of the earth. This view, although far from established, would be in harmony
with the ritual division of the integers into odd and even, the former being
regarded as male, the latter as female. Such distinctions were known to
civilizations in all corners of the earth, and myths regarding the male and
female numbers have been remarkably persistent.

The concept of whole number is one of the oldest in mathematics, and
its origin is shrouded in the mists of prehistoric antiquity. The notion of a
rational fraction, however, developed relatively late and was not in general
closely related to systems for the integers. Among nonliterate tribes there
seems to have been virtually no need for fractions. For quantitative needs
the practical person can choose units that are sufficiently small to obviate
the necessity of using fractions. Hence, there was no orderly advance from
binary to quinary to decimal fractions, and decimals were essentially the
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product of the modern age in mathematics, rather than of the ancient
period.

ORIGIN OF GEOMETRY

Statements about the origins of mathematics, whether of arithmetic or
geometry, are of necessity hazardous, for the beginnings of the subject are
older than the art of writing. It is only during the last half-dozen millennia,
in a passage that may have spanned thousands of millennia, that human
beings have been able to put their records and thoughts in written form.
For data about the prehistoric age we must depend on interpretations based
on the few surviving artifacts, on evidence provided by current anthro-
pology, and on a conjectural backward extrapolation from surviving doc-
uments. Herodotus and Aristotle were unwilling to hazard placing origins
earlier than the Egyptian civilization, but it is clear that the geometry they
had in mind had roots of greater antiquity. Herodotus held that geometry
had originated in Egypt, for he believed that the subject had arisen there
from the practical need for resurveying after the annual flooding of the
river valley. Aristotle argued that it was the existence of a priestly leisure
class in Egypt that had prompted the pursuit of geometry. We can look
upon the views of Herodotus and Aristotle as representing two opposing
theories of the beginnings of mathematics, one holding to an origin in
practical necessity, the other to an origin in priestly leisure and ritual. The
fact that the Egyptian geometers sometimes were referred to as “rope-
stretchers™ (or surveyors) can be used in support of either theory, for the
ropes undoubtedly were used both in laying out temples and in realigning
the obliterated boundaries. We cannot confidently contradict either Her-
odotus or Aristotle on the motive leading to mathematics, but it is clear
that both men underestimated the age of the subject. Neolithic peoples
may have had little leisure and little need for surveying, yet their drawings
and designs suggest a concern for spatial relationships that paved the way
for geometry. Pottery, weaving, and basketry show instances of congruence
and symmetry, which are in essence parts of elementary geometry. More-
over, simple sequences in design, such as that in Fig. 1.1, suggest a sort

/\
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of applied group theory, as well as propositions in geometry and arithmetic.
The design makes it immediately obvious that the areas of triangles are to
each other as squares on a side, or, through counting, that the sums of
consecutive odd numbers, beginning from unity, are perfect squares. For
the prehistoric period there are no documents, hence it is impossible to
trace the evolution of mathematics from a specific design to a familiar
theorem. But ideas are like hardy spores, and sometimes the presumed
origin of a concept may be only the reappearance of a much more ancient
idea that had lain dormant.

The concern of prehistoric man for spatial designs and relationships may
have stemmed from his aesthetic feeling and the enjoyment of beauty of
form, motives that often actuate the mathematician of today. We would
like to think that at least some of the early geometers pursued their work
for the sheer joy of doing mathematics, rather than as a practical aid in
mensuration; but there are other alternatives. One of these is that ge-
ometry, like counting, had an origin in primitive ritualistic practice. The
earliest geometric results found in India constituted what were called the
Sulvasutras, or “‘rules of the cord.” These were simple relationships that
apparently were applied in the construction of altars and temples. It is
commonly thought that the geometric motivation of the ‘‘rope-stretchers”
in Egypt was more practical that that of their counterparts in India; but it
has been suggested that both Indian and Egyptian geometry may derive
from a common source—a protogeometry that is related to primitive rites
in somewhat the same way in which science developed from mythology
and philosophy from theology. We must bear in mind that the theory of
the origin of geometry in a secularization of ritualistic practice is by no
means established. The development of geometry may just as well have
been stimulated by the practical needs of construction and surveying or by
an aesthetic feeling for design and order. We can make conjectures about
what led men of the Stone Age to count, to measure, and to draw. That
the beginnings of mathematics are older than the oldest civilizations is
clear. To go further and categorically identify a specific origin in space or
time, however, is to mistake conjecture for history. It is best to suspend
judgment on this matter and to move on to the safer ground of the history
of mathematics as found in the written documents that have come down
to us.



Egypt

Sesostris . . . made a division of the soil of Egypt among the inhabitants. . . . If
the river carried away any portion of a man’s lot, . . . the king sent persons to
examine, and determine by measurement the exact extent of the loss. . . . From
this practice, I think, geometry first came to be known in Egypt, whence it passed
into Greece.

Herodotus

EARLY RECORDS

It is customary to divide the past of mankind into eras and periods, with
particular reference to cultural levels and characteristics. Such divisions
are helpful, although we should always bear in mind that they are only a
framework arbitrarily superimposed for our convenience and that the sep-
arations in time they suggest are not unbridged gulfs. The Stone Age, a
long period preceding the use of metals, did not come to an abrupt end.
In fact, the type of culture that it represented terminated much later in
Europe than in certain parts of Asia and Africa. The rise of civilizations
characterized by the use of metals took place at first in river valleys, such
as those in Egypt, Mesopotamia, India, and China. Chronological records
of the civilizations in the valleys of the Indus and Yangtze rivers are quite
unreliable, but fairly dependable information is available about the peoples
living along the Nile and in the “fertile crescent” of the Tigris and Eu-
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phrates rivers. Before the end of the fourth millennium B.C. a primitive
form of writing was in use in both the Mesopotamian and Nile valleys.
There the early pictographic records, through a steady conventionalizing
process, evolved into a linear order of simpler symbols. In Mesopotamia,
where clay was abundant, wedge-shaped marks were impressed with a
stylus upon soft tablets which then were baked hard in ovens or by the
heat of the sun. This type of writing is known as cuneiform (from the Latin
word cuneus or wedge) because of the shape of the individual impressions.
The meaning to be transmitted in cuneiform was determined by the patterns
or arrangements of the wedge-shaped impressions. Cuneiform documents
had a high degree of permanence; hence, many thousands of such tablets
have survived from antiquity, many of them dating back some 4000 years.
Of course, only a small fraction of these touch on themes related to math-
ematics. Moreover, until about a century ago the message of the cuneiform
tablets remained muted because the script had not been deciphered. In
the 1870s significant progress in the reading of cuneiform writing was made
when it was discovered that the Behistun Cliff carried a trilingual account
of the victory of Darius over Cambyses, the inscriptions being in Persian,
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Elamitic, and Babylonian. Knowledge of Persian consequently supplied a
key to the reading of Assyrian, a language closely related to the older
Babylonian. Even after this important discovery, decipherment and anal-
ysis of tablets with mathematical content proceeded slowly, and it was not
until the second quarter of the twentieth century that awareness of Me-
sopotamian mathematical contributions became appreciable, largely
through the pioneer work of Fr. Thureau-Dangin in France and Otto Neu-
gebauer in Germany and America.

HIEROGLYPHIC NOTATION

Egyptian written records meanwhile had fared better than Babylonian ones
in one respect. The trilingual Rosetta Stone, playing a role similar to that
of the Behistun CIiff, had been discovered in 1799 by the Napoleonic
expedition. This large tablet, found at Rosetta, an ancient harbor near
Alexandria, contained a message in three scripts: Greek, Demotic, and
Hieroglyphic. Knowing Greek, Champollion in France and Thomas Young
in England made rapid progress in deciphering the Egyptian hieroglyphics
(that s, “sacred carvings™). Inscriptions on tombs and monuments in Egypt
now could be read, although such ceremonial documents are not the best
source of information concerning mathematical ideas. Egyptian hiero-
glyphic numeration was easily disclosed. The system, at least as old as the
pyramids, dating some 5000 years ago, was based, as we might expect, on
the ten-scale. By the use of a simple iterative scheme and of distinctive
symbols for each of the first half-dozen powers of ten, numbers over a
million were carved on stone, wood, and other materials. A single vertical
stroke represented a unit, an inverted wicket or heel bone was used for
10, a snare somewhat resembling a capital letter C stood for 100, a lotus
flower for 1000, a bent finger for 10,000, a burbot fish resembling a polywog
for 100,000, and a kneeling figure (perhaps God of the Unending) for
1,000,000. Through repetition of these symbols the number 12,345, for
example, would appear as

(22299 0amnl

Sometimes the smaller digits were placed on the left, and sometimes the
digits were arranged vertically. The symbols themselves occasionally were
reversed in orientation, so that the snare might be convex toward either
the right or the left.

Egyptian inscriptions indicate familiarity with large numbers at an early
date. A museum at Oxford has a royal mace more than 5000 years old on
which a record of 120,000 prisoners and 1,422,000 captive goats appears.'
These figures may have been exaggerated, but from other considerations

'J. E. Quibell, Hierakonpolis (London: B. Quaritch, 1900). See especially Plate 26B.
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it is nevertheless clear that the Egyptians were commendably accurate in
counting and measuring. The pyramids exhibit such a high degree of pre-
cision in construction and orientation that ill-founded legends have grown
up around them. The suggestion, for example, that the ratio of the perim-
eter of the base of the Great Pyramid (of Khufu or Cheops) to the height
was consciously set at 27 is clearly inconsistent with what we know of the
geometry of the Egyptians. Nevertheless, the pyramids and passages within
them were so precisely oriented that attempts are made to determine their
age from the known rate of change of the position of the polestar.

The Egyptians early had become interested in astronomy and had ob-
served that the annual flooding of the Nile took place shortly after Sirius,
the dogstar, rose in the east just before the sun. By noticing that these
heliacal risings of Sirius, the harbinger of the flood, were separated by 365
days, the Egyptians established a good solar calendar made up of twelve
months of thirty days each and five extra feast days. But this civil year was
too short by a quarter of a day, hence the seasons advanced about one
day every four years until, after a cycle of about 1460 years, the seasons
again were in tune with the calendar. Inasmuch as it is known through the
Roman scholar Censorinus, author of De die natale (A.D. 238), that the
calendar was in line with the seasons in A.D. 139, it has been suggested
through extrapolation backward that the calendar was instituted in the year
4241 B.C., just three cycles earlier. More precise calculations (based on
the fact that the year is not quite 3655 days long) have modified the date
to 4228, but other scholars feel that the backward extrapolation beyond
two cycles is unwarranted and suggest instead an origin around 2773 B.C.

AHMES PAPYRUS

There is a limit to the extent of mathematical information that can be
inferred from tombstones and calendars, and our picture of Egyptian con-
tributions would be sketchy in the extreme if we had to depend on cere-
monial and astronomical material only. Mathematics is far more than
counting and measuring, the aspects generally featured in hieroglyphic
inscriptions. Fortunately we have other sources of information. There are
a number of Egyptian papyri that somehow have survived the ravages of
time over some three and a half millennia. The most extensive one of a
mathematical nature is a papyrus roll about 1 foot high and some 18 feet
long which now is in the British Museum (except for a few fragments in
the Brooklyn Museum). It had been bought in 1858 in a Nile resort town
by a Scottish antiquary, Henry Rhind; hence, it often is known as the
Rhind Papyrus or, less frequently, as the Ahmes Papyrus in honor of the
scribe by whose hand it had been copied in about 1650 B.C. The scribe
tells us that the material is derived from a prototype from the Middle
Kingdom of about 2000 to 1800 B.C., and it is possible that some of this
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knowledge may have been handed down from Imhotep, the almost leg-
endary architect and physician to the Pharaoh Zoser, who supervised the
building of his pyramid about 5000 years ago. In any case, Egyptian math-
ematics seems to have stagnated for some 2000 years after a rather aus-
picious beginning.

The numerals and other material in the Rhind Papyrus are not written
in the hieroglyphic forms described above, but in a more cursive script
better adapted to the use of pen and ink on prepared papyrus leaves and
known as hieratic (‘‘sacred,” to distinguish it from the still later demotic
or popular script). Numeration remains decimal, but the tedious repetitive
principle of hieroglyphic numeration has been replaced by the introduction
of ciphers or special signs to represent digits and multiples of powers of
ten. Four, for example, usually is no longer represented by four vertical
strokes, but by a horizontal bar; and seven is not written as seven strokes,
but as a single cipher A resembling a sickle. In hieroglyphic the number
twenty-eight had appeared as nn{lil, but in hieratic it is simply =& . Note
that the cipher = for the smaller digit eight (or two fours) appears on the
left rather than on the right. The principle of cipherization, introduced by
the Egyptians some 4000 years ago and used in the Rhind Papyrus, rep-
resented an important contribution to numeration, and it is one of the
factors that makes our own system in use today the effective instrument
that it is.

UNIT FRACTIONS

Men of the Stone Age had no use for fractions, but with the advent of
more advanced cultures during the Bronze Age the need for the fraction
concept and for fractional notations seems to have arisen. Egyptian hier-
oglyphic inscriptions have a special notation for unit fractions—that is,
fractions with unit numerators. The reciprocal of any integer was indicated
simply by placing over the notation for the integer an elongated oval sign.

The fraction 4 thus appeared as ,loll and 75 was written as fa. In the hieratic

notation, appearing in papyri, ti)le elongated oval is replaced by a dot,
which is placed over the cipher for the corresponding integer (or over the
right-hand cipher in the case of the reciprocal of a multidigit number). In
the Ahmes Papyrus, for example, the fraction § appears as ==, and 7 is
written as %. Such unit fractions were freely handled in Ahmes’ day, but
the general fraction seems to have been an enigma to the Egyptians. They
felt comfortable with the fraction %, for which they had a special hieratic
sign 2 occasionally, they used special signs for fractions of the form
n/(n + 1), the complements of the unit fractions. To the fraction § the
Egyptians assigned a special role in arithmetic processes, so that in finding
one third of a number they first found two thirds of it and subsequently




l
!

UNIT FRACTIONS 13

took half of the result! They knew and used the fact that two thirds of the
unit fraction 1/p is the sum of the two unit fractions 1/2p and 1/6p; they
were also aware that double the unit fraction 1/2p is the unit fraction
1/p. However, it looks as though, apart from the fraction %, the Egyptians
regarded the general proper rational fraction of the form m/n not as an
elementary ‘“‘thing” but as part of an uncompleted process. Where today
we think of 2 as a single irreducible fraction, Egyptian scribes thought of
it as reducible to the sum of the three unit fractions 4 and 4 and 5. To
facilitate the reduction of “mixed” proper fractions to the sum of unit
fractions, the Rhind Papyrus opens with a table expressing 2/n as a sum
of unit fractions for all odd values of n from 5 to 101. The equivalent of
£ is given as 4 and 15; % is written as } and &5; and % is expressed as {5 and
3. The last item in the table decomposes 187 into w7 and 23z and 33 and
sbs. It is not clear why one form of decomposition was preferred to another
of the indefinitely many that are possible. At one time it was suggested
that some of the items in the 2/n table were found by using the equivalent
of the formula

o/ R S
n n+1 n(n+1)
2 2
or from
2 1 1
p-q p+q+ ptq
P 2 q- )

Yet neither of these procedures yields the combination for % that appears
in the table. Recently it has been suggested that the choice in most cases
was dictated by the Egyptian preference for fractions derived from the
“natural” fractions 4 and % and % by successive halving. Thus if one wishes
to express % as a sum of unit fractions, he might well begin by taking half
of 1 and then seeing if to the result, 35, he can add a unit fraction to form
5; or he could use the known relationship

21 1 . 1

3 p 2 Op
to reach the same result % = 5 + 2. One problem in the Rhind Papyrus
specifically mentions the second method for finding two thirds of 4 and
asserts that one proceeds likewise for other fractions. Passages such as this
indicate that the Egyptians had some appreciation of general rules and
methods above and beyond the specific case at hand, and this represents
an important step in the development of mathematics. For the decompo-
sition of 2 the halving procedure is not appropriate; but by beginning with
a third of ¢ one finds the decomposition given by Ahmes, § = § + 5. In
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the case of # one applies the halving procedure twice to 4 to reach the result
# = 1 + #; successive halving yields also the Ahmes decomposition & =
§ + &% + 183. The Egyptian obsession with halving and taking a third is
seen in the last entry in the table 2/n for n = 101, for it is not at all clear
to us why the decomposition 2/n = 1/n + 1/2n + 1/3n + 1/2 -3 - niis
better than 1/n + 1/n. Perhaps one of the objects of the 2/n decomposition
was to arrive at unit fractions smaller than 1/n.

ARITHMETIC OPERATIONS

The 2/n table in the Ahmes Papyrus is followed by a short n/10 table for
n from 1 to 9, the fractions again being expressed in terms of the favorites—
unit fractions and the fraction . The fraction 1%, for example, is broken
into 75 and 4 and 4. Ahmes had begun his work with the assurance that it
would provide a “complete and thorough study of all things . . . and the
knowledge of all secrets,” and therefore the main portion of the material,
following the 2/n and n/10 tables, consists of eighty-four widely assorted
problems. The first six of these require the division of one or two or six
or seven or eight or nine loaves of bread among ten men, and the scribe
makes use of the n/10 table that he has just given. In the first problem the
scribe goes to considerable trouble to show that it is correct to give to each
of the ten men one tenth of a loaf! If one man receives 5 loaf, two men
will receive % or  and four men will receive £ of a loaf or § + 5 of a loaf.
Hence eight men will receive § + &% of a loaf or § + 1 + 4% of a loaf, and
eight men plus two men will receive § + ¥ + ¥ + 35, or a whole loaf.
Ahmes seems to have had a kind of equivalent to our least common multiple
which enabled him to complete the proof. In the division of seven loaves
among ten men, the scribe might have chosen § + % of a loaf for each,
but the predilection for § led him instead to  and 45 of a loaf for each.
The fundamental arithmetic operation in Egypt was addition, and our
operations of multiplication and division were performed in Ahmes’ day
through successive doubling, or “duplation.” Our own word “‘multiplica-
tion”” or manifold is, in fact, suggestive of the Egyptian process. A mul-
tiplication of, say, 69 by 19 would be performed by adding 69 to itself to
obtain 138, then adding this to itself to reach 276, applying duplation again
to get 552, and once more to obtain 1104, which is, of course, sixteen times
69. Inasmuch as 19 = 16 + 2 + 1, the result of multiplying 69 by 19 is
1104 + 138 + 69, that is, 1311. Occasionally a multiplication by ten also
was used, for this was a natural concomitant of the decimal hieroglyphic
notation. Multiplication of combinations of unit fractions was also a part
of Egyptian arithmetic. Problem 13 in the Ahmes Papyrus, for example,
asks for the product of ¥ + iz and 1 + 4 + {; the result is correctly found
to be . For division the duplation process is reversed, and the divisor is
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successively doubled instead of the multiplicand. That the Egyptians had
developed a high degree of artistry in applying the duplation process and
the unit fraction concept is apparent from the calculations in the problems
of Ahmes. Problem 70 calls for the quotient when 100 is divided by 7 +
1 + 1 + & theresult, 12 + % + & + 1, is obtained as follows. Doubling
the divisor successively, we first obtain 15 + 4 + §, then 31 + 3}, and finally
63, which is eight times the divisor. Moreover, two thirds of the divisor is
known to be 5 + 1. Hence, the divisor when multiplied by 8 + 4 + % will
total 994, which is § short of the product 100 that is desired. Here a clever
adjustment was made. Inasmuch as eight times the divisor is 63, it follows
that the divisor when multiplied by & will produce }. From the 2/n table
one knows that & is 5 + 1s, hence the desired quotient is 12 + § +
7 + 1¥e. Incidentally, this procedure makes use of a commutative principle
in multiplication, with which the Egyptians evidently were familiar.

Many of Ahmes’ problems show a knowledge of manipulations of pro-
portions equivalent to the “rule of three.” Problem 72 calls for the number
of loaves of bread of ‘“‘strength” 45 which are equivalent to 100 loaves of
“strength” 10, and the solution is given as 100/10 X 45, or 450 loaves. In
bread and beer problems the “strength’ or pesu is the reciprocal of the
grain density, being the quotient of the number of loaves or units of volume
divided by the amount of grain. Bread and beer problems are numerous
in the Ahmes Papyrus. Problem 63, for example, requires the division of
700 loaves of bread among four recipients if the amounts they are to receive
are in the continued proportion %:3:4:1. The solution is found by taking
the ratio of 700 to the sum of the fractions in the proportion. In this case
the quotient of 700 divided by 1} is found by multiplying 700 by the recip-
rocal of the divisor, which is § + 4. The result is 400; by taking % and %
and % and } of this, the required shares of bread are found.

ALGEBRAIC PROBLEMS

The Egyptian problems so far described are best classified as arithmetic,
but there are others that fall into a class to which the term algebraic is
appropriately applied. These do not concern specific concrete objects, such
as bread and beer, nor do they call for operations on known numbers.
Instead they require the equivalent of solutions of linear equations of the
formx + ax = borx + ax + bx = c, where a and b and ¢ are known
and x is unknown. The unknown is referred to as “aha,” or heap. Problem
24, for instance, calls for the value of heap if heap and a seventh of heap
is 19. The solution given by Ahmes is not that of modern textbooks, but
is characteristic of a procedure now known as the “method of false posi-
tion,” or the “rule of false.” A specific value, most likely a false one, is
assumed for heap, and the operations indicated on the left-hand side of
the equality sign are performed on this assumed number. The result of
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these operations then is compared with the result desired, and by the use
of proportions the correct answer is found. In problem 24 the tentative
value of the unknown is taken as 7, so that x + 4x is 8, instead of the
desired answer, which was 19. Inasmuch as 8(2 + { + §) = 19, one must
multiply 7 by 2 + } + 4 to obtain the correct heap; Ahmes found the
answer to be 16 + $ + §. Ahmes then ‘“‘checked” his result by showing
that if to 16 + 4 + 4 one adds a seventh of this (which is 2 + § + 4), one
does indeed obtain 19. Here we see another significant step in the devel-
opment of mathematics, for the check is a simple instance of a proof.
Although the method of false position was generally used by Akmes, there
is one problem (Problem 30) in which x + %x + 4x + 4x = 37 is solved
by factoring the left-hand side of the equation and dividing 37 by 1 + §
+ 4 + 4, the result being 16 + 5 + &5 + s

Many of the *‘aha” calculations in the Rhind Papyrus evidently are
practice exercises for young students. Although a large proportion of them
are of a practical nature, in some places the scribe seems to have had
puzzles or mathematical recreations in mind. Thus Problem 79 cites only
“seven houses, 49 cats, 343 mice, 2401 ears of spelt, 16807 hekats.” It is
presumed that the scribe was dealing with a problem, perhaps quite well
known, in which in each of seven houses there are seven cats each of which
eats seven mice, each of which would have eaten seven ears of grain, each
of which would have produced seven measures of grain. The problem
evidently called not for the practical answer, which would be the number
of measures of grain that were saved, but for the impractical sum of the
numbers of houses, cats, mice, ears of spelt, and measures of grain. This
bit of fun in the Ahmes Papyrus seems to be a forerunner of our familiar
nursery rhyme:

As I was going to St. Ives,

[ met a man with seven wives;
Every wife had seven sacks,

Every sack had seven cats,

Every cat had seven kits.

Kits, cats, sacks, and wives,

How many were going to St. Ives?

GEOMETRIC PROBLEMS

The Greek historian Herodotus tells us that the obliteration of boundaries
in the overflow of the Nile emphasized the need for surveyors. The ac-
complishments of the “rope-stretchers” of Egypt evidently were admired
by Democritus, an accomplished mathematician and one of the founders
of an atomic theory, and today their achievements seem to be overvalued,
in part as a result of the admirable accuracy of construction of the pyramids.
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It often is said that the ancient Egyptians were familiar with the Pytha-
gorean theorem, but there is no hint of this in the papyri that have come
down to us. There are nevertheless some geometric problems in the Ahmes
Papyrus. Problem 51 of Almes shows that the area of an isosceles triangle
was found by taking half of what we would call the base and multiplying
this by the altitude. Ahmes justified his method of finding the area by
suggesting that the isosceles triangle can be thought of as two right triangles,
one of which can be shifted in position, so that together the two triangles
form a rectangle. The isosceles trapezoid is similarly handled in Problem
52, in which the larger base of a trapezoid is 6, the smaller base is 4, and
the distance between them is 20. Taking half the sum of the bases, “so as
to make a rectangle,” Ahmes multiplied this by 20 to find the area. In
transformations such as these, in which isosceles triangles and trapezoids
are converted into rectangles, we see the beginnings of a theory of con-
gruence and of the idea of proof in geometry, but the Egyptians did not
carry their work further. A serious deficiency in their geometry was the
lack of a clear-cut distinction between relationships that are exact and those
that are approximations only. A surviving deed from Edfu, dating from a
period some 1500 years after Ahmes, gives examples of triangles, trape-
zoids, rectangles, and more general quadniaterals; the rule for finding the
area of the general quadrilateral is to take the product of the arithmetic
means of the opposite sides. Inaccurate though the rule is, the author of
the deed deduced from it a corollary—that the area of a triangle is half
the sum of two sides multiplied by half the third side. This is a striking
instance of the search for relationships among geometric figures, as well
as an early use of the zero concept as a replacement for a magnitude in
geometry.

The Egyptian rule for finding the area of a circle has long been regarded
as one of the outstanding achievements of the time. In Problem 50 the
scribe Ahmes assumed that the area of a circular field with a diameter of
nine units is the same as the area of a square with a side of eight units. If
we compare this assumption with the modern formula A = znr?, we find
the Egyptian rule to be equivalent to giving 7 a value of about 3%, a
commendably close approximation; but here again we miss any hint that
Ahmes was aware that the areas of his circle and square were not exactly
equal. It is possible that Problem 48 gives a hint to the way in which the
Egyptians were led to their area of the circle. In this problem the scribe
formed an octagon from a square of side nine units by trisecting the sides
and cutting off the four corner isosceles triangles, each having an area of
4% units. The area of the octagon, which does not differ greatly from that
of a circle inscribed within the square, is sixty-three units, which is not far
removed from the area of a square with eight units on a side. That the
number 4(8/9)* did indeed play a role comparable to our constant 7 seems
to be confirmed by the Egyptian rule for the circumference of a circle,
according to which the ratio of the area of a circle to the circumference is
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the same as the ratio of the area of the circumscribed square to its perim-
eter. This observation represents a geometric relationship of far greater
precision and mathematical significance than the relatively good approxi-
mation for n. Degree of accuracy in approximation is, after all, not a good
measure of either mathematical or architectural achievement, and we
should not overemphasize this aspect of Egyptian work. Recognition by
the Egyptians of interrelationships among geometric figures, on the other
hand, has too often been overlooked, and yet it is here that they came
closest in attitude to their successors, the Greeks. No theorem or formal
proof is known in Egyptian mathematics, but some of the geometric com-
parisons made in the Nile Valley, such as those on the perimeters and
areas of circles and squares, are among the first exact statements in history
concerning curvilinear figures.

A TRIGONOMETRIC RATIO

Problem 56 of the Rhind Papyrus is of special interest in that it contains
rudiments of trigonometry and a theory of similar triangles. In the con-
struction of the pyramids it had been essential to maintain a uniform slope
for the faces, and it may have been this concern that led the Egyptians to
introduce a concept equivalent to the cotangent of an angle. In modern
technology it is customary to measure the steepness of a straight line
through the ratio of the “rise” to the “run.” In Egypt it was customary to
use the reciprocal of this ratio. There the word ‘““seqt” meant the horizontal
departure of an oblique line from the vertical axis for every unit change
in the height. The seqt thus corresponded, except for the units of mea-
surement, to the batter used today by architects to describe the inward
slope of a masonry wall or pier. The vertical unit of length was the cubit;
but in measuring the horizontal distance, the unit used was the ‘‘hand,”
of which there were seven in a cubit. Hence, the seqt of the face of a
pyramid was the ratio of run to rise, the former measured in hands, the
latter in cubits. In Problem 56 one is asked to find the seqt of a pyramid
that is 250 ells or cubits high and has a square base 360 ells on a side. The
scribe first divided 360 by 2 and then divided the result by 250, obtaining
} + § + & in ells. Multiplying the result by 7, he gave the seqt as 53 in
hands per ell. In other pyramid problems in the Ahmes Papyrus the seqt
turns out to be 54, agreeing somewhat better with that of the great Cheops
Pyramid, 440 ells wide and 280 high, the seqt being 54 hands per ell.
There are many stories about presumed geometric relationships among
dimensions in the Great Pyramid, some of which are patently false. For
instance, the story that the perimeter of the base was intended to be
precisely equal to the circumference of a circle of which the radius is the
height of the pyramid is not in agreement with the work of Ahmes. The
ratio of perimeter to height is indeed very close to %, which is just twice
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the value of % often used today for n; but we must recall that the Ahmes
value for n is about 34, not 3}. That Ahmes’ value was used also by other
Egyptians is confirmed in a papyrus roll from the twelfth dynasty (the
Kahun Papyrus, now in London) in which the volume of a cylinder is found
by multiplying the height by the area of the base, the base being determined
according to Ahmes’ rule.

MOSCOW PAPYRUS

Much of our information about Egyptian mathematics has been derived
from the Rhind or Ahmes Papyrus, the most extensive mathematical doc-
ument from ancient Egypt; but there are other sources as well. Besides
the Kahun Papyrus, already mentioned, there is a Berlin Papyrus of the
same period, two wooden tablets from Akhmim (Cairo) of about 2000
B.C., a leather roll containing lists of unit fractions and dating from the
later Hyksos period, and an important papyrus, known as the Golenischev
or Moscow Papyrus, purchased in Egypt in 1893. The Moscow Papyrus is
about as long as the Rhind Papyrus—about 18 feet—but it is only one
fourth as wide, the width being about 3 inches. It was written, less carefully
than the work of Ahmes, by an unknown scribe of the twelfth dynasty (ca.
1890 B.C.). It contains twenty-five examples, mostly from practical life and
not differing greatly from those of Ahmes, except for two that have special
significance. Associated with Problem 14 in the Moscow Papyrus is a figure
that looks like an isosceles trapezoid (see Fig. 2.1), but the calculations
associated with it indicate that a frustum of a square pyramid is intended.
Above and below the figure are signs for two and four respectively, and
within the figure are the hieratic symbols for six and fifty-six. The directions
alongside make it clear that the problem calls for the volume of a frustum
of a square pyramid six units high if the edges of the upper and lower bases
are two and four units respectively. The scribe directs one to square the
numbers two and four and to add to the sum of these squares the product
of two and four, the result being twenty-eight. This result is then multiplied
by a third of six; and the scribe concludes with the words, “See, it is 56;

FIG. 2.1
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you have found it correctly.” That is, the volume of the frustum has been
calculated in accordance with the modern formula V = h(a? + ab + b?%)/
3, where 4 is the altitude and a and b are the sides of the square bases.
Nowhere is this formula written out, but in substance it evidently was
known to the Egyptians. If, as in the deed from Edfu, one takes b = 0,
the formula reduces to the familiar formula, one-third the base times the
altitude, for the volume of a pyramid. How these results were arrived at
by the Egyptians is not known. An empirical origin for the rule on volume
of a pyramid seems to be a possibility, but not for the volume of the frustum.
For the latter a theoretical basis seems more likely; and it has been sug-
gested that the Egyptians may have proceeded here as they did in the cases
of the isosceles triangle and the isosceles trapezoid—they may in thought
have broken the frustum into parallelepipeds, prisms, and pyramids. Upon
replacing the pyramids and prisms by equal rectangular blocks, a plausible
grouping of the blocks leads to the Egyptian formula. One could, for
example, have begun with a pyramid having a square base and with the
vertex directly over one of the base vertices. An obvious decomposition
of the frustum would be to break it into four parts as in Fig. 2.2—a
rectangular parallelepiped having a volume b?h, two triangular prisms, each
with a volume of b(a — b)h/2, and a pyramid of volume (a — b)*h/3.
The prisms can be combined into a rectangular parallelepiped with di-
mensions b and @ — b and h; and the pyramid can be thought of as a
rectangular parallelepiped with dimensions @ — b and @ — b and h/3.
Upon cutting up the tallest parallelepipeds so that all altitudes are h/3,
one can easily arrange the slabs so as to form three layers, each of altitude
h/3, and having cross-sectional areas of @ and ab and b? respectively.
Problem 10 in the Moscow Papyrus presents a more difficult question
of interpretation than does Problem 14. Here the scribe asks for the surface
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area of what looks like a basket with a diameter of 44. He proceeds as
though he were using the equivalent of a formula § = (1 — 3)*(2x) - x,
where x is 43, obtaining an answer of 32 units. Inasmuch as (1 — $)?is the
Egyptian approximation of n/4, the answer 32 would correspond to the
surface of a hemisphere of diameter 43; and this was the interpretation
given to the problem in 1930.2 Such a result, antedating the oldest known
calculation of a hemispherical surface by some 1500 years, would have
been amazing, and it seems, in fact, to have been too good to be true.
Later analysis® indicates that the ‘“‘basket”” may have been a roof—some-
what like that of a quonset hut in the shape of a half-cylinder of diameter
4} and length 4. The calculation in this case calls for nothing beyond
knowledge of the length of a semicircle; and the obscurity of the text makes
it admissible to offer still more primitive interpretations, including the
possibility that the calculation is only a rough estimate of the area of a
domelike barn roof. In any case, we seem to have here an early estimation
of a curvilinear surface area.

MATHEMATICAL WEAKNESSES

For many years it had been assumed that the Greeks had learned the
rudiments of geometry from the Egyptians, and Aristotle argued that ge-
ometry had arisen in the Nile Valley because the priests there had the
leisure to develop theoretical knowledge. That the Greeks did borrow some
elementary mathematics from Egypt is probable, for the use of unit frac-
tions persisted in Greece and Rome well into the Medieval period, but
evidently they exaggerated the extent of their indebtedness. The knowledge
indicated in extant Egyptian papyri is mostly of a practical nature, and
calculation was the chief element in the questions. Where some theoretical
elements appear to enter, the purpose may have been to facilitate technique
rather than understanding. Even the once-vaunted Egyptian geometry
turns out to have been mainly a branch of applied arithmetic. Where
elementary congruence relations enter, the motive seems to be to provide
mensurational devices rather than to gain insight. The rules of calculation
seldom are motivated, and they concern specific concrete cases only. The
Ahmes and Moscow papyri, our two chief sources of information, may
have been only manuals intended for students, but they nevertheless in-
dicate the direction and tendencies in Egyptian mathematical instruction;
further evidence provided by inscriptions on monuments, fragments of
other mathematical papyri, and documents from related scientific fields
serves to confirm the general impression. It is true that our two chief

2See W. W. Struve, “Mathematischer Papyrus des Staatlichen Museums der Schonen
Kiinste in Moskau,” Quellen und Studien zur Geschichte der Mathematik, Part A, Quellen,
I (1930).

3For opposing views see van der Waerden 1963, p. 34, and Gillings 1972.

Archbishop Mitty Hich School Library
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mathematical papyri are from a relatively early period, a thousand years
before the rise of Greek mathematics, but Egyptian mathematics seems to
have remained remarkably uniform throughout its long history. It was at
all stages built around the operation of addition, a disadvantage that gave
to Egyptian computation a peculiar primitivity combined with occasionally
astonishing complexity. The fertile Nile Valley has been described as the
world’s largest oasis in the world’s largest desert. Watered by one of the
most gentlemanly of rivers and geographically shielded to a great extent
from foreign invasion, it was a haven for peace-loving people who pursued,
to a large extent, a calm and unchallenged way of life. Love of the ben-
eficent gods, respect for tradition, and preoccupation with death and the
needs of the dead all encouraged a high degree of stagnation. Geometry
may have been a gift of the Nile, as Herodotus believed, but the Egyptians
did little with the gift. The mathematics of Ahmes was that of his ancestors
and of his descendants. For more progressive mathematical achievements
one must look to the more turbulent river valley known as Mesopotamia.




Mesopotamia

How much is one god beyond the other god?

An Old Babylonian astronomical text

CUNEIFORM RECORDS

The fourth millennium before our era was a period of remarkable cultural
development, bringing with it the use of writing, of the wheel, and of
metals. As in Egypt during the first dynasty, which began toward the end
of this wonderful millennium, so also in the Mesopotamian valley there
was at the time a high order of civilization. There the Sumerians had built
homes and temples decorated with artistic pottery and mosaics in geometric
patterns. Powerful rulers united the local principates into an empire which
completed vast public works, such as a system of canals to irrigate the land
and to control flooding. The Biblical account of the Noachian flood had
an earlier counterpart in the legend concerning the Sumerian hero Utnap-
ischtum and the flooding of the region between the Tigris and Euphrates
rivers, where the overflow of the rivers was not predictable, as was the
inundation of the Nile Valley. The Bible tells us that Abraham came from
the city of Ur, a Sumerian settlement where the Euphrates emptied into
the Persian Gulf, for at that time the two rivers did not join, as they now
do, before reaching the Gulf. The cuneiform pattern of writing that the
Sumerians had developed during the fourth millennium, long before the

23
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days of Abraham, may have been the earliest form of written communi-
cation, for it probably antedates the Egyptian hieroglyphic, which may
have been a derivative. Although they have nothing in common, it is an
interesting coincidence that the origins of writing and of wheeled vehicles
are roughly coeval.

The Mesopotamian civilizations of antiquity often are referred to as
Babylonian, although such a designation is not strictly correct. The city of
Babylon was not at first, nor was it always at later periods, the center of
the culture associated with the two rivers, but convention has sanctioned
the informal use of the name ‘‘Babylonian” for the region during the
interval from about 2000 to roughly 600 B.C. When in 538 B.C. Babylon
fell to Cyrus of Persia, the city was spared, but the Babylonian empire had
come to an end. ‘‘Babylonian’ mathematics, however, continued through
the Seleucid period in Syria almost to the dawn of Christianity. Occasionally
the area between the rivers is known also as Chaldea, because the Chal-
deans (or Kaldis), originally from southern Mesopotamia, were for a time
dominant, chiefly during the late seventh century B.C., throughout the
region between the rivers. Then, as today, the Land of the Two Rivers
was open to invasions from many directions, making of the Fertile Crescent
a battlefield with frequently changing hegemony. One of the most signif-
icant of the invasions was that by the Semitic Akkadians under Sargon I
(ca. 2276-2221 B.C.), or Sargon the Great. He established an empire that
extended from the Persian Gulf in the south to the Black Sea in the north,
and from the steppes of Persia on the east to the Mediterranean Sea on
the west. Under Sargon there was begun a gradual absorption by the
invaders of the indigenous Sumerian culture, including the cuneiform
script. Later invasions and revolts brought varying racial strains—Am-
morites, Kassites, Elamites, Hittites, Assyrians, Medes, Persians, and oth-
ers—to political power at one time or another in the valley, but there
remained in the area a sufficiently high degree of cultural unity to justify
referring to the civilization simply as Mesopotamian. In particular, the use
of cuneiform script formed a strong bond. Laws, tax accounts, stories,
school lessons, personal letters—these and many other records were im-
pressed on soft clay tablets with a stylus, and the tablets then were baked
in the hot sun or in ovens. Such written documents, fortunately, were far
less vulnerable to the ravages of time than were Egyptian papyri; hence,
there is available today a much larger body of evidence about Mesopo-
tamian than about Nilotic mathematics. From one locality alone, the site
of ancient Nippur, we have some 50,000 tablets. The university libraries
at Columbia, Pennsylvania, and Yale, among others, have large collections
of ancient tablets from Mesopotamia, some of them mathematical. Despite
the availability of documents, however, it was the Egyptian hieroglyphic
rather than the Babylonian cuneiform that first was deciphered in modern
times. Some progress in the reading of Babylonian script had been made
early in the nineteenth century by Grotefend, but it was only during the
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second quarter of the twentieth century that substantial accounts of Me-
sopotamian mathematics began to appear in histories of antiquity.

The early use of writing in Mesopotamia is attested by hundreds of clay
tablets found in Uruk and dating from about 5000 years ago. By this time
picture writing had reached the point where conventionalized stylized forms
were used for many things: = for water, & for eye, and combinations of
these to indicate weeping. Gradually the number of signs became smaller,
so that of some 2000 Sumerian signs originally used only a third remained
by the time of the Akkadian conquest. Primitive drawings gave way to
combinations of wedges: water became {{ and eye :=v~. At first the scribe
wrote from top to bottom in columns from right to left; later, for conven-
ience, the table was rotated counterclockwise through 90°, and the scribe
wrote from left to right in horizontal rows from top to bottom. The stylus,
which formerly had been a triangular prism, was replaced by a right circular
cylinder—or, rather, two cylinders of unequal radius. During the earlier
days of the Sumerian civilization, the end of the stylus was pressed into
the clay vertically to represent ten units and obliquely to represent a unit,
using the smaller stylus; similarly, an oblique impression with the larger
stylus indicated sixty units and a vertical impression indicated 3600 units.
Combinations of these were used to represent intermediate numbers.

As the Akkadians adopted the Sumerian form of writing, lexicons were
compiled giving equivalents in the two tongues, and forms of words and
numerals became less varied. Thousands of tablets from about the time of
the Hammurabi dynasty (ca. 1800-1600 B.c.) illustrate a number system
that had become well established. The decimal system, common to most
civilizations, both ancient and modern, had been submerged in Mesopo-
tamia under a notation that made fundamental the base sixty. Much has
been written about the motives behind this change; it has been suggested
that astronomical considerations may have been instrumental or that the
sexagesimal scheme may have been the natural combination of two earlier
schemes, one decimal and the other using the base six. It appears more
likely, however, that the base sixty was consciously adopted and legalized
in the interests of metrology, for a magnitude of sixty units can be sub-
divided easily into halves, thirds, fourths, fifths, sixths, tenths, twelfths,
fifteenths, twentieths, and thirtieths, thus affording ten possible subdivi-
sions. Whatever the origin, the sexagesimal system of numeration has
enjoyed a remarkably long life, for remnants survive, unfortunately for
consistency, even to this day in units of time and angle measure, despite
the fundamentally decimal form of our society.

POSITIONAL NUMERATION

Babylonian cuneiform numeration, for smaller whole numbers, proceeded
along the same lines as did the Egyptian hieroglyphic, with repetitions of
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the symbols for units and tens. Wt}?re the Egyptian architect, carving on
stone, might write fifty-nine as 4 1 the Mesopotamian scribe could sim-
ilarly represent the same number on a clay tablet through fourteen wedge-
shaped marks—five broad sideways wedges or “‘angle-brackets,” each rep-
resenting ten units, and nine thin vertical wedges, each standing for a unit,
all juxtaposed in a neat group as (§jf§. Beyond the number fifty-nine,
however, the Egyptian and Babylonian systems differed markedly. Perhaps
it was the inflexibility of the Mesopotamian writing materials, possibly it
was a flash of imaginative insight that made the Babylonians aware that
their two symbols for units and tens sufficed for the representation of any
integer, however large, without excessive repetitiveness. This was made
possible through their invention, some 4000 years ago, of the positional
notation—the same principle that accounts for the effectiveness of our
present numeral forms. That is, the ancient Babylonians saw that their
symbols could do double, triple, quadruple, or any degree of duty simply
by being assigned values that depend on their relative positions in the
representation of a number. The wedges in the cuneiform symbol for fifty-
nine are tightly grouped together so as to form almost the equivalent of a
single cipher. Appropriate spacing between groups of wedges can establish
positions, read from right to left, that correspond to ascending powers of
the base; each group then has a “local value’ that depends on its position.
Our number 222 makes use of the same cipher three times, but with a
different meaning each time. Once it represents two units, the second time
it means two tens, and finally it stands for two hundreds (that is, twice the
square of the base ten). In a precisely analogous way the Babylonians made
multiple use of such a symbol as 1. When they wrote M 1111, clearly sep-
arating the three groups of two wedges each, they understood the right-
hand group to mean two units, the next group to mean twice their base,
sixty, and the left-hand group to signify twice the square of their base.
This numeral, therefore, denoted 2(60)> + 2(60) + 2 (or 7322 in our
notation).

There is a wealth of primary material concerning Mesopotamian math-
ematics, but oddly enough most of it comes from two periods widely sep-
arated in time. There is an abundance of tablets from the first few hundred
years of the second millennium B.C. (the Old Babylonian age), and there
are many also from the last few centuries of the first millennium B.C. (the
Seleucid period). Most of the important contributions to mathematics will
be found to go back to the earlier period, but there is one contribution
not in evidence until almost 300 B.C. The Babylonians seem at first to have
had no clear way in which to indicate an “empty” position—that is, they
did not have a zero symbol, although they sometimes left a space where
a zero was intended. This meant that their forms for the numbers 122 and
7202 looked very much alike, for yrrr might mean either 2(60) + 2 or
2(60)* + 2. Context in many cases could be relied on to relieve some of
the ambiguity; but the lack of a zero symbol, such as enables us to distin-
guish at a glance between 22 and 202, must have been quite inconvenient.
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By about the time of the conquest by Alexander the Great, however, a
special sign, consisting of two small wedges placed obliquely, was invented
to serve as a placeholder where a numeral was missing. From that time
on, as long as cuneiform was used, the number 7% 11, or 2(60)*> + 0(60)
+ 2, was readily distinguishable from 111, or 2(60) + 2.

The Babylonian zero symbol apparently did not end all ambiguity, for
the sign seems to have been used for intermediate empty positions only.
There are no extant tablets in which the zero sign appears in a terminal
position. This means that the Babylonians in antiquity never achieved an
absolute positional system. Position was relative only; hence, the symbol
11 could represent 2(60) + 2 or 2(60)* + 2(60) or 2(60)* + 2(60)? or any
one of indefinitely many other numbers in which two successive positions
are involved.

SEXAGESIMAL FRACTIONS

Had Mesopotamian mathematics, like that of the Nile Valley, been based
on the addition of integers and unit fractions, the invention of the positional
notation would not have been of great significance at the time. It is not
much more difficult to write 98,765 in hieroglyphic notation than in cu-
neiform, and the latter is definitely more difficult to write than the same
number in hieratic script. The secret of the clear superiority of Babylonian
mathematics over that of the Egyptians undoubtedly lies in the fact that
those who lived “‘between the two rivers” took the most felicitous step of
extending the principle of position to cover fractions as well as whole
numbers. That is, the notation 17 Y7 was used not only for 2(60) + 2, but
also for 2 + 2(60) ! or for 2(60) ! + 2(60)~?2 or for other fractional forms
involving two successive positions. This meant that the Babylonians had
at their command the computational power that the modern decimal frac-
tional notation affords us today. For the Babylonian scholar, as for the
modern engineer, the addition or the multiplication of 23.45 and 9.876 was
essentially no more difficult than was the addition or multiplication of the
whole numbers 2345 and 9876; and the Mesopotamians were quick to
exploit this important discovery. An Old Babylonian tablet from the Yale
Collection (No. 7289) includes the calculation of the square root of two to
three sexagesimal places, the answer being written 1« (&1 <. In modern
characters this number can be appropriately written as 1;24,51,10, where
a semicolon is used to separate the integral and fractional parts and a
comma is used as a separatrix for the sexagesimal positions. This form will
generally be used throughout this chapter to designate numbers in sexa-
gesimal notation. This Babylonian value for V2is equal to approximately
1.414222, differing by about 0.000008 from the true value. Accuracy in
approximations was relatively easy for the Babylonians to achieve with
their fractional notation, the best that any civilization afforded until the
time of the Renaissance.
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FUNDAMENTAL OPERATIONS

The effectiveness of Babylonian computation did not result from their
system of numeration alone. Mesopotamian mathematicians were skillful
in developing algorithmic procedures, among which was a square-root pro-
cess often ascribed to later men. It sometimes is attributed to the Greek
scholar Archytas (428-365 B.C.) or to Heron of Alexandria (ca. 100);
occasionally one finds it called Newton’s algorithm. This Babylonian pro-
cedure is as simple as it is effective. Let x = Va be the root desired and
let a, be a first approximation to this root; let a second approximation b,
be found from the equation b, = a/a,. If a, is too small, then b, is too
large, and vice versa. Hence, the arithmetic mean a, = ¥(a, + b)) is a
plausible next approximation. Inasmuch as a, always is too large, the next
approximation b, = a/a, will be too small, and one takes the arithmetic
mean a; = $(a, + b,) to obtain a still better result; the procedure can be
continued indefinitely. The value of V2 on Yale Tablet 7289 will be found
to be that of a;, where a; = 1;30. In the Babylonian square-root algorithm
one finds an iterative procedure that could have put the mathematicians
of the time in touch with infinite processes, but scholars of the time did
not pursue the implications of such problems.

The algorithm just described is equivalent to a two-term approximation
to the binomial series, a case with which the Babylonians were familiar.
If Va® + b is desired, the approximation a, = a leads to b, = (a’ + b)/
a and a, = (a; + b;)/2 = a + b/(2a), which is in agreement with the
first two terms in the expansion of (a> + b)"? and provides an approxi-
mation found in Old Babylonian texts. Despite the efficacy of their rule
for square roots, the Mesopotamian scribes seem to have imitated the
modern applied mathematician in having frequent recourse to the ubiq-
uitous tables that were available. In fact, a substantial proportion of the
cuneiform tablets that have been unearthed are ‘““table texts,” including
multiplication tables, tables of reciprocals, and tables of squares and cubes
and of square and cube roots written, of course, in cuneiform sexagesimals.
One of these, for example, carries the equivalents of the entries shown in
the table below. The product
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of elements in the same line is in all cases 60, the Babylonian number base,
and the table apparently was thought of as a table of reciprocals. The sixth
line, for example, denotes that the reciprocal of 8 is 7/60 + 30/(60)%. It
will be noted that the reciprocals of 7 and 11 are missing from the table,
because the reciprocals of such “irregular” numbers are nonterminating
sexagesimals, just as in our decimal system the reciprocals of 3, 6, 7, and
9 are infinite when expanded decimally. Again the Babylonians were faced
by the problem of infinity, but they did not consider it systematically. At
one point, however, a Mesopotamian scribe seems to give upper and lower
bounds for the reciprocal of the irregular number 7, placing it between
0;8,34,16,59 and 0;8,34,18. With their penchant for multipositional com-
putations, it is tantalizing not to find among them a recognition of the
simple three-place periodicity in the sexagesimal representation of 7, a
discovery that could have provoked considerations of infinite series.

It is clear that the fundamental arithmetic operations were handled by
the Babylonians in a manner not unlike that which would be employed
today, and with comparable facility. Division was not carried out by the
clumsy duplication method of the Egyptians, but through an easy multi-
plication of the dividend by the reciprocal of the divisor, using the appro-
priate items in the table texts. Just as today the quotient of 34 divided by
5 is easily found by multiplying 34 by 2 and shifting the decimal point, so
in antiquity the same division problem was carried out by finding the
product of 34 by 12 and shifting one sexagesimal place to obtain 63. Tables
of reciprocals in geneal furnished reciprocals of ‘‘regular’’ integers only—
that is, those that can be written as products of twos, threes, and fives—
although there are a few exceptions. One table text includes the approx-
imations g5 = ;1,1,1 and &t = ;0,59,0,59. Here we have sexagesimal an-
alogues of our decimal expressions § = .111 and + = .0909, unit fractions
in which the denominator is one more or one less than the base; but it
appears again that the Babylonians did not notice, or at least did not regard
as significant, the infinite periodic expansions in this connection.!

One finds among the Old Babylonian tablets some table texts containing
successive powers of a given number, analogous to our modern tables of
logarithms or, more properly speaking, of antilogarithms. Exponential (or
logarithmic) tables have been found in which the first ten powers are listed
for the bases 9 and 16 and 1,40 and 3,45 (all perfect squares). The question
raised in a problem text to what power a certain number must be raised
in order to yield a given number is equivalent to our question, what is the
logarithm of the given number in a system with the certain number as base?
The chief differences between the ancient tables and our own, apart from
matters of language and notation, are that no single number was system-
atically used as a base in varied connections and that the gaps between

'Aside from Neugebauer 1957 and van der Waerden 1963, see also Kurt Vogel, Vorgrie-
chische Mathematik, Vol. 11, Die Mathematik der Babylonier (Hannover: Schroedel, 1959).
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entries in the ancient tables are far larger than in our tables. Then, too,
their “‘logarithm tables’ were not used for general purposes of calculation,
but rather to solve certain very specific questions.

Despite the large gaps in their exponential tables, Babylonian mathe-
maticians did not hesitate to interpolate by proportional parts to approx-
imate intermediate values. Linear interpolation seems to have been a
commonplace procedure in ancient Mesopotamia, and the positional no-
tation lent itself conveniently to the rule of three. A clear instance of the
practical use of interpolation within exponential tables is seen in a problem
text that asks how long it will take money to double at 20 per cent annually;
the answer given is 3;47,13,20. It seems to be quite clear that the scribe
used linear interpolation between the values for (1;12)* and (1;12)*, fol-
lowing the compound interest formula a = P(1 + r)”, where r is 20 per
cent, or £, and reading values from an exponential table with powers of
=12,

ALGEBRAIC PROBLEMS

One table for which the Babylonians found considerable use is not generally
included in handbooks of today. This is a tabulation of the values of n* +
n? for integral values of n, a table essential in Babylonian algebra; this
subject reached a considerably higher level in Mesopotamia than in Egypt.
Many problem texts from the Old Babylonian period show that the solution
of the complete three-term quadratic equation afforded the Babylonians
no serious difficulty, for flexible algebraic operations had been developed.
They could transpose terms in an equation by adding equals to equals, and
they could multiply both sides by like quantities to remove fractions or to
eliminate factors. By adding 4ab to (a — b)* they could obtain (a + b)*,
for they were familiar with many simple forms of factoring. They did not
use letters for unknown quantities, for the alphabet had not yet been
invented, but words such as “length,” “breadth,” “‘area,” and *‘volume”
served effectively in this capacity. That these words may well have been
used in a very abstract sense is suggested by the fact that the Babylonians
had no qualms about adding a “length” to an *‘area” or an ‘“‘area” to a
“volume.” Such problems, if taken literally, could have had no practical
basis in mensuration.

Egyptian algebra had been much concerned with linear equations, but
the Babylonians evidently found these too elementary for much attention.
In one problem the weight x of a stone is called for if (x + x/7) +
(x + x/7) is one mina; the answer is simply given as 48;7,30 gin, where
60 gin make a mina. In another problem in an Old Babylonian text we
find two simultaneous linear equations in two unknown quantities, called
respectively the “first silver ring”” and the “second silver ring.” If we call
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these x and y in our notation, the equations are x/7 + y/11 = 1 and 6x/
7 = 10y/11. The answer is expressed laconically in terms of the rule
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In another pair of equations part of the method of solution is included in
the text. Here { width + length = 7 hands, and length + width = 10
hands. The solution is first found by replacing each ““hand” by 5 “fingers”
and then noticing that a width of 20 fingers and a length of 30 fingers will
satisfy both equations. Following this, however, the solution is found by
an alternative method equivalent to an elimination through combination.
Expressing all dimensions in terms of hands, and letting the length and
width be x and y respectively, the equations become y + 4x = 28 and
x + y = 10. Subtracting the second equation from the first, one has the
result 3x = 18; hence, x = 6 hands, or 30 fingers, and y = 20 fingers.

QUADRATIC EQUATIONS

The solution of a three-term quadratic equation seems to have exceeded
by far the algebraic capabilities of the Egyptians, but Neugebauer in 1930
disclosed that such equations had been handled effectively by the Baby-
lonians in some of the oldest problem texts. For instance, one problem
calls for the side of a square if the area less the side is 14,30. The solution
of this problem, equivalent to solving x> — x = 870, is expressed as follows:

Take half of 1, which is 0;30, and multiply 0;30 by 0;30, which is 0:15; add
this to 14,30 to get 14,30;15. This is the square of 29;30. Now add 0;30 to
29;30, and the result is 30, the side of the square.

The Babylonian solution is, of course, exactly equivalent to the formula
x = V(p/2)? + q + p/2 for a root of the equation x> — px = g, which
is the quadratic formula that is familiar to high school students of today.
In another text the equation 1x* + 7x = 6;15 was reduced by the Baby-
lonians to the standard type x> + px = g by first multiplying through by
11 to obtain (11x)* + 7(11x) = 1,8;45. This is a quadratic in normal form
in the unknown quantity y = 11x, and the solution for y is easily obtained
by the familiar rule y = V(p/2)*> + q — p/2, from which the value of x
is then determined. This solution is remarkable as an instance of the use
of algebraic transformations.

Until modern times there was no thought of solving a quadratic equation
of the form x> + px + g = 0, where p and q are positive, for the equation
has no positive root. Consequently, quadratic equations in ancient and
Medieval times—and even in the early modern period—were classified
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under three types:
M) x*+px =g
Q) x*=px +q
(3) x2 + q = px.

All three types are found in Old Babylonian texts of some 4000 years ago.
The first two types are illustrated by the problems given above; the third
type appears frequently in problem texts, where it is treated as equivalent
to the simultaneous system x + y = p, xy = g. So numerous are problems
in which one is asked to find two numbers when given their product and
either their sum or their difference that these seem to have constituted for
the ancients, both Babylonian and Greek, a sort of “normal form” to
which quadratics were reduced. Then, by transforming the simultaneous
equations xy = a and x = y = b into the pair of linear equations x *
y = band x ¥ y = Vb* ¥ 4a, the values of x and y are found through
an addition and a subtraction. A Yale cuneiform tablet, for example, asks
for the solution of the systemx + y = 6;30 and xy = 7;30. The instructions
of the scribe are essentially as follows. First find
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From the last two equations it is obvious that x = 5 and y = 1}. Because
the quantities x and y enter symmetrically in the given conditional equa-
tions, it is possible to interpret the values of x and y as the two roots of
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the quadratic equation x*> + 7;30 = 6;30x. Another Babylonian text calls
for a number which when added to its reciprocal becomes 2;0,0,33,20. This
leads to a quadratic of type 3, and again we have two solutions, 1;0,45 and
0;59,15,33,20.

CUBIC EQUATIONS

The Babylonian reduction of a quadratic equation of the form ax? +
bx = c to the normal form y? + by = ac through the substitution y =
ax shows the extraordinary degree of flexibility in Mesopotamian algebra.
This facility, coupled with the place value idea in computation, accounts
in large measure for the superiority of the Babylonians in mathematics.
There is no record in Egypt of the solution of a cubic equation, but among
the Babylonians there are many instances of this. Pure cubics, such as
x* = 0;7,30, were solved by direct reference to tables of cubes and cube
roots, where the solution x = 0;30 was read off. Linear interpolation within
the tables was used to find approximations for values not listed in the
tables. Mixed cubics in the standard form x* + x2 = a were solved similarly
by reference to the available tables which listed values of the combination
n® + n?for integral values of n from 1 to 30. With the help of these tables
they read off easily that the solution, for example, of x> + x2 = 4,12 is
equal to 6. For still more general cases of equations of third degree, such
as 144x* + 12x? = 21, the. Babylonians used their method of substitution.
Multiplying both sides by 12 and using y = 12x, the equation becomes
y3 + y* = 4,12, from which y is found to be equal to 6, hence x is just
1 or 0;30. Cubics of the form ax® + bx? = c are reducible to the Babylo-
nian normal form by multiplying through by a?/b* to obtain (ax/b)® +
(ax/b)? = ca?/b3, a cubic of standard type in the unknown quantity ax/b.
Reading off from the tables the value of this unknown quantity, the value
of x is determined. Whether or not the Babylonians were able to reduce
the general four-term cubic, ax® + bx? + cx = d, to their normal form is
not known. That it is not too unlikely that they could reduce it is indicated
by the fact that a solution of a quadratic suffices to carry the four-term
equation to the three-term form px* + gx* = r, from which, as we have
seen, the normal form is readily obtained. There is, however, no evidence
now available that would suggest that the Mesopotamian mathematicians
actually carried out such a reduction of the general cubic equation.

The solution of quadratic and cubic equations in Mesopotamia is a
remarkable achievement to be admired not so much for the high level of
technical skill as for the maturity and flexibility of the algebraic concepts
that are involved. With modern symbolism it is a simple matter to see that
(ax)’ + (ax)? = b is essentially the same type of equation as y* + y*> =
b; but to recognize this without our notation is an achievement of far
greater significance for the development of mathematics than even the
vaunted positional principle in arithmetic that we owe to the same civili-
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zation. Babylonian algebra had reached such an extraordinary level of
abstraction that the equations ax* + bx’ = ¢ and ax® + bx* = ¢ were
recognized as nothing worse than quadratic equations in disguise—that is,
quadratics in x? and x*.

PYTHAGOREAN TRIADS

The algebraic achievements of the Babylonians are admirable, but the
motives behind this work are not easy to understand. It commonly has
been supposed that virtually all pre-Hellenic science and mathematics were
purely utilitarian; but what sort of real-life situation in ancient Babylon
could possibly lead to problems involving the sum of a number and its
reciprocal or a difference between an area and a length? If utility was the
motive, then the cult of immediacy was less strong than it is now, for direct
connections between purpose and practice in Babylonian mathematics are
far from apparent. That there may well have been toleration for, if not
encouragement of, mathematics for its own sake is suggested by a tablet
(No. 322) in the Plimpton Collection at Columbia University. The tablet
dates from the Old Babylonian period (ca. 1900-1600 B.C.), and the tab-
ulations it contains could easily be mistaken for a record of business ac-
counts. Analysis, however, shows that it has deep mathematical significance
in the theory of numbers and that it was perhaps related to a kind of
prototrigonometry. Plimpton 322 was part of a larger tablet, as is illustrated
by the break along the left-hand edge, and the remaining portion contains
four columns of numbers arranged in fifteen horizontal rows. The right-
hand column contains the digits from one to fifteen, and its purpose evi-
dently was simply to identify in order the items in the other three columns,
arranged as follows:

K500 1659 2,49 1
1,56,56,58,14,50,6,15 56,7 1,20,25 2
1,55,7,41,15,33,45 1,16,41 1,50,49 3
1,53,10,29,32,52,16 3,31,49 SA951 4
1,48,54,1,40 185 1,37 5
1,47,6,41,40 Sl 8,1 6
1,43,11,56,28,26,40 38,11 3951 7/
1,41,33,59,3,45 18519 20,49 8
1,38,33,36,36 8,1 12,49 9
1,35,10,2,28,27,24,26,40 1,22,41 2,16,1 10
1,33,45 45,0 1,150 11
1,29,21,54,2,15 27850 48,49 12
1,27,0,3,45 2,41 4,49 13
1,25,48,51,35,6,40 2931 53,49 14
1,23,13,46,40 56 1,46 15
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The tablet is not in such excellent condition that all the numbers can still
be read, but the clearly discernible pattern of construction in the table
made it possible to determine from context the few items that were missing
because of small fractures. To understand what the entries in the table
probably meant to the Babylonians, consider the right triangle ABC (Fig.
3.1). If the numbers in the second and third columns (from left to right)
are thought of as the sides a and c respectively of the right triangle, then
the first, or left-hand, column contains in each case the square of the ratio
of ¢ to b. The left-hand column, therefore, is a short table of values of
sec’ A, but we must not assume that the Babylonians were familiar with
our secant concept. Neither the Egyptians nor the Babylonians introduced
a measure of angles in the modern sense. Nevertheless, the rows of numbers
in Plimpton 322 are not arranged in haphazard fashion, as a superficial
glance might imply. If the first comma in column one (on the left) is replaced
by a semicolon, it is obvious that the numbers in this column decrease
steadily from top to bottom. Moreover, the first number is quite close to
sec? 45°, and the last number in the column is approximately sec? 31°, with
the intervening numbers close to the values of sec’ A as A decreases by
degrees from 45° to 31°. This arrangement obviously is not the result of
chance alone. Not only was the arrangement carefully thought out, but the
dimensions of the triangle were also derived according to a rule. Those
who constructed the table evidently began with two regular sexagesimal
integers, which we shall call p and g, with p > g, and then formed the
triple of numbers p? — ¢* and 2pq and p? + g2. The three integers thus
obtained are easily seen to form a Pythagorean triple in which the square
of the largest is equal to the sum of the squares of the other two. Hence,

FIG. 3.1
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these numbers can be used as the dimensions of the right triangle ABC,
witha = p? — g?and b = 2pq and ¢ = p? + q’. Restricting themselves
to values of p less than 60 and to corresponding values of g such that 1 <
plg<1+ V2, that is, to right triangles for which a < b, the Babylonians
presumably found that there were just 38 possible pairs of values of p and
q satisfying the conditions, and for these they apparently formed the 38
corresponding Pythagorean triples. Only the first 15, arranged in descend-
ing order for the ratio (p? + g?)/2pq, are included in the table on the
tablet, but it is likely that the scribe had intended to continue the table on
the tablet, but it is likely that the scribe had intended to continue the table
on the other side of the tablet. It has been suggested also that the portion
of Plimpton 322 that has been broken off from the left side contained four
additional columns in which were tabulated the values of p and g and 2pq
and what we should now call tan® A.

The Plimpton Tablet 322 might give the impression that it is an exercise
in the theory of numbers, but it is likely that this aspect of the subject was
merely ancillary to the problem of measuring the areas of squares on the
sides of a right triangle. The Babylonians disliked working with the recip-
rocals of irregular numbers, for these could not be expressed exactly in
finite sexagesimal fractions. Hence, they were interested in values of p and
g that should give them regular integers for the sides of right triangles of
varying shape, from the isoceles right triangle down to one with a small

1}‘5’?’5*@’;' ‘
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Plimpton 322.
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value for the ratio a/b. For example, the numbers in the first row are found
by starting with p = 12 and ¢ = 5, with the corresponding values a =
119 and b = 120 and ¢ = 169. The values of a and c are precisely those
in the second and third positions from the left in the first row on the
Plimpton tablet; the ratio ¢?/b*> = 28561/14400 is the number 1;59,0,15
that appears in the first position in this row.? The same relationship is found
in the other fourteen rows; the Babylonians carried out the work so ac-
curately that the ratio c¢?/b? in the tenth row is expressed as a fraction with
eight sexagesimal places, equivalent to about fourteen decimal places in
our notation.

So much of Babylonian mathematics is bound up with tables of recip-
rocals that is it not surprising to find that the items in Plimpton 322 are
related to reciprocal relationships. If a = 1, then 1 = (¢ + b)(c — b),
so that ¢ + b and ¢ — b are reciprocals. If one starts with ¢ + b = n,
where n is any regular sexagesimal, then ¢ — b = 1/n; hence, a = 1 and
b = 4n — 1/n) and ¢ = ¥(n + 1/n) are a Pythagorean fraction triple
which can easily be converted to a Pythagorean integer triple by multiplying
each of the three by 2n. All triples in the Plimpton tablet are easily cal-
culated by this device.

The account of Babylonian algebra that we have given is representative
of their work, but it is not intended to be exhaustive. There are in the
Babylonian tablets many other things, although none so striking as those
in the Plimpton Tablet 322. For instance, in one tablet the geometric
progression 1 + 2 + 22 + --- + 2° is summed, and in another the sum of
the series of squares 12 + 22 + 3? + --- + 10? is found. One wonders if
the Babylonians knew the general formulas for the sum of a geometric
progression and the sum of the first n perfect squares. It is quite possible
that they did, and it has been conjectured that they weze aware that the
sum of the first n perfect cubes is equal to the square of the sum of the
first n integers. Nevertheless, it must be borne in mind that tablets from
Mesopotamia resemble Egyptian papyri in that only specific cases are given,
with no general formulations.

POLYGONAL AREAS

A few years ago it used to be held that the Babylonians were better in
algebra than were the Egyptians, but that they had contributed less to

2Vogel, in Vorgriechische Mathematik, 11, 37-41, interprets this number, and also the
others in this column, as @2/b? rather than as c2/b*—that is, as tan? A rather than sec® A. The
difference between these functions is always one, and the unit wedges in the left-hand column
in Plimpton 322 have in most cases been broken away; but careful inspection of this edge
seems to substantiate the interpretation of the column as squares of secants rather than of
tangents.
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geometry. The first half of this statement is clearly substantiated by what
we have learned above; attempts to bolster the second half of the com-
parison generally are limited to the measure of the circle or to the volume
of the frustum of a pyramid. In the Mesopotamian valley the area of a
circle was generally found by taking three times the square of the radius,
and in accuracy this falls considerably below the Egyptian measure. How-
ever, the counting of decimal places in the approximations for r is scarcely
an appropriate measure of the geometric stature of a civilization, and a
recent discovery has effectively nullified even this weak argument. In 1936
a group of mathematical tablets were unearthed at Susa, a couple of hundred
miles from Babylon, and these include significant geometric results. True
to the Mesopotamian penchant for making tables and lists, one tablet in
the Susa group compares the areas and the squares of the sides of the
regular polygons of three, four, five, six, and seven sides. The ratio of the
area of the pentagon, for example, to the square on the side of the pentagon
is given as 1;40, a value that is correct to two significant figures. For the
hexagon and heptagon the ratios are expressed as 2;37,30 and 3;41 re-
spectively. In the same tablet the scribe gives 0;57,36 as the ratio of the
perimeter of the regular hexagon to the circumference of the circumscribed
circle; and from this we can readily conclude that the Babylonian scribe
had adopted 3;7,30, or 34, as an approximation for . This is at least as
good as the value adopted in Egypt. Moreover, we see it in a more so-
phisticated context than in Egypt, for the tablet from Susa is a good example
of the systematic comparison of geometric figures. One is almost tempted
to see in it the genuine origin of geometry, but it is important to note that
it was not so much the geometric context that interested the Babylonians
as the numerical approximations that they used in mensuration. Geometry
for them was not a mathematical discipline in our sense, but a sort of
applied algebra or arithmetic in which numbers are attached to figures.

There is some disagreement as to whether or not the Babylonians were
familiar with the concept of similar figures, although this appears to be
quite likely. The similarity of all circles seems to have been taken for
granted in Mesopotamia, as it had been in Egypt, and the many problems
on triangle measure in cuneiform tablets seem to imply a concept of sim-
ilarity. A tablet in the Baghdad Museum has a right triangle ABC (Fig.
3.2) with sides a = 60 and b = 45 and ¢ = 75, and it is subdivided into
four smaller right triangles ACD, CDE, DEF, and EFB. The areas of these
four triangles are then given as 8,6 and 5,11;2,24 and 3,19;3,56,9,36 and
5,53;53,39,50,24 respectively. From these values the scribe computed the
length of AD as 27, apparently using a sort of “similarity formula™ equiv-
alent to our theorem that areas of similar figures are to each other as
squares on corresponding sides. The lengths of CD and BD are found to
be 36 and 48 respectively, and through an application of the ‘‘similarity
formula™ to triangles BCD and DCE the length of CE is found to be 21;36.
The text breaks off in the middle of the calculation of DE.
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GEOMETRY AS APPLIED ARITHMETIC

Measurement was the keynote of algebraic geometry in the Mesopotamian
valley, but a major flaw, as in Egyptian geometry, was that the distinction
between exact and approximate measures was not made clear. The area
of a quadrilateral was found by taking the product of the arithmetic means
of the pairs of opposite sides, with no warning that this is in most cases
only a crude approximation. Again, the volume of a frustum of a cone or
pyramid sometimes was found by taking the arithmetic mean of the upper
and lower bases and multiplying by the height; sometimes, for a frustum
of a square pyramid with areas a* and b? for the lower and upper bases,

the formula
a+ b\’
v_( : >h

was applied. However, for the latter the Babylonians used also a rule

equivalent to
a+ b\  1fa = b\
alie s Re eyl

a formula that is correct and reduces to the one known to the Egyptians.

It is not known whether Egyptian and Babylonian results were always
independently discovered, but in any case the latter were definitely more
extensive than the former, both in geometry and algebra. The Pythagorean
theorem, for example, does not appear in any form in surviving documents
from Egypt, but tablets even from the Old Babylonian period show that
in Mesopotamia the theorem was widely used. A cuneiform text from the
Yale Collection, for example, contains a diagram of a square and its di-
agonals in which the number 30 is written along one side and the numbers
42;25,35 and 1;24,51,10 appear along a diagonal. The last number obviously
is the ratio of the lengths of the diagonal and a side, and this is so accurately
expressed that it agrees with /2 to within about a millionth. The accuracy
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of the result was made possible by knowledge of the Pythagorean theorem.
Sometimes, in less precise computations, the Babylonians used 1;25 as a
rough-and-ready approximation to this ratio. Of more significance than the
precision of the values, however, is the implication that the diagonal of
any square could be found by multiplying the side by V2. Thus there seems
to have been some awareness of general principles, despite the fact that
these are exclusively expressed in special cases.

Babylonian recognition of the Pythagorean theorem was by no means
limited to the case of a right isoceles triangle. In one Old Babylonian
problem text a ladder or beam of length 0;30 stands against a wall; the
question is, how far will the lower end move out from the wall if the upper
end slips down a distance of 0;6 units? The answer is corectly found by
use of the Pythagorean theorem. Fifteen hundred years later similar prob-
lems, some with new twists, were still being solved in the Mesopotamian
valley. A Seleucid tablet, for example, proposes the following problem.
A reed stands against a wall. If the top slides down three units when the
lower end slides away nine units, how long is the reed? The answer is given
correctly as fifteen units.

Ancient cuneiform problem texts provide a wealth of exercises in what
we might call geometry, but which the Babylonians probably thought of
as applied arithmetic. A typical inheritance problem calls for the partition
of a right-triangular property among six brothers. The area is given as
11,22,30 and one of the sides is 6,30; the dividing lines are to be equidistant
and parallel to the other side of the triangle. One is asked to find the
difference in the allotments. Another text gives the bases of an isoceles
trapezoid as 50 and 40 units and the length of the sides as 30; the altitude
and area are required [van der Waerden 1963, pp. 76-77].

The ancient Babylonians were aware of other important geometric re-
lationships. Like the Egyptians, they knew that the altitude in an isosceles
triangle bisects the base. Hence, given the length of a chord in a circle of
known radius, they were able to find the apothem. Unlike the Egyptians,
they were familiar with the fact than an angle inscribed in a semicircle is
a right angle, a proposition generally known as the Theorem of Thales,
despite the fact that Thales lived well over a millennium after the Baby-
lonians had begun to use it. This misnaming of a well-known theorem in
geometry is symptomatic of the difficulty in assessing the influence of pre-
Hellenic mathematics on later cultures. Cuneiform tablets had a perma-
nence that could not be matched by documents from other civilizations,
for papyrus and parchment do not so easily survive the ravages of time.
Moreover, cuneiform texts continued to be recorded down to the dawn of
the Christian era; but were they read by neighboring civilizations, especially
the Greeks? The center of mathematical development was shifting from
the Mesopotamian valley to the Greek world half a dozen centuries be-
fore the beginning of our era, but reconstructions of early Greek mathe-
matics are rendered hazardous by the fact that there are virtually no extant
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mathematical documents from the pre-Hellenistic period. It is important,
therefore, to keep in mind the general characteristics of Egyptian and
Babylonian mathematics so as to be able to make at least plausible con-
jectures concerning analogies that may be apparent between pre-Hellenic
contributions and the activities and attitudes of later peoples.

MATHEMATICAL WEAKNESSES

A number of deficiencies in pre-Hellenic mathematics are quite obvious.
Extant papyri and tablets contain specific cases and problems only, with
no general formulations, and one may question whether these early civi-
lizations really appreciated the unifying principles that are at the core of
mathematics. Further study is somewhat reassuring, for the hundreds of
problems of similar types in cuneiform tablets seem to be exercises that
schoolboys were expected to work out in accordance with certain recog-
nized methods or rules. That there are no surviving statements of these
rules does not necessarily mean that the generality of the rules or principles
was missing in ancient thought. Were a rule not there in essence, the
similarity of the problems would be difficult to explain. Such large collec-
tions of similar problems could not have been the result of chance.

More serious, perhaps, than the lack of explicit statements of rules is
the absence of clear-cut distinctions between exact and approximate results.
The omission in the tables of cases involving irregular sexagesimals seems
to imply some recognition of such distinctions, but neither the Egyptians
nor the Babylonians seem to have raised the question of when the area of
a quadrilateral (or of a circle) is found exactly and when only approxi-
mately. Questions about the solvability or unsolvability of a problem do
not seem to have been raised, nor was there any investigation into the
nature of proof. The word “proof”” means various things at different levels
and ages; hence, it is hazardous to assert categorically that pre-Hellenic
peoples had no concept of proof, nor any feeling of the need for proof.
There are hints that these people occasionally were aware that certain area
and volume methods could be justified through a reduction to simpler area
and volume problems. Moreover, pre-Hellenic scribes not infrequently
checked or “proved” their divisions by multiplication; occasionally they
verified the procedure in a problem through a substitution that verified the
correctness of the answer. Nevertheless, there are no explicit statements
from the pre-Hellenic period that would indicate a felt need for proofs or
a concern for questions of logical principles. The lack of such statements
often has led to judgments that pre-Hellenic civilizations had no true math-
ematics, despite the obviously high level of technical facility.

Critics also point to what they regard as an absence of abstraction in
Egyptian and Babylonian mathematics. The language of the documents
does seem always to remain close to concrete cases, as we have seen; but
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this, too, can be misleading. In Mesopotamian problems the words
“length™ and “‘width™ should perhaps be interpreted much as we interpret
the letters x and y, for the writers of cuneiform tablets may well have
moved on from specific instances to general abstractions. How else does
one explain the addition of a length to an area? In Egypt also the use of
the word for quantity is not incompatible with an abstract interpretation
such as we read into it today.

Evaluations of pre-Hellenic civilizations frequently point to the fact that
there was no clearly discernible intellectual activity of a characteristically
unified sort comparable to that which later carried the label ““mathematics’;
but here, too, it is easy to be excessively dogmatic. It may be true that
geometry had not yet been crystallized out of a crude matrix of space
experience that included all sorts of things that could be measured; but it
is difficult not to see in Babylonian and Egyptian concern with number and
its applications something very close to what usually, in ages since, has
been known as algebra.

Pre-Hellenic cultures have been stigmatized also as entirely utilitarian,
with little or no interest in mathematics for its own sake. Here, too, a
matter of judgment rather than of incontrovertible evidence, is involved.
Then, as now, the vast majority of mankind were preoccupied with im-
mediate problems of survival. Leisure was far scarcer than it is now, but
even under this handicap there were in Egypt and Babylonia problems that
have the earmarks of recreational mathematics. If a problem calls for a
sum of cats and measures of grain, or of a length and an area, one cannot
deny to the perpetrator either a modicum of levity or a feeling for abstrac-
tion. Of course, much of pre-Hellenic mathematics was practical, but surely
not all of it. In the practice of computation, which stretched over a couple
of millennia, the schools of scribes used plenty of exercise material, often,
perhaps, just as good clean fun.



lonia and the
Pythagoreans

To Thales . . . the primary question was not What do we know, but How do we
know it.

Aristotle

GREEK ORIGINS

The intellectual activity of the river valley civilizations in Egypt and Mes-
opotamia had lost its verve well before the Christian era; but as learning
in the river valleys was declining, and as bronze was giving way to iron in
weaponry, vigorous new cultures were springing up all along the shores of
the Mediterranean Sea. To indicate this change in the centers of civilization,
the interval from roughly 800 B.C. to A.D. 800 sometimes is known as the
Thalassic Age (that is, the “sea” age). There was, of course, no sharp
disruption to mark the transition in intellectual leadership from the valleys
of the Nile, Tigris, and Euphrates rivers to the shores of the Mediterranean,
for time and history flow continuously, and changing conditions are as-
sociated with antecedent causes. Egyptian and Babylonian scholars con-
tinued to produce papyrus and cuneiform texts for many centuries after
800 B.C.; but a new civilization meanwhile was rapidly preparing to take
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over scholarly hegeinony, not only around the Mediterranean but, ulti-
mately, in the chief river valleys as well. To indicate the source of the new
inspiration, the first portion of the Thalassic Age is labeled the Hellenic
era, so that the older cultures are consequently known as pre-Hellenic.

The Greeks of today still call themselves Hellenes, continuing a name
used by their early forebears who settled along the coasts of the Mediter-
ranean Sea. Greek history is traceable back into the second millennium
B.C. when, as unlettered invaders, they pressed down relentlessly from the
north. They brought with them no mathematical or literary tradition; they
seem to have been very eager to learn, however, and it did not take them
long to improve on what they were taught. For example, they took over,
perhaps from the Phoenicians, an existing alphabet, consisting only of
consonants, and to it they added vowels. The alphabet seems to have
originated between the Babylonian and Egyptian worlds, possibly in the
region of the Sinai Peninsula, through a process of drastic reduction in the
number of cuneiform or hieratic symbols. This alphabet found its way to
the new colonies—Greek, Roman, and Carthaginian—through the activ-
ities of traders. It is presumed that some rudiments of computation traveled
along the same routes, but the more esoteric portions of priestly mathe-
matics may have remained undiffused. Before long, however, Greek trad-
ers, businessmen, and scholars made their way to the centers of learning
in Egypt and Babylonia. There they made contact with pre-Hellenic math-
ematics; but they were not willing merely to receive the long-established
traditions, for they made the subject so thoroughly their own that it shortly
took a drastically different form.

The first Olympic Games were held in 776 B.C., and by that time a
wonderful Greek literature already had developed, evidenced by the works
of Homer and Hesiod. Of Greek mathematics at the time we know nothing.
Presumably it lagged behind the development of literary forms, for the
latter lend themselves more readily to continuity of oral transmission. It
was to be almost another two centuries before there was any word, even
indirectly, concerning Greek mathematics. Then, during the sixth century
B.C., there appeared two men, Thales and Pythagoras, who seem to have
played in mathematics a role similar to that of Homer and Hesiod in
literature. Most of what is reported in this chapter centers on Thales and
Pythagoras, but a note of warning is in order. Homer and Hesiod are
somewhat shadowy figures, but at least we have a consistent tradition
attributing to them certain literary masterpieces which, first transmitted
orally from generation to generation, ultimately were copied down and
preserved for posterity. Thales and Pythagoras also are somewhat indis-
tinct figures, historically, although less so than Homer and Hesiod; but as
far as their scholarly work is concerned, the parallel with Homer and Hesiod
ceases. No mathematical masterpiece from either one has survived, nor is
it even established that either Thales or Pythagoras ever composed such
a work. What they may have done must be reconstructed on the basis of
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a none too trustworthy tradition that grew up around these two early
mathematicians. Certain key phrases are attributed to them—such as
“Know thyself,” in the case of Thales, and ‘“All is number,” in the case
of Pythagoras—but not much more of a specific nature. Nevertheless, the
earliest Greek accounts of the history of mathematics, which no longer
survive, ascribed to Thales and Pythagoras a number of very definite dis-
coveries in mathematics. We outline these contributions in this chapter,
but the reader should understand that it is largely persistent tradition,
rather than any extant historical document, on which the account is based.
The Greek world for many centuries had its center between the Aegean
and Ionian Seas, but Hellenic civilization was far from localized there.
Greek settlements by about 600 B.C. were to be found scattered along the
borders of most of the Black Sea and the Mediterranean Sea, and it was
on these outskirts that a new surge in mathematics developed. In this
respect the sea-bordering colonists, especially in Ionia, had two advantages:
they had the bold and imaginative spirit typical of pioneers, and they were
in closer proximity to the two chief river valleys from which knowledge
could be derived. Thales of Miletus (ca. 624—548 B.C.) and Pythagoras of
Samos (ca. 580-500 B.C.) had in addition a further advantage: they were
in a position to travel to centers of ancient learning and there acquire
firsthand information on astronomy and mathematics. In Egypt they are
said to have learned geometry; in Babylon, under the enlightened Chaldean
ruler Nebuchadnezzar, Thales probably came in touch with astronomical
tables and instruments. Tradition has it that in 585 B.C. Thales amazed his
countrymen by predicting the solar eclipse of that year. The historicity of
this tradition is very much open to question, especially because an eclipse
of the sun is visible over only a very small portion of the earth’s surface,
and it does not seem likely that there were in Babylon tables of solar
eclipses that would have enabled Thales to make such a prediction. It is
quite likely, on the other hand, that the gnomon or sundial entered Greece
from Babylon, and perhaps the water clock came from Egypt. The Greeks
were far from hesitant in taking over elements of foreign cultures, else
they would never have learned so quickly how to advance beyond their
predecessors; but everything they touched, they quickened.

THALES OF MILETUS

What is really known about the life and work of Thales is very little indeed.
His birth and death are estimated from the fact that the eclipse of 585 B.C.
probably occurred when he was in his prime, say about forty, and that he
was said to have been seventy-eight when he died. However, serious doubts
about the authenticity of the eclipse story make such extrapolations haz-
ardous, and they shake our confidence concerning the discoveries fathered
upon Thales. Ancient opinion is unanimous in regarding Thales as an
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unusually clever man and the first philosopher—by general agreement the
first of the Seven Wise Men. He was regarded as “a pupil of the Egyptians
and the Chaldeans,” an assumption that appears plausible. The proposition
now known as the Theorem of Thales—that an angle inscribed in a semi-
circle i1s a right angle—may well have been learned by Thales during his
travels to Babylon. However, tradition goes further and attributes to him
some sort of demonstration of the theorem. For this reason Thales fre-
quently has been hailed as the first true mathematician—as the originator
of the deductive organization of geometry. This report, or legend, was
embellished by adding to this theorem four others that Thales is said to
have proved:

A circle is bisected by a diameter.
The base angles of an isosceles triangle are equal.
The pairs of vertical angles formed by two intersecting lines are equal.

If two triangles are such that two angles and a side of one are equal
respectively to two angles and a side of the other, then the triangles
are congruent.

Sl B =i

There is no document from antiquity that can be pointed to as evidence
of this achievement, and yet the tradition has been persistent. About the
nearest one can come to reliable evidence on this point is derived from a
source a thousand years after the time of Thales. A student of Aristotle
by the name of Eudemus of Rhodes (fl. ca. 320 B.C.) wrote a history of
mathematics. This has been lost, but before it disappeared, someone had
summarized at least part of the history. The original of this summary also
has been lost, but during the fifth century of our era information from the
summary was incorporated by the Neoplatonic philosopher Proclus (410-
485) in the early pages of his Commentary on the First Book of Euclid’s
Elements. Following introductory remarks on the origin of geometry in
Egypt, the Commentary of Proclus reports that Thales

.. . first went to Egypt and thence introduced this study into Greece. He
discovered many propositions himself, and instructed his successors in the
principles underlying many others, his method of attack being in some cases
more general, in others more empirical [Heath 1981, Vol. I, p. 128].

It is largely upon this quotation at third hand that designations of Thales
as the first mathematician hinge. Proclus later in his Commentary, again
depending on Eudemus, attributes to Thales the four theorems mentioned
above. There are other scattered references to Thales in ancient sources,
but most of these describe his more practical activities. Diogenes Laertius,
followed by Pliny and Plutarch, reported that he measured the heights of
the pyramids in Egypt by observing the lengths of their shadows at the
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moment when the shadow of a vertical stick is equal to its height. Hero-
dotus, the historian, recounts the story of Thales’ prediction of a solar
eclipse; the philosopher Aristotle reports that Thales made a fortune by
“‘cornering’ the olive presses during a year in which the olive crop promised
to be abundant. Still other legends picture Thales as a salt merchant, as a
stargazer, as a defender of celibacy, or as a farsighted statesman. Such
reports, however, provide no further evidence concerning the important
question of whether or not Thales actually arranged a number of geomet-
ric theorems in a deductive sequence. The tale that he calculated the
distance of a ship at sea through the proportionality of sides of similar
triangles is inconclusive, for the principles behind such a calculation had
long been known in Egypt and Mesopotamia. Such stories do not establish
the bold conjecture that Thales created demonstrative geometry; but in
any case Thales is the first man in history to whom specific mathematical
discoveries have been attributed.! We know now that a large body of
mathematical material was familiar to the Babylonians a millennium before
the time of Thales, and yet among the Greeks it was understood that Thales
had made definite advances. It would appear reasonable to suppose, in the
light of Proclus’ statements, that Thales contributed something in the way
of rational organization. That it was the Greeks who added the element
of logical structure to geometry is virtually universally admitted today, but
the big question remains whether this crucial step was taken by Thales or
by others later—perhaps as much as two centuries later. On this point we
must suspend final judgment until there is additional evidence on the de-
velopment of Greek mathematics.

PYTHAGORAS OF SAMOS

Pythagoras is scarcely less controversial a figure than Thales, for he has
been more thoroughly enmeshed in legend and apotheosis. Thales had
been a man of practical affairs, but Pythagoras was a prophet and a mystic,
born at Samos, one of the Dodecanese islands not far from Miletus, the
birthplace of Thales. Although some accounts picture Pythagoras as having
studied under Thales, this is rendered unlikely by the half-century differ-
ence in their ages. Some similarity in their interests can readily be accounted
for by the fact that Pythagoras also traveled to Egypt and Babylon—
possibly even to India. During his peregrinations he evidently absorbed
not only mathematical and astronomical information, but also much reli-
gious lore. Pythagoras was, incidentally, virtually a contemporary of Bud-
dha, of Confucius, and of Lao-Tze, so that the century was a critical time
in the development of religion as well as of mathematics. When he returned

'B. L. van der Waerden 1963, p. 80, accepts the conjecture that Thales used deduction;
O. Neugebauer, 1957, pp. 142, 143, and 148, rejects it.
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to the Greek world, Pythagoras settled at Croton on the southeastern coast
of what is now Italy, but at that time was known as Magna Graecia. There
he established a secret society which somewhat resembled an Orphic cult
except for its mathematical and philosophical basis.

That Pythagoras remains a very obscure figure is due in part to the loss
of documents from that age. Several biographies of Pythagoras were written
in antiquity, including one by Aristotle, but these have not survived. A
further difficulty in identifying clearly the figure of Pythagoras lies in the
fact that the order he established was communal as well as secret. Knowl-
edge and property were held in common, hence attribution of discoveries
was not to be made to a specific member of the school. It is best, conse-
quently, not to speak of the work of Pythagoras, but rather of the contri-
butions of the Pythagoreans, although in antiquity it was customary to give
all credit to the master.

The Pythagorean school of thought was politically conservative and with
a strict code of conduct. Vegetarianism was enjoined upon the members,
apparently because Pythagoreanism accepted the doctrine of metempsy-
chosis, or the transmigration of souls, with the resulting concern that an
animal to be slaughtered might be the new abode of a friend who had died.
Among other taboos of the school was the eating of beans (more properly
lentils). Perhaps the most striking characteristic of the Pythagorean order
was the confidence it maintained in the pursuit of philosophical and math-
ematical studies as a moral basis for the conduct of life. The very words
“philosophy” (or “‘love of wisdom’) and ‘‘mathematics’ (or “‘that which
is learned™) are supposed to have been coined by Pythagoras himself to
describe his intellectual activities. He is said to have given two categories
of lectures, one for members of the school or order only, and the other
for those in the larger community. It is presumed that it was in the lectures
of the first category that Pythagoras presented whatever contributions to
mathematics he may have made. Having described, in the quotation above,
the work in geometry done by Thales, Proclus went on to say:

Pythagoras, who came after him, transformed this science into a liberal form
of education, examining its principles from the beginning and probing the
theorems in an immaterial and intellectual manner. He discovered the theory
of proportionals and the construction of the cosmic figures [Thomas 1939,
p. 149].

Even if we do not accept this statement at its face value, it is evident that
the Pythagoreans played an important role—possibly the crucial role—in
the history of mathematics. In Egypt and Mesopotamia the elements of
arithmetic and geometry were primarily exercises in the application of
numerical procedures to specific problems, whether concerned with beer
or pyramids or the inheritance of land. There had been little in the way
of intellectual structure and perhaps nothing resembling philosophical dis-
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cussion of principles. Thales is generally regarded as having made a be-
ginning in this direction, although tradition supports the view of Eudemus
and Proclus that the new emphasis in mathematics was due primarily to
the Pythagoreans. With them mathematics was more closely related to a
love of wisdom than to the exigencies of practical life, and it has had this
tendency ever since. How far the Pythagoreans went in this direction is
not at all clear, and at least one eminent scholar regards all reports of
important mathematical contributions by Pythagoras as unhistorical. It is
indeed difficult to separate history and legend concerning the man, for he
meant so many things to the populace—the philosopher, the astronomer,
the mathematician, the abhorrer of beans, the saint, the prophet, the
performer of miracles, the magician, the charlatan. That he was one of the
most influential figures in history is difficult to deny, for his followers,
whether deluded or inspired, spread their beliefs over most of the Greek
world. The Pythagorean purification of the soul was accomplished in part
through a strict physical regimen and in part through cultist rites reminis-
cent of worshippers of Orpheus and Dionysus; but the harmonies and
mysteries of philosophy and mathematics also were essential parts in the
rituals. Never before or since has mathematics played so large a role in
life and religion as it did among the Pythagoreans. If, then, it is impossible
to ascribe specific discoveries to Pythagoras himself, or even collectively
to the Pythagoreans, it is nevertheless important to understand the type
of activity with which, according to tradition, the school was associated.

THE PYTHAGOREAN PENTAGRAM

The motto of the Pythagorean school is said to have been “All is number.”
Recalling that the Babylonians had attached numerical measures to things
around them, from the motions of the heavens to the values of their slaves,
we may perceive in the Pythagorean motto a strong Mesopotamian affinity.
The very theorem to which the name of Pythagoras still clings quite likely
was derived from the Babylonians. It has been suggested, as justification
for calling it the Theorem of Pythagoras, that the Pythagoreans first pro-
vided a demonstration; but this conjecture cannot be verified. Legends
that Pythagoras sacrified an ox (a hundred oxen, according to some ver-
sions) upon discovering the theorem—or its proof—are implausible in view
of the vegetarian rules of the school. Moreover, they are repeated, with
equal incredibility, in connection with several other theorems. It is rea-
sonable to assume that the earliest members of the Pythagorean school
were familiar with geometric properties known to the Babylonians; but
when the Eudemus—Proclus summary ascribes to them the construction
of the “cosmic figures” (that is, the regular solids), there is room for doubt.
The cube, the octahedron, and the dodecahedron could perhaps have been
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observed in crystals, such as those of pyrite (iron disulfide); but a scholium
in Elements XIII reports that the Pythagoreans knew only three of the
regular polyhedra: the tetrahedron, the cube, and the dodecahedron. Fa-
miliarity with the last figure is rendered plausible by the discovery near
Padua of an Etruscan dodecahedron of stone dating from before 500 B.C.
It is not improbable, therefore, that even if the Pythagoreans did not know
of the octahedron and the icosahedron, they knew of some of the properties
of the regular pentagon. The figure of a five-pointed star (which is formed
by drawing the five diagonals of a pentagonal face of a regular dodeca-
hedron) is said to have been the special symbol of the Pythagorean school.
The star pentagon had appeared earlier in Babylonian art, and it is possible
that here, too, we find a connecting link between pre-Hellenic and Pytha-
gorean mathematics.

One of the tantalizing questions in Pythagorean geometry concerns the
construction of a pentagram or star pentagon. If we begin with a regular
polygon ABCDE (Fig. 4.1) and draw the five diagonals, these diagonals
intersect in points A'B'C'D'E’ which form another regular pentagon.
Noting that the triangle BCD’, for example, is similar to the isosceles
triangle BCE and noting also the many pairs of congruent triangles in the
diagram, it is not difficult to see that the diagonal points A'B'C'D'E’
divide the diagonals in a striking manner. In each case a diagonal point
divides a diagonal into two unequal segments such that the ratio of the
whole diagonal is to the larger segment as this segment is to the smaller
segment. This subdivision of a diagonal is the well-known ““golden section”
of a line segment, but this name was not used until a couple of thousand
years later—just about the time when Kepler wrote lyrically:

Geometry has two great treasures: one is the Theorem of Pythagoras; the
other, the division of a line into extreme and mean ratio. The first we may
compare to a measure of gold; the second we may name a precious jewel.

To the ancient Greeks this type of subdivision soon became so familiar
that no need was felt for a special descriptive name; hence, the longer
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designation “the division of a segment in mean and extreme ratio’’ generally
was replaced by the simple words “the section.”

One of the important properties of “‘the section” is that it is, so to speak,
self-propagating. If a point P, divides a segment RS (Fig. 4.2) in mean and
extreme ratio, with RP, the longer segment, and if on this larger segment
we mark off a point P, such that RP, = P,S, then segment RP, will in turn
be subdivided in mean and extreme ratio at point P,. Again, upon marking
off on RP, point P; such that RP; = P,P,, segment RP, will be divided in
mean and extreme ratio at P;. This iterative procedure can be carried out
as many times as desired, the result being an ever smaller segment RP,
divided in mean and extreme ratio by point P,.,. Whether or not the
earlier Pythagoreans noticed this unending process or drew significant con-
clusions from it is not known. Even the more fundamental question of
whether or not the Pythagoreans of about 500 B.C. could divide a given
segment into mean and extreme ratio cannot be answered with certainty,
although the probability that they could and did seems to be high. The
construction required is equivalent to the solution of a quadratic equation.
To show this, let RS = a and RP, = x in Fig. 4.2. Then, by the property
of the golden section, a:x = x:(a — x), and upon multiplying means and
extremes we have the equation x> = a? — ax. This is a quadratic equation
of type 1 described in Chapter 3, and Pythagoras could have learned from
the Babylonians how to solve this equation algebraically. However, if a is
a rational number, then there is no rational number x satisfying the equa-
tion. Did Pythagoras realize this? It seems unlikely. Perhaps instead of the
Babylonian algebraic type of solution, the Pythagoreans may have adopted
a geometric procedure similar to that found in Euclid’s Elements 11.11
and VI1.30. To divide a line segment AB in mean and extreme ratio, Euclid
first constructed on the segment AB the square ABCD (Fig. 4.3). Then,
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he bisected AC at point E, drew line segment EB, and extended line CEA
to F so that EF = EB. When the square AFGH is completed, point H
will be the point desired, for one can readily show that AB: AH = AH: HB.
Knowing what solution, if any, the earlier Pythagoreans used for the golden
section would go far toward clarifying the problem of the level and char-
acteristics of pre-Socratic mathematics. If Pythagorean mathematics began
under a Babylonian aegis, with strong faith that all is number, how (and
when) did it happen that this gave way to the familiar emphasis on pure
geometry that is so firmly enshrined in the classical treatises?

NUMBER MYSTICISM

It has been customary to hold that most of the material in the first two
books of the Elements was due to the Pythagoreans. This would presuppose
a high level of achievement, implying a fairly rapid development of the
subject after the days of Thales and Pythagoras. This view requires faith
in what has been called the “‘Greek miracle,” by which relatively unlettered
newcomers on the Mediterranean scene mastered the material inherited
from their neighbors and rapidly rose to new heights, establishing on the
way the essential deductive pattern of theorems. In recent years serious
doubt has been cast on the traditional view by those who call attention to
relatively primitive concepts in Pythagorean arithmetic. If, for example,
the leading Pythagorean mathematician of the early fourth century B.C.,
Archytas of Tarentum (428-365 B.C.), could assert that not geometry, but
arithmetic alone, could provide satisfactory proofs, there would appear to
be little ground for placing the rise of the axiomatic method in geometry
among the Pythagoreans of a century or two before this time. On the other
hand, it may be argued that Archytas represented only one point of view,
insisting on an orthodox Pythagorean numerology that others had aban-
doned or modified. Certainly there had been shifting attitudes in Pytha-
gorean astronomy, and we can assume that there were comparable
modifications in mathematics.

Number mysticism was not original with the Pythagoreans. The number
seven, for example, had been singled out for special awe, presumably on
account of the seven wandering stars or planets from which the week (hence
our names for the days of the week) is derived. The Pythagoreans were
not the only people who fancied that the odd numbers had male attributes
and the even female—with the related (and not unprejudiced) assumption,
found as late as Shakespeare, that “‘there is divinity in odd numbers.”
Many early civilizations shared various aspects of numerology, but the
Pythagoreans carried number worship to its extreme, basing their philos-
ophy and their way of life upon it. The number one, they argued, is the
generator of numbers and the number of reason; the number two is the
first even or female number, the number of opinion; three is the first true
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male number, the number of harmony, being composed of unity and di-
versity; four is the number of justice or retribution, indicating the squaring
of accounts; five is the number of marriage, the union of the first true male
and female numbers; and six is the number of creation. Each number in
turn had its peculiar attributes. The holiest of all was the number ten, or
the tetractys, for it represented the number of the universe, including the
sum of all the possible geometric dimensions. A single point is the generator
of dimensions, two points determine a line of dimension one, three points
(not on a line) determine a triangle with area of dimension two, and four
points (not in a plane) determine a tetrahedron with volume of dimension
three; the sum of the numbers representing all dimensions, therefore, is
the reversed number ten. It is a tribute to the abstraction of Pythagorean
mathematics that the veneration of the number ten evidently was not dic-
tated by anatomy of the human hand or foot.

ARITHMETIC AND COSMOLOGY

In Mesopotamia geometry had been not much more than number applied
to spatial extension; it appears that at first it may have been much the
same among the Pythagoreans—but with a modification. Number in Egypt
had been the domain of the natural numbers and the unit fractions; among
the Babylonians it had been the field of all rational fractions. In Greece
the word number was used only for the integers. A fraction was not looked
upon as a single entity, but as a ratio or relationship between two whole
numbers. (Greek mathematics in its earlier stages frequently came closer
to the “‘modern” mathematics of today than to the ordinary arithmetic of
a generation ago.) As Euclid later expressed it (Elements V.3), “A ratio
is a kind of relation in respect of size of two magnitudes of the same kind.”
Such a view, focusing attention on the connection between pairs of num-
bers, tends to sharpen the theoretical or rational aspects of the number
concept and to deemphasize the role of number as a tool in computation
or approximation in mensuration. Arithmetic now could be thought of as
an intellectual discipline as well as technique, and a transition to such an
outlook seems to have been nurtured in the Pythagorean school. If tradition
is to be trusted, the Pythagoreans not only established arithmetic as a
branch of philosophy; they seem to have made it the basis of a unification
of all aspects of the world about them. Through patterns of points, or
unextended units, they associated number with geometric extension; this
in turn led them to an arithmetic of the heavens. Philolaus (died ca. 390
B.C.), a later Pythagorean who shared the veneration of the tetractys or
decad, wrote that it was ‘“‘great, all-powerful and all-producing, the begin-
ning and the guide of the divine as of the terrestrial life.”” This view of the
number ten as the perfect number, the symbol of health and harmony,
seems to have provided the inspiration for the earliest nongeocentric as-
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tronomical system. Philolaus postulated that at the center of the universe
there was a central fire about which the earth and the seven planets (in-
cluding the sun and the moon) revolved uniformly. Inasmuch as this
brought to only nine the number of heavenly bodies (other than the sphere
of fixed stars), the Philolaic system assumed the existence of a tenth body—
a “‘counterearth” collinear with the earth and the central fire—having the
same period as the earth in its daily revolution about the central fire. The
sun revolved about the fire once a year, and the fixed stars were stationary.
The earth in its motion maintained the same uninhabited face toward the
central fire, hence neither the fire nor the counterearth ever was seen. The
postulate of uniform circular motion that the Pythagoreans adopted was
to dominate astronomical thought for more than 2000 years. Copernicus,
almost 2000 years later, accepted this assumption without question, and it
was to the Pythagoreans that Copernicus referred to show that his doctrine
of a moving earth was not so new or revolutionary.

FIGURATE NUMBERS

The thoroughness with which the Pythagoreans wove number into their
thought is well illustrated by their concern for figurate numbers. Although
no triangle can be formed by fewer than three points, it is possible to have
triangles of a larger number of points, such as six, ten, or fifteen (see Fig.
4.4). Numbers such as three, six, ten, and fifteen or, in general, numbers
given by the formula

n(n + 1)
2

were called triangular; and the triangular pattern for the number ten, the
holy tetractys, vied with the pentagon for veneration in Pythagorean num-
ber theory. There were, of course, indefinitely many other categories of
privileged numbers. Successive square numbers are formed from the se-
quence 1 +3 + 5+ 7 + -+ + (2n — 1), where each odd number in
turn was looked upon as a pattern of dots resembling a gnomon (the
Babylonian shadow clock) placed around two sides of the preceding square
pattern of dots (see Fig. 4.4). Hence, the word gnomon (related to the
word for knowing) came to be attached to the odd numbers themselves.
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The sequence of even numbers, 2 + 4 + 6 + -+ + 2n = n(n + 1),
produces what the Greeks called “‘oblong numbers,” each of which is
double a triangular number. Pentagonal patterns of points illustrated the
pentagonal numbers given by the sequence
n(3n - 1)

2

and hexagonal numbers were derived from the sequence

1+5+9+4+ -+ (4n —3) =2n® — n.

N=1+4+7++@n-2)=

In similar manner polygonal numbers of all orders are designated; the
process, of course, is easily extended to three-dimensional space, where
one deals with polyhedral numbers. Emboldened by such views, Philolaus
is reported to have maintained that

All things which can be known have number; for it is not possible that without
number anything can be either conceived or known.

The dictum of Philolaus seems to have been a tenet of the Pythagorean
school, hence stories arose about the discovery by Pythagoras of some
simple laws of music. Pythagoras is reputed to have noticed that when the
lengths of vibrating strings are expressible as ratios of simple whole num-
bers, such as two to three (for the fifth) or as three to four (for the fourth),
the tones will be harmonious. If, in other words, a string sounds the note
C when plucked, then a similar string twice as long will sound the note C
an octave below; and tones between these two notes are emitted by strings
whose lengths are given by intermediate ratios: 16:9 for D, 8:5 for E, 3:2
for F, 4:3 for G, 6:5 for A, and 16:15 for B, in ascending order. Here we
have perhaps the earliest quantitative laws of acoustics—possibly the oldest
of all quantitative physical laws. So boldly imaginative were the early
Pythagoreans that they extrapolated hastily to conclude that the heavenly
bodies in their motions similarly emitted harmonious tones, the ‘‘harmony
of the spheres.”” Pythagorean science, like Pythagorean mathematics,
seems to have been an odd congeries of sober thought and fanciful spec-
ulation. The doctrine of a spherical earth often is ascribed to Pythagoras,
but it is not known whether this conclusion? was based on observation
(perhaps of new constellations as Pythagoras traveled southward) or on
imagination. The very idea that the universe is a ‘“cosmos,” or a harmo-
niously ordered whole, seems to be a related Pythagorean contribution—
one which at the time had little basis in direct observation but which has
been enormously fruitful in the development of astronomy. As we smile

The tradition that attributes the spherical-earth concept to the Pythagoreans has been
questioned. See W. A. Heidel, The Frame of the Ancient Greek Maps with a Discussion of
the Sphericity of the Earth (New York: Amer. Geog. Soc., 1937).
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at ancient number fancies, we should at the same time be aware of the
impulse these gave to the development of both mathematics and science.
The Pythagoreans were among the earliest people to believe that the op-
erations of nature could be understood through mathematics.

PROPORTIONS

Proclus, quoting perhaps from Eudemus, ascribed to Pythagoras two spe-
cific mathematical discoveries: (1) the construction of the regular solids
and (2) the theory of proportionals. Although there is question about the
extent to which this is to be taken literally, there is every likelihood that
the statement correctly reflects the direction of Pythagorean thought. The
theory of proportions clearly fits into the pattern of early Greek mathe-
matical interests, and it is not difficult to find a likely source of inspiration.
It is reported that Pythagoras learned in Mesopotamia of three means—
the arithmetic, the geometric, and the subcontrary (later called the har-
monic)—and of the “‘golden proportion” relating two of these: the first of
two numbers is to their arithmetic mean as their harmonic mean is to the
second of the numbers. This relationship is the essence of the Babylonian
square-root algorithm, hence the report is at least plausible. At some stage,
however, the Pythagoreans generalized this work by adding seven new
means to make ten in all. If b is the mean of a and ¢, where a < ¢, then
the three quantities are related according to one of the following ten equa-
tions:
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The first three equations are, of course, the equations for the arithmetic,
the geometric, and the harmonic means respectively.

It is difficult to assign a date to the Pythagorean study of means, and
similar problems arise with respect to the classification of numbers. The
study of proportions or the equality of ratios presumably formed at first a
part of Pythagorean arithmetic or theory of numbers. Later the quantities
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a, b, and c entering in such proportions were more likely to be regarded
as geometric magnitudes; but the period in which the change took place
is not clear. In addition to the polygonal numbers mentioned above and
the distinction between odd and even, the Pythagoreans at some stage
spoke of odd-odd and even-odd numbers, according as the number in
question was the product of two odd numbers or of an odd and an even
number, so that sometimes the name even number was reserved for integral
powers of two. By the time of Philolaus the distinction between prime and
composite numbers seems to have become important. Speusippus, nephew
of Plato and his successor as head of the Academy, asserted that ten was
‘“perfect” for the Pythagoreans because, among other things, it is the small-
est integer n for which there are just as many primes between one and n
as nonprimes. (Occasionally prime numbers were called linear inasmuch
as they usually are represented by dots in one dimension only.) Neo-
Pythagoreans sometimes excluded two from the list of primes on the ground
that one and two are not true numbers, but the generators of the odd and
even numbers. The primacy of the odd numbers was assumed to be es-
tablished by the fact that odd + odd is even, whereas even + even remains
even.

To the Pythagoreans has been attributed the rule for Pythagorean triads
given by (m?* — 1)/2, m, (m*> + 1)/2, where m is an odd integer; but
inasmuch as this rule is so closely related to the Babylonian examples, it
is perhaps not an independent discovery. Also ascribed to the Pythago-
reans, with doubt as to the period in question, are the definitions of per-
fect, abundant, and deficient numbers according as the sum of the proper
divisors of the number is equal to, greater than, or less than the number
itself. According to this definition, six is the smallest perfect number, with
twenty-eight next. That this view probably was a later development in
Pythagorean thought is suggested by the early veneration of ten rather
than six. Hence, the related doctrine of “amicable” numbers also is likely
to have been a later notion. Two integers a and b are said to be ““amicable”
if a is the sum of the proper divisors of b and if b is the sum of the proper
divisors of a. The smallest such pair are the integers 220 and 284.

ATTIC NUMERATION

The picture of Pythagorean mathematics that has been presented is based
largely on reports of commentators who lived many centuries later and
who were, almost without exception, interested in philosophical aspects of
thought. Although it appears plausible to assume, with the commentators,
that it was the Pythagoreans who were largely responsible for the abstract
and intellectual view that fashioned mathematics into a liberal discipline,
the level of sophistication during the sixth and fifth centuries B.C. may not
have been as high as that attributed to them by tradition. It must have
been all too tempting to later devotees of a philosophical school, such as
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the Pythagorean, to exaggerate the accomplishments of the founder and
of the early members of the sect. It is highly probable that elements of
primitivity were present during the early stages of Pythagoreanism, but
went unreported. It is obvious also that the type of attitude toward math-
ematics represented by the Pythagoreans almost certainly was atypical of
Greek thought as a whole. The Hellenes were celebrated as shrewd traders
and businessmen, and there must have been a lower level of arithmetic or
computation that satisfied the needs of the vast majority of Greek citizens.
Number activities of this type would have been beneath the notice of
philosophers, and recorded accounts of practical arithmetic were unlikely
to find their way into libraries of scholars. If, then, there are not even
fragments surviving of the more sophisticated Pythagorean works, it is
clear that it would be unreasonable to expect manuals of trade mathematics
to survive the ravages of time. Hence, it is not possible to tell at this
distance how the ordinary processes of arithmetic were carried out in
Greece 2500 years ago. About the best one can do is to describe the systems
of numeration that appear to have been in use.

In general there seem to have been two chief systems of numeration in
Greece: one, probably the earlier, is known as the Attic (or Herodianic)
notation; the other is called the Ionian (or alphabetic) system. Both systems
are, for integers, based on the ten-scale, but the former is the more prim-
itive, being based on a simple iterative scheme found in the earlier Egyptian
hieroglyphic numeration and in the later Roman numerals. In the Attic
system the numbers from one to four were represented by repeated vertical
strokes. For the number five a new symbol—the first letter [T (or I" of the
word for five, pente—was adopted. (Only capital letters were used at the
time, both in literary works and in mathematics, lowercase letters being
an invention of the later ancient or early Medieval period.) For numbers
from six through nine, the Attic system combined the symbol ™ with unit
strokes, so that eight, for example, was written as M. For positive integral
powers of the base (ten), the initial letters of the corresponding number
words were adopted—a for deka (ten), n for hekaton (hundred), x for
khilioi (thousand), and m for myrioi (ten thousand). Except for the forms
of the symbols, the Attic system is much like the Roman; but it had one
advantage. Where the Latin word adopted distinctive symbols for 50 and
500, the Greeks wrote these numbers by combining letters for 5, 10, and
100, using B (or S times 10) for 50, and [® (or 5 times 100) for 500. In the
same way they wrote [™ for 5000 and [ for 50000. In Attic script the number
45,678, for example, would appear as

MMMM [FRH@Baa 1

IONIAN NUMERATION

The Attic system of notation (known also as Herodianic inasmuch as it
was described in a fragment attributed to Herodian, a grammarian of the
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second century) appears in inscriptions at various dates from 454 to 95
B.C.; but by the early Alexandrian Age, at about the time of Ptolemy
Philadelphius, it was being displaced by the Ionian or alphabetic numerals.
Similar alphabetic schemes were used at one time or another by various
Semitic peoples, including the Hebrews, Syrians, Aramaeans, and Arabs—
as well as by other cultures, such as the Gothic—but these would seem to
have been borrowed from the Greek notation. The Ionian system probably
was used as early as the fifth century B.C. and perhaps as early as the
eighth century B.C. One reason for placing the origin of the notation rel-
atively early is that the scheme called for twenty-seven letters of the al-
phabet—nine for the integers less than 10, nine for multiples of 10 that
are less than 100, and nine for multiples of 100 that are less than 1000.
The classical Greek alphabet contains only twenty-four letters; hence, use
was made of an older alphabet that included three additional archaic let-
ters—F (vau or digamma or stigma), 9 (koppa), and A (sampi)—to es-
tablish the following association of letters and numbers:

F Z H 6 I K A M N
6 7 8 9 10 20 30 40 S50
= I 3 Tl » X ¥ Q A
60 70 80 90 100 200 300 400 500 600 700 800 900

Since the three archaic letters occupy the positions in the numeral scheme
that they held in the older alphabet, it has been suggested that the Ionian
system was introduced before the abandonment of the three letters—say
in the eighth century B.C.; this view becomes less convincing when we
consider the long time interval between the presumed introduction and
the ultimate triumph of the system in the third century B.C. The obvious
advantage in conciseness of the alphabetic system might have been ex-
pected to find a readier adoption for the system than the indicated delay
of half a millennium. The cipherization in the Ionian notation bears to the
Attic numeration essentially the same relationship as did the Egyptian
hieratic to the more cumbersome hieroglyphic, where the superiority of
the cursive script had been clear to scribes.
After the introduction of small letters in Greece, the association of

letters and numbers appeared as follows:

a By 6 € ¢ &£ n 0 1 Kk A pu v

1 2 3 45 6 7 8 9 10 20 30 40 50
CROR N S p o i v ¢ X 7 w ™
60 70 80 90 100 200 300 400 500 600 700 800 900

Since these forms are more familiar today, we shall use them here. For
the first nine multiples of a thousand, the Ionian system adopted the first
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nine letters of the alphabet, a partial use of the positional principle; but
for added clarity these letters were preceded by a stroke, or accent:

a /ﬂ 'y 16 '€ 1 vc n :0
1000 2000 3000 4000 5000 6000 7000 8000 9000

Within this system any number less than 10,000 was easily written with
only four characters. The number 8888, for example, would appear as
nqwnn or as nwny, the accent sometimes being omitted when the context
was clear. The use of the same letters for thousands as for units should
have suggested to the Greeks the full-fledged positional scheme in decimal
arithmetic, but they do not seem to have appreciated the advantages of
such a move. That they had such a principle more or less in mind is evident
not only in the repeated use of the letters a through 0 for units and thou-
sands, but also in the fact that the symbols are arranged in order of mag-
nitude, from the smallest on the right to the largest on the left. At 10,000,
which for the Greeks was the beginning of a new count or category (much
as we separate thousands from lower powers by a comma), the Ionian
Greek notation adopted a multiplicative principle. A symbol for an integer
from 1 to 9999, when placed above the letter M, or after it, separated from
the rest of the number by a dot, indicated the product of the integer and
the number 10,000—the Greek myriad. Thus the number 88888888 would
appear as M,nwnn - nwnny. Where still larger numbers are called for, the
same principle could be applied to the double myriad, 100000000 or 10%.

Early Greek notations for integers were not excessively awkward, and
they served their purposes effectively. It was in the use of fractions that
the systems were weak. Like the Egyptians, the Greeks were tempted to
use unit fractions, and for these they had a simple representation. They
wrote down the denominator and then simply followed this with a diacritical
mark or accent to distinguish it from the corresponding integer. Thus 35
would appear as 46'. This could, of course, be confused with the number
30%, but context or the use of words could be assumed to make the situation
clear. In later centuries general common fractions and sexagesimal fractions
were in use; these will be discussed later in connection with the work of
Archimedes, Ptolemy, and Diophantus, for there are extant documents
which, while not actually dating from the time of these men, are copies of
works written by them—a situation strikingly different from that concerning
mathematicians of the Hellenic period.

ARITHMETIC AND LOGISTIC

The history of mathematics during the time of Thales and the Pythagoreans
necessarily depends, to an undesirable degree, on conjecture and inference,
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since documents from the period are entirely missing. In this respect there
is far more uncertainty about Greek mathematics from 600 to 450 B.C.
than about Babylonian algebra or Egyptian geometry from about 1700 B.c.
Not even mathematical artifacts have survived from the early days of
Greece. It is evident that some form of counting board or abacus was used
in calculation, but the nature and operation of the device must be inferred
from the Roman abacus and from some casual references in Greek authors.
Herodotus, writing in the early fifth century B.C., says that in counting
with pebbles, as in writing, the Greek hand moved from left to right, the
Egyptian from right to left. A vase from a somewhat later period pictures
a collector of tribute with a counting board which was used not only for
integral decimal multiples of the drachma, but for nondecimal fractional
subdivisions. Beginning on the left, the columns designate myriads, thou-
sands, hundreds, and tens of drachmas respectively, the symbols being in
Herodianic notation. Then, following the units column for drachmas, there
are columns for obols (six obols = one drachma), for half the obol, and
for the quarter obol. Here we see how ancient civilizations avoided an
excessive use of fractions: they simply subdivided units of length, weight,
and money so effectively that they could calculate in terms of integral
multiples of the subdivisions. This undoubtedly is the explanation for the
popularity in antiquity of duodecimal and sexagesimal subdivisions, for the
decimal system here is at a severe disadvantage. Decimal fractions were
rarely used, either by the Greeks or by other Western peoples, before the
period of the Renaissance. The abacus can be readily adapted to any system
of numeration or to any combination of systems; it is likely that the wide-
spread use of the abacus accounts at least in part for the amazingly late
development of a consistent positional system of notation for integers and
fractions. In this respect the Pythagorean Age contributed little if anything.
The point of view of the Pythagoreans seems to have been so overwhelm-
ingly philosophical and abstract that technical details in computation were
of little concern to them. Such techniques were relegated to a separate
discipline, called logistic. This dealt with the numbering of things, rather
than with the essence and properties of number as such, matters of concern
in arithmetic. That is, the ancient Greeks made a clear distinction between
mere calculation on the one hiand and what today is known in America as
theory of numbers (and in England as the higher arithmetic) on the other.
Whether or not such a sharp distinction was a disadvantage to the historical
development of mathematics may be a moot point, but it is not easy to
deny to the early lonian and Pythagorean mathematicians the primary role
in establishing mathematics as a rational and liberal discipline. It is for this
reason that Thales often is called the first mathematician and that Pytha-
goras is known as the father of mathematics. The extent to which we accept
such ascriptions literally, in view of the absence of supporting documentary
evidence, will depend on our confidence in tradition. It is obvious that
tradition can be quite inaccurate, but it seldom is entirely misdirected.



The Heroic Age

I would rather discover one cause than gain the kingdom of Persia.

Democritus

CENTERS OF ACTIVITY

Accounts of the origins of Greek mathematics center on the so-called
Ionian and Pythagorean schools and the chief representative of each—
Thales and Pythagoras—although reconstructions of their thought rest on
fragmentary reports and traditions built up during later centuries. To a
certain extent this situation prevails throughout the fifth century B.C. There
are virtually no extant mathematical or scientific documents until the days
of Plato in the fourth century B.C. Nevertheless, during the last half of the
fifth century there circulated persistent and consistent reports concerning
a handful of mathematicians who evidently were intensely concerned with
problems that formed the basis for most of the later developments in
geometry. We shall, therefore, refer to this period as the ‘““Heroic Age of
Mathematics,” for seldom either before or since have men with so little
to work with tackled mathematical problems of such fundamental signifi-
cance. No longer was mathematical activity centered almost entirely in two
regions nearly at opposite ends of the Greek world; it flourished all about
the Mediterranean. In what is now southern Italy there were Archytas of
Tarentum (born ca. 428 B.C.) and Hippasus of Metapontum (fl. ca. 400
B.C.); at Abdera in Thrace we find Democritus (born ca. 460 B.C.); nearer
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the center of the Greek world, on the Attic peninsula, there was Hippias of
Elis (born ca. 460 B.c.); and at nearby Athens there lived at various times
during the critical last half of the fifth century B.c. three scholars from other
regions: Hippocrates of Chios (fl, ca. 430 B.c.), Anaxagoras of Clazomenae
(t428 B.c.), and Zeno of Elea (fl, ca. 450 B.c.). Through the work of these
seven men we shall decribe the fundamental changes in mathematics that
took place a little before the year 400 B.c.

ANAXAGORAS OF CLAZOMENAE

The fifth century B.C. was a crucial period in the history of Western civi-
lization, for it opened with the defeat of the Persian invaders and closed
with the surrender of Athens to Sparta. Between these two events lay the
great Age of Pericles, with its accomplishments in literature and art. The
prosperity and intellectual atmosphere of Athens during the century at-
tracted scholars from all parts of the Greek world, and a synthesis of diverse
aspects was achieved. From Ionia came men, such as Anaxagoras, with a
practical turn of mind; from southern Italy came others, such as Zeno,
with stronger metaphysical inclinations. Democritus of Abdera espoused
a materialistic view of the world, while Pythagoras in Italy held idealistic
attitudes in science and philosophy. At Athens one found eager devotees
of old and new branches of learning, from cosmology to ethics. There was
a bold spirit of free inquiry that sometimes came into conflict with estab-
lished mores. In particular, Anaxagoras was imprisoned at Athens for
impiety in asserting that the sun was not a deity, but a huge red-hot stone
as big as the whole Peloponnesus, and that the moon was an inhabited
earth that borrowed its light from the sun. He well represents the spirit of
rational inquiry, for he regarded as the aim of his life the study of the
nature of the universe—a purposefulness that he derived from the Ionian
tradition of which Thales had been a founder. The intellectual enthusiasm
of Anaxagoras was shared with his countrymen through the first scientific
best-seller—a book On Nature which could be bought in Athens for only
a drachma. Anaxagoras was a teacher of Pericles, who saw to it that his
mentor ultimately was released from prison. Socrates was at first attracted
to the scientific ideas of Anaxagoras, but the gadfly of Athens found the
naturalistic Ionian view less satisfying than the search for ethical verities.

Greek science had been rooted in a highly intellectual curiosity which
often is contrasted with the utilitarian immediacy of pre-Hellenic thought;
Anaxagoras clearly represented the typical Greek motive—the desire to
know. In mathematics also the Greek attitude differed sharply from that
of the earlier potamic cultures. The contrast was clear in the contributions
generally attributed to Thales and Pythagoras, and it continues to show
through in the more reliable reports on what went on in Athens during
the Heroic Age. Anaxagoras was primarily a natural philosopher rather



64 THE HEROIC AGE

than a mathematician, but his inquiring mind led him to share in the pursuit
of mathematical problems. We are told by Plutarch that while Anaxagoras
was in prison he occupied himself in an attempt to square the circle. Here
we have the first mention of a problem that was to fascinate mathematicians
for more than 2000 years. There are no further details concerning the
origin of the problem or the rules governing it. At a later date it came to
be understood that the required square, exactly equal in area to the circle,
was to be constructed by the use of compasses and straightedge alone.
Here we see a type of mathematics that is quite unlike that of the Egyptians
and Babylonians. It is not the practical application of a science of number
to a facet of life experience, but a theoretical question involving a nice
distinction between accuracy in approximation and exactitude in thought.
The mathematical problem that Anaxagoras here considered was no more
the concern of the technologist than were those he raised in science con-
cerning the ultimate structure of matter. In the Greek world mathematics
was more closely related to philosophy than to practical affairs, and this
kinship has persisted to the present day.

THREE FAMOUS PROBLEMS

Anaxagoras died in 428 B.C., the year that Archytas was born, just one
year before Plato’s birth and one year after Pericles’ death. It is said that
Pericles died of the plague that carried off perhaps a quarter of the Athenian
population, and the deep impression that this catastrophe created is per-
haps the origin of a second famous mathematical problem. It is reported
that a delegation had been sent to the oracle of Apollo at Delos to inquire
how the plague could be averted, and the oracle had replied that the cubical
altar to Apollo must be doubled. The Athenians are said to have dutifully
doubled the dimensions of the altar, but this was of no avail in curbing
the plague. The altar had, of course, been increased eightfold in volume,
rather than twofold. Here, according to the legend, was the origin of the
“duplication of the cube” problem, one that henceforth was usually re-
ferred to as the “Delian problem”—given the edge of a cube, construct
with compasses and straightedge alone the edge of a second cube having
double the volume of the first. At about the same time there circulated in
Athens still a third celebrated problem: given an arbitrary angle, construct
by means of compasses and straightedge alone an angle one third as large
as the given angle. These three problems—the squaring of the circle, the
duplication of the cube, and the trisection of the angle—have since been
known as the “‘three famous (or classical) problems” of antiquity. More
than 2200 years later it was to be proved that all three of the problems
were unsolvable by means of straightedge and compasses alone. Never-
theless, the better part of Greek mathematics, and of much later mathe-
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matical thought, was suggested by efforts to achieve the impossible—or,
failing this, to modify the rules. The Heroic Age failed in its immediate
objective, under the rules, but the efforts were crowned with brilliant
success in other respects.

QUADRATURE OF LUNES

Somewhat younger than Anaxagoras, and coming originally from about
the same part of the Greek world, was Hippocrates of Chios. He should
not be confused with his still more celebrated contemporary, the physician
Hippocrates of Cos. Both Cos and Chios are islands in the Dodecanese
group; but Hippocrates of Chios in about 430 B.C. left his native land for
Athens in his capacity as a merchant. Aristotle reports that Hippocrates
was less shrewd than Thales and that he lost his money in Byzantium
through fraud; others say that he was beset by pirates. In any case, the
incident was never regretted by the victim, for he counted this his good
fortune in that as a consequence he turned to the study of geometry, in
which he achieved remarkable success—a story typical of the Heroic Age.
Proclus wrote that Hippocrates composed an ‘“Elements of Geometry,”
anticipating by more than a century the better-known Elements of Euclid.
However, the textbook of Hippocrates—as well as another reported to
have been written by Leon, a later associate of the Platonic school—has
been lost, although it was known to Aristotle. In fact, no mathematical
treatise from the fifth century has survived; but we do have a fragment
concerning Hippocrates which Simplicius (fl. ca. 520) claims to have copied
literally from the History of Mathematics (now lost) by Eudemus. This brief
statement, the nearest thing we have to an original source on the mathe-
matics of the time, describes a portion of the work of Hippocrates dealing
with the quadrature of lunes. A lune is a figure bounded by two circular
arcs of unequal radii; the problem of the quadrature of lunes undoubtedly
arose from that of squaring the circle. The Eudemian fragment attributes
to Hippocrates the following theorem:

Similar segments of circles are in the same ratio as the squares on their bases.

The Eudemian account reports that Hippocrates demonstrated this by first
showing that the areas of two circles are to each other as the squares on
their diameters. Here Hippocrates adopted the language and concept of
proportion which played so large a role in Pythagorean thought. In fact,
it is thought by some that Hippocrates became a Pythagorean. The Py-
thagorean school in Croton had been suppressed (possibly because of its
secrecy, perhaps because of its conservative political tendencies), but the
scattering of its adherents throughout the Greek world served only to
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broaden the influence of the school. This influence undoubtedly was felt,
directly or indirectly, by Hippocrates.

The theorem of Hippocrates on the areas of circles seems to be the
earliest precise statement on curvilinear mensuration in the Greek world.
Eudemus believed that Hippocrates gave a proof of the theorem, but a
rigorous demonstration at that time (say about 430 B.C.) would appear to
be unlikely. The theory of proportions at that stage probably was estab-
lished for commensurable magnitudes only. The proof as given in Euclid
XI1.2 comes from Eudoxus, a man who lived halfway between Hippocrates
and Euclid. However, just as much of the material in the first two books
of Euclid seems to stem from the Pythagoreans, so it would appear rea-
sonable to assume that the formulations, at least, of much of Books III
and IV of the Elements came from the work of Hippocrates. Moreover, if
Hippocrates did give a demonstration of this theorem on the areas of circles,
he may have been responsible for the introduction into mathematics of the
indirect method of proof. That is, the ratio of the areas of two circles is
equal to the ratio of the squares on the diameters or it is not. By a reductio
ad absurdum from the second of the two possibilities, the proof of the only
alternative is established.

From this theorem on the areas of circles Hippocrates readily found the
first rigorous quadrature of a curvilinear area in the history of mathematics.
He began with a semicircle circumscribed about an isosceles right triangle,
and on the base (hypotenuse) he constructed a segment similar to the
circular segments on the sides of the right triangle. (Fig. 5.1). Because the
segments are to each other as squares on their bases, and from the Pytha-
gorean theorem as applied to the right triangle, the sum of the two small
circular segments is equal to the larger circular segment. Hence, the dif-
ference between the semicircle on AC and the segment ADCE equals
triangle ABC. Therefore, the lune ABCD is precisely equal to triangle
ABC; and since triangle ABC is equal to the square on half of AC, the
quadrature of the lune has been found.

Eudemus describes also an Hippocratean lune quadrature based on an
isosceles trapezoid ABCD inscribed in a circle so that the square on the
longest side (base) AD is equal to the sum of the squares on the three
equal shorter sides AB and BC and CD (Fig. 5.2). Then, if on side AD

B
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5. FIG. 5.2
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FIG. 5.3 FIG. 5.4

one constructs a circular segment A EDF similar to those on the three equal
sides, lune ABCDE is equal to trapezoid ABCDF.

That we are on relatively firm ground historically in describing the quad-
rature of lunes by Hippocrates is indicated by the fact that scholars other
than Simplicius also refer to this work. Simplicius lived in the sixth century,
but he depended not only on Eudemus (fl. ca. 320 B.C.) but also on Alex-
ander of Aphrodisias (fl. ca. A.p. 200), one of the chief commentators on
Aristotle. Alexander describes two quadratures other than those given
above. (1) If on the hypotenuse and sides of an isosceles right triangle one
constructs semicircles (Fig. 5.3), then the lunes created on the smaller sides
together equal the triangle. (2) If on a diameter of a semicircle one con-
structs an isosceles trapezoid with three equal sides (Fig. 5.4), and if on
the three equal sides semicircles are constructed, then the trapezoid is
equal in area to the sum of four curvilinear areas: the three equal lunes
and a semicircle on one of the equal sides of the trapezoid. From the
second of these quadratures it would follow that if the lunes can be squared,
the semicircle—hence the circle—can also be squared. This conclusion
seems to have encouraged Hippocrates, as well as his contemporaries and
early successors, to hope that ultimately the circle would be squared.

CONTINUED PROPORTIONS

The Hippocratean quadratures are significant not so much as attempts at
circle-squaring as indications of the level of mathematics at the time. They
show that Athenian mathematicians were adept at handling transforma-
tions of areas and proportions. In particular, there was evidently no dif-
ficulty in converting a rectangle of sides a and b into a square. This required
finding the mean proportional or geometric mean between a and b. That
is, if a:x = x:b, geometers of the day easily constructed the line x. It was
natural, therefore, that geometers should seek to generalize the problem
by inserting two means between two given magnitudes a and b. That is,
given two line segments a and b, they hoped to construct two other seg-
ments x and y such that a:x = x:y = y:b. Hippocrates is said to have
recognized that this problem is equivalent to that of duplicating the cube;
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for if b = 2a, the continued proportions, upon the elimination of y, lead
to the conclusion that x* = 2a°.

There are three views on what Hippocrates deduced from his quadrature
of lunes. Some have accused him of believing that he could square all
lunes, hence also the circle; others think that he knew the limitations of
his work, concerned as it was with some types of lunes only. At least one
scholar has held that Hippocrates knew he had not squared the circle but
tried to deceive his countrymen into thinking that he had succeeded.! There
are other questions, too, concerning Hippocrates’ contributions, for to him
has been ascribed, with some uncertainty, the first use of letters in geo-
metric figures. It is interesting to note that whereas he advanced two of
the three famous problems, he seems to have made no progress in the
trisecting of the angle, a problem studied somewhat later by Hippias of
Elis.

HIPPIAS OF ELIS

Toward the end of the fifth century B.C. there flourished at Athens a group
of professional teachers quite unlike the Pythagoreans. Disciples of Py-
thagoras had been forbidden to accept payment for sharing their knowledge
with others. The Sophists, however, openly supported themselves by tu-
toring fellow citizens—not only in honest intellectual endeavor, but also
in the art of “making the worse appear the better.”” To a certain extent
the accusation of shallowness directed against the Sophists was warranted;
but this should not conceal the fact that Sophists usually were very widely
informed in many fields and that some of them made real contributions to
learning. Among these was Hippias, a native of Elis who was active at Athens
in the second half of the fifth century B.c. He is one of the earliest
mathematicians of whom we have firsthand information, for we learn much
about him from Plato’s dialogues. We read, for example, that Hippias
boasted that he had made more money than any two other Sophists. He
is said to have written much, from mathematics to oratory, but none of
his work has survived. He had a remarkable memory, he boasted immense
learning, and he was skilled in handicrafts. To this Hippias (there are many
others in Greece who bore the same name) we apparently owe the intro-
duction into mathematics of the first curve beyond the circle and the straight
line. Proclus and other commentators ascribe to him the curve since known
as the trisectrix or quadratrix of Hippias.? This is drawn as follows: In the
square ABCD (Fig. 5.5) let side AB move down uniformly from its present

'See Bjornbo’s article “Hippocrates™ in Pauly-Wissowa, Real-Enzyklopadie der klas-
sischen Altertumswissenschaft, Vol. VIII, p. 1796.

’An excellent account of this is found in K. Freeman, The Pre-Socratic Philosophers. A
Companion to Diels, Fragmente der Vorsokratiker (1949), pp. 381-391. See also the article
on Hippias in Pauly-Wissowa, op. cit., Vol. VIII, pp. 1707 fi.
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position until it coincides with AC and let this motion take place in exactly
the same time that side DA rotates clockwise from its present position
until it coincides with DC. If the positions of the two moving lines at any
given time are given by A'B’ and DA" respectively and if P is the point
of intersection of A'B’ and DA", the locus of P during the motions will
be the trisectrix of Hippias—curve APQ in the figure. Given this curve,
the trisection of an angle is carried out with ease. For example, if PDC is
the angle to be trisected, one simply trisects segments B'C and A'D at
points R, S, T, and U. If lines TR and US cut the trisectrix in V and W
respectively, lines VD and WD will, by the property of the trisectrix, divide
angle PDC in three equal parts.

The curve of Hippias generally is known as the quadratrix, since it can
be used to square the circle. Whether or not Hippias himself was aware
of this application cannot now be determined. It has been conjectured that
Hippias knew of this method of quadrature but that he was unable to
justify it. Since the quadrature through Hippias’ curve was specifically given
later by Dinostratus, we shall describe this work in the next chapter.

Hippias lived at least as late as Socrates (1399 B.C.), and from the pen
of Plato we have an unflattering account of him as a typical Sophist—vain,
boastful, and acquisitive. Socrates is reported to have described Hippias
as handsome and learned, but boastful and shallow. Plato’s dialogue on
Hippias satirizes his show of knowledge, and Xenophon’s Memorabilia
includes an unflattering account of Hippias as one who regarded himself
an expert in everything from history and literature to handicrafts and sci-
ence. In judging such accounts, however, we must remember that Plato
and Xenophon were uncompromisingly opposed to the Sophists in general.
It is well to bear in mind also that both Protagoras, the ‘“‘founding father
of the Sophists,” and Socrates, the archopponent of the movement, were
antagonistic to mathematics and the sciences. With respect to character,
Plato contrasts Hippias with Socrates, but one can bring out much the same
contrast by comparing Hippias with another contemporary—the Pytha-
gorean mathematician Archytas of Tarentum.
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PHILOLAUS AND ARCHYTAS OF TARENTUM

Pythagoras is said to have retired to Metapontum toward the end of his
life and to have died there about 500 B.cC. Tradition holds that he left no
written works, but his ideas were carried on by a large number of eager
disciples. The center at Croton was abandoned when a rival political group
from Sybaris surprised and murdered many of the leaders, but those who
escaped the massacre carried the doctrines of the school to other parts of
the Greek world. Among those who received instruction from the refugees
was Philolaus of Tarentum, and he is said to have written the first account
of Pythagoreanism—permission having been granted, so the story goes, to
repair his damaged fortunes. Apparently it was this book from which Plato
derived his knowledge of the Pythagorean order. The number fanaticism
that was so characteristic of the brotherhood evidently was shared by Phil-
olaus, and it was from his account that much of the mystical lore concerning
the tetractys was derived, as well as knowledge of the Pythagorean cos-
mology. The Philolaean cosmic scheme is said to have been modified by
two later Pythagoreans, Ecphantus and Hicetas, who abandoned the central
fire and counterearth and explained day and night by placing a rotating
earth at the center of the universe. The extremes of Philolacan number
worship also seem to have undergone some modification, more especially
at the hands of Archytas, a student of Philolaus at Tarentum.

The Pythagorean sect had exerted a strong intellectual influence
throughout Magna Graecia, with political overtones that may be described
as a sort of “‘reactionary international,” or perhaps better as a cross between
Orphism and Freemasonry. At Croton political aspects were especially
noticeable, but at outlying Pythagorean centers, such as Tarentum, the
impact was primarily intellectual. Archytas believed firmly in the efficacy
of number; his rule of the city, which allotted him autocratic powers, was
just and restrained, for he regarded reason as a force working toward social
amelioration. For many years in succession he was elected general, and he
was never defeated; yet he was kind and a lover of children, for whom he
is reported to have invented ‘‘Archytas’ rattle.”” Possibly also the mechan-
ical dove, which he is said to have fashioned of wood, was built to amuse
the young folk.

Archytas continued the Pythagorean tradition in placing arithmetic
above geometry, but his enthusiasm for number had less of the religious
and mystical admixture found earlier in Philolaus. He wrote on the appli-
cation of the arithmetic, geometric, and subcontrary means to music, and
it was probably either Philolaus or Archytas who was responsible for chang-
ing the name of the last one to ‘‘harmonic mean.” Among his statements
in this connection was the observation that between two whole numbers
in the ratio n:(n + 1) there could be no integer that is a geometric mean.
Archytas gave more attention to music than had his predecessors, and he
felt that this subject should play a greater role than literature in the edu-
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cation of children. Among his conjectures was one that attributed differ-
ences in pitch to varying rates of motion resulting from the flow causing
the sound. Archytas seems to have paid considerable attention to the role
of mathematics in the curriculum, and to him has been ascribed the des-
ignation of the four branches in the mathematical quadrivium—arithmetic
(or numbers at rest), geometry (or magnitudes at rest), music (or numbers
in motion), and astronomy (or magnitudes in motion). These subjects,
together with the trivium consisting of grammar, rhetoric, and dialectics
(which Aristotle traced back to Zeno), later constituted the seven liberal
arts; hence, the prominent role that mathematics has played in education
is in no small measure due to Archytas.

DUPLICATION OF THE CUBE

It is likely that Archytas had access to an earlier treatise on the elements
of mathematics, and the iterative square-root process often known by the
name of Archytas had been used long before in Mesopotamia. Neverthe-
less, Archytas was himself a contributor of original mathematical results.
The most striking contribution was a three-dimensional solution of the
Delian problem which may be most easily described, somewhat anachron-
istically, in the modern language of analytic geometry. Let a be the edge
of the cube to be doubled, and let the point (a, 0, 0) be the center of three
mutually perpendicular circles of radius @ and each lying in a plane per-
pendicular to a coordinate axis. Through the circle perpendicular to the
x-axis construct a right circular cone with vertex (0, 0, 0); through the
circle in the xy-plane pass a right circular cylinder; and let the circle in the
xz-plane be revolved about the z-axis to generate a torus. The equations
of these three surfaces are respectively x> = y? + 2% and 2ax = x* + y?
and (x* + y? + z?)? = 4a*(x* + y?). These three surfaces intersect in a
point whose x-coordinate is aV/12; hence, the length of this line segment
is the edge of the cube desired.

The achievement of Archytas is the more impressive when we recall
that his solution was worked out synthetically without the aid of coordi-
nates. Nevertheless, the most important contribution of Archytas to math-
ematics may have been his intervention with the tyrant Dionysius to save
the life of his friend, Plato. The latter remained to the end of his life deeply
committed to the Pythagorean veneration of number and geometry, and
the supremacy of Athens in the mathematical world of the fourth century
B.C. resulted primarily from the enthusiasm of Plato, the “‘maker of math-
ematicians.” However, before taking up the role of Plato it is necessary
to discuss the work of an earlier Pythagorean—an apostate by the name
of Hippasus.

Hippasus of Metapontum (or Croton), roughly contemporaneous with
Philolaus, is reported to have been originally a Pythagorean but to have
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been expelled from the brotherhood. One account has it that the Pytha-
goreans erected a tombstone to him, as though he were dead; another
story reports that his apostasy was punished by death at sea in a shipwreck.
The exact cause of the break is unknown, in part because of the rule of
secrecy, but there are three suggested possibilities. According to one, Hip-
pasus was expelled for political insubordination, having headed a demo-
cratic movement against the conservative Pythagorean rule. A second
tradition attributes the expulsion to disclosures concerning the geometry
of the pentagon or the dodecahedron—perhaps a construction of one of
the figures. A third explanation holds that the expulsion was coupled with
the disclosure of a mathematical discovery of devastating significance for
Pythagorean philosophy—the existence of incommensurable magnitudes.

INCOMMENSURABILITY

It had been a fundamental tenet of Pythagoreanism that the essence of all
things, in geometry as well as in the practical and theoretical affairs of
man, are explainable in terms of arithmos, or intrinsic properties of whole
numbers or their ratios. The dialogues of Plato show, however, that the
Greek mathematical community had been stunned by a disclosure that
virtually demolished the basis for the Pythagorean faith in whole numbers.
This was the discovery that within geometry itself the whole numbers and
their ratios are inadequate to account for even simple fundamental prop-
erties. They do not suffice, for example, to compare the diagonal of a
square or a cube or a pentagon with its side. The line segments are incom-
mensurable, no matter how small a unit of measure is chosen. Just when
and how the discovery was made is not known, but much ink has been
spilled in support of one hypothesis or another. Earlier arguments in favor
of a Hindu origin of the discovery lack foundation, and there seems to be
little chance that Pythagoras himself was aware of the problem of incom-
mensurability. The most plausible suggestion is that the discovery was made
by the later Pythagoreans at some time before 410 B.C. Some would at-
tribute it specifically to Hippasus of Metapontum during the earlier portion
of the last quarter of the fifth century B.C., while others place it about
another half a century later.

The circumstances surrounding the earliest recognition of incommen-
surable line segments are as uncertain as is the time of the discovery.
Ordinarily it is assumed that the recognition came in connection with the
application of the Pythagorean theorem to the isosceles right triangle.
Aristotle refers to a proof of the incommensurability of the diagonal of a
square with respect to a side, indicating that it was based on the distinction
between odd and even. Such a proof is easy to construct. Let d and s be
the diagonal and side of a square, and assume that they are commensur-
able—that is, that the ratio d/s is rational and equal to p/q, where p and
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q are integers with no common factor. Now, from the Pythagorean theorem
it is known that d*> = s> + s hence, (d/s)? = p?/q* = 2, or p? = 24>
Therefore, p? must be even; hence, p must be even. Consequently g must
be odd. Letting p = 2r and substituting in the equation p? = 2¢?, we have
4r? = 2q?% or g* = 2r’. Then g must be even; hence, ¢ must be even.
However, g was shown above to be odd, and an integer cannot be both
odd and even. It follows, therefore, by the indirect method, that the as-
sumption that d and s are commensurable must be false.

THE GOLDEN SECTION

In this proof the degree of abstraction is so high that the possibility that
it was the basis for the original discovery of incommensurability has been
questioned. There are, however, other ways in which the discovery could
have come about. Among these is the simple observation that when the
five diagonals of a regular pentagon are drawn, these diagonals form a
smaller regular pentagon (Fig. 5.6), and the diagonals of the second pen-
tagon in turn form a third regular pentagon, which is still smaller. This
process can be continued indefinitely, resuviting in pentagons that are as
small as desired and leading to the conclusion that the ratio of a diagonal
to a side in a regular pentagon is not rational. The irrationality of this ratio
is, in fact, a consequence of the argument presented in connection with
Fig. 4.2 in which the golden section was shown to repeat itself over and
over again. Was it perhaps this property that led to the disclosure, possibly
by Hippasus, of incommensurability? There is no surviving document to
resolve the question, but the suggestion is at least a plausible one. In this
case, it would not have been /2 but /5 that first disclosed the existence
of incommensurable magnitudes, for the solution of the equation a:x =
x:(a — x) leads to (V5 — 1)/2 as the ratio of the side of a regular pentagon
to a diagonal. The ratio of the diagonal of a cube to an edge is V3, and
here, too, the spectre of the incommensurable rears its ugly head.

A geometric proof somewhat analogous to that for the ratio of the
diagonal of a pentagon to its side can be provided also for the ratio of the
diagonal of a square to its side. If in the square ABCD (Fig. 5.7) one lays
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off on the diagonal AC the segment AP = AB and at P erects the per-
pendicular PQ, the ratio of CQ to PC will be the same as the ratio of AC
to AB. Again, if on CQ one lays off QR = QP and constructs RS per-
pendicular to CR, the ratio of hypotenuse to side again will be what it was
before. This process, too, can be continued indefinitely, thus affording a
proof that no unit of length, however small, can be found so that the
hypotenuse and a side will be commensurable.

PARADOXES OF ZENO

The Pythagorean doctrine that “Numbers constitute the entire heaven”
was now faced with a very serious problem indeed; but it was not the only
one, for the school was confronted also by arguments propounded by the
neighboring Eleatics, a rival philosophical movement. Ionian philosophers
of Asia Minor had sought to identify a first principle for all things. Thales
had thought to find this in water, but others preferred to think of air or
fire as the basic element. The Pythagoreans had taken a more abstract
direction, postulating that number in all its plurality was the basic stuff
behind phenomena; this numerical atomism, beautifully illustrated in the
geometry of figurate numbers, had come under attack by the followers of
Parmenides of Elea (fl. ca. 450 B.C.). The fundamental tenet of the Eleatics
was the unity and permanence of being, a view that contrasted with the
Pythagorean ideas of multiplicity and change. Of Parmenides’ disciples the
best known was Zeno the Eleatic (fl. ca. 450 B.C.) who propounded ar-
guments to prove the inconsistency in the concepts of multiplicity and
divisibility. The method Zeno adopted was dialectical, anticipating Socrates
in this indirect mode of argument: starting from his opponent’s premises,
he reduced these to an absurdity.

The Pythagoreans had assumed that space and time can be thought of
as consisting of points and instants; but space and time have also a property,
more easily intuited than defined, known as “continuity.” The ultimate
elements making up a plurality were assumed on the one hand to have the
characteristics of the geometric unit—the point—and on the other to
have certain characteristics of the numeric units or numbers. Aristotle
described a Pythagorean point as “unity having position” or as “‘unity
considered in space.” It has been suggested® that it was against such a view
that Zeno propounded his paradoxes, of which those on motion are cited
most frequently. As they have come down to us, through Aristotle and
others, four of them seem to have caused the most trouble: (1) the Di-
chotomy, (2) the Achilles, (3) the Arrow, and (4) the Stade. The first argues

*See Paul Tannery, La géométrie grecque (Paris, 1887), pp. 217-261. For a different view
see B. L. van der Waerden, “Zenon und die Grundlagenkrise der griechischen Mathematik,”
Mathematische Annalen, 117 (1940), 141-161.
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that before a moving object can travel a given distance, it must first travel
half this distance; but before it can cover this, it must travel the first quarter
of the distance; and before this, the first eighth, and so on through an
infinite number of subdivisions. The runner wishing to get started must
make an infinite number of contacts in a finite time; but it is impossible
to exhaust an infinite collection, hence the beginning of motion is impos-
sible. The second of the paradoxes is similar to the first except that the
infinite subdivision is progressive rather than regressive. Here Achilles is
racing against a tortoise that has been given a headstart, and it is argued
that Achilles, no matter how swiftly he may run, can never overtake the
tortoise, no matter how slow it may be. By the time that Achilles will have
reached the initial position of the tortoise, the latter will have advanced
some short distance; and by the time that Achilles will have covered this
distance, the tortoise will have advanced somewhat farther; and so the
process continues indefinitely, with the result that the swift Achilles can
never overtake the slow tortoise.

The Dichotomy and the Achilles argue that motion is impossible under
the assumption of the infinite subdivisibility of space and time; the Arrow
and the Stade, on the other hand, argue that motion is equally impossible
if one makes the opposite assumption—that the subdivisibility of space
and time terminates in indivisibles. In the Arrow Zeno argues that an
object in flight always occupies a space equal to itself; but that which always
occupies a space equal to itself is not in motion. Hence, the flying arrow
is at rest at all times, so that its motion is an illusion.

Most controversial of the paradoxes on motion, and most awkward to
describe, is the Stade (or Stadium), but the argument can be phrased
somewhat as follows. Let A,, A,, A3, A, be bodies of equal size that are
stationary; let B,, B,, B;, B, be bodies, of the same size as the A’s, that
are moving to the right so that each B passes each A in an instant—the
smallest possible interval of time. Let C;, C,, G;, C, also be of equal size
with the A’s and B’s and let them move uniformly to the left with respect
to the A’s so that each C passes each A in an instant of time. Let us assume
that at a given time the bodies occupy the following relative positions:

A | A | A | A,

B, B, | B, B,

C, | G| G| C

Then, after the lapse of a single instant—that is, after an indivisible sub-
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division of time—the positions will be as follows:

A, A, | As | Ay

B, B, B; B,

Cl CZ C3 C4

It is clear, then, that C, will have passed two of the B’s; hence, the instant
cannot be the minimum time interval, for we can take as a new and smaller
unit the time it takes C, to pass one of the B’s.

The arguments of Zeno seem to have had a profound influence on the
development of Greek mathematics, comparable to that of the discovery
of the incommensurable, with which it may have been related. Originally,
in Pythagorean circles, magnitudes were represented by pebbles or calculi,
from which our word calculation comes, but by the time of Euclid there
is a complete change in point of view. Magnitudes are not in general
associated with numbers or pebbles, but with line segments. In the Elements
even the integers themselves are represented by segments of lines. The
realm of number continued to have the property of discreteness, but the
world of continuous magnitudes (and this includes most of pre-Hellenic
and Pythagorean mathematics) was a thing apart from number and had to
be treated through geometric method. It seemed to be geometry rather
than number that ruled the world. This was perhaps the most far-reaching
conclusion of the Heroic Age, and it is not unlikely that this was due in
large measure to Zeno of Elea and Hippasus of Metapontum.

DEDUCTIVE REASONING

It has generally been held that the deductive element had been introduced
into mathematics by Thales, but recently it has been argued against this
thesis that the mathematics of the sixth and fifth centuries B.C. was too
primitive to countenance such a contribution. Those who hold to this thesis
sometimes refer to the arguments of Zeno and Hippasus as possible in-
spiration for the deductive approach. Certainly the doubts and problems
raised in this connection would have been a fertile field for the growth of
deduction; and it would not be unreasonable to regard the end of the fifth
century B.C. as a terminus ante quem for the rational deductive form with
which we have become so familiar. It may be well to indicate at this point,
therefore, that there are several conjectures as to the causes leading to the
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conversion of the mathematical prescriptions of pre-Hellenic peoples into
the deductive structure appearing in Greece. Some have suggested that
Thales in his travels had noted discrepancies in pre-Hellenic mathematics—
such as the Egyptian and Babylonian rules for the area of a circle—and
that he and his early successors, therefore, saw the need for a strict rational
method. Others, more conservative, would place the deductive form much
later—perhaps even as late as the early fourth century, following the dis-
covery of the incommensurable. Other suggestions find the cause outside
mathematics. One, for example, sees in the sociopolitical development of
the Greek city-states the rise of dialectics and a consequent requirement
of a rational basis for mathematics and other studies; another somewhat
similar suggestion is that deduction may have come out of logic in attempts
to convince an opponent of a conclusion by looking for premises from
which the conclusion necessarily follows.

GEOMETRIC ALGEBRA

Whether deduction came into mathematics in the sixth century B.C. or the
fourth and whether incommensurability was discovered before or after 400
B.C., there can be no doubt that Greek mathematics had undergone drastic
changes by the time of Plato. The dichotomy between number and con-
tinuous magnitude required a new approach to the Babylonian algebra that
the Pythagoreans had inherited. The old problems in which, given the sum
and the product of the sides of a rectangle, the dimensions were required,
had to be dealt with differently from the numerical algorithms of the Ba-
bylonians. A “geometric algebra” had to take the place of the older “‘arith-
metic algebra,” and in this new algebra there could be no adding of lines
to areas or of areas to volumes. From now on there had to be a strict
homogeneity of terms in equations, and the Mesopotamian normal forms,
xy = A, x £y = b, were to be interpreted geometrically. The obvious
conclusion, which the reader can arrive at by eliminating y, is that one
must construct on a given line b a rectangle whose unknown width x must
be such that the area of the rectangle exceeds the given area A by the
square x2 or (in the case of the minus sign) falls short of the area A by the
square x? (Fig. 5.8). In this way the Greeks built up the solution of quadratic
equations by their process known as “‘the application of areas,” a portion
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of geometric algebra that is fully covered by Euclid’s Elements. Moreover,
the uneasiness resulting from incommensurable magnitudes led to an avoid-
ance of ratios, insofar as possible, in elementary mathematics. The linear
equation ax = bc, for example, was looked upon as an equality of the
areas ax and bc, rather than as a proportion—an equality between the two
ratios a:b and c:x. Consequently, in constructing the fourth proportion x
in this case, it was usual to construct a rectangle OCDB with sides b =
OB and ¢ = OC (Fig. 5.9) and then along OC to lay off OA = a. One
completes rectangle OAEB and draws the diagonal OF cutting CD in P.
It is now clear that CP is the desired line x, for rectangle OARS is equal
in area to rectangle OCDB. Not until Book V of the Elements did Euclid
take up the difficult matter of proportionality.

Greek geometric algebra strikes the modern reader as excessively
artificial and difficult; to those who used it and became adept at handling
its operations, however, it probably appeared to be a convenient tool. The
distributive law a(b + ¢ + d) = ab + ac + ad undoubtedly was far more
obvious to a Greek scholar than to the beginning student of algebra today,
for the former could easily picture the areas of the rectangles in this theo-
rem, which simply says that the rectangle on a and the sum of segments
b, c, d is equal to the sum of the rectangles on a and each of the lines
b, c, d taken separately (Fig. 5.10). Again, the identity (a + b)’ = a* +
2ab + b? becomes obvious from a diagram that shows the three squares
and the two equal rectangles in the identity (Fig. 5.11); and a difference

a b
b G d
a? ab |a
a| ab ac ad
ab b% b

FIG. 5.10 FIG. 5.11
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FIG. 5.12 FIG. 5.13

of two squares a*> — b?> = (a + b)(a — b) can be pictured in a similar
fashion (Fig. 5.12). Sums, differences, products, and quotients of line seg-
ments can easily be constructed with straightedge and compasses. Square
roots also afford no difficulty in geometric algebra. If one wishes to find a
line x such that x> = ab, one simply follows the procedure found in ele-
mentary geometry textbooks today. One lays off on a straight line the
segment ABC, where AB = aand BC = b (Fig. 5.13). With AC as diameter
one constructs a semicircle (with center O) and at B erects the perpen-
dicular BP, which is the segment x desired. It is interesting that here, too,
the proof as given by Euclid, probably following the earlier avoidance of
ratios, makes use of areas rather than proportions. If in our figure we let
PO = AO = CO = r and BO = s, Euclid would say essentially that x>
=rt— 5= (r —s)(r + 5) = ab.

DEMOCRITUS OF ABDERA

The Heroic Age in mathematics produced half a dozen great figures, and
among them must be included a man who is better known as a chemical
philosopher. Democritus of Abdera (ca. 460-370 B.C.) is today celebrated
as a proponent of a materialistic atomic doctrine, but in his time he had
acquired also a reputation as a geometer. He is reported to have traveled
more widely than anyone of his day—to Athens, Egypt and Mesopotamia,
and possibly India—acquiring what learning he could; but his own achieve-
ments in mathematics were such that he boasted that not even the “rope-
stretchers” in Egypt excelled him. He wrote a number of mathematical
works, not one of which is extant today, but we have the titles of a few:
On Numbers, On Geometry, On Tangencies, On Mappings, and On Ir-
rationals. So great was his fame that in later centuries many treatises in
chemistry and mathematics were unwarrantedly attributed to him. In par-
ticular, early alchemical works by a pseudo-Democritus are not to be as-
cribed to our Abderite; but other books, On the Pythagoreans, On the
World Order, and On Ethics, may have been genuine. His scientific material
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was said to be clear but clothed in a literary style; Cicero wrote of De-
mocritus that he had rhythm that made him more poetical than the poets.
Yet of the mass of writings thought to have been by Democritus, nothing
beyond a few words has survived.

The key to the mathematics of Democritus is without doubt to be found
in his physical doctrine of atomism. All phenomena were to be explained,
he argued, in terms of indefinitely small and infinitely varied (in size and
shape) impenetrably hard atoms moving about ceaselessly in empty space.
The creation of our world—and of innumerable others also—was the result
of an ordering or coagulation of atoms into groups having certain similar-
ities. This was not a new theory, for it had been proposed earlier by
Leucippus; therefore, the opponents of Democritus (and there were many
of these) accused him of plagiarism from others, including Anaxagoras and
Pythagoras. The physical atomism of Leucippus and Democritus may in-
deed have been suggested by the geometric atomism of the Pythagoreans,
and it is not surprising that the mathematical problems with which De-
mocritus was chiefly concerned were those that demand some sort of in-
finitesimal approach. The Egyptians, for example, were aware that the
volume of a pyramid is one third the product of the base and the altitude,
but a proof of this fact almost certainly was beyond their capabilities, for
it requires a point of view equivalent to the calculus. Archimedes later
wrote that this result was due to Democritus, but that the latter did not
prove it rigorously. This creates a puzzle, for if Democritus added anything
to the Egyptian knowledge here, it must have been some sort of demon-
stration, albeit inadequate. Perhaps Democritus showed that a triangular
prism can be divided into three triangular pyramids which are equal in
height and area of the base, and then deduced, from the assumption that
pyramids of the same height and equal bases are equal, the familiar Egyp-
tian theorem.

This assumption can be justified only by the application of infinitesimal
techniques. If, for example, one thinks of two pyramids of equal bases and
the same height as composed of indefinitely many infinitely thin equal cross
sections in one-to-one correspondence (a device usually known as Cava-
lieri’s principle in deference to the seventeenth-century geometer), the
assumption appears to be justified. Such a fuzzy geometric atomism might
have been at the base of Democritus’ thought, although this has not been
established. In any case, following the paradoxes of Zeno and the aware-
ness of incommensurables, such arguments based on an infinity of infini-
tesimals were not acceptable. Archimedes consequently could well hold
that Democritus had not given a rigorous proof. The same judgment would
be true with respect to the theorem, also attributed by Archimedes to
Democritus, that the volume of a cone is one third the volume of the
circumscribing cylinder. This result probably was looked upon by Demo-
critus as a corollary to the theorem on the pyramid, for the cone is essen-
tially a pyramid whose base is a regular polygon of infinitely many sides.
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Democritean geometric atomism was immediately confronted by certain
problems. If the pyramid or the cone, for example, is made up of infinitely
many infinitely thin triangular or circular sections parallel to the base, a
consideration of any two adjacent laminae creates a paradox. If the ad-
jacent sections are equal in area, then, since all sections are equal, the
totality will be a prism or a cylinder, and not a pyramid or a cone. If, on
the other hand, adjacent sections are unequal, the totality will be a step
pyramid or a step cone and not the smooth-surfaced figure one has in mind.
This problem is not unlike the difficulties with the incommensurable and
with the paradoxes of motion. Perhaps, in his On the Irrational, Democritus
analysed the difficulties here encountered, but there is no way of knowing
what direction his attempts may have taken. His extreme unpopularity in
the two dominant philosophical schools of the next century, those of Plato
and Aristotle, may have encouraged the disregard of Democritean ideas.
Nevertheless, the chief mathematical legacy of the Heroic Age can be
summed up in six problems: the squaring of the circle, the duplication of
the cube, the trisection of the angle, the ratio of incommensurable mag-
nitudes, the paradoxes on motion, and the validity of infinitesimal methods.
To some extent these can be associated, although not exclusively, with
men considered in this chapter: Hippocrates, Archytas, Hippias, Hippasus,
Zeno, and Democritus. Other ages were to produce a comparable array
of talent, but perhaps never again was any age to make so bold an attack
on so many fundamental mathematical problems with such inadequate
methodological resources. It is for this reason that we have called the period
from Anaxagoras to Archytas the Heroic Age.



The Age of Plato
and Aristotle

Willingly would I burn to death like Phaeton, were this the price for reaching the
sun and learning its shape, its size, and its substance.

Eudoxus

THE SEVEN LIBERAL ARTS

The Heroic Age lay largely in the fifth century B.C., and from this period
little remains in the way of direct evidence about mathematical develop-
ments. The histories of Herodotus and Thucydides and the plays of Aes-
chylus, Euripides, and Aristophanes have in some measure survived, but
scarcely a line is extant of what was written by mathematicians of the time.
Firsthand mathematical sources from the fourth century B.C. are almost
as scarce, but this inadequacy is made up for in large measure by accounts
written by philosophers who were au courant with the mathematics of their
day. We have most of what Plato wrote and about half of the work of
Aristotle; with the writings of these intellectual leaders of the fourth century
B.C. as a guide, we can give a far more dependable account of what hap-
pened in their day than we could about the Heroic Age.

We included Archytas among the mathematicians of the Heroic Age,
but in a sense he really is a transition figure in mathematics during Plato’s

82
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time. Archytas was among the last of the Pythagoreans, both literally and
figuratively. He could still believe that number was all-important in life
and in mathematics, but the wave of the future was to elevate geometry
to the ascendancy, largely because of the problem of incommensurability.
On the other hand, Archytas is reported to have established the quadri-
vium—arithmetic, geometry, music, and astronomy—as the core of a lib-
eral education, and here his views were to dominate much of pedagogical
thought to our day. The seven liberal arts, which remained a shibboleth
for almost two millennia, were made up of Archytas’ quadrivium and the
trivium of grammar, rhetoric, and Zeno’s dialectic. Consequently one may
with some justice hold that the mathematicians of the Heroic Age were
responsible for much of the direction in Western educational traditions,
especially as transmitted through the philosophers of the fourth century
BEGH

SOCRATES

The fourth century B.C. had opened with the death of Socrates, a scholar
who adopted the dialectic method of Zeno and repudiated the Pythago-
reanism of Archytas. Socrates admitted that in his youth he had been
attracted by such questions as why the sum 2 + 2 was the same as the
product 2 + 2, as well as by the natural philosophy of Anaxagoras; but
upon realizing that neither mathematics nor science could satisfy his desire
to know the essence of things, he gave himself up to his characteristic
search for the good.

In the Phaedo of Plato, the dialogue in which the last hours of Socrates
are so beautifully described, we see how deep metaphysical doubts pre-
cluded a Socratic concern with either mathematics or natural science:

I cannot satisfy myself that, when one is added to one, the one to which the
addition is made becomes two, or that the two units added together make
two by reason of the addition. I cannot understand how when separated from
the other, each of them was one and not two, and now, when they are brought
together, the mere juxtaposition or meeting of them should be the cause of
their becoming two.

Hence, the influence of Socrates in the development of mathematics was
negligible, if not actually negative. This makes it all the more surprising
that it was his student and admirer, Plato, who became the mathematical
inspiration of the fourth century B.C. We shall concentrate in this chapter
on the mathematical achievements of half a dozen men who lived between
the death of Socrates in 399 B.c. and the death of Aristotle in 322 B.C.
The six men whose work we shall describe (in addition to that of Plato
and Aristotle) are Theodorus of Cyrene (fl. ca. 390 B.c.), Theaetetus (369
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B.C.), Eudoxus of Cnidus (+ ca. 355 B.C.), Menaechmus (fl. ca. 350 B.C.)
and his brother Dinostratus (fl. ca. 350 B.C.), and Autolycus of Pitane (fi.
ca. 330 B.C.).

PLATONIC SOLIDS

The six mathematicians were not scattered throughout the Greek world,
as had been those in the fifth century B.C.; they were associated more or
less closely with the Academy of Plato at Athens. Although Plato himself
made no outstanding specific contribution to technical mathematical re-
sults, he was the center of the mathematical activity of the time and guided
and inspired its development. Over the doors of his school was inscribed
the motto, “Let no one ignorant of geometry enter here’’; his enthusiasm
for the subject led him to become known not as a mathematician, but as
“the maker of mathematicians.” It is clear that Plato’s high regard for
mathematics did not come from Socrates; in fact, the earlier Platonic dia-
logues seldom refer to mathematics. The one who converted Plato to a
mathematical outlook undoubtedly was Archytas, a friend whom he visited
in Sicily in 388 B.C. Perhaps it was there that he learned of the five regular
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tetrahedron
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Air Earth
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Elements and regular solids

solids, which were associated with the four elements of Empedocles in a
cosmic scheme that fascinated men for centuries. Possibly it was the Py-
thagorean regard for the dodecahedron that led Plato to look on this, the
fifth and last, regular solid as a symbol of the universe. Plato put his ideas
on the regular solids into a dialogue entitled the Timaeus, presumably
named for a Pythagorean who serves as the chief interlocutor. It is not
known whether Timaecus of Locri really existed or whether Plato invented
him as a character through whom to express the Pythagorean views that
still were strong in what is now Southern Italy. The regular polyhedra have
often been called “*cosmic bodies’ or “Platonic solids™ because of the way
in which Plato in the Timaeus applied them to the explanation of scientific
phenomena. Although this dialogue, probably written when Plato was near
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seventy, provides the earliest definite evidence for the association of the
four elements with the regular solids, much of this fantasy may be due to
the Pythagoreans. Proclus attributes the construction of the cosmic figures
to Pythagoras; but the scholiast Suidas reported that Plato’s friend Theae-
tetus, born about 414 B.C. and the son of one of the richest patricians in
Attica, first wrote on them. A scholium (of uncertain date) to Book XIII
of Euclid’s Elements reports that only three of the five solids were due to
the Pythagoreans, and that it was through Theaetetus that the octahedron
and icosahedron became known. It seems likely that in any case Theaetetus
made one of the most extensive studies of the five regular solids, and to
him probably is due the theorem that there are five and only five regular
polyhedra. Perhaps he is responsible also for the calculations in the Ele-
ments of the ratios of the edges of the regular solids to the radius of the
circumscribed sphere.

Theaetetus was a young Athenian who died in 369 B.C. from a com-
bination of wounds received in battle and of dysentery, and the Platonic
dialogue bearing his name was a commemorative tribute by Plato to his
friend. In the dialogue, purporting to take place some thirty years earlier,
Theaetetus discusses with Socrates and Theodorus the nature of incom-
mensurable magnitudes. It has been assumed that this discussion took
somewhat the form that we find in the opening of Book X of the Elements.
Here distinctions are made not only between commensurable and incom-
mensurable magnitudes, but also between those that while incommensur-
able in length are, or are not, commensurable in square. Surds such
as V3 and V5 are incommensurable in length, but they are commensur-
able in square, for their squares have the ratio 3 to 5. The magnitudes

V1 + V3and V1 + \/5, on the other hand, are incommensurable both

in length and in square.

THEODORUS OF CYRENE

The dialogue that Plato composed in memory of his friend Theaetetus
contains information on another mathematician whom Plato admired and
who contributed to the early development of the theory of incommensur-
able magnitudes. Reporting on the then recent discovery of what we
call the irrationality of \/f, Plato in the Theaetetus says that his teacher,
Theodorus of Cyrene—of whom Theaetetus also was a pupil—was the first
to prove the irrationality of the square roots of the nonsquare integers
from 3 to 17 inclusive. It is not known how he did this, nor why he stopped
with V17. The proof in any case would have been constructed along the
lines of that for V2 as given by Aristotle and interpolated in later versions
of Book X of the Elements. References in ancient historical works indicate
that Theodorus made discoveries in elementary geometry that later were
incorporated in Euclid’s Elements; but the works of Theodorus are lost.
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PLATONIC ARITHMETIC AND GEOMETRY

Plato is important in the history of mathematics largely for his role as
inspirer and director of others, and perhaps to him is due the sharp dis-
tinction in ancient Greece between arithmetic (in the sense of the theory
of numbers) and logistic (the technique of computation). Plato regarded
logistic as appropriate for the businessman and for the man of war, who
“must learn the art of numbers or he will not know how to array his troops.”
The philosopher, on the other hand, must be an arithmetician ‘‘because
he has to arise out of the sea of change and lay hold of true being.”
Moreover, Plato says in the Republic, *‘Arithmetic has a very great and
elevating effect, compelling the mind to reason about abstract number.”
So elevating are Plato’s thoughts concerning number that they reach the
realm of mysticism and apparent fantasy. In the last book of the Republic
he refers to a number that he calls ““the lord of better and worse births.”
There has been much speculation concerning this “Platonic number,” and
one theory is that it is the number 60* = 12,960,000—important in Ba-
bylonian numerology and possibly transmitted to Plato through the Py-
thagoreans. In the Laws the number of citizens in the ideal state is given
as 5040 (thatis, 7-6-5-4-3-2-1). This sometimes is referred to as
the Platonic nuptial number, and various theories have been advanced to
suggest what Plato had in mind.

As in arithmetic Plato saw a gulf separating the theoretical and com-
putational aspects, so also in geometry he espoused the cause of pure
mathematics as against the materialistic views of the artisan or technician.
Plutarch, in his Life of Marcellus, speaks of Plato’s indignation at the use
of mechanical contrivances in geometry. Apparently Plato regarded such
use as ‘‘the mere corruption and annihilation of the one good of geometry,
which was thus shamefully turning its back upon the unembodied objects
of pure intelligence.”” Plato may consequently have been largely responsible
for the prevalent restriction in Greek geometric constructions to those
that can be effected by straightedge and compasses alone. The reason for
the limitation is not likely to have been the simplicity of the instruments
used in constructing lines and circles, but rather the symmetry of the con-
figurations. Any one of the infinitely many diameters of a circle is a line
of symmetry of the figure; any point on an infinitely extended straight line
can be thought of as a center of symmetry, just as any line perpendicular
to the given line is a line with respect to which the given line is symmetric.
Platonic philosophy, with its apotheosization of ideas, would quite naturally
find a favored role for the line and the circle among geometric figures.
In a somewhat similar manner Plato glorified the triangle. The faces of the
five regular solids in Plato’s view were not simple triangles, squares, and
pentagons. Each of the four faces of the tetrahedron, for example, is made
up of six smaller right triangles formed by altitudes of the equilateral
triangular faces. The regular tetrahedron he, therefore, thought of as made
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up of twenty-four scalene right triangles in which the hypotenuse is double
one side; the regular octahedron contains 8 X 6 or 48 such triangles, and
the icosahedron is made up of 20 X 6 or 120 triangles. In a similar way
the hexahedron (or cube) is constructed of twenty-four isosceles right tri-
angles, for each of the six square faces contains four right triangles when
the diagonals of the squares are drawn.

To the dodecahedron Plato had assigned a special role as representative
of the universe, cryptically saying that “God used it for the whole” (Ti-
maeus 55C). Plato looked upon the dodecahedron as composed of 360
scalene right triangles, for when the five diagonals and five medians are
drawn in each of the pentagonal faces, each of the twelve faces will contain
thirty right triangles. The association of the first four regular solids with
the traditional four universal elements provided Plato in the Timaeus with
a beautifully unified theory of matter according to which everything was
constructed of ideal right triangles. The whole of physiology, as well as
the sciences of inert matter, is based in the Timaeus on these triangles.
Normal growth of the body, for example, is explained as follows:

When the frame of the whole creature is young and the triangles of its
constituent bodies are still as it were fresh from the workshop, their joints
are firmly locked together. . . . Accordingly, since any triangles composing
the meat and drink . . . are older and weaker than its own, with its new-
made triangles, it gets the better of them and cuts them up, and so causes
the animal to wax large.

In old age, on the other hand, the triangles of the body are so loosened
by use that “they can no longer cut up into their own likeness the triangles
of the nourishment as they enter, but are themselves easily divided by the
intruders from without,”” and the creature wastes away.

ORIGIN OF ANALYSIS

| Pythagoras is reputed to have established mathematics as a liberal subject,

but Plato was influential in making the subject an essential part of the
curriculum for the education of statesmen. Influenced perhaps by Archytas,
Plato would add to the original subjects in the quadrivium a new subject,
stereometry, for he believed that solid geometry had not been sufficiently
emphasized. Plato also discussed the foundations of mathematics, clarified
some of the definitions, and reorganized the assumptions. He emphasized
that the reasoning used in geometry does not refer to the visible figures
that are drawn but to the absolute ideas that they represent. The Pytha-
goreans had defined a point as “unity having position,” but Plato would
rather think of it as the beginning of a line. The definition of a line as
“breadthless length” seems to have originated in the school of Plato, as
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well as the idea that a line *'lies evenly with the points on it.” In arithmetic
Plato emphasized not only the distinction between odd and even numbers,
but also the categories ‘“‘even times even,” “‘odd times even,” and “‘odd
times odd.” Although we are told that Plato added to the axioms of math-
ematics, we do not have an account of his premises.

Few specific mathematical contributions are attributed to Plato. A for-
mula for Pythagorean triples—(2n)* + (n? — 1)> = (n* + 1)*, where n
is any natural number—bears Plato’s name, but this is merely a slightly
modified version of a result known to the Babylonians and the Pythago-
reans. Perhaps more genuinely significant is the ascription to Plato of the
so-called analytic method. In demonstrative mathematics one begins with
what is given, either generally in the axioms and postulates or more spe-
cifically in the problems at hand. Proceeding step by step, one then arrives
at the statement that was to have been proved. Plato seems to have pointed
out that often it is pedagogically convenient, when a chain of reasoning
from premises to conclusion is not obvious, to reverse the process. One
might begin with the proposition that is to be proved and from it deduce
a conclusion that is known to hold. If, then, one can reverse the steps in
this chain of reasoning, the result is a legitimate proof of the proposition.
It is unlikely that Plato was the first to note the efficacy in the analytic
point of view, for any preliminary investigation of a problem is tantamount
to this. What Plato is likely to have done is to formalize this procedure,
or perhaps to give it a name.

The role of Plato in the history of mathematics is still bitterly disputed.
Some regard him as an exceptionally profound and incisive thinker; others
picture him as a mathematical pied piper who lured men away from prob-
lems concerning the world’s work and encouraged them in idle speculation.
In any case, few would deny that Plato had a tremendous effect on the
development of mathematics. The Platonic Academy in Athens became
the mathematical center of the world, and it was from this school that the
leading teachers and research workers came during the middle of the fourth
century B.C. Of these the greatest was Eudoxus of Cnidus (408?7-335?
B.C.), a man who was at one time a pupil of Plato and who became the
most renowned mathematician and astronomer of his day.

EUDOXUS OF CNIDUS

We sometimes read of the ““Platonic reform” in mathematics, and although
the phrase tends to exaggerate the changes taking place, the work of Eu-
doxus was so significant that the word “‘reform” is not inappropriate. In
Plato’s youth the discovery of the incommensurable had caused a veritable
logical scandal, for it had raised havoc with theorems involving proportions.
Two quantities, such as the diagonal and side of a square, are incommen-
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surable when they do not have a ratio such as a (whole) number has to a
(whole) number. How, then, is one to compare ratios of incommensurable
magnitudes? If Hippocrates really did prove that the areas of circles are
to each other as squares on their diameters, he must have had some way
of handling proportions or the equality of ratios. We do not know how he
proceeded, or whether to some extent he anticipated Eudoxus, who gave
a new and generally accepted definition of equal ratios. Apparently the
Greeks had made use of the idea that four quantities are in proportion,
a:b = c:d, if the two ratios a: b and c:d have the same mutual subtraction.
That is, the smaller in each ratio can be laid off on the larger the same
integral number of times, and the remainder in each case can be laid off
on the smaller the same integral number of times, and the new remainder
can be laid off on the former remainder the same integral number of times,
and so on. Such a definition would be awkward to use, and it was a brilliant
achievement of Eudoxus to discover the theory of proportion used in Book
V of Euclid’s Elements. The word ratio denoted essentially an undefined
concept in Greek mathematics, for Euclid’s “‘definition” of ratio as a kind
of relation in size between two magnitudes of the same type is quite in-
adequate. More significant is Euclid’s statement that magnitudes are said
to have a ratio to one another if a multiple of either can be found to exceed
the other. This is essentially a statement of the so-called “Axiom of Ar-
chimedes”—a property that Archimedes himself attributed to Eudoxus.
The Eudoxian concept of ratio consequently excludes zero and clarifies
what is meant by magnitudes of the same kind. A line segment, for ex-
ample, is not to be compared, in terms of ratio, with an area; nor is an
area to be compared with a volume.

Following these preliminary remarks on ratios, Euclid gives in Definition
5 of Book V the celebrated formulation by Eudoxus:

Magnitudes are said to be in the same ratio, the first to the second and the
third to the fourth, when, if any equimultiples whatever be taken of the first
and the third, and any equimultiples whatever of the second and fourth, the
former equimultiples alike exceed, are alike equal to, or are alike less than,
the latter equimultiples taken in corresponding order [Heath 1981, Vol. 2,
p. 114].

That is, a/b = c/d if and only if given integers m and n, whenever ma <
nb, then mc < nd, or if ma = nb, then mc = nd, or if ma > nb, then
mc > nd.

The Eudoxian definition of equality of ratios is not unlike the process
of cross-multiplication that is used today for fractions—a/b = c/d accord-
ing as ad = bc—a process equivalent to a reduction to a common denom-
inator. To show that £ is equal to §, for example, we multiply 3 and 6 by
4, to obtain 12 and 24, and we multiply 4 and 8 by 3, obtaining the same
pair of numbers 12 and 24. We could have used 7 and 13 as our two
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multipliers, obtaining the pair 21 and 42 in the first case and 52 and 104
in the second; and as 21 is less than 52, so is 42 less than 104. (We have
here interchanged the second and third terms in Eudoxus’ definition to
conform to the common operations as usually used today, but similar
relationships hold in either case.) Our arithmetical example does not do
justice to the subtlety and efficacy of Eudoxus’ thought, for the application
here appears to be trivial. To gain a heightened appreciation of his defi-
nition it would be well to replace a, b, c, d by surds or, better still, to let
a and b be spheres and ¢ and d cubes on the radii of the spheres. Here a
cross-multiplication becomes meaningless, and the applicability of Eu-
doxus’ definition is far from obvious. In fact, it will be noted that, strictly
speaking, the definition is not far removed from the nineteenth-century
definitions of real number, for it separates the class of rational numbers
m/n into two categories, according as ma < nb or ma > nb. Because there
are infinitely many rational numbers, the Greeks by implication were faced
by the concept they wished to avoid—that of an infinite set—but at least
it was now possible to give satisfactory proofs of theorems involving pro-
portions. .

METHOD OF EXHAUSTION

A crisis resulting from the incommensurable had been successfully met,
thanks to the imagination of Eudoxus; but there remained another unsolved
problem—the comparison of curved and straight-line configurations. Here,
too, it seems to have been Eudoxus who supplied the key. Earlier math-
ematicians seem to have suggested that one try inscribing and circumscrib-
ing rectilinear figures in and about the curved figure and continue to
multiply indefinitely the number of sides; but they did not know how to
clinch the argument, for the concept of a limit was unknown at the time.
According to Archimedes, it was Eudoxus who provided the lemma that
now bears Archimedes’ name—sometimes known as the axiom of conti-
nuity—which served as the basis for the method of exhaustion, the Greek
equivalent of the integral calculus. The lemma or axiom states that, given
two magnitudes having a ratio (that is, neither being zero), one can find
a multiple of either one which will exceed the other. This statement ex-
cluded a fuzzy argument about indivisible line segments, or fixed infini-
tesimals, that was sometimes maintained in Greek thought. It also excluded
the comparison of the so-called angle of contingency or ‘“‘horn angle”
(formed by a curve C and its tangent T at a point P on C) with ordinary
rectilinear angles. The horn angle seemed to be a magnitude different from
zero, yet it does not satisfy the axiom of Eudoxus with respect to the
measures of rectilinear angles.

From the axiom of Eudoxus (or Archimedes) it is an easy step, by a
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reductio ad absurdum, to prove a proposition that formed the basis of the
Greek method of exhaustion:

If from any magnitude there be subtracted a part not less than its half, and
if from the remainder one again subtracts not less than its half, and if this
process of subtraction is continued, ultimately there will remain a magnitude
less than any preassigned magnitude of the same kind.

This proposition, which we shall refer to as the “exhaustion property,” is
equivalent to Euclid X.1 and to the modern statement that if M is a given
magnitude, ¢ is a preassigned magnitude of the same kind, and r is a ratio
such that # < r < 1, then we can find a positive integer N such that
M1 — r)" < ¢ for all positive integers n > N. That is, the exhaustion
property is equivalent to the modern statement that lim,_. M(1 — r)" =
0. Moreover, the Greeks made use of this property to prove theorems
about the areas and volumes of curvilinear figures. In particular, Ar-
chimedes ascribed to Eudoxus the earliest satisfactory proof that the vol-
ume of the cone is one third the volume of the cylinder having the same
base and altitude, a statement that would seem to indicate that the method
of exhaustion was derived by Eudoxus. If so, then it is to Eudoxus (rather
than to Hippocrates) that we probably owe the Euclidean proofs of theo-
rems concerning areas of circles and volumes of spheres. Facile earlier
suggestions had been made that the area of a circle could be exhausted by
inscribing in it a regular polygon and then increasing the number of sides
indefinitely, but the Eudoxian method of exhaustion first made such a
procedure rigorous. (It should be noted that the phrase ‘“method of ex-
haustion” was not used by the ancient Greeks, being a modern invention;
but the phrase has become so well established in the history of mathematics
that we shall continue to make use of it.) As an illustration of the way in
which Eudoxus probably carried out the method, we give here, in somewhat
modernized notation, the proof that areas of circles are to each other as
squares on their diameters. The proof, as it is given in Euclid, Elements
XII.2, is probably that of Eudoxus.

Let the circles be ¢ and C, with diameters d and D and areas a and A.
It is to be proved that a/A = d?/D?. The proof is complete if we proceed
indirectly and disprove the only other possibilities, namely, a/A < d*/D?
and a/A > d*/D?. Hence, we first assume that a/A > d*/D?. Then, there
is a magnitude a’ < a such thata’'/A = d?/D* Leta — a’ be a preassigned
magnitude ¢ > 0. Within the circles ¢ and C inscribe regular polygons of
areas p, and P,, having the same number of sides n, and consider the
intermediate areas outside the polygons but inside the circles (Fig. 6.1).
If the number of sides should be doubled, it is obvious that from these
intermediate areas we would be subtracting more than the half. Conse-
quently, by the exhaustion property, the intermediate areas can be reduced
through successive doubling of the number of sides (that is, by letting n
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FIG. 6.1

increase) untila — p, < e. Then, sincea — a’ = ¢, we have p, > a’. Now,
from earlier theorems it is known that p,/P, = d?/D’ and since it was
assumed that a’'/A = d?/D?, we have p,/P, = a'/A. Hence, if p, > a’,
as we have shown, we must conclude that P, > A. Inasmuch as P, is the
area of a polygon inscribed within the circle of area A, it is obvious that
P, cannot be greater than A. Since a false conclusion implies a false prem-
ise, we have disproved the possibility that a/A > d*/D>. In an analogous
manner we can disprove the possibility that a/A < d?/D?, thereby estab-
lishing the theorem that areas of circles are to each other as squares on
their diameters.

MATHEMATICAL ASTRONOMY

The property that we have just demonstrated appears to have been the
first precise theorem concerning the magnitudes of curvilinear figures; it
marks Eudoxus as the apparent originator of the integral calculus, the
greatest contribution to mathematics made by associates of the Platonic
Academy. Eudoxus, moreover, was by no means a mathematician only,
and in the history of science he is known as the father of scientific astron-
omy. Plato is said to have proposed to his associates that they attempt to
give a geometric representation of the movements of the sun, the moon,
and the five known planets. It evidently was tacitly assumed that the move-
ments were to be compounded of uniform circular motions. Despite such
a restriction, Eudoxus was able to give for each of the seven heavenly
bodies a satisfactory representation through a composite of concentric
spheres with centers at the earth and with varying radii, each sphere re-
volving uniformly about an axis fixed with respect to the surface of the
next larger sphere. For each planet, then, Eudoxus gave a system known
to his successors as ‘“‘homocentric spheres’’; these geometric schemes were
combined by Aristotle into the well-known Peripatetic cosmology of crys-
talline spheres that dominated thought for almost 2000 years.

Eudoxus was without doubt the most capable mathematician of the
Hellenic Age, but all of his works have been lost. It is possible that the
Aristotelian estimate for the circumference of the earth—about 400,000
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stades, or 40,000 miles—is due to Eudoxus, for Archimedes reported that
Eudoxus had calculated that the diameter of the sun was nine times that
of the earth. In his astronomical scheme Eudoxus had seen that by a
combination of circular motions he could describe the motions of the
planets in looped orbits along a curve known as the hippopede, or horse
fetter. This curve, resembling a figure eight on a sphere, is obtained as the
intersection of a sphere and a cylinder tangent internally to the sphere—
one of the few new curves that the Greeks recognized. At the time there
were only two means of defining curves: (1) through combinations of uni-
form motions and (2) as the intersections of familiar geometric surfaces.
The hippopede of Eudoxus is a good example of a curve that is derivable
in either of these two ways. Proclus, who wrote some 800 years after the
time of Eudoxus, reported that Eudoxus had added many general theorems
in geometry and had applied the Platonic method of analysis to the study
of the section (probably the golden section); but the two chief claims to
fame of Eudoxus remain the theory of proportions and the method of
exhaustion.

MENAECHMUS

Eudoxus is to be remembered in the history of mathematics not only for
his own work but also through that of his pupils. In Greece there was a
strong thread of continuity of tradition from teacher to student. Thus Plato
learned from Archytas, Theodorus, and Theaetetus; the Platonic influence
in turn was passed on through Eudoxus to the brothers Menaechmus and
Dinostratus, both of whom achieved eminence in mathematics. We saw
that Hippocrates of Chios had shown that the duplication of the cube could
be achieved provided that one could find, and was permitted to use, curves
with the properties expressed in the continued proportion a/x = x/y =
y/2a; we noted also that the Greeks had only two approaches to the
discovery of new curves. It was consequently a signal achievement on the
part of Menaechmus when he disclosed that curves having the desired
property were near at hand. In fact, there was a family of appropriate
curves obtainable from a single source—the cutting of a right circular cone
by a plane perpendicular to an element of the cone. That is, Menaechmus
is reputed to have discovered the curves that were later known as the
ellipse, the parabola, and the hyperbola.

Of all the curves, other than circles and straight lines, that are apparent
to the eye in everyday experience, the ellipse should be the most obvious,
for it is present by implication whenever a circle is viewed obliquely or
whenever one saws diagonally through a cylindrical log. Yet the first dis-
covery of the ellipse seems to have been made by Menaechmus as a mere
by-product in a search in which it was the parabola and hyperbola that
proffered the properties needed in the solution of the Delian problem.
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Beginning with a single-napped right circular cone having a right angle at
the vertex (that is, a generating angle of 45°), Menaechmus found that
when the cone is cut by a plane perpendicular to an element, the curve of
intersection is such that, in terms of modern analytic geometry, its equation
can be written in the form y? = Ix, where / is a constant depending on the
distance of the cutting plane from the vertex. We do not know how Men-
aechmus derived this property, but it depends only on theorems from
elementary geometry. Let the cone be ABC and let it be cut in the curve
EDG by a plane perpendicular to the element ADC of the cone (Fig. 6.2).
Then, through P, any point on the curve, pass a horizontal plane cutting
the cone in the circle PVR, and let Q be the other point of intersection of
the curve (parabola) and the circle. From the symmetries involved it follows
that line PO L RV at O. Hence, OP is the mean proportional between
RO and OV. Moreover, from the similarity of triangles OVD and BCA it
follows that OV/DO = BC/AB, and from the similarity of triangles R' DA
and ABC it follows that R"D/AR’' = BC/AB. If OP = y and OD = x
are coordinates of point P, we have y> = RO - OV, or, on substituting
equals,

» = R'D- 0V = 4R' - B€ . po . BC _ AR BC*
y?=R'D-0OV = AR B DO B - AR ®
Inasmuch as segments AR’, BC, and AB are the same for all points P on
the curve EQDPG, we can write the equation of the curve, a “section of
a right-angled cone,” as y> = lx, where / is a constant, later to be known
as the latus rectum of the curve. In an analogous way we can derive an
equation of the form y? = Ix — b?x?/a* for a “‘section of an acute-angled
cone” and an equation of the form y? = Ix + b?x?/a” for a “section of
an obtuse-angled cone,” where a and b are constants and the cutting plane
is perpendicular to an element of the acute-angled or obtuse-angled right

circular cone.
Menaechmus apparently derived these properties of the conic sections
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and others as well. Since this material has a strong resemblance to the use
of coordinates, as illustrated above, it has sometimes been maintained that
Menaechmus had analytic geometry. Such a judgment is warranted only
in part, for certainly Menaechmus was unaware that any equation in two
unknown quantities determines a curve. In fact, the general concept of an
equation in unknown quantities was alien to Greek thought. It was short-
comings in algebraic notations that, more than anything else, operated
against the Greek achievement of a full-fledged coordinate geometry.

DUPLICATION OF THE CUBE

Menaechmus had no way of foreseeing the hosts of beautiful properties
that the future was to disclose. He had hit upon the conics in a successful
search for curves with the properties appropriate to the duplication of the
cube. In terms of modern notation the solution is easily achieved. By
shifting the cutting plane (Fig. 6.2), we can find a parabola with any latus
rectum. If, then, we wish to duplicate a cube of edge a, we locate on a
right-angled cone two parabolas, one with latus rectum a and another with
latus rectum 2a. If, then, we place these with vertices at the origin and
with axes along the y- and x-axes respectively, the point of intersection of
the two curves will have coordinates (x, y) satisfying the continued pro-
portion a/x = x/y = y/2a (Fig. 6.3); that is, x = aVv2, y = aV4. The
x-coordinate, therefore, is the edge of the cube sought.

It is probable that Menaechmus knew that the duplication could be
achieved also by the use of a rectangular hyperbola and a parabola. If the
parabola with equation y*> = (a/2)x and the hyperbola xy = a* are placed
on a common coordinate system, the point of intersection will have co-
ordinates x = aV/2, y = aV/2, the x-coordinate being the side of the cube
desired. Menaechmus probably was acquainted with many of the now
familiar properties of the conic sections, including the asymptotes of the
hyperbola which would have permitted him to operate with the equivalents
of the modern equations that we used above. Proclus reported that Men-
aechmus was one of those who “made the whole of geometry more per-

x2=ay

y2 = 2ax

FIG. 6.3
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fect’”; but we know little concerning his actual work. We do know that
Menaechmus taught Alexander the Great, and legend attributes to Men-
aechmus the celebrated comment, when his royal pupil asked for a shortcut
to geometry: O King, for traveling over the country there are royal roads
and roads for common citizens; but in geometry there is one road for all.”
Among the chief authorities for attributing to Menaechmus the discovery
of conic sections is a letter from Eratosthenes to King Ptolemy Euergetes,
quoted some 700 years later by Eutocius, in which several duplications of
the cube are mentioned. Among them is one by Archytas’ unwieldy con-
struction and another by “‘cutting the cone in the triads of Menaechmus.”

DINOSTRATUS AND THE SQUARING OF THE CIRCLE

Dinostratus, brother of Menaechmus, was also a mathematician, and where
one of the brothers “solved” the duplication of the cube, the other “‘solved”
the squaring of the circle. The quadrature became a simple matter once a
striking property of the end point Q of the trisectrix of Hippias had been
noted, apparently by Dinostratus. If the equation of the trisectrix (Fig.
6.4) is nr sin 0 = 2a0, where a is the side of the square ABCD associated
with the curve, the limiting value of r as § tends toward zero is 2a/n. This
is obvious to one who has had calculus and recalls that lim,_,, sin /0 =
1 for radian measure. The proof as given by Pappus, and probably due to
Dinostratus, is based only on considerations from elementary geometry.
The theorem of Dinostratus states that side a is the mean proportiona]
between the segment DQ and the arc of the quarter circle AC; that is,
ACI/AB = AB/DQ. Using a typically Greek indirect proof, we establish
the theorem by demolishing the alternatives. Hence, assume first that AC/
AB = AB/DR where DR > DQ. Then, let the circle with center D and
radius DR intersect the trisectrix at S and side AD of the square at T.
From S drop the perpendicular SU to side CD. Inasmuch as it was known
to Dinostratus that corresponding arcs of circles are to each other as the
radii, we have AC/AB = TR/DR; and since by hypothesis ACIAB =

AB/DR, it follows that TR = AB. But from the definitional property of
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the trisectrix it is known that TRISR = AB/SU. Hence, since TR = AB,
it must follow that SR = SU, which obviously is false, since the perpen-
dicular is shorter than any other line or curve from point S to line DC.
Hence, the fourth term DR in the proportion AC/AB = AB/DR cannot
be greater than DQ. In a similar manner we can prove that this fourth
proportional cannot be less than DQ; hence, Dinostratus’ theorem is es-
tablished—that is, AC/AB = AB/DQ.

Given the intersection point Q of the trisectrix with DC, we then have
a proportion involving three straight-line segments and the circular arc AC.
Hence, by a simple geometric construction of the fourth term in a pro-
portion, a line segment b equal in length to AC can be easily drawn. Upon
drawing a rectangle with 2b as one side and a as the other, we have a
rectangle exactly equal in area to the area of the circle with radius a; a
square equal to the rectangle is easily constructed by taking as the side of
the square the geometric mean of the sides of the rectangle. Inasmuch as
Dinostratus showed that the trisectrix of Hippias serves to square the circle,
the curve more commonly came to be known as the quadratrix. It was, of
course, always clear to the Greeks that the use of the curve in the trisection
and quadrature problems violated the rules of the game—that circles and
straight lines only were permitted. The “‘solutions” of Hippias and Dinos-
tratus, as their authors realized, were sophistic; hence, the search for fur-
ther solutions, canonical or illegitimate, continued with the result that
several new curves were discovered by Greek geometers.

AUTOLYCUS OF PITANE

A few years after Dinostratus and Menaechmus there flourished a math-
ematician who has the distinction of having written the oldest surviving
Greek mathematical treatise. We have described rather fully the work of
earlier Hellenic mathematicians, but it must be borne in mind that the
accounts have been based not on original work but on later summaries,
commentaries, or descriptions. Occasionally a commentator appears to be
copying from an original work extant at the time, as when Simplicius in
the sixth century of our era is describing the quadrature of lunes by Hip-
pocrates. But not until we come to Autolycus of Pitane, a contemporary
of Aristotle, do we find a Greek author one of whose works has survived.
One reason for the survival of this little treatise, On the Moving Sphere,
is that it formed part of a collection, known as the “Little Astronomy,”
widely used by ancient astronomers. On the Moving Sphere is not a pro-
found and probably not a very original work, for it includes little beyond
elementary theorems on the geometry of the sphere that would be needed
in astronomy. Its chief significance lies in the fact that it indicates that
Greek geometry evidently had reached the form that we regard as typical
of the classical age. Theorems are clearly enunciated and proved. More-
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over, the author uses without proof or indication of source other theorems
that he regards as well known; we conclude, therefore, that there was in
Greece in his day, about 320 B.C., a thoroughly established textbook tra-
dition in geometry.

ARISTOTLE

Autolycus was a contemporary of Aristotle—the most widely learned
scholar of all times, whose death is usually taken to mark the end of the
first great period, the Hellenic Age, in the history of Greek civilization.
Aristotle, like Eudoxus, was a student of Plato and, like Menaechmus, a
tutor of Alexander the Great. Aristotle was primarily a philosopher and
biologist, but he was thoroughly au courant with the activities of the math-
ematicians. He may have taken a role in one of the leading controversies
of the day, for to him was ascribed a treatise On Indivisible Lines. Modern
scholarship questions the authenticity of this work, but in any case it prob-
ably was the result of discussions carried on in the Aristotelian Lyceum.
The thesis of the treatise is that the doctrine of indivisibles espoused by
Xenocrates, a successor of Plato as head of the Academy, is untenable.
The indivisible, or fixed infinitesimal of length or area or volume, has
fascinated men of many ages; Xenocrates thought that this notion would
resolve the paradoxes, such as those of Zeno, that plagued mathematical
and philosophical thought. Aristotle, too, devoted much attention to the
paradoxes of Zeno, but he sought to refute them on the basis of common
sense. Inasmuch as he hesitated to follow Platonic mathematicians into the
abstractions and technicalities of the day, Aristotle made no lasting con-
tribution to the subject. He is said to have written a biography of Pytha-
goras, although this is lost; and Eudemus, one of his students, wrote a
history of geometry, also lost. Moreover, through his foundation of logic
and through his frequent allusion to mathematical concepts and theorems
in his voluminous works, Aristotle can be regarded as having contributed
to the development of mathematics. The Aristotelian discussion of the
potentially and actually infinite in arithmetic and geometry influenced many
later writers on the foundations of mathematics; but Aristotle’s statement
that the mathematicians “do not need the infinite or use it” should be
compared with the assertions of our day that the infinite is the mathe-
matician’s paradise. Of more positive significance are Aristotle’s analysis
of the roles of definitions and hypotheses in mathematics.

END OF THE HELLENIC PERIOD

In 323 B.C. Alexander the Great suddenly died, and his empire fell apart.
His generals divided the territory over which the young conqueror had
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ruled; Ptolemy took Egypt, Seleucus and Lysimachus vied for Syria and
the East, and Antigonus and Cassander each for a while ruled Macedon.
At Athens, where Aristotle had been regarded as a foreigner, the philos-
opher found himself unpopular, now that his powerful soldier-student was
dead. He left Athens and died the following year. Throughout the Greek
world the old order was changing, politically and culturally. Under Alex-
ander there had been a gradual blending of Hellenic and Oriental customs
and learning, so that it was more appropriate to speak of the newer civi-
lization as Hellenistic, rather than Hellenic. Moreover, the new city of
Alexandria, established by the world conqueror, now took the place of
Athens as the center of the mathematical world. In the history of civiliza-
tion it is, therefore, customary to distinguish two periods in the Greek
world, with the almost simultaneous deaths of Aristotle and Alexander (as
well as that of Demosthenes) as a convenient dividing line. The earlier
portion is known as the Hellenic Age, the later as the Hellenistic or Al-
exandrian Age; in the next few chapters we describe the mathematics of
the first century of the new era, often known as the Golden Age of Greek
mathematics.
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Euclid of Alexandria

Ptolemy once asked Euclid whether there was any shorter way to a knowledge of
geometry than by a study of the Elements, whereupon Euclid answered that there
was no royal road to geometry.

Proclus Diadochus

AUTHOR OF THE ELEMENTS

The death of Alexander the Great had led to internecine strife among the
generals in the Greek army; but by 306 B.C. control of the Egyptian portion
of the empire was firmly in the hands of Ptolemy I, and this enlightened
ruler was able to turn his attention to constructive efforts. Among his early
acts was the establishment at Alexandria of a school or institute, known
as the Museum, second to none in its day. As teachers at the school he
called a band of leading scholars, among whom was the author of the most
fabulously successful mathematics textbook ever written—the Elements
(Stoichia) of Euclid. Considering the fame of the author and of his best
seller, remarkably little is known of Euclid’s life. So obscure was his life
that no birthplace is associated with his name. Although editions of the
Elements often bore the identification of the author as Euclid of Megara
and a portrait of Euclid of Megara often appears in histories of mathe-
matics, this is a case of mistaken identity.! The real Euclid of Megara was

'See, for example, the title page on p. 304.
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a student of Socrates and, although concerned with logic, was no more
attracted to mathematics than was his teacher. Our Euclid, by contrast, is
known as Euclid of Alexandria, for he was called there to teach mathe-
matics. From the nature of his work it is presumed that he had studied
with students of Plato, if not at the Academy itself. Legends associated
with Euclid picture him as a kindly and gentle old man. The tale related
above in connection with a request of Alexander the Great for an easy
introduction to geometry is repeated in the case of Ptolemy, whom Euclid
is reported to have assured that “there is no royal road to geometry.”
Evidently Euclid did not stress the practical aspects of his subject, for there
is a tale told of him that when one of his students asked of what use was
the study of geometry, Euclid asked his slave to give the student three-
pence, “‘since he must needs make gain of what he learns.”

Euclid and the Elements are often regarded as synonymous; in reality
the man was the author of about a dozen treatises covering widely varying
topics, from optics, astronomy, music, and mechanics to a book on the
conic sections. With the exception of the Sphere of Autolycus, surviving
works by Euclid are the oldest Greek mathematical treatises extant; yet
of what Euclid wrote more than half has been lost, including some of his
more important compositions, such as a treatise on conics. Euclid regarded
Aristaeus, a contemporary geometer, as deserving great credit for having
written an earlier treatise on Solid Loci (the Greek name for the conic
sections, stemming presumably from the stereometric definition of the
curves in the work of Menaechmus). The treatises on conics by Aristaeus
and Euclid have both been lost, probably irretrievably, perhaps because
they were soon superseded by the more extensive work on conics by Apol-
lonius to be described below. Among Euclid’s lost works are also one on
Surface Loci, another on Pseudaria (or fallacies), and a third on Porisms.
It is not even clear from ancient references what material these contained.
The first one, for example, might have concerned the surfaces known to
the ancients—the sphere, cone, cylinder, tore, ellipsoid of revolution, par-
aboloid of revolution, and hyperboloid of revolution of two sheets—or
perhaps curves lying on these surfaces. As far as we know, the Greeks did
not study any surface other than that of a solid of revolution.

The loss of the Euclidean Porisms is particularly tantalizing, for it may
have represented an ancient approximation to an analytic geometry. Pap-
pus later reported that a porism is intermediate between a theorem, in
which something is proposed for demonstration, and a problem, in which
something is proposed for construction. Others have described a porism
as a proposition in which one determines a relationship between known
and variable or undetermined quantities, perhaps the closest approach in
antiquity to the concept of function. If a porism was, as has been thought,
a sort of verbal equation of a curve, Euclid’s book on Porisms may have
differed from our analytic geometry largely in the lack of algebraic symbols
and techniques. The nineteenth-century historian of geometry, Michel Cha-
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sles, suggested as a typical Euclidean porism the determination of the locus
of a point for which the sum of the squares of its distances from two fixed
points is a constant.

OTHER WORKS

Five works by Euclid have survived to our day: the Elements, the Data,
the Division of Figures, the Phaenomena, and the Optics. The last-men-
tioned is of interest as an early work on perspective, or the geometry of
direct vision. The ancients had divided the study of optical phenomena
into three parts: (1) optics (the geometry of direct vision), (2) catoptrics
(the geometry of reflected rays), and (3) dioptrics (the geometry of re-
fracted rays). A Catoptrica sometimes ascribed to Euclid is of doubtful
authenticity, being perhaps by Theon of Alexandria who lived some six
centuries later. Euclid’s Optics is noteworthy for its espousal of an ‘“‘emis-
sion’’ theory of vision according to which the eye sends out rays that travel
to the object, in contrast to a rival Aristotelian doctrine in which an activity
in a medium travels in a straight line from the object to the eye. It should
be noted that the mathematics of perspective (as opposed to the physical
description) is the same no matter which of the two theories is adopted.
Among the theorems found in Euclid’s Optics is one widely used in antig-
uity—tan a/tan f < a/fif 0 < a < f§ < n/2. One object of the Optics was
to combat an Epicurean insistence that an object was just as large as it
looked, with no allowance to be made for the foreshortening suggested by
perspective.

Euclid’s Phaenomena is much like the Sphere of Autolycus—that is, a
work on spherical geometry of use to astronomers. A comparison of the
two works indicates that both authors drew heavily on a textbook tradition
that was well known to their generation. It is quite possible that much the
same was true of Euclid’s Elements, but in this case there is no contem-
porary work extant with which it can be compared.

The Euclidean Division of Figures is significant in that it is a work that
would have been lost had it not been for the learning of Arabic scholars.
It has not survived in the original Greek; but before the disappearance of
the Greek versions, an Arabic translation had been made (omitting some
of the original proofs ‘“‘because the demonstrations are easy’), which in
turn was later translated into Latin, and ultimately into current modern
languages. This is not atypical of other ancient works. The Division of
Figures includes a collection of thirty-six propositions concerning the di-
vision of plane configurations. For example, Proposition 1 calls for the
construction of a straight line that shall be parallel to the base of a triangle
and shall divide the triangle into two equal areas. Proposition 4 requires
a bisection of a trapezoid abgd (Fig. 7.1) by a line parallel to the bases;
the required line zi is found by determining z such that ze’ = }(eb? +
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ea’). Other propositions call for the division of a parallelogram into two
equal parts by a line drawn through a given point on one of the sides
(Proposition 6) or through a given point outside the parallelogram (Prop-
osition 10). The final proposition asks for the division of a quadrilateral
in a given ratio by a line through a point on one of the sides of the
quadrilateral. Somewhat similar in nature and purpose to the Division of
Figures is Euclid’s Data, a work that has come down to us through both
the Greek and the Arabic. It seems to have been composed for use at the
university of Alexandria, serving as a companion volume to the first six
books of the Elements in much the way that a manual of tables supplements
a textbook. It was to be useful as a guide to the analysis of problems in
geometry in order to discover proofs. It opens with fifteen definitions
concerning magnitudes and loci. The body of the text comprises ninety-
five statements concerning the implications of conditions and magnitudes
that may be given in a problem. The first two state that if two magnitudes
a and b are given, their ratio is given, and that if one magnitude is given
and also its ratio to a second, the second magnitude is given. There are
about two dozen similar statements, serving as algebraic rules or formulas.
Then follow simple geometric rules concerning parallel lines and propor-
tional magnitudes, reminding the student of the implications of the data
given in a problem, such as the advice that when two line segments have
a given ratio, then one knows the ratio of the areas of similar rectilinear
figures constructed on these segments. Some of the statements are geo-
metric equivalents of the solution of quadratic equations. For example, we
are told that if a given (rectangular) area AB is laid off along a line segment
of given length AC (Fig. 7.2) and if the area BC by which the area AB
falls short of the entire rectangle AD is given, the dimensions of the rec-
tangle BC are known. The truth of this statement is easily demonstrated
by modern algebra. Let the length of AC be a, the area of AB be b?, and
the ratio of FC to CD be c:d. Then, if FC = x and CD = y, we have
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x/y = c/d and (a — x)y = b’. Eliminating y we have (a — x)dx = b%
or dx? — adx + b’ = 0, from which x = a/2 = V/(a/2)? — b%/d. The
geometric solution given by Euclid is equivalent to this, except that the
negative sign before the radical is used. Statements 84 and 85 in the Data
are geometric replacements of the familiar Babylonian algebraic solutions
of the systems xy = a?, x * y = b, which again are the equivalents of
solutions of simultaneous equations. The last few statements in the Data
concern relationships between linear and angular measures in a given circle.

PURPOSE OF THE ELEMENTS

The university at Alexandria evidently was not unlike modern institutions
of higher learning. Some of the faculty probably excelled in research, others
were better fitted to be administrators, and still others were noted for
teaching ability. It would appear, from the reports we have, that Euclid
very definitely fitted into the last category. There is no new discovery
attributed to him, but he was noted for expository skill. This is the key to
the success of his greatest work, the Elements. It-was frankly a textbook
and by no means the first one. We know of at least three earlier such
elements, including that by Hippocrates of Chios; but there is no trace of
these, nor of other potential rivals from ancient times. The Elements of
Euclid so far outdistanced competitors that it alone survived. The Elements
was not, as is sometimes thought, a compendium of all geometric knowl-
edge; it was instead an introductory textbook covering all elementary math-
ematics—that is, arithmetic (in the sense of the English “higher arithmetic”
or the American “‘theory of numbers”), synthetic geometry (of points,
lines, planes, circles, and spheres), and algebra (not in the modern symbolic
sense, but an equivalent in geometric garb). It will be noted that the art
of calculation is not included, for this was not a part of university instruc-
tion; nor was the study of the conics or higher plane curves part of the
book, for these formed a part of more advanced mathematics. Proclus
described the Elements as bearing to the rest of mathematics the same sort
of relation as that which the letters of the alphabet have in relation to
language. Were the Elements intended as an exhaustive store of infor-
mation, the author probably would have included references to other au-
thors, statements of recent research, and informal explanations. As it is,
the Elements is austerely limited to the business in hand—the exposition
in logical order of the fundamentals of elementary mathematics. Occa-
sionally, however, later writers interpolated into the text explanatory scho-
lia, and such additions were copied by later scribes as part of the original
text. Some of these appear in every one of the manuscripts now extant.
Euclid himself made no claim to originality, and it is clear that he drew
heavily from the works of his predecessors. It is believed that the arrange-
ment is his own, and presumably some of the proofs were supplied by him;
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but beyond that it is difficult to estimate the degree of originality that is
to be found in this, the most renowned mathematical work in history.

DEFINITIONS AND POSTULATES

The Elements is divided into thirteen books or chapters, of which the first
half dozen are on elementary plane geometry, the next three on the theory
of numbers, the tenth on incommensurables, and the last three chiefly on
solid geometry. There is no introduction or preamble to the work, and the
first book opens abruptly with a list of twenty-three definitions. The weak-
ness here is that some of the definitions do not define, inasmuch as there
is no prior set of undefined elements in terms of which to define the others.
Thus to say, as does Euclid, that “a point is that which has no part,” or
that “‘a line is breadthless length,” or that ““a surface is that which has
length and breadth only,” is scarcely to define these entities, for a definition
must be expressed in terms of things that precede, and are better known
than the things defined. Objections can easily be raised on the score of
logical circularity to other so-called *‘definitions’ of Euclid, such as “The
extremities of a line are points,” or “A straight line is a line which lies
evenly with the points on itself,” or “The extremities of a surface are
lines,” all of which may have been due to Plato. The Euclidean definition
of a plane angle as ‘“‘the inclination to one another of two lines in a plane
which meet one another and do not lie in a straight line’” is vitiated by the
fact that “inclination” has not been previously defined and is not better
known than the word ‘‘angle.”

Following the definitions, Euclid lists five postulates and five common
notions. Aristotle had made a sharp distinction between axioms (or com-
mon notions) and postulates; the former, he said, must be convincing in
themselves—truths common to all studies—but the latter are less obvious
and do not presuppose the assent of the learner, for they pertain only to
the subject at hand. Some later writers distinguished between the two types
of assumptions by applying the word axiom to something known or ac-
cepted as obvious, while the word postulate referred to something to be
“demanded.” We do not know whether Euclid subscribed to either of these
views, or even whether he distinguished between two types of assumptions.
Surviving manuscripts are not in agreement here, and in some cases the
ten assumptions appear together in a single category. Modern mathema-
ticians see no essential difference between an axiom and a postulate. In
most manuscripts of the Elements we find the following ten assumptions:

Postulates. Let the following be postulated:

1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
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3. To describe a circle with any center and radius.
4. That all right angles are equal.

5. That, if a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which the angles
are less than the two right angles.

Common notions:

1. Things which are equal to the same thing are also equal to one
another.

If equals be added to equals, the wholes are equal.

If equals be subtracted from equals, the remainders are equal.
Things which coincide with one another are equal to one another.
The whole is greater than the part.

Sl = e

Aristotle had written that “other things being equal, that proof is the
better which proceeds from the fewer postulates,” and Euclid evidently
subscribed to this principle. For example, Postulate 3 is interpreted in the
very limited literal sense, sometimes described as the use of Euclidean
(collapsible) compasses, whose legs maintain a constant opening so long
as the point stands on the paper, but fall back upon each other when they
are lifted. That is, the postulate is not interpreted to permit the use of a
pair of dividers to lay off a distance equal to one line segment upon a
noncontiguous longer line segment, starting from an end point. It is proved
in the first three propositions of Book I that the latter construction is always
possible, even under the strict interpretation of Postulate 3. The first prop-
osition justifies the construction of an equilateral triangle ABC on a given

FIG. 7.3
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line segment AB by constructing through B a circle with a center at A and
another circle through A with center at B, and letting C be the point of
intersection of the two circles. (That they do intersect is tacitly assumed.)
Proposition 2 then builds on Proposition 1 by showing that from any point
A as extremity (Fig. 7.3) one can lay off a straight line segment equal to
a given line segment BC. First Euclid draws AB, and on this he constructs
the equilateral triangle ABD, extending the sides DA and DB to E and F
respectively. With B as center describe the circle through C, intersecting
BF in G; then, with D as center draw a circle through G, intersecting DE
in H. Line AH is then easily shown to be the line required. Finally, in
Proposition 3 Euclid makes use of Proposition 2 to show that, given any
two unequal straight lines, one can cut off from the greater a segment equal
to the smaller.

SCOPE OF BOOK 1

In the first three propositions Euclid went to great pains to show that a
very restricted interpretation of Postulate 3 nevertheless implies the free
use of compasses as is usually done in laying off distances in elementary
geometry. Nevertheless, by modern standards of rigor the Euclidean as-
sumptions are woefully inadequate, and in his proofs Euclid often makes
use of tacit postulates. In the first proposition of the Elements, for example,
he assumes without proof that the two circles will intersect in a point. For
this and similar situations it is necessary to add to the postulates one
equivalent to a principle of continuity. Moreover, Postulates 1 and 2 as
they were expressed by Euclid guarantee neither the uniqueness of the
straight line through two noncoincident points nor even its infinitude; they
simply assert that there is at least one and that it has no termini, yet in his
proofs Euclid freely made use of the uniqueness and infinitude. It is, of
course, easy to criticize the work of a man in the light of later developments
and to forget that “‘sufficient unto the day is the rigor thereof.” In its time
the Elements evidently was the most tightly reasoned logical development
of elementary mathematics that had ever been put together, and two
thousand years were to pass before a more careful presentation occurred.
During this long interval most mathematicians regarded the treatment as
logically satisfying and pedagogically sound.

Most of the propositions in Book I of the Elements are well known to
anyone who has had a high school course in geometry. Included are the
familiar theorems on congruence of triangles (but without an axiom jus-
tifying the method of superposition), on simple constructions by straight-
edge and compasses, on inequalities concerning angles and sides of a tri-
angle, on properties of parallel lines (leading to the fact that the sum of
the angles of a triangle is equal to two right angles), and on parallelograms
(including the construction of a parallelogram having given angles and
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equal in area to a given triangle or to a given rectilinear figure). The book
closes (in Propositions 47 and 48) with the proof of the Pythagorean theo-
rem and its converse. The proof of the theorem as given by Euclid was
not that usually given in textbooks of today, in which simple proportions
are applied to the sides of similar triangles formed by dropping an altitude
upon the hypotenuse. It has been suggested that Euclid avoided such a
proof because of difficulties involved in commensurability. Only in Book
V did Euclid turn to the well-founded theory of proportions, and up to
that point the use of proportionalities is avoided as far as possible. For the
Pythagorean theorem Euclid used instead the beautiful proof with a figure
sometimes described as a windmill or as the peacock’s tail or as the bride’s
chair (Fig. 7.4). The proof is accomplished by showing that the square on
AC is equal to twice the triangle FAB or to twice the triangle CAD or to
the rectangle AL, and that the square on BC is equal to twice the triangle
ABK or to twice the triangle BCE or to the rectangle BL. Hence the sum
of the squares is equal to the sum of the rectangles, that is, to the square
on AB. It has been assumed that this proof was original with Euclid, and
many conjectures have been made as to the possible form of earlier proofs.
Since the days of Euclid many alternative proofs have been proposed.

It is to Euclid’s credit that the Pythagorean theorem is immediately
followed by a proof of the converse: If in a triangle the square on one of
the sides is equal to the sum of the squares on the other two sides, the
angle between these other two sides is a right angle. Not infrequently in
modern textbooks the exercises following the proof of the Pythagorean
theorem are such that they require not the theorem itself but the still
unproved converse. There may be many a minor flaw in the Elements, but
the book had all the major logical virtues.

H
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GEOMETRIC ALGEBRA

Book II of the Elements is a short one, containing only fourteen propo-
sitions, not one of which plays any role in modern textbooks; yet in Euclid’s
day this book was of great significance. This sharp discrepancy between
ancient and modern views is easily explained—today we have symbolic
algebra and trigonometry that have replaced the geometric equivalents
from Greece. For instance, Proposition 1 of Book II states that “‘If there
be two straight lines, and one of them be cut into any number of segments
whatever, the rectangle contained by the two straight lines is equal to the
rectangles contained by the uncut straight line and each of the segments.”
This theorem, which asserts (Fig. 7.5) that AD(AP + PR + RB) =
AD - AP + AD - PR + AD - RB, is nothing more than a geometric
statement of one of the fundamental laws of arithmetic known today as
the distributive law: a(b + ¢ + d) = ab + ac + ad. In later books of
the Elements (V and VII) we find demonstrations of the commutative and
associative laws for multiplication. Whereas in our time magnitudes are
represented by letters that are understood to be numbers (either known
or unknown) on which we operate with the algorithmic rules of algebra,
in Euclid’s day magnitudes were pictured as line segments satisfying the
axioms and theorems of geometry. It is sometimes asserted that the Greeks
had no algebra, but this is patently false. They had Book II of the Elements,
which is a geometric algebra that served much the same purpose as does
our symbolic algebra. There can be little doubt that modern algebra greatly
facilitates the manipulation of relationships among magnitudes. But it is
undoubtedly also true that a Greek geometer versed in the fourteen theo-
rems of Euclid’s “algebra’ was far more adept in applying these theorems
to practical mensuration than is an experienced geometer of today. Ancient
geometric algebra was not an ideal tool, but it was far from ineffective.
Euclid’s statement (Proposition 4), “If a straight line be cut at random,
the square on the whole is equal to the squares on the segments and twice
the rectangle contained by the segments,” is a verbose way of saying that
(a + b)?> = a*> + 2ab + b?, but its visual appeal to an Alexandrian
schoolboy must have been far more vivid than its modern algebraic coun-
terpart can ever be. True, the proof in the Elements occupies about a page
and a half; but how many high school students of today could give a careful
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proof of the algebraic rule they apply so unhesitatingly? The same holds
true for Elements 11.5, which contains what we should regard as an im-
practical circumlocution for a®> — b?> = (a + b)(a — b):

If a straight line be cut into equal and unequal segments, the rectangle
contained by the unequal segments of the whole, together with the square
on the straight line between the points of section, is equal to the square on
the half.

The diagram that Euclid uses in this connection played a key role in Greek
algebra; hence, we reproduce it’> with further explanation. If in the diagram
(Fig. 7.6) we let AC = CB = a, and CD = b, the theorem asserts that
(a + b)(a — b) + b* = a’. The geometric verification of this statement
is not difficult. However, the significance of the diagram lies not so much
in the proof of the theorem as in the use to which similar diagrams were
put by Greek geometric algebraists. The pride of the modern schoolboy
or schoolgirl in algebra is the solution of the quadratic.equation (which he
or she may or may not be able to justify), and a diagram similar to Fig.
7.6 was the Greek schoolboy’s geometric equivalent. If the Greek scholar
were required to construct a line x having the property expressed by ax —
x? = b’ where a and b are line segments with a > 2b, he would draw line
AB = a and bisect it at C. Then, at C he would erect a perpendicular CP
equal in length to b; with P as center and radius a/2 he would draw a circle
cutting AB in point D. Then, on AB he would construct rectangle ABMK
of width BM = BD and complete the square BDHM. This square is the
area x’ having the property specified in the quadratic equation. As the
Greeks expressed it, we have applied to the segment AB( = a) a rectangle
AH(= ax — x?) which is equal to a given square (b°) and falls short (of
AM) by a square DM. The demonstration of this is provided by the prop-
osition cited above (IL.5) in which it is clear that the rectangle ADHK
equals the concave polygon CBFGHL—that is, it differs from (a/2)?

*Throughout this chapter the translations and most of the diagrams are based on the
Thirteen Books of Euclid’s Elements as edited by T. L. Heath.
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by the square LHGE, the side of which by construction is CD =
V(a/2)? — b2

In an exactly analogous manner the quadratic equation ax + x? = b?
is solved through the use of II.6:

If a straight line be bisected and a straight line be added to it in a straight
line, the rectangle contained by the whole (with the added straight line) and
the added straight line together with the square on the half is equal to the
square on the straight line made up of the half and the added straight line.

This time we “apply to a given straight line (AB = a) a rectangle (AM =
ax + x?) which shall be equal to a given square (b?) and shall exceed
(AH) by a square figure” (Fig. 7.7). In this case the distance CD =

(a/2)* + b?; since from the proposition it is known that rectangle AM
(= ax + x?) plus square LG [=(a/2)?] is equal to square CF [=(a/2)* +
b?], it follows that the condition ax + x? = b? is satisfied.

The next few propositions of Book. II are variations of the geometric
algebra that we have illustrated, with II.11 being an important special case
of I1.6. Here Euclid solves the equation ax + x? = a? by drawing a square
ABCD with side a, bisecting side AD at E, drawing EB, extending side
DA to Fsuch that EF = EB, and completing the square AFGH (Fig. 7.8).
Then, on extending GH to intersect DC in K, we shall have applied to
segment AD a rectangle FK (= ax + x?) equal to a given square AC (=
a?) and exceeding by a square (x?2).

The figure used by Euclid in Elements 11.11, and again in VI.30 (our
Fig. 7.8), is the basis for a diagram that appears today in many geometry
books to illustrate the iterative property of the golden section. To the
gnomon BCDFGH (Fig. 7.8) we add point L to complete the rectangle
CDFL (Fig. 7.9), and within the smaller rectangle LBGH, which is similar
to the larger rectangle LCDF, we construct, by making GO = GL, the
gnomon LBMNOG similar to gnomon BCDFGH. Now within the rectan-
gle BHOP, which is similar to the larger rectangles CDFL and LBHG,
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FIG749,

we construct the gnomon PBHQRN similar to the gnomons BCDFGH
and LBMNOG. Continuing indefinitely in this manner, we have an un-
ending sequence of nested similar rectangles tending toward a limiting point
Z. It turns out that Z, which is easily seen to be the point of intersection
of lines FB and DL, is also the pole of a logarithmic spiral tangent to the
sides of the rectangles at points C, A, G, P, M, Q, . . . . Other striking
properties can be found in this fascinating diagram.

Propositions 12 and 13 of Book II are of interest because they adumbrate
the concern with trigonometry that was shortly to blossom in Greece. These
propositions will be recognized by the reader as geometric formulations—
first for the obtuse angle and then for the acute angle—of what later became
known as the law of cosines for plane triangles:

Proposition 12. In obtuse-angled triangles the square on the side sub-
tending the obtuse angle is greater than the squares on the sides containing
the obtuse angle by twice the rectangle contained by one of the sides about
the obtuse angle, namely that on which the perpendicular falls, and the
straight line cut off outside by the perpendicular toward the obtuse angle.

Proposition 13. In acute-angled triangles the square on the side subtending
the acute angle is less than the squares on the sides containing the acute
angle by twice the rectangle contained by one of the sides about the acute
angle, namely that on which the perpendicular falls, and the straight line
cut off within by the perpendicular toward the acute angle.

The proofs of Propositions 12 and 13 are analogous to those used today
in trigonometry through double application of the Pythagorean theorem.

:
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BOOKS IlI AND IV

It generally has been supposed that the contents of the first two books of
the Elements are largely the work of the Pythagoreans. Books III and IV,
on the other hand, deal with the geometry of the circle, and here the
material is presumed to have been drawn largely from Hippocrates of
Chios. The two books are not unlike the theorems on circles contained in
textbooks of today. The first proposition of Book III, for example, calls
for the construction of the center of a circle; and the last, Proposition 37,
is the familiar statement that if from a point outside a circle a tangent and
a secant are drawn, the square on the tangent is equal to the rectangle on
the whole secant and the external segment. Book IV contains sixteen
propositions, largely familiar to modern students, concerning figures in-
scribed in, or circumscribed about, a circle. Theorems on the measure of
angles are reserved until after a theory of proportions has been established.

THEORY OF PROPORTION

Of the thirteen books of the Elements those most admired have been the
fifth and the tenth—the one on the general theory of proportion and the
other on the classification of incommensurables. The discovery of the in-
commensurable had threatened a logical crisis which cast doubt on proofs
appealing to proportionality, but the crisis had been successfully averted
through the principles enunciated by Eudoxus. Nevertheless, Greek math-
ematicians tended to avoid proportions. We have seen that Euclid put off
their use as long as possible, and such a relationship among lengths as
x:a = b:c would be thought of as an equality of the areas cx = ab. Sooner
or later, however, proportions are needed, and so Euclid tackled the prob-
lem in Book V of the Elements. Some commentators have gone so far as
to suggest that the whole book, consisting of twenty-five propositions, was
the work of Eudoxus, but this seems to be unlikely. Some of the defini-
tions—such as that of a ratio—are so vague as to be useless. Definition 4,
however, is essentially the axiom of Eudoxus and Archimedes: ‘“Magni-
tudes are said to have a ratio to one another which are capable, when
multiplied, of exceeding one another.” Definition 5, the equality of ratios,
is precisely that given earlier in connection with Eudoxus’ definition of
proportionality.

To the casual reader Book V might appear as superfluous as Book II,
for both have now been displaced by corresponding rules in symbolic al-
gebra. A more careful reader interested in axiomatics will see that Book
V deals with topics of fundamental importance in all mathematics. It opens
with propositions that are equivalent to such things as the left-hand and
right-hand distributive laws for multiplication over addition, the left-hand
distributive law for multiplication over subtraction, and the associative law
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for multiplication (ab)c = a(bc). Then follow rules for “‘greater than™ and
“less than’” and the well-known properties of proportions. It often is as-
serted that Greek geometric algebra could not rise above the second degree
in plane geometry, nor above the third degree in solid geometry, but this
is not really the case. The general theory of proportions would permit work
with products of any number of dimensions, for an equation of the form
x* = abcd is equivalent to one involving products of ratios of lines such
asx/a-x/b = c/x-dlx.

Having developed the theory of proportions in Book V, Euclid exploited
it in Book VI by proving theorems concerning ratios and proportions re-
lated to similar triangles, parallelograms, and other polygons. Noteworthy
is Proposition 31, a generalization of the Pythagorean theorem: “In right-
angled triangles the figure on the side subtending the right angle is equal
to the similar and similarly described figures on the sides containing the
right angle.” Proclus credits this extension to Euclid himself. Book VI
contains (in Propositions 28 and 29) also a generalization of the method
of application of areas, for the sound basis for proportion given in Book
V enabled the author now to make free use of the concept of similarity.
The rectangles of Book II are now replaced by parallelograms, and it is
required to apply to a given straight line a parallelogram equal to a given
rectilinear figure and deficient (or exceeding) by a parallelogram similar
to a given parallelogram. These constructions, like those of 11.5-6, are in
reality solutions of the quadratic equations bx = ac * x?, subject to the
restriction (implied in 1X.27) that the discriminant is not negative.

THEORY OF NUMBERS

The Elements of Euclid often is mistakenly thought of as restricted to
geometry. We already have described two books (II and V) that are almost
exclusively algebraic; three books (VII, VIII, and IX) are devoted to the
theory of numbers. The word “number” to the Greeks always referred to
what we call the natural numbers—the positive whole numbers or integers.
Book VII opens with a list of twenty-two definitions distinguishing various
types of number—odd and even, prime and composite, plane and solid
(that is, those that are products of two or of three integers)—and finally
defining a perfect number as “‘that which is equal to its own parts.”” The
theorems in Books VII, VIII, and IX are likely to be familiar to the reader
who has had an elementary course in the theory of numbers, but the
language of the proofs will certainly be unfamiliar. Throughout these books
each number is represented by a line segment, so that Euclid will speak
of a number as AB. (The discovery of the incommensurable had shown
that not all line segments could be associated with whole numbers; but the
converse statement—that numbers can always be represented by line seg-
ments—obviously remains true.) Hence, Euclid does not use the phrases
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“is a multiple of” or “‘is a factor of,” for he replaces these by *“is measured
by” and “measures” respectively. That is, a number n is measured by
another number m if there is a third number k such that n = km.

Book VII opens with two propositions that constitute a celebrated rule
in the theory of numbers, which today is known as “Euclid’s algorithm”
for finding the greatest common divisor (measure) of two numbers. It is a
scheme suggestive of a repeated inverse application of the axiom of Eu-
doxus. Given two unequal numbers, one subtracts the smaller a from the
larger b repeatedly until a remainder r, less than the smaller is obtained;
then, one repeatedly subtracts this remainder r, from 4 until a remainder
r, < r, results; then, one repeatedly subtracts r, from r;; and so on. Ulti-
mately the process will lead to a remainder r, which will measure r,_,
hence all preceding remainders, as well as a and b; this number r, will be
the greatest common divisor of 4 and b. Among succeeding propositions
we find equivalents of familiar theorems in arithmetic. Thus Proposition
8 states that if an = bm and cn = dm, then (a — ¢)n = (b — d)m;
Proposition 24 states that if a and b are prime to c, then ab is prime to c.
The book closes with a rule (Proposition 39) for finding the least common
multiple of several numbers.

Book VIII is one of the less rewarding of the thirteen books of the
Elements. It opens with propositions on numbers in continued proportion
(geometric progression) and then turns to some simple properties of
squares and cubes, closing with Proposition 27: “Similar solid numbers
have to one another the ratio which a cube number has to a cube number.”
This statement means simply that if we have a “solid number” ma - mb -
mc and a “similar solid number” na - nb - nc, then their ratio will be
m?:n>—that is, as a cube is to a cube.

PRIME AND PERFECT NUMBERS

Book IX, the last of the three books on theory of numbers, contains several
theorems that are of special interest. Of these the most celebrated is Prop-
osition 20: “Prime numbers are more than any assigned multitude of prime
numbers.” That is, Euclid here gives the well-known elementary proof that
the number of primes is infinite. The proof is indirect, for one shows that
the assumption of a finite number of primes leads to a contradiction. Let
P be the product of all the primes, assumed to be finite in number, and
consider the number N = P + 1. Now, N cannot be prime, for this would
contradict the assumption that P was the product of all primes. Hence, N
is composite and must be measured by some prime p. But p cannot be any
of the prime factors in P, for then it would have to be a factor of 1. Hence,
p must be a prime different from all of those in the product P; therefore,
the assumption that P was the product of all the primes must be false.



116 EUCLID OF ALEXANDRIA

Proposition 35 of this book contains a formula for the sum of numbers
in geometric progression, expressed in elegant but unusual terms:

If as many numbers as we please be in continued proportion, and there be
subtracted from the second and the last numbers equal to the first, then as
the excess of the second is to the first, so will the excess of the last be to all
those before it.

This statement is, of course, equivalent to the formula

Apey — 4 a, — a
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which in turn is equivalent to

a— ar"
S, = .
The following and last proposition in Book IX is the well-known formula
for perfect numbers: “If as many numbers as we please, beginning from
unity, be set out continuously in double proportion until the sum of all
becomes prime, and if the sum is multiplied by the last, the product will
be perfect.” That is, in modern notation, if §, = 1 + 2 + 22 + - +
2"~1 = 2" — 1is prime, then 2"~ (2" — 1) is a perfect number. The proof
is easily established in terms of the definition of perfect number given in
Book VII. The ancient Greeks knew the first four perfect numbers: 6, 28,
496, and 8128. Euclid did not answer the converse question—whethe. or
not his formula provides all perfect numbers. It is now known that all even
perfect numbers are of Euclid’s type, but the question of the existence of
odd perfect numbers remains an unsolved problem. Of the two dozen
perfect numbers now known all are even, but to conclude by induction
that all must be even would be hazardous.

In Propositions 21 through 36 of Book IX there is a unity which suggests
that these theorems were at one time a self-contained mathematical system,
possibly the oldest in the history of mathematics and stemming presumably
from the middle or early fifth century B.C. It has even been suggested that
Propositions 1 through 36 of Book 1X were taken over by Euclid, without
essential change, from a Pythagorean textbook.

INCOMMENSURABILITY

Book X of the Elements was, before the advent of early modern algebra,
the most admired—and the most feared. It is concerned with a systematic
classification of incommensurable line segments of the forms a * Vb,

Va + \/_h N are: \/-E and \/\/(; + V/b. where a and b, when of the same

;
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dimension, are commensurable. Today we would be inclined to think of
this as a book on irrational numbers of the types above, where a and b
are rational numbers; but Euclid regarded this book as a part of geometry
rather than of arithmetic. In fact, Propositions 2 and 3 of the book duplicate
for geometric magnitudes the first two propositions of Book VII, where
the author had dealt with whole numbers. Here he proves that if to two
unequal line segments one applies the process described above as Euclid’s
algorithm, and if the remainder never measures the one before it, the
magnitudes are incommensurable. Proposition 3 shows that the algorithm,
when applied to two commensurable magnitudes, will provide the greatest
common measure of the segments.

Book X contains 115 propositions—more than any other—most of which
contain geometric equivalents of what we now know arithmetically as surds.
Among the theorems are counterparts of rationalizing denominators of
fractions of the form a/(b = V¢) and a/(Vb = V<). Line segments given
by square roots, or by square roots of sums of square roots, are about as
easily constructed by straightedge and compasses as are rational combi-
nations. One reason that the Greeks turned to a geometric rather than an
arithmetic algebra was that, in view of the lack of the real-number concept,
the former appeared to be more general than the latter. The roots of
ax — x? = b?, for example, can always be constructed (provided that
a — 2b). Why, then, should Euclid have gone to great lengths to demon-
strate, in Propositions 17 and 18 of Book X, the conditions under which
the roots of this equation are commensurable with a? He showed that the
roots are commensurable or incommensurable, with respect to a, according
as Va? — 4b? and a are commensurable or incommensurable. It has been
suggested that such considerations indicate that the Greeks used their
solutions of quadratic equations for numerical problems also, much as the
Babylonians had in their system of equationsx + y = a, xy = b’ In such
cases it would be advantageous to know whether the roots will or will not
be expressible as quotients of integers. A close study of Greek mathematics
seems to give evidence that beneath the geometric.veneer there was more
concern for logistic and numerical approximations than the surviving clas-
sical treatises portray.

SOLID GEOMETRY

The material in Book XI, containing thirty-nine propositions on the ge-
ometry of three dimensions, will be largely familiar to one who has taken
a course in the elements of solid geometry. Again the definitions are easily
criticized, for Euclid defines a solid as “that which has length, breadth,
and depth” and then tells us that “an extremity of a solid is a surface.”
The last four definitions are of four of the regular solids. The tetrahedron
is not included, presumably because of an earlier definition of a pyramid
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as “a solid figure, contained by planes, which is constructed from one plane
to any point.” The eighteen propositions of Book XII are all related to
the measurement of figures, using the method of exhaustion. The book
opens with a careful proof of the theorem that areas of circles are to each
other as squares on the diameters. Similar applications of the typical double
reductio ad absurdum method then are applied to the volumetric mensur-
ation of pyramids, cones, cylinders, and spheres. Archimedes ascribed the
rigorous proofs of these theorems to Eudoxus, from whom Euclid probably
adapted much of this material.

The last book is devoted entirely to properties of the five regular solids,
a fact that has led some historians to say that the Elements was composed
as a glorification of the cosmic or Platonic figures. Inasmuch as such a large
proportion of the earlier material is far removed from anything relating to
the regular polyhedra, such an assumption is quite gratuitous; but the
closing theorems are a fitting climax to a remarkable treatise. Their object
is to “‘comprehend” each of the regular solids in a sphere—that is, to find
the ratio of an edge of the solid to the radius of the circumscribed sphere.
Such computations are ascribed by Greek commentators to Theaetetus, to
whom much of Book XIII is probably due. In preliminaries to these com-
putations Euclid referred once more to the division of a line in mean and
extreme ratio, showing that “‘the square on the greater segment added to
half the whole is five times the square on the half”—as is easily verified
by solving a/x = x/(a — x)—and citing other properties of the diagonals
of a regular pentagon. Then, in Proposition 10 Euclid proved the well-
known theorem that a triangle whose sides are respectively sides of an
equilateral pentagon, hexagon, and decagon inscribed in the same circle
is a right triangle. Propositions 13 through 17 express the ratio of edge to
diameter for each of the inscribed regular solids in turn: e/d is V% for the
tetrahedron, V3 for the octahedron, V for the cube or hexahedron,

V(5 — V/5)/10 for the icosahedron, and (V5 — 1)/2V3 for the dode-

cahedron. Finally, in Proposition 18, the last in the Elements, it is easily
proved that there can be no regular polyhedron beyond these five. About
1900 years later the astronomer Kepler was so struck by this fact that he
built a cosmology on the five regular solids, believing that they must have
been the creator’s key to the structure of the heavens.

APOCRYPHA

In ancient times it was not uncommon to attribute to a celebrated author
works that were not by him; thus, some versions of Euclid's Elements
include a fourteenth and even a fifteenth book, both shown by later scholars
to be apocryphal. The so-called Book XIV continues Euclid’s comparison
of the regular solids inscribed in a sphere, the chief results being that the
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ratio of the surfaces of the dodecahedron and icosahedron inscribed in the
same sphere is the same as the ratio of their volumes, the ratio being that
of the edge of the cube to the edge of the icosahedron, that is,

V10/[3(5 — V5)]. It is thought that this book may have been composed
by Hypsicles on the basis of a treatise (now lost) by Apollonius comparing
the dodecahedron and icosahedron. (Hypsicles, who probably lived in the
second half of the second century B.C., is thought to be the author of an
astronomical work, De ascensionibus, from which the division of the circle
into 360 parts may have been adopted.) That the same circle circumscribes
both the pentagon of the dodecahedron and the triangle of the icosahedron
(inscribed in the same sphere) was said to have been proved by Aristaeus,
roughly contemporaneous with Euclid.

The spurious Book XV, which is inferior, is thought to have been (at
least in part) the work of Isidore of Miletus (fl. ca. A.D. 532), architect of
the cathedral of Holy Wisdom (Hagia Sophia) at Constantinople. This
book also deals with the regular solids, showing how to inscribe certain of
them within others, counting the number of edges and solid angles in the
solids, and finding the measures of the dihedral angles of faces meeting at
an edge. It is of interest to note that despite such enumerations, the ancients
all missed the so-called polyhedral formula enunciated by Euler in the
eighteenth century.

INFLUENCE OF THE ELEMENTS

The Elements of Euclid not only was the earliest major Greek mathematical
work to come down to us, but also the most influential textbook of all
times. It was composed in about 300 B.C. and was copied and recopied
repeatedly after that. Errors and variations inevitably crept in, and some
later editors, notably Theon of Alexandria in the late fourth century, sought
to improve on the original. Nevertheless, it has been possible to obtain a
good impression of the content of the Euclidean version through a com-
parison of more than half a dozen Greek manuscript copies dating mostly
from the tenth to the twelfth century. Later accretions, generally appearing
as scholia, add supplementary information, often of an historical nature,
and in most cases they are readily distinguished from the original. Copies
of the Elements have come down to us also through Arabic translations,
later turned into Latin in the twelfth century, and finally, in the sixteenth
century, into the vernacular. The first printed version of the Elements
appeared at Venice in 1482, one of the very earliest of mathematical books
to be set in type; it has been estimated that since then at least a thousand
editions have been published. Perhaps no book other than the Bible can
boast so many editions, and certainly no mathematical work has had an
influence comparable with that of Euclid’s Elements. How appropriate it
was that Euclid’s successors referred to him as “The Elementator!”



Archimedes of
Syracuse

There was more imagination in the head of Archimedes than in that of Homer.

Voltaire

THE SIEGE OF SYRACUSE

Throughout the Hellenistic Age the center of mathematical activity re-
mained at Alexandria, but the leading mathematician of that age—and of
all antiquity—was not a native of the city. Archimedes may have studied
for a while at Alexandria under the students of Euclid, and he maintained
communication with mathematicians there, but he lived and died at Syr-
acuse. Details of his life are scarce, but we have some information about
him from Plutarch’s account of the life of Marcellus, the Roman general.
During the Second Punic War the city of Syracuse was caught in the power
struggle between Rome and Carthage; having cast its lot with the latter,
the city was besieged by the Romans during the years 214 and 212 B.C.
We are told that throughout the siege Archimedes invented ingenious war
machines to keep the enemy at bay—catapults to hurl stones; ropes, pul-
leys, and hooks to raise and smash the Roman ships; devices to set fire to
the ships. Ultimately, however, Syracuse fell through a “fifth column™; in
the sack of the city Archimedes was slain by a Roman soldier, despite
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orders from Marcellus that the life of the geometer be spared. Inasmuch
as Archimedes at the time is reported to have been seventy-five years old,
he was most likely born in 287 B.C. His father was an astronomer, and
Archimedes also established a reputation in astronomy. Marcellus is said
to have reserved for himself, as booty, ingenious planetaria that Ar-
chimedes had constructed to portray the motions of the heavenly bodies.
Accounts of the life of Archimedes are in agreement, however, in depicting
him as placing little value in his mechanical contrivances as compared with
the products of his thought. Even when dealing with levers and other simple
machines, he was far more concerned with general principles than with
practical applications.

LAW OF THE LEVER

Archimedes was not, of course, the first to use the lever, nor even the first
to formulate the general law. Aristotelian works contain the statement that
two weights on a lever balance when they are inversely proportional to
their distances from the fulcrum; and the Peripatetics associated the law
with their assumption that vertical rectilinear motion is the only natural
terrestrial motion. They pointed out that the extremities of unequal arms
of a lever will, in their displacement about the fulcrum, trace out circles
rather than straight lines; the extremity of the longer arm will move in the
circle that is larger, hence the path will approach more nearly to the natural
vertical rectilinear motion than will the extremity of the shorter arm. There-
fore, the law of the lever is a natural consequence of this kinematic prin-
ciple. Archimedes, on the other hand, deduced the law from a more plau-
sible static postulate—that bilaterally symmetric bodies are in equilibrium.
That is, let one assume that a weightless bar four units long and supporting
three unit weights, one at either end and one in the middle (Fig. 8.1), is
balanced by a fulcrum at the center. By the Archimedean axiom of sym-
metry the system is in equilibrium. But the principle of symmetry shows
also that, considering only the right-hand half of the system, the balancing
effect will remain the same if the two weights two units apart are brought
together at the midpoint of the right-hand side. This means that a unit
weight two units from the fulcrum will support on the other arm a weight
of two units which is one unit from the fulcrum. Through a generalization
of this procedure Archimedes established the law of the lever on static
principles alone, without recourse to the Aristotelian kinematic argument.
In the history of science during the medieval period it will be found that

> 8]

FIG. 8.1
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a conjunction of static and kinematic views produced advances in both
science and mathematics.

The work of Archimedes on the law of the lever is part of his treatise,
in two books, On the Equilibrium of Planes. This is not the oldest extant
book on what may be called physical science, for Aristotle about a century
earlier had published an influential work, in eight books, entitled Physics.
But whereas the Aristotelian approach was speculative and nonmathe-
matical, the Archimedean development was similar to the geometry of
Euclid. From a set of simple postulates Archimedes deduced deep conclu-
sions, establishing the close relationship between mathematics and me-
chanics that was to become so significant for both physics and mathematics.
The first book in the Equilibrium of Planes is concerned with rectilinear
figures and closes with the centers of gravity of the triangle and the tra-
pezoid. Book II concentrates attention on the center of gravity of a par-
abolic segment and includes a proof of the fact that this center lies on the
diameter of the segment and divides this diameter into segments in the
ratio of 3 to 2. The procedure used is the familiar method of exhaustion,
but a student familiar with the calculus and the principle of moments (or
law of the lever) can easily verify the result.

THE HYDROSTATIC PRINCIPLE

Archimedes can well be called the father of mathematical physics, not only
for his On the Equilibrium of Planes, but also for another treatise, in two
books, On Floating Bodies. Again, beginning from a simple postulate about
the nature of fluid pressure, he obtains some very deep results. Among
the earlier propositions are two that formulate the well-known Archime-
dean hydrostatic principle:

Any solid lighter than a fluid will, if placed in a fluid, be so far immersed
that the weight of the solid will be equal to the weight of the fluid displaced
1S

A solid heavier than a fluid will, if placed in it, descend to the bottom of
the fluid, and the solid will, when weighed in the fluid, be lighter than its
true weight by the weight of the fluid displaced (1.7).!

The mathematical derivation of this principle of buoyancy is undoubt-
edly the discovery that led the absentminded Archimedes to jump from his
bath and run home naked, shouting “Eureka” (“I have found it”). It is
also possible, although less likely, that the principle aided him in checking
on the honesty of a goldsmith suspected of fraudulently substituting some
silver for gold in a crown (or more likely a wreath) made for King Hiero

'Translations in this chapter are based on Heath 1953.
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of Syracuse, a friend (if not a relative) of Archimedes. Such fraud could
easily have been detected by the simpler method of comparing the densities
of gold, silver, and the crown by the simple device of measuring displace-
ments of water when equal weights of each are in turn immersed in a vessel
full of water. The later Roman architect, Vitruvius, attributed this method
to Archimedes, whereas an anonymous Latin poetic account, De ponder-
ibus et mensuris, written probably about A.D. 500, has Archimedes use the
principle of buoyancy.

The Archimedean treatise On Floating Bodies contains much more than
the simple fluid properties so far described. Virtually the whole of Book
I1, for example, is concerned with the position of equilibrium of segments
of paraboloids when placed in fluids, showing that the position of rest
depends on the relative specific gravities of the solid paraboloid and the
fluid in which it floats. Typical of these is Proposition 4:

Given a right segment of a paraboloid of revolution whose axis a is greater
than §$p (where p is the parameter), and whose specific gravity is less than
that of a fluid but bears to it a ratio not less than (a — ip)*:a?, if the segment
of the paraboloid be placed in the fluid with its axis at any inclination to the
vertical, but so that its base does not touch the surface of the fluid, it will
not remain in that position but will return to the position in which its axis is
vertical.

Still more complicated cases, with long proofs, follow. Archimedes could
well have taught a theoretical course in naval architecture, although he
probably would have preferred a graduate course in pure mathematics. No
armchair scholar, he came to the rescue in mechanical emergencies. At
one time, so it was reported, a ship had been built for King Hiero that
was too heavy to be launched, but Archimedes, by a combination of levers
and pulleys, accomplished the task. He is supposed to have boasted that
if he were given a lever long enough, and a fulcrum on which to rest it,
he could move the earth. It was probably at Alexandria that Archimedes
became interested in the technical problem of raising water from the Nile
River to irrigate the arable portions of the valley; for this purpose he
invented a device, now known as the Archimedean screw, made up of
helical pipes or tubes fastened to an inclined axle with a handle by which
it was rotated.

THE SAND-RECKONER

A clear distinction was made in Greek antiquity not only between theory
and application, but also between routine mechanical computation and the
theoretical study of the properties of number. The former, for which Greek
scholars are said to have shown scorn, was given the name logistic, while
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arithmetic, an honorable philosophical pursuit, was understood to be con-
cerned solely with the latter. It has even been maintained that the classical
attitude toward routine calculation mirrored the social structure of antiquity
in which computations were relegated to slaves. Whatever truth there is
in this view seems to have been exaggerated, for the Greeks took the
trouble to replace their older Attic or Herodianic system of numeration
by one distinctly more advantageous—the lonian or alphabetic. Ar-
chimedes lived at about the time that the transition from Attic to Ionian
numeration was made effective, and this may account for the fact that he
stooped to make a contribution to logistic. In a work entitled the Psammites
(Sand-Reckoner) Archimedes boasted that he could write down a number
greater than the number of grains of sand required to fill the universe. In
doing so he referred to one of the boldest astronomical speculations of
antiquity—that in which Aristarchus of Samos, toward the middle of the
third century B.C., proposed putting the earth in motion about the sun.
Such an astronomical system would suggest that the relative positions of
the fixed stars should change as the earth is displaced by many millions of
miles while going around the sun. The absence of such parallactic displace-
ment was the factor that led the greatest astronomers of antiquity (includ-
ing, presumably, also Archimedes) to reject the heliocentric hypothesis;
but Aristarchus asserted that the lack of parallax can be attributed to the
enormity of the distance of the fixed stars from the earth. Now, to make
good his boast, Archimedes had perforce to provide against all possible
dimensions for the universe, and so he showed that he could enumerate
the grains of sand needed to fill even Aristarchus’ immense world. Ar-
chimedes began with certain estimates that had been made in his day
concerning the sizes of the earth, the moon, and the sun and the distances
of the moon, the sun, and the stars. An estimate of the earth’s circumfer-
ence in his day, he reported, had been given as 300,000 stades (about
30,000 miles, for the stade generally used was roughly a tenth of a mile);
Archimedes allowed for an underestimate and assumed a circumference
of 3,000,000 stades. Moreover, Aristarchus had estimated the diameter of
the sun as eighteen to twenty times that of the moon, which in turn is
smaller than the earth. To play safe Archimedes took the diameter of the
sun to be not more than thirty times that of the moon (or, a fortiori, of
the earth). Next, Archimedes assumed that the apparent size of the sun
was greater than a thousandth part of a circle, for Aristarchus had estimated
it to be about half a degree, a result confirmed by observation. Knowing
an upper bound for the sun’s actual size and a lower bound for its apparent
size, an upper bound for its distance is easily established. Finally, Ar-
chimedes interpreted Aristarchus’ universe to have a radius that is to the
sun’s distance as this distance is to the earth’s radius. From these assump-
tions Archimedes shows that the diameter of the ordinary universe as far
as the sun is less than 10" stades. Next, he had to estimate the size of a
grain of sand; remaining on the safe side, he assumed that 10,000 grains
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of sand are not smaller than a poppy seed, that the diameter of a poppy
seed is not less than one fortieth of a finger breadth, and that a stadium
in turn is less than 10,000 finger breadths. Putting together all these ine-
qualities, Archimedes concluded that the number of grains of sand required
to fill the sphere of the then generally accepted universe is less than a
number that we should write as 10°'. For the universe of Aristarchus, which
is to the ordinary universe as the latter is to the earth, Archimedes showed
that not more than 10% grains of sand are required. Archimedes did not
use this notation, but instead described the number as ten million units of
the eighth order of numbers (where the numbers of second order begin
with a myriad-myriads and the numbers of eighth order begin with the
seventh power of a myriad-myriads). To show that he could express num-
bers ever so much larger even than this, Archimedes extended his termi-
nology to call all numbers of order less than a myriad-myriads those of the
first period, the second period consequently beginning with the number
(10%)'"", one that would contain 800,000,000 ciphers. The periods, of course,
continue through the 10%th period. That is, his system would go up to a
myriad-myriad units of the myriad-myriadth order of the myriad-myriadth
period—a number that would be written as one followed by some eighty
thousand million millions of ciphers. It was in connection with this work
on huge numbers that Archimedes mentioned, all too incidentally, a prin-
ciple that later led to the invention of logarithms—the addition of “‘orders”
of numbers (the equivalent of their exponents when the base is 100,000,000)
corresponds to finding the product of the numbers.

MEASUREMENT OF THE CIRCLE

In his approximate evaluation of the ratio of the circumference to diameter
for a circle Archimedes again showed his skill in computation. Beginning
with the inscribed regular hexagon, he computed the perimeters of poly-
gons obtained by successively doubling the number of sides until one reached
ninety-six sides. His iterative procedure for these polygons was related to
what is sometimes called the Archimedean algorithm. One sets out the
sequence P,, p,, Py, Pans Pins Pan- - - , Where P, and p, are the perimeters
of the circumscribed and inscribed regular polygons of n sides. Beginning
with the third term, one calculates any term from the two preceding terms
by taking alternately their harmonic and geometric means. That is, P,, =
2p,P./(p, + P,), p»» = Vp,Ps,, and so on. If one prefers, one can use
instead the sequence a,, A,, ay,, As,, . . .-, Wwhere a, and A, are the areas
of the inscribed and circumscribed regular polygons of n sides. The third
and successive terms are calculated by taking alternately the geometric
and harmonic means, so that a,, = Va,A,, A, = 2A,a:,/(A, + a,),
and so on. His method for computing square roots, in finding the perimeter
of the circumscribed hexagon, and for the geometric means was similar to
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that used by the Babylonians. The result of the Archimedean computation
on the circle was an approximation to the value of n expressed by the
inequality 33 < n < 344, a better estimate than those of the Egyptians
and the Babylonians. (It should be borne in mind that neither Archimedes
nor any other Greek mathematician ever used our notation n for the ratio
of circumference to diameter in a circle.) This result was given in Propo-
sition 3 of the treatise On the Measurement of the Circle, one of the most
popular of the Archimedean works during the medieval period. This little
work, probably incomplete as it has come down to us, includes only three
propositions, of which one is the proof, by the method of exhaustion, that
the area of the circle is the same as that of a right triangle having the
circumference of the circle as one side and the radius of the circle as the
other. It is unlikely that Archimedes was the discoverer of this theorem,
for it is presupposed in the quadrature of the circle attributed to Dinos-
tratus.

ANGLE TRISECTION

Archimedes, like his predecessors, was attracted by the three famous prob-
lems of geometry, and the well-known Archimedean spiral provided so-
lutions to two of these (but not, of course, with straightedge and compasses
alone). The spiral is defined as the plane locus of a point which, starting
from the end point of a ray or half line, moves uniformly along this ray
while the ray in turn rotates uniformly about its end point. In polar co-
ordinates the equation of the spiral is r = a0. Given such a spiral, the
trisection of an angle is easily accomplished. The angle is so placed that
the vertex and initial side of the angle coincide with the initial point O of
the spiral and the initial position OA of the rotating line. Segment OP,
where P is the intersection of the terminal side of the angle with the spiral,
is then trisected at points R and S (Fig. 8.2), and circles are drawn with
O as center and OR and OS as radii. If these circles intersect the spiral in
points U and V, lines OU and OV will trisect the angle AOP.
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Greek mathematics sometimes has been described as essentially static,
with little regard for the notion of variability; but Archimedes, in his study
of the spiral, seems to have found the tangent to a curve through kinematic
considerations akin to the differential calculus. Thinking of a point on the
spiral r = a0 as subjected to a double motion—a uniform radial motion
away from the origin of coordinates and a circular motion about the ori-
gin—he seems to have found (through the parallelogram of velocities) the
direction of motion (hence of the tangent to the curve) by noting the
resultant of the two component motions. This appears to be the first in-
stance in which a tangent was found to a curve other than a circle.

Archimedes’ study of the spiral, a curve that he ascribed to his friend
Conon of Alexandria, was part of the Greek search for solutions of the
three famous problems. The curve lends itself so readily to angle multi-
sections that it may well have been devised by Conon for this purpose. As
in the case of the quadratrix, however, it can serve also to square the circle,
as Archimedes showed. At point P let the tangent to the spiral OPR be
drawn and let this tangent intersect in point Q the line through O that is
perpendicular to OP. Then, Archimedes showed, the straight-line segment
OQ (known as the polar subtangent for point P) is equal in length to the
circular arc PS of the circle with center O and radius OP (Fig. 8.3) that is
intercepted between the initial line (polar axis) and line OP (radius vector).
This theorem, proved by Archimedes through a typical double reductio ad
absurdum demonstration, can be verified by a student of the calculus who
recalls that tan w = r/r’, where r = f(0) is the polar equation of a curve,
r' is the derivative of r with respect to 0, and y is the angle between the
radius vector at a point P and the tangent line to the curve at the point P.
A large part of the work of Archimedes is such that it would now be
included in a calculus course, which is particularly true of the work On
Spirals. If point P on the spiral is chosen as the intersection of the spiral
with the 90° line in polar coordinates, the polar subtangent OQ will be
precisely equal to quarter of the circumference of the circle of radius OP.
Hence, the entire circumference is easily constructed as four times the
segment OQ, and by Archimedes’ theorem a triangle equal in area to the
area of the circle is found. A simple geometric transformation will then

FIG. 8.3
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produce a square in place of the triangle, and the quadrature of the circle
is effected.

Among the twenty-eight propositions in On Spirals are several con-
cerning areas associated with the spiral. For example, it is shown in Prop-
osition 24 that the area swept out by the radius vector in its first complete
rotation is one third of the area of the “first circle”—that is, the circle with
center at the pole and radius equal to the length of the radius vector
following the first complete rotation. Archimedes used the method of ex-
haustion, but again a student today can easily verify the result if he recalls
that this area is 4/, r?d0. Moreover, it can readily be shown by the
calculus, as Archimedes did by the more difficult method of exhaustion,
that on the next rotation the area of the additional ring R, (bounded by
the first and second turns of the spiral and the portion of the polar axis
between the two intercepts following the first and second rotations) is six
times the region R, swept out in the first rotation. Areas of the additional
rings added on successive rotations are given by the simple rule of succes-
sion R,.; = nR,/(n — 1), as Archimedes showed.

AREA OF A PARABOLIC SEGMENT

The work On Spirals was much admired but little read, for it was generally
regarded as the most difficult of all Archimedean works. Of the treatises
concerned chiefly with the method of exhaustion (that is, the integral cal-
culus), the most popular was Quadrature of the Parabola. The conic sections
had been known for almost a century when Archimedes wrote, yet no
progress had been made in finding their areas. It took the greatest math-
ematician of antiquity to square a conic section—a segment of the para-
bola—which he accomplished in Proposition 17 of the work in which the
quadrature was the goal. The proof by the standard method of exhaustion
is long and involved, but Archimedes rigorously proved that the area K
of a parabolic segment APBQC (Fig. 8.4) is four thirds the area of a tri-
angle T having the same base and equal height. In the succeeding (and
last) seven propositions Archimedes gave a second but different proof of
the same theorem. He first showed that the area of the largest inscribed

B
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triangle, ABC, on the base AC is four times the sum of the corresponding
inscribed triangles on each of the lines AB and BC as base. By continuing
the process suggested by this relationship, it becomes clear that the area
K of the parabolic segment ABC is given by the sum of the infinite series
T+ T/4 + T/4* + --- + T/4" + ---, which, of course, is 7. Archimedes
did not refer to the sum of the infinite series, for infinite processes were
frowned on in his day; instead he proved by a double reductio ad absurdum
that K can be neither more nor less than 47. (Archimedes, like his pred-
ecessors, did not use the name ““parabola” but the word “orthotome,” or
“section of a right cone.”)

In the preamble to the Quadrature of the Parabola we find the assump-
tion or lemma that is usually known today as the axiom of Archimedes:
“That the excess by which the greater of two unequal areas exceeds the
less can, by being added to itself, be made to exceed any given finite area.”
This axiom in effect rules out the fixed infinitesimal or indivisible that had
been much discussed in Plato’s day. It is essentially the same as the axiom
of exhaustion, and Archimedes freely admitted that

The earlier geometers have also used this lemma, for it is by the use of this
same lemma that they have shown that circles are to one another in the
duplicate ratio of their diameters, and that spheres are to one another in the
triplicate ratio of their diameters, and further that every pyramid is one third
part of the prism which has the same base with the pyramid and equal height;
also, that every cone is one third part of the cylinder having the same base
as the cone and equal height they proved by assuming a certain lemma similar
to that aforesaid.

The “earlier geometers” mentioned here presumably included Eudoxus
and his successors.

VOLUME OF A PARABOLOIDAL SEGMENT

Archimedes apparently was unable to find the area of a general segment
of an ellipse or hyperbola. Finding the area of a parabolic segment by
modern integration involves nothing worse than polynomials, but the in-
tegrals arising in the quadrature of a segment of an ellipse or hyperbola
(as well as the arcs of these curves or the parabola) require transcendental
functions. Nevertheless, in his important treatise On Conoids and Sphe-
roids Archimedes found the area of the entire ellipse: ““The areas of ellipses
are as the rectangles under their axes” (Proposition 6). This is, of course,
the same as saying that the area of x’/a> + y?/b?> = 1 is nab or that the
area of an ellipse is the same as the area of a circle whose radius is the
geometric mean of the semiaxes of the ellipse. Moreover, in the same
treatise Archimedes showed how to find the volumes of segments cut from
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FIG. 8.5

an ellipsoid or a paraboloid or a hyperboloid (of two sheets) of revolution
about the principal axis. The process that he used is so nearly the same as
that in modern integration that we shall describe it for one case. Let ABC
be a paraboloidal segment (or paraboloidal “‘conoid’) and let its axis be
CD (Fig. 8.5); about the solid circumscribe the circular cylinder ABFE,
also having CD as axis. Divide the axis into n equal parts of length 4, and
through the points of division pass planes parallel to the base. On the
circular sections that are cut from the paraboloid by these planes construct
inscribed and circumscribed cylindrical frusta, as shown in the figure. It is
then easy to establish, through the equation of the parabola and the sum
of an arithmetic progression, the following proportions and inequalities:

Cylinder ABEF _ nh > n*h
Inscribed figure  h + 2h + 3h + = + (n — D)h ~ in?h’
Cylinder ABEF nh nh

= <t 5
Circumscribed figure h + 2h + 3h + - + nh  in’h

Archimedes had previously shown that the difference in volume between
the circumscribed and inscribed figures was equal to the volume of the
lowest slice of the circumscribed cylinder; by increasing the number n of
subdivisions on the axis, thereby making each slice thinner, the difference
between the circumscribed and inscribed figures can be made less than any
preassigned magnitude. Hence, the inequalities lead to the necessary con-
clusion that the volume of the cylinder is twice the volume of the conoidal
segment. This work differs from the modern procedure in integral calculus
chiefly in the lack of the concept of limit of a function—a concept that
was so near at hand and yet was never formulated by the ancients, not
even by Archimedes, the man who came closest to achieving it.

SEGMENT OF A SPHERE

Archimedes composed many marvelous treatises, of which his successors
were inclined to admire most the one On Spirals. The author himself seems

_'llr
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to have been partial to another, On the Sphere and Cylinder. Archimedes
requested that on his tomb be carved a representation of a sphere inscribed
in a right circular cylinder the height of which is equal to its diameter, for
he had discovered, and proved, that the ratio of the volumes of cylinder
and sphere is the same as the ratio of the areas—that is, three to two. This
property, which Archimedes discovered subsequent to his Quadrature of
the Parabola, remained unknown, he says, to geometers before him. It
oncc had been thought that the Egyptians knew how to find the area of a
hemisphere; but Archimedes appears now as the first one to have known,
and proved, that the area of a sphere is just four times the area of a great
circle of the sphere. Moreover, Archimedes showed that ‘‘the surface of
any segment of a sphere is equal to a circle whose radius is equal to the
straight line drawn from the vertex of the segment to the circumference
of the circle which is the base of the segment.” This, of course, is equivalent
to the more familiar statement that the surface area of any segment of a
sphere is equal to that of the curved surface of a cylinder whose radius is
the same as that of the sphere and whose height is the same as that of the
segment. That is, the surface area of the segment does not depend on the
distance from the center of the sphere, bu: only on the altitude (or thick-
ness) of the segment. The crucial theorem on the surface of the sphere
appears in Proposition 33, following a long series of preliminary theorems,
including one that is equivalent to an integration of the sine function:

If a polygon be inscribed in a segment of a circle LAL’ so that all its sides
excluding the base are equal and their number even,as LK .. . A...K'L’,
A being the middle point of the segment; and if the lines BB', CC’, . ..
parallel to the base LL' and joining pairs of angular points be drawn, then
(BB’ + CC' + -+ + LM):AM = A'B:BA, where M is the middle point
of LL' and AA’ is the diameter through M [Fig. 8.6].

This is the geometric equivalent of the trigonometric equation
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From this theorem it is easy to derive the modern expression [ sin x
dx = 1 — cos ¢ by multiplying both sides of the equation above by 0/n
and taking limits as n increases indefinitely. The left-hand side becomes

n

lim Z sin(x;Ax,),

H—% j=|

where x; = Winford =01, 2. . -0 Axt=0/nforih=Jll 2. Sl S nce
and Ax, = (0/2n. The right-hand side becomes
L) 0
(1 —cos0)lim—cot— =1 — cos ().
P 2n

The equivalent of the special case [§ sin x dx = 1 — cos 7 = 2 had been
given by Archimedes in the preceding proposition.

The familiar formula for the volume of a sphere appears in On the
Sphere and Cylinder 1.34:

Any sphere is equal to four times the cone which has its base equal to the
greatest circle in the sphere and its height equal to the radius of the sphere.

The theorem is proved by the usual method of exhaustion, and the
Archimedean ratio for the volume and surface area of the sphere and
circumscribed cylinder followed as an easy corollary. The sphere-in-a-cyl-
inder diagram was indeed carved on the tomb of Archimedes, as we know
from a report by Cicero. When he was quaestor in Sicily, the Roman orator
found the neglected tomb with the engraving. He restored the tomb—
almost the only contribution of a Roman to the history of mathematics—
but all traces of it have since vanished.

ON THE SPHERE AND CYLINDER

An interesting light on Greek geometric algebra is cast by a problem in
Book 11 of On the Sphere and Cylinder. In Proposition 2 Archimedes
justified his formula for the volume of a segment of a given sphere: in
Proposition 3 he showed that to cut a given sphere by a plane so that the
surfaces of the segments are in a given ratio, one simply passes a plane
perpendicular to a diameter through a point on the diameter which divides
the diameter into two segments having the desired ratio. He then showed
in Proposition 4 how to cut a given sphere so that the volumes of the two
segments are in a given ratio—a far more difficult problem. In modern
notation, Archimedes was led to the equation

4a>  (3a — x)(m + n)

5y

X ma
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where m:n is the ratio of the segments. This is a cubic equation, and
Archimedes attacked its solution as had his predecessors in solving the
Delian problem—through intersecting conics. Interestingly, the Greek ap-
proach to the cubic was quite different from that to the quadratic equation.
By analogy with the ‘“‘application of areas” in the latter case, we would
anticipate an “application of volumes,” but this was not adopted. Through
substitutions Archimedes reduced his cubic equation to the form x*(c —
x) = db? and promised to give separately a complete analysis of this cubic
with respect to the number of positive roots. This analysis had apparently
been lost for many centuries when Eutocius, an important commentator
of the early sixth century, found a fragment that seems to contain the
authentic Archimedean analysis. The solution was carried out by means
of the intersection of the parabola cx* = b’y and the hyperbola (¢ —
x)y = cd. Going further, he found a condition on the coefficients that
determines the number of real roots satisfying the given requirements—a
condition equivalent to finding the discriminant, 27b°d — 4¢3, of the cubic
equation b’d = x*(c — x). (This can easily be verified by the application
of a little elementary calculus.) Inasmuch as all cubic equations can be
transformed to the Archimedean type, we have here the essence of a
complete analysis of the general cubic. Interest in the cubic equation dis-
appeared shortly after Archimedes, to be revived for a while by Eutocius
and then centuries later still by the Arabs.

BOOK OF LEMMAS

Most of the Archimedean treatises that we have described are a part of
advanced mathematics, but the great Syracusan was not above proposing
elementary problems. In his Book of Lemmas, for example, we find a study
of the so-called arbelos, or ‘“‘shoemaker’s knife.”” The shoemaker’s knife
is the region bounded by the three semicircles tangent in pairs in Fig. 8.7,
the area in question being that which lies inside the largest semicircle and
outside the two smallest. Archimedes showed in Proposition 4 that if CD
is perpendicular to AB, the area of the circle with CD as diameter is equal

FIG. 8.7
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to the area of the arbelos. In the next proposition it is shown that the two
circles inscribed within the two regions into which CD divides the shoe-
maker’s knife are equal.

The Book of Lemmas contains also a theorem (Proposition 14) on what
Archimedes called the salinon, or “salt cellar.” Draw semicircles with the
segments AB, AD, DE, and EB as diameters (Fig. 8.8), with AD = EB.
Then, the total area bounded by the salinon (bounded entirely by semi-
circular arcs) is equal to the area of the circle having as its diameter the
line of symmetry of the figure, FOC.

It is in the Book of Lemmas that we find also (as Proposition 8) the
well-known Archimedean trisection of the angle. Let ABC be the angle
to be trisected (Fig. 8.9). Then, with B as center, draw a circle of any
radius intersection AB in P and BC in Q, with BC extended in R. Then,
draw a line STP such that S lies on COBR extended and T lies on the
circle and such that ST = BQ = BP = BT. It is then readily shown, since
triangles STB and TBP are isosceles, that angle BST is precisely a third
of angle QBP, the angle that was to have been trisected. Archimedes and
his contemporaries were, of course, aware that this is not a canonical
trisection in the Platonic sense, for it involves what they called a neusis—
that is, an insertion of a given length, in this case ST = BQ, between two
figures, here the line OR extended, and the circle.

The Book of Lemmas has not survived in the original Greek, but through
Arabic translation that later was turned into Latin. (Hence, it often is cited
by its Latin title of Liber assumptorum.) In fact, the work as it has come
down to us cannot be genuinely Archimedean, for his name is quoted
several times within the text. However, even if the treatise is nothing more
than a collection of miscellaneous theorems that were attributed by the
Arabs to Archimedes, the work probably is substantially authentic. There
is doubt also about the authenticity of the “‘cattle-problem,” which is gen-
erally thought to be Archimedean, and certainly dates back to within a
few decades of his death. The cattle-problem is a challenge to mathema-
ticians to solve a set of indeterminate simultaneous equations in eight
unknown quantities—the number of bulls and cows of each of four colors.
There is some ambiguity in the formulation of the problem, but according
to one interpretation it would take a volume of more than 600 pages to
give the values for the eight unknowns contained in one of the possible
solutions! The problem, which involves the solution of x> = 1 + 4729494y?,

S
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incidentally provides a first example of what later was to be known as a
“Pell equation.”

SEMIREGULAR SOLIDS AND TRIGONOMETRY

It is certain that not all of the works of Archimedes have survived, for in
a later commentary we learn (from Pappus) that Archimedes discovered
all of the thirteen possible so-called semiregular solids. Whereas a regular
solid or polyhedron has faces that are regular polygons of the same type,
a semiregular solid is a convex polyhedron whose faces are regular poly-
gons, but not all of the same type. For example. if from the eight corners
of a cube a we cut off tetrahedra with edges a(2 — V2)/2, the resulting
figure will be a semiregular or Archimedean solid with surfaces made up
of eight equilateral triangles and six regular octagons.

That quite a number of Archimedean works have been lost is clear from
many references. Arabic scholars inform us that the familiar area for-
mula for a triangle in terms of its three sides, usually known as Heron'’s for-
mula—K = Vs(s — a)(s — b)(s — ¢), where s is the semiperimeter—was
known to Archimedes several centuries before Heron lived. Arabic scholars
also attribute to Archimedes the ‘‘theorem on the broken chord”—if AB
and BC make up any broken chord in a circle (with AB # BC) and if M
is the midpoint of the arc ABC and F the foot of the perpendicular from
M to the longer chord, F will be the midpoint of the broken chord ABC
(Fig. 8.10). Archimedes is reported by the Arabs to have given several
proofs of the theorem, one of which is carried out by drawing in the dotted
lines in the figure, making FC' = FC, and proving that AMBC' = AMBA.
Hence, BC' = BA, and it, therefore, follows that C'F = AB + BF =
FC. We do not know whether Archimedes saw any trigonometric signifi-
cance in the theorem, but it has been suggested that it served for him
as a formula analogous to our sin(x — y) = sin x cos y — ¢os x sin y.
To show the equivalence we let MC = 2x and BM = 2y. Then, AB =
2x — 2y. Now, the chords corresponding to these three arcs are respectively

FIG. 8.10



136 ARCHIMEDES OF SYRACUSE

MC = 2sin x, BM = 2siny, and AB = 2 sin (x — y). Moreover, the
projections of MC and MB on BC are FC = 2 sin x cos y and FB =
2 sin y cos x. If, finally, we write the broken-chord theorem in the form
AB = FC — FB, and if for these three chords we substitute their trigono-
metric equivalents, the formula for sin(x — y) results. Other trigonometric
identities can, of course, be derived from the same broken-chord theorem,
indicating that Archimedes may have found it a useful tool in his astro-
nomical calculations.

THE METHOD

Unlike the Elements of Euclid, which have survived in many Greek and
Arabic manuscripts, the treatises of Archimedes have reached us through
a slender thread. Almost all copies are from a single Greek original which
was in existence in the early sixteenth century and itself was copied from
an original of about the ninth or tenth century. The Elements of Euclid
has been familiar to mathematicians virtually without interruption since its
composition, but Archimedean treatises have had a more checkered career.
There have been times when few or even none of Archimedes’ works were
known. In the days of Eutocius, a first-rate scholar and skillful commentator
of the sixth century, only three of the many Archimedean works were
generally known—On the Equilibrium of Planes, the incomplete Mea-
surement of a Circle, and the admirable On the Sphere and Cylinder. Under
the circumstances it is a wonder that such a large proportion of what
Archimedes wrote has survived to this day. Among the amazing aspects
of the provenance of Archimedean works is the discovery within the twen-
tieth century of one of the most important treatises—one which Ar-
chimedes simply called The Method and which had been lost since the early
centuries of our era until its rediscovery in 1906.

The Method of Archimedes is of particular significance because it dis-
closes for us a facet of Archimedes’ thought that is not found elsewhere.
His other treatises are gems of logical precision, with little hint of the
preliminary analysis that may have led to the definitive formulations. So
thoroughly without motivation did his proofs appear to some writers of
the seventeenth century that they suspected Archimedes of having con-
cealed his method of approach in order that his work might be admired
the more. How unwarranted such an ungenerous estimate of the great
Syracusan was became clear in 1906 with the discovery of the manuscript
containing The Method. Here Archimedes had published, for all the world
to read, a description of the preliminary “‘mechanical” investigations that
had led to many of his chief mathematical discoveries. He thought that his
“method” in these cases lacked rigor, since it assumed an area, for example,
to be a sum of line segments.

The Method, as we have it, contains most of the text of some fifteen
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FIG. 8.11

propositions sent in the form of a letter to Eratosthenes, mathematician
and librarian at the university of Alexandria. The author opened by saying
that it is easier to supply a proof of a theorem if we first have some
knowledge of what is involved; as an example he cites the proofs of Eudoxus
on the cone and pyramid, which had been facilitated by the preliminary
asssertions, without proof, made by Democritus. Then, Archimedes an-
nounced that he himself had a “mechanical” approach that paved the way
for some of his proofs. The very first theorem that he discovered by this
approach was the one on the area of a parabolic segment; in Proposition
1 of The Method the author describes how he arrived at this theorem by
balancing lines as one balances weights in mechanics. He thought of the
areas of the parabolic segment ABC and the triangle AFC (where FC is
tangent to the parabola at C) as the totality of a set of lines parallel to the
diameter OB of the parabola, such as OP (Fig. 8.11) for the parabola and
OM for the triangle. If, now, one were to place at H (where HK = KC)
a line segment equal to OP, this would just balance the line OM where it
now is, K being the fulcrum. (This can be shown through the law of the
lever and the property of the parabola.) Hence, the area of the parabola,
if placed with its center of gravity at A, will just balance the triangle, whose
center of gravity is along KC and a third of the way from K to C. From
this one easily sees that the area of the parabolic segment is one third the
area of triangle AFC, or four thirds the area of the inscribed triangle ABC.

VOLUME OF A SPHERE

The favorite theorem of Archimedes, represented on his tomb, was also
suggested to him by his mechanical method. It is described in Proposition
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2 of The Method:

Any segment of a sphere has to the cone with the same base and height the
ratio which the sum of the radius of the sphere and the height of the com-
plementary segment has to the height of the complementary segment.

The theorem follows readily from a beautiful balancing property which
Archimedes discovered (and which can be easily verified in terms of modern
formulas). Let AQDCP be a cross section of a sphere with center O and
diameter AC (Fig. 8.12) and let AUV be a plane section of a right circular
cone with axis AC and UV as diameter of the base. Let IJUV be a right
circular cylinder with axis AC and with UV = IJ as diameter and let
AH = AC. If a plane is passed through any point S on the axis AC and
perpendicular to AC, the plane will cut the cone, the sphere, and the
cylinder in circles of radii r, = SR, r, = SP, and r; = SN respectively. If
we call the areas of these circles A,, A,, and A;, then, Archimedes found,
A, and A,, when placed with their centers at H, will just balance A; where
it now is, with A as the fulcrum. Hence, if we call the volumes of the
sphere, the cone, and the cylinder V), V;, V;, it follows that V|, + V, =
$V3; and since V, = }V3, the sphere must be V5. Because the volume V3
of the cylinder is known (from Democritus and Eudoxus), the volume of
the sphere also is known—in modern notation, V = 4znr’. By applying the
same balancing technique to the spherical segment with base diameter BD,
to the cone with base diameter EF, and to the cylinder with base diameter
KL, the volume of the spherical segment is found in the same manner as
for the whole sphere.

A\lo G/
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RECOVERY OF THE METHOD

The method of equilibrium of circular sections about a vertex as fulcrum
was applied by Archimedes to discover the volumes of the segments of
three solids of revolution—the ellipsoid, the paraboloid, and the hyper-
boloid, as well as the centers of gravity of the paraboloid (conoid), of any
hemisphere, and of a scmicircle. The Method closes with the determination
of volumes of two solids that are favorites in modern calculus books—a
wedge cut from a right circular cylinder by two planes (as in Fig. 8.13) and
the volume common to two equal right circular cylinders intersecting at
right angles. The work containing such marvelous results of more than
2000 years ago was recovered almost by accident in 1906. The indefatigable
Danish scholar J. L. Heiberg had read that at Constantinople there was a
palimpsest of mathematical content. (A palimpsest is a parchment the
original writing on which has been only imperfectly washed off and replaced
with a new and different text.) Close inspection showed him that the original
manuscript had contained something by Archimedes, and through pho-
tographs he was able to read most of the Archimedean text. The manuscript
consisted of 185 leaves, mostly of parchment but a few of paper, with the
Archimedean text copied in a tenth-century hand. An attempt—fortu-
nately, none too successful—had been made to expunge this text in order
to use the parchment for a Euchologion (a collection of prayers and liturgies
used in the Eastern Orthodox Church) written in about the thirteenth
century. The mathematical text contained On the Sphere and Cylinder,
most of the work On Spirals, part of the Measurement of a Circle and of
On the Equilibrium of Planes, and On Floating Bodies, all of which have
been preserved in other manuscripts; most important of all, the palimpsest
gives us the only surviving copy of The Method. In a sense the palimpsest
is symbolic of the contribution of the Medieval Age. Intense preoccupation
with religious concerns very nearly wiped out one of the most important
works of the greatest mathematician of antiquity; yet in the end it was
medieval scholarship that inadvertently preserved this, and much besides,
which might otherwise have been lost.

FIG. 8.13



Apollonius of Perga

It seems to me that all the evidence points to Apollonius as the founder of Greek
mathematical astronomy.

Otto Neugebauer

LOST WORKS

During the first century or so of the Hellenistic Age three mathematicians
stood head and shoulders above all others of the time, as well as above
most of their predecessors and successors. These men were Euclid, Ar-
chimedes, and Apollonius; it is their work that leads to the designation of
the period from about 300 to 200 B.C. as the “Golden Age” of Greek
mathematics. In a sense mathematics had lagged behind the arts and lit-
erature, for it was the Age of Pericles, in the middle of the fifth century
B.C., that in the broader sense is known as the “‘Golden Age of Greece.”
Throughout the Hellenistic period the city of Alexandria remained the
mathematical focus of the Western world, but Apollonius, like Archimedes,
was not a native there. He was born at Perga in Pamphilia (southern Asia
Minor); but he may have been educated at Alexandria, and he seems to
have spent some time teaching there at the university. For a while he was
at Pergamum, where there was a university and a library second only to
that at Alexandria, through the patronage of Alexander’s general, Lysi-
machus, and his successors. Inasmuch as the ancient world had many men
named Apollonius (of these 129 with biographies are listed in Pauly-Wis-
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sowa, Real-Enzyclopddie der klassischen Altertumswissenschaft), our math-
ematician is distinguished from others by use of the full name, Apollonius
of Perga. We do not know the precise dates of his life. but he is reported
to have flourished during the reigns of Ptolemy Euergetes and Ptolemy
Philopater; one report makes him a treasurer-general of Ptolemy Phila-
delphus, and it was said that he was twenty-five to forty years younger
than Archimedes. The years 262 to 190 B.C. have been suggested for his
life, about which little is known. He seems to have felt himself to be a
rival of Archimedes; he thus touched on several themes that we discussed
in the preceding chapter. He developed a scheme of “tetrads’ for express-
ing large numbers, using an equivalent of exponents of the single myriad,
whereas Archimedes had used the double myriad as a base. The numerical
scheme of Apollonius probably was the one of which part is described in
the surviving last portion of Book II of the Mathematical Collection of
Pappus. (All of Book I and the first part of Book II have been lost.) Here
the number 5,462,360,064 x 10° is written as u’.ev&f uf,yxu."sv, where
1, 1¥, and p“ are respectively, the third, the second, and the first powers
of a myriad.

Apollonius wrote a work (now lost) entitled Quick Delivery which seems
to have taught speedy methods of calculation. In it the author is said to
have calculated a closer approximation to n than that given by Ar-
chimedes—probably the value we know as 3.1416. We do not know how
this value, which appeared later in Ptolemy and also in India, was arrived
at. In fact, there are more unanswered questions about Apollonius and his
work than about Euclid or Archimedes, for more of his works have dis-
appeared. We have the titles of many lost works, such as one on Curting-
off of a Ratio, another on Cutting-off of an Area, one On Determinate
Section, another on Tangencies (or Contacts), one on Vergings (or Incli-
nations), and one on Plane Loci. In some cases we know what the treatise
was about, for Pappus later gave brief descriptions of a few. Six of the
works of Apollonius were included, together with a couple of Euclid’s
more advanced treatises (now lost), in a collection known as the *“Treasury
of Analysis.” Pappus described this as a special body of doctrine for those
who, after going through the usual elements, wish to obtain power to solve
problems involving curves. The *“Treasury,” made up largely of works by
Apollonius, consequently must have included much of what we now call
analytic geometry; it was with good reason that Apollonius, rather than
Euclid, was known in antiquity as “The Great Geometer.”

RESTORATION OF LOST WORKS

From the descriptions given by Pappus and others, it is possible to obtain
a good idea of the contents of some of the lost Greek works, and when in
the seventeenth century the game of reconstructing lost geometric books
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was at its height, the treatises of Apollonius were among the favorites.
From restorations of the Plane Loci, for example, we infer that the fol-
lowing were two of the loci considered: (1) The locus of points the difference
of the squares of whose distances from two fixed points is constant is a
straight line perpendicular to the line joining the points; (2) the locus of
points the ratio of whose distances from two fixed points is constant (and
not equal to one) is a circle. The latter locus is, in fact, now known as the
“Circle of Apollonius,” but this is a misnomer since it had been known to
Aristotle who had used it to give a mathematical justification of the sem-
icircular form of the rainbow.'

The Cutting-off of a Ratio dealt with the various cases of a general
problem—given two straight lines and a point on each, draw through a
third given point a straight line that cuts off on the given lines segments
(measured from the fixed points on them respectively) that are in a given
ratio. This problem is equivalent to solving a quadratic equation of the
type ax — x> = b, that is, of applying to a line segment a rectangle equal
to a rectangle and falling short by a square. In Cutting-off of an Area the
problem is similar except that the intercepted segments are required to
contain a given rectangle, rather than being in a given ratio. This problem
leads to a quadratic of the form ax + x° = bc, so that one has to apply
to a segment a a rectangle equal to a rectangle and exceeding by a square.
The Apollonian treatise On Determinate Section dealt with what might be
called an analytic geometry of one dimension. It considered the following
general problem, using the typical Greek algebraic analysis in geometric
form: Given four points A, B, C, D on a straight line, determine a fifth
point P on it such that the rectangle on AP and CP is in a given ratio to
the rectangle on BP and DP. Here, too, the problem reduces easily to the
solution of a quadratic; and, as in other cases, Apollonius treated the
question exhaustively, including the limits of possibility and the number
of solutions.

THE PROBLEM OF APOLLONIUS

The treatise on Tangencies is of a different sort from the three above, for
as Pappus describes it we see the problem familiarly known today as the
“Problem of Apollonius.” Given three things, each of which may be a
point, a line, or a circle, draw a circle that is tangent to each of the three
given things (where tangency to a point is to be understood to mean that
the circle passes through the point). This problem involves ten cases, from
the two easiest (in which the three things are three points or three lines)
to the most difficult of all (to draw a circle tangent to three circles). The
two easiest had appeared in Euclid’s Elements in connection with inscribed

'See C. B. Boyer, The Rainbow (New York: Yoscloff, 1959), pp. 45-46.
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and circumscribed circles of a triangle; another six cases were handled in
Book I of Tangencies, and the case covering two lines and a circle, as well
as the case of three circles, occupied all of Book II. We do not have the
solutions of Apollonius, but they can be reconstructed on the basis of
information from Pappus. Nevertheless, scholars of the sixteenth and sev-
enteenth centuries generally were under the impression that Apollonius
had not solved the last case; hence, they regarded this problem as a chal-
lenge to their abilities. Newton was among those who gave a solution, using
straightedge and compasses alone.’

The trisection of the angle by Archimedes, in which a given length is
inserted between a line and a circle along a straight line that is shifted so
as to pass through a given point (point P in Fig. 8.9), is a typical example
of a solution by means of a neusis (verging or inclination). Apollonius’
treatise on Vergings considered the class of neusis problems that can be
solved by “plane” methods—that is, by the use of compasses and straight-
edge only. (The Archimedean trisection, of course, is not such a problem,
for in modern times it has been proved that the general angle cannot be
trisected by “‘plane’’ methods.) According to Pappus, one of the problems
dealt with in Vergings is the insertion within a given circle of a chord of
given length verging to a given point.

There were in antiquity allusions to still other works by Apollonius,
including one on Comparison of the Dodecahedron and the Icosahedron.
In this the author gave a proof of the theorem (known perhaps to Aristaeus)
that the plane pentagonal faces of a dodecahedron are the same distance
from the center of the circumscribing sphere as are the plane triangular
faces of an icosahedron inscribed in the same sphere. The theorem in the
spurious Book X1V of the Elements—that in this case the ratio of the areas
of the icosahedron and the dodecahedron is equal to the ratio of their
volumes—follows immediately from the Apollonian proposition; and it
may be that the author of Elements XIV made use of the treatise of Apol-
lonius.

CYCLES AND EPICYCLES

Apollonius was also a celebrated astronomer; the favorite mathematical
device in antiquity for the representation of the motions of the planets is
apparently due to him. Whereas Eudoxus had used concentric spheres,
Apollonius proposed instead two alternative systems, one made up of
epicyclic motions and the other involving eccentric motions. In the first
scheme a planet P was assumed to move uniformly about a small circle
(epicycle), the center C of which in turn moved uniformly along the cir-
cumference of a larger circle (deferent) with center at the earth E (Fig.

2Arithmetica universalis, Problem XLVII.
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FIG. 9.1

9.1). In the eccentric scheme the planet P moves uniformly along the
circumference of a large circle, the center C' of which in turn moves
uniformly in a small circle with center at E. If PC = C'E, the two geometric
schemes will be equivalent, as Apollonius evidently knew. While the theory
of homocentric spheres had become, through the work of Aristotle, the
favorite astronomical scheme of those satisfied by a gross representation
of the approximate motions, the theory of cycles and epicycles, or of
eccentrics, became, through the work of Ptolemy, the choice of mathe-
matical astronomers who wanted refinement of detail and predictive pre-
cision. For some 1800 years the two schemes—the one of Eudoxus and
the other of Apollonius—were friendly rivals vying for the favor of scholars.

THE CONICS

Despite his scholarly productivity, only two of the many treatises by Apol-
lonius have in large part survived. All Greek versions of the Cutting-off of
a Ratio were lost long ago, but not before an Arabic translation had been
made. In 1706 Halley, Newton’s friend, published a Latin translation of
the work, and it has since appeared in vernacular tongues. Apart from this
treatise, only one Apollonian work has substantially survived, which, how-
ever, was by all odds his chef-d’oeuvre—the Conics. Of this famous work
only half—the first four of the original eight books—remains extant in
Greek; fortunately, an Arabic mathematician, Thabit ibn Qurra, had trans-
lated the next three books, and this version has survived. In 1710 Edmund
Halley provided a Latin translation of the seven books, and editions in
many languages have appeared since then.

The conic sections had been known for about a century and a half when
Apollonius composed his celebrated treatise on these curves. At least twice
in the interval general surveys had been written—by Aristaeus and by




THE CONICS 145

Euclid—but just as Euclid’s Elements had displaced earlier elementary
textbooks, so on the more advanced level of the conic sections the Conics
of Apollonius superseded all rivals in its field, including the Conics of
Euclid, and no attempt to improve on it seems to have been made in
antiquity. If survival is a measure of quality, the Elements of Euclid and
the Conics of Apollonius were clearly the best works in their fields.

Book I of the Conics opens with an account of the motivation for writing
the work. While Apollonius was at Alexandria, he was visited by a geo-
meter, named Naucrates, and it was at the latter’s request that Apollonius
wrote out a hasty draft of the Conics in eight books. Later at Pergamum
the author took the time to polish the books one at a time, hence Books
IV through VII open with greetings to Attalus, King of Pergamum. The
first four books the author describes as forming an elementary introduction,
and it has been assumed that much of this material had appeared in earlier
treatises on conics. However, Apollonius expressly says that some of the
theorems in Book III were his own, for Euclid had not completed the loci
there considered. The last four books he describes as extensions of the
subject beyond the essentials, and we shall see that in them the theory is
advanced in more specialized directions.?

Before the time of Apollonius the ellipse, parabola, and hyperbola were
derived as sectioris of three distinctly different types of right circular cones,
according as the vertex angle was acute, right, or obtuse. Apollonius,
apparently for the first time, systematically showed that it is not necessary
to take sections perpendicular to an element of the cone and that from a
single cone one can obtain all three varieties of conic section simply by
varying the inclination of the cutting plane. This was an important step in
linking the three types of curve. A second important generalization was
made when Apollonius demonstrated that the cone need not be a right
cone—that is, one whose axis is perpendicular to the circular base—but
can equally well be an oblique or scalene circular cone. If Eutocius, in
commenting on the Conics, was well informed, we can infer that Apollonius
was the first geometer to show that the properties of the curves are not
different according as they are cut from oblique cones or from right cones.
Finally, Apollonius brought the ancient curves closer to the modern point
of view by replacing the single-napped cone (somewhat like a modern ice-
cream cone) by a double-napped cone (resembling two oppositely oriented
indefinitely long ice-cream cones placed so that the vertices coincide and
the axes are in a straight line). Apollonius gave, in fact, the same definition
of a circular cone as that used today:

If a straight line, indefinite in length and passing always through a fixed point
be made to move around the circumference of a circle which is not in the

3See T. L. Heath, ed., 1961, pp. xxvi-xxvii. Here, and throughout this chapter, we depend
on Heath's valuable volume, from which passages in translation have been taken.
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same plane with the point so as to pass successively through every point of
that circumference, the moving straight line will trace out the surface of a
double cone.

This change made the hyperbola the double-branched curve familiar to us
today. Geometers often referred to the “two hyperbolas™ rather than to
the “‘two branches™ of a single hyperbola, but in either case the duality of
the curve was recognized.

NAMES OF THE CONIC SECTIONS

Concepts are more important in the history of mathematics than is ter-
minology. but there is more than ordinary significance in a change of name
for the conic sections that was due to Apollonius. For about a century and
a half the curves had had no more distinctive appellations than banal
descriptions of the manner in which the curves had been discovered—
sections of an acute-angled cone (oxytome), sections of a right-angled cone
(orthotome), and sections of an obtuse-angled cone (amblytome). Ar-
chimedes had continued these names (although he is reported to have used
also the word parabola as a synonym for section of a right-angled cone).
It was Apollonius (possibly following up a suggestion of Archimedes) who
introduced the names ellipse and hyperbola in connection with these curves.
The words “ellipse,” “parabola,’ and ““hyperbola™ were not newly coined
for the occasion; they were adapted from an earlier use, perhaps by the
Pythagoreans, in the solution of quadratic equations through the appli-
cation of areas. Ellipsis (meaning a deficiency) had been used when a
rectangle of a given area was applied to a given line segment and fell short
by a square (or other specified figure), and the word hyperbola (a throwing
beyond) had been adopted when the area exceeded the line segment. The
word parabola (a placing beside, or comparison) had indicated neither
excess nor deficiency. Apollonius now applied these words in a new context
as names for the conic sections. The familiar modern equation of the
parabola with vertex at the origin is y* = [x (where [ is the “latus rectum,”
or parameter, now often represented by 2p, or occasionally by 4p). That
is, the parabola has the property that no matter what point on the curve
one chooses, the square on the ordinate is precisely equal to the rectangle
on the abscissa x and the parameter /. The equations of the ellipse and hy-
perbola, similarly referred to a vertex as origin, are (x ¥ a)’/a> * y’/b’ =
1, or y? = Ix ¥ b’x*/a* (where [ again is the latus rectum, or parameter,
2b%/a). That is, for the ellipse y* < /x and for the hyperbola y* > [x, and
it is the properties of the curves that are represented by these inequalities
that prompted the names given by Apollonius more than two millennia
ago and still firmly attached to them. The commentator Eutocius was
responsible for an erroneous impression, still fairly wide-spread, that the
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words ellipse, parabola, and hyperbola were adopted by Apollonius to
indicate that the cutting plane fell short of, or ran along with, or ran into
the second nappe of the cone. This is not at all what Apollonius reported
in the Conics.

THE DOUBLE-NAPPED CONE

In deriving all conic sections from a single double-napped oblique circular
cone, and in giving them eminently appropriate names, Apollonius made
an important contribution to geometry; but he failed to go as far in gen-
erality as he might have. He could as well have begun with an elliptic
cone—or with any quadric cone—and still have derived the same curves.
That is, any plane section of Apollonius’ “‘circular” cone could have served
as the generating curve or “base” in his definition, and the designation
“circular cone” is unnecessary. In fact, as Apollonius himself showed (Book
I, Proposition 5), every oblique circular cone has not only an infinite num-
ber of circular sections parallel to the base, but also another infinite set of
circular sections given by what he called subcontrary sections. Let BFC be
the base of the oblique circular cone and let ABC be a triangular section
of the cone (Fig. 9.2). Let P be any point on a circular section DPE parallel
to BFC and let HPK be a section by a plane such that triangles AHK and
ABC are similar but oppositely oriented. Apollonius then called the section
HPK a subcontrary section and showed that it is a circle. The proof is
easily established in terms of the similarity of triangles HMD and EMK,
from which it follows that HM - MK = DM - ME = PM?, the characteris-
tic property of a circle. (In the language of analytic geometry, if we let
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HM = x, HK = a, and PM = y, then y? = x(a — x) or x* + y? = ax,
which is the equation of a circle.)

FUNDAMENTAL PROPERTIES

Greek geometers divided curves into three categories. The first, known as
“plane loci,” consisted of all straight lines and circles; the second, known
as “‘solid loci,”” was made up of all conic sections; the third category, known
as “linear loci,” lumped together all other curves. The name applied to
the second category undoubtedly was suggested by the fact that the conics
were not defined as loci in a plane which satisfy a certain condition, as is
done today; they were described stereometrically as sections of a three-
dimensional figure. Apollonius, like his predecessors, derived his curves
from a cone in three-dimensional space, but he dispensed with the cone
as promptly as possible. From the cone he derived a fundamental plane
property or ‘‘symptome” for the section, and thereafter he proceeded with
a purely planimetric study based on this property. This step, which we here
illustrate for the ellipse (Book I, Proposition 13), probably was much the
same as that used by his predecessors, including Menaechmus. Let ABC
be a triangular section of an oblique circular cone (Fig. 9.3) and let P be
any point on a section HPK cutting all elements of the cone. Extend HK
to meet BC in G and through P pass a horizontal plane cutting the cone
in the circle DPE and the plane HPK in the line PM. Draw DME, a
diameter of the circle perpendicular to PM. Then, from the similarity of
triangles HDM and HBG we have DM/HM = BG/HG, and from the
similarity of triangles MEK and KCG we have ME/MK = CG/KG. Now,
from the property of the circle we have PM? = DM - ME; hence, PM?* =
(HM - BG/HG)(MK - CG)/KG. If PM = y, HM = x, and HK = 2a,

A

FIG. 918
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the property in the preceding sentence is equivalent to the equation y* =
kx(2a — x), which we recognize as the equation of an ellipse with H as
vertex and HK as major axis. In a similar manner Apollonius derived for
the hyperbola the equivalent of the equation y*> = kx(x + 2a). These forms
are easily reconciled with the “name” forms above by taking k = b*/a’
and ! = 2b*/a.

CONJUGATE DIAMETERS

After Apollonius had derived from a stereometric consideration of the
cone the basic relationship between what we should now call the plane co-
ordinates of a point on the curve—given by the three equations y* = Ix —
b’x*/a*, y* = Ix, and y* = Ix + b’x*/a>—he derived further properties
from the plane equations without reference to the cone. The author of the
Conics reported that in Book I he had worked out the fundamental prop-
erties of the curves “‘more fully and generally than in the writings of other
authors.” The extent to which this statement holds true is suggested by
the fact that here, in the very first book, the theory of conjugate diameters
of a conic is developed. That is, Apollonius showed that the midpoints of
a set of chords parallel to one diameter of an ellipse or hyperbola will
constitute a second diameter, the two being called ‘‘conjugate diameters.™
In fact, whereas today we invariably refer a conic to a pair of mutually
perpendicular lines as axes, Apollonius generally used a pair of conjugate
diameters as equivalents of oblique coordinate axes. The system of con-
jugate diameters provided an exceptionally useful frame of reference for
a conic, for Apollonius showed that if a line is drawn through an extremity
of one diameter of an ellipse or hyperbola parallel to the conjugate di-
ameter, the line “‘will touch the conic, and no other straight line can fall
between it and the conic”—that is, the line will be tangent to the conic.
Here we see clearly the Greek static concept of a tangent to a curve, in
contrast to the Archimedean kinematic view. In fact, often in the Conics
we find a diameter and a tangent at its extremity used as a coordinate
frame of reference.

Among the theorems in Book I are several (Propositions 41 through
49) that are tantamount to a transformation of coordinates from a system
based on the tangent and diameter through a point P on the conic to a
new system determined by a tangent and diameter at a second point Q on
the same curve, together with the demonstration that a conic can be re-
ferred to any such system as axes. In particular, Apollonius was familiar
with the properties of the hyperbola referred to its asymptotes as axes,
given, for the equilateral hyperbola, by the equation xy = ¢>. He had no
way of knowing, of course, that some day this relationship, equivalent to
Boyle’s law, would be fundamental in the study of gases or that his study
of the ellipse would be essential to modern astronomy.
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FIG. 9.4

TANGENTS AND HARMONIC DIVISION

Book II continues the study of conjugate diameters and tangents. For
example, if P is any point on any hyperbola, with center C, the tangent at
P will cut the asymptotes in points L and L' (Fig. 9.4) that are equidistant
from P (Propositions 8 and 10). Moreover (Propositions 11 and 16), any
chord QQ' parallel to CP will meet the asymptotes in points K and K’
such that QK = Q'K’' and QK - QK' = CP’. (These properties were
verified synthetically, but the reader can double-check their validity by use
of modern analytic methods.) Later propositions in Book II show how to
draw tangents to a conic by making use of the theory of harmonic division.
In the case of the ellipse (Proposition 49), for example, if Q is a point on
the curve (Fig. 9.5), Apollonius dropped a perpendicular QN from Q to
the axis AA’ and found the harmonic conjugate 7 of N with respect to A
and A'. (That is, he found the point T on line AA' extended such that
AT/IA'T = AN/NA'; in other words, he determined the point T that
divides the segment AA' externally in the same ratio as N divides AA’
internally.) The line through T and Q, then, will be tangent to the ellipse.
The case in which Q does not lie on the curve can be reduced to this
through familiar properties of harmonic division. (It can be proved that
there are no plane curves other than the conic sections such that, given
the curve and a point, a tangent can be drawn, with straightedge and
compasses, from the point to the curve; but this was, of course, unknown
to Apollonius.)
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THE THREE- AND FOUR-LINE LOCUS

Apollonius apparently was especially proud of Book III, for in the General
Preface to the Conics he wrote:

The third book contains many remarkable theorems useful for the synthesis
of solid loci and determinations of limits; the most and prettiest of these
theorems are new and, when I had discovered them, I observed that Euclid
had not worked out the synthesis of the locus with respect to three and four
lines, but only a chance portion of it and that not successfully: for it was not
possible that the synthesis could have been completed without my additional
discoveries.

The three- and four-line locus to which reference is made played an im-
portant role in mathematics from Euclid to Newton. Given three lines (or
four lines) in a plane, find the locus of a point P that moves so that the
square of the distance from P to one of these is proportional to the product
of the distances to the other two (or, in the case of four lines, the product
of the distances to two of them is proportional to the product of the
distances to the other two), the distances being measured at given angles
with respect to the lines. Through modern analytic methods, including the
normal form of the straight line, it is easy to show that the locus is a conic
section—real or imaginary, reducible or irreducible. If, for the three-line
locus, equations of the given lines are A;x + By + C, = 0, A,x +
B,y + C, = 0, and A;x + By + C; = 0, and if the angles at which the
distances are to be measured are 0,, 0,, and 0,, then the locus of P(x, y)
is given by

(Alx aF Bly A Cl)Z o K(Azx 3= Bzy ar Cz) ) (A}X a5 B3y =F C})
(A} + Bi)sin? 0, VA} + B}sin 0, VA?B}sin0;

This equation is, in general, of second degree in x and y; hence, the locus
is a conic section. Our solution does not do justice to the treatment given
by Apollonius in Book III, in which more than fifty carefully worded
propositions, all proved by synthetic methods, lead eventually to the re-
quired locus. Half a millennium later Pappus suggested a generalization
of this theorem for n lines, where n > 4, and it was against this generalized
problem that Descartes in 1637 tested his analytic geometry. Thus few
problems have played as important a role in the history of mathematics as
did the “locus to three and four lines.”
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INTERSECTING CONICS

Book IV of the Conics is described by its author as showing ‘“‘in how many
ways the sections of cones meet one another,” and he is especially proud
of theorems, “‘none of which has been discussed by earlier writers,” con-
cerning the number of points in which a section of a cone meets the “op-
posite branches of a hyperbola.”” The idea of the hyperbola as a double-
branched curve was new with Apollonius, and he thoroughly enjoyed the
discovery and proof of theorems concerning it. For example, he showed
(IV.42) that if one branch of a hyperbola meets both branches of another
hyperbola, the opposite branch of the first hyperbola will not meet either
branch of the second hyperbola in two points; or again (IV.54), if a hy-
perbola is tangent to one of the branches of a second hyperbola with its
concavity in the opposite direction, the opposite branch of the first will
not meet the opposite branch of the second. It is in connection with the
theorems in this book that Apollonius makes a statement implying that in
his day, as in ours, there were narrow-minded opponents of pure mathe-
matics who pejoratively inquired about the usefulness of such results. The
author proudly asserted: ‘“They are worthy of acceptance for the sake of
the demonstrations themselves, in the same way as we accept many other
things in mathematics for this and for no other reason.” (Heath 1961, p.
Ixxiv).

MAXIMA AND MINIMA, TANGENTS AND NORMALS

The preface to Book V, relating to maximum and minimum straight lines
drawn to a conic, again argues that “‘the subject is one of those which seem
worthy of study for their own sake.”” While one must admire the author
for his lofty intellectual attitude, it may be pertinently pointed out that
what in his day was beautiful theory, with no prospect of applicability to
the science or engineering of his time, has since become fundamental in
such fields as terrestrial dynamics and celestial mechanics. Apollonius’
theorems on maxima and minima are in reality theorems on tangents and
normals to conic sections. Without a knowledge of the properties of tan-
gents to a parabola, an analysis of local trajectories would be impossible;
and a study of the paths of the planets is unthinkable without reference to
the tangents to an ellipse. It is clear, in other words, that it was the pure
mathematics of Apollonius that made possible, some 1800 years later, the
Principia of Newton; the latter, in turn, gave scientists of the 1960s the
hope that some day a round-trip visit to the moon would be possible. Even
in ancient Greece the Apollonian theorem that every oblique cone has two
families of circular sections was applicable to cartography in the stereo-
graphic transformation, used by Ptolemy and possibly by Hipparchus, of
a spherical region into a portion of a plane. It has often been true in the
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development of mathematics that topics that originally could be justified
only as “worthy of study for their own sake™ later became of inestimable
value to the ‘“practical man.”

Greek mathematicians had no satisfactory definition of tangent to a
curve C at a point P, thinking of it as a line L such that no other line could
be drawn through P between C and L. Perhaps it was dissatisfaction with
this definition that led Apollonius to avoid defining a normal to a curve C
from a point Q as a line through Q which cuts the curve C in a point P
and is perpendicular to the tangent to C at P. Instead he made use of the
fact that the normal from Q to C is a line such that the distance from Q
to C is a relative maximum or minimum. In Conics V.8, for example,
Apollonius proved a theorem concerning the normal to a parabola which
today generally is part of a course in the calculus. In modern terminology
the theorem states that the subnormal of the parabola y? = 2px for any
point P on the curve is constant and equal to p; in the language of Apol-
lonius this property is expressed somewhat as follows:

If A is the vertex of a parabola y? = px, and if G is a point on the axis such
that AG > p, and, if N is a point between A and G such that NG = p, and
if NP is drawn perpendicular to the axis meeting the parabola in P [Fig. 9.6],
then PG is the minimum straight line from G to the curve and hence is normal
to the parabola at P.

The proof by Apollonius is of the typical indirect kind—it is shown that if
P' is any other point on the parabola, P'G increases as P’ moves further
from P in either direction. A proof of the corresponding, but more in-
volved, theorem concerning the normal to an ellipse or hyperbola from a
point on the axis is then given; and it is shown that if P is a point on a
conic, only one normal can be drawn through P, whether the normal be
regarded as a minimum or a maximum, and this normal is perpendicular
to the tangent at P. Note that the perpendicularity that we take as a
definition is here proved as a theorem, whereas the maximum-minimum
property that we take as a theorem serves, for Apollonius, as a definition.
Later propositions in Book V carry the topic of normals to a conic to such
a point that the author gives criteria enabling one to tell how many normals

FIG. 9.6
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can be drawn from a given point to a conic section. These criteria are
tantamount to what we should describe as the equations of the evolutes
to the conics. For the parabola y*> = 2px Apollonius showed in essence
that points whose coordinates satisfy the cubic equation 27py* = 8(x —
p)} are limiting positions of the point of intersection of normals to the
parabola at points P and P’ as P’ approaches P. That is, points on this
cubic are the centers of curvature for points on the conic (that is, the
centers of osculating circles for the parabola). In the case of the ellipse
and the hyperbola, whose equations are respectively x*/a*> = y2/b? = |,
the corresponding equations of the evolute are (ax)' = (by)! = (a? ¥ b?)L.

After giving the conditions for the evolute of a conic, Apollonius showed
how to construct a normal to a conic section from a point Q. In the case
of the parabola y? = 2px, and for Q outside the parabola and not on the
axis, one drops a perpendicular QM to the axis AK, measures off MH =
p, and erects HR perpendicular to HA (Fig. 9.7). Then, through Q one
draws the rectangular hyperbola with asymptotes HA and HR, intersecting
the parabola in a point P. Line QP is the normal required, as one can
prove by showing that NK = HM = p. If point Q lies inside the parabola,
the construction is similar except that P lies between Q and R. Apollonius
also gave constructions, likewise making use of an auxiliary hyperbola, for
the normal from a point to a given ellipse or hyperbola. It should be noted
that the construction of normals to the ellipse and hyperbola, unlike the
construction of tangents, requires more than straightedge and compasses.
As the ancients described the two problems, the drawing of a fangent to
a conic is a ‘“‘plane problem,” for intersecting circles and straight lines
suffice. By contrast, the drawing of a normal from an arbitrary point in
the plane to a given central conic is a “solid problem,” for it cannot be
accomplished by use of lines and circles alone, but can be done through
the use of solid loci (in our case, a hyperbola). Pappus later severely
criticized Apollonius for his construction of a normal to the parabola in
that he treated it as a solid problem rather than a plane problem. That is,
the hyperbola that Apollonius used could have been replaced by a circle.
Perhaps Apollonius felt that the line-and-circle fetish should give way, in
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his construction of normals, to a desire for uniformity of approach with
respect to the three types of conic.

SIMILAR CONICS

When Apollonius sent King Attalus the sixth book of the Conics, he de-
scribed it as embracing propositions about ‘‘segments of conics equal and
unequal, similar and dissimilar, besides some other matters left out by
those who have preceded me. In particular, you will find in this book how,
in a given right cone, a section is to be cut equal to a given section.” Two
conics are said to be similar if the ordinates, when drawn to the axis at
proportional distances from the vertex, are respectively proportional to
the corresponding abscissas. Among the easier of the propositions in Book
VI are those demonstrating that all parabolas are similar (VI.11) and that
a parabola cannot be similar to an ellipse or hyperbola nor an ellipse to a
hyperbola (VI.14, 15). Other propositions (VI.26, 27) prove that if any
cone is cut by two parallel planes making hyperbolic or elliptic sections,
the sections will be similar but not equal.

Book VII returns to the subject of conjugate diameters and “‘many new
propositions concerning diameters of sections and the figures described
upon them.” Among these are some that are found in modern textbooks,
such as the proof (VII.12, 13, 29, 30) that

In every ellipse the sum, and in every hyperbola the difference, of the squares
on any two conjugate diameters is equal to the sum or difference respectively
of the squares on the axes.

There is also the proof of the familiar theorem that if tangents are drawn
at the extremities of a pair of conjugate axes of an ellipse or hyperbola,
the parallelogram formed by these four tangents will be equal to the rec-
tangle on the axes. It has been conjectured that the lost Book VIII of the
Conics continued with similar problems, for in the preface to Book VII
the author wrote that the theorems of Book VII were used in Book VIII
to solve determinate conic problems, so that the last book ‘‘is by way of
an appendix.”

FOCI OF CONICS

The Conics of Apollonius is a treatise of such extraordinary breadth and
depth that we are startled to note the omission of some of the properties
that to us appear so obviously fundamental. As the curves are now intro-
duced in textbooks, the foci play a prominent role; yet Apollonius had no
name for these points, and he referred to them only indirectly. It is pre-
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sumed that he, and perhaps also Aristaeus and Euclid, was indeed familiar
with the focus-directrix property of the curves, but this is not even men-
tioned in the Conics. There is no numerical concept in the ancient treatment
of conics corresponding to what we call the eccentricity; and although the
focus of the parabola by implication appears in many an Apollonian theo-
rem, it is not clear that the author was aware of the now familiar role of
the directrix. He seems to have known how to determine a conic through
five points, but this topic, which later loomed large in the Principia of
Newton, is omitted in the Conics of Apollonius. It is quite possible, of
course, that some or all of such tantalizing omissions resulted from the fact
they had been treated elsewhere, in works no longer extant, by Apollonius
or other authors. So much of ancient mathematics has been lost that an
argument e silencio is precarious indeed. Moreover, the words of Leibniz
should serve as a warning that one should not underestimate ancient ac-
complishments: “He who understands Archimedes and Apollonius will
admire less the achievements of the foremost men of later times.”

USE OF COORDINATES

The methods of Apollonius in the Conics in many respects are so similar
to the modern approach that his work sometimes is judged to be an analytic
geometry anticipating that of Descartes by 1800 years. The application of
reference lines in general, and of a diameter and a tangent at its extremity
in particular, is, of course, not essentially different from the use of a
coordinate frame, whether rectangular or, more generally, oblique. Dis-
tances measured along the diameter from the point of tangency are the
abscissas, and segments parallel to the tangent and intercepted between
the axis and the curve are the ordinates. The Apollonian relationships
between these abscissas and the corresponding ordinates are nothing more
nor less than rhetorical forms of the equations of the curves. However,
Greek geometric algebra did not provide for negative magnitudes; more-
over, the coordinate system was in every case superimposed a posteriori
upon a given curve in order to study its properties. There appear to be no
cases in ancient geometry in which a coordinate frame of reference was
laid down a priori for purposes of graphical representation of an equation
or relationship, whether symbolically or rhetorically expressed. Of Greek
geometry we may say that equations are determined by curves, but not
that curves were defined by equations. Coordinates, variables, and equa-
tions were subsidiary notions derived from a specific geometric situation;
and one gathers that in the Greek view it was not sufficient to define curves
abstractly as loci satisfying given conditions on two coordinates. To guar-
antee that a locus was really a curve, the ancients felt it incumbent upon
them to exhibit it stereometrically as a section of a solid or to describe a
kinematic mode of construction.
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The Greek definition and study of curves compare quite unfavorably
with the flexibility and extent of the modern treatment. Indeed, the ancients
over-looked almost entirely the part that curves of various sorts played in
the world about them. Aesthetically one of the most gifted people of all
times, the only curves that they found in the heavens and on the earth
were combinations of circles and straight lines. They did not even effectively
exploit the two means of definition for curves that they recognized. The
kinematic approach and the use of plane sections of surfaces are capable
of far-reaching generalization, yet scarcely a dozen curves were familiar
to the ancients. Even the cycloid, generated by a point on a circle that
rolls along a straight line, seems to have escaped their notice. That Apol-
lonius, the greatest geometer of antiquity, failed to develop analytic ge-
ometry, was probably the result of a poverty of curves rather than of
thought. General methods are not necessary when problems concern always
one of a limited number of particular cases. Moreover, the early modern
inventors of analytic geometry had all Renaissance algebra at their disposal,
whereas Apollonius necessarily worked with the more rigorous but far
more awkward tool of geometric algebra.



Greek Trigonometry
and Mensuration

When I trace at my pleasure the windings to and fro of the heavenly bodies, I no
longer touch the earth with my feet: I stand in the presence of Zeus himself and
take my fill of ambrosia, food of the gods.

Ptolemy

EARLY TRIGONOMETRY

Trigonometry, like other branches of mathematics, was not the work of
any one man, or nation. Theorems on ratios of the sides of similar triangles
had been known to, and used by, the ancient Egyptians and Babylonians.
In view of the pre-Hellenic lack of the concept of angle measure, such a
study might better be called “‘trilaterometry,” or the measure of three-
sided polygons (trilaterals), than “trigonometry,” the measure of parts of
a triangle. With the Greeks we first find a systematic study of relationships
between angles (or arcs) in a circle and the lengths of chords subtending
these. Properties of chords, as measures of central and inscribed angles in
circles, were familiar to the Greeks of Hippocrates’ day, and it is likely
that Eudoxus had used ratios and angle measures in determining the size
of the earth and the relative distances of the sun and the moon. In the
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works of Euclid there is no trigonometry in the strict sense of the word,
but there are theorems equivalent to specific trigonometric laws or for-
mulas. Propositions I1.12 and 13 of the Elements, for example, are the laws
of cosines for obtuse and acute angles respectively, stated in geometric
rather than trigonometric language and proved by a method similar to that
used by Euclid in connection with the Pythagorean theorem. Theorems on
the lengths of chords are essentially applications of the modern law of
sines. We have seen that Archimedes’ theorem on the broken chord can
readily be translated into trigonometric language analogous to formulas
for sines of sums and differences of angles. More and more the astronomers
of the Alexandrian Age—notably Eratosthenes of Cyrene (ca. 276—ca. 194
B.C.) and Aristarchus of Samos (ca. 310—ca. 230 B.C.)—handled problems
pointing to a need for more systematic relationships between angles and
chords.

ARISTARCHUS OF SAMOS

Aristarchus, according to Archimedes and Plutarch, proposed a heliocen-
tric system, anticipating Copernicus by more than a millennium and a half;
but whatever he may have written on this scheme has been lost. Instead
we have an Aristarchan treatise, perhaps composed earlier (ca. 260 B.C.),
On the Sizes and Distances of the Sun and Moon, which assumes a geo-
centric universe. In this work Aristarchus made the observation that when
the moon is just half-full, the angle between the lines of sight to the sun
and the moon is less than a right angle by one thirtieth of a quadrant. (The
systematic introduction of the 360° circle came a little later.) In trigono-
metric language of today this would mean that the ratio of the distance of
the moon to that of the sun (the ratio ME to SE in Fig. 10.1) is sin 3°.
Trigonometric tables not having been developed yet, Aristarchus fell back
upon a well-known geometric theorem of the time which now would be
expressed in the inequalities sin a/sin f < a/f < tan a/tan §, where 0° <
B < a < 90°. From these he derived the conclusion that 75 < sin 3° < %,
hence he asserted that the sun is more than eighteen, but less than twenty,
times as far from the earth as is the moon. This is far from the modern
value—somewhat less than 400—but it is better than the values nine and
twelve that Archimedes ascribed respectively to Eudoxus and to Phidias

3°

87°

FIG. 10.1
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FIG. 10.2

(Archimedes’ father). Moreover, the method used by Aristarchus was un-
impeachable, the result being vitiated only by the error of observation in
measuring the angle MES as 87° (when in actuality it should have been
about 89° 50").

Having determined the relative distances of the sun and moon, Aris-
tarchus knew also that the sizes of the sun and moon were in the same
ratio. This follows from the fact that the sun and moon have very nearly
the same apparent size—that is, they subtend about the same angle at the
eye of an observer on the earth. In the treatise in question, this angle is
given as 2°, but Archimedes attributed to Aristarchus the much better
value of $°. From this ratio Aristarchus was able to find an approximation
for the sizes of the sun and moon as compared with the size of the earth.
From lunar eclipse observations he concluded that the breadth of the shadow
cast by the earth at the distance of the moon was twice the width of the
moon. Then, if R, R,, and R,, are the radii of the sun, earth, and moon
respectively and if D, and D,, are the distances of the sun and moon from
the earth, then, from the similarity of triangles BCD and ABE (Fig. 10.2),
one has the proportion (R, — 2R,,)/(R, — R.) = D, /D;. If in this equation
one replaces D, and R, by the approximate values 19D,, and 19R,,, one
obtains the equation (R, — 2R,,)/(19R,, — R,) = f5or R,, = #R,. Here
the actual computations of Aristarchus have been considerably simplified.
His reasoning was in reality much more carefully carried out and led to
the conclusion that

108 _ R, _ 60 19 R, _43
43 "R, 19 3R 6

ERATOSTHENES OF CYRENE

All that was needed to arrive at an estimate of the actual sizes of the sun
and moon was a measure of the radius of the earth. Aristotle had mentioned
a figure equivalent to about 40,000 miles for the circumference of the earth
(a figure possibly due to Eudoxus), and Archimedes reported that some
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of his contemporaries estimated the perimeter to be about 30,000 miles.
A much better calculation, and by far the most celebrated, was one due
to Eratosthenes, a younger contemporary of Archimedes and Aristarchus.
Eratosthenes was a native of Cyrene who had spent much of his early life
at Athens. He had achieved prominence in many fields—poetry, astron-
omy, history, mathematics, athletics—when, in middle life, he was called
by Ptolemy III (Philopator) to Alexandria to tutor his son (later Ptolemy
Philadelphus) and to serve as librarian of the university there. It was to
Eratosthenes at Alexandria that Archimedes had sent the treatise on Method.
Today Eratosthenes is best remembered for his measurement of the earth—
not the first or last such estimate made in antiquity, but by all odds the
most successful. Eratosthenes observed that at noon on the day of the
summer solstice the sun shone directly down a deep well at Syene. At the
same time at Alexandria, taken to be on the same meridian and 5000 stades
north of Syene, the sun was found to cast a shadow indicating that the
sun’s angular distance from the zenith was one fiftieth of a circle. From
the equality of the corresponding angles S'’AZ and $"OZ in Fig. 10.3 it is
clear that the circumference of the earth must be fifty times the distance
between Syene and Alexandria. This results in a perimeter of 250,000
stades, or, since a stade was about a tenth of a mile, of 25,000 miles. (Later
accounts placed the figure at 252,000 stades, possibly in order to lead to
the round figure of 700 stades per degree.)

A contributor to many fields of learning, Eratosthenes is well known in
mathematics for the ‘“‘sieve of Eratosthenes,” a systematic procedure for
isolating the prime numbers. With all the natural numbers arranged in
order, one simply strikes out every second number following the number
two, every third number (in the original sequence) following the number
three, every fifth number following the number five, and continues in this
manner to strike out every nth number following the number n. The re-
maining numbers, from two on, will, of course, be primes. Eratosthenes
wrote also works on means and on loci, but these have been lost. Even
his treatise On the Measurement of the Earth is no longer extant, although
some details from it have been preserved by others, including Heron and
Ptolemy of Alexandria.

FIG. 10.3
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HIPPARCHUS OF NICAEA

For some two and a half centuries, from Hippocrates to Eratosthenes,
Greek mathematicians had studied relationships between lines and circles
and had applied these in a variety of astronomical problems, but no sys-
tematic trigonometry had resulted. Then, presumably during the second
half of the second century B.C., the first trigonometric table apparently
was compiled by the astronomer Hipparchus of Nicaea (ca. 180—ca. 125
B.C.), who thus earned the right to be known as “‘the father of trigo-
nometry.” Aristarchus had known that in a given circle the ratio of arc to
chord decreased as the angle decreases from 180° to 0°, tending toward a
limit of 1. However. it appears that not until Hipparchus undertook the
task had anyone tabulated corresponding values of arc and chord for a
whole series of angles. It has, however, been suggested that Apollonius
may have anticipated Hipparchus in this respect, and that the contribution
of the latter to trigonometry was simply the calculation of a better set of
chords than had been drawn up by his predecessors. Hipparchus evidently
drew up his tables for use in his astronomy, about the origin of which little
is known. Hipparchus was a transitional figure between Babylonian as-
tronomy and the work of Ptolemy. Astronomy was flourishing in Meso-
potamia when in about 270 B.C. Berossos, about the only Babylonian
astronomer known by name, moved to the island of Cos. and it is not
unlikely that the foundations of Near Eastern theory were transmitted to
Greece by that time. The chief contributions attributed to Hipparchus in
astronomy were his organization of the empirical data derived from the
Babylonians, the drawing up of a star catalogue, improvement in important
astronomical constants (such as the length of the month and year, the size
of the moon, and the angle of obliquity of the ecliptic), and, finally, the
discovery of the precession of the equinoxes. It generally has been assumed
that he was largely responsible for the building of geometric planetary
systems, but this is uncertain because it is not clear to what extent Apol-
lonius may have applied trigonometric methods to astronomy somewhat
earlier.

It is not known just when the systematic use of the 360° circle came into
mathematics, but it seems to be due largely to Hipparchus in connection
with his table of chords. It is possible that he took over from Hypsicles,
who earlier had divided the day into 360 parts, a subdivision that may have
been suggested by Babylonian astronomy. Just how Hipparchus made up
his table is not known, for his works are not extant (except for a com-
mentary on a popular astronomical poem by Aratus). It is likely that his
methods were similar to those of Ptolemy, to be described below, for Theon
of Alexandria, commenting on Ptolemy’s table of chords, reported that
Hipparchus earlier had written a treatise in twelve books on chords in a
circle.
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MENELAUS OF ALEXANDRIA

Theon mentions also another treatise, in six books. by Menelaus of Al-
exandria (ca. A.D. 100) dealing with Chords in a Circle. Other mathematical
and astronomical works by Menelaus are mentioned by later Greek and
Arabic commentators, including an Elements of Geomerry, but the only
one that has survived—and only through the Arabic—is his Sphaerica. In
Book I of this treatise Menelaus established a basis for spherical triangles
analogous to that of Euclid I for plane triangles. Included is a theorem
without Euclidean analogue—that two spherical triangles are congruent if
corresponding angles are equal (Menelaus did not distinguish between
congruent and symmetric spherical triangles); and the theorem A + B +
C > 180° is established. The second book of the Sphaerica describes the
application of spherical geometry to astronomical phenomena and is of
little mathematical interest. Book III. the last, contains the well-known
“theorem of Menelaus™ as part of what is essentially spherical trigonometry
in the typical Greek form—a geometry or trigonometry of chords in a
circle. In the circle in Fig. 10.4 we should write that chord A B is twice the

B
FIG. 104

sine of half the central angle AOB (multiplied by the radius of the circle).
Menelaus and his Greek successors instead referred to AB simply as the
chord corresponding to the arc AB. If BOB' is a diameter of the circle,
then chord AB’ is twice the cosine of half the angle AOB (multiplied by
the radius of the circle). Hence the theorems of Thales and Pythagoras,
which lead to the equation AB?> + AB'? = 4r% are equivalent to the
modern trigonometric identity sin’ § + cos’ # = 1. Menelaus, as also
probably Hipparchus before him, was familiar with other identities. two

FIG. 10.5
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FIG. 10.6

of which he used as lemmas in proving his theorem on transversals. The
first of these lemmas may be stated in modern terminology as follows. If
a chord AB in a circle with center O (Fig. 10.5) is cut in point C by a
radius OD, then AC/CB = sin AD/sin DB. The second lemma is similar:
If the chord AB extended is cut in point C’ by a radius OD" extended,
then AC'/BC' = sin AD'/sin BD'. These lemmas were assumed by Me-
nelaus without proof, presumably because they could be found in earlier
works, possibly in Hipparchus’ twelve books on chords. (The reader can
prove the lemmas easily by drawing AO and BO, dropping perpendiculars
from A and B to OD, and using similar triangles.)

It is probable that the “‘theorem of Menelaus™ for the case of plane
triangles had been known to Euclid, perhaps having appeared in the lost
Porisms. The theorem in the plane states that if the sides AB, BC, CA of
a triangle are cut by a transversal in points D, E, F respectively (Fig. 10.6),
then AD - BE - CF = BD - CE - AF. In other words, any line cuts the
sides of a triangle so that the product of three nonadjacent segments equals
the product of the other three, as can readily be proved by elementary
geometry or through the application of simple trigonometric relationships.
The theorem was assumed by Menelaus to be well known to his contem-
poraries, but he went on to extend it to spherical triangles in a form
equivalent to sin AD sin BE sin CF = sin BD sin CE sin AF. If sensed
segments are used rather than absolute magnitudes, the two products are
equal in magnitude but differ in sign.

PTOLEMY’S ALMAGEST

The theorem of Menelaus played a fundamental role in spherical trigo-
nometry and astronomy, but by far the most influential and significant
trigonometric work of all antiquity was the Mathematical Syntaxis, a work
in thirteen books composed by Ptolemy of Alexandria about half a century
after Menelaus. This celebrated Marhematical Synthesis was distinguished
from another group of astronomical treatises by other authors (including
Aristarchus) by referring to that of Ptolemy as the “‘greater” collection
and to that of Aristarchus et al. as the “lesser” collection. From the fre-
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quent reference to the former as megiste, there arose later in Arabia the
custom of calling Ptolemy’s book Almagest (‘“‘the greatest™), and it is by
this name that the work has since been known.

Of the life of its author we are as little informed as we are of that of
the author of the Elements. We do not know when or where Euclid and
Ptolemy were born. We know that Ptolemy made observations at Alex-
andria from A.D. 127 to 151 and, therefore, assume that he was born at
the end of the first century. Suidas, a writer who lived in the tenth century,
reported that Ptolemy was still alive under Marcus Aurelius (emperor from
A.D. 161 to 180).

Ptolemy’s Almagest is presumed to be heavily indebted for its methods
to the Chords in a Circle of Hipparchus, but the extent of the indebtedness
cannot be reliably assessed. It is clear that in astronomy Ptolemy made
use of the catalogue of star positions bequeathed by Hipparchus, but whether
or not Ptolemy’s trigonometric tables were derived in large part from his
distinguished predecessor cannot be determined. Fortunately, Ptolemy’s
Almagest has survived the ravages of time; hence, we have not only his
trigonometric tables but also an account of the methods used in their
construction. Central to the calculation of Ptolemy’s chords was a geo-
metric proposition still known as “Ptolemy’s theorem”: If ABCD is a
(convex) quadrilateral inscribed in a circle (Fig. 10.7), then AB - CD +
BC - DA = AC - BD; that is, the sum of the products of the opposite
sides of a cyclic quadrilateral is equal to the product of the diagonals. The
proof of this is easily carried through by drawing BE so that angle ABE
is equal to angle DBC and noting the similarity of the triangles ABE and
BCD. A special case of Ptolemy’s theorem had appeared in Euclid’s Data
(Proposition 93): If ABC is a triangle inscribed in a circle, and if BD is a
chord bisecting angle ABC, then (AB + BC)/BD = AC/AD.

Another, and more useful, special case of the general theorem of Pto-
lemy is that in which one side, say AD, is a diameter of the circle (Fig.
10.8). Then, if AD = 2r, we have 2r - BC + AB - CD = AC - BD. If
we let arc BD = 2a and arc CD = 28, then BC = 2rsin(a — f8), AB =
2r sin(90° — a), BD = 2rsin a, CD = 2rsin 8, and AC = 2rsin(90° —
f). Ptolemy’s theorem, therefore, leads to the result sin(a — f) =
sin @ cos f — cos a sin . Similar reasoning leads to the formula

=
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sinfa + f) = sin a cos f + cos a sin ff, and to the analogous pair
cos(a = ) = cos @ cos # ¥ sin « sin . These four sum-and-difference
formulas consequently are often known today as Ptolemy’s formulas.

It was the formula for sine of the difference—or, more accurately, chord
of the difference—that Ptolemy found especially useful in building up his
tables. Another formula that served him effectively was the equivalent of
our half-angle formula. Given the chord of an arc in a circle, Ptolemy
found the chord of half the arc as follows. Let D be the midpoint of arc
BC in a circle with diameter AC = 2r (Fig. 10.9), let AB = AE, and
let DF bisect EC (perpendicularly). Then, it is not difficult to show that
FC = }(2r — AB). But from elementary geometry it is known that
DC? = AC - FC, from which it follows that DC*> = r(2r — AB). If we
let arc BC = 2a, then DC = 2rsin a/2 and AB = 2r cos a; hence, we
have the familiar modern formula sin @/2 = V(1 — cos a)/2. In other
words, if the chord of any arc is known, the chord of half the arc is also
known. Now Ptolemy was equipped to build up a table of chords as accurate
as might be desired, for he had the equivalent of our fundamental formulas.

THE 360-DEGREE CIRCLE

It should be recalled that from the days of Hipparchus until modern times
there were no such things as trigonometric ratios. The Greeks, and after
them the Hindus and the Arabs, used trigonometric lines. These at first
took the form, as we have seen, of chords in a circle, and it became
incumbent upon Ptolemy to associate numerical values (or approximations)
with the chords. To do this, two conventions were needed: (1) some scheme
for subdividing the circumference of a circle and (2) some rule for subdi-
viding the diameter. The division of a circumference into 360 degrees seems
to have been in use in Greece since the days of Hipparchus, although it is
not known just how the convention arose. It is not unlikely that the 360-
degree measure was carried over from astronomy, where the zodiac had
been divided into twelve *‘signs’”” or 36 ‘“‘decans.” A cycle of the seasons
of roughly 360 days could readily be made to correspond to the system of
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zodiacal signs and decans by subdividing each sign into thirty parts and
each decan into ten parts. Our common system of angle measure may stem
from this correspondence. Moreover, since the Babylonian positional sys-
tem for fractions was so obviously superior to the Egyptian unit fractions
and the Greek common fractions, it was natural for Ptolemy to subdivide
his degrees into sixty partes minutae primae, each of these latter into sixty
partes minutae secundae, and so on. It is from the Latin phrases that
translators used in this connection that our words ‘“minute” and ‘“‘second”
have been derived. It undoubtedly was the sexagesimal system that led
Ptolemy to subdivide the diameter of his trigonometric circle into 120 parts;
each of these he further subdivided into sixty minutes and each minute of
length into sixty seconds.

Our trigonometric identities are easily converted into the language of
Ptolemaic chords through the simple relationships

chord 2x chord(180° — 2x)

sin x = T and Cos X = 120

The formulas cos(x = y) = cos x cos y + sin x sin y become (chord is
abbreviated to cd)

cd2x cd 2y ¥ cd 2x cd 2y

cd2x =2y = 120

where a line over an arc (angle) indicates the supplementary arc. Note
that not only angles and arcs but also their chords were expressed sexa-
gesimally. In fact, whenever scholars in antiquity wished an accurate system
of approximation, they turned to the sixty-scale for the fractional portion;
this led to the phrases ‘‘astronomers’ fractions” and ““physicists’ fractions”
to distinguish sexagesimal tfrom common fractions.

CONSTRUCTION OF TABLES

Having decided upon his system of measurement, Ptolemy was ready to
compute the chords of angles within the system. For example, since the
radius of the circle of reference contained sixty parts, the chord of an arc
of sixty degrees also contained sixty linear parts. The chord of 120° will
be 60V3 or approximately 103 parts and 55 minutes and 33 seconds, or,
in Ptolemy’s Ionic or alphabetic notation, py? ve' Ay". Ptolemy could now
have used his half-angle formula to find the chord of 30°, then the chord
of 15°, and so on for still smaller angles. However, he preferred to delay
the application of this formula and computed instead the chords of 36° and
of 72°. He used a theorem from Elements XII1.9 which shows that a side
of a regular pentagon, a side of a regular hexagon, and a side of a regular
decagon, all being inscribed within the same circle, constitute the sides of
a right triangle. Incidentally, this theorem from Euclid provides the jus-
tification for Ptolemy’s elegant construction of a regular pentagon inscribed
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in a circle. Let O be the center of a circle and AB a diameter (Fig. 10.10).
Then, if C is the midpoint of OB and OD is perpendicular to AB, and if
CE is taken equal to CD, the sides of the right triangle EDO are the sides
of the regular inscribed pentagon, hexagon, and decagon. Then, if the
radius OB contains 60 parts, from the properties of the pentagon and the
golden section it follows that OFE, the chord of 36°, is 30(\/5 — 1) or about
37.083 or 377 4' 5" or A{? &' ve". By the Pythagorean theorem the chord

of 72° is 30V10 — 2V/5, or approximately 70.536 or 707 32’ 3" or
o? M’ y".

Knowing the chord of an arc of s degrees in a circle, one can easily find
the chord of the arc 180° — s from the theorems of Thales and Pythagoras,
for cd’5 + cd’s = 120°. Hence, Ptolemy knew the chords of the supple-
ments of 36° and 72°. Moreover, from the chords of 72° and 60° he found
chord 12° by means of his formula for the chord of the difference of two
arcs. Then, by successive applications of his half-angle formula he derived
the chords of arcs of 6°, 3° 13°, and 3°, the last two being 17 34’ 15" and
07 47" 8" respectively. Through a linear interpolation between these values
Ptolemy arrived at 1”7 2" 50” as the chord of 1°. By using the half-angle
formula—or, since the angle is very small, simply dividing by two—he
found the value of 0” 31" 25" for the chord of 30’. This is equivalent to
saying that sin 15" is 0.00873, which is correct to almost half a dozen decimal
places.

Ptolemy’s value of the chord of 4° is, of course, the length of a side of
a polygon of 720 sides inscribed in a circle of radius 60 units. Whereas
Archimedes’ polygon of 96 sides had led to # as an approximation to the
value of 7, Ptolemy’s is equivalent to 6(0” 31" 25") or 3;8,30. This ap-
proximation to 7, used by Ptolemy in the Almagest, is the same as i,
which leads to a decimal equivalent of about 3.1416, a value that may have
been given earlier by Apollonius.

PTOLEMAIC ASTRONOMY

Armed with formulas for the chords of sums and differences and chords
of half an arc, and having a good value of chord 4°, Ptolemy went on to
build up his table, correct to the nearest second, of chords of arcs from $°
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to 180° for every 3°. This is virtually the same as a table of sines from 1°
to 90°, proceeding by steps of 1°. The table formed an integral part of Book
I of the Almagest and remained an indispensable tool of astronomers for
more than a thousand years. The remaining twelve books of this celebrated
treatise contain, among other things, the beautifully developed theory of
cycles and epicycles for the planets known as the Ptolemaic system. Like
Archimedes, Hipparchus, and most other great thinkers of antiquity, Pto-
lemy postulated an essentially geocentric universe, for a moving earth
appeared to be faced with difficulties—such as lack of apparent stellar
parallax and seeming inconsistency with the phenomena of terrestrial dy-
namics. In comparison with these problems, the implausibility of an im-
mense speed required for the daily rotation of the sphere of the “fixed”
stars seemed to shrink into insignificance. Besides appealing to common
sense, the Ptolemaic system had the advantage of easy representation.
Planetaria generally are constructed as though the universe were geocen-
tric, for in this way the apparent motions are most easily reproduced.
Plato had set for Eudoxus the astronomical problems of “saving the
phenomena”—that is, producing a mathematical device, such as a com-
bination of uniform circular motions, which should serve as a model for
the apparent motions of the planets. The Eudoxian system of homocentric
spheres had been largely abandoned by mathematicians in favor of the
system of cycles and epicycles of Apollonius and Hipparchus. Ptolemy in
turn made an essential modification in the latter scheme. In the first place,
he displaced the earth somewhat from the center of the deferent circle, so
that he had eccentric orbits. Such changes had been made before him, but
Ptolemy introduced a novelty so drastic in scientific implication that Co-
pernicus later could not accept it, effective though the device, known as the
equant, was in reproducing the planetary motions. Try as he would, Pto-
lemy had not been able to arrange a system of cycles, epicycles, and ec-
centrics in close agreement with the observed motions of the planets. His
solution was to abandon the Greek insistence on uniformity of circular
motions and to introduce instead a geometric point, the equant E collinear
with the earth G and the center C of the deferent circle, such that the
apparent angular motion of the center Q of the epicycle in which a planet
P revolves is uniform as seen from E (Fig. 10.11). In this way Ptolemy
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achieved accurate representations of planetary motions, but, of course, the
device was kinematic only and made no effort to answer the questions in
dynamics raised by nonuniform circular movements.

OTHER WORKS BY PTOLEMY

Ptolemy’s fame today is associated largely with a single book, the Almagest,
but there are other Ptolemaic works as well. Among the more important
was a Geography, in eight books, which was as much a bible to geographers
of his day as the Almagest was to astronomers. The Geography of Ptolemy
introduced the system of latitudes and longitudes as used today, described
methods of cartographic projection, and catalogued some 8000 cities, riv-
ers, and other important features of the earth. Unfortunately, there was
at the time no satisfactory means of determining longitudes, hence sub-
stantial errors were inevitable. Even more significant was the fact that
Ptolemy seems to have made a poor choice when it came to estimating the
size of the earth. Instead of accepting the figure 252,000 stadia, given by
Eratosthenes, he preferred the value 180,000 stadia proposed by Posidon-
ius, a Stoic teacher of Pompey and Cicero. Hence, Ptolemy thought that
the known Eurasian world was a larger fraction of the circumference than
it really is—more than 180° in longitude, instead of an actual figure of
about 130°. This large error suggested to later navigators, including Co-
lumbus, that a voyage westward from Europe to India would not be nearly
so far as it turned out to be. Had Columbus known how badly Ptolemy
had underestimated the size of the earth, he might never have set sail.

Ptolemy’s geographical methods were better in theory than in practice,
for in separate monographs, which have survived only through Latin trans-
lations from the Arabic, Ptolemy described two types of map projection.
Orthographic projection is explained in the Analemma, the earliest account
we have of this method, although it may have been used by Hipparchus.
In this transformation from a sphere to a plane, points on the spherical
surface are projected orthogonally upon three mutually perpendicular
planes. In the Planisphaerium Ptolemy described the stercographic pro-
jection in which points on the sphere are projected by lines from a pole
onto a plane—in Ptolemy’s case from the south pole to the plane of the
equator. He knew that under such a transformation a circle not through
the pole of projection went into a circle in the plane, and that a circle
through the pole was projected into a straight line. Ptolemy was aware
also of the important fact that such a transformation is conformal, that is,
angles are preserved. The importance of Ptolemy for geography can be
gauged from the fact that the earliest maps in the Middle Ages that have
come down to us in manuscripts, none before the thirteenth century, had
as prototypes the maps made by Ptolemy more than a thousand years
before.
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OPTICS AND ASTROLOGY

Ptolemy wrote also an Optics which has survived, imperfectly, through a
Latin version of an Arabic translation. This deals with the physics and
psychology of vision, with the geometry of mirrors, and with an early at-
tempt at a law of refraction. From Ptolemy’s table of angles of refraction
from air to water (and also from air to glass and from water to glass) for
angles of incidence from 10° to 80° at intervals of 10° we see that he assumed
a law of the form r = ai + bi?, for the second differences in his values of
r are constant. For angles of incidence of 10° and 80° he assumed angles
of refraction of 8° and 50° respectively. and the second differences are all
equal to 3°. The second differences in the old Pythagorean formulas for
polygonal numbers also were constant, and perhaps Ptolemy was influenced
by these to seek a quadratic rather than a trigonometric law for refraction.
Trigonometry for the first millennium and a half of its existence was almost
exclusively an adjunct of astronomy and geography, and only in the sev-
enteenth century were trigonometric applications in refraction and other
parts of physics discovered.

No account of Ptolemy’s work would be complete without mention of
his Tetrabiblos (or Quadripartitum), for it shows us a side of ancient schol-
arship that we are prone to overlook. Greek authors were not always the
rational and clear-thinking men they are presumed to have been. The
Almagest is indeed a model of good mathematics and accurate observa-
tional data put to work in building a sober scientific astronomy; but the
Tetrabiblos (or work in four books) represents a kind of sidereal religion
to which much of the ancient world had succumbed. With the end of the
Golden Age, Greek mathematics and philosophy became allies of Chaldean
arithmetic and astrology, and the resulting pseudoreligion filled the gap
left by repudiation of the old mythology. Ptolemy seems to have shared
the prejudices of his time; in the Tetrabiblos he argued that one should
not, because of the possibility of error, discourage the astrologer any more
than the physician. The further one reads in the work, the more dismayed
one becomes, for the author showed no hesitation in accepting the super-
stitions of his day.

The Tetrabiblos differs from the Almagest not only as astrology differs
from astronomy; the two works also make use of different types of math-
ematics. The latter is a sound and sophisticated work that makes good use
of synthetic Greek geometry; the former is typical of the pseudoscience of
the day in the adoption of primitive Babylonian arithmetic devices. From
the classical works of Euclid, Archimedes, and Apollonius one might obtain
the impression that Greek mathematics was exclusively occupied with the
highest levels of logical geometric reasoning; but Ptolemy’s Tetrabiblos
suggests that the populace in general were more concerned with arith-
metical computation than with rational thought. At least from the days of
Alexander the Great to the close of the classical world, there undoubtedly
was much intercommunication between Greece and Mesopotamia, and it
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seems to be clear that the Babylonian arithmetic and algebraic geometry
continued to exert considerable influence in the Hellenistic world. This
aspect of mathematics, for example. appears so strongly in Heron of Al-
exandria (fl. ca. A.D. 100) that Heron once was thought to be Egyptian or
Phoenician rather than Greek. Now it is thought that Heron portrays a
type of mathematics that had long been present in Greece but does not
find a representative among the greatest figures—except perhaps as be-
trayed by Ptolemy in the Terrabiblos. Greek deductive geometry, on the
other hand, seems not to have been welcomed in Mesopotamia until after
the Arabic conquest.

HERON OF ALEXANDRIA

Heron of Alexandria is best known in the history of mathematics for the
formula, bearing his name, for the area of a triangle:

K = Vs(s — a)(s — b)(s — ¢),

where a, b, and c are the sides and s is half the sum of these sides, that
is, the semiperimeter. The Arabs tell us that *‘Heron’s formula’ was known
earlier to Archimedes, who undoubtedly had a proof of it. but the dem-
onstration of it in Heron’s Metrica is the earliest that we have. Although
now the formula usually is derived trigonometrically, Heron’s proof is
conventionally geometric. The Metrica, like the Method of Archimedes,
was long lost, until rediscovered at Constantinople in 1896 in a manuscript
dating from about 1100. The word ‘‘geometry™ originally meant “earth
measure,”” but classical geometry, such as that found in Euclid’s Elements
and Apollonius’ Conics, was far removed from mundane surveying. Her-
on’s work, on the other hand, shows us that not all mathematics in Greece
was of the “classical” type. There evidently were two levels in the study
of configurations—comparable to the distinction made in numerical con-
text between arithmetic (or theory of numbers) and logistic (or techniques
of computation)—one of which, eminently rational, might be known as
geometry and the other, crassly practical, might better be described as
geodesy. The Babylonians lacked the former but were strong in the latter,
and it was essentially the Babylonian type of mathematics that is found in
Heron. It is true that in the Metrica an occasional demonstration is included,
but the body of the work is concerned with numerical examples in men-
suration of lengths, areas, and volumes. There are strong resemblances
between his results and those found in ancient Mesopotamian problem
texts. For example, Heron gave a tabulation of the areas A, of regular
polygons of n sides in terms of the square of one side s,, beginning with
A; = 43s;’ and continuing to A, = ¥ 5,,>. As was the case in pre-Hellenic
mathematics, Heron also made no distinction between results that are exact
and those that are only approximations. For As, for example, Heron gave
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two formulas—3ss’ and % ss>—the first of which agrees with a value found
in a Babylonian table, but neither of which is precisely correct. For the
hexagon Heron’s ratio of A4 to s¢* is & , the Babylonian is 2;37,30, whereas
the true value lies between these and is, of course, irrational. In such
calculations we should have expected Heron to use trigonometric tables
such as Hipparchus had drawn up a couple of hundred years before, but
apparently trigonometry was at the time largely the handmaid of the as-
tronomer rather than of the practical man.

The gap that separated classical geometry from Heronian mensuration
is clearly illustrated by certain of the problems set and solved by Heron
in another of his works, the Geometrica. One problem calls for the di-
ameter, perimeter, and area of a circle, given the sum of these three
magnitudes. The axiom of Eudoxus would rule out such a problem from
theoretical consideration, for the three magnitudes are of unlike dimen-
sions, but from an uncritical numerical point of view the problem makes
sense. Moreover, Heron did not solve the problem in general terms but,
taking a cue again from pre-Hellenic methods, chose the specific case in
which the sum is 212; his solution is like the ancient recipes in which steps
only, without reasons, are given. The diameter 14 is easily found by taking
the Archimedean value for 7 and using the Babylonian method of com-
pleting the square to solve a quadratic equation. Heron simply gives the
laconic instructions, ‘“Multiply 212 by 154, add 841, take the square root
and subtract 29, and divide by 11.” This is scarcely the way to teach
mathematics, but Heron’s books were intended as manuals for the prac-
titioner.

Heron paid as little attention to the uniqueness of his answer as he did
to the dimensionality of his magnitudes. In one problem he called for the
sides of a right triangle if the sum of the area and perimeter is 280. This
is, of course, an indeterminate problem, but Heron gave only one solution,
making use of the Archimedean formula for the area of a triangle. In modern
notation, if s is the semiperimeter of the triangle and r the radius of the
inscribed circle, then rs + 2s = s(r + 2) = 280. Following his own
cookbook rule, “Always look for the factors,” he chose r + 2 = 8 and
s = 35. Then, the area rs is 210. But the triangle is a right triangle, hence
the hypotenuse c is equal to s — r or 35 — 6, or 29; the sum of the two
sides a and b is equal to s + r, or 41. The values of a and b are then easily
found to be 20 and 21. Heron says nothing about other factorizations of
280, which, of course, would lead to other answers.

PRINCIPLE OF LEAST DISTANCE

Heron was interested in mensuration in all its forms—in optics and me-
chanics, as well as in geodesy. The law of reflection for light had been
known to Euclid and Aristotle (probably also to Plato); but it was Heron
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FIG. 10.12

who showed by a simple geometric argument, in a work on Catoptrics
(or reflection), that the equality of the angles of incidence and reflection
is a consequence of the Aristotelian principle that nature does nothing the
hard way. That is, if light is to travel from a source S to a mirror MM’
and then to the eye E of an observer (Fig. 10.12), the shortest possible
path SPE is that in which the angles SPM and EPM’ are equal. That no
other path SP'E can be as short as SPE is apparent on drawing SQOS’
perpendicular to MM', with SQ = S’ and comparing the path SPE with
the path SP'E. Since paths SPE and SP'E are equal in length to paths
S'PE and S'P'E respectively, and inasmuch~as S'PE is a straight line
(because angle M'PE is equal to angle MPS), it follows that §'PE is the
shortest path.

Heron is remembered in the history of science as the inventor of a
primitive type of steam engine, described in his Pneumatics, of a forerunner
of the thermometer, and of various toys and mechanical contrivances based
on the properties of fluids and on the laws of the simple machines. He
suggested in the Mechanics a law (clever but incorrect) of the simple ma-
chine whose principle had eluded even Archimedes—the inclined plane.
His name is attached also to “Heron’s algorithm” for finding square roots,
but this method of iteration was in reality due to the Babylonians of 2000
years before his day. Although Heron evidently learned much of Meso-
potamian mathematics, he seems not to have appreciated the importance
of the positional principle for fractions. Sexagesimal fractions had become
the standard tool of scholars in astronomy and physics, but it is likely that
they remained unfamiliar to the common man. Common fractions were
used to some extent by the Greeks, at first with numerator placed below
the denominator, later with the positions reversed (and without the bar
separating the two), but Heron, writing for the practical man, seems to
have preferred unit fractions. In dividing 25 by 13 he wrote the answer
as 1 + 4 + 4 + 75 + 7. The old Egyptian addiction to unit fractions
continued in Europe for at least a thousand years after the time of
Heron.
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DECLINE OF GREEK MATHEMATICS

The period from Hipparchus to Ptolemy, covering three centuries, was
one in which applied mathematics was in the ascendant, and Heron's books
resemble notes taken by a student at the equivalent of an institute of
technology at Alexandria. It sometimes is held that mathematics develops
most effectively when in close touch with the world’s work; but the period
we have been considering would argue for the opposite thesis. The loss of
nerve in religion and philosophy, which led the Greeks to pursue cults and
mysticism, was paralleled in mathematics by a movement toward appli-
cations which persisted for more than three centuries. From Hipparchus
to Ptolemy there were advances in astronomy and geography, optics and
mechanics, but no significant developments in mathematics. It is true that
these centuries saw the development of trigonometry, but this subject, now
an integral part of pure mathematics, was then at best a mensurational
application of elementary geometry which met the needs of astronomy.
Moreover, it is not even clear whether or not there was any significant
advance in the trigonometry of Ptolemy in A.D. 150 over that of Hippar-
chus, in 150 B.c.—or even, perhaps, over that of Apollonius and Ar-
chimedes a century earlier still. It is evident that the rapid growth of
mathematics from Eudoxus to Apollonius, when theoretical considerations
were in the forefront, had come to an end. Perhaps the trend toward
applications was the result of the decline rather than its cause, but in any
case the two were concomitant. Some attribute the decline to the inade-
quacies and difficulties in Greek geometric algebra, others to the cold
breath of Rome. In any case the period during which trigonometry and
mensuration came to the fore was characterized by lack of progress, if not
actual decline; yet it was precisely these aspects of Greek mathematics that
most attracted the Hindu and Arabic scholars who served as a bridge to
the modern world. Before we turn to these peoples, however, we must
look at the Indian summer of Greek mathematics, sometimes known as
the “Silver Age.”



Revival and Decline of
Greek Mathematics

Bees . . . by virtue of a certain geometrical forethought . . . know that the
hexagon is greater than the square and the triangle and will hold more honey for
the same expenditure of material.

Pappus of Alexandria

APPLIED MATHEMATICS

Today we use the conventional phrase “Greek mathematics” as though it
indicated a homogeneous and well-defined body of doctrine. Such a view
can be very misleading, however, for it implies that the sophisticated ge-
ometry of the Archimedean—-Apollonian type was the only sort that the
Hellenes knew. We must remember that mathematics in the Greek world
spanned a time interval from at least 600 B.C. to at least A.D. 600 and that
it traveled from Ionia to the toe of Italy, to Athens, to Alexandria, and
to other parts of the civilized world. The intervals in time and space alone
produced changes in the depth and extent of mathematical activity, for
Greek science did not have the sameness, century after century, that is
found in pre-Hellenic thought. Moreover, even at any given time and place
in the Greek world (as in our civilization today) there were sharp differences
in the level of mathematical interest and accomplishment. We have seen
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how even in the work of a single individual, such as Ptolemy, there can
be two types of scholarship—the Almagest for the “tough-minded” ra-
tionalists and the Tetrabiblos for the “‘tender-minded” mystics. It is prob-
able that there always were at least two levels of mathematical un-
derstanding, but that the paucity of surviving works, especially on the lower
level, tends to obscure this fact. The phrase used as the title for this chapter
must itself be accepted with some hesitation, for although it is justified in
the light of what we know about the Greek world, our knowledge is far
from complete. The period that we consider in this chapter, from Ptolemy
to Proclus, covers almost four centuries (from the second to the sixth), but
our account is based in large part on only two chief treatises, only portions
of which are now extant, as well as on a number of works of lesser sig-
nificance.

Heron and Ptolemy were Greek scholars, but they lived in a world
dominated politically by Rome. The death of Archimedes by the hand of
a Roman soldier may have been inadvertent, but it was truly portentous.
Throughout its long history, ancient Rome contributed little to science or
philosophy and less to mathematics. Whether during the Republic or in
the days of the Empire, Romans were little attracted to speculative or
logical investigation. The practical arts of medicine and agriculture were
cultivated with some eagerness, and descriptive geography met with favor.
Impressive engineering projects and architectural monuments were related
to the simpler aspects of science, but Roman builders were satisfied with
elementary rule-of-thumb procedures that called for little in the way of
understanding of the great corpus of Greek thought. The extent of Roman
acquaintance with science may be judged from the De architectura of Vi-
truvius, written during the middle part of the Augustine Age and dedicated
to the emperor. At one point the author describes what to him appeared
to be the three greatest mathematical discoveries: the incommensurability
of the side and diagonal of a cube; the right triangle with sides 3, 4, and
5; and Archimedes’ calculation on the composition of the king’s crown.
Marcus Vitruvius Pollio, the author, was especially interested in surveying
instruments and in problems involving approximate mensurations. The
perimeter of a wheel of diameter 4 feet is given by Vitruvius as 12} feet,
implying a value of 3} for z. This is not so good an approximation as that
of Archimedes, with whose works Vitruvius was probably only slightly
acquainted, but it is of a respectable degree of accuracy for Roman pur-
poses. It is sometimes claimed that impressive works of engineering, such
as the Egyptian pyramids and the Roman aqueducts, imply a high level of
mathematical achievement, but historical evidence does not bear this out.
Just as earlier Egyptian mathematics had been on a lower plane than that
in Babylon of the same period, so Roman mathematics was on a much
lower level than that in Greece during the same years. The Romans were
almost completely lacking in mathematical drive, so that their best efforts,
such as those of Vitruvius, were not comparable to the poorer results in
Greece, as exemplified by the work of Heron.
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DIOPHANTUS OF ALEXANDRIA

We have seen that Greek mathematics was not uniformly on a high level,
for the glorious period of the third century B.C. had been followed by a
decline, perhaps to some extent arrested in the days of Ptolemy, but not
effectively reversed until the century of the ‘Silver Age,” about A.D. 250
to 350. At the beginning of this period, also known as the Later Alexandrian
Age, we find the leading Greek algebraist, Diophantus of Alexandria, and
toward its close there appeared the last significant Greek geometer, Pappus
of Alexandria. No other city has been the center of mathematical activity
for so long a period as was Alexandria from the days of Euclid (ca. 300
B.C.) to the time of Hypatia (tA.D. 415). It was a very cosmopolitan center,
and the mathematics that resulted from Alexandrian scholarship was not
all of the same type. The results of Heron were markedly different from
those of Euclid or Apollonius or Archimedes, and again there is an abrupt
departure from the classical Greek tradition in the extant work of Dio-
phantus. Uncertainty about the life of Diophantus is so great that we do
not know definitely in which century he lived. Generally he is assumed to
have flourished about A.D. 250, but dates a century or more earlier or later
are sometimes suggested. According to a tradition that is reported in a
collection of problems dating from the fifth or sixth century, known as the
“Greek Anthology” (described below):

God granted him to be a boy for the sixth part of his life, and adding a
twelfth part to this, He clothed his cheeks with down; He lit him the light
of wedlock after a seventh part, and five years after his marriage He granted
him a son. Alas! late-born wretched child; after attaining the measure of half
his father’s life, chill Fate took him. After consoling his grief by this science
of numbers for four years he ended his life [Cohen and Drabkin, 1958; p. 27].

If this conundrum is historically accurate, Diophantus lived to be eighty-
four-years old. It should definitely not be taken as typical of the problems
that interested Diophantus, for he paid little attention to equations of first
degree.

NICOMACHUS OF GERASA

Diophantus is often called the father of algebra, but we shall see that such
a designation is not to be taken literally. His work is not at all the type of
material forming the basis of modern elementary algebra; nor is it yet
similar to the geometric algebra found in Euclid. The chief Diophantine
work known to us is the Arithmetica, a treatise originally in thirteen books,
only the first six of which have survived. It should be recalled that in ancient
Greece the word arithmetic meant theory of numbers rather than com-
putation. Often Greek arithmetic had more in common with philosophy
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than with what we think of as mathematics; hence, the subject had played
a large role in Neoplatonism during the Later Alexandrian Age. This had
been particularly true of the Introductio arithmeticae of Nicomachus of
Gerasa, a Neo-Pythagorean who lived not far from Jerusalem about the
year 100. The author sometimes is held to be of Syrian background, but
Greek philosophical tendencies certainly predominate in his work. The
Introductio of Nicomachus, as we have it, contains only two books, and it
is possible that this is only an abridged version of what originally was a
more extensive treatise. At all events, the possible loss in this case is far
less to be regretted than the loss of seven books of the Arithmetica of
Diophantus, for there is a world of difference between the two authors.
Nicomachus had, so far as we can see, little mathematical competence and
was concerned only with the most elementary properties of numbers. The
level of the work may be judged from the fact that the author found it
expedient to include a multiplication table up to : times : (that is, 10 times
10). If this is genuine and not just a later interpolation, it is the oldest
surviving Greek instance of such a table, although many older Babylonian
multiplication tables are extant.

The Introductio of Nicomachus opens with the anticipated Pythagorean
classification of numbers into even and odd, then into evenly even (powers
of two) and evenly odd (2" - p, where p is odd and p > 1 and n > 1) and
oddly even (2 - p, where p is odd and p > 1). Prime, composite, and per-
fect numbers are defined, including a description of the sieve of Eratos-
thenes and a list of the first four perfect numbers (6 and 28 and 496 and
8128). The work includes also a classification of ratios and combinations
of ratios (for ratios of integers are essential in the Pythagorean theory of
musical intervals), an extensive treatment of figurate numbers (which had
loomed so large in Pythagorean arithmetic) in both two and three dimen-
sions, and a comprehensive account of the various means (again a favorite
topic in Pythagorean philosophy). As some other writers, Nicomachus
regarded the number three as the first number in the strict sense of the
word, for one and two were really only the generators of the number
system. For Nicomachus, numbers were endowed with such qualities as
better or worse, younger or older; and they could transmit characters, as
parents to their progeny. Despite such arithmetical anthropomorphism as
a background, the Introductio contains a moderately sophisticated theo-
rem. Nicomachus noticed that if the odd integers are grouped in the pattern
1;3+57+9+ 11;13 + 15 + 17 + 19; . . . , the successive sums are
the cubes of the integers. This observation, coupled with the early Pytha-
gorean recognition that the sum of the first n odd numbers is n?, leads to
the conclusion that the sum of the first n perfect cubes is equal to the
square of the sum of the first n integers.

The Introductio of Nicomachus was neither a treatise on calculation nor
one on algebra, but a handbook on those elements of mathematics that
were essential to an understanding of Pythagorean and Platonic philosophy;
as such it served as a model for later imitators and commentators. Among
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these the best known were Theon of Smyrna (fl. ca. A.D. 125), who wrote
his Expositio in Greek, and Boethius (tA.D. 524), who wrote his Arith-
metica, long afterward, in Latin. These men, like Nicomachus, were far
more concerned about the application of arithmetic to music and Platonic
philosophy than in advancing the subject itself. The full title of the Expositio
indicates, in fact, that it is an exposition of mathematical matters useful
to an understanding of Plato. It explains, for example, that the tetractys
consisting of the numbers 1, 2, 3, and 4 contains all the musical consonances
inasmuch as it makes up the ratios 4:3, 3:2, 2:1, 3:1, and 4:1. The Ar-
ithmetica of Boethius is quite unoriginal, being almost a translation of the
earlier work by Nicomachus.

THE ARITHMETICA OF DIOPHANTUS

Quite different from the works of Nicomachus, Theon, and Boethius was
the Arithmetica of Diophantus, a treatise characterized by a high degree
of mathematical skill and ingenuity. In this respect the book can be com-
pared with the great classics of the earlier Alexandrian Age; yet it has
practically nothing in common with these or, in fact, with any traditional
Greek mathematics. It represents essentially a new branch and makes use
of a different approach. Being divorced from geometric methods, it re-
sembles Babylonian algebra to a large extent. But whereas Babylonian
mathematicians had been concerned primarily with the approximate so-
lution of determinate equations as far as the third degree, the Arithmetica
of Diophantus (such as we have it) is almost entirely devoted to the exact
solution of equations, both determinate and indeterminate. Because of the
emphasis given in the Arithmetica to the solution of indeterminate prob-
lems, the subject dealing with this topic, sometimes known as indeterminate
analysis, has since become known as Diophantine analysis. Since this type
of work today is generally a part of courses in theory of numbers, rather
than elementary algebra, it is not an appropriate basis for regarding Dio-
phantus as the father of algebra. There is another respect, however, in
which such a paternity is justified. Algebra now is based almost exclusively
on symbolic forms of statement, rather than on the customary written
language of ordinary communication in which earlier Greek mathematics,
as well as Greek literature, had been expressed. It has been said that three
stages in the historical development of algebra can be recognized: (1) the
rhetorical or early stage, in which everything is written out fully in words;
(2) a syncopated or intermediate stage, in which some abbreviations are
adopted; and (3) a symbolic or final stage. Such an arbitrary division of
the development of algebra into three stages is, of course, a facile over-
simplification; but it can serve effectively as a first approximation to what
has happened, and within such a framework the Arithmetica of Diophantus
is to be placed in the second category.
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Throughout the six surviving books of the Arithmetica there is a sys-
tematic use of abbreviations for powers of numbers and for relationships
and operations. An unknown number is represented by a symbol resem-
bling the Greek letter s (perhaps for the last letter of arithmos); the
square of this appears as A’, the cube as K’, the fourth power, called
square-square, as A’A, the fifth power or square-cube as AK”, and the sixth
power or cube-cube as K’K. Diophantus was, of course, familiar with the
rules of combination equivalent to our laws of exponents, and he had special
names for the reciprocals of the first six powers of the unknowns, quantities
equivalent to our negative powers. Numerical coefficients were written after
the symbols for the powers with which they were associated; addition of
terms was understood in the appropriate juxtaposition of the symbols for
the terms, and subtraction was represented by a single letter abbreviation
placed before the terms to be subtracted. With such a notation Diophantus
was in a position to write polynomials in a single unknown almost as
concisely as we do today. The expression 2x* + 3x* — 4x? + S5x — 6, for
example, might appear in a form equivalent to $S2 C3 x5 M S4 u6, where
the English letters S, C, x, M, and u have been used for ““square,” ‘“‘cube,”
the ‘“‘unknown,” “minus,” and ‘“‘unit,” and with our present numerals in
place of the Greek alphabetic notation that was used in the days of Dio-
phantus. Greek algebra now no longer was restricted to the first three
powers or dimensions, and the identities (a> + b*)(c* + d*) = (ac +
bd)* + (ad — bc)* = (ac — bd)* + (ad + bc)?, which played important
roles in medieval algebra and modern trigonometry, appear in the work
of Diophantus. The chief difference between the Diophantine syncopation
and the modern algebraic notation is in the lack of special symbols for
operations and relations, as well as of the exponential notation. These
missing elements of notation were largely contributions of the period from
the late fifteenth to the early seventeenth centuries in Europe.

DIOPHANTINE PROBLEMS

If we think primarily of matters of notation, Diophantus has a good claim
to be known as the father of algebra, but in terms of motivation and
concepts the claim is less appropriate. The Arithmetica is not a systematic
exposition of the algebraic operations or of algebraic functions or of the
solution of algebraic equations. It is instead a collection of some 150 prob-
lems, all worked out in terms of specific numerical examples, although
perhaps generality of method was intended. There is no postulational de-
velopment, nor is an effort made to find all possible solutions. In the case
of quadratic equations with two positive roots, only the larger is given,
and negative roots are not recognized. No clear-cut distinction is made
between determinate and indeterminate problems, and even for the latter,
for which the number of solutions generally is unlimited, only a single



182 REVIVAL AND DECLINE OF GREEK MATHEMATICS

answer is given. Diophantus solved problems involving several unknown
numbers by skillfully expressing all unknown quantities, where possible,
in terms of only one of them. Two problems from the Arithmetica will
serve to illustrate the Diophantine approach. In finding two numbers such
that their sum is 20 and the sum of their squares is 208, the numbers are
not designated as x and y, but as 10 + x and 10 — x (in terms of our
modern notation). Then, (10 + x)*> + (10 — x)*> = 208, hence x = 2; s0
the numbers sought are 8 and 12. Diophantus handled also the analogous
problem in which the sum of the two numbers and the sum of the cubes
of the numbers are given as 10 and 370 respectively.

In these problems Diophantus is dealing with a determinate equation,
but he used much the same approach in indeterminate analysis. In one
problem it is required to find two numbers such that either when added
to the square of the other will yield a perfect square. This is a typical
instance of Diophantine analysis in which only rational numbers are ac-
ceptable as answers. In solving the problem Diophantus did not call the
numbers x and y, but rather x and 2x + 1. Here the second, when added
to the square of the first, will yield a perfect square no matter what value
one chooses for x. Now, it is required also that (2x + 1) + x must be a
perfect square. Here Diophantus does not point out the infinity of possibie
answers. He is satisfied to choose a particular case of a perfect square, in
this instance the number (2x — 2)?, such that when equated to (2x +
1) + x an equation that is linear in x results. Here the result is x = %,
so that the other number, 2x + 1, is 3. One could, of course, have used
(2x — 3)* or (2x — 4)%, or expressions of similar form, instead of (2x —
2)%, to arrive at other pairs of numbers having the desired property. Here
we see an approach that comes close to a ‘“‘method” in Diophantus’ work:
When two conditions are to be satisfied by two numbers, the two numbers
are so chosen that one of the two conditions is satisfied; and then one turns
to the problem of satisfying the second condition. That is, instead of han-
dling simultaneous equations on two unknowns, Diophantus operates with
successive conditions so that only a single unknown number appears in the
work.

THE PLACE OF DIOPHANTUS IN ALGEBRA

Among the indeterminate problems in the Arithmetica are some involving
equations such as x> = 1 + 30y? and x* = 1 + 26y?, which are instances
of the so-called “Pell equation” x> = 1 + py?; again a single answer is
thought to suffice. In a sense it is not fair to criticize Diophantus for being
satisfied with a single answer, for he was solving problems, not equations.
In a sense the Arithmetica is not an algebra textbook, but a problem
collection in the application of algebra. In this respect Diophantus is like
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the Babylonian algebraists; and his work sometimes is regarded as ‘“‘the
finest flowering of Babylonian algebra.” (Swift 1956). To some extent such
a characterization is unfair to Diophantus, for his numbers are entirely
abstract and do not refer to measures of grain or dimensions of fields or
monetary units, as was the case in Egyptian and Mesopotamian algebra.
Moreover, he is interested only in exact rational solutions, whereas the
Babylonians were computationally inclined and were willing to accept ap-
proximations to irrational solutions of equations. Hence, cubic equations
seldom enter in the work of Diophantus, whereas among the Babylonians
attention had been given to the reduction of cubics to the standard form
n® + n? = a in order to solve approximately through interpolation in a
table of values of n* + n2.

We do not know how many of the problems in the Arithmetica were
original or whether Diophantus had borrowed from other similar collec-
tions. Possibly some of the problems or methods are traceable back to
Babylonian sources, for puzzles and exercises have a way of reappearing
generation after generation. To us today the Arithmetica of Diophantus
looks strikingly original, but possibly this impression results from the loss
of rival problem collections. Our view of Greek mathematics is derived
from a relatively small number of surviving works, and conclusions derived
from these necessarily are precarious. Indications that Diophantus may
have been less isolated a figure than has been supposed are found in a
collection of problems from about the early second century of our era
(hence presumably antedating the Arithmetica) in which some Diophantine
symbols appear. Nevertheless, Diophantus has had a greater influence on
modern number theory than any other nongeometric Greek algebraist. In
particular, Fermat was led to his celebrated “great” or “last” theorem (see
below) when he sought to generalize a problem that he had read in the
Arithmetica of Diophantus (I1.8): to divide a given square into two squares.

PAPPUS OF ALEXANDRIA

The Arithmetica of Diophantus is a brilliant work worthy of the period of
revival in which it was written, but it is, in motivation and content, far
removed from the beautifully logical treatises of the great geometric
triumvirate of the earlier Alexandrian Age. Algebra seemed to be more
appropriate for problem-solving than for deductive exposition, and the
great work of Diophantus remained outside the mainstream of Greek math-
ematics. A minor work on polygonal numbers by Diophantus comes closer
to the earlier Greek interests, but even this cannot be regarded as ap-
proaching the Greek logical ideal. Classical geometry had found no ardent
supporter, with the possible exception of Menelaus, since the death of
Apollonius some four hundred and more years before. But during the reign
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of Diocletian (284-305) there lived again at Alexandria a scholar who was
moved by the spirit that had possessed Euclid, Archimedes, and Apollon-
ius. Pappus of Alexandria in about A.D. 320 composed a work with the
title Collection (Synagoge) which is important for several reasons. In the
first place it provides a most valuable historical record of parts of Greek
mathematics that otherwise would be unknown to us. For instance, it is in
Book V of the Collection that we learn of Archimedes’ discovery of the
thirteen semiregular polyhedra or ““Archimedian solids.”” Then, too, the
Collection includes alternative proofs and supplementary lemmas for prop-
ositions in Euclid, Archimedes, Apollonius, and Ptolemy. Finally, the trea-
tise includes new discoveries and generalizations not found in any earlier
work. The Collection, Pappus’ most important treatise, contained eight
books, but the first book and the first part of the second book are now
lost. In this case the loss is less to be regretted than is that of the last books
of Diophantus’ Arithmetica, for it appears that the first two books of the
Collection were chiefly concerned with the principles of Apollonius’ system
of tetrads in Greek numeration. Since we have, in the Sand-Reckoner, the
corresponding system of octads from Archimedes, we can judge quite well
what material has been lost from the exposition of Pappus.

THE COLLECTION

Book 111 of the Collection shows that Pappus shared thoroughly the classical
Greek appreciation of the niceties of logical precision in geometry. Here
he distinguishes sharply between “plane,” “solid,” and “linear” prob-
lems—the first being constructible with circles and straight lines only, the
second being solvable through the use of conic sections, and the last re-
quiring curves other than lines, circles, and conics. Then, Pappus describes
some solutions of the three famous problems of antiquity, the duplication
and trisection being problems in the second or solid category and the
squaring of the circle being a linear problem. Pappus virtually here asserts
the fact that the classical problems are impossible of solution under the
Platonic conditions, for they do not belong among the plane problems; but
rigorous proofs were not given until the nineteenth century.

In Book IV Pappus again is insistent that one should give for a problem
a construction appropriate to it. That is, one should not use linear loci in
the solution of a solid problem, nor solid or linear loci in the solution of
a plane problem. Asserting that the trisection of an angle is a solid problem,
he therefore suggests methods that make use of conic sections, whereas
Archimedes in one case had used a neusis, or sliding-ruler type of con-
struction, and in another the spiral, which is a linear locus. One of the
Pappus trisections is as follows. Let the given angle AOB be placed in a
circle with center O (Fig. 11.1) and let OC be the angle bisector. Draw
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FIG. 11.1

the hyperbola having A as one focus, OC as the corresponding directrix,
and with an eccentricity equal to 2. Then, one branch of this hyperbola
will cut the circumference of the circle in a point 7 such that ZAOT is
one-third Z AOB.

A second trisection construction proposed by Pappus makes use of an
equilateral hyperbola as follows. Let the side OB of the given angle AOB
be a diagonal of a rectangle ABCO and through A draw the equilateral
hyperbola having BC and OC (extended) as asymptotes (Fig. 11.2). With
A as center and with radius twice OB draw a circle intersecting the hy-
perbola in P and from P drop the perpendicular PT to the line CB extended.
Then, it is readily proved, from the properties of the hyperbola, that the
straight line through O and T is parallel to AP and that ZAOT is one-
third ZAOB. Pappus gives no source for his trisections, and we cannot
help but wonder if this trisection was known to Archimedes. If we draw
the semicircle passing through B, having QT as diameter and M as cen-
ter, we have essentially the Archimedean neusis construction, for OB =
OM = MT = MB.

In Book III Pappus describes also the theory of means and gives an

FIG. 11.2
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attractive construction that includes the arithmetic, the geometric, and the
harmonic means within a single semicircle. Pappus shows that if in the
semicircle ADC with center O (Fig. 11.3) one has DB 1 AC and BF 1
OD, then DO is the arithmetic mean, DB the geometric mean, and DF
the harmonic mean of the magnitudes AB and BC. Here Pappus claims
for himself only the proof, attributing the diagram to an unnamed geo-
meter. Even when Pappus names his source, it sometimes is not otherwise
known to us, indicating how inadequate is our information on mathema-
ticians of his day.

THEOREMS OF PAPPUS

The Collection of Pappus is replete with bits of interesting information and
significant new results. In many cases the novelties take the form of gen-
eralizations of earlier theorems, and a couple of these instances appear in
Book IV. Here we find an elementary generalization of the Pythagorean
theorem. If ABC is any triangle (Fig. 11.4) and if ABDE and CBGF are
any parallelograms constructed on two of the sides, then Pappus constructs
on side AC a third parallelogram ACKL equal to the sum of the other
two. This is easily accomplished by extending sides FG and ED to meet
in H, then drawing HB and extending it to meet side AC in J, and finally
drawing AL and CK parallel to HBJ. It is not known whether or not this

FIG. 11.4
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generalization, usually bearing the name of Pappus, was original with Pap-
pus, and it has been suggested that possibly it was known earlier to Heron.

Another instance of generalization in Book 1V, also bearing Pappus’
name, extends theorems of Archimedes on the shoemaker's knife. It asserts
that if circles Cy, C,, G5, C,, . . ., C,, . . . are inscribed successively as in
Fig. 11.5, all being tangent to the semicircles on AB and on AC, and
successively to each other, the perpendicular distance from the center of
the nth circle to the base line ABC is n times the diameter of the nth circle.

THE PAPPUS PROBLEM

Book V of the Collection was a favorite with later commentators, for it
raised the question of the sagacity of bees. Inasmuch as Pappus showed
that of two regular polygons having equal perimeters the one with the
greater number of sides has the greater area, he concluded that bees dem-
onstrated some degree of mathematical understanding in constructing their
cells as hexagonal, rather than square or triangular, prisms. The book goes
into other problems of isoperimetry, including a demonstration that the
circle has a greater area, for a given perimeter, than does any regular
polygon. Here Pappus seems to have been following closely a work On
Isometric Figures written almost half a millennium earlier by Zenodorus
(ca. 180 B.C.), some fragments of which were preserved by later commen-
tators. Among the propositions in Zenodorus’ treatise was one asserting
that of all solid figures the surfaces of which are equal, the sphere has the
greatest volume, but only an incomplete justification was given.

Books VI and VIII of the Collection are chiefly on applications of math-
ematics to astronomy, optics, and mechanics (including an unsuccessful
attempt at finding the law of the inclined plane). Of far more significance
in the history of mathematics is Book VII, in which, through his penchant
for generalization, Pappus came close to the fundamental principle of an-
alytic geometry. The only means recognized by the ancients for defining
plane curves were (1) kinematic definitions in which a point moves subject
to two superimposed motions and (2) the section by a plane of a geometric
surface, such as a cone or sphere or cylinder. Among the latter curves were
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certain quartics known as spiric sections, described by Perseus (ca. 150
B.C.), obtained by cutting the anchor ring or torus by a plane. Occasionally
a twisted curve caught the attention of the Greeks, including the cylindrical
helix and an analogue of the Archimedean spiral described on a spherical
surface, both of which were known to Pappus; but Greek geometry was
primarily restricted to the study of plane curves, in fact, to a very limited
number of plane curves. It is significant to note, therefore, that in Book
V11 of the Collection Pappus proposed a generalized problem that implied
infinitely many new types of curves. This problem, even in its simplest
form, usually is known as the “‘Pappus problem,” but the original state-
ment, involving three or four lines, seems to go back to the days of Euclid.
As first considered, the problem is referred to as “the locus to three or
four lines,” described above in connection with the work of Apollonius.
Euclid evidently had identified the locus for certain special cases only, but
it appears that Apollonius, in a work now lost, had given a complete
solution. Pappus nevertheless gave the impression that geometers had
failed in attempts at a general solution and implied that it was he who had
first shown the locus in all cases to be a conic section.

More importantly, Pappus then went on to consider the analogous prob-
lem for more than four lines. For six lines in a plane he recognized that a
curve is determined by the condition that the product of the distances from
three of the lines shall be in a fixed ratio to the product of the distances
to the other three lines. In this case a curve is defined by the fact that a
solid is in a fixed ratio to another solid. Pappus hesitated to go on to cases
involving more than six lines inasmuch as ‘‘there is not anything contained
by more than three dimensions.” But, he continued, “‘men a little before
our time have allowed themselves to interpret such things, signifying noth-
ing at all comprehensible, speaking of the product of the content of such
and such lines by the square of this or the content of those. These things
might however be stated and shown generally by means of compounded
proportions.” The unnamed predecessors evidently were prepared to take
a highly important step in the direction of an analytic geometry that should
include curves of degree higher than three, just as Diophantus had used
the expressions square-square and cube-cube for higher powers of numbers.
Had Pappus pursued the suggestion further, he might have anticipated
Descartes in a general classification and theory of curves far beyond the
classical distinction between plane, solid, and linear loci. His recognition
that, no matter what the number of lines in the Pappus problem, a specific
curve is determined is the most general observation on loci in all of ancient
geometry, and the algebraic syncopations that Diophantus had developed
would have been adequate to have disclosed some of the properties of the
curves. But Pappus was at heart a geometer only, as Diophantus had been
an algebraist only; hence, Pappus merely remarked with surprise that no
one had made a synthesis of this problem for any case beyond that of four
lines. Pappus himself made no deeper study of these loci, “‘of which one
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has no further knowledge and which are simply called curves.”” What was
needed for the next step in this connection was the appearance of a math-
ematician equally concerned for algebra and geometry; it is significant to
note that when such a figure appeared in the person of Descartes, it was
this very problem of Pappus that served as the point of departure in the
invention of analytic geometry.

THE TREASURY OF ANALYSIS

There are other important topics in Book VII of the Collection, apart from
the Pappus problem. For one thing, there is a full description of what was
called the method of analysis and of a collection of works known as the
Treasury of Analysis. Pappus describes analysis as ““a method of taking
that which is sought as though it were admitted and passing from it through
its consequences in order to something which is admitted as a result of
synthesis.” That is, he recognized analysis as a ‘“‘reverse solution,” the
steps of which must be retraced in opposite order to constitute a valid
demonstration. If analysis leads to something admitted to be impossible,
the problem also will be impossible, for a false conclusion implies a false
premise. Pappus explains that the method of analysis and synthesis is used
by the authors whose works constitute .the Treasury of Analysis: “This is
a body of doctrine furnished for the use of those who, after going through
the usual elements, wish to obtain power to solve problems set to them
involving curves”; and Pappus lists among the works in the Treasury of
Analysis the treatises on conics by Aristaeus, Euclid, and Apollonius. It
is from Pappus’ description that we learn that Apollonius’ Conics contained
487 theorems. Since the seven books now extant comprise 382 propositions,
we can conclude that the lost eighth book had 105 propositions. About
half of the works listed by Pappus in the Treasury of Analysis are now lost,
including Apollonius’ Cutting-off of a Ratio, Eratosthenes’ On Means, and
Euclid’s Porisms. It has been suggested that a porism was an antique
equivalent of our equation of a curve or locus, indicating that Euclid and
Pappus may not have been as far removed from what we call “analytic
geometry” as generally is supposed.

THE PAPPUS-GULDIN THEOREMS

Book VII of the Collection contains the first statement on record of the
focus-directrix property of the three conic sections. It appears that Apol-
lonius knew of the focal properties for central conics, but it is possible that
the focus-directrix property for the parabola was not known before Pappus.
Another theorem in Book VII that appears for the first time is one usually
named for Paul Guldin, a seventeenth-century mathematician: If a closed
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plane curve is revolved about a line not passing through the curve, the
volume of the solid generated is found by taking the product of the area
bounded by the curve and the distance traversed during the revolution by
the center of gravity of the area. Pappus was rightfully proud of this very
general theorem, for it included ‘“‘a large number of theorems of all sorts
about curves, surfaces and solids, all of which are proved simultaneously
by one demonstration.”” There is a possibility that the ““Guldin theorem”
represents an interpolation in the manuscript of the Collection. In any case,
the theorem represents a striking advance by someone during or following
the long period of decline. Pappus gave also the analogous theorem that
the surface area generated by the revolution of a curve about a line not
cutting the curve is equal to the product of the length of the curve and the
distance traversed by the centroid of the curve during the revolution.

The Collection of Pappus is the last truly significant ancient mathematical
treatise, for the attempt of the author to revive geometry was not successful.
Mathematical works continued to be written in Greek for about another
thousand years, continuing an influence that had begun almost a millen-
nium before, but authors following Pappus never again rose to his level.
Their works are almost exclusively in the form of commentary on earlier
treatises. Pappus himself is in part responsible for the ubiquitous com-
mentaries that ensued, for he had composed commentaries on the Elements
of Euclid and on the A/magest of Ptolemy, among others, only fragments
of which survive. Later commentaries, such as those of Theon of Alex-
andria (fl. 365), are more useful for historical information than for math-
ematical results. Theon was responsible also for an important edition of
the Elements that has survived; he is remembered also as the father of
Hypatia, a learned young lady who wrote commentaries on Diophantus,
Ptolemy, and Apollonius. An ardent devotee of pagan learning, Hypatia
incurred the enmity of a fanatical Christian mob at whose hands she suffered
a cruel death in 415. The dramatic impact of her death in Alexandria has
caused that year to be taken by some to mark the end of ancient mathe-
matics, but a more appropriate close is found a century later.

PROCLUS OF ALEXANDRIA

Alexandria produced in Proclus (410-485) a young mathematical scholar
who went to Athens, where he became the head of the Neoplatonic school.
Proclus was more the philosopher than the mathematician, but his remarks
are often critical for the history of early Greek geometry. Of great signif-
icance is his Commentary on Book I of the Elements of Euclid, for, while
writing this, Proclus undoubtedly had at hand a copy of the History of
Geometry by Eudemus, now lost, as well as Pappus’ Commentary on the
Elements, largely lost. For our information on the history of geometry
before Euclid we are heavily indebted to Proclus, who included in his




BOETHIUS 191

Commentary a summary or substantial extract from Eudemus’ History.
This passage, which has come to be known as the Eudemian Summary,
may be taken as Proclus’ chief contribution to mathematics, although to
him is ascribed the theorem that if a line segment of fixed length moves
with its end points on two intersecting lines, a point on the segment will
describe a portion of an ellipse.

BOETHIUS

During the years when Proclus was writing in Athens, the Roman Empire
in the West was gradually collapsing. The end of the empire usually is
placed at 476, for in this year the incumbent Roman emperor was displaced
by Odoacer, a Goth. Some of the old Roman senatorial pride remained,
but the senatorial party had lost political control. In this situation Boethius
(ca. 480-524) found his position difficult, for he came of an old distin-
guished patrician family. He was not only a philosopher and mathematician
but also a statesman, and he probably viewed with distaste the rising Os-
trogothic power. Although Boethius may have been the foremost mathe-
matician produced by ancient Rome, the level of his work is a far cry from
that characteristic of Greek writers. He was the author of textbooks for
each of the four mathematical branches in the liberal arts, but these were
jejune and exceedingly elementary abbreviations of earlier classics—an
Arithmetic that was only an abridgement of the Introductio of Nicomachus;
a Geometry based on Euclid and including statements only, without proof,
of some of the simpler portions of the first four books of the Elements; an
Astronomy derived from Ptolemy’s Almagest; and a Music that is indebted
to the earlier works of Euclid, Nicomachus, and Ptolemy. In some cases
these primers, used extensively in medieval monastic schools, may have
suffered later interpolations, hence it is difficult to determine precisely what
is genuinely due to Boethius himself. It is nevertheless clear that the author
was concerned primarily with two aspects of mathematics: its relationship
to philosophy and its applicability to simple problems of mensuration. Of
mathematics as a logical structure there is little trace.

Boethius seems to have been a statesman of high purpose and unques-
tioned integrity. He and his sons in turn served as consuls, and Boethius
was among the chief advisers of Theodoric; but for some reason, whether
political or religious, the philosopher incurred the displeasure of the em-
peror. It has been suggested that Boethius was a Christian (as perhaps
Pappus was also) and that he espoused Trinitarian views that alienated the
Arian emperor. It is possible also that Boethius was too closely associated
with political elements that looked to the Eastern Empire for help in
restoring the old Roman order in the West. In any case, Boethius was
executed in 524 or 525, following a long imprisonment. (Theodoric, inci-



192 REVIVAL AND DECLINE OF GREEK MATHEMATICS

dentally, died only about a year later, in 526.) It was while in prison that
he wrote his most celebrated work, De consolatione philosophiae. This
essay, written in prose and verse while he faced death, discusses moral
responsibility in the light of Aristotelian and Platonic philosophy.

END OF THE ALEXANDRIAN PERIOD

The death of Boethius may be taken to mark the end of ancient mathe-
matics in the Western Roman Empire, as the death of Hypatia had marked
the close of Alexandria as a mathematical center; but work continued for
a few years longer at Athens. There one found no great original mathe-
matician, but the Peripatetic commentator Simplicius (fl. 520) was suffi-
ciently concerned about Greek geometry to have preserved for us what
may be the oldest fragment extant. Aristotle in the Physica had referred
to the quadrature of the circle or of a segment, and Simplicius took this
opportunity to quote “‘word for word” what Eudemus had written on the
subject of the quadrature of lunes by Hippocrates. The account, several
pages long, gives full details on the quadratures of lunes, quoted by Sim-
plicius from Eudemus, who in turn is presumed to have given at least part
of the proofs in Hippocrates’ own words, especially where certain archaic
forms of expression are used. This source is the closest we can come to
direct contact with Greek mathematics before the days of Plato.

THE GREEK ANTHOLOGY

Simplicius was primarily a philosopher, but in his day there circulated a
work usually described as the Greek Anthology, the mathematical portions
of which remind us strongly of the problems in the Ahmes Papyrus of more
than two millennia earlier. The Anthology contained some six thousand
epigrams; of these more than forty are mathematical problems, collected
presumably by Metrodorus, a grammarian of perhaps the fifth or sixth
century. Most of them, including the epigram in this chapter on the age
of Diophantus, lead to simple linear equations. For example, one is asked
to find how many apples are in a collection if they are to be distributed
among six persons so that the first person receives one third of the apples,
the second receives one fourth, the third person receives one fifth, the
fourth person receives one eighth, the fifth person receives ten apples, and
there is one apple left for the last person. Another problem is typical of
elementary algebra texts of our day: If one pipe can fill a cistern in one
day, a second in two days, a third in three days, and a fourth in four days,
how long will it take all four running together to fill it? The problems
presumably were not original with Metrodorus, but were collected from
various sources. Some probably go back before the days of Plato, reminding
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us that not all Greek mathematics was of the type that we think of as
classical.

BYZANTINE MATHEMATICIANS OF THE SIXTH CENTURY

Simplicius and Metrodorus were not the outstanding mathematicians of
their day, for there were contemporary commentators with training ade-
quate for an understanding of the works of Archimedes and Apollonius.
Among these was Eutocius (born ca. 480), who commented on several
Archimedean treatises and on the Apollonian Conics. It is to Eutocius that
we owe the Archimedean solution of a cubic through intersecting conics,
referred to in The Sphere and Cylinder but not otherwise extant except
through the commentary of Eutocius. The commentary by Eutocius on the
Conics of Apollonius was dedicated to Anthemius of Tralles (¥534), an
able mathematician and architect of St. Sophia of Constantinople, who
described the string construction of the ellipse and wrote a work On Burn-
ing-mirrors in which the focal properties of the parabola are described.
His colleague and successor in the building of St. Sophia, Isidore of Miletus
(fl. 520), also was a mathematician of some ability. It was Isidore who
made known the commentaries of Eutocius and spurred a revival of interest
in the works of Archimedes and Apollonius. To him perhaps we owe the
familiar T-square and string construction of the parabola—and possibly
also the apocryphal Book XV of Euclid’s Elements. It may be in large
measure due to the activities of the Constantinople group—Eutocius, Is-
idore, and Anthemius—that Greek versions of Archimedean works and
of the first four books of Apollonius’ Conics have survived to this day.
Isidore of Miletus was one of the last directors of the Platonic Academy
at Athens. The school had, of course, undergone many changes throughout
its existence of more than 900 years, and during the days of Proclus it had
become a center of Neoplatonic learning. When in 527 Justinian became
emperor in the East, he evidently felt that the pagan learning of the Acad-
emy and other philosophical schools at Athens was a threat to orthodox
Christianity; hence, in 529 the philosophical schools were closed and the
scholars dispersed. Rome at the time was scarcely a very hospitable home
for scholars, and Simplicius and some of the other philosophers looked to
the East for a haven. This they found in Persia, where under King Chosroes
they established what might be called the ““Athenian Academy in Exile.”
(Sarton 1952; p. 400). The date 529 may, therefore, be taken to mark the
close of European mathematical development in antiquity. Henceforth the
seeds of Greek science were to develop in Near and Far Eastern countries
until, some 600 years later, the Latin world was in a more receptive mood.
The date 529 has another significance that may be taken as symptomatic
of a change in values—in this year the venerable monastery of Monte
Cassino was established. Mathematics did not, of course, entirely disappear






China and India

A mixture of pearl shells and sour dates . . . or of costly crystal and common
pebbles.

Al-Biruni’s India

THE OLDEST DOCUMENTS

The civilizations of China and India are of far greater antiquity than those
of Greece and Rome, although not older than those in the Nile and Me-
sopotamian valleys. They go back to the Potamic Age, whereas the cultures
of Greece and Rome were of the Thalassic Age. Civilizations along the
Yangtze and Yellow rivers are comparable in age with those along the Nile
or between the Tigris and Euphrates; but chronological accounts in the
case of China are less dependable than those for Egypt and Babylonia.
Claims that the Chinese made astronomical observations of importance,
or described the twelve signs of the zodiac, by the fifteenth millennium
B.C. are certainly unfounded, but a tradition that places the first Chinese
empire about 2750 B.C. is not unreasonable. More conservative views place
the early civilizations of China nearer 1000 B.C. The dating of mathematical
documents from China is far from easy, and estimates concerning the Chou
Pei Suan Ching, generally considered to be the oldest of the mathematical
classics, differ by almost a thousand years. The problem of its date is
complicated by the fact that it may well have been the work of several
men of differing periods. Some consider the Chou Pei to be a good record
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of Chinese mathematics of about 1200 B.C. but others place the work in
the first century before our era. A date of about 300 B.C. would appear
reasonable, thus placing it in close competition with another treatise, the
Chiu-chang suan-shu, composed about 250 B.C., that is, shortly before the
Han dynasty (202 B.C.). The words “Chou Pei’”’ seem to refer to the use
of the gnomon in studying the circular paths of the heavens, and the book
of this title is concerned with astronomical calculations, although it includes
an introduction on the properties of the right triangle and some work on
the use of fractions. The work is cast in the form of a dialogue between a
prince and his minister concerning the calendar; the minister tells his ruler
that the art of numbers is derived from the circle and the square, the square
pertaining to the earth and the circle belonging to the heavens. The Chou
Pei indicates that in China, as Herodotus held in Egypt, geometry arose
from mensuration; and, as in Babylonia, Chinese geometry was essentially
only an exercise in arithmetic or algebra. There seem to be some indications
in the Chou Pei of the Pythagorean theorem, a theorem treated algebra-
ically by the Chinese.

THE NINE CHAPTERS

Almost as old as the Chou Pei, and perhaps the most influential of all
Chinese mathematical books, was the Chui-chang suan-shu, or Nine Chap-
ters on the Mathematical Art. This book includes 246 problems on surveying,
agriculture, partnerships, engineering, taxation, calculation, the solution
of equations, and the properties of right triangles. Whereas the Greeks of
this period were composing logically ordered and systematically expository
treatises, the Chinese were repeating the old custom of the Babylonians
and Egyptians of compiling sets of specific problems. The Nine Chapters
resembles Egyptian mathematics also in its use of the method of ‘‘false
position,” but the invention of this scheme, like the origin of Chinese
mathematics in general, seems to have been independent of Western in-
fluence.

In Chinese works, as in Egyptian, one is struck by the juxtaposition of
accurate and inaccurate, primitive and sophisticated results. Correct rules
are used for the areas of triangles, rectangles, and trapezoids. The area of
the circle was found by taking three fourths the square on the diameter or
one-twelfth the square of the circumference—a correct result if the value
three is adopted for z—but for the area of a segment of a circle the Nine
Chapters uses the approximate results s(s + ¢)/2, where s is the sagitta
(that is, the radius minus the apothem) and ¢ the chord or base of the
segment. There are problems that are solved by the rule of three; in others,
square and cube roots are found. Chapter eight of the Nine Chapters is
significant for its solution of problems in simultaneous linear equations,
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using both positive and negative numbers. The last problem in the chapter
involves four equations in five unknowns, and the topic of indeterminate
equations was to remain a favorite among Oriental peoples. The ninth and
last chapter includes problems on right-angled triangles, some of which
later reappeared in India and Europe. One of these asks for the depth of
a pond 10 feet square if a reed growing in the center and extending 1 foot
above the water just reaches the surface if drawn to the edge of the pond.
Another of these well-known problems is that of the ‘“broken bamboo’:
There is a bamboo 10 feet high, the upper end of which being broken
reaches the ground 3 feet from the stem. Find the height of the break.

MAGIC SQUARES

The Chinese were especially fond of patterns; hence, it is not surprising
that the first record (of ancient but unknown origin) of a magic square
appeared there. The square
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was supposedly brought to man by a turtle from the River Lo in the days
of the legendary Emperor Yii, reputed to be a hydraulic engineer. The
concern for such patterns led the author of the Nine Chapters to solve the
system of simultaneous linear equations

3x + 2y +z =39
2x + 3y + z = 34
x + 2y + 3z =26

by performing column operations on the matrix

Ben2 .3 0% 0, .3
A g el 0 =D | B2
to reduce it to
ST S 36 1 1
26 34 39 9 24 39
The second form represented the equation 36z = 99, 5y + z = 24, and

3x+2y +2z =
found with ease.

39 from which the values of z, y, and x are successively
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ROD NUMERALS

Had Chinese mathematics enjoyed uninterrupted continuity of tradition,
some of the striking anticipations of modern methods might have signifi-
cantly modified the development of mathematics. But Chinese culture was
seriously hampered by abrupt breaks. In 213 B.C., for example, the Chinese
emperor ordered the burning of books. Some works must obviously have
survived, either through the persistence of copies or through oral trans-
mission; and learning did indeed persist, with mathematical emphasis on
problems of commerce and the calendar.

There seems to have been contact between India and China, as well as
between China and the West, but scholars differ on the extent and direction
of borrowing. The temptation to see Babylonian or Greek influence in
China, for example, is faced with the problem that the Chinese did not
make use of sexagesimal fractions. Chinese numeration remained essen-
tially decimal, with notations rather strikingly different from those in other
lands. In China, from early times, two schemes of notation were in use.
In one the multiplicative principal predominated, in the other a form of
positional notation was used. In the first of these there were distinct ciphers
for the digits from one to ten and additional ciphers for the powers of ten,
and in the written forms the digits in odd positions (from left to right or
from bottom to top) were multiplied by their successor. Thus the number
678 would be written as a six followed by the symbol for one hundred,
then a seven followed by the symbol for ten, and finally the symbol for
eight.

In the system of “‘rod numerals” the digits from one to nine appeared
as | L 0 W W T T T TN and the first nine multiples of ten as
- == 1 L L £ By the use of these eighteen symbols
alternately in positions from right to left, numbers as large as desired
could be represented. The number 56,789, for instance, would appear as
I LT, As in Babylonia, a symbol for an empty position appeared
only relatively late. In a work of 1247 the number 1,405,536 is written
with a round zero symbol as | = 0 Z lII=T. (Occasionally, as in the four-
teenth-century form of the arithmetic triangle, the vertical and horizon-
tal rods or strokes were interchanged.)

The precise age of the original rod numerals cannot be determined, but
they were certainly in use several hundred years before our era. that is,
long before the positional notation had been adopted in India. The use of
a centesimal, rather than a decimal, positional system in China was con-
venient for adaptation to computations with the counting board. Distinctive
notations for neighboring powers of ten enabled the Chinese to use. without
confusion, a counting board with unmarked vertical columns. Before the
eighth century the place in which a zero was required was simply left blank.
Although in texts older than A.D. 300 the numbers and multiplication tables
were written out in words, calculations actually were made with rod nu-
merals on a counting board.
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THE ABACUS AND DECIMAL FRACTIONS

The rod numerals of about 300 B.C. were not merely a notation for the
written result of a computation. Actual bamboo, ivory, or iron rods were
carried about in a bag by administrators and used as a calculating device.
Counting rods were manipulated with such dexterity that an eleventh-
century writer described them as “flying so quickly that the eye could not
follow their movement.”” Cancellations probably were more rapidly carried
out with rods on a counting board than in written calculations. So effective,
in fact, was the use of the rods on a counting board that the abacus or
rigid counting frame with movable markers on wires was not used so early
as has been generally supposed. First clear descriptions of the modern
forms, known in China as the suan phan and in Japan as the soroban, are
of the sixteenth century; but anticipations would appear to have been in
use perhaps a thousand years earlier. The word abacus probably is derived
from the Semitic word abg, or dust, indicating that in other lands, as well
as in China, the device grew out of a dust or sand tray used as a counting
board. It is possible, but by no means certain, that the use of the counting
board in China antedates the European, but clear-cut and reliable dates
are not available. In the National Museum in Athens there is a marble
slab, dating probably from the fourth century B.C., which appears to be a
counting board. And when a century earlier Herodotus wrote, ‘‘The Egyp-
tians move their hand from right to left in calculation, while the Greeks
move it from left to right,” he probably was referring to the use of some
sort of counting board. Just when such devices gave way to the abacus
proper is difficult to determine; nor can we tell whether or not the ap-
pearances of the abacus in China, Arabia, and Europe were independent
inventions. The Arabic abacus had ten balls on each wire and no center
bar, whereas the Chinese had five lower and two upper counters on each
wire, separated by a bar. Each of the upper counters on a wire of the
Chinese abacus is equivalent to five on the lower wire; a number is reg-
istered by sliding the appropriate counters against the separating bar. (See
the accompanying illustration of an abacus.)

No description of Chinese numeration would be complete without ref-
erence to the use of fractions. The Chinese were familiar with operations
on common fractions, in connection with which they found lowest common
denominators. As in other contexts, they saw analogies with the differences
in the sexes, referring to the numerator as the ‘‘son’” and to the denominator
as the “mother.” Emphasis on yin and yang (opposites, especially in
sex) made it easier to follow the rules for the manipulation of fractions.
More important than these, however, was the tendency in China toward
decimalization of fractions. As in Mesopotamia a sexagesimal metrology
led to sexagesimal numeration, so also in China adherence to the decimal
idea in weights and measures resulted in a decimal habit in the treatment
of fractions that, it is said, can be traced back as far as the fourteenth
century B.C. Decimal devices in computation sometimes were adopted
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Marble counting board, probably from the fourth century B.C., found on the island of Salamis
and now in the National Museum in Athens.
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An early printed picture of the abacus, from the Suan Fa Thung Tsung, 1593. (Reproduced
from J. Needham, 1959, Vol. 3, p. 76.)

to lighten manipulations of fractions. In a first-century commentary on
the Nine Chapters, for example, we find the use of the now familiar rules
for square and cube roots, equivalent to Va = V100a/10 and
Va =V 1000a/10, which facilitate the decimalization of root extractions.

The idea of negative numbers seems not to have occasioned much dif-
ficulty for the Chinese since they were accustomed to calculating with two
sets of rods—a red set for positive coefficients or numbers and a black set
for negatives. Nevertheless, they did not accept the notion that a negative
number might be a solution of an equation.

VALUES OF PI

The earliest Chinese mathematics is so different from that of comparable
periods in other parts of the world that the assumption of independent
development would appear to be justified. At all events, it seems safe to
say that if there was some intercommunication before A.D. 400, then more
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mathematics came out of China than went in. For later periods the question
becomes more difficult. The use of the value three for n in early Chinese
mathematics is scarcely an argument for dependence on Mesopotamia,
especially since the search for more accurate values, from the first centuries
of the Christian era, was more persistent in China than elsewhere. Values
such as 3.1547, V10, 92/29, and 142/45 are found; and in the third century
Liu Hui, an important commentator on the Nine Chapters, derived the
figure 3.14 by use of a regular polygon of 96 sides and the approximation
3.14159 by considering a polygon of 3072 sides. In Liu Hui’s reworking of
the Nine Chapters there are many problems in mensuration, including the
correct determination of the volume of a frustum of a square pyramid. For
a frustum of a circular cone a similar formula was applied, but with a value
of three for z. Unusual is the rule that the volume of a tetrahedron with
two opposite edges perpendicular to each other is one sixth the product
of these two edges and their common perpendicular. The method of false
position is used in solving linear equations, but there are also more so-
phisticated results, such as the solution, through a matrix pattern, of a
Diophantine problem involving four equations in five unknown quantities.
The approximate solution of equations of higher degree seems to have
been carried out by a device similar to what we know as “‘Horner’s method.”
Liu Hui also included, in his work on the Nine Chapters, numerous prob-
lems involving inaccessible towers and trees on hillsides.

The Chinese fascination with the value of n reached its high point in
the work of Tsu Ch’ung-chih (430-501). One of his values was the familiar
Archimedean 22/7, described by Tsu Ch’ung-chih as “‘inexact™; his “‘ac-
curate” value was 355/113. If one persists in seeking possible Western
influence, one can explain away this remarkably good approximation, not
equaled anywhere until the fifteenth century, by subtracting the numerator
and denominator respectively of the Archimedean value from the numer-
ator and denominator of the Ptolemaic value 377/120. However, Tsu Ch’ung-
chih went even further in his calculations, for he gave 3.1415927 as an
“excess” value and 3.1415926 as a “‘deficit value.” The calculations by
which he arrived at these bounds, apparently aided by his son Tsu Cheng-
chih, were probably contained in one of his books, since lost. In any case,
his results were remarkable for that age, and it is fitting that today a
landmark on the moon bears his name.

We should bear in mind that accuracy in the value of 7 is more a matter
of computational stamina than of theoretical insight. The Pythagorean
theorem alone suffices to give as accurate an approximation as may be
desired. Starting with the known perimeter of a regular polygon of n sides
inscribed in a circle, the perimeter of the inscribed regular polygon of 2n
sides can be calculated by two applications of the Pythagorean theorem.
Let C be a circle with center O and radius r (Fig. 12.1) and let PQ =

s be a side of a regular inscribed polygon of n sides having a known pe-
rimeter. Then, the apothem OM = uis givenby u = Vr® — (s/2)*; hence,
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the sagitta MR = v = r — u is known. Then, the side RQ = w of the
inscribed regular polygon of 2n sides is found from w = Vuv? + (s/2)%
hence, the perimeter of this polygon is known. The calculation, as Liu Hui
saw, can be shortened by noting that w*> = 2rv. An iteration of the pro-
cedure will result in an ever closer approximation to the perimeter of the
circle, in terms of which r is defined.

ALGEBRA AND HORNER’S METHOD

Chinese mathematical problems often appear to be more picturesque than
practical, and yet Chinese civilization was responsible for a surprising num-
ber of technological innovations. The use of printing and gunpowder (eighth
century) and of paper and the mariner’s compass (eleventh century) was
earlier in China than elsewhere, and earlier also than the high-water mark
in Chinese mathematics that occurred in the thirteenth century, during the
latter part of the Sung period. At that time there were mathematicians
working in various parts of China; but relations between them seem to
have been remote, and, as in the case of Greek mathematics, we evidently
have relatively few of the treatises that once were available. The last and
greatest of the Sung mathematicians was Chu Shih-chieh (fl. 1280-1303),
yet we know little about him—not even when he was born or when he
died. He was a resident of Yen-shan, near modern Peking, but he seems
to have spent some twenty years as a wandering scholar who earned his
living by teaching mathematics, even though he had the opportunity to
write two treatises. The first of these, written in 1299, was the Suan-hsiieh
ch’i-meng (Introduction to Mathematical Studies), a relatively elementary
work that strongly influenced Korea and Japan, although in China it was
lost until it reappeared in the nineteenth century. Of greater historical and
mathematical interest is the Ssu-yiian yii-chien (Precious Mirror of the Four
Elements) of 1303. In the eighteenth century this, too, disappeared in
China, only to be rediscovered in the next century. The four elements,
called heaven, earth, man, and matter, are the representations of four
unknown quantities in the same equation. The book marks the peak in the
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development of Chinese algebra, for it deals with simultaneous equations
and with equations of degrees as high as fourteen. In it the author describes
a transformation method that he calls fan fa, the elements of which seem
to have arisen long before in China, but which generally bears the name
of Horner, who lived half a millennium later. In solving the equation
x? + 252x — 5292 = 0, for example, Chu Shih-chieh first obtained x =
19 as an approximation (a root lies between x = 19 and x = 20) and
then used the fan-fa, in this case the transformation y = x — 19, to obtain
the equation y? + 290y — 143 = 0 (with a root betweeny = Qand y =
1). He then gave the root of the latter as (approximately) y = 143/(1 +
290); hence, the corresponding value of x is 1933}. For the equation x* —
574 = O he used y = x — 8 to obtain y* + 24y> + 192y — 62 = 0, and
he gave the root asx = 8 + 62/(1 + 24 + 192) or x = 8%. In some cases
he found decimal approximations.

THIRTEENTH-CENTURY MATHEMATICIANS

That the so-called Horner method was a commonplace in China is indicated
by the fact that at least three other mathematicians of the later Sung period
made use of similar devices. One of these was Li Chih (or Li Yeh, 1192-
1279), a mathematician of Peking who was offered a government post by
Khublai Khan in 1260, but politely found an excuse to decline it. His T5s’e-
yuan hai-ching (Sea-Mirror of the Circle Measurements) includes 170 prob-
lems dealing with circles inscribed within, or escribed without, a right
triangle and with determining the relationships between the sides and the
radii, some of the problems leading to equations of fourth degree. Although
he did not describe his method of solution of equations, including some
of sixth degree, it appears that it was not very different from that used by
Chu Shih-chieh and Horner. Others who used the Horner method were
Ch’in Chiu-shao (ca. 1202—ca. 1261) and Yang Hui (fl. ca. 1261-1275). The
former was an unprincipled governor and minister who acquired immense
wealth within a hundred days of assuming office. His Shu-shu chiu-chang
(Mathematical Treatise in Nine Sections) marks the high point in Chinese
indeterminate analysis, with the invention of routines for solving simul-
taneous congruences. In this work also he found the square root of 71,824
by steps paralleling those in the Horner method. With 200 as the first
approximation to a root of x> — 71,824 = 0, he diminished the roots of
this by 200 to obtain y? + 400y — 31,824 = 0. For the latter equation he
found 60 as an approximation, and diminished the roots by 60, arriving at
a third equation, z? + 520z — 4224 = 0, of which 8 is a root. Hence, the
value of x is 268. In a similar way he solved cubic and quartic equations.
The same “‘Horner" device was used by Yang Hui, about whose life almost
nothing is known and whose work has survived only in part. Among his
contributions that are extant are the earliest Chinese magic squares of
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order greater than three, including two each of orders four through eight
and one each of orders nine and ten.

THE ARITHMETIC TRIANGLE

Yang Hui’s works included also results in the summation of series and the
so-called Pascal triangle, things that were published and better known
through the Precious Mirror of Chu Shih-chieh, with which the Golden
Age of Chinese mathematics closed. A few of the many summations of
series found in the Precious Mirror are the following:

12+22+32+--~+n2=n(n+1)(—2’-l—;—1)
1+8+30+80+-~-+nz(n+1)(i3+‘j
4n + 1
=n(n+1)(n+2)(n+3)x£”T)

However, no proofs are given, nor does the topic seem to have been
continued again in China until about the nineteenth century. Chu Shih-
chieh handled his summations through the method of finite differences,
some elements of which seem to date in China from the seventh century;
but shortly after his work the method disappeared for many centuries.
The Precious Mirror opens with a diagram of the arithmetic triangle,
inappropriately known in the West as ‘‘Pascal’s triangle.” (See illustration.)
In Chu’s arrangement we have the coefficients of binomial expansions
through the eighth power, clearly given in rod numerals and a round zero
symbol. Chu disclaims credit for the triangle, referring to it as a ““diagram
of the old method for finding eighth and lower powers.” A similar ar-
rangement of coefficients through the sixth power had appeared in the
work of Yang Hui, but without the round zero symbol. There are references
in Chinese works of about 1100 to tabulation systems for binomial coef-
ficients, and it is likely that the arithmetic triangle originated in China by
about that date. It is interesting to note that the Chinese discovery of the
binomial theorem for integral powers was associated in its origin with root
extractions rather than with powers. The equivalent of the theorem ap-
parently was known to Omar Khayyam at about the time that it was being
used in China, but the earliest extant Arabic work containing it is by Al-
Kashi in the fifteenth century. By that time Chinese mathematics had failed
to match achievements in Europe and the Near East, and it is likely that
by then more mathematics went into China than came out. Still to be
answered is the thorny problem of determining the relative influences of
China and India on each other during the first millennium of our era.
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Indian mathematical texts, was born. It is clear, however, that there had
been mathematical activity in India long before this time—probably even
before the mythical founding of Rome in 753 B.C. India, like Egypt, had
its *‘rope-stretchers™; and the primitive geometric lore acquired in con-
nection with the laying out of temples and the measurement and construc-
tion of altars took the form of a body of knowledge known as the
Sulvasutras, or ‘‘rules of the cord.” Sulva (or sulba) refers to cords used
for measurements, and sutra means a book of rules or aphorisms relating
to a ritual or science. The stretching of ropes is strikingly reminiscent of
the origin of Egyptian geometry, and its association with temple functions
reminds one of the possible ritual origin of mathematics. However, the
difficulty of dating the rules is matched also by doubt concerning the in-
fluence they had on later Hindu mathematicians. Even more so than in
the case of China, there is a striking lack of continuity of tradition in the
mathematics of India; significant contributions are episodic events sepa-
rated by intervals without achievement.

THE SULVASUTRAS

Three versions, all in verse, of the work referred to as the Sulvasttras are
extant, the best-known being that bearing the name of Apastamba. In this
primitive account, dating back perhaps as far as the time of Pythagoras,
we find rules for the construction of right angles by means of triples of
cords the lengths of which form Pythagorean triads, such as 3, 4, and 5,
or 5, 12, and 13, or 8, 15, and 17, or 12, 35, and 37. However, all of these
triads are easily derived from the old Babylonian rule; hence, Mesopota-
mian influence in the Sulvasttras is not unlikely. Aspastamba knew that
the square on the diagonal of a rectangle is equal to the sum of the squares
on the two adjacent sides, but this form of the Pythagorean theorem also
may have been derived from Mesopotamia. Less easily explained is another
rule given by Apastamba—one that strongly resembles some of the geo-
metric algebra in Book II of Euclid’s Elements. To construct a square
equal in area to the rectangle ABCD (Fig. 12.2), lay off the shorter sides
on the longer, so that AF = AB = BE = CD, and draw HG bisecting
segments CE and DF; extend EF to K, GH to L, and AB to M so that
FK = HL = FH = AM, and draw LKM. Now construct a rectangle with
diagonal equal to LG and with shorter side HF. Then, the longer side of
this rectangle is the side of the square desired.

So conjectural are the origin and period of the Sulvasutras that we cannot
tell whether or not the rules are related to early Egyptian surveying or to
the later Greek problem of altar doubling. They are variously dated within
an interval of almost a thousand years stretching from the eighth century
B.C. to the second century of our era. Chronology in ancient cultures of
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the Far East is scarcely reliable when orthodox Hindu tradition boasts of
important astronomical work more than 2,000,000 years ago and when
calculations lead to billions of days from the beginning of the life of Brah-
man to about A.D. 400. References to arithmetic and geometric series in
Vedic literature that purport to go back to 2000 B.C. may be more reliable,
but there are no contemporary documents from India to confirm this. It
has been claimed also that the first recognition of incommensurables is to
be found in India during the Sulvastutra period, but such claims are not
well substantiated. The case for early Hindu awareness of incommensurable
magnitudes is rendered most unlikely by the lack of evidence that Indian
mathematicians of that period had come to grips with fundamental con-
cepts.

THE SIDDHANTAS

The period of the Sulvasutras, which closed in about the second century,
was followed by the age of the Siddhantas, or systems (of astronomy). The
establishment of the dynasty of King Gupta (290) marked the beginning
of a renaissance in Sanskrit culture, and the Siddhantas seem to have been
an outcome of this revival. Five different versions of the Siddhantas are
known by name, Paulisha Siddhanta, Stirya Siddhanta, Vasisishta Siddhanta,
Paitamaha Siddhanta, and Romanka Siddhanta. Of these, the Surya
Siddhanta (System of the Sun), written about 400, is the only one that
seems to be completely extant. According to the text, written in epic
stanzas, it is the work of Sturya, the Sun God. The main astronomical
doctrines evidently are Greek, but with the retention of considerable old
Hindu folklore. The Paulisha Siddhanta, which dates from about 380, was
summarized by the Hindu mathematician Varahamihira (fi. 505) and was
referred to frequently by the Arabic scholar Al-Biruni, who suggested a
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Greek origin or influence. Later writers report that the Siddhantas were
in substantial agreement on substance, only the phraseology varying; hence,
we can assume that the others, like the Surya Siddhanta, were compendia
of astronomy comprising cryptic rules in Sanskrit verse with little expla-
nation and without proof.

It is generally agreed that the Siddhantas stem from the late fourth or
the early fifth century, but there is sharp disagreement about the origin of
the knowledge that they contain. Hindu scholars insist on the originality
and independence of the authors, whereas Western writers are inclined to
see definite signs of Greek influence. It is not unlikely, for example, that
the Paulisha Siddhanta was derived in considerable measure from the work
of the astrologer Paul who lived at Alexandria shortly before the presumed
date of composition of the Siddhantas. (Al-Biruni, in fact, explicitly attri-
butes this Siddhanta to Paul of Alexandria.) This would account in a simple
manner for the obvious similarities between portions of the Siddhantas and
the trigonometry and astronomy of Ptolemy. The Paulisha Siddhanta, for
example, uses the value 3 177/1250 for =, which is in essential agreement
with the Ptolemaic sexagesimal value 3;8,30.

Even if the Hindus did acquire their knowledge of trigonometry from
the cosmopolitan Hellenism at Alexandria, the material in their hands took
on a significantly new form. Whereas the trigonometry of Ptolemy had
been based on the functional relationship between the chords of a circle
and the central angles they subtend, the writers of the Siddhantas converted
this to a study of the correspondence between half of a chord of a circle
and half of the angle subtended at the center by the whole chord. Thus
was born, apparently in India, the predecessor of the modern trigonometric
function known as the sine of an angle; and the introduction of the sine
function represents the chief contribution of the Siddhantas to the history
of mathematics. Although it is generally assumed that the change from the
whole chord to the half chord took place in India, it has been suggested
by Paul Tannery, the leading historian of science at the turn of this century,
that this transformation of trigonometry may have occurred at Alexandria
during the post-Ptolemaic period. Whether or not this suggestion has merit,
there is no doubt that it was through the Hindus, and not the Greeks, that
our use of the half chord has been derived; and our word ‘‘sine,” through
misadventure in translation (see below), has descended from the Hindu
name, jiva.

ARYABHATA

During the sixth century, shortly after the composition of the Siddhantas,
there lived two Hindu mathematicians who are known to have written
books on the same type of material. The older, and more important, of
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the two was Aryabhata, whose best-known work, written in 499 and entitled
Aryabhatiya, is a slim volume, written in verse, covering astronomy and
mathematics. The names of several Hindu mathematicians before this time
are known, but nothing of their work has been preserved beyond a few
fragments. In this respect, then, the position of the Aryabhatiya of Ary-
abhata in India is somewhat akin to that of the Elements of Euclid in
Greece some eight centuries before. Both are summaries of earlier devel-
opments, compiled by a single author. There are. however, more striking
differences than similarities between the two works. The Elements is a well-
ordered synthesis of pure mathematics with a high degree of abstraction,
a clear logical structure, and an obvious pedagogical inclination; the Ar-
yabhatiya is a brief descriptive work, in 123 metrical stanzas, intended to
supplement rules of calculation used in astronomy and mensurational math-
ematics, with no feeling for logic or deductive methodology. About a third
of the work is on ganitapada, or mathematics. This section opens with the
names of the powers of ten up to the tenth place and then proceeds to
give instructions for square and cube roots of integers. Rules of mensur-
ation follow, about half of which are erroneous. The area of a triangle is
correctly given as half the product of the base and altitude, but the volume
of a pyramid also is taken to be half the product of the base and altitude.
The area of a circle is found correctly as the product of the circumference
and half the diameter, but the volume of a sphere is incorrectly stated to
be the product of the area of a great circle and the square root of this area.
Again, in the calculation of areas of quadrilaterals, correct and incorrect
rules appear side by side. The area of a trapezoid is expressed as half the
sum of the parallel sides multiplied by the perpendicular between them;
but then follows the incomprehensible assertion that the area of any plane
figure is found by determining two sides and multiplying them. One state-
ment in the Aryabhatiya to which Hindu scholars have pointed with pride
is as follows:

Add 4 to 100, multiply by 8, and add 62.000. The result is approximately
the circumference of a circle of which the diameter is 20,000 [Clark 1930. p.
28].

Here we see the equivalent of 3.1416 for z, but it should be recalled that
this is essentially the value Ptolemy had used. The likelihood that Ary-
abhata here was influenced by Greek predecessors is strengthened by his
adoption of the myriad, 10,000, as the number of units in the radius.

A typical portion of the Aryabhatiya is that involving arithmetic pro-
gressions, which contains arbitrary rules for finding the sum of the terms
in a progression and for determining the number of terms in a progression
when given the first term, the common difference, and the sum of the
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terms. The first rule had long been known by earlier writers. The second
is a curiously complicated bit of exposition:

Multiply the sum of the progression by eight times the common difference,
add the square of the difference between twice the first term. and the common
difference, take the square root of this, subtract twice the first term, divide
by the common difference, add one, divide by two. The result will be the
number of terms.

Here, as elsewhere in the Aryabhatiya, no motivation or justification is
given for the rule. It was probably arrived at through a solution of a
quadratic equation, knowledge of which might have come from Mesopo-
tamia or Greece. Following some complicated problems on compound
interest (that is, geometric progressions), the author turns, in flowery
language, to the very elementary problem of finding the fourth term in a
simple proportion:

In the rule of three multiply the fruit by the desire and divide by the measure.
The result will be the fruit of the desire.

This, of course, is the familiar rule that if a/b = c/x, then x = bc/a, where
a is the ‘‘measure,” b the “‘fruit,” ¢ the *‘desire,” and x the “fruit of the
desire.” The work of Aryabhata is indeed a potpourri of the simple and
the complex, the correct and the incorrect. The Arabic scholar al-Biruni,
half a millennium later, characterized Hindu mathematics as a mixture of
common pebbles and costly crystals, a description quite appropriate to
Aryabhatiya.

HINDU NUMERALS

The second half of the Aryabhatiya is on the reckoning of time and on
spherical trigonometry; here we note an element that was to leave a per-
manent impress on the mathematics of later generations—the ‘decimal
place-value numeration. It is not known just how Aryabhata carried out
his calculations, but his phrase “‘from place to place each is ten times the
preceding” is an indication that the application of the principle of position
was in his mind. ‘‘Local value’” had been an essential part of Babylonian
numeration, and perhaps the Hindus were becoming aware of its appli-
cability to the decimal notation for integers in use in India. The devel-
opment of numerical notations in India seems to have followed about the
same pattern found in Greece. Inscriptions from the earliest period at
Mohenjo Daro show at first simple vertical strokes, arranged into groups,
but by the time of Asoka (third century B.C.) a system resembling the
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Herodianic was in use. In the newer scheme the repetitive principle was
continued, but new symbols of higher order were adopted for four, ten,
twenty, and one hundred. This so-called Karosthi script then gradually
gave way to another notation, known as the Brahmi characters, which
resembled the alphabetic cipherization in the Greek lonian system; one
wonders if it was only a coincidence that the change in India took place
shortly after the period when in Greece the Herodianic numerals were
displaced by the lonian.

From the Brahmi ciphered numerals to our present-day notation for
integers two short steps are needed. The first is a recognition that, through
the use of the positional principle, the ciphers for the first nine units can
serve also as the ciphers for the corresponding multiples of ten, or equally
well as ciphers for the corresponding multiples of any power of ten. This
recognition would make superfluous all of the Brahmi ciphers beyond the
first nine. It is not known when the reduction to nine ciphers occurred,
and it is likely that the transition to the more economical notation was
made only gradually. It appears from extant evidence that the change took
place in India, but the source of the inspiration for the change is uncertain.
Possibly the so-called Hindu numerals were the result of internal devel-
opment alone; perhaps they developed first along the western interface
between India and Persia, where remembrance of the Babylonian posi-
tional notation may have led to modification of the Brahmi system. It is
possible that the newer system arose along the eastern interface with China
where the pseudopositional rod numerals may have suggested the reduction
to nine ciphers. There is also a theory that this reduction may first have
been made at Alexandria within the Greek alphabetic system and that
subsequently the idea spread to India. During the later Alexandrian period
the earlier Greek habit of writing common fractions with the numerator
beneath the denominator was reversed, and it is this form that was adopted
by the Hindus, without the bar between the two. Unfortunately, the Hindus
did not apply the new numeration for integers to the realm of decimal
fractions; hence, the chief potential advantage of the change from Ionian
notation was lost. :

The earliest specific reference to the Hindu numerals is found in 662 in
the writings of Severus Sebokt, a Syrian bishop. After Justinian closed the
Athenian philosophical schools some of the scholars moved to Syria, where
they established centers of Greek learning. Sebokt evidently felt piqued
by the disdain for non-Greek learning expressed by some associates; hence,
he found it expedient to remind those who spoke Greek that “‘there are
also others who know something.” To illustrate his point he called attention
to the Hindus and their “‘subtle discoveries in astronomy,”” especially *‘their
valuable methods of calculation, and their computing that surpasses de-
scription. I wish only to say that this computation is done by means of nine
signs.” (Smith 1958, Vol. I, p. 167.) That the numerals had been in use
for some time is indicated by the fact that the first Indian occurrence is on
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a plate of the year 595, where the date 346 is written in decimal place value
notation.

THE SYMBOL FOR ZERO

1t should be remarked that the reference to nine symbols, rather than ten,
implies that the Hindus evidently had not yet taken the second step in the
transition to the modern system of numeration—the introduction of a
notation for a missing position, that is, a zero symbol. The history of
mathematics holds many anomalies, and not the least of these is the fact
that ‘““the earliest undoubted occurrence of a zero in India is in an inscription
of 876" (Smith 1958, Vol. II, p. 69)—that is, more than two centuries after
the first reference to the other nine numerals. It is not even established
that the number zero (as distinct from a symbol for an empty position)
arose in conjunction with the other nine Hindu numerals. It is quite possible
that zero originated in the Greek world, perhaps at Alexandria, and that
it was transmitted to India after the decimal positional system had been
established there.

The history of the zero placeholder in positional notation is further
complicated by the fact that the concept appeared independently, well
before the days of Columbus, in the western as well as the eastern hemi-
sphere. The Mayas of Yucatan, in their representation of time intervals
between dates in their calendar, used a place value numeration, generally
with twenty as the primary base and with five as an auxiliary (corresponding
to the Babylonian use of sixty and ten respectively). (See illustration.)
Units were represented by dots and fives by horizontal bars, so that the
number seventeen, for example, would appear as== [that is, as 3(5) + 2].
A vertical positional arrangement was used, with the larger units of time
above; hence, the notation = denoted 352 [that is, 17(20) + 12]. Because
the system was primarily for counting days within a calendar having 360
days in a year, the third position usually did not represent multiples of
(20)(20), as in a pure vigesimal system, but (18)(20). However, beyond
this point the base twenty again prevailed. Within this positional notation
the Mayas indicated missing positions through the use of a symbol,
appearing in variant forms, somgwhat resembling a half-open eye. In
their scheme, then, the notatlonedenoted 17(20-18:20) + 0(18-20) +
13(20) + 0. =

With the introduction, in the Hindu notation, of the tenth numeral, a
round goose egg for zero, the modern system of numeration for integers
was completed. Although the Medieval Hindu forms of the ten numerals
differ considerably from those in use today, the principles of the system
were established. The new numeration, which we generally call the Hindu
system, is merely a new combination of three basic principles, all of ancient
origin: (1) a decimal base; (2) a positional notation; and (3) a ciphered
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From the Dresden Codex, of the Maya, displaving numbers. The second column on the left,
from above down, displays the numbers 9, 9, 16, 0, 0, which stand for 9 x 144.000 + 9 X
7200 + 16 x 360 + 0 + 0 = 1,366,560. In the third column are the numerals 9. 9. 9, 16, 0,
representing 1,364,360. The original appears in black and red colors. (Taken from Morley
1915, p. 266.)

form for each of the ten numerals. Not one of these three was due originally
to the Hindus, but it presumably is due to them that the three were first
linked to form the modern system of numeration.

It may be well to say a word about the form of the Hindu symbol for
zero—which is also ours. It once was assumed that the round form stemmed
originally from the Greek letter omicron, initial letter in the word ouden,
or empty, but recent investigations seem to belie such an origin. Although
the symbol for an empty position in some of the extant versions of Ptolemy’s
tables of chords does seem to resemble an omicron. the early zero symbols
in Greek sexagesimal fractions are round forms variously embellished and
differing markedly from a simple goose egg. Moreover, when in the fif-
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teenth century in the Byzantine Empire a decimal positional system was
fashioned out of the old alphabetic numerals by dropping the last eighteen
letters and adding a zero symbol to the first nine letters, the zero sign took
forms quite unlike an omicron. Sometimes it resembled an inverted form
of our small letter h, sometimes it appeared as a dot.

HINDU TRIGONOMETRY

The development of our system of notation for integers was one of the
two most influential contributions of India to the history of mathematics.
The other was the introduction of an equivalent of the sine function in
trigonometry to replace the Greek tables of chords. The earliest tables of
the sine relationship that have survived are those in the Siddhantas, and
the Aryabhatiya. Here the sines of angles up to 90° are given for twenty-
four equal intervals of 33° each. In order to express arc length and sine
length in terms of the same unit, the radius was taken as 3438 and the
circumference as 360 - 60 = 21,600. This implies a value of 7 agreeing to
four significant figures with that of Ptolemy. In another connection Ary-
abhata used the value V10 for 7, which appeared so frequently in India
that it sometimes is known as the Hindu value.

For the sine of 33° the Siddhantas and the Aryabhatiya took the number
of units in the arc—that is, 60 X 3% or 225. In modern language, the sine
of a small angle is very nearly equal to the radian measure of the angle
(which is virtually what the Hindus were using). For further items in the
sine table the Hindus used a recursion formula which may be expressed
as follows. If the nth sine in the sequence from n = 1 ton = 24 is
designated as s,, and if the sum of the first n sines is S, thens,.; = s, +
s; — S,/s,. From this rule one easily deduces that sin 73° = 449, sin 113°
= 671, sin 15° = 890, and so on up to sin 90° = 3438—the values listed
in the table in the Siddhantas and the Aryabhatiya. Moreover, the table
also includes values for what we call the versed sine of the angle [that is,
1 — cos 0 in modern trigonometry or 3438 (1 — cos 0) in Hindu trigo-
nometry] from vers 33° = 7 to vers 90° = 3438. If we divide the items in
the table by 3438, the results are found to be in close agreement with the
corresponding values in modern trigonometric tables. (Smith 1958,
Vol. I1.)

HINDU MULTIPLICATION

Hindu trigonometry evidently was a useful and accurate tool in astronomy.
How the Hindus arrived at results such as the recursion formula is uncer-
tain, but it has been suggested that an intuitive approach to difference
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equations and interpolation may have prompted such rules. Indian math-
ematics frequently is described as ““intuitive,” in contrast to the stern ra-
tionalism of Greek geometry. Although in Hindu trigonometry there is
evidence of Greek influence, the Indians seem to have had no occasion to
borrow Greek geometry, concerned as they were with simple mensurational
rules. Of the classical geometric problems, or the study of curves other
than the circle, there is little evidence in India, and even the conic sections
seem to have been overlooked by the Hindus, as by the Chinese. Hindu
mathematicians were fascinated instead by work with numbers, whether
itinvolved the ordinary arithmetic operations or the solution of determinate
or indeterminate equations. Addition and multiplication were carried out
in India much as they are by us today, except that they seem at first to
have preferred to write numbers with the smaller units on the left, hence
to work from left to right, using small blackboards with white removable
paint or a board covered with sand or flour. Among the devices used for
multiplications was one that is known under various names: lattice mul-
tiplication, gelosia multiplication, or cell or grating or quadrilateral mul-
tiplication. The scheme behind this is readily recognized in two examples.
In the first example (Fig. 12.3) the number 456 is multiplied by 34. The
multiplicand has been written above the lattice and the multiplier appears
to the left, with the partial products occupying the square cells. Digits in
the diagonal rows are added, and the product 15,504 is read off at the
bottom and the right. To indicate that other arrangements are possible, a
second example is given in Fig. 12.4, in which the multiplicand 537 is placed
at the top, the multiplier 24 is on the right, and the product 12,888 appears
to the left and along the bottom. Still other modifications are easily devised.
In fundamental principle gelosia multiplication is, of course, the same as
our own, the cell arrangement being merely a convenient device for re-
lieving the mental concentration called for in “‘carrying over” from place
to place the tens arising in the partial products. The only “‘carrying”
required in lattice multiplication is in the final additions along the diag-
onals.

FIG. 123 FIG. 12.4
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Galley division, sixteenth century. From an unpublished manuscript of a Venetian monk. The
title of the work is ““‘Opus Arithmeticd D. Honorati veneti monachj coenobij S. Lauretig.”
From Mr. Plimpton’s library.

LONG DIVISION

It is not known when or where gelosia multiplication arose, but India seems
to be the most likely source. It was used there at least by the twelfth
century, and from India it seems to have been carried to China and Arabia.
From the Arabs it passed over to Italy in the fourteenth and fifteenth
centuries, where the name gelosia was attached to it because of the resem-
blance to gratings placed before windows in Venice and elsewhere. (The
current word jalousie seems to stem from the Italian gelosia and is used
for Venetian blinds in France, Germany, Holland, and Russia.) The Arabs
(and through them the later Europeans) appear to have adopted most of
their arithmetic devices from the Hindus, and so it is likely that the pattern
of long division known as the ‘“‘scratch method” or the “‘galley method”
(from its resemblance to a boat) came also from India. (See illustration.)
To illustrate the method, let it be required to divide 44,977 by 382. In Fig.
12.5 we give the modern method, in Fig. 12.6 the galley method. The latter
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parallels the former closely except that the dividend appears in the middle,
for subtractions are performed by canceling digits and placing differences
above rather than below the minuends. Hence, the remainder, 283, appears
above and to the right, rather than below.

117

382)44977
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The process in Fig. 12.6 is easy to follow if we note that the digits in a
given subtrahend, such as 2674, or in a given difference, such as 2957, are
not necessarily all in the same row and that subtrahends are written below
the middle and differences above the middle. Position in a column is sig-
nificant, but not position in a row. The determination of roots of numbers
probably followed a somewhat similar “galley” pattern, coupled in the
later years with the binomial theorem in ““Pascal triangle”” form; but Hindu
writers did not provide explanations for their calculations or proofs for
their statements. It is possible that Babylonian and Chinese influences
played a role in the problem of evolution or root extraction. It is often
said that the “‘proof by nines,” or the “casting out of nines,” is a Hindu
invention, but it appears that the Greeks knew earlier of this property,
without using it extensively, and that the method came into common use
only with the Arabs of the eleventh century.

BRAHMAGUPTA

The last few paragraphs may leave the unwarranted impression that there
was a uniformity in Hindu mathematics, for frequently we have localized
developments as merely “‘of Indian origin,” without specifying the period.
The trouble is that there is a high degree of uncertainty in Hindu chro-
nology. Material in the important Bakshali manuscript, containing an anon-
ymous arithmetic, is supposed by some to date from the third or fourth
century, by others from the sixth century, by others from the eighth or
ninth century or later; and there is a suggestion that it may not even be
of Hindu origin. We have placed the work of Aryabhata around the year
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500, but the date is doubtful since there were two mathematicians named
Aryabhata and we cannot with certainty ascribe results to our Aryabhata,
the elder. Hindu mathematics presents more historical problems than does
Greek mathematics, for Indian authors referred to predecessors infre-
quently, and they exhibited surprising independence in mathematical ap-
proach. Thus it is that Brahmagupta (fl. 628), who lived in Central India
somewhat more than a century after Aryabhata, has little in common with
his predecessor, who had lived in eastern India. Brahmagupta mentions
two values of 7—the “‘practical value” 3 and the “‘neat value” V10—but
not the more accurate value of Aryabhata; in the trigonometry of his best-
known work, the Brahmasphuta Siddhanta, he adopted a radius of 3270
instead of Aryabhata’s 3438. In one respect he does resemble his prede-
cessor—in the juxtaposition of good and bad results. He found the *‘gross”
area of an isosceles triangle by multiplying half the base by one of the
equal sides; for the scalene triangle with base fourteen and sides thirteen
and fifteen he found the ‘‘gross area’ by multiplying half the base by the
arithmetic mean of the other sides. In finding the “exact’ area he utilized
the Archimedean-Heronian formula. For the radius of the circle circum-
scribed about a triangle he gave the equivalent of the correct trigonometric
result 2R = a/sin A = b/sin B = c/sin C, but this, of course, is only a
reformulation of a result known to Ptolemy in the language of chords.
Perhaps the most beautiful result in Brahmagupta’s work is the generali-
zation of “Heron’s” formula in finding the area of a quadrilateral. This
formula,

K = V(s — a)s — b)(s — ¢)(s — d),

where a, b, ¢, d are the sides and s is the semiperimeter, still bears his
name; but the glory of his achievement is dimmed by failure to remark
that the formula is correct only in the case of a cyclic quadrilateral. The
correct formula for an arbitrary quadrilateral is

K = V(s — a)s — b)(s — ¢)(s — d) — abcd cos’ a,

where a is half the sum of two opposite angles. As a rule for the *‘gross”
area of a quadrilateral Brahmagupta gave the pre-Hellenic formula, the
product of the arithmetic means of the opposite sides. For the quadrilateral
with sides a = 25, b = 25, ¢ = 25, d = 39, for example, he found a
“gross” area of 800.

BRAHMAGUPTA’S FORMULA

Brahmagupta’s contributions to algebra are of a higher order than are his
rules of mensuration, for here we find general solutions of quadratic equa-
tions, including two roots even in cases in which one of them is negative.
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The systematized arithmetic of negative numbers and zero is, in fact, first
found in his work. The equivalents of rules on negative magnitudes were
known through the Greek geometric theorems on subtraction, such as
(a = b)(c — d) = ac + bd — ad — bc, but the Hindus converted these
into numerical rules on positive and negative numbers. Moreover, although
the Greeks had a concept of nothingness, they never interpreted this as a
number, as did the Hindus. However, here again Brahmagupta spoiled
matters somewhat by asserting that 0 + 0 = 0, and on the touchy matter
of a + 0, for a # 0, he did not commit himself:

Positive divided by positive, or negative by negative, is affirmative. Cipher
divided by cipher is naught. Positive divided by negative is negative. Negative
divided by affirmative is negative. Positive or negative divided by cipher is
a fraction with that for denominator [Colebrook 1817, Vol. I].

It should be mentioned also that the Hindus, unlike the Greeks, re-
garded irrational roots of numbers as numbers. This was of enormous help
in algebra, and Indian mathematicians have been much praised for taking
this step; but one must remember that the Hindu contribution in this case
was the result of logical innocence rather than of mathematical insight. We
have seen the lack of nice distinction on the part of Hindu mathematicians
between exact and inexact results, and it was only natural that they should
not have taken seriously the difference between commensurable and in-
commensurable magnitudes. For them there was no impediment to the
acceptance of irrational numbers, and later generations followed their lead
uncritically until in the nineteenth century mathematicians established the
real number system on a sound basis.

Indian mathematics was, as we have said, a mixture of good and bad.
But some of the good was superlatively good, and here Brahmagupta
deserves high praise. Hindu algebra is especially noteworthy in its devel-
opment of indeterminate analysis, to which Brahmagupta made several
contributions. For one thing, in his work we find a rule for the formation
of Pythagorean triads expressed in the form m, §(m?*/n — n), ¥(m*/n +
n); but this is only a modified form of the old Babylonian rule, with which
he may have become familiar. Brahmagupta’s area formula for a quadri-
lateral, mentioned above, was used by him in conjunction with the formulas

V(ab + cd)(ac + bd)/(ad + bc) and V/(ac + bd)(ad + bc)/(ab + cd)

for the diagonals to find quadrilaterals whose sides, diagonals, and areas
are all rational. Among them was the quadrilateral with sides a = 52,
b = 25,¢ = 39,d = 60, and diagonals 63 and 56. Brahmagupta gave the
“gross’ area as 1933%, despite the fact that his formula provides the exact
area, 1764 in this case.
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INDETERMINATE EQUATIONS

Like many of his countrymen, Brahmagupta evidently loved mathematics
for its own sake, for no practical-minded engineer would raise questions
such as those Brahmagupta asked about quadrilaterals. One admires his
mathematical attitude even more when one finds that apparently he was
the first one to give a general solution of the linear Diophantine equation
ax + by = c, where a, b, and c are integers. For this equation to have
integral solutions, the greatest common divisor of @ and b must divide c;
and Brahmagupta knew that if @ and b are relatively prime, all solutions
of the equation are given by x = p + mb,y = g — ma, where m is an
arbitrary integer. He suggested also the Diophantine quadratic equation
x? = 1 + py? named mistakenly for John Pell (1611-1685), but first
appearing in the Archimedean cattle problem. The Pell equation was solved
for some cases by Brahmagupta’s countryman Bhaskara (1114-ca. 1185).

It is greatly to the credit of Brahmagupta that he gave all integral so-
lutions of the linear Diophantine equation, whereas Diophantus himself
had been satisfied to give one particular solution of an indeterminate equa-
tion. Inasmuch as Brahmagupta used some of the same examples as Dio-
phantus, we see again the likelihood of Greck influence in India—or the
possibility that they both made use of a common source, possibly from
Babylonia. It is interesting to note also that the algebra of Brahmagupta,
like that of Diophantus, was syncopated. Addition was indicated by jux-
taposition, subtraction by placing a dot over the subtrahend, and division
by placing the divisor below the dividend, as in our fractional notation but
without the bar. The operations of multiplication and evolution (the taking
of roots), as well as unknown quantities, were represented by abbreviations
of appropriate words.

BHASKARA

India produced a number of later Medieval mathematicians, but we shall
describe the work of only one of these—Bhaskara (1114—ca. 1185), the
leading mathematician of the twelfth century. It was he who filled some
of the gaps in Brahmagupta’s work, as by giving a general solution of the
Pell equation and by considering the problem of division by zero. Aristotle
once had remarked that there is no ratio by which a number such as four
exceeds the number zero; but the arithmetic of zero had not been part of
Greek mathematics, and Brahmagupta had been noncommittal on the
division of a number other than zero by the number zero. It is, therefore,
in Bhaskara’s Vija-Ganita that we find the first statement that such a quo-
tient is infinite.
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Statement: Dividend 3. Divisor 0. Quotient the fraction 3/0. This fraction
of which the denominator is cipher. is termed an infinite quantity. In this
quantity consisting of that which has cipher for a divisor, there is no alteration,
though many be inserted or extracted: as no change takes place in the infinite
and immutable God.

This statement sounds promising, but lack of clear understanding of the
situation is suggested by Bhaskara's further assertion that a/0 - 0 = a.
Bhaskara was the last significant Medieval mathematician from India,
and his work represents the culmination of earlier Hindu contributions. In
his best-known treatise, the Lilavati, he compiled problems from Brah-
magupta and others, adding new observations of his own. The very title
of this book may be taken to indicate the uneven quality of Hindu thought.
for the name in the title is that of Bhaskara’s daughter who, according to
legend, lost the opportunity to marry because of her father’s confidence
in his astrological predictions. Bhaskara had calculated that his daughter
might propitiously marry only at one particular hour on a given day. On
what was to have been her wedding day the eager girl was bending over
the water clock, as the hour for the marriage approached, when a pearl
from her headdress fell, quite unnoticed, and stopped the outflow of water.
Before the mishap was noted, the propitious hour had passed. To console
the unhappy girl, the father gave her name to the book we are describing.

THE LILAVATI

The Lilavati, like the Vija-Ganita, contains numerous problems dealing
with favorite Hindu topics: linear and quadratic equations, both deter-
minate and indeterminate, simple mensuration, arithmetic and geometric
progressions, surds, Pythagorean triads, and others. The **broken bamboo™
problem, popular in China (and included also by Brahmagupta), appears
in the following form: If a bamboo 32 cubits high is broken by the wind
so that the tip meets the ground 16 cubits from the base. at what height
above the ground was it broken? Also making use of the Pythagorean
theorem is the following problem: A peacock is perched atop a pillar at
the base of which is a snake’s hole. Seeing the snake at a distance from
the pillar which is three times the height of the pillar, the peacock pounced
upon the snake in a straight line before it could reach its hole. If the
peacock and the snake had gone equal distances, how many cubits from
the hole did they meet?

These two problems illustrate well the heterogeneous nature of the
Lilavati, for despite their apparent similarity and the fact that only a single
answer is required, one of the problems is determinate and the other is
indeterminate. In treating of the circle and the sphere the Lilavati fails
also to distinguish between exact and approximate statements. The area
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of the circle is correctly given as one quarter the circumference multiplied
by the diameter and the volume of the sphere as one sixth the product of
the surface area and the diameter, but for the ratio of circumference to
diameter in a circle Bhaskara suggests either 3927 to 1250 or the “‘gross”
value 22/7. The former is equivalent to the ratio mentioned, but not used,
by Aryabhata. There is no hint in Bhaskara or other Hindu writers that
they were aware that all ratios that had been proposed were approximations
only. However, Bhaskara severely condemns his predecessors for using
the formulas of Brahmagupta for the area and diagonals of a general
quadrilateral, because he saw that a quadrilateral is not uniquely deter-
mined by its sides. Evidently he did not realize that the formulas are indeed
exact for all cyclic quadrilaterals.

Many of Bhaskara’s problems in the Lilavati and the Vija-Ganita evi-
dently were derived from earlier Hindu sources; hence, it is no surprise to
note that the author is at his best in dealing with indeterminate analysis.
In connection with the Pell equation, x> = 1 + py?, proposed earlier by
Brahmagupta, Bhaskara gave particular solutions for the five cases p =
8,11, 32, 61, and 67. For x> = 1 + 61y, for example, he gave the solution
x = 1,776,319,049 and y = 22,615,390. This is an impressive feat in cal-
culation, and its verification alone will tax the efforts of the reader.

Bhaskara’s books are replete with other instances of Diophantine prob-
lems.

RAMANUJAN

Bhaskara died toward the end of the twelfth century, and for several
hundred years there were few mathematicians in India of comparable stat-
ure. It is of interest to note, nevertheless, that Srinivasa Ramanujan (1887-
1920), the twentieth-century Hindu genius, had the same uncanny manip-
ulative ability in arithmetic and algebra that is found in Bhaskara. The
British mathematician G. H. Hardy once visited Ramanujan in a hospital
at Putney and mentioned to his ill friend that he had arrived in a taxi with
the dull number 1729, whereupon Ramanujan without hesitation pointed
out that this number is indeed interesting, for it is the least integer that
can be represented in two different ways as the sum of two cubes: 17 +
123 = 1729 = 9% + 10°. In Ramanujan’s work we note also the disorganized
character, the strength of intuitive reasoning, and the disregard for ge-
ometry that stood out so clearly in his predecessors. Although in Rama-
nujan these characteristics had perhaps developed largely because he was
self-taught, we cannot help but see how strikingly different the development
of mathematics in India has been from that in Greece. Even when the
Hindus borrowed from their neighbors, they fashioned the material in their
own peculiar manner. Although in attitude and interests they had more in






The Arabic Hegemony

Ah, but my Computations, People say, Have squared the Year to human
Compass, eh? If so, by striking from the Calendar Unborn To-morrow. and dead
Yesterday.

Omar Khayyam (Rubaiyat in the FitzGerald version)

ARABIC CONQUESTS

At the time that Brahmagupta was writing, the Sabean Empire of Arabia
Felix had fallen and the peninsula was in a severe crisis. It was inhabited
largely by desert nomads, known as Bedouins, who could neither read nor
write; among them was the prophet Mohammed, born at Mecca in about
570. During his journeys Mohammed came in contact with Jews and Chris-
tians, and the amalgam of religious feelings that were raised in his mind
led him to regard himself as the apostle of God sent to lead his people.
For some ten years he preached at Mecca, but in 622, faced by a plot on
his life, he accepted an invitation to Medina. This “flight,”” known as the
Hegira, marked the beginning of the Mohammedan era—one that was to
exert a strong influence on the development of mathematics. Mohammed
now became a military as well as a religious leader. Ten years later he had
established a Mohammedan state, with center at Mecca, within which Jews
and Christians, being also monotheistic, were afforded protection and free-
dom of worship. In 632, while planning to move against the Byzantine
Empire, Mohammed died at Medina. His sudden death in no way impeded
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the expansion of the Islamic state, for his followers overran neighboring
territories with astonishing rapidity. Within a few years Damascus and
Jerusalem and much of the Mesopotamian Valley fell to the conquerors;
by 641 Alexandria, which for many years had been the mathematical center
of the world, was captured. There is a legend that the leader of the vic-
torious troops, having asked what was to be done with the books in the
library, was told to burn them; for if they were in agreement with the
Koran they were superfluous, if they were in disagreement they were worse
than superfluous. However, stories that the baths were long heated by the
fires of burning books undoubtedly are exaggerated. Following depreda-
tions by earlier military and religious fanatics, and long ages of sheer
neglect, there probably were relatively few books in the library that once
had been the greatest in the world.

For more than a century the Arab conquerors fought among themselves
and with their enemies, until by about 750 the warlike spirit subsided. By
this time a schism had arisen between the western Arabs in Morocco and
the eastern Arabs who, under the caliph al-Mansur, had established a new
capital at Baghdad, a city that was shortly to become the new center for
mathematics. However, the caliph at Baghdad could not command the
allegiance even of all Moslems in the eastern half of his empire, although
his name appeared on coins of the realm and was included in the prayers
of his ““subjects.” The unity of the Arab world, in other words, was more
economic and religious than it was political. Arabic was not necessarily
the common language, although it was a kind of lingua franca for intel-
lectuals. Hence, it might be more appropriate to speak of the culture as
Islamic rather than Arabic, although we shall use the terms more or less
interchangeably.

During the first century of the Arabic conquests there had been political
and intellectual confusion, and possibly this accounts for the difficulty in
localizing the origin of the modern system of numeration. The Arabs were
at first without intellectual interest, and they had little culture, beyond a
language, to impose on the peoples they conquered. In this respect we see
a repetition of the situation when Rome conquered Greece, of which it
was said that, in a cultural sense, captive Greece took captive the captor
Rome. By about 750 the Arabs were ready to have history repeat itself,
for the conquerors became eager to absorb the learning of the civilizations
they had overrun. By 766 we learn that an astronomical-mathematical
work, known to the Arabs as the Sindhind, was brought to Baghdad from
India. It is generally thought that this was the Brahmasphuta Siddhanta,
although it may have been the Surya Siddhanta. A few years later, perhaps
about 775, this Siddhanta was translated into Arabic, and it was not long
afterward (ca. 780) that Ptolemy’s astrological Tetrabiblos was translated
into Arabic from the Greek. Alchemy and astrology were among the first
studies to appeal to the dawning intellectual interests of the conquerors.



THE HOUSE OF WISDOM 227

The *“‘Arabic miracle” lies not so much in the rapidity with which the
political empire rose as in the alacrity with which, their tastes once aroused,
the Arabs absorbed the learning of their neighbors.

THE HOUSE OF WISDOM

The first century of the Muslim empire had been devoid of scientific
achievement. This period (from about 650 to 750) had been, in fact, perhaps
the nadir in the development of mathematics, for the Arabs had not yet
achieved intellectual drive, and concern for learning in other parts of the
world had pretty much faded. Had it not been for the sudden cultural
awakening in Islam during the second half of the eighth century, consid-
erably more of ancient science and mathematics would have been lost. To
Baghdad at that time were called scholars from Syria, Iran, and Meso-
potamia, including Jews and Nestorian Christians; under three great Ab-
basid patrons of learning—al-Mansur, Haroun al-Raschid, and al-Ma-
mun—the city became a new Alexandria. During the reign of the second
of these caliphs, familiar to us today through the Arabian Nights, part of
Euclid was translated. It was during the caliphate of al-Mamun (809-833),
however, that the Arabs fully indulged their passion for translation. The
caliph is said to have had a dream in which Aristotle appeared, and as a
consequence al-Mamun determined to have Arabic versions made of all
the Greek works he could lay his hands on, including Ptolemy’s Almagest
and a complete version of Euclid’s Elements. From the Byzantine Empire,
with which the Arabs maintained an uneasy peace, Greek manuscripts
were obtained through treaties.

Al-Mamun established at Baghdad a “House of Wisdom” (Bait al-hikma)
comparable to the ancient Museum at Alexandria. Among the faculty
members was a mathematician and astronomer, Mohammed ibn-Musa al-
Khwarizmi, whose name, like that of Euclid, later was to become a house-
hold word in Western Europe. This scholar, who died sometime before
850, wrote more than half a dozen astronomical and mathematical works,
of which the earliest were probably based on the Sindhind derived from
India. Besides astronomical tables, and treatises on the astrolabe and the
sundial, al-Khwarizmi wrote two books on arithmetic and algebra which
played very important roles in the history of mathematics. One of these
survives only in a unique copy of a Latin translation with the title De
numero indorum (Concerning the Hindu Art of Reckoning), the original
Arabic version having since been lost. In this work, based presumably on
an Arabic translation of Brahmagupta, al-Khwarizmi gave so full an ac-
count of the Hindu numerals that he probably is responsible for the wide-
spread but false impression that our system of numeration is Arabic in
origin. Al-Khwarizmi made no claim to originality in connection with the
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system, the Hindu source of which he assumed as a matter of course; but
when subsequently Latin translations of his work appeared in Europe,
careless readers began to attribute not only the book but also the numer-
ation to the author. The new notation came to be known as that of al-
Khwarizmi, or more carelessly, algorismi; ultimately the scheme of nu-
meration making use of the Hindu numerals came to be called simply
algorism or algorithm, a word that, originally derived from the name al-
Khwarizmi, now means, more generally, any peculiar rule of procedure or
operation—such as the Euclidean method for finding the greatest common
divisor.

AL-JABR

Through his arithmetic, al-Khwarizmi’s name has become a common Eng-
lish word; through the title of his most important book, Al-jabr wa’l
mugqabalah, he has supplied us with an even more popular household term.
From this title has come the word algebra, for it is from this book that
Europe later learned the branch of mathematics bearing this name. Dio-
phantus sometimes is called “‘the father of algebra,” but this title more
appropriately belongs to al-Khwarizmi. It is true that in two respects the
work of al-Khwarizmi represented a retrogression from that of Diophantus.
First, it ison a far more elementary level than that found in the Diophantine
problems and, second, the algebra of al-Khwarizmi is thoroughly rhetorical,
with none of the syncopation found in the Greek Arithmetica or in Brah-
magupta’s work. Even numbers were written out in words rather than
symbols! It is quite unlikely that al-Khwarizmi knew of the work of Dio-
phantus, but he must have been familiar with at least the astronomical and
computational portions of Brahmagupta; yet neither al-Khwarizmi nor other
Arabic scholars made use of syncopation or of negative numbers. Never-
theless, the Al-jabr comes closer to the elementary algebra of today than
the works of either Diophantus or Brahmagupta, for the book is not con-
cerned with difficult problems in indeterminate analysis but with a straight-
forward and elementary exposition of the solution of equations, especially
of second degree. The Arabs in general loved a good clear argument from
premise to conclusion, as well as systematic organization—respects in which
neither Diophantus nor the Hindus excelled. The Hindus were strong in
association and analogy, in intuition and an aesthetic and imaginative flair,
whereas the Arabs were more practical-minded and down-to-earth in their
approach to mathematics.

The Al-jabr has come down to us in two versions, Latin and Arabic,
but in the Latin translation, Liber algebrae et almucabala, a considerable
portion of the Arabic draft is missing. The Latin, for example, has no
preface, perhaps because the author’s preface in Arabic gave fulsome praise
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to Mohammed, the prophet, and to al-Mamun, *‘the Commander of the
Faithful.”” Al-Khwarizmi wrote that the latter had encouraged him to

. . . compose a short work on Calculating by (the rules of) Completion and
Reduction. confining it to what is easiest and most useful in arithmetic, such
as men constantly require in cases of inheritance, legacies, partitions, law-
suits, and trade, and in all their dealings with one another, or where the
measuring of lands, the digging of canals, geometrical computation, and other
objects of various sorts and kinds are concerned [Karpinski. 1915, p. 96].

It is not certain just what the terms al-jabr and mugabalah mean, but
the usual interpretation is similar to that implied in the translation above.
The word al-jabr presumably meant something like *‘restoration” or **com-
pletion” and seems to refer to the transposition of subtracted terms to the
other side of an equation; the word mugqabalah is said to refer to “‘reduc-
tion” or ‘“‘balancing”—that is, the cancellation of like terms on opposite
sides of the equation. Arabic influence in Spain long after the time of al-
Khwarizmi is found in Don Quixote, where the word algebrista is used for
a bone-setter, that is, a ‘‘restorer.”

QUADRATIC EQUATIONS

The Latin translation of al-Khwarizmi's Algebra opens with a brief intro-
ductory statement of the positional principle for numbers and then proceeds
to the solution, in six short chapters, of the six types of equations made
up of the three kinds of quantities: roots, squares, and numbers (that is,
x, x*, and numbers). Chapter I, in three short paragraphs, covers the
case of squares equal to roots, expressed in modern notation as x* = 5Sx,
x*/3 = 4x, and 5x* = 10x, giving the answers x = 5,x = 12, and x = 2
respectively. (The root x = 0 was not recognized.) Chapter II covers the
case of squares equal to numbers, and Chapter III solves the case of roots
equal to numbers, again with three illustrations per chapter to cover the
cases in which the coefficient of the variable term is equal to, more than,
or less than one. Chapters IV, V, and VI are more interesting, for they
cover in turn the three classical cases of three-term quadratic equations:
(1) squares and roots equal to numbers, (2) squares and numbers equal to
roots, and (3) roots and numbers equal to squares. The solutions are ‘‘cook-
book” rules for ‘‘completing the square” applied to specific instances.
Chapter 1V, for example, includes the three illustrations x> + 10x = 39,
2x? + 10x = 48, and x> + 5x = 28. In each case only the positive answer
is given. In Chapter V only a single example, x* + 21 = 10x, is used; but
both roots, 3 and 7, are given, corresponding to the rule x = 5 ¥
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V25 — 21. Al-Khwarizmi here calls attention to the fact that what we
designate as the discriminant must be positive:

You ought to understand also that when you take the half of the roots in
this form of equation and then multiply the half by itself; if that which
proceeds or results from the multiplication is less than the units above-
mentioned as accompanying the square, you have an equation.

In Chapter VI the author again uses only a single example, 3x + 4 =
x?, for whenever the coefficient of x* is not unity, the author reminds one
to divide first by this coefficient (as in Chapter IV). Once more the steps
in completing the square are meticulously indicated, without justification,
the procedure being equivalent to the solution x = 13 + V(1) + 4.
Again only one root is given, for the other is negative.

THE FATHER OF ALGEBRA

The six cases of equations given above exhaust all possibilities for linear
and quadratic equations having a positive root. So systematic and exhaus-
tive was al-Khwarizmi’s exposition that his readers must have had little
difficulty in mastering the solutions. In this sense, then, al-Khwarizmi is
entitled to be known as “‘the father of algebra.” However, no branch of
mathematics springs up fully grown, and we cannot help but ask where the
inspiration for Arabic algebra came from. To this question no categorical
answer can be given; but the arbitrariness of the rules and the strictly
numerical form of the six chapters remind us of ancient Babylonian and
medieval Indian mathematics. The exclusion of indeterminate analysis, a
favorite Hindu topic, and the avoidance of any syncopation, such as is
found in Brahmagupta, might suggest Mesopotamia as more likely a source
than India. As we read beyond the sixth chapter, however, an entirely new
light is thrown on the question. Al-Khwarizmi continued:

We have said enough so far as numbers are concerned, about the six types
of equations. Now, however, it is necessary that we should demonstrate
geometrically the truth of the same problems which we have explained in
numbers.

The ring in this passage is obviously Greek rather than Babylonian or
Indian. There are, therefore, three main schools of thought on the origin
of Arabic algebra: one emphasizes Hindu influences, another stresses the
Mesopotamian, or Syriac-Persian, tradition, and the third points to Greek
inspiration. The truth is probably approached if we combine the three
theories. The philosophers of Islam admired Aristotle to the point of aping
him, but eclectic Mohammedan mathematicians seem to have chosen ap-
propriate elements from various sources.
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GEOMETRIC FOUNDATION

The Algebra of al-Khwarizmi betrays unmistakable Hellenic elements, but
the first geometric demonstrations have little in common with classical
Greek mathematics. For the equation x* + 10x = 39 al-Khwarizmi drew
a square ab to represent x*, and on the four sides of this square he placed
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rectangles c, d, e, and f, each 23 units wide. To complete the larger square,

one must add the four small corner squares (dotted in Fig. 13.1), each of
which has an area of 61 units. Hence, to “complete the square”” we add 4
times 61 units or 25 units, thus obtaining a square of total area 39 +

25 = 64 units (as is clear from the right-hand side of the given equation).

The side of the large square must, therefore, be 8 units, from which we
subtract 2 times 23, or 5, units to find that x = 3, thus proving that the
answer found in Chapter IV is correct.

a t g
h b e n d
c m 1
FIG. 13.2

The geometric proofs for Chapters V and VI are somewhat more in-
volved. For the equation x> + 21 = 10x the author draws the square ab
to represent x? and the rectangle bg to represent 21 units. Then, the large
rectangle, comprising the square and the rectangle bg, must have an area
equal to 10x, so that the side ag or hd must be 10 units. If, then, one

bisects hd at e, draws et perpendicular to hd, extends te to ¢ so that ¢ =
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tg. and completes the squares tclg and cmne (Fig. 13.2), the area tb is equal
to area md. But square ¢/ is 25, and the gnomon tenmlg is 21 (since the
gnomon is equal to the rectangle bg). Hence, the square nc is 4, and its
side ec is 2. Inasmuch as ec = be, and since he = S5, we see that x =
hb =5 — 2 or 3, which proves that the arithmetic solution given in Chapter
V is correct. A modified diagram is given for the root x = 5 + 2 = 7,
and an analogous type of figure is used to justify geometrically the result
found algebraically in Chapter VI.

ALGEBRAIC PROBLEMS

A comparison of Fig. 13.2, taken from al-Khwarizmi’s Algebra, with dia-
grams found in the Elements of Euclid in connection with Greek geometric
algebra (such as our Fig. 7.7) leads to the inevitable conclusion that Arabic
algebra had much in common with Greek geometry; yet the first, or arith-
metic, part of al-Khwarizmi’s Algebra obviously is alien to Greek thought.
What apparently happened in Baghdad was just what one would expect
in a cosmopolitan intellectual center. Arabic scholars had great admiration
for Greek astronomy, mathematics, medicine, and philosophy—subjects
that they mastered as best they could. However, they could scarcely help
but notice that, as the Nestorian Bishop Sebokt had observed when in 662
he first called attention to the nine marvelous digits of the Hindus, “there
are also others who know something.” It is probable that al-Khwarizmi
typified the Arabic eclecticism that will so frequently be observed in other
cases. His system of numeration most likely came from India, his systematic
algebraic solution of equations may have been a development from Mes-
opotamia, and the logical geometric framework for his solutions palpably
was derived from Greece.

The Algebra of al-Khwarizmi contains more than the solution of equa-
tions, material that occupies about the first half. There are, for example,
rules for operations on binomial expressions, including products such as
(10 + 2)(10 — 1) and (10 + x)(10 — x). Although the Arabs rejected
negative roots and absolute negative magnitudes, they were familiar with
the rules governing what are now known as signed numbers. There are
also alternative geometric proofs of some of the author’s six cases of equa-
tions. Finally, the Algebra includes a wide variety of problems illustrating
the six chapters or cases. As an illustration of the fifth chapter, for example,
al-Khwarizmi asks for the division of ten into two parts in such a way that
“the sum of the products obtained by multiplying each part by itself is
equal to fifty eight.” The extant Arabic version, unlike the Latin, includes
also an extended discussion of inheritance problems, such as the following:

A man dies, leaving two sons behind him, and bequeathing one-third of his
capital to a stranger. He leaves ten dirhems of property and a claim of ten
dirhems upon one of the sons.




A PROBLEM FROM HERON 233

The answer is not what one would expect, for the stranger gets only 5
dirhems. According to Arabic law, a son who owes to the estate of his
father an amount greater than the son’s portion of the estate retains the
whole sum that he owes. one part being regarded as his share of the estate
and the remainder as a gift from his father. To some extent it seems to
have been the complicated nature of laws governing inheritance that en-
couraged the study of algebra in Arabia.

A PROBLEM FROM HERON

A few of al-Khwarizmi's problems give rather clear evidence of Arabic
dependence on the Babylonian-Heronian stream of mathematics. One of
them presumably was taken directly from Heron, for the figure and di-
mensions are the same. Within an isosceles triangle having sides 10 yards
and base 12 yards (Fig. 13.3) a square is to be inscribed, and the side of
this square is called for. The author of the Algebra first finds through the
Pythagorean theorem that the altitude of the triangle is 8 yards, so that
the area of the triangle is 48 square yards. Calling the side of the square
the *‘thing,” he notes that the square of the *"thing" will be found by taking
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from the area of the large triangle the areas of the three small triangles
lying outside the square but inside the large triangle. The sum of the areas
of the two lower small triangles he knows to be the product of the *“thing™
by six less half the ‘“‘thing”’; and the area of the upper small triangle is the
product of eight less the *‘thing’ by half the “‘thing.” Hence. he is led to
the obvious conclusion that the “thing’ is 45 yards—the side of the square.
The chief difference between the form of this problem in Heron and that
of al-Khwarizmi is that Heron had expressed the answer in terms of unit
fractions as 44 & 1. The similarities are so much more pronounced than
the differences that we may take this case as confirmation of the general
axiom that continuity in the history of mathematics is the rule rather than
the exception. Where a discontinuity seems to arise, we should first consider
the possibility that the apparent saltus may be explained by the loss of
intervening documents.
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‘ABD AL-HAMID IBN-TURK

The Algebra of al-Khwarizmi usually is regarded as the first work on the
subject, but a recent publication in Turkey raises some question about this.
A manuscript of a work by ‘Abd-al-Hamid ibn-Turk. entitled *‘Logical
Necessities in Mixed Equations,” was part of a book on Al-jabr wa'l
mugqabalah which was evidently very much the same as that by al-Khwar-
izmi and was published at about the same time—possibly even earlier. The
surviving chapters on “‘Logical Necessities™ give precisely the same type
of geometric demonstration as al-Khwarizmi’s Algebra and in one case the
same illustrative example x* + 21 = 10x. In one respect ‘Abd-al-Hamid’s
exposition is more thorough than that of al-Khwarizmi for he gives geo-
metric figures to prove that if the discriminant is negative, a quadratic
equation has no solution. Similarities in the work of the two men and the
systematic organization found in them seem to indicate that algebra in their
day was not so recent a development as has usually been assumed. When
textbooks with a conventional and well-ordered exposition appear simul-
taneously, a subject is likely to be considerably beyond the formative stage.
Successors of al-Khwarizmi were able to say, once a problem had been
reduced to the form of an equation, “Operate according to the rules of
algebra and almucabala.”” In any case, the survival of al-Khwarizmi's A/-
gebra can be taken to indicate that it was one of the better textbooks typical
of Arabic algebra of the time. It was to algebra what Euclid’s Elements
was to geometry—the best elementary exposition available until modern
times—but al-Khwarizmi’s work had a serious deficiency that had to be
removed before it could serve its purpose effectively in the modern world:
a symbolic notation had to be developed to replace the rhetorical form.
This step the Arabs never took, except for the replacement of number
words by number signs.

THABIT IBN-QURRA

The ninth century was a glorious one in Arabic mathematics, for it produced
not only al-Khwarizmi in the first half of the century, but also Thabit ibn-
Qurra (826-901) in the second half. If al-Khwarizmi resembled Euclid as
an “elementator,” then Thabit is the Arabic equivalent of Pappus. the
commentator on higher mathematics. Thabit was the founder of a school
of translators, especially from Greek and Syriac, and to him we owe an
immense debt for translations into Arabic of works by Euclid, Archimedes,
Apollonius, Ptolemy, and Eutocius. (Note the omission of Diophantus and
Pappus. authors who evidently were not at first known in Arabia, although
the Diophantine Arithmetica became familiar before the end of the tenth
century.) Had it not been for his efforts, the number of Greek mathematical
works extant today would be smaller. For example, we should have only
the first four. rather than the first seven. books of Apollonius’ Conics.
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Moreover, Thabit had so thoroughly mastered the content of the classics
he translated that he suggested modifications and generalizations. To him
is due a remarkable formula for amicable numbers: If p, ¢, and
r are prime numbers, and if they are of the formp = 3-2" - 1,9 =
3-2! ~1,andr = 92! — 1, then 2"pq and 2"r are amicable
numbers, for each is equal to the sum of the proper divisors of the other.
Like Pappus, he also gave a generalization of the Pythagorean theorem
that is applicable to all triangles, whether right or scalene. If from vertex
A of any triangle ABC one draws lines intersecting BC in points B’ and
C' such that angles AB’B and AC'C are each equal to angle A (Fig. 13.4),
then AB? + AC? = BC(BB' + CC'). Thabit gave no proof of the
theorem, but this is easily supplied through theorems on similar triangles.
In fact, the theorem provides a beautiful generalization of the pinwheel
diagram used by Euclid in the proof of the Pythagorean theorem. If, for
example, angle A is obtuse, then the square on side AB is equal to the
rectangle BB’'B"B", and the square on AC is equal to the rectangle CC'C"C”,
where BB” = CC" = BC = B"C". That is, the sum of the squares on AB
and AC is the square on BC less the rectangle B'C'B”C". If angle A is
acute, then the positions of B’ and C’ are reversed with respect to AP,
where P is the projection of A on BC, and in this case the sum of the
squares on AB and AC is equal to the square on BC increased by the
rectangle B'C'B"C". If A is a right angle, then B’ and C’ coincide with
P, and for this case Thabit’s theorem becomes the Pythagorean theorem.
(Thabit did not draw the dotted lines that are shown in Fig. 13.4, but he
did consider the several cases.)

Alternative proofs of the Pythagorean theorem, works on parabolic and
paraboloidal segments, a discussion of magic squares, angle trisections,
and new astronomical theories are among Thabit’s further contributions
to scholarship. The Arabs sometimes are described as servile imitators of
the Greeks in science and philosophy, but such accusations are exagger-
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ated. Thabit, for instance, boldly added a ninth sphere to the eight pre-
viously assumed in simplified versions of Aristotelian—Ptolemaic astron-
omy; and instead of the Hipparchan precession of the equinoxes in one
direction or sense only, Thabit proposed a ‘“‘trepidation of the equinoxes”
in a reciprocating type of motion. Such questioning of points in Greek
astronomy may well have been a factor in paving the way for the revolution
in astronomy initiated by Copernicus.

ARABIC NUMERALS

We have mentioned several times that the Arabs were quick to absorb
learning from the neighbors they conquered; it should be noted also that
within the confines of the Arabic empire lived peoples of very varied ethnic
backgrounds: Syrian, Greek, Egyptian, Persian, Turkish, and many others.
Most of them shared a common faith, Islam, although Christians and Jews
were tolerated; very many shared a common language, Arabic. although
Greek and Hebrew were sometimes used. Nevertheless, we should not
expect a high degree of uniformity in learning. There was considerable
factionalism at all times, and it sometimes erupted into conflict. Thabit
himself lived in a pro-Greek community, which opposed him for his pro-
Arabic sympathies. In Arabic mathematics such cultural differences oc-
casionally became quite apparent, as in the works of the tenth- and elev-
enth-century scholars Abu’l-Wefa (940-998) and al-Karkhi (or al-Karagi,
ca. 1029). In some of their works they used the Hindu numerals, which
had reached Arabia through the astronomical Sindhind; at other times they
adopted the Greek alphabetic pattern of numeration (with, of course,
Arabic equivalents for the Greek letters). Ultimately the superior Hindu
numerals won out, but even within the circle of those who used the Indian
numeration, the forms of the numerals differed considerably. Variations
had obviously been prevalent in India, but in Arabia variants were so
striking that there are theories suggesting entirely different origins for forms
used in the eastern and western halves of the Arabic world. Perhaps the
numerals of the Saracens in the east came directly from India, while the
numerals of the Moors in the west were derived from Greek or Roman
forms. More likely the variants were the result of gradual changes taking
place in space and time, for the Arabic numerals of today are strikingly
different from the modern Devanagari (or “‘divine’’) numerals still in use
in India. After all, it is the principles within the system of numeration that
are important, and not the specific forms of the numerals. Our numerals
often are known as Arabic, despite the fact that they bear little resemblance
to those now in use in Egypt, Iraq, Syria, Arabia, Iran, and other lands
within the Islamic culture—that is, the forms I**€Q9vA3-. We call our
numerals Arabic because the principles in the two systems are the same
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and because our forms may have been derived from the Arabic. However,
the principles behind the Arabic numerals presumably were derived from
India; hence, it is better to call ours the Hindu or the Hindu-Arabic system
(see illustration).

ARABIC TRIGONOMETRY

As in numeration there was competition between systems of Greek and
Indian origin, so also in astronomical calculations there were at first in
Arabia two types of trigonometry—the Greek geometry of chords, as found
in the Almagest, and the Hindu tables of sines, as derived through the
Sindhind. Here, too, the conflict resulted in triumph for the Hindu aspect,
and most Arabic trigonometry ultimately was built on the sine function.
It was, in fact, again through the Arabs, rather than directly from the
Hindus, that this trigonometry of the sine reached Europe. The astronomy
of al-Battani (ca. 850-929), known in Europe as Albategnius, served as
the primary vehicle of transmission, although Thabit ibn-Qurra seems to
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have used sines somewhat earlier. In a book entitled On the Motion of
the Stars Albategnius gave formulas. such as b = [a sin (90° — A)]/sin A
(see Fig. 13.5), in which the sine and versed sine functions appear. By the
time of Abu’l-Wefa, a century later, the tangent function was fairly well
known, so that one could express the above relationship more simply as
a = b tan A. Here one is in more immediate touch with modern trigo-
nometry, for the Arabic tangent function, unlike the Hindu sine function,
generally was given for a unit circle. Moreover, with Abu’l-Wefa trigo-
nometry assumes a more systematic form in which such theorems as double
and half-angle formulas are proved. Although the Hindu sine function had
displaced the Greek chord, it was nevertheless the Almagest of Ptolemy
that motivated the logical arrangement of trigonometric results. The law
of sines had been known to Ptolemy in essence and is implied in the work
of Brahmagupta, but it frequently is attributed to Abu’l-Wefa because of
his clear-cut formulation of the law for spherical triangles. Abu’l-Wefa also
made up a new sine table for angles differing by i°, using the equivalent
of eight decimal places. He contributed also a table of tangents and made
use of all six of the common trigonometric functions, together with relations
among them, but his use of the new functions seems not to have been
followed widely in the medieval period.

Sometimes attempts are made to attribute the functions tangent. cotan-
gent, secant, and cosecant to specific times and even to specific individuals,
but this cannot be done with any assurance. In India and Arabia there had
been a general theory of shadow lengths, as related to a unit of length or
gnomon, for varying solar altitudes. There was no one standard unit of
length for the staff or gnomon used. although a handspan or a man’s height
was frequently adopted. The horizontal shadow. for a vertical gnomon of
given length, was what we call the cotangent of the angle of elevation of
the sun. The “‘reverse shadow —that is, the shadow cast on a vertical wall
by a stick or gnomon projecting horizontally from the wall—was what
we know as the tangent of the solar elevation. The “hypotenuse of the
shadow—that is, the distance from the tip of the gnomon to the tip of
the shadow—was the equivalent of the cosecant function; and the “hy-
potenuse of the reverse shadow™ played the role of our secant. This shadow
tradition seems to have been well established in Asia by the time of Thabit

b
FIG. 13.5
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ibn-Qurra, but values of the hypotenuse (secant or cosecant) were seldom
tabulated.

ABU’L-WEFA AND AL-KARKHI

Abu’l-Wefa was a capable algebraist as well as a trigonometer. He com-
mented on al-Khwarizmi’s Algebra and translated from the Greek one of
the last great classics—the Arithmetica of Diophantus. His successor al-
Karkhi evidently used this translation to become an Arabic disciple of
Diophantus—but without Diophantine analysis! That is, al-Karkhi was
concerned with the algebra of al-Khwarizmi rather than the indeterminate
analysis of the Hindus; but like Diophantus (and unlike al-Khwarizmi) he
did not limit himself to quadratic equations—despite the fact that he fol-
lowed the Arabic custom of giving geometric proofs for quadratics. In
particular, to al-Karkhi is attributed the first numerical solution of equa-
tions of the form ax?" + bx" = c¢ (only equations with positive roots were
considered), where the Diophantine restriction to rational numbers was
abandoned. It was in just this direction, toward the algebraic solution (in
terms of radicals) of equations of more than second degree, that the early
developments in mathematics in the Renaissance were destined to take
place.

AL-BIRUNI AND ALHAZEN

The time of al-Karkhi—the early eleventh century—was a brilliant era in
the history of Arabic learning, and a number of his contemporaries deserve
brief mention—brief not because they were less capable, but because they
were not primarily mathematicians. Ibn-Sina (980-1037), better known to
the West as Avicenna, was the foremost scholar and scientist in Islam, but
in his encyclopedic interests mathematics played a smaller role than med-
icine and philosophy. He made a translation of Euclid and explained the
casting-out of nines (which consequently is sometimes unwarrantedly at-
tributed to him), but he is better remembered for his application of math-
ematics to astronomy and physics. As Avicenna reconciled Greek learning
with Muslim thought, so his contemporary al-Biruni (973-1048) made the
Arabs—hence us—familiar with Hindu mathematics and culture through
his well-known book entitled /ndia. An indefatigable traveler and a critical
thinker, he gave a sympathetic but candid account, including full descrip-
tions of the Siddhantas and the positional principle of numeration. It is he
who tells us that Archimedes was familiar with Heron’s formula and gives
a proof of this and of Brahmagupta’s formula, correctly insisting that the
latter applies only to a cyclic quadrilateral. In inscribing a nonagon in a
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circle al-Biruni reduced the problem, through the trigonometric formula
for cos 30, to solving the equation x> = 1 + 3x, and for this he gave the
approximate solution in sexagesimal fractions as 1;52,15,17,13—equivalent
to more than six-place accuracy. Al-Biruni also gave us, in a chapter on
gnomon lengths, an account of the Hindu shadow reckoning. The boldness
of his thought is illustrated by his discussion of whether or not the earth
rotates on its axis, a question to which he did not give an answer. (Ary-
abhata seems earlier to have suggested a rotating earth at the center of
space.) Al-Biruni contributed also to physics, especially through studies in
specific gravity and the causes of artesian wells; but as a physicist and
mathematician he was excelled by ibn-al-Haitham (ca. 965-1039), known
to the West as Alhazen. The most important treatise written by Alhazen
was the Treasury of Optics, a book which was inspired by work of Ptolemy
on reflection and refraction and which in turn inspired scientists of medieval
and early modern Europe. Among the questions that Alhazen considered
were the structure of the eye, the apparent increase in the size of the moon
when near the horizon, and an estimate, from the observation that twilight
lasts until the sun is 19° below the horizon, of the height of the atmosphere.
The problem of finding the point on a spherical mirror at which light from
a source will be reflected to the eye of an observer is known to this day
as “‘Alhazen’s problem.” It is a “solid problem’ in the old Greek sense,
solvable by conic sections, a subject with which Alhazen was quite familiar.
He extended Archimedes’ results on conoids by finding the volume gen-
erated by revolving about the tangent at the vertex the area bounded by
a parabolic arc and the axis and an ordinate of the parabola.

OMAR KHAYYAM

Arabic mathematics can with some propriety be divided into four parts:
(1) an arithmetic derived presumably from India and based on the principle
of position; (2) an algebra which, although from Greek, Hindu, and Ba-
bylonian sources, nevertheless in Muslim hands assumed a characteristi-
cally new and systematic form; (3) a trigonometry the substance of which
came chiefly from Greece but to which the Arabs applied the Hindu form
and added new functions and formulas; and (4) a geometry which came
from Greece but to which the Arabs contributed generalizations here and
there. In connection with (3) it should be noted tht ibn-Yunus (+1008),
Alhazen’s contemporary and fellow countryman (they both lived in Egypt),
introduced the formula 2 cos x cos y = cos (x + y) + cos (x — y). This
is one of the four “product to sum” formulas that in sixteenth-century
Europe served, before the invention of logarithms, to convert products to
sums by the method known as “‘prosthaphaeresis” (Greek for addition and
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subtraction). In connection with (4) there was a significant contribution
about a century after Alhazen by a man who in the East is known as a
scientist but whom the West recalls as one of the greatest Persian poets.
Omar Khayyam (ca. 1050-1123). the *“‘tent-maker.” wrote an Algebra that
went beyond that of al-Khwarizmi to include equations of third degree.
Like his Arabic predecessors. Omar Khayyam provided for quadratic equa-
tions both arithmetic and geometric solutions: for general cubic equations,
he believed (mistakenly. as the sixteenth century later showed), arithmetic
solutions were impossible; hence. he gave only geometric solutions. The
scheme of using intersecting conics to solve cubics had been used earlier
by Menaechmus, Archimedes, and Alhazen, but Omar Khayyam took the
praiseworthy step of generalizing the method to cover all third-degree
equations (having positive roots). When in an earlier work he came across
a cubic equation, he specifically remarked: **This cannot be solved by plane
geometry [i.e., using straightedge and compasses only] since it has a cube
in it. For the solution we need conic sections.™ (Amir-Moez, 1963, p. 328).
For equations of higher degree than three, Omar Khayyam evidently
did not envision similar geometric methods. for space does not contain
more than three dimensions, “‘what is called square-square by algebraists
in continuous magnitude is a theoretical fact. It does not exist in reality in
any way.” The procedure that Omar Khayyam so tortuously—and so
proudly—applied to cubic equations can be stated with far greater suc-
cinctness in modern notation and concepts as follows. Let the cubic be
x* + ax? + b*x + ¢ = 0. Then, if for x* in this equation we substitute
2py, we obtain (recalling that x* = x*-x) the result 2pxy + 2apy +
b’x + ¢ = 0. Since the resulting equation represents an hyperbola, and
the equality x> = 2py used in the substitution represents a parabola, it is
clear that if the hyperbola and the parabola are sketched on the same set
of coordinate axes, then the abscissas of the points of intersection of the
two curves will be the roots of the cubic equation. Obviously many other
pairs of conic sections can be used in a similar way to solve the cubic.
Our exposition of Omar Khayyam’s work does not do justice to his
genius, for, lacking the concept of negative coefficients, he had to break
the problem into many separate cases according as the parameters a. b, ¢
are positive, negative, or zero. Moreover, he had to specifically identify
his conic sections for each case, for the concept of a general parameter
was not at hand in his day. Not all roots of a given cubic equation were
given, for he did not accept the appropriateness of negative roots and did
not note all intersections of the conic sections. It should be remarked also
that in the earlier Greek geometric solutions of cubic equations the coef-
ficients had been line segments, whereas in the work of Omar Khayyam
they were specific numbers. One of the most fruitful contributions of Arabic
eclecticism was the tendency to close the gap between numerical and geo-
metric algebra. The decisive step in this direction came much later with
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Descartes, but Omar Khayyam was moving in this direction when he wrote,
“Whoever thinks algebra is a trick in obtaining unknowns has thought it
in vain. No attention should be paid to the fact that algebra and geometry
are different in appearance. Algebras are geometric facts which are proved.”
In replacing Euclid’s theory of proportions by a numerical approach, he
came close to a definition of the irrational and struggled with the concept
of real number in general.

THE PARALLEL POSTULATE

In his Algebra Omar Khayyam wrote that he had set forth elsewhere a
rule that he had discovered for finding fourth, fifth, sixth, and higher powers
of a binomial, but such a work is not extant. It is presumed that he is
referring to the Pascal triangle arrangement, one that seems to have ap-
peared in China at about the same time. Such a coincidence is not easy to
explain, but until further evidence is available, independence of discovery
is to be assumed. Intercommunication between Arabia and China was not
extensive at that time; but there was a silk route connecting China with
Persia, and information might have trickled along it.

The Arabs were clearly more attracted to algebra and trigonometry than
to geometry, but one aspect of geometry held a special fascination for
them—the proof of Euclid’s fifth postulate. Even among the Greeks the
attempt to prove the postulate had become virtually a “fourth famous
problem of geometry,” and several Muslim mathematicians continued the
effort. Alhazen had begun with a trirectangular quadrilateral (sometimes
known as "‘Lambert’s quadrangle™ in recognition of efforts in the eighteenth
century) and thought that he had proved that the fourth angle must also
be a right angle. From this ‘‘theorem” on the quadrilateral the fifth pos-
tulate can easily be shown to follow. In his “proof’” Alhazen had assumed
that the locus of a point that moves so as to remain equidistant from a
given line is necessarily a line parallel to the given line—an assumption
shown in modern times to be equivalent to Euclid’'s postulate. Omar
Khayyam criticized Alhazen's proof on the ground that Aristotle had con-
demned the use of motion in geometry. Omar Khayyam then began with
a quadrilateral the two sides of which are equal and are both perpendicular
to the base (usually known as a “Saccheri quadrilateral,” again in recog-
nition of eighteenth-century efforts), and he asked about the other (upper)
angles of the quadrilateral, which necessarily are equal to each other. There
are, of course, three possibilities. The angles may be (1) acute, (2) right,
or (3) obtuse. The first and third possibilities Omar Khayyam ruled out
on the basis of a principle. which he attributed to Aristotle, that two
converging lines must intersect—again an assumption equivalent to Eu-
clid’s parallel postulate.
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NASIR EDDIN

When Omar Khayyam died in 1123, Arabic science was in a state of decline.
Excesses of political and religious factionalism—a condition that is well
illustrated by the origin of our word ‘‘assassin”—would seem to have been
among the causes of the decline. Islam never again was to reach the schol-
arly level of the glorious age of Avicenna and al-Karkhi, but Muslim con-
tributions did not come to a sudden stop after Omar Khayyam. Both in
the thirteenth century and again in the fifteenth century we find an Arabic
mathematician of note. At Maragha, for example, Nasir Eddin al-Tusi (or
at-Tusi, 1201-1274), astronomer to Hulagu Khan, grandson of the con-
queror Genghis Khan and brother of Kublai Khan, continued efforts to
prove the parallel postulate, starting from the usual three hypotheses on
a Saccheri quadrilateral. His “‘proof” depends on the following hypothesis,
again equivalent to Euclid’s:

If a line u is perpendicular to a line w at A, and if line v is oblique to w at
B, then the perpendiculars drawn from u upon v are less than AB on the
side on which v makes an acute angle with w and greater on the side on
which v makes an obtuse angle with w.

The views of Nasir Eddin, the last in the sequence of three Arabic pre-
cursors of non-Euclidean geometry, were translated and published by Wal-
lis in the seventeenth century; it appears that this work was the starting
point for the developments by Saccheri in the first third of the eighteenth
century.

Nasir Eddin followed characteristic Arabic interests; hence, he made
contributions also to trigonometry and astronomy. Continuing the work
of Abu’l-Wefa, he was responsible for the first systematic treatise on plane
and spherical trigonometry, treating the material as an independent subject
in its own right and not simply as the handmaid of astronomy, as had been
the case in Greece and India. The six usual trigonometric functions are
used, and rules for solving the various cases of plane and spherical triangles
are given. Unfortunately, the work of Nasir Eddin had limited influence
inasmuch as it did not become well known in Europe. In astronomy, how-
ever, Nasir Eddin made a contribution that may have come to the attention
of Copernicus. The Arabs had adopted theories of both Aristotle and
Ptolemy for the heavens; noticing elements of conflict between the cos-
mologies, they sought to reconcile them and to refine them. In this con-
nection Nasir Eddin observed that a combination of two uniform circular
motions in the usual epicyclic construction can produce a reciprocating
rectilinear motion. That is, if a point moves with uniform circular motion
clockwise around the epicycle while the center of the epicycle moves coun-
terclockwise with half this speed along an equal deferent circle, the point
will describe a straight-line segment. (In other words, if a circle rolls without
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slipping along the inside of a circle whose diameter is twice as great, the
locus of a point on the circumference of the smaller circle will be a diameter
of the larger circle.) This “theorem of Nasir Eddin” became known to, or
was rediscovered by. Copernicus and Cardan in the sixteenth century.

AL-KASHI

Arabic mathematics continued to decline after Nasir Eddin, but our ac-
count of the Muslim contribution would not be adequate without reference
to the work of a figure in the early fifteenth century. Al-Kashi (+ ca. 1436)
found a patron in the prince Ulugh Beg. grandson of the Mongol conqueror
Tamerlane. At Samarkand, where he held his court, Ulugh Beg had built
an observatory, and al-Kashi joined the group of scientists gathered there.
In numerous works, written in Persian and Arabic, al-Kashi contributed
to mathematics and astronomy. Noteworthy is the accuracy of his com-
putations, especially in connection with the solution of equations by Hor-
ner’s method, derived perhaps from the Chinese. From China, too, al-
Kashi may have taken the practice of using decimal fractions. Al-Kashi is
an important figure in the history of decimal fractions, and he realized the
significance of his contribution in this respect, regarding himself as the
inventor of decimal fractions. Although to some extent he had had pre-
cursors, he was perhaps the first user of sexagesimal fractions to suggest
that decimals are just as convenient for problems requiring many-place
accuracy. Nevertheless, in his systematic computations of roots he contin-
ued to make use of sexagesimals. In illustrating his method for finding the
nth root of a number, he took the sixth root of the sexagesimal

34,59,1,7,14,54.23.3,47,37;40.

This was a prodigious feat of computation, using the steps that we follow
in Horner’s method—Ilocating the root, diminishing the roots, and stretch-
ing or multiplying the roots—and using a pattern similar to our synthetic
division.

Al-Kashi evidently delighted in long calculations. and he was justifiably
proud of his approximation of n, which was more accurate than any of the
values given by his predecessors. True to the penchant of the Arabs for
alternative notations, he expressed his value of 2z in both sexagesimal and
decimal forms. The former—6:16.59.28.34,51.,46,15.50—is more reminis-
cent of the past, and the latter—6.2831853071795865—1n a sense presaged
the future use of decimal fractions. No mathematician approached the
accuracy in this tour de force of computation until the late sixteenth cen-
tury. (The following mnemonic device will aid in memorizing a good ap-
proximation to n: **How | want a drink, alcoholic of course, after the heavy
lectures involving quantum mechanics.” The number of letters in the words
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will provide the values for the successive digits in 3.14159265358979, and
these will be found to be in full agreement with al-Kashi’s value for 27.)
In al-Kashi the binomial theorem in **Pascal triangle™ form again appears,
just about a century after its publication in China and about a century
before it was printed in European books.

With the death of al-Kashi in about 1436 we can close the account of
Arabic mathematics, for the cultural collapse of the Muslim world was
more complete than the political disintegration of the empire. The number
of significant Arabic contributors to mathematics before al-Kashi was con-
siderably larger than our exposition would suggest, for we have concen-
trated only on major figures; but after al-Kashi the number is negligible.
It was very fortunate indeed that when Arabic learning began to decline,
scholarship in Europe was on the upgrade and was prepared to accept the
intellectual legacy bequeathed by earlier ages. It is sometimes held that
the Arabs had done little more than to put Greek science into “‘cold stor-
age’’ until Europe was ready to accept it. But the account in this chapter
has shown that at least in the case of mathematics the tradition handed
over to the Latin world in the twelfth and thirteenth centuries was richer
than that with which the unlettered Arabic conquerors had come into
contact in the seventh century.
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The date 1436 is the probable year of death of al-Kashi, a very capable
mathematician whom we already have described as somewhat Janus-faced—
looking back on the old and in some respects anticipating the new. The
year 1436 marks also the birth of another eminent mathematician, Johann
Miiller (1436-1476), better known under the name Regiomontanus, a La-
tinized form of Konigsberg, his place of birth. The year 1436, in other
words, symbolizes the fact that during the Middle Ages those who excelled
in mathematics wrote in Arabic and lived in Islamic Africa and Asia,
whereas during the new age that was dawning the leading mathematicians
wrote in Latin and lived in Christian Europe.

An oversimplified view of the Middle Ages often results from a pre-
dominantly Europe-centered historical account; hence, we remind readers
that five great civilizations, writing in five different tongues, make up the
bulk of the history of medieval mathematics. In the two preceding chapters
we described contributions from China, India, and Arabia, three of the
five leading medieval cultures. In this chapter we look at the mathematics
of the other two: (1) the Eastern or Byzantine Empire, with center at
Constantinople (or Byzantium), in which Greek was the official language;
and (2) the Western or Roman Empire, which had no one center and no
single spoken language, but in which Latin was the lingua franca of scholars.

BYZANTINE MATHEMATICS

When Justinian in 529 closed the pagan philosophical schools at Athens,
the scholars were dispersed, and some of them made permanent homes in
Syria, Persia, and elsewhere. Nonetheless, some of the scholars remained,
and others returned some years later, with the result that there was no
serious hiatus in Greek learning in the Byzantine world. We have men-
tioned briefly the work of several Greek scholars of the sixth century:
Eutocius, Simplicius, Isidore of Miletus, and Anthemius of Tralles. It was
Justinian himself who put the building of Hagia Sophia in charge of the
last two. To the list of Byzantine scholars should also be added the name
of John Philoponus, who flourished at Alexandria in the early sixth century
and was the leading physicist of his age anywhere in the world. Philoponus
argued against the Aristotelian laws of motion and the impossibility of a
vacuum, and he suggested the operation of a kind of inertia principle under
which bodies in motion continued to move. Like Galileo later, he denied
that the speed acquired by a freely falling body is proportional to its weight:

If you let fall from the same height two weights of which one is many times
as heavy as the other, you will see that the ratio of the times required for
the motion does not depend on the ratio of the weights, but that the difference
in time is a very small one [Clagett, 1959, p. 546].
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Philoponus was a Christian scientist (as were also perhaps Eutocius and
Anthemius) who was making use of ancient pagan sources and whose ideas
influenced later Islamic thinkers, thus indicating the continuity of the sci-
entific tradition despite religious and political differences.

Philoponus was not primarily a mathematician, but some of his work,
such as his treatise on the astrolabe, can be thought of as applied math-
ematics. Most Byzantine contributions to mathematics were on an ele-
mentary level and consisted chiefly of commentaries on ancient classics.
Byzantine mathematics, far more than Arabic, was a sort of holding action
to preserve as much of antiquity as possible until the West was ready to
carry on. Philoponus aided in this work through his commentary on the
Introduction to Arithmetic of Nicomachus. Neoplatonic thought continued
to exert a strong influence in the Eastern Empire, which accounts for the
popularity of Nicomachus’ treatise. Again in the eleventh century it was
the subject-of a commentary, this time by Michael Constantine Psellus
(1018-10807?), a philosopher of Athens and Constantinople who counted
among his pupils the Emperor Michael VII. Another of Psellus’ works, a
very elementary compendium on the quadrivium, enjoyed quite a vogue
in the West during the sixteenth-century Renaissance period. Two centuries
later we note another Greek summary of the mathematical quadrivium,
this time by Georgios Pachymeres (1242-1316). Such compendia were
significant only in showing that a thin thread of the old Greek tradition
continued in the Eastern Empire to the very end of the medieval period.

Pachymeres wrote also a commentary on the Arithmetic of Diophantus,
as did his contemporary, Maximos Planudes (1255?7-1310). The latter, a
Greek monk, was ambassador to Venice of the Emperor Andronicus 1II,
indicating that there was some scholarly contact between the East and the
West. Planudes wrote also a work on the Hindu system of numeration,
which had finally reached the Greek world. In Byzantium, as might have
been anticipated, the alphabetic numerals were not wholly abandoned, for
they have continued to our own day in Greece in legal, administrative,
and ecclesiastical documents. Section LXXVIII of a document, for example
is on (that is, omicron eta) as in Alexandrian days. Moreover, even within
the new Hindu system the Byzantine scholars of the fourteenth century
retained the first nine letters of the old alphabetic scheme, adding to these
a zero symbol, like an inverted h. The number 7890, for example, would
be written as {nfy4, a form every bit as convenient as our own. Manuel
Moschopoulos (fl. 1300), a disciple of Planudes, wrote on magic squares,
and the account of Planudes on numeration was commented on by the
arithmetician and geometer Nicholas Rhabdas (¥1350). The latter com-
posed also a work on finger reckoning; but Byzantine mathematics, never
very strong, by this time had become negligible. By the fourteenth century
the Greek world had been clearly surpassed by the Latin world in the West,
to which we now turn.




ALCUIN AND GERBERT 249

THE DARK AGES

Chapter 11 included reference to the Latin treatises of Boethius at the end
of the ancient period, with an indication of their very elementary level.
Even from that level it was possible for mathematics to deteriorate still
further, as we see in the trivial compendium on the liberal arts composed
by Cassiodorus (ca. 480—ca. 575). a disciple of Boethius who spent his last
years in a monastery that he had established. The primitive works of Cas-
siodorus served as textbooks in church schools in the early Middle Ages
and sometimes also as the source for still lower-level books. such as the
Origines or Etymologies of Isidore of Seville (570-636). one book of the
twenty being a brief summary of the arithmetic of Boethius. When we
consider that his contemporaries regarded Isidore as the most learned man
of his time, we can well appreciate the lament of his day that “‘the study
of letters is dead in our midst.” These were truly the ““Dark Ages™ of
science, but we should not make the mistake of assuming that this was true
of the Middle Ages as a whole. For the next two centuries the gloom
continued to such an extent that it has been said that nothing scholarly
could be heard in Europe but the scratching of the pen of the Venerable
Bede (ca. 673-735) writing in England about the mathematics needed for
the ecclesiastical calendar, or about the representation of numbers by means
of the fingers.

ALCUIN AND GERBERT

Alcuin of York (ca. 735-804) was born the year that Bede died: he was
called by Charlemagne to revitalize education in France. and sufficient
improvement was apparent to lead some historians to speak of a Carolin-
gian Renaissance. Alcuin explained that the act of creation had taken six
days because six was a perfect number; but beyond some arithmetic, ge-
ometry, and astronomy that Alcuin is reputed to have written for beginners.
there was little mathematics in France or England for another two cen-
turies. In Germany Hrabanus Maurus (784-856) continued the slight math-
ematical and astronomical efforts of Bede, especially in connection with
the computation of the date of Easter. But not for another century and a
half was there any notable change in the mathematical climate in Western
Europe, and then it came in the person of one who rose ultimately to
become Pope Sylvester 11.

Gerbert (ca. 940-1003) was born in France and educated in Spain and
Italy, and then served in Germany as tutor and later adviser to the Holy
Roman Emperor, Otto 111. Having served as archbishop, first at Reims
and later at Ravenna, Gerbert in 999 was elevated to the papacy, taking
the name Sylvester—possibly in recollection of an earlier pope who had
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been noted for scholarship. but more probably because Sylvester I, pope
during the days of Constantine, symbolized the unity of papacy and empire.
Gerbert was active in politics. both lay and ecclesiastical, but he had time
also for educational matters. He wrote on both arithmetic and geometry,
depending probably on the Boethian tradition, which had dominated the
teaching in Western church schools and had not improved! More interesting
than these expository works, however. is the fact that Gerbert was perhaps
the first one in Europe to have taught the use of the Hindu-Arabic nu-
merals. It is not clear how he came in contact with these. A possible
explanation is that when he went to Spain in 967 he came in touch, perhaps
at Barcelona, with Moorish learning. including Arabic numeration with
the Western, or Gobar (dust), forms of the numerals, although there is
little evidence of Arabic influence in extant documents. A Spanish copy
of the Origines of Isidore, dating from 992, contains the numerals, without
the zero. and Gerbert probably never knew of this last part of the Hindu-
Arabic system. In certain manuscripts of Boethius, however, similar nu-
meral forms, or apices, appear as counters for use on a computing board
or abacus; and perhaps it was from these that Gerbert first learned of the
new system. The Boethian apices, on the other hand, may themselves have
been later interpolations. The situation with respect to the introduction of
the numerals into Europe is about as confused as is that surrounding the
invention of the system perhaps half a millennium earlier. Moreover, it is
not clear that there was any continued use of the new numerals in Europe
during the two centuries following Gerbert. Not until the thirteenth century
was the Hindu-Arabic system definitively introduced into Europe, and then
the achievement was not the work of one man but of several.

THE CENTURY OF TRANSLATION

Europe. before and during the time of Gerbert, was not yet ready for
developments in mathematics. The Christian attitude, expressed by Ter-
tullian, had at first been somewhat the same as that of early Islam, cited
with respect to the library at Alexandria. Scientific research, Tertullian
wrote, had become superfluous since the gospel of Jesus Christ had been
received. The time of Gerbert was the high point of Muslim learning, but
contemporary Latin scholars could scarcely have appreciated Arabic trea-
tises if they had learned about them. By the early twelfth century the
situation began to change in a direction reminiscent of the ninth century
in Arabia. One cannot absorb the wisdom of one’s neighbors if one cannot
understand their language. The Moslems had broken down the language
barrier to Greek culture in the ninth century, and the Latin Europeans
overcame the language barrier to Arabic learning in the twelfth century.
At the beginning of the twelfth century no European could expect to be
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a mathematician or an astronomer, in any real sense, without a good
knowledge of Arabic; and Europe, during the earlier part of the twelfth
century, could not boast of a mathematician who was not a Moor, a Jew,
or a Greek. By the end of the century the leading and most original
mathematician in the whole world came from Christian Italy. The period
was one of transition from an older to a newer point of view. The revival
began of necessity with a spate of translations. At first these were almost
exclusively from Arabic into Latin, but by the thirteenth century there
were many variants—Arabic to Spanish, Arabic to Hebrew, Greek to
Latin, or combinations such as Arabic to Hebrew to Latin. The Elements
of Euclid was among the earliest of the mathematical classics to appear in
Latin translation from the Arabic, the version being produced in 1142 by
Adelard of Bath (ca. 1075-1160). It is not clear how the Englishman had
come into contact with Muslim learning. There were at the time three chief
bridges between Islam and the Christian world—Spain, Sicily, and the
Eastern Empire—and of these the first was the most important. Adelard,
however, seems not to have been one of the many who made use of the
Spanish intellectual bridge. It is not easy to tell whether the religious
crusades had a positive influence on the transmission of learning, but it is
likely that they disrupted channels of communication more than they fa-
cilitated them. At all events, the channels through Spain and Sicily were
the most important in the twelfth century, and these were largely undis-
turbed by the marauding armies of the crusaders from 1096 to 1272. The
revival of learning in Latin Europe took place during the crusades, but
probably in spite of the crusades.

Adelard’s translation of the Elements did not become very influential
for another century, but it was far from an isolated event. Adelard earlier
(1126) had translated al-Khwarizmi’s astronomical tables from Arabic into
Latin, and later (ca. 1155) Ptolemy’s Almagest from Greek into Latin.
Among the early translators, however, Adelard was an exception in that
he was not one of the large group working in Spain. There, especially at
Toledo, where the archbishop encouraged such work, a veritable school
of translation was developing. The city, once a Visigothic capital and later
in the hands of the Moors for several centuries before falling to the Chris-
tians, was an ideal spot for the transfer of learning. In Toledo libraries
there was a wealth of Muslim manuscripts; and of the populace, including
Christians, Mohammedans, and Jews, many spoke Arabic, facilitating the
interlingual flow of information. The cosmopolitanism of the translators
in Spain is evident from some of the names: Robert of Chester, Hermann
the Dalmatian, Plato of Tivoli, Rudolph of Bruges, Gerard of Cremona,
and John of Seville, the last a converted Jew. These are but a small portion
of the men associated in the translation projects in Spain.

Of the translators in Spain, perhaps the greatest was Gerard of Cremona
(1114-1187). He had gone to Spain to learn Arabic in order to understand
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Ptolemy. but he devoted the rest of his life to translations from the Arabic.
Among these was the translation into Latin of a revised version of Thabit
ibn-Qurra’s Arabic of Euclid’s Elements, a better piece of work than that
of Adelard. In 1175 Gerard translated the Almagest, and it was chiefly
through this work that Ptolemy came to be known in the West. Translations
of more than eighty-five works are ascribed to Gerard of Cremona, but
only the translation of Ptolemy is dated. Among the works of Gerard was
a Latin adaptation of the Algebra of al-Khwarizmi, but an earlier and more
popular translation of the Algebra had been made in 1145 by Robert of
Chester. This, the first translation of al-Khwarizmi’s treatise (as Robert’s
translation of the Koran, a few years before, had marked another “first™),
may be taken as marking the beginning of European algebra.

Robert of Chester returned to England in 1150, but the Spanish work
of translation continued unabated through Gerard and others. The works
of al-Khwarizmi evidently were among the more popular subjects of the
time, and the names of Plato of Tivoli and John of Seville are attached to
still other adaptations of the Algebra. Western Europe suddenly took far
more favorably to Arabic mathematics than it ever had to Greek geometry.
Perhaps part of the reason for this is that Arabic arithmetic and algebra
were on a more elementary level than Greek geometry had been during
the days of the Roman republic and empire. However, the Romans had
never displayed much interest in Greek trigonometry, relatively useful and
elementary though it was; yet Latin scholars of the twelfth century de-
voured Arabic trigonometry as it appeared in astronomical works. It was
Robert of Chester’s translation from the Arabic that resulted in our word
“sine.” The Hindus had given the name jiva to the half-chord in trigo-
nometry, and the Arabs had taken this over as jiba. In the Arabic language
there is also a word jaib meaning *‘bay’ or “inlet.”” When Robert of Chester
came to translate the technical word jiba, he seems to have confused this
with the word jaib (perhaps because vowels were omitted); hence, he used
the word sinus, the Latin word for “bay” or “inlet.”” Sometimes the more
specific phrase sinus rectus, or “‘vertical sine,”” was used; hence, the phrase
sinus versus, or our ‘“‘versed sine,”” was applied to the “‘sagitta,” or the
“*sine turned on its side.”

It was during the twelfth-century period of translation and the following
century that the confusion arose concerning the name al-Khwarizmi and
led to the word *‘algorithm,” as noted in the preceding chapter. The Hindu
numerals had been explained to Latin readers by Adelard of Bath and
John of Seville at about the same time that an analogous scheme was
introduced to the Jews by Abraham ibn-Ezra (ca. 1090-1167), author of
books on astrology, philosophy, and mathematics. As in the Byzantine
culture the first nine Greek alphabetic numerals, supplemented by a special
zero symbol, took the place of the Hindu numerals, so ibn-Ezra used the
first nine Hebraic alphabetic numerals, and a circle for zero, in the decimal
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positional system for integers. Despite the numerous accounts of the Hindu-
Arabic numerals. the transition from the Roman number scheme was sur-
prisingly slow. Perhaps this was because computation with the abacus was
quite common. and in this case the advantages of the new scheme are not
nearly so apparent as in calculation with pen and paper only. For several
centuries there was keen competition between the ““abacists™ and the **al-
gorists,” and the latter triumphed definitively only in the sixteenth century.

THE SPREAD OF HINDU-ARABIC NUMERALS

It is sometimes claimed that in the later Middle Ages there were two classes
of mathematicians—those in the church or university schools and those
concerned with trade and commerce—and that rivalries are found between
the two. There seems to be little basis for such a thesis; certainly in the

A woodcut from Gregor Reisch, Margarita Philosophica (Freiburg, 1503). Arithmetic is
instructing the algorist and the abacist, here inaccurately represented by Boethius and
Pythagoras.
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spread of the Hindu-Arabic numerals both groups shared in the dissemi-
nation. Thirteenth-century authors from many walks of life helped to pop-
ularize **algorism.” but we shall mention three in particular. One of them,
Alexandre de Villedieu (fl. ca. 1225), was a French Franciscan; another,
John of Halifax (ca. 1200-1256), known also as Sacrobosco, was an English
schoolman; and the third was Leonardo of Pisa (ca. 1180-1250), better
known as Fibonacci, or “‘son of Bonaccio,” an Italian merchant. The Car-
men de algorismo of Alexandre is a poem in which the fundamental op-
erations on integers are fully described, using the Hindu-Arabic numerals
and treating zero as a number. The Algorismus vulgaris of Sacrobosco was
a practical account of reckoning that rivaled in popularity his Sphaera, an
elementary tract on astronomy used in the schools throughout the later
Middle Ages. The book in which Fibonacci described the new algorism is
a celebrated classic, completed in 1202, but it bears a misleading title—
Liber abaci (or Book of the Abacus). It is not on the abacus; it is a very
thorough treatise on algebraic methods and problems in which the use of
the Hindu-Arabic numerals is strongly advocated.

Leonardo’s father was a Pisan engaged in business in northern Africa,
and the son studied under a Muslim teacher and traveled in Egypt, Syria,
and Greece. It, therefore, was natural that Fibonacci should have been
steeped in Arabic algebraic methods, including, fortunately, the Hindu-
Arabic numerals and, unfortunately, the rhetorical form of expression.
The Liber abaci opens with an idea that sounds almost modern, but which
was characteristic of both Islamic and Christian medieval thought—that
arithmetic and geometry are connected and support each other. This view
is, of course, reminiscent of al-Khwarizmi’s Algebra, but it was equally
accepted in the Latin Boethian tradition. The Liber abaci, nevertheless,
is much more concerned with number than with geometry. It first describes
“the nine Indian figures,” together with the sign 0, “‘which is called ze-
phirum in Arabic.” Incidentally, it is from zephirum and its variants that
our words “‘cipher” and “‘zero” are derived. Fibonacci’s account of Hindu-
Arabic numeration was important in the process of transmission; but it
was not, as we have seen, the first such exposition, nor did it achieve the
popularity of the later but more elementary descriptions by Sacrobosco
and Villedieu. The horizontal bar in fractions, for example, was used reg-
ularly by Fibonacci (and was known before in Arabia), but it was only in
the sixteenth century that it came into general use. (The slanted solidus
was suggested in 1845 by De Morgan.)

THE LIBER ABACI

The Liber abaci is not a rewarding book for the modern reader, for after
explanation of the usual algoristic or arithmetic processes, including the
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extraction of roots, it stresses problems in commercial transactions, using
a complicated system of fractions in computing exchanges of currency. It
is one of the ironies of history that the chief advantage of positional no-
tation—its applicability to fractions—almost entirely escaped the users of
the Hindu-Arabic numerals for the first thousand years of their existence.
In this respect Fibonacci was as much to blame as anyone. for he used
three types of fractions—common. sexagesimal. and unit—but not decimal
fractions. In the Liber abaci, in fact. the two worst of these systems, unit
fractions and common fractions. are extensively used. Moreover. problems
of the following type abound: If 1 solidus imperial, which is 12 deniers
imperial. is sold for 31 deniers Pisan. how many deniers Pisan should one
obtain for 11 deniers imperial? In a recipe type of exposition the answer
is found laboriously to be % 28 (or, as we should write it, 28+%). Fibonacci
customarily placed the fractional part or parts of a mixed number before
the integral part. Instead of writing 113, for example, he wrote } } 11, with
juxtaposition of unit fractions and integers implying addition.

Fibonacci evidently was fond of unit fractions—or he thought his readers
were—for the Liber abaci includes tables of conversion from common

fractlons to unit fractions. The fractlon ien. for instance, is broken into 1o
$6 5 1 3, and %5 appears as 75 § & z An unusual quirk in his notatlon led
him to express the sum of ¢ { and 15 § as 3§ 1. the notation 3§—% mean-
ing in this case
1 6 2
+ + .

28208l (RO 1 DRSSl ()

Analogously in another of the many problems on monetary conversion in
the Liber abaci we read that if § § of a rotulus is worth # & # of a bizantium,
then ¥3-% of a bizantium is worth 513 of a rotulus. Pity the poor
medieval businessman who had to operate with such a system!

THE FIBONACCI SEQUENCE

Much of the Liber abaci makes dull reading, but some of the problems
were so lively that they were used by later writers. Among these is a hardy
perennial which may have been suggested by a similar problem in the
Ahmes papyrus. As expressed by Fibonacci, it read:

Seven old women went to Rome; each woman had seven mules: each mule
carried seven sacks, each sack contained seven loaves: and with each loaf
were seven knives; each knife was put up in seven sheaths.

Without doubt the problem in the Liber abaci that has most inspired
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future mathematicians was the following:

How many pairs of rabbits will be produced in a year. beginning with a single
pair. if in every month each pair bears a new pair which becomes productive
from the second month on?

This celebrated problem gives rise to the “‘Fibonacci sequence™ 1, 1, 2,
3.5, 8, 13, 21 o5l o mow aWhere Wy =ai, =t U, i thattis, wherereach
term after the first two is the sum of the two terms immediately preceding
it. This sequence has been found to have many beautiful and significant
properties. For instance, it can be proved that any two successive terms
are relatively prime and that lim,_. u,_,/u, is the golden section ratio
(VS — 1)/2. The sequence is applicable also to questions in phyllotaxy
and organic growth.

A SOLUTION OF A CUBIC EQUATION

The Liber abaci was Fibonacci's best known book, appearing in another
edition in 1228, but it evidently was not appreciated widely in the schools,
and it did not appear in print until the nineteenth century. Leonardo of
Pisa was without doubt the most original and most capable mathematician
of the medieval Christian world. but much of his work was too advanced
to be understood by his contemporaries. His treatises other than the Liber
abaci also contain many good things. In the Flos, dating from 1225, there
are indeterminate problems reminiscent of Diophantus and determinate
problems reminiscent of Euclid, the Arabs, and the Chinese.

Fibonacci evidently drew from many and varied sources. Especially
interesting for its interplay of algorithm and logic is Fibonacci’s treatment
of the cubic equation x* + 2x* 4+ 10x = 20. The author showed an attitude
close to that of the modern period in first proving the impossibility of a
root in the Euclidean sense, such as a ratio of integers, or a number of
the form @ + Vb, where a and b are rational. As of that time, this meant
that the equation could not be solved exactly by algebraic means. Fibonacci
then went on to express the positive root approximately as a sexagesimal
fraction to half a dozen places—1;22,7,42.33,4.40. This was a remarkable
achievement, but we do not know how he did it. Perhaps through the
Arabs he had learned what we call “Horner’s method,” a device known
before this time in China. This is the most accurate European approxi-
mation to an irrational root of an algebraic equation up to that time, or
anywhere in Europe for another 300 years and more. It is characteristic
of the time that Fibonacci should have used sexagesimal fractions in the-
oretical mathematical work but not in mercantile affairs. Perhaps this ex-
plains why the Hindu-Arabic numerals were not promptly used in astro-
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nomical tables, such as the Alfonsine Tables of the thirteenth century.
Where the “Physicists’” (sexagesimal) fractions were in use, there was less
urgency in displacing them than there was in connection with the common
and unit fractions in commerce.

THEORY OF NUMBERS AND GEOMETRY

In 1225 Leonardo of Pisa published not only the Flos, but also the Liber
quadratorum, a brilliant work on indeterminate analysis. This, like Flos,
contains a variety of problems, some of which stemmed from the mathe-
matical contests held at the court of the emperor Frederick 11, to which
Fibonacci had been invited. One of the problems proposed strikingly re-
sembles the type in which Diophantus had delighted—to find a rational
number such that if five is added to, or subtracted from, the square of the
number, the result will be the square of a rational number. Both the
problem and a solution, 3+%, are given in Liber quadratorum. The book
makes frequent use of the identities

(@*> + b¥)(c* + d?) = (ac + bd)* + (bc — ad)?
= (ad + bc)* + (ac — bd)?

which had appeared in Diophantus and had been widely used by the Arabs.
Fibonacci, in some of his problems and methods, seems to follow the Arabs
closely.

Fibonacci was primarily an algebraist, but he wrote also, in 1220, a book
entitled Practica geometriae. This seems to be based on an Arabic version
of Euclid’s Division of Figures (now lost) and on Heron’s works on men-
suration. It contains among other things a proof that the medians of a
triangle divide each other in the ratio 2 to 1, and a three-dimensional
analogue of the Pythagorean theorem. Continuing a Babylonian and Arabic
tendency, he used algebra to solve geometric.problems.

JORDANUS NEMORARIUS

It will be clear from the few illustrations we have given that Leonardo of
Pisa was an unusually capable mathematician. It is true that he was without
a worthy rival during the 900 years of medieval European culture, but he
was not quite the isolated figure he is sometimes held to be. He had an
able though less gifted younger contemporary in Jordanus Nemorarius
(date uncertain). Some identify this man with Jordanus Teutonicus or
Jordanus of Saxony, leader of the Dominican Order, who died in 1237. In
any case, our Jordanus Nemorarius, or Jordanus de Nemore, represents
a more Aristotelian aspect of science than others we have met in the
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thirteenth century, and he became the founder of what sometimes is known
as the medieval school of mechanics. To him we owe the first correct
formulation of the law of the inclined plane, a law that the ancients had
sought in vain: the force along an oblique path is inversely proportional
to the obliquity, where obliquity is measured by the ratio of a given segment
of the oblique path to the amount of the vertical intercepted by that path,
that is, the “‘run” over the *‘rise.” In the language of trigonometry this
means that F: W = 1/csc 6, which is equivalent of the modern formulation
F = Wsin 6, where W is weight, Fis force, and 8 is the angle of inclination.

Jordanus was the author of books on arithmetic, geometry, and astron-
omy, as well as mechanics. His Arithmetica in particular was the basis of
popular commentaries at the University of Paris as late as the sixteenth
century; this was not a book on computation, but a quasi-philosophical
work in the tradition of Nicomachus and Boethius. It contains such the-
oretical results as the theorem that any multiple of a perfect number is
abundant and that a divisor of a perfect number is deficient. The Arith-
metica is significant especially for the use of letters instead of numerals as
numbers, thus making possible the statement of general algebraic theo-
rems. In the arithmetical theorems in Euclid’s Elements VII-1X, numbers
had been represented by line segments to which letters had been attached,
and the geometric proofs in al-Khwarizmi’s Algebra made use of lettered
diagrams; but all coefficients in the equations used in the Algebra are
specific numbers, whether represented by numerals or written out in words.
The idea of generality is implied in al-Khwarizmi’s exposition, but he had
no scheme for expressing algebraically the general propositions that are so
readily available in geometry. In the Arithmetica the use of letters suggests
the concept of “‘parameter’’; but Jordanus’ successors generally overlooked
his scheme of letters. They seem to have been more interested in the Arabic
aspects of algebra found in another Jordanian work, De numeris datis, a
collection of algebraic rules for finding, from a given number, other num-
bers related to it according to certain conditions, or for showing that a
number satisfying specific restrictions is determined. A typical instance is
the following; If a given number is divided into two parts such that the
product of one part by the other is given, then each of the two parts is
necessarily determined. The rule is expressed awkwardly by Jordanus as
follows:

Let the given number be abc and let it be divided into two parts ab and ¢,
and let d be the given product of the parts ab and c. Let the square of abe
be e and let four times d be f, and let g be the result of taking f from e. Then
g is the square of the difference between ab and c. Let h be the square root
of g. Then h is the difference between ab and ¢. Since h is known, ¢ and ab
are determined.

Note that Jordanus’ use of letters is somewhat confusing, for, like Euclid,
he sometimes uses two letters for a number and sometimes only a single
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letter. He evidently followed Euclid in picturing the given number as a
line segment ac and the two parts into which it is subdivided as ab and bc;
but he uses both end-point letters to designate the first part or number,
and only the single letter ¢ to represent the number of line segment bc. It
is greatly to his credit, however. that he first stated the rule, equivalent to
the solution of a quadratic equation, completely in general form. Only
later did he provide a specific example of it, expressed in Roman numerals:
to divide the number X into two parts the product of which is to be XXI,
Jordanus follows through the steps indicated above to find that the parts
are III and VII.

CAMPANUS OF NOVARA

To Jordanus is attributed also an Algorismus (or Algorithmus) demonstra-
tus, an exposition of arithmetic rules that was popular for three centuries.
The Algorismus demonstratus again shows Boethian and Euclidean inspi-
ration, as well as Arabic algebraic characteristics. Still greater preponder-
ance of Euclidean influence is seen in the work of Johannes Campanus of
Novara (fl. ca. 1260). chaplain to Pope Urban IV. To him the late medieval
period owed the authoritative translation of Euclid from Arabic into Latin,
the one that first appeared in printed form in 1482. In making the translation
Campanus used various Arabic sources, as well as the earlier Latin version
by Adelard. Both Jordanus and Campanus discussed the angle of contact.
or horn angle, a topic that produced lively discussion in the later medieval
period when mathematics took on a more philosophical and speculative
aspect. Campanus noticed that if one compared the angle of contact—that
is, the angle formed by an arc of a circle and the tangent at an end point—
with the angle between two straight lines. there appears to be an incon-
sistency with Euclid’s Elements X. 1. the fundamental proposition of the
method of exhaustion. The rectilineal angle is obviously greater than the
horn angle. Then, if from the larger angle we take away more than half,
and if from the remainder we take away more than half. and it we continue
in this way, each time taking away more than half, ultimately we should
reach a rectilineal angle less than the horn angle; but this obviously is not
true. Campanus correctly concluded that the proposition applies to mag-
nitudes of the same kind, and horn angles are different from rectilineal
angles.

Similarity in the interests of Jordanus and Campanus is seen in the fact
that Campanus, at the end of Book 1V of his translation of the Elements,
describes an angle trisection which is exactly the same as that which had
appeared in Jordanus’ De triangulis. The only difference is that the lettering
of the Campanus diagram is Latin, whereas that of Jordanus is Greco-
Arabic. The trisection, unlike those in antiquity, is essentially as follows.
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FIG. 14.1

Let the angle AOB that is to be trisected be placed with its vertex and the
center of a circle of any radius OA = OB (Fig. 14.1). From O draw a
radius OC L OB, and through A place a straight line AED in such a way
that DE = OA. Finally, through O draw line OF parallel to AED. Then,
£FOB is one-third LAOB, as required.

LEARNING IN THE THIRTEENTH CENTURY

The thirteenth century presents such a striking advance over the earlier
Middle Ages that it has occasionally been viewed, none too impartially,
as “‘the greatest of centuries.”' We have seen how, in the work of Leonardo
of Pisa, Western Europe had come to rival other civilizations in the level
of its mathematical achievement; but this was only a small part of what
was taking place in Latin culture as a whole. Many of the famous uni-
versities—Bologna, Paris, Oxford, and Cambridge—were established in
the late twelfth and early thirteenth centuries, and this was the period in
which great Gothic cathedrals—Chartres, Notre Dame, Westminster,
Reims—were built. Aristotelian philosophy and science had been re-
covered and were taught in the universities and church schools. The thir-
teenth century is the period of great scholars and churchmen, such as
Albertus Magnus, Robert Grosseteste, Thomas Aquinas, and Roger Ba-
con. Incidentally, two of these in particular, Grosseteste and Bacon, made
strong pleas for the importance of mathematics in the curriculum, although
neither was himself much of a mathematician. It was during the thirteenth
century that many practical inventions became known in Europe: gunpow-
der and the compass. both perhaps from China, and spectacles from ltaly,
with mechanical clocks appearing only a little later.

'J. ). Walsh, The Thirteenth, Greatest of Centuries (New York: Fordham University Press.
1952).
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The twelfth century had seen the great tide of translation from Arabic
into Latin, but there now were other crosscurrents of translations. Most
of the works of Archimedes, for example, had been virtually unknown to
the medieval West; but in 1269 William of Moerbeke (ca. 1215-1286)
published a translation (the original manuscript of which was discovered
in 1884 in the Vatican) from Greek into Latin of the chief Archime<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>