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Foreword
by Isaac Asimov

Mathematics is a unique aspect of human thought, and its history differs in

essence from all other histories.

As time goes on, nearly every field of human endeavor is marked by

changes which can be considered as correction and/or extension. Thus, the

changes in the evolving history of political and military events are always

chaotic; there is no way to predict the rise of a Genghis Khan, for example,

or the consequences of the short-lived Mongol Empire. Other changes are a

matter of fashion and subjective opinion. The cave-paintings of 25,000 years

ago are generally considered great art, and while art has continuously—even

chaotically—changed in the subsequent millennia, there are elements of

greatness in all the fashions. Similarly, each society considers its own ways

natural and rational, and finds the ways of other societies to be odd, laughable,

or repulsive.

But only among the sciences is there true progress; only there is the record

one of continuous advance toward ever greater heights.

And yet, among most branches of science, the process of progress is one

of both correction and extension. Aristotle, one of the greatest minds ever

to contemplate physical laws, was quite wrong in his views on falling bodies

and had to be corrected by Galileo in the 1590s. Galen, the greatest of ancient

physicians, was not allowed to study human cadavers and was quite wrong

in his anatomical and physiological conclusions. He had to be corrected by

Vesalius in 1543 and Harvey in 1628. Even Newton, the greatest of all

scientists, was wrong in his view of the nature of light, of the achromaticity

of lenses, and missed the existence of spectral lines. His masterpiece, the

laws of motion and the theory of universal gravitation, had to be modified

by Einstein in 1916.

Now we can see what makes mathematics unique. Only in mathematics

is there no significant correction—only extension. Once the Greeks had

developed the deductive method, they were correct in what they did, correct

for all time. Euclid was incomplete and his work has been extended enor-

mously, but it has not had to be corrected. His theorems are, every one of

them, valid to this day.

Ptolemy may have developed an erroneous picture of the planetary system,

vii
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but the system of trigonometry he worked out to help him with his calculations

remains correct forever.

Each great mathematician adds to what came previously, but nothing needs

to be uprooted. Consequently, when we read a book like A History Of
Mathematics, we get the picture of a mounting structure, ever taller and

broader and more beautiful and magnificent and with a foundation, moreover,

that is as untainted and as functional now as it was when Thales worked out

the first geometrical theorems nearly 26 centuries ago.

Nothing pertaining to humanity becomes us so well as mathematics. There,

and only there, do we touch the human mind at its peak.



Preface to the

Second Edition
This edition brings to a new generation and a broader spectrum of readers a

book that became a standard for its subject after its initial appearance in

1968. The years since then have been years of renewed interest and vigorous

activity in the history of mathematics. This has been demonstrated by the

appearance of numerous new publications dealing with topics in the field,

by an increase in the number of courses on the history of mathematics, and

by a steady growth over the years in the number of popular books devoted

to the subject. Lately, growing interest in the history of mathematics has

been reflected in other branches of the popular press and in the electronic

media. Boyer's contribution to the history of mathematics has left its mark

on all of these endeavors.

When one of the editors of John Wiley & Sons first approached me
concerning a revision of Boyer's standard work, we quickly agreed that

textual modifications should be kept to a minimum and that the changes and

additions should be made to conform as much as possible to Boyer's original

approach. Accordingly, the first twenty-two chapters have been left virtually

unchanged. The chapters dealing with the nineteenth century have been re-

vised; the last chapter has been expanded and split into two. Throughout, an

attempt has been made to retain a consistent approach within the volume and

to adhere to Boyer's stated aim of giving stronger emphasis on historical

elements than is customary in similar works.

The references and general bibliography have been substantially revised.

Since this work is aimed at English-speaking readers, many of whom are

unable to utilize Boyer's foreign-language chapter references, these have

been replaced by recent works in English. Readers are urged to consult the

General Bibliography as well, however. Immediately following the chapter

references at the end of the book, it contains additional works and further

bibliographic references, with less regard to language. The introduction to

that bibliography provides some overall guidance for further pleasurable

reading and for solving problems.

The initial revision, which appeared two years ago, was designed for

classroom use. The exercises found there, and in the original edition, have

been dropped in this edition, which is aimed at readers outside the lecture
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room. Users of this book interested in supplementary exercises are referred

to the suggestions in the General Bibliography.

I express my gratitude to Judith V. Grabiner and Albert Lewis for numerous

helpful criticisms and suggestions. I am pleased to acknowledge the fine

cooperation and assistance of several members of the Wiley editorial staff.

I owe immeasurable thanks to Virginia Beets for lending her vision at a

critical stage in the preparation of this manuscript. Finally, thanks are due

to numerous colleagues and students who have shared their thoughts about

the first edition with me. I hope they will find beneficial results in this revision.

Uta C. Merzbach
Georgetown, Texas

March 1991



Preface to the

First Edition

Numerous histories of mathematics have appeared during this century,

many of them in the English language. Some are very recent, such as

J. F. Scott's A History of Mathematics
1

; a new entry in the field, therefore,

should have characteristics not already present in the available books.

Actually, few of the histories at hand are textbooks, at least not in the

American sense of the word, and Scott's History is not one of them. It

appeared, therefore, that there was room for a new book—one that would

meet more satisfactorily my own preferences and possibly those of others.

The two-volume History of Mathematics by David Eugene Smith2 was

indeed written "for the purpose of supplying teachers and students with a

usable textbook on the history of elementary mathematics," but it covers

too wide an area on too low a mathematical level for most modern college

courses, and it is lacking in problems of varied types. Florian Cajori's

History of Mathematics
3

still is a very helpful reference work; but it is not

adapted to classroom use, nor is E. T. Bell's admirable The Development

of Mathematics. 4 The most successful and appropriate textbook today ap-

pears to be Howard Eves, An Introduction to the History of Mathematics,
5

which I have used with considerable satisfaction in at least a dozen classes

since it first appeared in 1953. I have occasionally departed from the ar-

rangement of topics in the book in striving toward a heightened sense of

historicalmindedness and have supplemented the material by further ref-

erence to the contributions of the eighteenth and nineteenth centuries

especially by the use of D. J. Struik, A Concise History of Mathematics. 6

The reader of this book, whether layman, student, or teacher of a course

in the history of mathematics, will find that the level of mathematical

background that is presupposed is approximately that of a college junior

"London: Taylor and Francis, 1958.
2Boston: Ginn and Company, 1923-1925.
3New York: Macmillan, 1931, 2nd edition.
4New York: McGraw-Hill, 1945, 2nd edition.
5New York: Holt, Rinehart and Winston, 1964, revised edition.
6New York: Dover Publications, 1967, 3rd edition.
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or senior, but the material can be perused profitably also by readers with

either stronger or weaker mathematical preparation. Each chapter ends

with a set of exercises that are graded roughly into three categories. Essay

questions that are intended to indicate the reader's ability to organize and

put into his own words the material discussed in the chapter are listed first.

Then follow relatively easy exercises that require the proofs of some of

the theorems mentioned in the chapter or their application to varied sit-

uations. Finally, there are a few starred exercises, which are either more
difficult or require specialized methods that may not be familiar to all

students or all readers. The exercises do not in any way form part of the

general exposition and can be disregarded by the reader without loss of

continuity.

Here and there in the text are references to footnotes, generally biblio-

graphical, and following each chapter there is a list of suggested readings.

Included are some references to the vast periodical literature in the field,

for it is not too early for students at this level to be introduced to the

wealth of material available in good libraries. Smaller college libraries may
not be able to provide all of these sources, but it is well for a student to

be aware of the larger realms of scholarship beyond the confines of his

own campus. There are references also to works in foreign languages,

despite the fact that some students, hopefully not many, may be unable

to read any of these. Besides providing important additional sources for

those who have a reading knowledge of a foreign language, the inclusion

of references in other languages may help to break down the linguistic

provincialism which, ostrichlike, takes refuge in the mistaken impression

that everything worthwhile appeared in, or has been translated into, the

English language.

The present work differs from the most successful presently available

textbook in a stricter adherence to the chronological arrangement and a

stronger emphasis on historical elements. There is always the temptation

in a class in history of mathematics to assume that the fundamental purpose

of the course is to teach mathematics. A departure from mathematical

standards is then a mortal sin, whereas an error in history is venial. I have

striven to avoid such an attitude, and the purpose of the book is to present

the history of mathematics with fidelity, not only to mathematical structure

and exactitude, but also to historical perspective and detail. It would be

folly, in a book of this scope, to expect that every date, as well as every

decimal point, is correct. It is hoped, however, that such inadvertencies

as may survive beyond the stage of page proof will not do violence to the

sense of history, broadly understood, or to a sound view of mathematical

concepts. It cannot be too strongly emphasized that this single volume in

no way purports to present the history of mathematics in its entirety. Such

an enterprise would call for the concerted effort of a team, similar to that

which produced the fourth volume of Cantor's Vorlesungen Ciber Geschichte

der Maihenumk in 1908 and brought the story down to 1799. In a work of
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modest scope the author must exercise judgment in the selection of the

materials to be included, reluctantly restraining the temptation to cite the

work of every productive mathematician; it will be an exceptional reader

who will not note here what he regards as unconscionable omissions. In

particular, the last chapter attempts merely to point out a few of the salient

characteristics of the twentieth century. In the field of the history of math-

ematics perhaps nothing is more to be desired than that there should appear

a latter-day Felix Klein who would complete for our century the type of

project Klein essayed for the nineteenth century, but did not live to finish.

A published work is to some extent like an iceberg, for what is visible

constitutes only a small fraction of the whole. No book appears until the

author has lavished time on it unstintingly and unless he has received

encouragement and support from others too numerous to be named in-

dividually. Indebtedness in my case begins with the many eager students

to whom I have taught the history of mathematics, primarily at Brooklyn

College, but also at Yeshiva University, the University of Michigan, the

University of California (Berkeley), and the University of Kansas. At the

University of Michigan, chiefly through the encouragement of Professor

Phillip S. Jones, and at Brooklyn College through the assistance of Dean
Walter H. Mais and Professors Samuel Borofsky and James Singer, I have

on occasion enjoyed a reduction in teaching load in order to work on the

manuscript of this book. Friends and colleagues in the field of the history

of mathematics, including Professor Dirk J. Struik of the Massachusetts

Institute of Technology, Professor Kenneth O. May at the University of

Toronto, Professor Howard Eves of the University of Maine, and Professor

Morris Kline at New York University, have made many helpful suggestions

in the preparation of the book, and these have been greatly appreciated.

Materials in the books and articles of others have been expropriated freely,

with little acknowledgment beyond a cold bibliographical reference, and

I take this opportunity to express to these authors my warmest gratitude.

Libraries and publishers have been very helpful in providing information

and illustrations needed in the text; in particular it has been a pleasure to

have worked with the staff of John Wiley & Sons. The typing of the final

copy, as well as of much of the difficult preliminary manuscript, was done

cheerfully and with painstaking care by Mrs. Hazel Stanley of Lawrence,

Kansas. Finally, I must express deep gratitude to a very understanding

wife, Dr. Marjorie N. Boyer, for h^r patience in tolerating disruptions

occasioned by the development of yet another book within the family.

Carl B. Boyer
Brooklyn, New York

January 1968
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1

Origins

Did you bring me a man who cannot number his fingers?

From the Book of the Dead

THE CONCEPT OF NUMBER

Mathematicians of the twentieth century carry on a highly sophisticated

intellectual activity which is not easily defined. Much of the subject that

today is known as mathematics is an outgrowth of thought that originally

centered in the concepts of number, magnitude, and form. Old-fashioned

definitions of mathematics as a "science of number and magnitude" are

no longer valid, but they do suggest the origins of the branches of math-

ematics. Primitive notions related to the concepts of number, magnitude,

and form can be traced back to the earliest days of the human race, and

adumbrations of mathematical notions can be found in forms of life that

may have antedated mankind by many millions of years. Darwin in The

Descent of Man (1871) noted that certain of the higher animals possess

such abilities as memory and imagination, and today it is even clearer that

the abilities to distinguish number, size, order, and form—rudiments of a

mathematical sense—are not exclusively the property of mankind. Exper-

iments with crows, for example, have shown that at least certain birds can

distinguish between sets containing up to four elements. An awareness of
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differences in patterns found in their environment is clearly present in many
lower forms of life, and this is akin to the mathematician's concern for

form and relationship.

At one time mathematics was thought to be directly concerned with the

world of our sense experience, and it was only in the nineteenth century

that pure mathematics freed itself from limitations suggested by observa-

liOO

Chronological scheme representing the extent of some ancient and medieval civilizations.

(Reproduced, with permission, from O. Neugebauer, The Exact Sciences in Antiquity.)



EARLY NUMBER BASES

tions of nature. It is clear that originally mathematics arose as a part of

everyday life, and if there is validity in the biological principle of the

"survival of the fittest/' the persistence of the human race probably is not

unrelated to the development of mathematical concepts. At first the prim-

itive notions of number, magnitude, and form may have been related to

contrasts rather than likenesses—the difference between one wolf and

many, the inequality in size of a minnow and a whale, the unlikeness of

the roundness of the moon and the straightness of a pine tree. Gradually

there must have arisen, out of the welter of chaotic experiences, the re-

alization that there are samenesses; and from this awareness of similarities

in number and form both science and mathematics were born. The differ-

ences themselves seem to point to likenesses, for the contrast between one

wolf and many, between one sheep and a herd, between one tree and a

forest suggests that one wolf, one sheep, and one tree have something in

common—their uniqueness. In the same way it would be noticed that

certain other groups, such as pairs, can be put into one-to-one correspond-

ence. The hands can be matched against the feet, the eyes, the ears, or

the nostrils. This recognition of an abstract property that certain groups

hold in common, and which we call number, represents a long step toward

modern mathematics. It is unlikely to have been the discovery of any one

individual or of any single tribe; it was more probably a gradual awareness

which may have developed as early in man's cultural development as the

use of fire, possibly some 300,000 years ago. That the development of the

number concept was a long and gradual process is suggested by the fact

that some languages, including Greek, have preserved in their grammar a

tripartite distinction between one and two and more than two, whereas

most languages today make only the dual distinction in "number" between

singular and plural. Evidently our very early ancestors at first counted only

to two, and any set beyond this level was stigmatized as "many." Even

today many people still count objects by arranging them into sets of two

each.

EARLY NUMBER BASES

The awareness of number ultimately became sufficiently extended and vivid

so that a need was felt to express the property in some way, presumably

at first in sign language only. The fingers on a hand can be readily used

to indicate a set of two or three or four or five objects, the number one

generally not being recognized at first as a true "number." By the use of

the fingers on both hands, collections containing up to ten elements could

be represented; by combining fingers and toes, one could count as high as

twenty. When the human digits were inadequate, heaps of stones could be

used to represent a correspondence with the elements of another set. Where
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nonliterate peoples used such a scheme of representation, they often piled

the stones in groups of five, for they had become familiar with quintuples

through observation of the human hand and foot. As Aristotle had noted

long ago, the widespread use today of the decimal system is but the result

of the anatomical accident that most of us are born with ten fingers and

ten toes. From the mathematical point of view it is somewhat inconvenient

that Cro-Magnon man and his descendants did not have either four or six

fingers on a hand.

Although historically finger counting, or the practice of counting by fives

and tens, seems to have come later than countercasting by twos and threes,

the quinary and decimal systems almost invariably displaced the binary

and ternary schemes. A study of several hundred tribes among the Amer-
ican Indians, for example, showed that almost one third used a decimal

base and about another third had adopted a quinary or a quinary-decimal

system; fewer than a third had a binary scheme, and those using a ternary

system constituted less than 1 percent of the group. The vigesimal system,

with twenty as a base, occurred in about 10 percent of the tribes.

Groups of stones are too ephemeral for preservation of information;

hence, prehistoric man sometimes made a number record by cutting

notches in a stick or a piece of bone. Few of these records remain today,

but in Czechoslovakia a bone from a young wolf was found which is deeply

incised with fifty-five notches. These are arranged in two series, with

twenty-five in the first and thirty in the second; within each series the

notches are arranged in groups of f\\c. Such archaeological discoveries

provide evidence that the idea of number is far older than such techno-

logical advances as the use of metals or of wheeled vehicles. It antedates

civilization and writing, in the usual sense of the word, for artifacts with

numerical significance, such as the bone described above, have survived

from a period of some 30,000 years ago. Additional evidence concerning

man's early ideas on number can be found in our language today. It appears

that our words ''eleven" and "twelve" originally meant "one over" and

"two over," indicating the early dominance of the decimal concept. How-
ever, it has been suggested that perhaps the Indo-Germanic word for eight

was derived from a dual form for four, and that the Latin novem for nine

may be related to novus (new) in the sense that it was the beginning of a

new sequence. Possibly such words can be interpreted as suggesting the

persistence for some time of a quaternary or an octonary scale, just as the

French quatre-vingt of today appears to be a remnant of a vigesimal system.

NUMBER LANGUAGE AND THE ORIGIN OF COUNTING

Man differs from other animals most strikingly in language, the develop-

ment of which was essential to the rise of abstract mathematical thinking;

yet words expressing numerical ideas were slow in arising. Number signs
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probably preceded number words, for it is easier to cut notches in a stick

than it is to establish a well-modulated phrase to identify a number. Had
the problem of language not been so difficult, rivals to the decimal system

might have made greater headway. The base five, for example, was one
of the earliest to leave behind some tangible written evidence; but by the

time that language became formalized, ten had gained the upper hand.

The modern languages of today are built almost without exception around
the base ten, so that the number thirteen, for example, is not described

as three and five and five, but as three and ten. The tardiness in the

development of language to cover abstractions such as number is seen also

in the fact that primitive numerical verbal expressions invariably refer to

specific concrete collections—such as "two fishes" or "two clubs"—and
later some such phrase would be adopted conventionally to indicate all

sets of two objects. The tendency for language to develop from the concrete

to the abstract is seen in many of our present-day measures of length. The
height of a horse is measured in "hands," and the words "foot" and "ell"

(or elbow) have similarly been derived from parts of the body.

The thousands of years required for man to separate out the abstract

concepts from repeated concrete situations testify to the difficulties that

must have been experienced in laying even a very primitive basis for math-

ematics. Moreover, there are a great many unanswered questions relating

to the origins of mathematics. It usually is assumed that the subject arose

in answer to practical needs, but anthropological studies suggest the pos-

sibility of an alternative origin. It has been suggested that the art of counting

arose in connection with primitive religious ritual and that the ordinal

aspect preceded the quantitative concept. In ceremonial rites depicting

creation myths it was necessary to call the participants onto the scene in

a specific order, and perhaps counting was invented to take care of this

problem. If theories of the ritual origin of counting are correct, the concept

of the ordinal number may have preceded that of the cardinal number.

Moreover, such an origin would tend to point to the possibility that count-

ing stemmed from a unique origin, spreading subsequently to other portions

of the earth. This view, although far from established, would be in harmony

with the ritual division of the integers into odd and even, the former being

regarded as male, the latter as female. Such distinctions were known to

civilizations in all corners of the earth, and myths regarding the male and

female numbers have been remarkably persistent.

The concept of whole number is one of the oldest in mathematics, and

its origin is shrouded in the mists of prehistoric antiquity. The notion of a

rational fraction, however, developed relatively late and was not in general

closely related to systems for the integers. Among nonliterate tribes there

seems to have been virtually no need for fractions. For quantitative needs

the practical person can choose units that are sufficiently small to obviate

the necessity of using fractions. Hence, there was no orderly advance from

binary to quinary to decimal fractions, and decimals were essentially the
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product of the modern age in mathematics, rather than of the ancient

period.

ORIGIN OF GEOMETRY

Statements about the origins of mathematics, whether of arithmetic or

geometry, are of necessity hazardous, for the beginnings of the subject are

older than the art of writing. It is only during the last half-dozen millennia,

in a passage that may have spanned thousands of millennia, that human
beings have been able to put their records and thoughts in written form.

For data about the prehistoric age we must depend on interpretations based

on the few surviving artifacts, on evidence provided by current anthro-

pology, and on a conjectural backward extrapolation from surviving doc-

uments. Herodotus and Aristotle were unwilling to hazard placing origins

earlier than the Egyptian civilization, but it is clear that the geometry they

had in mind had roots of greater antiquity. Herodotus held that geometry

had originated in Egypt, for he believed that the subject had arisen there

from the practical need for resurveying after the annual flooding of the

river valley. Aristotle argued that it was the existence of a priestly leisure

class in Egypt that had prompted the pursuit of geometry. We can look

upon the views of Herodotus and Aristotle as representing two opposing

theories of the beginnings of mathematics, one holding to an origin in

practical necessity, the other to an origin in priestly leisure and ritual. The
fact that the Egyptian geometers sometimes were referred to as "rope-

stretchers" (or surveyors) can be used in support of either theory, for the

ropes undoubtedly were used both in laying out temples and in realigning

the obliterated boundaries. We cannot confidently contradict either Her-

odotus or Aristotle on the motive leading to mathematics, but it is clear

that both men underestimated the age of the subject. Neolithic peoples

may have had little leisure and little need for surveying, yet their drawings

and designs suggest a concern for spatial relationships that paved the way
for geometry. Pottery, weaving, and basketry show instances of congruence

and symmetry, which are in essence parts of elementary geometry. More-

over, simple sequences in design, such as that in Fig. 1.1, suggest a sort

FIG. 1.1
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of applied group theory, as well as propositions in geometry and arithmetic.

The design makes it immediately obvious that the areas of triangles are to

each other as squares on a side, or, through counting, that the sums of

consecutive odd numbers, beginning from unity, are perfect squares. For

the prehistoric period there are no documents, hence it is impossible to

trace the evolution of mathematics from a specific design to a familiar

theorem. But ideas are like hardy spores, and sometimes the presumed

origin of a concept may be only the reappearance of a much more ancient

idea that had lain dormant.

The concern of prehistoric man for spatial designs and relationships may
have stemmed from his aesthetic feeling and the enjoyment of beauty of

form, motives that often actuate the mathematician of today. We would

like to think that at least some of the early geometers pursued their work

for the sheer joy of doing mathematics, rather than as a practical aid in

mensuration; but there are other alternatives. One of these is that ge-

ometry, like counting, had an origin in primitive ritualistic practice. The
earliest geometric results found in India constituted what were called the

Sulvasutras, or "rules of the cord." These were simple relationships that

apparently were applied in the construction of altars and temples. It is

commonly thought that the geometric motivation of the "rope-stretchers"

in Egypt was more practical that that of their counterparts in India; but it

has been suggested that both Indian and Egyptian geometry may derive

from a common source—a protogeometry that is related to primitive rites

in somewhat the same way in which science developed from mythology

and philosophy from theology. We must bear in mind that the theory of

the origin of geometry in a secularization of ritualistic practice is by no

means established. The development of geometry may just as well have

been stimulated by the practical needs of construction and surveying or by

an aesthetic feeling for design and order. We can make conjectures about

what led men of the Stone Age to count, to measure, and to draw. That

the beginnings of mathematics are older than the oldest civilizations is

clear. To go further and categorically identify a specific origin in space or

time, however, is to mistake conjecture for history. It is best to suspend

judgment on this matter and to move on to the safer ground of the history

of mathematics as found in the written documents that have come down
to us.
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Egypt

Sesostris . . . made a division of the soil of Egypt among the inhabitants. . . . If

the river carried away any portion of a man's lot, . . . the king sent persons to

examine, and determine by measurement the exact extent of the loss. . . . From
this practice, I think, geometry first came to be known in Egypt, whence it passed

into Greece.

Herodotus

EARLY RECORDS

It is customary to divide the past of mankind into eras and periods, with

particular reference to cultural levels and characteristics. Such divisions

are helpful, although we should always bear in mind that they are only a

framework arbitrarily superimposed for our convenience and that the sep-

arations in time they suggest are not unbridged gulfs. The Stone Age, a

long period preceding the use of metals, did not come to an abrupt end.

In fact, the type of culture that it represented terminated much later in

Europe than in certain parts of Asia and Africa. The rise of civilizations

characterized by the use of metals took place at first in river valleys, such

as those in Egypt, Mesopotamia, India, and China. Chronological records

of the civilizations in the valleys of the Indus and Yangtze rivers are quite

unreliable, but fairly dependable information is available about the peoples

living along the Nile and in the "fertile crescent" of the Tigris and Eu-
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phrates rivers. Before the end of the fourth millennium B.C. a primitive

form of writing was in use in both the Mesopotamian and Nile valleys.

There the early pictographic records, through a steady conventionalizing

process, evolved into a linear order of simpler symbols. In Mesopotamia,

where clay was abundant, wedge-shaped marks were impressed with a

stylus upon soft tablets which then were baked hard in ovens or by the

heat of the sun. This type of writing is known as cuneiform (from the Latin

word cuneus or wedge) because of the shape of the individual impressions.

The meaning to be transmitted in cuneiform was determined by the patterns

or arrangements of the wedge-shaped impressions. Cuneiform documents

had a high degree of permanence; hence, many thousands of such tablets

have survived from antiquity, many of them dating back some 4000 years.

Of course, only a small fraction of these touch on themes related to math-

ematics. Moreover, until about a century ago the message of the cuneiform

tablets remained muted because the script had not been deciphered. In

the 1870s significant progress in the reading of cuneiform writing was made
when it was discovered that the Behistun Cliff carried a trilingual account

of the victory of Darius over Cambyses, the inscriptions being in Persian,
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Reproduction (top) of a portion of the Moscow Papyrus showing the problem on the volume

of a frustum of a square pyramid, together with hieroglyphic transcription (below).
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Elamitic, and Babylonian. Knowledge of Persian consequently supplied a

key to the reading of Assyrian, a language closely related to the older

Babylonian. Even after this important discovery, decipherment and anal-

ysis of tablets with mathematical content proceeded slowly, and it was not

until the second quarter of the twentieth century that awareness of Me-
sopotamian mathematical contributions became appreciable, largely

through the pioneer work of Fr. Thureau-Dangin in France and Otto Neu-

gebauer in Germany and America.

HIEROGLYPHIC NOTATION

Egyptian written records meanwhile had fared better than Babylonian ones

in one respect. The trilingual Rosetta Stone, playing a role similar to that

of the Behistun Cliff, had been discovered in 1799 by the Napoleonic

expedition. This large tablet, found at Rosetta, an ancient harbor near

Alexandria, contained a message in three scripts: Greek, Demotic, and

Hieroglyphic. Knowing Greek, Champollion in France and Thomas Young
in England made rapid progress in deciphering the Egyptian hieroglyphics

(that is, "sacred carvings"). Inscriptions on tombs and monuments in Egypt

now could be read, although such ceremonial documents are not the best

source of information concerning mathematical ideas. Egyptian hiero-

glyphic numeration was easily disclosed. The system, at least as old as the

pyramids, dating some 5000 years ago, was based, as we might expect, on

the ten-scale. By the use of a simple iterative scheme and of distinctive

symbols for each of the first half-dozen powers of ten, numbers over a

million were carved on stone, wood, and other materials. A single vertical

stroke represented a unit, an inverted wicket or heel bone was used for

10, a snare somewhat resembling a capital letter C stood for 100, a lotus

flower for 1000, a bent finger for 10,000, a burbot fish resembling a polywog

for 100,000, and a kneeling figure (perhaps God of the Unending) for

1,000,000. Through repetition of these symbols the number 12,345, for

example, would appear as

rjjw oonn U|

Sometimes the smaller digits were placed on the left, and sometimes the

digits were arranged vertically. The symbols themselves occasionally were

reversed in orientation, so that the snare might be convex toward either

the right or the left.

Egyptian inscriptions indicate familiarity with large numbers at an early

date. A museum at Oxford has a royal mace more than 5000 years old on

which a record of 120,000 prisoners and 1,422,000 captive goats appears. 1

These figures may have been exaggerated, but from other considerations

'J. E. Quibell, Hierakonpolis (London: B. Quaritch, 1900). See especially Plate 26B.
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it is nevertheless clear that the Egyptians were commendably accurate in

counting and measuring. The pyramids exhibit such a high degree of pre-

cision in construction and orientation that ill-founded legends have grown
up around them. The suggestion, for example, that the ratio of the perim-

eter of the base of the Great Pyramid (of Khufu or Cheops) to the height

was consciously set at In is clearly inconsistent with what we know of the

geometry of the Egyptians. Nevertheless, the pyramids and passages within

them were so precisely oriented that attempts are made to determine their

age from the known rate of change of the position of the polestar.

The Egyptians early had become interested in astronomy and had ob-

served that the annual flooding of the Nile took place shortly after Sirius,

the dogstar, rose in the east just before the sun. By noticing that these

heliacal risings of Sirius, the harbinger of the flood, were separated by 365

days, the Egyptians established a good solar calendar made up of twelve

months of thirty days each and five extra feast days. But this civil year was

too short by a quarter of a day, hence the seasons advanced about one

day every four years until, after a cycle of about 1460 years, the seasons

again were in tune with the calendar. Inasmuch as it is known through the

Roman scholar Censorinus, author of De die natale (a.d. 238), that the

calendar was in line with the seasons in a.d. 139, it has been suggested

through extrapolation backward that the calendar was instituted in the year

4241 B.C., just three cycles earlier. More precise calculations (based on

the fact that the year is not quite 365? days long) have modified the date

to 4228, but other scholars feel that the backward extrapolation beyond

two cycles is unwarranted and suggest instead an origin around 2773 B.C.

AHMES PAPYRUS

There is a limit to the extent of mathematical information that can be

inferred from tombstones and calendars, and our picture of Egyptian con-

tributions would be sketchy in the extreme if we had to depend on cere-

monial and astronomical material only. Mathematics is far more than

counting and measuring, the aspects generally featured in hieroglyphic

inscriptions. Fortunately we have other sources of information. There are

a number of Egyptian papyri that somehow have survived the ravages of

time over some three and a half millennia. The most extensive one of a

mathematical nature is a papyrus roll about 1 foot high and some 18 feet

long which now is in the British Museum (except for a few fragments in

the Brooklyn Museum). It had been bought in 1858 in a Nile resort town

by a Scottish antiquary, Henry Rhind; hence, it often is known as the

Rhind Papyrus or, less frequently, as the Ahmes Papyrus in honor of the

scribe by whose hand it had been copied in about 1650 B.C. The scribe

tells us that the material is derived from a prototype from the Middle

Kingdom of about 2000 to 1800 B.C., and it is possible that some of this
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knowledge may have been handed down from Imhotep, the almost leg-

endary architect and physician to the Pharaoh Zoser, who supervised the

building of his pyramid about 5000 years ago. In any case, Egyptian math-

ematics seems to have stagnated for some 2000 years after a rather aus-

picious beginning.

The numerals and other material in the Rhind Papyrus are not written

in the hieroglyphic forms described above, but in a more cursive script

better adapted to the use of pen and ink on prepared papyrus leaves and

known as hieratic ("sacred," to distinguish it from the still later demotic

or popular script). Numeration remains decimal, but the tedious repetitive

principle of hieroglyphic numeration has been replaced by the introduction

of ciphers or special signs to represent digits and multiples of powers of

ten. Four, for example, usually is no longer represented by four vertical

strokes, but by a horizontal bar; and seven is not written as seven strokes,

but as a single cipher \ resembling a sickle. In hieroglyphic the number
twenty-eight had appeared as nnilli, but in hieratic it is simply "a. Note

that the cipher - for the smaller digit eight (or two fours) appears on the

left rather than on the right. The principle of cipherization, introduced by

the Egyptians some 4000 years ago and used in the Rhind Papyrus, rep-

resented an important contribution to numeration, and it is one of the

factors that makes our own system in use today the effective instrument

that it is.

UNIT FRACTIONS

Men of the Stone Age had no use for fractions, but with the advent of

more advanced cultures during the Bronze Age the need for the fraction

concept and for fractional notations seems to have arisen. Egyptian hier-

oglyphic inscriptions have a special notation for unit fractions—that is,

fractions with unit numerators. The reciprocal of any integer was indicated

simply by placing over the notation for the integer an elongated oval sign.

The fraction J thus appeared as
J|jj,

and 50 was written as on. In the hieratic

notation, appearing in papyri, the elongated oval is replaced by a dot,

which is placed over the cipher for the corresponding integer (or over the

right-hand cipher in the case of the reciprocal of a multidigit number). In

the Ahmes Papyrus, for example, the fraction 4 appears as *=, and 2b is

written as x. Such unit fractions were freely handled in Ahmes' day, but

the general fraction seems to have been an enigma to the Egyptians. They

felt comfortable with the fraction 3, for which they had a special hieratic

sign *•; occasionally, they used special signs for fractions of the form

nl(n + 1), the complements of the unit fractions. To the fraction I the

Egyptians assigned a special role in arithmetic processes, so that in finding

one third of a number they first found two thirds of it and subsequently
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took half of the result! They knew and used the fact that two thirds of the

unit fraction lip is the sum of the two unit fractions l/2p and l/6p; they

were also aware that double the unit fraction 1/2/? is the unit fraction

\lp. However, it looks as though, apart from the fraction §, the Egyptians

regarded the general proper rational fraction of the form mln not as an

elementary "thing" but as part of an uncompleted process. Where today

we think of i as a single irreducible fraction, Egyptian scribes thought of

it as reducible to the sum of the three unit fractions i and i and A. To
facilitate the reduction of "mixed" proper fractions to the sum of unit

fractions, the Rhind Papyrus opens with a table expressing 21n as a sum
of unit fractions for all odd values of n from 5 to 101. The equivalent of

f is given as J and tV; A is written as £ and &; and A is expressed as ^ and

so. The last item in the table decomposes t&t into tot and 202 and 303 and

606. It is not clear why one form of decomposition was preferred to another

of the indefinitely many that are possible. At one time it was suggested

that some of the items in the 21n table were found by using the equivalent

of the formula

2 1 1

or from

n n + 1 n(n + 1)

2 2

1 1

p-q p + q p + q
P

2
q

2

Yet neither of these procedures yields the combination for A that appears

in the table. Recently it has been suggested that the choice in most cases

was dictated by the Egyptian preference for fractions derived from the

"natural" fractions \ and 3 and § by successive halving. Thus if one wishes

to express A as a sum of unit fractions, he might well begin by taking half

of A and then seeing if to the result, 30, he can add a unit fraction to form

A; or he could use the known relationship

2 1 J_ _1_

3p 2p 6p

to reach the same result A = A + A. One problem in the Rhind Papyrus

specifically mentions the second method for finding two thirds of i and

asserts that one proceeds likewise for other fractions. Passages such as this

indicate that the Egyptians had some appreciation of general rules and

methods above and beyond the specific case at hand, and this represents

an important step in the development of mathematics. For the decompo-

sition of § the halving procedure is not appropriate; but by beginning with

a third of \ one finds the decomposition given by Ahmes, § = J + A. In
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the case of ? one applies the halving procedure twice to \ to reach the result

1 = i + A; successive halving yields also the Annies decomposition f\ =

J + A + jfa> The Egyptian obsession with halving and taking a third is

seen in the last entry in the table 21n for n = 101, for it is not at all clear

to us why the decomposition 21n = \ln + \l2n + l/3/i + 1/2 • 3 • n is

betterthan \ln + \ln. Perhaps one of the objects of the 21n decomposition

was to arrive at unit fractions smaller than \ln.

ARITHMETIC OPERATIONS

The 21n table in the Ahmes Papyrus is followed by a short nl 10 table for

n from 1 to 9, the fractions again being expressed in terms of the favorites

—

unit fractions and the fraction §. The fraction A, for example, is broken

into & and £ and i Ahmes had begun his work with the assurance that it

would provide a "complete and thorough study of all things . . . and the

knowledge of all secrets," and therefore the main portion of the material,

following the 21n and rc/10 tables, consists of eighty-four widely assorted

problems. The first six of these require the division of one or two or six

or seven or eight or nine loaves of bread among ten men, and the scribe

makes use of the nl 10 table that he has just given. In the first problem the

scribe goes to considerable trouble to show that it is correct to give to each

of the ten men one tenth of a loaf! If one man receives A loaf, two men
will receive i% or i and four men will receive § of a loaf or J -I- A of a loaf.

Hence eight men will receive § + A of a loaf or § + A + do of a loaf, and

eight men plus two men will receive § + 5 + to + 3o, or a whole loaf.

Ahmes seems to have had a kind of equivalent to our least common multiple

which enabled him to complete the proof. In the division of seven loaves

among ten men, the scribe might have chosen \ + £ of a loaf for each,

but the predilection for § led him instead to § and A of a loaf for each.

The fundamental arithmetic operation in Egypt was addition, and our

operations of multiplication and division were performed in Ahmes' day

through successive doubling, or "duplation." Our own word "multiplica-

tion" or manifold is, in fact, suggestive of the Egyptian process. A mul-

tiplication of, say, 69 by 19 would be performed by adding 69 to itself to

obtain 138, then adding this to itself to reach 276, applying duplation again

to get 552, and once more to obtain 1 104, which is, of course, sixteen times

69. Inasmuch as 19 = 16 + 2 + 1, the result of multiplying 69 by 19 is

1104 + 138 + 69, that is, 1311. Occasionally a multiplication by ten also

was used, for this was a natural concomitant of the decimal hieroglyphic

notation. Multiplication of combinations of unit fractions was also a part

of Egyptian arithmetic. Problem 13 in the Ahmes Papyrus, for example,

asks for the product of A + rh and 1 + i + \; the result is correctly found

to be J. For division the duplation process is reversed, and the divisor is
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successively doubled instead of the multiplicand. That the Egyptians had
developed a high degree of artistry in applying the duplation process and
the unit fraction concept is apparent from the calculations in the problems

of Ahmes. Problem 70 calls for the quotient when 100 is divided by 7 +
i + i + 4; the result, 12 + § + A + rfe, is obtained as follows. Doubling

the divisor successively, we first obtain 15 + J + i, then 31 + £, and finally

63, which is eight times the divisor. Moreover, two thirds of the divisor is

known to be 5 + \. Hence, the divisor when multiplied by 8 + 4 + § will

total 99j, which is i short of the product 100 that is desired. Here a clever

adjustment was made. Inasmuch as eight times the divisor is 63, it follows

that the divisor when multiplied by & will produce \. From the 21n table

one knows that ^ is A + lie, hence the desired quotient is 12 + § +

A + ih- Incidentally, this procedure makes use of a commutative principle

in multiplication, with which the Egyptians evidently were familiar.

Many of Ahmes' problems show a knowledge of manipulations of pro-

portions equivalent to the "rule of three." Problem 72 calls for the number
of loaves of bread of "strength" 45 which are equivalent to 100 loaves of

"strength" 10, and the solution is given as 100/10 x 45, or 450 loaves. In

bread and beer problems the "strength" or pesu is the reciprocal of the

grain density, being the quotient of the number of loaves or units of volume

divided by the amount of grain. Bread and beer problems are numerous

in the Ahmes Papyrus. Problem 63, for example, requires the division of

700 loaves of bread among four recipients if the amounts they are to receive

are in the continued proportion f :i:i: i- The solution is found by taking

the ratio of 700 to the sum of the fractions in the proportion. In this case

the quotient of 700 divided by lj is found by multiplying 700 by the recip-

rocal of the divisor, which is h + A. The result is 400; by taking § and i

and i and i of this, the required shares of bread are found.

ALGEBRAIC PROBLEMS

The Egyptian problems so far described are best classified as arithmetic,

but there are others that fall into a class to which the term algebraic is

appropriately applied. These do not concern specific concrete objects, such

as bread and beer, nor do they call for operations on known numbers.

Instead they require the equivalent of solutions of linear equations of the

form x + ax = b or x + ax + bx = c, where a and b and c are known
and x is unknown. The unknown is referred to as "aha," or heap. Problem

24, for instance, calls for the value of heap if heap and a seventh of heap

is 19. The solution given by Ahmes is not that of modern textbooks, but

is characteristic of a procedure now known as the "method of false posi-

tion," or the "rule of false." A specific value, most likely a false one, is

assumed for heap, and the operations indicated on the left-hand side of

the equality sign are performed on this assumed number. The result of
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these operations then is compared with the result desired, and by the use

of proportions the correct answer is found. In problem 24 the tentative

value of the unknown is taken as 7, so that x + \x is 8, instead of the

desired answer, which was 19. Inasmuch as 8(2 + \ + £) = 19, one must

multiply 7 by 2 + J + I to obtain the correct heap; Ahmes found the

answer to be 16 + i + J. Ahmes then "checked" his result by showing

that if to 16 + £ + i one adds a seventh of this (which is 2 + i + i), one

does indeed obtain 19. Here we see another significant step in the devel-

opment of mathematics, for the check is a simple instance of a proof.

Although the method of false position was generally used by Ahmes, there

is one problem (Problem 30) in which x + \x + \x + )x = 37 is solved

by factoring the left-hand side of the equation and dividing 37 by 1 + §

+ i + J, the result being 16 + 5^ + 579 + 776.

Many of the "aha" calculations in the Rhind Papyrus evidently are

practice exercises for young students. Although a large proportion of them
are of a practical nature, in some places the scribe seems to have had

puzzles or mathematical recreations in mind. Thus Problem 79 cites only

"seven houses, 49 cats, 343 mice, 2401 ears of spelt, 16807 hekats." It is

presumed that the scribe was dealing with a problem, perhaps quite well

known, in which in each of seven houses there are seven cats each of which

eats seven mice, each of which would have eaten seven ears of grain, each

of which would have produced seven measures of grain. The problem

evidently called not for the practical answer, which would be the number
of measures of grain that were saved, but for the impractical sum of the

numbers of houses, cats, mice, ears of spelt, and measures of grain. This

bit of fun in the Ahmes Papyrus seems to be a forerunner of our familiar

nursery rhyme:

As I was going to St. Ives,

I met a man with seven wives;

Every wife had seven sacks,

Every sack had seven cats,

Every cat had seven kits.

Kits, cats, sacks, and wives,

How many were going to St. Ives?

GEOMETRIC PROBLEMS

The Greek historian Herodotus tells us that the obliteration of boundaries

in the overflow of the Nile emphasized the need for surveyors. The ac-

complishments of the "rope-stretchers" of Egypt evidently were admired

b\ Democritus, an accomplished mathematician and one of the founders

of an atomic theory, and today their achievements seem to be overvalued,

in part as a result of the admirable accuracy of construction of the pyramids.
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It often is said that the ancient Egyptians were familiar with the Pytha-

gorean theorem, but there is no hint of this in the papyri that have come
down to us. There are nevertheless some geometric problems in the Ahmes
Papyrus. Problem 51 of Ahmes shows that the area of an isosceles triangle

was found by taking half of what we would call the base and multiplying

this by the altitude. Ahmes justified his method of finding the area by

suggesting that the isosceles triangle can be thought of as two right triangles,

one of which can be shifted in position, so that together the two triangles

form a rectangle. The isosceles trapezoid is similarly handled in Problem

52, in which the larger base of a trapezoid is 6, the smaller base is 4, and

the distance between them is 20. Taking half the sum of the bases, "so as

to make a rectangle," Ahmes multiplied this by 20 to find the area. In

transformations such as these, in which isosceles triangles and trapezoids

are converted into rectangles, we see the beginnings of a theory of con-

gruence and of the idea of proof in geometry, but the Egyptians did not

carry their work further. A serious deficiency in their geometry was the

lack of a clear-cut distinction between relationships that are exact and those

that are approximations only. A surviving deed from Edfu, dating from a

period some 1500 years after Ahmes, gives examples of triangles, trape-

zoids, rectangles, and more general quadrilaterals; the rule for finding the

area of the general quadrilateral is to take the product of the arithmetic

means of the opposite sides. Inaccurate though the rule is, the author of

the deed deduced from it a corollary—that the area of a triangle is half

the sum of two sides multiplied by half the third side. This is a striking

instance of the search for relationships among geometric figures, as well

as an early use of the zero concept as a replacement for a magnitude in

geometry.

The Egyptian rule for finding the area of a circle has long been regarded

as one of the outstanding achievements of the time. In Problem 50 the

scribe Ahmes assumed that the area of a circular field with a diameter of

nine units is the same as the area of a square with a side of eight units. If

we compare this assumption with the modern formula A = nr 2
, we find

the Egyptian rule to be equivalent to giving n a value of about 3g, a

commendably close approximation; but here again we miss any hint that

Ahmes was aware that the areas of his circle and square were not exactly

equal. It is possible that Problem 48 gives a hint to the way in which the

Egyptians were led to their area of the circle. In this problem the scribe

formed an octagon from a square of side nine units by trisecting the sides

and cutting off the four corner isosceles triangles, each having an area of

4i units. The area of the octagon, which does not differ greatly from that

of a circle inscribed within the square, is sixty-three units, which is not far

removed from the area of a square with eight units on a side. That the

number 4(8/9)
2 did indeed play a role comparable to our constant n seems

to be confirmed by the Egyptian rule for the circumference of a circle,

according to which the ratio of the area of a circle to the circumference is
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the same as the ratio of the area of the circumscribed square to its perim-

eter. This observation represents a geometric relationship of far greater

precision and mathematical significance than the relatively good approxi-

mation for n. Degree of accuracy in approximation is, after all, not a good
measure of either mathematical or architectural achievement, and we
should not overemphasize this aspect of Egyptian work. Recognition by

the Egyptians of interrelationships among geometric figures, on the other

hand, has too often been overlooked, and yet it is here that they came
closest in attitude to their successors, the Greeks. No theorem or formal

proof is known in Egyptian mathematics, but some of the geometric com-
parisons made in the Nile Valley, such as those on the perimeters and

areas of circles and squares, are among the first exact statements in history

concerning curvilinear figures.

A TRIGONOMETRIC RATIO

Problem 56 of the Rhind Papyrus is of special interest in that it contains

rudiments of trigonometry and a theory of similar triangles. In the con-

struction of the pyramids it had been essential to maintain a uniform slope

for the faces, and it may have been this concern that led the Egyptians to

introduce a concept equivalent to the cotangent of an angle. In modern
technology it is customary to measure the steepness of a straight line

through the ratio of the "rise" to the "run." In Egypt it was customary to

use the reciprocal of this ratio. There the word "seqt" meant the horizontal

departure of an oblique line from the vertical axis for every unit change

in the height. The seqt thus corresponded, except for the units of mea-

surement, to the batter used today by architects to describe the inward

slope of a masonry wall or pier. The vertical unit of length was the cubit;

but in measuring the horizontal distance, the unit used was the "hand,"

of which there were seven in a cubit. Hence, the seqt of the face of a

pyramid was the ratio of run to rise, the former measured in hands, the

latter in cubits. In Problem 56 one is asked to find the seqt of a pyramid

that is 250 ells or cubits high and has a square base 360 ells on a side. The
scribe first divided 360 by 2 and then divided the result by 250, obtaining

J + i + & in ells. Multiplying the result by 7, he gave the seqt as 52s in

hands per ell. In other pyramid problems in the Ahmes Papyrus the seqt

turns out to be 5j, agreeing somewhat better with that of the great Cheops

Pyramid, 440 ells wide and 280 high, the seqt being 5| hands per ell.

There are many stories about presumed geometric relationships among
dimensions in the Great Pyramid, some of which are patently false. For

instance, the story that the perimeter of the base was intended to be

precisely equal to the circumference of a circle of which the radius is the

height of the pyramid is not in agreement with the work of Ahmes. The
ratio of perimeter to height is indeed very close to V, which is just twice



MOSCOW PAPYRUS 19

the value of ¥ often used today for n\ but we must recall that the Ahmes
value for n is about 3£, not 3f That Ahmes' value was used also by other

Egyptians is confirmed in a papyrus roll from the twelfth dynasty (the

Kahun Papyrus, now in London) in which the volume of a cylinder is found
by multiplying the height by the area of the base, the base being determined
according to Ahmes' rule.

MOSCOW PAPYRUS

Much of our information about Egyptian mathematics has been derived

from the Rhind or Ahmes Papyrus, the most extensive mathematical doc-

ument from ancient Egypt; but there are other sources as well. Besides

the Kahun Papyrus, already mentioned, there is a Berlin Papyrus of the

same period, two wooden tablets from Akhmim (Cairo) of about 2000

B.C., a leather roll containing lists of unit fractions and dating from the

later Hyksos period, and an important papyrus, known as the Golenischev

or Moscow Papyrus, purchased in Egypt in 1893. The Moscow Papyrus is

about as long as the Rhind Papyrus—about 18 feet—but it is only one

fourth as wide, the width being about 3 inches. It was written, less carefully

than the work of Ahmes, by an unknown scribe of the twelfth dynasty (ca.

1890 B.C.). It contains twenty-five examples, mostly from practical life and

not differing greatly from those of Ahmes, except for two that have special

significance. Associated with Problem 14 in the Moscow Papyrus is a figure

that looks like an isosceles trapezoid (see Fig. 2.1), but the calculations

associated with it indicate that a frustum of a square pyramid is intended.

Above and below the figure are signs for two and four respectively, and

within the figure are the hieratic symbols for six and fifty-six. The directions

alongside make it clear that the problem calls for the volume of a frustum

of a square pyramid six units high if the edges of the upper and lower bases

are two and four units respectively. The scribe directs one to square the

numbers two and four and to add to the sum of these squares the product

of two and four, the result being twenty-eight. This result is then multiplied

by a third of six; and the scribe concludes with the words, "See, it is 56;

56

4

FIG. 2.1
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FIG. 2.2

you have found it correctly." That is, the volume of the frustum has been

calculated in accordance with the modern formula V = h(a 2 + ab + b 2)i

3, where h is the altitude and a and b are the sides of the square bases.

Nowhere is this formula written out, but in substance it evidently was

known to the Egyptians. If, as in the deed from Edfu, one takes b = 0,

the formula reduces to the familiar formula, one-third the base times the

altitude, for the volume of a pyramid. How these results were arrived at

by the Egyptians is not known. An empirical origin for the rule on volume

of a pyramid seems to be a possibility, but not for the volume of the frustum.

For the latter a theoretical basis seems more likely; and it has been sug-

gested that the Egyptians may have proceeded here as they did in the cases

of the isosceles triangle and the isosceles trapezoid—they may in thought

have broken the frustum into parallelepipeds, prisms, and pyramids. Upon
replacing the pyramids and prisms by equal rectangular blocks, a plausible

grouping of the blocks leads to the Egyptian formula. One could, for

example, have begun with a pyramid having a square base and with the

vertex directly over one of the base vertices. An obvious decomposition

of the frustum would be to break it into four parts as in Fig. 2.2—

a

rectangular parallelepiped having a volume b 2
h, two triangular prisms, each

with a volume of b(a - b)hll, and a pyramid of volume (a - b) 2h/3.

The prisms can be combined into a rectangular parallelepiped with di-

mensions b and a - b and h; and the pyramid can be thought of as a

rectangular parallelepiped with dimensions a - b and a - b and to/3.

Upon cutting up the tallest parallelepipeds so that all altitudes are /i/3,

one can easily arrange the slabs so as to form three layers, each of altitude

to/3, and having cross-sectional areas of a 2 and ab and b 2 respectively.

Problem 10 in the Moscow Papyrus presents a more difficult question

of interpretation than does Problem 14. Here the scribe asks for the surface
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area of what looks like a basket with a diameter of 4i He proceeds as

though he were using the equivalent of a formula S = (1 - l)\2x) • jc,

where x is 4i, obtaining an answer of 32 units. Inasmuch as (1 -
|)

2
is the

Egyptian approximation of rc/4, the answer 32 would correspond to the

surface of a hemisphere of diameter 4i; and this was the interpretation

given to the problem in 1930. 2 Such a result, antedating the oldest known
calculation of a hemispherical surface by some 1500 years, would have
been amazing, and it seems, in fact, to have been too good to be true.

Later analysis3 indicates that the "basket" may have been a roof—some-
what like that of a quonset hut in the shape of a half-cylinder of diameter

4i and length 4i. The calculation in this case calls for nothing beyond
knowledge of the length of a semicircle; and the obscurity of the text makes
it admissible to offer still more primitive interpretations, including the

possibility that the calculation is only a rough estimate of the area of a

domelike barn roof. In any case, we seem to have here an early estimation

of a curvilinear surface area.

MATHEMATICAL WEAKNESSES

For many years it had been assumed that the Greeks had learned the

rudiments of geometry from the Egyptians, and Aristotle argued that ge-

ometry had arisen in the Nile Valley because the priests there had the

leisure to develop theoretical knowledge. That the Greeks did borrow some
elementary mathematics from Egypt is probable, for the use of unit frac-

tions persisted in Greece and Rome well into the Medieval period, but

evidently they exaggerated the extent of their indebtedness. The knowledge

indicated in extant Egyptian papyri is mostly of a practical nature, and

calculation was the chief element in the questions. Where some theoretical

elements appear to enter, the purpose may have been to facilitate technique

rather than understanding. Even the once-vaunted Egyptian geometry

turns out to have been mainly a branch of applied arithmetic. Where
elementary congruence relations enter, the motive seems to be to provide

mensurational devices rather than to gain insight. The rules of calculation

seldom are motivated, and they concern specific concrete cases only. The
Ahmes and Moscow papyri, our two chief sources of information, may
have been only manuals intended for students, but they nevertheless in-

dicate the direction and tendencies in Egyptian mathematical instruction;

further evidence provided by inscriptions on monuments, fragments of

other mathematical papyri, and documents from related scientific fields

serves to confirm the general impression. It is true that our two chief

2See W. W. Struve, "Mathematischer Papyrus des Staatlichen Museums der Schonen

Kunste in Moskau," Quellen und Studien zur Geschichte der Mathematik, Part A, Quellen,

I (1930).
3For opposing views see van der Waerden 1963, p. 34, and Gillings 1972.

Archbishop Mitty Hich School Library
San Jose, California
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mathematical papyri are from a relatively early period, a thousand years

before the rise of Greek mathematics, but Egyptian mathematics seems to

have remained remarkably uniform throughout its long history. It was at

all stages built around the operation of addition, a disadvantage that gave

to Egyptian computation a peculiar primitivity combined with occasionally

astonishing complexity. The fertile Nile Valley has been described as the

world's largest oasis in the world's largest desert. Watered by one of the

most gentlemanly of rivers and geographically shielded to a great extent

from foreign invasion, it was a haven for peace-loving people who pursued,

to a large extent, a calm and unchallenged way of life. Love of the ben-

eficent gods, respect for tradition, and preoccupation with death and the

needs of the dead all encouraged a high degree of stagnation. Geometry
may have been a gift of the Nile, as Herodotus believed, but the Egyptians

did little with the gift. The mathematics of Ahmes was that of his ancestors

and of his descendants. For more progressive mathematical achievements

one must look to the more turbulent river valley known as Mesopotamia.
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Mesopotamia

How much is one god beyond the other god?

An Old Babylonian astronomical text

CUNEIFORM RECORDS

The fourth millennium before our era was a period of remarkable cultural

development, bringing with it the use of writing, of the wheel, and of

metals. As in Egypt during the first dynasty, which began toward the end

of this wonderful millennium, so also in the Mesopotamian valley there

was at the time a high order of civilization. There the Sumerians had built

homes and temples decorated with artistic pottery and mosaics in geometric

patterns. Powerful rulers united the local principates into an empire which

completed vast public works, such as a system of canals to irrigate the land

and to control flooding. The Biblical account of the Noachian flood had

an earlier counterpart in the legend concerning the Sumerian hero Utnap-

ischtum and the flooding of the region between the Tigris and Euphrates

rivers, where the overflow of the rivers was not predictable, as was the

inundation of the Nile Valley. The Bible tells us that Abraham came from

the city of Ur, a Sumerian settlement where the Euphrates emptied into

the Persian Gulf, for at that time the two rivers did not join, as they now

do, before reaching the Gulf. The cuneiform pattern of writing that the

Sumerians had developed during the fourth millennium, long before the

23
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days of Abraham, may have been the earliest form of written communi-
cation, for it probably antedates the Egyptian hieroglyphic, which may
have been a derivative. Although they have nothing in common, it is an

interesting coincidence that the origins of writing and of wheeled vehicles

are roughly coeval.

The Mesopotamian civilizations of antiquity often are referred to as

Babylonian, although such a designation is not strictly correct. The city of

Babylon was not at first, nor was it always at later periods, the center of

the culture associated with the two rivers, but convention has sanctioned

the informal use of the name "Babylonian" for the region during the

interval from about 2000 to roughly 600 B.C. When in 538 B.C. Babylon

fell to Cyrus of Persia, the city was spared, but the Babylonian empire had

come to an end. "Babylonian" mathematics, however, continued through

the Seleucid period in Syria almost to the dawn of Christianity. Occasionally

the area between the rivers is known also as Chaldea, because the Chal-

deans (or Kaldis), originally from southern Mesopotamia, were for a time

dominant, chiefly during the late seventh century B.C., throughout the

region between the rivers. Then, as today, the Land of the Two Rivers

was open to invasions from many directions, making of the Fertile Crescent

a battlefield with frequently changing hegemony. One of the most signif-

icant of the invasions was that by the Semitic Akkadians under Sargon I

(ca. 2276-2221 B.C.), or Sargon the Great. He established an empire that

extended from the Persian Gulf in the south to the Black Sea in the north,

and from the steppes of Persia on the east to the Mediterranean Sea on

the west. Under Sargon there was begun a gradual absorption by the

invaders of the indigenous Sumerian culture, including the cuneiform

script. Later invasions and revolts brought varying racial strains—Am-
morites, Kassites, Elamites, Hittites, Assyrians, Medes, Persians, and oth-

ers—to political power at one time or another in the valley, but there

remained in the area a sufficiently high degree of cultural unity to justify

referring to the civilization simply as Mesopotamian. In particular, the use

of cuneiform script formed a strong bond. Laws, tax accounts, stories,

school lessons, personal letters—these and many other records were im-

pressed on soft clay tablets with a stylus, and the tablets then were baked

in the hot sun or in ovens. Such written documents, fortunately, were far

less vulnerable to the ravages of time than were Egyptian papyri; hence,

there is available today a much larger body of evidence about Mesopo-
tamian than about Nilotic mathematics. From one locality alone, the site

of ancient Nippur, we have some 50,000 tablets. The university libraries

at Columbia, Pennsylvania, and Yale, among others, have large collections

of ancient tablets from Mesopotamia, some of them mathematical. Despite

the availability of documents, however, it was the Egyptian hieroglyphic

rather than the Babylonian cuneiform that first was deciphered in modern
times. Some progress in the reading of Babylonian script had been made
early in the nineteenth century by Grotefend, but it was only during the
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second quarter of the twentieth century that substantial accounts of Me-
sopotamian mathematics began to appear in histories of antiquity.

The early use of writing in Mesopotamia is attested by hundreds of clay

tablets found in Uruk and dating from about 5000 years ago. By this time

picture writing had reached the point where conventionalized stylized forms

were used for many things: ~ for water,O for eye, and combinations of

these to indicate weeping. Gradually the number of signs became smaller,

so that of some 2000 Sumerian signs originally used only a third remained

by the time of the Akkadian conquest. Primitive drawings gave way to

combinations of wedges: water became^ and eye £Y»-. At first the scribe

wrote from top to bottom in columns from right to left; later, for conven-

ience, the table was rotated counterclockwise through 90°, and the scribe

wrote from left to right in horizontal rows from top to bottom. The stylus,

which formerly had been a triangular prism, was replaced by a right circular

cylinder—or, rather, two cylinders of unequal radius. During the earlier

days of the Sumerian civilization, the end of the stylus was pressed into

the clay vertically to represent ten units and obliquely to represent a unit,

using the smaller stylus; similarly, an oblique impression with the larger

stylus indicated sixty units and a vertical impression indicated 3600 units.

Combinations of these were used to represent intermediate numbers.

As the Akkadians adopted the Sumerian form of writing, lexicons were

compiled giving equivalents in the two tongues, and forms of words and

numerals became less varied. Thousands of tablets from about the time of

the Hammurabi dynasty (ca. 1800-1600 B.C.) illustrate a number system

that had become well established. The decimal system, common to most

civilizations, both ancient and modern, had been submerged in Mesopo-

tamia under a notation that made fundamental the base sixty. Much has

been written about the motives behind this change; it has been suggested

that astronomical considerations may have been instrumental or that the

sexagesimal scheme may have been the natural combination of two earlier

schemes, one decimal and the other using the base six. It appears more

likely, however, that the base sixty was consciously adopted and legalized

in the interests of metrology, for a magnitude of sixty units can be sub-

divided easily into halves, thirds, fourths, fifths, sixths, tenths, twelfths,

fifteenths, twentieths, and thirtieths, thus affording ten possible subdivi-

sions. Whatever the origin, the sexagesimal system of numeration has

enjoyed a remarkably long life, for remnants survive, unfortunately for

consistency, even to this day in units of time and angle measure, despite

the fundamentally decimal form of our society.

POSITIONAL NUMERATION

Babylonian cuneiform numeration, for smaller whole numbers, proceeded

along the same lines as did the Egyptian hieroglyphic, with repetitions of
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the symbols for units and tens. Where the Egyptian architect, carving on

stone, might write fifty-nine as nnn " , the Mesopotamian scribe could sim-

ilarly represent the same number on a clay tablet through fourteen wedge-

shaped marks—five broad sideways wedges or "angle-brackets," each rep-

resenting ten units, and nine thin vertical wedges, each standing for a unit,

all juxtaposed in a neat group as ityfy. Beyond the number fifty-nine,

however, the Egyptian and Babylonian systems differed markedly. Perhaps

it was the inflexibility of the Mesopotamian writing materials, possibly it

was a flash of imaginative insight that made the Babylonians aware that

their two symbols for units and tens sufficed for the representation of any

integer, however large, without excessive repetitiveness. This was made
possible through their invention, some 4000 years ago, of the positional

notation—the same principle that accounts for the effectiveness of our

present numeral forms. That is, the ancient Babylonians saw that their

symbols could do double, triple, quadruple, or any degree of duty simply

by being assigned values that depend on their relative positions in the

representation of a number. The wedges in the cuneiform symbol for fifty-

nine are tightly grouped together so as to form almost the equivalent of a

single cipher. Appropriate spacing between groups of wedges can establish

positions, read from right to left, that correspond to ascending powers of

the base; each group then has a "local value" that depends on its position.

Our number 222 makes use of the same cipher three times, but with a

different meaning each time. Once it represents two units, the second time

it means two tens, and finally it stands for two hundreds (that is, twice the

square of the base ten). In a precisely analogous way the Babylonians made
multiple use of such a symbol as TT. When they wrote tttttt, clearly sep-

arating the three groups of two wedges each, they understood the right-

hand group to mean two units, the next group to mean twice their base,

sixty, and the left-hand group to signify twice the square of their base.

This numeral, therefore, denoted 2(60)
2

-l- 2(60) -I- 2 (or 7322 in our

notation).

There is a wealth of primary material concerning Mesopotamian math-

ematics, but oddly enough most of it comes from two periods widely sep-

arated in time. There is an abundance of tablets from the first few hundred

yean of the second millennium B.C. (the Old Babylonian age), and there

arc many also from the last few centuries of the first millennium B.C. (the

Seleucid period). Most of the important contributions to mathematics will

be found to go back to the earlier period, but there is one contribution

not in evidence until almost 3(X) B.C. The Babylonians seem at first to have

had no clear way in which to indicate an "empty" position—that is, they

did not have a zero symbol, although they sometimes left a space where

a zero was intended. This meant that their forms for the numbers 122 and
"2(»2 looked very much alike, for t

t n might mean cither 2(60) + 2 or

2(60)
: + 2. Context in many cases could be relied on to relieve some of

the ambiguity; but the lack of a zero symbol, such as enables us to distin-

guish at a glance between 22 and 202. must have been quite inconvenient.
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By about the time of the conquest by Alexander the Great, however, a

special sign, consisting of two small wedges placed obliquely, was invented

to serve as a placeholder where a numeral was missing. From that time

on, as long as cuneiform was used, the number TT ^ tt , or 2(60)
2 + 0(60)

+ 2, was readily distinguishable from tttt, or 2(60) + 2.

The Babylonian zero symbol apparently did not end all ambiguity, for

the sign seems to have been used for intermediate empty positions only.

There are no extant tablets in which the zero sign appears in a terminal

position. This means that the Babylonians in antiquity never achieved an

absolute positional system. Position was relative only; hence, the symbol
n tt could represent 2(60) + 2 or 2(60)

2 + 2(60) or 2(60)
3 + 2(60)

2 or any

one of indefinitely many other numbers in which two successive positions

are involved.

SEXAGESIMAL FRACTIONS

Had Mesopotamian mathematics, like that of the Nile Valley, been based

on the addition of integers and unit fractions, the invention of the positional

notation would not have been of great significance at the time. It is not

much more difficult to write 98,765 in hieroglyphic notation than in cu-

neiform, and the latter is definitely more difficult to write than the same

number in hieratic script. The secret of the clear superiority of Babylonian

mathematics over that of the Egyptians undoubtedly lies in the fact that

those who lived "between the two rivers" took the most felicitous step of

extending the principle of position to cover fractions as well as whole

numbers. That is, the notation tt tt was used not only for 2(60) + 2, but

also for 2 + 2(60) "' or for 2(60)
~

l + 2(60)
~ 2 or for other fractional forms

involving two successive positions. This meant that the Babylonians had

at their command the computational power that the modern decimal frac-

tional notation affords us today. For the Babylonian scholar, as for the

modern engineer, the addition or the multiplication of 23.45 and 9.876 was

essentially no more difficult than was the addition or multiplication of the

whole numbers 2345 and 9876; and the Mesopotamians were quick to

exploit this important discovery. An Old Babylonian tablet from the Yale

Collection (No. 7289) includes the calculation of the square root of two to

three sexagesimal places, the answer being written i«p[<§i<. In modern

characters this number can be appropriately written as 1;24,51,10, where

a semicolon is used to separate the integral and fractional parts and a

comma is used as a separatrix for the sexagesimal positions. This form will

generally be used throughout this chapter to designate numbers in sexa-

gesimal notation. This Babylonian value for V2 is equal to approximately

1.414222, differing by about 0.000008 from the true value. Accuracy in

approximations was relatively easy for the Babylonians to achieve with

their fractional notation, the best that any civilization afforded until the

time of the Renaissance.
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FUNDAMENTAL OPERATIONS

The effectiveness of Babylonian computation did not result from their

system of numeration alone. Mesopotamian mathematicians were skillful

in developing algorithmic procedures, among which was a square-root pro-

cess often ascribed to later men. It sometimes is attributed to the Greek
scholar Archytas (428-365 B.C.) or to Heron of Alexandria (ca. 100);

occasionally one finds it called Newton's algorithm. This Babylonian pro-

cedure is as simple as it is effective. Let x = \fa be the root desired and

let a
]
be a first approximation to this root; let a second approximation fr,

be found from the equation b
]
= ala

x
. If a

x
is too small, then b

x
is too

large, and vice versa. Hence, the arithmetic mean a 2
= 2(^1 + b

{ ) is a

plausible next approximation. Inasmuch as a 2 always is too large, the next

approximation b 2
= a/a2 will be too small, and one takes the arithmetic

mean a y
= \{a 2 + b 2 ) to obtain a still better result; the procedure can be

continued indefinitely. The value of V2 on Yale Tablet 7289 will be found

to be that of a 3 , where a
x

= 1;30. In the Babylonian square-root algorithm

one finds an iterative procedure that could have put the mathematicians

of the time in touch with infinite processes, but scholars of the time did

not pursue the implications of such problems.

The algorithm just described is equivalent to a two-term approximation

to the binomial series, a case with which the Babylonians were familiar.

If Va 2 + b is desired, the approximation a
{
- a leads to b

x
= (a

2 + b)l

a and a 2
= (a

x
+ b

x
)l2 = a + b/(2a), which is in agreement with the

first two terms in the expansion of (a
2 + b) V2 and provides an approxi-

mation found in Old Babylonian texts. Despite the efficacy of their rule

for square roots, the Mesopotamian scribes seem to have imitated the

modern applied mathematician in having frequent recourse to the ubiq-

uitous tables that were available. In fact, a substantial proportion of the

cuneiform tablets that have been unearthed are "table texts," including

multiplication tables, tables of reciprocals, and tables of squares and cubes

and of square and cube roots written, of course, in cuneiform sexagesimals.

One of these, for example, carries the equivalents of the entries shown in

the table below. The product

2 30

3 20

4 15

5 12

6 10

8 7,30

9 6.40

10 6

12 5
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of elements in the same line is in all cases 60, the Babylonian number base,

and the table apparently was thought of as a table of reciprocals. The sixth

line, for example, denotes that the reciprocal of 8 is 7/60 -I- 30/(60)
2

. It

will be noted that the reciprocals of 7 and 11 are missing from the table,

because the reciprocals of such "irregular" numbers are nonterminating

sexagesimals, just as in our decimal system the reciprocals of 3, 6, 7, and
9 are infinite when expanded decimally. Again the Babylonians were faced

by the problem of infinity, but they did not consider it systematically. At
one point, however, a Mesopotamian scribe seems to give upper and lower

bounds for the reciprocal of the irregular number 7, placing it between

0;8,34, 16,59 and 0;8,34,18. With their penchant for multipositional com-
putations, it is tantalizing not to find among them a recognition of the

simple three-place periodicity in the sexagesimal representation of y, a

discovery that could have provoked considerations of infinite series.

It is clear that the fundamental arithmetic operations were handled by

the Babylonians in a manner not unlike that which would be employed

today, and with comparable facility. Division was not carried out by the

clumsy duplication method of the Egyptians, but through an easy multi-

plication of the dividend by the reciprocal of the divisor, using the appro-

priate items in the table texts. Just as today the quotient of 34 divided by

5 is easily found by multiplying 34 by 2 and shifting the decimal point, so

in antiquity the same division problem was carried out by finding the

product of 34 by 12 and shifting one sexagesimal place to obtain 6t§ . Tables

of reciprocals in geneal furnished reciprocals of ''regular" integers only

—

that is, those that can be written as products of twos, threes, and fives

—

although there are a few exceptions. One table text includes the approx-

imations A = ;1,1,1 and wi = ;0,59,0,59. Jiere we have_sexagesimal an-

alogues of our decimal expressions i = .111 and A = .0909, unit fractions

in which the denominator is one more or one less than the base; but it

appears again that the Babylonians did not notice, or at least did not regard

as significant, the infinite periodic expansions in this connection. 1

One finds among the Old Babylonian tablets some table texts containing

successive powers of a given number, analogous to our modern tables of

logarithms or, more properly speaking, of antilogarithms. Exponential (or

logarithmic) tables have been found in which the first ten powers are listed

for the bases 9 and 16 and 1,40 and 3,45 (all perfect squares). The question

raised in a problem text to what power a certain number must be raised

in order to yield a given number is equivalent to our question, what is the

logarithm of the given number in a system with the certain number as base?

The chief differences between the ancient tables and our own, apart from

matters of language and notation, are that no single number was system-

atically used as a base in varied connections and that the gaps between

'Aside from Neugebauer 1957 and van der Waerden 1963, see also Kurt Vogel, Vorgrie-

chische Mathematik, Vol. II, Die Mathematik der Babylonier (Hannover: Schroedel, 1959).
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entries in the ancient tables are far larger than in our tables. Then, too,

their "logarithm tables" were not used for general purposes of calculation,

but rather to solve certain very specific questions.

Despite the large gaps in their exponential tables, Babylonian mathe-

maticians did not hesitate to interpolate by proportional parts to approx-

imate intermediate values. Linear interpolation seems to have been a

commonplace procedure in ancient Mesopotamia, and the positional no-

tation lent itself conveniently to the rule of three. A clear instance of the

practical use of interpolation within exponential tables is seen in a problem

text that asks how long it will take money to double at 20 per cent annually;

the answer given is 3;47, 13,20. It seems to be quite clear that the scribe

used linear interpolation between the values for (1;12)
3 and (1;12)

4
, fol-

lowing the compound interest formula a = F(l + r)", where r is 20 per

cent, or i$, and reading values from an exponential table with powers of

1:12.

ALGEBRAIC PROBLEMS

One table for which the Babylonians found considerable use is not generally

included in handbooks of today. This is a tabulation of the values of n y +
n2 for integral values of «, a table essential in Babylonian algebra; this

subject reached a considerably higher level in Mesopotamia than in Egypt.

Many problem texts from the Old Babylonian period show that the solution

of the complete three-term quadratic equation afforded the Babylonians

no serious difficulty, for flexible algebraic operations had been developed.

They could transpose terms in an equation by adding equals to equals, and

they could multiply both sides by like quantities to remove fractions or to

eliminate factors. By adding Aab to {a - b) 2 they could obtain (a + b) 2
,

for they were familiar with many simple forms of factoring. They did not

use letters for unknown quantities, for the alphabet had not yet been

invented, but words such as "length," "breadth," "area," and "volume"

served effectively in this capacity. That these words may well have been

used in a very abstract sense is suggested by the fact that the Babylonians

had no qualms about adding a "length" to an "area" or an "area" to a

"volume." Such problems, if taken literally, could have had no practical

basis in mensuration.

Egyptian algebra had been much concerned with linear equations, but

the Babylonians evidently found these too elementary for much attention.

In one problem the weight x of a stone is called for if (x + xll) + A
(x + xll) is one mina; the answer is simply given as 48;7,30 gin, where

60 gin make a mina. In another problem in an Old Babylonian text we
find two simultaneous linear equations in two unknown quantities, called

respectively the "first silver ring" and the "second silver ring." If we call
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these x and y in our notation, the equations are xll + y/11 = 1 and 6x1

1 = 10y/ll. The answer is expressed laconically in terms of the rule

X 11 1

and
y 7 1

7
"

7 + 11 ' 72 11 7+11 72

In another pair of equations part of the method of solution is included in

the text. Here i width + length = 7 hands, and length + width = 10

hands. The solution is first found by replacing each "hand" by 5 "fingers"

and then noticing that a width of 20 fingers and a length of 30 fingers will

satisfy both equations. Following this, however, the solution is found by

an alternative method equivalent to an elimination through combination.

Expressing all dimensions in terms of hands, and letting the length and

width be x and y respectively, the equations become y + Ax = 28 and

x + y = 10. Subtracting the second equation from the first, one has the

result 3x = 18; hence, x = 6 hands, or 30 fingers, and y = 20 fingers.

QUADRATIC EQUATIONS

The solution of a three-term quadratic equation seems to have exceeded

by far the algebraic capabilities of the Egyptians, but Neugebauer in 1930

disclosed that such equations had been handled effectively by the Baby-

lonians in some of the oldest problem texts. For instance, one problem

calls for the side of a square if the area less the side is 14,30. The solution

of this problem, equivalent to solving x 2 - x = 870, is expressed as follows:

Take half of 1, which is 0;30, and multiply 0;30 by 0;30, which is 0;15; add

this to 14,30 to get 14,30;15. This is the square of 29;30. Now add 0;30 to

29;30, and the result is 30, the side of the square.

The Babylonian solution is, of course, exactly equivalent to the formula

x = V(/?/2) 2 + q + p/2 for a root of the equation x 2 - px = q, which

is the quadratic formula that is familiar to high school students of today.

In another text the equation \x 2 + Ix = 6;15 was reduced by the Baby-

lonians to the standard type x 2 + px = q by first multiplying through by

11 to obtain (llx) 2 + 7(llx) = 1,8;45. This is a quadratic in normal form

in the unknown quantity y = Ujc, and the solution for y is easily obtained

by the familiar rule y = V(/?/2) 2 + q - p/2, from which the value of x

is then determined. This solution is remarkable as an instance of the use

of algebraic transformations.

Until modern times there was no thought of solving a quadratic equation

of the form x 2 + px + q = 0, where p and q are positive, for the equation

has no positive root. Consequently, quadratic equations in ancient and

Medieval times—and even in the early modern period—were classified
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under three types:

(1) x 2 + px = q

(2) x 2 = px + q

(3) x 2 + q = px.

All three types are found in Old Babylonian texts of some 4000 years ago.

The first two types are illustrated by the problems given above; the third

type appears frequently in problem texts, where it is treated as equivalent

to the simultaneous system x + y = p, xy = q. So numerous are problems

in which one is asked to find two numbers when given their product and

either their sum or their difference that these seem to have constituted for

the ancients, both Babylonian and Greek, a sort of "normal form" to

which quadratics were reduced. Then, by transforming the simultaneous

equations xy = a and x ± y = b into the pair of linear equations x ±

y = b and x + y = Vb 2 + 4a, the values of x and y are found through

an addition and a subtraction. A Yale cuneiform tablet, for example, asks

for the solution of the system x + y = 6;30 and xy = 7;30. The instructions

of the scribe are essentially as follows. First find

^ = 3;15

and then find

Then,

x + y

2

. 2

x + y

2

= 10;33,45.

- xy = 3;3,45

and

Hence,

x + y\ x - y

and

x + y\ jx - y

= 3;15 + 1;45

- 3:15 - 1:45.

From the last two equations it is obvious that x = 5 and y - li. Because

the quantities x and y enter symmetrically in the given conditional equa-

tions, it is possible to interpret the values of x and y as the two roots of



CUBIC EQUATIONS 33

the quadratic equation x 2 + 7;30 = 6;30jc. Another Babylonian text calls

for a number which when added to its reciprocal becomes 2;0,0,33,20. This
leads to a quadratic of type 3, and again we have two solutions, 1;0,45 and
0;59,15,33,20.

CUBIC EQUATIONS

The Babylonian reduction of a quadratic equation of the form ax 2 +
bx = c to the normal form y

2 + by = ac through the substitution y =
ax shows the extraordinary degree of flexibility in Mesopotamian algebra.

This facility, coupled with the place value idea in computation, accounts

in large measure for the superiority of the Babylonians in mathematics.

There is no record in Egypt of the solution of a cubic equation, but among
the Babylonians there are many instances of this. Pure cubics, such as

x 3 = 0;7,30, were solved by direct reference to tables of cubes and cube

roots, where the solution x = 0;30 was read off. Linear interpolation within

the tables was used to find approximations for values not listed in the

tables. Mixed cubics in the standard form x 3 + x 2 = a were solved similarly

by reference to the available tables which listed values of the combination

n 3 + n 2 for integral values of n from 1 to 30. With the help of these tables

they read off easily that the solution, for example, of x 3 + x 2 = 4,12 is

equal to 6. For still more general cases of equations of third degree, such

as 144jc
3 + 12jc

2 = 21, the Babylonians used their method of substitution.

Multiplying both sides by 12 and using y = 12x, the equation becomes

y
3 + y

2 = 4,12, from which y is found to be equal to 6, hence x is just

i or 0;30. Cubics of the form ax 3 + bx 2 = c are reducible to the Babylo-

nian normal form by multiplying through by a 2lb 3 to obtain (axlb) 3 +
(axlb)2 = ca 2lb 3

, a cubic of standard type in the unknown quantity axlb.

Reading off from the tables the value of this unknown quantity, the value

of x is determined. Whether or not the Babylonians were able to reduce

the general four-term cubic, ax 3 + bx 2 + ex = d, to their normal form is

not known. That it is not too unlikely that they could reduce it is indicated

by the fact that a solution of a quadratic suffices to carry the four-term

equation to the three-term form px 3 + qx 2 = r, from which, as we have

seen, the normal form is readily obtained. There is, however, no evidence

now available that would suggest that the Mesopotamian mathematicians

actually carried out such a reduction of the general cubic equation.

The solution of quadratic and cubic equations in Mesopotamia is a

remarkable achievement to be admired not so much for the high level of

technical skill as for the maturity and flexibility of the algebraic concepts

that are involved. With modern symbolism it is a simple matter to see that

(ax)3 + (ax)2 = b is essentially the same type of equation as y
3

-\- y
2 =

b\ but to recognize this without our notation is an achievement of far

greater significance for the development of mathematics than even the

vaunted positional principle in arithmetic that we owe to the same civili-
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zation. Babylonian algebra had reached such an extraordinary level of

abstraction that the equations ax A + bx 2 = c and ax H + bx A = c were

recognized as nothing worse than quadratic equations in disguise—that is,

quadratics in x 2 and x 4
.

PYTHAGOREAN TRIADS

The algebraic achievements of the Babylonians are admirable, but the

motives behind this work are not easy to understand. It commonly has

been supposed that virtually all pre-Hellenic science and mathematics were

purely utilitarian; but what sort of real-life situation in ancient Babylon

could possibly lead to problems involving the sum of a number and its

reciprocal or a difference between an area and a length? If utility was the

motive, then the cult of immediacy was less strong than it is now, for direct

connections between purpose and practice in Babylonian mathematics are

far from apparent. That there may well have been toleration for, if not

encouragement of, mathematics for its own sake is suggested by a tablet

(No. 322) in the Plimpton Collection at Columbia University. The tablet

dates from the Old Babylonian period (ca. 1900-1600 B.C.), and the tab-

ulations it contains could easily be mistaken for a record of business ac-

counts. Analysis, however, shows that it has deep mathematical significance

in the theory of numbers and that it was perhaps related to a kind of

prototrigonometry. Plimpton 322 was part of a larger tablet, as is illustrated

by the break along the left-hand edge, and the remaining portion contains

four columns of numbers arranged in fifteen horizontal rows. The right-

hand column contains the digits from one to fifteen, and its purpose evi-

dently was simply to identify in order the items in the other three columns,

arranged as follows:

1,59,0,15 1,59 2,49 1

1,56,56,58,14,50,6,15 56,7 1,20,25 2

1,55,7,41,15,33,45 1,16,41 1,50,49 3

1,53,10,29,32,52,16 3,31,49 5,9,1 4

1,48,54,1,40 1,5 1,37 5

1,47,6,41,40 5,19 8,1 6

1,43,11,56,28,26,40 38,11 59,1 7

1,41,33,59,3,45 13,19 20,49 8

1,38,33,36,36 8,1 12,49 9

1,35,10,2,28,27,24,26,40 1,22,41 2,16,1 10

1,33,45 45,0 1,15,0 11

1,29,21,54,2,15 27,59 48,49 12

1,27,0,3,45 2,41 4,49 13

1,25,48,51,35,6,40 29,31 53,49 14

1,23,13,46,40 56 1,46 15
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The tablet is not in such excellent condition that all the numbers can still

be read, but the clearly discernible pattern of construction in the table

made it possible to determine from context the few items that were missing

because of small fractures. To understand what the entries in the table

probably meant to the Babylonians, consider the right triangle ABC (Fig.

3.1). If the numbers in the second and third columns (from left to right)

are thought of as the sides a and c respectively of the right triangle, then

the first, or left-hand, column contains in each case the square of the ratio

of c to b. The left-hand column, therefore, is a short table of values of

sec2 A, but we must not assume that the Babylonians were familiar with

our secant concept. Neither the Egyptians nor the Babylonians introduced

a measure of angles in the modern sense. Nevertheless, the rows of numbers

in Plimpton 322 are not arranged in haphazard fashion, as a superficial

glance might imply. If the first comma in column one (on the left) is replaced

by a semicolon, it is obvious that the numbers in this column decrease

steadily from top to bottom. Moreover, the first number is quite close to

sec2 45°, and the last number in the column is approximately sec2 31°, with

the intervening numbers close to the values of sec2 A as A decreases by

degrees from 45° to 31°. This arrangement obviously is not the result of

chance alone. Not only was the arrangement carefully thought out, but the

dimensions of the triangle were also derived according to a rule. Those

who constructed the table evidently began with two regular sexagesimal

integers, which we shall call p and q, with p > q, and then formed the

triple of numbers p
2 - q

2 and 2pq and p
2 + q

2
. The three integers thus

obtained are easily seen to form a Pythagorean triple in which the square

of the largest is equal to the sum of the squares of the other two. Hence,

s a

b C

FIG. 3.1
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these numbers can be used as the dimensions of the right triangle ABC,
with a = p

2 - q
2 and b = 2pq and c = p

2 + q
2

. Restricting themselves

to values of p less than 60 and to corresponding values of q such that 1 <
plq < 1 + V2, that is, to right triangles for which a < b, the Babylonians

presumably found that there were just 38 possible pairs of values of p and

q satisfying the conditions, and for these they apparently formed the 38

corresponding Pythagorean triples. Only the first 15, arranged in descend-

ing order for the ratio (p
2 + q

2)l2pq, are included in the table on the

tablet, but it is likely that the scribe had intended to continue the table on

the tablet, but it is likely that the scribe had intended to continue the table

on the other side of the tablet. It has been suggested also that the portion

of Plimpton 322 that has been broken off from the left side contained four

additional columns in which were tabulated the values of p and q and 2pq
and what we should now call tan2 A.

The Plimpton Tablet 322 might give the impression that it is an exercise

in the theory of numbers, but it is likely that this aspect of the subject was

merely ancillary to the problem of measuring the areas of squares on the

sides of a right triangle. The Babylonians disliked working with the recip-

rocals of irregular numbers, for these could not be expressed exactly in

finite sexagesimal fractions. Hence, they were interested in values of/? and

q that should give them regular integers for the sides of right triangles of

varying shape, from the isoceles right triangle down to one with a small

Plimpton 322.
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value for the ratio alb. For example, the numbers in the first row are found

by starting with p = 12 and q = 5, with the corresponding values a =

119 and b = 120 and c = 169. The values of a and c are precisely those

in the second and third positions from the left in the first row on the

Plimpton tablet; the ratio c 2 /b 2 = 28561/14400 is the number 1;59,0,15

that appears in the first position in this row. 2 The same relationship is found

in the other fourteen rows; the Babylonians carried out the work so ac-

curately that the ratio c 2/b 2
in the tenth row is expressed as a fraction with

eight sexagesimal places, equivalent to about fourteen decimal places in

our notation.

So much of Babylonian mathematics is bound up with tables of recip-

rocals that is it not surprising to find that the items in Plimpton 322 are

related to reciprocal relationships. If a = 1, then 1 = (c + b)(c - b),

so that c + b and c - b are reciprocals. If one starts with c + b = n,

where n is any regular sexagesimal, then c — b = 1/n; hence, a - 1 and

b = \{n - 1/n) and c = \{n + 1/n) are a Pythagorean fraction triple

which can easily be converted to a Pythagorean integer triple by multiplying

each of the three by In. All triples in the Plimpton tablet are easily cal-

culated by this device.

The account of Babylonian algebra that we have given is representative

of their work, but it is not intended to be exhaustive. There are in the

Babylonian tablets many other things, although none so striking as those

in the Plimpton Tablet 322. For instance, in one tablet the geometric

progression 1 + 2 -I- 22 + ••• + 29
is summed, and in another the sum of

the series of squares l
2 + 22 + 32 + •• • + 102 is found. One wonders if

the Babylonians knew the general formulas for the sum of a geometric

progression and the sum of the first n perfect squares. It is quite possible

that they did, and it has been conjectured that they were aware that the

sum of the first n perfect cubes is equal to the square of the sum of the

first n integers. Nevertheless, it must be borne in mind that tablets from

Mesopotamia resemble Egyptian papyri in that only specific cases are given,

with no general formulations.

POLYGONAL AREAS

A few years ago it used to be held that the Babylonians were better in

algebra than were the Egyptians, but that they had contributed less to

2Vogel, in Vorgriechische Mathematik, II, 37-41, interprets this number, and also the

others in this column, as a 2lb 2 rather than as c 2lb 2—that is, as tan2 A rather than sec2 A. The

difference between these functions is always one, and the unit wedges in the left-hand column

in Plimpton 322 have in most cases been broken away; but careful inspection of this edge

seems to substantiate the interpretation of the column as squares of secants rather than of

tangents.
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geometry. The first half of this statement is clearly substantiated by what

we have learned above; attempts to bolster the second half of the com-

parison generally are limited to the measure of the circle or to the volume

of the frustum of a pyramid. In the Mesopotamian valley the area of a

circle was generally found by taking three times the square of the radius,

and in accuracy this falls considerably below the Egyptian measure. How-
ever, the counting of decimal places in the approximations for n is scarcely

an appropriate measure of the geometric stature of a civilization, and a

recent discovery has effectively nullified even this weak argument. In 1936

a group of mathematical tablets were unearthed at Susa, a couple of hundred

miles from Babylon, and these include significant geometric results. True

to the Mesopotamian penchant for making tables and lists, one tablet in

the Susa group compares the areas and the squares of the sides of the

regular polygons of three, four, five, six, and seven sides. The ratio of the

area of the pentagon, for example, to the square on the side of the pentagon

is given as 1;40, a value that is correct to two significant figures. For the

hexagon and heptagon the ratios are expressed as 2;37,30 and 3;41 re-

spectively. In the same tablet the scribe gives 0;57,36 as the ratio of the

perimeter of the regular hexagon to the circumference of the circumscribed

circle; and from this we can readily conclude that the Babylonian scribe

had adopted 3;7,30, or 3s, as an approximation for n. This is at least as

good as the value adopted in Egypt. Moreover, we see it in a more so-

phisticated context than in Egypt, for the tablet from Susa is a good example

of the systematic comparison of geometric figures. One is almost tempted

to see in it the genuine origin of geometry, but it is important to note that

it was not so much the geometric context that interested the Babylonians

as the numerical approximations that they used in mensuration. Geometry

for them was not a mathematical discipline in our sense, but a sort of

applied algebra or arithmetic in which numbers are attached to figures.

There is some disagreement as to whether or not the Babylonians were

familiar with the concept of similar figures, although this appears to be

quite likely. The similarity of all circles seems to have been taken for

granted in Mesopotamia, as it had been in Egypt, and the many problems

on triangle measure in cuneiform tablets seem to imply a concept of sim-

ilarity. A tablet in the Baghdad Museum has a right triangle ABC (Fig.

3.2) with sides a = 60 and b = 45 and c = 75, and it is subdivided into

four smaller right triangles A CD, CDE, DEF, and EFB. The areas of these

four triangles are then given as 8,6 and 5,11 ;2,24 and 3,19;3,56,9,36 and

5,53;53,39,50,24 respectively. From these values the scribe computed the

length of AD as 27, apparently using a sort of "similarity formula" equiv-

alent to our theorem that areas of similar figures are to each other as

squares on corresponding sides. The lengths of CD and BD are found to

be 36 and 48 respectively, and through an application of the "similarity

formula" to triangles BCD and DCE the length of CE is found to be 21 ;36.

The text breaks off in the middle of the calculation of DE.
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GEOMETRY AS APPLIED ARITHMETIC

Measurement was the keynote of algebraic geometry in the Mesopotamian
valley, but a major flaw, as in Egyptian geometry, was that the distinction

between exact and approximate measures was not made clear. The area

of a quadrilateral was found by taking the product of the arithmetic means
of the pairs of opposite sides, with no warning that this is in most cases

only a crude approximation. Again, the volume of a frustum of a cone or

pyramid sometimes was found by taking the arithmetic mean of the upper

and lower bases and multiplying by the height; sometimes, for a frustum

of a square pyramid with areas a 2 and b 2 for the lower and upper bases,

the formula

a + b

was applied. However, for the latter the Babylonians used also a rule

equivalent to

2

V = h[m+\ffl\
a formula that is correct and reduces to the one known to the Egyptians.

It is not known whether Egyptian and Babylonian results were always

independently discovered, but in any case the latter were definitely more

extensive than the former, both in geometry and algebra. The Pythagorean

theorem, for example, does not appear in any form in surviving documents

from Egypt, but tablets even from the Old Babylonian period show that

in Mesopotamia the theorem was widely used. A cuneiform text from the

Yale Collection, for example, contains a diagram of a square and its di-

agonals in which the number 30 is written along one side and the numbers

42;25,35 and 1 ;24,51,10 appear along a diagonal. The last number obviously

is the ratio of the lengths of the diagonal and a side, and this is so accurately

expressed that it agrees with \fl to within about a millionth. The accuracy
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of the result was made possible by knowledge of the Pythagorean theorem.

Sometimes, in less precise computations, the Babylonians used 1;25 as a

rough-and-ready approximation to this ratio. Of more significance than the

precision of the values, however, is the implication that the diagonal of

any square could be found by multiplying the side by V2. Thus there seems

to have been some awareness of general principles, despite the fact that

these are exclusively expressed in special cases.

Babylonian recognition of the Pythagorean theorem was by no means

limited to the case of a right isoceles triangle. In one Old Babylonian

problem text a ladder or beam of length 0;30 stands against a wall; the

question is, how far will the lower end move out from the wall if the upper

end slips down a distance of 0;6 units? The answer is corectly found by

use of the Pythagorean theorem. Fifteen hundred years later similar prob-

lems, some with new twists, were still being solved in the Mesopotamian

valley. A Seleucid tablet, for example, proposes the following problem.

A reed stands against a wall. If the top slides down three units when the

lower end slides away nine units, how long is the reed? The answer is given

correctly as fifteen units.

Ancient cuneiform problem texts provide a wealth of exercises in what

we might call geometry, but which the Babylonians probably thought of

as applied arithmetic. A typical inheritance problem calls for the partition

of a right-triangular property among six brothers. The area is given as

1 1 ,22,30 and one of the sides is 6,30; the dividing lines are to be equidistant

and parallel to the other side of the triangle. One is asked to find the

difference in the allotments. Another text gives the bases of an isoceles

trapezoid as 50 and 40 units and the length of the sides as 30; the altitude

and area are required [van der Waerden 1963, pp. 76-77].

The ancient Babylonians were aware of other important geometric re-

lationships. Like the Egyptians, they knew that the altitude in an isosceles

triangle bisects the base. Hence, given the length of a chord in a circle of

known radius, they were able to find the apothem. Unlike the Egyptians,

they were familiar with the fact than an angle inscribed in a semicircle is

a right angle, a proposition generally known as the Theorem of Thales,

despite the fact that Thales lived well over a millennium after the Baby-

lonians had begun to use it. This misnaming of a well-known theorem in

geometry is symptomatic of the difficulty in assessing the influence of pre-

Hellenic mathematics on later cultures. Cuneiform tablets had a perma-

nence that could not be matched by documents from other civilizations,

for papyrus and parchment do not so easily survive the ravages of time.

Moreover, cuneiform texts continued to be recorded down to the dawn of

the Christian era; but were they read by neighboring civilizations, especially

the Greeks? The center of mathematical development was shifting from

the Mesopotamian valley to the Greek world half a dozen centuries be-

fore the beginning of our era, but reconstructions of early Greek mathe-

matics are rendered hazardous by the fact that there are virtually no extant
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mathematical documents from the pre-Hellenistic period. It is important,

therefore, to keep in mind the general characteristics of Egyptian and
Babylonian mathematics so as to be able to make at least plausible con-

jectures concerning analogies that may be apparent between pre-Hellenic

contributions and the activities and attitudes of later peoples.

MATHEMATICAL WEAKNESSES

A number of deficiencies in pre-Hellenic mathematics are quite obvious.

Extant papyri and tablets contain specific cases and problems only, with

no general formulations, and one may question whether these early civi-

lizations really appreciated the unifying principles that are at the core of

mathematics. Further study is somewhat reassuring, for the hundreds of

problems of similar types in cuneiform tablets seem to be exercises that

schoolboys were expected to work out in accordance with certain recog-

nized methods or rules. That there are no surviving statements of these

rules does not necessarily mean that the generality of the rules or principles

was missing in ancient thought. Were a rule not there in essence, the

similarity of the problems would be difficult to explain. Such large collec-

tions of similar problems could not have been the result of chance.

More serious, perhaps, than the lack of explicit statements of rules is

the absence of clear-cut distinctions between exact and approximate results.

The omission in the tables of cases involving irregular sexagesimals seems

to imply some recognition of such distinctions, but neither the Egyptians

nor the Babylonians seem to have raised the question of when the area of

a quadrilateral (or of a circle) is found exactly and when only approxi-

mately. Questions about the solvability or unsolvability of a problem do

not seem to have been raised, nor was there any investigation into the

nature of proof. The word "proof" means various things at different levels

and ages; hence, it is hazardous to assert categorically that pre-Hellenic

peoples had no concept of proof, nor any feeling of the need for proof.

There are hints that these people occasionally were aware that certain area

and volume methods could be justified through a reduction to simpler area

and volume problems. Moreover, pre-Hellenic scribes not infrequently

checked or "proved" their divisions by multiplication; occasionally they

verified the procedure in a problem through a substitution that verified the

correctness of the answer. Nevertheless, there are no explicit statements

from the pre-Hellenic period that would indicate a felt need for proofs or

a concern for questions of logical principles. The lack of such statements

often has led to judgments that pre-Hellenic civilizations had no true math-

ematics, despite the obviously high level of technical facility.

Critics also point to what they regard as an absence of abstraction in

Egyptian and Babylonian mathematics. The language of the documents

does seem always to remain close to concrete cases, as we have seen; but
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this, too, can be misleading. In Mesopotamian problems the words

"length" and "width" should perhaps be interpreted much as we interpret

the letters x and y, for the writers of cuneiform tablets may well have

moved on from specific instances to general abstractions. How else does

one explain the addition of a length to an area? In Egypt also the use of

the word for quantity is not incompatible with an abstract interpretation

such as we read into it today.

Evaluations of pre-Hellenic civilizations frequently point to the fact that

there was no clearly discernible intellectual activity of a characteristically

unified sort comparable to that which later carried the label "mathematics";

but here, too, it is easy to be excessively dogmatic. It may be true that

geometry had not yet been crystallized out of a crude matrix of space

experience that included all sorts of things that could be measured; but it

is difficult not to see in Babylonian and Egyptian concern with number and

its applications something very close to what usually, in ages since, has

been known as algebra.

Pre-Hellenic cultures have been stigmatized also as entirely utilitarian,

with little or no interest in mathematics for its own sake. Here, too, a

matter of judgment rather than of incontrovertible evidence, is involved.

Then, as now, the vast majority of mankind were preoccupied with im-

mediate problems of survival. Leisure was far scarcer than it is now, but

even under this handicap there were in Egypt and Babylonia problems that

have the earmarks of recreational mathematics. If a problem calls for a

sum of cats and measures of grain, or of a length and an area, one cannot

deny to the perpetrator either a modicum of levity or a feeling for abstrac-

tion. Of course, much of pre-Hellenic mathematics was practical, but surely

not all of it. In the practice of computation, which stretched over a couple

of millennia, the schools of scribes used plenty of exercise material, often,

perhaps, just as good clean fun.
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Ionia and the

Pythagoreans

To Thales . . . the primary question was not What do we know, but How do we

know it.

Aristotle

GREEK ORIGINS

The intellectual activity of the river valley civilizations in Egypt and Mes-

opotamia had lost its verve well before the Christian era; but as learning

in the river valleys was declining, and as bronze was giving way to iron in

weaponry, vigorous new cultures were springing up all along the shores of

the Mediterranean Sea. To indicate this change in the centers of civilization,

the interval from roughly 800 B.C. to A. D. 800 sometimes is known as the

Thalassic Age (that is, the "sea" age). There was, of course, no sharp

disruption to mark the transition in intellectual leadership from the valleys

of the Nile, Tigris, and Euphrates rivers to the shores of the Mediterranean,

for time and history flow continuously, and changing conditions are as-

sociated with antecedent causes. Egyptian and Babylonian scholars con-

tinued to produce papyrus and cuneiform texts for many centuries after

800 B.C.; but a new civilization meanwhile was rapidly preparing to take

43
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over scholarly hegemony, not only around the Mediterranean but, ulti-

mately, in the chief river valleys as well. To indicate the source of the new
inspiration, the first portion of the Thalassic Age is labeled the Hellenic

era, so that the older cultures are consequently known as pre-Hellenic.

The Greeks of today still call themselves Hellenes, continuing a name
used by their early forebears who settled along the coasts of the Mediter-

ranean Sea. Greek history is traceable back into the second millennium

B.C. when, as unlettered invaders, they pressed down relentlessly from the

north. They brought with them no mathematical or literary tradition; they

seem to have been very eager to learn, however, and it did not take them

long to improve on what they were taught. For example, they took over,

perhaps from the Phoenicians, an existing alphabet, consisting only of

consonants, and to it they added vowels. The alphabet seems to have

originated between the Babylonian and Egyptian worlds, possibly in the

region of the Sinai Peninsula, through a process of drastic reduction in the

number of cuneiform or hieratic symbols. This alphabet found its way to

the new colonies—Greek, Roman, and Carthaginian—through the activ-

ities of traders. It is presumed that some rudiments of computation traveled

along the same routes, but the more esoteric portions of priestly mathe-

matics may have remained undiffused. Before long, however, Greek trad-

ers, businessmen, and scholars made their way to the centers of learning

in Egypt and Babylonia. There they made contact with pre-Hellenic math-

ematics; but they were not willing merely to receive the long-established

traditions, for they made the subject so thoroughly their own that it shortly

took a drastically different form.

The first Olympic Games were held in 776 B.C., and by that time a

wonderful Greek literature already had developed, evidenced by the works

of Homer and Hesiod. Of Greek mathematics at the time we know nothing.

Presumably it lagged behind the development of literary forms, for the

latter lend themselves more readily to continuity of oral transmission. It

was to be almost another two centuries before there was any word, even

indirectly, concerning Greek mathematics. Then, during the sixth century

B.C., there appeared two men, Thales and Pythagoras, who seem to have

played in mathematics a role similar to that of Homer and Hesiod in

literature. Most of what is reported in this chapter centers on Thales and

Pythagoras, but a note of warning is in order. Homer and Hesiod are

somewhat shadowy figures, but at least we have a consistent tradition

attributing to them certain literary masterpieces which, first transmitted

orally from generation to generation, ultimately were copied down and

preserved for posterity. Thales and Pythagoras also are somewhat indis-

tinct figures, historically, although less so than Homer and Hesiod; but as

far as their scholarly work is concerned, the parallel with Homer and Hesiod

ceases. No mathematical masterpiece from either one has survived, nor is

it even established that either Thales or Pythagoras ever composed such

a work. What they may have done must be reconstructed on the basis of
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a none too trustworthy tradition that grew up around these two early

mathematicians. Certain key phrases are attributed to them—such as

"Know thyself," in the case of Thales, and "All is number," in the case

of Pythagoras—but not much more of a specific nature. Nevertheless, the

earliest Greek accounts of the history of mathematics, which no longer

survive, ascribed to Thales and Pythagoras a number of very definite dis-

coveries in mathematics. We outline these contributions in this chapter,

but the reader should understand that it is largely persistent tradition,

rather than any extant historical document, on which the account is based.

The Greek world for many centuries had its center between the Aegean
and Ionian Seas, but Hellenic civilization was far from localized there.

Greek settlements by about 600 B.C. were to be found scattered along the

borders of most of the Black Sea and the Mediterranean Sea, and it was
on these outskirts that a new surge in mathematics developed. In this

respect the sea-bordering colonists, especially in Ionia, had two advantages:

they had the bold and imaginative spirit typical of pioneers, and they were

in closer proximity to the two chief river valleys from which knowledge

could be derived. Thales of Miletus (ca. 624-548 B.C.) and Pythagoras of

Samos (ca. 580-500 B.C.) had in addition a further advantage: they were

in a position to travel to centers of ancient learning and there acquire

firsthand information on astronomy and mathematics. In Egypt they are

said to have learned geometry; in Babylon, under the enlightened Chaldean

ruler Nebuchadnezzar, Thales probably came in touch with astronomical

tables and instruments. Tradition has it that in 585 B.C. Thales amazed his

countrymen by predicting the solar eclipse of that year. The historicity of

this tradition is very much open to question, especially because an eclipse

of the sun is visible over only a very small portion of the earth's surface,

and it does not seem likely that there were in Babylon tables of solar

eclipses that would have enabled Thales to make such a prediction. It is

quite likely, on the other hand, that the gnomon or sundial entered Greece

from Babylon, and perhaps the water clock came from Egypt. The Greeks

were far from hesitant in taking over elements of foreign cultures, else

they would never have learned so quickly how to advance beyond their

predecessors; but everything they touched, they quickened.

THALES OF MILETUS

What is really known about the life and work of Thales is very little indeed.

His birth and death are estimated from the fact that the eclipse of 585 B.C.

probably occurred when he was in his prime, say about forty, and that he

was said to have been seventy-eight when he died. However, serious doubts

about the authenticity of the eclipse story make such extrapolations haz-

ardous, and they shake our confidence concerning the discoveries fathered

upon Thales. Ancient opinion is unanimous in regarding Thales as an
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unusually clever man and the first philosopher—by general agreement the

first of the Seven Wise Men. He was regarded as "a pupil of the Egyptians

and the Chaldeans," an assumption that appears plausible. The proposition

now known as the Theorem of Thales—that an angle inscribed in a semi-

circle is a right angle—may well have been learned by Thales during his

travels to Babylon. However, tradition goes further and attributes to him

some sort of demonstration of the theorem. For this reason Thales fre-

quently has been hailed as the first true mathematician—as the originator

of the deductive organization of geometry. This report, or legend, was

embellished by adding to this theorem four others that Thales is said to

have proved:

1. A circle is bisected by a diameter.

2. The base angles of an isosceles triangle are equal.

3. The pairs of vertical angles formed by two intersecting lines are equal.

4. If two triangles are such that two angles and a side of one are equal

respectively to two angles and a side of the other, then the triangles

are congruent.

There is no document from antiquity that can be pointed to as evidence

of this achievement, and yet the tradition has been persistent. About the

nearest one can come to reliable evidence on this point is derived from a

source a thousand years after the time of Thales. A student of Aristotle

by the name of Eudemus of Rhodes (fl. ca. 320 B.C.) wrote a history of

mathematics. This has been lost, but before it disappeared, someone had

summarized at least part of the history. The original of this summary also

has been lost, but during the fifth century of our era information from the

summary was incorporated by the Neoplatonic philosopher Proclus (410-

485) in the early pages of his Commentary on the First Book of Euclid's

Elements. Following introductory remarks on the origin of geometry in

Egypt, the Commentary of Proclus reports that Thales

. . . first went to Egypt and thence introduced this study into Greece. He
discovered many propositions himself, and instructed his successors in the

principles underlying many others, his method of attack being in some cases

more general, in others more empirical [Heath 1981, Vol. I, p. 128].

It is largely upon this quotation at third hand that designations of Thales

as the first mathematician hinge. Proclus later in his Commentary, again

depending on Eudemus, attributes to Thales the four theorems mentioned

above. There are other scattered references to Thales in ancient sources,

but most of these describe his more practical activities. Diogenes Laertius,

followed by Pliny and Plutarch, reported that he measured the heights of

the pyramids in Egypt by observing the lengths of their shadows at the
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moment when the shadow of a vertical stick is equal to its height. Hero-

dotus, the historian, recounts the story of Thales' prediction of a solar

eclipse; the philosopher Aristotle reports that Thales made a fortune by

"cornering" the olive presses during a year in which the olive crop promised

to be abundant. Still other legends picture Thales as a salt merchant, as a

stargazer, as a defender of celibacy, or as a farsighted statesman. Such

reports, however, provide no further evidence concerning the important

question of whether or not Thales actually arranged a number of geomet-

ric theorems in a deductive sequence. The tale that he calculated the

distance of a ship at sea through the proportionality of sides of similar

triangles is inconclusive, for the principles behind such a calculation had

long been known in Egypt and Mesopotamia. Such stories do not establish

the bold conjecture that Thales created demonstrative geometry; but in

any case Thales is the first man in history to whom specific mathematical

discoveries have been attributed.
1 We know now that a large body of

mathematical material was familiar to the Babylonians a millennium before

the time of Thales, and yet among the Greeks it was understood that Thales

had made definite advances. It would appear reasonable to suppose, in the

light of Proclus' statements, that Thales contributed something in the way
of rational organization. That it was the Greeks who added the element

of logical structure to geometry is virtually universally admitted today, but

the big question remains whether this crucial step was taken by Thales or

by others later—perhaps as much as two centuries later. On this point we
must suspend final judgment until there is additional evidence on the de-

velopment of Greek mathematics.

PYTHAGORAS OF SAMOS

Pythagoras is scarcely less controversial a figure than Thales, for he has

been more thoroughly enmeshed in legend and apotheosis. Thales had

been a man of practical affairs, but Pythagoras was a prophet and a mystic,

born at Samos, one of the Dodecanese islands not far from Miletus, the

birthplace of Thales. Although some accounts picture Pythagoras as having

studied under Thales, this is rendered unlikely by the half-century differ-

ence in their ages. Some similarity in their interests can readily be accounted

for by the fact that Pythagoras also traveled to Egypt and Babylon

—

possibly even to India. During his peregrinations he evidently absorbed

not only mathematical and astronomical information, but also much reli-

gious lore. Pythagoras was, incidentally, virtually a contemporary of Bud-

dha, of Confucius, and of Lao-Tze, so that the century was a critical time

in the development of religion as well as of mathematics. When he returned

'B. L. van der Waerden 1963, p. 80, accepts the conjecture that Thales used deduction;

O. Neugebauer, 1957, pp. 142, 143, and 148, rejects it.
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to the Greek world, Pythagoras settled at Croton on the southeastern coast

of what is now Italy, but at that time was known as Magna Graecia. There

he established a secret society which somewhat resembled an Orphic cult

except for its mathematical and philosophical basis.

That Pythagoras remains a very obscure figure is due in part to the loss

of documents from that age. Several biographies of Pythagoras were written

in antiquity, including one by Aristotle, but these have not survived. A
further difficulty in identifying clearly the figure of Pythagoras lies in the

fact that the order he established was communal as well as secret. Knowl-

edge and property were held in common, hence attribution of discoveries

was not to be made to a specific member of the school. It is best, conse-

quently, not to speak of the work of Pythagoras, but rather of the contri-

butions of the Pythagoreans, although in antiquity it was customary to give

all credit to the master.

The Pythagorean school of thought was politically conservative and with

a strict code of conduct. Vegetarianism was enjoined upon the members,

apparently because Pythagoreanism accepted the doctrine of metempsy-

chosis, or the transmigration of souls, with the resulting concern that an

animal to be slaughtered might be the new abode of a friend who had died.

Among other taboos of the school was the eating of beans (more properly

lentils). Perhaps the most striking characteristic of the Pythagorean order

was the confidence it maintained in the pursuit of philosophical and math-

ematical studies as a moral basis for the conduct of life. The very words

"philosophy" (or "love of wisdom") and "mathematics" (or "that which

is learned") are supposed to have been coined by Pythagoras himself to

describe his intellectual activities. He is said to have given two categories

of lectures, one for members of the school or order only, and the other

for those in the larger community. It is presumed that it was in the lectures

of the first category that Pythagoras presented whatever contributions to

mathematics he may have made. Having described, in the quotation above,

the work in geometry done by Thales, Proclus went on to say:

Pythagoras, who came after him, transformed this science into a liberal form

of education, examining its principles from the beginning and probing the

theorems in an immaterial and intellectual manner. He discovered the theory

of proportionals and the construction of the cosmic figures [Thomas 1939,

p. 149].

Even if we do not accept this statement at its face value, it is evident that

the Pythagoreans played an important role—possibly the crucial role—in

the history of mathematics. In Egypt and Mesopotamia the elements of

arithmetic and geometry were primarily exercises in the application of

numerical procedures to specific problems, whether concerned with beer

or pyramids or the inheritance of land. There had been little in the way
of intellectual structure and perhaps nothing resembling philosophical dis-
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cussion of principles. Thales is generally regarded as having made a be-

ginning in this direction, although tradition supports the view of Eudemus
and Proclus that the new emphasis in mathematics was due primarily to

the Pythagoreans. With them mathematics was more closely related to a

love of wisdom than to the exigencies of practical life, and it has had this

tendency ever since. How far the Pythagoreans went in this direction is

not at all clear, and at least one eminent scholar regards all reports of

important mathematical contributions by Pythagoras as unhistorical. It is

indeed difficult to separate history and legend concerning the man, for he

meant so many things to the populace—the philosopher, the astronomer,

the mathematician, the abhorrer of beans, the saint, the prophet, the

performer of miracles, the magician, the charlatan. That he was one of the

most influential figures in history is difficult to deny, for his followers,

whether deluded or inspired, spread their beliefs over most of the Greek

world. The Pythagorean purification of the soul was accomplished in part

through a strict physical regimen and in part through cultist rites reminis-

cent of worshippers of Orpheus and Dionysus; but the harmonies and

mysteries of philosophy and mathematics also were essential parts in the

rituals. Never before or since has mathematics played so large a role in

life and religion as it did among the Pythagoreans. If, then, it is impossible

to ascribe specific discoveries to Pythagoras himself, or even collectively

to the Pythagoreans, it is nevertheless important to understand the type

of activity with which, according to tradition, the school was associated.

THE PYTHAGOREAN PENTAGRAM

The motto of the Pythagorean school is said to have been "All is number."

Recalling that the Babylonians had attached numerical measures to things

around them, from the motions of the heavens to the values of their slaves,

we may perceive in the Pythagorean motto a strong Mesopotamian affinity.

The very theorem to which the name of Pythagoras still clings quite likely

was derived from the Babylonians. It has been suggested, as justification

for calling it the Theorem of Pythagoras, that the Pythagoreans first pro-

vided a demonstration; but this conjecture cannot be verified. Legends

that Pythagoras sacrified an ox (a hundred oxen, according to some ver-

sions) upon discovering the theorem—or its proof—are implausible in view

of the vegetarian rules of the school. Moreover, they are repeated, with

equal incredibility, in connection with several other theorems. It is rea-

sonable to assume that the earliest members of the Pythagorean school

were familiar with geometric properties known to the Babylonians; but

when the Eudemus—Proclus summary ascribes to them the construction

of the "cosmic figures" (that is, the regular solids), there is room for doubt.

The cube, the octahedron, and the dodecahedron could perhaps have been
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observed in crystals, such as those of pyrite (iron disulfide); but a scholium

in Elements XIII reports that the Pythagoreans knew only three of the

regular polyhedra: the tetrahedron, the cube, and the dodecahedron. Fa-

miliarity with the last figure is rendered plausible by the discovery near

Padua of an Etruscan dodecahedron of stone dating from before 500 B.C.

It is not improbable, therefore, that even if the Pythagoreans did not know
of the octahedron and the icosahedron, they knew of some of the properties

of the regular pentagon. The figure of a five-pointed star (which is formed

by drawing the five diagonals of a pentagonal face of a regular dodeca-

hedron) is said to have been the special symbol of the Pythagorean school.

The star pentagon had appeared earlier in Babylonian art, and it is possible

that here, too, we find a connecting link between pre-Hellenic and Pytha-

gorean mathematics.

One of the tantalizing questions in Pythagorean geometry concerns the

construction of a pentagram or star pentagon. If we begin with a regular

polygon ABCDE (Fig. 4.1) and draw the five diagonals, these diagonals

intersect in points A'B'C'D'E' which form another regular pentagon.

Noting that the triangle BCD', for example, is similar to the isosceles

triangle BCE and noting also the many pairs of congruent triangles in the

diagram, it is not difficult to see that the diagonal points A'B'C'D'E'
divide the diagonals in a striking manner. In each case a diagonal point

divides a diagonal into two unequal segments such that the ratio of the

whole diagonal is to the larger segment as this segment is to the smaller

segment. This subdivision of a diagonal is the well-known "golden section"

of a line segment, but this name was not used until a couple of thousand

years later—just about the time when Kepler wrote lyrically:

Geometry has two great treasures: one is the Theorem of Pythagoras; the

other, the division of a line into extreme and mean ratio. The first we may
compare to a measure of gold; the second we may name a precious jewel.

To the ancient Greeks this type of subdivision soon became so familiar

that no need was felt for a special descriptive name; hence, the longer

FIG. 4.1
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designation "the division of a segment in mean and extreme ratio" generally

was replaced by the simple words "the section."

One of the important properties of "the section" is that it is, so to speak,

self-propagating. If a point P
x
divides a segment RS (Fig. 4.2) in mean and

extreme ratio, with RP
X
the longer segment, and if on this larger segment

we mark off a point P2 such that RP2
= P\S, then segment RP

{
will in turn

be subdivided in mean and extreme ratio at point P2 . Again, upon marking

off on RP2 point P3 such that RP3
= P2PU segment RP2 will be divided in

mean and extreme ratio at P3 . This iterative procedure can be carried out

as many times as desired, the result being an ever smaller segment RPn

divided in mean and extreme ratio by point Pn + l
. Whether or not the

earlier Pythagoreans noticed this unending process or drew significant con-

clusions from it is not known. Even the more fundamental question of

whether or not the Pythagoreans of about 500 B.C. could divide a given

segment into mean and extreme ratio cannot be answered with certainty,

although the probability that they could and did seems to be high. The
construction required is equivalent to the solution of a quadratic equation.

To show this, let RS = a and RP
X
= x in Fig. 4.2. Then, by the property

of the golden section, a:x = x:(a - jc), and upon multiplying means and

extremes we have the equation x 2 = a 2 - ax. This is a quadratic equation

of type 1 described in Chapter 3, and Pythagoras could have learned from

the Babylonians how to solve this equation algebraically. However, if a is

a rational number, then there is no rational number x satisfying the equa-

tion. Did Pythagoras realize this? It seems unlikely. Perhaps instead of the

Babylonian algebraic type of solution, the Pythagoreans may have adopted

a geometric procedure similar to that found in Euclid's Elements 11.11

and VI. 30. To divide a line segment AB in mean and extreme ratio, Euclid

first constructed on the segment AB the square ABCD (Fig. 4.3). Then,
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he bisected AC at point £, drew line segment EB, and extended line CEA
to F so that EF = EB. When the square AFGH is completed, point H
will be the point desired, for one can readily show that AB.AH = AH.HB.
Knowing what solution, if any, the earlier Pythagoreans used for the golden

section would go far toward clarifying the problem of the level and char-

acteristics of pre-Socratic mathematics. If Pythagorean mathematics began

under a Babylonian aegis, with strong faith that all is number, how (and

when) did it happen that this gave way to the familiar emphasis on pure

geometry that is so firmly enshrined in the classical treatises?

NUMBER MYSTICISM

It has been customary to hold that most of the material in the first two

books of the Elements was due to the Pythagoreans. This would presuppose

a high level of achievement, implying a fairly rapid development of the

subject after the days of Thales and Pythagoras. This view requires faith

in what has been called the "Greek miracle," by which relatively unlettered

newcomers on the Mediterranean scene mastered the material inherited

from their neighbors and rapidly rose to new heights, establishing on the

way the essential deductive pattern of theorems. In recent years serious

doubt has been cast on the traditional view by those who call attention to

relatively primitive concepts in Pythagorean arithmetic. If, for example,

the leading Pythagorean mathematician of the early fourth century B.C.,

Archytas of Tarentum (428-365 B.C.), could assert that not geometry, but

arithmetic alone, could provide satisfactory proofs, there would appear to

be little ground for placing the rise of the axiomatic method in geometry

among the Pythagoreans of a century or two before this time. On the other

hand, it may be argued that Archytas represented only one point of view,

insisting on an orthodox Pythagorean numerology that others had aban-

doned or modified. Certainly there had been shifting attitudes in Pytha-

gorean astronomy, and we can assume that there were comparable

modifications in mathematics.

Number mysticism was not original with the Pythagoreans. The number
seven, for example, had been singled out for special awe, presumably on

account of the seven wandering stars or planets from which the week (hence

our names for the days of the week) is derived. The Pythagoreans were

not the only people who fancied that the odd numbers had male attributes

and the even female—with the related (and not unprejudiced) assumption,

found as late as Shakespeare, that "there is divinity in odd numbers.
M

Many early civilizations shared various aspects of numerology, but the

Pythagoreans carried number worship to its extreme, basing their philos-

ophy and their way of life upon it. The number one, they argued, is the

generator of numbers and the number of reason; the number two is the

first even or female number, the number of opinion; three is the first true
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male number, the number of harmony, being composed of unity and di-

versity; four is the number of justice or retribution, indicating the squaring

of accounts; five is the number of marriage, the union of the first true male

and female numbers; and six is the number of creation. Each number in

turn had its peculiar attributes. The holiest of all was the number ten, or

the tetractys, for it represented the number of the universe, including the

sum of all the possible geometric dimensions. A single point is the generator

of dimensions, two points determine a line of dimension one, three points

(not on a line) determine a triangle with area of dimension two, and four

points (not in a plane) determine a tetrahedron with volume of dimension

three; the sum of the numbers representing all dimensions, therefore, is

the reversed number ten. It is a tribute to the abstraction of Pythagorean

mathematics that the veneration of the number ten evidently was not dic-

tated by anatomy of the human hand or foot.

ARITHMETIC AND COSMOLOGY

In Mesopotamia geometry had been not much more than number applied

to spatial extension; it appears that at first it may have been much the

same among the Pythagoreans—but with a modification. Number in Egypt

had been the domain of the natural numbers and the unit fractions; among
the Babylonians it had been the field of all rational fractions. In Greece

the word number was used only for the integers. A fraction was not looked

upon as a single entity, but as a ratio or relationship between two whole

numbers. (Greek mathematics in its earlier stages frequently came closer

to the "modern" mathematics of today than to the ordinary arithmetic of

a generation ago.) As Euclid later expressed it (Elements V.3), "A ratio

is a kind of relation in respect of size of two magnitudes of the same kind."

Such a view, focusing attention on the connection between pairs of num-

bers, tends to sharpen the theoretical or rational aspects of the number

concept and to deemphasize the role of number as a tool in computation

or approximation in mensuration. Arithmetic now could be thought of as

an intellectual discipline as well as technique, and a transition to such an

outlook seems to have been nurtured in the Pythagorean school. If tradition

is to be trusted, the Pythagoreans not only established arithmetic as a

branch of philosophy; they seem to have made it the basis of a unification

of all aspects of the world about them. Through patterns of points, or

unextended units, they associated number with geometric extension; this

in turn led them to an arithmetic of the heavens. Philolaus (died ca. 390

B.C.), a later Pythagorean who shared the veneration of the tetractys or

decad, wrote that it was "great, all-powerful and all-producing, the begin-

ning and the guide of the divine as of the terrestrial life." This view of the

number ten as the perfect number, the symbol of health and harmony,

seems to have provided the inspiration for the earliest nongeocentric as-
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tronomical system. Philolaus postulated that at the center of the universe

there was a central fire about which the earth and the seven planets (in-

cluding the sun and the moon) revolved uniformly. Inasmuch as this

brought to only nine the number of heavenly bodies (other than the sphere

of fixed stars), the Philolaic system assumed the existence of a tenth body

—

a "counterearth" collinear with the earth and the central fire—having the

same period as the earth in its daily revolution about the central fire. The
sun revolved about the fire once a year, and the fixed stars were stationary.

The earth in its motion maintained the same uninhabited face toward the

central fire, hence neither the fire nor the counterearth ever was seen. The
postulate of uniform circular motion that the Pythagoreans adopted was

to dominate astronomical thought for more than 2000 years. Copernicus,

almost 2000 years later, accepted this assumption without question, and it

was to the Pythagoreans that Copernicus referred to show that his doctrine

of a moving earth was not so new or revolutionary.

FIGURATE NUMBERS

The thoroughness with which the Pythagoreans wove number into their

thought is well illustrated by their concern for figurate numbers. Although

no triangle can be formed by fewer than three points, it is possible to have

triangles of a larger number of points, such as six, ten, or fifteen (see Fig.

4.4). Numbers such as three, six, ten, and fifteen or, in general, numbers

given by the formula

N = 1 + 2 + 3 + •••+« =
n(n + 1)

were called triangular; and the triangular pattern for the number ten, the

holy tetractys, vied with the pentagon for veneration in Pythagorean num-

ber theory. There were, of course, indefinitely many other categories of

privileged numbers. Successive square numbers are formed from the se-

quence 1 +3 + 5 + 7+-+ (2ai - 1), where each odd number in

turn was looked upon as a pattern of dots resembling a gnomon (the

Babylonian shadow clock) placed around two sides of the preceding square

pattern of dots (see Fig. 4.4). Hence, the word gnomon (related to the

word for knowing) came to be attached to the odd numbers themselves.

FIG. 4.4
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The sequence of even numbers, 2 + 4 + 6+ •••+2rc = n(n + 1),

produces what the Greeks called "oblong numbers," each of which is

double a triangular number. Pentagonal patterns of points illustrated the

pentagonal numbers given by the sequence

** ^ a m /» n(2>n - 1)N = 1 + 4 + 7 + ••• + (3n - 2) = —— -

and hexagonal numbers were derived from the sequence

1 + 5 + 9 + ••• + {An - 3) = In 2 - n.

In similar manner polygonal numbers of all orders are designated; the

process, of course, is easily extended to three-dimensional space, where

one deals with polyhedral numbers. Emboldened by such views, Philolaus

is reported to have maintained that

All things which can be known have number; for it is not possible that without

number anything can be either conceived or known.

The dictum of Philolaus seems to have been a tenet of the Pythagorean

school, hence stories arose about the discovery by Pythagoras of some
simple laws of music. Pythagoras is reputed to have noticed that when the

lengths of vibrating strings are expressible as ratios of simple whole num-
bers, such as two to three (for the fifth) or as three to four (for the fourth),

the tones will be harmonious. If, in other words, a string sounds the note

C when plucked, then a similar string twice as long will sound the note C
an octave below; and tones between these two notes are emitted by strings

whose lengths are given by intermediate ratios: 16:9 for D, 8:5 for E, 3:2

for F, 4:3 for G, 6:5 for A, and 16: 15 for B, in ascending order. Here we
have perhaps the earliest quantitative laws of acoustics—possibly the oldest

of all quantitative physical laws. So boldly imaginative were the early

Pythagoreans that they extrapolated hastily to conclude that the heavenly

bodies in their motions similarly emitted harmonious tones, the "harmony

of the spheres." Pythagorean science, like Pythagorean mathematics,

seems to have been an odd congeries of sober thought and fanciful spec-

ulation. The doctrine of a spherical earth often is ascribed to Pythagoras,

but it is not known whether this conclusion2 was based on observation

(perhaps of new constellations as Pythagoras traveled southward) or on

imagination. The very idea that the universe is a "cosmos," or a harmo-

niously ordered whole, seems to be a related Pythagorean contribution

—

one which at the time had little basis in direct observation but which has

been enormously fruitful in the development of astronomy. As we smile

^he tradition that attributes the spherical-earth concept to the Pythagoreans has been

questioned. See W. A. Heidel, The Frame of the Ancient Greek Maps with a Discussion of

the Sphericity of the Earth (New York: Amer. Geog. Soc, 1937).
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at ancient number fancies, we should at the same time be aware of the

impulse these gave to the development of both mathematics and science.

The Pythagoreans were among the earliest people to believe that the op-

erations of nature could be understood through mathematics.

PROPORTIONS

Proclus, quoting perhaps from Eudemus, ascribed to Pythagoras two spe-

cific mathematical discoveries: (1) the construction of the regular solids

and (2) the theory of proportionals. Although there is question about the

extent to which this is to be taken literally, there is every likelihood that

the statement correctly reflects the direction of Pythagorean thought. The
theory of proportions clearly fits into the pattern of early Greek mathe-

matical interests, and it is not difficult to find a likely source of inspiration.

It is reported that Pythagoras learned in Mesopotamia of three means

—

the arithmetic, the geometric, and the subcontrary (later called the har-

monic)—and of the "golden proportion" relating two of these: the first of

two numbers is to their arithmetic mean as their harmonic mean is to the

second of the numbers. This relationship is the essence of the Babylonian

square-root algorithm, hence the report is at least plausible. At some stage,

however, the Pythagoreans generalized this work by adding seven new
means to make ten in all. If b is the mean of a and c, where a < c, then

the three quantities are related according to one of the following ten equa-

tions:

»£- a

- b

a

a

»£- a

- b
'

a
=

b

»£- a

- b

a

c

»t- a

- b
"

c

a

»H
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b

a

»f
- a
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c
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b
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l*\
° - a c

(8)
c - b a

(0)
c - a b

(9)
b - a a

c
(\(X\

- a b

c - b a

The first three equations are, of course, the equations for the arithmetic,

the geometric, and the harmonic means respectively.

It is difficult to assign a date to the Pythagorean study of means, and

similar problems arise with respect to the classification of numbers. The

study of proportions or the equality of ratios presumably formed at first a

part of Pythagorean arithmetic or theory of numbers. Later the quantities
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a, b, and c entering in such proportions were more likely to be regarded

as geometric magnitudes; but the period in which the change took place

is not clear. In addition to the polygonal numbers mentioned above and

the distinction between odd and even, the Pythagoreans at some stage

spoke of odd-odd and even-odd numbers, according as the number in

question was the product of two odd numbers or of an odd and an even

number, so that sometimes the name even number was reserved for integral

powers of two. By the time of Philolaus the distinction between prime and

composite numbers seems to have become important. Speusippus, nephew
of Plato and his successor as head of the Academy, asserted that ten was

"perfect" for the Pythagoreans because, among other things, it is the small-

est integer n for which there are just as many primes between one and n

as nonprimes. (Occasionally prime numbers were called linear inasmuch

as they usually are represented by dots in one dimension only.) Neo-

Pythagoreans sometimes excluded two from the list of primes on the ground

that one and two are not true numbers, but the generators of the odd and

even numbers. The primacy of the odd numbers was assumed to be es-

tablished by the fact that odd + odd is even, whereas even 4- even remains

even.

To the Pythagoreans has been attributed the rule for Pythagorean triads

given by (m 2 - l)/2, m, (m 2 + l)/2, where m is an odd integer; but

inasmuch as this rule is so closely related to the Babylonian examples, it

is perhaps not an independent discovery. Also ascribed to the Pythago-

reans, with doubt as to the period in question, are the definitions of per-

fect, abundant, and deficient numbers according as the sum of the proper

divisors of the number is equal to, greater than, or less than the number

itself. According to this definition, six is the smallest perfect number, with

twenty-eight next. That this view probably was a later development in

Pythagorean thought is suggested by the early veneration of ten rather

than six. Hence, the related doctrine of "amicable" numbers also is likely

to have been a later notion. Two integers a and b are said to be "amicable"

if a is the sum of the proper divisors of b and if b is the sum of the proper

divisors of a. The smallest such pair are the integers 220 and 284.

ATTIC NUMERATION

The picture of Pythagorean mathematics that has been presented is based

largely on reports of commentators who lived many centuries later and

who were, almost without exception, interested in philosophical aspects of

thought. Although it appears plausible to assume, with the commentators,

that it was the Pythagoreans who were largely responsible for the abstract

and intellectual view that fashioned mathematics into a liberal discipline,

the level of sophistication during the sixth and fifth centuries B.C. may not

have been as high as that attributed to them by tradition. It must have

been all too tempting to later devotees of a philosophical school, such as
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the Pythagorean, to exaggerate the accomplishments of the founder and
of the early members of the sect. It is highly probable that elements of

primitivity were present during the early stages of Pythagoreanism, but

went unreported. It is obvious also that the type of attitude toward math-

ematics represented by the Pythagoreans almost certainly was atypical of

Greek thought as a whole. The Hellenes were celebrated as shrewd traders

and businessmen, and there must have been a lower level of arithmetic or

computation that satisfied the needs of the vast majority of Greek citizens.

Number activities of this type would have been beneath the notice of

philosophers, and recorded accounts of practical arithmetic were unlikely

to find their way into libraries of scholars. If, then, there are not even

fragments surviving of the more sophisticated Pythagorean works, it is

clear that it would be unreasonable to expect manuals of trade mathematics

to survive the ravages of time. Hence, it is not possible to tell at this

distance how the ordinary processes of arithmetic were carried out in

Greece 2500 years ago. About the best one can do is to describe the systems

of numeration that appear to have been in use.

In general there seem to have been two chief systems of numeration in

Greece: one, probably the earlier, is known as the Attic (or Herodianic)

notation; the other is called the Ionian (or alphabetic) system. Both systems

are, for integers, based on the ten-scale, but the former is the more prim-

itive, being based on a simple iterative scheme found in the earlier Egyptian

hieroglyphic numeration and in the later Roman numerals. In the Attic

system the numbers from one to four were represented by repeated vertical

strokes. For the number five a new symbol—the first letter n (or r of the

word for five, pente—was adopted. (Only capital letters were used at the

time, both in literary works and in mathematics, lowercase letters being

an invention of the later ancient or early Medieval period.) For numbers

from six through nine, the Attic system combined the symbol Y with unit

strokes, so that eight, for example, was written as Tin. For positive integral

powers of the base (ten), the initial letters of the corresponding number
words were adopted

—

a for deka (ten), h for hekaton (hundred), x for

khilioi (thousand), and m for myrioi (ten thousand). Except for the forms

of the symbols, the Attic system is much like the Roman; but it had one

advantage. Where the Latin word adopted distinctive symbols for 50 and

500, the Greeks wrote these numbers by combining letters for 5, 10, and

100, using P (or 5 times 10) for 50, and P (or 5 times 100) for 500. In the

same way they wrote P1

for 5000 and P1

for 50000. In Attic script the number

45,678, for example, would appear as

MMMMf^pHpAArill

IONIAN NUMERATION

The Attic system of notation (known also as Herodianic inasmuch as it

was described in a fragment attributed to Herodian, a grammarian of the
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second century) appears in inscriptions at various dates from 454 to 95

B.C.; but by the early Alexandrian Age, at about the time of Ptolemy
Philadelphius, it was being displaced by the Ionian or alphabetic numerals.

Similar alphabetic schemes were used at one time or another by various

Semitic peoples, including the Hebrews, Syrians, Aramaeans, and Arabs

—

as well as by other cultures, such as the Gothic—but these would seem to

have been borrowed from the Greek notation. The Ionian system probably

was used as early as the fifth century B.C. and perhaps as early as the

eighth century B.C. One reason for placing the origin of the notation rel-

atively early is that the scheme called for twenty-seven letters of the al-

phabet—nine for the integers less than 10, nine for multiples of 10 that

are less than 100, and nine for multiples of 100 that are less than 1000.

The classical Greek alphabet contains only twenty-four letters; hence, use

was made of an older alphabet that included three additional archaic let-

ters—F (vau or digamma or stigma), H (koppa), and A (sampi)—to es-

tablish the following association of letters and numbers:

ABTAEFZHOIKAMN
1 2 3 4 5 6 7 8 9 10 20 30 40 50

a o n q p x t r $ x ¥ n a
60 70 80 90 100 200 300 400 500 600 700 800 900

Since the three archaic letters occupy the positions in the numeral scheme

that they held in the older alphabet, it has been suggested that the Ionian

system was introduced before the abandonment of the three letters—say

in the eighth century B.C.; this view becomes less convincing when we
consider the long time interval between the presumed introduction and

the ultimate triumph of the system in the third century B.C. The obvious

advantage in conciseness of the alphabetic system might have been ex-

pected to find a readier adoption for the system than the indicated delay

of half a millennium. The cipherization in the Ionian notation bears to the

Attic numeration essentially the same relationship as did the Egyptian

hieratic to the more cumbersome hieroglyphic, where the superiority of

the cursive script had been clear to scribes.

After the introduction of small letters in Greece, the association of

letters and numbers appeared as follows:

a/1ySe<?€ri0i k X fi v

1 2 3 4 5 6 7 8 9 10 20 30 40 50

60 70 80 90 100 200 300 400 500 600 700 800 900

Since these forms are more familiar today, we shall use them here. For

the first nine multiples of a thousand, the Ionian system adopted the first
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nine letters of the alphabet, a partial use of the positional principle; but

for added clarity these letters were preceded by a stroke, or accent:

,a ,p ,y ,6 ,e ,c »C >n '0

1000 2000 3000 4000 5000 6000 7000 8000 9000

Within this system any number less than 10,000 was easily written with

only four characters. The number 8888, for example, would appear as

,rjconrj or as rjamrj, the accent sometimes being omitted when the context

was clear. The use of the same letters for thousands as for units should

have suggested to the Greeks the full-fledged positional scheme in decimal

arithmetic, but they do not seem to have appreciated the advantages of

such a move. That they had such a principle more or less in mind is evident

not only in the repeated use of the letters a through for units and thou-

sands, but also in the fact that the symbols are arranged in order of mag-

nitude, from the smallest on the right to the largest on the left. At 10,000,

which for the Greeks was the beginning of a new count or category (much

as we separate thousands from lower powers by a comma), the Ionian

Greek notation adopted a multiplicative principle. A symbol for an integer

from 1 to 9999, when placed above the letter M, or after it, separated from

the rest of the number by a dot, indicated the product of the integer and

the number 10,000—the Greek myriad. Thus the number 88888888 would

appear as M,rjajnri • rjcjnrj. Where still larger numbers are called for, the

same principle could be applied to the double myriad, 100000000 or 108 .

Early Greek notations for integers were not excessively awkward, and

they served their purposes effectively. It was in the use of fractions that

the systems were weak. Like the Egyptians, the Greeks were tempted to

use unit fractions, and for these they had a simple representation. They

wrote down the denominator and then simply followed this with a diacritical

mark or accent to distinguish it from the corresponding integer. Thus A
would appear as /.S' . This could, of course, be confused with the number

30|, but context or the use of words could be assumed to make the situation

clear. In later centuries general common fractions and sexagesimal fractions

were in use; these will be discussed later in connection with the work of

Archimedes, Ptolemy, and Diophantus, for there are extant documents

which, while not actually dating from the time of these men, are copies of

works written by them—a situation strikingly different from that concerning

mathematicians of the Hellenic period.

ARITHMETIC AND LOGISTIC

The history of mathematics during the time of Thales and the Pythagoreans

necessarily depends, to an undesirable degree, on conjecture and inference,
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since documents from the period are entirely missing. In this respect there

is far more uncertainty about Greek mathematics from 600 to 450 B.C.

than about Babylonian algebra or Egyptian geometry from about 1700 B.C.

Not even mathematical artifacts have survived from the early days of

Greece. It is evident that some form of counting board or abacus was used

in calculation, but the nature and operation of the device must be inferred

from the Roman abacus and from some casual references in Greek authors.

Herodotus, writing in the early fifth century B.C., says that in counting

with pebbles, as in writing, the Greek hand moved from left to right, the

Egyptian from right to left. A vase from a somewhat later period pictures

a collector of tribute with a counting board which was used not only for

integral decimal multiples of the drachma, but for nondecimal fractional

subdivisions. Beginning on the left, the columns designate myriads, thou-

sands, hundreds, and tens of drachmas respectively, the symbols being in

Herodianic notation. Then, following the units column for drachmas, there

are columns for obols (six obols = one drachma), for half the obol, and

for the quarter obol. Here we see how ancient civilizations avoided an

excessive use of fractions: they simply subdivided units of length, weight,

and money so effectively that they could calculate in terms of integral

multiples of the subdivisions. This undoubtedly is the explanation for the

popularity in antiquity of duodecimal and sexagesimal subdivisions, for the

decimal system here is at a severe disadvantage. Decimal fractions were

rarely used, either by the Greeks or by other Western peoples, before the

period of the Renaissance. The abacus can be readily adapted to any system

of numeration or to any combination of systems; it is likely that the wide-

spread use of the abacus accounts at least in part for the amazingly late

development of a consistent positional system of notation for integers and

fractions. In this respect the Pythagorean Age contributed little if anything.

The point of view of the Pythagoreans seems to have been so overwhelm-

ingly philosophical and abstract that technical details in computation were

of little concern to them. Such techniques were relegated to a separate

discipline, called logistic. This dealt with the numbering of things, rather

than with the essence and properties of number as such, matters of concern

in arithmetic. That is, the ancient Greeks made a clear distinction between

mere calculation on the one hand and what today is known in America as

theory of numbers (and in England as the higher arithmetic) on the other.

Whether or not such a sharp distinction was a disadvantage to the historical

development of mathematics may be a moot point, but it is not easy to

deny to the early Ionian and Pythagorean mathematicians the primary role

in establishing mathematics as a rational and liberal discipline. It is for this

reason that Thales often is called the first mathematician and that Pytha-

goras is known as the father of mathematics. The extent to which we accept

such ascriptions literally, in view of the absence of supporting documentary

evidence, will depend on our confidence in tradition. It is obvious that

tradition can be quite inaccurate, but it seldom is entirely misdirected.
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The Heroic Age

/ would rather discover one cause than gain the kingdom of Persia.

Democritus

CENTERS OF ACTIVITY

Accounts of the origins of Greek mathematics center on the so-called

Ionian and Pythagorean schools and the chief representative of each

—

Thales and Pythagoras—although reconstructions of their thought rest on

fragmentary reports and traditions built up during later centuries. To a

certain extent this situation prevails throughout the fifth century B.C. There

are virtually no extant mathematical or scientific documents until the days

of Plato in the fourth century B.C. Nevertheless, during the last half of the

fifth century there circulated persistent and consistent reports concerning

a handful of mathematicians who evidently were intensely concerned with

problems that formed the basis for most of the later developments in

geometry. We shall, therefore, refer to this period as the "Heroic Age of

Mathematics," for seldom either before or since have men with so little

to work with tackled mathematical problems of such fundamental signifi-

cance. No longer was mathematical activity centered almost entirely in two

regions nearly at opposite ends of the Greek world; it flourished all about

the Mediterranean. In what is now southern Italy there were Archytas of

Tarentum (born ca. 428 B.C.) and Hippasus of Metapontum (fl. ca. 400

B.C.); at Abdera in Thrace we find Democritus (born ca. 460 B.C.); nearer

62
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the center of the Greek world, on the Attic peninsula, there was Hippias of

Elis (born ca. 460 B.C.); and at nearby Athens there lived at various times

during the critical last half of the fifth century B.C. three scholars from other

regions: Hippocrates of Chios (fl, ca. 430 B.C.), Anaxagoras of Clazomenae

(t428 B.C.), and Zeno of Elea (fl, ca. 450 B.C.). Through the work of these

seven men we shall decribe the fundamental changes in mathematics that

took place a little before the year 400 B.C.

ANAXAGORAS OF CLAZOMENAE

The fifth century B.C. was a crucial period in the history of Western civi-

lization, for it opened with the defeat of the Persian invaders and closed

with the surrender of Athens to Sparta. Between these two events lay the

great Age of Pericles, with its accomplishments in literature and art. The
prosperity and intellectual atmosphere of Athens during the century at-

tracted scholars from all parts of the Greek world, and a synthesis of diverse

aspects was achieved. From Ionia came men, such as Anaxagoras, with a

practical turn of mind; from southern Italy came others, such as Zeno,

with stronger metaphysical inclinations. Democritus of Abdera espoused

a materialistic view of the world, while Pythagoras in Italy held idealistic

attitudes in science and philosophy. At Athens one found eager devotees

of old and new branches of learning, from cosmology to ethics. There was

a bold spirit of free inquiry that sometimes came into conflict with estab-

lished mores. In particular, Anaxagoras was imprisoned at Athens for

impiety in asserting that the sun was not a deity, but a huge red-hot stone

as big as the whole Peloponnesus, and that the moon was an inhabited

earth that borrowed its light from the sun. He well represents the spirit of

rational inquiry, for he regarded as the aim of his life the study of the

nature of the universe—a purposefulness that he derived from the Ionian

tradition of which Thales had been a founder. The intellectual enthusiasm

of Anaxagoras was shared with his countrymen through the first scientific

best-seller—a book On Nature which could be bought in Athens for only

a drachma. Anaxagoras was a teacher of Pericles, who saw to it that his

mentor ultimately was released from prison. Socrates was at first attracted

to the scientific ideas of Anaxagoras, but the gadfly of Athens found the

naturalistic Ionian view less satisfying than the search for ethical verities.

Greek science had been rooted in a highly intellectual curiosity which

often is contrasted with the utilitarian immediacy of pre-Hellenic thought;

Anaxagoras clearly represented the typical Greek motive—the desire to

know. In mathematics also the Greek attitude differed sharply from that

of the earlier potamic cultures. The contrast was clear in the contributions

generally attributed to Thales and Pythagoras, and it continues to show

through in the more reliable reports on what went on in Athens during

the Heroic Age. Anaxagoras was primarily a natural philosopher rather
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than a mathematician, but his inquiring mind led him to share in the pursuit

of mathematical problems. We are told by Plutarch that while Anaxagoras

was in prison he occupied himself in an attempt to square the circle. Here

we have the first mention of a problem that was to fascinate mathematicians

for more than 2000 years. There are no further details concerning the

origin of the problem or the rules governing it. At a later date it came to

be understood that the required square, exactly equal in area to the circle,

was to be constructed by the use of compasses and straightedge alone.

Here we see a type of mathematics that is quite unlike that of the Egyptians

and Babylonians. It is not the practical application of a science of number
to a facet of life experience, but a theoretical question involving a nice

distinction between accuracy in approximation and exactitude in thought.

The mathematical problem that Anaxagoras here considered was no more
the concern of the technologist than were those he raised in science con-

cerning the ultimate structure of matter. In the Greek world mathematics

was more closely related to philosophy than to practical affairs, and this

kinship has persisted to the present day.

THREE FAMOUS PROBLEMS

Anaxagoras died in 428 B.C., the year that Archytas was born, just one

year before Plato's birth and one year after Pericles' death. It is said that

Pericles died of the plague that carried off perhaps a quarter of the Athenian

population, and the deep impression that this catastrophe created is per-

haps the origin of a second famous mathematical problem. It is reported

that a delegation had been sent to the oracle of Apollo at Delos to inquire

how the plague could be averted, and the oracle had replied that the cubical

altar to Apollo must be doubled. The Athenians are said to have dutifully

doubled the dimensions of the altar, but this was of no avail in curbing

the plague. The altar had, of course, been increased eightfold in volume,

rather than twofold. Here, according to the legend, was the origin of the

"duplication of the cube" problem, one that henceforth was usually re-

ferred to as the "Delian problem"—given the edge of a cube, construct

with compasses and straightedge alone the edge of a second cube having

double the volume of the first. At about the same time there circulated in

Athens still a third celebrated problem: given an arbitrary angle, construct

by means of compasses and straightedge alone an angle one third as large

as the given angle. These three problems—the squaring of the circle, the

duplication of the cube, and the trisection of the angle—have since been

known as the "three famous (or classical) problems" of antiquity. More
than 2200 years later it was to be proved that all three of the problems

were unsolvable by means of straightedge and compasses alone. Never-

theless, the better part of Greek mathematics, and of much later mathe-
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matical thought, was suggested by efforts to achieve the impossible—or,

failing this, to modify the rules. The Heroic Age failed in its immediate
objective, under the rules, but the efforts were crowned with brilliant

success in other respects.

QUADRATURE OF LUNES

Somewhat younger than Anaxagoras, and coming originally from about

the same part of the Greek world, was Hippocrates of Chios. He should

not be confused with his still more celebrated contemporary, the physician

Hippocrates of Cos. Both Cos and Chios are islands in the Dodecanese
group; but Hippocrates of Chios in about 430 B.C. left his native land for

Athens in his capacity as a merchant. Aristotle reports that Hippocrates

was less shrewd than Thales and that he lost his money in Byzantium

through fraud; others say that he was beset by pirates. In any case, the

incident was never regretted by the victim, for he counted this his good

fortune in that as a consequence he turned to the study of geometry, in

which he achieved remarkable success—a story typical of the Heroic Age.

Proclus wrote that Hippocrates composed an "Elements of Geometry,"

anticipating by more than a century the better-known Elements of Euclid.

However, the textbook of Hippocrates—as well as another reported to

have been written by Leon, a later associate of the Platonic school—has

been lost, although it was known to Aristotle. In fact, no mathematical

treatise from the fifth century has survived; but we do have a fragment

concerning Hippocrates which Simplicius (fl. ca. 520) claims to have copied

literally from the History ofMathematics (now lost) by Eudemus. This brief

statement, the nearest thing we have to an original source on the mathe-

matics of the time, describes a portion of the work of Hippocrates dealing

with the quadrature of lunes. A lune is a figure bounded by two circular

arcs of unequal radii; the problem of the quadrature of lunes undoubtedly

arose from that of squaring the circle. The Eudemian fragment attributes

to Hippocrates the following theorem:

Similar segments of circles are in the same ratio as the squares on their bases.

The Eudemian account reports that Hippocrates demonstrated this by first

showing that the areas of two circles are to each other as the squares on

their diameters. Here Hippocrates adopted the language and concept of

proportion which played so large a role in Pythagorean thought. In fact,

it is thought by some that Hippocrates became a Pythagorean. The Py-

thagorean school in Croton had been suppressed (possibly because of its

secrecy, perhaps because of its conservative political tendencies), but the

scattering of its adherents throughout the Greek world served only to
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broaden the influence of the school. This influence undoubtedly was felt,

directly or indirectly, by Hippocrates.

The theorem of Hippocrates on the areas of circles seems to be the

earliest precise statement on curvilinear mensuration in the Greek world.

Eudemus believed that Hippocrates gave a proof of the theorem, but a

rigorous demonstration at that time (say about 430 B.C.) would appear to

be unlikely. The theory of proportions at that stage probably was estab-

lished for commensurable magnitudes only. The proof as given in Euclid

XII. 2 comes from Eudoxus, a man who lived halfway between Hippocrates

and Euclid. However, just as much of the material in the first two books

of Euclid seems to stem from the Pythagoreans, so it would appear rea-

sonable to assume that the formulations, at least, of much of Books III

and IV of the Elements came from the work of Hippocrates. Moreover, if

Hippocrates did give a demonstration of this theorem on the areas of circles,

he may have been responsible for the introduction into mathematics of the

indirect method of proof. That is, the ratio of the areas of two circles is

equal to the ratio of the squares on the diameters or it is not. By a reductio

ad absurdum from the second of the two possibilities, the proof of the only

alternative is established.

From this theorem on the areas of circles Hippocrates readily found the

first rigorous quadrature of a curvilinear area in the history of mathematics.

He began with a semicircle circumscribed about an isosceles right triangle,

and on the base (hypotenuse) he constructed a segment similar to the

circular segments on the sides of the right triangle. (Fig. 5.1). Because the

segments are to each other as squares on their bases, and from the Pytha-

gorean theorem as applied to the right triangle, the sum of the two small

circular segments is equal to the larger circular segment. Hence, the dif-

ference between the semicircle on AC and the segment ADCE equals

triangle ABC. Therefore, the lune ABCD is precisely equal to triangle

ABC; and since triangle ABC is equal to the square on half of AC, the

quadrature of the lune has been found.

Eudemus describes also an Hippocratean lune quadrature based on an

isosceles trapezoid ABCD inscribed in a circle so that the square on the

longest side (base) AD is equal to the sum of the squares on the three

equal shorter sides AB and BC and CD (Fig. 5.2). Then, if on side AD
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FIG. 5.3 FIG. 5.4

one constructs a circular segment AEDF similar to those on the three equal

sides, lune ABCDE is equal to trapezoid ABCDF.
That we are on relatively firm ground historically in describing the quad-

rature of lunes by Hippocrates is indicated by the fact that scholars other

than Simplicius also refer to this work. Simplicius lived in the sixth century,

but he depended not only on Eudemus (fl. ca. 320 B.C.) but also on Alex-

ander of Aphrodisias (fl. ca. a.d. 200), one of the chief commentators on

Aristotle. Alexander describes two quadratures other than those given

above. (1) If on the hypotenuse and sides of an isosceles right triangle one

constructs semicircles (Fig. 5.3), then the lunes created on the smaller sides

together equal the triangle. (2) If on a diameter of a semicircle one con-

structs an isosceles trapezoid with three equal sides (Fig. 5.4), and if on

the three equal sides semicircles are constructed, then the trapezoid is

equal in area to the sum of four curvilinear areas: the three equal lunes

and a semicircle on one of the equal sides of the trapezoid. From the

second of these quadratures it would follow that if the lunes can be squared,

the semicircle—hence the circle—can also be squared. This conclusion

seems to have encouraged Hippocrates, as well as his contemporaries and

early successors, to hope that ultimately the circle would be squared.

CONTINUED PROPORTIONS

The Hippocratean quadratures are significant not so much as attempts at

circle-squaring as indications of the level of mathematics at the time. They

show that Athenian mathematicians were adept at handling transforma-

tions of areas and proportions. In particular, there was evidently no dif-

ficulty in converting a rectangle of sides a and b into a square. This required

finding the mean proportional or geometric mean between a and b. That

is, if a:x = x:b, geometers of the day easily constructed the line x. It was

natural, therefore, that geometers should seek to generalize the problem

by inserting two means between two given magnitudes a and b. That is,

given two line segments a and b, they hoped to construct two other seg-

ments x and y such that a:x = x.y = y.b. Hippocrates is said to have

recognized that this problem is equivalent to that of duplicating the cube;
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for if b = 2a, the continued proportions, upon the elimination of _y, lead

to the conclusion that jc
3 = 2a\

There are three views on what Hippocrates deduced from his quadrature

of lunes. Some have accused him of believing that he could square all

lunes, hence also the circle; others think that he knew the limitations of

his work, concerned as it was with some types of lunes only. At least one

scholar has held that Hippocrates knew he had not squared the circle but

tried to deceive his countrymen into thinking that he had succeeded. 1 There

are other questions, too, concerning Hippocrates' contributions, for to him
has been ascribed, with some uncertainty, the first use of letters in geo-

metric figures. It is interesting to note that whereas he advanced two of

the three famous problems, he seems to have made no progress in the

trisecting of the angle, a problem studied somewhat later by Hippias of

Elis.

HIPPIAS OF ELIS

Toward the end of the fifth century B.C. there flourished at Athens a group

of professional teachers quite unlike the Pythagoreans. Disciples of Py-

thagoras had been forbidden to accept payment for sharing their knowledge

with others. The Sophists, however, openly supported themselves by tu-

toring fellow citizens—not only in honest intellectual endeavor, but also

in the art of "making the worse appear the better. " To a certain extent

the accusation of shallowness directed against the Sophists was warranted;

but this should not conceal the fact that Sophists usually were very widely

informed in many fields and that some of them made real contributions to

learning. Among these was Hippias, a native of Elis who was active at Athens

in the second half of the fifth century B.C. He is one of the earliest

mathematicians of whom we have firsthand information, for we learn much
about him from Plato's dialogues. We read, for example, that Hippias

boasted that he had made more money than any two other Sophists. He
is said to have written much, from mathematics to oratory, but none of

his work has survived. He had a remarkable memory, he boasted immense

learning, and he was skilled in handicrafts. To this Hippias (there are many
others in Greece who bore the same name) we apparently owe the intro-

duction into mathematics of the first curve beyond the circle and the straight

line. Proclus and other commentators ascribe to him the curve since known

as the trisectrix or quadratrix of Hippias. 2 This is drawn as follows: In the

square ABCD (Fig. 5.5) let side AB move down uniformly from its present

'Sec Bjornbo's article "Hippocrates" in Pauly-Wissowa, Real-Enzyklopadie der klas-

sischen Altertumswissenschaft. Vol. VIII. p. 1796.
:An excellent account of this is found in K. Freeman, The Pre-Socraiic Philosophers. A

Companion to Diets. Fragmente der Vorsokratiker (1949), pp. 381-391. See also the article

on Hippias in Pauly-Wissowa. op. cit., Vol. VIII, pp. 1707 ff.
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position until it coincides with AC and let this motion take place in exactly

the same time that side DA rotates clockwise from its present position

until it coincides with DC. If the positions of the two moving lines at any

given time are given by A '
B' and DA" respectively and if P is the point

of intersection of A'B' and DA", the locus of P during the motions will

be the trisectrix of Hippias—curve APQ in the figure. Given this curve,

the trisection of an angle is carried out with ease. For example, if PDC is

the angle to be trisected, one simply trisects segments B'C and A'D at

points /?, 5, T, and U. If lines TR and US cut the trisectrix in V and W
respectively, lines VD and WD will, by the property of the trisectrix, divide

angle PDC in three equal parts.

The curve of Hippias generally is known as the quadratrix, since it can

be used to square the circle. Whether or not Hippias himself was aware

of this application cannot now be determined. It has been conjectured that

Hippias knew of this method of quadrature but that he was unable to

justify it. Since the quadrature through Hippias' curve was specifically given

later by Dinostratus, we shall describe this work in the next chapter.

Hippias lived at least as late as Socrates (t399 B.C.), and from the pen

of Plato we have an unflattering account of him as a typical Sophist—vain,

boastful, and acquisitive. Socrates is reported to have described Hippias

as handsome and learned, but boastful and shallow. Plato's dialogue on

Hippias satirizes his show of knowledge, and Xenophon's Memorabilia

includes an unflattering account of Hippias as one who regarded himself

an expert in everything from history and literature to handicrafts and sci-

ence. In judging such accounts, however, we must remember that Plato

and Xenophon were uncompromisingly opposed to the Sophists in general.

It is well to bear in mind also that both Protagoras, the "founding father

of the Sophists," and Socrates, the archopponent of the movement, were

antagonistic to mathematics and the sciences. With respect to character,

Plato contrasts Hippias with Socrates, but one can bring out much the same

contrast by comparing Hippias with another contemporary—the Pytha-

gorean mathematician Archytas of Tarentum.
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PHILOLAUS AND ARCHYTAS OF TARENTUM

Pythagoras is said to have retired to Metapontum toward the end of his

life and to have died there about 500 B.C. Tradition holds that he left no
written works, but his ideas were carried on by a large number of eager

disciples. The center at Croton was abandoned when a rival political group

from Sybaris surprised and murdered many of the leaders, but those who
escaped the massacre carried the doctrines of the school to other parts of

the Greek world. Among those who received instruction from the refugees

was Philolaus of Tarentum, and he is said to have written the first account

of Pythagoreanism—permission having been granted, so the story goes, to

repair his damaged fortunes. Apparently it was this book from which Plato

derived his knowledge of the Pythagorean order. The number fanaticism

that was so characteristic of the brotherhood evidently was shared by Phil-

olaus, and it was from his account that much of the mystical lore concerning

the tetractys was derived, as well as knowledge of the Pythagorean cos-

mology. The Philolaean cosmic scheme is said to have been modified by

two later Pythagoreans, Ecphantus and Hicetas, who abandoned the central

fire and counterearth and explained day and night by placing a rotating

earth at the center of the universe. The extremes of Philolaean number
worship also seem to have undergone some modification, more especially

at the hands of Archytas, a student of Philolaus at Tarentum.

The Pythagorean sect had exerted a strong intellectual influence

throughout Magna Graecia, with political overtones that may be described

as a sort of ''reactionary international," or perhaps better as a cross between

Orphism and Freemasonry. At Croton political aspects were especially

noticeable, but at outlying Pythagorean centers, such as Tarentum, the

impact was primarily intellectual. Archytas believed firmly in the efficacy

of number; his rule of the city, which allotted him autocratic powers, was

just and restrained, for he regarded reason as a force working toward social

amelioration. For many years in succession he was elected general, and he

was never defeated; yet he was kind and a lover of children, for whom he

is reported to have invented "Archytas' rattle." Possibly also the mechan-

ical dove, which he is said to have fashioned of wood, was built to amuse

the young folk.

Archytas continued the Pythagorean tradition in placing arithmetic

above geometry, but his enthusiasm for number had less of the religious

and mystical admixture found earlier in Philolaus. He wrote on the appli-

cation of the arithmetic, geometric, and subcontrary means to music, and

it was probably either Philolaus or Archytas who was responsible for chang-

ing the name of the last one to "harmonic mean." Among his statements

in this connection was the observation that between two whole numbers

in the ratio n\(n + 1) there could be no integer that is a geometric mean.

Archytas gave more attention to music than had his predecessors, and he

felt that this subject should play a greater role than literature in the edu-
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cation of children. Among his conjectures was one that attributed differ-

ences in pitch to varying rates of motion resulting from the flow causing

the sound. Archytas seems to have paid considerable attention to the role

of mathematics in the curriculum, and to him has been ascribed the des-

ignation of the four branches in the mathematical quadrivium—arithmetic

(or numbers at rest), geometry (or magnitudes at rest), music (or numbers

in motion), and astronomy (or magnitudes in motion). These subjects,

together with the trivium consisting of grammar, rhetoric, and dialectics

(which Aristotle traced back to Zeno), later constituted the seven liberal

arts; hence, the prominent role that mathematics has played in education

is in no small measure due to Archytas.

DUPLICATION OF THE CUBE

It is likely that Archytas had access to an earlier treatise on the elements

of mathematics, and the iterative square-root process often known by the

name of Archytas had been used long before in Mesopotamia. Neverthe-

less, Archytas was himself a contributor of original mathematical results.

The most striking contribution was a three-dimensional solution of the

Delian problem which may be most easily described, somewhat anachron-

istically, in the modern language of analytic geometry. Let a be the edge

of the cube to be doubled, and let the point (0, 0, 0) be the center of three

mutually perpendicular circles of radius a and each lying in a plane per-

pendicular to a coordinate axis. Through the circle perpendicular to the

jc-axis construct a right circular cone with vertex (0, 0, 0); through the

circle in the ry-plane pass a right circular cylinder; and let the circle in the

Jtz-plane be revolved about the z-axis to generate a torus. The equations

of these three surfaces are respectively x 2 - v
2 + z 2 and lax = x 2 + y

2

and (x 2 + y
2 + z 2

)
2 = 4a 2(x 2 + y

2
). These three surfaces intersect in a

point whose jc-coordinate is a^tfU; hence, the length of this line segment

is the edge of the cube desired.

The achievement of Archytas is the more impressive when we recall

that his solution was worked out synthetically without the aid of coordi-

nates. Nevertheless, the most important contribution of Archytas to math-

ematics may have been his intervention with the tyrant Dionysius to save

the life of his friend, Plato. The latter remained to the end of his life deeply

committed to the Pythagorean veneration of number and geometry, and

the supremacy of Athens in the mathematical world of the fourth century

B.C. resulted primarily from the enthusiasm of Plato, the "maker of math-

ematicians." However, before taking up the role of Plato it is necessary

to discuss the work of an earlier Pythagorean—an apostate by the name

of Hippasus.

Hippasus of Metapontum (or Croton), roughly contemporaneous with

Philolaus, is reported to have been originally a Pythagorean but to have
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been expelled from the brotherhood. One account has it that the Pytha-

goreans erected a tombstone to him, as though he were dead; another

story reports that his apostasy was punished by death at sea in a shipwreck.

The exact cause of the break is unknown, in part because of the rule of

secrecy, but there are three suggested possibilities. According to one, Hip-

pasus was expelled for political insubordination, having headed a demo-
cratic movement against the conservative Pythagorean rule. A second

tradition attributes the expulsion to disclosures concerning the geometry

of the pentagon or the dodecahedron—perhaps a construction of one of

the figures. A third explanation holds that the expulsion was coupled with

the disclosure of a mathematical discovery of devastating significance for

Pythagorean philosophy—the existence of incommensurable magnitudes.

INCOMMENSURABILITY

It had been a fundamental tenet of Pythagoreanism that the essence of all

things, in geometry as well as in the practical and theoretical affairs of

man, are explainable in terms of arithmos, or intrinsic properties of whole

numbers or their ratios. The dialogues of Plato show, however, that the

Greek mathematical community had been stunned by a disclosure that

virtually demolished the basis for the Pythagorean faith in whole numbers.

This was the discovery that within geometry itself the whole numbers and

their ratios are inadequate to account for even simple fundamental prop-

erties. They do not suffice, for example, to compare the diagonal of a

square or a cube or a pentagon with its side. The line segments are incom-

mensurable, no matter how small a unit of measure is chosen. Just when

and how the discovery was made is not known, but much ink has been

spilled in support of one hypothesis or another. Earlier arguments in favor

of a Hindu origin of the discovery lack foundation, and there seems to be

little chance that Pythagoras himself was aware of the problem of incom-

mensurability. The most plausible suggestion is that the discovery was made
by the later Pythagoreans at some time before 410 B.C. Some would at-

tribute it specifically to Hippasus of Metapontum during the earlier portion

of the last quarter of the fifth century B.C., while others place it about

another half a century later.

The circumstances surrounding the earliest recognition of incommen-

surable line segments are as uncertain as is the time of the discovery.

Ordinarily it is assumed that the recognition came in connection with the

application of the Pythagorean theorem to the isosceles right triangle.

Aristotle refers to a proof of the incommensurability of the diagonal of a

square with respect to a side, indicating that it was based on the distinction

between odd and even. Such a proof is easy to construct. Let d and s be

the diagonal and side of a square, and assume that they are commensur-

able—that is, that the ratio dls is rational and equal to plq, where p and
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q are integers with no common factor. Now, from the Pythagorean theorem

it is known that d 2 = s
2 + s

2
; hence, (d/s) 2 = p

2lq 2 = 2, or p
2 = 2q

2
.

Therefore, p
2 must be even; hence, p must be even. Consequently q must

be odd. Letting p = 2r and substituting in the equation/? 2 = 2q
2

, we have

4r 2 = 2<?
2

, or q
2 = 2r2

. Then q
2 must be even; hence, q must be even.

However, q was shown above to be odd, and an integer cannot be both

odd and even. It follows, therefore, by the indirect method, that the as-

sumption that d and s are commensurable must be false.

THE GOLDEN SECTION

In this proof the degree of abstraction is so high that the possibility that

it was the basis for the original discovery of incommensurability has been

questioned. There are, however, other ways in which the discovery could

have come about. Among these is the simple observation that when the

five diagonals of a regular pentagon are drawn, these diagonals form a

smaller regular pentagon (Fig. 5.6), and the diagonals of the second pen-

tagon in turn form a third regular pentagon, which is still smaller. This

process can be continued indefinitely, resulting in pentagons that are as

small as desired and leading to the conclusion that the ratio of a diagonal

to a side in a regular pentagon is not rational. The irrationality of this ratio

is, in fact, a consequence of the argument presented in connection with

Fig. 4.2 in which the golden section was shown to repeat itself over and

over again. Was it perhaps this property that led to the disclosure, possibly

by Hippasus, of incommensurability? There is no surviving document to

resolve the question, but the suggestion is at least a plausible one. In this

case, it would not have been V2 but V5 that first disclosed the existence

of incommensurable magnitudes, for the solution of the equation a:x =

x:(a - x) leads to (V5 - l)/2 as the ratio of the side of a regular pentagon

to a diagonal. The ratio of the diagonal of a cube to an edge is V3, and

here, too, the spectre of the incommensurable rears its ugly head.

A geometric proof somewhat analogous to that for the ratio of the

diagonal of a pentagon to its side can be provided also for the ratio of the

diagonal of a square to its side. If in the square ABCD (Fig. 5.7) one lays

Q R

FIG. 5.6 FIG. 5.7
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off on the diagonal AC the segment AP = AB and at P erects the per-

pendicular PQ, the ratio of CQ to PC will be the same as the ratio of AC
to AB. Again, if on CQ one lays off QR = QP and constructs RS per-

pendicular to CR, the ratio of hypotenuse to side again will be what it was

before. This process, too, can be continued indefinitely, thus affording a

proof that no unit of length, however small, can be found so that the

hypotenuse and a side will be commensurable.

PARADOXES OF ZENO

The Pythagorean doctrine that "Numbers constitute the entire heaven"

was now faced with a very serious problem indeed; but it was not the only

one, for the school was confronted also by arguments propounded by the

neighboring Eleatics, a rival philosophical movement. Ionian philosophers

of Asia Minor had sought to identify a first principle for all things. Thales

had thought to find this in water, but others preferred to think of air or

fire as the basic element. The Pythagoreans had taken a more abstract

direction, postulating that number in all its plurality was the basic stuff

behind phenomena; this numerical atomism, beautifully illustrated in the

geometry of figurate numbers, had come under attack by the followers of

Parmenides of Elea (fl. ca. 450 B.C.). The fundamental tenet of the Eleatics

was the unity and permanence of being, a view that contrasted with the

Pythagorean ideas of multiplicity and change. Of Parmenides' disciples the

best known was Zeno the Eleatic (fl. ca. 450 B.C.) who propounded ar-

guments to prove the inconsistency in the concepts of multiplicity and

divisibility. The method Zeno adopted was dialectical, anticipating Socrates

in this indirect mode of argument: starting from his opponent's premises,

he reduced these to an absurdity.

The Pythagoreans had assumed that space and time can be thought of

as consisting of points and instants; but space and time have also a property,

more easily intuited than defined, known as "continuity." The ultimate

elements making up a plurality were assumed on the one hand to have the

characteristics of the geometric unit—the point—and on the other to

have certain characteristics of the numeric units or numbers. Aristotle

described a Pythagorean point as "unity having position" or as "unity

considered in space." It has been suggested 3
that it was against such a view

that Zeno propounded his paradoxes, of which those on motion are cited

most frequently. As they have come down to us, through Aristotle and

others, four of them seem to have caused the most trouble: (1) the Di-

chotomy, (2) the Achilles, (3) the Arrow, and (4) the Stade. The first argues

Sec Paul Tannery. La geometric ^recque (Paris. 1887), pp. 217-261. For a different view

see B. L. van der Waerden. "Zenon und die Grundlagenkrise der griechischen Mathematik,"

Mathematische Annalen, 117(1940). 141-161.
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that before a moving object can travel a given distance, it must first travel

half this distance; but before it can cover this, it must travel the first quarter

of the distance; and before this, the first eighth, and so on through an

infinite number of subdivisions. The runner wishing to get started must

make an infinite number of contacts in a finite time; but it is impossible

to exhaust an infinite collection, hence the beginning of motion is impos-

sible. The second of the paradoxes is similar to the first except that the

infinite subdivision is progressive rather than regressive. Here Achilles is

racing against a tortoise that has been given a headstart, and it is argued

that Achilles, no matter how swiftly he may run, can never overtake the

tortoise, no matter how slow it may be. By the time that Achilles will have

reached the initial position of the tortoise, the latter will have advanced

some short distance; and by the time that Achilles will have covered this

distance, the tortoise will have advanced somewhat farther; and so the

process continues indefinitely, with the result that the swift Achilles can

never overtake the slow tortoise.

The Dichotomy and the Achilles argue that motion is impossible under

the assumption of the infinite subdivisibility of space and time; the Arrow
and the Stade, on the other hand, argue that motion is equally impossible

if one makes the opposite assumption—that the subdivisibility of space

and time terminates in indivisibles. In the Arrow Zeno argues that an

object in flight always occupies a space equal to itself; but that which always

occupies a space equal to itself is not in motion. Hence, the flying arrow

is at rest at all times, so that its motion is an illusion.

Most controversial of the paradoxes on motion, and most awkward to

describe, is the Stade (or Stadium), but the argument can be phrased

somewhat as follows. Let A u A 2 , A iy A 4 be bodies of equal size that are

stationary; let B l9 B2 , B3 , B4 be bodies, of the same size as the ,4's, that

are moving to the right so that each B passes each A in an instant—the

smallest possible interval of time. Let C
x , C2 , C3 , C4 also be of equal size

with the A's and /Ts and let them move uniformly to the left with respect

to the A 's so that each C passes each A in an instant of time. Let us assume

that at a given time the bodies occupy the following relative positions:

A[ /xj *±"\ -<M

0, B 2 B } B4

c, c2 Q c4

Then, after the lapse of a single instant—that is, after an indivisible sub-
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division of time—the positions will be as follows:

A, A 2 A, A A

B, B 2 B3 B t

c, c. c, c4

It is clear, then, that C, will have passed two of the ZTs; hence, the instant

cannot be the minimum time interval, for we can take as a new and smaller

unit the time it takes C, to pass one of the ZTs.

The arguments of Zeno seem to have had a profound influence on the

development of Greek mathematics, comparable to that of the discovery

of the incommensurable, with which it may have been related. Originally,

in Pythagorean circles, magnitudes were represented by pebbles or calculi,

from which our word calculation comes, but by the time of Euclid there

is a complete change in point of view. Magnitudes are not in general

associated with numbers or pebbles, but with line segments. In the Elements

even the integers themselves are represented by segments of lines. The
realm of number continued to have the property of discreteness, but the

world of continuous magnitudes (and this includes most of pre-Hellenic

and Pythagorean mathematics) was a thing apart from number and had to

be treated through geometric method. It seemed to be geometry rather

than number that ruled the world. This was perhaps the most far-reaching

conclusion of the Heroic Age, and it is not unlikely that this was due in

large measure to Zeno of Elea and Hippasus of Metapontum.

DEDUCTIVE REASONING

It has generally been held that the deductive element had been introduced

into mathematics by Thales, but recently it has been argued against this

thesis that the mathematics of the sixth and fifth centuries B.C. was too

primitive to countenance such a contribution. Those who hold to this thesis

sometimes refer to the arguments of Zeno and Hippasus as possible in-

spiration for the deductive approach. Certainly the doubts and problems

raised in this connection would have been a fertile field for the growth of

deduction; and it would not be unreasonable to regard the end of the fifth

century B.C. as a terminus ante quern for the rational deductive form with

which we have become so familiar. It may be well to indicate at this point,

therefore, that there are several conjectures as to the causes leading to the
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conversion of the mathematical prescriptions of pre-Hellenic peoples into

the deductive structure appearing in Greece. Some have suggested that

Thales in his travels had noted discrepancies in pre-Hellenic mathematics

—

such as the Egyptian and Babylonian rules for the area of a circle—and
that he and his early successors, therefore, saw the need for a strict rational

method. Others, more conservative, would place the deductive form much
later—perhaps even as late as the early fourth century, following the dis-

covery of the incommensurable. Other suggestions find the cause outside

mathematics. One, for example, sees in the sociopolitical development of

the Greek city-states the rise of dialectics and a consequent requirement

of a rational basis for mathematics and other studies; another somewhat
similar suggestion is that deduction may have come out of logic in attempts

to convince an opponent of a conclusion by looking for premises from
which the conclusion necessarily follows.

GEOMETRIC ALGEBRA

Whether deduction came into mathematics in the sixth century B.C. or the

fourth and whether incommensurability was discovered before or after 400

B.C., there can be no doubt that Greek mathematics had undergone drastic

changes by the time of Plato. The dichotomy between number and con-

tinuous magnitude required a new approach to the Babylonian algebra that

the Pythagoreans had inherited. The old problems in which, given the sum
and the product of the sides of a rectangle, the dimensions were required,

had to be dealt with differently from the numerical algorithms of the Ba-

bylonians. A "geometric algebra" had to take the place of the older "arith-

metic algebra," and in this new algebra there could be no adding of lines

to areas or of areas to volumes. From now on there had to be a strict

homogeneity of terms in equations, and the Mesopotamian normal forms,

xy = A,x±y = b, were to be interpreted geometrically. The obvious

conclusion, which the reader can arrive at by eliminating y, is that one

must construct on a given line b a rectangle whose unknown width x must

be such that the area of the rectangle exceeds the given area A by the

square x 2 or (in the case of the minus sign) falls short of the area A by the

square x 2
(Fig. 5 .8). In this way the Greeks built up the solution of quadratic

equations by their process known as "the application of areas," a portion

FIG. 5.8
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P

B

FIG. 5.9

of geometric algebra that is fully covered by Euclid's Elements. Moreover,

the uneasiness resulting from incommensurable magnitudes led to an avoid-

ance of ratios, insofar as possible, in elementary mathematics. The linear

equation ax = be, for example, was looked upon as an equality of the

areas ax and be, rather than as a proportion—an equality between the two

ratios a: b and ex. Consequently, in constructing the fourth proportion x

in this case, it was usual to construct a rectangle OCDB with sides b =

OB and c = OC (Fig. 5.9) and then along OC to lay off OA = a. One
completes rectangle OAEB and draws the diagonal OE cutting CD in P.

It is now clear that CP is the desired line jc, for rectangle OARS is equal

in area to rectangle OCDB. Not until Book V of the Elements did Euclid

take up the difficult matter of proportionality.

Greek geometric algebra strikes the modern reader as excessively

artificial and difficult; to those who used it and became adept at handling

its operations, however, it probably appeared to be a convenient tool. The
distributive law a(b + c + d) = ab + ac + ad undoubtedly was far more

obvious to a Greek scholar than to the beginning student of algebra today,

for the former could easily picture the areas of the rectangles in this theo-

rem, which simply says that the rectangle on a and the sum of segments

6, c, d is equal to the sum of the rectangles on a and each of the lines

b, c, d taken separately (Fig. 5.10). Again, the identity (a + b) 2 = a 2 +

lab + b 2 becomes obvious from a diagram that shows the three squares

and the two equal rectangles in the identity (Fig. 5.11); and a difference

ab ac ad

a* ab

ab b 2

FIG. 5.10 FIG. 5.11
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a + 6

a-6

FIG. 5.12

of two squares a 2 - b 2 = (a + b)(a - b) can be pictured in a similar

fashion (Fig. 5.12). Sums, differences, products, and quotients of line seg-

ments can easily be constructed with straightedge and compasses. Square

roots also afford no difficulty in geometric algebra. If one wishes to find a

line x such that x 2 = ab, one simply follows the procedure found in ele-

mentary geometry textbooks today. One lays off on a straight line the

segment ABC, whereAB = a and BC = b (Fig. 5. 13). With AC as diameter

one constructs a semicircle (with center O) and at B erects the perpen-

dicular BP, which is the segment x desired. It is interesting that here, too,

the proof as given by Euclid, probably following the earlier avoidance of

ratios, makes use of areas rather than proportions. If in our figure we let

PO = AO = CO = r and BO = s, Euclid would say essentially that x 2

= r
2 - s

2 = (r - s)(r + s) = ab.

DEMOCRITUS OF ABDERA

The Heroic Age in mathematics produced half a dozen great figures, and

among them must be included a man who is better known as a chemical

philosopher. Democritus of Abdera (ca. 460-370 B.C.) is today celebrated

as a proponent of a materialistic atomic doctrine, but in his time he had

acquired also a reputation as a geometer. He is reported to have traveled

more widely than anyone of his day—to Athens, Egypt and Mesopotamia,

and possibly India—acquiring what learning he could; but his own achieve-

ments in mathematics were such that he boasted that not even the "rope-

stretchers" in Egypt excelled him. He wrote a number of mathematical

works, not one of which is extant today, but we have the titles of a few:

On Numbers, On Geometry, On Tangencies, On Mappings, and On Ir-

rationals. So great was his fame that in later centuries many treatises in

chemistry and mathematics were unwarrantedly attributed to him. In par-

ticular, early alchemical works by a pseudo-Democritus are not to be as-

cribed to our Abderite; but other books, On the Pythagoreans, On the

World Order, and On Ethics, may have been genuine. His scientific material
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was said to be clear but clothed in a literary style; Cicero wrote of De-

mocritus that he had rhythm that made him more poetical than the poets.

Yet of the mass of writings thought to have been by Democritus, nothing

beyond a few words has survived.

The key to the mathematics of Democritus is without doubt to be found

in his physical doctrine of atomism. All phenomena were to be explained,

he argued, in terms of indefinitely small and infinitely varied (in size and

shape) impenetrably hard atoms moving about ceaselessly in empty space.

The creation of our world—and of innumerable others also—was the result

of an ordering or coagulation of atoms into groups having certain similar-

ities. This was not a new theory, for it had been proposed earlier by

Leucippus; therefore, the opponents of Democritus (and there were many
of these) accused him of plagiarism from others, including Anaxagoras and

Pythagoras. The physical atomism of Leucippus and Democritus may in-

deed have been suggested by the geometric atomism of the Pythagoreans,

and it is not surprising that the mathematical problems with which De-

mocritus was chiefly concerned were those that demand some sort of in-

finitesimal approach. The Egyptians, for example, were aware that the

volume of a pyramid is one third the product of the base and the altitude,

but a proof of this fact almost certainly was beyond their capabilities, for

it requires a point of view equivalent to the calculus. Archimedes later

wrote that this result was due to Democritus, but that the latter did not

prove it rigorously. This creates a puzzle, for if Democritus added anything

to the Egyptian knowledge here, it must have been some sort of demon-

stration, albeit inadequate. Perhaps Democritus showed that a triangular

prism can be divided into three triangular pyramids which are equal in

height and area of the base, and then deduced, from the assumption that

pyramids of the same height and equal bases are equal, the familiar Egyp-

tian theorem.

This assumption can be justified only by the application of infinitesimal

techniques. If, for example, one thinks of two pyramids of equal bases and

the same height as composed of indefinitely many infinitely thin equal cross

sections in one-to-one correspondence (a device usually known as Cava-

lieri's principle in deference to the seventeenth-century geometer), the

assumption appears to be justified. Such a fuzzy geometric atomism might

have been at the base of Democritus' thought, although this has not been

established. In any case, following the paradoxes of Zeno and the aware-

ness of incommensurables, such arguments based on an infinity of infini-

tesimals were not acceptable. Archimedes consequently could well hold

that Democritus had not given a rigorous proof. The same judgment would

be true with respect to the theorem, also attributed by Archimedes to

Democritus, that the volume of a cone is one third the volume of the

circumscribing cylinder. This result probably was looked upon by Demo-
critus as a corollary to the theorem on the pyramid, for the cone is essen-

tially a pyramid whose base is a regular polygon of infinitely many sides.
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Democritean geometric atomism was immediately confronted by certain

problems. If the pyramid or the cone, for example, is made up of infinitely

many infinitely thin triangular or circular sections parallel to the base, a

consideration of any two adjacent laminae creates a paradox. If the ad-

jacent sections are equal in area, then, since all sections are equal, the

totality will be a prism or a cylinder, and not a pyramid or a cone. If, on

the other hand, adjacent sections are unequal, the totality will be a step

pyramid or a step cone and not the smooth-surfaced figure one has in mind.

This problem is not unlike the difficulties with the incommensurable and

with the paradoxes of motion. Perhaps, in his On the Irrational, Democritus

analysed the difficulties here encountered, but there is no way of knowing

what direction his attempts may have taken. His extreme unpopularity in

the two dominant philosophical schools of the next century, those of Plato

and Aristotle, may have encouraged the disregard of Democritean ideas.

Nevertheless, the chief mathematical legacy of the Heroic Age can be

summed up in six problems: the squaring of the circle, the duplication of

the cube, the trisection of the angle, the ratio of incommensurable mag-

nitudes, the paradoxes on motion, and the validity of infinitesimal methods.

To some extent these can be associated, although not exclusively, with

men considered in this chapter: Hippocrates, Archytas, Hippias, Hippasus,

Zeno, and Democritus. Other ages were to produce a comparable array

of talent, but perhaps never again was any age to make so bold an attack

on so many fundamental mathematical problems with such inadequate

methodological resources. It is for this reason that we have called the period

from Anaxagoras to Archytas the Heroic Age.
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The Age of Plato

and Aristotle

Willingly would I burn to death like Phaeton, were this the price for reaching the

sun and learning its shape, its size, and its substance.

Eudoxus

THE SEVEN LIBERAL ARTS

The Heroic Age lay largely in the fifth century B.C., and from this period

little remains in the way of direct evidence about mathematical develop-

ments. The histories of Herodotus and Thucydides and the plays of Aes-

chylus, Euripides, and Aristophanes have in some measure survived, but

scarcely a line is extant of what was written by mathematicians of the time.

Firsthand mathematical sources from the fourth century B.C. are almost

as scarce, but this inadequacy is made up for in large measure by accounts

written by philosophers who were au courant with the mathematics of their

day. We have most of what Plato wrote and about half of the work of

Aristotle; with the writings of these intellectual leaders of the fourth century

B.C. as a guide, we can give a far more dependable account of what hap-

pened in their day than we could about the Heroic Age.

We included Archytas among the mathematicians of the Heroic Age,

but in a sense he really is a transition figure in mathematics during Plato's

82
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time. Archytas was among the last of the Pythagoreans, both literally and
figuratively. He could still believe that number was all-important in life

and in mathematics, but the wave of the future was to elevate geometry

to the ascendancy, largely because of the problem of incommensurability.

On the other hand, Archytas is reported to have established the quadri-

vium—arithmetic, geometry, music, and astronomy—as the core of a lib-

eral education, and here his views were to dominate much of pedagogical

thought to our day. The seven liberal arts, which remained a shibboleth

for almost two millennia, were made up of Archytas' quadrivium and the

trivium of grammar, rhetoric, and Zeno's dialectic. Consequently one may
with some justice hold that the mathematicians of the Heroic Age were

responsible for much of the direction in Western educational traditions,

especially as transmitted through the philosophers of the fourth century

B.C.

SOCRATES

The fourth century B.C. had opened with the death of Socrates, a scholar

who adopted the dialectic method of Zeno and repudiated the Pythago-

reanism of Archytas. Socrates admitted that in his youth he had been

attracted by such questions as why the sum 2 + 2 was the same as the

product 2 + 2, as well as by the natural philosophy of Anaxagoras; but

upon realizing that neither mathematics nor science could satisfy his desire

to know the essence of things, he gave himself up to his characteristic

search for the good.

In the Phaedo of Plato, the dialogue in which the last hours of Socrates

are so beautifully described, we see how deep metaphysical doubts pre-

cluded a Socratic concern with either mathematics or natural science:

I cannot satisfy myself that, when one is added to one, the one to which the

addition is made becomes two, or that the two units added together make
two by reason of the addition. I cannot understand how when separated from

the other, each of them was one and not two, and now, when they are brought

together, the mere juxtaposition or meeting of them should be the cause of

their becoming two.

Hence, the influence of Socrates in the development of mathematics was

negligible, if not actually negative. This makes it all the more surprising

that it was his student and admirer, Plato, who became the mathematical

inspiration of the fourth century B.C. We shall concentrate in this chapter

on the mathematical achievements of half a dozen men who lived between

the death of Socrates in 399 B.C. and the death of Aristotle in 322 B.C.

The six men whose work we shall describe (in addition to that of Plato

and Aristotle) are Theodorus of Cyrene (fl. ca. 390 B.C.), Theaetetus (t369
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B.C.), Eudoxus of Cnidus (t ca. 355 B.C.), Menaechmus (fl. ca. 350 B.C.)

and his brother Dinostratus (fl. ca. 350 B.C.), and Autolycus of Pitane (fl.

ca. 330 B.C.).

PLATONIC SOLIDS

The six mathematicians were not scattered throughout the Greek world,

as had been those in the fifth century B.C.; they were associated more or

less closely with the Academy of Plato at Athens. Although Plato himself

made no outstanding specific contribution to technical mathematical re-

sults, he was the center of the mathematical activity of the time and guided

and inspired its development. Over the doors of his school was inscribed

the motto, "Let no one ignorant of geometry enter here"; his enthusiasm

for the subject led him to become known not as a mathematician, but as

"the maker of mathematicians. " It is clear that Plato's high regard for

mathematics did not come from Socrates; in fact, the earlier Platonic dia-

logues seldom refer to mathematics. The one who converted Plato to a

mathematical outlook undoubtedly was Archytas, a friend whom he visited

in Sicily in 388 B.C. Perhaps it was there that he learned of the five regular

Fire

tetrahedron

Air

octahedron

Cold

Water
icosahedron

Elements and regular solids

solids, which were associated with the four elements of Empedocles in a

cosmic scheme that fascinated men for centuries. Possibly it was the Py-

thagorean regard for the dodecahedron that led Plato to look on this, the

fifth and last, regular solid as a symbol of the universe. Plato put his ideas

on the regular solids into a dialogue entitled the Timueus, presumably

named for a Pythagorean who serves as the chief interlocutor. It is not

known whether Timaeus of Locri really existed or whether Plato invented

him as a character through whom to express the Pythagorean views that

still were strong in what is now Southern Italy. The regular polyhedra have

often been called "cosmic bodies" or "Platonic solids" because of the way
in which Plato in the Iinuieus applied them to the explanation of scientific

phenomena. Although this dialogue, probably written when Plato was near



THEOPORUS OF CYRENE 85

seventy, provides the earliest definite evidence for the association of the

four elements with the regular solids, much of this fantasy may be due to

the Pythagoreans. Proclus attributes the construction of the cosmic figures

to Pythagoras; but the scholiast Suidas reported that Plato's friend Theae-

tetus, born about 414 B.C. and the son of one of the richest patricians in

Attica, first wrote on them. A scholium (of uncertain date) to Book XIII

of Euclid's Elements reports that only three of the five solids were due to

the Pythagoreans, and that it was through Theaetetus that the octahedron

and icosahedron became known. It seems likely that in any case Theaetetus

made one of the most extensive studies of the five regular solids, and to

him probably is due the theorem that there are five and only five regular

polyhedra. Perhaps he is responsible also for the calculations in the Ele-

ments of the ratios of the edges of the regular solids to the radius of the

circumscribed sphere.

Theaetetus was a young Athenian who died in 369 B.C. from a com-

bination of wounds received in battle and of dysentery, and the Platonic

dialogue bearing his name was a commemorative tribute by Plato to his

friend. In the dialogue, purporting to take place some thirty years earlier,

Theaetetus discusses with Socrates and Theodorus the nature of incom-

mensurable magnitudes. It has been assumed that this discussion took

somewhat the form that we find in the opening of Book X of the Elements.

Here distinctions are made not only between commensurable and incom-

mensurable magnitudes, but also between those that while incommensur-

able in length are, or are not, commensurable in square. Surds such

as V3 and V5 are incommensurable in length, but they are commensur-

able in square, for their squares have the ratio 3 to 5. The magnitudes

Vl + Vf and Vl + V5, on the other hand, are incommensurable both

in length and in square.

THEODORUS OF CYRENE

The dialogue that Plato composed in memory of his friend Theaetetus

contains information on another mathematician whom Plato admired and

who contributed to the early development of the theory of incommensur-

able magnitudes. Reporting on the then recent discovery of what we
call the irrationality of V2, Plato in the Theaetetus says that his teacher,

Theodorus of Cyrene—of whom Theaetetus also was a pupil—was the first

to prove the irrationality of the square roots of the nonsquare integers

from 3 to 17 inclusive. It is not known how he did this, nor why he stopped

with Vl7. The proof in any case would have been constructed along the

lines of that for Vl as given by Aristotle and interpolated in later versions

of Book X of the Elements. References in ancient historical works indicate

that Theodorus made discoveries in elementary geometry that later were

incorporated in Euclid's Elements; but the works of Theodorus are lost.



86 THE AGE OF PLATO AND ARISTOTLE

PLATONIC ARITHMETIC AND GEOMETRY

Plato is important in the history of mathematics largely for his role as

inspirer and director of others, and perhaps to him is due the sharp dis-

tinction in ancient Greece between arithmetic (in the sense of the theory

of numbers) and logistic (the technique of computation). Plato regarded

logistic as appropriate for the businessman and for the man of war, who
"must learn the art of numbers or he will not know how to array his troops."

The philosopher, on the other hand, must be an arithmetician "because

he has to arise out of the sea of change and lay hold of true being."

Moreover, Plato says in the Republic, "Arithmetic has a very great and

elevating effect, compelling the mind to reason about abstract number."

So elevating are Plato's thoughts concerning number that they reach the

realm of mysticism and apparent fantasy. In the last book of the Republic

he refers to a number that he calls "the lord of better and worse births."

There has been much speculation concerning this "Platonic number," and

one theory is that it is the number 604 = 12,960,000—important in Ba-

bylonian numerology and possibly transmitted to Plato through the Py-

thagoreans. In the Laws the number of citizens in the ideal state is given

as 5040 (that is, 7 • 6 • 5 • 4 • 3 • 2 • 1). This sometimes is referred to as

the Platonic nuptial number, and various theories have been advanced to

suggest what Plato had in mind.

As in arithmetic Plato saw a gulf separating the theoretical and com-

putational aspects, so also in geometry he espoused the cause of pure

mathematics as against the materialistic views of the artisan or technician.

Plutarch, in his Life of Marcellus, speaks of Plato's indignation at the use

of mechanical contrivances in geometry. Apparently Plato regarded such

use as "the mere corruption and annihilation of the one good of geometry,

which was thus shamefully turning its back upon the unembodied objects

of pure intelligence." Plato may consequently have been largely responsible

for the prevalent restriction in Greek geometric constructions to those

that can be effected by straightedge and compasses alone. The reason for

the limitation is not likely to have been the simplicity of the instruments

used in constructing lines and circles, but rather the symmetry of the con-

figurations. Any one of the infinitely many diameters of a circle is a line

of symmetry of the figure; any point on an infinitely extended straight line

can be thought of as a center of symmetry, just as any line perpendicular

to the given line is a line with respect to which the given line is symmetric.

Platonic philosophy, with its apotheosization of ideas, would quite naturally

find a favored role for the line and the circle among geometric figures.

In a somewhat similar manner Plato glorified the triangle. The faces of the

five regular solids in Plato's view were not simple triangles, squares, and

pentagons. Each of the four faces of the tetrahedron, for example, is made
up of six smaller right triangles formed by altitudes of the equilateral

triangular faces. The regular tetrahedron he, therefore, thought of as made
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up of twenty-four scalene right triangles in which the hypotenuse is double

one side; the regular octahedron contains 8 x 6 or 48 such triangles, and

the icosahedron is made up of 20 x 6 or 120 triangles. In a similar way
the hexahedron (or cube) is constructed of twenty-four isosceles right tri-

angles, for each of the six square faces contains four right triangles when
the diagonals of the squares are drawn.

To the dodecahedron Plato had assigned a special role as representative

of the universe, cryptically saying that "God used it for the whole" (77-

maeus 55C). Plato looked upon the dodecahedron as composed of 360

scalene right triangles, for when the five diagonals and five medians are

drawn in each of the pentagonal faces, each of the twelve faces will contain

thirty right triangles. The association of the first four regular solids with

the traditional four universal elements provided Plato in the Timaeus with

a beautifully unified theory of matter according to which everything was

constructed of ideal right triangles. The whole of physiology, as well as

the sciences of inert matter, is based in the Timaeus on these triangles.

Normal growth of the body, for example, is explained as follows:

When the frame of the whole creature is young and the triangles of its

constituent bodies are still as it were fresh from the workshop, their joints

are firmly locked together. . . . Accordingly, since any triangles composing

the meat and drink ... are older and weaker than its own, with its new-

made triangles, it gets the better of them and cuts them up, and so causes

the animal to wax large.

In old age, on the other hand, the triangles of the body are so loosened

by use that "they can no longer cut up into their own likeness the triangles

of the nourishment as they enter, but are themselves easily divided by the

intruders from without," and the creature wastes away.

ORIGIN OF ANALYSIS

Pythagoras is reputed to have established mathematics as a liberal subject,

but Plato was influential in making the subject an essential part of the

curriculum for the education of statesmen. Influenced perhaps by Archytas,

Plato would add to the original subjects in the quadrivium a new subject,

stereometry, for he believed that solid geometry had not been sufficiently

emphasized. Plato also discussed the foundations of mathematics, clarified

some of the definitions, and reorganized the assumptions. He emphasized

that the reasoning used in geometry does not refer to the visible figures

that are drawn but to the absolute ideas that they represent. The Pytha-

goreans had defined a point as "unity having position," but Plato would

rather think of it as the beginning of a line. The definition of a line as

"breadthless length" seems to have originated in the school of Plato, as
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well as the idea that a line "lies evenly with the points on it." In arithmetic

Plato emphasized not only the distinction between odd and even numbers,

but also the categories "even times even," "odd times even," and "odd

times odd." Although we are told that Plato added to the axioms of math-

ematics, we do not have an account of his premises.

Few specific mathematical contributions are attributed to Plato. A for-

mula for Pythagorean triples

—

{2n) 2 + (n 2 - l)
2 = (n 2 + l)

2
, where n

is any natural number—bears Plato's name, but this is merely a slightly

modified version of a result known to the Babylonians and the Pythago-

reans. Perhaps more genuinely significant is the ascription to Plato of the

so-called analytic method. In demonstrative mathematics one begins with

what is given, either generally in the axioms and postulates or more spe-

cifically in the problems at hand. Proceeding step by step, one then arrives

at the statement that was to have been proved. Plato seems to have pointed

out that often it is pedagogically convenient, when a chain of reasoning

from premises to conclusion is not obvious, to reverse the process. One
might begin with the proposition that is to be proved and from it deduce

a conclusion that is known to hold. If, then, one can reverse the steps in

this chain of reasoning, the result is a legitimate proof of the proposition.

It is unlikely that Plato was the first to note the efficacy in the analytic

point of view, for any preliminary investigation of a problem is tantamount

to this. What Plato is likely to have done is to formalize this procedure,

or perhaps to give it a name.

The role of Plato in the history of mathematics is still bitterly disputed.

Some regard him as an exceptionally profound and incisive thinker; others

picture him as a mathematical pied piper who lured men away from prob-

lems concerning the world's work and encouraged them in idle speculation.

In any case, few would deny that Plato had a tremendous effect on the

development of mathematics. The Platonic Academy in Athens became

the mathematical center of the world, and it was from this school that the

leading teachers and research workers came during the middle of the fourth

century B.C. Of these the greatest was Eudoxus of Cnidus (4087-335?

B.C.), a man who was at one time a pupil of Plato and who became the

most renowned mathematician and astronomer of his day.

EUDOXUS OF CNIDUS

We sometimes read of the "Platonic reform" in mathematics, and although

the phrase tends to exaggerate the changes taking place, the work of Eu-

doxus was so significant that the word "reform" is not inappropriate. In

Plato's youth the discovery of the incommensurable had caused a veritable

logical scandal, for it had raised havoc with theorems involving proportions.

Two quantities, such as the diagonal and side of a square, are incommen-
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surable when they do not have a ratio such as a (whole) number has to a

(whole) number. How, then, is one to compare ratios of incommensurable

magnitudes? If Hippocrates really did prove that the areas of circles are

to each other as squares on their diameters, he must have had some way
of handling proportions or the equality of ratios. We do not know how he

proceeded, or whether to some extent he anticipated Eudoxus, who gave

a new and generally accepted definition of equal ratios. Apparently the

Greeks had made use of the idea that four quantities are in proportion,

a : b = c : d, if the two ratios a : b and c : d have the same mutual subtraction.

That is, the smaller in each ratio can be laid off on the larger the same
integral number of times, and the remainder in each case can be laid off

on the smaller the same integral number of times, and the new remainder

can be laid off on the former remainder the same integral number of times,

and so on. Such a definition would be awkward to use, and it was a brilliant

achievement of Eudoxus to discover the theory of proportion used in Book
V of Euclid's Elements. The word ratio denoted essentially an undefined

concept in Greek mathematics, for Euclid's "definition" of ratio as a kind

of relation in size between two magnitudes of the same type is quite in-

adequate. More significant is Euclid's statement that magnitudes are said

to have a ratio to one another if a multiple of either can be found to exceed

the other. This is essentially a statement of the so-called "Axiom of Ar-

chimedes"—a property that Archimedes himself attributed to Eudoxus.

The Eudoxian concept of ratio consequently excludes zero and clarifies

what is meant by magnitudes of the same kind. A line segment, for ex-

ample, is not to be compared, in terms of ratio, with an area; nor is an

area to be compared with a volume.

Following these preliminary remarks on ratios, Euclid gives in Definition

5 of Book V the celebrated formulation by Eudoxus:

Magnitudes are said to be in the same ratio, the first to the second and the

third to the fourth, when, if any equimultiples whatever be taken of the first

and the third, and any equimultiples whatever of the second and fourth, the

former equimultiples alike exceed, are alike equal to, or are alike less than,

the latter equimultiples taken in corresponding order [Heath 1981, Vol. 2,

p. 114].

That is, alb = eld if and only if given integers m and n, whenever ma <
nb, then mc < nd, or if ma = nb, then me = nd, or if ma > nb, then

me > nd.

The Eudoxian definition of equality of ratios is not unlike the process

of cross-multiplication that is used today for fractions

—

alb = eld accord-

ing as ad = be—a process equivalent to a reduction to a common denom-

inator. To show that f is equal to |, for example, we multiply 3 and 6 by

4, to obtain 12 and 24, and we multiply 4 and 8 by 3, obtaining the same

pair of numbers 12 and 24. We could have used 7 and 13 as our two
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multipliers, obtaining the pair 21 and 42 in the first case and 52 and 104

in the second; and as 21 is less than 52, so is 42 less than 104. (We have

here interchanged the second and third terms in Eudoxus' definition to

conform to the common operations as usually used today, but similar

relationships hold in either case.) Our arithmetical example does not do

justice to the subtlety and efficacy of Eudoxus' thought, for the application

here appears to be trivial. To gain a heightened appreciation of his defi-

nition it would be well to replace a, b, c, d by surds or, better still, to let

a and b be spheres and c and d cubes on the radii of the spheres. Here a

cross-multiplication becomes meaningless, and the applicability of Eu-

doxus' definition is far from obvious. In fact, it will be noted that, strictly

speaking, the definition is not far removed from the nineteenth-century

definitions of real number, for it separates the class of rational numbers

mln into two categories, according as ma < nb or ma > nb. Because there

are infinitely many rational numbers, the Greeks by implication were faced

by the concept they wished to avoid—that of an infinite set—but at least

it was now possible to give satisfactory proofs of theorems involving pro-

portions.

METHOD OF EXHAUSTION

A crisis resulting from the incommensurable had been successfully met,

thanks to the imagination of Eudoxus; but there remained another unsolved

problem—the comparison of curved and straight-line configurations. Here,

too, it seems to have been Eudoxus who supplied the key. Earlier math-

ematicians seem to have suggested that one try inscribing and circumscrib-

ing rectilinear figures in and about the curved figure and continue to

multiply indefinitely the number of sides; but they did not know how to

clinch the argument, for the concept of a limit was unknown at the time.

According to Archimedes, it was Eudoxus who provided the lemma that

now bears Archimedes' name—sometimes known as the axiom of conti-

nuity—which served as the basis for the method of exhaustion, the Greek

equivalent of the integral calculus. The lemma or axiom states that, given

two magnitudes having a ratio (that is, neither being zero), one can find

a multiple of either one which will exceed the other. This statement ex-

cluded a fuzzy argument about indivisible line segments, or fixed infini-

tesimals, that was sometimes maintained in Greek thought. It also excluded

the comparison of the so-called angle of contingency or "horn angle"

(formed by a curve C and its tangent T at a point P on C) with ordinary

rectilinear angles. The horn angle seemed to be a magnitude different from

zero, yet it does not satisfy the axiom of Eudoxus with respect to the

measures of rectilinear angles.

From the axiom of Eudoxus (or Archimedes) it is an easy step, by a
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reductio ad absurdum, to prove a proposition that formed the basis of the

Greek method of exhaustion:

If from any magnitude there be subtracted a part not less than its half, and

if from the remainder one again subtracts not less than its half, and if this

process of subtraction is continued, ultimately there will remain a magnitude

less than any preassigned magnitude of the same kind.

This proposition, which we shall refer to as the "exhaustion property," is

equivalent to Euclid X.l and to the modern statement that if M is a given

magnitude, £ is a preassigned magnitude of the same kind, and r is a ratio

such that i < r < 1, then we can find a positive integer N such that

M (1 - r)
n < e for all positive integers n > N. That is, the exhaustion

property is equivalent to the modern statement that Iim„_>x A/(l - r)" =

0. Moreover, the Greeks made use of this property to prove theorems

about the areas and volumes of curvilinear figures. In particular, Ar-

chimedes ascribed to Eudoxus the earliest satisfactory proof that the vol-

ume of the cone is one third the volume of the cylinder having the same

base and altitude, a statement that would seem to indicate that the method

of exhaustion was derived by Eudoxus. If so, then it is to Eudoxus (rather

than to Hippocrates) that we probably owe the Euclidean proofs of theo-

rems concerning areas of circles and volumes of spheres. Facile earlier

suggestions had been made that the area of a circle could be exhausted by

inscribing in it a regular polygon and then increasing the number of sides

indefinitely, but the Eudoxian method of exhaustion first made such a

procedure rigorous. (It should be noted that the phrase "method of ex-

haustion" was not used by the ancient Greeks, being a modern invention;

but the phrase has become so well established in the history of mathematics

that we shall continue to make use of it.) As an illustration of the way in

which Eudoxus probably carried out the method, we give here, in somewhat

modernized notation, the proof that areas of circles are to each other as

squares on their diameters. The proof, as it is given in Euclid, Elements

XII. 2, is probably that of Eudoxus.

Let the circles be c and C, with diameters d and D and areas a and A.

It is to be proved that a/A = d 2/D 2
. The proof is complete if we proceed

indirectly and disprove the only other possibilities, namely, a/A < d 2/D 2

and a/A > d 2/D 2
. Hence, we first assume that a/A > d 2/D 2

. Then, there

is a magnitude a' < a such that a '/A = d 2ID 2
. Let a - a' be a preassigned

magnitude e > 0. Within the circles c and C inscribe regular polygons of

areas pn and PnJ having the same number of sides az, and consider the

intermediate areas outside the polygons but inside the circles (Fig. 6.1).

If the number of sides should be doubled, it is obvious that from these

intermediate areas we would be subtracting more than the half. Conse-

quently, by the exhaustion property, the intermediate areas can be reduced

through successive doubling of the number of sides (that is, by letting n
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FIG. 6.1

increase) until a - pn < e. Then, since a — a' = e, we have/?,, > a' . Now,
from earlier theorems it is known that pnIPn = d 2/D 2 and since it was

assumed that a' IA = d 2/D 2
, we have pnIPn = a' IA. Hence, if pn > a' ,

as we have shown, we must conclude that P„ > A. Inasmuch as Pn is the

area of a polygon inscribed within the circle of area A, it is obvious that

Pn cannot be greater than A. Since a false conclusion implies a false prem-

ise, we have disproved the possibility that a!A > d 2ID 2
. In an analogous

manner we can disprove the possibility that alA < d 2ID 2
, thereby estab-

lishing the theorem that areas of circles are to each other as squares on

their diameters.

MATHEMATICAL ASTRONOMY

The property that we have just demonstrated appears to have been the

first precise theorem concerning the magnitudes of curvilinear figures; it

marks Eudoxus as the apparent originator of the integral calculus, the

greatest contribution to mathematics made by associates of the Platonic

Academy. Eudoxus, moreover, was by no means a mathematician only,

and in the history of science he is known as the father of scientific astron-

omy. Plato is said to have proposed to his associates that they attempt to

give a geometric representation of the movements of the sun, the moon,

and the five known planets. It evidently was tacitly assumed that the move-

ments were to be compounded of uniform circular motions. Despite such

a restriction, Eudoxus was able to give for each of the seven heavenly

bodies a satisfactory representation through a composite of concentric

spheres with centers at the earth and with varying radii, each sphere re-

volving uniformly about an axis fixed with respect to the surface of the

next larger sphere. For each planet, then, Eudoxus gave a system known

to his successors as "homocentric spheres"; these geometric schemes were

combined by Aristotle into the well-known Peripatetic cosmology of crys-

talline spheres that dominated thought for almost 2(KX) years.

Eudoxus was without doubt the most capable mathematician of the

Hellenic Age, but all of his works have been lost. It is possible that the

Aristotelian estimate for the circumference of the earth—about 4(X),000
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stades, or 40,000 miles—is due to Eudoxus, for Archimedes reported that

Eudoxus had calculated that the diameter of the sun was nine times that

of the earth. In his astronomical scheme Eudoxus had seen that by a

combination of circular motions he could describe the motions of the

planets in looped orbits along a curve known as the hippopede, or horse

fetter. This curve, resembling a figure eight on a sphere, is obtained as the

intersection of a sphere and a cylinder tangent internally to the sphere

—

one of the few new curves that the Greeks recognized. At the time there

were only two means of defining curves: (1) through combinations of uni-

form motions and (2) as the intersections of familiar geometric surfaces.

The hippopede of Eudoxus is a good example of a curve that is derivable

in either of these two ways. Proclus, who wrote some 800 years after the

time of Eudoxus, reported that Eudoxus had added many general theorems

in geometry and had applied the Platonic method of analysis to the study

of the section (probably the golden section); but the two chief claims to

fame of Eudoxus remain the theory of proportions and the method of

exhaustion.

MENAECHMUS

Eudoxus is to be remembered in the history of mathematics not only for

his own work but also through that of his pupils. In Greece there was a

strong thread of continuity of tradition from teacher to student. Thus Plato

learned from Archytas, Theodorus, and Theaetetus; the Platonic influence

in turn was passed on through Eudoxus to the brothers Menaechmus and

Dinostratus, both of whom achieved eminence in mathematics. We saw

that Hippocrates of Chios had shown that the duplication of the cube could

be achieved provided that one could find, and was permitted to use, curves

with the properties expressed in the continued proportion alx = xly =

ylla\ we noted also that the Greeks had only two approaches to the

discovery of new curves. It was consequently a signal achievement on the

part of Menaechmus when he disclosed that curves having the desired

property were near at hand. In fact, there was a family of appropriate

curves obtainable from a single source—the cutting of a right circular cone

by a plane perpendicular to an element of the cone. That is, Menaechmus
is reputed to have discovered the curves that were later known as the

ellipse, the parabola, and the hyperbola.

Of all the curves, other than circles and straight lines, that are apparent

to the eye in everyday experience, the ellipse should be the most obvious,

for it is present by implication whenever a circle is viewed obliquely or

whenever one saws diagonally through a cylindrical log. Yet the first dis-

covery of the ellipse seems to have been made by Menaechmus as a mere

by-product in a search in which it was the parabola and hyperbola that

proffered the properties needed in the solution of the Delian problem.
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Beginning with a single-napped right circular cone having a right angle at

the vertex (that is, a generating angle of 45°), Menaechmus found that

when the cone is cut by a plane perpendicular to an element, the curve of

intersection is such that, in terms of modern analytic geometry, its equation

can be written in the form y
2 = Ix, where / is a constant depending on the

distance of the cutting plane from the vertex. We do not know how Men-
aechmus derived this property, but it depends only on theorems from

elementary geometry. Let the cone be ABC and let it be cut in the curve

EDG by a plane perpendicular to the element ADC of the cone (Fig. 6.2).

Then, through P, any point on the curve, pass a horizontal plane cutting

the cone in the circle PVR, and let Q be the other point of intersection of

the curve (parabola) and the circle. From the symmetries involved it follows

that line PQ 1 RV at O. Hence, OP is the mean proportional between

RO and OV. Moreover, from the similarity of triangles OVD and BCA it

follows that OVIDO = BC/AB, and from the similarity of triangles R'DA
and ABC it follows that R'DIAR' = BC/AB. If OP = y and OD = x

are coordinates of point P, we have y
2 = RO • OV, or, on substituting

equals,

BC „ BC AR' • BC 2

y* = R;>.OV = AR.-.DO.- =-Xir-.X.
Inasmuch as segments AR' , BC, and AB are the same for all points P on

the curve EQDPG, we can write the equation of the curve, a "section of

a right-angled cone," as y
2 = Ix, where / is a constant, later to be known

as the latus rectum of the curve. In an analogous way we can derive an

equation of the form y
2 = tx - b 2x 2la 2 for a "section of an acute-angled

cone" and an equation of the form y
2 = Ix + b 2x 2la 2 for a "section of

an obtuse-angled cone," where a and b are constants and the cutting plane

is perpendicular to an element of the acute-angled or obtuse-angled right

circular cone.

Menaechmus apparently derived these properties of the conic sections

a

^v< /J>hF

G

FIG. 6.2
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and others as well. Since this material has a strong resemblance to the use

of coordinates, as illustrated above, it has sometimes been maintained that

Menaechmus had analytic geometry. Such a judgment is warranted only

in part, for certainly Menaechmus was unaware that any equation in two

unknown quantities determines a curve. In fact, the general concept of an

equation in unknown quantities was alien to Greek thought. It was short-

comings in algebraic notations that, more than anything else, operated

against the Greek achievement of a full-fledged coordinate geometry.

DUPLICATION OF THE CUBE

Menaechmus had no way of foreseeing the hosts of beautiful properties

that the future was to disclose. He had hit upon the conies in a successful

search for curves with the properties appropriate to the duplication of the

cube. In terms of modern notation the solution is easily achieved. By
shifting the cutting plane (Fig. 6.2), we can find a parabola with any latus

rectum. If, then, we wish to duplicate a cube of edge a, we locate on a

right-angled cone two parabolas, one with latus rectum a and another with

latus rectum 2a. If, then, we place these with vertices at the origin and

with axes along the y- and jc-axes respectively, the point of intersection of

the two curves will have coordinates (jc, v) satisfying the continued pro-

portion alx = xly = ylla (Fig. 6.3); that is, x = a^/l, y = aS/4. The

jc-coordinate, therefore, is the edge of the cube sought.

It is probable that Menaechmus knew that the duplication could be

achieved also by the use of a rectangular hyperbola and a parabola. If the

parabola with equation y
2 = (a/2)x and the hyperbola xy = a 2 are placed

on a common coordinate system, the point of intersection will have co-

ordinates x = a^/l, y = aV2, the x-coordinate being the side of the cube

desired. Menaechmus probably was acquainted with many of the now

familiar properties of the conic sections, including the asymptotes of the

hyperbola which would have permitted him to operate with the equivalents

of the modern equations that we used above. Proclus reported that Men-

aechmus was one of those who "made the whole of geometry more per-

2 = 2a*

FIG. 6.3
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feet"; but we know little concerning his actual work. We do know that

Menaechmus taught Alexander the Great, and legend attributes to Men-
aechmus the celebrated comment, when his royal pupil asked for a shortcut

to geometry: "O King, for traveling over the country there are royal roads

and roads for common citizens; but in geometry there is one road for all."

Among the chief authorities for attributing to Menaechmus the discovery

of conic sections is a letter from Eratosthenes to King Ptolemy Euergetes,

quoted some 700 years later by Eutocius, in which several duplications of

the cube are mentioned. Among them is one by Archytas' unwieldy con-

struction and another by "cutting the cone in the triads of Menaechmus."

DINOSTRATUS AND THE SQUARING OF THE CIRCLE

Dinostratus, brother of Menaechmus, was also a mathematician, and where

one of the brothers "solved" the duplication of the cube, the other "solved"

the squaring of the circle. The quadrature became a simple matter once a

striking property of the end point Q of the trisectrix of Hippias had been

noted, apparently by Dinostratus. If the equation of the trisectrix (Fig.

6.4) is nr sin = 2a0, where a is the side of the square ABCD associated

with the curve, the limiting value of r as tends toward zero is lain. This

is obvious to one who has had calculus and recalls that lim^
( , sin 010 =

1 for radian measure. The proof as given by Pappus, and probably due to

Dinostratus, is based only on considerations from elementary geometry.

The theorem of Dinostratus states that side a is the mean proportional

between the segment DQ and the arc of the quarter circle AC; that is,

AC/AB = ABIDQ. Using a typically Greek indirect proof, we establish

the theorem by demolishing the alternatives. Hence, assume first that AC I

AB = ABIDR where DR > DQ. Then, let the circle with center D and

radius DR intersect the trisectrix at S and side AD of the square at T.

From S drop the perpendicular SU to side CD. Inasmuch as it was known

to Dinostratus that corresponding arcs of circles are to each other as the

radii, we have AC/AB = TRI DR; and since by hypothesis AC/AB =

ABIDR, it follows that TR = AB. But from the definitional property of
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the trisectrix it is known that TR/SR = AB/SU. Hence, since 77? = AB,
it must follow that SR = SU, which obviously is false, since the perpen-

dicular is shorter than any other line or curve from point S to line DC.
Hence, the fourth term DR in the proportion ACIAB = ABIDR cannot

be greater than DQ. In a similar manner we can prove that this fourth

proportional cannotJbe less than DQ\ hence, Dinostratus' theorem is es-

tablished—that is, ACIAB = ABIDQ.
Given the intersection point Q of the trisectrix with DC, we then have

a proportion involving three straight-line segments and the circular arc AC.
Hence, by a simple geometric construction of the fourth term in a pro-

portion, a line segment b equal in length to AC can be easily drawn. Upon
drawing a rectangle with 2b as one side and a as the other, we have a

rectangle exactly equal in area to the area of the circle with radius a\ a

square equal to the rectangle is easily constructed by taking as the side of

the square the geometric mean of the sides of the rectangle. Inasmuch as

Dinostratus showed that the trisectrix of Hippias serves to square the circle,

the curve more commonly came to be known as the quadratrix. It was, of

course, always clear to the Greeks that the use of the curve in the trisection

and quadrature problems violated the rules of the game—that circles and

straight lines only were permitted. The "solutions" of Hippias and Dinos-

tratus, as their authors realized, were sophistic; hence, the search for fur-

ther solutions, canonical or illegitimate, continued with the result that

several new curves were discovered by Greek geometers.

AUTOLYCUS OF PITANE

A few years after Dinostratus and Menaechmus there flourished a math-

ematician who has the distinction of having written the oldest surviving

Greek mathematical treatise. We have described rather fully the work of

earlier Hellenic mathematicians, but it must be borne in mind that the

accounts have been based not on original work but on later summaries,

commentaries, or descriptions. Occasionally a commentator appears to be

copying from an original work extant at the time, as when Simplicius in

the sixth century of our era is describing the quadrature of lunes by Hip-

pocrates. But not until we come to Autolycus of Pitane, a contemporary

of Aristotle, do we find a Greek author one of whose works has survived.

One reason for the survival of this little treatise, On the Moving Sphere,

is that it formed part of a collection, known as the "Little Astronomy,"

widely used by ancient astronomers. On the Moving Sphere is not a pro-

found and probably not a very original work, for it includes little beyond

elementary theorems on the geometry of the sphere that would be needed

in astronomy. Its chief significance lies in the fact that it indicates that

Greek geometry evidently had reached the form that we regard as typical

of the classical age. Theorems are clearly enunciated and proved. More-
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over, the author uses without proof or indication of source other theorems

that he regards as well known; we conclude, therefore, that there was in

Greece in his day, about 320 B.C., a thoroughly established textbook tra-

dition in geometry.

ARISTOTLE

Autolycus was a contemporary of Aristotle—the most widely learned

scholar of all times, whose death is usually taken to mark the end of the

first great period, the Hellenic Age, in the history of Greek civilization.

Aristotle, like Eudoxus, was a student of Plato and, like Menaechmus, a

tutor of Alexander the Great. Aristotle was primarily a philosopher and

biologist, but he was thoroughly au courant with the activities of the math-

ematicians. He may have taken a role in one of the leading controversies

of the day, for to him was ascribed a treatise On Indivisible Lines. Modern
scholarship questions the authenticity of this work, but in any case it prob-

ably was the result of discussions carried on in the Aristotelian Lyceum.

The thesis of the treatise is that the doctrine of indivisibles espoused by

Xenocrates, a successor of Plato as head of the Academy, is untenable.

The indivisible, or fixed infinitesimal of length or area or volume, has

fascinated men of many ages; Xenocrates thought that this notion would

resolve the paradoxes, such as those of Zeno, that plagued mathematical

and philosophical thought. Aristotle, too, devoted much attention to the

paradoxes of Zeno, but he sought to refute them on the basis of common
sense. Inasmuch as he hesitated to follow Platonic mathematicians into the

abstractions and technicalities of the day, Aristotle made no lasting con-

tribution to the subject. He is said to have written a biography of Pytha-

goras, although this is lost; and Eudemus, one of his students, wrote a

history of geometry, also lost. Moreover, through his foundation of logic

and through his frequent allusion to mathematical concepts and theorems

in his voluminous works, Aristotle can be regarded as having contributed

to the development of mathematics. The Aristotelian discussion of the

potentially and actually infinite in arithmetic and geometry influenced many
later writers on the foundations of mathematics; but Aristotle's statement

that the mathematicians
ivdo not need the infinite or use it" should be

compared with the assertions of our day that the infinite is the mathe-

matician's paradise. Of more positive significance are Aristotle's analysis

of the roles of definitions and hypotheses in mathematics.

END OF THE HELLENIC PERIOD

In 323 B.C. Alexander the Great suddenly died, and his empire fell apart.

His generals divided the territory over which the young conqueror had
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ruled; Ptolemy took Egypt, Seleucus and Lysimachus vied for Syria and

the East, and Antigonus and Cassander each for a while ruled Macedon.

At Athens, where Aristotle had been regarded as a foreigner, the philos-

opher found himself unpopular, now that his powerful soldier-student was

dead. He left Athens and died the following year. Throughout the Greek

world the old order was changing, politically and culturally. Under Alex-

ander there had been a gradual blending of Hellenic and Oriental customs

and learning, so that it was more appropriate to speak of the newer civi-

lization as Hellenistic, rather than Hellenic. Moreover, the new city of

Alexandria, established by the world conqueror, now took the place of

Athens as the center of the mathematical world. In the history of civiliza-

tion it is, therefore, customary to distinguish two periods in the Greek

world, with the almost simultaneous deaths of Aristotle and Alexander (as

well as that of Demosthenes) as a convenient dividing line. The earlier

portion is known as the Hellenic Age, the later as the Hellenistic or Al-

exandrian Age; in the next few chapters we describe the mathematics of

the first century of the new era, often known as the Golden Age of Greek

mathematics.

Archbishop
,

M^ Hlph Schoof Ubra(ys>dn Jose, California



7

Euclid of Alexandria

Ptolemy once asked Euclid whether there was any shorter way to a knowledge of

geometry than by a study of the Elements, whereupon Euclid answered that there

was no royal road to geometry.

Proclus Diadochus

AUTHOR OF THE ELEMENTS

The death of Alexander the Great had led to internecine strife among the

generals in the Greek army; but by 306 B.C. control of the Egyptian portion

of the empire was firmly in the hands of Ptolemy I, and this enlightened

ruler was able to turn his attention to constructive efforts. Among his early

acts was the establishment at Alexandria of a school or institute, known
as the Museum, second to none in its day. As teachers at the school he

called a band of leading scholars, among whom was the author of the most

fabulously successful mathematics textbook ever written—the Elements

(Stoichia) of Euclid. Considering the fame of the author and of his best

seller, remarkably little is known of Euclid's life. So obscure was his life

that no birthplace is associated with his name. Although editions of the

Elements often bore the identification of the author as Euclid of Megara

and a portrait of Euclid of Megara often appears in histories of mathe-

matics, this is a case of mistaken identity.
1 The real Euclid of Megara was

'See. for example, the title page on p. 304.

100
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a student of Socrates and, although concerned with logic, was no more
attracted to mathematics than was his teacher. Our Euclid, by contrast, is

known as Euclid of Alexandria, for he was called there to teach mathe-

matics. From the nature of his work it is presumed that he had studied

with students of Plato, if not at the Academy itself. Legends associated

with Euclid picture him as a kindly and gentle old man. The tale related

above in connection with a request of Alexander the Great for an easy

introduction to geometry is repeated in the case of Ptolemy, whom Euclid

is reported to have assured that "there is no royal road to geometry."

Evidently Euclid did not stress the practical aspects of his subject, for there

is a tale told of him that when one of his students asked of what use was

the study of geometry, Euclid asked his slave to give the student three-

pence, "since he must needs make gain of what he learns."

Euclid and the Elements are often regarded as synonymous; in reality

the man was the author of about a dozen treatises covering widely varying

topics, from optics, astronomy, music, and mechanics to a book on the

conic sections. With the exception of the Sphere of Autolycus, surviving

works by Euclid are the oldest Greek mathematical treatises extant; yet

of what Euclid wrote more than half has been lost, including some of his

more important compositions, such as a treatise on conies. Euclid regarded

Aristaeus, a contemporary geometer, as deserving great credit for having

written an earlier treatise on Solid Loci (the Greek name for the conic

sections, stemming presumably from the stereometric definition of the

curves in the work of Menaechmus). The treatises on conies by Aristaeus

and Euclid have both been lost, probably irretrievably, perhaps because

they were soon superseded by the more extensive work on conies by Apol-

lonius to be described below. Among Euclid's lost works are also one on

Surface Loci, another on Pseudaria (or fallacies), and a third on Porisms.

It is not even clear from ancient references what material these contained.

The first one, for example, might have concerned the surfaces known to

the ancients—the sphere, cone, cylinder, tore, ellipsoid of revolution, par-

aboloid of revolution, and hyperboloid of revolution of two sheets—or

perhaps curves lying on these surfaces. As far as we know, the Greeks did

not study any surface other than that of a solid of revolution.

The loss of the Euclidean Porisms is particularly tantalizing, for it may

have represented an ancient approximation to an analytic geometry. Pap-

pus later reported that a porism is intermediate between a theorem, in

which something is proposed for demonstration, and a problem, in which

something is proposed for construction. Others have described a porism

as a proposition in which one determines a relationship between known

and variable or undetermined quantities, perhaps the closest approach in

antiquity to the concept of function. If a porism was, as has been thought,

a sort of verbal equation of a curve, Euclid's book on Porisms may have

differed from our analytic geometry largely in the lack of algebraic symbols

and techniques. The nineteenth-century historian of geometry, Michel Cha-
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sles, suggested as a typical Euclidean porism the determination of the locus

of a point for which the sum of the squares of its distances from two fixed

points is a constant.

OTHER WORKS

Five works by Euclid have survived to our day: the Elements, the Data,

the Division of Figures, the Phaenomena, and the Optics. The last-men-

tioned is of interest as an early work on perspective, or the geometry of

direct vision. The ancients had divided the study of optical phenomena
into three parts: (1) optics (the geometry of direct vision), (2) catoptrics

(the geometry of reflected rays), and (3) dioptrics (the geometry of re-

fracted rays). A Catoptrica sometimes ascribed to Euclid is of doubtful

authenticity, being perhaps by Theon of Alexandria who lived some six

centuries later. Euclid's Optics is noteworthy for its espousal of an "emis-

sion" theory of vision according to which the eye sends out rays that travel

to the object, in contrast to a rival Aristotelian doctrine in which an activity

in a medium travels in a straight line from the object to the eye. It should

be noted that the mathematics of perspective (as opposed to the physical

description) is the same no matter which of the two theories is adopted.

Among the theorems found in Euclid's Optics is one widely used in antiq-

uity—tan a/tan /? < a//? if < a < /? < nil. One object of the Optics was

to combat an Epicurean insistence that an object was just as large as it

looked, with no allowance to be made for the foreshortening suggested by

perspective.

Euclid's Phaenomena is much like the Sphere of Autolycus—that is, a

work on spherical geometry of use to astronomers. A comparison of the

two works indicates that both authors drew heavily on a textbook tradition

that was well known to their generation. It is quite possible that much the

same was true of Euclid's Elements, but in this case there is no contem-

porary work extant with which it can be compared.

The Euclidean Division of Figures is significant in that it is a work that

would have been lost had it not been for the learning of Arabic scholars.

It has not survived in the original Greek; but before the disappearance of

the Greek versions, an Arabic translation had been made (omitting some

of the original proofs "because the demonstrations are easy"), which in

turn was later translated into Latin, and ultimately into current modern

languages. This is not atypical of other ancient works. The Division of

Figures includes a collection of thirty-six propositions concerning the di-

vision of plane configurations. For example, Proposition 1 calls for the

construction of a straight line that shall be parallel to the base of a triangle

and shall divide the triangle into two equal areas. Proposition 4 requires

a bisection of a trapezoid abqd (Fig. 7.1) by a line parallel to the bases;

the required line zi is found by determining z such that ze 2 - h(eb 2 +
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FIG. 7.1

eh 1
). Other propositions call for the division of a parallelogram into two

equal parts by a line drawn through a given point on one of the sides

(Proposition 6) or through a given point outside the parallelogram (Prop-

osition 10). The final proposition asks for the division of a quadrilateral

in a given ratio by a line through a point on one of the sides of the

quadrilateral. Somewhat similar in nature and purpose to the Division of
Figures is Euclid's Data, a work that has come down to us through both

the Greek and the Arabic. It seems to have been composed for use at the

university of Alexandria, serving as a companion volume to the first six

books of the Elements in much the way that a manual of tables supplements

a textbook. It was to be useful as a guide to the analysis of problems in

geometry in order to discover proofs. It opens with fifteen definitions

concerning magnitudes and loci. The body of the text comprises ninety-

five statements concerning the implications of conditions and magnitudes

that may be given in a problem. The first two state that if two magnitudes

a and b are given, their ratio is given, and that if one magnitude is given

and also its ratio to a second, the second magnitude is given. There are

about two dozen similar statements, serving as algebraic rules or formulas.

Then follow simple geometric rules concerning parallel lines and propor-

tional magnitudes, reminding the student of the implications of the data

given in a problem, such as the advice that when two line segments have

a given ratio, then one knows the ratio of the areas of similar rectilinear

figures constructed on these segments. Some of the statements are geo-

metric equivalents of the solution of quadratic equations. For example, we
are told that if a given (rectangular) area AB is laid off along a line segment

of given length AC (Fig. 7.2) and if the area BC by which the area AB
falls short of the entire rectangle AD is given, the dimensions of the rec-

tangle BC are known. The truth of this statement is easily demonstrated

by modern algebra. Let the length of AC be a, the area of AB be b 2
y
and

the ratio of FC to CD be c:d. Then, if FC = x and CD = v, we have

FIG. 7.2
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xly = eld and {a - x)y = b 2
. Eliminating y we have {a - x)dx = b 2

c

or dx 2 - adx + b 2
c = 0, from which x = all ± V(a/2) 2 - b 2cld. The

geometric solution given by Euclid is equivalent to this, except that the

negative sign before the radical is used. Statements 84 and 85 in the Data

are geometric replacements of the familiar Babylonian algebraic solutions

of the systems xy = a 2
, x ± y = b, which again are the equivalents of

solutions of simultaneous equations. The last few statements in the Data

concern relationships between linear and angular measures in a given circle.

PURPOSE OF THE ELEMENTS

The university at Alexandria evidently was not unlike modern institutions

of higher learning. Some of the faculty probably excelled in research, others

were better fitted to be administrators, and still others were noted for

teaching ability. It would appear, from the reports we have, that Euclid

very definitely fitted into the last category. There is no new discovery

attributed to him, but he was noted for expository skill. This is the key to

the success of his greatest work, the Elements. It was frankly a textbook

and by no means the first one. We know of at least three earlier such

elements, including that by Hippocrates of Chios; but there is no trace of

these, nor of other potential rivals from ancient times. The Elements of

Euclid so far outdistanced competitors that it alone survived. The Elements

was not, as is sometimes thought, a compendium of all geometric knowl-

edge; it was instead an introductory textbook covering all elementary math-

ematics—that is, arithmetic (in the sense of the English ''higher arithmetic"

or the American "theory of numbers"), synthetic geometry (of points,

lines, planes, circles, and spheres), and algebra (not in the modern symbolic

sense, but an equivalent in geometric garb). It will be noted that the art

of calculation is not included, for this was not a part of university instruc-

tion; nor was the study of the conies or higher plane curves part of the

book, for these formed a part of more advanced mathematics. Proclus

described the Elements as bearing to the rest of mathematics the same sort

of relation as that which the letters of the alphabet have in relation to

language. Were the Elements intended as an exhaustive store of infor-

mation, the author probably would have included references to other au-

thors, statements of recent research, and informal explanations. As it is,

the Elements is austerely limited to the business in hand—the exposition

in logical order of the fundamentals of elementary mathematics. Occa-

sionally, however, later writers interpolated into the text explanatory scho-

lia, and such additions were copied by later scribes as part of the original

text. Some of these appear in every one of the manuscripts now extant.

Euclid himself made no claim to originality, and it is clear that he drew

heavily from the works of his predecessors. It is believed that the arrange-

ment is his own, and presumably some of the proofs were supplied by him;
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but beyond that it is difficult to estimate the degree of originality that is

to be found in this, the most renowned mathematical work in history.

DEFINITIONS AND POSTULATES

The Elements is divided into thirteen books or chapters, of which the first

half dozen are on elementary plane geometry, the next three on the theory

of numbers, the tenth on incommensurables, and the last three chiefly on

solid geometry. There is no introduction or preamble to the work, and the

first book opens abruptly with a list of twenty-three definitions. The weak-

ness here is that some of the definitions do not define, inasmuch as there

is no prior set of undefined elements in terms of which to define the others.

Thus to say, as does Euclid, that "a point is that which has no part," or

that "a line is breadthless length," or that "a surface is that which has

length and breadth only," is scarcely to define these entities, for a definition

must be expressed in terms of things that precede, and are better known
than the things defined. Objections can easily be raised on the score of

logical circularity to other so-called "definitions" of Euclid, such as "The

extremities of a line are points," or "A straight line is a line which lies

evenly with the points on itself," or "The extremities of a surface are

lines," all of which may have been due to Plato. The Euclidean definition

of a plane angle as "the inclination to one another of two lines in a plane

which meet one another and do not lie in a straight line" is vitiated by the

fact that "inclination" has not been previously defined and is not better

known than the word "angle."

Following the definitions, Euclid lists five postulates and five common
notions. Aristotle had made a sharp distinction between axioms (or com-

mon notions) and postulates; the former, he said, must be convincing in

themselves—truths common to all studies—but the latter are less obvious

and do not presuppose the assent of the learner, for they pertain only to

the subject at hand. Some later writers distinguished between the two types

of assumptions by applying the word axiom to something known or ac-

cepted as obvious, while the word postulate referred to something to be

"demanded." We do not know whether Euclid subscribed to either of these

views, or even whether he distinguished between two types of assumptions.

Surviving manuscripts are not in agreement here, and in some cases the

ten assumptions appear together in a single category. Modern mathema-

ticians see no essential difference between an axiom and a postulate. In

most manuscripts of the Elements we find the following ten assumptions:

Postulates. Let the following be postulated:

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.
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3. To describe a circle with any center and radius.

4. That all right angles are equal.

5. That, if a straight line falling on two straight lines makes the interior

angles on the same side less than two right angles, the two straight

lines, if produced indefinitely, meet on that side on which the angles

are less than the two right angles.

Common notions:

1. Things which are equal to the same thing are also equal to one

another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

Aristotle had written that "other things being equal, that proof is the

better which proceeds from the fewer postulates," and Euclid evidently

subscribed to this principle. For example, Postulate 3 is interpreted in the

very limited literal sense, sometimes described as the use of Euclidean

(collapsible) compasses, whose legs maintain a constant opening so long

as the point stands on the paper, but fall back upon each other when they

are lifted. That is, the postulate is not interpreted to permit the use of a

pair of dividers to lay off a distance equal to one line segment upon a

noncontiguous longer line segment, starting from an end point. It is proved

in the first three propositions of Book I that the latter construction is always

possible, even under the strict interpretation of Postulate 3. The first prop-

osition justifies the construction of an equilateral triangle ABC on a given

FIG. 7.3
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line segment AB by constructing through B a circle with a center at A and
another circle through A with center at B, and letting C be the point of

intersection of the two circles. (That they do intersect is tacitly assumed.)

Proposition 2 then builds on Proposition 1 by showing that from any point

A as extremity (Fig. 7.3) one can lay off a straight line segment equal to

a given line segment BC. First Euclid draws AB, and on this he constructs

the equilateral triangle ABD, extending the sides DA and DB to E and F
respectively. With B as center describe the circle through C, intersecting

BF in G; then, with D as center draw a circle through G, intersecting DE
in H. Line AH is then easily shown to be the line required. Finally, in

Proposition 3 Euclid makes use of Proposition 2 to show that, given any

two unequal straight lines, one can cut off from the greater a segment equal

to the smaller.

SCOPE OF BOOK I

In the first three propositions Euclid went to great pains to show that a

very restricted interpretation of Postulate 3 nevertheless implies the free

use of compasses as is usually done in laying off distances in elementary

geometry. Nevertheless, by modern standards of rigor the Euclidean as-

sumptions are woefully inadequate, and in his proofs Euclid often makes
use of tacit postulates. In the first proposition of the Elements, for example,

he assumes without proof that the two circles will intersect in a point. For

this and similar situations it is necessary to add to the postulates one

equivalent to a principle of continuity. Moreover, Postulates 1 and 2 as

they were expressed by Euclid guarantee neither the uniqueness of the

straight line through two noncoincident points nor even its infinitude; they

simply assert that there is at least one and that it has no termini, yet in his

proofs Euclid freely made use of the uniqueness and infinitude. It is, of

course, easy to criticize the work of a man in the light of later developments

and to forget that "sufficient unto the day is the rigor thereof." In its time

the Elements evidently was the most tightly reasoned logical development

of elementary mathematics that had ever been put together, and two

thousand years were to pass before a more careful presentation occurred.

During this long interval most mathematicians regarded the treatment as

logically satisfying and pedagogically sound.

Most of the propositions in Book I of the Elements are well known to

anyone who has had a high school course in geometry. Included are the

familiar theorems on congruence of triangles (but without an axiom jus-

tifying the method of superposition), on simple constructions by straight-

edge and compasses, on inequalities concerning angles and sides of a tri-

angle, on properties of parallel lines (leading to the fact that the sum of

the angles of a triangle is equal to two right angles), and on parallelograms

(including the construction of a parallelogram having given angles and
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equal in area to a given triangle or to a given rectilinear figure). The book
closes (in Propositions 47 and 48) with the proof of the Pythagorean theo-

rem and its converse. The proof of the theorem as given by Euclid was

not that usually given in textbooks of today, in which simple proportions

are applied to the sides of similar triangles formed by dropping an altitude

upon the hypotenuse. It has been suggested that Euclid avoided such a

proof because of difficulties involved in commensurability. Only in Book
V did Euclid turn to the well-founded theory of proportions, and up to

that point the use of proportionalities is avoided as far as possible. For the

Pythagorean theorem Euclid used instead the beautiful proof with a figure

sometimes described as a windmill or as the peacock's tail or as the bride's

chair (Fig. 7.4). The proof is accomplished by showing that the square on

AC is equal to twice the triangle FAB or to twice the triangle CAD or to

the rectangle AL, and that the square on EC is equal to twice the triangle

ABK or to twice the triangle BCE or to the rectangle BL. Hence the sum
of the squares is equal to the sum of the rectangles, that is, to the square

on AB. It has been assumed that this proof was original with Euclid, and

many conjectures have been made as to the possible form of earlier proofs.

Since the days of Euclid many alternative proofs have been proposed.

It is to Euclid's credit that the Pythagorean theorem is immediately

followed by a proof of the converse: If in a triangle the square on one of

the sides is equal to the sum of the squares on the other two sides, the

angle between these other two sides is a right angle. Not infrequently in

modern textbooks the exercises following the proof of the Pythagorean

theorem are such that they require not the theorem itself but the still

unproved converse. There may be many a minor flaw in the Elements, but

the book had all the major logical virtues.
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GEOMETRIC ALGEBRA

Book II of the Elements is a short one, containing only fourteen propo-

sitions, not one of which plays any role in modern textbooks; yet in Euclid's

day this book was of great significance. This sharp discrepancy between
ancient and modern views is easily explained—today we have symbolic

algebra and trigonometry that have replaced the geometric equivalents

from Greece. For instance, Proposition 1 of Book II states that 'if there

be two straight lines, and one of them be cut into any number of segments

whatever, the rectangle contained by the two straight lines is equal to the

rectangles contained by the uncut straight line and each of the segments."

This theorem, which asserts (Fig. 7.5) that AD(AP + PR + RB) =

AD • AP + AD • PR + AD • RB, is nothing more than a geometric

statement of one of the fundamental laws of arithmetic known today as

the distributive law: a(b + c + d) = ab + ac + ad. In later books of

the Elements (V and VII) we find demonstrations of the commutative and

associative laws for multiplication. Whereas in our time magnitudes are

represented by letters that are understood to be numbers (either known
or unknown) on which we operate with the algorithmic rules of algebra,

in Euclid's day magnitudes were pictured as line segments satisfying the

axioms and theorems of geometry. It is sometimes asserted that the Greeks

had no algebra, but this is patently false. They had Book II of the Elements,

which is a geometric algebra that served much the same purpose as does

our symbolic algebra. There can be little doubt that modern algebra greatly

facilitates the manipulation of relationships among magnitudes. But it is

undoubtedly also true that a Greek geometer versed in the fourteen theo-

rems of Euclid's "algebra" was far more adept in applying these theorems

to practical mensuration than is an experienced geometer of today. Ancient

geometric algebra was not an ideal tool, but it was far from ineffective.

Euclid's statement (Proposition 4), "If a straight line be cut at random,

the square on the whole is equal to the squares on the segments and twice

the rectangle contained by the segments," is a verbose way of saying that

(a + b) 2 = a 2 + lab + b 2
, but its visual appeal to an Alexandrian

schoolboy must have been far more vivid than its modern algebraic coun-

terpart can ever be. True, the proof in the Elements occupies about a page

and a half; but how many high school students of today could give a careful
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proof of the algebraic rule they apply so unhesitatingly? The same holds

true for Elements II. 5, which contains what we should regard as an im-

practical circumlocution for a 2 - b 2 = (a + b)(a - b):

If a straight line be cut into equal and unequal segments, the rectangle

contained by the unequal segments of the whole, together with the square

on the straight line between the points of section, is equal to the square on

the half.

The diagram that Euclid uses in this connection played a key role in Greek

algebra; hence, we reproduce it
2 with further explanation. If in the diagram

(Fig. 7.6) we let AC = CB = a, and CD = b, the theorem asserts that

(a + b){a - b) + b 2 = a 2
. The geometric verification of this statement

is not difficult. However, the significance of the diagram lies not so much
in the proof of the theorem as in the use to which similar diagrams were

put by Greek geometric algebraists. The pride of the modern schoolboy

or schoolgirl in algebra is the solution of the quadratic equation (which he

or she may or may not be able to justify), and a diagram similar to Fig.

7.6 was the Greek schoolboy's geometric equivalent. If the Greek scholar

were required to construct a line x having the property expressed by ax -

x 2 = b 2
, where a and b are line segments with a > 2b, he would draw line

AB = a and bisect it at C. Then, at C he would erect a perpendicular CP
equal in length to b; with P as center and radius all he would draw a circle

cutting AB in point D. Then, on AB he would construct rectangle ABMK
of width BM = BD and complete the square BDHM. This square is the

area x 2 having the property specified in the quadratic equation. As the

Greeks expressed it, we have applied to the segment AB( = a) a rectangle

AH(= ax - x 2
) which is equal to a given square (b 2

) and falls short (of

AM) by a square DM. The demonstration of this is provided by the prop-

osition cited above (II. 5) in which it is clear that the rectangle ADHK
equals the concave polygon CBFGHL—that is, it differs from (all) 2

Throughout this chapter the translations and most of the diagrams are based on the

Thirteen Hooks of Euclid's Elements as edited by T. L. Heath.
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by the square LHGE, the side of which by construction is CD =
V(a/2) 2 - b\

In an exactly analogous manner the quadratic equation ax + x 2 = b 2

is solved through the use of II. 6:

If a straight line be bisected and a straight line be added to it in a straight

line, the rectangle contained by the whole (with the added straight line) and

the added straight line together with the square on the half is equal to the

square on the straight line made up of the half and the added straight line.

This time we "apply to a given straight line (AB = a) a rectangle (AM =

ax + x 2
) which shall be equal to a given square (b 2

) and shall exceed

(AH) by a square figure" (Fig. 7.7). In this case the distance CD -

V(a/2) 2 + b 2
\ since from the proposition it is known that rectangle AM

(- ax + x 2
) plus square LG [

= (a/2)2
] is equal to square CF[ = (a/2) 2 +

b 2
], it follows that the condition ax + x 2 - b 2

is satisfied.

The next few propositions of Book II are variations of the geometric

algebra that we have illustrated, with 11.11 being an important special case

of II. 6. Here Euclid solves the equation ax + x 2 = a 2 by drawing a square

ABCD with side a, bisecting side AD at E, drawing EB, extending side

DA to Fsuch that EF = EB, and completing the square AFGH (Fig. 7.8).

Then, on extending GH to intersect DC in K, we shall have applied to

segment AD a rectangle FK (
= ax + x 2

) equal to a given square AC (
=

a 2
) and exceeding by a square (jc

2
).

The figure used by Euclid in Elements 11.11, and again in VI.30 (our

Fig. 7.8), is the basis for a diagram that appears today in many geometry

books to illustrate the iterative property of the golden section. To the

gnomon BCDFGH (Fig. 7.8) we add point L to complete the rectangle

CDFL (Fig. 7.9), and within the smaller rectangle LBGH, which is similar

to the larger rectangle LCDF, we construct, by making GO = GL, the

gnomon LBMNOG similar to gnomon BCDFGH. Now within the rectan-

gle BHOP, which is similar to the larger rectangles CDFL and LBHG,
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we construct the gnomon PBHQRN similar to the gnomons BCDFGH
and LBMNOG. Continuing indefinitely in this manner, we have an un-

ending sequence of nested similar rectangles tending toward a limiting point

Z. It turns out that Z, which is easily seen to be the point of intersection

of lines FB and DL, is also the pole of a logarithmic spiral tangent to the

sides of the rectangles at points C, A, G, P, M, Q, . . . . Other striking

properties can be found in this fascinating diagram.

Propositions 12 and 13 of Book II are of interest because they adumbrate

the concern with trigonometry that was shortly to blossom in Greece. These

propositions will be recognized by the reader as geometric formulations

—

first for the obtuse angle and then for the acute angle—of what later became

known as the law of cosines for plane triangles:

Proposition 12. In obtuse-angled triangles the square on the side sub-

tending the obtuse angle is greater than the squares on the sides containing

the obtuse angle by twice the rectangle contained by one of the sides about

the obtuse angle, namely that on which the perpendicular falls, and the

straight line cut off outside by the perpendicular toward the obtuse angle.

Proposition 13. In acute-angled triangles the square on the side subtending

the acute angle is less than the squares on the sides containing the acute

angle by twice the rectangle contained by one of the sides about the acute

angle, namely that on which the perpendicular falls, and the straight line

cut off within by the perpendicular toward the acute angle.

The proofs of Propositions 12 and 13 are analogous to those used today

in trigonometry through double application of the Pythagorean theorem.
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BOOKS III AND IV

It generally has been supposed that the contents of the first two books of

the Elements are largely the work of the Pythagoreans. Books III and IV,

on the other hand, deal with the geometry of the circle, and here the

material is presumed to have been drawn largely from Hippocrates of

Chios. The two books are not unlike the theorems on circles contained in

textbooks of today. The first proposition of Book III, for example, calls

for the construction of the center of a circle; and the last, Proposition 37,

is the familiar statement that if from a point outside a circle a tangent and
a secant are drawn, the square on the tangent is equal to the rectangle on
the whole secant and the external segment. Book IV contains sixteen

propositions, largely familiar to modern students, concerning figures in-

scribed in, or circumscribed about, a circle. Theorems on the measure of

angles are reserved until after a theory of proportions has been established.

THEORY OF PROPORTION

Of the thirteen books of the Elements those most admired have been the

fifth and the tenth—the one on the general theory of proportion and the

other on the classification of incommensurables. The discovery of the in-

commensurable had threatened a logical crisis which cast doubt on proofs

appealing to proportionality, but the crisis had been successfully averted

through the principles enunciated by Eudoxus. Nevertheless, Greek math-

ematicians tended to avoid proportions. We have seen that Euclid put off

their use as long as possible, and such a relationship among lengths as

x : a = b.c would be thought of as an equality of the areas ex = ab. Sooner

or later, however, proportions are needed, and so Euclid tackled the prob-

lem in Book V of the Elements. Some commentators have gone so far as

to suggest that the whole book, consisting of twenty-five propositions, was

the work of Eudoxus, but this seems to be unlikely. Some of the defini-

tions—such as that of a ratio—are so vague as to be useless. Definition 4,

however, is essentially the axiom of Eudoxus and Archimedes: "Magni-

tudes are said to have a ratio to one another which are capable, when
multiplied, of exceeding one another." Definition 5, the equality of ratios,

is precisely that given earlier in connection with Eudoxus' definition of

proportionality.

To the casual reader Book V might appear as superfluous as Book II,

for both have now been displaced by corresponding rules in symbolic al-

gebra. A more careful reader interested in axiomatics will see that Book

V deals with topics of fundamental importance in all mathematics. It opens

with propositions that are equivalent to such things as the left-hand and

right-hand distributive laws for multiplication over addition, the left-hand

distributive law for multiplication over subtraction, and the associative law
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for multiplication (ab)c = a(bc). Then follow rules for "greater than" and

"less than" and the well-known properties of proportions. It often is as-

serted that Greek geometric algebra could not rise above the second degree

in plane geometry, nor above the third degree in solid geometry, but this

is not really the case. The general theory of proportions would permit work

with products of any number of dimensions, for an equation of the form

x 4 = abed is equivalent to one involving products of ratios of lines such

as xla - xlb = clx • dlx.

Having developed the theory of proportions in Book V, Euclid exploited

it in Book VI by proving theorems concerning ratios and proportions re-

lated to similar triangles, parallelograms, and other polygons. Noteworthy

is Proposition 31, a generalization of the Pythagorean theorem: "In right-

angled triangles the figure on the side subtending the right angle is equal

to the similar and similarly described figures on the sides containing the

right angle." Proclus credits this extension to Euclid himself. Book VI

contains (in Propositions 28 and 29) also a generalization of the method

of application of areas, for the sound basis for proportion given in Book
V enabled the author now to make free use of the concept of similarity.

The rectangles of Book II are now replaced by parallelograms, and it is

required to apply to a given straight line a parallelogram equal to a given

rectilinear figure and deficient (or exceeding) by a parallelogram similar

to a given parallelogram. These constructions, like those of II. 5-6, are in

reality solutions of the quadratic equations bx = ac ± x 2
, subject to the

restriction (implied in IX. 27) that the discriminant is not negative.

THEORY OF NUMBERS

The Elements of Euclid often is mistakenly thought of as restricted to

geometry. We already have described two books (II and V) that are almost

exclusively algebraic; three books (VII, VIII, and IX) are devoted to the

theory of numbers. The word "number" to the Greeks always referred to

what we call the natural numbers—the positive whole numbers or integers.

Book VII opens with a list of twenty-two definitions distinguishing various

types of number—odd and even, prime and composite, plane and solid

(that is, those that are products of two or of three integers)—and finally

defining a perfect number as "that which is equal to its own parts." The

theorems in Books VII, VIII, and IX are likely to be familiar to the reader

who has had an elementary course in the theory of numbers, but the

language of the proofs will certainly be unfamiliar. Throughout these books

each number is represented by a line segment, so that Euclid will speak

of a number as AB. (The discovery of the incommensurable had shown

that not all line segments could be associated with whole numbers; but the

converse statement—that numbers can always be represented by line seg-

ments—obviously remains true.) Hence, Euclid does not use the phrases
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"is a multiple of" or "is a factor of," for he replaces these by "is measured
by" and "measures" respectively. That is, a number n is measured by

another number m if there is a third number k such that n = km.
Book VII opens with two propositions that constitute a celebrated rule

in the theory of numbers, which today is known as "Euclid's algorithm"

for finding the greatest common divisor (measure) of two numbers. It is a

scheme suggestive of a repeated inverse application of the axiom of Eu-

doxus. Given two unequal numbers, one subtracts the smaller a from the

larger b repeatedly until a remainder r
x
less than the smaller is obtained;

then, one repeatedly subtracts this remainder r
x
from a until a remainder

r2 < r, results; then, one repeatedly subtracts r2 from r
x \
and so on. Ulti-

mately the process will lead to a remainder rn which will measure rn _ x ,

hence all preceding remainders, as well as a and b\ this number rn will be

the greatest common divisor of a and b. Among succeeding propositions

we find equivalents of familiar theorems in arithmetic. Thus Proposition

8 states that if an = bm and en = dm, then (a - c)n = (b - d)m\

Proposition 24 states that if a and b are prime to c, then ab is prime to c.

The book closes with a rule (Proposition 39) for finding the least common
multiple of several numbers.

Book VIII is one of the less rewarding of the thirteen books of the

Elements. It opens with propositions on numbers in continued proportion

(geometric progression) and then turns to some simple properties of

squares and cubes, closing with Proposition 27: "Similar solid numbers

have to one another the ratio which a cube number has to a cube number."

This statement means simply that if we have a "solid number" ma • mb •

me and a "similar solid number" na • nb • nc, then their ratio will be

m 3
:/!

3—that is, as a cube is to a cube.

PRIME AND PERFECT NUMBERS

Book IX, the last of the three books on theory of numbers, contains several

theorems that are of special interest. Of these the most celebrated is Prop-

osition 20: "Prime numbers are more than any assigned multitude of prime

numbers." That is, Euclid here gives the well-known elementary proof that

the number of primes is infinite. The proof is indirect, for one shows that

the assumption of a finite number of primes leads to a contradiction. Let

P be the product of all the primes, assumed to be finite in number, and

consider the number N = P + 1. Now, TV cannot be prime, for this would

contradict the assumption that P was the product of all primes. Hence, N
is composite and must be measured by some prime p. But/? cannot be any

of the prime factors in P, for then it would have to be a factor of 1. Hence,

p must be a prime different from all of those in the product P; therefore,

the assumption that P was the product of all the primes must be false.



116 EUCLID OF ALEXANDRIA

Proposition 35 of this book contains a formula for the sum of numbers
in geometric progression, expressed in elegant but unusual terms:

If as many numbers as we please be in continued proportion, and there be

subtracted from the second and the last numbers equal to the first, then as

the excess of the second is to the first, so will the excess of the last be to all

those before it.

This statement is, of course, equivalent to the formula

a, + a 2 + ••• + a n a,

which in turn is equivalent to

a - ar n

1 - r

The following and last proposition in Book IX is the well-known formula

for perfect numbers: "If as many numbers as we please, beginning from

unity, be set out continuously in double proportion until the sum of all

becomes prime, and if the sum is multiplied by the last, the product will

be perfect." That is, in modern notation, if S„ = 1 + 2 + 22 + ••• +
2«-i — 2" — 1 is prime, then 2"~ ] (2" - 1) is a perfect number. The proof

is easily established in terms of the definition of perfect number given in

Book VII. The ancient Greeks knew the first four perfect numbers: 6, 28,

496, and 8128. Euclid did not answer the converse question—whethe: or

not his formula provides all perfect numbers. It is now known that all even

perfect numbers are of Euclid's type, but the question of the existence of

odd perfect numbers remains an unsolved problem. Of the two dozen

perfect numbers now known all are even, but to conclude by induction

that all must be even would be hazardous.

In Propositions 21 through 36 of Book IX there is a unity which suggests

that these theorems were at one time a self-contained mathematical system,

possibly the oldest in the history of mathematics and stemming presumably

from the middle or early fifth century B.C. It has even been suggested that

Propositions 1 through 36 of Book IX were taken over by Euclid, without

essential change, from a Pythagorean textbook.

INCOMMENSURABILITY

Book X of the Elements was, before the advent of early modern algebra,

the most admired—and the most feared. It is concerned with a systematic

classification of incommensurable line segments of the forms a ± vb,

\Ta ± Vb, wa ± Vb, and VVa ± VS. where a and /), when of the same
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dimension, are commensurable. Today we would be inclined to think of

this as a book on irrational numbers of the types above, where a and b

are rational numbers; but Euclid regarded this book as a part of geometry
rather than of arithmetic. In fact, Propositions 2 and 3 of the book duplicate

for geometric magnitudes the first two propositions of Book VII, where
the author had dealt with whole numbers. Here he proves that if to two
unequal line segments one applies the process described above as Euclid's

algorithm, and if the remainder never measures the one before it, the

magnitudes are incommensurable. Proposition 3 shows that the algorithm,

when applied to two commensurable magnitudes, will provide the greatest

common measure of the segments.

Book X contains 115 propositions—more than any other—most of which

contain geometric equivalents of what we now know arithmetically as surds.

Among the theorems are counterparts of rationalizing denominators of

fractions of the form a/(b ± Vc) and a/(Vb ± Vc). Line segments given

by square roots, or by square roots of sums of square roots, are about as

easily constructed by straightedge and compasses as are rational combi-

nations. One reason that the Greeks turned to a geometric rather than an

arithmetic algebra was that, in view of the lack of the real-number concept,

the former appeared to be more general than the latter. The roots of

ax - x 2 = b 2
, for example, can always be constructed (provided that

a - 2b). Why, then, should Euclid have gone to great lengths to demon-

strate, in Propositions 17 and 18 of Book X, the conditions under which

the roots of this equation are commensurable with a? He showed that the

roots are commensurable or incommensurable, with respect to a, according

as Vfl 2 - 4b 2 and a are commensurable or incommensurable. It has been

suggested that such considerations indicate that the Greeks used their

solutions of quadratic equations for numerical problems also, much as the

Babylonians had in their system of equations x + v = a, xy = b 2
. In such

cases it would be advantageous to know whether the roots will or will not

be expressible as quotients of integers. A close study of Greek mathematics

seems to give evidence that beneath the geometric. veneer there was more

concern for logistic and numerical approximations than the surviving clas-

sical treatises portray.

SOLID GEOMETRY

The material in Book XI, containing thirty-nine propositions on the ge-

ometry of three dimensions, will be largely familiar to one who has taken

a course in the elements of solid geometry. Again the definitions are easily

criticized, for Euclid defines a solid as "that which has length, breadth,

and depth" and then tells us that "an extremity of a solid is a surface."

The last four definitions are of four of the regular solids. The tetrahedron

is not included, presumably because of an earlier definition of a pyramid
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as "a solid figure, contained by planes, which is constructed from one plane

to any point." The eighteen propositions of Book XII are all related to

the measurement of figures, using the method of exhaustion. The book

opens with a careful proof of the theorem that areas of circles are to each

other as squares on the diameters. Similar applications of the typical double

reductio ad absurdum method then are applied to the volumetric mensur-

ation of pyramids, cones, cylinders, and spheres. Archimedes ascribed the

rigorous proofs of these theorems to Eudoxus, from whom Euclid probably

adapted much of this material.

The last book is devoted entirely to properties of the five regular solids,

a fact that has led some historians to say that the Elements was composed
as a glorification of the cosmic or Platonic figures. Inasmuch as such a large

proportion of the earlier material is far removed from anything relating to

the regular polyhedra, such an assumption is quite gratuitous; but the

closing theorems are a fitting climax to a remarkable treatise. Their object

is to "comprehend" each of the regular solids in a sphere—that is, to find

the ratio of an edge of the solid to the radius of the circumscribed sphere.

Such computations are ascribed by Greek commentators to Theaetetus, to

whom much of Book XIII is probably due. In preliminaries to these com-

putations Euclid referred once more to the division of a line in mean and

extreme ratio, showing that "the square on the greater segment added to

half the whole is five times the square on the half"—as is easily verified

by solving alx = xl(a - x)—and citing other properties of the diagonals

of a regular pentagon. Then, in Proposition 10 Euclid proved the well-

known theorem that a triangle whose sides are respectively sides of an

equilateral pentagon, hexagon, and decagon inscribed in the same circle

is a right triangle. Propositions 13 through 17 express the ratio of edge to

diameter for each of the inscribed regular solids in turn: eld is VI for the

tetrahedron, V| for the octahedron, VJ for the cube or hexahedron,

V(5 - V5)/10 for the icosahedron, and (V5 - 1)/2V3 for the dode-

cahedron. Finally, in Proposition 18, the last in the Elements, it is easily

proved that there can be no regular polyhedron beyond these five. About

1900 years later the astronomer Kepler was so struck by this fact that he

built a cosmology on the five regular solids, believing that they must have

been the creator's key to the structure of the heavens.

APOCRYPHA

In ancient times it was not uncommon to attribute to a celebrated author

works that were not by him; thus, some versions of Euclid's Elements

include a fourteenth and even a fifteenth book, both shown by later scholars

to be apocryphal. The so-called Book XIV continues Euclid's comparison

of the regular solids inscribed in a sphere, the chief results being that the
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ratio of the surfaces of the dodecahedron and icosahedron inscribed in the

same sphere is the same as the ratio of their volumes, the ratio being that

of the edge of the cube to the edge of the icosahedron, that is,

Vl0/[3(5 - V5)]. It is thought that this book may have been composed
by Hypsicles on the basis of a treatise (now lost) by Apollonius comparing
the dodecahedron and icosahedron. (Hypsicles, who probably lived in the

second half of the second century B.C., is thought to be the author of an
astronomical work, De ascensionibus, from which the division of the circle

into 360 parts may have been adopted.) That the same circle circumscribes

both the pentagon of the dodecahedron and the triangle of the icosahedron

(inscribed in the same sphere) was said to have been proved by Aristaeus,

roughly contemporaneous with Euclid.

The spurious Book XV, which is inferior, is thought to have been (at

least in part) the work of Isidore of Miletus (fl. ca. a.d. 532), architect of

the cathedral of Holy Wisdom (Hagia Sophia) at Constantinople. This

book also deals with the regular solids, showing how to inscribe certain of

them within others, counting the number of edges and solid angles in the

solids, and finding the measures of the dihedral angles of faces meeting at

an edge. It is of interest to note that despite such enumerations, the ancients

all missed the so-called polyhedral formula enunciated by Euler in the

eighteenth century.

INFLUENCE OF THE ELEMENTS

The Elements of Euclid not only was the earliest major Greek mathematical

work to come down to us, but also the most influential textbook of all

times. It was composed in about 300 B.C. and was copied and recopied

repeatedly after that. Errors and variations inevitably crept in, and some
later editors, notably Theon of Alexandria in the late fourth century, sought

to improve on the original. Nevertheless, it has been possible to obtain a

good impression of the content of the Euclidean version through a com-

parison of more than half a dozen Greek manuscript copies dating mostly

from the tenth to the twelfth century. Later accretions, generally appearing

as scholia, add supplementary information, often of an historical nature,

and in most cases they are readily distinguished from the original. Copies

of the Elements have come down to us also through Arabic translations,

later turned into Latin in the twelfth century, and finally, in the sixteenth

century, into the vernacular. The first printed version of the Elements

appeared at Venice in 1482, one of the very earliest of mathematical books

to be set in type; it has been estimated that since then at least a thousand

editions have been published. Perhaps no book other than the Bible can

boast so many editions, and certainly no mathematical work has had an

influence comparable with that of Euclid's Elements. How appropriate it

was that Euclid's successors referred to him as "The Elementator!"
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Archimedes of

Syracuse

There was more imagination in the head of Archimedes than in that of Homer.

Voltaire

THE SIEGE OF SYRACUSE

Throughout the Hellenistic Age the center of mathematical activity re-

mained at Alexandria, but the leading mathematician of that age—and of

all antiquity—was not a native of the city. Archimedes may have studied

for a while at Alexandria under the students of Euclid, and he maintained

communication with mathematicians there, but he lived and died at Syr-

acuse. Details of his life are scarce, but we have some information about

him from Plutarch's account of the life of Marcellus, the Roman general.

During the Second Punic War the city of Syracuse was caught in the power

struggle between Rome and Carthage; having cast its lot with the latter,

the city was besieged by the Romans during the years 214 and 212 B.C.

We are told that throughout the siege Archimedes invented ingenious war

machines to keep the enemy at bay—catapults to hurl stones; ropes, pul-

leys, and hooks to raise and smash the Roman ships; devices to set fire to

the ships. Ultimately, however, Syracuse fell through a "fifth column'
1

; in

the sack of the city Archimedes was slain by a Roman soldier, despite

120
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orders from Marcellus that the life of the geometer be spared. Inasmuch
as Archimedes at the time is reported to have been seventy-five years old,

he was most likely born in 287 B.C. His father was an astronomer, and
Archimedes also established a reputation in astronomy. Marcellus is said

to have reserved for himself, as booty, ingenious planetaria that Ar-

chimedes had constructed to portray the motions of the heavenly bodies.

Accounts of the life of Archimedes are in agreement, however, in depicting

him as placing little value in his mechanical contrivances as compared with

the products of his thought. Even when dealing with levers and other simple

machines, he was far more concerned with general principles than with

practical applications.

LAW OF THE LEVER

Archimedes was not, of course, the first to use the lever, nor even the first

to formulate the general law. Aristotelian works contain the statement that

two weights on a lever balance when they are inversely proportional to

their distances from the fulcrum; and the Peripatetics associated the law

with their assumption that vertical rectilinear motion is the only natural

terrestrial motion. They pointed out that the extremities of unequal arms

of a lever will, in their displacement about the fulcrum, trace out circles

rather than straight lines; the extremity of the longer arm will move in the

circle that is larger, hence the path will approach more nearly to the natural

vertical rectilinear motion than will the extremity of the shorter arm. There-

fore, the law of the lever is a natural consequence of this kinematic prin-

ciple. Archimedes, on the other hand, deduced the law from a more plau-

sible static postulate—that bilaterally symmetric bodies are in equilibrium.

That is, let one assume that a weightless bar four units long and supporting

three unit weights, one at either end and one in the middle (Fig. 8.1), is

balanced by a fulcrum at the center. By the Archimedean axiom of sym-

metry the system is in equilibrium. But the principle of symmetry shows

also that, considering only the right-hand half of the system, the balancing

effect will remain the same if the two weights two units apart are brought

together at the midpoint of the right-hand side. This means that a unit

weight two units from the fulcrum will support on the other arm a weight

of two units which is one unit from the fulcrum. Through a generalization

of this procedure Archimedes established the law of the lever on static

principles alone, without recourse to the Aristotelian kinematic argument.

In the history of science during the medieval period it will be found that

a 8-
FIG. 8.1
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a conjunction of static and kinematic views produced advances in both

science and mathematics.

The work of Archimedes on the law of the lever is part of his treatise,

in two books. On the Equilibrium of Planes. This is not the oldest extant

book on what may be called physical science, for Aristotle about a century

earlier had published an influential work, in eight books, entitled Physics.

But whereas the Aristotelian approach was speculative and nonmathe-

matical, the Archimedean development was similar to the geometry of

Euclid. From a set of simple postulates Archimedes deduced deep conclu-

sions, establishing the close relationship between mathematics and me-

chanics that was to become so significant for both physics and mathematics.

The first book in the Equilibrium of Planes is concerned with rectilinear

figures and closes with the centers of gravity of the triangle and the tra-

pezoid. Book II concentrates attention on the center of gravity of a par-

abolic segment and includes a proof of the fact that this center lies on the

diameter of the segment and divides this diameter into segments in the

ratio of 3 to 2. The procedure used is the familiar method of exhaustion,

but a student familiar with the calculus and the principle of moments (or

law of the lever) can easily verify the result.

THE HYDROSTATIC PRINCIPLE

Archimedes can well be called the father of mathematical physics, not only

for his On the Equilibrium of Planes, but also for another treatise, in two

books, On Floating Bodies. Again, beginning from a simple postulate about

the nature of fluid pressure, he obtains some very deep results. Among
the earlier propositions are two that formulate the well-known Archime-

dean hydrostatic principle:

Any solid lighter than a fluid will, if placed in a fluid, be so far immersed

that the weight of the solid will be equal to the weight of the fluid displaced

(1.5).

A solid heavier than a fluid will, if placed in it, descend to the bottom of

the fluid, and the solid will, when weighed in the fluid, be lighter than its

true weight by the weight of the fluid displaced (1.7).

'

The mathematical derivation of this principle of buoyancy is undoubt-

edly the discovery that led the absentminded Archimedes to jump from his

bath and run home naked, shouting "Eureka" (

l4

I have found it"). It is

also possible, although less likely, that the principle aided him in checking

on the honesty of a goldsmith suspected of fraudulently substituting some

silver for gold in a crown (or more likely a wreath) made for King Hiero

'Translations in this chapter arc based on Heath 1953.
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of Syracuse, a friend (if not a relative) of Archimedes. Such fraud could

easily have been detected by the simpler method of comparing the densities

of gold, silver, and the crown by the simple device of measuring displace-

ments of water when equal weights of each are in turn immersed in a vessel

full of water. The later Roman architect, Vitruvius, attributed this method
to Archimedes, whereas an anonymous Latin poetic account, De ponder-

ibus et mensuris, written probably about a.d. 500, has Archimedes use the

principle of buoyancy.

The Archimedean treatise On Floating Bodies contains much more than

the simple fluid properties so far described. Virtually the whole of Book
II, for example, is concerned with the position of equilibrium of segments

of paraboloids when placed in fluids, showing that the position of rest

depends on the relative specific gravities of the solid paraboloid and the

fluid in which it floats. Typical of these is Proposition 4:

Given a right segment of a paraboloid of revolution whose axis a is greater

than I/? (where p is the parameter), and whose specific gravity is less than

that of a fluid but bears to it a ratio not less than (a - |p)
2 :a2

, if the segment

of the paraboloid be placed in the fluid with its axis at any inclination to the

vertical, but so that its base does not touch the surface of the fluid, it will

not remain in that position but will return to the position in which its axis is

vertical.

Still more complicated cases, with long proofs, follow. Archimedes could

well have taught a theoretical course in naval architecture, although he

probably would have preferred a graduate course in pure mathematics. No
armchair scholar, he came to the rescue in mechanical emergencies. At

one time, so it was reported, a ship had been built for King Hiero that

was too heavy to be launched, but Archimedes, by a combination of levers

and pulleys, accomplished the task. He is supposed to have boasted that

if he were given a lever long enough, and a fulcrum on which to rest it,

he could move the earth. It was probably at Alexandria that Archimedes

became interested in the technical problem of raising water from the Nile

River to irrigate the arable portions of the valley; for this purpose he

invented a device, now known as the Archimedean screw, made up of

helical pipes or tubes fastened to an inclined axle with a handle by which

it was rotated.

THE SAND-RECKONER

A clear distinction was made in Greek antiquity not only between theory

and application, but also between routine mechanical computation and the

theoretical study of the properties of number. The former, for which Greek

scholars are said to have shown scorn, was given the name logistic, while
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arithmetic, an honorable philosophical pursuit, was understood to be con-

cerned solely with the latter. It has even been maintained that the classical

attitude toward routine calculation mirrored the social structure of antiquity

in which computations were relegated to slaves. Whatever truth there is

in this view seems to have been exaggerated, for the Greeks took the

trouble to replace their older Attic or Herodianic system of numeration

by one distinctly more advantageous—the Ionian or alphabetic. Ar-

chimedes lived at about the time that the transition from Attic to Ionian

numeration was made effective, and this may account for the fact that he

stooped to make a contribution to logistic. In a work entitled the Psammites

{Sand-Reckoner) Archimedes boasted that he could write down a number
greater than the number of grains of sand required to fill the universe. In

doing so he referred to one of the boldest astronomical speculations of

antiquity—that in which Aristarchus of Samos, toward the middle of the

third century B.C., proposed putting the earth in motion about the sun.

Such an astronomical system would suggest that the relative positions of

the fixed stars should change as the earth is displaced by many millions of

miles while going around the sun. The absence of such parallactic displace-

ment was the factor that led the greatest astronomers of antiquity (includ-

ing, presumably, also Archimedes) to reject the heliocentric hypothesis;

but Aristarchus asserted that the lack of parallax can be attributed to the

enormity of the distance of the fixed stars from the earth. Now, to make
good his boast, Archimedes had perforce to provide against all possible

dimensions for the universe, and so he showed that he could enumerate

the grains of sand needed to fill even Aristarchus' immense world. Ar-

chimedes began with certain estimates that had been made in his day

concerning the sizes of the earth, the moon, and the sun and the distances

of the moon, the sun, and the stars. An estimate of the earth's circumfer-

ence in his day, he reported, had been given as 300,000 stades (about

30,(X)0 miles, for the stade generally used was roughly a tenth of a mile);

Archimedes allowed for an underestimate and assumed a circumference

of 3, (XX),000 stades. Moreover, Aristarchus had estimated the diameter of

the sun as eighteen to twenty times that of the moon, which in turn is

smaller than the earth. To play safe Archimedes took the diameter of the

sun to be not more than thirty times that of the moon (or, a fortiori, of

the earth). Next, Archimedes assumed that the apparent size of the sun

was greater than a thousandth part of a circle, for Aristarchus had estimated

it to be about half a degree, a result confirmed by observation. Knowing

an upper bound for the sun's actual size and a lower bound for its apparent

size, an upper bound for its distance is easily established. Finally, Ar-

chimedes interpreted Aristarchus' universe to have a radius that is to the

sun's distance as this distance is to the earth's radius. From these assump-

tions Archimedes shows that the diameter of the ordinary universe as far

as the sun is less than l()'" stades. Next, he had to estimate the size of a

grain of sand; remaining on the safe side, he assumed that 10,000 grains
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of sand are not smaller than a poppy seed, that the diameter of a poppy
seed is not less than one fortieth of a finger breadth, and that a stadium

in turn is less than 10,000 finger breadths. Putting together all these ine-

qualities, Archimedes concluded that the number of grains of sand required

to fill the sphere of the then generally accepted universe is less than a

number that we should write as 1051
. For the universe of Aristarchus, which

is to the ordinary universe as the latter is to the earth, Archimedes showed
that not more than 1063 grains of sand are required. Archimedes did not

use this notation, but instead described the number as ten million units of

the eighth order of numbers (where the numbers of second order begin

with a myriad-myriads and the numbers of eighth order begin with the

seventh power of a myriad-myriads). To show that he could express num-
bers ever so much larger even than this, Archimedes extended his termi-

nology to call all numbers of order less than a myriad-myriads those of the

first period, the second period consequently beginning with the number

(10
8

)
10*, one that would contain 800,000,000 ciphers. The periods, of course,

continue through the 108
th period. That is, his system would go up to a

myriad-myriad units of the myriad-myriadth order of the myriad-myriadth

period—a number that would be written as one followed by some eighty

thousand million millions of ciphers. It was in connection with this work

on huge numbers that Archimedes mentioned, all too incidentally, a prin-

ciple that later led to the invention of logarithms—the addition of "orders"

of numbers (the equivalent of their exponents when the base is 100,000,000)

corresponds to finding the product of the numbers.

MEASUREMENT OF THE CIRCLE

In his approximate evaluation of the ratio of the circumference to diameter

for a circle Archimedes again showed his skill in computation. Beginning

with the inscribed regular hexagon, he computed the perimeters of poly-

gons obtained by successively doubling the number of sides until one reached

ninety-six sides. His iterative procedure for these polygons was related to

what is sometimes called the Archimedean algorithm. One sets out the

sequence Pn , /?„, P2„, p2n , P4n , pAn . . . , where Pn and pn are the perimeters

of the circumscribed and inscribed regular polygons of n sides. Beginning

with the third term, one calculates any term from the two preceding terms

by taking alternately their harmonic and geometric means. That is, P2n
=

1pnPJ{pn + P„), Pin = ^Pn^im and so on. If one prefers, one can use

instead the sequence an,A n , a2n , A 2n , . . . , where an and A n are the areas

of the inscribed and circumscribed regular polygons of n sides. The third

and successive terms are calculated by taking alternately the geometric

and harmonic means, so that a2n = VanA n , A 2n = 2A na2nl{A n + a2n ),

and so on. His method for computing square roots, in finding the perimeter

of the circumscribed hexagon, and for the geometric means was similar to
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that used by the Babylonians. The result of the Archimedean computation

on the circle was an approximation to the value of n expressed by the

inequality 3^ < n < 3#i, a better estimate than those of the Egyptians

and the Babylonians. (It should be borne in mind that neither Archimedes

nor any other Greek mathematician ever used our notation n for the ratio

of circumference to diameter in a circle.) This result was given in Propo-

sition 3 of the treatise On the Measurement of the Circle, one of the most
popular of the Archimedean works during the medieval period. This little

work, probably incomplete as it has come down to us, includes only three

propositions, of which one is the proof, by the method of exhaustion, that

the area of the circle is the same as that of a right triangle having the

circumference of the circle as one side and the radius of the circle as the

other. It is unlikely that Archimedes was the discoverer of this theorem,

for it is presupposed in the quadrature of the circle attributed to Dinos-

tratus.

ANGLE TRISECTION

Archimedes, like his predecessors, was attracted by the three famous prob-

lems of geometry, and the well-known Archimedean spiral provided so-

lutions to two of these (but not, of course, with straightedge and compasses

alone). The spiral is defined as the plane locus of a point which, starting

from the end point of a ray or half line, moves uniformly along this ray

while the ray in turn rotates uniformly about its end point. In polar co-

ordinates the equation of the spiral is r = aO. Given such a spiral, the

trisection of an angle is easily accomplished. The angle is so placed that

the vertex and initial side of the angle coincide with the initial point O of

the spiral and the initial position OA of the rotating line. Segment OP,
where P is the intersection of the terminal side of the angle with the spiral,

is then trisected at points R and S (Fig. 8.2), and circles are drawn with

O as center and OR and OS as radii. If these circles intersect the spiral in

points U and V, lines OU and OV will trisect the angle A OP.
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Greek mathematics sometimes has been described as essentially static,

with little regard for the notion of variability; but Archimedes, in his study

of the spiral, seems to have found the tangent to a curve through kinematic

considerations akin to the differential calculus. Thinking of a point on the

spiral r = aO as subjected to a double motion—a uniform radial motion

away from the origin of coordinates and a circular motion about the ori-

gin—he seems to have found (through the parallelogram of velocities) the

direction of motion (hence of the tangent to the curve) by noting the

resultant of the two component motions. This appears to be the first in-

stance in which a tangent was found to a curve other than a circle.

Archimedes' study of the spiral, a curve that he ascribed to his friend

Conon of Alexandria, was part of the Greek search for solutions of the

three famous problems. The curve lends itself so readily to angle multi-

sections that it may well have been devised by Conon for this purpose. As
in the case of the quadratrix, however, it can serve also to square the circle,

as Archimedes showed. At point P let the tangent to the spiral OPR be

drawn and let this tangent intersect in point Q the line through O that is

perpendicular to OP. Then, Archimedes showed, the straight-line segment

OQ (known as the polar subtangent for point P) is equal in length to the

circular arc PS of the circle with center O and radius OP (Fig. 8.3) that is

intercepted between the initial line (polar axis) and line OP (radius vector).

This theorem, proved by Archimedes through a typical double reductio ad

absurdum demonstration, can be verified by a student of the calculus who
recalls that tan y/ = rlr\ where r = f(0) is the polar equation of a curve,

r' is the derivative of r with respect to 0, and y/ is the angle between the

radius vector at a point P and the tangent line to the curve at the point P.

A large part of the work of Archimedes is such that it would now be

included in a calculus course, which is particularly true of the work On
Spirals. If point P on the spiral is chosen as the intersection of the spiral

with the 90° line in polar coordinates, the polar subtangent OQ Will be

precisely equal to quarter of the circumference of the circle of radius OP.

Hence, the entire circumference is easily constructed as four times the

segment OQ, and by Archimedes' theorem a triangle equal in area to the

area of the circle is found. A simple geometric transformation will then
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produce a square in place of the triangle, and the quadrature of the circle

is effected.

Among the twenty-eight propositions in On Spirals are several con-

cerning areas associated with the spiral. For example, it is shown in Prop-

osition 24 that the area swept out by the radius vector in its first complete

rotation is one third of the area of the "first circle"—that is, the circle with

center at the pole and radius equal to the length of the radius vector

following the first complete rotation. Archimedes used the method of ex-

haustion, but again a student today can easily verify the result if he recalls

that this area is 2i^
n
r
2 d0. Moreover, it can readily be shown by the

calculus, as Archimedes did by the more difficult method of exhaustion,

that on the next rotation the area of the additional ring R 2 (bounded by

the first and second turns of the spiral and the portion of the polar axis

between the two intercepts following the first and second rotations) is six

times the region /?, swept out in the first rotation. Areas of the additional

rings added on successive rotations are given by the simple rule of succes-

sion /?„., = nRJ(n - 1), as Archimedes showed.

AREA OF A PARABOLIC SEGMENT

The work On Spirals was much admired but little read, for it was generally

regarded as the most difficult of all Archimedean works. Of the treatises

concerned chiefly with the method of exhaustion (that is, the integral cal-

culus), the most popular was Quadrature ofthe Parabola. The conic sections

had been known for almost a century when Archimedes wrote, yet no

progress had been made in finding their areas. It took the greatest math-

ematician of antiquity to square a conic section— a segment of the para-

bola—which he accomplished in Proposition 17 of the work in which the

quadrature was the goal. The proof by the standard method of exhaustion

is long and involved, but Archimedes rigorously proved that the area K
of a parabolic segment APBQC (Fig. 8.4) is four thirds the area of a tri-

angle T having the same base and equal height. In the succeeding (and

last) seven propositions Archimedes gave a second but different proof of

the same theorem. He first showed that the area of the largest inscribed

FIG. 8.4
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triangle, ABC, on the base AC is four times the sum of the corresponding

inscribed triangles on each of the lines AB and BC as base. By continuing

the process suggested by this relationship, it becomes clear that the area

K of the parabolic segment ABC is given by the sum of the infinite series

T + 774 + 7742 + ••• + 774" + — , which, of course, is jr. Archimedes
did not refer to the sum of the infinite series, for infinite processes were
frowned on in his day; instead he proved by a double reductio ad absurdum
that K can be neither more nor less than %T. (Archimedes, like his pred-

ecessors, did not use the name "parabola" but the word "orthotome," or

"section of a right cone.")

In the preamble to the Quadrature of the Parabola we find the assump-

tion or lemma that is usually known today as the axiom of Archimedes:

"That the excess by which the greater of two unequal areas exceeds the

less can, by being added to itself, be made to exceed any given finite area."

This axiom in effect rules out the fixed infinitesimal or indivisible that had

been much discussed in Plato's day. It is essentially the same as the axiom

of exhaustion, and Archimedes freely admitted that

The earlier geometers have also used this lemma, for it is by the use of this

same lemma that they have shown that circles are to one another in the

duplicate ratio of their diameters, and that spheres are to one another in the

triplicate ratio of their diameters, and further that every pyramid is one third

part of the prism which has the same base with the pyramid and equal height;

also, that every cone is one third part of the cylinder having the same base

as the cone and equal height they proved by assuming a certain lemma similar

to that aforesaid.

The "earlier geometers" mentioned here presumably included Eudoxus

and his successors.

VOLUME OF A PARABOLOIDAL SEGMENT

Archimedes apparently was unable to find the area of a general segment

of an ellipse or hyperbola. Finding the area of a parabolic segment by

modern integration involves nothing worse than polynomials, but the in-

tegrals arising in the quadrature of a segment of an ellipse or hyperbola

(as well as the arcs of these curves or the parabola) require transcendental

functions. Nevertheless, in his important treatise On Conoids and Sphe-

roids Archimedes found the area of the entire ellipse: "The areas of ellipses

are as the rectangles under their axes" (Proposition 6). This is, of course,

the same as saying that the area of xVa 2 + y
2lb2 = 1 is nab or that the

area of an ellipse is the same as the area of a circle whose radius is the

geometric mean of the semiaxes of the ellipse. Moreover, in the same

treatise Archimedes showed how to find the volumes of segments cut from



1 30 ARCHIMEDES OF SYRACUSE

an ellipsoid or a paraboloid or a hyperboloid (of two sheets) of revolution

about the principal axis. The process that he used is so nearly the same as

that in modern integration that we shall describe it for one case. Let ABC
be a paraboloidal segment (or paraboloidal "conoid") and let its axis be

CD (Fig. 8.5); about the solid circumscribe the circular cylinder ABFE,
also having CD as axis. Divide the axis into n equal parts of length h, and

through the points of division pass planes parallel to the base. On the

circular sections that are cut from the paraboloid by these planes construct

inscribed and circumscribed cylindrical frusta, as shown in the figure. It is

then easy to establish, through the equation of the parabola and the sum
of an arithmetic progression, the following proportions and inequalities:

Cylinder ABEF n 2h n 2h

Inscribed figure h + 2h + 3h +— + (n - \)h \n 2h'

Cylinder ABEF _ tfh n 2h

Circumscribed figure h + 2h + 3h + -~ + nh \n 2h'

Archimedes had previously shown that the difference in volume between

the circumscribed and inscribed figures was equal to the volume of the

lowest slice of the circumscribed cylinder; by increasing the number n of

subdivisions on the axis, thereby making each slice thinner, the difference

between the circumscribed and inscribed figures can be made less than any

preassigned magnitude. Hence, the inequalities lead to the necessary con-

clusion that the volume of the cylinder is twice the volume of the conoidal

segment. This work differs from the modern procedure in integral calculus

chiefly in the lack of the concept of limit of a function—a concept that

was so near at hand and yet was never formulated by the ancients, not

even by Archimedes, the man who came closest to achieving it.

SEGMENT OF A SPHERE

Archimedes composed many marvelous treatises, of which his successors

were inclined to admire most the one On Spirals. The author himself seems



SEGMENT OF A SPHERE 131

to have been partial to another, On the Sphere and Cylinder. Archimedes
requested that on his tomb be carved a representation of a sphere inscribed

in a right circular cylinder the height of which is equal to its diameter, for

he had discovered, and proved, that the ratio of the volumes of cylinder

and sphere is the same as the ratio of the areas—that is, three to two. This

property, which Archimedes discovered subsequent to his Quadrature of
the Parabola, remained unknown, he says, to geometers before him. It

once had been thought that the Egyptians knew how to find the area of a

hemisphere; but Archimedes appears now as the first one to have known,

and proved, that the area of a sphere is just four times the area of a great

circle of the sphere. Moreover, Archimedes showed that "the surface of

any segment of a sphere is equal to a circle whose radius is equal to the

straight line drawn from the vertex of the segment to the circumference

of the circle which is the base of the segment." This, of course, is equivalent

to the more familiar statement that the surface area of any segment of a

sphere is equal to that of the curved surface of a cylinder whose radius is

the same as that of the sphere and whose height is the same as that of the

segment. That is, the surface area of the segment does not depend on the

distance from the center of the sphere, buc only on the altitude (or thick-

ness) of the segment. The crucial theorem on the surface of the sphere

appears in Proposition 33, following a long series of preliminary theorems,

including one that is equivalent to an integration of the sine function:

If a polygon be inscribed in a segment of a circle LAV so that all its sides

excluding the base are equal and their number even, as LK . . . A . . . K'L\
A being the middle point of the segment; and if the lines BB\ CC\ . . .

parallel to the base LL' and joining pairs of angular points be drawn, then

(BB' + CC + •••
-I- LM)\AM = A'B.BA, where M is the middle point

of LL' and AA' is the diameter through M [Fig. 8.6].

This is the geometric equivalent of the trigonometric equation
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From this theorem it is easy to derive the modern expression // sin x

dx = \ - cos 4> by multiplying both sides of the equation above by 01 n

and taking limits as n increases indefinitely. The left-hand side becomes

lim ^ sin(jt,Ajc,),

where x, = iOln for / = 1, 2, ... n, Ax, = 01n for / = 1, 2, . . . n - 1,

and Ajc„ = Olln. The right-hand side becomes

(1 - cos 0) lim — cot— * 1 - cos 0.

«—* 2« 2«

The equivalent of the special case /,* sin jc d* = 1 - cos n = 2 had been

given by Archimedes in the preceding proposition.

The familiar formula for the volume of a sphere appears in On the

Sphere and Cylinder 1.34:

Any sphere is equal to four times the cone which has its base equal to the

greatest circle in the sphere and its height equal to the radius of the sphere.

The theorem is proved by the usual method of exhaustion, and the

Archimedean ratio for the volume and surface area of the sphere and

circumscribed cylinder followed as an easy corollary. The sphere-in-a-cyl-

inder diagram was indeed carved on the tomb of Archimedes, as we know
from a report by Cicero. When he was quaestor in Sicily, the Roman orator

found the neglected tomb with the engraving. He restored the tomb

—

almost the only contribution of a Roman to the history of mathematics

—

but all traces of it have since vanished.

ON THE SPHERE AND CYLINDER

An interesting light on Greek geometric algebra is cast by a problem in

Book II of On the Sphere and Cylinder. In Proposition 2 Archimedes

justified his formula for the volume of a segment of a given sphere; in

Proposition 3 he showed that to cut a given sphere by a plane so that the

surfaces of the segments are in a given ratio, one simply passes a plane

perpendicular to a diameter through a point on the diameter which divides

the diameter into two segments having the desired ratio. He then showed

in Proposition 4 how to cut a given sphere so that the volumes of the two

segments are in a given ratio— a far more difficult problem. In modern

notation, Archimedes was led to the equation

4a 2 (3a - x)(m + n)

x 2 ma
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where m:n is the ratio of the segments. This is a cubic equation, and
Archimedes attacked its solution as had his predecessors in solving the

Delian problem—through intersecting conies. Interestingly, the Greek ap-

proach to the cubic was quite different from that to the quadratic equation.

By analogy with the "application of areas" in the latter case, we would
anticipate an "application of volumes," but this was not adopted. Through
substitutions Archimedes reduced his cubic equation to the form x 2

(c -

x) = db2 and promised to give separately a complete analysis of this cubic

with respect to the number of positive roots. This analysis had apparently

been lost for many centuries when Eutocius, an important commentator

of the early sixth century, found a fragment that seems to contain the

authentic Archimedean analysis. The solution was carried out by means
of the intersection of the parabola ex 2 = b2

y and the hyperbola (c -

x)y = cd. Going further, he found a condition on the coefficients that

determines the number of real roots satisfying the given requirements—

a

condition equivalent to finding the discriminant, 21b2d - 4c3
, of the cubic

equation b2d = x 2
(c - x). (This can easily be verified by the application

of a little elementary calculus.) Inasmuch as all cubic equations can be

transformed to the Archimedean type, we have here the essence of a

complete analysis of the general cubic. Interest in the cubic equation dis-

appeared shortly after Archimedes, to be revived for a while by Eutocius

and then centuries later still by the Arabs.

BOOK OF LEMMAS

Most of the Archimedean treatises that we have described are a part of

advanced mathematics, but the great Syracusan was not above proposing

elementary problems. In his Book of Lemmas, for example, we find a study

of the so-called arbelos, or "shoemaker's knife." The shoemaker's knife

is the region bounded by the three semicircles tangent in pairs in Fig. 8.7,

the area in question being that which lies inside the largest semicircle and

outside the two smallest. Archimedes showed in Proposition 4 that if CD
is perpendicular to AB, the area of the circle with CD as diameter is equal

FIG. 8.8
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to the area of the arbelos. In the next proposition it is shown that the two

circles inscribed within the two regions into which CD divides the shoe-

maker's knife are equal.

The Book of Lemmas contains also a theorem (Proposition 14) on what

Archimedes called the salinon, or "salt cellar." Draw semicircles with the

segments AB, AD, D£, and EB as diameters (Fig. 8.8), with AD = EB.
Then, the total area bounded by the salinon (bounded entirely by semi-

circular arcs) is equal to the area of the circle having as its diameter the

line of symmetry of the figure, FOC.
It is in the Book of Lemmas that we find also (as Proposition 8) the

well-known Archimedean trisection of the angle. Let ABC be the angle

to be trisected (Fig. 8.9). Then, with B as center, draw a circle of any

radius intersection AB in P and BC in Q, with BC extended in R. Then,

draw a line STP such that S lies on CQBR extended and T lies on the

circle and such that ST = BQ = BP = BT. It is then readily shown, since

triangles STB and TBP are isosceles, that angle BST is precisely a third

of angle QBP, the angle that was to have been trisected. Archimedes and

his contemporaries were, of course, aware that this is not a canonical

trisection in the Platonic sense, for it involves what they called a neusis—
that is, an insertion of a given length, in this case ST = BQ, between two

figures, here the line QR extended, and the circle.

The Book ofLemmas has not survived in the original Greek, but through

Arabic translation that later was turned into Latin. (Hence, it often is cited

by its Latin title of Liber assumptorum.) In fact, the work as it has come
down to us cannot be genuinely Archimedean, for his name is quoted

several times within the text. However, even if the treatise is nothing more

than a collection of miscellaneous theorems that were attributed by the

Arabs to Archimedes, the work probably is substantially authentic. There

is doubt also about the authenticity of the "cattle-problem," which is gen-

erally thought to be Archimedean, and certainly dates back to within a

few decades of his death. The cattle-problem is a challenge to mathema-

ticians to solve a set of indeterminate simultaneous equations in eight

unknown quantities—the number of bulls and cows of each of four colors.

There is some ambiguity in the formulation of the problem, but according

to one interpretation it would take a volume of more than 600 pages to

give the values for the eight unknowns contained in one of the possible

solutions! The problem, which involves the solution of x 2 = 1 + 4729494v 2
,



SEMIREGULAR SOLIDS AND TRIGONOMETRY 135

incidentally provides a first example of what later was to be known as a

"Pell equation."

SEMIREGULAR SOLIDS AND TRIGONOMETRY

It is certain that not all of the works of Archimedes have survived, for in

a later commentary we learn (from Pappus) that Archimedes discovered

all of the thirteen possible so-called semiregular solids. Whereas a regular

solid or polyhedron has faces that are regular polygons of the same type,

a semiregular solid is a convex polyhedron whose faces are regular poly-

gons, but not all of the same type. For example, if from the eight corners

of a cube a we cut off tetrahedra with edges a(2 - V2)/2, the resulting

figure will be a semiregular or Archimedean solid with surfaces made up
of eight equilateral triangles and six regular octagons.

That quite a number of Archimedean works have been lost is clear from

many references. Arabic scholars inform us that the familiar area for-

mula for a triangle in terms of its three sides, usually known as Heron's for-

mula

—

K = Vs(s - a)(s - b)(s - c), where 5 is the semiperimeter—was

known to Archimedes several centuries before Heron lived. Arabic scholars

also attribute to Archimedes the "theorem on the broken chord"—if AB
and BC make up any broken chord in a circle (with AB 7^ BC) and if M
is the midpoint of the arc ABC and F the foot of the perpendicular from

M to the longer chord, F will be the midpoint of the broken chord ABC
(Fig. 8.10). Archimedes is reported by the Arabs to have given several

proofs of the theorem, one of which is carried out by drawing in the dotted

lines in the figure, making FC = FC, and proving that AMBC - AMBA.
Hence, BC = BA, and it, therefore, follows that C'F = AB + BF =

FC. We do not know whether Archimedes saw any trigonometric signifi-

cance in the theorem, but it has been suggested that it served for him

as a formula analogous to our sin(A: - v) = sin* cos v - cos x sin v.

To show the equivalence we let MC = 2x and BM = 2v. Then, AB =

2x - 2v. Now, the chords corresponding to these three arcs are respectively

C'^

FIG. 8.10
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MC = 2 sin x, BM = 2 sin y, and AB = 2 sin (x - y). Moreover, the

projections of MC and MB on BC are FC = 2 sin x cos y and FB =

2 sin y cos x. If, finally, we write the broken-chord theorem in the form
AB = FC - FB, and if for these three chords we substitute their trigono-

metric equivalents, the formula for sin(jc - y) results. Other trigonometric

identities can, of course, be derived from the same broken-chord theorem,

indicating that Archimedes may have found it a useful tool in his astro-

nomical calculations.

THE METHOD

Unlike the Elements of Euclid, which have survived in many Greek and

Arabic manuscripts, the treatises of Archimedes have reached us through

a slender thread. Almost all copies are from a single Greek original which

was in existence in the early sixteenth century and itself was copied from

an original of about the ninth or tenth century. The Elements of Euclid

has been familiar to mathematicians virtually without interruption since its

composition, but Archimedean treatises have had a more checkered career.

There have been times when few or even none of Archimedes' works were

known. In the days of Eutocius, a first-rate scholar and skillful commentator

of the sixth century, only three of the many Archimedean works were

generally known

—

On the Equilibrium of Planes, the incomplete Mea-

surement of a Circle, and the admirable On the Sphere and Cylinder. Under
the circumstances it is a wonder that such a large proportion of what

Archimedes wrote has survived to this day. Among the amazing aspects

of the provenance of Archimedean works is the discovery within the twen-

tieth century of one of the most important treatises—one which Ar-

chimedes simply called The Method and which had been lost since the early

centuries of our era until its rediscovery in 1906.

The Method of Archimedes is of particular significance because it dis-

closes for us a facet of Archimedes' thought that is not found elsewhere.

His other treatises are gems of logical precision, with little hint of the

preliminary analysis that may have led to the definitive formulations. So

thoroughly without motivation did his proofs appear to some writers of

the seventeenth century that they suspected Archimedes of having con-

cealed his method of approach in order that his work might be admired

the more. How unwarranted such an ungenerous estimate of the great

Syracusan was became clear in 1906 with the discovery of the manuscript

containing The Method. Here Archimedes had published, for all the world

to read, a description of the preliminary "mechanical" investigations that

had led to many of his chief mathematical discoveries. He thought that his

"method" in these cases lacked rigor, since it assumed an area, for example,

to be a sum of line segments.

The Method, as we have it, contains most of the text of some fifteen
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FIG. 8.11

propositions sent in the form of a letter to Eratosthenes, mathematician

and librarian at the university of Alexandria. The author opened by saying

that it is easier to supply a proof of a theorem if we first have some
knowledge of what is involved; as an example he cites the proofs of Eudoxus
on the cone and pyramid, which had been facilitated by the preliminary

asssertions, without proof, made by Democritus. Then, Archimedes an-

nounced that he himself had a "mechanical" approach that paved the way
for some of his proofs. The very first theorem that he discovered by this

approach was the one on the area of a parabolic segment; in Proposition

1 of The Method the author describes how he arrived at this theorem by

balancing lines as one balances weights in mechanics. He thought of the

areas of the parabolic segment ABC and the triangle AFC (where FC is

tangent to the parabola at C) as the totality of a set of lines parallel to the

diameter QB of the parabola, such as OP (Fig. 8.11) for the parabola and

OM for the triangle. If, now, one were to place at H (where HK = KC)
a line segment equal to OP, this would just balance the line OM where it

now is, K being the fulcrum. (This can be shown through the law of the

lever and the property of the parabola.) Hence, the area of the parabola,

if placed with its center of gravity at //, will just balance the triangle, whose

center of gravity is along KC and a third of the way from K to C. From
this one easily sees that the area of the parabolic segment is one third the

area of triangle AFC, or four thirds the area of the inscribed triangle ABC.

VOLUME OF A SPHERE

The favorite theorem of Archimedes, represented on his tomb, was also

suggested to him by his mechanical method. It is described in Proposition



138 ARCHIMEDES OF SYRACUSE

2 of The Method:

Any segment of a sphere has to the cone with the same base and height the

ratio which the sum of the radius of the sphere and the height of the com-

plementary segment has to the height of the complementary segment.

The theorem follows readily from a beautiful balancing property which

Archimedes discovered (and which can be easily verified in terms of modern
formulas). Let AQDCP be a cross section of a sphere with center O and

diameter AC (Fig. 8.12) and let AUV be a plane section of a right circular

cone with axis AC and UV as diameter of the base. Let IJUV be a right

circular cylinder with axis AC and with UV = IJ as diameter and let

AH = AC. If a plane is passed through any point S on the axis AC and

perpendicular to AC, the plane will cut the cone, the sphere, and the

cylinder in circles of radii r, = SR, r2 = SP, and r3 = SN respectively. If

we call the areas of these circles A u A 2 , and A 3 , then, Archimedes found,

A] and A 2 , when placed with their centers at //, will just balance A 3 where

it now is, with A as the fulcrum. Hence, if we call the volumes of the

sphere, the cone, and the cylinder Vu V2 , V3 , it follows that V, + V2
=

£V3 ; and since V2
= hV3 , the sphere must be £V3 . Because the volume V3

of the cylinder is known (from Democritus and Eudoxus), the volume of

the sphere also is known—in modern notation, V = %nr l
. By applying the

same balancing technique to the spherical segment with base diameter BD
y

to the cone with base diameter EF, and to the cylinder with base diameter

KL, the volume of the spherical segment is found in the same manner as

for the whole sphere.

J N L V

H

/
P

sfi

R

A
\ \

S G 1

\
/ M

FIG. 8.12

K U



RECOVERY OF THE METHOD 139

RECOVERY OF THE METHOD

The method of equilibrium of circular sections about a vertex as fulcrum

was applied by Archimedes to discover the volumes of the segments of

three solids of revolution—the ellipsoid, the paraboloid, and the hyper-

boloid, as well as the centers of gravity of the paraboloid (conoid), of any

hemisphere, and of a semicircle. The Method closes with the determination

of volumes of two solids that are favorites in modern calculus books—

a

wedge cut from a right circular cylinder by two planes (as in Fig. 8.13) and

the volume common to two equal right circular cylinders intersecting at

right angles. The work containing such marvelous results of more than

2000 years ago was recovered almost by accident in 1906. The indefatigable

Danish scholar J. L. Heiberg had read that at Constantinople there was a

palimpsest of mathematical content. (A palimpsest is a parchment the

original writing on which has been only imperfectly washed off and replaced

with a new and different text.) Close inspection showed him that the original

manuscript had contained something by Archimedes, and through pho-

tographs he was able to read most of the Archimedean text. The manuscript

consisted of 185 leaves, mostly of parchment but a few of paper, with the

Archimedean text copied in a tenth-century hand. An attempt—fortu-

nately, none too successful—had been made to expunge this text in order

to use the parchment for a Euchologion (a collection of prayers and liturgies

used in the Eastern Orthodox Church) written in about the thirteenth

century. The mathematical text contained On the Sphere and Cylinder,

most of the work On Spirals, part of the Measurement of a Circle and of

On the Equilibrium of Planes, and On Floating Bodies, all of which have

been preserved in other manuscripts; most important of all, the palimpsest

gives us the only surviving copy of The Method. In a sense the palimpsest

is symbolic of the contribution of the Medieval Age. Intense preoccupation

with religious concerns very nearly wiped out one of the most important

works of the greatest mathematician of antiquity; yet in the end it was

medieval scholarship that inadvertently preserved this, and much besides,

which might otherwise have been lost.

FIG. 8.13
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Apollonius of Perga

It seems to me that all the evidence points to Apollonius as the founder of Greek

mathematical astronomy.

Otto Neugebauer

LOST WORKS

During the first century or so of the Hellenistic Age three mathematicians

stood head and shoulders above all others of the time, as well as above

most of their predecessors and successors. These men were Euclid, Ar-

chimedes, and Apollonius; it is their work that leads to the designation of

the period from about 300 to 200 B.C. as the "Golden Age" of Greek

mathematics. In a sense mathematics had lagged behind the arts and lit-

erature, for it was the Age of Pericles, in the middle of the fifth century

B.C., that in the broader sense is known as the "Golden Age of Greece."

Throughout the Hellenistic period the city of Alexandria remained the

mathematical focus of the Western world, but Apollonius, like Archimedes,

was not a native there. He was born at Perga in Pamphilia (southern Asia

Minor); but he may have been educated at Alexandria, and he seems to

have spent some time teaching there at the university. For a while he was

at Pergamum, where there was a university and a library second only to

that at Alexandria, through the patronage of Alexander's general, Lysi-

machus, and his successors. Inasmuch as the ancient world had many men
named Apollonius (of these 129 with biographies are listed in Pauly-Wis-

140
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sowa, Real-Enzyclopadie der klassischen Altertumswissenschaft), our math-

ematician is distinguished from others by use of the full name, Apollonius

of Perga. We do not know the precise dates of his life, but he is reported

to have flourished during the reigns of Ptolemy Euergetes and Ptolemy

Philopater; one report makes him a treasurer-general of Ptolemy Phila-

delphus, and it was said that he was twenty-five to forty years younger

than Archimedes. The years 262 to 190 B.C. have been suggested for his

life, about which little is known. He seems to have felt himself to be a

rival of Archimedes; he thus touched on several themes that we discussed

in the preceding chapter. He developed a scheme of "tetrads" for express-

ing large numbers, using an equivalent of exponents of the single myriad,

whereas Archimedes had used the double myriad as a base. The numerical

scheme of Apollonius probably was the one of which part is described in

the surviving last portion of Book II of the Mathematical Collection of

Pappus. (All of Book I and the first part of Book II have been lost.) Here

the number 5,462,360,064 x 106
is written as /^evc;/? ju

p
,yx^ f^v, where

jti
v

, //, and //"are respectively, the third, the second, and the first powers

of a myriad.

Apollonius wrote a work (now lost) entitled Quick Delivery which seems

to have taught speedy methods of calculation. In it the author is said to

have calculated a closer approximation to n than that given by Ar-

chimedes—probably the value we know as 3.1416. We do not know how

this value, which appeared later in Ptolemy and also in India, was arrived

at. In fact, there are more unanswered questions about Apollonius and his

work than about Euclid or Archimedes, for more of his works have dis-

appeared. We have the titles of many lost works, such as one on Cutting-

off of a Ratio, another on Cutting-ojf of an Area, one On Determinate

Section, another on Tangencies (or Contacts), one on Vergings (or Incli-

nations), and one on Plane Loci. In some cases we know what the treatise

was about, for Pappus later gave brief descriptions of a few. Six of the

works of Apollonius were included, together with a couple of Euclid's

more advanced treatises (now lost), in a collection known as the 'Treasury

of Analysis." Pappus described this as a special body of doctrine for those

who, after going through the usual elements, wish to obtain power to solve

problems involving curves. The 'Treasury," made up largely of works by

Apollonius, consequently must have included much of what we now call

analytic geometry; it was with good reason that Apollonius, rather than

Euclid, was known in antiquity as 'The Great Geometer."

RESTORATION OF LOST WORKS

From the descriptions given by Pappus and others, it is possible to obtain

a good idea of the contents of some of the lost Greek works, and when in

the seventeenth century the game of reconstructing lost geometric books
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was at its height, the treatises of Apollonius were among the favorites.

From restorations of the Plane Loci, for example, we infer that the fol-

lowing were two of the loci considered: ( 1 ) The locus of points the difference

of the squares of whose distances from two fixed points is constant is a

straight line perpendicular to the line joining the points; (2) the locus of

points the ratio of whose distances from two fixed points is constant (and

not equal to one) is a circle. The latter locus is, in fact, now known as the

"Circle of Apollonius, " but this is a misnomer since it had been known to

Aristotle who had used it to give a mathematical justification of the sem-

icircular form of the rainbow. 1

The Cutting-off of a Ratio dealt with the various cases of a general

problem—given two straight lines and a point on each, draw through a

third given point a straight line that cuts off on the given lines segments

(measured from the fixed points on them respectively) that are in a given

ratio. This problem is equivalent to solving a quadratic equation of the

type ax - x 2 = be, that is, of applying to a line segment a rectangle equal

to a rectangle and falling short by a square. In Cutting-off of an Area the

problem is similar except that the intercepted segments are required to

contain a given rectangle, rather than being in a given ratio. This problem

leads to a quadratic of the form ax + x 2 = be, so that one has to apply

to a segment a a rectangle equal to a rectangle and exceeding by a square.

The Apollonian treatise On Determinate Section dealt with what might be

called an analytic geometry of one dimension. It considered the following

general problem, using the typical Greek algebraic analysis in geometric

form: Given four points A, B, C, D on a straight line, determine a fifth

point P on it such that the rectangle on AP and CP is in a given ratio to

the rectangle on BP and DP. Here, too, the problem reduces easily to the

solution of a quadratic; and, as in other cases, Apollonius treated the

question exhaustively, including the limits of possibility and the number

of solutions.

THE PROBLEM OF APOLLONIUS

The treatise on Tangencies is of a different sort from the three above, for

as Pappus describes it we see the problem familiarly known today as the

"Problem of Apollonius." Given three things, each of which may be a

point, a line, or a circle, draw a circle that is tangent to each of the three

given things (where tangency to a point is to be understood to mean that

the circle passes through the point). This problem involves ten cases, from

the two easiest (in which the three things are three points or three lines)

to the most difficult of all (to draw a circle tangent to three circles). The

two easiest had appeared in Euclid's Elements in connection with inscribed

'See C. B. Boycr, The Rainbow (New York: Yoscloff. 1959). pp. 45-46.



CYCLES AND EPICYCLES 143

and circumscribed circles of a triangle; another six cases were handled in

Book I of Tangencies, and the case covering two lines and a circle, as well

as the case of three circles, occupied all of Book II. We do not have the

solutions of Apollonius, but they can be reconstructed on the basis of

information from Pappus. Nevertheless, scholars of the sixteenth and sev-

enteenth centuries generally were under the impression that Apollonius

had not solved the last case; hence, they regarded this problem as a chal-

lenge to their abilities. Newton was among those who gave a solution, using

straightedge and compasses alone. 2

The trisection of the angle by Archimedes, in which a given length is

inserted between a line and a circle along a straight line that is shifted so

as to pass through a given point (point P in Fig. 8.9), is a typical example

of a solution by means of a neusis (verging or inclination). Apollonius'

treatise on Vergings considered the class of neusis problems that can be

solved by "plane" methods—that is, by the use of compasses and straight-

edge only. (The Archimedean trisection, of course, is not such a problem,

for in modern times it has been proved that the general angle cannot be

trisected by "plane" methods.) According to Pappus, one of the problems

dealt with in Vergings is the insertion within a given circle of a chord of

given length verging to a given point.

There were in antiquity allusions to still other works by Apollonius,

including one on Comparison of the Dodecahedron and the Icosahedron.

In this the author gave a proof of the theorem (known perhaps to Aristaeus)

that the plane pentagonal faces of a dodecahedron are the same distance

from the center of the circumscribing sphere as are the plane triangular

faces of an icosahedron inscribed in the same sphere. The theorem in the

spurious Book XIV of the Elements—that in this case the ratio of the areas

of the icosahedron and the dodecahedron is equal to the ratio of their

volumes—follows immediately from the Apollonian proposition; and it

may be that the author of Elements XIV made use of the treatise of Apol-

lonius.

CYCLES AND EPICYCLES

Apollonius was also a celebrated astronomer; the favorite mathematical

device in antiquity for the representation of the motions of the planets is

apparently due to him. Whereas Eudoxus had used concentric spheres,

Apollonius proposed instead two alternative systems, one made up of

epicyclic motions and the other involving eccentric motions. In the first

scheme a planet P was assumed to move uniformly about a small circle

(epicycle), the center C of which in turn moved uniformly along the cir-

cumference of a larger circle (deferent) with center at the earth E (Fig.

2Arlthmetica universalis, Problem XLVII.
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FIG. 9.1

9.1). In the eccentric scheme the planet P moves uniformly along the

circumference of a large circle, the center C of which in turn moves

uniformly in a small circle with center at E. If PC = C'E, the two geometric

schemes will be equivalent, as Apollonius evidently knew. While the theory

of homocentric spheres had become, through the work of Aristotle, the

favorite astronomical scheme of those satisfied by a gross representation

of the approximate motions, the theory of cycles and epicycles, or of

eccentrics, became, through the work of Ptolemy, the choice of mathe-

matical astronomers who wanted refinement of detail and predictive pre-

cision. For some 1800 years the two schemes—the one of Eudoxus and

the other of Apollonius—were friendly rivals vying for the favor of scholars.

THE CONICS

Despite his scholarly productivity, only two of the many treatises by Apol-

lonius have in large part survived. All Greek versions of the Cutting-off of
a Ratio were lost long ago, but not before an Arabic translation had been

made. In 1706 Halley, Newton's friend, published a Latin translation of

the work, and it has since appeared in vernacular tongues. Apart from this

treatise, only one Apollonian work has substantially survived, which, how-

ever, was by all odds his chef-d'oeuvre—the Conies. Of this famous work

only half—the first four of the original eight books—remains extant in

Greek; fortunately, an Arabic mathematician, Thabit ibn Qurra, had trans-

lated the next three books, and this version has survived. In 1710 Edmund
Halley provided a Latin translation of the seven books, and editions in

many languages have appeared since then.

The conic sections had been known for about a century and a half when
Apollonius composed his celebrated treatise on these curves. At least twice

in the interval general surveys had been written—by Aristaeus and by
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Euclid—but just as Euclid's Elements had displaced earlier elementary

textbooks, so on the more advanced level of the conic sections the Conies

of Apollonius superseded all rivals in its field, including the Conies of

Euclid, and no attempt to improve on it seems to have been made in

antiquity. If survival is a measure of quality, the Elements of Euclid and

the Conies of Apollonius were clearly the best works in their fields.

Book I of the Conies opens with an account of the motivation for writing

the work. While Apollonius was at Alexandria, he was visited by a geo-

meter, named Naucrates, and it was at the lattefs request that Apollonius

wrote out a hasty draft of the Conies in eight books. Later at Pergamum
the author took the time to polish the books one at a time, hence Books

IV through VII open with greetings to Attalus, King of Pergamum. The
first four books the author describes as forming an elementary introduction,

and it has been assumed that much of this material had appeared in earlier

treatises on conies. However, Apollonius expressly says that some of the

theorems in Book III were his own, for Euclid had not completed the loci

there considered. The last four books he describes as extensions of the

subject beyond the essentials, and we shall see that in them the theory is

advanced in more specialized directions. 3

Before the time of Apollonius the ellipse, parabola, and hyperbola were

derived as sections of three distinctly different types of right circular cones,

according as the vertex angle was acute, right, or obtuse. Apollonius,

apparently for the first time, systematically showed that it is not necessary

to take sections perpendicular to an element of the cone and that from a

single cone one can obtain all three varieties of conic section simply by

varying the inclination of the cutting plane. This was an important step in

linking the three types of curve. A second important generalization was

made when Apollonius demonstrated that the cone need not be a right

cone—that is, one whose axis is perpendicular to the circular base—but

can equally well be an oblique or scalene circular cone. If Eutocius, in

commenting on the Conies, was well informed, we can infer that Apollonius

was the first geometer to show that the properties of the curves are not

different according as they are cut from oblique cones or from right cones.

Finally, Apollonius brought the ancient curves closer to the modern point

of view by replacing the single-napped cone (somewhat like a modern ice-

cream cone) by a double-napped cone (resembling two oppositely oriented

indefinitely long ice-cream cones placed so that the vertices coincide and

the axes are in a straight line). Apollonius gave, in fact, the same definition

of a circular cone as that used today:

If a straight line, indefinite in length and passing always through a fixed point

be made to move around the circumference of a circle which is not in the

3SeeT. L. Heath, ed., 1961, pp. xxvi-xxvii. Here, and throughout this chapter, we depend

on Heath's valuable volume, from which passages in translation have been taken.
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same plane with the point so as to pass successively through every point of

that circumference, the moving straight line will trace out the surface of a

double cone.

This change made the hyperbola the double-branched curve familiar to us

today. Geometers often referred to the "two hyperbolas" rather than to

the "two branches" of a single hyperbola, but in either case the duality of

the curve was recognized.

NAMES OF THE CONIC SECTIONS

Concepts are more important in the history of mathematics than is ter-

minology, but there is more than ordinary significance in a change of name
for the conic sections that was due to Apollonius. For about a century and

a half the curves had had no more distinctive appellations than banal

descriptions of the manner in which the curves had been discovered

—

sections of an acute-angled cone (oxytome), sections of a right-angled cone

(orthotome), and sections of an obtuse-angled cone (amblytome). Ar-

chimedes had continued these names (although he is reported to have used

also the word parabola as a synonym for section of a right-angled cone).

It was Apollonius (possibly following up a suggestion of Archimedes) who
introduced the names ellipse and hyperbola in connection with these curves.

The words "ellipse," "parabola," and "hyperbola" were not newly coined

for the occasion; they were adapted from an earlier use, perhaps by the

Pythagoreans, in the solution of quadratic equations through the appli-

cation of areas. Ellipsis (meaning a deficiency) had been used when a

rectangle of a given area was applied to a given line segment and fell short

by a square (or other specified figure), and the word hyperbola (a throwing

beyond) had been adopted when the area exceeded the line segment. The
word parabola (a placing beside, or comparison) had indicated neither

excess nor deficiency. Apollonius now applied these words in a new context

as names for the conic sections. The familiar modern equation of the

parabola with vertex at the origin is y
2 = Ix (where / is the "latus rectum,"

or parameter, now often represented by 2/?, or occasionally by 4/;). That

is, the parabola has the property that no matter what point on the curve

one chooses, the square on the ordinate is precisely equal to the rectangle

on the abscissa x and the parameter /. The equations of the ellipse and hy-

perbola, similarly referred to a vertex as origin, are (x + a)
2
/a

2 ± y
2 /b 2 =

1, or y
2 = Ix + b 2x 2 la 2 (where / again is the latus rectum, or parameter,

2b 2
1 a). That is, for the ellipse y

2 < Ix and for the hyperbola y
: > Ix, and

it is the properties of the curves that are represented by these inequalities

that prompted the names given by Apollonius more than two millennia

ago and still firmly attached to them. The commentator Eutocius was

responsible for an erroneous impression, still fairly wide-spread, that the
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words ellipse, parabola, and hyperbola were adopted by Apollonius to

indicate that the cutting plane fell short of, or ran along with, or ran into

the second nappe of the cone. This is not at all what Apollonius reported

in the Conies.

THE DOUBLE-NAPPED CONE

In deriving all conic sections from a single double-napped oblique circular

cone, and in giving them eminently appropriate names, Apollonius made
an important contribution to geometry; but he failed to go as far in gen-

erality as he might have. He could as well have begun with an elliptic

cone—or with any quadric cone—and still have derived the same curves.

That is, any plane section of Apollonius' "circular" cone could have served

as the generating curve or "base" in his definition, and the designation

"circular cone" is unnecessary. In fact, as Apollonius himself showed (Book

I, Proposition 5), every oblique circular cone has not only an infinite num-

ber of circular sections parallel to the base, but also another infinite set of

circular sections given by what he called subcontrary sections. Let BFC be

the base of the oblique circular cone and let ABC be a triangular section

of the cone (Fig. 9.2). Let P be any point on a circular section DPE parallel

to BFC and let HPK be a section by a plane such that triangles AHK and

ABC are similar but oppositely oriented. Apollonius then called the section

HPK a subcontrary section and showed that it is a circle. The proof is

easily established in terms of the similarity of triangles HMD and EMK,
from which it follows that HM • MK = DM • ME = PM 2

, the characteris-

tic property of a circle. (In the language of analytic geometry, if we let

__F

B C l c

FIG. 9.2
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HM = jc, HK = a, and PM = y, then y
2 = x(a - x) or x 2 + y

2 = ajc,

which is the equation of a circle.)

FUNDAMENTAL PROPERTIES

Greek geometers divided curves into three categories. The first, known as

"plane loci," consisted of all straight lines and circles; the second, known
as "solid loci," was made up of all conic sections; the third category, known
as "linear loci," lumped together all other curves. The name applied to

the second category undoubtedly was suggested by the fact that the conies

were not defined as loci in a plane which satisfy a certain condition, as is

done today; they were described stereometrically as sections of a three-

dimensional figure. Apollonius, like his predecessors, derived his curves

from a cone in three-dimensional space, but he dispensed with the cone

as promptly as possible. From the cone he derived a fundamental plane

property or "symptome" for the section, and thereafter he proceeded with

a purely planimetric study based on this property. This step, which we here

illustrate for the ellipse (Book I, Proposition 13), probably was much the

same as that used by his predecessors, including Menaechmus. Let ABC
be a triangular section of an oblique circular cone (Fig. 9.3) and let P be

any point on a section HPK cutting all elements of the cone. Extend HK
to meet BC in G and through P pass a horizontal plane cutting the cone

in the circle DPE and the plane HPK in the line PM. Draw DME, a

diameter of the circle perpendicular to PM. Then, from the similarity of

triangles HDM and HBG we have DMIHM = BGIHG, and from the

similarity of triangles MEK and KCG we have MEIMK = CGIKG. Now,
from the property of the circle we have PM 2 = DM • ME; hence, PM 2 =

(HM • BGIHG){MK • CG)IKG. If PM = y, HM = x, and HK = 2a,

/i

FIG. 9.3
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the property in the preceding sentence is equivalent to the equation y
2 =

kx(2a - x), which we recognize as the equation of an ellipse with H as

vertex and HK as major axis. In a similar manner Apollonius derived for

the hyperbola the equivalent of the equation y
2 = kx(x + 2a). These forms

are easily reconciled with the "name" forms above by taking k = b2la2

and / = 2b2
la.

CONJUGATE DIAMETERS

After Apollonius had derived from a stereometric consideration of the

cone the basic relationship between what we should now call the plane co-

ordinates of a point on the curve—given by the three equations y
2 = Ix -

b2x 2/a2
, y

2 = Ix, and y
2 = Ix + b2x 2 la2—he derived further properties

from the plane equations without reference to the cone. The author of the

Conies reported that in Book I he had worked out the fundamental prop-

erties of the curves "more fully and generally than in the writings of other

authors." The extent to which this statement holds true is suggested by

the fact that here, in the very first book, the theory of conjugate diameters

of a conic is developed. That is, Apollonius showed that the midpoints of

a set of chords parallel to one diameter of an ellipse or hyperbola will

constitute a second diameter, the two being called "conjugate diameters."

In fact, whereas today we invariably refer a conic to a pair of mutually

perpendicular lines as axes, Apollonius generally used a pair of conjugate

diameters as equivalents of oblique coordinate axes. The system of con-

jugate diameters provided an exceptionally useful frame of reference for

a conic, for Apollonius showed that if a line is drawn through an extremity

of one diameter of an ellipse or hyperbola parallel to the conjugate di-

ameter, the line "will touch the conic, and no other straight line can fall

between it and the conic"—that is, the line will be tangent to the conic.

Here we see clearly the Greek static concept of a tangent to a curve, in

contrast to the Archimedean kinematic view. In fact, often in the Conies

we find a diameter and a tangent at its extremity used as a coordinate

frame of reference.

Among the theorems in Book I are several (Propositions 41 through

49) that are tantamount to a transformation of coordinates from a system

based on the tangent and diameter through a point P on the conic to a

new system determined by a tangent and diameter at a second point Q on

the same curve, together with the demonstration that a conic can be re-

ferred to any such system as axes. In particular, Apollonius was familiar

with the properties of the hyperbola referred to its asymptotes as axes,

given, for the equilateral hyperbola, by the equation xy = c
2

. He had no

way of knowing, of course, that some day this relationship, equivalent to

Boyle's law, would be fundamental in the study of gases or that his study

of the ellipse would be essential to modern astronomy.
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FIG. 9.4

TANGENTS AND HARMONIC DIVISION

Book II continues the study of conjugate diameters and tangents. For

example, if P is any point on any hyperbola, with center C, the tangent at

P will cut the asymptotes in points L and L' (Fig. 9.4) that are equidistant

from P (Propositions 8 and 10). Moreover (Propositions 11 and 16), any

chord QQ' parallel to CP will meet the asymptotes in points K and K'

such that QK = Q'K' and QK • QK' = CP 2
. (These properties were

verified synthetically, but the reader can double-check their validity by use

of modern analytic methods.) Later propositions in Book II show how to

draw tangents to a conic by making use of the theory of harmonic division.

In the case of the ellipse (Proposition 49), for example, if Q is a point on

the curve (Fig. 9.5), Apollonius dropped a perpendicular QN from Q to

the axis AA ' and found the harmonic conjugate T of N with respect to A
and A'. (That is, he found the point T on line AA' extended such that

ATIAT = ANINA'\ in other words, he determined the point T that

divides the segment AA' externally in the same ratio as N divides AA'
internally.) The line through T and Q, then, will be tangent to the ellipse.

The case in which Q does not lie on the curve can be reduced to this

through familiar properties of harmonic division. (It can be proved that

there are no plane curves other than the conic sections such that, given

the curve and a point, a tangent can be drawn, with straightedge and

compasses, from the point to the curve; but this was, of course, unknown
to Apollonius.)

FIG. 9.5
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THE THREE- AND FOUR-LINE LOCUS

Apollonius apparently was especially proud of Book III, for in the General
Preface to the Conies he wrote:

The third book contains many remarkable theorems useful for the synthesis

of solid loci and determinations of limits; the most and prettiest of these

theorems are new and, when I had discovered them, I observed that Euclid

had not worked out the synthesis of the locus with respect to three and four

lines, but only a chance portion of it and that not successfully: for it was not

possible that the synthesis could have been completed without my additional

discoveries.

The three- and four-line locus to which reference is made played an im-

portant role in mathematics from Euclid to Newton. Given three lines (or

four lines) in a plane, find the locus of a point P that moves so that the

square of the distance from P to one of these is proportional to the product

of the distances to the other two (or, in the case of four lines, the product

of the distances to two of them is proportional to the product of the

distances to the other two), the distances being measured at given angles

with respect to the lines. Through modern analytic methods, including the

normal form of the straight line, it is easy to show that the locus is a conic

section—real or imaginary, reducible or irreducible. If, for the three-line

locus, equations of the given lines are A
x
x + B

x y + C, = 0, A 2x +
B2y + C2

= 0, and A 3x + B3y + C3
= 0, and if the angles at which the

distances are to be measured are
X , 2 , and 3 , then the locus of P(x, y)

is given by

(A
x
x + B

x y -f C
x )

2 _ K(A 2x + B2 y + C2) (A 3x + B3y + C3)

04? + #?)sin 2

X \/A\ + B\ sin 2 Va\ B\ sin 3

This equation is, in general, of second degree in x and y; hence, the locus

is a conic section. Our solution does not do justice to the treatment given

by Apollonius in Book III, in which more than fifty carefully worded

propositions, all proved by synthetic methods, lead eventually to the re-

quired locus. Half a millennium later Pappus suggested a generalization

of this theorem for n lines, where n > 4, and it was against this generalized

problem that Descartes in 1637 tested his analytic geometry. Thus few

problems have played as important a role in the history of mathematics as

did the "locus to three and four lines."
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INTERSECTING CONICS

Book IV of the Conies is described by its author as showing "in how many
ways the sections of cones meet one another," and he is especially proud

of theorems, "none of which has been discussed by earlier writers," con-

cerning the number of points in which a section of a cone meets the "op-

posite branches of a hyperbola." The idea of the hyperbola as a double-

branched curve was new with Apollonius, and he thoroughly enjoyed the

discovery and proof of theorems concerning it. For example, he showed
(IV. 42) that if one branch of a hyperbola meets both branches of another

hyperbola, the opposite branch of the first hyperbola will not meet either

branch of the second hyperbola in two points; or again (IV.54), if a hy-

perbola is tangent to one of the branches of a second hyperbola with its

concavity in the opposite direction, the opposite branch of the first will

not meet the opposite branch of the second. It is in connection with the

theorems in this book that Apollonius makes a statement implying that in

his day, as in ours, there were narrow-minded opponents of pure mathe-

matics who pejoratively inquired about the usefulness of such results. The
author proudly asserted: "They are worthy of acceptance for the sake of

the demonstrations themselves, in the same way as we accept many other

things in mathematics for this and for no other reason." (Heath 1961, p.

lxxiv).

MAXIMA AND MINIMA, TANGENTS AND NORMALS

The preface to Book V, relating to maximum and minimum straight lines

drawn to a conic, again argues that "the subject is one of those which seem

worthy of study for their own sake." While one must admire the author

for his lofty intellectual attitude, it may be pertinently pointed out that

what in his day was beautiful theory, with no prospect of applicability to

the science or engineering of his time, has since become fundamental in

such fields as terrestrial dynamics and celestial mechanics. Apollonius'

theorems on maxima and minima are in reality theorems on tangents and

normals to conic sections. Without a knowledge of the properties of tan-

gents to a parabola, an analysis of local trajectories would be impossible;

and a study of the paths of the planets is unthinkable without reference to

the tangents to an ellipse. It is clear, in other words, that it was the pure

mathematics of Apollonius that made possible, some 1800 years later, the

Principia of Newton; the latter, in turn, gave scientists of the 1960s the

hope that some day a round-trip visit to the moon would be possible. Even

in ancient Greece the Apollonian theorem that every oblique cone has two

families of circular sections was applicable to cartography in the stereo-

graphic transformation, used by Ptolemy and possibly by Hipparchus, of

a spherical region into a portion of a plane. It has often been true in the
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development of mathematics that topics that originally could be justified

only as "worthy of study for their own sake" later became of inestimable

value to the "practical man."

Greek mathematicians had no satisfactory definition of tangent to a

curve C at a point P, thinking of it as a line L such that no other line could

be drawn through P between C and L. Perhaps it was dissatisfaction with

this definition that led Apollonius to avoid defining a normal to a curve C
from a point Q as a line through Q which cuts the curve C in a point P
and is perpendicular to the tangent to C at P. Instead he made use of the

fact that the normal from Q to C is a line such that the distance from Q
to C is a relative maximum or minimum. In Conies V.8, for example,

Apollonius proved a theorem concerning the normal to a parabola which

today generally is part of a course in the calculus. In modern terminology

the theorem states that the subnormal of the parabola y
2 = 2px for any

point P on the curve is constant and equal to /?; in the language of Apol-

lonius this property is expressed somewhat as follows:

If A is the vertex of a parabola y
2 = px, and if G is a point on the axis such

that AG > p, and, if N is a point between A and G such that NG = p, and

if NP is drawn perpendicular to the axis meeting the parabola in P [Fig. 9.6],

then PG is the minimum straight line from G to the curve and hence is normal

to the parabola at P.

The proof by Apollonius is of the typical indirect kind—it is shown that if

P' is any other point on the parabola, P'G increases as P' moves further

from P in either direction. A proof of the corresponding, but more in-

volved, theorem concerning the normal to an ellipse or hyperbola from a

point on the axis is then given; and it is shown that if P is a point on a

conic, only one normal can be drawn through P, whether the normal be

regarded as a minimum or a maximum, and this normal is perpendicular

to the tangent at P. Note that the perpendicularity that we take as a

definition is here proved as a theorem, whereas the maximum-minimum

property that we take as a theorem serves, for Apollonius, as a definition.

Later propositions in Book V carry the topic of normals to a conic to such

a point that the author gives criteria enabling one to tell how many normals

FIG. 9.6
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can be drawn from a given point to a conic section. These criteria are

tantamount to what we should describe as the equations of the evolutes

to the conies. For the parabola y
2 = 2px Apollonius showed in essence

that points whose coordinates satisfy the cubic equation 21py
2 = 8(jc -

p)
} are limiting positions of the point of intersection of normals to the

parabola at points P and P' as P' approaches P. That is, points on this

cubic are the centers of curvature for points on the conic (that is, the

centers of osculating circles for the parabola). In the case of the ellipse

and the hyperbola, whose equations are respectively x 2
/a

2 ± y
2/b 2 = 1,

the corresponding equations of the evolute are (axf ± (by) 1 = (a
2 + b2)K

After giving the conditions for the evolute of a conic, Apollonius showed

how to construct a normal to a conic section from a point Q. In the case

of the parabola y
2 = 2/?jc, and for Q outside the parabola and not on the

axis, one drops a perpendicular QM to the axis AK, measures off MH =

p, and erects HR perpendicular to HA (Fig. 9.7). Then, through Q one

draws the rectangular hyperbola with asymptotes HA and HR, intersecting

the parabola in a point P. Line QP is the normal required, as one can

prove by showing that NK = HM = p. If point Q lies inside the parabola,

the construction is similar except that P lies between Q and R. Apollonius

also gave constructions, likewise making use of an auxiliary hyperbola, for

the normal from a point to a given ellipse or hyperbola. It should be noted

that the construction of normals to the ellipse and hyperbola, unlike the

construction of tangents, requires more than straightedge and compasses.

As the ancients described the two problems, the drawing of a tangent to

a conic is a "plane problem," for intersecting circles and straight lines

suffice. By contrast, the drawing of a normal from an arbitrary point in

the plane to a given central conic is a "solid problem," for it cannot be

accomplished by use of lines and circles alone, but can be done through

the use of solid loci (in our case, a hyperbola). Pappus later severely

criticized Apollonius for his construction of a normal to the parabola in

that he treated it as a solid problem rather than a plane problem. That is,

the hyperbola that Apollonius used could have been replaced by a circle.

Perhaps Apollonius felt that the line-and-circle fetish should give way, in

FIG. 9.7
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his construction of normals, to a desire for uniformity of approach with
respect to the three types of conic.

SIMILAR CONICS

When Apollonius sent King Attalus the sixth book of the Conies, he de-

scribed it as embracing propositions about ''segments of conies equal and
unequal, similar and dissimilar, besides some other matters left out by
those who have preceded me. In particular, you will find in this book how,
in a given right cone, a section is to be cut equal to a given section." Two
conies are said to be similar if the ordinates, when drawn to the axis at

proportional distances from the vertex, are respectively proportional to

the corresponding abscissas. Among the easier of the propositions in Book
VI are those demonstrating that all parabolas are similar (VI. 11) and that

a parabola cannot be similar to an ellipse or hyperbola nor an ellipse to a

hyperbola (VI. 14, 15). Other propositions (VI. 26, 27) prove that if any

cone is cut by two parallel planes making hyperbolic or elliptic sections,

the sections will be similar but not equal.

Book VII returns to the subject of conjugate diameters and "many new
propositions concerning diameters of sections and the figures described

upon them." Among these are some that are found in modern textbooks,

such as the proof (VII. 12, 13, 29, 30) that

In every ellipse the sum, and in every hyperbola the difference, of the squares

on any two conjugate diameters is equal to the sum or difference respectively

of the squares on the axes.

There is also the proof of the familiar theorem that if tangents are drawn

at the extremities of a pair of conjugate axes of an ellipse or hyperbola,

the parallelogram formed by these four tangents will be equal to the rec-

tangle on the axes. It has been conjectured that the lost Book VIII of the

Conies continued with similar problems, for in the preface to Book VII

the author wrote that the theorems of Book VII were used in Book VIII

to solve determinate conic problems, so that the last book "is by way of

an appendix."

FOCI OF CONICS

The Conies of Apollonius is a treatise of such extraordinary breadth and

depth that we are startled to note the omission of some of the properties

that to us appear so obviously fundamental. As the curves are now intro-

duced in textbooks, the foci play a prominent role; yet Apollonius had no

name for these points, and he referred to them only indirectly. It is pre-
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sumed that he, and perhaps also Aristaeus and Euclid, was indeed familiar

with the focus-directrix property of the curves, but this is not even men-
tioned in the Conies. There is no numerical concept in the ancient treatment

of conies corresponding to what we call the eccentricity; and although the

focus of the parabola by implication appears in many an Apollonian theo-

rem, it is not clear that the author was aware of the now familiar role of

the directrix. He seems to have known how to determine a conic through

five points, but this topic, which later loomed large in the Principia of

Newton, is omitted in the Conies of Apollonius. It is quite possible, of

course, that some or all of such tantalizing omissions resulted from the fact

they had been treated elsewhere, in works no longer extant, by Apollonius

or other authors. So much of ancient mathematics has been lost that an

argument e silencio is precarious indeed. Moreover, the words of Leibniz

should serve as a warning that one should not underestimate ancient ac-

complishments: "He who understands Archimedes and Apollonius will

admire less the achievements of the foremost men of later times."

USE OF COORDINATES

The methods of Apollonius in the Conies in many respects are so similar

to the modern approach that his work sometimes is judged to be an analytic

geometry anticipating that of Descartes by 1800 years. The application of

reference lines in general, and of a diameter and a tangent at its extremity

in particular, is, of course, not essentially different from the use of a

coordinate frame, whether rectangular or, more generally, oblique. Dis-

tances measured along the diameter from the point of tangency are the

abscissas, and segments parallel to the tangent and intercepted between

the axis and the curve are the ordinates. The Apollonian relationships

between these abscissas and the corresponding ordinates are nothing more

nor less than rhetorical forms of the equations of the curves. However,

Greek geometric algebra did not provide for negative magnitudes; more-

over, the coordinate system was in every case superimposed a posteriori

upon a given curve in order to study its properties. There appear to be no

cases in ancient geometry in which a coordinate frame of reference was

laid down a priori for purposes of graphical representation of an equation

or relationship, whether symbolically or rhetorically expressed. Of Greek

geometry we may say that equations are determined by curves, but not

that curves were defined by equations. Coordinates, variables, and equa-

tions were subsidiary notions derived from a specific geometric situation;

and one gathers that in the Greek view it was not sufficient to define curves

abstractly as loci satisfying given conditions on two coordinates. To guar-

antee that a locus was really a curve, the ancients felt it incumbent upon

them to exhibit it stereometrically as a section of a solid or to describe a

kinematic mode of construction.
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The Greek definition and study of curves compare quite unfavorably

with the flexibility and extent of the modern treatment. Indeed, the ancients

over-looked almost entirely the part that curves of various sorts played in

the world about them. Aesthetically one of the most gifted people of all

times, the only curves that they found in the heavens and on the earth

were combinations of circles and straight lines. They did not even effectively

exploit the two means of definition for curves that they recognized. The
kinematic approach and the use of plane sections of surfaces are capable

of far-reaching generalization, yet scarcely a dozen curves were familiar

to the ancients. Even the cycloid, generated by a point on a circle that

rolls along a straight line, seems to have escaped their notice. That Apol-

lonius, the greatest geometer of antiquity, failed to develop analytic ge-

ometry, was probably the result of a poverty of curves rather than of

thought. General methods are not necessary when problems concern always

one of a limited number of particular cases. Moreover, the early modern

inventors of analytic geometry had all Renaissance algebra at their disposal,

whereas Apollonius necessarily worked with the more rigorous but far

more awkward tool of geometric algebra.



10

Greek Trigonometry

and Mensuration

When I trace at my pleasure the windings to and fro of the heavenly bodies, I no

longer touch the earth with my feet: I stand in the presence of Zeus himself and

take my fill of ambrosia, food of the gods.

Ptolemy

EARLY TRIGONOMETRY

Trigonometry, like other branches of mathematics, was not the work of

any one man, or nation. Theorems on ratios of the sides of similar triangles

had been known to, and used by, the ancient Egyptians and Babylonians.

In view of the pre-Hellenic lack of the concept of angle measure, such a

study might better be called "trilaterometry," or the measure of three-

sided polygons (trilateral), than "trigonometry, " the measure of parts of

a triangle. With the Greeks we first find a systematic study of relationships

between angles (or arcs) in a circle and the lengths of chords subtending

these. Properties of chords, as measures of central and inscribed angles in

circles, were familiar to the Greeks of Hippocrates' day, and it is likely

that Eudoxus had used ratios and angle measures in determining the size

of the earth and the relative distances of the sun and the moon. In the

158
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works of Euclid there is no trigonometry in the strict sense of the word,
but there are theorems equivalent to specific trigonometric laws or for-

mulas. Propositions 11.12 and 13 of the Elements, for example, are the laws

of cosines for obtuse and acute angles respectively, stated in geometric

rather than trigonometric language and proved by a method similar to that

used by Euclid in connection with the Pythagorean theorem. Theorems on
the lengths of chords are essentially applications of the modern law of

sines. We have seen that Archimedes' theorem on the broken chord can

readily be translated into trigonometric language analogous to formulas

for sines of sums and differences of angles. More and more the astronomers

of the Alexandrian Age—notably Eratosthenes of Cyrene (ca. 276-ca. 194

B.C.) and Aristarchus of Samos (ca. 310-ca. 230 B.C.)—handled problems

pointing to a need for more systematic relationships between angles and
chords.

ARISTARCHUS OF SAMOS

Aristarchus, according to Archimedes and Plutarch, proposed a heliocen-

tric system, anticipating Copernicus by more than a millennium and a half;

but whatever he may have written on this scheme has been lost. Instead

we have an Aristarchan treatise, perhaps composed earlier (ca. 260 B.C.),

On the Sizes and Distances of the Sun and Moon, which assumes a geo-

centric universe. In this work Aristarchus made the observation that when
the moon is just half-full, the angle between the lines of sight to the sun

and the moon is less than a right angle by one thirtieth of a quadrant. (The

systematic introduction of the 360° circle came a little later.) In trigono-

metric language of today this would mean that the ratio of the distance of

the moon to that of the sun (the ratio ME to SE in Fig. 10.1) is sin 3°.

Trigonometric tables not having been developed yet, Aristarchus fell back

upon a well-known geometric theorem of the time which now would be

expressed in the inequalities sin a/sin /? < a//? < tan a/tan /?, where 0° <
P < a < 90°. From these he derived the conclusion that 20 < sin 3° < A,
hence he asserted that the sun is more than eighteen, but less than twenty,

times as far from the earth as is the moon. This is far from the modern
value—somewhat less than 400—but it is better than the values nine and

twelve that Archimedes ascribed respectively to Eudoxus and to Phidias

FIG. 10.1
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FIG. 10.2

(Archimedes' father). Moreover, the method used by Aristarchus was un-

impeachable, the result being vitiated only by the error of observation in

measuring the angle MES as 87° (when in actuality it should have been

about 89° 50').

Having determined the relative distances of the sun and moon, Aris-

tarchus knew also that the sizes of the sun and moon were in the same

ratio. This follows from the fact that the sun and moon have very nearly

the same apparent size—that is, they subtend about the same angle at the

eye of an observer on the earth. In the treatise in question, this angle is

given as 2°, but Archimedes attributed to Aristarchus the much better

value of i°. From this ratio Aristarchus was able to find an approximation

for the sizes of the sun and moon as compared with the size of the earth.

From lunar eclipse observations he concluded that the breadth of the shadow

cast by the earth at the distance of the moon was twice the width of the

moon. Then, if Rsy Re , and Rm are the radii of the sun, earth, and moon
respectively and if Ds and Dm are the distances of the sun and moon from

the earth, then, from the similarity of triangles BCD and ABE (Fig. 10.2),

one has the proportion (Re
- 2Rm)/(Rs

- Re )
= DJDS . If in this equation

one replaces Ds and Rs by the approximate values l9Dm and 19/?m , one

obtains the equation (Re
- 2Rm)/(19Rm - Re)

= A or Rm = $Re . Here

the actual computations of Aristarchus have been considerably simplified.

His reasoning was in reality much more carefully carried out and led to

the conclusion that

108 R e 60 19 Rs 43— < —- < — and — < — < —

.

43 Rm 19 3 R e 6

ERATOSTHENES OF CYRENE

All that was needed to arrive at an estimate of the actual sizes of the sun

and moon was a measure of the radius of the earth. Aristotle had mentioned
a figure equivalent to about 40,000 miles for the circumference of the earth

(a figure possibly due to Eudoxus), and Archimedes reported that some
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of his contemporaries estimated the perimeter to be about 30,000 miles.

A much better calculation, and by far the most celebrated, was one due

to Eratosthenes, a younger contemporary of Archimedes and Aristarchus.

Eratosthenes was a native of Cyrene who had spent much of his early life

at Athens. He had achieved prominence in many fields—poetry, astron-

omy, history, mathematics, athletics—when, in middle life, he was called

by Ptolemy III (Philopator) to Alexandria to tutor his son (later Ptolemy

Philadelphus) and to serve as librarian of the university there. It was to

Eratosthenes at Alexandria that Archimedes had sent the treatise on Method.

Today Eratosthenes is best remembered for his measurement of the earth

—

not the first or last such estimate made in antiquity, but by all odds the

most successful. Eratosthenes observed that at noon on the day of the

summer solstice the sun shone directly down a deep well at Syene. At the

same time at Alexandria, taken to be on the same meridian and 5000 stades

north of Syene, the sun was found to cast a shadow indicating that the

sun's angular distance from the zenith was one fiftieth of a circle. From
the equality of the corresponding angles S'AZ and S"OZ in Fig. 10.3 it is

clear that the circumference of the earth must be fifty times the distance

between Syene and Alexandria. This results in a perimeter of 250,000

stades, or, since a stade was about a tenth of a mile, of 25,000 miles. (Later

accounts placed the figure at 252,000 stades, possibly in order to lead to

the round figure of 700 stades per degree.)

A contributor to many fields of learning, Eratosthenes is well known in

mathematics for the "sieve of Eratosthenes," a systematic procedure for

isolating the prime numbers. With all the natural numbers arranged in

order, one simply strikes out every second number following the number

two, every third number (in the original sequence) following the number

three, every fifth number following the number five, and continues in this

manner to strike out every nth number following the number n. The re-

maining numbers, from two on, will, of course, be primes. Eratosthenes

wrote also works on means and on loci, but these have been lost. Even

his treatise On the Measurement of the Earth is no longer extant, although

some details from it have been preserved by others, including Heron and

Ptolemy of Alexandria.

FIG. 10.3
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HIPPARCHUS OF NICAEA

For some two and a half centuries, from Hippocrates to Eratosthenes,

Greek mathematicians had studied relationships between lines and circles

and had applied these in a variety of astronomical problems, but no sys-

tematic trigonometry had resulted. Then, presumably during the second

half of the second century B.C., the first trigonometric table apparently

was compiled by the astronomer Hipparchus of Nicaea (ca. 180-ca. 125

B.C.), who thus earned the right to be known as "the father of trigo-

nometry." Aristarchus had known that in a given circle the ratio of arc to

chord decreased as the angle decreases from 180° to 0°, tending toward a

limit of 1. However, it appears that not until Hipparchus undertook the

task had anyone tabulated corresponding values of arc and chord for a

whole series of angles. It has, however, been suggested that Apollonius

may have anticipated Hipparchus in this respect, and that the contribution

of the latter to trigonometry was simply the calculation of a better set of

chords than had been drawn up by his predecessors. Hipparchus evidently

drew up his tables for use in his astronomy, about the origin of which little

is known. Hipparchus was a transitional figure between Babylonian as-

tronomy and the work of Ptolemy. Astronomy was flourishing in Meso-

potamia when in about 270 B.C. Berossos, about the only Babylonian

astronomer known by name, moved to the island of Cos, and it is not

unlikely that the foundations of Near Eastern theory were transmitted to

Greece by that time. The chief contributions attributed to Hipparchus in

astronomy were his organization of the empirical data derived from the

Babylonians, the drawing up of a star catalogue, improvement in important

astronomical constants (such as the length of the month and year, the size

of the moon, and the angle of obliquity of the ecliptic), and, finally, the

discovery of the precession of the equinoxes. It generally has been assumed

that he was largely responsible for the building of geometric planetary

systems, but this is uncertain because it is not clear to what extent Apol-

lonius may have applied trigonometric methods to astronomy somewhat

earlier.

It is not known just when the systematic use of the 360° circle came into

mathematics, but it seems to be due largely to Hipparchus in connection

with his table of chords. It is possible that he took over from Hypsicles,

who earlier had divided the day into 360 parts, a subdivision that may have

been suggested by Babylonian astronomy. Just how Hipparchus made up

his table is not known, for his works are not extant (except for a com-

mentary on a popular astronomical poem by Aratus). It is likely that his

methods were similar to those of Ptolemy, to be described below, forTheon

of Alexandria, commenting on Ptolemy's table of chords, reported that

Hipparchus earlier had written a treatise in twelve books on chords in a

circle.
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MENELAUS OF ALEXANDRIA

Theon mentions also another treatise, in six books, by Menelaus of Al-

exandria (ca. a.d. 100) dealing with Chords in a Circle. Other mathematical

and astronomical works by Menelaus are mentioned by later Greek and

Arabic commentators, including an Elements of Geometry, but the only

one that has survived—and only through the Arabic—is his Sphaerica. In

Book I of this treatise Menelaus established a basis for spherical triangles

analogous to that of Euclid I for plane triangles. Included is a theorem

without Euclidean analogue—that two spherical triangles are congruent if

corresponding angles are equal (Menelaus did not distinguish between

congruent and symmetric spherical triangles); and the theorem A + B +
C > 180° is established. The second book of the Sphaerica describes the

application of spherical geometry to astronomical phenomena and is of

little mathematical interest. Book III, the last, contains the well-known

"theorem of Menelaus" as part of what is essentially spherical trigonometry

in the typical Greek form—a geometry or trigonometry of chords in a

circle. In the circle in Fig. 10.4 we should write that chord AB is twice the

FIG. 10.4

sine of half the central angle AOB (multiplied by the radius of the circle).

Menelaus and his Greek successors instead referred to AB simply as the

chord corresponding to the arc AB. If BOB' is a diameter of the circle,

then chord AB' is twice the cosine of half the angle AOB (multiplied by

the radius of the circle). Hence the theorems of Thales and Pythagoras,

which lead to the equation AB 2 + AB' 2 = 4r 2
, are equivalent to the

modern trigonometric identity sin
2 + cos2 0=1. Menelaus, as also

probably Hipparchus before him, was familiar with other identities, two

FIG. 10.5
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FIG. 10.6

of which he used as lemmas in proving his theorem on transversals. The
first of these lemmas may be stated in modern terminology as follows. If

a chord AB in a circle with center O (Fig. 10.5) is cut in point C by a

radius OD, then ACICB = sin /ID/sin DB. The second lemma is similar:

If the chord AB extended is cut in point C" by a radius OD' extended,

then ACIBC = sin y4D7sin BD' . These lemmas were assumed by Me-
nelaus without proof, presumably because they could be found in earlier

works, possibly in Hipparchus' twelve books on chords. (The reader can

prove the lemmas easily by drawing AO and BO, dropping perpendiculars

from A and B to OD, and using similar triangles.)

It is probable that the ''theorem of Menelaus" for the case of plane

triangles had been known to Euclid, perhaps having appeared in the lost

Porisms. The theorem in the plane states that if the sides AB, BC, CA of

a triangle are cut by a transversal in points D, £, F respectively (Fig. 10.6),

then AD • BE • CF = BD • CE • AF. In other words, any line cuts the

sides of a triangle so that the product of three nonadjacent segments equals

the product of the other three, as can readily be proved by elementary

geometry or through the application of simple trigonometric relationships.

The theorem was assumed by Menelaus to be well known to his contem-

poraries, but he went on to extend it to spherical triangles in a form

equivalent to sin AD sin BE sin CF = sin BD sin CE sin AF. If sensed

segments are used rather than absolute magnitudes, the two products are

equal in magnitude but differ in sign.

PTOLEMY'S ALMAGEST

The theorem of Menelaus played a fundamental role in spherical trigo-

nometry and astronomy, but by far the most influential and significant

trigonometric work of all antiquity was the Mathematical Syntaxis, a work

in thirteen books composed by Ptolemy of Alexandria about half a century

after Menelaus. This celebrated Mathematical Synthesis was distinguished

from another group of astronomical treatises by other authors (including

Aristarchus) by referring to that of Ptolemy as the "greater" collection

and to that of Aristarchus et al. as the "lesser" collection. From the fre-
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quent reference to the former as megiste, there arose later in Arabia the

custom of calling Ptolemy's book Almagest ("the greatest"), and it is by

this name that the work has since been known.

Of the life of its author we are as little informed as we are of that of

the author of the Elements. We do not know when or where Euclid and

Ptolemy were born. We know that Ptolemy made observations at Alex-

andria from a.d. 127 to 151 and, therefore, assume that he was born at

the end of the first century. Suidas, a writer who lived in the tenth century,

reported that Ptolemy was still alive under Marcus Aurelius (emperor from

a.d. 161 to 180).

Ptolemy's Almagest is presumed to be heavily indebted for its methods

to the Chords in a Circle of Hipparchus, but the extent of the indebtedness

cannot be reliably assessed. It is clear that in astronomy Ptolemy made
use of the catalogue of star positions bequeathed by Hipparchus, but whether

or not Ptolemy's trigonometric tables were derived in large part from his

distinguished predecessor cannot be determined. Fortunately, Ptolemy's

Almagest has survived the ravages of time; hence, we have not only his

trigonometric tables but also an account of the methods used in their

construction. Central to the calculation of Ptolemy's chords was a geo-

metric proposition still known as "Ptolemy's theorem": If ABCD is a

(convex) quadrilateral inscribed in a circle (Fig. 10.7), then AB • CD +
EC - DA = AC - BD; that is, the sum of the products of the opposite

sides of a cyclic quadrilateral is equal to the product of the diagonals. The
proof of this is easily carried through by drawing BE so that angle ABE
is equal to angle DBC and noting the similarity of the triangles ABE and

BCD. A special case of Ptolemy's theorem had appeared in Euclid's Data

(Proposition 93): If ABC is a triangle inscribed in a circle, and if BD is a

chord bisecting angle ABC, then {AB + BQIBD = AC/AD.
Another, and more useful, special case of the general theorem of Pto-

lemy is that in which one side, say AD, is a diameter of the circle (Fig.

10.8). Then, if AD = 2r, we have 2r • BC + AB • CD = AC • BD. If

we let arc BD = 2a and arc CD = 2/?, then BC = 2r sin(a - 0), AB =

2r sin(90° - a), BD = 2r sin a, CD = 2r sin p, and AC = 2r sin(90° -

/?). Ptolemy's theorem, therefore, leads to the result sin(a - /?)
=

sin a cos /? - cos a sin /?. Similar reasoning leads to the formula

FIG. 10.7 FIG. 10.8



166 GREEK TRIGONOMETRY AND MENSURATION

FIG. 10.9

sin(a + P) = sin a cos P + cos a sin /?, and to the analogous pair

cos(a ± P) = cos a cos p + sin a sin /?. These four sum-and-difference

formulas consequently are often known today as Ptolemy's formulas.

It was the formula for sine of the difference—or, more accurately, chord

of the difference—that Ptolemy found especially useful in building up his

tables. Another formula that served him effectively was the equivalent of

our half-angle formula. Given the chord of an arc in a circle, Ptolemy

found the chord of half the arc as follows. Let D be the midpoint of arc

BC in a circle with diameter AC = 2r (Fig. 10.9), let AB = AE, and

let DF bisect EC (perpendicularly). Then, it is not difficult to show that

FC = |(2r - AB). But from elementary geometry it is known that

DC2 = AC • FC, from which it follows that DC2 = r(2r - AB). If we
let arc BC = 2a, then DC = 2r sin a/2 and A B = 2r cos a; hence, we
have the familiar modern formula sin a/2 = V(l - cos a)/2. In other

words, if the chord of any arc is known, the chord of half the arc is also

known. Now Ptolemy was equipped to build up a table of chords as accurate

as might be desired, for he had the equivalent of our fundamental formulas.

THE 360-DEGREE CIRCLE

It should be recalled that from the days of Hipparchus until modern times

there were no such things as trigonometric ratios. The Greeks, and after

them the Hindus and the Arabs, used trigonometric lines. These at first

took the form, as we have seen, of chords in a circle, and it became

incumbent upon Ptolemy to associate numerical values (or approximations)

with the chords. To do this, two conventions were needed: (1) some scheme

for subdividing the circumference of a circle and (2) some rule for subdi-

viding the diameter. The division of a circumference into 360 degrees seems

to have been in use in Greece since the days of Hipparchus, although it is

not known just how the convention arose. It is not unlikely that the 360-

degree measure was carried over from astronomy, where the zodiac had

been divided into twelve "signs" or 36 "decans." A cycle of the seasons

of roughly 360 days could readily be made to correspond to the system of
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zodiacal signs and decans by subdividing each sign into thirty parts and

each decan into ten parts. Our common system of angle measure may stem

from this correspondence. Moreover, since the Babylonian positional sys-

tem for fractions was so obviously superior to the Egyptian unit fractions

and the Greek common fractions, it was natural for Ptolemy to subdivide

his degrees into sixty partes minutae primae, each of these latter into sixty

partes minutae secundae, and so on. It is from the Latin phrases that

translators used in this connection that our words "minute" and "second"

have been derived. It undoubtedly was the sexagesimal system that led

Ptolemy to subdivide the diameter of his trigonometric circle into 120 parts;

each of these he further subdivided into sixty minutes and each minute of

length into sixty seconds.

Our trigonometric identities are easily converted into the language of

Ptolemaic chords through the simple relationships

chord 2x chord(180° - 2x)
Sm X = -120

- and C°S X =
120

*

The formulas cos(jc ± y) = cos x cos y + sin x sin y become (chord is

abbreviated to cd)

cd 2x cd 2y + cd 2x cd 2y

120
'cd 2x ± 2y =

where a line over an arc (angle) indicates the supplementary arc. Note

that not only angles and arcs but also their chords were expressed sexa-

gesimally. In fact, whenever scholars in antiquity wished an accurate system

of approximation, they turned to the sixty-scale for the fractional portion;

this led to the phrases "astronomers' fractions" and "physicists' fractions"

to distinguish sexagesimal from .common fractions.

CONSTRUCTION OF TABLES

Having decided upon his system of measurement, Ptolemy was ready to

compute the chords of angles within the system. For example, since the

radius of the circle of reference contained sixty parts, the chord of an arc

of sixty degrees also contained sixty linear parts. The chord of 120° will

be 60\/3 or approximately 103 parts and 55 minutes and 33 seconds, or,

in Ptolemy's Ionic or alphabetic notation, py
p ve' ky". Ptolemy could now

have used his half-angle formula to find the chord of 30°, then the chord

of 15°, and so on for still smaller angles. However, he preferred to delay

the application of this formula and computed instead the chords of 36° and

of 72°. He used a theorem from Elements XIII. 9 which shows that a side

of a regular pentagon, a side of a regular hexagon, and a side of a regular

decagon, all being inscribed within the same circle, constitute the sides of

a right triangle. Incidentally, this theorem from Euclid provides the jus-

tification for Ptolemy's elegant construction of a regular pentagon inscribed
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FIG. 10.10

in a circle. Let O be the center of a circle and AB a diameter (Fig. 10. 10).

Then, if C is the midpoint of OB and OD is perpendicular to AB, and if

CE is taken equal to CD, the sides of the right triangle EDO are the sides

of the regular inscribed pentagon, hexagon, and decagon. Then, if the

radius OB contains 60 parts, from the properties of the pentagon and the

golden section it follows that OE, the chord of 36°, is 30(V5 - 1) or about

37.083 or 37" 4' 5" or )£p 6 ' ve". By the Pythagorean theorem the chord

of 72° is 30Vl0 - 2V5, or approximately 70.536 or 70'' 32' 3" or

op W ;".

Knowing the chord of an arc of s degrees in a circle, one can easily find

the chord of the arc 180° - s from the theorems of Thales and Pythagoras,

for cd 2
5 + cd 2

s = 120 2
. Hence, Ptolemy knew the chords of the supple-

ments of 36° and 72°. Moreover, from the chords of 72° and 60° he found

chord 12° by means of his formula for the chord of the difference of two

arcs. Then, by successive applications of his half-angle formula he derived

the chords of arcs of 6°, 3°, l£°, and f, the last two being V 34' 15" and

0" 47' 8" respectively. Through a linear interpolation between these values

Ptolemy arrived at 1" 2 50" as the chord of 1°. By using the half-angle

formula— or, since the angle is very small, simply dividing by two—he

found the value of 0'' 31' 25" for the chord of 30'. This is equivalent to

saying that sin 15' is 0.00873, which is correct to almost half a dozen decimal

places.

Ptolemy's value of the chord of |° is, of course, the length of a side of

a polygon of 720 sides inscribed in a circle of radius 60 units. Whereas

Archimedes' polygon of 96 sides had led to ^ as an approximation to the

value of 7r, Ptolemy's is equivalent to 6(0'' 31' 25") or 3;8,30. This ap-

proximation to n, used by Ptolemy in the Almagest, is the same as iU,

which leads to a decimal equivalent of about 3. 1416, a value that may have

been given earlier by Apollonius.

PTOLEMAIC ASTRONOMY

Armed with formulas for the chords of sums and differences and chords

of half an arc, and having a good value of chord J°, Ptolemy went on to

build up his table, correct to the nearest second, of chords of arcs from J°
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to 180° for every i°. This is virtually the same as a table of sines from k°

to 90°, proceeding by steps of |°. The table formed an integral part of Book
I of the Almagest and remained an indispensable tool of astronomers for

more than a thousand years. The remaining twelve books of this celebrated

treatise contain, among other things, the beautifully developed theory of

cycles and epicycles for the planets known as the Ptolemaic system. Like

Archimedes, Hipparchus, and most other great thinkers of antiquity, Pto-

lemy postulated an essentially geocentric universe, for a moving earth

appeared to be faced with difficulties—such as lack of apparent stellar

parallax and seeming inconsistency with the phenomena of terrestrial dy-

namics. In comparison with these problems, the implausibility of an im-

mense speed required for the daily rotation of the sphere of the "fixed"

stars seemed to shrink into insignificance. Besides appealing to common
sense, the Ptolemaic system had the advantage of easy representation.

Planetaria generally are constructed as though the universe were geocen-

tric, for in this way the apparent motions are most easily reproduced.

Plato had set for Eudoxus the astronomical problems of "saving the

phenomena"—that is, producing a mathematical device, such as a com-

bination of uniform circular motions, which should serve as a model for

the apparent motions of the planets. The Eudoxian system of homocentric

spheres had been largely abandoned by mathematicians in favor of the

system of cycles and epicycles of Apollonius and Hipparchus. Ptolemy in

turn made an essential modification in the latter scheme. In the first place,

he displaced the earth somewhat from the center of the deferent circle, so

that he had eccentric orbits. Such changes had been made before him, but

Ptolemy introduced a novelty so drastic in scientific implication that Co-

pernicus later could not accept it, effective though the device, known as the

equant, was in reproducing the planetary motions. Try as he would, Pto-

lemy had not been able to arrange a system of cycles, epicycles, and ec-

centrics in close agreement with the observed motions of the planets. His

solution was to abandon the Greek insistence on uniformity of circular

motions and to introduce instead a geometric point, the equant E collinear

with the earth G and the center C of the deferent circle, such that the

apparent angular motion of the center Q of the epicycle in which a planet

P revolves is uniform as seen from E (Fig. 10.11). In this way Ptolemy

FIG. 10.11
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achieved accurate representations of planetary motions, but, of course, the

device was kinematic only and made no effort to answer the questions in

dynamics raised by nonuniform circular movements.

OTHER WORKS BY PTOLEMY

Ptolemy's fame today is associated largely with a single book, the Almagest,

but there are other Ptolemaic works as well. Among the more important

was a Geography, in eight books, which was as much a bible to geographers

of his day as the Almagest was to astronomers. The Geography of Ptolemy

introduced the system of latitudes and longitudes as used today, described

methods of cartographic projection, and catalogued some 8000 cities, riv-

ers, and other important features of the earth. Unfortunately, there was

at the time no satisfactory means of determining longitudes, hence sub-

stantial errors were inevitable. Even more significant was the fact that

Ptolemy seems to have made a poor choice when it came to estimating the

size of the earth. Instead of accepting the figure 252,000 stadia, given by

Eratosthenes, he preferred the value 180,000 stadia proposed by Posidon-

ius, a Stoic teacher of Pompey and Cicero. Hence, Ptolemy thought that

the known Eurasian world was a larger fraction of the circumference than

it really is—more than 180° in longitude, instead of an actual figure of

about 130°. This large error suggested to later navigators, including Co-

lumbus, that a voyage westward from Europe to India would not be nearly

so far as it turned out to be. Had Columbus known how badly Ptolemy

had underestimated the size of the earth, he might never have set sail.

Ptolemy's geographical methods were better in theory than in practice,

for in separate monographs, which have survived only through Latin trans-

lations from the Arabic, Ptolemy described two types of map projection.

Orthographic projection is explained in the Analemma, the earliest account

we have of this method, although it may have been used by Hipparchus.

In this transformation from a sphere to a plane, points on the spherical

surface are projected orthogonally upon three mutually perpendicular

planes. In the Planisphaerium Ptolemy described the stereographic pro-

jection in which points on the sphere are projected by lines from a pole

onto a plane— in Ptolemy's case from the south pole to the plane of the

equator. He knew that under such a transformation a circle not through

the pole of projection went into a circle in the plane, and that a circle

through the pole was projected into a straight line. Ptolemy was aware

also of the important fact that such a transformation is conformal, that is,

angles are preserved. The importance of Ptolemy for geography can be

gauged from the fact that the earliest maps in the Middle Ages that have

come down to us in manuscripts, none before the thirteenth century, had

as prototypes the maps made by Ptolemy more than a thousand years

before.
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OPTICS AND ASTROLOGY

Ptolemy wrote also an Optics which has survived, imperfectly, through a

Latin version of an Arabic translation. This deals with the physics and

psychology of vision, with the geometry of mirrors, and with an early at-

tempt at a law of refraction. From Ptolemy's table of angles of refraction

from air to water (and also from air to glass and from water to glass) for

angles of incidence from 10° to 80° at intervals of 10° we see that he assumed

a law of the form r = ai + fr/
2

, for the second differences in his values of

r are constant. For angles of incidence of 10° and 80° he assumed angles

of refraction of 8° and 50° respectively, and the second differences are all

equal to |°. The second differences in the old Pythagorean formulas for

polygonal numbers also were constant, and perhaps Ptolemy was influenced

by these to seek a quadratic rather than a trigonometric law for refraction.

Trigonometry for the first millennium and a half of its existence was almost

exclusively an adjunct of astronomy and geography, and only in the sev-

enteenth century were trigonometric applications in refraction and other

parts of physics discovered.

No account of Ptolemy's work would be complete without mention of

his Tetrabiblos (or Quadripartitum) , for it shows us a side of ancient schol-

arship that we are prone to overlook. Greek authors were not always the

rational and clear-thinking men they are presumed to have been. The
Almagest is indeed a model of good mathematics and accurate observa-

tional data put to work in building a sober scientific astronomy; but the

Tetrabiblos (or work in four books) represents a kind of sidereal religion

to which much of the ancient world had succumbed. With the end of the

Golden Age, Greek mathematics and philosophy became allies of Chaldean

arithmetic and astrology, and the resulting pseudoreligion filled the gap

left by repudiation of the old mythology. Ptolemy seems to have shared

the prejudices of his time; in the Tetrabiblos he argued that one should

not, because of the possibility of error, discourage the astrologer any more

than the physician. The further one reads in the work, the more dismayed

one becomes, for the author showed no hesitation in accepting the super-

stitions of his day.

The Tetrabiblos differs from the Almagest not only as astrology differs

from astronomy; the two works also make use of different types of math-

ematics. The latter is a sound and sophisticated work that makes good use

of synthetic Greek geometry; the former is typical of the pseudoscience of

the day in the adoption of primitive Babylonian arithmetic devices. From

the classical works of Euclid, Archimedes, and Apollonius one might obtain

the impression that Greek mathematics was exclusively occupied with the

highest levels of logical geometric reasoning; but Ptolemy's Tetrabiblos

suggests that the populace in general were more concerned with arith-

metical computation than with rational thought. At least from the days of

Alexander the Great to the close of the classical world, there undoubtedly

was much intercommunication between Greece and Mesopotamia, and it
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seems to be clear that the Babylonian arithmetic and algebraic geometry
continued to exert considerable influence in the Hellenistic world. This

aspect of mathematics, for example, appears so strongly in Heron of Al-

exandria (fl. ca. a.d. 100) that Heron once was thought to be Egyptian or

Phoenician rather than Greek. Now it is thought that Heron portrays a

type of mathematics that had long been present in Greece but does not

find a representative among the greatest figures—except perhaps as be-

trayed by Ptolemy in the Tetrabiblos. Greek deductive geometry, on the

other hand, seems not to have been welcomed in Mesopotamia until after

the Arabic conquest.

HERON OF ALEXANDRIA

Heron of Alexandria is best known in the history of mathematics for the

formula, bearing his name, for the area of a triangle:

K = Vs(s - a)(s - b)(s - c),

where a, b, and c are the sides and s is half the sum of these sides, that

is. the semiperimeter. The Arabs tell us that "Heron's formula" was known
earlier to Archimedes, who undoubtedly had a proof of it, but the dem-

onstration of it in Heron's Metrica is the earliest that we have. Although

now the formula usually is derived trigonometrically, Heron's proof is

conventionally geometric. The Metrica, like the Method of Archimedes,

was long lost, until rediscovered at Constantinople in 1896 in a manuscript

dating from about 1100. The word "geometry" originally meant "earth

measure," but classical geometry, such as that found in Euclid's Elements

and Apollonius' Conies, was far removed from mundane surveying. Her-

on's work, on the other hand, shows us that not all mathematics in Greece

was of the "classical" type. There evidently were two levels in the study

of configurations—comparable to the distinction made in numerical con-

text between arithmetic (or theory of numbers) and logistic (or techniques

of computation)—one of which, eminently rational, might be known as

geometry and the other, crassly practical, might better be described as

geodesy. The Babylonians lacked the former but were strong in the latter,

and it was essentially the Babylonian type of mathematics that is found in

Heron. It is true that in the Metrica an occasional demonstration is included,

but the body of the work is concerned with numerical examples in men-

suration of lengths, areas, and volumes. There are strong resemblances

between his results and those found in ancient Mesopotamia!! problem

texts. For example. Heron gave a tabulation of the areas A„ of regular

polygons of n sides in terms of the square of one side s„, beginning with

A }
= Ks3

2 and continuing to A
, :
= ¥ ^i:

2
- As was the case in pre-Hellenic

mathematics. Heron also made no distinction between results that are exact

and those that are only approximations. For As, for example, Heron gave
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two formulas—|s5
2 and ^ s5

2—the first of which agrees with a value found
in a Babylonian table, but neither of which is precisely correct. For the

hexagon Heron's ratio ofA 6 to s6
2
is -^ , the Babylonian is 2;37,30, whereas

the true value lies between these and is, of course, irrational. In such

calculations we should have expected Heron to use trigonometric tables

such as Hipparchus had drawn up a couple of hundred years before, but

apparently trigonometry was at the time largely the handmaid of the as-

tronomer rather than of the practical man.

The gap that separated classical geometry from Heronian mensuration

is clearly illustrated by certain of the problems set and solved by Heron
in another of his works, the Geometrica. One problem calls for the di-

ameter, perimeter, and area of a circle, given the sum of these three

magnitudes. The axiom of Eudoxus would rule out such a problem from

theoretical consideration, for the three magnitudes are of unlike dimen-

sions, but from an uncritical numerical point of view the problem makes
sense. Moreover, Heron did not solve the problem in general terms but,

taking a cue again from pre-Hellenic methods, chose the specific case in

which the sum is 212; his solution is like the ancient recipes in which steps

only, without reasons, are given. The diameter 14 is easily found by taking

the Archimedean value for n and using the Babylonian method of com-

pleting the square to solve a quadratic equation. Heron simply gives the

laconic instructions, "Multiply 212 by 154, add 841, take the square root

and subtract 29, and divide by 11." This is scarcely the way to teach

mathematics, but Heron's books were intended as manuals for the prac-

titioner.

Heron paid as little attention to the uniqueness of his answer as he did

to the dimensionality of his magnitudes. In one problem he called for the

sides of a right triangle if the sum of the area and perimeter is 280. This

is, of course, an indeterminate problem, but Heron gave only one solution,

making use of the Archimedean formula for the area of a triangle. In modern

notation, if s is the semiperimeter of the triangle and r the radius of the

inscribed circle, then rs + 2s = s(r + 2) = 280. Following his own
cookbook rule, "Always look for the factors," he chose r + 2 = 8 and

s = 35. Then, the area rs is 210. But the triangle is a right triangle, hence

the hypotenuse c is equal to s - r or 35 - 6, or 29; the sum of the two

sides a and b is equal to s + r, or 41. The values of a and b are then easily

found to be 20 and 21. Heron says nothing about other factorizations of

280, which, of course, would lead to other answers.

PRINCIPLE OF LEAST DISTANCE

Heron was interested in mensuration in all its forms—in optics and me-

chanics, as well as in geodesy. The law of reflection for light had been

known to Euclid and Aristotle (probably also to Plato); but it was Heron
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who showed by a simple geometric argument, in a work on Catoptrics

(or reflection), that the equality of the angles of incidence and reflection

is a consequence of the Aristotelian principle that nature does nothing the

hard way. That is, if light is to travel from a source S to a mirror MM'
and then to the eye E of an observer (Fig. 10.12), the shortest possible

path SPE is that in which the angles SPM and EPM' are equal. That no

other path SP'E can be as short as SPE is apparent on drawing SQS'
perpendicular to MM\ with SQ = QS' and comparing the path SPE with

the path SPE. Since paths SPE and SP'E are equal in length to paths

SPE and S'P'E respectively, and inasmuch^ as S'PE is a straight line

(because angle M'PE is equal to angle MPS), it follows that S'PE is the

shortest path.

Heron is remembered in the history of science as the inventor of a

primitive type of steam engine, described in his Pneumatics, of a forerunner

of the thermometer, and of various toys and mechanical contrivances based

on the properties of fluids and on the laws of the simple machines. He
suggested in the Mechanics a law (clever but incorrect) of the simple ma-

chine whose principle had eluded even Archimedes—the inclined plane.

His name is attached also to "Heron's algorithm" for rinding square roots,

but this method of iteration was in reality due to the Babylonians of 2000

years before his day. Although Heron evidently learned much of Meso-

potamian mathematics, he seems not to have appreciated the importance

of the positional principle for fractions. Sexagesimal fractions had become
the standard tool of scholars in astronomy and physics, but it is likely that

they remained unfamiliar to the common man. Common fractions were

used to some extent by the Greeks, at first with numerator placed below

the denominator, later with the positions reversed (and without the bar

separating the two), but Heron, writing for the practical man, seems to

have preferred unit fractions. In dividing 25 by 13 he wrote the answer

as 1 + J + J + tm + A. The old Egyptian addiction to unit fractions

continued in Europe for at least a thousand years after the time of

Heron.
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DECLINE OF GREEK MATHEMATICS

The period from Hipparchus to Ptolemy, covering three centuries, was

one in which applied mathematics was in the ascendant, and Heron's books

resemble notes taken by a student at the equivalent of an institute of

technology at Alexandria. It sometimes is held that mathematics develops

most effectively when in close touch with the world's work; but the period

we have been considering would argue for the opposite thesis. The loss of

nerve in religion and philosophy, which led the Greeks to pursue cults and

mysticism, was paralleled in mathematics by a movement toward appli-

cations which persisted for more than three centuries. From Hipparchus

to Ptolemy there were advances in astronomy and geography, optics and

mechanics, but no significant developments in mathematics. It is true that

these centuries saw the development of trigonometry, but this subject, now
an integral part of pure mathematics, was then at best a mensurational

application of elementary geometry which met the needs of astronomy.

Moreover, it is not even clear whether or not there was any significant

advance in the trigonometry of Ptolemy in a.d. 150 over that of Hippar-

chus, in 150 B.C.—or even, perhaps, over that of Apollonius and Ar-

chimedes a century earlier still. It is evident that the rapid growth of

mathematics from Eudoxus to Apollonius, when theoretical considerations

were in the forefront, had come to an end. Perhaps the trend toward

applications was the result of the decline rather than its cause, but in any

case the two were concomitant. Some attribute the decline to the inade-

quacies and difficulties in Greek geometric algebra, others to the cold

breath of Rome. In any case the period during which trigonometry and

mensuration came to the fore was characterized by lack of progress, if not

actual decline; yet it was precisely these aspects of Greek mathematics that

most attracted the Hindu and Arabic scholars who served as a bridge to

the modern world. Before we turn to these peoples, however, we must

look at the Indian summer of Greek mathematics, sometimes known as

the "Silver Age."
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Revival and Decline of

Greek Mathematics

Bees . . . by virtue of a certain geometrical forethought . . . know that the

hexagon is greater than the square and the triangle and will hold more honey for

the same expenditure of material.

Pappus of Alexandria

APPLIED MATHEMATICS

Today we use the conventional phrase "Greek mathematics" as though it

indicated a homogeneous and well-defined body of doctrine. Such a view

can be very misleading, however, for it implies that the sophisticated ge-

ometry of the Archimedean-Apollonian type was the only sort that the

Hellenes knew. We must remember that mathematics in the Greek world

spanned a time interval from at least 600 B.C. to at least a.d. 600 and that

it traveled from Ionia to the toe of Italy, to Athens, to Alexandria, and

to other parts of the civilized world. The intervals in time and space alone

produced changes in the depth and extent of mathematical activity, for

Greek science did not have the sameness, century after century, that is

found in pre-Hellenic thought. Moreover, even at any given time and place

in the Greek world (as in our civilization today) there were sharp differences

in the level of mathematical interest and accomplishment. We have seen

176
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how even in the work of a single individual, such as Ptolemy, there can
be two types of scholarship—the Almagest for the "tough-minded" ra-

tionalists and the Tetrabiblos for the "tender-minded" mystics. It is prob-

able that there always were at least two levels of mathematical un-

derstanding, but that the paucity of surviving works, especially on the lower
level, tends to obscure this fact. The phrase used as the title for this chapter

must itself be accepted with some hesitation, for although it is justified in

the light of what we know about the Greek world, our knowledge is far

from complete. The period that we consider in this chapter, from Ptolemy
to Proclus, covers almost four centuries (from the second to the sixth), but

our account is based in large part on only two chief treatises, only portions

of which are now extant, as well as on a number of works of lesser sig-

nificance.

Heron and Ptolemy were Greek scholars, but they lived in a world

dominated politically by Rome. The death of Archimedes by the hand of

a Roman soldier may have been inadvertent, but it was truly portentous.

Throughout its long history, ancient Rome contributed little to science or

philosophy and less to mathematics. Whether during the Republic or in

the days of the Empire, Romans were little attracted to speculative or

logical investigation. The practical arts of medicine and agriculture were

cultivated with some eagerness, and descriptive geography met with favor.

Impressive engineering projects and architectural monuments were related

to the simpler aspects of science, but Roman builders were satisfied with

elementary rule-of-thumb procedures that called for little in the way of

understanding of the great corpus of Greek thought. The extent of Roman
acquaintance with science may be judged from the De architectura of Vi-

truvius, written during the middle part of the Augustine Age and dedicated

to the emperor. At one point the author describes what to him appeared

to be the three greatest mathematical discoveries: the incommensurability

of the side and diagonal of a cube; the right triangle with sides 3, 4, and

5; and Archimedes' calculation on the composition of the king's crown.

Marcus Vitruvius Pollio, the author, was especially interested in surveying

instruments and in problems involving approximate mensurations. The
perimeter of a wheel of diameter 4 feet is given by Vitruvius as 12i feet,

implying a value of 3| for n. This is not so good an approximation as that

of Archimedes, with whose works Vitruvius was probably only slightly

acquainted, but it is of a respectable degree of accuracy for Roman pur-

poses. It is sometimes claimed that impressive works of engineering, such

as the Egyptian pyramids and the Roman aqueducts, imply a high level of

mathematical achievement, but historical evidence does not bear this out.

Just as earlier Egyptian mathematics had been on a lower plane than that

in Babylon of the same period, so Roman mathematics was on a much
lower level than that in Greece during the same years. The Romans were

almost completely lacking in mathematical drive, so that their best efforts,

such as those of Vitruvius, were not comparable to the poorer results in

Greece, as exemplified by the work of Heron.
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DIOPHANTUS OF ALEXANDRIA

We have seen that Greek mathematics was not uniformly on a high level,

for the glorious period of the third century B.C. had been followed by a

decline, perhaps to some extent arrested in the days of Ptolemy, but not

effectively reversed until the century of the "Silver Age," about a.d. 250

to 350. At the beginning of this period, also known as the Later Alexandrian

Age, we find the leading Greek algebraist, Diophantus of Alexandria, and

toward its close there appeared the last significant Greek geometer, Pappus

of Alexandria. No other city has been the center of mathematical activity

for so long a period as was Alexandria from the days of Euclid (ca. 300

B.C.) to the time of Hypatia (tA.D. 415). It was a very cosmopolitan center,

and the mathematics that resulted from Alexandrian scholarship was not

all of the same type. The results of Heron were markedly different from

those of Euclid or Apollonius or Archimedes, and again there is an abrupt

departure from the classical Greek tradition in the extant work of Dio-

phantus. Uncertainty about the life of Diophantus is so great that we do

not know definitely in which century he lived. Generally he is assumed to

have flourished about a.d. 250, but dates a century or more earlier or later

are sometimes suggested. According to a tradition that is reported in a

collection of problems dating from the fifth or sixth century, known as the

"Greek Anthology" (described below):

God granted him to be a boy for the sixth part of his life, and adding a

twelfth part to this, He clothed his cheeks with down; He lit him the light

of wedlock after a seventh part, and five years after his marriage He granted

him a son. Alas! late-born wretched child; after attaining the measure of half

his father's life, chill Fate took him. After consoling his grief by this science

of numbers for four years he ended his life [Cohen and Drabkin, 1958; p. 27].

If this conundrum is historically accurate, Diophantus lived to be eighty-

four-years old. It should definitely not be taken as typical of the problems

that interested Diophantus, for he paid little attention to equations of first

degree.

NICOMACHUS OF GERASA

Diophantus is often called the father of algebra, but we shall see that such

a designation is not to be taken literally. His work is not at all the type of

material forming the basis of modern elementary algebra; nor is it yet

similar to the geometric algebra found in Euclid. The chief Diophantine

work known to us is the Arithmetica, a treatise originally in thirteen books,

only the first six of which have survived. It should be recalled that in ancient

Greece the word arithmetic meant theory of numbers rather than com-

putation. Often Greek arithmetic had more in common with philosophy
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than with what we think of as mathematics; hence, the subject had played

a large role in Neoplatonism during the Later Alexandrian Age. This had

been particularly true of the Introductio arithmeticae of Nicomachus of

Gerasa, a Neo-Pythagorean who lived not far from Jerusalem about the

year 100. The author sometimes is held to be of Syrian background, but

Greek philosophical tendencies certainly predominate in his work. The
Introductio of Nicomachus, as we have it, contains only two books, and it

is possible that this is only an abridged version of what originally was a

more extensive treatise. At all events, the possible loss in this case is far

less to be regretted than the loss of seven books of the Arithmetica of

Diophantus, for there is a world of difference between the two authors.

Nicomachus had, so far as we can see, little mathematical competence and

was concerned only with the most elementary properties of numbers. The
level of the work may be judged from the fact that the author found it

expedient to include a multiplication table up to i times / (that is, 10 times

10). If this is genuine and not just a later interpolation, it is the oldest

surviving Greek instance of such a table, although many older Babylonian

multiplication tables are extant.

The Introductio of Nicomachus opens with the anticipated Pythagorean

classification of numbers into even and odd, then into evenly even (powers

of two) and evenly odd (2" • p, where p is odd and p > 1 and n > 1) and

oddly even (2 • p, where p is odd and p > 1). Prime, composite, and per-

fect numbers are defined, including a description of the sieve of Eratos-

thenes and a list of the first four perfect numbers (6 and 28 and 496 and

8128). The work includes also a classification of ratios and combinations

of ratios (for ratios of integers are essential in the Pythagorean theory of

musical intervals), an extensive treatment of figurate numbers (which had

loomed so large in Pythagorean arithmetic) in both two and three dimen-

sions, and a comprehensive account of the various means (again a favorite

topic in Pythagorean philosophy). As some other writers, Nicomachus

regarded the number three as the first number in the strict sense of the

word, for one and two were really only the generators of the number

system. For Nicomachus, numbers were endowed with such qualities as

better or worse, younger or older; and they could transmit characters, as

parents to their progeny. Despite such arithmetical anthropomorphism as

a background, the Introductio contains a moderately sophisticated theo-

rem. Nicomachus noticed that if the odd integers are grouped in the pattern

1; 3 + 5; 7+ 9 + 11; 13 + 15 + 17 + 19; . . . , the successive sums are

the cubes of the integers. This observation, coupled with the early Pytha-

gorean recognition that the sum of the first n odd numbers is n 2
, leads to

the conclusion that the sum of the first n perfect cubes is equal to the

square of the sum of the first n integers.

The Introductio of Nicomachus was neither a treatise on calculation nor

one on algebra, but a handbook on those elements of mathematics that

were essential to an understanding of Pythagorean and Platonic philosophy;

as such it served as a model for later imitators and commentators. Among
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these the best known were Theon of Smyrna (fl. ca. a.d. 125), who wrote

his Expositio in Greek, and Boethius (Ia.d. 524), who wrote his Arith-

metica, long afterward, in Latin. These men, like Nicomachus, were far

more concerned about the application of arithmetic to music and Platonic

philosophy than in advancing the subject itself. The full title of the Expositio

indicates, in fact, that it is an exposition of mathematical matters useful

to an understanding of Plato. It explains, for example, that the tetractys

consisting of the numbers 1,2,3, and 4 contains all the musical consonances

inasmuch as it makes up the ratios 4:3, 3:2, 2:1, 3:1, and 4:1. The Ar-

ithmetica of Boethius is quite unoriginal, being almost a translation of the

earlier work by Nicomachus.

THE ARITHMETICA OF DIOPHANTUS

Quite different from the works of Nicomachus, Theon, and Boethius was

the Arithmetica of Diophantus, a treatise characterized by a high degree

of mathematical skill and ingenuity. In this respect the book can be com-
pared with the great classics of the earlier Alexandrian Age; yet it has

practically nothing in common with these or, in fact, with any traditional

Greek mathematics. It represents essentially a new branch and makes use

of a different approach. Being divorced from geometric methods, it re-

sembles Babylonian algebra to a large extent. But whereas Babylonian

mathematicians had been concerned primarily with the approximate so-

lution of determinate equations as far as the third degree, the Arithmetica

of Diophantus (such as we have it) is almost entirely devoted to the exact

solution of equations, both determinate and indeterminate. Because of the

emphasis given in the Arithmetica to the solution of indeterminate prob-

lems, the subject dealing with this topic, sometimes known as indeterminate

analysis, has since become known as Diophantine analysis. Since this type

of work today is generally a part of courses in theory of numbers, rather

than elementary algebra, it is not an appropriate basis for regarding Dio-

phantus as the father of algebra. There is another respect, however, in

which such a paternity is justified. Algebra now is based almost exclusively

on symbolic forms of statement, rather than on the customary written

language of ordinary communication in which earlier Greek mathematics,

as well as Greek literature, had been expressed. It has been said that three

stages in the historical development of algebra can be recognized: (1) the

rhetorical or early stage, in which everything is written out fully in words;

(2) a syncopated or intermediate stage, in which some abbreviations are

adopted; and (3) a symbolic or final stage. Such an arbitrary division of

the development of algebra into three stages is, of course, a facile over-

simplification; but it can serve effectively as a first approximation to what

has happened, and within such a framework the Arithmetica of Diophantus

is to be placed in the second category.
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Throughout the six surviving books of the Arithmetica there is a sys-

tematic use of abbreviations for powers of numbers and for relationships

and operations. An unknown number is represented by a symbol resem-

bling the Greek letter ^ (perhaps for the last letter of arithmos); the

square of this appears as A y
, the cube as K y

, the fourth power, called

square-square, as A yA, the fifth power or square-cube as AK y
, and the sixth

power or cube-cube as K yK. Diophantus was, of course, familiar with the

rules of combination equivalent to our laws of exponents, and he had special

names for the reciprocals of the first six powers of the unknowns, quantities

equivalent to our negative powers. Numerical coefficients were written after

the symbols for the powers with which they were associated; addition of

terms was understood in the appropriate juxtaposition of the symbols for

the terms, and subtraction was represented by a single letter abbreviation

placed before the terms to be subtracted. With such a notation Diophantus

was in a position to write polynomials in a single unknown almost as

concisely as we do today. The expression 2jc
4 + 3x 3 - 4x2 + 5x - 6, for

example, might appear in a form equivalent to SS2 C3 x5 M 54 w6, where

the English letters 5, C, jc, M, and u have been used for "square," "cube,"

the "unknown," "minus," and "unit," and with our present numerals in

place of the Greek alphabetic notation that was used in the days of Dio-

phantus. Greek algebra now no longer was restricted to the first three

powers or dimensions, and the identities (a 2 + b 2
)(c

2 + d 2
) = {ac +

bd)2 + {ad - be)2 = {ac - bd)2 + {ad + be)2
, which played important

roles in medieval algebra and modern trigonometry, appear in the work

of Diophantus. The chief difference between the Diophantine syncopation

and the modern algebraic notation is in the lack of special symbols for

operations and relations, as well as of the exponential notation. These

missing elements of notation were largely contributions of the period from

the late fifteenth to the early seventeenth centuries in Europe.

DIOPHANTINE PROBLEMS

If we think primarily of matters of notation, Diophantus has a good claim

to be known as the father of algebra, but in terms of motivation and

concepts the claim is less appropriate. The Arithmetica is not a systematic

exposition of the algebraic operations or of algebraic functions or of the

solution of algebraic equations. It is instead a collection of some 150 prob-

lems, all worked out in terms of specific numerical examples, although

perhaps generality of method was intended. There is no postulational de-

velopment, nor is an effort made to find all possible solutions. In the case

of quadratic equations with two positive roots, only the larger is given,

and negative roots are not recognized. No clear-cut distinction is made

between determinate and indeterminate problems, and even for the latter,

for which the number of solutions generally is unlimited, only a single
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answer is given. Diophantus solved problems involving several unknown
numbers by skillfully expressing all unknown quantities, where possible,

in terms of only one of them. Two problems from the Arithmetica will

serve to illustrate the Diophantine approach. In finding two numbers such

that their sum is 20 and the sum of their squares is 208, the numbers are

not designated as x and _y, but as 10 + x and 10 - x (in terms of our

modern notation). Then, (10 + x) 2 + (10 - x) 2 = 208, hence x = 2; so

the numbers sought are 8 and 12. Diophantus handled also the analogous

problem in which the sum of the two numbers and the sum of the cubes

of the numbers are given as 10 and 370 respectively.

In these problems Diophantus is dealing with a determinate equation,

but he used much the same approach in indeterminate analysis. In one

problem it is required to find two numbers such that either when added

to the square of the other will yield a perfect square. This is a typical

instance of Diophantine analysis in which only rational numbers are ac-

ceptable as answers. In solving the problem Diophantus did not call the

numbers x and y, but rather x and 2* + 1. Here the second, when added

to the square of the first, will yield a perfect square no matter what value

one chooses for x. Now, it is required also that (2x + l)
2 + x must be a

perfect square. Here Diophantus does not point out the infinity of possible

answers. He is satisfied to choose a particular case of a perfect square, in

this instance the number (2x - 2)
2

, such that when equated to (2x +
l)

2
-l- x an equation that is linear in x results. Here the result is x = f\,

so that the other number, 2x + 1, is If. One could, of course, have used

(2x - 3)
2 or (2jc - 4)

2
, or expressions of similar form, instead of (2x -

2)
2

, to arrive at other pairs of numbers having the desired property. Here

we see an approach that comes close to a "method" in Diophantus' work:

When two conditions are to be satisfied by two numbers, the two numbers

are so chosen that one of the two conditions is satisfied; and then one turns

to the problem of satisfying the second condition. That is, instead of han-

dling simultaneous equations on two unknowns, Diophantus operates with

successive conditions so that only a single unknown number appears in the

work.

THE PLACE OF DIOPHANTUS IN ALGEBRA

Among the indeterminate problems in the Arithmetica are some involving

equations such as x 2 = 1 + 30y
2 and x 2 = 1 + 26y

2
, which are instances

of the so-called "Pell equation" x 2 = 1 + py
2

\ again a single answer is

thought to suffice. In a sense it is not fair to criticize Diophantus for being

satisfied with a single answer, for he was solving problems, not equations.

In a sense the Arithmetica is not an algebra textbook, but a problem

collection in the application of algebra. In this respect Diophantus is like
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the Babylonian algebraists; and his work sometimes is regarded as "the

finest flowering of Babylonian algebra." (Swift 1956). To some extent such

a characterization is unfair to Diophantus, for his numbers are entirely

abstract and do not refer to measures of grain or dimensions of fields or

monetary units, as was the case in Egyptian and Mesopotamian algebra.

Moreover, he is interested only in exact rational solutions, whereas the

Babylonians were computationally inclined and were willing to accept ap-

proximations to irrational solutions of equations. Hence, cubic equations

seldom enter in the work of Diophantus, whereas among the Babylonians

attention had been given to the reduction of cubics to the standard form

n 3 + n 2 = a in order to solve approximately through interpolation in a

table of values of n 3 + n 2
.

We do not know how many of the problems in the Arithmetica were

original or whether Diophantus had borrowed from other similar collec-

tions. Possibly some of the problems or methods are traceable back to

Babylonian sources, for puzzles and exercises have a way of reappearing

generation after generation. To us today the Arithmetica of Diophantus

looks strikingly original, but possibly this impression results from the loss

of rival problem collections. Our view of Greek mathematics is derived

from a relatively small number of surviving works, and conclusions derived

from these necessarily are precarious. Indications that Diophantus may
have been less isolated a figure than has been supposed are found in a

collection of problems from about the early second century of our era

(hence presumably antedating the Arithmetica) in which some Diophantine

symbols appear. Nevertheless, Diophantus has had a greater influence on

modern number theory than any other nongeometric Greek algebraist. In

particular, Fermat was led to his celebrated "great" or "last" theorem (see

below) when he sought to generalize a problem that he had read in the

Arithmetica of Diophantus (II. 8): to divide a given square into two squares.

PAPPUS OF ALEXANDRIA

The Arithmetica of Diophantus is a brilliant work worthy of the period of

revival in which it was written, but it is, in motivation and content, far

removed from the beautifully logical treatises of the great geometric

triumvirate of the earlier Alexandrian Age. Algebra seemed to be more

appropriate for problem-solving than for deductive exposition, and the

great work of Diophantus remained outside the mainstream of Greek math-

ematics. A minor work on polygonal numbers by Diophantus comes closer

to the earlier Greek interests, but even this cannot be regarded as ap-

proaching the Greek logical ideal. Classical geometry had found no ardent

supporter, with the possible exception of Menelaus, since the death of

Apollonius some four hundred and more years before. But during the reign
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of Diocletian (284-305) there lived again at Alexandria a scholar who was

moved by the spirit that had possessed Euclid, Archimedes, and Apollon-

ius. Pappus of Alexandria in about a.d. 320 composed a work with the

title Collection (Synagoge) which is important for several reasons. In the

first place it provides a most valuable historical record of parts of Greek
mathematics that otherwise would be unknown to us. For instance, it is in

Book V of the Collection that we learn of Archimedes' discovery of the

thirteen semiregular polyhedra or "Archimedian solids." Then, too, the

Collection includes alternative proofs and supplementary lemmas for prop-

ositions in Euclid, Archimedes, Apollonius, and Ptolemy. Finally, the trea-

tise includes new discoveries and generalizations not found in any earlier

work. The Collection, Pappus' most important treatise, contained eight

books, but the first book and the first part of the second book are now
lost. In this case the loss is less to be regretted than is that of the last books

of Diophantus' Arithmetica, for it appears that the first two books of the

Collection were chiefly concerned with the principles of Apollonius' system

of tetrads in Greek numeration. Since we have, in the Sand-Reckoner, the

corresponding system of octads from Archimedes, we can judge quite well

what material has been lost from the exposition of Pappus.

THE COLLECTION

Book III of the Collection shows that Pappus shared thoroughly the classical

Greek appreciation of the niceties of logical precision in geometry. Here

he distinguishes sharply between "plane," "solid," and "linear" prob-

lems—the first being constructible with circles and straight lines only, the

second being solvable through the use of conic sections, and the last re-

quiring curves other than lines, circles, and conies. Then, Pappus describes

some solutions of the three famous problems of antiquity, the duplication

and trisection being problems in the second or solid category and the

squaring of the circle being a linear problem. Pappus virtually here asserts

the fact that the classical problems are impossible of solution under the

Platonic conditions, for they do not belong among the plane problems; but

rigorous proofs were not given until the nineteenth century.

In Book IV Pappus again is insistent that one should give for a problem

a construction appropriate to it. That is, one should not use linear loci in

the solution of a solid problem, nor solid or linear loci in the solution of

a plane problem. Asserting that the trisection of an angle is a solid problem,

he therefore suggests methods that make use of conic sections, whereas

Archimedes in one case had used a neusis, or sliding-ruler type of con-

struction, and in another the spiral, which is a linear locus. One of the

Pappus trisections is as follows. Let the given angle AOB be placed in a

circle with center O (Fig. 11.1) and let OC be the angle bisector. Draw
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FIG. 11.1

the hyperbola having A as one focus, OC as the corresponding directrix,

and with an eccentricity equal to 2. Then, one branch of this hyperbola

will cut the circumference of the circle in a point T such that LAOT is

one-third LAOS.
A second trisection construction proposed by Pappus makes use of an

equilateral hyperbola as follows. Let the side OB of the given angle AOB
be a diagonal of a rectangle ABCO and through A draw the equilateral

hyperbola having BC and OC (extended) as asymptotes (Fig. 11.2). With

A as center and with radius twice OB draw a circle intersecting the hy-

perbola in P and from P drop the perpendicular PT to the line CB extended.

Then, it is readily proved, from the properties of the hyperbola, that the

straight line through O and T is parallel to AP and that LAOT is one-

third LAOB. Pappus gives no source for his trisections, and we cannot

help but wonder if this trisection was known to Archimedes. If we draw

the semicircle passing through B, having QT as diameter and M as cen-

ter, we have essentially the Archimedean neusis construction, for OB =

QM = MT = MB.
In Book III Pappus describes also the theory of means and gives an

/A

FIG. 11.2
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attractive construction that includes the arithmetic, the geometric, and the

harmonic means within a single semicircle. Pappus shows that if in the

semicircle ADC with center O (Fig. 11.3) one has DB 1 AC and BF 1
OD, then DO is the arithmetic mean, DB the geometric mean, and DF
the harmonic mean of the magnitudes AB and BC. Here Pappus claims

for himself only the proof, attributing the diagram to an unnamed geo-

meter. Even when Pappus names his source, it sometimes is not otherwise

known to us, indicating how inadequate is our information on mathema-

ticians of his day.

THEOREMS OF PAPPUS

The Collection of Pappus is replete with bits of interesting information and

significant new results. In many cases the novelties take the form of gen-

eralizations of earlier theorems, and a couple of these instances appear in

Book IV. Here we find an elementary generalization of the Pythagorean

theorem. If ABC is any triangle (Fig. 11.4) and if ABDE and CBGF are

any parallelograms constructed on two of the sides, then Pappus constructs

on side AC a third parallelogram ACKL equal to the sum of the other

two. This is easily accomplished by extending sides FG and ED to meet

in //, then drawing HB and extending it to meet side AC in /, and finally

drawing AL and CK parallel to HBJ. It is not known whether or not this
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generalization, usually bearing the name of Pappus, was original with Pap-

pus, and it has been suggested that possibly it was known earlier to Heron.

Another instance of generalization in Book IV, also bearing Pappus'

name, extends theorems of Archimedes on the shoemaker's knife. It asserts

that if circles C,, C2 , C3 , C4 C„, . . . are inscribed successively as in

Fig. 11.5, all being tangent to the semicircles on AB and on AC, and

successively to each other, the perpendicular distance from the center of

the /7th circle to the base line ABC is n times the diameter of the wth circle.

THE PAPPUS PROBLEM

Book V of the Collection was a favorite with later commentators, for it

raised the question of the sagacity of bees. Inasmuch as Pappus showed

that of two regular polygons having equal perimeters the one with the

greater number of sides has the greater area, he concluded that bees dem-

onstrated some degree of mathematical understanding in constructing their

cells as hexagonal, rather than square or triangular, prisms. The book goes

into other problems of isoperimetry, including a demonstration that the

circle has a greater area, for a given perimeter, than does any regular

polygon. Here Pappus seems to have been following closely a work On
Isometric Figures written almost half a millennium earlier by Zenodorus

(ca. 180 B.C.), some fragments of which were preserved by later commen-
tators. Among the propositions in Zenodorus' treatise was one asserting

that of all solid figures the surfaces of which are equal, the sphere has the

greatest volume, but only an incomplete justification was given.

Books VI and VIII of the Collection are chiefly on applications of math-

ematics to astronomy, optics, and mechanics (including an unsuccessful

attempt at finding the law of the inclined plane). Of far more significance

in the history of mathematics is Book VII, in which, through his penchant

for generalization, Pappus came close to the fundamental principle of an-

alytic geometry. The only means recognized by the ancients for defining

plane curves were (1) kinematic definitions in which a point moves subject

to two superimposed motions and (2) the section by a plane of a geometric

surface, such as a cone or sphere or cylinder. Among the latter curves were
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certain quartics known as spiric sections, described by Perseus (ca. 150

B.C.), obtained by cutting the anchor ring or torus by a plane. Occasionally

a twisted curve caught the attention of the Greeks, including the cylindrical

helix and an analogue of the Archimedean spiral described on a spherical

surface, both of which were known to Pappus; but Greek geometry was

primarily restricted to the study of plane curves, in fact, to a very limited

number of plane curves. It is significant to note, therefore, that in Book
VII of the Collection Pappus proposed a generalized problem that implied

infinitely many new types of curves. This problem, even in its simplest

form, usually is known as the "Pappus problem," but the original state-

ment, involving three or four lines, seems to go back to the days of Euclid.

As first considered, the problem is referred to as "the locus to three or

four lines," described above in connection with the work of Apollonius.

Euclid evidently had identified the locus for certain special cases only, but

it appears that Apollonius, in a work now lost, had given a complete

solution. Pappus nevertheless gave the impression that geometers had

failed in attempts at a general solution and implied that it was he who had

first shown the locus in all cases to be a conic section.

More importantly, Pappus then went on to consider the analogous prob-

lem for more than four lines. For six lines in a plane he recognized that a

curve is determined by the condition that the product of the distances from

three of the lines shall be in a fixed ratio to the product of the distances

to the other three lines. In this case a curve is defined by the fact that a

solid is in a fixed ratio to another solid. Pappus hesitated to go on to cases

involving more than six lines inasmuch as "there is not anything contained

by more than three dimensions." But, he continued, "men a little before

our time have allowed themselves to interpret such things, signifying noth-

ing at all comprehensible, speaking of the product of the content of such

and such lines by the square of this or the content of those. These things

might however be stated and shown generally by means of compounded

proportions." The unnamed predecessors evidently were prepared to take

a highly important step in the direction of an analytic geometry that should

include curves of degree higher than three, just as Diophantus had used

the expressions square-square and cube-cube for higher powers of numbers.

Had Pappus pursued the suggestion further, he might have anticipated

Descartes in a general classification and theory of curves far beyond the

classical distinction between plane, solid, and linear loci. His recognition

that, no matter what the number of lines in the Pappus problem, a specific

curve is determined is the most general observation on loci in all of ancient

geometry, and the algebraic syncopations that Diophantus had developed

would have been adequate to have disclosed some of the properties of the

curves. But Pappus was at heart a geometer only, as Diophantus had been

an algebraist only; hence, Pappus merely remarked with surprise that no

one had made a synthesis of this problem for any case beyond that of four

lines. Pappus himself made no deeper study of these loci, "of which one
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has no further knowledge and which are simply called curves." What was

needed for the next step in this connection was the appearance of a math-

ematician equally concerned for algebra and geometry; it is significant to

note that when such a figure appeared in the person of Descartes, it was

this very problem of Pappus that served as the point of departure in the

invention of analytic geometry.

THE TREASURY OF ANALYSIS

There are other important topics in Book VII of the Collection, apart from

the Pappus problem. For one thing, there is a full description of what was

called the method of analysis and of a collection of works known as the

Treasury of Analysis. Pappus describes analysis as "a method of taking

that which is sought as though it were admitted and passing from it through

its consequences in order to something which is admitted as a result of

synthesis." That is, he recognized analysis as a "reverse solution," the

steps of which must be retraced in opposite order to constitute a valid

demonstration. If analysis leads to something admitted to be impossible,

the problem also will be impossible, for a false conclusion implies a false

premise. Pappus explains that the method of analysis and synthesis is used

by the authors whose works constitute the Treasury of Analysis: "This is

a body of doctrine furnished for the use of those who, after going through

the usual elements, wish to obtain power to solve problems set to them

involving curves"; and Pappus lists among the works in the Treasury of

Analysis the treatises on conies by Aristaeus, Euclid, and Apollonius. It

is from Pappus' description that we learn that Apollonius' Conies contained

487 theorems. Since the seven books now extant comprise 382 propositions,

we can conclude that the lost eighth book had 105 propositions. About

half of the works listed by Pappus in the Treasury ofAnalysis are now lost,

including Apollonius' Cutting-off of a Ratio, Eratosthenes' On Means, and

Euclid's Porisms. It has been suggested that a porism was an antique

equivalent of our equation of a curve or locus, indicating that Euclid and

Pappus may not have been as far removed from what we call "analytic

geometry" as generally is supposed.

THE PAPPUS-GULDIN THEOREMS

Book VII of the Collection contains the first statement on record of the

focus-directrix property of the three conic sections. It appears that Apol-

lonius knew of the focal properties for central conies, but it is possible that

the focus-directrix property for the parabola was not known before Pappus.

Another theorem in Book VII that appears for the first time is one usually

named for Paul Guldin, a seventeenth-century mathematician: If a closed
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plane curve is revolved about a line not passing through the curve, the

volume of the solid generated is found by taking the product of the area

bounded by the curve and the distance traversed during the revolution by

the center of gravity of the area. Pappus was rightfully proud of this very

general theorem, for it included
kk
a large number of theorems of all sorts

about curves, surfaces and solids, all of which are proved simultaneously

by one demonstration. " There is a possibility that the "Guldin theorem"

represents an interpolation in the manuscript of the Collection. In any case,

the theorem represents a striking advance by someone during or following

the long period of decline. Pappus gave also the analogous theorem that

the surface area generated by the revolution of a curve about a line not

cutting the curve is equal to the product of the length of the curve and the

distance traversed by the centroid of the curve during the revolution.

The Collection of Pappus is the last truly significant ancient mathematical

treatise, for the attempt of the author to revive geometry was not successful.

Mathematical works continued to be written in Greek for about another

thousand years, continuing an influence that had begun almost a millen-

nium before, but authors following Pappus never again rose to his level.

Their works are almost exclusively in the form of commentary on earlier

treatises. Pappus himself is in part responsible for the ubiquitous com-

mentaries that ensued, for he had composed commentaries on the Elements

of Euclid and on the Almagest of Ptolemy, among others, only fragments

of which survive. Later commentaries, such as those of Theon of Alex-

andria (fl. 365), are more useful for historical information than for math-

ematical results. Theon was responsible also for an important edition of

the Elements that has survived; he is remembered also as the father of

Hypatia, a learned young lady who wrote commentaries on Diophantus,

Ptolemy, and Apollonius. An ardent devotee of pagan learning, Hypatia

incurred the enmity of a fanatical Christian mob at whose hands she suffered

a cruel death in 415. The dramatic impact of her death in Alexandria has

caused that year to be taken by some to mark the end of ancient mathe-

matics, but a more appropriate close is found a century later.

PROCLUS OF ALEXANDRIA

Alexandria produced in Proclus (410-485) a young mathematical scholar

who went to Athens, where he became the head of the Neoplatonic school.

Proclus was more the philosopher than the mathematician, but his remarks

are often critical for the history of early Greek geometry. Of great signif-

icance is his Commentary on Book I of the Elements of Euclid, for, while

writing this, Proclus undoubtedly had at hand a copy of the History of

Geometry by Eudemus, now lost, as well as Pappus' Commentary on the

Elements, largely lost. For our information on the history of geometry

before Euclid we are heavily indebted to Proclus, who included in his



BOETHIUS 191

Commentary a summary or substantial extract from Eudemus' History.

This passage, which has come to be known as the Eudemian Summary,
may be taken as Proems' chief contribution to mathematics, although to

him is ascribed the theorem that if a line segment of fixed length moves
with its end points on two intersecting lines, a point on the segment will

describe a portion of an ellipse.

BOETHIUS

During the years when Proclus was writing in Athens, the Roman Empire
in the West was gradually collapsing. The end of the empire usually is

placed at 476, for in this year the incumbent Roman emperor was displaced

by Odoacer, a Goth. Some of the old Roman senatorial pride remained,

but the senatorial party had lost political control. In this situation Boethius

(ca. 480-524) found his position difficult, for he came of an old distin-

guished patrician family. He was not only a philosopher and mathematician

but also a statesman, and he probably viewed with distaste the rising Os-

trogothic power. Although Boethius may have been the foremost mathe-

matician produced by ancient Rome, the level of his work is a far cry from

that characteristic of Greek writers. He was the author of textbooks for

each of the four mathematical branches in the liberal arts, but these were

jejune and exceedingly elementary abbreviations of earlier classics—an

Arithmetic that was only an abridgement of the Introductio of Nicomachus;

a Geometry based on Euclid and including statements only, without proof,

of some of the simpler portions of the first four books of the Elements; an

Astronomy derived from Ptolemy's Almagest; and a Music that is indebted

to the earlier works of Euclid, Nicomachus, and Ptolemy. In some cases

these primers, used extensively in medieval monastic schools, may have

suffered later interpolations, hence it is difficult to determine precisely what

is genuinely due to Boethius himself. It is nevertheless clear that the author

was concerned primarily with two aspects of mathematics: its relationship

to philosophy and its applicability to simple problems of mensuration. Of
mathematics as a logical structure there is little trace.

Boethius seems to have been a statesman of high purpose and unques-

tioned integrity. He and his sons in turn served as consuls, and Boethius

was among the chief advisers of Theodoric; but for some reason, whether

political or religious, the philosopher incurred the displeasure of the em-

peror. It has been suggested that Boethius was a Christian (as perhaps

Pappus was also) and that he espoused Trinitarian views that alienated the

Arian emperor. It is possible also that Boethius was too closely associated

with political elements that looked to the Eastern Empire for help in

restoring the old Roman order in the West. In any case, Boethius was

executed in 524 or 525, following a long imprisonment. (Theodoric, inci-
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dentally, died only about a year later, in 526.) It was while in prison that

he wrote his most celebrated work, De consolatione philosophiae . This

essay, written in prose and verse while he faced death, discusses moral

responsibility in the light of Aristotelian and Platonic philosophy.

END OF THE ALEXANDRIAN PERIOD

The death of Boethius may be taken to mark the end of ancient mathe-

matics in the Western Roman Empire, as the death of Hypatia had marked
the close of Alexandria as a mathematical center; but work continued for

a few years longer at Athens. There one found no great original mathe-

matician, but the Peripatetic commentator Simplicius (fl. 520) was suffi-

ciently concerned about Greek geometry to have preserved for us what

may be the oldest fragment extant. Aristotle in the Physica had referred

to the quadrature of the circle or of a segment, and Simplicius took this

opportunity to quote "word for word" what Eudemus had written on the

subject of the quadrature of lunes by Hippocrates. The account, several

pages long, gives full details on the quadratures of lunes, quoted by Sim-

plicius from Eudemus, who in turn is presumed to have given at least part

of the proofs in Hippocrates' own words, especially where certain archaic

forms of expression are used. This source is the closest we can come to

direct contact with Greek mathematics before the days of Plato.

THE GREEK ANTHOLOGY

Simplicius was primarily a philosopher, but in his day there circulated a

work usually described as the Greek Anthology, the mathematical portions

of which remind us strongly of the problems in the Ahmes Papyrus of more

than two millennia earlier. The Anthology contained some six thousand

epigrams; of these more than forty are mathematical problems, collected

presumably by Metrodorus, a grammarian of perhaps the fifth or sixth

century. Most of them, including the epigram in this chapter on the age

of Diophantus, lead to simple linear equations. For example, one is asked

to find how many apples are in a collection if they are to be distributed

among six persons so that the first person receives one third of the apples,

the second receives one fourth, the third person receives one fifth, the

fourth person receives one eighth, the fifth person receives ten apples, and

there is one apple left for the last person. Another problem is typical of

elementary algebra texts of our day: If one pipe can fill a cistern in one

day, a second in two days, a third in three days, and a fourth in four days,

how long will it take all four running together to fill it? The problems

presumably were not original with Metrodorus, but were collected from

various sources. Some probably go back before the days of Plato, reminding
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us that not all Greek mathematics was of the type that we think of as

classical.

BYZANTINE MATHEMATICIANS OF THE SIXTH CENTURY

Simplicius and Metrodorus were not the outstanding mathematicians of

their day, for there were contemporary commentators with training ade-

quate for an understanding of the works of Archimedes and Apollonius.

Among these was Eutocius (born ca. 480), who commented on several

Archimedean treatises and on the Apollonian Conies. It is to Eutocius that

we owe the Archimedean solution of a cubic through intersecting conies,

referred to in The Sphere and Cylinder but not otherwise extant except

through the commentary of Eutocius. The commentary by Eutocius on the

Conies of Apollonius was dedicated to Anthemius of Tralles (t534), an

able mathematician and architect of St. Sophia of Constantinople, who
described the string construction of the ellipse and wrote a work On Burn-

ing-mirrors in which the focal properties of the parabola are described.

His colleague and successor in the building of St. Sophia, Isidore of Miletus

(fl. 520), also was a mathematician of some ability. It was Isidore who
made known the commentaries of Eutocius and spurred a revival of interest

in the works of Archimedes and Apollonius. To him perhaps we owe the

familiar T-square and string construction of the parabola—and possibly

also the apocryphal Book XV of Euclid's Elements. It may be in large

measure due to the activities of the Constantinople group—Eutocius, Is-

idore, and Anthemius—that Greek versions of Archimedean works and

of the first four books of Apollonius' Conies have survived to this day.

Isidore of Miletus was one of the last directors of the Platonic Academy
at Athens. The school had, of course, undergone many changes throughout

its existence of more than 900 years, and during the days of Proclus it had

become a center of Neoplatonic learning. When in 527 Justinian became
emperor in the East, he evidently felt that the pagan learning of the Acad-

emy and other philosophical schools at Athens was a threat to orthodox

Christianity; hence, in 529 the philosophical schools were closed and the

scholars dispersed. Rome at the time was scarcely a very hospitable home
for scholars, and Simplicius and some of the other philosophers looked to

the East for a haven. This they found in Persia, where under King Chosroes

they established what might be called the "Athenian Academy in Exile."

(Sarton 1952; p. 400). The date 529 may, therefore, be taken to mark the

close of European mathematical development in antiquity. Henceforth the

seeds of Greek science were to develop in Near and Far Eastern countries

until, some 600 years later, the Latin world was in a more receptive mood.

The date 529 has another significance that may be taken as symptomatic

of a change in values—in this year the venerable monastery of Monte

Cassino was established. Mathematics did not, of course, entirely disappear
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from Europe in 529, for undistinguished commentaries continued to be

written in Greek in the Byzantine Empire and versions of the jejune Latin

texts of Boethius continued in use in Western schools. The spirit of math-

ematics languished, however, while men argued less about the value of

geometry and more about the way to salvation. For the next steps in

mathematical development we must, therefore, turn our backs on Europe

and look toward the East.
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China and India

A mixture of pearl shells and sour dates . . . or of costly crystal and common
pebbles.

Al-Biruni's India

THE OLDEST DOCUMENTS

The civilizations of China and India are of far greater antiquity than those

of Greece and Rome, although not older than those in the Nile and Me-

sopotamian valleys. They go back to the Potamic Age, whereas the cultures

of Greece and Rome were of the Thalassic Age. Civilizations along the

Yangtze and Yellow rivers are comparable in age with those along the Nile

or between the Tigris and Euphrates; but chronological accounts in the

case of China are less dependable than those for Egypt and Babylonia.

Claims that the Chinese made astronomical observations of importance,

or described the twelve signs of the zodiac, by the fifteenth millennium

B.C. are certainly unfounded, but a tradition that places the first Chinese

empire about 2750 B.C. is not unreasonable. More conservative views place

the early civilizations of China nearer 1000 B.C. The dating of mathematical

documents from China is far from easy, and estimates concerning the Chou

Pei Suan Ching, generally considered to be the oldest of the mathematical

classics, differ by almost a thousand years. The problem of its date is

complicated by the fact that it may well have been the work of several

men of differing periods. Some consider the Chou Pei to be a good record

195
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of Chinese mathematics of about 1200 B.C. but others place the work in

the first century before our era. A date of about 300 B.C. would appear

reasonable, thus placing it in close competition with another treatise, the

Chiu-chang suan-shu, composed about 250 B.C., that is, shortly before the

Han dynasty (202 B.C.). The words "Chou Pei" seem to refer to the use

of the gnomon in studying the circular paths of the heavens, and the book
of this title is concerned with astronomical calculations, although it includes

an introduction on the properties of the right triangle and some work on

the use of fractions. The work is cast in the form of a dialogue between a

prince and his minister concerning the calendar; the minister tells his ruler

that the art of numbers is derived from the circle and the square, the square

pertaining to the earth and the circle belonging to the heavens. The Chou
Pei indicates that in China, as Herodotus held in Egypt, geometry arose

from mensuration; and, as in Babylonia, Chinese geometry was essentially

only an exercise in arithmetic or algebra. There seem to be some indications

in the Chou Pei of the Pythagorean theorem, a theorem treated algebra-

ically by the Chinese.

THE NINE CHAPTERS

Almost as old as the Chou Pei, and perhaps the most influential of all

Chinese mathematical books, was the Chui-chang suan-shu, or Nine Chap-

ters on the Mathematical Art. This book includes 246 problems on surveying,

agriculture, partnerships, engineering, taxation, calculation, the solution

of equations, and the properties of right triangles. Whereas the Greeks of

this period were composing logically ordered and systematically expository

treatises, the Chinese were repeating the old custom of the Babylonians

and Egyptians of compiling sets of specific problems. The Mine Chapters

resembles Egyptian mathematics also in its use of the method of "false

position," but the invention of this scheme, like the origin of Chinese

mathematics in general, seems to have been independent of Western in-

fluence.

In Chinese works, as in Egyptian, one is struck by the juxtaposition of

accurate and inaccurate, primitive and sophisticated results. Correct rules

are used for the areas of triangles, rectangles, and trapezoids. The area of

the circle was found by taking three fourths the square on the diameter or

one-twelfth the square of the circumference—a correct result if the value

three is adopted for n—but for the area of a segment of a circle the Nine

Chapters uses the approximate results s(s + c)/2, where s is the sagitta

(that is, the radius minus the apothem) and c the chord or base of the

segment. There are problems that are solved by the rule of three; in others,

square and cube roots are found. Chapter eight of the Nine Chapters is

significant for its solution of problems in simultaneous linear equations,
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using both positive and negative numbers. The last problem in the chapter

involves four equations in five unknowns, and the topic of indeterminate

equations was to remain a favorite among Oriental peoples. The ninth and

last chapter includes problems on right-angled triangles, some of which

later reappeared in India and Europe. One of these asks for the depth of

a pond 10 feet square if a reed growing in the center and extending 1 foot

above the water just reaches the surface if drawn to the edge of the pond.

Another of these well-known problems is that of the "broken bamboo":

There is a bamboo 10 feet high, the upper end of which being broken

reaches the ground 3 feet from the stem. Find the height of the break.

MAGIC SQUARES

The Chinese were especially fond of patterns; hence, it is not surprising

that the first record (of ancient but unknown origin) of a magic square

appeared there. The square

was supposedly brought to man by a turtle from the River Lo in the days

of the legendary Emperor Yii, reputed to be a hydraulic engineer. The

concern for such patterns led the author of the Nine Chapters to solve the

system of simultaneous linear equations

3x + 2y + z = 39

2x + 3y + z = 34

x + 2y + 3z = 26

by performing column operations on the matrix

to reduce it to

The second form represented the equation 36z = 99, 5y + z = 24, and

3jc + 2y + z = 39 from which the values of z, y, and x are successively

found with ease.

1 2 3

2 3 2

3 1 1

26 34 39

3

5 2

36 1 1

99 24 39
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ROD NUMERALS

Had Chinese mathematics enjoyed uninterrupted continuity of tradition,

some of the striking anticipations of modern methods might have signifi-

cantly modified the development of mathematics. But Chinese culture was

seriously hampered by abrupt breaks. In 213 B.C., for example, the Chinese

emperor ordered the burning of books. Some works must obviously have

survived, either through the persistence of copies or through oral trans-

mission; and learning did indeed persist, with mathematical emphasis on

problems of commerce and the calendar.

There seems to have been contact between India and China, as well as

between China and the West, but scholars differ on the extent and direction

of borrowing. The temptation to see Babylonian or Greek influence in

China, for example, is faced with the problem that the Chinese did not

make use of sexagesimal fractions. Chinese numeration remained essen-

tially decimal, with notations rather strikingly different from those in other

lands. In China, from early times, two schemes of notation were in use.

In one the multiplicative principal predominated, in the other a form of

positional notation was used. In the first of these there were distinct ciphers

for the digits from one to ten and additional ciphers for the powers of ten,

and in the written forms the digits in odd positions (from left to right or

from bottom to top) were multiplied by their successor. Thus the number

678 would be written as a six followed by the symbol for one hundred,

then a seven followed by the symbol for ten, and finally the symbol for

eight.

In the system of "rod numerals'
1

the digits from one to nine appeared

as I II III llll Hill T 7T TTT HIT and the first nine multiples of ten as

— = = = H -L =!===. By the use of these eighteen symbols

alternately in positions from right to left, numbers as large as desired

could be represented. The number 56,789, for instance, would appear as

|||||J_TriM. As in Babylonia, a symbol for an empty position appeared

only relatively late. In a work of 1247 the number 1,405,536 is written

with a round zero symbol as I = M Mil =T. (Occasionally, as in the four-

teenth-century form of the arithmetic triangle, the vertical and horizon-

tal rods or strokes were interchanged.)

The precise age of the original rod numerals cannot be determined, but

they were certainly in use several hundred years before our era, that is,

long before the positional notation had been adopted in India. The use of

a centesimal, rather than a decimal, positional system in China was con-

venient for adaptation to computations with the counting board. Distinctive

notations for neighboring powers of ten enabled the Chinese to use, without

confusion, a counting board with unmarked vertical columns. Before the

eighth century the place in which a zero was required was simply left blank.

Although in texts older than a.d. 3(X) the numbers and multiplication tables

were written out in words, calculations actually were made with rod nu-

merals on a counting board.
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THE ABACUS AND DECIMAL FRACTIONS

The rod numerals of about 300 B.C. were not merely a notation for the

written result of a computation. Actual bamboo, ivory, or iron rods were

carried about in a bag by administrators and used as a calculating device.

Counting rods were manipulated with such dexterity that an eleventh-

century writer described them as "flying so quickly that the eye could not

follow their movement." Cancellations probably were more rapidly carried

out with rods on a counting board than in written calculations. So effective,

in fact, was the use of the rods on a counting board that the abacus or

rigid counting frame with movable markers on wires was not used so early

as has been generally supposed. First clear descriptions of the modern
forms, known in China as the suan phan and in Japan as the soroban, are

of the sixteenth century; but anticipations would appear to have been in

use perhaps a thousand years earlier. The word abacus probably is derived

from the Semitic word abq> or dust, indicating that in other lands, as well

as in China, the device grew out of a dust or sand tray used as a counting

board. It is possible, but by no means certain, that the use of the counting

board in China antedates the European, but clear-cut and reliable dates

are not available. In the National Museum in Athens there is a marble

slab, dating probably from the fourth century B.C., which appears to be a

counting board. And when a century earlier Herodotus wrote, "The Egyp-

tians move their hand from right to left in calculation, while the Greeks

move it from left to right," he probably was referring to the use of some

sort of counting board. Just when such devices gave way to the abacus

proper is difficult to determine; nor can we tell whether or not the ap-

pearances of the abacus in China, Arabia, and Europe were independent

inventions. The Arabic abacus had ten balls on each wire and no center

bar, whereas the Chinese had f[\Q lower and two upper counters on each

wire, separated by a bar. Each of the upper counters on a wire of the

Chinese abacus is equivalent to fivt on the lower wire; a number is reg-

istered by sliding the appropriate counters against the separating bar. (See

the accompanying illustration of an abacus.)

No description of Chinese numeration would be complete without ref-

erence to the use of fractions. The Chinese were familiar with operations

on common fractions, in connection with which they found lowest common
denominators. As in other contexts, they saw analogies with the differences

in the sexes, referring to the numerator as the "son" and to the denominator

as the "mother." Emphasis on yin and yang (opposites, especially in

sex) made it easier to follow the rules for the manipulation of fractions.

More important than these, however, was the tendency in China toward

decimalization of fractions. As in Mesopotamia a sexagesimal metrology

led to sexagesimal numeration, so also in China adherence to the decimal

idea in weights and measures resulted in a decimal habit in the treatment

of fractions that, it is said, can be traced back as far as the fourteenth

century B.C. Decimal devices in computation sometimes were adopted
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Marble counting board, probably from the fourth century B.c .. found on the island of Salamis

and now in the National Museum in Athens.
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An early printed picture of the abacus, from the Suan Fa Thung Tsung, 1593. {Reproduced

from J. Needham, 1959, Vol. 3, p. 76.)

to lighten manipulations of fractions. In a first-century commentary on

the Nine Chapters, for example, we find the use of the now familiar rules

for square and cube roots, equivalent to Va = Vl00tf/10 and

^a = >^1000a/i(), which facilitate the decimalization of root extractions.

The idea of negative numbers seems not to have occasioned much dif-

ficulty for the Chinese since they were accustomed to calculating with two

sets of rods—a red set for positive coefficients or numbers and a black set

for negatives. Nevertheless, they did not accept the notion that a negative

number might be a solution of an equation.

VALUES OF PI

The earliest Chinese mathematics is so different from that of comparable

periods in other parts of the world that the assumption of independent

development would appear to be justified. At all events, it seems safe to

say that if there was some intercommunication before a.d. 400, then more
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mathematics came out of China than went in. For later periods the question

becomes more difficult. The use of the value three for n in early Chinese

mathematics is scarcely an argument for dependence on Mesopotamia,

especially since the search for more accurate values, from the first centuries

of the Christian era, was more persistent in China than elsewhere. Values

such as 3.1547, vTo, 92/29, and 142/45 are found; and in the third century

Liu Hui, an important commentator on the Nine Chapters, derived the

figure 3.14 by use of a regular polygon of 96 sides and the approximation

3.14159 by considering a polygon of 3072 sides. In Liu Hui's reworking of

the Nine Chapters there are many problems in mensuration, including the

correct determination of the volume of a frustum of a square pyramid. For

a frustum of a circular cone a similar formula was applied, but with a value

of three for n. Unusual is the rule that the volume of a tetrahedron with

two opposite edges perpendicular to each other is one sixth the product

of these two edges and their common perpendicular. The method of false

position is used in solving linear equations, but there are also more so-

phisticated results, such as the solution, through a matrix pattern, of a

Diophantine problem involving four equations in five unknown quantities.

The approximate solution of equations of higher degree seems to have

been carried out by a device similar to what we know as "Horner's method."

Liu Hui also included, in his work on the Nine Chapters, numerous prob-

lems involving inaccessible towers and trees on hillsides.

The Chinese fascination with the value of n reached its high point in

the work of Tsu Ch'ung-chih (430-501). One of his values was the familiar

Archimedean 22/7, described by Tsu Ch'ung-chih as "inexact"; his "ac-

curate" value was 355/113. If one persists in seeking possible Western

influence, one can explain away this remarkably good approximation, not

equaled anywhere until the fifteenth century, by subtracting the numerator

and denominator respectively of the Archimedean value from the numer-

ator and denominator of the Ptolemaic value 377/120. However, Tsu Chung-

chih went even further in his calculations, for he gave 3.1415927 as an

"excess" value and 3.1415926 as a "deficit value." The calculations by

which he arrived at these bounds, apparently aided by his son Tsu Cheng-

chin, were probably contained in one of his books, since lost. In any case,

his results were remarkable for that age, and it is fitting that today a

landmark on the moon bears his name.

We should bear in mind that accuracy in the value of n is more a matter

of computational stamina than of theoretical insight. The Pythagorean

theorem alone suffices to give as accurate an approximation as may be

desired. Starting with the known perimeter of a regular polygon of n sides

inscribed in a circle, the perimeter of the inscribed regular polygon of 2n

sides can be calculated by two applications of the Pythagorean theorem.

Let C be a circle with center O and radius r (Fig. 12.1) and let PQ =

5 be a side of a regular inscribed polygon of n sides having a known pe-

rimeter. Then, the apothem OM = u is given by u = Vr 2 - (s/2)
:

; hence.



ALGEBRA AND HORNER'S METHOD 203

FIG. 12.1

the sagitta MR = v = r - u is known. Then, the side RQ = w of the

inscribed regular polygon of In sides is found from w = Vi; 2 + (s/2) 2
;

hence, the perimeter of this polygon is known. The calculation, as Liu Hui

saw, can be shortened by noting that w 2 = 2r\. An iteration of the pro-

cedure will result in an ever closer approximation to the perimeter of the

circle, in terms of which n is defined.

ALGEBRA AND HORNER'S METHOD

Chinese mathematical problems often appear to be more picturesque than

practical, and yet Chinese civilization was responsible for a surprising num-
ber of technological innovations. The use of printing and gunpowder (eighth

century) and of paper and the mariner's compass (eleventh century) was

earlier in China than elsewhere, and earlier also than the high-water mark
in Chinese mathematics that occurred in the thirteenth century, during the

latter part of the Sung period. At that time there were mathematicians

working in various parts of China; but relations between them seem to

have been remote, and, as in the case of Greek mathematics, we evidently

have relatively few of the treatises that once were available. The last and

greatest of the Sung mathematicians was Chu Shih-chieh (fl. 1280-1303),

yet we know little about him—not even when he was born or when he

died. He was a resident of Yen-shan, near modern Peking, but he seems

to have spent some twenty years as a wandering scholar who earned his

living by teaching mathematics, even though he had the opportunity to

write two treatises. The first of these, written in 1299, was the Suan-hsiieh

ch'i-meng {Introduction to Mathematical Studies), a relatively elementary

work that strongly influenced Korea and Japan, although in China it was

lost until it reappeared in the nineteenth century. Of greater historical and

mathematical interest is the Ssu-yiian yu-chien (Precious Mirror of the Four

Elements) of 1303. In the eighteenth century this, too, disappeared in

China, only to be rediscovered in the next century. The four elements,

called heaven, earth, man, and matter, are the representations of four

unknown quantities in the same equation. The book marks the peak in the
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development of Chinese algebra, for it deals with simultaneous equations

and with equations of degrees as high as fourteen. In it the author describes

a transformation method that he calls fan fa, the elements of which seem
to have arisen long before in China, but which generally bears the name
of Horner, who lived half a millennium later. In solving the equation

x2 + 252* - 5292 = 0, for example, Chu Shih-chieh first obtained x =

19 as an approximation (a root lies between x = 19 and x = 20) and

then used the fan-fa, in this case the transformation y = x - 19, to obtain

the equation y
2 + 290y - 143 = (with a root between y = and y =

1). He then gave the root of the latter as (approximately) y = 143/(1 +
290); hence, the corresponding value of x is 19M?. For the equation jc

3 -

574 = he used y = x - 8 to obtain y
3 + 24>>

2 + \92y - 62 = 0, and

he gave the root as x = 8 + 62/(1 + 24 + 192) or x = 8f. In some cases

he found decimal approximations.

THIRTEENTH-CENTURY MATHEMATICIANS

That the so-called Horner method was a commonplace in China is indicated

by the fact that at least three other mathematicians of the later Sung period

made use of similar devices. One of these was Li Chih (or Li Yeh, 1 192—

1279), a mathematician of Peking who was offered a government post by

Khublai Khan in 1260, but politely found an excuse to decline it. His Ts'e-

yuan hai-ching (Sea-Mirror of the Circle Measurements) includes 170 prob-

lems dealing with circles inscribed within, or escribed without, a right

triangle and with determining the relationships between the sides and the

radii , some of the problems leading to equations of fourth degree . Although

he did not describe his method of solution of equations, including some
of sixth degree, it appears that it was not very different from that used by

Chu Shih-chieh and Horner. Others who used the Horner method were

Ch'in Chiu-shao (ca. 1202-ca. 1261) and Yang Hui (fl. ca. 1261-1275). The
former was an unprincipled governor and minister who acquired immense

wealth within a hundred days of assuming office. His Shu-shu chiu-chang

(Mathematical Treatise in Nine Sections) marks the high point in Chinese

indeterminate analysis, with the invention of routines for solving simul-

taneous congruences. In this work also he found the square root of 71,824

by steps paralleling those in the Horner method. With 200 as the first

approximation to a root of jc
2 - 71,824 = 0, he diminished the roots of

this by 200 to obtain y
2 + 400y - 31,824 = 0. For the latter equation he

found 60 as an approximation, and diminished the roots by 60, arriving at

a third equation, z
2 + 520z - 4224 = 0, of which 8 is a root. Hence, the

value of jc is 268. In a similar way he solved cubic and quartic equations.

The same "Homer" device was used by Yang Hui, about whose life almost

nothing is known and whose work has survived only in part. Among his

contributions that are extant are the earliest Chinese magic squares of
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order greater than three, including two each of orders four through eight

and one each of orders nine and ten.

THE ARITHMETIC TRIANGLE

Yang Hui's works included also results in the summation of series and the

so-called Pascal triangle, things that were published and better known
through the Precious Mirror of Chu Shih-chieh, with which the Golden
Age of Chinese mathematics closed. A few of the many summations of

series found in the Precious Mirror are the following:

l
2 + 22 + 3 2 + » + n 2 = n(n + 1)

C

3!

1 + 8 + 30 + 80 + ••• + n 2(n + 1)
(/

3!

n(n + \){n + 2)(n + 3) x
{An + 1)

5!

However, no proofs are given, nor does the topic seem to have been

continued again in China until about the nineteenth century. Chu Shih-

chieh handled his summations through the method of finite differences,

some elements of which seem to date in China from the seventh century;

but shortly after his work the method disappeared for many centuries.

The Precious Mirror opens with a diagram of the arithmetic triangle,

inappropriately known in the West as "Pascal's triangle." (See illustration.)

In Chu's arrangement we have the coefficients of binomial expansions

through the eighth power, clearly given in rod numerals and a round zero

symbol. Chu disclaims credit for the triangle, referring to it as a "diagram

of the old method for finding eighth and lower powers." A similar ar-

rangement of coefficients through the sixth power had appeared in the

work of Yang Hui, but without the round zero symbol. There are references

in Chinese works of about 1100 to tabulation systems for binomial coef-

ficients, and it is likely that the arithmetic triangle originated in China by

about that date. It is interesting to note that the Chinese discovery of the

binomial theorem for integral powers was associated in its origin with root

extractions rather than with powers. The equivalent of the theorem ap-

parently was known to Omar Khayyam at about the time that it was being

used in China, but the earliest extant Arabic work containing it is by Al-

Kashi in the fifteenth century. By that time Chinese mathematics had failed

to match achievements in Europe and the Near East, and it is likely that

by then more mathematics went into China than came out. Still to be

answered is the thorny problem of determining the relative influences of

China and India on each other during the first millennium of our era.
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The "Pascal" Triangle as depicted in 1303 at the front of Chu Shih-Chieh's Ssu Yuan Yii

Chien. // is entitled "The Old Method Chart of the Seven Multiplying Squares" and tabulates

the binomial coefficients up to the eighth power. (Reproduced from J. Needham 1959. Vol. 3,

P- 135.)

EARLY MATHEMATICS IN INDIA

Archeological excavations at Mohenjo Daro give evidence of an old and

highly cultured civilization in India during the era of the Egyptian pyramid

builders, but we have no Indian mathematical documents from that age.

Later the country was occupied by Aryan invaders who introduced the

caste system and developed the Sanskrit literature. The great religious

teacher, Buddha, was active in India at about the time that Pythagoras is

said to have visited there, and it sometimes is suggested that Pythagoras

learned his theorem from the Hindus. Recent studies make this highly

unlikely in view of Babylonian familiarity with the theorem at least a

thousand years earlier.

The fall of the Western Roman Empire traditionally is placed in the

year 476; it was in this year that Aryabhata, author of one of the oldest
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Indian mathematical texts, was born. It is clear, however, that there had

been mathematical activity in India long before this time—probably even

before the mythical founding of Rome in 753 B.C. India, like Egypt, had

its "rope-stretchers"; and the primitive geometric lore acquired in con-

nection with the laying out of temples and the measurement and construc-

tion of altars took the form of a body of knowledge known as the

Sulvasutras, or "rules of the cord." Sulva (or sulba) refers to cords used

for measurements, and sutra means a book of rules or aphorisms relating

to a ritual or science. The stretching of ropes is strikingly reminiscent of

the origin of Egyptian geometry, and its association with temple functions

reminds one of the possible ritual origin of mathematics. However, the

difficulty of dating the rules is matched also by doubt concerning the in-

fluence they had on later Hindu mathematicians. Even more so than in

the case of China, there is a striking lack of continuity of tradition in the

mathematics of India; significant contributions are episodic events sepa-

rated by intervals without achievement.

THE SULVASUTRAS

Three versions, all in verse, of the work referred to as the Sulvasutras are

extant, the best-known being that bearing the name of Apastamba. In this

primitive account, dating back perhaps as far as the time of Pythagoras,

we find rules for the construction of right angles by means of triples of

cords the lengths of which form Pythagorean triads, such as 3, 4, and 5,

or 5, 12, and 13, or 8, 15, and 17, or 12, 35, and 37. However, all of these

triads are easily derived from the old Babylonian rule; hence, Mesopota-

mian influence in the Sulvasutras is not unlikely. Aspastamba knew that

the square on the diagonal of a rectangle is equal to the sum of the squares

on the two adjacent sides, but this form of the Pythagorean theorem also

may have been derived from Mesopotamia. Less easily explained is another

rule given by Apastamba—one that strongly resembles some of the geo-

metric algebra in Book II of Euclid's Elements. To construct a square

equal in area to the rectangle ABCD (Fig. 12.2), lay off the shorter sides

on the longer, so that AF = AB = BE = CD, and draw HG bisecting

segments CE and DF; extend EF to K, GH to L, and AB to M so that

FK = HL = FH = AM, and draw LKM. Now construct a rectangle with

diagonal equal to LG and with shorter side HF Then, the longer side of

this rectangle is the side of the square desired.

So conjectural are the origin and period of the Sulvasutras that we cannot

tell whether or not the rules are related to early Egyptian surveying or to

the later Greek problem of altar doubling. They are variously dated within

an interval of almost a thousand years stretching from the eighth century

B.C. to the second century of our era. Chronology in ancient cultures of
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the Far East is scarcely reliable when orthodox Hindu tradition boasts of

important astronomical work more than 2,000,000 years ago and when
calculations lead to billions of days from the beginning of the life of Brah-

man to about a.d. 400. References to arithmetic and geometric series in

Vedic literature that purport to go back to 2000 B.C. may be more reliable,

but there are no contemporary documents from India to confirm this. It

has been claimed also that the first recognition of incommensurables is to

be found in India during the Sulvasutra period, but such claims are not

well substantiated. The case for early Hindu awareness of incommensurable

magnitudes is rendered most unlikely by the lack of evidence that Indian

mathematicians of that period had come to grips with fundamental con-

cepts.

THE SIDDHANTAS

The period of the Sulvasutras, which closed in about the second century,

was followed by the age of the Siddhantas, or systems (of astronomy). The

establishment of the dynasty of King Gupta (290) marked the beginning

of a renaissance in Sanskrit culture, and the Siddhantas seem to have been

an outcome of this revival. Five different versions of the Siddhantas are

known by name, Paulisha Siddhanta, Surya Siddhanta, Vasisishta Siddhanta,

Paitamaha Siddhanta, and Romanka Siddhanta. Of these, the Surya

Siddhanta (System of the Sun), written about 400, is the only one that

seems to be completely extant. According to the text, written in epic

stanzas, it is the work of Surya, the Sun God. The main astronomical

doctrines evidently are Greek, but with the retention of considerable old

Hindu folklore. The Paulisha Siddhanta, which dates from about 380, was

summarized by the Hindu mathematician Varahamihira (fl. 505) and was

referred to frequently by the Arabic scholar Al-Biruni, who suggested a
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Greek origin or influence. Later writers report that the Siddhantas were

in substantial agreement on substance, only the phraseology varying; hence,

we can assume that the others, like the Surya Siddhanta, were compendia
of astronomy comprising cryptic rules in Sanskrit verse with little expla-

nation and without proof.

It is generally agreed that the Siddhantas stem from the late fourth or

the early fifth century, but there is sharp disagreement about the origin of

the knowledge that they contain. Hindu scholars insist on the originality

and independence of the authors, whereas Western writers are inclined to

see definite signs of Greek influence. It is not unlikely, for example, that

the Paulisha Siddhanta was derived in considerable measure from the work

of the astrologer Paul who lived at Alexandria shortly before the presumed

date of composition of the Siddhantas. (Al-Biruni, in fact, explicitly attri-

butes this Siddhanta to Paul of Alexandria.) This would account in a simple

manner for the obvious similarities between portions of the Siddhantas and

the trigonometry and astronomy of Ptolemy. The Paulisha Siddhanta, for

example, uses the value 3 177/1250 for n, which is in essential agreement

with the Ptolemaic sexagesimal value 3;8,30.

Even if the Hindus did acquire their knowledge of trigonometry from

the cosmopolitan Hellenism at Alexandria, the material in their hands took

on a significantly new form. Whereas the trigonometry of Ptolemy had

been based on the functional relationship between the chords of a circle

and the central angles they subtend, the writers of the Siddhantas converted

this to a study of the correspondence between half of a chord of a circle

and half of the angle subtended at the center by the whole chord. Thus

was born, apparently in India, the predecessor of the modern trigonometric

function known as the sine of an angle; and the introduction of the sine

function represents the chief contribution of the Siddhantas to the history

of mathematics. Although it is generally assumed that the change from the

whole chord to the half chord took place in India, it has been suggested

by Paul Tannery, the leading historian of science at the turn of this century,

that this transformation of trigonometry may have occurred at Alexandria

during the post-Ptolemaic period. Whether or not this suggestion has merit,

there is no doubt that it was through the Hindus, and not the Greeks, that

our use of the half chord has been derived; and our word "sine," through

misadventure in translation (see below), has descended from the Hindu

name, jiva.

ARYABHATA

During the sixth century, shortly after the composition of the Siddhantas,

there lived two Hindu mathematicians who are known to have written

books on the same type of material. The older, and more important, of
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the two was Aryabhata, whose best-known work, written in 499 and entitled

Aryabhatiya, is a slim volume, written in verse, covering astronomy and

mathematics. The names of several Hindu mathematicians before this time

are known, but nothing of their work has been preserved beyond a few

fragments. In this respect, then, the position of the Aryabhatiya of Ary-

abhata in India is somewhat akin to that of the Elements of Euclid in

Greece some eight centuries before. Both are summaries of earlier devel-

opments, compiled by a single author. There are, however, more striking

differences than similarities between the two works. The Elements is a well-

ordered synthesis of pure mathematics with a high degree of abstraction,

a clear logical structure, and an obvious pedagogical inclination; the Ar-

yabhatiya is a brief descriptive work, in 123 metrical stanzas, intended to

supplement rules of calculation used in astronomy and mensurational math-

ematics, with no feeling for logic or deductive methodology. About a third

of the work is on ganitapada, or mathematics. This section opens with the

names of the powers of ten up to the tenth place and then proceeds to

give instructions for square and cube roots of integers. Rules of mensur-

ation follow, about half of which are erroneous. The area of a triangle is

correctly given as half the product of the base and altitude, but the volume

of a pyramid also is taken to be half the product of the base and altitude.

The area of a circle is found correctly as the product of the circumference

and half the diameter, but the volume of a sphere is incorrectly stated to

be the product of the area of a great circle and the square root of this area.

Again, in the calculation of areas of quadrilaterals, correct and incorrect

rules appear side by side. The area of a trapezoid is expressed as half the

sum of the parallel sides multiplied by the perpendicular between them;

but then follows the incomprehensible assertion that the area of any plane

figure is found by determining two sides and multiplying them. One state-

ment in the Aryabhatiya to which Hindu scholars have pointed with pride

is as follows:

Add 4 to 100, multiply by 8, and add 62,000. The result is approximately

the circumference of a circle of which the diameter is 20,000 [Clark 1930, p.

28].

Here we see the equivalent of 3.1416 for jc, but it should be recalled that

this is essentially the value Ptolemy had used. The likelihood that Ary-

abhata here was influenced by Greek predecessors is strengthened by his

adoption of the myriad, 1(),(K)0. as the number of units in the radius.

A typical portion of the Aryabhatiya is that involving arithmetic pro-

gressions, which contains arbitrary rules for finding the sum of the terms

in a progression and for determining the number of terms in a progression

when given the first term, the common difference, and the sum of the
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terms. The first rule had long been known by earlier writers. The second

is a curiously complicated bit of exposition:

Multiply the sum of the progression by eight times the common difference,

add the square of the difference between twice the first term, and the common
difference, take the square root of this, subtract twice the first term, divide

by the common difference, add one, divide by two. The result will be the

number of terms.

Here, as elsewhere in the Aryabhatiya, no motivation or justification is

given for the rule. It was probably arrived at through a solution of a

quadratic equation, knowledge of which might have come from Mesopo-

tamia or Greece. Following some complicated problems on compound
interest (that is, geometric progressions), the author turns, in flowery

language, to the very elementary problem of finding the fourth term in a

simple proportion:

In the rule of three multiply the fruit by the desire and divide by the measure.

The result will be the fruit of the desire.

This, of course, is the familiar rule that if alb = clx, then x = bcla, where

a is the "measure," b the "fruit," c the "desire," and x the "fruit of the

desire." The work of Aryabhata is indeed a potpourri of the simple and

the complex, the correct and the incorrect. The Arabic scholar al-Biruni,

half a millennium later, characterized Hindu mathematics as a mixture of

common pebbles and costly crystals, a description quite appropriate to

Aryabhatiya.

HINDU NUMERALS

The second half of the Aryabhatiya is on the reckoning of time and on

spherical trigonometry; here we note an element that was to leave a per-

manent impress on the mathematics of later generations—the decimal

place-value numeration. It is not known just how Aryabhata carried out

his calculations, but his phrase "from place to place each is ten times the

preceding" is an indication that the application of the principle of position

was in his mind. "Local value" had been an essential part of Babylonian

numeration, and perhaps the Hindus were becoming aware of its appli-

cability to the decimal notation for integers in use in India. The devel-

opment of numerical notations in India seems to have followed about the

same pattern found in Greece. Inscriptions from the earliest period at

Mohenjo Daro show at first simple vertical strokes, arranged into groups,

but by the time of Asoka (third century B.C.) a system resembling the
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Herodianic was in use. In the newer scheme the repetitive principle was

continued, but new symbols of higher order were adopted for four, ten,

twenty, and one hundred. This so-called Karosthi script then gradually

gave way to another notation, known as the Brahmi characters, which

resembled the alphabetic cipherization in the Greek Ionian system; one

wonders if it was only a coincidence that the change in India took place

shortly after the period when in Greece the Herodianic numerals were

displaced by the Ionian.

From the Brahmi ciphered numerals to our present-day notation for

integers two short steps are needed. The first is a recognition that, through

the use of the positional principle, the ciphers for the first nine units can

serve also as the ciphers for the corresponding multiples of ten, or equally

well as ciphers for the corresponding multiples of any power of ten. This

recognition would make superfluous all of the Brahmi ciphers beyond the

first nine. It is not known when the reduction to nine ciphers occurred,

and it is likely that the transition to the more economical notation was

made only gradually. It appears from extant evidence that the change took

place in India, but the source of the inspiration for the change is uncertain.

Possibly the so-called Hindu numerals were the result of internal devel-

opment alone; perhaps they developed first along the western interface

between India and Persia, where remembrance of the Babylonian posi-

tional notation may have led to modification of the Brahmi system. It is

possible that the newer system arose along the eastern interface with China

where the pseudopositional rod numerals may have suggested the reduction

to nine ciphers. There is also a theory that this reduction may first have

been made at Alexandria within the Greek alphabetic system and that

subsequently the idea spread to India. During the later Alexandrian period

the earlier Greek habit of writing common fractions with the numerator

beneath the denominator was reversed, and it is this form that was adopted

by the Hindus, without the bar between the two. Unfortunately, the Hindus

did not apply the new numeration for integers to the realm of decimal

fractions; hence, the chief potential advantage of the change from Ionian

notation was lost.

The earliest specific reference to the Hindu numerals is found in 662 in

the writings of Severus Sebokt, a Syrian bishop. After Justinian closed the

Athenian philosophical schools some of the scholars moved to Syria, where

they established centers of Greek learning. Sebokt evidently felt piqued

by the disdain for non-Greek learning expressed by some associates; hence,

he found it expedient to remind those who spoke Greek that "there are

also others who know something. " To illustrate his point he called attention

to the Hindus and their "subtle discoveries in astronomy, " especially "their

valuable methods of calculation, and their computing that surpasses de-

scription. I wish only to say that this computation is done by means of nine

signs." (Smith 1958, Vol. I, p. 167.) That the numerals had been in use

for some time is indicated by the fact that the first Indian occurrence is on
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a plate of the year 595, where the date 346 is written in decimal place value

notation.

THE SYMBOL FOR ZERO

It should be remarked that the reference to nine symbols, rather than ten,

implies that the Hindus evidently had not yet taken the second step in the

transition to the modern system of numeration—the introduction of a

notation for a missing position, that is, a zero symbol. The history of

mathematics holds many anomalies, and not the least of these is the fact

that "the earliest undoubted occurrence of a zero in India is in an inscription

of 876" (Smith 1958, Vol. II, p. 69)—that is, more than two centuries after

the first reference to the other nine numerals. It is not even established

that the number zero (as distinct from a symbol for an empty position)

arose in conjunction with the other nine Hindu numerals. It is quite possible

that zero originated in the Greek world, perhaps at Alexandria, and that

it was transmitted to India after the decimal positional system had been

established there.

The history of the zero placeholder in positional notation is further

complicated by the fact that the concept appeared independently, well

before the days of Columbus, in the western as well as the eastern hemi-

sphere. The Mayas of Yucatan, in their representation of time intervals

between dates in their calendar, used a place value numeration, generally

with twenty as the primary base and with f\\e as an auxiliary (corresponding

to the Babylonian use of sixty and ten respectively). (See illustration.)

Units were represented by dots and fives by horizontal bars, so that the

number seventeen, for example, would appear as= [that is, as 3(5) + 2].

A vertical positional arrangement was used, with the larger units of time

above; hence, the notation= denoted 352 [that is, 17(20) + 12]. Because

the system was primarily foTcounting days within a calendar having 360

days in a year, the third position usually did not represent multiples of

(20)(20), as in a pure vigesimal system, but (18)(20). However, beyond

this point the base twenty again prevailed. Within this positional notation

the Mayas indicated missing positions through the use of a symbol,

appearing in variant forms, somewhat resembling a half-open eye. In

their scheme, then, the notationf| denoted 17(20-18-20) + 0(18-20) +
13(20) +0. =

With the introduction, in the Hindu notation, of the tenth numeral, a

round goose egg for zero, the modern system of numeration for integers

was completed. Although the Medieval Hindu forms of the ten numerals

differ considerably from those in use today, the principles of the system

were established. The new numeration, which we generally call the Hindu

system, is merely a new combination of three basic principles, all of ancient

origin: (1) a decimal base; (2) a positional notation; and (3) a ciphered
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From (he Dresden Codex, of the Maya, displaying numbers. The second column on the left,

from above down, displays the numbers 9, 9, 16, 0, 0, which stand for 9 x 144,000 + 9 x

7200 + 16 x 360 + + 0= 1,366,560. In the third column are the numerals 9. 9, 9, 16, 0,

representing 1,364,360. The original appears in black and red colors. (Taken from Morley

1915, p. 266.)

form for each of the ten numerals. Not one of these three was due originally

to the Hindus, but it presumably is due to them that the three were first

linked to form the modern system of numeration.

It may be well to say a word about the form of the Hindu symbol for

zero—which is also ours. It once was assumed that the round form stemmed
originally from the Greek letter omicron, initial letter in the word ouden,

or empty, but recent investigations seem to belie such an origin. Although

the symbol for an empty position in some of the extant versions of Ptolemy's

tables of chords does seem to resemble an omicron, the early zero symbols

in Greek sexagesimal fractions are round forms variously embellished and

differing markedly from a simple goose egg. Moreover, when in the fif-
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teenth century in the Byzantine Empire a decimal positional system was
fashioned out of the old alphabetic numerals by dropping the last eighteen

letters and adding a zero symbol to the first nine letters, the zero sign took

forms quite unlike an omicron. Sometimes it resembled an inverted form
of our small letter h, sometimes it appeared as a dot.

HINDU TRIGONOMETRY

The development of our system of notation for integers was one of the

two most influential contributions of India to the history of mathematics.

The other was the introduction of an equivalent of the sine function in

trigonometry to replace the Greek tables of chords. The earliest tables of

the sine relationship that have survived are those in the Siddhantas, and

the Aryabhatiya. Here the sines of angles up to 90° are given for twenty-

four equal intervals of 3f° each. In order to express arc length and sine

length in terms of the same unit, the radius was taken as 3438 and the

circumference as 360 • 60 = 21,600. This implies a value of n agreeing to

four significant figures with that of Ptolemy. In another connection Ary-

abhata used the value VlO for n, which appeared so frequently in India

that it sometimes is known as the Hindu value.

For the sine of 3f° the Siddhantas and the Aryabhatiya took the number

of units in the arc—that is, 60 x 3J or 225. In modern language, the sine

of a small angle is very nearly equal to the radian measure of the angle

(which is virtually what the Hindus were using). For further items in the

sine table the Hindus used a recursion formula which may be expressed

as follows. If the nth sine in the sequence from n = 1 to n = 24 is

designated as s„, and if the sum of the first n sines is S„, then s„+\ = sn +

5, - S„/s
{

. From this rule one easily deduces that sin 7J° = 449, sin 11J°

= 671, sin 15° = 890, and so on up to sin 90° = 3438—the values listed

in the table in the Siddhantas and the Aryabhatiya. Moreover, the table

also includes values for what we call the versed sine of the angle [that is,

1 - cos in modern trigonometry or 3438 (1 - cos 0) in Hindu trigo-

nometry] from vers 3J° = 7 to vers 90° = 3438. If we divide the items in

the table by 3438, the results are found to be in close agreement with the

corresponding values in modern trigonometric tables. (Smith 1958,

Vol. II.)

HINDU MULTIPLICATION

Hindu trigonometry evidently was a useful and accurate tool in astronomy.

How the Hindus arrived at results such as the recursion formula is uncer-

tain, but it has been suggested that an intuitive approach to difference
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equations and interpolation may have prompted such rules. Indian math-

ematics frequently is described as "intuitive," in contrast to the stern ra-

tionalism of Greek geometry. Although in Hindu trigonometry there is

evidence of Greek influence, the Indians seem to have had no occasion to

borrow Greek geometry, concerned as they were with simple mensurational

rules. Of the classical geometric problems, or the study of curves other

than the circle, there is little evidence in India, and even the conic sections

seem to have been overlooked by the Hindus, as by the Chinese. Hindu
mathematicians were fascinated instead by work with numbers, whether

it involved the ordinary arithmetic operations or the solution of determinate

or indeterminate equations. Addition and multiplication were carried out

in India much as they are by us today, except that they seem at first to

have preferred to write numbers with the smaller units on the left, hence

to work from left to right, using small blackboards with white removable

paint or a board covered with sand or flour. Among the devices used for

multiplications was one that is known under various names: lattice mul-

tiplication, gelosia multiplication, or cell or grating or quadrilateral mul-

tiplication. The scheme behind this is readily recognized in two examples.

In the first example (Fig. 12.3) the number 456 is multiplied by 34. The

multiplicand has been written above the lattice and the multiplier appears

to the left, with the partial products occupying the square cells. Digits in

the diagonal rows are added, and the product 15,504 is read off at the

bottom and the right. To indicate that other arrangements are possible, a

second example is given in Fig. 12.4, in which the multiplicand 537 is placed

at the top, the multiplier 24 is on the right, and the product 12,888 appears

to the left and along the bottom. Still other modifications are easily devised.

In fundamental principle gelosia multiplication is, of course, the same as

our own, the cell arrangement being merely a convenient device for re-

lieving the mental concentration called for in "carrying over" from place

to place the tens arising in the partial products. The only "carrying"

required in lattice multiplication is in the final additions along the diag-

onals.

4 5 6 5 3 7

4
\ 6

1 \
\
2\

\ 4

2 \
4 1

2

1 /
/ °

/
/ 6

1 /
/A

3
\ 2

1 \
\ 5 \ 8

l\
2// 1 // 2

2// 8

1 5 5

FIG. 12.3

8 8 8

FIG. 12.4



LONG DIVISION 217

||
€TAlfi frcRrrsMfv* 2 Ofl 3

Galley division, sixteenth century. From an unpublished manuscript of a Venetian monk. The
title of the work is "Opus Arithmeticd D. Honorati veneti monachj coenobij S. Lauretig."

From Mr. Plimpton's library.

LONG DIVISION

It is not known when or where gelosia multiplication arose, but India seems

to be the most likely source. It was used there at least by the twelfth

century, and from India it seems to have been carried to China and Arabia.

From the Arabs it passed over to Italy in the fourteenth and fifteenth

centuries, where the name gelosia was attached to it because of the resem-

blance to gratings placed before windows in Venice and elsewhere. (The

current word jalousie seems to stem from the Italian gelosia and is used

for Venetian blinds in France, Germany, Holland, and Russia.) The Arabs

(and through them the later Europeans) appear to have adopted most of

their arithmetic devices from the Hindus, and so it is likely that the pattern

of long division known as the "scratch method" or the "galley method"
(from its resemblance to a boat) came also from India. (See illustration.)

To illustrate the method, let it be required to divide 44,977 by 382. In Fig.

12.5 we give the modern method, in Fig. 12.6 the galley method. The latter
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parallels the former closely except that the dividend appears in the middle,

for subtractions are performed by canceling digits and placing differences

above rather than below the minuends. Hence, the remainder, 283, appears

above and to the right, rather than below.

117
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The process in Fig. 12.6 is easy to follow if we note that the digits in a

given subtrahend, such as 2674, or in a given difference, such as 2957, are

not necessarily all in the same row and that subtrahends are written below

the middle and differences above the middle. Position in a column is sig-

nificant, but not position in a row. The determination of roots of numbers

probably followed a somewhat similar "galley" pattern, coupled in the

later years with the binomial theorem in "Pascal triangle" form; but Hindu

writers did not provide explanations for their calculations or proofs for

their statements. It is possible that Babylonian and Chinese influences

played a role in the problem of evolution or root extraction. It is often

said that the "proof by nines," or the "casting out of nines," is a Hindu

invention, but it appears that the Greeks knew earlier of this property,

without using it extensively, and that the method came into common use

only with the Arabs of the eleventh century.

BRAHMAGUPTA

The last few paragraphs may leave the unwarranted impression that there

was a uniformity in Hindu mathematics, for frequently we have localized

developments as merely "of Indian origin," without specifying the period.

The trouble is that there is a high degree of uncertainty in Hindu chro-

nology. Material in the important Bakshali manuscript, containing an anon-

ymous arithmetic, is supposed by some to date from the third or fourth

century, by others from the sixth century, by others from the eighth or

ninth century or later; and there is a suggestion that it may not even be

of Hindu origin. We have placed the work of Aryabhata around the year
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500, but the date is doubtful since there were two mathematicians named
Aryabhata and we cannot with certainty ascribe results to our Aryabhata,

the elder. Hindu mathematics presents more historical problems than does

Greek mathematics, for Indian authors referred to predecessors infre-

quently, and they exhibited surprising independence in mathematical ap-

proach. Thus it is that Brahmagupta (fl. 628), who lived in Central India

somewhat more than a century after Aryabhata, has little in common with

his predecessor, who had lived in eastern India. Brahmagupta mentions

two values of n—the "practical value" 3 and the "neat value" Vlo—but

not the more accurate value of Aryabhata; in the trigonometry of his best-

known work, the Brahmasphuta Siddhanta, he adopted a radius of 3270

instead of Aryabhata's 3438. In one respect he does resemble his prede-

cessor—in the juxtaposition of good and bad results. He found the "gross"

area of an isosceles triangle by multiplying half the base by one of the

equal sides; for the scalene triangle with base fourteen and sides thirteen

and fifteen he found the "gross area" by multiplying half the base by the

arithmetic mean of the other sides. In finding the "exact" area he utilized

the Archimedean-Heronian formula. For the radius of the circle circum-

scribed about a triangle he gave the equivalent of the correct trigonometric

result 2R = a/sin A = b/sin B = c/sin C, but this, of course, is only a

reformulation of a result known to Ptolemy in the language of chords.

Perhaps the most beautiful result in Brahmagupta's work is the generali-

zation of "Heron's" formula in finding the area of a quadrilateral. This

formula,

K = V(s - a)(s - b)(s - c)(s - d),

where a, b, c, d are the sides and s is the semiperimeter, still bears his

name; but the glory of his achievement is dimmed by failure to remark

that the formula is correct only in the case of a cyclic quadrilateral. The

correct formula for an arbitrary quadrilateral is

K = V(s - a)(s - b)(s - c)(s - d) - abed cos2 a,

where a is half the sum of two opposite angles. As a rule for the "gross"

area of a quadrilateral Brahmagupta gave the pre-Hellenic formula, the

product of the arithmetic means of the opposite sides. For the quadrilateral

with sides a = 25, b = 25, c = 25, d = 39, for example, he found a

"gross" area of 800.

BRAHMAGUPTA'S FORMULA

Brahmagupta's contributions to algebra are of a higher order than are his

rules of mensuration, for here we find general solutions of quadratic equa-

tions, including two roots even in cases in which one of them is negative.
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The systematized arithmetic of negative numbers and zero is, in fact, first

found in his work. The equivalents of rules on negative magnitudes were
known through the Greek geometric theorems on subtraction, such as

(a - b)(e - d) = ac + bd - ad - be, but the Hindus converted these

into numerical rules on positive and negative numbers. Moreover, although

the Greeks had a concept of nothingness, they never interpreted this as a

number, as did the Hindus. However, here again Brahmagupta spoiled

matters somewhat by asserting that 0-^0 = 0, and on the touchy matter

of a * 0, for a ^ 0, he did not commit himself:

Positive divided by positive, or negative by negative, is affirmative. Cipher

divided by cipher is naught. Positive divided by negative is negative. Negative

divided by affirmative is negative. Positive or negative divided by cipher is

a fraction with that for denominator [Colebrook 1817, Vol. I].

It should be mentioned also that the Hindus, unlike the Greeks, re-

garded irrational roots of numbers as numbers. This was of enormous help

in algebra, and Indian mathematicians have been much praised for taking

this step; but one must remember that the Hindu contribution in this case

was the result of logical innocence rather than of mathematical insight. We
have seen the lack of nice distinction on the part of Hindu mathematicians

between exact and inexact results, and it was only natural that they should

not have taken seriously the difference between commensurable and in-

commensurable magnitudes. For them there was no impediment to the

acceptance of irrational numbers, and later generations followed their lead

uncritically until in the nineteenth century mathematicians established the

real number system on a sound basis.

Indian mathematics was, as we have said, a mixture of good and bad.

But some of the good was superlatively good, and here Brahmagupta

deserves high praise. Hindu algebra is especially noteworthy in its devel-

opment of indeterminate analysis, to which Brahmagupta made several

contributions. For one thing, in his work we find a rule for the formation

of Pythagorean triads expressed in the form m, \{m 2ln - n), \(m 2ln +

n); but this is only a modified form of the old Babylonian rule, with which

he may have become familiar. Brahmagupta's area formula for a quadri-

lateral, mentioned above, was used by him in conjunction with the formulas

V(ab + cd)(ac + bd)l(ad + be) and V(ac + bd)(ad + be)/(ab + cd)

for the diagonals to find quadrilaterals whose sides, diagonals, and areas

are all rational. Among them was the quadrilateral with sides a = 52,

b = 25, c = 39, d = 60, and diagonals 63 and 56. Brahmagupta gave the

"gross" area as 1933}, despite the fact that his formula provides the exact

area, 1764 in this case.
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INDETERMINATE EQUATIONS

Like many of his countrymen, Brahmagupta evidently loved mathematics

for its own sake, for no practical-minded engineer would raise questions

such as those Brahmagupta asked about quadrilaterals. One admires his

mathematical attitude even more when one finds that apparently he was

the first one to give a general solution of the linear Diophantine equation

ax + by = c, where a, b, and c are integers. For this equation to have

integral solutions, the greatest common divisor of a and b must divide c;

and Brahmagupta knew that if a and b are relatively prime, all solutions

of the equation are given by x = p + mb, v = q — ma, where m is an

arbitrary integer. He suggested also the Diophantine quadratic equation

x2 = 1 + py
2

, named mistakenly for John Pell (1611-1685), but first

appearing in the Archimedean cattle problem. The Pell equation was solved

for some cases by Brahmagupta's countryman Bhaskara (1114-ca. 1185).

It is greatly to the credit of Brahmagupta that he gave all integral so-

lutions of the linear Diophantine equation, whereas Diophantus himself

had been satisfied to give one particular solution of an indeterminate equa-

tion. Inasmuch as Brahmagupta used some of the same examples as Dio-

phantus, we see again the likelihood of Greek influence in India—or the

possibility that they both made use of a common source, possibly from

Babylonia. It is interesting to note also that the algebra of Brahmagupta,

like that of Diophantus, was syncopated. Addition was indicated by jux-

taposition, subtraction by placing a dot over the subtrahend, and division

by placing the divisor below the dividend, as in our fractional notation but

without the bar. The operations of multiplication and evolution (the taking

of roots), as well as unknown quantities, were represented by abbreviations

of appropriate words.

BHASKARA

India produced a number of later Medieval mathematicians, but we shall

describe the work of only one of these—Bhaskara (1114-ca. 1185), the

leading mathematician of the twelfth century. It was he who filled some

of the gaps in Brahmagupta's work, as by giving a general solution of the

Pell equation and by considering the problem of division by zero. Aristotle

once had remarked that there is no ratio by which a number such as four

exceeds the number zero; but the arithmetic of zero had not been part of

Greek mathematics, and Brahmagupta had been noncommittal on the

division of a number other than zero by the number zero. It is, therefore,

in Bhaskara's Vija-Ganita that we find the first statement that such a quo-

tient is infinite.
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Statement: Dividend 3. Divisor 0. Quotient the fraction 3/0. This fraction

of which the denominator is cipher, is termed an infinite quantity. In this

quantity consisting of that which has cipher for a divisor, there is no alteration,

though many be inserted or extracted; as no change takes place in the infinite

and immutable God.

This statement sounds promising, but lack of clear understanding of the

situation is suggested by Bhaskara's further assertion that a/0 • = a.

Bhaskara was the last significant Medieval mathematician from India,

and his work represents the culmination of earlier Hindu contributions. In

his best-known treatise, the Lilavati, he compiled problems from Brah-

magupta and others, adding new observations of his own. The very title

of this book may be taken to indicate the uneven quality of Hindu thought,

for the name in the title is that of Bhaskara's daughter who, according to

legend, lost the opportunity to marry because of her father's confidence

in his astrological predictions. Bhaskara had calculated that his daughter

might propitiously marry only at one particular hour on a given day. On
what was to have been her wedding day the eager girl was bending over

the water clock, as the hour for the marriage approached, when a pearl

from her headdress fell, quite unnoticed, and stopped the outflow of water.

Before the mishap was noted, the propitious hour had passed. To console

the unhappy girl, the father gave her name to the book we are describing.

THE LILAVATI

The Lilavati, like the Vija-Ganita, contains numerous problems dealing

with favorite Hindu topics: linear and quadratic equations, both deter-

minate and indeterminate, simple mensuration, arithmetic and geometric

progressions, surds, Pythagorean triads, and others. The "broken bamboo"
problem, popular in China (and included also by Brahmagupta), appears

in the following form: If a bamboo 32 cubits high is broken by the wind

so that the tip meets the ground 16 cubits from the base, at what height

above the ground was it broken? Also making use of the Pythagorean

theorem is the following problem: A peacock is perched atop a pillar at

the base of which is a snake's hole. Seeing the snake at a distance from

the pillar which is three times the height of the pillar, the peacock pounced

upon the snake in a straight line before it could reach its hole. If the

peacock and the snake had gone equal distances, how many cubits from

the hole did they meet?

These two problems illustrate well the heterogeneous nature of the

Lilavati, for despite their apparent similarity and the fact that only a single

answer is required, one of the problems is determinate and the other is

indeterminate. In treating of the circle and the sphere the Lilavati fails

also to distinguish between exact and approximate statements. The area
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of the circle is correctly given as one quarter the circumference multiplied

by the diameter and the volume of the sphere as one sixth the product of

the surface area and the diameter, but for the ratio of circumference to

diameter in a circle Bhaskara suggests either 3927 to 1250 or the "gross"

value 22/7. The former is equivalent to the ratio mentioned, but not used,

by Aryabhata. There is no hint in Bhaskara or other Hindu writers that

they were aware that all ratios that had been proposed were approximations

only. However, Bhaskara severely condemns his predecessors for using

the formulas of Brahmagupta for the area and diagonals of a general

quadrilateral, because he saw that a quadrilateral is not uniquely deter-

mined by its sides. Evidently he did not realize that the formulas are indeed

exact for all cyclic quadrilaterals.

Many of Bhaskara's problems in the Lilavati and the Vija-Ganita evi-

dently were derived from earlier Hindu sources; hence, it is no surprise to

note that the author is at his best in dealing with indeterminate analysis.

In connection with the Pell equation, x 2 = 1 + py
2

, proposed earlier by

Brahmagupta, Bhaskara gave particular solutions for the five cases p =

8, 11, 32, 61, and 67. For x 2 = 1 + 61y
2

, for example, he gave the solution

x = 1,776,319,049 and v = 22,615,390. This is an impressive feat in cal-

culation, and its verification alone will tax the efforts of the reader.

Bhaskara's books are replete with other instances of Diophantine prob-

lems.

RAMANUJAN

Bhaskara died toward the end of the twelfth century, and for several

hundred years there were few mathematicians in India of comparable stat-

ure. It is of interest to note, nevertheless, that Srinivasa Ramanujan (1887-

1920), the twentieth-century Hindu genius, had the same uncanny manip-

ulative ability in arithmetic and algebra that is found in Bhaskara. The

British mathematician G. H. Hardy once visited Ramanujan in a hospital

at Putney and mentioned to his ill friend that he had arrived in a taxi with

the dull number 1729, whereupon Ramanujan without hesitation pointed

out that this number is indeed interesting, for it is the least integer that

can be represented in two different ways as the sum of two cubes: l
3 +

12 3 = 1729 = 9 3 + 103
. In Ramanujan's work we note also the disorganized

character, the strength of intuitive reasoning, and the disregard for ge-

ometry that stood out so clearly in his predecessors. Although in Rama-

nujan these characteristics had perhaps developed largely because he was

self-taught, we cannot help but see how strikingly different the development

of mathematics in India has been from that in Greece. Even when the

Hindus borrowed from their neighbors, they fashioned the material in their

own peculiar manner. Although in attitude and interests they had more in
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common with the Chinese, they did not share the latter's fascination with

accurate approximations, such as led to Horner's method. And although

they shared with the Mesopotamians a preponderate^ algebraic view, they

tended to avoid sexagesimal numeration. In short, the eclectic Hindu math-

ematicians adopted and developed only such aspects as appealed to them.

In one respect it was unfortunate that their first love should have been

theory of numbers in general, and indeterminate analysis in particular, for

it was not from these aspects that later developments in mathematics grew.

Analytic geometry and calculus had Greek rather than Indian roots, and

European algebra came from the Islamic countries rather than India.

Nevertheless, in modern mathematics there are at least two reminders that

mathematics owes its development to India, as well as to many other lands.

The trigonometry of the sine function came presumably from India; our

own system of numeration for integers is appropriately called the Hindu-

Arabic system to indicate its probable origin in India and its transmission

through Arabia.



13

The Arabic Hegemony

Ah, but my Computations, People say. Have squared the Year to human
Compass, eh? If so, by striking from the Calendar Unborn To-morrow, and dead

Yesterday.

Omar Khayyam (Rubaiyat in the FitzGerald version)

ARABIC CONQUESTS

At the time that Brahmagupta was writing, the Sabean Empire of Arabia

Felix had fallen and the peninsula was in a severe crisis. It was inhabited

largely by desert nomads, known as Bedouins, who could neither read nor

write; among them was the prophet Mohammed, born at Mecca in about

570. During his journeys Mohammed came in contact with Jews and Chris-

tians, and the amalgam of religious feelings that were raised in his mind

led him to regard himself as the apostle of God sent to lead his people.

For some ten years he preached at Mecca, but in 622, faced by a plot on

his life, he accepted an invitation to Medina. This "flight," known as the

Hegira, marked the beginning of the Mohammedan era—one that was to

exert a strong influence on the development of mathematics. Mohammed
now became a military as well as a religious leader. Ten years later he had

established a Mohammedan state, with center at Mecca, within which Jews

and Christians, being also monotheistic, were afforded protection and free-

dom of worship. In 632, while planning to move against the Byzantine

Empire, Mohammed died at Medina. His sudden death in no way impeded

225
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the expansion of the Islamic state, for his followers overran neighboring

territories with astonishing rapidity. Within a few years Damascus and

Jerusalem and much of the Mesopotamian Valley fell to the conquerors;

by 641 Alexandria, which for many years had been the mathematical center

of the world, was captured. There is a legend that the leader of the vic-

torious troops, having asked what was to be done with the books in the

library, was told to burn them; for if they were in agreement with the

Koran they were superfluous, if they were in disagreement they were worse

than superfluous. However, stories that the baths were long heated by the

fires of burning books undoubtedly are exaggerated. Following depreda-

tions by earlier military and religious fanatics, and long ages of sheer

neglect, there probably were relatively few books in the library that once

had been the greatest in the world.

For more than a century the Arab conquerors fought among themselves

and with their enemies, until by about 750 the warlike spirit subsided. By
this time a schism had arisen between the western Arabs in Morocco and

the eastern Arabs who, under the caliph al-Mansur, had established a new
capital at Baghdad, a city that was shortly to become the new center for

mathematics. However, the caliph at Baghdad could not command the

allegiance even of all Moslems in the eastern half of his empire, although

his name appeared on coins of the realm and was included in the prayers

of his "subjects." The unity of the Arab world, in other words, was more
economic and religious than it was political. Arabic was not necessarily

the common language, although it was a kind of lingua franca for intel-

lectuals. Hence, it might be more appropriate to speak of the culture as

Islamic rather than Arabic, although we shall use the terms more or less

interchangeably.

During the first century of the Arabic conquests there had been political

and intellectual confusion, and possibly this accounts for the difficulty in

localizing the origin of the modern system of numeration. The Arabs were

at first without intellectual interest, and they had little culture, beyond a

language, to impose on the peoples they conquered. In this respect we see

a repetition of the situation when Rome conquered Greece, of which it

was said that, in a cultural sense, captive Greece took captive the captor

Rome. By about 750 the Arabs were ready to have history repeat itself,

for the conquerors became eager to absorb the learning of the civilizations

they had overrun. By 766 we learn that an astronomical-mathematical

work, known to the Arabs as the Sindhind, was brought to Baghdad from

India. It is generally thought that this was the Brahmasphuta Siddhanta,

although it may have been the Surya Siddhanta. A few years later, perhaps

about 775, this Siddhanta was translated into Arabic, and it was not long

afterward (ca. 780) that Ptolemy's astrological Tetrabiblos was translated

into Arabic from the Greek. Alchemy and astrology were among the first

studies to appeal to the dawning intellectual interests of the conquerors.
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The "Arabic miracle" lies not so much in the rapidity with which the

political empire rose as in the alacrity with which, their tastes once aroused,

the Arabs absorbed the learning of their neighbors.

THE HOUSE OF WISDOM

The first century of the Muslim empire had been devoid of scientific

achievement. This period (from about 650 to 750) had been, in fact, perhaps

the nadir in the development of mathematics, for the Arabs had not yet

achieved intellectual drive, and concern for learning in other parts of the

world had pretty much faded. Had it not been for the sudden cultural

awakening in Islam during the second half of the eighth century, consid-

erably more of ancient science and mathematics would have been lost. To
Baghdad at that time were called scholars from Syria, Iran, and Meso-

potamia, including Jews and Nestorian Christians; under three great Ab-
basid patrons of learning—al-Mansur, Haroun al-Raschid, and al-Ma-

mun—the city became a new Alexandria. During the reign of the second

of these caliphs, familiar to us today through the Arabian Nights, part of

Euclid was translated. It was during the caliphate of al-Mamun (809-833),

however, that the Arabs fully indulged their passion for translation. The
caliph is said to have had a dream in which Aristotle appeared, and as a

consequence al-Mamun determined to have Arabic versions made of all

the Greek works he could lay his hands on, including Ptolemy's Almagest

and a complete version of Euclid's Elements. From the Byzantine Empire,

with which the Arabs maintained an uneasy peace, Greek manuscripts

were obtained through treaties.

Al-Mamun established at Baghdad a "House of Wisdom" (Bait al-hikma)

comparable to the ancient Museum at Alexandria. Among the faculty

members was a mathematician and astronomer, Mohammed ibn-Musa al-

Khwarizmi, whose name, like that of Euclid, later was to become a house-

hold word in Western Europe. This scholar, who died sometime before

850, wrote more than half a dozen astronomical and mathematical works,

of which the earliest were probably based on the Sindhind derived from

India. Besides astronomical tables, and treatises on the astrolabe and the

sundial, al-Khwarizmi wrote two books on arithmetic and algebra which

played very important roles in the history of mathematics. One of these

survives only in a unique copy of a Latin translation with the title De
numero indorum (Concerning the Hindu Art of Reckoning), the original

Arabic version having since been lost. In this work, based presumably on

an Arabic translation of Brahmagupta, al-Khwarizmi gave so full an ac-

count of the Hindu numerals that he probably is responsible for the wide-

spread but false impression that our system of numeration is Arabic in

origin. Al-Khwarizmi made no claim to originality in connection with the
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system, the Hindu source of which he assumed as a matter of course; but

when subsequently Latin translations of his work appeared in Europe,

careless readers began to attribute not only the book but also the numer-

ation to the author. The new notation came to be known as that of al-

Khwarizmi, or more carelessly, algorismi; ultimately the scheme of nu-

meration making use of the Hindu numerals came to be called simply

algorism or algorithm, a word that, originally derived from the name al-

Khwarizmi, now means, more generally, any peculiar rule of procedure or

operation—such as the Euclidean method for finding the greatest common
divisor.

AL-JABR

Through his arithmetic, al-Khwarizmi's name has become a common Eng-

lish word; through the title of his most important book, Al-jabr wa'l

muqabalah, he has supplied us with an even more popular household term.

From this title has come the word algebra, for it is from this book that

Europe later learned the branch of mathematics bearing this name. Dio-

phantus sometimes is called "the father of algebra," but this title more

appropriately belongs to al-Khwarizmi. It is true that in two respects the

work of al-Khwarizmi represented a retrogression from that of Diophantus.

First, it is on a far more elementary level than that found in the Diophantine

problems and, second, the algebra of al-Khwarizmi is thoroughly rhetorical,

with none of the syncopation found in the Greek Arithmetica or in Brah-

magupta's work. Even numbers were written out in words rather than

symbols! It is quite unlikely that al-Khwarizmi knew of the work of Dio-

phantus, but he must have been familiar with at least the astronomical and

computational portions of Brahmagupta; yet neither al-Khwarizmi nor other

Arabic scholars made use of syncopation or of negative numbers. Never-

theless, the Al-jabr comes closer to the elementary algebra of today than

the works of either Diophantus or Brahmagupta, for the book is not con-

cerned with difficult problems in indeterminate analysis but with a straight-

forward and elementary exposition of the solution of equations, especially

of second degree. The Arabs in general loved a good clear argument from

premise to conclusion, as well as systematic organization—respects in which

neither Diophantus nor the Hindus excelled. The Hindus were strong in

association and analogy, in intuition and an aesthetic and imaginative flair,

whereas the Arabs were more practical-minded and down-to-earth in their

approach to mathematics.

The Al-jabr has come down to us in two versions, Latin and Arabic,

but in the Latin translation. Liber algebrae et almucabala, a considerable

portion of the Arabic draft is missing. The Latin, for example, has no

preface, perhaps because the author's preface in Arabic gave fulsome praise
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to Mohammed, the prophet, and to al-Mamun, "the Commander of the

Faithful." Al-Khwarizmi wrote that the latter had encouraged him to

. . . compose a short work on Calculating by (the rules of) Completion and

Reduction, confining it to what is easiest and most useful in arithmetic, such

as men constantly require in cases of inheritance, legacies, partitions, law-

suits, and trade, and in all their dealings with one another, or where the

measuring of lands, the digging of canals, geometrical computation, and other

objects of various sorts and kinds are concerned [Karpinski, 1915, p. 96].

It is not certain just what the terms al-jabr and muqabalah mean, but

the usual interpretation is similar to that implied in the translation above.

The word al-jabr presumably meant something like "restoration" or "com-

pletion" and seems to refer to the transposition of subtracted terms to the

other side of an equation; the word muqabalah is said to refer to "reduc-

tion" or "balancing"—that is, the cancellation of like terms on opposite

sides of the equation. Arabic influence in Spain long after the time of al-

Khwarizmi is found in Don Quixote, where the word algebrista is used for

a bone-setter, that is, a "restorer."

QUADRATIC EQUATIONS

The Latin translation of al-Khwarizmi's Algebra opens with a brief intro-

ductory statement of the positional principle for numbers and then proceeds

to the solution, in six short chapters, of the six types of equations made
up of the three kinds of quantities: roots, squares, and numbers (that is,

jc, x 2
, and numbers). Chapter I, in three short paragraphs, covers the

case of squares equal to roots, expressed in modern notation as x 2 = 5x,

x 2
/3 = 4jc, and 5x 2 = IOjc, giving the answers x = 5, x = 12, and x = 2

respectively. (The root x = was not recognized.) Chapter II covers the

case of squares equal to numbers, and Chapter III solves the case of roots

equal to numbers, again with three illustrations per chapter to cover the

cases in which the coefficient of the variable term is equal to, more than,

or less than one. Chapters IV, V, and VI are more interesting, for they

cover in turn the three classical cases of three-term quadratic equations:

(1) squares and roots equal to numbers, (2) squares and numbers equal to

roots, and (3) roots and numbers equal to squares. The solutions are "cook-

book" rules for "completing the square" applied to specific instances.

Chapter IV, for example, includes the three illustrations x 2 + 10* = 39,

2x 2 + IOjc = 48, and \x 2 + 5x = 28. In each case only the positive answer

is given. In Chapter V only a single example, x 2 + 21 = 10*, is used; but

both roots, 3 and 7, are given, corresponding to the rule x = 5 +
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V25 - 21. Al-Khwarizmi here calls attention to the fact that what we
designate as the discriminant must be positive:

You ought to understand also that when you take the half of the roots in

this form of equation and then multiply the half by itself; if that which
proceeds or results from the multiplication is less than the units above-

mentioned as accompanying the square, you have an equation.

In Chapter VI the author again uses only a single example, 3x + 4 =

* 2
, for whenever the coefficient of x 2

is not unity, the author reminds one
to divide first by this coefficient (as in Chapter IV). Once more the steps

in completing the square are meticulously indicated, without
j
ustification ,

the procedure being equivalent to the solution x = IJ + V(li) 2 + 4.

Again only one root is given, for the other is negative.

THE FATHER OF ALGEBRA

The six cases of equations given above exhaust all possibilities for linear

and quadratic equations having a positive root. So systematic and exhaus-

tive was al-Khwarizmi's exposition that his readers must have had little

difficulty in mastering the solutions. In this sense, then, al-Khwarizmi is

entitled to be known as "the father of algebra." However, no branch of

mathematics springs up fully grown, and we cannot help but ask where the

inspiration for Arabic algebra came from. To this question no categorical

answer can be given; but the arbitrariness of the rules and the strictly

numerical form of the six chapters remind us of ancient Babylonian and

medieval Indian mathematics. The exclusion of indeterminate analysis, a

favorite Hindu topic, and the avoidance of any syncopation, such as is

found in Brahmagupta, might suggest Mesopotamia as more likely a source

than India. As we read beyond the sixth chapter, however, an entirely new

light is thrown on the question. Al-Khwarizmi continued:

We have said enough so far as numbers are concerned, about the six types

of equations. Now, however, it is necessary that we should demonstrate

geometrically the truth of the same problems which we have explained in

numbers.

The ring in this passage is obviously Greek rather than Babylonian or

Indian. There are, therefore, three main schools of thought on the origin

of Arabic algebra: one emphasizes Hindu influences, another stresses the

Mesopotamian, or Syriac-Persian, tradition, and the third points to Greek
inspiration. The truth is probably approached if we combine the three

theories. The philosophers of Islam admired Aristotle to the point of aping

him, but eclectic Mohammedan mathematicians seem to have chosen ap-

propriate elements from various sources.
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GEOMETRIC FOUNDATION

The Algebra of al-Khwarizmi betrays unmistakable Hellenic elements, but

the first geometric demonstrations have little in common with classical

Greek mathematics. For the equation x2 + 10* = 39 al-Khwarizmi drew
a square ab to represent * 2

, and on the four sides of this square he placed
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FIG. 13.1

rectangles c, d, e, and /, each 2\ units wide. To complete the larger square,

one must add the four small corner squares (dotted in Fig. 13.1), each of

which has an area of 6\ units. Hence, to "complete the square" we add 4

times 6? units or 25 units, thus obtaining a square of total area 39 +
25 = 64 units (as is clear from the right-hand side of the given equation).

The side of the large square must, therefore, be 8 units, from which we
subtract 2 times 2i, or 5, units to find that x = 3, thus proving that the

answer found in Chapter IV is correct.

h t>
e n

c m

FIG. 13.2

The geometric proofs for Chapters V and VI are somewhat more in-

volved. For the equation x 2 + 21 = IOjc the author draws the square ab

to represent x 2 and the rectangle bg to represent 21 units. Then, the large

rectangle, comprising the square and the rectangle bg, must have an area

equal to IOjc, so that the side ag or hd must be 10 units. If, then, one

bisects hd at e, draws et perpendicular to hd, extends te to c so that tc =
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tg, and completes the squares tclg and cmne (Fig. 13.2), the area tb is equal

to area md. But square d is 25, and the gnomon tenmlg is 21 (since the

gnomon is equal to the rectangle bg). Hence, the square nc is 4, and its

side ec is 2. Inasmuch as ec = be, and since he = 5, we see that x =

hb = 5 - 2 or 3, which proves that the arithmetic solution given in Chapter

V is correct. A modified diagram is given for the root x = 5 -I- 2 = 7,

and an analogous type of figure is used to justify geometrically the result

found algebraically in Chapter VI.

ALGEBRAIC PROBLEMS

A comparison of Fig. 13.2, taken from al-Khwarizmi's Algebra, with dia-

grams found in the Elements of Euclid in connection with Greek geometric

algebra (such as our Fig. 7.7) leads to the inevitable conclusion that Arabic

algebra had much in common with Greek geometry; yet the first, or arith-

metic, part of al-Khwarizmi's Algebra obviously is alien to Greek thought.

What apparently happened in Baghdad was just what one would expect

in a cosmopolitan intellectual center. Arabic scholars had great admiration

for Greek astronomy, mathematics, medicine, and philosophy—subjects

that they mastered as best they could. However, they could scarcely help

but notice that, as the Nestorian Bishop Sebokt had observed when in 662

he first called attention to the nine marvelous digits of the Hindus, "there

are also others who know something." It is probable that al-Khwarizmi

typified the Arabic eclecticism that will so frequently be observed in other

cases. His system of numeration most likely came from India, his systematic

algebraic solution of equations may have been a development from Mes-

opotamia, and the logical geometric framework for his solutions palpably

was derived from Greece.

The Algebra of al-Khwarizmi contains more than the solution of equa-

tions, material that occupies about the first half. There are, for example,

rules for operations on binomial expressions, including products such as

(10 + 2)(10 - 1) and (10 + *)(10 - x). Although the Arabs rejected

negative roots and absolute negative magnitudes, they were familiar with

the rules governing what are now known as signed numbers. There are

also alternative geometric proofs of some of the author's six cases of equa-

tions. Finally, the Algebra includes a wide variety of problems illustrating

the six chapters or cases. As an illustration of the fifth chapter, for example,

al-Khwarizmi asks for the division of ten into two parts in such a way that

"the sum of the products obtained by multiplying each part by itself is

equal to fifty eight." The extant Arabic version, unlike the Latin, includes

also an extended discussion of inheritance problems, such as the following:

A man dies, leaving two sons behind him, and bequeathing one-third of his

capital to a stranger. He leaves ten dirhems of property and a claim of ten

dirhems upon one of the sons.
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The answer is not what one would expect, for the stranger gets only 5

dirhems. According to Arabic law, a son who owes to the estate of his

father an amount greater than the son's portion of the estate retains the

whole sum that he owes, one part being regarded as his share of the estate

and the remainder as a gift from his father. To some extent it seems to

have been the complicated nature of laws governing inheritance that en-

couraged the study of algebra in Arabia.

A PROBLEM FROM HERON

A few of al-Khwarizmi's problems give rather clear evidence of Arabic

dependence on the Babylonian-Heronian stream of mathematics. One of

them presumably was taken directly from Heron, for the figure and di-

mensions are the same. Within an isosceles triangle having sides 10 yards

and base 12 yards (Fig. 13.3) a square is to be inscribed, and the side of

this square is called for. The author of the Algebra first finds through the

Pythagorean theorem that the altitude of the triangle is 8 yards, so that

the area of the triangle is 48 square yards. Calling the side of the square

the "thing," he notes that the square of the "thing" will be found by taking

FIG. 13.3

from the area of the large triangle the areas of the three small triangles

lying outside the square but inside the large triangle. The sum of the areas

of the two lower small triangles he knows to be the product of the "thing"

by six less half the "thing"; and the area of the upper small triangle is the

product of eight less the "thing" by half the "thing." Hence, he is led to

the obvious conclusion that the "thing" is 4i yards—the side of the square.

The chief difference between the form of this problem in Heron and that

of al-Khwarizmi is that Heron had expressed the answer in terms of unit

fractions as 4? 5 to- The similarities are so much more pronounced than

the differences that we may take this case as confirmation of the general

axiom that continuity in the history of mathematics is the rule rather than

the exception. Where a discontinuity seems to arise, we should first consider

the possibility that the apparent saltus may be explained by the loss of

intervening documents.
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ABD AL-HAMID IBN-TURK

The Algebra of al-Khwarizmi usually is regarded as the first work on the

subject, but a recent publication in Turkey raises some question about this.

A manuscript of a work by 'Abd-al-Hamid ibn-Turk, entitled "Logical

Necessities in Mixed Equations/' was part of a book on Al-jabr wal
muqabalah which was evidently very much the same as that by al-Khwar-

izmi and was published at about the same time—possibly even earlier. The
surviving chapters on "Logical Necessities" give precisely the same type

of geometric demonstration as al-Khwarizmi's Algebra and in one case the

same illustrative example x 2 + 21 = IOjc. In one respect 'Abd-al-Hamid's

exposition is more thorough than that of al-Khwarizmi for he gives geo-

metric figures to prove that if the discriminant is negative, a quadratic

equation has no solution. Similarities in the work of the two men and the

systematic organization found in them seem to indicate that algebra in their

day was not so recent a development as has usually been assumed. When
textbooks with a conventional and well-ordered exposition appear simul-

taneously, a subject is likely to be considerably beyond the formative stage.

Successors of al-Khwarizmi were able to say, once a problem had been

reduced to the form of an equation, "Operate according to the rules of

algebra and almucabala." In any case, the survival of al-Khwarizmi's Al-

gebra can be taken to indicate that it was one of the better textbooks typical

of Arabic algebra of the time. It was to algebra what Euclid's Elements

was to geometry—the best elementary exposition available until modern

times—but al-Khwarizmi's work had a serious deficiency that had to be

removed before it could serve its purpose effectively in the modern world:

a symbolic notation had to be developed to replace the rhetorical form.

This step the Arabs never took, except for the replacement of number

words by number signs.

THABIT IBN-QURRA

The ninth century was a glorious one in Arabic mathematics, for it produced

not only al-Khwarizmi in the first half of the century, but also Thabit ibn-

Ourra (826-901) in the second half. If al-Khwarizmi resembled Euclid as

an "elementator," then Thabit is the Arabic equivalent of Pappus, the

commentator on higher mathematics. Thabit was the founder of a school

of translators, especially from Greek and Syriac, and to him we owe an

immense debt for translations into Arabic of works by Euclid, Archimedes,

Apollonius. Ptolemy, and Eutocius. (Note the omission of Diophantus and

Pappus, authors who evidently were not at first known in Arabia, although

the Diophantine Arithmetica became familiar before the end of the tenth

century.) Had it not been for his efforts, the number ofGreek mathematical

works extant today would be smaller. For example, we should have only

the first tour, rather than the first seven, books of Apollonius' Conies.
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Moreover, Thabit had so thoroughly mastered the content of the classics

he translated that he suggested modifications and generalizations. To him

is due a remarkable formula for amicable numbers: If /?, q, and

r are prime numbers, and if they are of the form p = 3 - 2" - 1, q =

3 • 2n ~ x - 1, and r = 9 • 2 2"" 1 - 1, then 2n
pq and 2n

r are amicable

numbers, for each is equal to the sum of the proper divisors of the other.

Like Pappus, he also gave a generalization of the Pythagorean theorem

that is applicable to all triangles, whether right or scalene. If from vertex

A of any triangle ABC one draws lines intersecting BC in points B' and

C such that angles AB'B and AC'C are each equal to angled (Fig. 13.4),

then AB 2 + AC 2 = BC(BB' + CC). Thabit gave no proof of the

theorem, but this is easily supplied through theorems on similar triangles.

In fact, the theorem provides a beautiful generalization of the pinwheel

diagram used by Euclid in the proof of the Pythagorean theorem. If, for

example, angle A is obtuse, then the square on side AB is equal to the

rectangle BB'B"B'", and the square on AC is equal to the rectangle CC'C'C",

where BB" = CC = BC = B"C". That is, the sum of the squares on AB
and AC is the square on BC less the rectangle B'C B'"C" . If angle A is

acute, then the positions of B' and C" are reversed with respect to AP,
where P is the projection of A on BC, and in this case the sum of the

squares on AB and AC is equal to the square on BC increased by the

rectangle B'C'B'C". If A is a right angle, then B' and C coincide with

P, and for this case Thabit's theorem becomes the Pythagorean theorem.

(Thabit did not draw the dotted lines that are shown in Fig. 13.4, but he

did consider the several cases.)

Alternative proofs of the Pythagorean theorem, works on parabolic and

paraboloidal segments, a discussion of magic squares, angle trisections,

and new astronomical theories are among Thabit's further contributions

to scholarship. The Arabs sometimes are described as servile imitators of

the Greeks in science and philosophy, but such accusations are exagger-

r^

FIG. 13.4
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ated. Thabit. tor instance, boldly added a ninth sphere to the eight pre-

vious!) assumed in simplified versions of Aristotelian-Ptolemaic astron-

om\ ; and instead of the Hipparchan precession of the equinoxes in one

direction or sense only, Thabit proposed a "trepidation of the equinoxes"

in a reciprocating type of motion. Such questioning of points in Greek
astronomy may well have been a factor in paving the way for the revolution

in astronomy initiated by Copernicus.

ARABIC NUMERALS

We have mentioned several times that the Arabs were quick to absorb

learning from the neighbors they conquered; it should be noted also that

within the confines of the Arabic empire lived peoples of very varied ethnic

backgrounds: Syrian, Greek, Egyptian, Persian, Turkish, and many others.

Most of them shared a common faith, Islam, although Christians and Jews

were tolerated; very many shared a common language, Arabic, although

Greek and Hebrew were sometimes used. Nevertheless, we should not

expect a high degree of uniformity in learning. There was considerable

factionalism at all times, and it sometimes erupted into conflict. Thabit

himself lived in a pro-Greek community, which opposed him for his pro-

Arabic sympathies. In Arabic mathematics such cultural differences oc-

casionally became quite apparent, as in the works of the tenth- and elev-

enth-century scholars Abu'1-Wefa (940-998) and al-Karkhi (or al-Karagi,

ca. 1029). In some of their works they used the Hindu numerals, which

had reached Arabia through the astronomical Sindhind: at other times they

adopted the Greek alphabetic pattern of numeration (with, of course,

Arabic equivalents for the Greek letters). Ultimately the superior Hindu

numerals won out, but even within the circle of those who used the Indian

numeration, the forms of the numerals differed considerably. Variations

had obviously been prevalent in India, but in Arabia variants were so

striking that there are theories suggesting entirely different origins for forms

used in the eastern and western halves of the Arabic world. Perhaps the

numerals of the Saracens in the east came directly from India, while the

numerals of the Moors in the west were derived from Greek or Roman
forms. More likely the variants were the result of gradual changes taking

place in space and time, for the Arabic numerals of today are strikingly

different from the modern Devanagari (or "divine") numerals still in use

in India. After all, it is the principles within the system of numeration that

are important, and not the specific forms of the numerals. Our numerals

often are known as Arabic, despite the fact that they bear little resemblance

to those now in use in Egypt, Iraq, Syria, Arabia, Iran, and other lands

within the Islamic culture—that is. the forms irriOiVAV. We call our

numerals Arabic because the principles in the two systems are the same
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and because our forms may have been derived from the Arabic. However,
the principles behind the Arabic numerals presumably were derived from

India; hence, it is better to call ours the Hindu or the Hindu-Arabic system

(see illustration).

ARABIC TRIGONOMETRY

As in numeration there was competition between systems of Greek and

Indian origin, so also in astronomical calculations there were at first in

Arabia two types of trigonometry—the Greek geometry of chords, as found

in the Almagest, and the Hindu tables of sines, as derived through the

Sindhind. Here, too, the conflict resulted in triumph for the Hindu aspect,

and most Arabic trigonometry ultimately was built on the sine function.

It was, in fact, again through the Arabs, rather than directly from the

Hindus, that this trigonometry of the sine reached Europe. The astronomy

of al-Battani (ca. 850-929), known in Europe as Albategnius, served as

the primary vehicle of transmission, although Thabit ibn-Qurra seems to
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have used sines somewhat earlier. In a book entitled On the Motion of

the Stars Albategnius gave formulas, such as b = [a sin (90° - ,4)]/sin A
(see Fig. 13.5), in which the sine and versed sine functions appear. By the

time of Abu'1-Wefa, a century later, the tangent function was fairly well

known, so that one could express the above relationship more simply as

a = b tan A. Here one is in more immediate touch with modern trigo-

nometry, for the Arabic tangent function, unlike the Hindu sine function,

generally was given for a unit circle. Moreover, with Abu'1-Wefa trigo-

nometry assumes a more systematic form in which such theorems as double

and half-angle formulas are proved. Although the Hindu sine function had

displaced the Greek chord, it was nevertheless the Almagest of Ptolemy

that motivated the logical arrangement of trigonometric results. The law

of sines had been known to Ptolemy in essence and is implied in the work

of Brahmagupta, but it frequently is attributed to Abu'1-Wefa because of

his clear-cut formulation of the law for spherical triangles. Abu'1-Wefa also

made up a new sine table for angles differing by i°, using the equivalent

of eight decimal places. He contributed also a table of tangents and made
use of all six of the common trigonometric functions, together with relations

among them, but his use of the new functions seems not to have been

followed widely in the medieval period.

Sometimes attempts are made to attribute the functions tangent, cotan-

gent, secant, and cosecant to specific times and even to specific individuals,

but this cannot be done with any assurance. In India and Arabia there had

been a general theory of shadow lengths, as related to a unit of length or

gnomon, for varying solar altitudes. There was no one standard unit of

length for the staff or gnomon used, although a handspan or a man's height

was frequently adopted. The horizontal shadow, for a vertical gnomon of

given length, was what we call the cotangent of the angle of elevation of

the sun. The "reverse shadow''—that is, the shadow cast on a vertical wall

by a stick or gnomon projecting horizontally from the wall—was what

we know as the tangent of the solar elevation. The "hypotenuse of the

shadow"—that is, the distance from the tip of the gnomon to the tip of

the shadow—was the equivalent of the cosecant function; and the "hy-

potenuse of the reverse shadow" played the role of our secant. This shadow

tradition seems to have been well established in Asia by the time of Thabit
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ibn-Qurra, but values of the hypotenuse (secant or cosecant) were seldom
tabulated.

ABU'L-WEFA AND AL-KARKHI

Abu'1-Wefa was a capable algebraist as well as a trigonometer. He com-
mented on al-Khwarizmi's Algebra and translated from the Greek one of

the last great classics—the Arithmetica of Diophantus. His successor al-

Karkhi evidently used this translation to become an Arabic disciple of

Diophantus—but without Diophantine analysis! That is, al-Karkhi was
concerned with the algebra of al-Khwarizmi rather than the indeterminate

analysis of the Hindus; but like Diophantus (and unlike al-Khwarizmi) he

did not limit himself to quadratic equations—despite the fact that he fol-

lowed the Arabic custom of giving geometric proofs for quadratics. In

particular, to al-Karkhi is attributed the first numerical solution of equa-

tions of the form ax2n + bx" = c (only equations with positive roots were

considered), where the Diophantine restriction to rational numbers was
abandoned. It was in just this direction, toward the algebraic solution (in

terms of radicals) of equations of more than second degree, that the early

developments in mathematics in the Renaissance were destined to take

place.

AL-BIRUNI AND ALHAZEN

The time of al-Karkhi—the early eleventh century—was a brilliant era in

the history of Arabic learning, and a number of his contemporaries deserve

brief mention—brief not because they were less capable, but because they

were not primarily mathematicians. Ibn-Sina (980-1037), better known to

the West as Avicenna, was the foremost scholar and scientist in Islam, but

in his encyclopedic interests mathematics played a smaller role than med-

icine and philosophy. He made a translation of Euclid and explained the

casting-out of nines (which consequently is sometimes unwarrantedly at-

tributed to him), but he is better remembered for his application of math-

ematics to astronomy and physics. As Avicenna reconciled Greek learning

with Muslim thought, so his contemporary al-Biruni (973-1048) made the

Arabs—hence us—familiar with Hindu mathematics and culture through

his well-known book entitled India. An indefatigable traveler and a critical

thinker, he gave a sympathetic but candid account, including full descrip-

tions of the Siddhantas and the positional principle of numeration. It is he

who tells us that Archimedes was familiar with Heron's formula and gives

a proof of this and of Brahmagupta's formula, correctly insisting that the

latter applies only to a cyclic quadrilateral. In inscribing a nonagon in a
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circle al-Biruni reduced the problem, through the trigonometric formula

for cos 30, to solving the equation x } = 1 + 3jc, and for this he gave the

approximate solution in sexagesimal fractions as 1;52,15,17,13—equivalent

to more than six-place accuracy. Al-Biruni also gave us, in a chapter on

gnomon lengths, an account of the Hindu shadow reckoning. The boldness

of his thought is illustrated by his discussion of whether or not the earth

rotates on its axis, a question to which he did not give an answer. (Ary-

abhata seems earlier to have suggested a rotating earth at the center of

space.) Al-Biruni contributed also to physics, especially through studies in

specific gravity and the causes of artesian wells; but as a physicist and

mathematician he was excelled by ibn-al-Haitham (ca. 965-1039), known
to the West as Alhazen. The most important treatise written by Alhazen

was the Treasury of Optics, a book which was inspired by work of Ptolemy

on reflection and refraction and which in turn inspired scientists of medieval

and early modern Europe. Among the questions that Alhazen considered

were the structure of the eye, the apparent increase in the size of the moon
when near the horizon, and an estimate, from the observation that twilight

lasts until the sun is 19° below the horizon, of the height of the atmosphere.

The problem of finding the point on a spherical mirror at which light from

a source will be reflected to the eye of an observer is known to this day

as "Alhazen's problem." It is a "solid problem" in the old Greek sense,

solvable by conic sections, a subject with which Alhazen was quite familiar.

He extended Archimedes' results on conoids by finding the volume gen-

erated by revolving about the tangent at the vertex the area bounded by

a parabolic arc and the axis and an ordinate of the parabola.

OMAR KHAYYAM

Arabic mathematics can with some propriety be divided into four parts:

(1) an arithmetic derived presumably from India and based on the principle

of position; (2) an algebra which, although from Greek, Hindu, and Ba-

bylonian sources, nevertheless in Muslim hands assumed a characteristi-

cally new and systematic form; (3) a trigonometry the substance of which

came chiefly from Greece but to which the Arabs applied the Hindu form

and added new functions and formulas; and (4) a geometry which came
from Greece but to which the Arabs contributed generalizations here and

there. In connection with (3) it should be noted tht ibn-Yunus (1T008),

Alhazen's contemporary and fellow countryman (they both lived in Egypt),

introduced the formula 2 cos x cos y = cos (x + y) + cos (x - y). This

is one of the four "product to sum'
1

formulas that in sixteenth-century

Europe served, before the invention of logarithms, to convert products to

sums by the method known as "prosthaphaeresis" (Greek for addition and
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subtraction). In connection with (4) there was a significant contribution

about a century after Alhazen by a man who in the East is known as a

scientist but whom the West recalls as one of the greatest Persian poets.

Omar Khayyam (ca. 1050-1123), the "tent-maker," wrote an Algebra that

went beyond that of al-Khwarizmi to include equations of third degree.

Like his Arabic predecessors, Omar Khayyam provided for quadratic equa-

tions both arithmetic and geometric solutions; for general cubic equations,

he believed (mistakenly, as the sixteenth century later showed), arithmetic

solutions were impossible; hence, he gave only geometric solutions. The
scheme of using intersecting conies to solve cubics had been used earlier

by Menaechmus, Archimedes, and Alhazen, but Omar Khayyam took the

praiseworthy step of generalizing the method to cover all third-degree

equations (having positive roots). When in an earlier work he came across

a cubic equation, he specifically remarked: "This cannot be solved by plane

geometry [i.e., using straightedge and compasses only] since it has a cube

in it. For the solution we need conic sections." (Amir-Moez, 1963, p. 328).

For equations of higher degree than three, Omar Khayyam evidently

did not envision similar geometric methods, for space does not contain

more than three dimensions, "what is called square-square by algebraists

in continuous magnitude is a theoretical fact. It does not exist in reality in

any way." The procedure that Omar Khayyam so tortuously—and so

proudly—applied to cubic equations can be stated with far greater suc-

cinctness in modern notation and concepts as follows. Let the cubic be

jc
3 + ax 2 + b 2x + c

3 = 0. Then, if for x 2
in this equation we substitute

2py, we obtain (recalling that jc
3 = x 2

-x) the result 2pxy + 2apy +
b 2x + c3 = 0. Since the resulting equation represents an hyperbola, and

the equality x 2 = 2py used in the substitution represents a parabola, it is

clear that if the hyperbola and the parabola are sketched on the same set

of coordinate axes, then the abscissas of the points of intersection of the

two curves will be the roots of the cubic equation. Obviously many other

pairs of conic sections can be used in a similar way to solve the cubic.

Our exposition of Omar Khayyam's work does not do justice to his

genius, for, lacking the concept of negative coefficients, he had to break

the problem into many separate cases according as the parameters a, b, c

are positive, negative, or zero. Moreover, he had to specifically identify

his conic sections for each case, for the concept of a general parameter

was not at hand in his day. Not all roots of a given cubic equation were

given, for he did not accept the appropriateness of negative roots and did

not note all intersections of the conic sections. It should be remarked also

that in the earlier Greek geometric solutions of cubic equations the coef-

ficients had been line segments, whereas in the work of Omar Khayyam
they were specific numbers. One of the most fruitful contributions of Arabic

eclecticism was the tendency to close the gap between numerical and geo-

metric algebra. The decisive step in this direction came much later with
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Descartes, but Omar Khayyam was moving in this direction when he wrote,

"Whoever thinks algebra is a trick in obtaining unknowns has thought it

in vain. No attention should be paid to the fact that algebra and geometry
are different in appearance. Algebras are geometric facts which are proved."

In replacing Euclid's theory of proportions by a numerical approach, he
came close to a definition of the irrational and struggled with the concept

of real number in general.

THE PARALLEL POSTULATE

In his Algebra Omar Khayyam wrote that he had set forth elsewhere a

rule that he had discovered for finding fourth, fifth, sixth, and higher powers

of a binomial, but such a work is not extant. It is presumed that he is

referring to the Pascal triangle arrangement, one that seems to have ap-

peared in China at about the same time. Such a coincidence is not easy to

explain, but until further evidence is available, independence of discovery

is to be assumed. Intercommunication between Arabia and China was not

extensive at that time; but there was a silk route connecting China with

Persia, and information might have trickled along it.

The Arabs were clearly more attracted to algebra and trigonometry than

to geometry, but one aspect of geometry held a special fascination for

them—the proof of Euclid's fifth postulate. Even among the Greeks the

attempt to prove the postulate had become virtually a "fourth famous

problem of geometry/' and several Muslim mathematicians continued the

effort. Alhazen had begun with a trirectangular quadrilateral (sometimes

known as "Lambert's quadrangle" in recognition of efforts in the eighteenth

century) and thought that he had proved that the fourth angle must also

be a right angle. From this "theorem" on the quadrilateral the fifth pos-

tulate can easily be shown to follow. In his "proof" Alhazen had assumed

that the locus of a point that moves so as to remain equidistant from a

given line is necessarily a line parallel to the given line—an assumption

shown in modern times to be equivalent to Euclid's postulate. Omar
Khayyam criticized Alhazen's proof on the ground that Aristotle had con-

demned the use of motion in geometry. Omar Khayyam then began with

a quadrilateral the two sides of which are equal and are both perpendicular

to the base (usually known as a "Saccheri quadrilateral," again in recog-

nition of eighteenth-century efforts), and he asked about the other (upper)

angles of the quadrilateral, which necessarily are equal to each other. There

are, of course, three possibilities. The angles may be (1) acute, (2) right,

or (3) obtuse. The first and third possibilities Omar Khayyam ruled out

on the basis of a principle, which he attributed to Aristotle, that two

converging lines must intersect— again an assumption equivalent to Eu-

clid's parallel postulate.
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NASIR EDDIN

When Omar Khayyam died in 1123, Arabic science was in a state of decline.

Excesses of political and religious factionalism—a condition that is well

illustrated by the origin of our word "assassin"—would seem to have been

among the causes of the decline. Islam never again was to reach the schol-

arly level of the glorious age of Avicenna and al-Karkhi, but Muslim con-

tributions did not come to a sudden stop after Omar Khayyam. Both in

the thirteenth century and again in the fifteenth century we find an Arabic

mathematician of note. At Maragha, for example, Nasir Eddin al-Tusi (or

at-Tusi, 1201-1274), astronomer to Hulagu Khan, grandson of the con-

queror Genghis Khan and brother of Kublai Khan, continued efforts to

prove the parallel postulate, starting from the usual three hypotheses on

a Saccheri quadrilateral. His "proof" depends on the following hypothesis,

again equivalent to Euclid's:

If a line u is perpendicular to a line w at A, and if line i; is oblique to w at

B, then the perpendiculars drawn from u upon v are less than AB on the

side on which v makes an acute angle with w and greater on the side on

which v makes an obtuse angle with w.

The views of Nasir Eddin, the last in the sequence of three Arabic pre-

cursors of non-Euclidean geometry, were translated and published by Wal-

lis in the seventeenth century; it appears that this work was the starting

point for the developments by Saccheri in the first third of the eighteenth

century.

Nasir Eddin followed characteristic Arabic interests; hence, he made
contributions also to trigonometry and astronomy. Continuing the work

of Abu'1-Wefa, he was responsible for the first systematic treatise on plane

and spherical trigonometry, treating the material as an independent subject

in its own right and not simply as the handmaid of astronomy, as had been

the case in Greece and India. The six usual trigonometric functions are

used, and rules for solving the various cases of plane and spherical triangles

are given. Unfortunately, the work of Nasir Eddin had limited influence

inasmuch as it did not become well known in Europe. In astronomy, how-

ever, Nasir Eddin made a contribution that may have come to the attention

of Copernicus. The Arabs had adopted theories of both Aristotle and

Ptolemy for the heavens; noticing elements of conflict between the cos-

mologies, they sought to reconcile them and to refine them. In this con-

nection Nasir Eddin observed that a combination of two uniform circular

motions in the usual epicyclic construction can produce a reciprocating

rectilinear motion. That is, if a point moves with uniform circular motion

clockwise around the epicycle while the center of the epicycle moves coun-

terclockwise with half this speed along an equal deferent circle, the point

will describe a straight-line segment. (In other words, if a circle rolls without
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slipping along the inside of a circle whose diameter is twice as great, the

locus of B point on the circumference of the smaller circle will be a diameter

oi the larger circle.) This "theorem of Nasir Eddin" became known to, or

was rediscovered by, Copernicus and Cardan in the sixteenth century.

AL-KASHI

Arabic mathematics continued to decline after Nasir Eddin, but our ac-

count of the Muslim contribution would not be adequate without reference

to the work of a figure in the early fifteenth century. Al-Kashi (t ca. 1436)

found a patron in the prince Ulugh Beg, grandson of the Mongol conqueror

Tamerlane. At Samarkand, where he held his court, Ulugh Beg had built

an observatory, and al-Kashi joined the group of scientists gathered there.

In numerous works, written in Persian and Arabic, al-Kashi contributed

to mathematics and astronomy. Noteworthy is the accuracy of his com-

putations, especially in connection with the solution of equations by Hor-

ner's method, derived perhaps from the Chinese. From China, too, al-

Kashi may have taken the practice of using decimal fractions. Al-Kashi is

an important figure in the history of decimal fractions, and he realized the

significance of his contribution in this respect, regarding himself as the

inventor of decimal fractions. Although to some extent he had had pre-

cursors, he was perhaps the first user of sexagesimal fractions to suggest

that decimals are just as convenient for problems requiring many-place

accuracy. Nevertheless, in his systematic computations of roots he contin-

ued to make use of sexagesimals. In illustrating his method for finding the

nih root of a number, he took the sixth root of the sexagesimal

34,59,1, 7, 14,54,23,3,47,37;40.

This was a prodigious feat of computation, using the steps that we follow

in Horner's method—locating the root, diminishing the roots, and stretch-

ing or multiplying the roots—and using a pattern similar to our synthetic

division.

Al-Kashi evidently delighted in long calculations, and he was justifiably

proud of his approximation of n, which was more accurate than any of the

values given by his predecessors. True to the penchant of the Arabs tor

alternative notations, he expressed his value of 2n in both sexagesimal and

decimal forms. The former—6; 16,59,28,34,51 ,46,15,50— is more reminis-

cent ot the past, and the latter—6.2831853071795865— in a sense presaged

the future use o\ decimal fractions. No mathematician approached the

accuracy in this tour de force of computation until the late sixteenth cen-

tury. (The following mnemonic device will aid in memorizing a good ap-

proximation to n: "How I want a drink, alcoholic of course, after the heavy

lectures involving quantum mechanics." The number of letters in the words
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will provide the values for the successive digits in 3.14159265358979, and

these will be found to be in full agreement with al-Kashi's value for 2n.)

In al-Kashi the binomial theorem in "Pascal triangle" form again appears,

just about a century after its publication in China and about a century

before it was printed in European books.

With the death of al-Kashi in about 1436 we can close the account of

Arabic mathematics, for the cultural collapse of the Muslim world was

more complete than the political disintegration of the empire. The number
of significant Arabic contributors to mathematics before al-Kashi was con-

siderably larger than our exposition would suggest, for we have concen-

trated only on major figures; but after al-Kashi the number is negligible.

It was very fortunate indeed that when Arabic learning began to decline,

scholarship in Europe was on the upgrade and was prepared to accept the

intellectual legacy bequeathed by earlier ages. It is sometimes held that

the Arabs had done little more than to put Greek science into "cold stor-

age" until Europe was ready to accept it. But the account in this chapter

has shown that at least in the case of mathematics the tradition handed

over to the Latin world in the twelfth and thirteenth centuries was richer

than that with which the unlettered Arabic conquerors had come into

contact in the seventh centurv.
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Europe in the

Middle Ages

Neglect of mathematics works injury to all knowledge, since he who is ignorant of

it cannot know the other sciences or the things of this world.

Roger Bacon

FROM ASIA TO EUROPE

Time and history are, of course, seamless wholes, like the continuum of

mathematics, and any subdivision into periods is man's handiwork; but

just as a coordinate framework is useful in geometry, so also the subdivision

of events into periods or eras is convenient in history. For purposes of

political history it has been customary to designate the fall of Rome in 476

as the beginning of the Middle Ages and the fall of Constantinople to the

Turks in 1453 as the end. Disregarding politics, it might be better to close

the ancient period with the year 524, which is both the year of Boethius'

death and the approximate time when the Roman abbot Dionysius Exiguus

proposed the chronology based on the Christian era that has since come

into common use. For the history of mathematics we indicated in Chapter

1 1 a preference for the year 529 as a marker for the beginning of the

medieval period, and we shall somewhat arbitrarily designate the year 1436

as the close.

246
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The date 1436 is the probable year of death of al-Kashi, a very capable

mathematician whom we already have described as somewhat Janus-faced

—

looking back on the old and in some respects anticipating the new. The
year 1436 marks also the birth of another eminent mathematician, Johann
Miiller (1436-1476), better known under the name Regiomontanus, a La-

tinized form of Konigsberg, his place of birth. The year 1436, in other

words, symbolizes the fact that during the Middle Ages those who excelled

in mathematics wrote in Arabic and lived in Islamic Africa and Asia,

whereas during the new age that was dawning the leading mathematicians

wrote in Latin and lived in Christian Europe.

An oversimplified view of the Middle Ages often results from a pre-

dominantly Europe-centered historical account; hence, we remind readers

that five great civilizations, writing in five different tongues, make up the

bulk of the history of medieval mathematics. In the two preceding chapters

we described contributions from China, India, and Arabia, three of the

five leading medieval cultures. In this chapter we look at the mathematics

of the other two: (1) the Eastern or Byzantine Empire, with center at

Constantinople (or Byzantium), in which Greek was the official language;

and (2) the Western or Roman Empire, which had no one center and no

single spoken language, but in which Latin was the lingua franca of scholars.

BYZANTINE MATHEMATICS

When Justinian in 529 closed the pagan philosophical schools at Athens,

the scholars were dispersed, and some of them made permanent homes in

Syria, Persia, and elsewhere. Nonetheless, some of the scholars remained,

and others returned some years later, with the result that there was no

serious hiatus in Greek learning in the Byzantine world. We have men-

tioned briefly the work of several Greek scholars of the sixth century:

Eutocius, Simplicius, Isidore of Miletus, and Anthemius of Tralles. It was

Justinian himself who put the building of Hagia Sophia in charge of the

last two. To the list of Byzantine scholars should also be added the name
of John Philoponus, who flourished at Alexandria in the early sixth century

and was the leading physicist of his age anywhere in the world. Philoponus

argued against the Aristotelian laws of motion and the impossibility of a

vacuum, and he suggested the operation of a kind of inertia principle under

which bodies in motion continued to move. Like Galileo later, he denied

that the speed acquired by a freely falling body is proportional to its weight:

If you let fall from the same height two weights of which one is many times

as heavy as the other, you will see that the ratio of the times required for

the motion does not depend on the ratio of the weights, but that the difference

in time is a very small one [Clagett, 1959, p. 546].



248 EUROPE IN THE MIDDLE AGES

Philoponus was a Christian scientist (as were also perhaps Eutocius and
Anthemius) who was making use of ancient pagan sources and whose ideas

influenced later Islamic thinkers, thus indicating the continuity of the sci-

entific tradition despite religious and political differences.

Philoponus was not primarily a mathematician, but some of his work,

such as his treatise on the astrolabe, can be thought of as applied math-

ematics. Most Byzantine contributions to mathematics were on an ele-

mentary level and consisted chiefly of commentaries on ancient classics.

Byzantine mathematics, far more than Arabic, was a sort of holding action

to preserve as much of antiquity as possible until the West was ready to

carry on. Philoponus aided in this work through his commentary on the

Introduction to Arithmetic of Nicomachus. Neoplatonic thought continued

to exert a strong influence in the Eastern Empire, which accounts for the

popularity of Nicomachus' treatise. Again in the eleventh century it was

the subject of a commentary, this time by Michael Constantine Psellus

(1018-1080?), a philosopher of Athens and Constantinople who counted

among his pupils the Emperor Michael VII. Another of Psellus' works, a

very elementary compendium on the quadrivium, enjoyed quite a vogue

in the West during the sixteenth-century Renaissance period. Two centuries

later we note another Greek summary of the mathematical quadrivium,

this time by Georgios Pachymeres (1242-1316). Such compendia were

significant only in showing that a thin thread of the old Greek tradition

continued in the Eastern Empire to the very end of the medieval period.

Pachymeres wrote also a commentary on the Arithmetic of Diophantus,

as did his contemporary, Maximos Planudes (12557-1310). The latter, a

Greek monk, was ambassador to Venice of the Emperor Andronicus II,

indicating that there was some scholarly contact between the East and the

West. Planudes wrote also a work on the Hindu system of numeration,

which had finally reached the Greek world. In Byzantium, as might have

been anticipated, the alphabetic numerals were not wholly abandoned, for

they have continued to our own day in Greece in legal, administrative,

and ecclesiastical documents. Section LXXVIII of a document, for example

is on (that is, omicron eta) as in Alexandrian days. Moreover, even within

the new Hindu system the Byzantine scholars of the fourteenth century

retained the first nine letters of the old alphabetic scheme, adding to these

a zero symbol, like an inverted h. The number 7890, for example, would

be written as £>70M, a form every bit as convenient as our own. Manuel

Moschopoulos (fl. 1300), a disciple of Planudes, wrote on magic squares,

and the account of Planudes on numeration was commented on by the

arithmetician and geometer Nicholas Rhabdas (t 1350). The latter com-

posed also a work on finger reckoning; but Byzantine mathematics, never

very strong, by this time had become negligible. By the fourteenth century

the Greek world had been clearly surpassed by the Latin world in the West,

to which we now turn.
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THE DARK AGES

Chapter 11 included reference to the Latin treatises of Boethius at the end

of the ancient period, with an indication of their very elementary level.

Even from that level it was possible for mathematics to deteriorate still

further, as we see in the trivial compendium on the liberal arts composed
by Cassiodorus (ca. 480-ca. 575), a disciple of Boethius who spent his last

years in a monastery that he had established. The primitive works of Cas-

siodorus served as textbooks in church schools in the early Middle Ages

and sometimes also as the source for still lower-level books, such as the

Origines or Etymologies of Isidore of Seville (570-636), one book of the

twenty being a brief summary of the arithmetic of Boethius. When we
consider that his contemporaries regarded Isidore as the most learned man
of his time, we can well appreciate the lament of his day that "the study

of letters is dead in our midst." These were truly the "Dark Ages" of

science, but we should not make the mistake of assuming that this was true

of the Middle Ages as a whole. For the next two centuries the gloom

continued to such an extent that it has been said that nothing scholarly

could be heard in Europe but the scratching of the pen of the Venerable

Bede (ca. 673-735) writing in England about the mathematics needed for

the ecclesiastical calendar, or about the representation of numbers by means

of the fingers.

ALCUIN AND GERBERT

Alcuin of York (ca. 735-804) was born the year that Bede died; he was

called by Charlemagne to revitalize education in France, and sufficient

improvement was apparent to lead some historians to speak of a Carolin-

gian Renaissance. Alcuin explained that the act of creation had taken six

days because six was a perfect number; but beyond some arithmetic, ge-

ometry, and astronomy that Alcuin is reputed to have written for beginners,

there was little mathematics in France or England for another two cen-

turies. In Germany Hrabanus Maurus (784-856) continued the slight math-

ematical and astronomical efforts of Bede, especially in connection with

the computation of the date of Easter. But not for another century and a

half was there any notable change in the mathematical climate in Western

Europe, and then it came in the person of one who rose ultimately to

become Pope Sylvester II.

Gerbert (ca. 940-1003) was born in France and educated in Spain and

Italy, and then served in Germany as tutor and later adviser to the Holy

Roman Emperor, Otto III. Having served as archbishop, first at Reims

and later at Ravenna, Gerbert in 999 was elevated to the papacy, taking

the name Sylvester—possibly in recollection of an earlier pope who had
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been noted for scholarship, but more probably because Sylvester I, pope

during the days of Constantine, symbolized the unity of papacy and empire.

Gerberl was active in politics, both lay and ecclesiastical, but he had time

also for educational matters. He wrote on both arithmetic and geometry,

depending probably on the Boethian tradition, which had dominated the

teaching in Western church schools and had not improved! More interesting

than these expository works, however, is the fact that Gerbert was perhaps

the first one in Europe to have taught the use of the Hindu-Arabic nu-

merals. It is not clear how he came in contact with these. A possible

explanation is that when he went to Spain in 967 he came in touch, perhaps

at Barcelona, with Moorish learning, including Arabic numeration with

the Western, or Gobar (dust), forms of the numerals, although there is

little evidence of Arabic influence in extant documents. A Spanish copy

of the Origines of Isidore, dating from 992, contains the numerals, without

the zero, and Gerbert probably never knew of this last part of the Hindu-

Arabic system. In certain manuscripts of Boethius, however, similar nu-

meral forms, or apices, appear as counters for use on a computing board

or abacus; and perhaps it was from these that Gerbert first learned of the

new system. The Boethian apices, on the other hand, may themselves have

been later interpolations. The situation with respect to the introduction of

the numerals into Europe is about as confused as is that surrounding the

invention of the system perhaps half a millennium earlier. Moreover, it is

not clear that there was any continued use of the new numerals in Europe

during the two centuries following Gerbert. Not until the thirteenth century

was the Hindu-Arabic system definitively introduced into Europe, and then

the achievement was not the work of one man but of several.

THE CENTURY OF TRANSLATION

Europe, before and during the time of Gerbert, was not yet ready for

developments in mathematics. The Christian attitude, expressed by Ter-

tullian, had at first been somewhat the same as that of early Islam, cited

with respect to the library at Alexandria. Scientific research, Tertullian

wrote, had become superfluous since the gospel of Jesus Christ had been

received. The time of Gerbert was the high point of Muslim learning, but

contemporary Latin scholars could scarcely have appreciated Arabic trea-

tises if they had learned about them. By the early twelfth century the

situation began to change in a direction reminiscent of the ninth century

in Arabia. One cannot absorb the wisdom of one's neighbors if one cannot

understand their language. The Moslems had broken down the language

barrier to Greek culture in the ninth century, and the Latin Europeans

overcame the language barrier to Arabic learning in the twelfth century.

At the beginning of the twelfth century no European could expect to be
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a mathematician or an astronomer, in any real sense, without a good
knowledge of Arabic; and Europe, during the earlier part of the twelfth

century, could not boast of a mathematician who was not a Moor, a Jew,

or a Greek. By the end of the century the leading and most original

mathematician in the whole world came from Christian Italy. The period

was one of transition from an older to a newer point of view. The revival

began of necessity with a spate of translations. At first these were almost

exclusively from Arabic into Latin, but by the thirteenth century there

were many variants—Arabic to Spanish, Arabic to Hebrew, Greek to

Latin, or combinations such as Arabic to Hebrew to Latin. The Elements

of Euclid was among the earliest of the mathematical classics to appear in

Latin translation from the Arabic, the version being produced in 1142 by

Adelard of Bath (ca. 1075-1160). It is not clear how the Englishman had

come into contact with Muslim learning. There were at the time three chief

bridges between Islam and the Christian world—Spain, Sicily, and the

Eastern Empire—and of these the first was the most important. Adelard,

however, seems not to have been one of the many who made use of the

Spanish intellectual bridge. It is not easy to tell whether the religious

crusades had a positive influence on the transmission of learning, but it is

likely that they disrupted channels of communication more than they fa-

cilitated them. At all events, the channels through Spain and Sicily were

the most important in the twelfth century, and these were largely undis-

turbed by the marauding armies of the crusaders from 1096 to 1272. The

revival of learning in Latin Europe took place during the crusades, but

probably in spite of the crusades.

Adelard's translation of the Elements did not become very influential

for another century, but it was far from an isolated event. Adelard earlier

(1126) had translated al-Khwarizmi's astronomical tables from Arabic into

Latin, and later (ca. 1155) Ptolemy's Almagest from Greek into Latin.

Among the early translators, however, Adelard was an exception in that

he was not one of the large group working in Spain. There, especially at

Toledo, where the archbishop encouraged such work, a veritable school

of translation was developing. The city, once a Visigothic capital and later

in the hands of the Moors for several centuries before falling to the Chris-

tians, was an ideal spot for the transfer of learning. In Toledo libraries

there was a wealth of Muslim manuscripts; and of the populace, including

Christians, Mohammedans, and Jews, many spoke Arabic, facilitating the

interlingual flow of information. The cosmopolitanism of the translators

in Spain is evident from some of the names: Robert of Chester, Hermann

the Dalmatian, Plato of Tivoli, Rudolph of Bruges, Gerard of Cremona,

and John of Seville, the last a converted Jew. These are but a small portion

of the men associated in the translation projects in Spain.

Of the translators in Spain, perhaps the greatest was Gerard of Cremona

(1114-1187). He had gone to Spain to learn Arabic in order to understand
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Ptolemy, but he devoted the rest of his life to translations from the Arabic.

Among these was the translation into Latin of a revised version of Thabit

ibn-Qurra's Arabic of Euclid's Elements, a better piece of work than that

of Adelard. In 1175 Gerard translated the Almagest, and it was chiefly

through this work that Ptolemy came to be known in the West. Translations

of more than eighty-five works are ascribed to Gerard of Cremona, but

only the translation of Ptolemy is dated. Among the works of Gerard was

a Latin adaptation of the Algebra of al-Khwarizmi, but an earlier and more
popular translation of the Algebra had been made in 1145 by Robert of

Chester. This, the first translation of al-Khwarizmi's treatise (as Robert's

translation of the Koran, a few years before, had marked another "first"),

may be taken as marking the beginning of European algebra.

Robert of Chester returned to England in 1150, but the Spanish work

of translation continued unabated through Gerard and others. The works

of al-Khwarizmi evidently were among the more popular subjects of the

time, and the names of Plato of Tivoli and John of Seville are attached to

still other adaptations of the Algebra. Western Europe suddenly took far

more favorably to Arabic mathematics than it ever had to Greek geometry.

Perhaps part of the reason for this is that Arabic arithmetic and algebra

were on a more elementary level than Greek geometry had been during

the days of the Roman republic and empire. However, the Romans had

never displayed much interest in Greek trigonometry, relatively useful and

elementary though it was; yet Latin scholars of the twelfth century de-

voured Arabic trigonometry as it appeared in astronomical works. It was

Robert of Chester's translation from the Arabic that resulted in our word

"sine." The Hindus had given the name jiva to the half-chord in trigo-

nometry, and the Arabs had taken this over as jiba. In the Arabic language

there is also a word jaib meaning "bay" or "inlet." When Robert of Chester

came to translate the technical word jiba, he seems to have confused this

with the v/ord jaib (perhaps because vowels were omitted); hence, he used

the word sinus, the Latin word for "bay" or "inlet." Sometimes the more

specific phrase sinus rectus, or "vertical sine," was used; hence, the phrase

sinus versus, or our "versed sine," was applied to the "sagitta," or the

"sine turned on its side."

It was during the twelfth-century period of translation and the following

century that the confusion arose concerning the name al-Khwarizmi and

led to the word "algorithm," as noted in the preceding chapter. The Hindu

numerals had been explained to Latin readers by Adelard of Bath and

John of Seville at about the same time that an analogous scheme was

introduced to the Jews by Abraham ibn-Ezra (ca. 1090-1167), author of

books on astrology, philosophy, and mathematics. As in the Byzantine

culture the first nine Greek alphabetic numerals, supplemented by a special

zero symbol, took the place of the Hindu numerals, so ibn-Ezra used the

first nine Hebraic alphabetic numerals, and a circle for zero, in the decimal
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positional system for integers. Despite the numerous accounts of the Hindu-

Arabic numerals, the transition from the Roman number scheme was sur-

prisingly slow. Perhaps this was because computation with the abacus was

quite common, and in this case the advantages of the new scheme are not

nearly so apparent as in calculation with pen and paper only. For several

centuries there was keen competition between the '^arists" and the
kk
al-

gorists,
,,

and the latter triumphed definitively only in the sixteenth century.

THE SPREAD OF HINDU-ARABIC NUMERALS

It is sometimes claimed that in the later Middle Ages there were two classes

of mathematicians—those in the church or university schools and those

concerned with trade and commerce—and that rivalries are found between

the two. There seems to be little basis for such a thesis; certainly in the

A woodcut from Gregor Reisch, Margarita Philosophica (Freiburg, 1503). Arithmetic is

instructing the algorist and the abacist, here inaccurately represented by Boethius and

Pythagoras.
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spread of the Hindu-Arabic numerals both groups shared in the dissemi-

nation. Thirteenth-century authors from many walks of life helped to pop-

ularize "algorism," but we shall mention three in particular. One of them,

Alexandre de Villedieu (fl. ca. 1225), was a French Franciscan; another,

John of Halifax (ca. 12(X)-1256), known also as Sacrobosco, was an English

schoolman; and the third was Leonardo of Pisa (ca. 1180-1250), better

known as Fibonacci, or "son of Bonaccio," an Italian merchant. The Car-

men de algorismo of Alexandre is a poem in which the fundamental op-

erations on integers are fully described, using the Hindu-Arabic numerals

and treating zero as a number. The Algorismus vulgaris of Sacrobosco was

a practical account of reckoning that rivaled in popularity his Sphaera, an

elementary tract on astronomy used in the schools throughout the later

Middle Ages. The book in which Fibonacci described the new algorism is

a celebrated classic, completed in 1202, but it bears a misleading title

—

Liber abaci (or Book of the Abacus). It is not on the abacus; it is a very

thorough treatise on algebraic methods and problems in which the use of

the Hindu-Arabic numerals is strongly advocated.

Leonardo's father was a Pisan engaged in business in northern Africa,

and the son studied under a Muslim teacher and traveled in Egypt, Syria,

and Greece. It, therefore, was natural that Fibonacci should have been

steeped in Arabic algebraic methods, including, fortunately, the Hindu-

Arabic numerals and, unfortunately, the rhetorical form of expression.

The Liber abaci opens with an idea that sounds almost modern, but which

was characteristic of both Islamic and Christian medieval thought—that

arithmetic and geometry are connected and support each other. This view

is, of course, reminiscent of al-Khwarizmi's Algebra, but it was equally

accepted in the Latin Boethian tradition. The Liber abaci, nevertheless,

is much more concerned with number than with geometry. It first describes

"the nine Indian figures," together with the sign 0, "which is called ze-

phirum in Arabic." Incidentally, it is from zephirum and its variants that

our words "cipher" and "zero" are derived. Fibonacci's account of Hindu-

Arabic numeration was important in the process of transmission; but it

was not, as we have seen, the first such exposition, nor did it achieve the

popularity of the later but more elementary descriptions by Sacrobosco

and Villedieu. The horizontal bar in fractions, for example, was used reg-

ularly by Fibonacci (and was known before in Arabia), but it was only in

the sixteenth century that it came into general use. (The slanted solidus

was suggested in 1845 by De Morgan.)

THE LIBER ABACI

The Liber abaci is not a rewarding book for the modern reader, for after

explanation of the usual algoristic or arithmetic processes, including the
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extraction of roots, it stresses problems in commercial transactions, using

a complicated system of fractions in computing exchanges of currency. It

is one of the ironies of history that the chief advantage of positional no-

tation—its applicability to fractions—almost entirely escaped the users of

the Hindu-Arabic numerals for the first thousand years of their existence.

In this respect Fibonacci was as much to blame as anyone, for he used

three types of fractions—common, sexagesimal, and unit—but not decimal

fractions. In the Liber abaci, in fact, the two worst of these systems, unit

fractions and common fractions, are extensively used. Moreover, problems

of the following type abound: If 1 solidus imperial, which is 12 deniers

imperial, is sold for 31 deniers Pisan, how many deniers Pisan should one

obtain for 11 deniers imperial? In a recipe type of exposition the answer

is found laboriously to be -ft 28 (or, as we should write it, 28ft). Fibonacci

customarily placed the fractional part or parts of a mixed number before

the integral part. Instead of writing 111, for example, he wrote H 11, with

juxtaposition of unit fractions and integers implying addition.

Fibonacci evidently was fond of unit fractions—or he thought his readers

were—for the Liber abaci includes tables of conversion from common
fractions to unit fractions. The fraction $&, for instance, is broken into too

wo II i, and Tmi appears as ^ H i An unusual quirk in his notation led

him to express the sum of H and Tolas HHo 1, the notation HHo mean-

ing in this case

1 6 2
+

2-9-10 9-10 10

Analogously in another of the many problems on monetary conversion in

the Liber abaci we read that if H of a rotulus is worth H I of a bizantium,

then 8 9 i

7
o of a bizantium is worth 'j

i

8
i

8A \l of a rotulus. Pity the poor

medieval businessman who had to operate with such a system!

THE FIBONACCI SEQUENCE

Much of the Liber abaci makes dull reading, but some of the problems

were so lively that they were used by later writers. Among these is a hardy

perennial which may have been suggested by a similar problem in the

Ahmes papyrus. As expressed by Fibonacci, it read:

Seven old women went to Rome; each woman had seven mules; each mule

carried seven sacks, each sack contained seven loaves; and with each loaf

were seven knives; each knife was put up in seven sheaths.

Without doubt the problem in the Liber abaci that has most inspired
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future mathematicians was the following:

\\o\\ mam pairs of rabbits will be produced in a year, beginning with a single

pair, if in every month each pair bears a new pair which becomes productive

from the second month on?

This celebrated problem gives rise to the "Fibonacci sequence" 1, 1,2,

3, 5, 8, 13, 21 u n where u n = w„_, + w„_ 2 , that is, where each

term after the first two is the sum of the two terms immediately preceding

it. This sequence has been found to have many beautiful and significant

properties. For instance, it can be proved that any two successive terms

are relatively prime and that lim,,^ u n _Jun is the golden section ratio

(V5 - l)/2. The sequence is applicable also to questions in phyllotaxy

and organic growth.

A SOLUTION OF A CUBIC EQUATION

The Liber abaci was Fibonacci's best known book, appearing in another

edition in 1228, but it evidently was not appreciated widely in the schools,

and it did not appear in print until the nineteenth century. Leonardo of

Pisa was without doubt the most original and most capable mathematician

of the medieval Christian world, but much of his work was too advanced

to be understood by his contemporaries. His treatises other than the Liber

abaci also contain many good things. In the Flos, dating from 1225, there

are indeterminate problems reminiscent of Diophantus and determinate

problems reminiscent of Euclid, the Arabs, and the Chinese.

Fibonacci evidently drew from many and varied sources. Especially

interesting for its interplay of algorithm and logic is Fibonacci's treatment

of the cubic equation x } + 2x 2 + 10* = 20. The author showed an attitude

close to that of the modern period in first proving the impossibility of a

root in the Euclidean sense, such as a ratio of integers, or a number of

the form a + Vb, where a and b are rational. As of that time, this meant

that the equation could not be solved exactly by algebraic means. Fibonacci

then went on to express the positive root approximately as a sexagesimal

fraction to half a dozen places— 1;22,7,42,33,4,40. This was a remarkable

achievement, but we do not know how he did it. Perhaps through the

Arabs he had learned what we call "Horner's method," a device known
before this time in China. This is the most accurate European approxi-

mation to an irrational root of an algebraic equation up to that time, or

anywhere in Europe for another 300 years and more. It is characteristic

of the time that Fibonacci should have used sexagesimal fractions in the-

oretical mathematical work but not in mercantile affairs. Perhaps this ex-

plains why the Hindu-Arabic numerals were not promptly used in astro-
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nomical tables, such as the Alfonsine Tables of the thirteenth century.

Where the "Physicists'" (sexagesimal) fractions were in use, there was less

urgency in displacing them than there was in connection with the common
and unit fractions in commerce.

THEORY OF NUMBERS AND GEOMETRY

In 1225 Leonardo of Pisa published not only the Flos, but also the Liber

quadratorum, a brilliant work on indeterminate analysis. This, like Flos,

contains a variety of problems, some of which stemmed from the mathe-

matical contests held at the court of the emperor Frederick II, to which

Fibonacci had been invited. One of the problems proposed strikingly re-

sembles the type in which Diophantus had delighted—to find a rational

number such that if five is added to, or subtracted from, the square of the

number, the result will be the square of a rational number. Both the

problem and a solution, 3A, are given in Liber quadratorum. The book

makes frequent use of the identities

(a
2 + b 2

)(c
2 + d 2

) = (ac + bd) 2 + {be - ad) 2

= (ad + be) 2 + (ac - bd) 2

which had appeared in Diophantus and had been widely used by the Arabs.

Fibonacci, in some of his problems and methods, seems to follow the Arabs

closely.

Fibonacci was primarily an algebraist, but he wrote also, in 1220, a book

entitled Practica geometriae. This seems to be based on an Arabic version

of Euclid's Division of Figures (now lost) and on Heron's works on men-

suration. It contains among other things a proof that the medians of a

triangle divide each other in the ratio 2 to 1, and a three-dimensional

analogue of the Pythagorean theorem. Continuing a Babylonian and Arabic

tendency, he used algebra to solve geometric problems.

JORDANUS NEMORARIUS

It will be clear from the few illustrations we have given that Leonardo of

Pisa was an unusually capable mathematician. It is true that he was without

a worthy rival during the 900 years of medieval European culture, but he

was not quite the isolated figure he is sometimes held to be. He had an

able though less gifted younger contemporary in Jordanus Nemorarius

(date uncertain). Some identify this man with Jordanus Teutonicus or

Jordanus of Saxony, leader of the Dominican Order, who died in 1237. In

any case, our Jordanus Nemorarius, or Jordanus de Nemore, represents

a more Aristotelian aspect of science than others we have met in the
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thirteenth century, and he became the founder of what sometimes is known

as the medieval school of mechanics. To him we owe the first correct

formulation of the law of the inclined plane, a law that the ancients had

sough! in vain: the force along an oblique path is inversely proportional

to the obliquity, where obliquity is measured by the ratio of a given segment

of the oblique path to the amount of the vertical intercepted by that path,

that is, the "run" over the "rise." In the language of trigonometry this

means that F: W = 1/csc 0, which is equivalent of the modern formulation

F = Wsin 9, where Wis weight, Fis force, and is the angle of inclination.

Jordanus was the author of books on arithmetic, geometry, and astron-

omy, as well as mechanics. His Arithmetica in particular was the basis of

popular commentaries at the University of Paris as late as the sixteenth

century; this was not a book on computation, but a quasi-philosophical

work in the tradition of Nicomachus and Boethius. It contains such the-

oretical results as the theorem that any multiple of a perfect number is

abundant and that a divisor of a perfect number is deficient. The Arith-

metica is significant especially for the use of letters instead of numerals as

numbers, thus making possible the statement of general algebraic theo-

rems. In the arithmetical theorems in Euclid's Elements VII-IX, numbers

had been represented by line segments to which letters had been attached,

and the geometric proofs in al-Khwarizmi's Algebra made use of lettered

diagrams; but all coefficients in the equations used in the Algebra are

specific numbers, whether represented by numerals or written out in words.

The idea of generality is implied in al-Khwarizmi's exposition, but he had

no scheme for expressing algebraically the general propositions that are so

readily available in geometry. In the Arithmetica the use of letters suggests

the concept of "parameter"; but Jordanus' successors generally overlooked

his scheme of letters. They seem to have been more interested in the Arabic

aspects of algebra found in another Jordanian work, De numeris datis, a

collection of algebraic rules for finding, from a given number, other num-

bers related to it according to certain conditions, or for showing that a

number satisfying specific restrictions is determined. A typical instance is

the following; If a given number is divided into two parts such that the

product of one part by the other is given, then each of the two parts is

necessarily determined. The rule is expressed awkwardly by Jordanus as

follows:

Lei the given number be abc and let it be divided into two parts ah and c,

and let d be the given produet of the parts ah and c. Let the square of abc

be c and let four times d be/, and let g be the result of taking/ from e. Then

# is the square of the difference between ah and c. Let // be the square root

ofg. Then h is the difference between ah and C. Since // is known, c and ah

are determined.

Note that Jordanus' use of letters is somewhat confusing, for, like Euclid,

he sometimes uses two letters tor a number and sometimes only a single
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letter. He evidently followed Euclid in picturing the given number as a

line segment ac and the two parts into which it is subdivided as ab and bc\

but he uses both end-point letters to designate the first part or number,

and only the single letter c to represent the number of line segment be. It

is greatly to his credit, however, that he first stated the rule, equivalent to

the solution of a quadratic equation, completely in general form. Only

later did he provide a specific example of it, expressed in Roman numerals:

to divide the number X into two parts the product of which is to be XXI,

Jordanus follows through the steps indicated above to find that the parts

are III and VII.

CAMPANUS OF NOVARA

To Jordanus is attributed also an Algorismus (or Algorithmic) demonstra-

tes, an exposition of arithmetic rules that was popular for three centuries.

The Algorismus demonstrates again shows Boethian and Euclidean inspi-

ration, as well as Arabic algebraic characteristics. Still greater preponder-

ance of Euclidean influence is seen in the work of Johannes Campanus of

Novara (fl. ca. 1260), chaplain to Pope Urban IV. To him the late medieval

period owed the authoritative translation of Euclid from Arabic into Latin,

the one that first appeared in printed form in 1482. In making the translation

Campanus used various Arabic sources, as well as the earlier Latin version

by Adelard. Both Jordanus and Campanus discussed the angle of contact,

or horn angle, a topic that produced lively discussion in the later medieval

period when mathematics took on a more philosophical and speculative

aspect. Campanus noticed that if one compared the angle of contact—that

is, the angle formed by an arc of a circle and the tangent at an end point

—

with the angle between two straight lines, there appears to be an incon-

sistency with Euclid's Elements X. 1, the fundamental proposition of the

method of exhaustion. The rectilineal angle is obviously greater than the

horn angle. Then, if from the larger angle we take away more than half,

and if from the remainder we take away more than half, and if we continue

in this way, each time taking away more than half, ultimately we should

reach a rectilineal angle less than the horn angle; but this obviously is not

true. Campanus correctly concluded that the proposition applies to mag-

nitudes of the same kind, and horn angles are different from rectilineal

angles.

Similarity in the interests of Jordanus and Campanus is seen in the fact

that Campanus, at the end of Book IV of his translation of the Elements,

describes an angle trisection which is exactly the same as that which had

appeared in Jordanus' De triangulis. The only difference is that the lettering

of the Campanus diagram is Latin, whereas that of Jordanus is Greco-

Arabic. The trisection, unlike those in antiquity, is essentially as follows.
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Let the angle AOB that is to be trisected be placed with its vertex and the

center of a circle of any radius OA = OB (Fig. 14.1). From O draw a

radius OC 1 OB, and through A place a straight line AED in such a way
that DE = OA. Finally, through O draw line OF parallel to AED. Then,

LEOB is one-third /.AOB, as required.

LEARNING IN THE THIRTEENTH CENTURY

The thirteenth century presents such a striking advance over the earlier

Middle Ages that it has occasionally been viewed, none too impartially,

as "the greatest of centuries.
"

' We have seen how, in the work of Leonardo
of Pisa, Western Europe had come to rival other civilizations in the level

of its mathematical achievement; but this was only a small part of what

was taking place in Latin culture as a whole. Many of the famous uni-

versities—Bologna, Paris, Oxford, and Cambridge—were established in

the late twelfth and early thirteenth centuries, and this was the period in

which great Gothic cathedrals—Chartres, Notre Dame, Westminster,

Reims—were built. Aristotelian philosophy and science had been re-

covered and were taught in the universities and church schools. The thir-

teenth century is the period of great scholars and churchmen, such as

Albertus Magnus, Robert Grosseteste, Thomas Aquinas, and Roger Ba-

con. Incidentally, two of these in particular, Grosseteste and Bacon, made
strong pleas for the importance of mathematics in the curriculum, although

neither was himself much of a mathematician. It was during the thirteenth

century that many practical inventions became known in Europe: gunpow-
der and the compass, both perhaps from China, and spectacles from Italy,

with mechanical clocks appearing only a little later.

'J. J. Walsh. The Thirteenth, Greatest of Centuries (New York: Fordhum University Press.

1952).
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The twelfth century had seen the great tide of translation from Arabic

into Latin, but there now were other crosscurrents of translations. Most

of the works of Archimedes, for example, had been virtually unknown to

the medieval West; but in 1269 William of Moerbeke (ca. 1215-1286)

published a translation (the original manuscript of which was discovered

in 1884 in the Vatican) from Greek into Latin of the chief Archimedean

scientific and mathematical treatises. Moerbeke, who came from Flanders

and was named Archbishop of Corinth, knew little mathematics; hence,

his excessively literal translation (helpful now in reconstructing the original

Greek text) was of limited usefulness, but from this time on most of the

works of Archimedes were at least accessible. In fact, the Moerbeke trans-

lation included parts of Archimedes with which the Arabs evidently were

not familiar, such as the treatise On Spirals, the Quadrature ofthe Parabola,

and Conoids and Spheroids. Nevertheless, the Muslims had been able to

make more progress in understanding the mathematics of Archimedes than

did the Europeans during the medieval period.

During the twelfth century the works of Archimedes had not completely

escaped the attention of the indefatigable Gerard of Cremona, who had

converted into Latin an Arabic version of the short work on Measurement

of the Circle, which was used in Europe for several centuries. There had

circulated also, before 1269, a portion of the Archimedean Sphere and

Cylinder. These two examples could provide only a very inadequate idea

of what Archimedes had done, and, therefore, the translation by Moerbeke
was of the greatest importance, including as it did a number of major

treatises. It is true that the version was only occasionally used during the

next two centuries, but it at least remained extant. It was this translation

that became known to Leonardo da Vinci and other Renaissance scholars,

and it was Moerbeke's version that was first printed in the sixteenth century.

MEDIEVAL KINEMATICS

The history of mathematics has not been a record of smooth and continuous

development; hence, it should come as no surprise that the upward surge

during the thirteenth century should have lost some of its momentum.
There was no Latin equivalent of Pappus to stimulate a revival of classical

higher geometry. The works of Pappus were not available in Latin or

Arabic. Even Apollonius' Conies was little known, beyond some of the

simplest properties of the parabola that arose in connection with the ubiq-

uitous treatises on optics, a branch of science that fascinated the scholastic

philosophers. The science of mechanics, too, appealed to the scholars of

the thirteenth and fourteenth centuries, for now they had at hand both the

statics of Archimedes and the kinematics of Aristotle.

We noted earlier that the Aristotelian conclusions on motion had not

gone unchallenged and modifications had been suggested, especially by
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PhilopontlS. Dunne the fourteenth century the study of change in general,

and of motion in particular, was a favorite topic in the universities, es-

pecially at Oxford and Paris. In Merton College at Oxford the scholastic

philosophers had deduced a formulation for uniform rate of change which

today generally is known as the Merton rule. Expressed in terms of distance

and time, the rule says essentially that if a body moves with uniformly

accelerated motion, then the distance covered will be that which another

body would have covered had it been moving uniformly for the same length

of time with a speed equal to that of the first body at the midpoint of the

time interval. As we should formulate it, the average velocity is the arith-

metic mean of the initial and terminal velocities. Meanwhile, at the Uni-

versity of Paris there was developed a more specific and clear-cut doctrine

of impetus, in which we can recognize a concept akin to our inertia, than

that proposed by Philoponus.

THOMAS BRADWARDINE

The late medieval physicists comprised a large group of university teachers

and churchmen, but we call attention to only two, for these were also

prominent mathematicians. The first is Thomas Bradwardine (12907-1349),

a philosopher, theologian, and mathematician who rose to the position of

Archbishop of Canterbury; the second is Nicole Oresme (13237-1382), a

Parisian scholar who became Bishop of Lisieux. To these two men was due

a broadened view of proportionality. The Elements of Euclid had included

a logically sound theory of proportion, or the equality of ratios, and this

had been applied by ancient and medieval scholars to scientific questions.

For a given time, the distance covered in uniform motion is proportional

to the speed; and for a given distance, the time is inversely proportional

to the speed. Aristotle had thought, none too correctly, that the speed of

an object subject to a moving force acting in a resisting medium is pro-

portional to the force and inversely proportional to the resistance. In some

respects this formulation seemed to later scholars to contradict common
sense. When force F is equal to or less than resistance, a velocity V will

be imparted according to the law V = KF/R, where K is a nonzero

constant of proportionality; but when resistance balances or exceeds force,

one should expect no velocity to be acquired. To avoid this absurdity

Bradwardine made use of a generalized theory of proportions. In his Vrac-

latus tie proportionibus of 1328, Bradwardine developed the Boethian the-

ory of double or triple or, more generally, what we would call "//-tuple"

proportion. His arguments arc expressed in words, but in modern notation

we would say that in these cases quantities vary as the second or third or

mh power. In the same way the theory of proportions included subduple

or subtriple or sub-//-tuplc proportion, in which quantities vary as the
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second or third or nth root. Now Bradwardine was ready to propose an

alternative to the Aristotelian law of motion. To double a velocity that

arises from some ratio or proportion FIR, he said, it was necessary to

square the ratio FIR; to triple the velocity, one must cube the "proportio"

or ratio F/R; to increase the velocity «-fold, one must take the /7th power

of the ratio FIR. This is tantamount to asserting that velocity is given,

in our notation, by the relationship V = K log/7/?, for \og(F/R)" =

n log FIR. That is, if V
{]
= logF //? , then Vn

= \og(F
{JR {)

)" = n log FJ
R = nV . Bradwardine himself evidently never sought experimental con-

firmation of his law, and it seems not to have been widely accepted.

Bradwardine wrote also several other mathematical works, all pretty

much in the spirit of the times. His Arithmetic and his Geometry show the

influence of Boethius, Aristotle, Euclid, and Campanus. Bradwardine,

known in his day as "Doctor profundus," was attracted also to topics such

as the angle of contact and star polygons, both of which occur in Campanus
and earlier works. Star polygons, which include regular polygons as special

cases, go back to ancient times. A star polygon is formed by connecting

with straight lines every mth point, starting from a given one, of the //

points that divide the circumference of a circle into n equal parts, where

n > 2 and m is prime to n. There is in the Geometry even a touch of

Archimedes' Measurement of the Circle. The philosophical bent in all of

Bradwardine's works is seen most clearly in the Geometrica speculativa

and the Tractatus de continuo, in which he argued that continuous mag-

nitudes, although including an infinite number of indivisibles, are not made
up of such mathematical atoms, but are composed instead of an infinite

number of continua of the same kind. His views sometimes are said to

resemble those of the modern intuitionists; at any rate, medieval specu-

lations on the continuum, popular among Scholastic thinkers such as St.

Thomas Aquinas, later influenced the Cantorian infinite of the nineteenth

century.

NICOLE ORESME

Nicole Oresme lived later than Bradwardine, and in the work of the former

we see extensions of ideas of the latter. In De proportionibus proportionum,

composed about 1360, Oresme generalized Bradwardine's proportion the-

ory to include any rational fractional power and to give rules for combining

proportions that are the equivalents of our laws of exponents, now ex-

pressed in the notations xm • x" = jc"'
+ " and (*'")" = x'"". For each rule

specific instances are given; and the latter part of another work, the Al-

gorismus proportionum, applies the rules in geometric and physical prob-

lems. Oresme suggested also the use of special notations for fractional

powers, for in his Algorismus proportionum there are expressions such as
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p 1

1 2

to denote the "one and one-half proportion

principal square root, and forms such as

that is, the cube of the

1

4-2-2

for V2J. We now take for granted our symbolic notations for powers and

roots, with little thought for the slowness with which these developed in

the history of mathematics. Even more imaginative than Oresme's nota-

tions was his suggestion that irrational proportions are possible. Here he

was striving toward what we should write as jc
n2

, for example, which is

perhaps the first hint in the history of mathematics of a higher transcen-

dental function; but lack of adequate terminology and notation prevented

him from effectively developing his notion of irrational powers.

THE LATITUDE OF FORMS

The notion of irrational powers may have been Oresme's most brilliant

idea, but it was not in this direction that he was most influential. For almost

a century before his time Scholastic philosophers had been discussing the

quantification of variable "forms, " a concept of Aristotle roughly equiv-

alent to qualities. Among these forms were such things as the velocity of

a moving object and the variation in temperature from point to point in

an object with nonuniform temperature. The discussions were interminably

prolix, for the available tools of analysis were inappropriate. Despite this

handicap the logicians at Merton College had reached, as we saw, an

important theorem concerning the mean value of a "uniformly difform"

form—that is, one in which the rate of change of the rate of change is

constant. Oresme was well aware of this result, and to him occurred, some

time before 1361, a brilliant thought—why not draw a picture or graph of

the way in which things vary? Here we see, of course, an early suggestion

of what we now describe as the graphical representation of functions.

Marshall Clagett has found what looks like an earlier graph, drawn by

Giovanni di Cosali, in which the line of longitude is placed in a vertical

position. (Clagett, 1959, pp. 332-333, 414.) The exposition of Oresme

surpasses that of Cosali in clarity and influence, however. Everything mea-

surable, Oresme wrote, is imaginable in the manner of continuous quantity;

hence, he drew a velocity-time graph for a body moving with uniform

acceleration. Along a horizontal line he marked points representing instants
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FIG. 14.2

of time (or longitudes), and for each instant he drew perpendicular to the

line of longitudes a line segment (latitude) the length of which represented

the velocity. The end points of these segments, he saw, lie along a straight

line; and if the uniformly accelerated motion starts from rest, the totality

of velocity lines (which we call ordinates) will make up the area of a right

triangle (see Fig. 14.2). Inasmuch as this area represents the distance cov-

ered, Oresme has provided a geometric verification of the Merton rule,

for the velocity at the midpoint of the time interval is half the terminal

velocity. Moreover, the diagram leads obviously to the law of motion

generally ascribed to Galileo in the seventeenth century. It is clear from

the geometric diagram that the area in the first half of the time is to that

in the second half in the ratio 1:3. If we subdivide the time into three

equal parts, the distances covered (given by the areas) are in the ratio

1:3:5. For four equal subdivisions the distances are in the ratio 1:3:5:7.

In general, as Galileo later observed, the distances are to each other as

the odd numbers; and since the sum of the first n consecutive odd numbers

is the square of n, the total distance covered varies as the square of the

time, the familiar Galilean law for falling bodies.

The terms latitude and longitude that Oresme used are in a general

sense equivalent to our ordinate and abscissa, and his graphical represen-

tation is akin to our analytic geometry. His use of coordinates was not, of

course, new, for Apollonius, and others before him, had used coordinate

systems, but his graphical representation of a variable quantity was novel.

He seems to have grasped the essential principle that a function of one

unknown can be represented as a curve, but he was unable to make any

effective use of this observation except in the case of the linear function.

Moreover, Oresme was chiefly interested in the area under the curve;

hence, it is not very likely that he saw the other half of the fundamental

principle of analytic geometry—that every plane curve can be represented,

with respect to a coordinate system, as a function of one variable. Where
we say that the velocity graph in uniformly accelerated motion is a straight

line, Oresme wrote, "Any uniformly difform quality terminating in zero

intensity is imagined as a right triangle." That is, Oresme was more con-

cerned with the calculus aspects of the situation: (1) the way in which the

function varies (that is, the differential equation of the curve), and (2) the

way in which the area under the curve varies (that is, the integral of the

function). He pointed out the constant-slope property for his graph of
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uniformly accelerated motion—an observation equivalent to the modern
two-point equation of the line in analytic geometry and leading to the

concept of the differential triangle. Moreover, in finding the distance func-

tion, the area, Oresme obviously is performing geometrically a simple

integration that results in the Merton rule. He did not explain why the

area under a velocity-time curve represents the distance covered, but it is

probable that he thought of the area as made up of many vertical lines or

indivisibles each of which represented a velocity that continued for a very

short time.

The graphical representation of functions, known then as the latitude

of forms, remained a popular topic from the time of Oresme to that of

Galileo. The Tractatus de latitudinibus formarum, written perhaps by a

student of Oresme, if not by Oresme himself, appeared in numerous manu-

script forms and was printed at least four times between 1482 and 1515;

but this was only a precis of a larger work by Oresme entitled Tractatus

de figuratione potentiarum et mensurarum. Here Oresme went so far as to

suggest a three-dimensional extension of his "latitude of forms" in which

a function of two independent variables was pictured as a volume made
up of all the ordinates erected according to a given rule at points in a

portion of the reference plane. We even find a hint of a geometry of four

dimensions when Oresme speaks of representing the intensity of a form

for each point in a reference body or volume. What he really needed here

was, of course, an algebraic geometry rather than a pictorial representation

such as he had in mind; but weakness in technique hampered Europe

throughout the medieval period.

INFINITE SERIES

Mathematicians of the Western world during the fourteenth century had

imagination and precision of thought, but they were lacking in algebraic

and geometric facility; hence their contributions lay not in extensions of

classical work, but in new points of view. Among these was an occupation

with infinite series, an essentially novel topic anticipated only by some

ancient iterative algorithms and Archimedes' summation of an infinite geo-

metric progression. Where the Greeks had a horror infiniti, the late me-

dieval Scholastic philosophers referred frequently to the infinite, both as

a potentiality and as an actuality (or something "completed"). In England

in the fourteenth century a logician by the name of Richard Suiseth (fl.

ca. 1350), but better known as Calculator, solved the following problem

in the latitude of forms:

If throughout the first half of a given time interval a variation continues at

a certain intensity, throughout the next quarter of the interval at double this

intensity, throughout the following eighth at triple the intensity and so ad

infinitum; then the average intensity for the whole interval will be the intensity

of the variation during the second submtcrval (or double the initial intensity).
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This is equivalent to saying that the sum of the infinite series

12 3 n

is 2. Calculator gave a long and tedious verbal proof, for he did not know
about graphical representation, but Oresme used his graphical procedure

to prove the theorem more easily. Oresme handled also other cases,

such as

1 • 3 2 • 3 3 • 3 n • 3

4
+

16
+

64
+

'

+
4"

+
'

in which the sum is j. Problems similar to these continued to occupy scholars

during the next century and a half.

Among other contributions of Oresme to infinite series was his proof,

evidently the first in the history of mathematics, that the harmonic series

is divergent. He grouped the successive terms in the series

1111111 1
- + - + - + 7 + T + - + -+- • + -
2 3 4 5 6 7 8 //

placing the first term in the first group, the next two terms in the second

group, the next four terms in the third group, and so on, the rath group

containing 2'"" 1 terms. Then, it is obvious that we have infinitely many
groups and that the sum of the terms within each group is at least h. Hence,

by adding together enough terms in order, we can exceed any given num-
ber.

DECLINE OF MEDIEVAL LEARNING

We have traced the history of mathematics in Europe through the Dark

Ages of the early medieval centuries to the high point in the time of the

Scholastics. From the nadir in the seventh century to the work of Fibonacci

and Oresme in the thirteenth and fourteenth centuries the improvement

had been striking; but the combined efforts of all medieval civilizations

were in no sense comparable to the mathematical achievements in Ancient

Greece. The progress of mathematics had not been steadily upward in any

part of the world—Babylonia, Greece, China, India, Arabia, or the Roman
world—and it should come as no surprise that in Western Europe a decline

set in following the work of Bradwardine and Oresme. In 1349 Thomas
Bradwardine had succumbed to the Black Death, the worst scourge ever

to strike Europe. Estimates of the number of those who died of the plague

within the short space of a year or two run between a third and a half of

the population. This catastrophe inevitably caused severe dislocations and

loss of morale. If we note that England and France, the nations that had
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seized the lead in mathematics in the fourteenth century, were further

devastated in the fifteenth century by the Hundred Years' War and the

Wars of the Roses, the decline in learning will be understandable. Italian,

German, and Polish universities during the fifteenth century took over the

lead in mathematics from the waning Scholasticism of Oxford and Paris,

and it is primarily to representatives from these lands that we now turn.
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The Renaissance

/ will sette as I doe often in woorke use, a paire of paralleles, or Gemowe [twin]

lines of one lengthe, thus: =, bicause noe 2. thynges, can be moare equalle.

Robert Recorde

HUMANISM

The fall of Constantinople in 1453 signaled the collapse of the Byzantine

Empire, and in this respect it serves a convenient chronological placeholder

in the history of political events. The significance of the date for the history

of mathematics, however, is a moot point. It is frequently asserted that

at that time refugees fled to Italy with treasured manuscripts of ancient

Greek treatises, thereby putting the Western European world in touch with

the works of antiquity. It is as likely, though, that the fall of the city had

just the opposite effect: that now the West no longer could count on what

had been a dependable source of manuscript material for ancient classics,

both literary and mathematical. Whatever the ultimate decision may be

on this matter, there can be no question that mathematical activity was

again rising during the middle years of the fifteenth century. Europe was

recovering from the physical and spiritual shock of the Black Death, and

the then-recent invention of printing with movable type made it possible

for learned works to become much more widely available than ever before.

The earliest printed book from Western Europe is dated 1447, and by the

end of the century over 30,000 editions of various works were available.

269
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Title page of the first English version of Euclid's Elements (London, 1570). The translation

purports to be by Sir Henry Billingsley, later Lord Mayor of London, but part or all of it may

be by John Dee, writer of the preface.
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Of these, few were mathematical; but the few, coupled with existing manu-
scripts, provided a base for expansion. The recovery of unfamiliar Greek
geometric classics was at first less significant than the printing of medieval

Latin translations of Arabic algebraic and arithmetic treatises, for few men
of the fifteenth century either read Greek or were sufficiently proficient in

mathematics to profit from the works of the better Greek geometers. A
substantial portion of the treatises of Archimedes had, in fact, been ac-

cessible in Latin through the translation of William of Moerbeke, but to

little avail, for there were few to appreciate classical mathematics. In this

respect mathematics differed from literature, and even from the natural

sciences. As Humanists of the fifteenth and sixteenth centuries fell ever

more deeply in love with the newly rediscovered Greek treasures in science

and the arts, their estimate of the immediately preceding Latin and Arabic

achievements declined. Classical mathematics, except for the most ele-

mentary portions of Euclid, was an intensely esoteric discipline, accessible

only to those with a high degree of preliminary training; hence, the dis-

closure of Greek treatises in this field did not at first seriously impinge on

the continuing medieval mathematical tradition. Medieval Latin studies in

elementary geometry and the theory of proportions, as well as Arabic

contributions to arithmetic operations and algebraic methods, did not pre-

sent difficulties comparable to those associated with the works of Ar-

chimedes and Apollonius. It was the more elementary branches that were

to attract notice and to appear in printed works.

NICHOLAS OF CUSA

Oresme had argued that everything measurable can be represented by a

line (latitude); and a mathematics of mensuration, both from a theoretical

and a practical standpoint, flourished during the early Renaissance period.

A similar view was adopted by Nicholas of Cusa (1401-1464), a man who
well represents the weaknesses of the age, for he was on the borderline

between medieval and modern times. (Cusa was a Latin place-name for a

city on the Mosel.) Nicholas saw that a scholastic weakness in science had

been a failure to measure; mens, he thought, was etymologically related

to mensura, so that knowledge must be based on measurement. Cusa (or

Cusanus, the Latin form) also was influenced by the Humanist concern for

antiquity and espoused Neoplatonic views. Moreover, he had access to a

translation of some of Archimedes' work made in 1450 by Jacob of Cre-

mona. But, alas, Nicholas of Cusa was better as an ecclesiastic than as a

mathematician. In the Church he rose to the rank of cardinal, but in the

field of mathematics he is known as a misguided circle-squarer. His phil-

osophical doctrine of the "concordance of contraries" led him to believe

that maxima and minima are related, hence that the circle (a polygon with

the greatest possible number of sides) must be reconcilable with the triangle
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(the polygon with the smallest number of sides). He believed that through

an ingenuous averaging of inscribed and circumscribed polygons he had

arrived at a quadrature. That he was wrong was of less significance than

that he was one of the first modern Europeans to attempt a problem that

had fascinated the best minds of antiquity, and that his effort stimulated

contemporaries to criticism of his work.

REGIOMONTANUS

Among those who pointed out the error in Cusa's reasoning was Regio-

montanus (1436-1476), probably the most influential mathematician of the

fifteenth century, and one whose birth date might be taken to mark the

beginning of the new age. Having studied at the universities of Leipzig and

Vienna, where he developed a love for mathematics and astronomy, Re-

giomontanus accompanied Cardinal Bessarion to Rome, where he acquired

a proficiency in Greek and became acquainted with the crosscurrents of

scientific and philosophical thought. Bessarion, once Archbishop of Nicaea,

had won a cardinal's hat from Pope Eugenius IV in Rome (1439) for efforts

to unite the Greek and Latin churches. He thus became a link between

the classical learning preserved at Constantinople and the young Renais-

sance movement in the West. It probably was his association with the

cardinal that inspired in Regiomontanus the ambition to acquire, translate,

and publish the scientific legacy of antiquity. After travel and study in Italy,

Regiomontanus returned to Germany, where he set up a printing press

and an observatory at Nuremberg in order to advance the interests of

science and literature. He hoped to print translations of Archimedes, Apol-

lonius, Heron, Ptolemy, and other scientists, but his tragic death at the

early age of forty cut short his ambitious project. In 1475 he had been

invited to Rome by Pope Sixtus IV to share in one of the perennial attempts

to reform the calendar, but he died there (some said he was poisoned by

enemies) shortly after he had arrived. The trade list of books he planned

to print survives, and this indicates that the development of mathematics

undoubtedly would have been accelerated had he survived. He was, in his

wide and varied interests, a typical "Renaissance man," as his adopted

name indicates. He was born "Johann Muller of Konigsberg," but like

others of his day he preferred to be known by the Latin form of his

birthplace, the Germanic Konigsberg ("king's mountain") becoming Re-

giomontanus.

Regiomontanus had become familiar, during his stay in Italy, with some

of the leading figures of his day, and he entered into correspondence with

others on current questions. His interests were broad, but he seems to

have had little sympathy with the speculative thought of Nicholas of Cusa,

which he criticized severely. In astronomy his chief contribution was the
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Title page of Gregor Reisch, Margarita philosophica (1503). Around the three-headed figure

in the center are grouped the seven liberal arts, with arithmetic seated in the middle and
holding a counting board.

completion of a new Latin version, begun by his teacher at Vienna, Georg
Peuerbach (1423-1469), of Ptolemy's Almagest. Peuerbach's Theoricae no-

vae planetarum, a new textbook of astronomy, which was published in

Regiomontanus' shop in 1472, was an improvement on the ubiquitous

copies of the Sphere of Sacrobosco; but Humanists felt the need for a better

Latin edition of the Almagest than the medieval version that had been

derived from the Arabic. (The Humanists insisted on elegance and purity

in their classical languages; hence, they abhorred the barbarous medieval

Latin as well as the Arabic from which it often was derived.) Peuerbach

had planned to make a trip to Italy with Regiomontanus to seek a good

manuscript copy, but he died prematurely and the completion of the plan

devolved upon his student. Regiomontanus' translation project resulted
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also in textbooks of his own. His Epitome of Ptolemy's Almagest is note-

worthy for its emphasis on the mathematical portions that had often been

omitted in commentaries dealing with elementary descriptive astronomy.

Of greater significance for mathematics, however, was his De triangulis

omnimodis, a systematic account of the methods for solving triangles which

marked the rebirth of trigonometry.

New works on astronomy invariably had been accompanied by tables

of trigonometric functions, and Peuerbach's works had included a new
table of sines. In these cases, however, trigonometry was serving merely

as the handmaid of astronomy. In India, where the sine function evidently

had its birth, there had been little interest in this function apart from its

role in the astronomical systems or Siddhantas. Even among the Arabs,

for whom trigonometry was second only to algebra in mathematical appeal,

the subject had had no independent existence, except in the Treatise on

the Quadrilateral of Nasir Eddin, a work that owed more to the Greeks

than to the Hindus. The twelfth-century age of translation in Europe had

included some Arabic trigonometry, but for several centuries Latin con-

tributions were only pale imitations of the Arabic. The Practica geometriae

of Fibonacci and the works of Bradwardine had contained some funda-

mentals of trigonometry gleaned from Muslim sources, but it was not until

Regiomontanus began writing his De triangulis that Europe gained preem-

inence in this field. It appears that Regiomontanus was acquainted with

the work of Nasir Eddin, and this may have been the source of his desire

to organize trigonometry as a discipline independent of astronomy.

The first book of De triangulis, composed in about 1464, opens with

fundamental notions, derived largely from Euclid, on magnitudes and ra-

tios; then, there are more than fifty propositions on the solution of triangles,

using the properties of right triangles. Book II begins with a clear statement

and proof of the law of sines, and then includes problems on determining

sides, angles, and areas of plane triangles when given determinate condi-

tions. Among the problems, for example, is the following: If the base of

a triangle and the angle opposite are known, and if either the altitude to

the base or the area is given, then the sides can be found. Book III contains

theorems of the sort found in ancient Greek texts on "spherics" before

the use of trigonometry; Book IV is on spherical trigonometry, including

the spherical law of sines.

The use of area "formulas," written out in words, was among the nov-

elties in Regiomontanus' De triangulis, but in the avoidance of the tangent

function the work falls short of Nasir Eddin's treatment. The tangent func-

tion nevertheless was included in another trigonometric treatise by Re-

giomontanus— Tabulae directionum. Revisions of Ptolemy had suggested

the need for new tables, and these were supplied by a number of fifteenth-

century astronomers, of whom Regiomontanus was one. In order to avoid

tractions it was customary to adopt a large value for the radius of the circle.
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or the sinus totus. For one of his sine tables Regiomontanus followed his

immediate predecessors in using a radius of 600,000; for others he adopted

10,000,000 or 600,000,000. For his tangent table in Tabulae directionum

he chose 100,000. He does not call the function "tangent" but uses only

the word "numerus" for the entries, degree by degree, in a tabulation

headed 'Tabula fecunda" ("Productive Table"). The entry for 89° is

5,729,796, and for 90° it is simply infinite.

The sudden death of Regiomontanus occurred before his two trigono-

metric works were published, and this considerably delayed their effect.

The Tabulae directionum was published in 1490, but the more important

treatise, De triangulis, appeared in print only in 1533 (and again in 1561).

Nevertheless, the works were known in manuscript form to the circle of

mathematicians at Nuremberg, where Regiomontanus was working, and

it is very likely that they influenced work of the early sixteenth century.

For a hundred years after the fall of Constantinople, cities in central Eu-

rope, notably Vienna, Cracow, Prague, and Nuremberg, were leaders in

astronomy and mathematics. The last of these became a center for the

printing of books (as well as for learning, art, and invention), and some
of the greatest scientific classics were published there toward the middle

of the sixteenth century.

APPLICATION OF ALGEBRA TO GEOMETRY

A general study of triangles led Regiomontanus to a consideration of prob-

lems of geometric construction somewhat reminiscent of Euclid's Division

of Figures. For example, one is asked to construct a triangle given one

side, the altitude to this side, and the ratio of the other two sides. Here,

however, we find a striking departure from ancient customs: whereas Eu-

clid's problems invariably had been given in terms of general quantities,

Regiomontanus gave his lines specific numerical values, even where he

intended that his methods should be general. This enabled him to make
use of the algorithmic methods developed by Arabic algebraists and trans-

mitted to Europe in twelfth-century translations. In the example cited, one

of the unknown sides can be expressed as a root of a quadratic equation

with known numerical coefficients, and this root is constructible by devices

familiar from Euclid's Elements or Al-Khwarizmi's Algebra. (As Regio-

montanus expressed it, he let one part be the "thing" and then solved by

the rule of "thing" and "square"—that is, through quadratic equations.)

Another problem in which Regiomontanus called for the construction of

a cyclic quadrilateral, given the four sides, can be handled similarly.

The algebra of Regiomontanus, like that of the Arabs, was rhetorical.

The Arithmetica of Diophantus, in which some syncopation had been adopted,

was known in Greek to Regiomontanus, who hoped ultimately to translate
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it; hut it was from al-Khwarizmi that Europe learned the routine algebraic

procedures. The Anthmetica was, after all, concerned primarily with the

more recondite aspects of number theory. Moreover, Regiomontanus did

not get around to publishing it, and few Latin scholars were aware of its

contents for another century, until 1575 when it appeared in Latin. In fact,

the influence of Regiomontanus in algebra was restricted not only by his

adherence to the rhetorical form of expression and by his early death. His

manuscripts, on his death, came into the hands of a Nuremberg patron

who failed to make the work effectively accessible to posterity. Europe

learned its algebra painfully and slowly from the thin Greek, Arabic, and

Latin tradition that trickled down through the universities, the church

scribes, the rising mercantile activities, and scholars from other fields.

A TRANSITIONAL FIGURE

Regiomontanus stood at a critical juncture in the history of science, and

he had the tastes and the abilities to make the most of this. His love of

classical learning was shared by the Humanists, but unlike them he was

strongly inclined toward the sciences. Moreover, he did not indulge in the

Humanist contempt for Scholastic and Arabic learning, and he was a Ren-

aissance man in his concern for the practical arts as well as for scholarship.

What better combination could a modern scientist have had than a good

library, an observatory, a printing press, and a love of knowledge? Re-

giomontanus was aware, through his contact with Averroists in the Italian

universities, that the Arabic astronomers had been worried about incon-

sistencies between the schemes of Aristotle and Ptolemy; and he undoubt-

edly knew also that Oresme and Cusa had seriously raised the possibility

of the earth's moving. It is reported that he planned to reform astronomy;

had he lived, he might have anticipated Copernicus. His premature death

cut short all such schemes, and astronomy and mathematics had to look

to others for the next steps, including in particular an isolated French figure

outside of the mainstream of development.

NICOLAS CHUQUETS TRIPARTY

It was Germany and Italy that provided most of the early Renaissance

mathematicians, but in France in 1484 a manuscript was composed which

in level and significance was perhaps the most outstanding since the Liber

abaci of Fibonacci almost three centuries before and which, like the Liber

abaci, was not printed until the nineteenth century. This work, entitled

Triparty en la science des nombres, was b\ Nicolas Chuquet (t ca. 1500),

about whom we know virtually nothing except that he was born at Paris,
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took his bachelor's degree in medicine, and practiced at Lyons. The Tri-

party does not closely resemble any earlier work in arithmetic or algebra,

and the only writers the author mentions are Boethius and Campanus.
There is evidence of Italian influence, which possibly resulted from ac-

quaintance with Fibonacci's Liber abaci.

The first of the "Three Parts" concerns the rational arithmetic operations

on numbers, including an explanation of the Hindu-Arabic numerals. Of
these Chuquet says that "the tenth figure does not have or signify a value,

and hence it is called cipher or nothing or figure of no value." The work

is essentially rhetorical, the four fundamental operations being indicated

by the words and phrases plus, moins, multiplier par, and partyr par, the

first two sometimes abbreviated in the medieval manner as p and m. In

connection with the computation of averages, Chuquet gave a regie des

nombres moyens according to which (a + c)/(b + d) lies between alb

and eld if a, b, c, d are positive numbers. In the second part, concerning

roots of numbers, there is some syncopation, so that the modern expression

V14 - Vl80 appears in the not very dissimilar form R) 2 .14.m.R) :
180.

The last and by far the most important part of the Triparty concerns

the "Regie des premiers," that is, the rule of the unknown, or what we
should call algebra. During the fifteenth and sixteenth centuries there were

various names for the unknown thing, such as res (in Latin), or chose (in

French) or cosa (in Italian) or coss (in German); Chuquefs word premier

is unusual in this connection. The second power he called champs (whereas

the Latin had been census), the third cubiez, and the fourth champs de

champ. For multiples of these Chuquet invented an exponential notation

of great significance. The denomination or power of the unknown quantity

was indicated by an exponent associated with the coefficient of the term,

so that our modern expressions 5x and 6x 2 and IOjc
3 appeared in the

Triparty as .5.
1 and .6.

2 and .10.\ Moreover, zero and negative exponents

take their place along with the positive integral powers, so that our 9jc°

became .9.°, and 9x~ 2 was written as .9.
2m

, meaning .9. seconds moins.

Such a notation laid bare the laws of exponents, with which Chuquet

may have become familiar through the work of Oresme on proportions.

Chuquet wrote, for example, that .72.' divided by .8.
3

is .9.
2m—that is,

72* -r 8jc
3 = 9x~ 2

. Related to these laws is his observation of the rela-

tionships between the powers of the number two, and the indices of these

powers set out in a table from to 20, in which sums of the indices

correspond to products of the powers. Except for the magnitude of the

gaps between entries, this constituted a miniature table of logarithms to

the base two. Observations similar to those of Chuquet were to be repeated

several times during the next century, and these undoubtedly played a role

in the ultimate invention of logarithms.

The second half of the last part of the Triparty is devoted to the solution

of equations. Here are many of the problems that had appeared among
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his predecessors, but there is also at least one significant novelty. In writing

.4.' egaulx a m.2. ()

(that is, 4x = -2) Chuquet was for the first time

expressing an isolated negative number in an algebraic equation. Generally

he rejected zero as a root of an equation, but on one occasion he remarked

that the number sought was 0. In considering equations of the form ax'" +
bxm * n = cxm

+ 1 " (where the coefficients and exponents are specific positive

integers), he found that some implied imaginary solutions; in these cases

he simply added, "Tel nombre est ineperible.
,,

The Triparty of Chuquet, like the Collectio of Pappus, is a book in which

the extent of the author's originality cannot be determined. Each undoubt-

edly was indebted to his immediate predecessors, but we are unable to

identify any of them. Moreover, in the case of Chuquet we cannot deter-

mine his influence on later writers. The Triparty was not printed until 1880,

and probably was known to few mathematicians; but one of those into

whose hands it fell used so much of the material that he can be charged

with plagiarism, even though he mentioned Chuquet's name. The Laris-

methique nouvellement composee, published at Lyons by Etienne de la

Roche in 1520, and again in 1538, depended heavily, as we now know, on

Chuquet; hence, it is safe to say that the Triparty was not without effect.

LUCA PACIOLI'S SUMMA

The earliest Renaissance algebra, that of Chuquet, was the product of a

Frenchman, but the best known algebra of that period was published ten

years later in Italy. In fact, the Summa de arithmetica, geometrica, pro-

portioni et proportionalita of the friar Luca Pacioli (1445-1514) oversha-

dowed the Triparty so thoroughly that older historical accounts of algebra

leap directly from the Liber abaci of 1202 to the Summa of 1494 without

mentioning the work of Chuquet or other intermediaries. The way for the

Summa, however, had been prepared by a generation of algebraists, for

the Algebra of al-Khwarizmi was translated into Halian at least by 1464,

the date of a manuscript copy in the Plimpton Collection in New York;

the writer of this manuscript stated that he based his work on numerous

predecessors in this field, naming some from the earlier fourteenth century.

The Renaissance in science often is assumed to have been sparked by the

recovery of ancient Greek works; but the Renaissance in mathematics was

characterized especially by the rise of algebra, and in this respect it was

but a continuation of the medieval tradition. Regiomontanus had been well

versed in Greek; but he had not shared the Humanists' apotheosis of

Hellenism, and he had been ready to recognize the importance of medieval

Arabic and Latin algebra. He obviously had been familiar with the works

of al-Khwarizmi and Fibonacci and had planned to print the De numeris

dads of Jordanus Nemorarius. Had Regiomontanus achieved his plans for
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publication, the Summa of Pacioli (or Paciuolo) would certainly not today

be regarded as the first printed work on algebra.

The Summa, the writing of which had been completed by 1487, was
more influential than it was original. It is an impressive compilation (with

sources of information not generally indicated) of material in four fields:

arithmetic, algebra, very elementary Euclidean geometry, and double-en-

try bookkeeping. Pacioli (also known as Luca di Borgo) for a time had

been tutor to the sons of a wealthy merchant at Venice, and he undoubtedly

was familiar with the rising importance in Italy of commercial arithmetic.

The earliest printed arithmetic, appearing anonymously at Treviso in 1478,

had featured the fundamental operations, the rules of two and three, and

business applications. Several more technical commercial arithmetics ap-

peared shortly thereafter, and Pacioli borrowed freely from them. One of

these, the Compendio de lo abaco of Francesco Pellos (fl. 1450-1500),

which was published at Torino in the year Columbus discovered America,

made use of a dot to denote the division of an integer by a power of ten,

thus adumbrating our decimal point.

The Summa, which like the Triparty was written in the vernacular, was

a summing up of unpublished works that the author had composed earlier,

as well as of general knowledge at the time. The portion on arithmetic is

much concerned with devices for multiplication and for finding square

roots; the section on algebra includes the standard solution of linear and

quadratic equations. Although it lacks the exponential notation of Chu-

quet, there is increased use of syncopation through abbreviations. The
letters p and m were by this time widely used in Italy for addition and

subtraction, and Pacioli used co,ce, and ae for cosa (the unknown), censo

(the square of the unknown), and aequalis respectively. For the fourth

power of the unknown he naturally used cece (for square-square). Echoing

a sentiment of Omar Khayyam, he believed that cubic equations could not

be solved algebraically.

Pacioli's work in geometry in the Summa was not significant, although

some of his geometric problems remind one of the algebraic geometry of

Regiomontanus, specific numerical cases being employed. For example, it

is required to find the sides of a triangle if the radius of the inscribed circle

is four and the segments into which one side is divided by the point of

contact are six and eight. Although Pacioli's geometry did not attract much
attention, so popular did the commercial aspect of the book become that

the author generally is regarded as the father of double-entry bookkeeping.

LEONARDO DA VINCI

Pacioli, the first mathematician of whom we have an authentic portrait, in

1509 tried his hand twice more at geometry, publishing an undistinguished
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edition of Euclid and a work with the impressive title De divina proportions

The latter concerns regular polygons and solids and the ratio later known
as "the golden section.

,,

It is noteworthy for the excellence of the figures,

which have been attributed to Leonardo da Vinci (1452-1519). Leonardo

frequently is thought of as a mathematician, but his restless mind did not

dwell on arithmetic or algebra or geometry long enough to make a signif-

icant contribution. In his notebooks we find quadratures of lunes, con-

structions of regular polygons, and thoughts on centers of gravity and on

curves of double curvature; but he is best known for his application of

mathematics to science and the theory of perspective. Da Vinci is pictured

as the typical all-round Renaissance man, and in fields other than math-

ematics there is much to support such a view. Leonardo was a genius of

bold and original thought, a man of action as well as contemplation, at

once an artist and an engineer. However, he appears not to have been in

close touch with the chief mathematical trend of the time—the development

of algebra. Few subjects depend as heavily on a continuous bookish tra-

dition and long-continued concentration as does mathematics, and Leon-

ardo was not one to maintain concentrated library research or even to

pursue his own imaginative ideas to their conclusions. Ultimately, hundreds

of years later, Renaissance notions on mathematical perspective were to

blossom into a new branch of geometry, but these developments were not

perceptibly influenced by the thoughts that the left-handed Leonardo en-

trusted to his notebooks in the form of mirror-written entries.

GERMANIC ALGEBRAS

The word Renaissance inevitably brings to mind Italian literary, artistic,

and scientific treasures, for renewed interest in art and learning became

apparent in Italy earlier than in the other parts of Europe. There, in a

rough-and-tumble conflict of ideas, men learned to put greater trust in

independent observations of nature and judgments of the mind. Moreover,

Italy had been one of the two chief avenues along which Arabic learning,

including algorism and algebra, had entered Europe. Nevertheless, other

parts of Europe did not remain far behind, as the work of Regiomontanus

and Chuquet shows. In Germany, for example, books on algebra became

so numerous that for a time the Germanic word coss for the unknown

triumphed in other parts of Europe, and the subject became known as the

"cossic art." Moreover, the Germanic symbols for addition and subtraction

ultimately displaced the Italian p and m. In 1489, before the publication

of Pacioli's Summa, a German lecturer at Leipzig, Johann Widman (born

ca. 1460), had published a commercial arithmetic, Rechnung uffalien Kauff-

manschafften, the oldest book in which our familiar + and - signs appear

in print. At first used to indicate excess and deficiency in warehouse mea-
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sures, they later became symbols of the familiar arithmetic operations.

Widman, incidentally, possessed a manuscript copy of the Algebra of al-

Khwarizmi, a work well known to other German mathematicians.

Among the numerous Germanic algebras was Die Coss, written in 1524

by Germany's celebrated Rechenmeister, Adam Riese (1492-1559). The
author was the most influential German writer in the move to replace the

old computation (in terms of counters and Roman numerals) by the newer

method (using the pen and Hindu-Arabic numerals). So effective were his

numerous arithmetic books that the phrase "nach Adam Riese" still sur-

vives in Germany as a tribute to accuracy in arithmetic processes. Riese,

in his Coss, mentions the Algebra of al-Khwarizmi and refers to a number
of Germanic predecessors in the field.

The first half of the sixteenth century saw a flurry of German algebras,

among the most important of which were the Coss (1525) of Christoph

Rudolff (ca. 1500-ca. 1545), the Rechnung (1527) of Peter Apian (1495-

1552), and the Arithmetica Integra (1544) of Michael Stifel (ca. 1487-1567).

The first is especially significant as one of the earliest printed works to

make use of decimal fractions as well as of the modern symbol for roots;

the second is worth recalling for the fact that here, in a commercial arith-

Title page of an edition (1529) of one of the Rechenbucher of Adam Riese, the celebrated

Rechenmeister. It depicts a contest between an algorist and an abacist.
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metic. the so-called "Pascal triangle" was printed on the title page, almost

a century before Pascal was born. The third work, StifeTs Arithmetica

integra, was the most important of all the sixteenth-century German al-

gebras. It, too, includes the Pascal triangle, but it is more significant for

its treatment of negative numbers, radicals, and powers. Through the use

of negative coefficients in equations, Stifel was able to reduce the multi-

plicity of cases of quadratic equations to what appeared to be a single form;

but he had to explain, under a special rule, when to use + and when -

.

Moreover, even he failed to admit negative numbers as roots of an equa-

tion. Stifel, a onetime monk turned itinerant Lutheran preacher, and for

a time Professor of Mathematics at Jena, was one of the many writers who
popularized the "German" symbols + and - at the expense of the "Ital-

ian" p and m notation. He was thoroughly familiar with the properties of

negative numbers, despite the fact that he called them "numeri absurdi."

About irrational numbers he was somewhat hesitant, saying that they are

"hidden under some sort of cloud of infinitude." Again calling attention

to the relations between arithmetic and geometric progressions, as had

Chuquet for powers of two from to 20, Stifel extended the table to include

2" 1 = i and 2~ 2 = } and 2"3 = s (without, however, using exponential

notation). For powers of the unknown quantity in algebra Stifel in Arith-

metica Integra used abbreviations for the German words coss, zensus, cu-

bus, and zenzizensus; but in a later treatise, De algorithm! numerorum

cossicorum, he proposed using a single letter for the unknown and repeating

the letter for higher powers of the unknown, a scheme later employed by

Harriot.

CARDAN'S ARS MAGNA

The Arithmetica integra was a thorough treatment of algebra as generally

known up to 1544; yet by the following year it was in a sense quite out-

moded. Stifel gave many examples leading to quadratic equations, but

none of his problems lead to mixed cubic equations, for the simple reason

that he knew no more about the algebraic solution of the cubic than did

Pacioli or Omar Khayyam. In 1545, however, the solution not only of the

cubic but of the quartic as well became common knowledge through the

publication of the Ars magna of Geronimo Cardano (1501-1576). Such a

striking and unanticipated development made so strong an impact on al-

gebraists that the year 1545 frequently is taken to mark the beginning of

the modern period in mathematics. It must be pointed out immediately,

however, that Cardano (or Cardan) was not the original discoverer of the

solution of either the cubic or the quartic. He himself candidly admitted

this in his book. The hint for solving the cubic, he averred, he had obtained

from Niccolo Tartaglia (ca. 1500-1557); the solution of the quartic was



CARDAN'S ARS MAGNA 283

first discovered by Cardan's quondam amanuensis, Ludovico Ferrari (1522—

1565). What Cardan failed to mention in Ars magna is the solemn oath he

had sworn to Tartaglia that he would not disclose the secret, for the latter

intended to make his reputation by publishing the solution of the cubic as

the crowning part of his treatise on algebra.

Lest one feel undue sympathy for Tartaglia, it may be noted that he

had published an Archimedean translation (1543), derived from Moerbeke,

leaving the impression that it was his own, and in his Quesiti et inventioni

diverse (Venice, 1546) he gave the law of the inclined plane, presumably

derived from Jordanus Nemorarius, without proper credit. It is, in fact,

possible that Tartaglia himself had received a hint concerning the solution

of the cubic from an earlier source. Whatever may be the truth in a rather

complicated and sordid controversy between proponents of Cardan and

Tartaglia, it is clear that neither of the principals was first to make the

discovery. The hero in the case evidently was one whose name is scarcely

remembered today—Scipione del Ferro (ca. 1465-1526), professor of

mathematics at Bologna, one of the oldest of the medieval universities and

a school with a strong mathematical tradition. How or when del Ferro

made his wonderful discovery is not known. He did not publish the solution,

but before his death he had disclosed it to a student, Antonio Maria Fior

(or Floridus in Latin), a mediocre mathematician.

Word of the existence of an algebraic solution of the cubic seems to

have gotten around, and Tartaglia tells us that knowledge of the possibility

of solving the equation inspired him to devote himself to finding the method

for himself. Whether independently or on the basis of a hint, Tartaglia did

indeed learn, by 1541, how to solve cubic equations. When news of this

spread, a mathematical contest between Fior and Tartaglia was arranged.

Each contestant proposed thirty questions for the other to solve within a

stated time interval. When the day for decision had arrived, Tartaglia had

solved all questions posed by Fior, whereas the latter had not solved a

single one set by his opponent. The explanation is relatively simple. Today

we think of cubic equations as all essentially of one type and as amenable

to a single unified method of solution. At that time, however, when negative

coefficients were virtually unused, there were as many types of cubics as

there are possibilities in positive or negative signs for coefficients. Fior was

able to solve only equations of the type in which cubes and roots equal a

number, that is, those of the type x 3 + px = q, although at that time only

specific numerical (positive) coefficients were used. Tartaglia meanwhile

had learned how to solve also equations of the form where cubes and

squares equal a number. It is likely that Tartaglia had learned how to

reduce this case to Fior's by removing the squared term, for it became

known by this time that if the leading coefficient is unity, then the coefficient

of the squared term, when it appears on the other side of the equality sign,

is the sum of the roots.



284 THE RENAISSANCE

News of Tartaglia's triumph reached Cardan, who promptly invited the

winner to his home, with a hint that he would arrange to have him meet
a prospective patron. Tartaglia had been without a substantial source of

support, partly perhaps because of a speech impediment. As a child he

had received a sabre cut in the fall of Brescia to the French in 1512, which

impaired his speech. This earned him the nickname Tartaglia, or stam-

merer, a name that he thereafter used instead of the name Niccolo Fontana

that had been given him at birth. Cardan, in contrast to Tartaglia, had

achieved worldly success as a physician. So great was his fame that he was

once called to Scotland to diagnose an ailment of the Archbishop of St.

Andrews (evidently a case of asthma). By birth illegitimate, and by habit

an astrologer, gambler, and heretic, Cardan nevertheless was a respected

professor at Bologna and Milan, and ultimately he was granted a pension

by the pope. One of his sons poisoned his own wife, the other son was a

scoundrel, and Cardan's secretary Ferrari probably died of poison at the

hands of his own sister. Despite such distractions, Cardan was a prolific

writer on topics ranging from his own life and praise of gout to science

and mathematics.

In his chief scientific work, a ponderous volume with the title De sub-

tilitate, Cardan is clearly a child of his age, discussing interminably the

Aristotelian physics handed down through Scholastic philosophy, while at

the same time waxing enthusiastic about the new discoveries of the then

recent times. Much the same can be said of his mathematics, for this, too,

was typical of the day. He knew little of Archimedes and less of Apollonius,

but he was thoroughly familiar with algebra and trigonometry. He already

had published a Practica arithmetice in 1539, which included among other

things the rationalization of denominators containing cube roots. By the

time he published the Ars magna, half a dozen years later, he probably

was the ablest algebraist in Europe. Nevertheless, the Ars magna makes

dull reading today. Case after case of the cubic equation is laboriously

worked out in detail according as terms of the various degrees appear on

the same or on opposite sides of the equality, for coefficients were nec-

essarily positive. Despite the fact that he is dealing with equations on

numbers, he followed al-Khwarizmi in thinking geometrically, so that we
might refer to his method as "completing the cube." There are, of course,

certain advantages in such an approach. For instance, since x y
is a volume,

6*, in Cardan's equation below, must also be thought of as a volume.

Hence, the number 6 must have the dimensionality of an area, suggesting

the type of substitution that Cardan used, as we shall shortly see.

SOLUTION OF THE CUBIC EQUATION

Cardan used little syncopation, being a true disciple of al-Khwarizmi, and,

like the Arabs, he thought of his equations with specific numerical coef-
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ficients as representative of general categories. For example, when he wrote,

"Let the cube and six times the side be equal to 20" (or x } + 6* = 20),

he obviously was thinking of this equation as typical of all those having "a

cube and thing equal to a number"—that is, of the form x } + px = q.

The solution of this equation covers a couple of pages of rhetoric that we
should now put in symbols as follows: Substitute u - v for ,v and let u and

v be related so that their product (thought of as an area) is one third the

x coefficient in the cubic equation—that is, uv = 2. Upon substitution in

the equation, the result is u3 - v* = 20; and, on eliminating u, we have

u b = 20w3 + 8, a quadratic in w\ Hence, n3
is known to be

Jerome Cardan.
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From the relationship i*
3 - V* = 20, we see tha t v3 = Vl08 - 10 ; hence,

from x = M - u. we have x = Wl08 + 10 - Wl08 - 10. Having

carried through the method for this specific case, Cardan closes with a

verbal formulation of the rule equivalent to our modern solution of x } +

px = q as

= S/V(p/3Y + (q/2)
2 + q/2 - W(/?/3) 3 + (q/2)

2 - q/2.x

Cardan then went on to other cases, such as "cube equal to thing and

number." Here one makes the substitution x = u + v instead of x =

if — v, the rest of the method remaining essentially the same. In this case,

however, there is difficulty. When the rule is applied to * 3 = \5x + 4, for

example, the result is jc = S/l + V-121 + S/l- V-121. Cardan knew
that there was no square root of a negative number, and yet he knew x =

4 to be a root. He was unable to understand how his rule could make sense

in this situation. He had toyed with square roots of negative numbers in

another connection when he asked that one divide 10 into two parts such

that the product of the parts is 40. The usual rules of algebra lead to the

answers 5 + V- 15 and 5 - V- 15 (or, in Cardan's notation, 5p : IJm : 15

and 5m: Km: 15). Cardan referred to these square roots of negative num-

bers as "sophistic" and concluded that his result in this case was "as subtile

as it is useless." Later writers were to show that such manipulations were

indeed subtle but far from useless. It is to Cardan's credit that at least he

paid some attention to this puzzling situation.

FERRARI'S SOLUTION OF THE QUARTIC EQUATION

Of the rule for solving quartic equations Cardan in the Ars magna wrote

that it "is due to Luigi Ferrari, who invented it at my request." Again

separate cases, twenty in all, are considered in turn, but for the modern

reader one case will suffice. Let square-square and square and number be

equal to side. (Cardan knew how to eliminate the cubic term by increasing

or diminishing the roots by one fourth the coefficient in the cubic term.)

Then, the steps in the solution of x A + 6x 2 + 36 = 60* are expressed by

Cardan essentially as follows:

1. First add enough squares and numbers to both sides to make

the left-hand side a perfect square, in this case * 4 + 12jt + 36 or

(jc
2 + 6)-\

2. Now add to both sides of the equation terms involving a new unknown

y such that the left-hand side remains a perfect square, such as

(x
2 + 6 + y)

:
. The equation now becomes

(x 2 + 6 + y)
2 = 6x 2 + 60* + y

2 + \2y + 2yx 2

= (2v + 6)jt + 60* + (y
2 + 12\).
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3. The next, and crucial, step is to choose y so that the trinomial on
the right-hand side will be a perfect square. This is done, of course,

by setting the discriminant equal to zero, an ancient and well-known

rule equivalent in this case to 602 - 4(2y + 6)(

y

2 + \2y) = 0.

4. The result of step 3 is a cubic equation in y: y
3 + 15y

2 + 36y =

450, today known as the "resolvent cubic" for the given quartic

equation. This is now solved for y by the rules previously given for

the solution of cubic equations, the result being

y = \^287i + V80449i + V287i - V804494 - 5.

5. Substitute a value of y from step 4 into the equation for x in step 2

and take the square root of both sides.

6. The result of step 5 is a quadratic equation, which must now be

solved to find the value of x desired.

IRREDUCIBLE CUBICS AND COMPLEX NUMBERS

The solution of cubic and quartic equations was perhaps the greatest con-

tribution to algebra since the Babylonians, almost four millennia earlier,

had learned how to complete the square for quadratic equations. No other

discoveries had had quite the stimulus to algebraic development as did

those disclosed in the Ars magna. The solutions of the cubic and quartic

were in no sense the result of practical considerations, nor were they of

any value to engineers or mathematical practitioners. Approximate solu-

tions of some cubic equations had been known in antiquity, and al-Kashi

a century before Cardan could have solved to any desired degree of ac-

curacy any cubic equation resulting from a practical problem. The Tartag-

lia-Cardan formula is of great logical significance, but it is not nearly so

useful for applications as are methods of successive approximation.

The most important outcome of the discoveries published in the Ars

magna was the tremendous stimulus they gave to algebraic research in

various directions. It was natural that study should be generalized to include

polynomial equations of any order and that in particular a solution should

be sought for the quintic. Here mathematicians of the next couple of

centuries were faced with an unsolvable algebraic problem comparable to

the classical geometric problems of antiquity. Much good mathematics,

but only a negative conclusion, was the outcome. Another immediate result

of the solution of the cubic was the first significant glance at a new kind

of number. Irrational numbers had been accepted by the time of Cardan,

even though they were not soundly based, for they are readily approxi-

mated by rational numbers. Negative numbers afforded more difficulty

because they are not readily approximated by positive numbers, but the

notion of sense (or direction on a line) made them plausible. Cardan used

them even while calling them numerificti. If an algebraist wished to deny
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the existence of irrational or negative numbers, he would simply say, as

had the ancient Greeks, that the equations x 2 = 2 and x + 2 = are not

solvable. In a similar way algebraists had been able to avoid imaginaries

simply by saying that an equation such as x 2 + 1 = is not solvable. There

was no need for square roots of negative numbers. With the solution of

the cubic equation, however, the situation became markedly different.

Whenever the three roots of a cubic equation are real and different from

zero, the Cardan-Tartaglia formula leads inevitably to square roots of

negative numbers. The goal was known to be a real number, but it could

not be reached without understanding something about imaginary num-
bers. The imaginary now had to be reckoned with even if one did agree

to restrict oneself to real roots.

At this stage another important Italian algebraist, Rafael Bombelli (ca.

1526-1573), had what he called "a wild thought," for the whole matter

"seemed to rest on sophistry. " The two radicands of the cube roots resulting

from the usual formula differ only in one sign. We have seen that the

solution by formula of jc
3 = 15jc + 4 leads to x = V2 + V- 121 +

V2 - V-121, whereas it is known by direct substitution that jc = 4 is

the only positive root of the equation. (Cardan had noted that when all

terms on one side of the equality sign are of higher degree than the terms

on the other side, the equation has one and only one positive root—an

anticipation, in a small way, of part of Descartes' rule of signs.) Bombelli

had the happy thought that the radicals themselves might be related in

much the way that the radicands are related; that, as we should now say,

they are conjugate imaginaries that lead to the real number 4. It is obvious

that if the sum of the real parts is 4, then the real part of each is 2; and i f

a number of the form 2 + bV^l is to be a cube root of 2 -I- HV^T,
then it is easy to see that b must be 1. Hence, x = 2 + lV- 1 + 2 -

lV^T, or 4.

Through his ingenious reasoning Bombelli had shown the important role

that conjugate imaginary numbers were to play in the future. But at that

time the observation was of no help in the actual work of solving cubic

equations, for Bombelli had had to know beforehand what one of the roots

is. In this case the equation is already solved, and no formula is needed;

without such foreknowledge, Bombelli's approach fails. Any attempt to

find algebraically the cube roots of the imaginary numbers in the Cardan-

Tartaglia rule leads to the very cubic in the solution of which the cube

roots arose in the first place, so that one is back where he started from.

Because this impasse arises whenever all three roots are real, this is known
as the "irreducible case." Here an expression for the unknown is indeed

provided by the formula, but the form in which this appears is useless for

most purposes.

Bombelli composed his Algebra in about 1560, but it was not printed

until 1572, about a year before he died, and then only in part. One of the
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significant things about this book is that it contains symbolisms reminiscent

of those of Chuquet. Bombelli sometimes wrote 1 Z p.5Rm.4 (that is, 1

zenus plus 5 res minus 4) for x 2 + 5* - 4. But he used also another form

of expression—l^p • 5~m 4—in which the power of the unknown quantity

is represented simply as an Arabic numeral above a short circular arc, so

that jc, *2
, jc

3 appear asj^,^,^, for example, influenced perhaps by de la

Roche's Larismethique . Bombelli's Algebra, of course, uses the standard

Italian symbols p and m for addition and subtraction, but he still had no

symbol for equality. Our standard equality sign had been published before

Bombelli wrote his book, but the symbol had appeared in a distant part

of Europe, namely in England in 1557 in the Whetstone of Witte of Robert

Recorde (1510-1558).

ROBERT RECORDE

Mathematics had not prospered in England during the period of almost

two centuries since the death of Bradwardine, and what little work was

done there in the early sixteenth century depended much on Italian writers

such as Pacioli. Recorde was, in fact, just about the only mathematician

of any stature in England throughout the century. He was born in Wales

and studied and taught mathematics at both Oxford and Cambridge. In

1545 he received his medical degree at Cambridge, and thereafter he be-

came physician to Edward VI and Queen Mary. One of the remarkable

things about the period was the surprisingly large number of physicians

who contributed outstandingly to mathematics, Chuquet, Cardan, and Re-

corde being three of the best known. It is likely that Recorde was the most

influential of these three within his own country, for he virtually established

the English mathematical school. Like Chuquet and Pacioli before him,

and Galileo after him, he wrote in the vernacular; this may have limited

his effect on the Continent, although the easy dialogue form that he adopted

was used also, some time later, by Galileo. Recorde's first extant mathe-

matical work was the Grounde of Artes (1541), a popular arithmetic con-

taining computation by abacus and algorism, with commercial applications.

The level and style of this book, dedicated to Edward VI and appearing

in more than two dozen editions, may be judged from the following prob-

lem:

Then what say you to this equation? If I sold unto you an horse having 4

shoes, and in every shoe 6 nayles, with this condition, that you shall pay for

the first nayle one ob: for the second nayle two ob: for the third nayle foure

ob: and so fourth, doubling untill the end of all the nayles, now I ask you,

how much would the price of the horse come unto?
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His Castle of Knowledge, an astronomy in which the Copernican system

is cited with approval, and his Pathewaie to Knowledge, an abridgement

of the Elements and the first geometry to appear in English, both appeared

in 1551. The work of Recorde that is most often cited is The Whetstone of
Witte, published in 1557, only a year before he died in prison. (Whether
he was jailed for political or religious reasons or because of difficulties

related to his position, from 1551 on, as Surveyor of the Mines and Monies
of Ireland, is not known.) The title Whetstone evidently was a play on the

word "coss," for cos is the Latin for whetstone, and the book is devoted

to "the cossike practise" (that is, algebra). It did for England what Stifel

had done for Germany—with one addition. The well-known equality sign

first appeared in it, explained by Recorde in the quotation at the beginning

of this chapter. However, it was to be a century or more before the sign

triumphed over rival notations.

NICHOLAS COPERNICUS

Recorde died in 1558, the year in which Queen Mary also died, and no

comparable English mathematical author appeared during the long reign

of Elizabeth I. It was France, rather than England, Germany, or Italy,

that produced the outstanding mathematician of the Elizabethan Age. But

before we turn to his work in the next chapter, there are certain aspects

of the earlier sixteenth century that should be clarified. The direction of

greatest progress in mathematics during the sixteenth century was obviously

in algebra, but developments in trigonometry were not far behind, although

they were not nearly so spectacular. The construction of trigonometric

tables is a dull task, but they are of great usefulness to astronomers and

mathematicians; here early sixteenth-century Poland and Germany were

very helpful indeed. Most of us today think of Nicholas Copernicus (1473-

1543) as an astronomer who revolutionized the world view by successfully

putting the earth in motion about the sun (where Aristarchus had tried

and failed); but an astronomer is almost inevitably a trigonometer as well,

and we owe to Copernicus a mathematical obligation as well as an astro-

nomical debt.

During the lifetime of Regiomontanus, Poland had enjoyed a "Golden

Age" of learning, and the University of Cracow, where Copernicus enrolled

in 1491, enjoyed great prestige in mathematics and astronomy. After fur-

ther studies in law, medicine, and astronomy at Bologna, Padua, and

Ferrara and after some teaching at Rome, Copernicus returned to Poland

in 1510 to become Canon of Frauenburg. Despite multitudinous admin-

istrative obligations, including currency reform and the curbing of the

Teutonic Order, Copernicus completed the celebrated treatise, De revo-

lutionibus orbium coelestium, published in 1543, the year he died. This
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contains substantial sections on trigonometry that had been separately

published in the previous year under the title De lateribus et angulis Irian-

gulorum. The trigonometric material is similar to that in Regiomontanus'

De triangulis, published at Nuremberg only a decade earlier; but Coper-

nicus* trigonometric ideas seem to date from before 1533, at which time

he probably did not know of the work of Regiomontanus. It is quite likely,

nevertheless, that the final form of Copernicus' trigonometry was in part

derived from Regiomontanus, for in 1539 he received as a student the

Prussian mathematician Georg Joachim Rheticus (or Rhaeticus, 1514-1576),

a mathematician of Wittenberg who evidently had been in touch with

Nuremberg mathematics. Rheticus worked with Copernicus for some three

years, and it was he who, with his teacher's approval, published the first

short account of Copernican astronomy in a work entitled Narratio prima

(1540) and who made the first arrangements, completed by Andreas Os-

iander, for the printing of the celebrated De revolutionibus. It is likely,

therefore, that the trigonometry in the classic work of Copernicus is closely

related, through Rheticus, to that of Regiomontanus.

We see the thorough trigonometric capabilities of Copernicus not only

in the theorems included in De revolutionibus, but also in a proposition

originally included by the author in an earlier manuscript version of the

book, but not in the printed work. The deleted proposition is a generali-

zation of the theorem of Nasir Eddin (which does appear in the book) on

the rectilinear motion resulting from the compounding of two circular

motions. The theorem of Copernicus is as follows: If a smaller circle rolls

without slipping along the inside of a larger circle with diameter twice as

great, then the locus of a point which is not on the circumference of the

smaller circle, but which is fixed with respect to this smaller circle, is an

ellipse. Cardan, incidentally, knew of the Nasir Eddin theorem, but not

of the Copernican locus, a theorem rediscovered in the seventeenth cen-

tury.

GEORG JOACHIM RHETICUS

Through the trigonometric theorems in De revolutionibus Copernicus spread

the influence of Regiomontanus, but his student Rheticus went further.

He combined the ideas of Regiomontanus and Copernicus, together with

views of his own, in the most elaborate treatise composed up to that time:

the two-volume Opus palatmum de triangulis. Here trigonometry really

came of age. The author discarded the traditional consideration of the

functions with respect to the arc of a circle and focused instead on the lines

in a right triangle. Moreover, all six trigonometric functions now came into

full use, for Rheticus calculated elaborate tables of all of them. Decimal

fractions still had not come into common use; hence, for the sine and
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cosine functions he used a hypotenuse (radius) of 10,000,000 and for the

other four functions a base (or adjacent side or radius) of 10,000,000 parts,

for intervals in the angle of 10". He began tables of tangents and secants

with a base of 10 15
parts; but he did not live to finish them, and the treatise

was completed and edited, with additions, by his pupil Valentin Otho (ca.

1550-1605) in 1596.

PIERRE DE LA RAMEE

The work of Rheticus, who like Copernicus, Chuquet, Cardan, and Re-

corde had also studied medicine, was much admired by Pierre de la Ramee,
or Ramus (1515-1572), a man who contributed to mathematics in a pe-

dagogical sense. At the College de Navarre he had in 1536 defended, for

his master's degree, the audacious thesis that everything Aristotle had said

was wrong—at a time when Peripateticism was the same as orthodoxy. In

his intellectual criticism and pedagogical interests he may be compared

with Recorde in England. Ramus was at odds with his age in many ways,

and while his Humanist contemporaries had little use for mathematics, he

had almost a blind faith in the subject. He proposed revisions in the uni-

versity curricula so that logic and mathematics should receive more atten-

tion; his logic enjoyed considerable popularity in Protestant countries, in

part because he died a martyr in the St. Bartholomew massacre. Not

satisfied even with the Elements of Euclid, Ramus edited this with revisions.

However, his competence in geometry was very limited, and his suggested

changes in mathematics were in the opposite direction from those in our

day. Ramus had more confidence in practical elementary mathematics than

in speculative higher algebra and geometry. Looking back on his age we
see that the mathematics of that time seems already to have been exces-

sively concerned with practical problems in arithmetic, while weakness in

geometry was quite conspicuous.

BOMBELLI'S ALGEBRA

Pappus in about 320 had wished to initiate a geometric revival, but he

found no really capable successor in pure geometry in Greece. In China

and India there never had been any real concern for geometry beyond

problems in mensuration, but the Arabs, who appreciated demonstrative

reasoning, used geometric arguments in their algebra. In medieval Europe,

as we have seen, there was a two-way tendency to relate algebra and

geometry. In the medieval tradition, Books IV and VI of Bombelli's Al-

gebra were full of problems in geometry that are solved algebraically,

somewhat in the manner of Regiomontanus but making use of new sym-



294 THE RENAISSANCE

bolisms. For example, Bombelli asked for the side of a square inscribed

in a triangle with sides ae = 13, cf = 14, fa = 15, so that one side lies

on c/(Fig. 15.1), which he solved as follows: Let bg = 14- (that is, 14jc).

Then ag = 15- and ab = 13-. Now ah = 12- and hi = 14-. Since ai =

12, we have 26- = 12; then "cosa" or x is i%, so that hi, or the side of the

square, must be 14 times A or 6A. Here a highly symbolic algebra has

come to the aid of geometry; but Bombelli worked in the other direction,

too. In the Algebra, the algebraic solution of cubic equations is accom-

panied by geometric demonstrations in terms of the subdivision of the

cube. Unfortunately for the future of geometry—and of mathematics in

general—the last books of Bombellfs Algebra were not included in the

publication of 1572 but remained in manuscript until 1929.

JOHANNES WERNER

Pure geometry in the sixteenth century was not entirely without represen-

tatives, for unspectacular contributions were made in Germany by Johan-

nes Werner (1468-1522) and Albrecht Durer (1471-1528), and in Italy by

Francesco Maurolico (1494-1575) and Pacioli. Once more we note the

preeminence of these two countries in contributions to mathematics during

the Renaissance. Werner had aided in preserving the trigonometry of Re-

giomontanus, but of more geometric significance was his Latin work, in

twenty-two books, on the Elements of Conies, printed at Nuremberg in

1522. Although this cannot be compared favorably with the Conies of

Apollonius, almost entirely unknown in Werner's day, it marks the renewal

of interest in the curves for aimost the first time since Pappus. Because

the author was concerned primarily with the duplication of the cube, he

concentrated on the parabola and the hyperbola, deriving the standard

plane equations stereometrically from the cone, as had his predecessors in

Greece; but there seems to be an element of originality in his plane method

for plotting points on a parabola with compasses and straightedge. One
first draws a pencil of circles tangent to each other and intersecting the

common normal in points c, d, e, /, g, . . . (Fig 15.2). Then, along the

common normal one marks off a distance ab equal to a desired parameter.
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FIG. 15.2

At b one erects the line bG perpendicular to ab and cutting the circles in

points C, D, £, F, G, . . . respectively. Then, at c one erects line segments

cC and cC" perpendicular to ab and equal to bC\ at d one erects perpen-

dicular segments dD' and dD" equal to bD\ at e one erects segments eE'

and eE" equal to bE, and so on. Then, C, C", D', D", £', £", . . . will

all lie on the parabola with vertex b, axis along ab, and having ab as the

magnitude of the parameter—as is readily seen from the relationships

{cCf = ab • be, (dD') 2 = ab > bd, and so on.

THEORY OF PERSPECTIVE

Werner's work is closely related to ancient studies of conies; but meanwhile

in Italy and Germany a relatively novel relationship between mathematics
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Albrecht Durer's "Melancholia'

in the upper right-hand corner.

The British Museum). Note the four-celled magic square

and art was developing. One important respect in which Renaissance art

differed from art in the Middle Ages was in the use of perspective in the

plane representation of objects in three-dimensional space. The Florentine

architect Filippo Brunelleschi (1377-1446) is said to have given much at-

tention to this problem, but the first formal account of some of the problems

was given by Leon Battista Alberti (1404-1472) in a treatise of 1435 (printed

in 1511) entitled Delia piciura. Alberti opens with a general discussion of

the principles of foreshortening and then describes a method he had in-

vented for representing in a vertical "picture plane" a set of squares in a
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horizontal "ground plane." Let the eye be at a "station point" S that is h

units above the ground plane and k units in front of the picture plane. The
intersection of the ground plane and the picture plane is called the "ground-

line," the foot V of the perpendicular from S to the picture plane is called

the "center of vision" (or the principal vanishing point), the line through

V parallel to the groundline is known as the "vanishing line" (or horizon

line), and the points P and Q on this line which are k units from V are

called the "distance points." If we take points ,4, #, C, D, £, F, G marking

off equal distances along the groundline RT (Fig. 15.3), where D is the

intersection of this line with the vertical plane through 5 and V, and if we
draw lines connecting these points with V, then the projection of these last

lines, with S as a center, upon the ground plane will be a set of parallel

and equidistant lines. If P (or Q) is connected with the points £, C, D,

E, F, G to form another set of lines intersecting AV in points //, /, 7, K,

L, M, and if through the latter points parallels are drawn to the groundline

RT, then the set of trapezoids in the picture plane will correspond to a set

of squares in the ground plane.

A further step in the development of perspective was taken by the Italian

painter of frescoes, Piero della Francesca (14107-1492), in De prospectiva

pingendi (ca. 1478). Where Alberti had concentrated on representing on

the picture plane figures in the ground plane, Piero handled the more

complicated problem of depicting on the picture plane objects in three

dimensions as seen from a given station point. He wrote also a De cor-

poribus regularibus where he noted the "divine proportion" in which di-

agonals of a regular pentagon cut each other and where he found the

volume common to two equal circular cylinders whose axes cut each other

at right angles (unaware of Archimedes
1

Method, which was unknown at

the time). The connection between art and mathematics was strong also

in the work of Leonardo da Vinci. He wrote a work, now lost, on per-

spective; his Trattato della pittura opens with the admonition, "Let no one

who is not a mathematician read my works." The same combination of

mathematical and artistic interests is seen in Albrecht Durer, a contem-

porary of Leonardo and a fellow townsman of Werner at Nuremberg. In

Durer's work we see also the influence of Pacioli, especially in the cele-

brated engraving of 1514 entitled Melancholia. Here the magic square

figures prominently. This often is regarded as the first use of a magic square

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1
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in the West, but Pacioli had left an unpublished manuscript, De viribus

quantitatis, in which interest in such squares is indicated. Durer's interests

in mathematics, however, were far more geometric than arithmetic, as the

title of his most important book indicates: Investigation of the Measurement

with Circles and Straight Lines of Plane and Solid Figures. This work, which

appeared in several German and Latin editions from 1525 to 1538, contains

some striking novelties, of which the most important were his new curves.

This is one direction in which the Renaissance could easily have improved

on the work of the ancients, who had studied only a handful of types of

curves. Diirer took a fixed point on a circle and then allowed the circle to

roll along the circumference of another circle, generating an epicycloid;

but, not having the necessary algebraic tools, he did not study this ana-

lytically. The same was true of other plane curves that he obtained by

projecting helical space curves onto a plane to form spirals. Too often those

working in perspective were not familiar with the foundations of mathe-

matics and failed to distinguish between exact and approximate results. In

Durer's work we find the Ptolemaic construction of the regular pentagon,

which is exact, as well as another original construction that is only an

approximation. For the heptagon and enneagon he also gave ingenious

but, of course, inexact constructions. Durer's construction of an approxi-

mately regular nonagon is as follows: Let O be the center of a circle ABC
in which A, B, and C are vertices of the inscribed equilateral triangle (Fig.

15.4). Through A, O, and C draw a circular arc, draw similar arcs through

B, O, and C and through 2?, 0, and A. Let AO be trisected at points D
and £, and through E draw a circle with center at O and cutting arcs AFO
and AGO in points Fand G respectively. Then, the straight line segment

FG will be very nearly equal to the side of the regular nonagon inscribed

in this smaller circle, the angle FOG differing from 40° by less than 1°. The
relation of art and geometry might have been very productive indeed, had

it gained the attention of professionally minded mathematicians, but in

this respect it failed for more than a century after Durer's time.

FIG. 15.4



CARTOGRAPHY 299

CARTOGRAPHY

Durer's contemporaries in pure mathematics failed to appreciate the future

of geometric transformations, but projections of various sorts are essential

to cartographers. Geographical explorations had widened horizons and

created a need for better maps, but Scholasticism and Humanism were of

little help here since new discoveries had outmoded medieval and ancient

maps. One of the most important of the innovators was a German math-

ematician and astronomer, Peter Apian (or Bienewitz, 1495-1552). In 1520

he published perhaps the earliest map of the Old World and the New World
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Pasca/ Triangle as first printed, 1527. Title page of the arithmetic of Petrus Apianus, In-

golstadt, 1527, more than a century before Pascal investigated the properties of the triangle.
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in which the name "America" was used; in 1527 he issued a business

arithmetic in which, on the title page, the arithmetic, or Pascal, triangle

appeared in print for the first time. The maps of Apian were well done,

but they followed Ptolemy closely wherever possible. For that novelty

which is thought to be so characteristic of the Renaissance it is better to

look instead to a Flemish geographer, Gerard Mercator (or Gerhard Kre-

mer, 1512-1594), who was for a time associated with the court of Charles

V at Brussels. Mercator may be said to have broken with Ptolemy in

geography as Copernicus had revolted against Ptolemaic astronomy.

For the first half of his life Mercator depended heavily on Ptolemy, but

by 1554 he had emancipated himself sufficiently to cut down the Ptolemaic

estimate of the width of the Mediterranean from 62° to 53°. (Actually it is

close to 40°.) More importantly, in 1569 he published the first map, Nova

et aucta orbis terrae descriptio, drawn up on a new principle. Maps in

common use in Mercator's day were usually based upon a rectangular grid

made up of two sets of equidistant parallel lines, one set for latitudes, the

other for longitudes. The length of a degree of longitude, however, varies

with the parallel of latitude along which it is measured, an inequality

disregarded in common practice and resulting in distortion of shape and

in errors of direction on the part of navigators who based a course upon

the straight line drawn between two points on the map. The Ptolemaic

stereographic projection preserved shapes, but it did not use the common
grid of lines. To bring theory and practice into some accord, Mercator

introduced the projection that bears his name and, with later improvement,

has been basic in cartography ever since. The first step in the Mercator

projection is to think of a spherical earth inscribed within an indefinitely

long right circular cylinder touching the earth along the equator (or some

other great circle), and to project, from the center of the earth, points on

the surface of the earth onto the cylinder. If the cylinder then is cut along

an element and flattened out, the meridians and parallels on the earth will

have been transformed into a rectangular network of lines. Distances be-

tween successive meridian lines will be equal, but not distances between

successive lines of latitude. In fact, the latter distances increase so rapidly,

as one moves away from the equator, that distortions of shape and direction

occur; but Mercator found that through an empirically determined modi-

fication of these distances preservation of direction and shape (although

not of size) was possible. In 1599 Edward Wright (1558-1615), a fellow at

Cambridge, tutor to Henry, Prince of Wales, and a good sailor, developed

the theoretical basis of the Mercator projection by computing the functional

relationship D = a In tan((/>/2 + 45°) between map distance D from the

equator and latitude (p.

Mathematics during the Renaissance had been widely applied, to book-

keeping, mechanics, surveying, art. cartography, and optics, and there were

numerous books devoted to the practical arts. Nevertheless, interest in the
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classical works of antiquity continued strong, as we see in the case of

Maurolico, a priest of Greek parentage who was born, lived, and died in

Sicily. Maurolico was a scholarly geometer who did much to revive interest

in the more advanced of the antique works. Geometry in the first half of

the sixteenth century had been far too heavily dependent on the elementary

properties found in Euclid. Werner had been an exception to this rule, but

few others were really familiar with the geometry of Archimedes, Apol-

lonius, and Pappus. The reason for this was simple—Latin translations of

these did not become generally available until the middle of the century.

In this process of translation Maurolico was joined by an ardent Italian

scholar, Federigo Commandino, who died in the same year, 1575. We have

mentioned Tartaglia's borrowed translation of Archimedes printed in 1543;

this was followed by a Greek edition of 1544 and a Latin translation by

Commandino at Venice in 1558.

Four books of the Conies of Apollonius had survived in Greek, and

these had been translated into Latin and printed at Venice in 1537. Mau-
rolico's translation, completed in 1548, was not published for more than

a century, appearing in 1654, but another translation by Commandino was

printed at Bologna in 1566. The Mathematical Collection of Pappus had

been virtually unknown to the Arabs and the medieval Europeans, but

this, too, was translated by the indefatigable Commandino, although it

was not printed until 1588. Maurolico was acquainted with the vast treas-

ures of ancient geometry that were becoming available, for he read Greek

as well as Latin. In fact, from some indications in Pappus of Apollonius'

work on maxima and minima—that is, on normals to the conic sections

—

Maurolico tried his hand at a reconstruction of the then lost Book V of

the Conies. In this respect he represented a vogue that was to be one of

the chief stimuli to geometry before Descartes: the reconstruction of lost

work in general and of the last four books of the Conies in particular.

During the interval from Maurolico's death in 1575 to the publication of

La geometrie by Descartes in 1637, geometry was marking time until de-

velopments in algebra had reached a level making algebraic geometry

possible. The Renaissance could well have developed pure geometry in

the direction suggested by art and perspective, but the possibility went

unheeded until almost precisely the same time that algebraic geometry was

created. Between Maurolico and Descartes, meanwhile, mathematics de-

veloped in several nongeometric directions, and it is to these that we now

turn.
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Prelude to Modern
Mathematics

In mathematics I can report no deficiency, except it be that men do not sufficiently

understand the excellent use of the Pure Mathematics.

Francis Bacon

FRANQOIS VIETE

When in 1575 Maurolico and Commandino died, Western Europe had

recovered most of the major mathematical works of antiquity now extant.

Arabic algebra had been thoroughly mastered and improved upon, both

through the solution of the cubic and quartic and through a partial use of

symbolism; and trigonometry had become an independent discipline. The

time was almost ripe for rapid strides beyond ancient, medieval, and Ren-

aissance contributions—but not quite. There is in the history of mathe-

matics a high degree of continuity from one age to the next. The transition

from the Renaissance to the modern world was also made through a large

number of intermediate figures, a few of the more important of whom we

shall now consider. Two of these men, Galileo Galilei (1564-1642) and

Bonaventura Cavalieri (1598-1647), came from Italy; several more, such

as Henry Briggs (1561-1639), Thomas Harriot (1560-1621), and William

Oughtred (1574-1660), were English; two of them, Simon Stevin (1548-

302
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1620) and Albert Girard (1590-1633), were Flemish; others came from

varied lands—John Napier (1550-1617) from Scotland, Jobst Burgi (1552-

1632) from Switzerland, and Johann Kepler (1571-1630) from Germany.

Most of Western Europe now was involved in the advance of mathematics,

but the central and most magnificent figure in the transition was a French-

man, Francois Viete (1540-1603), or, in Latin, Franciscus Vieta.

Viete was not a mathematician by vocation. As a young man he studied

and practiced law, becoming a member of the Bretagne parlement; later

he became a member of the king's council, serving first under Henry III

and later under Henry IV. It was during his service with the latter, Henry

of Navarre, that he became so successful in deciphering cryptic enemy
messages that the Spanish accused him of being in league with the devil.

Only Viete's leisure time was devoted to mathematics, yet he made con-

tributions to arithmetic, algebra, trigonometry, and geometry. There was

a period of almost half a dozen years, before the accession of Henry IV,

during which Viete was out of favor, and these years he spent largely on

mathematical studies. In arithmetic he should be remembered for his plea

for the use of decimal, rather than sexagesimal, fractions. In one of his

earliest works, the Canon mathematicus of 1579, he wrote:

Sexagesimals and sixties are to be used sparingly or never in mathematics,

and thousandths and thousands, hundredths and hundreds, tenths and tens,

and similar progressions, ascending and descending, are to be used frequently

or exclusively.

In the tables and computations he adhered to his word and used decimal

fractions. The sides of the squares inscribed in and circumscribed about a

circle of diameter 200,000 he wrote as 141,421,&& and 200,000,^2, and

their mean as 177,245,^^. A few pages further on he wrote the semi-

circumference as 314,159, f^5_, and still later this figure appeared as

314,159,265,36, with the integral portion in boldface type. Occasionally he

used a vertical stroke to separate the integral and fractional portions, as

when writing the apothem of the 96-sided regular polygon, in a circle of

diameter 200,000, as about 99,946 1458,75.

The use of a decimal point separatrix generally is attributed either to

G.A. Magini (1555-1617), a map-making friend of Kepler and rival of

Galileo for a chair at Bologna, in his De planis triangulis of 1592, or to

Christoph Clavius (1537-1612), a Jesuit friend of Kepler, in a table of sines

of 1593. But the decimal point did not become popular until Napier used

it more than twenty years later.

CONCEPT OF A PARAMETER

Without doubt it was in algebra that Viete made his most estimable con-

tributions, for it was here that he came closest to modern views. Mathe-
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matics is a form of reasoning, and not a bag of tricks, such as Diophantus

had possessed; yet algebra, during the Arabic and early modern periods,

had not gone far in freeing itself from the treatment of special cases. There

could be little advance in algebraic theory so long as the chief preoccupation

was with finding "the thing" in an equation with specific numerical coef-

ficients. Symbols and abbreviations for an unknown, and for powers of the

unknown, as well as for operations and for the relationship of equality,

had been developed. Stifel had gone so far as to write AAAA for the fourth

power of an unknown quantity; yet he had no scheme for writing an equa-

tion that might represent any one of a whole class of equations—of all

quadratics, say, or of all cubics. A geometer, by means of a diagram, could

let ABC represent all triangles, but an algebraist had no counterpart for

writing down all equations of second degree. Letters had indeed been used

to represent magnitudes known or unknown, since the days of Euclid, and

Jordanus had done this freely; but there had been no way of distinguishing

magnitudes assumed to be known from those unknown quantities that are

to be found. Here Viete introduced a convention as simple as it was fruitful.

He used a vowel to represent the quantity in algebra that was assumed to

be unknown or undetermined and a consonant to represent a magnitude

or number assumed to be known or given. Here we find for the first time

in algebra a clear-cut distinction between the important concept of a pa-

rameter and the idea of an unknown quantity.

THE ANALYTIC ART

Had Viete adopted other symbolisms extant in his day, he might have

written all quadratic equations in the single form BA 2 + CA + D = 0,

where A is the unknown and B, C, and D are parameters; but unfortunately

he was modern only in some ways and ancient and medieval in others. His

algebra is fundamentally syncopated rather than symbolic, for although he

wisely adopted the Germanic symbols for addition and subtraction and,

still more wisely, used differing symbols for parameters and unknowns, the

remainder of his algebra consisted of words and abbreviations. The third

power of the unknown quantity was not A\ or even AAA, but A cubus,

and the second power was A quadratus. Multiplication was signified by the

Latin word in, division was indicated by the fraction line, and for equality

Viete used an abbreviation for the Latin aequalis. It is not given for one

man to make the whole of a given change; it must come in steps.

One of the steps beyond the work of Viete was taken by Harriot when

he revived the idea Stifel had had of writing the cube of the unknown as

AAA. This notation was used systematically by Harriot in his posthumous

book entitled Artis analyticae praxis and printed in 1631. Its title had been

suggested by the earlier work of Viete, who had disliked the Arabic name
algebra. In looking for a substitute Viete noted that in problems involving
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the "cosa," or unknown quantity, one generally proceeds in a manner that

Pappus and the ancients had described as analysis. That is, instead of

reasoning from what is known to what was to be demonstrated, algebraists

invariably reasoned from the assumption that the unknown was given and

deduced a necessary conclusion from which the unknown can be deter-

mined. In modern symbols, if we wish to solve x 2 - 3x + 2 = 0, for

example, we proceed on the premise that there is a value of x satisfying

this equation; from this assumption we draw the necessary conclusion that

(x - 2)(x - 1) = 0, so that either x - 2 = or x - 1 = (or both) is

satisfied, hence that x necessarily is 2 or 1. However, this does not mean
that one or both of these numbers will satisfy the equation unless we can

reverse the steps in the reasoning process. That is, the analysis must be

followed by the synthetic demonstration.

In view of the type of reasoning so frequently used in algebra, Viete

called the subject "the analytic art." Moreover, he had a clear awareness

of the broad scope of the subject, realizing that the unknown quantity need

not be either a number or a geometric line. Algebra reasons about "types"

or species, hence Viete contrasted logistica speciosa with logistica nume-

rosa. His algebra was presented in the Isagoge (or Introduction), printed

in 1591, but his several other algebraic works did not appear until many
years after his death. In all of these he maintained a principle of homo-
geneity in equations, so that in an equation such as x 3 + 3ax = b the a

is designated as planum and the b as solidum. This suggests a certain

inflexibility, which Descartes removed a generation later; but homogeneity

also has certain advantages, as Viete undoubtedly saw.

RELATIONS BETWEEN ROOTS AND COEFFICIENTS

The algebra of Viete is noteworthy for the generality of its expression, but

there are also other novel aspects. For one thing, Viete suggested a new
approach to the solution of the cubic. Having reduced it to the standard

form equivalent to jc
3 + 3ax = b, he introduced a new unknown quantity

v that was related to x through the equation in y
3

, for which the solution

is readily obtained. Moreover, Viete was aware of some of the relations

between roots and coefficients of an equation, although here he was ham-

pered by his failure to allow the coefficients and roots to be negative. He
realized, for example, that if x 3 + b = 3ax has two positive roots, x

x
and

x2 \ then, 3a = x 2 + x
x
x2 + x 2

2 and b = x
x
x 2 + x2x x

2
. This is, of course,

a special case of our theorem that the coefficient of the term in jc, in a

cubic with leading coefficient unity, is the sum of the products of the roots

taken two at a time, and the constant term is the negative of the product

of the roots. Viete, in other words, was close to the subject of symmetric

functions of the roots in the theory of equations. It remained for Girard

in 1629, in Invention nouvelle en I'algebre, to state clearly the relations

between roots and coefficients, for he allowed for negative and imaginary
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roots, whereas Viete had recognized only the positive roots. In a general

\\a\ Girard realized that negative roots are directed in a sense opposite to

that for positive numbers, thus anticipating the idea of the number line.

"The negative in geometry indicates a retrogression, " he said, "where the

positive is an advance." To him also seems to be largely due the realization

that an equation can have as many roots as is indicated by the degree of

the equation. Girard retained imaginary roots of equations because they

show the general principles in the formation of an equation from its roots.

THOMAS HARRIOT AND WILLIAM OUGHTRED

Discoveries much like those of Girard had been made even earlier by

Thomas Harriot, but these did not appear in print until ten years after

Harriot had died of cancer in 1621. Harriot had been hampered in pub-

lication by conflicting political currents during the closing years of the reign

of Queen Elizabeth I. He had been sent by Sir Walter Raleigh as a surveyor

on the latter's expeditions to the New World in 1585, becoming thus the

first substantial mathematician to set foot in North America. (Brother Juan

Diaz, a young chaplain with some mathematical training, had earlier joined

Cortes on an expedition to Yucatan in 1518.) On his return he published

A Briefe and True Report of the New-found Land of Virginia (1586). When
his patron lost favor with the queen and was executed, Harriot was granted

a pension of £300 a year by Henry, Earl of Northumberland; but in 1606

the earl was committed to the Tower by Elizabeth's successor, James I.

Harriot continued to meet with Henry in the Tower, and distractions and

poor health contributed to his failure to publish results.

Harriot knew of relationships between roots and coefficients and be-

tween roots and factors, but like Viete he was hampered by failure to take

note of negative and imaginary roots. In notations, however, he advanced

the use of symbolism, being responsible for the signs > and < for "greater

than" and "less than." It was partly also his use of Recorded equality sign

that led to the ultimate adoption of this sign. Harriot showed much more

moderation in the use of new notations than did his younger contemporary,

William Oughtred. The latter published his Clavis mathematicae in the

same year, 1631, in which Harriot's Praxis was printed. In the Clavis the

notation for powers was a step back toward Viete, for where Harriot had

written AAAAAAA, for example, Oughtred used Aqqc (that is, A squared

squared cubed). Of all Oughtred's new notations, only one is now widely

used—the cross x for multiplication.

The homogeneous form of his equations shows that Viete's thought was

always close to geometry, but his geometry was not on the elementary

level of so many of his predecessors; it was on the higher level of Apollonius

and Pappus. Interpreting the fundamental algebraic operations geometri-

cally, Viete realized that straightedge and compasses suffice up through

square roots. However, if one permits the interpolation of two geometric
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means between two magnitudes, one can construct cube roots, or, a fortiori,

solve geometrically any cubic equation. In this case one can, Viete showed,

construct the regular heptagon, for this construction leads to a cubic of the

form x 3 = ax + a. In fact, every cubic or quartic equation is solvable by

angle trisections and the insertion of two geometric means between two

magnitudes. Here we see clearly a very significant trend—the association

of the new higher algebra with the ancient higher geometry. Analytic

geometry could not, then, be far away, and Viete might have discovered

this branch had he not avoided the geometric study of indeterminate equa-

tions. The mathematical interests of Viete were unusually broad, hence he

had read Diophantus' Arithmetica; but when a geometric problem led

Viete to a final equation in two unknown quantities, he dismissed it with

the casual observation that the problem is indeterminate. One wishes that,

with his general point of view, he had inquired into the geometric prop-

erties of the indeterminacy.

HORNER'S METHOD AGAIN

In many respects the work of Viete is greatly undervalued, but in one case

it is possible that he has been given undue credit for a method known long

before in China. In one of his later works, the De numerosa potestatum

. . . resolutione (1600), he gave a method for the approximate solution of

equations which is virtually that known today as Horner's method. To solve

x 1 + Ix = 60,750, for example, Viete found as a first lower approximation

for x the value jc, = 200. Then, upon substituting x = 200 + x 2 in

the original equation (or, as we should say, reducing the roots by 200),

he found x 2
2 + 407x2

= 19,350. This equation now leads to a second ap-

proximation x2
= 40. Now substituting x2

= 40 -I- x3 , the equation x 3
2 +

487*3 = 1470 results, and the positive root of this is x3
= 3. Hence,

x2
= 43 and x = 243. This illustrative equation taken from Viete (but

written in modern notation) could of course have been solved by completing

the square; but the author solved in the same manner other cases in which

no simple alternative was at hand, finding, for example, a solution of

x6 + 6000* = 191,246,976. One of the beauties of the method is that it

is applicable to any polynomial equation with real coefficients and a real

root.

TRIGONOMETRY AND PROSTHAPHAERESIS

The trigonometry of Viete, like his algebra, was characterized by a height-

ened emphasis on generality and breadth of view. As Viete was the effective

founder of a literal algebra, so he may with some justification be called

the father of a generalized analytic approach to trigonometry that some-
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times is known as goniometry. Here, too, of course, Viete started from

the work of his predecessors, notably Regiomontanus and Rheticus. Like

the former, he thought of trigonometry as an independent branch of math-

ematics; like the latter, he generally worked without direct reference to

half chords in a circle. Viete in the Canon mathematicus (1579) prepared

extensive tables of all six functions for angles to the nearest minute. We
have seen that he had urged the use of decimal, rather than sexagesimal,

fractions; but to avoid all fractions as much as possible, Viete chose a

"sinus totus^or hypotenuse of 100,000 parts for the sine and cosine table

and a "basis" or "perpendiculum" of 100,000 parts for the tangent, co-

tangent, secant, and cosecant tables. (Except for the sine function, he did

not, however, use these names.)

In solving oblique triangles, Viete in the Canon mathematicus broke

them down into right triangles, but in another work a few years later,

Variorum de rebus mathematicis (1593), there is a statement equivalent to

our law of tangents:

(a + b) A + B
-—

z
—

- tan—-

—

(a - b) A - B—~— tan—^

—

2 2

Though Viete may have been the first to use this formula, it was first

published by a more obscure figure, Thomas Finck, in 1583 in Geometria

rotundi.

Trigonometric identities of various sorts were appearing about this time

in all parts of Europe, resulting in reduced emphasis on computation in

the solution of triangles and more on analytic functional relationships.

Among these were a group of formulas known as the prosthaphaeretic

rules—that is, formulas that would convert a product of functions into a

sum or difference (hence the name pros thaphaeres is, a Greek word meaning

addition and subtraction). From the following type of diagram, for ex-

ample, Viete derived the formula

„ . x + y x — y
sin x + sin y = 2 sin —-— cos —-—

.

y
2 2

Let sin x = AB (Fig. 16.1) and sin y = CD. Then

x — y
sin x + sin y = AB + CD = AE = AC cos —-

—

_ . x + V x - y= 2 sin —-— cos —-—

.

2 2

On making the substitutions (jr + y)/2 = A and (x - y)ll = B, we have

the more useful form sin (A + B) + s\n(A - B) = 2 sin A cos B. In a

similar manner one derives sin (A + B) - s\n(A - B) = 2 cos A sin B
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FIG. 16.1

by placing the angles x and y on the same side of the radius OD.
The formulas 2 cos A cos B = cos(A + B) + cos(.4 - B) and 2 sin ,4

sin B = cos(>l - B) - cos(A + 5) are somewhat similarly derived.

The rules above sometimes bear the name "formulas of Werner," for

they seem to have been used by Werner to simplify astronomical calcu-

lations. At least one of these, that converting a product of cosines to a

sum of cosines, had been known to the Arabs in the time of ibn-Yunus,

but it was only in the sixteenth century, and more particularly near the

end of the century, that the method of prosthaphaeresis came to be widely

used. If, for example, one wished to multiply 98,436 by 79,253, one could

let cos A = 49,218 (that is, 98,436/2) and cos B = 79,253. (In modern
notation we would place a decimal point, temporarily, before each of the

numbers and adjust the decimal point in the answer.) Then, from the table

of trigonometric functions one reads off angles A and B, and from the

table one looks up cos(^4 + B) and cos(y4 - B), the sum of these being

the product desired. Note that the product is found without any multipli-

cation having been performed. In our example of prosthaphaeretic mul-

tiplication there is not a great saving of time and energy; but when we
recall that at that time trigonometric tables of a dozen or fifteen significant

figures were not uncommon, the laborsaving possibilities of prosthapha-

eresis become more pronounced. The device was adopted at major astro-

nomical observatories, including that of Tycho Brahe (1546-1601) in Den-

mark, from where word of it was carried to Napier in Scotland. Quotients

are handled in the same manner by using a table of secants and cosecants.

Perhaps nowhere is Viete's generalization of trigonometry into goniom-

etry more pronounced than in connection with his multiple-angle formulas.

The double-angle formulas for the sine and cosine had, of course, been

known to Ptolemy, and the triple-angle formulas are then easily derived

from Ptolemy's formulas for the sine and cosine of the sum of two angles.

By continuing to use the Ptolemy formulas recursively, a formula for sin nx

or cos nx can be derived, but only with great effort. Viete used an ingenious

manipulation of right triangles and the well-known identity

(a 2 + b 2)(c2 + d 2
) = {ad + be) 2 +{bd acf

= (ad be) 2 + (bd + acf
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to arrive at formulas for multiple angles equivalent to what we should now
write as

n(n - 1) ,

cos nx = cos" x -—-— cos"" 2 x sin
2 x

1 • 2

n(n - \)(n - 2)(n - 3)

1 • 2 • 3 • 4

and

n(n - \)(n -2)
sin nx = n cos" x sin x —-— cos"

-3
x sin

3 x + • • •,

where the signs alternate and the coefficients are in magnitude the alternate

numbers in the appropriate line of the arithmetic triangle. Here we see a

striking link between trigonometry and the theory of numbers.

TRIGONOMETRIC SOLUTION OF EQUATIONS

Viete noted also an important link between his formulas and the solution

of the cubic equation. Trigonometry could serve as a handmaid to algebra

where the latter had run up against a stone wall—in the irreducible case

of the cubic. This evidently occurred to Viete when he noticed that the

angle trisection problem led to a cubic equation. If in the equation jc
3 +

3px + q = one substitutes mx - y (to obtain a degree of freedom in

the later selection of a value for m), the result is y
3 f 3m 2

py + m y
q =

0. Comparing this with the formula cos3 - f cos - \ cos 30 = 0, one

notes that if y = cos 6, and if 3m 2p = — }, then -\ cos 30 = nv'q. Since

p is given, m is now known (and will be real whenever the three roots are

real). Hence, 30 is readily determined, since q is known; hence, cos is

known. Therefore, y, and from it jc, will be known. Moreover, by consid-

ering all possible angles satisfying the conditions, all three real roots will

be found. This trigonometric solution of the irreducible case of the cubic,

suggested by Viete, was carried out in detail later by Girard in 1629 in

Invention nouvelle en Valgebre.

Viete in 1593 found an unusual opportunity to use his multiple-angle

formulas. A Belgian mathematician, Adriaen van Roomen (1561-1615) or

Romanus, had issued a public challenge to anyone to solve an equation of

forty-fifth degree:

x 45 - 45x 43 + 945X 41 - • • • - 3795jc 3 + 45* = K.

The ambassador from the Low Countries to the court of Henry IV boasted

that France had no mathematician capable of solving the problem proposed

by his countryman. Viete, called upon to defend the honor of his coun-

trymen, noted that the proposed equation was one that arises in expressing
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K = sin 450 in terms of x = 2 sin 0, and he promptly found the positive

roots. The achievement so impressed van Roomen that he paid Viete a

special visit.

In applying trigonometry to arithmetic and algebraic problems, Viete

was broadening the scope of the subject. Moreover, his multiple-angle

formulas should have disclosed the periodicity of the goniometric functions,

but it probably was his hesitancy with respect to negative numbers that

prevented him—or his contemporaries—from going as far as this. There
was considerable enthusiasm for trigonometry in the late sixteenth and
early seventeenth centuries, but this took the form primarily of synthesis

and textbooks. It was during this period that the name "trigonometry"

came to be attached to the subject. It was used as the title of an exposition

by Bartholomaeus Pitiscus (1561-1613), which was first published in 1595

as a supplement to a book on spherics and again independently in 1600,

1606, and 1612. Coincidentally the development of logarithms, ever since

a close ally of trigonometry, was also taking place during these years.

JOHN NAPIER

John Napier (or Neper), like Viete, was not a professional mathematician.

He was a Scottish laird, the Baron of Murchiston, who managed his large

estates and wrote on varied topics. In a commentary on the Book of

Revelations, for example, he argued that the pope at Rome was the anti-

Christ. He was interested in certain aspects of mathematics only, chiefly

those relating to computation and trigonometry. "Napier's rods" or "bones"

were sticks on which items of the multiplication tables were carved in a

form ready to be applied to lattice multiplication; "Napier's analogies"

and "Napier's rule of circular parts" were devices to aid the memory in

connection with spherical trigonometry.

Napier tells us that he had been working on his invention of logarithms

for twenty years before he published his results, a statement that would

place the origin of his ideas about 1594. He evidently had been thinking

of the sequences, which had been published now and then, of successive

powers of a given number—as in Stifel's Arithmetica integra fifty years

before and as in the works of Archimedes. In such sequences it was obvious

that sums and differences of indices of the powers corresponded to products

and quotients of the powers themselves; but a sequence of integral powers

of a base, such as two, could not be used for computational purposes

because the large gaps between successive terms made interpolation too

inaccurate. While Napier was pondering the matter, Dr. John Craig, phy-

sician to James VI of Scotland, called on him and told him of the use in

Denmark of prosthaphaeresis. Craig presumably had been in the party

when James VI of Scotland in 1590 had sailed with a delegation for Den-

mark to meet his bride-to-be, Anne of Denmark. The party had been
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forced by storms to land on the shore not far away from the observatory

of Tycho Brahe, where, while awaiting more favorable weather, they were
entertained by the astronomer. Reference apparently was made to the

marvelous device of prosthaphaeresis, freely used in the computations at

the observatory; and word of this encouraged Napier to redouble his efforts

and ultimately to publish in 1614 the Mirifici logarithmorum canonis des-

criptio (A Description of the Marvelous Rule of Logarithms).

INVENTION OF LOGARITHMS

The key to Napier's work can be explained very simply. To keep the terms

in a geometric progression of integral powers of a given number close

together, it is necessary to take as the given number something quite

close to 1. Napier, therefore, chose to use 1 - 10
7
(or .9999999) as his

given number. Now the terms in the progression of increasing powers are

indeed close together—too close, in fact. To achieve a balance and to

avoid decimals Napier multiplied each power by 107
. That is, if N =

10
7
(1 - 1/107

)
L

, then L is Napier's "logarithm" of the number N. Thus

his logarithm of 107
is 0, his logarithm of 107

(1 - 1/107
) = 9999999

is 1, and so on. If his numbers and his logarithms were to be divided by

10
7

, one would have virtually a system of logarithms to the base 1/e, for

(1 - l/107

)
1(, isclosetolim„_x (1 - l/n) n = lie. It must be remembered,

however, that Napier had no concept of a base for a system of logarithms,

for his definition was different from ours. The principles of his work were

explained in geometric terms as follows. Let a line segment AB and a half

line or ray CDE ... be given (Fig. 16.2). Let a point P start from A and

move along AB with variable speed decreasing in proportion to its distance

from B\ during the same time let a point Q start from C and move along

CDE . . . with uniform speed equal to the rate with which point P began

its motion. Napier called this variable distance CQ the logarithm of the

distance PB.

Napier's geometric definition is, of course, in agreement with the nu-

merical description given above. To show this, let PB = x and CQ = v.

If AB is taken as 10
7

, and if the initial speed of P is also taken as 10
7

, then

in modern calculus notations we have dxldt = -x and dyldt = 10
7

, x {]
=

107
, y = 0. Then, dyldx = - 107

/jc, or y = - 10
7
In ex, where c is found

D Q

FIG. 16.2
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from the initial boundary conditions to be 10~ 7
. Hence, y = - 107

In (x/107
) or y/101 = log 1/e(jt/10

7
). That is, if the distances PB and CQ

were divided by 107
, the definition of Napier would lead precisely to a

system of logarithms to the base 1/e, as mentioned earlier. Needless to

say, Napier built up his tables numerically rather than geometrically, as

the word "logarithm," which he coined, implies. At first he called his

power indices "artificial numbers," but later he made up the compound
of the two Greek words Logos (or ratio) and arithmos (or number).

Napier did not think of a base for his system, but his tables nevertheless

were compiled through repeated multiplications, equivalent to powers of

.9999999. Obviously the power (or number) decreases as the index (or

logarithm) increases. This is to be expected, because he was essentially

using a base lie which is less than one. A more striking difference between

his logarithms and ours lies in the fact that his logarithm of a product (or

quotient) generally was not equal to the sum (or difference) of the loga-

rithms. If L
x
= Log N

{
and L2

= Log N2 , then N {
= 107

(1 - lO 7

)
7
-- and

N2
= 107

(1 - 10- 7)S whence A^M/IO7 = 107
(1 - 10- 7

)
L

'

+ ^, so that

the sum of Napier's logarithms will be the logarithm not of N
X
N2 but

of NjAyiO7
. Similar modifications hold, of course, for logarithms of

quotients, powers, and roots. If L = Log jY, for instance, then nL =

Log Nn/I01{n ~ l)
. These differences are not too significant, for they merely

involve shifting a decimal point. That Napier was thoroughly familiar with

rules for products and powers is seen in his remark that all numbers (he

called them "sines") in the ratio of 2 to 1 have differences of 6,931,469.22

in logarithms, and all those in the proportion of 10 to 1 have differences

of 23,025,842.34 in logarithms. In these differences we see, if we shift the

decimal point, the natural logarithms of the numbers two and ten. Hence,

it is not unreasonable to use the name "Napierian" for natural logarithms,

even though these logarithms are not strictly the ones that Napier had in

mind.

The concept of the logarithmic function is implied in Napier's definition

and in all of his work with logarithms, but this relationship was not up-

permost in his mind. He had laboriously built up his system for one pur-

pose—the simplification of computations, especially of products and quo-

tients. Moreover, that he had trigonometric computations in view is made

clear by the fact that what we for simplification of exposition referred to

as Napier's logarithm of a number, he actually called the logarithm of a

sine. In Fig. 16.2, the line CQ was called the logarithm of the sine PB.

This makes no real difference either in theory or in practice.

HENRY BRIGGS

The publication in 1614 of the system of logarithms was greeted with prompt

recognition, and among the most enthusiastic admirers was Henry Briggs,

the first Savilian professor of geometry at Oxford. In 1615 he visited Napier
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at his home in Scotland, and there they discussed possible modifications

in the method of logarithms. Briggs proposed that powers of ten should

be used, and Napier said he had thought of this and was in agreement.

Napier at one time had proposed a table using log 1 =0 and log 10 =

10 K)
(to avoid fractions). The two men finally concluded that the logarithm

of one should be zero and that the logarithm of ten should be one. Napier,

however, no longer had the energy to put their ideas into practice. He
died in 1617, the year in which his Rhabdologia, with its description of his

rods, appeared. The second of his classic treatises on logarithms, the Mir-

ifici logarithmorum canonis construction in which he gave a full account of

the methods he used in building up his tables, appeared posthumously in

1619. To Briggs, therefore, fell the task of making up the first table of

common, or Briggsian, logarithms. Instead of taking powers of a number
close to one, as had Napier, Briggs began with log 10 = 1 and then found

other logarithms by taking successive roots. By finding VlO = 3.162277,

for example, Briggs had log 3.162277 = .5000000, and from 10 3 =

V31.62277 = 5.623413, he had log 5.623413 = .7500000. Continuing in

this manner, he computed other common logarithms. In the year of Na-

pier's death, 1617, Briggs published his Logarithmorum chilias prima—
that is, the logarithms of numbers from 1 to 1000, each carried out to

fourteen places. In 1624, in Arithmetica logarithmica, Briggs extended the

table to include common logarithms of numbers from 1 to 20,000 and from

90,000 to 100,000, again to fourteen places. Work with logarithms now
could be carried out just as it is today, for all the usual laws of logarithms

applied in connection with Briggs' tables. Incidentally, it is from Briggs'

book of 1624 that our words "mantissa" and "characteristic" are derived.

While Briggs was working out tables of common logarithms, a contem-

porary, John Speidell, drew up natural logarithms of trigonometric func-

tions, publishing these in his New Logarithmes of 1619. A few natural

logarithms had, in fact, appeared earlier in 1616 in an English translation

by Edward Wright (1559-1615) of Napier's first work on logarithms. Sel-

dom has a new discovery "caught on" so rapidly as did the invention of

logarithms, and the result was the prompt appearance of tables of loga-

rithms which were more than adequate for that time.

JOBST BURGI

It has been implied, up to this point, that the invention of logarithms was

the work of one man alone, but such an impression must not be permitted

to remain. Napier was indeed the first one to publish a work on logarithms,

but very similar ideas were developed independently in Switzerland by

Jobst Biirgi at about the same time. In fact, it is possible that the idea of

logarithms had occurred to Biirgi as early as 1588, which would be half a

dozen years before Napier began work in the same direction. However,
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Biirgi printed his results only in 1620, half a dozen years after Napier had
published his Descriptio. Biirgi's work appeared at Prague in a book en-

titled Arithmetische und geometrische Progress-Tabulen, and this indicates

that the influences leading to his work were similar to those operating in

the case of Napier. Both men proceeded from the properties of arithmetic

and geometric sequences, spurred, probably, by the method of prostha-

phaeresis. The differences between the work of the two men lie chiefly in

their terminology and in the numerical values they used; the fundamental

principles were the same. Instead of proceeding from a number a little less

than one (as had Napier, who used 1 - 10~ 7
), Biirgi chose a number a

little greater than one—the number 1 + 10

~

4
; and instead of multiplying

powers of this number by 107
, Biirgi multiplied by 108

. There was one other

minor difference: Biirgi multiplied all of his power indices by ten in his

tabulation. That is, if N = 108
(1 + 10" 4

)
L

, Biirgi called 10L the "red"

number corresponding to the "black" number N. If in this scheme we were

to divide all the black numbers by 108 and all red numbers by 105
, we

should have virtually a system of natural logarithms. For instance, Biirgi

gave for the black number 1,000,000,000 the red number 230,270.022,

which, on shifting decimal points, is equivalent to saying that In 10 =

2.30270022. This is not a bad approximation to the modern value, espe-

cially when we recall that (1 + lO
-4

)
10'

is not quite the same as lim^x

(1 -I- 1/n)", although the values agree to four significant figures.

In publishing his tables, Biirgi placed his red numbers on the side of

the page and his black numbers in the body of the table, hence he had

what we should describe as an antilogarithmic table; but this is a minor

matter. The essence of the principle of logarithms is there, and Biirgi must

be regarded as an independent discoverer who lost credit for the invention

because of Napier's priority in publication. In one respect his logarithms

come closer to ours than do Napier's, for as Biirgi's black numbers increase,

so do the red numbers; but the two systems share the disadvantage that

the logarithm of a product or quotient is not the sum or difference of the

logarithms.

APPLIED MATHEMATICS AND DECIMAL FRACTIONS

The invention of logarithms ultimately had a tremendous impact on the

structure of mathematics, but at that time it could not be compared in

theoretical significance with the work, say, of Viete. Logarithms were

hailed gladly by Kepler not as a contribution to thought, but because they

vastly increased the computational power of the astronomer. Viete was

not exactly a "voice crying in the wilderness"; it is nevertheless true that

most of his contemporaries were primarily concerned with the practical

aspects of mathematics. Biirgi was a clockmaker, Galileo was a physicist
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and astronomer, and Stevin was an engineer. It was inevitable that these

men should have preferred parts of mathematics that gave promise of

applicability to their fields. Burgi and Stevin, for example, aided in the

development of decimal fractions, and Biirgi and Galileo were rivals in the

manufacture and sale of a practical computing device known as the pro-

portional compass. The so-called Renaissance in science, illustrated by the

work of such men as Leonardo da Vinci and Copernicus, had been a

ferment that to a large extent grew out of contact between old ideas and

new and between the views of artisans and those of scholars.

In mathematics of the sixteenth century there were diverse and conflict-

ing tendencies; but we can perceive there, as well as in science, the results

of a confrontation of established ideas by new concepts and of theoretical

views by the exigencies of practical problems. We have seen that the work

of Viete grew out of two factors in particular: (1) the recovery of ancient

Greek classics and (2) the relatively new developments in medieval and

early modern algebra. Throughout the sixteenth century both professional

and amateur theoretical mathematicians showed concern for the practical

techniques of computation, which contrasted strongly with the dichotomy

emphasized two millennia earlier by Plato. Viete, the outstanding math-

ematician in France, in 1579 had urged the replacement of sexagesimal

fractions by decimal fractions. In 1585 an even stronger plea for the use

of the ten-scale for fractions, as well as for integers, was made by the

leading mathematician in the Low Countries, Simon Stevin of Bruges.

Stevin, a supporter of the Protestant faction under William of Orange

in the struggle against Catholic Spain, was tolerant, if not indifferent, to

religion. Under Prince Maurice of Nassau he served as quartermaster and

as commissioner of public works, and for a time he tutored the prince in

mathematics. Although Stevin was a great admirer of the theoretical trea-

tises of Archimedes, there runs through the works of the Flemish engineer

a strain of practicality that is more characteristic of the Renaissance period

than of classical antiquity. Thus Stevin was largely responsible for the

introduction into the Low Countries of double-entry bookkeeping fash-

ioned after that of Pacioli in Italy almost a century earlier. Of far more

widespread influence in economic practice, in engineering, and in math-

ematical notations was Stevin's little book with the Flemish title De thiende

('The Tenth"), published at Leyden in 1585. A French version entitled

La disme appeared in the same year, and the popularity of the book was

such that its place in the development of mathematics has been often

misunderstood.

It is clear that Stevin was in no sense the inventor of decimal fractions,

nor was he the first systematic user of them. More than incidental use of

decimal fractions is found in ancient China, in medieval Arabia, and in

Renaissance Europe; by the time of Viete's forthright advocacy of decimal

fractions in 1579 they were generally accepted by mathematicians on the
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frontiers of research. Among the common people, however, and even
among mathematical practitioners, decimal fractions became widely known
only when Stevin undertook to explain the system in full and elementary

detail. He wished to teach everyone "how to perform with an ease, unheard
of, all computations necessary between men by integers without fractions."

That is, oddly enough Stevin was concentrating on his tenths, hundredths,

thousandths, and so on, as integral numerators, much as we do in the

common measure of time in minutes and seconds. How many of us think

of 3 minutes and 4 seconds, say, as a fraction? We are far more likely to

think of 3 minutes as an integer than as 3/60 of an hour; and this was
precisely Stevin's view. For this reason he did not write his decimal expres-

sions with denominators, as Viete had; instead, in a circle above or after

each digit he wrote the power of ten assumed as a divisior. Thus the value

of 7r, approximately, appeared as

® © © © ®
3(0) 1© 4® 1© 6® or 3 14 16.

Instead of the words "tenth," "hundredth," and so on, he used "prime,"

"second," and so on, somewhat as we still designate the places in sexa-

gesimal fractions.

Stevin obviously had the right idea about decimal fractions, but his

Bombelli-inspired notation for places was more appropriate for algebra

than for arithmetic. Fortunately, the modern notation was not long de-

layed. In the 1616 English translation of Napier's Descriptio decimal frac-

tions appear as today, with a decimal point separating the integral and

fractional portions. In 1617 in the Rhabdologia, in which he described

computation using his rods, Napier referred to Stevin's decimal arithmetic

and proposed a point or a comma as the decimal separatrix. In the Na-

pierian Constructio of 1619 the decimal point became standard in England,

but many European countries continue to this day to use the decimal

comma. Stevin urged also a decimal system of weights and measures, but

this part of his work has not yet triumphed in England and America.

In the history of science, as well as in mathematics, Stevin is an important

figure. He and a friend dropped two spheres of lead, one ten times the

weight of the other, from a height of 30 feet onto a board and found the

sounds of their striking the board to be almost simultaneous. But Stevin's

published report (in Flemish in 1586) of the experiment has received far

less notice than the similar and later experiment attributed, on very doubt-

ful evidence, to Galileo. On the other hand, Stevin usually receives credit

for the discovery of the law of the inclined plane, justified by his familiar

"wreath of spheres" diagram, whereas this law had been given earlier by

Jordanus Nemorarius.
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4 page from Stevin's work (1634 edition) showing Stevin's notations for decimal fractions.

ALGEBRAIC NOTATIONS

Stevin was a practical-minded mathematician who saw little point in the

more speculative aspects of the subject. Of imaginary numbers he wrote:

'There are enough legitimate things to work on without need to get busy

on uncertain matter." Nevertheless, he was not narrow-minded, and his

reading of Diophantus impressed him with the importance of appropriate

notations as an aid to thought. Although he followed the custom of Viete

and other contemporaries in writing out some words such as that for
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equality, he preferred a purely symbolic notation for powers. Carrying

over to algebra his positional notation for decimal fractions, he wrote (2)
instead of Q (or square), (5) for C (or cube), for QQ (or square-

square), and so on. This notation may well have been suggested by Bom-
belli's Algebra. It also paralleled a notation of Biirgi who indicated powers
of an unknown by placing Roman numerals over the coefficients. Thus
x A + 3x 2 - 7x, for example, would be written by Biirgi as

iv ii i

1+3-7
and by Stevin as

® (D ®
1 + 3-7

Stevin went further than Bombelli or Biirgi in proposing that such notations

be extended to fractional powers. (It is interesting to note that although

Oresme had used both fractional-power indices and coordinate methods

in geometry, these seem to have had only a very indirect influence, if any,

on the progress of mathematics in the Low Countries and in France in the

early seventeenth century.) Even though Stevin had no occasion to use the

fractional index notation, he clearly stated that i in a circle would mean
square root and that J in a circle would indicate the square root of the

cube. A little later Girard, editor of Stevin's works, adopted the circled-

numerical notation for powers, and he, too, indicated that this could be

used for roots instead of such symbols as V~ and V . Symbolic algebra

was developing apace, and it reached its maturity, only eight years after

Girard's Invention nouvelle, in Descartes' La geometrie.

GALILEO GALILEI

Simon Stevin was a typical mathematician of his day in that he enjoyed

the elementary applications of the subject; in this respect he was like

Galileo. Galileo had originally intended to take a degree in medicine, but

a taste for Euclid and Archimedes led him instead to become a professor

of mathematics, first at Pisa and later at Padua. This does not mean,

however, that he taught on the level of the authors he admired. Little

mathematics was included in university curricula of the time, and a large

proportion of what was taught in Galileo's courses would now be classified

as physics or astronomy or engineering applications. Moreover, Galileo

was not a "mathematician's mathematician," as was Viete; he came close

to being what we should call a mathematical practitioner. This we see in

his interest in computational techniques tht led him in 1597 to construct

and market a device that he called his "geometric and military compasses."
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In a pamphlet of 1606 with the title Le operazioni del compasso geo-

rnetrico et militare, he described in detail the way in which the instrument

could be used to perform a variety of computations quickly without pen

or paper or an abacus. The theory behind this was extremely elementary,

and the degree of accuracy was very limited, but the financial success of

Galileo's device shows that military engineers and other practitioners found

a need for such an aid in calculation. Biirgi had constructed a similar device,

but Galileo had a better entrepreneurial sense, one that gave him an ad-

vantage. The Galilean compasses consisted of two arms pivoted as in the

ordinary compasses of today, but each of the arms was engraved with

graduated scales of varying types. Figure 16.3 shows only the simple equi-

spaced markings up to 250, and only the simplest of the many possible

computations, the first one explained by Galileo, is described here. If, for

instance, one wishes to divide a given line segment into five equal parts,

one opens a pair of ordinary compasses (or dividers) to the length of the

line segment. Then, one opens the geometric compasses so that the distance

between the points of the dividers just spans the distance between two

markings, one on each arm of the geometric compasses, which are simple

integral multiples of five, say, the number 200 on each scale. Then, if one

holds the opening of the geometric compasses fixed and places the ends

of the dividers on the mark for 40 on each scale, the distance between the

divider points will be the desired fifth of the length of the original line

segment. The instructions Galileo provided with his compasses included

many other operations, from changing the scale of a drawing to computing

amounts of money under compound interest.
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VALUES OF PI

Elementary though it was, Galileo's 1606 pamphlet on the geometric com-

passes, published when he was over forty years old, was his only strictly

mathematical treatise. Nevertheless, it was far from his only contribution
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to the field. More significant are the many appeals in his astronomical and

physical works to mathematical reasoning, and here he was frequently close

to developments leading to the calculus. Much the same can be said also

of Stevin and Kepler. Physics and astronomy had reached the point where

there was increasing need for arguments concerning the infinitely large and

small—the subject now known as analysis. Viete had been one of the first

to use the word "analysis" as a synonym for algebra, but he was one of

the earliest analysts also in the more modern sense of one who studies

infinite processes.

Before the time of Viete there had been many good and bad approxi-

mations for the ratio of circumference to diameter in a circle, such as that

of V. Otho and A. Anthonisz who, evidently independently, rediscovered

(about 1573) the approximation n * 355/113 by subtracting numerators

and denominators of the Ptolemaic and Archimedean values, 377/120 and

22/7 respectively. Viete worked out n correctly to ten significant figures,

apparently unaware of al-Kashi's still better approximation. The most im-

pressive achievement of this type was by Ludolph van Ceulen (1540-1610).

First he published in 1596 a twenty-place value obtained by starting with

a polygon of fifteen sides and doubling the number of sides thirty-seven

times. Using a still larger number of sides, he ultimately achieved a thirty-

five place approximation, which his widow had engraved on his tombstone.

This feat of computation so impressed his successors that n frequently has

been known as the "Ludolphine constant." Such tours de force, however,

have no theoretical significance. An exact expression was far more to be

desired; and it is in this respect that Viete gave the first theoretically precise

numerical expression for n, an infinite product that can be written as

t = y/i vj + \ v? VT+ iVi + iVi-.
n

In a sense Viete's approach is not novel. His product is easily derived

by inscribing a square within a circle, then applying the recursive trigo-

nometric formula a2n = tf*sec n/n, where an is the area of the inscribed

regular polygon of n sides, and finally allowing n to increase indefinitely.

Moreover, the same infinite product is readily derived by calculating radius

vectors of points on the quadratrix of Hippias, r sin 6 = 26, for successive

bisections of the angle, beginning with 6 = n/2 and noting that rn lrn _ x
=

cos n/2n and that limn^3C rH = 2/tt. Nevertheless, it was Viete who first

expressed n analytically, a significant result because arithmetic, algebraic,

and trigonometric notations were more and more invading the realm of

the infinitely large and the infinitely small, a field once almost exclusively

dominated by geometry.

Viete's last years were embittered by a controversy largely of his own

making. Christopher Clavius (1537-1612), a well-known contemporary

mathematician, had advised Pope Gregory XIII on the reform of the cal-
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endar, and Viete attacked the accuracy of this. The bitterness of Viete's

statement may have resulted from resentment that his opponents failed to

evaluate correctly the significance of the new "logistica speciosa." Viete

had a few ardent disciples, one of whom, Alexander Anderson (1582-ca.

1620) of Scotland, published some of his work in 1615, but it was not until

the 1630s that the "Analytic Art" began to receive the attention it deserved.

This delay is in sharp contrast to the rapidity with which logarithms became
widely known.

RECONSTRUCTION OF APOLLONIUS' ON TANGENCIES

Viete was primarily an analyst, but he contributed also to pure geometry.

Here his work centered chiefly on problems raised in the works of Apol-

lonius. Regiomontanus had doubted that the celebrated Apollonian prob-

lem (proposed in the lost book On Tangencies) of constructing a circle

tangent to three circles could be solved with compass and straightedge;

van Roomen, therefore, solved it by means of two intersecting hyperbolas.

Viete knew through a reference in Pappus' Collection that an elementary

construction was indeed possible, and in his Varia responsa of 1600 he

published his solution. In a reconstruction of what he thought Apollonius'

book may have contained, Viete proceeded through the simpler cases, in

which one or more of the three circles are replaced by points or lines, until

he had reached the tenth and most difficult case, that of three circles. This

construction was one of Viete's most beautiful contributions to mathe-

matics. Such problems in geometry later had a significant attraction for

Descartes, but Viete's immediate successors were far less attracted to the

theoretical results of Apollonius than to the applicability of Archimedes'

work.

INFINITESIMAL ANALYSIS

Stevin, Kepler, and Galileo all had need for Archimedean methods, being

practical men, but they wished to avoid the logical niceties of the method

of exhaustion. It was largely the resulting modifications of the ancient

infinitesimal methods that ultimately led to the calculus, and Stevin was

one of the first to suggest changes. In his Statics of 1586, almost exactly a

century before Newton and Leibniz published their calculus, the engineer

of Bruges demonstrated as follows that the center of gravity of a triangle

lies on its median. In the triangle ABC inscribe a number of parallograms

of equal height whose sides are pairwise parallel to one side and to the

median drawn to this side (Fig. 16.4). The center of gravity of the inscribed



JOHANNES KEPLER 323

FIG. 16.4

figures will lie on the median, by the Archimedean principle that bilaterally

symmetrical figures are in equilibrium. However, we may inscribe in the

triangle an infinite number of such parallelograms, and the greater the

number of parallelograms, the smaller will be the difference between the

inscribed figure and the triangle. Inasmuch as the difference can be made
as small as one pleases, the center of gravity of the triangle also lies on
the median. In some of the propositions on fluid pressure Stevin supple-

mented this geometric approach by a "demonstration by numbers" in which
a sequence of numbers tended to a limiting value; but the "Dutch Ar-
chimedes" had more confidence in a geometric proof than an arithmetic

one.

JOHANNES KEPLER

Whereas Stevin was interested in physical applications of infinitely many
infinitely small elements, Kepler had need for astronomical applications,

especially in connection with his elliptic orbits of 1609. As early as 1604

Kepler had become involved with conic sections through work in optics

and the properties of parabolic mirrors. Whereas Apollonius had been

inclined to think of the conies as three distinct types of curves—ellipses,

parabolas, and hyperbolas—Kepler preferred to think of five species of

conies, all belonging to a single family or genus. With a strong imagination

and a Pythagorean feeling for mathematical harmony, Kepler developed

for conies in 1604 (in his Ad Vitellionem paralipomena, that is, Introduction

to Vitello's Optics) what we call the principle of continuity. From the conic

section made up simply of two intersecting lines, in which the two foci

coincide at the point of intersection, we pass gradually through infinitely

many hyperbolas as one focus moves farther and farther from the other.

When the one focus is infinitely far away, we no longer have the double-

branched hyperbola, but the parabola. As the moving focus passes beyond

infinity and approaches again from the other side, we pass through infinitely

many ellipses until, when the foci again coincide, we reach the circle.

The idea that a parabola has two foci, one at infinity, is due to Kepler,

as is also the word "focus" (Latin for "hearthside"); we find this bold and
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Johannes Kepler.

fruitful speculation on "points at infinity" extended a generation later in

the geometry of Desargues. Meanwhile, Kepler found a useful approach

to the problem of the infinitely small in astronomy. In his Astronomia nova

of 1609 he announced his first two laws of astronomy: (1) the planets move
about the sun in elliptical orbits with the sun at one focus, and (2) the

radius vector joining a planet to the sun sweeps out equal areas in equal
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times. In handling problems of areas such as these, Kepler thought of the

area as made up of infinitely small triangles with one vertex at the sun and

the other two vertices at points infinitely close together along the orbit. In

this way he was able to use a crude type of integral calculus resembling

that of Oresme. The area of a circle, for example, is found in this way by

noting that the altitudes of the infinitely thin triangles (Fig. 16.5) are equal

to the radius. If we call the infinitely small bases, lying along the circum-

ference, b
{ , b2 , . . . , bn , then the area of the circle—that is, the

sum of the areas of the triangles—will be kb
x
r + \b2 r + ••• + \bn r + •••

or \r(b
x
+ b2 + ••• + bn + ••). Inasmuch as the sum of the b's is the

circumference C, the area A will be given by A = \rC, the well-known

ancient theorem which Archimedes had proved more carefully.

By analogous reasoning Kepler knew the area of the ellipse, a result of

Archimedes not then extant. The ellipse can be obtained from a circle of

radius a through a transformation under which the ordinate of the circle

at each point is shortened according to a given ratio, say b:a. Then, fol-

lowing Oresme, one can think of the area of the ellipse and the area of

the circle as made up of all the ordinates for points on the curves (Fig.

16.6); but inasmuch as the ratio of the components of the areas are in

the ratio b:a, the areas themselves must have the same ratio. However,

the area of the circle is known to be na 2
\ hence, the area of the ellipse

x 2/a 2 + y
2
/b

2 = 1 must be nab. This result is correct; but the best that

Kepler could do for the circumference of the ellipse was to give the ap-

proximate formula n(a + b). Lengths of curves in general, and of the

ellipse in particular, were to elude mathematicians for another half a cen-

tury.

Kepler had worked with Tycho Brahe first in Denmark and later at

Prague, where, following Brahe's death, Kepler became mathematician to

the Emperor Rudolph II. One of his duties was the casting of horoscopes;

mathematicians, whether for emperors or at universities, found various ap-

plications for their talents, as Kepler discovered while he was at Linz, in

Austria. The year 1612 had been a very good one for wine, and Kepler

began to meditate at this time on the crude methods then in use for esti-

mating the volumes of wine casks. He compared these with the methods

FIG. 16.5 FIG. 16.6
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of Archimedes on the volumes of conoids and spheroids, and then he

proceeded to find the volumes of various solids of revolution not previously

considered by Archimedes. For example, he revolved a segment of a circle

about its chord, calling the result a citron if the segment was less than a

semicircle and an apple if the segment exceeded a semicircle. His volu-

metric method consisted in regarding the solids as composed of infinitely

many infinitesimal elements, and he proceeded much as we have indicated

above for areas. He dispensed with the Archimedean double reductio ad

absurdum, and in this he was followed by most mathematicians from that

time to the present.

GALILEO'S TWO NEW SCIENCES

Kepler collected his volumetric thoughts in a book that appeared in 1615

under the title Stereometria doliorum (Volume-Measurement of Barrels).

For a score of years it seemed to have excited no great interest, but in

1635 the Keplerian ideas were systematically expanded in a celebrated

book entitled Geometria indivisibilibus, written by Cavalieri, a disciple of

Galileo. While Kepler had been studying wine barrels, Galileo had been

scanning the heavens with his telescope and rolling balls down inclined

planes. The results of Galileo's efforts were two famous treatises, one

astronomical and the other physical. They were both written in Italian,

but we shall refer to them in English as The Two Chief Systems (1632) and

The Two New Sciences (1638). The first was a dialogue concerning the

relative merits of the Ptolemaic and Copernican views of the universe,

carried on by three men: Salviati (a scientifically informed scholar), Sa-

gredo (an intelligent layman), and Simplicio (an obtuse Aristotelian). In

the dialogue Galileo left little doubt about where his preferences lay, and

the consequences were his trial and imprisonment. During the years of his

detention he nevertheless prepared The Two New Sciences, a dialogue

concerning dynamics and the strength of materials, carried out by the same

three characters. Although neither of the two great Galilean treatises was

in a strict sense mathematical, there are in both of them many points at

which appeal is made to mathematics, frequently to the properties of the

infinitely large and the infinitely small.

The infinitely small was of more immediate relevance to Galileo than

the infinitely large, for he found it essential in his dynamics. Galileo gave

the impression that dynamics was a totally new science created by him,

and all too many writers since have agreed with this claim. It is virtually

certain, however, that he was thoroughly familiar with the work of Oresme

on the latitude of forms, and several times in the Two New Sciences Galileo

had occasion to use a diagram of velocities similar to the triangle graph of

Oresme. Nevertheless, Galileo organized the ideas of Oresme and gave

them a mathematical precision that had been lacking. Among the new
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contributions to dynamics was Galileo's analysis of projectile motion into

a uniform horizontal component and a uniformly accelerated vertical com-

ponent. As a result he was able to show that the path of a projectile,

disregarding air resistance, is a parabola. It is a striking fact that the conic

sections had been studied for almost 2000 years before two of them almost

simultaneously found applicability in science: the ellipse in astronomy and

the parabola in physics. Galileo mistakenly thought he had found a further

application of the parabola in the curve of suspension of a flexible rope or

wire or chain (catena); but mathematicians later in the century proved that

this curve, the catenary, not only is not a parabola, it is not even algebraic.

Galileo resembled Durer in that they both were quick to notice new
curves, but neither was mathematically equipped to analyze them. Galileo

had noted the curve now known as the cycloid, traced out by a point on

Galileo Galilei.
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the rim of a wheel as it rolls along a horizontal path, and he tried to find

the area under one arch of it. The best he could do was to trace the curve

on paper, cut out an arch, and weigh it, concluding that the area was a

little less than three times the area of the generating circle. (French and

Italian mathematicians later showed that the area of the arch is precisely

three times the area of the circle.) Galileo abandoned study of the curve,

suggesting only that the cycloid would make an attractive arch for a bridge;

many years later his disciple Torricelli took up the study of the curve with

great success.

GALILEO AND THE INFINITE

A more important contribution to mathematics was made by Galileo in

the Two Chief Systems of 1632 at a point on the "third day" when Salviati

adumbrated the idea of an infinitesimal of higher order. Simplicio had

argued that an object on a rotating earth should be thrown off tangentially

by the motion; but Salviati argued that the distance QR through which an

object has to fall to remain on the earth, while the latter rotates through

a small angle (Fig. 16.7), is infinitely small compared with the tangential

distance PQ through which the object travels horizontally. Hence, even a

very small downward tendency, as compared with the forward impetus,

will be sufficient to hold the object on the earth. Galileo's argument here

is equivalent to saying that PS = vers is an infinitesimal of higher order

with respect to lines PQ or RS or arc PR.

A similar bit of reasoning arises also in Galileo's Two New Sciences of

1638, a very influential treatise on dynamics and the strength of materials.

Here the author used the infinitely small sometimes to the point of whimsy,

as when Salviati assures Simplicio that it is as easy to resolve a line segment

into an infinite number of parts as it is to divide the line into finite parts.

First he gets Simplicio to admit that one need not separate the parts, but

merely to mark the points of division. If, for example, a line segment is

FIG. 16.7
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bent into the form of a square or a regular octagon, one has resolved it

into four or eight equal parts. Salviati then concludes that by bending the

line segment into the shape of a circle, he has "reduced to actuality that

infinite number of parts into which you claimed, while it was straight, were

contained in it only potentially," for the circle is a polygon of an infinite

number of sides. On another occasion, however, Galileo has Salviati assert

that infinites and indivisibles "transcend our finite understanding, the for-

mer on account of their magnitude, the latter because of their smallness;

Imagine what they are when combined."

From the infinite in geometry Salviati led Simplicio to the infinite in

arithmetic, pointing out that a one-to-one correspondence can be set up

between all the integers and the perfect squares, despite the fact that the

further one proceeds in the sequence of integers, the scarcer the perfect

squares become. Through the simple expedient of counting the perfect

squares, a one-to-one correspondence is established in which each integer

inevitably is matched against a perfect square, and vice versa. Even though

there are many whole numbers that are not perfect squares (and the pro-

portion of these increases as we consider larger and larger numbers), "we

must say that there are as many squares as there are numbers." Galileo

here was face to face with the fundamental property of an infinite set

—

that a part of the set can be equal to the whole set—but Galileo did not

draw this conclusion. While Salviati correctly concluded that the number

of perfect squares is not less than the number of integers, he could not

bring himself to make the statement that they are equal. Instead, he simply

concluded that "the attributes 'equal,' 'greater,' and 'less' are not appli-

cable to infinite, but only to finite quantities." He even asserted (incor-

rectly, we now know) that one cannot say that one infinite number is greater

than another infinite number, or even that an infinite number is greater

than a finite number. Galileo, like Moses, came within sight of the promised

land, but he could not enter it.

BONAVENTURA CAVALIERI

Galileo had intended to write a treatise on the infinite in mathematics, but

it has not been found. Meanwhile his disciple Cavalieri was spurred by

Kepler's Stereometria, as well as by ancient and medieval views and by

Galileo's encouragement, to organize his thoughts on infinitesimals in the

form of a book. Cavalieri was a member of a religious order (a Jesuate,

not a Jesuit as is frequently but incorrectly stated) who lived at Milan and

Rome before becoming professor of mathematics at Bologna in 1629. Char-

acteristically for that time, he wrote on many aspects of pure and applied

mathematics—geometry, trigonometry, astronomy, and optics—and he was

the first Italian writer to appreciate the value of logarithms. In his Direc-

torium universale uranometricum of 1632 he published tables of sines, tan-
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gents, secants, and versed sines, together with their logarithms, to eight

places; but the world remembers him instead for one of the most influential

books of the early modern period, the Geometria indivisibilibus contin-

uorum, published in 1635.

The aigument on which the book is based is essentially that implied by

Oresme, Kepler, and Galileo—that an area can be thought of as made up
of lines or "indivisibles" and that a solid volume can be regarded simi-

larly as composed of areas that are indivisible or quasi-atomic volumes.

Although Cavalieri at the time could scarcely have realized it, he was
following in very respectable footsteps indeed, for this is precisely the type

of reasoning that Archimedes had used in the Method, then lost. But

Cavalieri, unlike Archimedes, felt no compunction about the logical de-

ficiencies behind such procedures.

The general principle that in an equation involving infinitesimals those

of higher order are to be discarded because they have no effect on the final

result is frequently erroneously attributed to Cavalieri's Geometria indi-

visibilibus. The author undoubtedly was familiar with such an idea, for it

is implied in some of the work of Galileo, and it appeared more specifically

in results of contemporary French mathematicians; but Cavalieri assumed

almost the opposite of this principle. There was in Cavalieri's method no

process of continued approximation, nor any omission of terms, for he

used a strict one-to-one pairing of the elements in two configurations. No
elements are discarded, no matter what the dimension. The general ap-

proach and the specious plausibility of the method of indivisibles is well

illustrated by the proposition still known in many solid geometry books as

"the theorem of Cavalieri":

If two solids have equal altitudes, and if sections made by planes parallel to

the bases and at equal distances from them are always in a given ratio, then

the volumes of the solids also are in this ratio [Smith, 1959, pp. 605-609].

Cavalieri evidently had developed his method by 1626, for in that year

he wrote to Galileo that he was going to publish a book on the subject.

Galileo himself had once planned to write a book on the infinite, and

perhaps Cavalieri delayed publishing his own work in deference to

Galileo. However, Galileo's book undoubtedly would have been more

philosophical and speculative, with emphasis on the nature of the infinitely

large and small, a theme that Cavalieri avoided. Instead, Cavalieri con-

centrated on an extremely useful geometric theorem equivalent to the

modern statement in the calculus

i
x n dx = ;

n + 1

The statement and the proof of the theorem are very different from those

with which a modern reader is familiar, for Cavalieri compared powers of
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the lines in a parallelogram parallel to the base with the corresponding

powers of lines in either of the two triangles into which a diagonal divides

the parallelogram. Let the parallelogram AFDC be divided into two tri-

angles by the diagonal CF(Fig. 16.8) and let HE be an indivisible of triangle

CDF which is parallel to the base CD. Then, upon taking BC = FE and
drawing BM parallel to CD, it is easy to show that the indivisible BM in

triangle ACF will be equal to HE. Hence, one can pair all of the indivisibles

of triangle CDF with equal indivisibles in triangle ACF, and, therefore,

the two triangles are equal. Inasmuch as the parallelogram is the sum of

the indivisibles in the two triangles, it is clear that the sum of the first

powers of the lines in one of the constituent triangles is half the sum of

the first powers of the lines in the parallelogram; in other words,

!
x dx = —

.

o 2

Through a similar but considerably more involved argument Cavalieri

showed that the sum of the squares of the lines in the triangle is one third

the sum of the squares of the lines in the parallelogram. For the cubes of

the lines he found the ratio to be 1/4. Later he carried the proof to higher

powers, finally asserting, in Exercitationes geometricae sex {Six Geometrical

Exercises) of 1647, the important generalization that for the nth powers

the ratio will be l/(n + 1). This was known at the same time to French

mathematicians, but Cavalieri was first to publish this theorem—one that

was to open the way to many algorithms in the calculus. Geometrica in-

divisibilibus, which so greatly facilitated the problem of quadratures, ap-

peared again in a second edition in 1653, but by that time mathematicians

had achieved remarkable results in new directions that outmoded Cava-

lieri's laborious geometric approach.

FIG. 16.8

THE SPIRAL AND THE PARABOLA

The most significant theorem by far in Cavalieri's work was his equiva-

lent of

(
x n dx =

n + 1
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FIG. 16.9

but another contribution was also to lead to important results. The spiral

r = aO and the parabola x 2 = ay had been known since antiquity without

anyone's having previously noted a relationship between them, until Cav-

alieri thought of comparing straight-line indivisibles with curvilinear indi-

visibles. If, for example, one were to twist the parabola x 2 = ay (Fig. 16.9)

around like a watch spring so that vertex O remains fixed while point P
becomes point P\ then the ordinates of the parabola can be thought of as

transformed into radius vectors through the relationships x = r and y =

rO between what we now call rectangular and polar coordinates. The points

on the Apollonian parabola x 2 = ay then will lie on the Archimedean

spiral r = aO. Cavalieri noted further that if PP' is taken equal to the

circumference of the circle of radius OP' , the area within the first turn of

the spiral is exactly equal to the area between the parabolic arc OP and

the radius vector OP. Here we see work that amounts to analytic geometry

and the calculus, yet Cavalieri was writing before either of these subjects

had been formally invented. As in other parts of the history of mathematics,

we see that great milestones do not appear suddenly, but are merely the

more clear-cut formulations along the thorny path of uneven development.
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Fermat, the true inventor of the differential calculus.

Laplace

LEADING MATHEMATICIANS OF THE TIME

The year 1647 in which Cavalieri died marked the death also of another

disciple of Galileo, the young Evangelista Torricelli (1608-1647). But in

many ways Torricelli represented the new generation of mathematicians

who were building rapidly on the infinitesimal foundation that Cavalieri

had sketched all too vaguely. Had Torricelli not died so prematurely, Italy

might have continued to share the lead in new developments; as it turned

out, France was the undisputed mathematical center during the second

third of the seventeenth century. The leading figures were Rene Descartes

(1596-1650) and Pierre de Fermat (1601-1665), but three other contem-

porary Frenchmen also made important contributions, in addition to Tor-

ricelli: Gilles Persone de Roberval (1602-1675), Girard Desargues (1591-

1661), and Blaise Pascal (1623-1662). This chapter, covering one of the

most critical periods in the history of mathematics, focuses attention on

these six men, not only as individuals, but also collectively, for not since

the days of Plato had there been such mathematical intercommunication

as during the seventeenth century.

333
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No professional mathematical organizations yet existed, but in Italy,

France, and England there were loosely organized scientific groups: the

Accademia dei Lincei (to which Galileo belonged) and the Accademia del

Cimento in Italy, the Cabinet DuPuy in France, and the Invisible College

in England. There was in addition an individual who, during the period

we are now considering, served through correspondence as a clearing house

for mathematical information. This was the Minimite friar Marin Mersenne

(1588-1648), a close friend of Descartes and Fermat, as of many another

mathematician of the time. Had Mersenne lived a century earlier the delay

in information concerning the solution of the cubic might not have oc-

curred, for when Mersenne knew something, the whole of the "Republic

of Letters" was shortly informed about it. From the seventeenth century

Rene Descartes.
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on, therefore, mathematics developed more in terms of inner logic than

through economic, social, or technological forces, as is apparent particu-

larly in the work of Descartes, the best-known mathematician of the period.

THE DISCOURS DE LA METHODE

Descartes was born of a good family and received a thorough education

at the Jesuit college at La Fleche, where the textbooks of Clavius were

fundamental. Later he took a degree at Poitiers, where he had studied law,

without much enthusiasm. For a number of years he traveled about in

conjunction with varied military campaigns, first in Holland with Maurice,

Prince of Nassau, then with Duke Maximillian I of Bavaria, and later still

with the French army at the siege of LaRochelle. Descartes was not really

a professional soldier, and his brief periods of service in connection with

campaigns were separated by intervals of independent travel and study

during which he met some of the leading scholars in various parts of Eu-

rope—Faulhaber in Germany and Desargues in France, for example. At
Paris he met Mersenne and a circle of scientists who freely discussed crit-

icisms of Peripatetic thought; from such stimulation Descartes went on to

become the "father of modern philosophy," to present a changed scientific

world view, and to establish a new branch of mathematics. In his most

celebrated treatise, the Discours de la methode pour bien conduire sa raison

et chercher la verite dans les sciences {Discourse on the Method ofReasoning

Well and Seeking Truth in the Sciences) of 1637, he announced his program

for philosophical research. In this he hoped, through systematic doubt, to

reach clear and distinct ideas from which it would then be possible to

deduce innumerably many valid conclusions. This approach to science led

him to assume that everything was explainable in terms of matter (or

extension) and motion. The entire universe, he postulated, was made up

of matter in ceaseless motion in vortices, and all phenomena were to be

explained mechanically in terms of forces exerted by contiguous matter.

Cartesian science enjoyed great popularity for almost a century, but it then

necessarily gave way to the mathematical reasoning of Newton. Ironically,

it was in large part the mathematics of Descartes that later made possible

the defeat of Cartesian science.

INVENTION OF ANALYTIC GEOMETRY

The philosophy and science of Descartes were almost revolutionary in their

break with the past; his mathematics, by contrast, was linked with earlier

traditions. To some extent this may have resulted from the commonly

accepted humanistic heritage—a belief that there had been a Golden Age
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in the past. | "reign of Saturn," the great ideas of which remained to be

rediscovered. Probably in larger measure it was the natural result of the

fact that the growth of mathematics is more cumulatively progressive than

is the development of other branches of learning. Mathematics grows by

accretions, with very little need to slough off irrelevancies, whereas science

grows largely through substitutions when better replacements are found.

It should come as no surprise, therefore, to see that Descartes' chief con-

tribution to mathematics, the foundation of analytic geometry, was moti-

vated by an attempt to return to the past.

Descartes had become seriously interested in mathematics by the time

he spent the cold winter of 1619 with the Bavarian army, where he lay

abed until ten in the morning, thinking out problems. It was during this

early period in his life that he discovered the polyhedral formula usually

named for Euler: i> + / = e + 2, where v, /, and e are the number of

vertices, faces, and edges respectively of a simple polyhedron. Nine years

later Descartes wrote to a friend in Holland that he had made such strides

in arithmetic and geometry that he had no more to wish for. Just what the

strides were is not known, for Descartes had published nothing; but the

direction of his thoughts is indicated in a letter of 1628 to his Dutch friend

where he gave a rule for the construction of the roots of any cubic or

quartic equation by means of a parabola. This is, of course, essentially the

type of thing that Menaechmus had done for the duplication of the cube

some 2000 years earlier and that Omar Khayyam had carried out for cubics

in general around the year 1100.

Whether or not Descartes by 1628 was in full possession of his analytic

geometry is not clear, but the effective date for the invention of Cartesian

geometry cannot be much later than that. At this time Descartes left France

for Holland, where he spent the next twenty years. Three or four years

after settling down there, his attention was called by another Dutch friend,

a classicist, to the three-and-four-line problem of Pappus. Under the mis-

taken impression that the ancients had been unable to solve this problem,

Descartes applied his new methods to it and succeeded without difficulty.

This made him aware of the power and generality of his point of view,

and he consequently wrote the well-known work La geometric which made
analytic geometry known to his contemporaries.

ARITHMETIZATION OF GEOMETRY

La geometrie was not presented to the world as a separate treatise, but as

one ot three appendices to the Discours de la methode in which Descartes

thought to give illustrations of his general philosophical method. The other

two appendices were La dioptrique, containing the first publication of the

law of refraction (discovered earlier by Snell), and Les meteores, including.
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among other things, the first generally satisfactory quantitative explanation

of the rainbow. Descartes' successors had difficulty seeing just how the

three appendices were related to his general method, and in subsequent

editions of the Discours they frequently were omitted. The original edition

of the Discours was published without the name of the author, but the

authorship of the work was generally known.

Cartesian geometry now is synonymous with analytic geometry, but the

fundamental purpose of Descartes was far removed from that of modern
textbooks. The theme is set by the opening sentence:

Any problem in geometry can easily be reduced to such terms that a knowl-

edge of the lengths of certain lines is sufficient for its construction.

As this statement indicates, the goal is generally a geometric construction,

and not necessarily the reduction of geometry to algebra. The work of

Descartes far too often is described simply as the application of algebra to

geometry, whereas actually it could be characterized equally well as the

translation of the algebraic operations into the language of geometry. The
very first section of La geometrie is entitled "How the calculations of

arithmetic are related to the operations of geometry." The second section

describes "How multiplication, division, and the extraction of square roots

are performed geometrically." Here Descartes was doing what had to some
extent been done from al-Khwarizmi to Oughtred—furnishing a geo-

metric background for the algebraic operations. The five arithmetic op-

erations are shown to correspond to simple constructions with straightedge

and compasses, thus justifying the introduction of arithmetic terms in ge-

ometry.

Descartes was more thorough in his symbolic algebra, and in the geo-

metric interpretation of algebra, than any of his predecessors. Formal

algebra had been advancing steadily since the Renaissance, and it found

its culmination in Descartes' La geometrie, the earliest mathematical text

that a present-day student of algebra can follow without encountering

difficulties in notation. About the only archaic symbol in the book is the

use of * instead of = for equality. The Cartesian use of letters near the

beginning of the alphabet for parameters and those near the end as un-

known quantities, the adaptation of exponential notation to these, and the

use of the Germanic symbols + and - all combined to make Descartes'

algebraic notation look like ours, for, of course, we took ours from him.

There was, nevertheless, an important difference in view, for where we
think of the parameters and unknowns as numbers, Descartes thought of

them as line segments. In one essential respect he broke from Greek
tradition, for instead of considering x 2 and jc

3
, for example, as an area and

a volume, he interpreted them also as lines. This permitted him to abandon
the principle of homogeneity, at least explicitly, and yet retain geometric
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rortmng Descartes could write an expression such as a 2b 2 - 6, for, as he

expressed it. one "must consider the quantity a 2b 2 divided once by unity

(that is. the unit line segment), and the quantity b multiplied twice by

unity.
91

It is clear that Descartes substituted homogeneity in thought for

homogeneity in form, a step that made his geometric algebra more flexi-

ble—so flexible indeed that today we read xx as "* squared" without ever

seeing a square in our mind's eye.

GEOMETRIC ALGEBRA

Book I includes detailed instructions on the solution of quadratic equations,

not in the algebraic sense of the ancient Babylonians, but geometrically,

somewhat in the manner of the andent Greeks. To solve the equation

z
: = az + b 2

, for example, Descartes proceeded as follows. Draw a line

segment LM of length b (Fig. 17.1) and at L erect a segment NL equal

to a/2 and perpendicular to LM. With center N construct a circle of radius

a/2 and draw the line through M and N intersecting the circle at O and

P. Then, z = OM is the line desired. (Descartes ignored the root PM of

the equation because it is "false," that is, negative.) Similar constructions

are given for z
2 = az - b 2 and for z 2

-I- az = b2
, the only other quadratic

equations with positive roots.

Having shown how algebraic operations, including the solution of quad-

ratics, are interpreted geometrically, Descartes turned to the application

of algebra to determine geometric problems, formulating far more clearly

than the Renaissance cossists the general approach:

If, then, we wish to solve any problem, we first suppose the solution already

effected, and give names to all the lines that seem needful for its construc-

tion— to those that are unknown as well as to those that are known. Then,

making no distinction between known and unknown lines, we must unravel

the difficulty in any way that shows most naturally the relations between these

lines, until we find it possible to express a single quantity in two ways. This

will constitute an equation (in a single unknown), since the terms of the one

of these two expressions are together equal to the terms of the other.
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Throughout Books I and III of La geometrie Descartes is concerned pri-

marily with this type of geometric problem, in which the final algebraic

equation can contain only one unknown quantity. Descartes was well aware

that it was the degree of this resulting algebraic equation that determined

the geometric means by which the required geometric construction can be

carried out.

If it can be solved by ordinary geometry, that is, by the use of straight lines

and circles traced on a plane surface, when the last equation shall have been

entirely solved there will remain at most only the square of an unknown

quantity, equal to the product of its root by some known quantity, increased

or diminished by some other quantity also known.

Here we see a clear-cut statement that what the Greeks had called "plane

problems" leads to nothing worse than a quadratic equation. Since Viete

already had shown that the duplication of the cube and the trisection of

the angle lead to cubic equations, Descartes stated, with inadequate proof,

that these cannot be solved with straightedge and compasses. Of the three

ancient problems, therefore, only the squaring of the circle remained open

to question.

The title La geometrie should not mislead one into thinking that the

treatise is primarily geometric. Already in the Discourse, to which the

Geometry had been appended, Descartes had discussed the relative merits

of algebra and geometry, without being partial to either. He charged the

latter with relying too heavily on diagrams that unnecessarily fatigue the

imagination, and he stigmatized the former as a confused and obscure art

that embarrasses the mind. The aim of his method, therefore, was twofold:

(1) through algebraic procedure to free geometry from the use of diagrams

and (2) to give meaning to the operations of algebra through geometric

interpretation. Descartes was convinced that all mathematical sciences pro-

ceed from the same basic principles, and he decided to use the best of each

branch. His procedure in La geometrie, then, was to begin with a geometric

problem, to convert it to the language of an algebraic equation, and then,

having simplified the equation as far as possible, to solve this equation

geometrically, in a manner similar to that which he had used for the quad-

ratics. Following Pappus, Descartes insisted that one should use in the

geometric solution of an equation only the simplest means appropriate to

the degree of the equation. For quadratic equations, lines and circles suffice;

for cubics and quartics, conic sections are adequate. Now Descartes was
ready to move beyond the point at which the Greeks had stopped.

CLASSIFICATION OF CURVES

Descartes was much impressed by the power of his method in handling the

three- and four-line locus, and so he moved on to generalizations of this
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problem— a problem that runs like a thread of Ariadne through the three

books of La $6omitrie. He knew that Pappus had been unable to tell

anything about the loci when the number of lines was increased to six or

eight or more; so Descartes proceeded to study such cases. He was aware

that for tive or six lines the locus is a cubic, for seven or eight it is a quartic,

and so on. But Descartes showed no real interest in the shape of these

loci, for he was obsessed with the question of the means needed to construct

geometrically the ordinates corresponding to given abscissas. For five lines,

for example, he remarked triumphantly that if they are not all parallel, then

the locus is elementary in the sense that, given a value for jc, the line

representing y is constructive by ruler and compasses alone. If four of the

lines are parallel and equal distances a apart and the fifth is perpendicular

to the others (Fig. 17.2), and if the constant of proportionality in the Pappus

problem is taken as this same constant a, then the locus is given by (a +
x)(a - x)(2a - x) = axy, a cubic that Newton later called the Cartesian

parabola or trident: jc
3 - lax 1 - a 2x + 2a 3 = axy. This curve comes up

repeatedly in La geometric yet Descartes at no point gave a complete

sketch of it. His interest in the curve was threefold: (1) deriving its equation

as a Pappus locus, (2) showing its generation through the motion of curves

of lower degree, and (3) using it in turn to construct the roots of equations

of higher degree.

Descartes considered the trident constructive by plane means alone

inasmuch as, for each point x on the axis of abscissas, the ordinate y can

be drawn with ruler and compasses alone. This is not in general possible

for five or more lines taken at random in the Pappus problem. In the case

of not more than eight lines, the locus is a polynomial in x and y such that,

for a given point on the x-axis, the construction of the corresponding

ordinate y requires the geometric solution of a cubic or quartic equation

which, as we have seen, usually calls for the use of conic sections. For not

more than twelve lines in the Pappus problem, the locus is a polynomial

in x and y of not more than sixth degree, and the construction in general

requires curves beyond the conic sections. Here Descartes made an im-

portant advance beyond the Greeks in problems of geometric constructi-

FIG. 17.2
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bility. The ancients had never really legitimized constructions that made
use of curves other than straight lines or circles, although they sometimes

reluctantly recognized, as Pappus did, the classes that they called solid

problems and linear problems. The second category in particular was a

catchall class of problems with no real standing.

Descartes now took the step of specifying an orthodox classification of

determinate geometric problems. Those that lead to quadratic equations,

and can, therefore, be constructed by lines and circles, he placed in class

one; those leading to cubic and quartic equations, the roots of which can

be constructed by means of conic sections, he placed in class two; those

leading to equations of degree five or six can be constructed by introducing

a cubic curve, such as the trident or the higher parabola v = jc
3

, and these

he placed in class three. Descartes continued in this manner, grouping

geometric problems and algebraic equations into classes, assuming that the

construction of the roots of an equation of degree In or 2n - 1 was a

problem of class n.

The Cartesian classification by pairs of degrees seemed to be confirmed

by algebraic considerations. It was known that the solution of the quartic

was reducible to that of the resolvent cubic, and Descartes extrapolated

prematurely to assume that the solution of an equation of degree In can

be reduced to that of a resolvent equation of degree In - 1. Many years

later it was shown that Descartes' tempting generalization does not hold.

A number of his contemporaries were only too eager to point out a more
serious error made by Descartes, for it is clear from the theory of algebraic

elimination that curves of degree n suffice to solve equations not up to

degree 2n only, but up to n 2
. His classification, therefore, lost validity, but

his work did have the salutary effect of encouraging the relaxation of the

rules on constructibility so that higher plane curves might be used.

RECTIFICATION OF CURVES

It will be noted that the Cartesian classification of geometric problems

included some, but not all, of those that Pappus had lumped together as

"linear." In introducing the new curves that he needed for geometric con-

structions beyond the fourth degree, Descartes added to the usual axioms

of geometry one more axiom:

Two or more lines (or curves) can be moved, one upon the other, determining

by their intersection other curves.

This in itself is not unlike what the Greeks had actually done in their

kinematic generation of curves such as the quadratrix, the cissoid, the

conchoid, and the spiral. But whereas the ancients had lumped these to-
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get her. Descartes now carefully distinguished between those, such as the

cissoid and the conchoid, that we should call algebraic, and others, such

as the quadratrix and the spiral, that are now known as transcendental.

To the first type Descartes gave full-fledged geometric status, along with

the line, the circle, and the conies, calling all of these the ''geometric

curves"; the second type he ruled out of geometry entirely, stigmatizing

them as "mechanical curves. " The basis upon which Descartes made this

decision was "exactness of reasoning." Mechanical curves, he said, "must

be conceived of as described by two separate movements whose relation

does not admit of exact determination"—such as the ratio of circumference

to diameter of a circle in the case of the motions describing the quadratrix

and the spiral. In other words, Descartes thought of algebraic curves as

exactly described and of transcendental curves as inexactly described, for

the latter generally are defined in terms of arc lengths. On this matter he

wrote, in La geometric.

Geometry should not include lines (or curves) that are like strings, in that

they are sometimes straight and sometimes curved, since the ratios between

straight and curved lines are not known, and I believe cannot be discovered

by human minds, and therefore no conclusion based upon such ratios can

be accepted as rigorous and exact.

Descartes here is simply reiterating the dogma, suggested by Aristotle and

affirmed by Averroes, that no algebraic curve can be exactly rectified.

Interestingly enough, in 1638, the year after the publication of La geo-

metric Descartes ran across a "mechanical" curve that turned out to be

rectifiable. Through Mersenne, Galileo's representative in France, the

question, raised in the Two New Sciences, of the path of fall of an object

on a rotating earth (assuming the earth permeable) was widely discussed,

and this led Descartes to the equiangular or logarithmic spiral r = aeb0
as

the possible path. Had Descartes not been so firm in his rejection of such

nongeometric curves, he might have anticipated Torricelli in discovering,

in 1645, the first modern rectification of a curve. Torricelli showed, by
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infinitesimal methods that he had learned from Archimedes, Galileo, and

Cavalieri, that the total length of the logarithmic spiral from 6 = as it

winds backward about the pole O is exactly equal to the length of the polar

tangent PT (Fig. 17.3) at the point for which = 0. This striking result

did not, of course, disprove the Cartesian doctrine of the nonrectifiability

of algebraic curves. In fact, Descartes could have asserted not only that

the curve was not exactly determined, being mechanical, but also that the

arc of the curve has an asymptotic point at the pole, which it never reaches.

IDENTIFICATION OF CONICS

Virtually the whole of La geometrie is devoted to a thoroughgoing appli-

cation of algebra to geometry and of geometry to algebra; but there is little

in the treatise that resembles what usually is thought of today as analytic

geometry. There is nothing systematic about rectangular coordinates, for

oblique ordinates usually are taken for granted; hence, there are no for-

mulas for distance, slope, point of division, angle between two lines, or

other similar introductory material. Moreover, in the whole of the work

there is not a single new curve plotted directly from its equation, and the

author took so little interest in curve sketching that he never fully under-

stood the meaning of negative coordinates. He knew in a general sort of

way that negative ordinates are directed in a sense opposite to that taken

as positive, but he never made use of negative abscissas. Moreover, the

fundamental principle of analytic geometry—the discovery that indeter-

minate equations in two unknowns correspond to loci—does not appear

until the second book, and then only somewhat incidentally.

The solution of any one of these problems of loci is nothing more than the

finding of a point for whose complete determination one condition is wanting.

... In every such case an equation can be obtained containing two unknown
quantities.

In one case only did Descartes examine a locus in detail, and this was in

connection with the three- and four-line locus problem of Pappus for which

Descartes derived the equation v
2 = ay - bxy + ex - dx 2

. This is the

general equation of a conic passing through the origin; even though the

literal coefficients are understood to be positive, this is by far the most

comprehensive approach ever made to the analysis of the family of conic

sections. Descartes indicated conditions on the coefficients for which the

conic is a straight line, a parabola, an ellipse, or a hyperbola, the analysis

being in a sense equivalent to a recognition of the characteristic of the

equation of the conic. The author knew that by a proper choice of the

origin and axes the simplest form of the equation is obtained, but he did

not give any of the canonical forms. The omission of much of the elemen-
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tar\ detail made the work exceedingly difficult for his contemporaries to

follow In concluding remarks Descartes sought to justify inadequacy of

exposition by the incongruous assertion that he had left much unsaid in

order not to rob the reader of the joy of discovery. A genius himself, he

could not appreciate the difficulty that others were to have in understanding

his new and profound thoughts. It is small wonder that the number of

editions of La geometric apart from those with considerable amplification,

was small in the seventeenth century and has been still smaller since then.

Inadequate though the exposition is, it is Book II of La geometrie that

comes closest to modern views of analytic geometry. There is even a state-

ment of a fundamental principle of solid analytic geometry:

If two conditions for the determination of a point are lacking, the locus of

the point is a surface.

However, Descartes did not give any illustrations of such equations or

expand the brief hint of analytic geometry of three dimensions.

NORMALS AND TANGENTS

Descartes was so fully aware of the significance of his work that he regarded

it as bearing to ancient geometry somewhat the same relationship as the

rhetoric of Cicero bears to the a, b, c's of children. His mistake, from our

point of view, was in emphasizing determinate equations rather than in-

determinate equations. He realized that all the properties of a curve, such

as the magnitude of its area, or the direction of its tangent, are fully

determined when an equation in two unknowns is given, but he did not

take full advantage of this recognition. He wrote:

I shall have given here a sufficient introduction to the study of curves when
I shall have given a general method of drawing a straight line making right

angles with a curve at an arbitrarily chosen point upon it. And I dare say

that this is not only the most useful and most general problem in geometry

that I know, but even that I have ever desired to know.

Descartes was quite right that the problem of finding the normal (or the

tangent) to a curve was of great importance, but the method that he pub-

lished in La geometrie was less expeditious than that which Fermat had

developed at about the same time. Descartes suggested that to find the

normal to an algebraic curve at a fixed point P on the curve, one should

take a second variable point Q on the curve, then find the equation of the

circle with center on the coordinate axis (for he used only an axis of

abseissas) and passing through P and Q. Now, by setting equal to zero the

diseriminant of the equation that determines the intersections of the circle
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with the curve, one finds the center of the circle where Q coincides with

P. The center being known, the tangent and normal to the curve at P are

then easily found.

Book II of La geometrie contains also much material on the "ovals of

Descartes," which are very useful in optics and are obtained by generalizing

the "gardener's method" for constructing an ellipse by means of strings.

If D
x
and D2 are the distances of a variable point P from two fixed points

F
x
and F2 respectively, and if m and n are positive integers and K is any

positive constant, then the locus of P such that mD
{
+ nD2

= K is now
known as an oval of Descartes; but the author did not use the equations

of the curves. Descartes realized that his methods can be extended to "all

those curves which can be conceived of as generated by the regular move-

ment of the points of a body in three-dimensional space," but he did not

carry out any details. The sentence with which Book II concludes, "And
so I think I have omitted nothing essential to an understanding of curved

lines," is presumptuous indeed.

The third and last book of La geometrie resumes the topic of Book I

—

the construction of the roots of determinate equations. Here the author

warned that in such constructions "We should always choose with care the

simplest curve that can be used in the solution of a problem." This means,

of course, that one must be fully aware of the nature of the roots of the

equation under consideration, and in particular one must know whether

or not the equation is reducible. For this reason, Book III is virtually a

course in the elementary theory of equations. It tells how to discover

rational roots, if any, how to depress the degree of the equation when a

root is known, how to increase and decrease the roots of an equation by

any amount, or to multiply or divide them by a number, how to eliminate

the second term, how to determine the number of possible "true" and

"false" roots (that is, positive and negative roots) through the well-known

"Descartes' rule of signs," and how to find the algebraic solution of cubic

and quartic equations. In closing, the author reminds the reader that he

has given the simplest constructions possible for problems in the various

classes mentioned earlier. In particular, the trisection of the angle and the

duplication of the cube are in class two, requiring more than circles and

lines for their construction.

DESCARTES' GEOMETRIC CONCEPTS

Our account of Descartes' analytic geometry should make clear how far

removed the author's thought was from the practical considerations that

are now so often associated with the use of coordinates. He did not lay

down a coordinate frame to locate points as a surveyor or a geographer

might do, nor were his coordinates thought of as number pairs. In this
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respect the phrase "C artesian product," so often used today, is an anach-

ronism La geometric was in its day just as much a triumph of impractical

theor\ as w as the ( onics of Apollonius in antiquity, despite the inordinately

useful role that both were ultimately destined to play. Moreover, the use

of oblique coordinates was much the same in both cases, thus confirming

that the origin of modern analytic geometry lies in antiquity rather than

in the medieval latitude of forms. The coordinates of Oresme, which in-

fluenced Galileo, are closer, both in motive and in appearance, to the

modern point of view than are those of Apollonius and Descartes. Even
if Descartes was familiar with Oresme's graphical representation of func-

tions, and this is not evident, there is nothing in Cartesian thought to

indicate that he would have seen any similarity between the purpose of

the latitude of forms and his own classification of geometric constructions.

The theory of functions ultimately profited greatly from the work of Des-

cartes, but the notion of a form or function played no apparent role in

leading to Cartesian geometry.

In terms of mathematical ability Descartes probably was the most able

thinker of his day, but he was at heart not really a mathematician. His

geometry was only an episode in a life devoted to science and philosophy,

and although occasionally in later years he contributed to mathematics

through correspondence, he left no other great work in this field. In 1649

he accepted an invitation from Queen Christina of Sweden to instruct her

in philosophy and to establish an academy of sciences at Stockholm. Des-

cartes had never enjoyed robust health, and the rigors of a Scandinavian

winter were too much for him; he died early in 1650.

FERMAT'S LOCI

If Descartes had a rival in mathematical ability, it was Fermat, but the

latter was in no sense a professional mathematician. Fermat studied law

at Toulouse, where he then served in the local parlement, first as a lawyer

and later as councillor. This meant that he was a busy man; yet he seems

to have had time to enjoy as an avocation a taste for classical literature,

including science and mathematics. The result was that by 1629 he began

to make discoveries of capital importance in mathematics. In this year he

joined in one of the favorite sports of the time—the "restoration" of lost

works of antiquity on the basis of information found in extant classical

treatises. Fermat undertook to reconstruct the Plane Loci of Apollonius,

depending on allusions contained in the Mathematical Collection of Pappus.

A by-product of this effort was the discovery, at least by 1636, of the

fundamental principle of analytic geometry:

Whenever in a final equation two unknown quantities are found, we have a

locus, the extremity of one of these describing a line, straight or curved.
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This profound statement, written a year before the appearance of Des-

cartes' Geometry, seems to have grown out of Fermat's application of the

analysis of Viete to the study of loci in Apollonius. In this case, as also in

that of Descartes, the use of coordinates did not arise from practical con-

siderations nor from the medieval graphical representation of functions.

It came about through the application of Renaissance algebra to problems

from ancient geometry. However, Fermat's point of view was not entirely

in conformity with that of Descartes, for Fermat emphasized the sketching

of solutions of indeterminate equations, instead of the geometric construc-

tion of the roots of determinate algebraic equations. Moreover, where

Descartes had built his Geometry around the difficult Pappus problem,

Fermat limited his exposition, in the short treatise entitled Ad locos pianos

et solidos isagoge (Introduction to Plane and Solid Loci), to the simplest

loci only. Where Descartes had begun with the three- and four-line locus,

using one of the lines as an axis of abscissas, Fermat began with the

linear equation and chose an arbitrary coordinate system upon which to

sketch it.

Using the notation of Viete, Fermat sketched first the simplest case of

a linear equation—given in Latin as "D in A aequetur B in £" (that is,

Dx = By in modern symbolism). The graph is, of course, a straight line

through the origin of coordinates—or rather a half line with the origin as

end point, for Fermat, like Descartes, did not use negative abscissas. The
more general linear equation ax + by = c2 (for Fermat retained Viete's

homogeneity) he sketched as a line segment in the first quadrant terminated

by the coordinate axes. Next, to show the power of his method for handling

loci, Fermat announced the following problem that he had discovered by

the new approach:

Given any number of fixed lines, in a plane, the locus of a point such that

the sum of any multiples of the segments drawn at given angles from the

point to the given lines is constant, is a straight line.

That is, of course, a simple corollary of the fact that the segments are

linear functions of the coordinates, and of Fermat's proposition that every

equation of first degree represents a straight line.

Fermat next showed that xy = A:
2

is a hyperbola and that an equation

of the form xy + a 2 = bx + cy can be reduced to one of the form xy =

k2 (by a translation of axes). The equation x 2 = y
2 he considered as a

single straight line (or ray), for he operated only in the first quadrant, and

he reduced other homogeneous equations of second degree to this form.

Then, he showed that a2 ± x2 = by is a parabola, that x2 + v 2 + lax +
2bv = c2

is a circle, that a 2 - x2 = ky 2
is an ellipse, and that a 2 + x2 =

ky2
is a hyperbola (for which he gave both branches). To more general

quadratic equations, in which the several second-degree terms appear,

Fermat applied a rotation of axes to reduce them to the earlier forms. As



348 THE TIME OF FERMAT AND DESCARTES

the "crowning point" of his treatise, Fermat considered the following prop-

osition:

Given any number of fixed lines, the locus of a point such that the sum of

the squares of the segments drawn at given angles from the point to the lines

is constant, is a solid locus.

This proposition is obvious in terms of Fermat's exhaustive analysis of the

various cases of quadratic equations in two unknowns. As an appendix to

the Introduction to Loci, Fermat added "The Solution of Solid Problems

by Means of Loci," pointing out that determinate cubic and quartic equa-

tions can be solved by conies, the theme that had loomed so large in the

geometry of Descartes.

HIGHER-DIMENSIONAL ANALYTIC GEOMETRY

Fermat's Introduction to Loci was not published during the author's life-

time; hence, analytic geometry in the minds of many was regarded as the

unique invention of Descartes. It is now clear that Fermat had discovered

essentially the same method well before the appearance of La geometrie

and that his work circulated in manuscript form until its publication in 1679

in Varia opera mathematica. It is a pity that Fermat published almost

nothing during his lifetime, for his exposition was much more systematic

and didactic than that of Descartes. Moreover, his analytic geometry was

somewhat closer to ours in that ordinates usually are taken at right angles

to the line of abscissas. Like Descartes, Fermat was aware of an analytic

geometry of more than two dimensions, for in another connection he wrote:

There are certain problems which involve only one unknown, and which can

be called determinate, to distinguish them from the problems of loci. There

are certain others which involve two unknowns and which can never be

reduced to a single one; these are the problems of loci. In the first problems

we seek a unique point, in the latter a curve. But if the proposed problem

involves three unknowns, one has to find, to satisfy the equation, not only

a point or a curve, but an entire surface. In this way surface loci arise, etc.

Here in the final "etc." there is a hint of geometry of more than three

dimensions, but if Fermat really had this in mind, he did not carry it further.

Even the geometry of three dimensions had to wait until the eighteenth

century for its effective development.

FERMAT'S DIFFERENTIATIONS

It is possible that Fermat was in possession of his analytic geometry as

early as 1629, for about this time he made two significant discoveries that
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are closely related to his work on loci. The more important of these was

described a few years later in a treatise, again unpublished in his lifetime,

entitled Method of Finding Maxima and Minima. Fermat had been con-

sidering loci given (in modern notation) by equations of the form y = x n
\

hence, today they are often known as "parabolas of Fermat" if n is positive

or "hyperbolas of Fermat" if n is negative. Here we have an analytic

geometry of higher plane curves; but Fermat went further. For polynomial

curves of the form v = f(x) he noted a very ingenious method of finding

points at which the function takes on a maximum or a minimum value. He
compared the value of f(x) at a point with the value f(x + £) at a

neighboring point. Ordinarily these values will be distinctly different, but

at the top or bottom of a smooth curve the change will be almost imper-

ceptible. Hence, to find maximum and minimum points Fermat equated

f(x) and f(x + £), realizing that the values, although not exactly the

same, are almost equal. The smaller the interval E between the two points,

the nearer the pseudoequality comes to being a true equation; so Fermat,

after dividing through by E, set E = 0. The results gave him the abscissas

of the maximum and minimum point of the polynomial. Here in essence

is the process now called differentiation, for the method of Fermat is

equivalent to finding

lu,^ + £)-^)
£-^0 E

and setting this equal to zero. Hence, it is appropriate to follow Laplace

in acclaiming Fermat as the discoverer of the differential calculus, as well

as a codiscoverer of analytic geometry. Obviously Fermat was not in pos-

session of the limit concept, but otherwise his method of maxima and

minima parallels that used in the calculus today, except that now the symbol

h or Ajc is customarily used in place of Fermat's E. Fermat's process of

changing the variable slightly and considering neighboring values has ever

since been the essence of infinitesimal analysis.

During the very years in which Fermat was developing his analytic

geometry, he discovered also how to apply his neighborhood process to

find the tangent to an algebraic curve of the form v = f(x). If P is a point

on the curve y = f(x) at which the tangent is desired, and if the coordinates

of P are (a, b), then a neighboring point on the curve with coordinates

x = a + £, y = f(a + E) will lie so close to the tangent that one can

think of it as approximately on the tangent as well as on the curve. If,

therefore, the subtangent at the point P is TQ = c (Fig. 17.4), the triangles

TPQ and TP'Q' can be taken as being virtually similar. Hence, one has

the proportion

b = f(a + E)

c c + E

Upon cross-multiplying, canceling like terms, recalling that b = f(a), then
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FIG. 17.4

dividing through by £, and finally setting E = 0, the subtangent c is readily

found.

Fermat's procedure amounts to saying that

,, /fr + q-W
£^0 E

is the slope of the curve at x = a; but Fermat did not explain his procedure

satisfactorily, saying simply that it was similar to his method of maxima
and minima. Descartes in particular, when the method was reported to

him in 1638 by Mersenne, attacked it as not generally valid. He proposed

as a challenge the curve ever since known as the "folium of Descartes":

jc
3 + y

3 = 3axy. That mathematicians of the time were quite unfamiliar

with negative coordinates is apparent in that the curve was drawn as but

a single folium or "leaf" in the first quadrant—or sometimes as a four-

leaf clover, with one leaf in each quadrant! Ultimately Descartes grudgingly

conceded the validity of Fermat's tangent method, but Fermat never was

accorded the esteem to which he was entitled.

FERMAT'S INTEGRATIONS

Mersenne, through correspondence and in his own printed works, made
some of Fermat's results known in France and Italy, but it would have

been ever so much better if Fermat had published his marvelous discov-

eries. Fermat not only had a method for finding the tangent to curves of

the form y = x", he also, some time after 1629, hit upon a theorem on

the area under these curves—the theorem that Cavalieri published in 1635

and 1647. In finding the area Fermat at first seems to have used formulas

for the sums of powers of the integers, or inequalities of the form

\
m + 2m + 3 m + • + nm >

m + 1

> \
m + 2m + 3' + (n - 1)'
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to establish the result for all positive integral values of m. This in itself

was an advance over the work of Cavalieri, who limited himself to the

cases from m = 1 to m = 9; but later Fermat developed a better method
for handling the problem, which was applicable to fractional as well as

integral values of m. Let the curve be y = xn
, and let the area under the

curve from x = to x = a be desired. Then, Fermat subdivided the interval

from x = to x = a into infinitely many subintervals by taking the points

with abscissas a, aE, aE 2
, aE 3

, . . . , where E is a quantity less than one.

At these points he erected ordinates to the curve and then approximated

to the area under the curve by means of rectangles (as indicated in Fig.

17.5). The areas of the successive approximating circumscribed rectangles,

beginning with the largest, are given by the terms in geometric progression

a\a - aE),anEn(aE - aE 2),a nE 2n(aE 2 - aE 3
), . . . . The sum to infinity

of these terms is

an + \l - E)

1

,n + l

•n+1
or

1 + E + E 2 + + E n
'

As E tends toward one—that is, as the rectangles become narrower—the

sum of the areas of the rectangles approaches the area under the curve.

Upon letting E = 1 in the formula above for the sum of the rectangles,

we obtain (a
n + l)/(n + 1), the desired area under the curve y = xn from

x = to x = a. To show that this holds also for rational fractional values,

p/'q, let n - plq. The sum of the geometric progression then is

fl(P + <7V<7
1 - E*

1 - Ep+q
a (p + q)/q

1 + E + E + • • • + E"

1 + E + E 2 + + Ep+q ~
x

and, when E = 1, this becomes

fl
(P + <7V<7

#

If, in modern notation, we wish to obtain /* xn dx, it is only necessary to

observe that this is So dx - ft x
n dx.

For negative values of n (except n = - 1) Fermat used a similar pro-

cedure, except that E is taken as greater than one and tends toward one

FIG. 17.5
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from above, the area found being that beneath the curve from x = a to

inriniu To find /J x n dx< then, it was only necessary to note that this is

dx - JV x dx.

GREGORY OF ST. VINCENT

For n = - 1 the procedure fails; but Fermat's older contemporary, Gregory

of St. Vincent (1584-1667) disposed of this case in his Opus geometricum

quadraturae circuli et sectionum coni (Geometrical Work on the Squaring

of the Circle and of Conic Sections). Much of this work had been completed

before the time that Fermat was working on tangents and areas, perhaps

as early as 1622-1625, although it was not published until 1647. Gregory

of St. Vincent, born at Ghent, was a Jesuit teacher at Rome and Prague

and later became a tutor at the court of Philip IV of Spain. Through his

travels he became separated from his papers, with the result that the ap-

pearance of the Opus geometricum was long delayed. In this treatise Gre-

gory had shown that if along the jc-axis one marks off from x - a points

the intervals between which are increasing in continued geometric pro-

portion, and if at these points ordinates are erected to the hyperbola

xy = 1, then the areas under the curve intercepted between successive

ordinates are equal. That is, as the abscissa increases geometrically, the

area under the curve increases arithmetically. Hence, the equivalent of

fa x~ ] dx = In b - In a was known to Gregory and his contemporaries.

Unfortunately, a faulty application of the method of indivisibles had led

Gregory of St. Vincent to believe that he had squared the circle, an error

that damaged his reputation.

Fermat had been concerned with many aspects of infinitesimal analysis

—

tangents, quadratures, volumes, lengths of curves, centers of gravity. He
could scarcely have failed to notice that in finding tangents to y = kx n one

multiplies the coefficient by the exponent and lowers the exponent by one,

whereas in finding areas one raises the exponent and divides by the new
exponent. Could the inverse nature of these two problems have escaped

him? Although this seems unlikely, it nevertheless appears that he nowhere

called attention to the relationship now known as the fundamental theorem

of the calculus. Perhaps he recognized the inverse nature of the problems

but saw no great significance in this. Integration of x\ about the only

function that he really considered, was, after all, almost as easy for him

as differentiation—and chronologically, at least for positive integral values

of n, the former may have preceded the latter in Fermafs work. Thus also

in the work of Gregory of St. Vincent the integral calculus came before

the differential calculus for the logarithmic function.

The inverse relationship between area and tangent problems should have

been apparent from a comparison of Gregory of St. Vincent's area under

the hyperbola and Descartes' analysis of inverse tangent problems proposed
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through Mersenne in 1638. The problems had been set by Florimond De-

beaune (1601-1652), a jurist at Blois who was also an accomplished math-

ematician, for whom even Descartes expressed admiration. One of the

problems called for the determination of a curve whose tangent had the

property now expressed by the differential equation a dyldx — x — v.

Descartes recognized the solution as nonalgebraic, but he evidently just

missed seeing that logarithms were involved.

THEORY OF NUMBERS

Fermat's contributions to analytic geometry and to infinitesimal analysis

were but two aspects of his work—and probably not his favorite topics. In

1621 the Arithmetica of Diophantus had come to life again through the

Greek and Latin edition by Claude Gaspard de Bachet (1591-1639), a

member of an informal group of scientists in Paris. Diophantus' Arithmetica

had not been unknown, for Regiomontanus had thought of printing it;

several translations had appeared in the sixteenth century, with little result

for the theory of numbers. Perhaps the work of Diophantus was too im-

practical for the practitioners and too algorithmic for the speculatively

inclined; but it appealed strongly to Fermat, who became the founder of

the modern theory of numbers. Many aspects of the subject caught his

fancy, including perfect and amicable numbers, figurate numbers, magic

squares, Pythagorean triads, divisibility, and, above all, prime numbers.

Some of his theorems he proved by a method that he called his "infinite

descent"—a sort of inverted mathematical induction, a process that Fermat

was among the first to use. As an illustration of his process of infinite

descent, let us apply it to an old and familiar problem—the proof that

V3 is not rational. Let us assume that V3 = a
x
lb

x , where a
x
and b

x
are

positive integers with a
x
> b

x
. Since

1 V3 + 1

V3 - 1

=
2 '

upon replacing the first V3 by its equal a
x
/b Xy we have

3b, - fli

V3 =

In view of the inequality f < a
x
lb

x
< 2, it is clear that 3^ - a

x
and a

x
-

b
x
are positive integers, a 2 and b2 , each less than a

x
and b

x
respectively,

and such that V3 = a 2/b2 . This reasoning can be repeated indefinitely,

leading to an infinite descent in which an and bn are ever smaller integers

such that V3 = anlbn . This implies the false conclusion that there is no

smallest positive integer. Hence, the premise that V3 is a quotient of

integers must be false.
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Using his method of infinite descent, Fermat was able to prove Girard's

assertion that every prime number of the form 4n + \ can be written in

one and only one way as the sum of two squares. He showed that if 4n + 1

is not the sum of two squares, there always is a smaller integer of this

form that is not the sum of two squares. Using this recursive relationship

backward leads to the false conclusion that the smallest integer of this type,

5, is not the sum of two squares (whereas 5 = l
2 + 22

). Hence, the general

theorem is proved to be true. Since it is easy to show that no integer of

the form 4n - 1 can be the sum of two squares and since all primes except

2 are of the form An + 1 or 4m - 1, by Fermat's theorem one can easily

classify prime numbers into those that are and those that are not the sum
of two squares. The prime 23, for example, cannot be so divided, whereas

the prime 29 can be written as 22 + 5
2

. Fermat knew that a prime of either

form can be expressed as the difference of two squares in one and only

one way.

THEOREMS OF FERMAT

Fermat used his method of infinite descent to prove that there is no cube

that is divisible into two cubes—that is, that there are no positive integers

jc, v, and z such that jc
3 + y

3 = z 3
. Going further, Fermat stated the general

proposition that for n an integer greater than two, there are no positive

integral values x, v, and z such that x n + y" = z". He wrote in the margin

of his copy of Bachet's Diophantus that he had a truly marvelous proof of

this celebrated theorem, which since has become known as Fermat's "last,"

or "great," theorem. Fermat, most unfortunately, did not give his proof,

but described it only as one "which this margin is too narrow to contain."

If Fermat did indeed have such a proof, it has remained lost to this day.

Despite all efforts to find a proof, once stimulated by a pre-World War I

prize offer of 100,000 marks for a solution, the problem remains unsolved.

However, the search for solutions has led to even more good mathematics

than that which in antiquity resulted from efforts to solve the three classical

and unsolvable geometric problems. Like Horace Walpole's three princes

of Serendip, mathematicians seem to have had the gift of finding along the

way agreeable things not sought for.

Whether or not Fermat was correct in stating his "great" theorem is

not yet known, but decisions have been reached on two of his other con-

jectures in the theory of numbers. Perhaps two millennia before his day

there had been a "Chinese hypothesis" which held that n is prime if and

only if 2" - 2 is divisible by n, where n is an integer greater than one.

Half of this conjecture now is known to be false, for 2
341 - 2 is divisible

by 341, and 341 = 11 • 31 is composite; but the other half is indeed valid,

and Fermat's "lesser" theorem is a generalization of this. A consideration
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of many cases of numbers of the form ap
~

l - 1 , including 236 - 1 , suggested

that whenever p is prime and a is prime to /?, then ap
~

l - 1 is divisible

by p. On the basis of an induction from only five cases (n = 0, 1, 2, 3,

and 4), Fermat formulated a second conjecture—that integers of the form

22"
-I- 1, now known as "Fermat numbers," always are prime. Euler a

century later showed this conjecture to be false, for 2
2? + 1 is composite.

In fact, it is known now that 2r + 1 is not prime for numerous n above

five, and we begin to wonder if there is even one more prime Fermat

number beyond those that Fermat knew.

Fermat's lesser theorem fared better than his conjecture on prime Fer-

mat numbers. A proof of the theorem was left in manuscript by Leibniz,

and another elegant and elementary demonstration was published by Euler

in 1736. The proof by Euler makes ingenious use of mathematical induc-

tion, a device with which Fermat, as well as Pascal, was quite familiar. In

fact, mathematical induction, or reasoning by recurrence, sometimes is

referred to as "Fermatian induction," to distinguish it from scientific, or

"Baconian," induction. (Today the former sometimes is known also as

"complete induction," the latter as "incomplete induction.")

GILLES PERSONE DE ROBERVAL

Fermat was truly "the prince of amateurs" in mathematics. No professional

mathematician of his day made greater discoveries or contributed more to

the subject; yet Fermat was so modest that he published virtually nothing.

He was content to write of his thoughts to Mersenne (whose name, inci-

dentally, is preserved in connection with the "Mersenne numbers," that

is, primes of the form 2P - 1) and thus lost priority credit for much of his

work. In this respect he shared the fate of one of his most capable friends

and contemporaries—the unamiable professor Roberval, a member of the

"Mersenne group" and the only truly professional mathematician among
the Frenchmen whom we discuss in this chapter. Appointment to the chair

of Ramus at the College Royal, which Roberval held for some forty years,

was determined every three years on the basis of a competitive examina-

tion, the questions for which were set by the incumbent. In 1634 Roberval

won the contest, probably because he had developed a method of indivi-

sibles similar to that of Cavalieri; by not disclosing his method to others,

he successfully retained his position in the chair until his death in 1675.

This meant, however, that he lost credit for most of his discoveries and

that he became embroiled in numerous quarrels with respect to priority.

The bitterest of these controversies concerned the cycloid, to which the

phrase "the Helen of geometers" came to be applied because of the fre-

quency with which it provoked quarrels during the seventeenth century.

Mersenne in 1615 had called the attention of mathematicians to the cycloid,
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perhaps having heard of the curve through Galileo; in 1628, when Roberval

arrived in Paris, Mersenne proposed to the young man that he study the

curve. By 1634, Roberval was able to show that the area under one arch

of the curve is exactly three times the area of the generating circle. By
1638 he had found how to draw the tangent to the curve at any point (a

problem solved at about the same time also by Fermat and Descartes) and

had found the volumes generated when the area under an arch is revolved

about the baseline. Later still he found the volumes generated by revolving

the area about the axis of symmetry or about the tangent at the vertex.

EVANGELISTA TORRICELLI

Roberval did not publish his discoveries concerning the cycloid (which he

named the "trochoid," from the Greek word for wheel), for he may have

wished to set similar questions for prospective candidates for his chair.

Meanwhile Torricelli became interested in the cycloid, possibly on the

suggestion of Mersenne, perhaps through Galileo, whom Torricelli, like

Mersenne, greatly admired. In 1643 Torricelli sent Mersenne the quad-

rature of the cycloid, and in 1644 he published a work with the title De
dimensione parabola to which he appended both the quadrature of the

cycloid and the construction of the tangent. Torricelli made no mention

of the fact that Roberval had arrived at these results before him, and so

in 1646 Roberval wrote a letter accusing Torricelli of plagiarism from him

and from Fermat (on maxima and minima). It is clear now that priority of

discovery belongs to Roberval, but priority in publication goes to Torricelli,

who probably rediscovered the area and tangent independently. Roberval

had used the method of indivisibles for the area problem; Torricelli gave

two quadratures, one making use of Cavalieri's method of indivisibles and

the other of the ancient method of exhaustion. For finding the tangent of

the curve both men employed a composition of motions reminiscent of

Archimedes' tangent to his spiral. Roberval thought of a point P on the

cycloid as subject to two equal motions, one a motion of translation, the

other a rotary motion. As the generating circle rolls along the baseline AB
(Fig. 17.6), P is carried horizontally, at the same time rotating about O,

the center of the circle. Through P one, therefore, draws a horizontal line

PS, for the motion of translation, and a line PR tangent to the generating

circle, for the rotary component. Inasmuch as the motion of translation is

equal to that of rotation, the bisector fTof the angle SPR is the required

tangent to the cycloid.

The idea of the composition of movements was not original with Rob-

erval, for Archimedes, Galileo, Descartes, and others had used it. Torricelli

might have derived the idea from any one of these men; hence, his appli-

cation of the principle to the cycloid need not have been plagiarism from
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FIG. 17.6

Roberval. Both Torricelli and Roberval applied the kinematic method to

other curves as well. A point on the parabola, for example, moves away

from the focus at the same rate at which it moves away from the directrix;

hence, the tangent will be the bisector of the angle between lines in these

two directions. A similar argument holds for the ellipse, in which the motion

away from one focus is equal to the motion toward the other focus. Tor-

ricelli made use also of Fermat's method of tangents for the higher para-

bolas, knowledge of which is known to have reached Italy.

NEW CURVES

The works of Roberval and Torricelli include many excellent results, only

a few of which can be mentioned here. Among the contributions of Rob-

erval was the first sketch, in 1635, of half an arch of a sine curve. This was

important as an indication that trigonometry gradually was moving away

from the computational emphasis, which had dominated thought in that

branch, toward a functional approach. By means of his method of indi-

visibles, Roberval was able to show the equivalent of /* sin x dx = cos a

- cos b, again indicating that area problems tended at that time to be

easier to handle than tangent questions. Roberval and Torricelli, working

independently but along remarkably similar lines, extended Cavalieri's

comparison of the parabola and the spiral by considering arc length as well

as area. In the 1640s they showed that the length of the first rotation of

the spiral r = aO is equal to the length of the parabola x 2 = lay from

x = to x = In a. Interest in the spiral at the time may have arisen from

correspondence between Galileo and Mersenne concerning the path of a

freely falling object on a moving earth, but the discussion soon greatly

broadened. Fermat, ever one to seek generalizations, introduced the higher

spirals r
n = a6 and compared the arcs of these with the lengths of his

higher parabolas xn ~ x = lay. Torricelli studied spirals of various kinds,

discovering the rectification of the logarithmic spiral, as we have seen.

There was a remarkable unity in the mathematical interests of the period
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from about 1630 to 1650, attributable in part to the intercommunication

through Mcrsenne. Problems involving infinitesimals were by far the most

popular at the time, and Torricelli in particular delighted in these. In the

Ot dimensione parabolae, for instance, Torricelli gave twenty-one different

proofs of the quadrature of the parabola, using approaches about evenly

divided between the use of indivisibles and the method of exhaustion. One
in the first category is almost identical with the mechanical quadrature

given by Archimedes in his Method, presumably not then extant. As might

be anticipated, one in the second category is virtually that given in Ar-

chimedes' treatise On the Quadrature of the Parabola, extant and well

known at the time. Had Torricelli arithmetized his procedures in this con-

nection, he would have been very close to the modern limit concept, but

he remained under the heavily geometric influence of Cavalieri. Never-

theless, Torricelli far outdid his master in the flexible use of indivisibles to

achieve new discoveries.

One novel result of 1641 that greatly pleased Torricelli was his proof

that if an infinite area, such as that bounded by the hyperbola xy = a 2
,

an ordinate x = b, and the axis of abscissas, is revolved about the jc-axis,

the volume of the solid generated may be finite. Torricelli believed that

he was first to discover that a figure with infinite dimensions can have a

finite magnitude; but in this respect he may have been anticipated by

Fermat's work on the areas under the higher hyperbolas, or possibly by

Roberval, and certainly by Oresme in the fourteenth century.

Among the problems that Torricelli handled just before his premature

death in 1647 was one in which he sketched the curve whose equation we
should write as x = log y, perhaps the first graph of a logarithmic function,

thirty years after the death of the discoverer of logarithms as a computa-

tional device. Torricelli found the area bounded by the curve, its asymptote,

and an ordinate, as well as the volume of the solid obtained upon revolving

the area about the jc-axis.

Torricelli was one of the most promising mathematicians of the seven-

teenth century—often referred to as the century of genius. Mersenne had

made the work of Fermat, Descartes, and Roberval known in Italy, both

through correspondence with Galileo dating from 1635 and during a pil-

grimage to Rome in 1644; Torricelli promptly mastered the new methods,

although he always favored the geometric over the algebraic approach.

Torricelli's brief association with the blind and aged Galileo in 1641-1642

had aroused in the younger man an interest in physical science also, and

today he is probably better recalled as the inventor of the barometer than

as a mathematician. He studied the parabolic paths of projectiles fired from

a point with fixed initial speeds but with varying angles of elevation, finding

that the envelope of the parabolas is another parabola. In going from an

equation for distance in terms of time to that for speed as a function of

time, and inversely, Torricelli saw the inverse character of quadrature and
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tangent problems. Had he enjoyed the normal span of years, it is possible

that he would have become the inventor of the calculus; but a cruel fate

cut short his life in Florence only a few days after his thirty-ninth birthday.

GIRARD DESARGUES

The great developments in mathematics during the days of Descartes and

Fermat were in analytic geometry and infinitesimal analysis. It is likely that

it was the very success in these branches that made men of the time rel-

atively oblivious to other aspects of mathematics. We already have seen

that Fermat found no one to share his fascination with the theory of num-
bers; pure geometry likewise suffered a wholly undeserved neglect in the

same period. The Conies of Apollonius once had been among Fermat's

favorite works, but analytic methods redirected his views. Meanwhile, the

Conies had attracted the attention of a practical man with a very impractical

imagination—Girard Desargues, an architect and military engineer of Lyons.

For some years Desargues had been at Paris, where he was part of the

group of mathematicians that we have been considering; but his very unor-

thodox views on the role of perspective in architecture and geometry met

with little favor, and he returned to Lyons to work out his new type of

mathematics largely by himself. The result was one of the most unsuccessful

great books ever produced. Even the ponderous title was repulsive

—

Brouillon

projet d'une atteinte aux evenemens des rencontres d'un cone avec un plan

(Paris, 1639). This may be translated as Rough Draft of an Attempt to Deal

with the Outcome of a Meeting of a Cone with a Plane, the barbarity of

which stands in sharp contrast to the brevity and simplicity of Apollonius'

title, Conies. The thought on which Desargues' work is based nevertheless

is simplicity itself—a thought derived from perspective in Renaissance art

and from Kepler's principle of continuity. Everyone knows that a circle,

when viewed obliquely, looks like an ellipse, or that the outline of the

shadow of a lampshade will be a circle or a hyperbola according as it is

projected upon the ceiling or a wall. Shapes and sizes change according to

the plane of incidence that cuts the cone of visual rays or of light rays; but

certain properties remain the same throughout such changes, and it is these

properties that Desargues studied. For one thing, a conic section remains

a conic section no matter how many times it undergoes a projection. The
conies form a single close-knit family, as Kepler had suggested for some-

what different reasons. But in accepting this view Desargues had to assume,

with Kepler, that the parabola has a focus "at infinity" and that parallel

lines meet at "a point at infinity." The theory of perspective makes such

ideas plausible, for light from the sun ordinarily is considered to be made
up of rays that are parallel—comprising a cylinder or a parallel pencil of

rays—whereas rays from a terrestrial light source are treated as a cone or
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a point pencil. The cylinder is merely a cone the vertex of which is infinitely

distant, and a parallel pencil of lines is simply a family of lines all of which

eo through the same point at infinity. Desargues similarly studied a sheaf

or bundle of planes through a point, finite or infinite.

PROJECTIVE GEOMETRY

Desargues' treatment of the conies is beautiful, although his language is

unconventional. He calls a conic section a "coup de rouleau" (that is,

incidence with a rolling pin). About the only one of his many new terms

that has survived is the word "involution," that is, pairs of points on a line

the product of whose distances from a fixed point is a given constant. He
called points in harmonic division a four-point involution, and he showed

that this configuration is projectively invariant, a result known, under a

different point of view, to Pappus. Because of its harmonic properties, the

complete quadrangle played a large role in Desargues' treatment, for he

knew that when such a quadrangle (as ABCD in Fig. 17.7) is inscribed in

a conic, the line through two of the diagonal points (£, F, and G in Fig.

17.7) is the polar line, with respect to the conic, of the third diagonal point.

He knew, of course, that the intersections with the conic of the polar of

a point with respect to the conic were the points of contact of the tangents

from the point to the conic; and instead of defining a diameter metrically,

Desargues introduced it as the polar of a point at infinity. There is a pleasing

unity in Desargues' treatment of the conies through projective methods,

but it was too thorough a break with the past to meet with acceptance.

The projective geometry of Desargues had a tremendous advantage in

generality over the metric geometry of Apollonius, Descartes, and Fermat,

for many special cases of a theorem blend into one all-inclusive statement.

Yet mathematicians of the time not only failed to accept the methods of

the new geometry, they actively opposed them as dangerous and unsound.

So rare were copies of Desargues' Brouillon projet that by the end of the

century all copies had disappeared, for Desargues published his works not

FIG. 17.7
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to sell but to distribute to friends. The work was completely lost until in

1847 a handwritten copy made by Philippe de Lahire, one of Desargues'

few admirers, was found in a Paris library. Part of the responsibility for

the neglect of projective geometry falls on Desargues himself, for he wrote

in a difficult and unconventional manner. He was not writing for profes-

sional scholars, who might have followed his imaginative flights, but for

mechanics and practical mathematicians, who did not understand the mean-

ing of his work. Moreover, he used a bizarre new vocabulary full of terms

borrowed from botany, a terminology that repelled scholars and practi-

tioners alike. Then, too, the projective approach was not in tune with the

times, which had just celebrated triumphs in algebra and analysis. Des-

cartes, who had known Desargues in Paris in 1626 and was with him in

1628 at the siege of LaRochelle, always had a high regard for his noncon-

formist friend; but even Descartes, when he heard that the Brouillon projet

would treat of conic sections without the use of algebra, was dismayed. It

did not seem possible to say anything about conies that could not more
easily be expressed with algebra than without. The commitment to algebra

was so strong that for nearly two centuries the beauties of projective ge-

ometry went almost unnoticed. Even today the name of Desargues is fa-

miliar not as that of the author of the Brouillon projet but for a proposition

that does not appear in the book, the famous theorem of Desargues:

If two triangles are so situated that lines joining pairs of corresponding

vertices are concurrent, then the points of intersection of pairs of corre-

sponding sides are collinear, and conversely.

This theorem, which holds for either two or three dimensions, was first

published in 1648 by Desargues' devoted friend and follower Abraham
Bosse (1602-1676), an engraver. It appears in a book with the title Maniere

universelle de S. Desargues, pour pratiquer la perspective. The theorem,

which Bosse explicitly attributes to Desargues, became, in the nineteenth

century, one of the fundamental propositions of projective geometry. It is

interesting to note that whereas in three dimensions the theorem is an easy

consequence of incidence axioms, the proof for two dimensions requires

an additional assumption.

BLAISE PASCAL

Desargues was the prophet of projective geometry, but he went without

honor in his day largely because his most promising disciple, Blaise Pascal,

abandoned mathematics for theology. Pascal was a mathematical prodigy.

His father, too, was mathematically inclined, and the "limaqon of Pascal"

is named for the father, Etienne, rather than for the son, Blaise. The
limagon r = a + b cos had been known to Jordanus Nemorarius, and
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possibly to the ancients, as "the conchoid of the circle," but Etienne Pascal

studied the curve so thoroughly that, on the suggestion of Roberval, it has

ever since borne his name. We are told that he at first kept mathematics

books from his son Blaise to encourage the youngster to develop other

interests, but at the age of twelve the youth showed such geometric talent

that thereafter his mathematical bent was encouraged.

When he was fourteen Blaise joined with his father in the informal

meetings of the "Mersenne Academy" at Paris. Here he became familiar

with the ideas of Desargues; two years later, in 1640, the young Pascal,

then sixteen years old, published an Essay pour les coniques. This consisted

of only a single printed page—but one of the most fruitful pages in history.

It contained the proposition, described by the author as mysterium hexa-

grammicum, which has ever since been known as Pascal's theorem. This

states, in essence, that the opposite sides of a hexagon inscribed in a conic

intersect in three collinear points. Pascal did not state the theorem in this

way, for it is not true unless, as in the case of a regular hexagon inscribed

in a circle, one resorts to the ideal points and line of projective geometry.

Instead he followed the special language of Desargues, saying that if A,

B, C, D, £, and F are successive vertices of a hexagon in a conic, and if

P is the intersection point of AB and DE and Q is the point of intersection

of BC and EF (Fig. 17.8), then PQ and CD and FA are lines "of the same

order" (or, as we should say, the lines are members of a pencil, whether

a point pencil or a parallel pencil). The young Pascal went on to say that

he had deduced many corollaries from this theorem, including the con-

struction of the tangent to a conic at a point on the conic. (The construction

of the tangent at a point P on the conic is easy if we recall that the tangent

is a line through two "consecutive points" and apply the Pascal theorem

to these and any four other points on the conic.) The inspiration for the

little Essay was candidly admitted, for after citing a theorem of Desargues

the young author wrote, "I should like to say that I owe the little that I

have found on this subject to his writings."

FIG. 17.8
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The Essay was an auspicious opening for a mathematical career, but

Pascal's mathematical interests were chameleonlike. He next turned, when
he was about eighteen, to plans for a calculating machine, and within a

few years he had built and sold some fifty machines. Then, in 1648, Pascal

became interested in hydrostatics, and the results were the celebrated Puy-

de-D6me experiment confirming the weight of the air and the experiments

on fluid pressure that clarified the hydrostatic paradox. In 1654 he returned

again to mathematics and worked on two unrelated projects. One of these

was to be a Complete Work on Conies, evidently a continuation of the little

Essay he had published when sixteen; but this larger work on conies was

never printed and is not now extant. Leibniz saw a manuscript copy, and

the notes that he took are now all that we have of Pascal's larger work on

conies. (Only two copies of the smaller work have survived.) According

to Leibniz's notes, the Complete Work on Conies contained a section on

the familiar three- and four-line locus and a section on the magna pro-

blema—to place a given conic on a given cone of revolution. The treatise

made use of synthetic methods, for Pascal for some reason never developed

a facility in symbolic algebra or saw the role that good notations play in

mathematical discovery. In this respect he was far behind his time.

PROBABILITY

While Pascal in 1654 was working on his Conies, his friend, the Chevalier

de Mere, raised with him questions such as the following: In eight throws

of a die a player is to attempt to throw a one, but after three unsuccessful

trials the game is interrupted. How should he be indemnified? Pascal wrote

to Fermat on this, and their resulting correspondence became the effective

starting point for the modern theory of probability, the thoughts of Cardan

of a century before having been overlooked. Although neither Pascal nor

Pascal's calculating machine
(
from an original model in the collection of Arts and Sciences

Department of IBM).



364 THE TIME OF FERMAT AND DESCARTES

Format wrote up their results, Huygens in 1657 published a little tract, De
ratiocinus m ludo aleae {On Reasoning in Games of Dice) which was prompted

In the correspondence of the Frenchmen. Pascal meanwhile had connected

the study of probability with the arithmetic triangle, carrying the discussion

so far beyond the work of Cardan that the triangular arrangement has ever

since been known as Pascal's triangle. The triangle itself was more than

600 years old, but Pascal disclosed some new properties, such as the fol-

lowing:

In every arithmetic triangle, if two cells are contiguous in the same base, the

upper is to the lower as the number of cells from the upper to the top of the

base is to the number of those from the lower to the bottom inclusive.

(Pascal called positions in the same vertical column, in Fig. 17.9, "cells of

the same perpendicular rank," and those in the same horizontal row "cells

of the same parallel rank"; cells in the same upward-sloping diagonal he

called "cells of the same base.") The method of proof of this property is

of more significance than the property itself, for here in 1654 Pascal gave

an eminently clear-cut explanation of the method of mathematical induc-

tion. Indications of the method can be found earlier in work by Maurolycus;

but Pascal had exceptional ability in clarifying concepts, hence he shares,

with Fermat and others, in the development of reasoning by recurrence.

The name "mathematical induction" seems to have originated much later

in De Morgan's article on "Induction (Mathematics)" in the Penny Cyclo-

paedia of 1838.

Fermat hoped to interest Pascal in the theory of numbers, and in 1654

he sent him a statement of one of his most beautiful theorems (unproved

until the nineteenth century):

Every integer is composed of one, two, or three triangular numbers, of one,

two, three, or four squares, of one, two, three, four, or five pentagons, of

one, two, three, four, five, or six hexagons, and thus to infinity.

1 1 1 1 1 1

2 3 4 _5j 6

3 6 10 15

4 10 20

5 15

6

FIG. 17.9
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Pascal, however, was a mathematical dilettante, as well as a virtuoso, and

did not pursue this problem. He did, nevertheless, consider a problem in

number theory much discussed at the time—a formula for the sum of the

mth powers of the first n consecutive integers—for this he related to the

arithmetic triangle, to reasoning by recurrence, and to infinitesimal anal-

ysis. The formula, as usual with Pascal, is expressed verbally, but in modern
symbolism it is equivalent to

m + lQ Zj I™ + m + lQ 2j I™ + " ' ' + m+lCn Zj l

= (n + l)
m + l - (n + 1)

where the sums are taken from i = 1 to i = n. From this formula Pascal

easily derived the equivalent of the well-known calculus formula

i
x n dx = -.

n + 1

®s
®®r
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Pasca/ Triangle in Japan. From Murai Chuzen's Sampo Doshi-mon (7787), showing also

the sangi forms of the numerals.



366 THE TIME OF FERMAT AND DESCARTES

THE CYCLOID

On the night of November 23, 1654, from 10:30 to about 12:30, Pascal

experienced a religious ecstasy which caused him to abandon science and

mathematics for theolcgy. The result was the writing of the Lettres pro-

vinciates and the Pensees; for only one brief period, in 1658-1659, did

Pascal return to mathematics. One night in 1658 toothache or illness pre-

vented him from falling asleep, and as a distraction from the pain he turned

to the study of the cycloid. Miraculously, the pain eased, and Pascal took

this as a sign from God that the study of mathematics was not displeasing

to Him. Having found certain areas, volumes, and centers of gravity as-

sociated with the cycloid, Pascal proposed half a dozen such questions to

the mathematicians of his day, offering first and second prizes for their

solution—and naming Roberval as one of the judges. Publicity and timing

were so poor that only two sets of solutions were submitted, and these

contained at least some errors in computation. Pascal, therefore, awarded

no prize; but he did publish his own solutions, along with other results,

all preceded by a Histoire de la roulette (the name usually used for the

curve in France), in a series of Lettres de A. Dettonville (1658-1659). (The

name Amos Dettonville was an anagram of Louis de Montalte, the pseu-

donym used in the Lettres provinciales.) The contest questions and the

Lettres de A. Dettonville brought interest in the cycloid to a focus, but they

also stirred up a hornets' nest of controversy. The two finalists, Antoine

de Lalouvere and John Wallis, both capable mathematicians, were dis-

gruntled that prizes were withheld; and the Italian mathematicians were

indignant that Pascal's History of the Cycloid gave virtually no credit to

Torricelli, priority in discovery being conceded only to Roberval.

Much of the material in the Lettres de A. Dettonville, such as the equality

of the arcs of spirals and parabolas, as well as the cycloid contest questions,

had been known to Roberval and Torricelli; but some of this appeared in

print for the first time. Among the new results was the equality of the arc

length of an arch of the generalized cycloid x = aK<p - a sin </>, y = a

- a cos and the semicircumference of the ellipse x = 2a(\ + K)
cos 4>,y = 2a{\ - K) sin (/>. The theorem was expressed rhetorically rather

than symbolically, and it was demonstrated in an essentially Archimedean

manner, as were most of the demonstrations of Pascal in 1658-1659.

In connection with an integration of the sine function in his 1658 Traite

des sinus du quart de cercle ( Treatise on the Sines of a Quadrant of a Circle)

Pascal came remarkably close to a discovery of the calculus—so close that

Leibniz later wrote that it was upon reading this work by Pascal that a

light suddenly burst upon him. Had Pascal not died, like Torricelli, shortly

after his thirty-ninth birthday, or had he been more single-mindedly the

mathematician, or had he been more attracted by algorithmic methods

than by geometry and speculations on the philosophy of mathematics, there

is little doubt that he would have anticipated Newton and Leibniz in their

greatest discovery. Pascal was without doubt the greatest might-have-been
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in the history of mathematics; yet he is one of the important connecting

links in mathematical development. In this respect, of course, he was not

alone. In the next chapter we look at the work of the more immediate

precursors of Newton and Leibniz.
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A Transitional Period

Mathematics—the unshaken Foundation of Sciences, and the plentiful Fountain of
Advantage to human affairs.

Isaac Barrow

PHILIPPE DE LAHIRE

With the death of Desargues in 1661, of Pascal in 1662, and of Fermat in

1665, a great period in French mathematics came to a close. It is true that

Roberval lived about another decade, but his contributions were no longer

significant and his influence was limited by his refusal to publish. About

the only mathematician of stature in France at the time was Philippe de

Lahire (1640-1718), a disciple of Desargues and, like his master, an ar-

chitect. Pure geometry obviously appealed to him, and his first work on

conies in 1673 was synthetic, but he did not break with the analytic wave

of the future. Lahire kept an eye out for a patron; hence, in his Nouveaux

elemens des sections coniques of 1679, dedicated to Colbert, the methods

of Descartes came to the fore. The approach is metric and two-dimensional,

proceeding, in the case of the ellipse and hyperbola, from the definitions

in terms of the sum and difference of focal radii and, in the case of the

parabola, from the equality of distances to focus and directrix. But Lahire

carried over into analytic geometry some of Desargues
1

language. The axis

of abscissas was the "trunk," points on it were ''knots," and ordinates

368
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° B

FIG. 18.1

were- "branches." Of his analytic language only the term "origin" has

survived. Perhaps it was because of his terminology that contemporaries

did not give proper weight to a significant point in his Nouveaux elemens—
Lahire provided one of the first examples of a surface given analytically

through an equation in three unknowns—which was the first real step

toward solid analytic geometry. He, like Fermat and Descartes, had only

a single reference point or origin O on a single line of reference or axis

OB, to which he now added the reference or coordinate plane OBA (Fig.

18.1). Lahire found that then the equation of the locus of a point P such

that its perpendicular distance PB from the axis shall exceed the distance

OB (the abscissa of P) by a fixed quantity a, with respect to his coordinate

system, is a 2 + lax + x 2 = y
2 + v 2 (where v is the coordinate that is

now generally designated by z). The locus is, of course, a cone.

In 1685 Lahire returned to synthetic methods in a book with the simple

title Sectiones conicae. This might be described as a version by Lahire of

the Greek Conies of Apollonius translated into Latin from the French

language of Desargues. The harmonic properties of the complete quad-

rangle, poles and polars, tangents and normals, and conjugate diameters

are among the familiar topics treated from a projective point of view.

It is interesting to note that today Lahire 's name is attached not to

anything in his synthetic or analytic treatises on conies, but to a theorem

from a paper of 1706 on "roulettes" in the Memoires of the Academie des

Sciences. Here he showed that if a smaller circle rolls without slipping

along the inside of a larger circle with diameter twice as great, then (1)

the locus of a point on the circumference of the smaller circle is a line

segment (a diameter of the larger circle), and (2) the locus of a point which

is not on the circumference but which is fixed with respect to the smaller

circle is an ellipse. As we have seen, the first part of this theorem was

known to Nasir Eddin and the second to Copernicus. The name of Lahire

deserves to be remembered, but it is a pity that it should be attached to

a theorem he was not first to discover. In a sense history has been unkind

to Lahire. He was the first modern specialist in geometry, both synthetic

and analytic; but geometry was in a state of decline from which it did not

revive for about a century.
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GEORG MOHR

Lahire was not the only geometer of the time to be unappreciated. In 1672

the Danish mathematician Georg Mohr (1640-1697) published an unusual

book entitled Euclides danicus in which he showed that any pointwise

construction that can be performed with compasses and straightedge (that

is. any "plane" problem) can be carried out with compasses alone. Despite

all the insistence by Pappus, Descartes, and others on the principle of

parsimony, many of the classical constructions were shown by Mohr to

have violated this principle through the use of two instruments where one

would suffice! Obviously one cannot draw a straight line with compasses;

but if one regards the line as known whenever two distinct points on it are

known, then the use of a straightedge in Euclidean geometry is superfluous.

So little attention did mathematicians of the time pay to this amazing

discovery that geometry using compasses only, without the straightedge,

bears the name not of Mohr but of Mascheroni, who rediscovered the

principle 125 years later. Mohr's book disappeared so thoroughly that not

until 1928, when a copy was accidentally found by a mathematician brows-

ing in a Copenhagen bookstore, did it become kown that Mascheroni had

been anticipated in proving the supererogation of the straightedge.

PIETRO MENGOLI

The year of Mohr's stillborn Euclides danicus, 1672, marked the publication

in Italy of yet another work on circle-squaring, llproblema della quadratura

del circolo, by Pietro Mengoli (1625-1686), a third unappreciated math-

ematician of the time. Mengoli, a clergyman, had grown up under the

influence of Cavalieri (whose successor he was at Bologna), Torricelli, and

Gregory of St. Vincent. Continuing their work on indivisibles and the area

under hyperbolas, Mengoli learned how to handle such problems through

a device the usefulness of which now began to be apparent almost for the

first time—the use of infinite series. Mengoli saw, for example, that

the sum of the alternating harmonic series f — i + 1 — ! + ••• +
(- \

n )ln + ••• is In 2. He had rediscovered Oresmes conclusion, arrived

at by a grouping of terms, that the ordinary harmonic series does not

converge, a theorem usually attributed to Jacques Bernoulli in 1689; he

also showed the convergence of the reciprocals of the triangular numbers,

a result for which Huygens usually is given credit. Mengoli tried unsuc-

cessfully to find the sum of the reciprocals of the squares, and of other

powers, a summation achieved a century later by Euler. The Quadratura

del circolo included the infinite product tor n that had been given by Wallis

(described later in this chapter). Mengolfs preoccupation with infinite sums
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and products was an important step toward future developments in math-
ematics, but one of his countrymen was ready to follow his lead.

FRANS VAN SCHOOTEN

We have considered three unappreciated mathematicians working in the

1670s, and one reason they were not adequately recognized was that the

center of mathematics was not in their countries. France and Italy, once

the leaders, were mathematically in decline, and Denmark remained out-

side the main current. During the period that we are considering—the

interval between Descartes and Fermat on the one hand and Newton and

Leibniz on the other—there were two regions in particular in which math-

ematics was thriving: Great Britain and the Low Countries. Here we find

not isolated figures, as in France, Italy, and Denmark, but a handful of

prominent Britons and another handful of Dutch and Flemish mathema-

ticians.

We have already noted that Descartes had spent a score of years in

Holland, and his mathematical influence was decisive in that analytic ge-

ometry took root there more quickly than elsewhere in Europe. At Leyden

in 1646 Frans van Schooten (1615-1660) had succeeded his father as pro-

fessor of mathematics, and it was chiefly through the younger van Schooten

and his pupils that the rapid development of Cartesian geometry took place.

Descartes' La geometrie had not originally been published in Latin, the

universal language of scholars, and the exposition had been far from clear;

both of these handicaps were overcome when van Schooten printed a Latin

version in 1649, together with supplementary material. Van Schooten's

Geometria a Renato Des Cartes {Geometry by Rene Descartes) appeared

in a greatly expanded two-volume version in 1659-1661, and additional

editions were published in 1683 and 1695. Thus it is probably not too much
to say that although analytic geometry was introduced by Descartes, it was

established by Schooten.

The need for explanatory introductions to Cartesian geometry had been

recognized so promptly that an anonymous "Introduction" to it had been

composed, but not published, by a "Dutch gentleman" within a year of

its appearance. In another year Descartes received and approved a more
extensive commentary on the Geometry

}
this one by Debeaune under the

title Notae breves. The ideas of Descartes were here explained, with greater

emphasis upon loci represented by simple second-degree equations, much
in the manner of Fermat's Isagoge. Debeaune showed, for example, that

v
2 = xy + bx, v 2 = -2dy + bx, and v 2 = bx - x 2 represent hyperbolas,

parabolas, and ellipses respectively. This work by Debeaune received wide

publicity through its inclusion in the 1649 Latin translation of the Geo-

metria, together with further commentary by Schooten.



372 A TRANSITIONAL PERIOD

JAN DE WITT

A more extensive contribution to analytic geometry was composed in 1658

by one of Schooten's associates, Jan De Witt (1629-1672), the well-known

Grand Pensionary of Holland. De Witt had studied law at Leyden, but he

had acquired a taste for mathematics while living in Schooten's house. He
led a hectic life while directing the affairs of the United Provinces through

periods of war in which he opposed the designs of Louis XIV. When in

1672 the French invaded the Netherlands, De Witt was dismissed from

office by the Orange party and seized by an infuriated mob that tore him

to pieces. Although he had been a man of action, he had found the time

in his earlier years to compose a work entitled Elementa curvarum. This

is divided into two parts, the first of which gives various kinematic and

planimetric definitions of the conic sections. Among these are the focus-

directrix ratio definitions; our word "directrix" is due to him. Another

construction of the ellipse that he gave is through the now familiar use of

two concentric circles with the eccentric angle as parameter. Here the

treatment is largely synthetic; but Book II by contrast makes such system-

atic use of coordinates that it has been described, with some justification,

as the first textbook on analytic geometry. Descartes' Geometrie had not

been a textbook in any real sense, and the exposition of Fermat had not

been published until 1679, whereas De Witt's Elementa curvarum appeared

as part of the 1659-1661 edition of Schooten's Geometria a Renato Des

Cartes. The purpose of De Witt's work is to reduce all second-degree

equations in x and y to canonical form through translation and rotation of

axes. He knew how to recognize when such an equation represented an

ellipse, when a parabola, and when a hyperbola, based on whether the so-

called discriminant is negative, zero, or positive.

Only a year before his tragic death De Witt combined the aims of the

statesman with the views of a mathematician in his A Treatise on Life

Annuities (1671), motivated perhaps by the little essay by Huygens on

probabilities. In this Treatise De Witt expressed what now would be de-

scribed as the notion of mathematical expectation; and in his correspon-

dence with Hudde he considered the problem of an annuity based on the

last survivor of two or more persons.

JOHANN HUDDE

In 1656-1657 Schooten had published a work of his own, Exercitationes

mathematicae, in which he gave new results in the application of algebra

to geometry. Included are discoveries made also by his most capable dis-

ciples, such as Johann Hudde (1629-1704). a patrician who served for some

thirty years as burgomaster ot Amsterdam. Hudde corresponded with Huy-

gens and De Witt on the maintenance of canals and on problems of prob-
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ability and life expectancy; in 1672 he directed the work of inundating

Holland to obstruct the advance of the French army. In 1656 Hudde had

written on the quadrature of the hyperbola by means of infinite series, as

had Mengoli; but the manuscript has been lost. In Schooten's Exercitationes

there is a section by Hudde on a study of coordinates of a fourth-degree

surface, an anticipation of solid analytic geometry antedating even that of

Lahire, although less explicitly described. Moreover, it appears that Hudde
was the first mathematician to permit a literal coefficient in an equation to

represent any real number, whether positive or negative. This final step

in the process of generalizing the notations of Viete in the theory of equa-

tions was made in a work by Hudde entitled De reductione aequationum,

which also formed part of the 1659-1661 Schooten edition of Descartes'

Geometry.

The two most popular subjects in Hudde's day were analytic geometry

and mathematical analysis, and the burgomaster-to-be contributed to both.

In 1657-1658 Hudde had discovered two rules pointing clearly toward

algorithms of the calculus:

1. If r is a double root of the polynomial equation

a xn + a
x
xn ~ x + ••• + a„_iJt + an =

and if b , bu . . . ,bn - x
,bn are numbers in arithmetic progression, then r

is a root also of

a b x n + a
x
b

x
x n ~ l + ••• + an ^ x

bn _ x
x + «A = 0.

2. If for x = a the polynomial

a xn + a
x
x"~ l + ••• + an . x

x + an

takes on a relative maximum or minimum value, then a is a root of the

equation

na xn + (n - l)a
x
xn ~ l + ••• + 2a„_ 2 jc

2 + an _ x
x = 0.

The first of these "Hudde's rules" is a camouflaged form of the modern

theorem that if r is a double root of f(x) = 0, then r is also a root of

/'(*) = 0- The second is a slight modification of Fermat's theorem that

today appears in the form that if f(a) is a relative maximum or minimum
value of a polynomial /(x), then f'(a) = 0. Note that not only did area

and tangent problems antedate the calculus of Newton and Leibniz, but

also the play on coefficients and exponents so familiar in elementary rules

of the calculus.

RENE FRANQOIS DE SLUSE

The rules of Hudde were widely known, for they were published by Schoo-

ten in 1659 in Volume I of Geometria a Renato Des Cartes. A few years
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earlier a similar rule for tangents had been used by another representative

from the Low Countries, the canon Rene Francois de Sluse (1622-1685),

a native of Liege who came of a distinguished Walloon family. He had

studied in Lyons and Rome, where he may have become familiar with the

work of Italian mathematicians. Possibly through Torricelli, perhaps in-

dependently, Sluse arrived in 1652 at a routine for finding the tangent to

a curve whose equation is of the form/(jc, y) = 0, where /is a polynomial.

The rule, not published until 1673, when it appeared in the Philosophical

Transactions of the Royal Society, may be stated as follows: The subtangent

will be the quotient obtained by placing in the numerator all the terms

containing y, each multiplied by the exponent of the power of y appearing

in it, and placing in the denominator all the terms containing jc, each

multiplied by the exponent of the power of x appearing in it and then

divided by x. This is, of course, equivalent to forming the quotient now
written asy/

y//x , a result known in about 1659 also to Hudde. Such instances

show how discoveries in the calculus were crowding upon each other even

before the work of Newton.

Sluse, sharing in the tradition of the Low Countries, was quite active

also in promoting Cartesian geometry, even though he preferred the A
and E of Viete and Fermat to the x and y of Descartes. In 1659 he published

a popular book, Mesolabum (Of Means), in which he pursued the familar

topic on the geometric constructions of the roots of equations. He showed

that given any conic, one can construct the roots of any cubic or quartic

equation through the intersection of the conic and a circle. The name of

Sluse is attached also to a family of curves that he introduced in his cor-

respondence with Huygens and Pascal in 1657-1658. These so-called "pearls"

of Sluse, so named by Pascal, are curves given by equations of the form

y
m = kx n

(a - x)
b

. Sluse mistakenly thought that such cases as y =

x\a - x) were pearl-shaped, for, negative coordinates not then being

understood, Sluse assumed symmetry with respect to the axis (of abscissas).

However, Christiaan Huygens (1629-1695), who had the reputation of

being Schooten's best pupil, found the maximum and minimum points and

the point of inflection and was able to sketch the curve correctly for both

positive and negative coordinates. Points of inflection had been found by

many men before Huygens, including Fermat and Roberval.

THE PENDULUM CLOCK

Huygens was a scientist of international reputation who is recalled for the

principle that bears his name in the wave theory of light, the observation

of the rings of Saturn, and the effective invention of the pendulum clock.

It was in connection with his search for improvements in horology that he

made his most important mathematical discovery. He knew that the os-

cillations of a simple pendulum are not strictly isochronous but depend

upon the magnitude of the swing. To phrase it differently, if an object is
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Christiaan Huygens.

placed on the side of a smooth hemispherical bowl and released, the time

it takes to reach the lowest point will be almost, but not quite, independent

of the height from which it is released. Now it happened that Huygens

invented the pendulum clock at just about the time of the Pascal cycloid

contest, in 1658, and it occurred to him to consider what would happen if

one were to replace the hemispherical bowl by one whose cross section is

an inverted cycloidal arch. He was delighted to find that for such a bowl
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FIG. 18.3

the object will reach the lowest point in exactly the same time, no matter

from what height on the inner surface of the bowl the object is released.

The cycloid curve is truly a tautochrone: that is, on an inverted cycloidal

arch an object will slide from any point to the bottom in exactly the same
time, no matter what the starting point. But a big question remained: How
does one get a pendulum to oscillate in a cycloidal, rather than a circular,

arc? Here Huygens made a further beautiful discovery. If one suspends

from a point P at the cusp between two inverted cycloidal semiarches PQ
and PR (Fig. 18.2) a pendulum the length of which is equal to the length

of one of the semiarches, the pendulum bob will swing in an arc that is an

arch of a cycloid QSR of exactly the same size and shape as the cycloid of

which arcs PQ and PR are parts. In other words, if the pendulum of the

clock oscillates between cycloidal jaws, it will be truly isochronous.

Huygens made some pendulum clocks with cycloidal jaws, but he found

that in operation they were no more accurate than those depending on the

oscillations of an ordinary simple pendulum, which are nearly isochronous

for very small swings. However, Huygens in this investigation had made
a discovery of capital mathematical significance—the involute of a cycloid

is a similar cycloid, or, inversely, the evolute of a cycloid is a similar cycloid.

This theorem and further results on involutes and evolutes for other curves

were proved by Huygens in an essentially Archimedean and Fermatian

manner by taking neighboring points and noting the result when the interval

vanishes. Descartes and Fermat had used this device for normals and tan-

gents to a curve, and now Huygens applied it to find what we call the

radius of curvature of a plane curve. If at neighboring points P and Q on

a curve (Fig. 18.3) one finds the normals and their point of intersection /,

then, as Q approaches P along the curve, the variable point / tends toward

a fixed point 0, which is called the center of curvature of the curve for

the point P, and the distance OP is known as the radius of curvature. The
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Diagrams from Huygens' Horologium oscillatorium (7673;. The one labeled Fig. II shows
the cycloidal jaws that caused the pendulum to swing in a cycloidal arc.

locus of the centers of curvature O for points P on a given curve C, lie on

a second curve Ce known as the evolute of C,; and any curve C, of which

Ce is the evolute is called an involute of the curve Ce . It is clear that the

envelope of the normals to C, will be Ce , a curve tangent to each of the

normals. In Fig. 18.2 the curve QPR is the evolute of the curve QSR and

the curve QSR is an involute of the curve QPR. The positions of the string,

as the pendulum bob swings back and forth, are the normals to QSR and

the tangents to QPR. As the pendulum bob moves farther to one side, the

string winds more and more about the cycloidal jaw; and as the bob falls
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toward the lowest point S, the string unwinds. Hence, Huygens described

the cycloid QSR as ex evolutione descripta, the cycloid QPR being the

evoluta. (In French the terms developpante and developpee have since been

adopted.)

INVOLUTES AND EVOLUTES

The concepts of radius of curvature and evolute had been adumbrated in

the purely theoretical work on Conies of Apollonius, but only with Huy-

gens' interest in horology did the concepts find a permanent place in math-

ematics. Analytic geometry had been a product of essentially theoretical

considerations, but Huygens' development of the idea of curvature was

prompted by practical concerns. An interplay of the two points of view,

the theoretical and the practical, often proves to be fruitful in mathematics,

as the work of Huygens aptly illustrates. His cycloidal pendulum presented

him with an obvious rectification of the cycloid, a result tht Roberval had

found earlier but had not published. The fact that the arc QS (in Fig. 18.2)

is formed as the pendulum string winds about the curve QP shows that

the length of the line PS is exactly equal to the length of the arc QP.
Inasmuch as the line PS is twice the diameter of the circle that generates

the cycloid QSR, the length of a complete arch of the cycloid must be four

times the diameter of the generating circle. The theory of involutes and

evolutes similarly led to the rectification of many other curves, and the

Peripatetic-Cartesian dogma of the nonrectifiability of algebraic curves

came more seriously into question. In 1658 one of Huygens' associates,

Heinrich van Heuraet (1633-1660?), also a protege of Schooten, discovered

that the semicubical parabola ay 2 = x 3 can be rectified by Euclidean means,

thus ending the uncertainty. The disclosure appeared in 1659 as one of the

more important aspects of Schooten's Geometria a Renato Des Cartes. This

result had been reached independently a little earlier by the Englishman

William Neil (1637-1670) and was known independently a little later to

Fermat in France, constituting another striking case of virtual simultaneity

of discovery.

Of all Fermat's discoveries in mathematics it was only the rectification

of the semicubical parabola, usually known as Neil's parabola, that was

published by him. The solution appeared in 1660 as a supplement in the

Veterum geometria promota in septem de cycloide libris {Geometry of the

Ancients Promoted in Seven Books on the Cycloid) by Antoine de Lal-

ouvere (1600-1664), the circle-squarer who had striven for Pascal's prize.

The rectification of Fermat was found by comparing a small arc of a curve

with the circumscribed figure made up of tangents at the extremities of the

arc. Van Heuraet's method was based on the rate of change in the

arc, expressed in modern notation by the equation dsldx = Vl + (y')
2
.
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The rectification by Neil depended on the recognition, already noted

by Wallis in Arithmetica infinitorum, that a small arc is virtually the hy-

potenuse of a right triangle whose sides are the increments in the abscissa

and the ordinate—that is, on the equivalent of the modern formula ds -

Vdx 2 + dy 2
. Neil's rectification was published in 1659 by John Wallis in

a treatise entitled Tractatus duo, prior de cycloide, posterior de cissoide

{Two Treatises, the First on the Cycloid, the Second on the Cissoid). This

work followed by a few months the work of Pascal on the cycloid, indicating

the extent to which cycloid fever had seized mathematicians just before

the invention of the calculus.

Huygens' work on involutes and evolutes was not published until 1673,

when it appeared in his celebrated Horologium oscillatorium. This treatise

on pendulum clocks is a classic that served as an introduction to Newton's

Principia a little more than a decade later. It contained the law of cen-

tripetal force for circular motion, Huygens' law for pendular motion, the

principle of the conservation of kinetic energy, and other important results

in mechanics. The book was published in Paris, for Huygens had been in

touch with the work of Pascal and Fermat and in 1666 had gone to Paris

as a member of the newly established Academie des Sciences. He remained

there until 1681, when the threatened revocation of the Edict of Nantes

(effected in 1685) prompted him, a Protestant, to leave Catholic France;

the death of Colbert in 1683 confirmed his decision not to return. He had

earlier visited London, and throughout his life he maintained a broad

interest in all things mathematical, but especially in higher plane curves.

He rectified the cissoid and studied the tractrix. Whereas Galileo had

thought that the catenary was a parabola, Huygens showed that it is a

nonalgebraic curve. In 1656 he had applied infinitesimal analysis to the

conies, reducing the rectification of the parabola to the quadrature of the

hyperbola (that is, to finding a logarithm). By the next year Huygens had

become the first one to find the surface area of a segment of a paraboloid

of revolution (the "conoid" of Archimedes), showing that the complanation

can be achieved by elementary means.

JOHN WALLIS

Van Schooten died in 1660, the year in which the Royal Society was founded

in England (the charter, however, was granted in 1662), and the date can

be taken as marking a new shift in the mathematical center of the world.

The Leyden group, gathered about Schooten, was losing its momentum,
and it suffered a further blow when Huygens left for Paris in 1666. Mean-

while a vigorous development in mathematics had been taking place in

Great Britain, and this was further encouraged by the formation of the

Royal Society, one of the oldest scientific organizations still in existence.
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(The Accademia dei Lincei, founded in 1603 at Rome, seems to be the

oldest.) William Oughtred had died in 1660, but he left behind a brilliant

student in the person of John Wallis (1616-1703), the most influential

English predecessor of Newton. Oughtred, a clergyman, had given free

lessons in mathematics, and Wallis was one who profited most from the

instruction. Wallis, too, entered Holy Orders, but he spent most of his

time as a mathematician. He had been educated at Cambridge, but in 1649

he was appointed Savilian professor of geometry at Oxford, holding the

chair that had first been filled by Briggs when it was established in 1619.

Wallis was known to be a Royalist, although the regime of Cromwell was

not averse to using his services in the deciphering of secret codes; and

when Charles II was restored to the throne, Wallis became the king's

chaplain. Wallis was a charter member of the Royal Society, which he had

helped to organize. Earlier he had published, in 1655, two very important

books, one in analytic geometry, the other in infinite analysis. These were

the two leading branches of mathematics at the time, and the genius of

Wallis was well suited to advance them.

ON CONIC SECTIONS

The Tractatus de sectionibus conicis of Wallis did for analytic geometry in

England what De Witt's Elementa curvarum had done for the subject on

the Continent. Wallis complained, in fact, that De Witt's work was an

imitation of his own Tractatus, but De Witt's treatise, although published

four years after that of Wallis, had actually been composed before 1655.

The books of both men may be described as the completion of the arith-

metization of conic sections that had been begun by Descartes. Wallis in

particular replaced geometric concepts by numerical ones wherever pos-

sible. Even proportion, the stronghold of ancient geometry, Wallis held to

be an arithmetic concept. In this his attitude represented the tendency of

mathematics for at least the following century, but it should be remarked

that such a movement was without a solid foundation, since real numbers

had not been defined. The work of Wallis is a good illustration of the fact,

so often seen in the history of mathematics, that an occasional disregard

of the demands of logical rigor can have a salutary effect on progress.

The Conies of Wallis opened by paying lip service to the generation of

the curves as sections of a cone, yet the author deduced all of the familiar

properties through plane coordinate methods from the three standard forms

e
: = Id - Id

1
It, p2 = Id, and h 2 = Id + Id

1
! l, where f, p, and h are the

ordinates of the ellipse, parabola, and hyperbola respectively, correspond-

ing to abscissas d measured from a vertex at the origin, and where / and

/ are the latus rectum and "diameter" or axis. Later still he took these

equations as the definitions of the conic sections, considered "absolutely,"
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that is, without reference to the cone. Here he was closer even than Fermat

to the modern definition of a conic as the locus of points on a plane

coordinate system whose coordinates satisfy an equation of second degree

in two variables, a fact of which Descartes had been aware but which he

had not emphasized.

ARITHMETICA INFINITORUM

Had Wallis' Conies not appeared, the loss would not have been serious,

for De Witt's work appeared only four years later. However, there was

no substitute for the Arithmetica infinitorum of Wallis, which also was

published in 1655. Here Wallis arithmetized the Geometria indivisibilibus

of Cavalieri, as he had arithmetized the Conies of Apollonius. Whereas
Cavalieri had arrived at the result

i
xm dx =

o m + 1

through a laborious pairing of geometric indivisibles in a parallelogram

with those in one of the two triangles into which a diagonal divides it,

Wallis abandoned the geometric background after having associated the

infinitely many indivisibles in the figures with numerical values. If, for

example, one wishes to compare the squares of the indivisibles in the

triangle with the squares of the indivisibles in the parallelogram, one takes

the length of the first indivisible in the triangle as zero, the second as one,

the third as two, and so on up to the last, of length n - 1, if there are n

indivisibles. The ratio of the squares of the indivisibles in the two figures

would then be

2 + l
2 111

VTV °r
2
=

3
+

6

if there were only two indivisibles in each; or

2 + l
2 + 22

_. _5_ _
1 J_

22 + 22 + 22 " 12
~

3
+

12

if there were three; or

2 + l
2 + 22 + 32 14 _ 1 J_

32 + 32 + 3
2 + 3 2 " 36

"
3
+

18

if there were four. For n + 1 indivisibles the result is

2 + l
2 + 22 + - + (n - l)

2 + n 2

= 1 J_
+ n 2 + n 2 "

3 6n
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and if n is infinite, the ratio obviously is i. (For n infinite, the remainder

term 1 /6/i becomes 1/ac, or zero. Wallis here was the first one to use the

now familiar 'Move knot" symbol for infinity.) This is, of course, the equiv-

alent of saying that P x 2 dx = J; Wallis extended the same procedure to

higher integral powers of x. By incomplete induction he concluded that

i:

1

J 1

x m dx =
m + 1

for all integral values of m.

Fermat rightly criticized Wallis' induction, for it lacks the rigor of the

method of complete induction that Fermat and Pascal frequently used.

Moreover, Wallis followed a still more questionable principle of interpo-

lation under which he assumed that his result held for fractional values of

m also, as well as for negative values (except m = - 1). He even had the

hardihood to assume that the formula held for irrational powers—the ear-

liest statement in the calculus concerning what now would be called "a

higher transcendental function." The use of exponential notation for frac-

tional and negative powers was an important generalization of suggestions

made earlier, as by Oresme and Stevin, but Wallis did not give a sound

basis for his extension of the Cartesian exponentiation. He merely gave

some particular instances of various cases, namely, that a term or number
with index - 2 multiplied by the same term or number with index - 3 is

the term with index -5; or a term with index -3 multiplied by one with

index 2 is one with index - 1. Then, he all too casually concluded: "And
the same thing will happen in any other cases whatsoever of this sort, and

hence the proposition is proved." Wallis was long on discovery but short

on rigor, as the French eagerly pointed out.

Wallis was a chauvinistic Englishman, and when he later (in 1685) pub-

lished his Treatise of Algebra, Both Historical and Practical, he belittled

the work of Descartes, arguing, very unfairly, that most of it had been

taken from Harriot's Artis analyticae praxis. The fact that his solutions of

the Pascal contest questions had been rejected as not worthy of the prize

evidently did not ameliorate his anti-Gallic bias. Wallis seems all too readily

to have suspected others of ill will. In his Treatise of Algebra he wrote:

That it [algebra] was in use of old among the Grecians, we need not doubt;

but studiously concealed (by them) as a great Secret. Examples we have of

it in Euclid, at least in Theo upon him; who ascribes the invention of it

(amongst them) to Plato.

One who has read our chapters on Greece will see that Wallis was far

better as a mathematician than as a historian, for he equates algebra (or

the analytics of Viete) with the ancient geometric analysis.
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CHRISTOPHER WREN

At the time that Wallis sent in his reply to the Pascal challenge, Christopher

Wren (1632-1723) sent Pascal his rectification of the cycloid. Wren was

educated at Oxford and later held there the Savilian professorship in as-

tronomy. He, too, was elected to the Royal Society, of which he was

president for a few years; had not the great fire of 1666 destroyed much
of London, Wren might now be known as a mathematician rather than as

architect of St. Paul's Cathedral and some fifty other churches. The math-

ematical circle to which Wren and Wallis belonged in 1657-1658 evidently

was applying the equivalent of the formula for arc length ds 2 = dx 2 + dy 2

to various curves, and was meeting with brilliant success. We mentioned

earlier that William Neil when only twenty years old succeeded first in

rectifying his curve in 1657; Wren found the length of the cycloid a year

later. Both discoveries were incorporated, with due credit to the discov-

erers, by Wallis in his Tractatus duo of 1659, a book on infinitesimal prob-

lems related to the cycloid and cissoid. Neil seems not to have made other

contributions to mathematics before his untimely death at the age of thirty-

two. Wren's interests soon turned to physics and then to architecture; but

in 1669 he published in the Philosophical Transactions the discovery that

on the hyperboloid of revolution of one sheet there are two families of

generating lines.

It is a pity that the geometry of surfaces and curves in three dimensions

was then attracting so little attention that almost a century later solid

analytic geometry still was virtually undeveloped. Wallis in his Algebra of

1685 included a study of a surface that belonged to the class now known
as conoids (not, of course, in the Archimedean sense). Wallis' surface,

which he called the "cono-cuneus" (or conical wedge), can be described

as follows: Let C be a circle, let L be a line parallel to the plane of C, and

let P be a plane perpendicular to L. Then, the cono-cuneus is the totality

of lines that are parallel to P and pass through points of L and C. Wallis

suggested other conoidal surfaces obtained by replacing the circle C by a

conic; and in his Mechanica of 1670 he had noted the parabolic sections

on Wren's hyperboloid (or "hyperbolic cylindroid"). However, Wallis did

not give equations for the surfaces, nor did he arithmetize geometry of

three dimensions as he had plane geometry.

WALLIS' FORMULAS

Wallis, undoubtedly the leading English mathematician before Newton,

made his most important contributions in infinitesima l analysis. Among
these was one in which, while evaluating /o Vjc - x 2 dx, he anticipated

some of the work of Euler on the gamma or factorial function. From the
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work of Cavalieri, Fermat, and others Wallis knew that this integral rep-

resents the area under the semicircle y = Vjc - jc
2 and that this area,

therefore, is tt/8: But how can one obtain the answer through a direct

evaluation of the integral by infinitesimal devices? Wallis could not answer

this question, but his method of induction and interpolation produced an

interesting result. After an evaluation of /o (jc - x 2

)
n dx for several positive

integral values of n, Wallis arrived by incomplete induction at the conclu-

sion that the value of this integral is (n\)
2/(2n + 1)! Assuming that the

formula holds for fractional values of n as well, Wallis concluded that

i
Vjc - x 2 dx = (i!)

2
/2!

hence n/S = i(i-)
2 or i'

= V^r/2. This is a special case of the Eulerian

beta function, B{m, n) = JoX
m ~

l

(l - *)
n_1 dx, where m = $ and n = i

Thomas Hobbes (1588-1679) was foremost among those who criticized

Wallis' arithmetization of geometry, objecting strenuously to "the whole

herd of them who apply their algebra to geometry" and referring to the

Arithmetica infinitorum as "a scab of symbols." Hobbes, however, had

more mathematical conceit than ability, insisting that he had squared the

circle and had solved the other ancient geometric problems. Wallis could

well afford to disregard Hobbes and go on to further discoveries. Among
his best-known results is the infinite product

2 1-3.-3-5-5-7- •
•

n 2 -2 -4- 4-6-6 •
••'

This expression can readily be obtained from the modern theorem

'nil

r
SO

sin" x dx

lim -jm = 1

^x
sin

n + 1 x dx
Jo

and the formulas

i

«'2
. " (hi - 1)!!

sin
m x dx =

for m an odd integer and

'
n ' 2

_._- ^ (m ~ 1)" n

m\\ 2J

'nil

sin
m x dx =

o

for m even. (The symbol m\\ represents the product m(m - 2)(m - 4)

• • • which terminates in 1 or 2 according as m is odd or even.) Hence, the

above expressions for /J
2
sin

m x dx are known as Wallis' formulas. How-
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ever, the method that Wallis actually used to achieve his product for 2ln

was in reality again based on his principles of induction and interpolation,

applied this time to Jo Vl - x 2 dx, which he was unable to evaluate directly

for lack of the binomial theorem.

JAMES GREGORY

The binomial theorem for integral powers had been known in Europe at

least since 1527, but Wallis was unable, surprisingly, to apply his method
of interpolation here. It looks as though this result may have been known
to the young Scotsman James Gregory (1638-1675), a predecessor of New-
ton who died when only thirty-six. Gregory evidently had come in contact

with the mathematics of several countries. His great-uncle Alexander An-
derson (1582-1620?) had edited Viete's works, and James Gregory had

studied mathematics not only at school in Aberdeen, but also with his older

brother, David Gregory (1627-1720). A wealthy patron had introduced

him to John Collins (1625-1683), librarian of the Royal Society. Collins

was to British mathematicians what Mersenne had been to the French a

generation earlier—the correspondent extraordinary. In 1663 Gregory went

to Italy where the patron introduced him to the successors of Torricelli,

especially Stefano degli Angeli (1623-1697). The many works of Angeli,

protege of Cardinal Michelangelo Ricci (1619-1682) who had been a close

friend of Torricelli, were almost all on infinitesimal methods, with emphasis

on the quadrature of generalized spirals, parabolas, and hyperbolas. Gre-

gory studied with Angeli for several years (1664-1668) before returning to

London, and it is likely that it was in Italy, through Mengoli and Angeli,

that Gregory came to appreciate the power of infinite series expansions of

functions and of infinite processes in general. In 1667, consequently, he

published at Padua a work entitled Vera circuli et hyperbolae quadratura,

containing very significant results in infinitesimal analysis.

For one thing, Gregory extended the Archimedean algorithm to the

quadrature of ellipses and hyperbolas. He took an inscribed triangle of

area a and a circumscribed quadrilateral of area A ; by successively dou-

bling the number of sides of these figures he formed the sequence a , A 0y

au A u a2 , A 2 , a3 , A 3 , . . . and showed that a n is the geometric mean of

the two terms immediately preceding and A n the harmonic mean of the

two preceding terms. Thus he had two sequences—that of the inscribed

areas and that of the circumscribed areas—both converging to the area of

the conic; he used these to get very good approximations to elliptic and

hyperbolic sectors. Incidentally, the word "coverage" was here used by

Gregory in this sense for the first time. Through this infinite process Gre-

gory sought, unsuccessfully, to prove the impossibility of squaring the circle

by algebraic means. Huygens, regarded as the leading mathematician of
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the day, believed that n could be expressed algebraically, and a dispute

arose over the validity of Gregory's methods. The question of rc's tran-

scendence was a difficult one, and it was to be another two centuries before

it was resolved in Gregory's favor.

GREGORY'S SERIES

In 1668 Gregory published two more works, bringing together results from

France, Italy, Holland, and England, as well as new discoveries of his own.

One of these, Geometriae pars universalis (The Universal Part of Geom-
etry), was published at Padua; the other, Exercitationes geometricae (Geo-

metrical Exercises), at London. As the title of the first book implies, Gre-

gory broke from the Cartesian distinction between "geometrical" and

"mechanical" curves. He preferred to divide mathematics into "general"

and "special" groups of theorems, rather than into algebraic and tran-

scendental functions. Gregory did not wish to distinguish even between

algebraic and geometric methods, and consequently his work appeared in

an essentially geometric garb that is not easy to follow. Had he expressed

his work analytically, he might have anticipated Newton in the invention

of the calculus, for virtually all the fundamental elements were known to

him by the end of 1668. He was thoroughly familiar with quadratures and

rectifications and probably saw that these are the inverses of tangent prob-

lems. He even knew the equivalent of / sec x dx - ln(sec x + tan x). He
had found independently the binomial theorem for fractional powers, a

result known earlier to Newton (but as yet unpublished), and he had,

through a process equivalent to successive differentiation, discovered the

Taylor series more than forty years before Taylor published it. The Mac-

laurin series for tan x and sec x and for arctan x and arcsec x were all

known to him, but only one of these, the series for arctan jc, bears his

name. He could have learned in Italy that the area under the curve y =

1/(1 -I- jc
2
), from x = to x = jc, is arctan jc; and a simple long division

converts 1/(1 + jc
2
) to 1 - jc

2 + jc
4 - jc

6 + • • \ Hence, it is at once

apparent from Cavalieri's formula that

I

dx jc
3

jc
5

jc
7

; = arctan jc = jc - — + — - — +
, 1 + jc 3 5 7

This result is still known as "Gregory's series.

NICOLAUS MERCATOR AND WILLIAM BROUNCKER

A result somewhat analogous to Gregory's series was derived at about the

same time by Nicolaus Mercator (1620-1687) and published in his Logarith-
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motechnia of 1668. Mercator (real name Kaufmann) was born at Holstein

in Denmark, but he lived in London for a long time and became one of

the first members of the Royal Society. In 1683 he went to France and

designed the fountains at Versailles; he died at Paris four years later. The
first part of Mercator's Logarithmotechnia is on the calculation of loga-

rithms by methods stemming from those of Napier and Briggs; the second

part contains various approximation formulas for logarithms, one of which

is essentially that now known as "Mercator's series." From the work of

Gregory of St. Vincent it had been known that the area under the hyperbola

v = 1/(1 + jc), from x = to jc = jc, is ln{l + x). Hence, using James

Gregory's method of long division followed by integration, we have

f* -^— = f (1 - x + x 2 - x 3 + • • •) dx = In (1 + jc)

Jo 1 + x Jo
v

X X 2
JC

3 X 4

Mercator took over from Mengoli the name "natural logarithms" for values

that are derived by means of this series. Although the series bears Mer-

cator's name, it appears that it was known earlier to both Hudde and

Newton, though not published by them.

During the 1650s and 1660s a wide variety of infinite methods were

developed, including the infinite continued fraction method for n that had

been given by William Brouncker (16207-1684), the first president of the

Royal Society. The first steps in continued fractions had been taken long

before in Italy, where Pietro Antonio Cataldi (1548-1626) of Bologna had

expressed square roots in this form. Such expressions are easily obtained

as follows: Let \fl be desired and let x + 1 = V2. Then, (jc + l)
2 = 2

orjc 2
-l- 2jc = 1 or x = 1/(2 + jc). If on the right-hand side one continues

to replace jc as often as it appears by 1/(2 + jc), one finds that

jc = 1 = V2 - 1.

2 + 1

2 + 1

2 +

Through manipulation of Wallis' product for 2/n> Brouncker was led

somehow to the expression

4
1 + 1

n
2 + 9

2 + 25

2 + 49

2 + • • •.

Brouncker and Gregory found also certain infinite series for logarithms,
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but these were overshadowed by the greater simplicity of the Mercator
scries. Gregory also studied the curve y = In jc, which he derived from

the equiangular spiral r = e" by a geometric transformation equivalent to

letting the radius vector r of a point become the abscissa x and turning the

arc into the ordinate. This may have been suggested by the comparison,

so popular in Italy, of the parabola with the spiral of Archimedes. It is sad

to report, however, that Gregory did not have an influence commensurate
with his achievement. He returned to Scotland to become professor of

mathematics, first at St. Andrews in 1668 and then at Edinburgh in 1674,

where he became blind and died a year later. After his three treatises of

1667-1668 had appeared, he no longer published, and many of his results

had to be rediscovered by others.

BARROW'S METHOD OF TANGENTS

Newton could have learned much from Gregory, but the young Cambridge

student evidently was not well acquainted with the work of the Scot. In-

stead, it was two Englishmen, one at Oxford and the other at Cambridge,

who made a deeper impression on him. They were John Wallis and Isaac

Barrow (1630-1677). Barrow, like Wallis, entered holy orders but taught

mathematics. In 1662 he was professor of geometry at Gresham College

in London, and in 1664 he became the Lucasian professor of geometry at

Cambridge, being the first to fill the chair established by Henry Lucas

(16107-1663) and later occupied by Newton, who succeeded Barrow. A
mathematical conservative, Barrow disliked the formalisms of algebra, and

in this respect his work is antithetical to that of Wallis. He thought that

algebra should be part of logic rather than of mathematics, a view scarcely

conducive to analytic discoveries. An admirer of the ancients, he edited

the works of Euclid, Apollonius, and Archimedes, besides publishing his

own Lectiones opticae (1669) and Lectiones geometriae (1670), in the editing

of both of which Newton assisted. The date 1668 is important for the fact

that Barrow was giving his geometric lectures at the same time that Greg-

ory's Geometriae pars universalis and Mercator's Logarithmotechnia ap-

peared, as well as a revised edition of Sluse's Mesolabum. Sluse's book

included a new section dealing with infinitesimal problems and containing

a method of maxima and minima. Wishing his Lectiones geometriae to take

account of the state of the subject at the time, Barrow included* an especially

full account of the new discoveries. Tangent problems and quadratures

were all the rage, and they figure prominently in Barrow's 1670 treatise.

Here Barrow preferred the kinematic views of Torricelli to the static arith-

metic of Wallis, and he liked to think of geometric magnitudes as generated

by a steady flow of points. Time, he said, has many analogies with a line;

yet he viewed both as made up of indivisibles. Although his reasoning is
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much more like Cavalieri's than like Wallis' or Fermat's, there is one point

at which algebraic analysis obtrudes prominently. At the end of Lecture

X Barrow writes:

Supplementary to this we add, in the form of appendices, a method for finding

tangents by calculation frequently used by us, although I hardly know, after

so many well-known and well-worn methods of the kind above, whether

there is any advantage in doing so. Yet I do so on the advice of a friend

[later shown to have been Newton]; and all the more willingly because it

seems to be more profitable and general than those which I have discussed.

Then, Barrow went on to explain a method of tangents which is virtually

identical with that used in the differential calculus. It is much like that of

Fermat, but it makes use of two quantities—instead of Fermat's single

letter E—quantities that are equivalent to the modern Ax and Ay. Barrow

explained his tangent rule essentially as follows. If M is a point on a curve

given (in modern notation) by a polynomial equation /(jc, y) = and if

T is the point of intersection of the desired tangent MT with the x-axis,

then Barrow marked off "an indefinitely small arc, MN, of the curve." He
then drew the ordinates at M and N and through M a line MR parallel to

the jc-axis (Fig. 18.4). Then, designating by m the known ordinate at M,
by t the desired subtangent PT, and by a and e the vertical and horizontal

sides of the triangle MRN, Barrow pointed out that the ratio of a to e is

equal to the ratio of m to t. As we should now express it, the ratio of a

to e for infinitely close points is the slope of the curve. To find this ratio

Barrow proceeded much as Fermat had. He replaced x and y in/(jc, y) =

by jc 4- e and y + a respectively; then, in the resulting equation he

disregarded all terms not containing a or e (since these by themselves equal

zero) and all terms of degree higher than the first degree in a and e; and

finally he replaced a by m and e by t. From this the subtangent is found

in terms of* and m, and if x and m are known, the quantity t is determined.

Barrow apparently did not know directly of Fermat's work, for he no-

where mentioned his name; but the men to whom he referred as sources
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of his ideas include Cavalieri, Huygens, Gregory of St. Vincent, James

Gregory, and Wallis, and it may be that Fermat's method became known
to Barrow through them. Huygens and James Gregory in particular made
frequent use of the procedure; and Newton, with whom Barrow was work-

ing, recognized that Barrow's algorithm was only an improvement of Fer-

mat's.

Of all the mathematicians who anticipated portions of the differential

and integral calculus, none approached more closely to the new analysis

than Barrow. He seems to have recognized clearly the inverse relationship

between tangent and quadrature problems. But his conservative adherence

to geometric methods evidently kept him from making effective use of the

relationship, and his contemporaries found his Lectiones geometricae dif-

ficult to understand. Fortunately, Barrow knew that at that very time New-
ton himself was working on the same problems, and the older man en-

treated his young associate to collect and publish his own results. Barrow

in 1669 was called to London as chaplain to Charles II, and Newton, on

Barrow's suggestion, succeeded him in the Lucasian chair at Cambridge.

That the succession was most felicitous will become apparent in the next

chapter.
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Newton and Leibniz

Taking mathematics from the beginning of the world to the time of Newton, what

he has done is much the better half.

Leibniz

NEWTON'S EARLY WORK

Isaac Newton, Barrow's successor, was born prematurely on Christmas

Day of 1642, the year of Galileo's death. His father had died before the

sickly Isaac was born, and his mother married again when her son was

three years old. The boy was brought up by his grandmother while he

attended the neighborhood school, and a maternal uncle who was a Cam-
bridge graduate recognized unusual ability in his nephew and persuaded

Isaac's mother to enter the boy at Cambridge. Young Newton, therefore,

enrolled at Trinity College in 1661, probably with no thought of being a

mathematician, for he had made no particular study of the subject. Chem-
istry at first seemed to be his chief interest, and he retained a strong concern

for it throughout his life. Early in his first year, however, he bought and

studied a copy of Euclid, and shortly thereafter he read Oughtred's Clavis,

the Schooten Geometria a Renato Des Cartes, Kepler's Optics, the works

of Viete, and, perhaps most important of all, Wallis' Arithmetica infini-

torum. Moreover, to this training we must add the lectures that Barrow

gave as Lucasian professor, which Newton attended, after 1663. He also

became acquainted with work of Galileo, Fermat, Huygens, and others.

391
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It is no wonder that Newton later wrote to Hooke, "If I have seen farther

than Descartes, it is because I have stood on the shoulders of giants."

By the end of 1664 Newton seems to have reached the frontiers of

mathematical knowledge and was ready to make contributions of his own.

His first discoveries, dating from the early months of 1665, resulted from

his ability to express functions in terms of infinite series—the very thing

Sir Isaac Newton.
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that Gregory was doing in Italy at about that time, although Newton could

scarcely have known of this. Newton also began thinking, in 1665, of the

rate of change, or fluxion, of continuously varying quantities, or fluents,

such as lengths, areas, volumes, distances, temperatures. From that time

on Newton linked together these two problems—of infinite series and of

rates of change—as "my method."

During much of 1665-1666, immediately after Newton had earned his

A.B. degree, Trinity College was closed because of the plague, and Newton
went home to live and think. The result was the most productive period

of mathematical discovery ever reported, for it was during these months,

Newton later averred, that he had made four of his chief discoveries: (1)

the binomial theorem, (2) the calculus, (3) the law of gravitation, and (4)

the nature of colors. The first of these seems so obvious to us now that it

is difficult to see why its discovery was so long delayed. For at least half a

millennium the binomial coefficients for integral powers had been known.

Cardan and Pascal, among others, were well aware of the rule of succession

for coefficients; but they did not make use of the exponential notation of

Descartes, hence could not make the relatively simple transition from an

integral power to a fractional one. Stevin and Girard had suggested frac-

tional powers but did not really use them. Hence, it was only with Wallis

that fractional exponents came into common use, and we have seen that

even Wallis, the great interpolator, was unable to write down an expansion

for (x - x 2

Y or (1 - x 2
)K It remained for Newton to supply the expansions

as part of his method of infinite series.

THE BINOMIAL THEOREM

The binomial theorem, discovered in 1664 or 1665, was described in two

letters of 1676 from Newton to Henry Oldenburg (16157-1677), secretary

of the Royal Society, and published by Wallis (with credit to Newton) in

Wallis' Algebra of 1685. The form of expression given by Newton (and

Wallis) strikes the modern reader as awkward, but it indicates that the

discovery was not just a simple replacement of an integral power by a

fraction; it was the result of much trial and error on Newton's part in

connection with divisions and radicals involving algebraic quantities. Fi-

nally Newton discovered that

The Extractions of Roots are much shortened by the Theorem

P + PQ
m n m m M „ m - n n^— = P- + -AQ + — BQ
n n n In

m - In __ m - 3n ^^
+ —

=

CQ + — DQ + etc.
3n 4n

where P + PQ stands for a Quantity whose Root or Power or whose Root

of a Power is to be found, P being the first term of that quantity, Q being
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the remaining terms divided by the first term and mln the numerical Index

of the powers of P + PQ .... Finally, in place of the terms that occur in

the course of the work in the Quotient, I shall use A, B, C, D, etc. Thus A
stands for the first term P(mln)\ B for the second term (mln)AQ\ and so

on.

This theorem was first announced by Newton in a letter of June 13, 1676,

sent to Oldenburg but intended for Leibniz. In a second letter of October

24 of the same year Newton explained in detail just how he had been led

to this binomial series. He wrote that toward the beginning of his study of

mathematics he had happened on the work of Wallis on finding the area

(from x = to x = x) under curves whose ordinates are of the form

(1 - x 2

)
n

. Upon examining the areas for exponents n equal to 0, 1, 2, 3,

and so on, he found the first term always to be x, the second term to be

Sx
3 or g*

3 or §jc
3 or jfjt

3
, according as the power of n is or 1 or 2 or 3,

and so on. Hence, by Wallis's principle of "intercalation" Newton assumed

that the first two terms in the area for n = \ should be

2*

In the same fashion, proceeding by analogy, he found further terms, the

first f\\e being

1~3 I r 5 _L Y 1 _5_„9X gX \eX 128-*2-

* ~ 1 5 7 9 *

He then realized that the same result could have been found by first deriving

(1 - x 2

Y = 1 - \x 2 - k 4 - re*
6 - t§8*

8 - • • \ by interpolation in

the same manner, and then finding the area through integration of the

terms in this series. In other words, Newton did not proceed directly from

the Pascal triangle to the binomial theorem, but indirectly from a quad-

rature problem to the binomial theorem.

INFINITE SERIES

It is likely that Newton's indirect approach was fortunate for the future of

his work, for it made clear to him that one could operate with infinite

series in much the same way as with finite polynomial expressions. The
generality of this new infinite analysis was then confirmed for him when

he derived the same infinite series through the extraction of the square

root of 1 - x 2 by the usual algebraic process, finally verifying the result

by multiplying the infinite series by itself to recover the original radicand

1 - x 2
. In the same way Newton found that the result obtained for

(1 - x 2 )' ] by interpolation (that is, the binomial theorem for n = -1)
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agreed with the result found by long division. Through these examples

Newton had discovered something far more important than the binomial

theorem; he had found that the analysis by infinite series had the same
inner consistency and was subject to the same general laws as the algebra

of finite quantities. Infinite series were no longer to be regarded as ap-

proximating devices only; they were alternative forms of the functions they

represented. As Wallis expressed the view in his Algebra in describing

Newton's binomial theorem, these infinite series or converging series "in-

timate the designation of some particular quantity by a regular Progression

or rank of quantities, continually approaching to it; and which, if infinitely

continued, must be equal to it."

Newton himself never published the binomial theorem, nor did he prove

it; but he wrote out and ultimately published several accounts of his infinite

analysis. The first of these, chronologically, was the De analysi per aequa-

tiones numero terminorum infinitas, composed in 1669 on the basis of ideas

acquired in 1665-1666, but not published until 1711. In this he wrote:

And whatever the common Analysis [that is, algebra] performs by Means of

Equations of a finite number of Terms (provided that can be done) this new

method can always perform the same by Means of infinite Equations. So

that I have not made any Question of giving this the Name of Analysis

likewise. For the Reasonings in this are no less certain than in the other; nor

the Equations less exact; albeit we Mortals whose reasoning Powers are

confined within narrow Limits, can neither express, nor so conceive all the

Terms of these Equations as to know exactly from thence the Quantities we

want .... To conclude, we may justly reckon that to belong to the Analytic

Art, by the help of which the Areas and Lengths, etc. of Curves may be

exactly and geometrically determined.

From then on, encouraged by Newton, men no longer tried to avoid infinite

processes, as had the Greeks, for these now were regarded as legitimate

in mathematics.

Newton's De analysi contained more, of course, than some work on

infinite series; it is of great significance also as the first systematic account

of Newton's chief mathematical discovery—the calculus. Barrow, the most

important of Newton's mentors, was primarily a geometer, and Newton

himself often has been described as an exponent of pure geometry; but

the earliest manuscript drafts of his thoughts show that Newton made free

use of algebra and a variety of algorithmic devices and notations. He had

not, by 1666, developed his notation of fluxions, but he had formulated a

systematic method of differentiation that was not far removed from that

published in 1670 by Barrow. It is only necessary to replace Barrow's a

by Newton's qo and Barrow's e by Newton's po to arrive at Newton's

first form for the calculus. Evidently Newton regarded o as a very small in-

terval of time and op and oq as the small increments by which x and v
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change in this interval. The ratio qlp, therefore, will be the ratio of the

instantaneous rates of change of y and jc, that is, the slope of the curve

/(jr, y) = 0. The slope of the curve y" = **, for example, is found from

(y + oq) n = (x + op) m by expanding both sides by the binomial theorem,

dividing through by o, and disregarding terms still containing o, the result

being

q m x m
~

x am,.
- = r or - = — xm/n -

1

.

p n y" l p n

Fractional powers no longer bothered Newton, for his method of infinite

series had given him a universal algorithm.

When dealing later with an explicit function of* alone, Newton dropped

his p and q and used o as a small change in the independent variable, a

notation that was used also by Gregory. In the De analyst, for example,

Newton proved as follows that the area under the curve y = axmln
is given

by

(m/n) + 1

Let the area be z and assume that

n
z =

m + n

Let the moment or infinitesimal increase in the abscissa be o. Then, the

new abscissa will be jc + o and the augmented area will be

z + oy = a(x + o)
(m+n)/n

J m + n
v

If here one applies the binomial theorem, cancels the equal terms

Z and ax(m + n)/n^

m + n

divides through by o, and discards the terms still containing o, the result

wiil be y = axm n
. Conversely, if the curve is y = axmln

, then the area will

be

n
z =

m + n

This seems to be the first time in the history of mathematics that an area

was found through the inverse of what we call differentiation, although the

possibility of such a procedure evidently was known to Barrow and Gre-

gory, and perhaps also to Torricelli and Fermat. Newton became the ef-

fective inventor of the calculus because he was able to exploit the inverse

relationship between slope and area through his new infinite analysis. This
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is why in later years he frowned upon any effort to separate his calculus

from his analysis by infinite series.

THE METHOD OF FLUXIONS

It is well known that in Newton's most popular presentation of his infini-

tesimal methods he looked upon x and y as flowing quantities, or fluents,

of which the quantities p and q (above) were the fluxions or rates of change;

when he wrote up this view of the calculus in about 1671, he replaced p
and q by the "pricked letters" x and y. The quantities or fluents of which

x and y are the fluxions he designated by x and y. By doubling the dots

and dashes he was able to represent fluxions of fluxions or fluents of fluents.

It should be noted that the title of the work, when published long afterward

in 1742 (although an English translation appeared earlier in 1736), was not

simply the method of fluxions, but Methodus fluxionum et serierum infin-

itorum.

In 1676 Newton wrote still a third account of his calculus, under the

title De quadratura curvarum, and this time he sought to avoid both infi-

nitely small quantities and flowing quantities, replacing these by a doctrine

of "prime and ultimate ratios." He found the "prime ratio of nascent

augments" or the "ultimate ratio of evanescent increments" as follows.

Let the ratio of the changes in x and xn be desired. Let o be the increment

in x and (x + o)
n - xn the corresponding increment in xn

. Then, the ratio

of the increments will be

T , n(n - 1) ,
I

1: nx n ~ l + -1——L ox n - 2 + • • •
.

To find the prime and ultimate ratio one lets o vanish, obtaining the ratio

1 : (nxn ~ l

). Here Newton is very close indeed to the limit concept, the chief

objection being the use of the word "vanish." Is there really a ratio between

increments that have vanished? Newton did not clarify this question, and

it continued to distract mathematicians throughout the eighteenth century.

THE PRINCIPIA

Newton discovered his method of infinite series and the calculus in 1665-

1666, and within the next decade he wrote at least three substantial accounts

of the new analysis. The De analyst circulated among friends, including

John Collins (1625-1683) and Isaac Barrow, and the infinite binomial ex-

pansion was sent to Oldenburg and Leibniz; but Newton made no move
to publish his results, even though he knew that Gregory and Mercator in

1668 had disclosed their work on infinite series. The first account of the

calculus that Newton put into print appeared in 1687 in Philosophiae na-
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turalis principia mathematica, the most admired scientific treatise of all

times. This book generally is described as presenting the foundations of

physics and astronomy in the language of pure geometry. It is true that a

large part of the work is in synthetic form, but there is also a large admixture

of analytic passages. Section I of Book I is, in fact, entitled "The method
of first and last ratios of quantities, by the help of which we demonstrate

the propositions that follow," including Lemma I:

Quantities, and the ratios of quantities, which in any finite time converge

continually to equality, and before the end of that time approach nearer to

each other than by any given difference, become ultimately equal.

This is, of course, an attempt at a definition of limit of a function. Lemma
VII in Section I postulates that "the ultimate ratio of the arc, chord, and

tangent, any one to any other, is the ratio of equality." Other lemmas in

that section assume the similarity of certain "evanescent triangles." Every

now and then in Book I the author has recourse to an infinite series.

However, calculus algorithms do not appear until in Book II, Lemma II,

we come to the cryptic formulation:

The moment of any genitum is equal to the moments of each of the generating

sides multiplied by the indices of the powers of those sides, and by their

coefficients continually.

Newton's explanation shows that by the word "genitum" he has in mind

what we call a "term" and that by the "moment" of a genitum he means

the infinitely small increment. Designating by a the moment of A and by

b the moment of B, Newton proves that the moment of AB is aB + M,
that the moment of A" is naA n ~\ and that the moment of MA is -al(A 2

).

Such sibylline expressions, which are the equivalents of the differential of

a product, a power, and a reciprocal respectively, constitute Newton's first

official pronouncement on the calculus, making it easy to understand why

so few mathematicians of the time mastered the new analysis in terms of

Newtonian language.

Newton was not the first one to differentiate or to integrate, nor to see

the relationship between these operations in the fundamental theorem of

the calculus. His discovery consisted in the consolidation of these elements

into a general algorithm applicable to all functions, whether algebraic or

transcendental. This was emphasized in a scholium that Newton published

in the Principia immediately following Lemma II:

In a letter of mine to Mr. J. Collins, dated December 10, 1672, having

described a method of tangents, which I suspected to be the same with Sluse's

method, which at that time was not made public, I added these words: This

is one particular, or rather a Corollary, of a general method, which extends

itself, without any troublesome calculation, not only to the drawing of tan-
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gents to any curved lines whether geometrical or mechanical . . . but also to

the resolving other abstruser kinds of problems about the crookedness, areas,

lengths, centres of gravity of curves, etc.; nor is it (as Hudden's method de

maximis et minimis) limited to equations which are free from surd quantities.

This method I have interwoven with that other of working in equations by

reducing them to infinite series.

In the first edition of Principia Newton admitted that Leibniz was in pos-

session of a similar method, but in the third edition of 1726, following the

Gottfried Wilhelm Leibniz.
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bitter quarrel between adherents of the two men concerning the indepen-

dence and priority of the discovery of the calculus, Newton deleted the

reference to the calculus of Leibniz. It is now fairly clear that Newton's

discovery antedated that of Leibniz by about ten years, but that the dis-

covery by Leibniz was independent of that of Newton. Moreover, Leibniz

is entitled to priority of publication, for he printed an account of his calculus

in 1684 in the Acta Eruditorum, a sort of ''scientific monthly" that had

been established only two years before.

LEIBNIZ AND THE HARMONIC TRIANGLE

Gottfried Wilhelm Leibniz (1646-1716) was born at Leipzig, where at

fifteen he entered the university and at seventeen earned his bachelor's

degree. He studied theology, law, philosophy, and mathematics at the

university, and he sometimes is regarded as the last scholar to achieve

universal knowledge. By the time he was twenty, he was prepared for the

degree of doctor of laws, but this was refused because of his youth. He
thereupon left Leipzig and took his doctorate at the University of Altdorf

in Nuremberg, where he was offered a professorship in law, which he

declined. He then entered the diplomatic service, first for the elector of

Mainz, then for the Brunswick family, and finally for the Hanoverians,

whom he served for forty years. Among the electors of Hanover whom
Leibniz served was one who, as great-grandson of James I of England,

succeeded Queen Anne in 1714 as King George I. As an influential gov-

ernmental representative Leibniz traveled widely. In 1672 he went to Paris,

hoping to divert French acquisitorial designs against Germany through a

"holy war" directed against Egypt (a suggestion later adopted by Napo-

leon). There he met Huygens, who suggested that if he wished to become

a mathematician, he should read Pascal's treatises of 1658-1659. In 1673

a political mission took him to London, where he bought a copy of Barrow's

Lectiones geometricae, met Oldenburg and Collins, and became a member
of the Royal Society. It is largely around this visit that the later quarrel

over priority centered, for Leibniz could have seen Newton's De analyst

in manuscript. However, it is doubtful that at this stage he would have

derived much from it, for Leibniz was not yet well prepared in geometry

or analysis.

In 1676 Leibniz again visited London, bringing with him his calculating

machine; it was during these years between his two London visits that the

differential calculus had taken shape. As was the case with Newton, infinite

series played a large role in the early work of Leibniz. Huygens had set

him the problem of finding the sum of the reciprocals of the triangular

numbers, that is, 2ln(n + 1). Leibniz cleverly wrote each term as the sum
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of two fractions, using

2
= 2(

l
- - -U

n(n + 1) \n n + l/'

from which it is obvious, on writing out a few terms, that the sum of the

first n terms is

J 1 '

1 n + 1

hence that the sum of the infinite series is 2. From this success he ingen-

uously concluded that he would be able to find the sum of almost any

infinite series.

The summation of series again came up in the harmonic triangle, whose
analogies with the arithmetic (Pascal) triangle fascinated Leibniz.

Harmonic triangle

ii i i 14...12 3 4 5 6

1 I J_ J_ J_ . . .

2 6 12 20 30

Arithmetic triangle

1 1 11111
1 2 3 4 5 6- •

1 3 6 10 15 • •
•

1 4 10 20 • •
•

1 5 15 • •
•

1 6 . .

20 60

1 ' '

In the arithmetic triangle each element (which is not in the first column)

is the difference of the two terms directly below it and to the left; in the

harmonic triangle each term (which is not in the first row) is the difference

of the two terms directly above it and to the right. Moreover, in the

arithmetic triangle each element (not in the first row or column) is the sum
of all of the terms in the line above it and to the left, whereas in the

harmonic triangle each element is the sum of all of the terms in the line

below it and to the right. Because the number of terms in the latter case

is infinite, Leibniz had much practice in summing infinite series. The series

in the first line is the harmonic series, which diverges; for all other lines

the series converge. The numbers in the second line are one half the

reciprocals of the triangular numbers, and Leibniz knew that the sum of

this series is 1 . The numbers in the third line are one third the reciprocals

of the pyramidal numbers

n(n + \){n + 2)

1-2-3
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and the harmonic triangle indicates that the sum of this series is 5; the

numbers in the fourth line are one fourth the reciprocals of the figurate

numbers corresponding to the four-dimensional analogue of the tetrahe-

dron, and the sum of these is i; and so on for the succeeding rows in the

harmonic triangle. The numbers in the A?th diagonal row in this triangle

are the reciprocals of the numbers in the corresponding nth diagonal row

of the arithmetic triangle divided by n.

THE DIFFERENTIAL TRIANGLE AND INFINITE SERIES

From his studies on infinite series and the harmonic triangle Leibniz turned

to reading Pascal's works on the cycloid and other aspects of infinitesimal

analysis. In particular, it was on reading the letter of Amos Dettonville on

Traite des sinus du quart de cercle that Leibniz reported that a light burst

upon him. He then realized, in about 1673, that the determination of the

tangent to a curve depended on the ratio of the differences in the ordinates

and abscissas, as these became infinitely small, and that quadratures de-

pended on the sum of the ordinates or infinitely thin rectangles making up

the area. Just as in the arithmetic and harmonic triangles the processes of

summing and differencing are oppositely related, so also in geometry the

quadrature and tangent problems, depending on sums and differences re-

spectively, are inverses of each other. The connecting link seemed to be

through the infinitesimal or "characteristic" triangle, for where Pascal had

used it to find the quadrature of sines, Barrow had applied it to the tangent

problem. A comparison of the triangle in Barrow's diagram (Fig. 18.4)

with that in Pascal's figure (Fig. 19.1) will disclose the marked similarity

that evidently struck Leibniz so forcibly. If EDE is tangent at D to the

unit quarter circle BDC (Fig. 19.1), then, Pascal saw, AD is to DI as EE
is to RR or EK. For a very small interval RR the line EE can be considered

to be virtually the same as the arc of the circle intercepted between the

ordinates ER. Hence, in the notation that Leibniz developed a few years

later, we have 1/sin = dO/dx, where is the angle DAC. Since sin =

Vl - cos 2 and cos = jc, we have dO = dx/V\ - a
2

. By the square-

root algorithm and long division (or by the binomial theorem that Newton
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communicated to Leibniz, through Oldenburg, in 1676) it is a simple matter

to find dO = (1 + x 2
/2 + §jc

4 + Ajc
6 + • • •) dx. By use of the usual

method of quadratures, as found in Gregory and Mercator, one obtains

arcsin x = jc + jc
3
/6 + 3jc

5/40 + 5jc
7/112 + • • (or, allowing for the

negative slope and the constant of integration, arccos x = nil - x -

jc
3/6 - 3jc

5/40 - 5jc
7/112 -•••). Newton, too, had arrived at this result

earlier and by a similar method. From this it was possible to find the series

for sin x by the process known as reversion, a scheme apparently first used

by Newton but rediscovered by Leibniz. If we let y = arcsin jc or jc =

sin y and for jc assume a power series of the form jc = a
x y + a 2 y

2 +
a 3y

3 + • • • + any
n + • • •, then, on replacing each jc in the power series

for arcsin jc by this series in y , we have an identity in y. From this the quan-

tities a
x , a2 , a3 , . . . , tf„, . . . are determined by equating coefficients of

terms of like degree. The resulting series, sin y = y - y
3
/3! + y

5
/5! -

• • •, was, therefore, known both to Newton and to Leibniz; and through

sin
2
y + cos2

y = 1 the series for cos y was obtained. The quotient of

the sine and cosine series provides the tangent series, and their reciprocals

give the other three trigonometric functions as infinite series. In the

same way, through reversion of Mercator's series, Newton and Leibniz

found the series for e\

THE DIFFERENTIAL CALCULUS

Leibniz by 1676 had arrived at the same conclusion that Newton had reached

several years earlier, namely, that he was in possession of a method that

was highly important because of its generality. Whether a function was

rational or irrational, algebraic or transcendental (a word that Leibniz

coined), his operations of finding sums and differences could always be

applied. It, therefore, was incumbent upon him to develop an appropriate

language and notation for the new subject. Leibniz always had a keen

appreciation of the importance of good notations as a help to thought, and

his choice in the case of the calculus was especially happy. After some trial

and error he fixed on dx and dy for the smallest possible differences (dif-

ferentials) in jc and y, although initially he had used instead x/d and yld

to indicate the lowering of the degree. At first he wrote simply omn. y (or

"all y's") for the sum of the ordinates under a curve, but later he used the

symbol /y, and still later Jy dx, the integral sign being an enlarged letter

s for sum. Finding tangents called for the use of the calculus differentialis,

and finding quadratures required the calculus summatorius or the calculus

integrate; from these phrases arose our words "differential calculus" and

"integral calculus."

The first account of the differential calculus was published by Leibniz

in 1684 under the long but significant title of Nova methodus pro maximis
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et minimis, itemque tangentibus, qua nee irrationales quantitates moratur

(A New Method for Maxima and Minima, and also for Tangents, which is

not Obstructed by Irrational Quantities). Here Leibniz gave the formulas

dxy = x dy + y dx, d(x/y) = (y dx - x dy)/y 2
, and dx n = nxn ~

l dx for

products, quotients, and powers (or roots), together with geometric ap-

plications. These formulas were derived by neglecting infinitesimals of

higher order. If, for example, the smallest differences in x and y are dx

and dy respectively, then dxy or the smallest difference in xy is (x + dx)

(y + dy) - xy. Inasmuch as dx and dy are infinitely small, the term

dx dy is infinitely infinitely small and can be disregarded, giving the result

dxy - x dy + y dx.

Two years later, again in the Acta Eruditorum, Leibniz published an

explanation of the integral calculus in which quadratures are shown to be

special cases of the inverse method of tangents. Here Leibniz emphasized

the inverse relationship between differentiation and integration in the fun-

damental theorem of the calculus; he pointed out that in the integration

of familiar functions "is included the greatest part of all transcendental

geometry." Where Descartes' geometry had once excluded all nonalgebraic

curves, the calculus of Newton and Leibniz showed how essential is the

role of these in their new analysis. Were one to exclude transcendental

functions from the new analysis, there would be no integrals of such al-

gebraic functions as 1/jc or 1/(1 + jc
2
). Moreover, Leibniz seems to have

appreciated, as did Newton, that the operations in the new analysis can

be applied to infinite series as well as to finite algebraic expressions. In

this respect Leibniz was less cautious than Newton, for he argued that the

infinite series 1 — 1 + 1 — 1 + 1 — • • • is equal to ). In the light of

recent work on divergent series, we cannot say that it is necessarily "wrong"

to assign the "sum" £ in this case. It is nevertheless clear that Leibniz

allowed himself to be carried away by the very success of his algorithms

and was not deterred by uncertainty over concepts. Newton's reasoning

was far closer to the modern foundations of the calculus than was that of

Leibniz, but the plausibility of the Leibnizian view and the effectiveness

of the differential notation made for a readier acceptance of differentials

than of fluxions.

Newton and Leibniz both developed their new analysis rapidly to include

differentials and fluxions of higher order, as in the case of the formula for

curvature of a curve at a point. It probably was lack of clarity on Leibniz's

part about higher orders of infinitesimals that led him to the mistaken

conclusion that an osculating circle has four "consecutive" or coincident

points of contact with a curve, rather than the three that determine the

circle of curvature. The formula for the A?th derivative (to use the modern

language) of a product, (uv) in) = u {n)
u {[)) + nu (n '

])v {]) + • • • + nu {])v {n '
])

+ u {U)
v

(n)
, a development paralleling the binomial expansion of (u + v)

n
,

bears the name of Leibniz. (In the Leibnizian theorem the exponents in

parentheses indicate orders of differentiation rather than powers.) Also

named for Leibniz is the rule, given in a memoir of 1692, for finding the
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envelope of a one-parameter family of plane curves /(jc, y, c) = through

the elimination of c from the simultaneous equations / = and fc
= 0,

where fc is the result of differentiating / partially with respect to c.

Newton retained his extraordinary mathematical ability to the very last;

when Leibniz in 1716 (the last year of his life) challenged Newton to find

the orthogonal trajectories of a one-parameter family of plane curves,

Newton within a few hours solved the problem and gave a method for

finding trajectories in general. (Earlier, in 1696, Newton had been chal-

lenged to find the brachistochrone, or curve of quickest descent, and the

day after receiving the problem he gave the solution, showing the curve

to be a cycloid.) The name of Leibniz usually is attached also to the infinite

series n/4 = 1-3 + 5-7 + • • • , one of his first discoveries in math-

ematics. This series, which arose in his quadrature of the circle, is only a

special case of the arctangent expansion that had been given earlier by

Gregory. The fact that Leibniz was virtually self-taught in mathematics

accounts in part for the frequent cases of rediscovery that appear in his

work.

DETERMINANTS, NOTATIONS, AND IMAGINARY NUMBERS

The great contribution of Leibniz to mathematics was the calculus, but

other aspects of his work deserve mention. The generalization of the bi-

nomial theorem to the multinomial theorem—the expansion of such expres-

sions as (jc + y + z)n—is attributed to him, as is also the first reference

in the Western world to the method of determinants. In letters of 1693 to

L'Hospital, Leibniz wrote that he occasionally used numbers indicating

rows and columns in a set of simultaneous equations:

10 + IIjc + 12y = 1 + liJC + l 2 y =

20 + 21jc + 22y = or 2 + 2xx + 22 y =

30 + 31jc + 32y = 3 + 3tx + 32 y = 0.

We would write this as

a
x
+ b

x
x + c

x y =

a 2 + b2x + c2 y =

a 3 + b3x + c3 y = 0.

If the equations are consistent, then

lo " 2i • 32 1 * 22 • 3!

l
x

• 22
• 3 = li • 2 • 32

1 2
• 2 * 3i 1 2

• 2
X

• 3 ,
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which is equivalent to the modern statement that

= 0.

«1 by C\

<*2 b 2 c2

03 b. c3

This anticipation by Leibniz of determinants went unpublished until 1850

and had to be rediscovered more than half a century later.

Leibniz's comments in the letter show that he was very conscious of the

power in analysis of "characteristic" or notation that properly displays the

elements of a given situation. Evidently he thought highly of this contri-

bution to notation because of its easy generalization, and he boasted that

he showed that "Viete and Descartes hadn't yet discovered all the mys-

teries" of analysis. Leibniz was, in fact, one of the greatest of all notation

builders, being second only to Euler in this respect. He was the first math-

ematician of prominence to use systematically the dot for multiplication

and to write proportions in the form a.b = c:d. The Leibnizian use of :

for division is still widely employed. Moreover, it was in large part due to

Leibniz and Newton that the = sign of Recorde triumphed over the symbol

xof Descartes. To Leibniz we owe also the symbols ~ for "is similar to"

and — for "is congruent to." Nevertheless, Leibniz's symbols for differ-

entials and integrals remain his greatest triumphs in the field of notation.

Leibniz was not responsible for the modern functional notation, but it is

to him that the word "function," in much the same sense as it is used

today, is due.

Among relatively minor contributions by Leibniz were his comments on

complex numbers, at a time when they were almost forgotten, and his

noting of the binary system of numeration. He factored x 4 + a 4
into

(jc + aW^l)(x - a\W^\)(x + aV-V^\)(x - aV-V^T)

and he showed that V6 = V 1 + V—3 + V 1 - V~^3, an imaginary

decomposition of a positive real number that surprised his contemporaries.

However, Leibniz did not write the square roots of complex numbers in

standard complex form, nor was he able to prove his conjecture that

f(x + V^Ty) + f(x - V^Ty) is real if f(z) is a real polynomial. The
ambivalent status of complex numbers is well illustrated by the remark of

Leibniz, who was also a prominent theologian, that imaginary numbers

are a sort of amphibian, halfway between existence and nonexistence,

resembling in this respect the Holy Ghost in Christian theology. His the-

ology obtruded itself again in his view of the binary system in arithmetic

(in which only two symbols, unity and zero, are used) as a symbol of the

creation in which God, represented by unity, drew all things from noth-

ingness. He was so pleased with the idea that he wrote about it to the

Jesuits, who had missionaries in China, hoping that they might use the
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analogy to convert the scientifically inclined Chinese emperor to Christi-

anity.

THE ALGEBRA OF LOGIC

Leibniz was as much a philosopher as he was a mathematician; hence, his

most significant mathematical contribution, other than the calculus, was

in logic. In the calculus it was the element of universality that impressed

him, and so it was with his other efforts. He hoped to reduce all things to

order. To reduce logical discussions to systematic form, he wished to de-

velop a universal characteristic that would serve as a sort of algebra of

logic. His first mathematical paper had been a thesis on combinatorial

analysis in 1666, and even at this early date he had visions of a formal

symbolic logic. Universal symbols or ideograms were to be introduced for

the small number of fundamental concepts needed in thought, and com-

posite ideas were to be made up from this "alphabet" of human thoughts

just as formulas are developed in mathematics. The syllogism itself was to

be reduced to a sort of calculus expressed in a universal symbolism intel-

ligible in all languages. Truth and error would then be simply a matter of

correct or erroneous calculation within the system, and there would be an

end to philosophical controversies. Moreover, new discoveries could be

derived through correct but more or less routine operations on the symbols

according to the rules of the logical calculus. Leibniz was justifiably proud

of this idea, but his own enthusiasm for it was not matched by that of

others. Perhaps his contemporaries looked upon it as too metaphysical,

like the harmonies of his monads in the best of all possible worlds which

were so ruthlessly and effectively satirized by Voltaire in Candide. Leibniz

was noted in his day for an unbounded optimism that envisioned not only

a universal language, but also a universal church through the union of

Catholics and Protestants. In these respects the optimism of Leibniz today

appears to have been unwarranted; but his suggestion of an algebra of

logic was revived in the nineteenth century, and it has played a very effective

role indeed in mathematics during the past century.

THE INVERSE SQUARE LAW

Leibniz was a scientist as well as a philosopher, and he and Huygens de-

veloped the notion of kinetic energy, which ultimately, in the nineteenth

century, became part of the broader concept of energy in general—one

that Leibniz would most certainly have applauded for its universality. How-

ever, in science the contributions of Leibniz were overshadowed by those

of Newton, which included the grandest mathematical formulation up to
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that time: the law of gravitation. In the opening sections of the Principia

Newton had so generalized and clarified Galileo's ideas on motion that

ever since we refer to this formulation as "Newton's laws of motion."

Then, Newton went on to combine these laws with Kepler's laws in as-

tronomy and Huygens' law of centripetal force in circular motion to es-

tablish the great unifying principle that any two particles in the universe,

whether two planets or two mustard seeds, or the sun and a mustard seed,

attract each other with a force that varies inversely as the square of the

distance between them. In the statement of this law Newton had been

anticipated by others, including Robert Hooke (1638-1703), professor of

geometry at Gresham College and Oldenburg's successor as secretary of

the Royal Society. But Newton was the first to convince the world of the

truth of the law because he was able to handle the mathematics required

in the proof.

For circular motion the inverse square law is easily derived from New-
ton's / = ma, Huygens' a = v 2

/r, and Kepler's T2 = Kr 3 simply by noting

that T « r/v and then eliminating T and u from the equations, to arrive at

/ <* l/r 2
. To prove the same thing for ellipses, however, required consid-

erably more mathematical skill. Moreover, to prove that the distance is to

be measured from the center of the bodies was so difficult a task that it

evidently was this integration problem that induced Newton to lay the work

on gravitation aside for almost twenty years following his discovery of the

law in the plague year of 1665-1666. When in 1684 his friend Edmund
Halley (1656-1742), a mathematician of no mean ability who also had

guessed at the inverse square law, pressed Newton for a proof, the result

was the exposition in the Principia. So impressed was Halley with the

quality of this book that he had it published at his own expense.

The Principia, of course, contains far more than the calculus, the laws

of motion, and the law of gravitation. It includes, in science, such things

as the motions of bodies in resisting media and the proof that, for isothermal

vibrations, the velocity of sound should be the speed with which a body

would strike the earth if falling without resistance through a height that is

half that of a uniform atmosphere having the density of air at the surface

of the earth and exerting the same pressure. From his calculations Newton

concluded that the speed of sound should be about 979 ft/sec, whereas he

knew from experimental values that it actually is close to 1142 ft/sec. This

puzzle in the Principia was not unraveled until almost a century later when

Laplace explained the discrepancy as due to the fact that the vibrations of

sound are to be considered as adiabatic. Another of the scientific conclu-

sions in the Principia is a mathematical proof of the invalidity of the pre-

vailing cosmic scheme—the Cartesian theory of vortices—for Newton
showed, at the close of Book II, that, according to the laws of mechanics,

planets in vortical motion would move more swiftly in aphelion than in

perihelion, which contradicts the astronomy of Kepler. Nevertheless, it
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took about forty years before the Newtonian gravitational view of the

universe, popularized by Maupertuis and Voltaire, displaced the Cartesian

vortical cosmology in France.

THEOREMS ON CONICS

One who reads only the headings of the three books in the Principia will

get the erroneous impression that it contains nothing but physics and as-

tronomy, for the books are entitled respectively I. The Motion of Bodies,

II. The Motion of Bodies (in Resisting Mediums), and III. The System of

the World. However, the treatise contains also a great deal of pure math-

ematics, especially concerning the conic sections. In Lemma XIX of Book
I, for example, the author solves the Pappus four-line-locus problem, add-

ing that his solution is "not an analytical calculus but a geometrical com-

position, such as the ancients required," an oblique and pejorative refer-

ence, apparently, to the treatment of the problem given by Descartes.

Newton throughout the Principia gave preference to a geometric ap-

proach, probably because in his hands it provided elegant and convincing

demonstrations of a universally familiar language; but we have seen that

where he found it expedient to do so, he did not hesitate to appeal to his

method of infinite series and the calculus. Most of Section II of Book II,

for example, is analytic. On the other hand, Newton's handling of the

properties of conies is almost exclusively synthetic, for Newton here had

no need to resort to analysis. Following the Pappus problem, he gave a

couple of organic generations of conies through intersections of moving

lines, and then he used these in half a dozen succeeding propositions to

show how to construct a conic satisfying five conditions: passing through

five points, for example, or tangent to five lines, or through two points

and tangent to three lines. Propositions XIX through XXIX of Book I

comprise virtually a little treatise on the organic description of conies and

include some beautiful theorems. In Proposition XXVII, for instance, New-

ton related the properties of the complete quadrilateral to the conies. Using

the fact that the centers of conies tangent to four lines lie on a straight line

(now known as Newton's line) through the midpoints of the three diagonals,

he found the conic touching five lines.

OPTICS AND CURVES

The Principia is the greatest monument to Newton, but it is by no means

the only one. Newton was so sensitive to criticism that after attacks by

Hooke and others on his paper in the Philosophical Transactions for 1672

concerning the nature of color he determined to publish nothing further.
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This article was of great import to physics for it was here that Newton
announced what he regarded as one of the oddest of all of the operations

of nature—that white light was merely a combination of rays of varying

color, each color having its own characteristic index of refraction. That is,

when a spectrum is formed on passing white light through a prism, the role

of the prism is simply to sort out the rays according to the varying degrees

of refrangibility. Such a revolutionary view was not easy for his contem-

poraries to accept, and the ensuing controversy upset Newton. For fifteen

years he published nothing further until the urging of Halley induced him

to write and publish the Principia. Meanwhile, the three versions of his

calculus that he had written from 1669 to 1676, as well as a treatise on

optics that he had composed, remained in manuscript form.

About fifteen years after the Principia appeared, Hooke died, and then,

finally, Newton's aversion to publication seems to have abated somewhat.

The Opticks appeared in 1704, and appended to it were two mathematical

works: the De quadratura curvarum, in which an intelligible account of the

Newtonian methods in the calculus finally appeared in print, and a little

treatise entitled Enumeratio linearum tertii ordinis (Enumeration of Curves

of Third Degree). The Enumeratio also had been composed by 1676, and

it is the earliest instance of a work devoted solely to graphs of higher plane

curves in algebra. Newton noted seventy-two species of cubics (half a dozen

are omitted), and a curve of each species is carefully drawn. For the first

time two axes are systematically used, and there is no hesitation about

negative coordinates. Among the interesting properties of cubics indicated

in this treatise are the fact that a third-degree curve can have not more

than three asymptotes (as a conic can have no more than two) and that as

all conies are projections of the circle, so all cubics are projections of a

"divergent parabola" v 2 = ax 2, +

POLAR AND OTHER COORDINATES

The Enumeratio was not Newton's only contribution to analytic geometry.

In the Method of Fluxions, written in Latin about 1671, he had suggested

eight new types of coordinate system. One of these, Newton's "Third

Manner" of determining a curve, was through what now are called bipolar

coordinates. If x and y are the distances of a variable point from two fixed

points or poles, then the equations x + y = a and x - y = a represent

ellipses and hyperbolas respectively and ax + by - care ovals of Descartes.

This type of coordinate system is infrequently used today, but that given

by Newton as his "Seventh Manner; For Spirals" is now familiarly known
under the name of polar coordinates. Using x where we now use or

and y where we use r or /;, Newton found the subtangent to the spiral of

Archimedes by = ax, as well as to other spirals. Having given the formula
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for radius of curvature in rectangular coordinates,

Vl + v 2

R = (1 + y
2
)
—-,

where z = y, he wrote the corresponding formula in polar coordinates as

v + yzz
R sin y/ =

1 + zz

where z = yly and ^ is the angle between the tangent and the radius

vector. Newton also gave equations for the transformation from rectangular

to polar coordinates, expressing these as jcjc + yv = tt and to = y, where
t is the radius vector and v is a line representing the sine of the vectorial

angle associated with the point (jc, y) in Cartesian coordinates.

NEWTON'S METHOD AND NEWTON'S PARALLELOGRAM

In the Method of Fluxions, as well as in De analysi, we find "Newton's

method" for the approximate solution of equations. If the equation to be

solved is /(jc) = 0, one first locates the desired root between two values

x = a
x
and x = b

x
such that in the interval (au b

x ) neither the first nor

the second derivative vanishes, or fails to exist. Then, for one of the values,

say, x = a lf /(jc) and f"(x) will have the same sign. In this case the value

x = a 2 will be a better approximation if

a n f^
a2 = a>-

TWy
and this procedure can be applied iteratively to obtain as precise an ap-

proximation an as may be desired. If /(jc) is of the form x 2 - a 2
, the

successive approximations in the Newton method are the same as those

found in the Old Babylonian square-root algorithm; hence, this ancient

procedure sometimes is unwarrantedly called "Newton's algorithm." If

f(x) is a polynomial, Newton's method is in essence the same as the Chinese-

Arabic method named for Horner; but the great advantage of the New-
tonian method is that it applies equally to equations involving transcen-

dental functions.

The Method of Fluxions contained also a diagram that later became

known as "Newton's parallelogram," useful in developments in in-

finite series and in the sketching of curves. For a polynomial equation

/(jc, y) = 0, one forms a grid or lattice the intersection points of which

are to correspond to terms of all possible degrees in the equation

/(jc, y) = 0. On this "parallelogram"one connects by straight-line seg-

ments those intersections that correspond to terms actually appearing in

the equation and then forms a portion of a polygon convex toward the

point of zero degree. In Fig. 19.2 we have drawn the diagram for the folium
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of Descartes, jc
3 + y

3 - 3axy = 0. Then, the equations that are obtained

by equating to zero in turn the totality of terms from the given equation

whose lattice points lie on each of the segments will be approximating

equations for branches of the curve through the origin. In the case of the

folium of Descartes, the approximating curves are jc
3 - 3axy = (or the

parabola x 2 = 3ay) and y
3 - 3axy = (or the parabola y

2 = 3ax). The
graphing of portions of these parabolas near the origin will aid in the rapid

sketching of the given equation /(jc, y) = 0.

THE ARITHMETICA UNIVERSALIS

The three Newtonian books that are best known today are the Principia,

the Method of Fluxions, and the Opticks; there is also a fourth work which

in the eighteenth century appeared in a greater number of editions than

did the other three, and it, too, contained valuable contributions. This was

the Arithmetica universalis, a work composed between 1673 and 1683,

perhaps for Newton's lectures at Cambridge, and first published in 1707.

This influential treatise contains the formulas, usually known as "Newton's

identities," for the sums of the powers of the roots of a polynomial equa-

tion. Cardan had known that the sum of the roots of x n + a
x
x n ~

l + • •
•

+ £„-!* -I- a n = is -au and Viete had carried the relations between

roots and coefficients somewhat further. Girard in 1629 had shown how to

find the sum of the squares of the roots, or the sum of the cubes or of the

fourth powers; but it was Newton who generalized this work to cover all

powers. If K < /?, the relationships

SK + a,5K-\ + a h K = and

Sk + a, 5j + a KS + fltf+iS., + + a„SK . H =[n^K-n

both hold; if K > n, the relationship

SK + a,5x _, + • • • + *a.|5jr- fl +i + a nSK . n =

holds, where S, is the sum of the /th powers of the roots. Using these

relationships recursively, the sums of the powers of the roots can readily
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be found for any integral power. In the Arithmetica universalis there is

also a theorem generalizing Descartes' rule of signs to determine the num-
ber of imaginary roots of a polynomial, as well as a rule for an upper bound
for the positive roots. Another theorem asserts that if a cubic is cut by a

variable line that moves parallel to itself, the locus of the barycenter of

the three points of intersection is a straight line.

Despite his own contributions to the subject of algebra, Newton seems

to have preferred the geometric analysis of the ancients. Consequently,

the longest section in the Arithmetica universalis is that on the resolution

of geometric questions. Here the solution of cubic equations is carried out

with the help of a given conic section, for Newton regarded geometric

constructions through curves other than the line and circle as part of algebra

rather than of geometry:

Equations are Expressions of Arithmetical Computation and properly have

no place in Geometry .... Therefore the conic sections and all other Figures

must be cast out of plane Geometry, except the right Line and the Circle.

Therefore all these descriptions of the Conicks in piano, which the Moderns

are so fond of, are foreign to Geometry.

Newton's conservatism here is in sharp contrast to his radical views in

analysis—and to pedagogical views of the mid-twentieth century.

LATER YEARS

The Principia was the first of Newton's mathematical treatises to be pub-

lished, but it was the last in order of composition. Fame had come to him

relatively promptly, for he had been elected to the Royal Society in 1672,

four years after he had constructed his reflecting telescope (the idea for

which had occurred also to Gregory even earlier). The Principia met with

enthusiastic approval, and in 1689 Newton was elected to represent Cam-
bridge in the British Parliament. Despite the generous recognition he re-

ceived, Newton in 1692 became depressed and suffered a nervous break-

down. Perhaps feeling that continued scientific research was a strain, in

1696 he accepted appointment as Warden of the Mint, becoming Master

of the Mint three years later. Evidently Newton felt comfortable and suc-

cessful in his position there, partly, perhaps, because he had throughout

much of his life been devoted to chemical research, with a special interest

in alchemy. Theology and chronology also attracted his attention. In belief

he seems to have been a crypto-Unitarian, while conforming outwardly to

the Trinitarian views of the time. His Chronology of Ancient Kingdoms

Amended and Observations upon the Prophecies of Daniel and the Apoc-

alypse of St. John were published after his death.

Honors were heaped upon Newton in his later years. In 1699 he was

elected a foreign associate of the Academie des Sciences, in 1703 he became
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president of the Royal Society, holding the post for the rest of his life, and

in 1705 he was knighted by Queen Anne. Nevertheless, one event cast a

cloud over Newton's life after 1695. In that year Wallis told him that in

Holland the calculus was regarded as the discovery of Leibniz. In 1699

Nicolas Fatio de Duillier (1664-1753), an obscure Swiss mathematician

who had moved to England, implied in a paper to the Royal Society that

Leibniz may have taken his ideas on the calculus from Newton. At this

affront Leibniz in the Acta Eruditorwn for 1704 insisted that he was entitled

to priority in publication and protested to the Royal Society against the

imputation of plagiarism. In 1705 Newton's De quadratura curvarum was

unfavorably reviewed (by Leibniz?) in the Acta Eruditorwn; and in 1708

John Keill (1671-1721), an Oxford professor, vigorously supported New-
ton's claims against those of Leibniz in a paper in the Philosophical Trans-

actions. The repeated appeals of Leibniz to the Royal Society for justice

finally led the Society to appoint a committee to study the matter and to

report. The committee's report, under the title Commercium epistolicum,

was published in 1712; but it left matters unimproved. It reached the banal

conclusion that Newton was the first inventor, a point that had not been

questioned seriously in the first place. Implications of plagiarism were

supported by the committee in terms of documents that they assumed

Leibniz had seen, but which we now know he had not received. The
bitterness of national feeling reached such a point that in 1726, a decade

after Leibniz had died, Newton deleted from the third edition of the Prin-

cipia all reference to the fact that Leibniz had possessed a method in the

calculus similar to the Newtonian.

As a consequence to the disgraceful priority dispute, British mathe-

maticians were to seme extent alienated from workers on the Continent

throughout much of the eighteenth century. A penalty for the unfairness

of followers of Newton toward Leibniz was thus visited on the next gen-

erations of mathematicians in England, with the result that British math-

ematics fell behind that of Continental Europe. Upon his death, Newton

was buried in Westminster Abbey with such pomp that Voltaire, who
attended the funeral, said later, "I have seen a professor of mathematics,

only because he was great in his vocation, buried like a king who had done

good to his subjects." Nevertheless, despite the recognition accorded math-

ematical achievement in England, development of mathematics there failed

to match the rapid strides taken elsewhere in Europe during the eighteenth

century.
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The Bernoulli Era

He who can digest a second or third fluxion, a second or third difference, need

not, methinks, be squeamish about any point in Divinity.

George Berkeley

THE BERNOULLI FAMILY

The discoveries of a great mathematician, such as Newton, do not auto-

matically become part of the mathematical tradition. They may be lost to

the world unless other scholars understand them and take enough interest

to look at them from various points of view, clarify and generalize them,

and point out their implications. Newton, unfortunately, was hypersensitive

and did not communicate freely, and consequently the method of fluxions

was not well known outside of England. Leibniz, on the other hand, found

devoted disciples who were eager to learn about the differential and integral

calculus and to transmit the knowledge to others. Foremost among the

enthusiasts were two Swiss brothers, Jacques Bernoulli (1654-1705) and

Jean Bernoulli (1667-1748), often known also by the Anglicized forms of

their names, James and John (or by the German equivalents Jakob and

Johann), each as quick to offend as to feel offended.

No family in the history of mathematics has produced as many celebrated

mathematicians as did the Bernoulli family, which, unnerved by the Spanish

Fury in 1576, had fled to Basel from the Catholic Spanish Netherlands in

1583. Some dozen members of the family (see the genealogical chart)

415
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Nicolaus

1 1 62 VI 708)

Jacques I

(1654 1 705)

Nicolaus I

(I662-1716)

Jean I

(1 667- 1 748)

Nicolaus II Nicolaus III Daniel I Jean II

(1687-1759) (1695-1726) (1700-1782) (1710-1790)

Jean III

(1746-1807)

Daniel II

(1751-1834)

Jacques II

(1759-1789)

Christoph

(1782-1863)

Jean Gustave

(1811-1863)

The mathematical Bernoullis: a genealogical chart.

achieved distinction in mathematics and physics, and four of them were

elected foreign associates of the Academie des Sciences. The first to attain

prominence in mathematics was Jacques Bernoulli. He was born and died

at Basel, but he traveled widely to meet scholars in other countries. His

interest had been directed toward infinitesimals by works of Wallis and

Barrow, and the papers of Leibniz in 1684-1686 enabled him to master

the new methods. By 1690, when he suggested the name 'Integral" to

Leibniz, Jacques Bernoulli was himself contributing papers on the subject

to the Acta Eruditorum. Among other things, he pointed out that at a

maximum or minimum point the derivative of the function need not vanish,

but can take on an "infinite value" or assume an indeterminate form. He
was early interested in infinite series, and in his first paper on the subject

in 1689 he gave the well-known "Bernoulli inequality" (1 + x)
n > 1 +

nx, where x is real and x > — 1 and x ^ and n is an integer greater than

one; but this can be found earlier in the seventh lecture of Barrow's Lec-

tiones geometriae of 1670. To him frequently is attributed also the dem-

onstration that the harmonic series is divergent, for most men were unaware

of anticipations by Oresme and Mengoli. Jacques Bernoulli believed, in

fact, that his brother had been the first to observe the divergence of the

harmonic series.

Jacques Bernoulli was fascinated by the series of reciprocals of the

figurate numbers, and although he knew that the series of reciprocals of
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the perfect squares is convergent, he was unable to find the sum of the

series. Inasmuch as the terms of111 1

are, term for term, less than or equal to those of

1 _j_ _1_ _J_ 1

l

+
l-2

+
2-3

+
3-4

+ ''' +
«(*-l)

+ '"

and the latter series was known to converge to 2, it was clear to Bernoulli

that the former must converge.

A frequent correspondent with other mathematicians of the day, Jacques

Bernoulli was au courant with the popular problems, many of which he

solved independently. Among these were finding the equations of the ca-

tenary, the tractrix, and the isochrone, all of which had been treated by

Huygens and Leibniz. The isochrone called for the equation of a plane

curve along which an object would fall with uniform vertical velocity, and

Bernoulli showed that the required curve is the semicubical parabola. It

was in connection with such problems that the Bernoulli brothers discov-

ered the power of the calculus, and they remained in touch with Leibniz

on all aspects of the new subject. Jacques Bernoulli in his work on the

isochrone in the Acta Eruditorum for 1690 used the word "integral," and

a few years later Leibniz agreed that calculus integralis would be a better

name than calculus summatorius for the inverse of the calculus differentialis.

To differential equations Jacques Bernoulli contributed the study of the

"Bernoulli equation" v' + P(x)y = Q{x)y n which he and Leibniz and

Jean Bernoulli solved—Jean by reducing it to a linear equation through

the substitution z = y
l
~ n

. It was especially in connection with a problem

from the calculus of variations that the Bernoulli brothers came into sharp

conflict with each other. (Jacques was the fifth child in the family, Jean

was the tenth; the younger man perhaps resented what he regarded as

condescension on the part of his older brother.) Leibniz and the Bernoullis

were seeking a solution to the brachistochrone problem, that is, to find

the curve along which a particle wili slide in the shortest time from one

given point to a second lower given point not directly beneath the first

point. Jean had found an incorrect proof that the curve is a cycloid, and

he challenged his brother to discover the required curve. After Jacques

correctly proved that the curve sought is a cycloid, Jean tried to substitute

his brother's proof for his own.

THE LOGARITHMIC SPIRAL

Jacques Bernoulli was fascinated by curves and the calculus, and one curve

bears his name—the "lemniscate of Bernoulli," given by the polar equation
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r
2 = a cos 20. The curve was described in the Acta Eruditorum of 1694 as

resembling a figure eight or a knotted ribbon (lemniscus). However, the

curve that most caught his fancy was the logarithmic spiral. This curve had

been mentioned by Descartes and rectified by Torricelli, but Bernoulli

showed that it had several striking properties not noted before: (1) The
evolute of a logarithmic spiral is an equal logarithmic spiral; (2) the pedal

curve of a logarithmic spiral with respect to its pole (that is, the locus of

the projections of the pole upon the tangents to the given curve) is an

equal logarithmic spiral; (3) the caustic by reflection for rays emanating

from the pole (that is, the envelope of the rays reflected at points on the

given curve) is an equal logarithmic spiral; and (4) the caustic by refraction

for rays emanating from the pole (that is, the envelope of rays refracted

at points on the curve) is an equal logarithmic spiral. It is easy to appreciate

the feeling that led Bernoulli to request that the spira mirabilis be engraved

on his tombstone together with the inscription "Eadem mutata resurgo"

('Though changed, I arise again the same").

Jacques Bernoulli had been led to spirals of a different type when he

repeated Cavalieri's procedure in bending half of the parabola x 2 = ay

about the origin to produce a spiral of Archimedes; but whereas Cavalieri

had studied the transformation by essentially synthetic methods, Bernoulli

used rectangular and polar coordinates. Newton had used polar coordinates

earlier—perhaps as early as 1671—but priority in publication seems to go

to Bernoulli who in the Acta Eruditorum for 1691 proposed measuring

abscissas along the arc of a fixed circle and ordinates radially along the

normals. Three years later, in the same journal, he proposed a modification

that agreed with the system of Newton. The coordinate y now was the

length of the radius vector of the point, and x was the arc cut off by the

sides of the vectorial angle on a circle of radius a described about the pole

as center. These coordinates are essentially what we would now write as

(r, aO). Bernoulli, like Newton, was interested primarily in applications of

the system to the calculus; hence, he, too, derived formulas for arc length

and radius of curvature in polar coordinates. For his "parabolic spiral"

r
2 = aO he noted that the question of arc length leads, through ds =

Vdr 2 + r
2d0 2

, to the integral of the square root of a quartic polynomial,

the first specific instance of what now is known as an elliptic integral.

PROBABILITY AND INFINITE SERIES

The mathematical contributions of the Bernoullis, like those of Leibniz,

are found chiefly in articles in journals, especially the Acta Eruditorum;

but Jacques Bernoulli wrote also a classical treatise entitled Ars conjectandi

(or Art of Conjecturing), published in 1713, eight years after the author's

death. This is the earliest substantial volume in the theory of probability,

for Huygens' De ludo aleae had been only a brief introduction. The treatise
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of Huygens is, in fact, reproduced as the first of the four parts of the Ars
conjectandi, together with commentary by Bernoulli. The second part of

the Ars conjectandi includes a general theory of permutations and com-
binations, facilitated by the binomial and multinomial theorems. Here we
find the first adequate proof of the binomial theorem for positive integral

powers. The proof is by mathematical induction, a method of approach

that Bernoulli had rediscovered while reading the Arithmetica infinitorum

of Wallis and which he had published in the Acta Eruditorum in 1686. He
gave Pascal credit for the binomial theorem with general exponent, but

this attribution appears to be gratuitous. Newton seems to have first stated

the theorem in general form for any rational exponent, although he gave

no proof, this being supplied later by Euler. In connection with the ex-

pansion of (1 -I- \ln)n Jacques Bernoulli proposed the problem of the

continuous compounding of interest, that is, finding lim^x (1 + \ln) n
.

Since

1 + - < 1 + - +
n) 1 1-2 1 • 2 ... n

11 1 ^
< 1 + 1 + - + — + —- <- 3

2 22 2"- 1

it was clear to him that the limit existed.

The second part of the Ars conjectandi contains also the "Bernoulli

numbers." These arose as coefficients in a recursion formula for the sums

of the powers of the integers, and they now find many applications in other

connections. The formula was written by Bernoulli as follows:

/

1 1 c
A ,

c(c - l)(c - 2) „
n c = n c+l + - n c + - An c ~ l +

v
- '

v

A
Bn<

c+1 2 2 2-3-4

c(c - l)(c - 2)(c - 3)(c - 4)
+

" 2 -3 -4- 5 -6
"'

where / n c means the sum of the cth powers of the first n positive integers

and the letters A, B, C, . . . (the Bernoulli numbers) are the coefficients

of the term in n (the last term) in the corresponding expressions for / n 2
,

/ n
4

, / n
6

,
. . . . (The numbers also can be defined as n\ times the coefficients

of the even-powered terms in the Maclaurin expansion of the function

x/(e x - 1).) The Bernoulli numbers are useful in writing the infinite series

expansions of trigonometric and hyperbolic functions. The first three of

the numbers are readily verified as A = £, B = -jo, and C = A.
The third and fourth parts of the Ars conjectandi are devoted primarily

to problems illustrating the theory of probability. The fourth and last part

contains the celebrated theorem that now bears the author's name, and

on which Bernoulli and Leibniz had corresponded: the so-called "Law of

large numbers." This states that if p is the probability of an event, if m is

the number of occurrences of the event in n trials, if e is an arbitrar-
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ily small positive number, and if P is the probability that the inequality

m n - p\ < e is satisfied, then lim„_ x P = 1.

Appended to the Ars conjectandi is a long memoir on infinite series.

Besides the harmonic series and the sum of the reciprocals of the perfect

squares, Bernoulli considered the series1111
VT " V2 V3 V4

He knew (by comparing the terms with those in the harmonic series) that

this diverges, and he pointed to the paradox that the ratio of the "sum"
of all the odd terms to the "sum" of all the even terms is as V2 - 1 is to

1 , from which the sum of all the odd terms appears to be less than the sum
of all the even terms; but this is impossible because term for term the

former are larger than the latter.

L'HOSPITAL'S RULE

The father of the famous Bernoulli brothers, Nicolaus (1623-1708), had

had very definite plans for the futures of his sons, and he had put obstacles

in the way of their becoming mathematicians. Jacques, the older, had been

destined for the ministry, and Jean was to have been a merchant or a

physician. The younger brother did, in fact, write his doctoral dissertation

in 1690 on effervescence and fermentation, but the following year he be-

came so deeply interested in the calculus that during 1691-1692 he com-

posed two little textbooks on the differential and integral calculus, although

neither was published until long afterward. While he was in Paris in 1692,

he instructed a young French marquis, G. F. A. de L'Hospital (1661-1704),

in the new Leibnizian discipline; and Jean Bernoulli signed a pact under

which, in return for a regular salary, he agreed to send L'Hospital his

discoveries in mathematics, to be used as the marquis might wish. The

result was that one of Bernoulli's chief contributions, dating from 1694,

has ever since been known as L'HospitaFs rule on indeterminate forms.

Jean Bernoulli had found that if f(x) and g(x) are functions differentiate

at x = a such that f(a) = and g(a) = and

exists, then

lim
x—'a g'(x)

lim
x—u

f{x) .. fix)
= I'm ,, ,

.. g (x)

This well-known rule was incorporated by L'Hospital in the first textbook

on the differential calculus to appear in print

—

Analyse des infiniment petits.
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published at Paris in 1696. This book, the influence of which dominated
most of the eighteenth century, is based on two postulates: (1) that one
can take as equal two quantities which differ only by an infinitely small

quantity; and (2) that a curve can be considered as made up of infinitely

small straight line segments that determine, by the angles they make with

each other, the curvature of the curve. These would today scarcely be
regarded as acceptable, but L'Hospital considered them "so self-evident

as not to leave the least scruple about their truth and certainty on the mind
of an attentive reader." The basic differential formulas for algebraic func-

tions are derived in the manner of Leibniz, and applications are made to

tangents, maxima and minima, points of inflection, curvature, caustics, and
indeterminate forms. The book closes with a statement indicating that the

methods are general and can be extended also to transcendental curves.

L'Hospital was an exceptionally effective writer, for his Traite analytique

des sections coniques, published posthumously in 1707, did for analytic

geometry of the eighteenth century what the Analyse did for the calculus.

The Traite was not especially original, but it had a pedagogical quality that

made it a standard treatise on conies throughout most of the century.

EXPONENTIAL CALCULUS

L'Hospital's Analyse met with great success and appeared in numerous

editions throughout the next century. In the preface the author had admit-

ted that he owed much to Leibniz and the Bernoullis, especially to "the

young professor at Groningen" (where Jean had been appointed in 1695).

Jean Bernoulli wrote to L'Hospital to thank him for mentioning him in

the volume, but after the death of the marquis in 1704 Bernoulli in letters

to others virtually accused the author of plagiarism. Contemporaries re-

garded the claims of Bernoulli as unfounded, but the recent publication

of the Bernoulli-L'Hospital correspondence indicates that much of the

work evidently was due to Bernoulli. Nevertheless some of the material

in the Analyse undoubtedly was the result of L'Hospital's independent

work, for he was a capable mathematician. The rectification of the loga-

rithmic curve, for example, seems to have appeared for the first time in

1692 in a letter from L'Hospital to Leibniz. Bernoulli did not publish his

own textbook on the differential calculus (which finally was printed in 1924),

and the text on the integral calculus appeared fifty years after it had been

written—in his Opera omnia of 1742. In the interval Jean Bernoulli wrote

prolifically on many advanced aspects of analysis—the isochrone, solids of

least resistance, the catenary, the tractrix, trajectories, caustic curves, is-

operimetric problems—achieving a reputation that led to his being called

to Basel in 1705 to fill the chair left vacant by his brother's death. His

correspondence with Leibniz was very active, and he espoused the Leib-

nizian cause against Newton with unwarranted aggressiveness. One might
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call him Leibniz's bulldog, for he did for the calculus what Huxley later

accomplished for the Darwinian theory of evolution. His tactlessness led

to bitter controversy with his brother, and his jealous nature led him to

drive from home a son, Daniel, for having won a prize of the Academie

des Sciences for which Jean, too, had competed. Yet he was a most inspiring

teacher and an indefatigable research worker. He frequently is regarded

as the inventor of the calculus of variations, because of his proposal in

1696-1697 of the problem of the brachistochrone; and he contributed to

differential geometry through his work on geodesic lines on a surface. To
him often is ascribed also the exponential calculus, for he studied not only

the simple exponential curves y = a\ but general exponentials such as

y = x x
. For the area under the curve y = x x from x = to x = 1 he

found the striking infinite series representation

I i I I
I

I 22
+

3 3 44
+

' '

'"

This result he obtained by writing xx = e
xlnx

,
expanding this in the ex-

ponential series and integrating term by term, using integration by parts.

LOGARITHMS OF NEGATIVE NUMBERS

Jean and Jacques Bernoulli rediscovered the series for sin nO and cos nO,

in terms of sin and cos #, which Viete had known, and they extended

them, uncritically, to include fractional values of n. Jean was aware also

of relationships between inverse trigonometric functions and imaginary

logarithms, discovering in 1702, through differential equations, the rela-

tionship

1 . /l + iz
arctan z = - \n \ -.

/ \\ - iz

He corresponded with other mathematicians on the logarithms of negative

numbers, but here he mistakenly believed that log (-n) = log n. He
tended to develop trigonometry and the theory of logarithms from an

analytic point of view, and he experimented with several notations for a

function of jc, the one nearest to the modern being (px. His vague notion

of a function was expressed as "a quantity composed in any manner of a

variable and any constants." Among his numerous controversies was one

with British mathematicians over whether or not the well-known series of

Brook Taylor (1685-1731), published in the Methodus incrementorum of

1715, was a plagiarism of the Bernoulli series

j

x 2 dy x3 d 2

yydx = yx
-v.dx

+
v.7?
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Neither Bernoulli nor Taylor was aware that both had been anticipated by

Gregory in the discovery of "Taylor's series."

PETERSBURG PARADOX

Jean Bernoulli maintained a zeal for mathematics as lively as was his

persistence in controversy. Moreover, he was the father of three sons,

Nicolaus (1695-1726), Daniel (1700-1782), and Jean II (1710-1790), all

of whom at some stage filled a position as professor of mathematics: Ni-

colaus and Daniel at St. Petersburg and Daniel and Jean II at Basel.

(Another Nicolaus (1687-1759), cousin of the one above, for a time held

the chair in mathematics at Padua that Galileo once had filled.) There

were still other Bernoullis who attained some eminence in mathematics,

but of these none achieved fame comparable to that of the original two

brothers, Jacques and Jean. The most celebrated of the younger generation

was Daniel, whose work in hydrodynamics is recalled in "Bernoulli's prin-

ciple." In mathematics he is best known for his distinction, in the theory

of probability, between mathematical expectation and "moral expecta-

tion," or between "physical fortune" and "moral fortune." He assumed

that a small increase in a person's material means causes an increase in

satisfaction that is inversely proportional to the means. In the form of an

equation, dm = K{dplp), where m is the moral fortune, p is the physical

fortune, and K is a constant of porportionality. This leads to the conclusion

that as the physical fortune increases geometrically, the moral fortune

increases arithmetically. This hypothesis by Bernoulli appears in the Com-
mentarii of the Academy of Sciences at St. Petersburg for 1730-1731 (pub-

lished 1738), for Daniel Bernoulli had spent the years 1725-1733 in Russia

before returning to Basel. His work on probability took on varied aspects,

including applications to business, medicine, and astronomy. In 1734 he

and his father shared the prize offered by the Academie des Sciences for

an essay on probabilities related to the inclinations of the orbital planes

of the planets; in 1760 he read to the Paris Academie a paper on the

application of probability theory to the question of the advantage of in-

oculation against smallpox.

When Daniel Bernoulli went to St. Petersburg in 1725, his older brother

also was called there as professor of mathematics; in the discussions of the

two men there arose a problem that has come to be known as the "Pe-

tersburg paradox," probably because it first appeared in the Commentarii

of the Academy there. The problem is as follows: Suppose that Peter and

Paul agree to play a game based on the toss of a coin. If a head is thrown

on the first toss, Paul will give Peter one crown; if the first toss is tail, but

a head appears on the second toss, Paul will give Peter two crowns; if a

head appears for the first time on the third toss, Paul will give Peter four
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crowns; and so on, the amount to be paid if head appears for the first time

on the nth toss being 2n ~
l crowns. What should Peter pay Paul for the

privilege of playing the game? Peter's mathematical expectation, given by

--1+--2 + --

2

2 + •••+— •
2"" 1 + • • •,

2 22 23 2"

evidently is infinite, yet common sense suggests a very modest finite sum.

When Georges Louis Leclerc, Comte de Buffon (1707-1788), made an

empirical test of the matter, he found that in 2084 games Paul would have

paid Peter 10,057 crowns. This indicates that for any one game Paul's

expectation, instead of being infinite, is actually something less than 5

crowns! The paradox raised in the Petersburg problem was widely discussed

during the eighteenth century, with differing explanations being given.

Daniel Bernoulli sought to resolve it through his principle of moral ex-

pectation, in accordance with which he replaced the amounts 1, 2, 22
, 2\

... 2", . . . by 1*, 2*, 4*, 8A , . . . . Others preferred, as a solution of the

paradox, to point out that the problem is inherently impossible in view of

the fact that Paul's fortune is necessarily finite, hence he could not pay the

unlimited sums that might be required in the case of a long delay in the

appearance of a head.

ABRAHAM DE MOIVRE

The theory of probability had many devotees during the early eighteenth

century, and one of the most important of these was Abraham De Moivre

(1667-1754). He had been born a French Huguenot, but shortly after the

revocation of the Edict of Nantes he went to England, where he made the

acquaintance of Newton and Halley and became a private teacher of math-

ematics. In 1697 he was elected to the Royal Society and subsequently to

the Academies of Paris and Berlin. He hoped to obtain a university position

in mathematics, but this he never secured, partly because of his non-British

origin; and Leibniz tried in vain to secure a professional position for him

in Germany. Nevertheless, despite the long hours of tutoring necessary to

support himself, De Moivre produced a considerable quantity of research.

In 1711 he contributed to the Philosophical Transactions a long memoir
on the laws of chance, and this he expanded into a celebrated volume, the

Doctrine of Chances, that appeared in 1718 (and in later editions). The
memoir and the volume contained numerous questions on dice, the prob-

lem of points (with unequal chances of winning), drawing balls of various

colors from a bag, and other games. Some of the problems had appeared

in Jacques Bernoulli's Ars conjectandi, the publication of which was earlier

than the Doctrine of Chances but later than De Moivre's memoir. In the
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preface to the Doctrine of Chances the author referred to the work on
probability of Jacques, Jean, and Nicolaus Bernoulli. The various editions

of the volume contain more than fifty problems on probability, as well as

questions relating to life annuities. In general, De Moivre derived the

theory of permutations and combinations from the principles of probability,

whereas now it is customary to reverse the roles. For example, to find the

number of permutations of two letters chosen from the six letters a, b, c,

d, e, and /, he argues that the probability that a particular letter will be

first is £ and the probability that another specific letter will be second is i
Hence, the probability that these two letters will appear in that order is g

• 5 = ^>, from which one concludes that the number of all possible per-

mutations, two at a time, is 30. De Moivre is often credited with the

principle, published in the Doctrine of Chances, that the probability of a

compound event is the product of the probabilities of its components, but

this had been implied in earlier works.

De Moivre was especially interested in developing for probability gen-

eral procedures and notations that he thought of as a new "algebra." A
generalization of a problem given earlier by Huygens usually is called,

appropriately, De Moivre's problem: to find the probability of throwing a

given number on a throw of n dice each having m faces. Some of his

contributions to probability were published in a further volume, the Mis-

cellanea analytica of 1730. In a supplement to this work De Moivre included

some results that appeared also in the Methodus differential of James

Stirling (1692-1770), published in the same year as the Miscellanea anal-

ytica. Among these is the approximation n\ ~ vbtn{nle) n
, which usually

is known as Stirling's formula, although known earlier to De Moivre, and

a series, also named for Stirling, relating In n\ and the Bernoulli numbers.

De Moivre apparently was the first one to work with the probability

formula

f
e" dx = T

a result that appeared unobtrusively in a privately printed pamphlet of

1733 entitled Approximatio ad summam terminorum binomii {a + b) n in

seriem expansi. This work, representing the first appearance of the law of

errors or the distribution curve, was translated by De Moivre and included

in the second edition (1738) of his Doctrine of Chances. Many aspects of

probability attracted De Moivre, including actuarial problems. In his work

on Annuities upon Lives, which formed a part of the Doctrine of Chances

and was separately reprinted in more than half a dozen editions, he adopted

a rough-and-ready rule, known as "De Moivre's hypothesis of equal dec-

rements," that annuities can be computed on the assumption that the

number of a given group that die is the same during each year.
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DE MOIVRE'S THEOREM

The Miscellanea analytica is important not only in probability but also in

the development of the analytic side of trigonometry. The well-known De
Moivre's theorem, (cos + / sin 0)

n = cos nO + i sin n(), is not explicitly

given, but it is clear from the work on cyclometry and other contexts that

the author was quite familiar with this relationship, probably as early as

1707. In a paper in the Philosophical Transactions for 1707 De Moivre

wrote that

i(sin nO + V^I cos n6) l/n + |(sin nO - V1! cos n0) Vn = sin 0.

In his Miscellanea analytica of 1730 he expressed the equivalent of

/ n • • m,, 2Kn±0
. . 2Kn±Q

(cos 6 ± i sin 6y ,n = cos ± i sin
n n

which he used to factor x 2" + 2x cos nO + 1 into quadratic factors of the

form x 2 + 2x cos 0+1. Again in a Philosophical Transactions pape r of

1739 he found the nth roots of the "impossible binomial" a + V^7>
through the procedure that we now use in taking the nth root of the

modulus, dividing the amplitude by n, and adding multiples of 2n/n.

De Moivre, dealing with imaginary numbers and the circular functions

in Miscellanea analytica, came close to recognizing the hyperbolic functions

in extending theorems on sectors of circles to analogous results on sectors

of the rectangular hyperbola. In view of the breadth and depth of his results,

it was natural that Newton in his later years should have told those who
came to him with questions on mathematics, "Go to Mr. De Moivre; he

knows these things better than I do." It is not surprising that De Moivre

was one of the partisan commissioners appointed by the Royal Society in

1712 to report on the claims of Newton and Leibniz to the invention of

the calculus.

In the Philosophical Transactions for 1697-1698 De Moivre had written

on the "infinitonome," that is, an infinite polynomial or infinite series,

including the process of finding a root of such an expression; and it was

largely in recognition of this paper that he had been elected a member of

the Royal Society. The interest of De Moivre in infinite series and prob-

ability is reminiscent of the Bernoullis. De Moivre carried on an extensive

and cordial correspondence with Jean Bernoulli during the decade 1704 to

1714, and it was the former who proposed the latter for election to the

Royal Society in 1712.

ROGER COTES

One of the motives that had led De Moivre to be concerned with the

factoring of x 2n + axn + 1 into quadratic factors was the desire to complete
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some of the work of Roger Cotes (1682-1716) on the integration of rational

fractions through decompositions into partial fractions. The life of Cotes

is another tragic instance of a very promising career cut short by premature

death. As Newton remarked, "If Cotes had lived, we might have known
something." A student and later a professor at Cambridge, the young man
had spent much of the time from 1709 to 1713 preparing the second edition

of Newton's Principia. Three years later he died, leaving behind him some
significant but uncompleted work. Much of this was collected and published

posthumously in 1722 under the title Harmonia mensurarum. The title is

derived from the following theorem:

If through a fixed point O a variable straight line is drawn cutting an algebraic

curve in points Ql9 Q2, . . . , Q„, and if a point P is taken on the line such

that the reciprocal of OP is the arithmetic mean of the reciprocals of 0(2,,

OQ2 , . . . , OQn , then the locus of P is a straight line.

Most of the treatise, however, is devoted to the integration of rational

fractions, including decomposition into quadratic factors of x n - 1, work

completed later by De Moivre. The Harmonia mensurarum is among the

early works to recognize the periodicity of the trigonometric functions,

cycles of the tangent and secant functions appearing here in print for

perhaps the first time. It is one of the earliest books with a thorough

treatment of the calculus as applied to the logarithmic and circular func-

tions, including a table of integrals depending on these. In this connection

the author gave what is known in trigonometry books as "Cotes' property

of the circle," a result closely related to De Moivre's theorem, which allows

one to write such expressions as

2x cos — + 1 I (
x 2 - 2x cos — + 1

In In

(2n - l)n
- 2x cos -— — + 1

2n

This result is readily confirmed if, having plotted on the unit circle the

roots of -1 of order 2n, one forms the products of conjugate imaginary

pairs. Cotes apparently was among the earliest of mathematicians to an-

ticipate the relationship In (cos + i sin 0) = iO, an equivalent of which

had been given by him in a Philosophical Transactions article in 1714 and

which was reprinted in the Harmonia mensurarum. This theorem is usually

attributed to Euler, who first gave it in modern exponential form.

JAMES STIRLING

British mathematics boasted an impressive number of capable contributors

during the earlier part of the eighteenth century, of whom De Moivre,
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Cotes, and Stirling in particular were friends of Newton. Stirling published

in 1717 a work entitled Lineae tertii ordinis Neutonianae in which he com-

pleted the classification of cubic curves, drawn up by Newton in 1704, by

adding some cubics that Newton missed and by adding demonstrations that

had been lacking in the original Enumeratio. Stirling showed, among other

things, that if the v-axis is an asymptote of a curve of order n, the equation

of the curve cannot contain a term in y" and an asymptote cannot cut the

curve in more than n - 2 points. For graphs of rational functions y =

f(x)/g(x) he found the vertical asymptotes by equating g(x) to zero. For

conic sections Stirling gave a full treatment in which the axes, vertices, and

asymptotes are found analytically from the general second-degree equation

with respect to oblique coordinates.

COLIN MACLAURIN

The work of Newton and Stirling on plane curves was continued by Colin

Maclaurin (1698-1746), perhaps the outstanding British mathematician of

the generation after Newton. Born in Scotland and educated at the Uni-

versity of Glasgow, which he entered at the age of eleven, he became

professor of mathematics at Aberdeen when nineteen, and half a dozen

years later taught at the University of Edinburgh. It is interesting to note

that in Great Britain, Switzerland, and the Low Countries the leading

mathematicians in the seventeenth and eighteenth centuries were con-

nected with universities, whereas in France, Germany, and Russia they

were more likely to be associated with the academies established by the

absolute rulers.

Maclaurin had begun contributing papers to the Philosophical Trans-

actions before he was twenty-one, and in 1720 he published two treatises

on curves: Geometrica organica and De linearum geometricarum proprie-

tatibus. The former in particular was a well-known work which extended

the results of Newton and Stirling on conies, cubics, and higher algebraic

curves. Among the propositions is one often known as the theorem of

Bezout (in honor of the man who later gave an imperfect proof): a curve

of order m intersects a curve of order n in general in mn points. In con-

nection with this theorem Maclaurin noticed a difficulty which is usually

known as Cramer's paradox, in honor of a later rediscoverer. A curve of

order n generally is determined, as Stirling had indicated, by n(n + 3)/2

points. Thus a conic is uniquely determined by five points and a cubic

should be determined by nine points. By the Maclaurin-Bezout theorem,

however, two curves of degree n intersect in n : points, so that two different

cubics intersect in nine points. Hence, it is obvious that //(// + 3)/2 points

do not always uniquely determine a single curve of order n. The answer

to the paradox did not appear until a century later when it was explained

in the work of Pliicker (see below).
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The Geometrica organica contained interesting propositions on conies,

including various organic constructions similar to some given by Newton
in the Principia. We find also Pascal's theorem on a hexagon inscribed in

a conic, deduced from the properties of a quadrilateral inscribed in a conic.

Extending this type of work to curves of third degree, Maclaurin showed
that if a quadrilateral is inscribed in a cubic, and if the points of intersection

of the opposite sides also lie on the curve, the tangents to the cubic at any

two opposite vertices of the quadrilateral will meet on the curve.

TAYLOR'S SERIES

In view of the striking results of Maclaurin in geometry, it is ironic that

today his name is recalled almost exclusively in connection with a portion

of analysis in which he had been anticipated by some half dozen earlier

workers. The so-called Maclaurin series, which appeared in his Treatise of

Fluxions of 1742, is only a special case of the more general Taylor series,

published by Brook Taylor (1685-1731) in 1715 in his Methodus incre-

mentorum directa et inversa. Taylor was a Cambridge graduate, an enthu-

siastic admirer of Newton, and secretary of the Royal Society. He was

much interested in perspective; on this subject he published two books in

1715 and 1719, in the second of which he gave the first general statement

of the principle of vanishing points. However, his name today is recalled

almost exclusively in connection with the series

f{x + a) = f(a) + f'(a)x + /"(«) |

+ /» §j
+ • ' • + /

(n,
(a) S + • '

"

which appeared in the Methodus incrementorum. The series becomes the

familiar Maclaurin series upon substituting zero for a. The general Taylor

series had been known long before to James Gregory, and in essence also

to Jean Bernoulli; but Taylor was unaware of this. Moreover, the Maclaurin

series had appeared in the Methodus differentiate of Stirling more than a

dozen years before it was published by Maclaurin. Clio, the muse of history,

often is fickle in the matter of attaching names to theorems!

THE ANALYST CONTROVERSY

The Methodus incrementorum contained also a number of other famil-

iar parts of calculus, such as formulas relating the derivative of a func-

tion to the derivative of the inverse function—for example, d 2x/dy 2 =

-d 2yldx 2l{dyldxf—singular solutions of differential equations, and an
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attempt to find an equation for a vibrating string. After 1719 Taylor gave

up the pursuit of mathematics, but the young Maclaurin was then just

beginning his fruitful career. His Treatise of Fluxions was not just another

book on the techniques of the calculus, but an effort to establish the subject

on a sound basis similar to that of the geometry of Archimedes. The motive

here was to defend the subject from attacks that had been launched, es-

pecially by Bishop George Berkeley (1685-1753) in a tract of 1734 entitled

The Analyst. Berkeley did not deny the utility of the techniques of fluxions

nor the validity of the results obtained by using these; but he had been

nettled on having a sick friend refuse spiritual consolation because Halley

had convinced the friend of the untenable nature of Christian doctrine.

Hence, the subtitle of the Analyst reads:

Or a Discourse Addressed to an Infidel Mathematician [presumably Halley].

Wherein It Is Examined Whether the Object, Principles, and Inferences of

the Modern Analysis are More Distinctly Conceived, or More Evidently

Deduced, than Religious Mysteries and Points of Faith. "First Cast the Beam
Out of Thine Own Eye; and Then Shalt Thou See Clearly to Cast Out the

Mote Out of Thy Brother's Eye."

Berkeley's account of the method of fluxions was quite fair, and his crit-

icisms were well taken. He pointed out that, in finding either fluxions or

the ratios of differentials, mathematicians first assume that increments are

given to the variables and then take the increments away by assuming them

to be zero. The calculus, as then explained, seemed to Berkeley to be only

a compensation of errors. Thus, "by virtue of a twofold mistake you arrive,

though not at science, yet at the truth." Even Newton's explanation of

fluxions in terms of prime and ultimate ratios was condemned by Berkeley,

who denied the possibility of a literally "instantaneous" velocity in which

distance and time increments have vanished to leave the meaningless quo-

tient 0/0. As he expressed it,

And what are these fluxions? The velocities of evanescent increments. And
what are these same evanescent increments? They are neither finite quan-

tities, nor quantities infinitely small, nor yet nothing. May we not call them

ghosts of departed quantities?

It was to answer such criticisms that Maclaurin wrote his Treatise of Flux-

ions in the rigorous manner of the ancients; but in doing so, he used a

geometric approach that is less suggestive of the new developments that

were to feature the analysis of Continental Europe. Perhaps this is not

unrelated to the fact that Maclaurin was almost the last significant math-

ematician in Great Britain during the eighteenth century, a time when

analysis, rather than geometry, was on the crest of the wave. Nevertheless,

the Treatise of Fluxions contained a number of relatively new results.
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including the integral test for convergence of infinite series (given earlier

by Euler in 1732 but generally overlooked).

CRAMER'S RULE

If the name of Maclaurin today is recalled in connection with a series of

which he was not the first discoverer, this is compensated for by the fact

that a contribution he made bears the name of someone else who discovered

and printed it later. The well-known Cramer's rule, published in 1750 by

Gabriel Cramer (1704-1752), probably was known to Maclaurin as early

as 1729, the time when he was composing an algebra intended as a com-
mentary on Newton's Arithmetica universalis. The Maclaurin Treatise of
Algebra was published in 1748, two years after the author had died, and
in it the rule for solving simultaneous equations by determinants appeared,

two years earlier than in Cramer's Introduction a Vanalyse des lignes courbes

algebriques. The solution for v in the system

ax + by = c

dx + ey = f

is given as

af - dc

ae - db

The solution for z in the system

ax + by + cz = m

dx + ey + fz = n

gx + hy + kz = p

is expressed as

aep — ahn + dhm - dbp + gbn — gem

aek - ahf + dhc - dbk + gbf - gee
z =

Maclaurin explained that the denominator consists, in the former case, of

"the Difference of the Products of the opposite Coefficients taken from

the Orders that involve the two unknown Quantities" and, in the latter

case, "of all the Products that can be made of the three opposite Coefficients

taken from the Orders that involve the three unknown Quantities." (He

had earlier explained that he would call those quantities of the "same order

that are prefixt to the same unknown Quantities in the different Equations

. . . and those . . . that affect no unknown Quantity. But those are called

opposite Coefficients that are taken each from a different Equation, and

from a different Order of Coefficients.") The numerators in Maclaurin's
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patterns differ from the denominators merely in the substitution in the

former of the constant terms for the coefficients of the terms in the unknown
sought. Maclaurin told how to write out the solution similarly for four

equations in four unknowns, "prefixing contrary signs to those that involve

the Products of two opposite Coefficients." This statement shows that

Maclaurin had in mind a rule for alternations in sign akin to that now
ordinarily described in terms of the inversion principle.

Maclaurin's Treatise of Algebra enjoyed an even wider popularity than

his other works, with a sixth edition appearing at London in 1796. The
world seems nevertheless to have learned of the solution of simultaneous

equations by determinants more through Cramer than through Maclaurin,

mainly, we suspect, because of the superiority of Cramer's notation, in

which superscripts were attached to literal coefficients to facilitate the de-

termination of signs. Then, too, mathematics in Great Britain was on the

downgrade by the time Maclaurin's Algebra appeared, and Continental

mathematicians paid relatively little attention to British authors. Con-

versely, English mathematicians displayed an indifference to the work of

Continental analysts, thus accentuating the disparity in achievement after

Maclaurin's time.

Maclaurin took an active part in opposing "Bonnie Prince Charlie" when
the Young Pretender in 1745 marched against Edinburgh with an army of

Highlanders. The forty-seven-year-old professor of mathematics escaped

when the city finally was taken; but exposure in trench warfare and the

flight to York were too much for him, and he died in 1746. De Moivre

died eight years later in his eighty-eighth year, and British mathematics

thereafter suffered an eclipse.

TSCHIRNHAUS TRANSFORMATIONS

Continental Europe had not escaped controversy over the foundations of

the calculus, but there the effect was less felt than in England. As early as

in Leibniz's day objections to the new analysis had been raised by a Saxon

nobleman. Count Ehrenfried Walter von Tschirnhaus (1651-1708). His

name is still perpetuated in the "Tschirnhaus transformations" in algebra,

by which he hoped to find a general method for solving equations of higher

degree. A Tschirnhaus transformation of a polynomial equation f(x) =

is one of the form v = g(x)lh(x), where g and h are polynomials and h

does not vanish for a root of f(x) = 0. The transformations by which Car-

dan and Viete solved the cubic were special cases of such transformations.

In the Acta Eruditorum of 1683 Tschirnhaus (or Tschirnhausen) showed

that a polynomial of degree n > 2 can be reduced by his transforma-

tions to a form in which the coefficients of the terms of degrees n - 1 and

n - 2 are both zero; for the cubic he found a transformation of the form

y = x 2 + ax + b which reduced the general cubic to the form y
3 = K.
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Another such transformation reduced the quartic to y
4 + py

2 + q = 0,

thus adding new methods of solving the cubic and quartic.

Tschirnhaus hoped to develop similar algorithms that would reduce the

general equation of nth degree to a "pure" equation of «th degree con-

taining only the terms of degree n and degree zero. His transformations

constituted the most promising contribution to the solution of equations

during the seventeenth century; but his elimination of the second and third

coefficients by means of such transformations was far from adequate for

the solution of the quintic. Even when the Swedish mathematician E. S.

Bring (1736-1798) in 1786 showed that a Tschirnhaus transformation can

be found that reduces the general quintic to the form v
5 + py + q = 0,

the solution still remained elusive. In 1834 G. B. Jerrard (tl863), a Briton,

showed that a Tschirnhaus transformation can be found that will eliminate

the terms of degrees n - 1 and n - 2 and n - 3 from any polynomial

equation of degree n > 3; but the power of the method is limited by the

fact that equations of fifth and higher degree are not solvable algebraically.

Jerrard's belief that he could solve all algebraic equations was illusory.

Tschirnhaus was a man of wide acquaintance and interests. He had

studied at Leyden and for a while served in the Dutch army; later he spent

some time in England. He was for a time host to Georg Mohr, the "Danish

Euclid"; and he visited Paris several times, where in 1682 he was elected

to the Academie des Sciences. He also set up a glassworks in Italy to

further his experiments in light. He is noted as the discoverer of caustics

by reflection (catacaustics) which bear his name. It was his report on these

curves, the envelopes of a family of rays from a point source and reflected

in a curve, that resulted in his election to the Paris Academie; and interest

in caustics and similar families was continued by Leibniz, L'Hospital, Jacques

and Jean Bernoulli, and others. His name is attached also to the "Tschirn-

haus cubic" a = r cos3
0/3, a form generalized later by Maclaurin to r" =

a cos n6 for n rational. Sometimes Tschirnhaus is referred to as "the

discoverer of porcelain," for he was one of the men who helped to establish

the pottery works at Dresden for the Elector of Saxony in the early eight-

eenth century. Porcelain, however, had been produced in China long be-

fore it was made in Europe.

Tschirnhaus had been in touch with Oldenburg and Leibniz during the

formative years of the calculus, and he also had contributed many math-

ematical articles to the Acta Eruditorum after its establishment in 1682.

Some of Tschirnhaus' work, however, was hastily composed and published

prematurely, and the Bernoulli brothers and others pointed out errors. At

one point Tschirnhaus rejected the basic concepts of the calculus and of

infinite series, insisting that algebraic methods would suffice. In Holland

objections to the calculus of Leibniz had been raised in 1694-1696 by the

physician and geometer Bernard Nieuwentijt (1654-1718). In three sepa-

rate treatises published during these years at Amsterdam he admitted the

correctness of the results, but he criticized the vagueness of Newton's
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evanescent quantities and the lack of clear definition in Leibniz's differ-

entials of higher order.

SOLID ANALYTIC GEOMETRY

Leibniz in 1695 had defended himself in the Acta Eruditorum from his

"overprecise" critic, and in 1701 a more detailed refutation of Nieuwentijt

came from Switzerland from the pen of Jacob Hermann (1678-1733), a

devoted pupil of Jacques Bernoulli. Illustrating the mobility of mathe-

maticians during the early eighteenth century, Hermann taught mathe-

matics at the Universities of Padua, Frankfort on the Oder, and St. Pe-

tersburg before concluding his career at the University of Basel, his

hometown. In the Commentarii Academiae Petropolitanae for the years

1729-1733 Hermann made contributions to solid analytic geometry and to

polar coordinates in continuation of results made by the older Bernoulli

brothers. Where Jacques Bernoulli had rather hesitantly applied polar

coordinates to spirals, Hermann gave polar equations of algebraic curves

as well, together with equations of transformation from rectangular to polar

coordinates. Hermann's use of space coordinates also was bolder than that

of Jean Bernoulli, who as early as 1692 had first referred to the use of

coordinates as "Cartesian geometry." Bernoulli had rather timidly sug-

gested an extension of Cartesian geometry to three dimensions, but Her-

mann applied space coordinates effectively to planes and several types of

quadratic surfaces. He made a beginning in the use of direction angles by

showing that the sine of the angle that the plane az + by + ex = c
2 makes

with the ;ry-plane is given by Vb 2 + c
2/Va 2 + b 2 + c

2
.

MICHEL ROLLE AND PIERRE VARIGNON

In France, as well as in England, Germany, and Holland, there was a group

in the Academie des Sciences, especially shortly after 1700, who questioned

the validity of the new infinitesimal methods as presented by L'Hospital.

Among these was Michel Rolle (1652-1719), whose name is recalled in

connection with Rolle's theorem, published in 1691 in an obscure book on

geometry and algebra entitled Methode pour resoudre les egalitez: If a

function is differentiate in the interval from a to 6, and if f(a) = =

/(/?), then f'(x) = has at least one real root between a and b. The
theorem, now so important in the calculus, was given only incidentally by

Rolle in connection with an approximate solution of equations.

Rolle's attack on the calculus, which he described as a collection of

ingenious fallacies, was answered vigorously by Pierre Varignon (1654—

1722), Jean Bernoulli's "best friend in France" and one who also had been

corresponding with Leibniz. Bernoulli simply told Rolle that he did not
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understand the subject, but Varignon sought to clarify the situation by

showing indirectly that the infinitesimal methods could be reconciled with

the geometry of Euclid. Most of the group opposing the calculus were

admirers of the ancient synthetic geometry, and the controversy in the

Academie des Sciences reminds one of the then contemporary literary

controversy on "ancients vs. moderns."

Varignon, like the Bernoullis, had not at first expected to be a mathe-

matician, being intended for the church; but when he accidentally came
across a copy of Euclid's Elements, he changed his mind and held profes-

sorships in mathematics in Paris, becoming a member of the Academie.

In the Memoirs of the Academie des Sciences for 1704 he continued and

extended Jacques Bernoulli's use of polar coordinates, including an elab-

orate classification of spirals obtained from algebraic curves, such as the

parabolas and hyperbolas of Fermat, by interpreting the ordinate as a radius

vector and the abscissa as a vectorial arc. Varignon, one of the first French

scholars to appreciate the calculus, had prepared a commentary on L'Hos-

pital's Analyse, but this appeared only in 1725, after both men had died,

under the title Eclaircissemens sur Vanalyse des infiniments petits. Varignon

was a more careful writer than L'Hospital, and he warned that infinite

series were not to be used without investigation of the remainder term.

Hence, he had been rather worried about the attacks on the calculus, and

in 1701 he had written to Leibniz about his differences with Rolle:

The Abbe Galloys, who is really behind the whole thing, is spreading the

report here [in Paris] that you have explained that you mean by the "differ-

ential" or the "infinitely small" a very small, but nevertheless constant and

definite, quantity .... I, on the other hand, have called a thing infinitely

small, or the differential of a quantity, if that quantity is inexhaustible in

comparison with the thing.

The view that Varignon expressed here is far from clear, but at least he

recognized that a differential is a variable rather than a constant. Leibniz's

reply from Hanover in 1702 seeks to avoid metaphysical quarrels, but his

use of the phrase "incomparably small quantities" for differentials was

scarcely more satisfactory than Varignon's explanation. Varignon's defense

of the calculus nevertheless seems to have won Rolle's approval.

Rolle also had raised embarrassing questions about analytic geometry,

especially concerning the Cartesian graphical solution of equations, so

popular at the time. To solve /(jc) = 0, for example, one arbitrarily chose

a curve g(x, y) = and, on combining it with f(x) = 0, obtained a new

curve h(x, y) = the intersections of which with g(x, y) = furnish the

solutions of f(x) = 0. Rolle saw that extraneous solutions may be intro-

duced through this procedure. In his best-known work, the Traite d'algebre

of 1690, Rolle seems to have been first to state that there are n values for

the nth root of a number, but he was able to prove this only for n = 3,

for he died before the relevant works of Cotes and De Moivre appeared.
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Rolle was the most capable mathematician in the group from the Academie
des Sciences that criticized the calculus. When he was convinced by Var-

ignon of the essential soundness of the new analysis, opposition collapsed

and the subject entered a century of unimpeded and rapid development

on the Continent of Europe.

MATHEMATICS IN ITALY

While the Bernoullis and their associates were defending and espousing

developments in analytic geometry, the calculus, and probability, mathe-

matics in Italy flowed along more or less unobtrusively with some pref-

erence for geometry. No outstanding figure appeared there, although sev-

eral men left results important enough to be noted. Giovanni Ceva (1648-

1734) is recalled today for the theorem that bears his name: A necessary

and sufficient condition that lines from the vertices A, B, C of a triangle

to points X, y, Z on the opposite sides be concurrent is that

AZ- BX- CY
=

ZB • XC • YA
'':: +

This is closely related to the theorem of Menelaus which had been forgotten

but was rediscovered and published also by Ceva in 1678.

More closely related to the interests of the Bernoullis were the contri-

butions of Jacopo Riccati (1676-1754), who made Newton's work known
in Italy. Riccati is remembered especially for his extensive study of the

differential equation dyldx = A(x) + B(x)y + C(x)y 2
, now bearing his

name, although Jacques Bernoulli had earlier studied the special case

dyldx = x 2 + y
2

. Riccati may have known of this study, for Nicolas

Bernoulli taught at Padua, where Riccati had been a student of Angeli and

where Riccati came in contact with both Nicolaus Bernoulli and Hermann.

The work of the Bernoullis was well known in Italy. Count G. C. Fagnano

(1682-1766) followed up work on the lemniscate of Bernoulli to show,

around 1717-1718, that the rectification of this curve leads to an elliptic

integral, as does the arc length of the ellipse, although certain arcs are

rectifiable by elementary means. Fagnano's name still is attached to the

ellipse x 2 + 2y
2 = 1 which presents certain analogies to the equilateral

or rectangular hyperbola. The eccentricity of this ellipse, for example,

is l/\/2, whereas the eccentricity of the rectangular hyperbola is V2.

THE PARALLEL POSTULATE

Italian mathematicians during the eighteenth century made few, if any,

fundamental discoveries. The nearest approach to such a discovery un-

doubtedly was that of Girolamo Saccheri ( 1667-1733), a Jesuit who taught

at colleges of his order in Italy. In the very year in which he died, he
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published a book entitled Euclides ab omni naevo vindicatus (Euclid Cleared

of Every Flaw) in which he made an elaborate effort to prove the parallel

postulate. Saccheri had known of Nasir Eddin's efforts to prove the pos-

tulate almost half a millennium earlier, and he determined to apply the

method of reductio ad absurdwn to the problem. He began with a birec-

tangular isosceles qudrilateral, now known as a "Saccheri quadrilateral"

—

one having sides AD and BC equal to each other and both perpendicular

to the base AB. Without using the parallel postulate he easily showed that

the "summit" angles C and D are equal and that there are, then, just three

possibilities for these angles, described by Saccheri as (1) the hypothesis

of the acute angle, (2) the hypothesis of the right angle, and (3) the hy-

pothesis of the obtuse angle. By showing that hypotheses 1 and 3 lead to

absurdities, he thought by indirect reasoning to establish hypothesis 2 as

a necessary consequence of Euclid's postulates other than the parallel

postulate. Saccheri had little trouble disposing of hypothesis 3, for he

implicitly assumed a straight line to be infinitely long. From hypothesis 1

he derived theorem after theorem without encountering difficulty. Al-

though we know now that he was here building up a perfectly consistent

non-Euclidean geometry, Saccheri was so thoroughly imbued with the con-

viction that Euclid's was the only valid geometry that he permitted this

preconception to interfere with his logic. Where no contradiction existed,

he twisted his reasoning until he thought that hypothesis 1 led to an ab-

surdity. Hence, he lost credit for what would undoubtedly have been the

most significant discovery of the eighteenth century—non-Euclidean ge-

ometry. As it was, his name remained unsung for another century, for the

importance of his work was overlooked by those who followed him.

DIVERGENT SERIES

Saccheri had as his student another Italian mathematician who perhaps

deserves brief mention—Guido Grandi (1671-1742), whose name is re-

membered in the rose-petal curves so familiar in polar coordinates through

the equations r = a cos nO and r = a sin nO. These are known as "roses

of Grandi" in recognition of his study of them. Grandi also is recalled as

one who had corresponded with Leibniz on the question of whether or not

the sum of the alternating infinite series 1-1 + 1-1 + 1-1 + ---

can be taken to be i. This is suggested not only as the arithmetic mean of

the two values of the partial sums of the first n terms, but also as the value

when x = + 1 of the generating function 1/(1 + x) from which the series

1 - x + x 2 - x 3 + x 4 - • • • is obtained through division. In this

correspondence Grandi suggested that here one has a paradox comparable

to the mysteries of Christianity, for on grouping terms in pairs one reaches

the result

l-l + l-l + l-- = + + 0+- = £
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which parallels the creation of the world out of nothing. Continuing such un-

critical ideas to the integral of the generating function 1/(1 + jc), Leibniz and

Jean Bernoulli had corresponded on the nature of the logarithms of nega-

tive numbers. The series In (1 -h jc) = x - x 2
/2 + jcV3 - jc

4
/4 + • • \

however, is of little help here since the series diverges for jc < -1.

Leibniz argued that negative numbers do not have real logarithms; but

Bernoulli, believing the logarithmic curve to be symmetric with respect to

the function axis, held that In (-x) = In (jc), a view that seems to be

confirmed by the fact that dldx In (-x) = dldx In (+Jt) = 1/jc. The
question of the nature of logarithms of negative numbers was not defini-

tively resolved by either of the correspondents, but rather by Bernoulli's

most brilliant student. Jean Bernoulli had continued to exert an encour-

aging enthusiasm, through his correspondence, during the first half of the

eighteenth century, for he outlived his older brother by forty-three years.

Nevertheless, long before his death in 1748, as an octogenarian, his influ-

ence had become far less felt than that of his famous pupil, Euler, whose

contributions to analysis, including the logarithms of negative numbers,

were the essential core of mathematical developments during the middle

years of the eighteenth century.
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The Age of Euler

Algebra is generous; she often gives more than is asked of her.

D'Alembert

LIFE OF EULER

The history of mathematics during the modern period is unlike that of

antiquity or the medieval world in at least one respect: no national group

remained the leader for any prolonged period. In ancient times Greece

stood head and shoulders over all other peoples in mathematical achieve-

ment. During much of the Middle Ages the level of mathematics in the

Arabic world was higher than elsewhere. From the Renaissance to the

eighteenth century the center of mathematical activity had shifted repeat-

edly—from Germany to Italy to France to Holland to England. Had re-

ligious persecution not driven the Bernoulli family from Antwerp, Belgium

might have had its turn; but the family emigrated to Basel, and as a result

Switzerland was the birthplace of many of the leading figures in the math-

ematics of the early eighteenth century. We have already mentioned the

work of four of the mathematicians of the Bernoulli clan, as well as that

of Hermann, one of their Swiss proteges. But the most significant math-

ematician to come from Switzerland during that time—or any time—was

Leonhard Euler (1707-1783), who was born in Basel.

Euler's father was a clergyman who, like Jacques Bernoulli's father,

hoped that his son would enter the ministry. However, the young man

439
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studied under Jean Bernoulli and associated with his sons, Nicolaus and

Daniel, and through them discovered his vocation. The elder Euler also

was adept in mathematics, having been a pupil under Jacques Bernoulli,

and helped to instruct the son in the elements of the subject, despite his

hope that Leonhard would pursue a theological career. At all events, the

young man was broadly trained, for to the study of mathematics he added

theology, medicine, astronomy, physics, and oriental languages. This

breadth stood him in good stead when in 1727 he heard from Russia that

there was an opening in medicine in the St. Petersburg Academy, where

the young Bernoullis had gone as professors of mathematics. This impor-

tant institution had been established only a few years earlier by Catherine

I along lines laid down by her late husband, Peter the Great, with the

advice of Leibniz. On the recommendation of the Bernoullis, two of the

brightest luminaries in the early days of the Academy, Euler was called to

be a member of the section on medicine and physiology; but on the very

day that he arrived in Russia, Catherine died. The fledgling Academy very

nearly succumbed with her, because the new rulers showed less sympathy

for learned foreigners than had Peter and Catherine.

The Academy somehow managed to survive, and Euler, in 1730, found

himself in the chair of natural philosophy rather than in the medical section.

His friend Nicolaus Bernoulli had died, by drowning, in St. Petersburg the

year before Euler arrived, and in 1733 Daniel Bernoulli left Russia to

occupy the chair in mathematics at Basel. Thereupon Euler at the age of

twenty-six became the Academy's chief mathematician. He married and

settled down to pursue in earnest mathematical research and rear a family

that ultimately included thirteen children. The St. Petersburg Academy
had established a research journal, the Commentarii Academiae Scientia-

rum lmperialis Petropolitanae, and almost from the start Euler contributed

a spate of mathematical articles. The editors did not have to worry about

a shortage of material as long as the pen of Euler was busy. It was said

by the French academician Francois Arago that Euler could calculate with-

out any apparent effort, "just as men breathe, as eagles sustain themselves

in the air." As a result, Euler composed mathematical memoirs while

playing with his children. In 1735 he had lost the sight of his right

eye—through overwork, it is said—but this misfortune in no way dimin-

ished the rate of output of his research. He is supposed to have said that

his pencil seemed to surpass him in intelligence, so easily did memoirs

flow. He published more than 500 books and papers during his lifetime.

For almost half a century after his death, works by Euler continued to

appear in the publications of the St. Petersburg Academy. A bibliograph-

ical list of Euler's works, including posthumous items, contains 886 entries;

and it is estimated that his collected works, now bein^ published under

Swiss auspices, will run close to seventy-five substantial volumes. His math-

ematical research during his lifetime averaged about 800 pages a year; no

mathematician has ever exceeded the output of this man whom Arago

characterized as "Analysis Incarnate.
M



NOTATION 441

Euler early acquired an international reputation; even before leaving

Basel he had received an honorable mention from the Parisian Academie
des Sciences for an essay on the masting of ships. In later years he frequently

entered essays in the contests set by the Academie, and twelve times he

won the coveted biennial prize. The topics ranged widely, and on one

occasion, in 1724, Euler snared with Maclaurin and Daniel Bernoulli a

prize for an essay on the tides. (The Paris prize was won twice by Jean

Bernoulli and ten times by Daniel Bernoulli.) Euler was never guilty of

false pride, and he wrote works on all levels, including textbook material

for use in the Russian schools. He generally wrote in Latin, and sometimes

in French, although German was his native tongue. Euler had unusual

language facility, as one should expect of a person with a Swiss background.

This was fortunate, for one of the distinguishing marks of eighteenth-

century mathematics was the readiness with which scholars moved from

one country to another, and here Euler encountered no language problems.

In 1741 Euler was invited by Frederick the Great to join the Berlin Acad-

emy, and the invitation was accepted. (Jean and Daniel Bernoulli also were

invited from Switzerland, but they declined.) Euler spent twenty-five years

at Frederick's court, but during this period he continued to receive a pen-

sion from Russia, and he submitted numerous papers to the St. Petersburg

Academy, as well as to the Prussian Academy.

Euler's stay at Berlin was not entirely happy, for Frederick preferred a

scholar who scintillated, as did Voltaire. The monarch, who valued phi-

losophers above geometers, referred to the unsophisticated Euler as a

"mathematical cyclops," and relationships at the court became intolerable

for Euler. Catherine the Great was only too eager to have the prolific

mathematician resume his place in the St. Petersburg Academy, and in

1766 Euler returned to Russia. During this year Euler learned that he was

losing by cataract the sight of his remaining eye, and he prepared for

ultimate blindness by practicing writing with chalk on a large slate and by

dictating to his children. An operation was performed in 1771, and for a

few days Euler saw once more; but success was short-lived and Euler spent

almost all of the last seventeen years of his life in total darkness. Even

this tragedy failed to stem the flood of his research and publication, which

continued unabated until in 1783, at the age of seventy-six, he suddenly

died while sipping tea and enjoying the company of one of his grandchil-

dren.

NOTATION

From 1727 to 1783 the pen of Euler had been busy adding to knowledge

in virtually every branch of pure and applied mathematics, from the most

elementary to the most advanced. Moreover, in most respects Euler wrote

in the language and notations we use today, for no other individual was

so largely responsible for the form of college-level mathematics today as
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was Euler, the most successful notation builder of all times. Upon his

arrival in Russia in 1727, he had been engaged in experiments in the firing

of cannon; and in a manuscript account of his results, written probably in

1727 or 1728, Euler had used the letter e more than a dozen times to

represent the base of the system of natural logarithms. The concept behind

this number had been well known ever since the invention of logarithms

more than a century before; yet no standard notation for it had become
common. In a letter to Goldbach in 1731 Euler again used his letter e for

"that number whose hyperbolic logarithm = 1"; it appeared in print for

the first time in Eulefs Mechanica of 1736, a book in which Newtonian

dynamics is presented for the first time in analytic form. This notation,

suggested perhaps by the first letter of the word "exponential," soon be-

came standard. The definitive use of the Greek letter n for the ratio of

circumference to diameter in a circle also is largely due to Euler, although

a prior occurrence is found in 1706, the year before Euler was born—in

the Synopsis palmariorum matheseos, or A New Introduction to the Math-

ematics, by William Jones (1675-1749). It was Euler's adoption of the

symbol n in 1737, and later in his many popular textbooks, that made it

widely known and used. The symbol / for \^T is another notation first

used by Euler, although in this case the adoption came near the end of his

life, in 1777. This use came so late probably because in his earlier works

he had used / to represent an "infinite number," somewhat as Wallis had

used 3c. Thus Euler wrote e
x = (1 + xlif where we should prefer e

x =

lim^x(l -»- xlh) h
. In fact, although Euler used i for V^T in a manuscript

dated 1777, this was published only in 1794. It was the adoption of the

symbol by Gauss in his classic Disquisitiones arithmeticae of 1801 that

resulted in its secure place in mathematical notations. The three symbols

e, n, and /, for which Euler was in large measure responsible, can be

combined with the two most important integers, and 1, in the celebrated

equality e™ -(-1=0, which contains the five most significant numbers (as

well as the most important relation and the most important operation) in

all of mathematics. The equivalent of this equality, in generalized form,

had been included by Euler in 1748 in his best-known textbook, Introductio

in analysin infinitorum; but the name of Euler today is not generally at-

tached to any one of the symbols in this relationship. The so-called "Eu-

lerian constant," often represented by the Greek letter y, is a sixth

important mathematical constant, the number defined as lim„^ x (l + i +

J + • • • + 1/rt - In h), a well-known number that has been calculated

to hundreds of decimal places, of which the first ten are 0.5772156649.

It is not only in connection with designations for important numbers

that today we use notations introduced by Euler. In geometry, algebra,

trigonometry, and analysis we find ubiquitous use of Eulerian symbols,

terminology, and ideas. The use of the small letters a, b y and c for the

sides of a triangle and of the corresponding capitals A, B, and C for the

opposite angles stems from Euler, as does the application of the letters r,
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R, and s for the radius of the inscribed and circumscribed circles and the

semiperimeter of the triangle respectively. The beautiful formula 4rRs =

abc relating the six lengths also is one of the many elementary results

attributed to him, although equivalents of this result are implied by ancient

geometry. The designation Ix for logarithm of jc, the use of the now familiar

2 to indicate a summation, and, perhaps most important of all, the notation

f(x) for a function of x (used in the Petersburg Commentaries for 1734-

1735) are other Eulerian notations related to ours. Our notations today

are what they are more on account of Euler than of any other mathema-
tician in history.

FOUNDATION OF ANALYSIS

In evaluating developments in mathematics we must always bear in mind
that the ideas behind the notations are by far the better half; in this respect

also the work of Euler was epoch-making. It may fairly be said that Euler

did for the infinite analysis of Newton and Leibniz what Euclid had done

for the geometry of Eudoxus and Theaetetus, or what Viete had done for

the algebra of al-Khwarizmi and Cardan. Euler took the differential cal-

culus and the method of fluxions and made them part of a more general

branch of mathematics which ever since has been known as "analysis"—the

study of infinite processes. If the ancient Elements was the cornerstone of

geometry and the medieval Al-jabr wa'l muqdbalah was the foundation

stone of algebra, then Euler's Introductio in analysin infinitorum can be

thought of as the keystone of analysis. This important two-volume treatise

of 1748 served as a fountainhead for the burgeoning developments in math-

ematics throughout the second half of the eighteenth century. From this

time onward the idea of "function" became fundamental in analysis. It

had been adumbrated in the medieval latitude of forms, and it had been

implicit in the analytic geometry of Fermat and Descartes, as well as in

the calculus of Newton and Leibniz. The fourth paragraph of the Intro-

ductio defines function of a variable quantity as "any analytic expression

whatsoever made up from that variable quantity and from numbers or

constant quantities." (Sometimes Euler thought of a function less formally

and more generally as the relationship between the two coordinates of

points on a curve drawn freehand in a plane.) Today such a definition is

unacceptable, for it fails to explain what an "analytic expression" is. Euler

presumably had in mind primarily the algebraic functions and the elemen-

tary transcendental functions; the strictly analytic treatment of the trigon-

ometric functions was, in fact, in large measure established by the

Introductio. The sine, for example, was no longer a line segment; it was

simply a number or a ratio—the ordinate of a point on a unit circle, or

the number defined by the series z - z3
/3! + z5

/5! - • • • for some value
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oi z. From the infinite series for e\ sin jc, and cos x it was a short step to

the "Euler identities"

^V^Tx _ e
-y/^ix

e
^Z~\x _|_ e

-^/^~\x

sin x =

cos x =

and

e
s^~~u = cos x +

relationships that had in essence been known to Cotes and De Moivre but

which in Euler's hands became familiar tools of analysis.

Euler had used imaginary exponents in 1740 in a letter to Jean Bernoulli

in which he wrote e
x
^~

x + e~ xX/TT = 2 cos jc; the familiar Euler identities

appeared in the influential Introductio of 1748. The elementary tran-

scendental functions—trigonometric, logarithmic, inverse trigonometric,

and exponential—were written and thought of in much the form in which

they are treated today. The abbreviations sin., cos., tang., cot., sec, and

cosec. that were used by Euler in the Latin Introductio are closer to the

present English forms than are the corresponding abbreviations in the

Romance languages. Moreover, Euler was among the first to treat loga-

rithms as exponents, in the manner now so familiar.

INFINITE SERIES

The first volume of the Introductio is concerned from start to finish with

infinite processes—infinite products and infinite continued fractions, as well

as innumerable infinite series. In this respect the work is the natural gen-

eralization of the views of Newton, Leibniz, and the Bernoullis, all of

whom were fond of infinite series. However, Euler was surprisingly un-

restrained in his use of such series. Although upon occasion he warned

against the risk in working with divergent series, he himself used the bi-

nomial series 1/(1 - x) = 1 + x + x1 + jr
3 + • • for values of x ^ 1.

In fact, by combining the two series xl(\ - x) = x + x 2 + x} + • • • and

x/(x - 1) m 1 + 1/jr + 1/jr + • • • Euler concluded that • • • \lx 2 +
\lx + 1 + x + x 2 + jc

3 + • • • = 0.

Despite his hardihood, through manipulations of infinite series Euler

achieved results that had baffled his predecessors. Among these was the

summation of the reciprocals of the perfect squares: l/l
2 + 1/2 2

-I- 1/3 2

+ 1/4 2 + • • •. Oldenburg, in a letter to Leibniz in 1673, had asked for

the sum of this series, but Leibniz failed to answer; in 1689 Jacques Ber-

noulli had admitted his own inability to find the sum. Euler began with
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the familiar series sin z = z - z3
/3! -I- z

5
/5! - z

7
/7! + • • -. Then, sin z

= can be thought of as the infinite polynomial equation = 1- z2
/3!

+ z
4
/5! - z6

/7! + • • • (obtained by dividing through by z), or, if z2
is

replaced by w, as the equation 0=1- vv/3! -I- w2
/5! - w3

/7! + • • •.

From the theory of algebraic equations it is known, if the constant term

is one, that the sum of the reciprocals of the roots is the negative of the

coefficient of the linear term, in this case 1/3!. Moreover, the roots of the

equation in z are known to be n, In, 3n, and so on; hence, the roots of

the equation in w are 7r
2

, (2rc)
2

, (3^)
2

, and so on. Therefore,

1 j_ J_ _1_ ** i i 1
6
"

7T
2
+

(2tt)
2
+

(3;r)
2
+

"
" °

r
6
"

l
2
+

22
+

3
2
+

'
" '

Through this carefree application to polynomials of infinite degree of al-

gebraic rules valid for the finite case Euler had achieved a result that had

baffled the older Bernoulli brothers; Euler in later years repeatedly made
discoveries in similar fashion. When Jean Bernoulli learned of Euler's

triumph, he wrote:

And so is satisfied the burning desire of my brother who, realizing that the

investigation of the sum was more difficult than anyone would have thought,

openly confessed that all his zeal had been mocked. If only my brother were

alive now.

Euler's summation of the reciprocals of the squares of the integers seems

to date from about 1736, and it is likely that it was to Daniel Bernoulli

that he promptly communicated the result. His interest in such series always

was strong, and in later years he published the sums of the reciprocals of

other powers of the integers. Using the cosine series instead of the sine

series, Euler similarly found the result

t. I I I
8
"

l
2
+

32
+

5
2
+

'
" '

hence the corollary summation

it I I I I
12

"
l
2 22

+
32 42

+
'

*

'

Many of these results appeared also in the Introductio of 1748, including

the sums of reciprocals of even powers from n = 2 through n = 26. The

series of reciprocals of odd powers are so intractable that it still is not

known whether or not the sum of the reciprocals of the cubes of the positive

integers is a rational multiple of 7r
3

, whereas Euler knew that for the 26th

power the sum of the reciprocals is

224
• 76977927tt26

1 • 2 • 3 • • • 27

'
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CONVERGENT AND DIVERGENT SERIES

Euler's imaginative treatment of series led him to some striking relation-

ships between analysis and the theory of numbers. He showed, in a rela-

tively easy proof, that the divergence of the harmonic series implies the

Euclidean theorem on the infinitude of primes. If there were only K primes,

that is, /?,, p 2 , . . . , pK . then every number n would be of the form n =

PVPr • • • pX*'- Let a De the greatest of the exponents a, for the number n

and form the product

1 ! l\/
t 1 1 1

1+ — + — +•••+— 1+ — + — +••• —
Pi P\ P

a
\)\ Pi Pi Pi

1 1 1— + — + • 1+
Pk Pk P)

3-1 +

In this product the terms J, J, . . . , J are bound to appear, as well as

others, hence the product P cannot be smaller than J + i + •••- + i.

From the formula for the sum of a geometric progression we see that the

factors in the product are respectively smaller than

1 1 1

1 - llp{ 1 - \lp2 1 - \lp{

and so on. Hence,

111 1 P\ Pi Pt> Pk

1 2 3 n p, - 1 p2
- 1 p3

- 1 p K - 1

for all values of n. Therefore, if K, the number of primes, were finite, the

harmonic series would necessarily be convergent. In a considerably more
involved analysis Euler showed that the infinite series made up of the

reciprocals of the primes is itself divergent, the sum Sn being asymptotic

to In In n for increasing values of the integer n.

Euler delighted in relationships between the theory of numbers and his

rough and ready manipulations of infinite series. Heedless of the dangers

lurking in alternating series, he found such results as7r= 1 +£ + i +

1-4 + 4 + I + 4 + 4-A + **". Here the sign of a term, after the

first two, is determined as follows: If the denominator is a prime of form

4m -I- 1, a minus sign is used; if the denominator is a prime of form 4m
- 1, a plus sign is used; and if the denominator is a composite number,

the sign indicated by the product of the signs of its components is used.

Operations on infinite series were handled with great abandon. From the

result In 1/(1 - jr) » x + jt/2 + x3/3 + jc
4/4 + • • • Euler concluded

that ln»=l+i + i + i + »*-
>
hence that 1/ln » « « 1 - £ - J

-£ + £-J+A-'-, where the last series is made up of all the

reciprocals of primes (in which case the terms are taken as negative) and
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reciprocals of products of two distinct primes (in which case the terms are

positive). The Introductio is replete with such series and with related infinite

products, such as - i • f • I • f • tf • it • if • H • - • and « == f . f . f .

£ ' U ' U • U ' is ' ' '. The symbol o° is freely regarded as denoting the

reciprocal of the number 0.

LIFE OF D'ALEMBERT

To the subject of logarithms Euler contributed not only the definition in

terms of exponents that we use today, but also the correct view with respect

to the logarithms of negative numbers. The notion that log( - x) = log( + x)

was upheld by the leading mathematician in France during the mid-

eighteenth century, who died in the same year as Euler: Jean Le Rond
d'Alembert (1717-1783). D'Alembert's cognomen was taken from the

church of St. Jean Baptiste le Rond, near Notre-Dame de Paris, on the

steps of which he had been abandoned as an infant. His mother was later

discovered to be the aristocratic and vivacious Madame de Tencin, an

eloquent writer and sister of a cardinal, and his father was the Chevalier

Destouches, an artillery general. The foundling was brought up by the wife

of a glazier; in later years when he became celebrated as a mathematician

d'Alembert spurned the overtures of his mother, preferring to be recog-

nized as the son of his impoverished foster parents. The surname d'Alem-

bert was adopted, for reasons not known, when he was a young man.

Like Euler and the Bernoullis, d'Alembert, too, was broadly edu-

cated—in law, medicine, science and mathematics—a background that

served him well when, from 1751 to 1772, he collaborated with Denis

Diderot (1713-1784) in the twenty-eight volumes of the celebrated En-

cyclopedic or Dictionnaire raisonne dcs sciences, des arts, et des metiers.

For the Encyclopedic d'Alembert wrote the much-admired "Discours pre-

liminaire," as well as most of the mathematical and scientific articles. The
Encyclopedic, despite d'Alembert's Jansenist education, showed strong

tendencies toward the secularization of learning so characteristic of the

Enlightenment, and it met with strong attack from Jesuits. Through his

defense of the project d'Alembert became known as "the fox of the En-

cyclopedia" and incidentally played a significant role in the expulsion of

the Jesuit order from France. As a result of his activities, and of his friend-

ships with Voltaire and others among the "philosophies," he was one of

those who paved the way for the French Revolution. At the early age of

twenty-four he had been elected to the Academie des Sciences, and in

1754 he became its secretaire perpetuel, and as such perhaps the most

influential scientist in France. Toward the close of Euler 's residency in

Berlin, Frederick the Great of Prussia invited d'Alembert to head the

Prussian Academy; d'Alembert declined, arguing that it would be most
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inappropriate to place any contemporary in a position of academic supe-

riority over the great Euler. D'Alembert was invited also by Catherine the

Great of Russia to serve as tutor to her son, but this offer he likewise

declined, despite the princely salary he was offered.

While Euler was busy with mathematical research in Berlin, d'Alembert

was active in Paris; until 1757, when controversy over the problem of

vibrating strings brought estrangement, correspondence between the two

was frequent and cordial, for their interests were much the same. State-

ments such as log( - 1 )

2 = log( + l)
2

,
equivalent to 2 log( - 1) = 2 log( -I- 1)

or to log(-l) = log( + l), had puzzled the best mathematicians of the

earlier part of the eighteenth century, but by 1747 Euler was able to write

to d'Alembert explaining correctly the status of logarithms of negative

numbers. The result should really have been apparent to Jean Bernoulli

and others who were more or less familiar with the formula & = cos +
i sin even before Euler clearly enunciated it. This identity holds for all

angles (in radian measure); in particular it leads, for = rc, to e*
n = - 1,

that is, to the statement that ln( - 1) = ni. Logarithms of negative numbers,

therefore, are not real, as Jean Bernoulli and d'Alembert had thought,

but pure imaginaries.

Euler called attention also to another property of logarithms that became

apparent from his identity. Any number, positive or negative, has not one

logarithm, but infinitely many. From the relationship e
i(6±2Kn) = cos 6 +

/ sin 0, one sees that if In a = c, then c ± 2Kni are also natural logarithms

of a. Moreover, from Euler's identity one sees that logarithms of complex

numbers, real or imaginary, also are complex numbers. If, for example,

one wishes a natural logarithm of a + bi, one writes a + bi = e
x+iy

. One
obtains e

x
• e

iy = a + bi = e*(cos y + i sin y). The solution of the

simultaneous equations e
x cos y = a and e

x
sin y = b (obtained by equating

real and imaginary parts of the complex equation) yields the values y -

arctan bla and x = \n(b esc arctan bid) [or x = \n(a sec arctan b/a)].

THE EULER IDENTITIES

D'Alembert had spent much of his time and effort attempting to prove the

theorem conjectured by Girard and known today as the fundamental theo-

rem of algebra—that every polynomial equation /(jc) = 0, having complex

coefficients and of degree n > 1, has at least one complex root. So earnest

were his efforts to prove the theorem (especially in a prize essay on "The

General Cause of Winds" published in the Memoirs of the Berlin Academy
for 1746) that in France today the theorem is widely known as the theorem

of d'Alembert. If we think of the solution of such a polynomial equation

as a generalization of the explicit algebraic operations, we can say that in

essence d'Alembert wished to show that the result of any algebraic oper-
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ation performed on a complex number is in turn a complex number. In a

sense, then, Euler did for elementary transcendental operations what d'A-

lembert had tried to do for algebraic operations. Through the Euler iden-

tities it is not difficult to find, for example, such quantities as sin(l + i)

or arccos i, expressed in standard complex-number form. In the former

case one writes

sin(l + i)

li

from which one finds that sin(l -I- i) = a + bi, where a = [(1 4- e
2

)

sin l]lle and b = [(e
2 - 1) cos \]lle. In the latter case one writes

arccos i = x -f iy or i = cos(jc + iy) or

e i(x + iy) + e -i(x + iy)
I + e2y (1 - e2y )

i
= = — cos x + i

— sin x.
2 le y 2e y

Equating real and imaginary parts, one sees that cos x = and x =

±n/2. Hence,

1 - e2y /-— = ±1 or ey - +1 ± V2.
2e>

Inasmuch as both x and y must be real, we see that x = ±7r/2 and y =

ln^l -l- V2). In a similar manner one can carry out other elementary

transcendental operations on complex numbers, the results being complex

numbers. That is, the work of Euler showed that the system of complex

numbers is closed under the elementary transcendental operations, whereas

d'Alembert had suggested that the system of complex numbers is closed

under algebraic operations.

Euler similarly showed that, surprisingly, an imaginary power of an

imaginary number can be a real number. In a letter to Christian Goldbach

(1690-1764) in 1746 he gave the remarkable result t = e~ nl2
. From e'

e =
cos + i sin we have, for = nil, e

nil2 = i; hence,

There are, in fact, infinitely many real values for /', as Euler later showed,

given by e~ nl2±2Kn
, where K is an integer. In the Memoirs of the Berlin

Academy for 1749 Euler showed that any complex power of a complex

number, (a + bi)
c+di

, can be written as a complex number p + qi. This

aspect of Euler's work was overlooked, and the real values of /' had to be

rediscovered in the nineteenth century.

D'Alembert likewise considered the expression {a + bi)
c+di

, and at

one point he took the base a + bi in this combination to be a variable

and differentiated the function, an anticipation of the theory of complex

variables that was developed in the nineteenth century. D'Alembert as-

sumed that a calculus of complex variables would follow a pattern similar
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to that for algebraic combinations of real variables, so that the expression

f(x + iy)d(x + iy) would always be expressible in the form dp + i dq in

which real and imaginary parts are separated, a result that he was unable

to prove. In a paper of 1752 on the resistance of fluids he arrived at

the so-called Cauchy-Riemann equations that loom so large in complex

analysis. If the analytic function f(x + iy) = u + iv, then f(x - iy) =

u - iv, du/dx = dv/dy, and du/dy = -dv/dx.

D'ALEMBERT AND LIMITS

D'Alembert was an unusual combination of caution and boldness in his

view of mathematical developments. He regarded Euler's use of divergent

series as open to suspicion (1768), despite the successes achieved. More-

over, d'Alembert objected to the Eulerian assumption that differentials

are symbols for quantities that are zero and yet qualitatively different.

Inasmuch as Euler restricted himself to well-behaved functions, he had not

become involved in the subtle difficulties that later were to make his naive

position untenable. Meanwhile, d'Alembert believed that the ''true me-

taphysics" of the calculus was to be found in the idea of a limit. In the

article on the "differential" that he wrote for the Encyclopedic, d'Alembert

stated that "the differentiation of equations consists simply in finding the

limits of the ratio of finite differences of two variables included in the

equation." Opposing the views of Leibniz and Euler, d'Alembert insisted

that "a quantity is something or nothing; if it is something, it has not yet

vanished; if it is nothing, it has literally vanished. The supposition that

there is an intermediate state between these two is a chimera." This view

would rule out the vague notion of differentials as infinitely small magni-

tudes, and d'Alembert held that the differential notation is merely a con-

venient manner of speaking that depends for its justification on the

language of limits. His Encyclopedic article on the differential referred to

Newton's De quadratura curvarum, but d'Alembert interpreted Newton's

phrase "prime and ultimate ratio" as a limit rather than as a first or last

ratio of two quantities just springing into being. In the article on "Limit"

which he composed for the Encyclopedic, he called one quantity the limit

of a second (variable) quantity if the second can approach the first nearer

than by any given quantity (without actually coinciding with it). The im-

precision in this definition was removed in the works of nineteenth-century

mathematicians.

Euler had thought of an infinitely large quantity as the reciprocal of an

infinitely small magnitude; but d'Alembert, having outlawed the infinites-

imal, defined the indefinitely large in terms of limits. A line, for example,

is said to be infinite with respect to another if their ratio is greater than

any given number. He went on to define indefinitely large quantities of
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higher order in a manner similar to that used by mathematicians today in

speaking of orders of infinity with respect to functions. D'Alembert denied

the existence of the actually infinite, for he was thinking of geometric

magnitudes rather than of the theory of aggregates proposed a century

later. D'Alembert's formulation of the limit concept lacked the clear-cut

phraseology necessary to make it acceptable to his contemporaries. Con-

tinental textbook writers of the later eighteenth century, therefore, gen-

erally continued to use the language and views of Leibniz and Euler rather

than those of d'Alembert.

DIFFERENTIAL EQUATIONS

D'Alembert, a man of wide interests, today is perhaps best known for

what is referred to as d'Alembert's principle—the internal actions and

reactions of a system of rigid bodies in motion are in equilibrium. This

appeared in 1743 in his celebrated treatise Traite de dynamique. Other

treatises by d'Alembert concerned music, the three-body problem, the

precession of the equinoxes, motion in resisting media, and lunar pertur-

bations. In studying the problem of vibrating strings he was led to the

partial differential equation d
2u/dt2 - d

2u/dx 2
, for which in 1747 he gave

(in the Memoirs of the Berlin Academy) the solution u = f(x + t) +
g(x - r), where /and g are arbitrary functions. The theory of ordinary

differential equations had been well developed before this time, but the

more difficult subject of the solution of partial differential equations was

then a field for pioneers. Euler made further progress in this branch of

analysis by giving for the more general equation d
2uldt2 = a2

(d
2u/dx 2

) the

solution u = f(x + at) + g(x - at).

The solution of ordinary differential equations had in a sense begun as

soon as the inverse relationship between differentiation and integration

had been recognized. But most differential equations cannot easily be

reduced to simple quadratures, requiring instead ingenious substitutions

or algorithms for their solution. One of the achievements of the eighteenth

century was the discovery of groups of differential equations that are solv-

able by means of fairly simple devices. The Bernoulli equations, noted in

the preceding chapter, form one such group. Another type was identified

by the precocious mathematician Alexis Claude Clairaut (1713-1765) and

is named for him—the family of equations of the form y.= xy' + f(y').
In this case the substitution/? = v', followed by differentiation of the terms

of the equation with respect to x, will lead to an equation in x, p, and

dpldx which is of first order and solvable, the general solution being v =

ex + /(c). The Clairaut differential equation has also a singular solution,

among the first of this type to be found, Taylor having earlier given one

such solution. D'Alembert found the singular solution of the somewhat
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more general type of differential equation y = xf(y') + g(y'), hence this

is known as d'Alembert's equation.

THE CLAIRAUTS

Alexis Claude Clairaut was one of the most precocious of mathematicians,

outdoing even Blaise Pascal in this respect. At the age of ten he was reading

the textbooks of L/Hospital on conies and the calculus; when he was thir-

teen he read a paper on geometry to the Academie des Sciences; and when
only eighteen he was admitted, through special dispensation with respect

to age requirements, to membership in the Academie. (D'Alembert was

elected to the Academie at the age of twenty-four.) In the year of his

election Clairaut published a celebrated treatise, Recherches sur les courbes

a double courbure, the substance of which had been presented to the

Academie two years earlier. Like the Geometrie of Descartes, the Re-

cherches of Clairaut appeared without the name of the author on the title

page, although in this case, too, the authorship was generally known. The
treatise of Clairaut carried out for space curves the program that Descartes

had suggested almost a century before—their study through projections

on two coordinate planes. It was, in fact, this method that suggested the

name given by Clairaut to gauche or twisted curves inasmuch as their

curvature is determined by the curvatures of the two projections. In the

Recherches numerous space curves are determined through intersections

of various surfaces, distance formulas for two and three dimensions are

explicitly given, an intercept form of the plane is included, and tangent

lines to space curves are found. This book by the teenage Clairaut con-

stitutes the first treatise on solid analytic geometry. Clairaut, one of a

family of twenty children only one of whom survived the father, was im-

portant for other contributions to analysis. He observed that the mixed

second-order partial derivatives/^, and/,, of a function /(jc, y) are in general

equal (we know now that this holds if these derivatives are continuous at

the point in question), and he used this fact in the test M v
Nx , familiar

in differential equations, for exactness of the differential expression

M(x, y)dx + N(x, y)dy. In celebrated works on applied mathematics, such

as Theorie de la figure de la terre (1743) and Theorie de la lune (1752), he

made use of potential theory. His textbooks, Elements de geometrie (1741)

and Elements d'algebre (1746), the former composed for the Marquise du

Chatelet, were part of a plan, reminiscent of those of our own day, to

improve the teaching of mathematics.

Incidentally, Clairaut had a younger brother who rivaled him in pre-

cocity, for at the age of fifteen the brother, known to history only as "le

cadet Clairaut," published in 1731 (the same year as that in which the

older brother's Recherches had appeared) a book on calculus entitled Traite
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de quadratures circulaires et hyperboliques. This virtually unknown genius

died tragically of smallpox during the next year. The father of the two

Clairaut brothers was himself a capable mathematician, but today he is

recalled primarily through the work of his sons, two of the most precocious

mathematicians of all times.

THE RICCATIS

One of the interesting differential equations of the eighteenth century is

that called by d'Alembert the Riccati equation: y' = p(x)y2 + q(x)y +
r(x). This equation had been studied by a number of mathematicians,

including several of the Bernoullis, as well as by Jacopo Riccati (1676-

1754) and his son Vincenzo (1707-1775). But it was Euler who first called

attention to the fact that if a particular solution v = f(x) is known, then

the substitution y - u + \lz converts the Riccati equation into a linear

differential equation in z, so that a general solution can be found. In the

Petersburg Commentarii for 1760-1763 Euler also pointed out that if two

particular solutions are known, then a general solution is expressible in

terms of a simple quadrature.

Euler was, without any doubt, the individual most responsible for meth-

ods used today in introductory college courses in the solution of differential

equations, and even many of the specific problems appearing in current

textbooks can be traced back to the great treatises Euler wrote on the

calculus

—

Institutiones calculi differentialis (Petersburg, 1755) and Institu-

tiones calculi integralis (Petersburg, 1768-1770, 3 vols.). The use of inte-

grating factors, the systematic methods of solving linear equations of higher

order with constant coefficients, and the distinction between linear ho-

mogeneous and nonhomogeneous equations, and between particular and

general solutions, are among his contributions to the subject, although on

some points credit must be shared with others. Daniel Bernoulli, for ex-

ample, had solved the equation y" + Ky = f(x) independently of Euler

and at about the same time in 1739-1740; and d'Alembert as well as Euler

had general methods, about 1747, for solving complete linear equations.

To some extent our ubiquitous indebtedness to Euler in the field of dif-

ferential equations is betokened in the fact that a type of linear equation

with variable coefficients bears his name. The Euler equation x n
y

{n) +
a xX

n-\y{n\) + . . . + a^y(o) = f^ (Wnere exponents included within pa-

rentheses indicate orders of differentiation) is easily reduced, through the

substitution x = e', to a linear equation having constant coefficients.

Euler's four volumes of Institutiones contain by far the most exhaustive

treatment of the calculus up to that time. Besides the elements of the

subject and the solution of differential equations, we find such things as

"Euler's theorem on homogeneous functions," namely, if f(x, v) is ho-
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mogeneous of order n, then xfx + y/v
= nf\ a development of the calculus

of finite differences; standard forms for elliptic integrals (in which field

d'Alembert also was active); and the theory of the beta and gamma (or fac-

torial) functions based on the "Eulerian integrals" Y(p) = /(

* x p
~

[ e~ x dx

and B(m, n) = fi jc
m "

1

(l - *)""' dx and related through such formulas

as B(m, n) = r(m)V(rt)/r(m + n). Wallis had anticipated some of the

properties of these integrals, but through the organization of Euler these

higher transcendental functions became an essential part of advanced cal-

culus and of applied mathematics. About a century later the integral in

the beta function was generalized by Pafnuti L. Tchebycheff (1821-1894),

who demonstrated that the 'Tchebycheff integral" / xp{\ - x)q dx is a

higher transcendental function unless p or q or p + q is an integer.

PROBABILITY

One of the characteristics of the Age of Enlightenment was the tendency

to apply to all aspects of society the quantitative methods that had been

so successful in the physical sciences. In this respect it is not surprising to

find both Euler and d'Alembert writing on problems of life expectancy,

the value of an annuity, lotteries, and other aspects of social science.

Probability, after all, had been among the chief interests of Euler's friends

Daniel and Nicolaus Bernoulli. According to Euler's calculations, pub-

lished in the Memoirs of the Berlin Academy for 1751, a payment of 350

crowns should purchase for a newborn infant a deferred annuity of 100

crowns to commence at age twenty and to continue for life. Among the

lottery problems that he published in the Berlin Academy Memoirs for

1765, the following is one of the simplest. Let n tickets be numbered

consecutively from 1 to n and let three tickets be drawn at random. Then,

the probability that a sequence of three consecutive numbers will be

drawn is

2 • 3

n(n - 1)'

the probability that two consecutive numbers (but not three) will be

drawn is

2 • 3(* - 3)

n(n - 1) '

and the probability that no consecutive numbers will be drawn is

(n ~ 3)(n - 4)

n(n - 1) •

No new concepts are required for the solution, but, as we might anticipate,
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Euler contributed to notations here as he had elsewhere. He wrote that

he found it useful to represent the expression

PJP ~ 1) • - - (p ~ q + 1)

1 • 2 • • • a

by

&]•

a form essentially equivalent to the modern notation

P

q

D'Alembert, unlike Euler, is noted, in the history of probability, chiefly

for his opposition to opinions generally received. For example, in the article

on "Croix ou Pile" published in 1754 in the Encyclopedic d'Alembert

suggests that the probability of throwing head in the course of two throws

with a coin should be §, rather than the f commonly accepted, inasmuch

as the game is finished if head appears on the first throw. A Geneva
mathematician pointed out to d'Alembert that his three cases (H, TH, TT)
are not equally likely, but d'Alembert remained skeptical of the common
argument. In the article above he had referred to the status of the Pe-

tersburg paradox as a scandal; evidently this encouraged him to look upon

the first principles of probability as unsound. In view of this situation he

suggested that where possible probabilities should be determined by ex-

periment. In this he had the approval of the Comte de Buffon (1707-1788),

author of a celebrated multivolume Histoire naturelle.

To scientists in general Buffon is known as an iconoclast who proposed

an estimate of about 75,000 years for the age of the earth, instead of the

commonly accepted figure of approximately 6000 years. To mathemati-

cians, Buffon is known for two contributions: a translation into French of

Newton's Method of Fluxions and the "Buffon needle problem" in the

theory of probability. Buffon, too, had been impressed by the "Petersburg

paradox," and in an "Essai d'arithmetique morale," published in 1777 in

the fourth volume of a supplement to his Histoire naturelle, he gave several

reasons for regarding the game as inherently impossible. Buffon suggested

also, in the same "Essai," what was essentially a new branch of proba-

bility—problems involving geometric considerations. He proposed that

a large plane area be ruled with equidistant parallel straight lines and that

a thin needle be thrown at random upon the plane area. The probability

that the needle will fall across one of the lines he correctly gave as lllnd,

where d is the distance between the lines and / is the length of the needle,

and / < d. The "Essai" contained also a collection of tables, covering the

years 1709 to 1766 at Paris, on births, marriages, and deaths, as well as

results on life expectancies to which d'Alembert took exception.
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It was during the eighteenth century that the practice of variolation,

that is, inoculation with a weakened form of smallpox in order to develop

immunity against the disease, was introduced into Europe from the Levant.

This provoked controversy among those who sought to apply the theory

of probability to the affairs of life. In 1760 Daniel Bernoulli read before

the Academie des Sciences at Paris an essay on the advantages of inocu-

lation, but before the Essai was published in the Memoirs of the Academie
d'Alembert already had raised objections. D'Alembert did not deny the

advantages, but he argued that Bernoulli had overstated them. Part of the

argument centered on the distinctions d'Alembert insisted must be made
between the "mean life" and the "probable life" of an individual. The
"probable life" of an infant was about eight years (that is, half of the

infants of the time died before they were eight years old), whereas his

"mean life" or average life span was about twenty-six years. (A comparison

of these figures with corresponding data of today makes vivid the appall-

ingly low state of medical research of past centuries.) Controversies over

the probability that variolation would be advantageous were effectively

terminated at the end of the century when vaccination against smallpox

was discovered by Dr. Edward Jenner.

THEORY OF NUMBERS

D'Alembert shared interests with Euler in many aspects of mathematics,

especially in analysis and applied mathematics, but there was one direction

in which Euler made great strides without rivalry on the part of d'Alembert.

This was in the theory of numbers, a subject that has held strong attraction

for many of the greatest mathematicians, such as Fermat and Euler, but

no appeal for others, including Newton and d'Alembert. Euler did not

publish a treatise on the subject, but he wrote letters and articles on various

aspects of the theory of numbers. It will be recalled that Fermat had

asserted, among other things, (1) that numbers of the form 2 2 "
-l- 1

apparently are always prime; and (2) that if/? is prime and a is an integer

not divisible by p, then ap
~

x - 1 is divisible by p. The first of these

conjectures Euler exploded in 1732 through his uncanny ability for

computation, showing that 2
2$ + 1 = 4,294,967,297 is factorable into

6,700,417 x 641. Today the Fermat conjecture has been so thoroughly

deflated that mathematicians incline to the contrary opinion—that there

are no prime Fermat numbers beyond the number 65,537 corresponding

lo n = 4.

In the same way that Euler, by means of a counterexample, had upset

one of Fermat's conjectures, the twentieth century has disproved a sug-

gestion made by Euler. If n is greater than two, Euler believed, at least n

mh powers are required to provide a sum that is itself an nth power. But



THEORY OF NUMBERS 457

in 1966 it was shown that the sum of only four fifth powers can be a fifth

power, for 275 + 845 + HO5 + 1335 = 1445
. It should be noted, however,

that in the latter case it required two centuries and the services of a high-

speed computing device to detect the inadvertence.

For the second of the conjectures, known as Fermat's lesser theorem,

Euler was the first one to publish a proof (although Leibniz had left an

earlier demonstration in manuscript). The proof of Euler, which appeared

in the Petersburg Commentarii for 1736, is so surprisingly elementary that

we describe it here. The proof depends on an induction on a. If a = 1 the

theorem obviously holds. We now show that if the theorem holds for any

positive integral value of a, such as a = k, then it necessarily holds for

a = k + 1. To show this, we use the binomial theorem to write (k + Vf
as kp + mp + 1, where m is an integer. On subtracting k + 1 from both

sides, we see that (k + l) p - (k + 1) = mp + (k p - k). Inasmuch as

the last term on the right is divisible by /?, by hypothesis the right-hand

side of the equation, hence also the left-hand side, obviously is divisible

by p. The theorem, therefore, holds, through mathematical induction, for

all values of a provided that a is prime to p.

Having proved Fermat's lesser theorem, Euler demonstrated a some-

what more general statement in which he used what has been called "Eu-

ler's 0-function." If m is a positive integer greater than one, the function

<t>(m) is defined as the number of integers less than m which are prime to

m (but including the integer one in each case). It is customary to define

<f>(\) as 1; for n = 2, 3, and 4, for example, the values of 0(n) are 1, 2,

and 2 respectively. If p is a prime, then clearly <f)(p)
= p - 1. It can be

proved that

w- m(,-i)H). ..(.-i

where pu p2 ,
• • • p r are the distinct prime factors of m. Using this result

Euler showed that aMm) - 1 is divisible by m if a is relatively prime to m.

Euler settled two of Fermat's conjectures but did not dispose of "Fer-

mat's last theorem," although he did prove the impossibility of integer

solutions of xn + y
n = zn for the case n = 3. In 1747 Euler added to the

three pairs of amicable numbers known to Fermat, bringing the list up to

thirty pairs; later he increased this to more than sixty. Euler also gave a

proof that all even perfect numbers are of the form given by Euclid: 2"~ 1(2"

- 1), where 2" - 1 is prime. Whether or not there can be an odd perfect

number remains an open question. Also unresolved to this day is a question

raised in correspondence between Euler and Christian Goldbach (1690-

1764). In writing to Euler in 1742 Goldbach said that every even integer

(>2) is the sum of two primes. This so-called Goldbach's theorem appeared

in print (without proof) in 1770 in England in the Meditationes algebraicae

of Edward Waring (1734-1793). Waring was senior wrangler at Cambridge
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in 1757 and Lucasian professor of mathematics there from 1760. His works

contained many important results. They were, however, poorly written and

not widely read, so that the familiar ratio test for the convergence of infinite

series more frequently is known as Cauchy's test, despite the fact that it

had been given by Waring as early as 1776. The Meditationes algebraicae

contains not only the Goldbach conjecture, but also a complementary

conjecture that every odd integer is a prime or the sum of three primes.

Among other unproved assertions is one known as Waring's theorem, or

Waring's problem. Euler had proved that every positive integer is the sum
of not more than four squares; Waring surmised that every positive integer

is the sum of not more than nine cubes, or the sum of not more than

nineteen fourth powers. The first half of this bold guess was proved in the

early twentieth century; the second part is still unproved, beyond the fact

that Hilbert in 1909 showed that every positive integer is expressible as

the sum of not more than N positive nth powers, where N is some function

of n. Waring published also in the Meditationes algebraicae a theorem

named for his friend and pupil, John Wilson (1741-1793)—if p is a prime,

then (p - 1)! + 1 is a multiple of p. Wilson, too, was a senior wrangler

at Cambridge, but he left mathematics for law, where he rose to a judgeship

and to knighthood.

TEXTBOOKS

The leading Continental mathematicians of the mid-eighteenth century

were primarily analysts, but we have seen that their contributions were
not limited to analysis. D'Alembert had given an imperfect proof of the

fundamental theorem of algebra, and Clairaut in 1740 had published a

textbook, Elemens d'algebre, which was so popular it went through a sixth

edition in 1801. Euler not only contributed to the theory of numbers, but

also composed a popular algebra textbook that appeared in German and
Russian editions at St. Petersburg in 1770-1772, in French (under the

auspices of d'Alembert) in 1774, and in numerous other versions, including

American editions in English. The exceptionally didactic quality of Euler's

Algebra is attributed to the fact that it was dictated by the blind author

through a relatively untutored domestic.

The textbooks of Clairaut and Euler were not widely used in England,

in part because of British mathematical isolationism during the later eight-

eenth century and in part because Maclaurin and others had composed
good textbooks on an elementary level. Maclaurin's Treatise of Algebra

went through half a dozen editions from 1748 to 1796. A rival Treatise of
Algebra by Thomas Simpson (1710-1761) boasted at least eight editions

at London from 1745 to 1809; another. Elements of Algebra, by Nicholas

Saunderson (1682-1739), enjoyed five editions between 1740 and 1792.
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Simpson was a self-taught genius who won election to the Royal Society

in 1745 but whose turbulent life ended in failure half a dozen years later.

His name nevertheless is preserved in the so-called Simpson's rule, pub-

lished in his Mathematical Dissertations on Physical and Analytical Subjects

(1743), for approximate quadratures using parabolic arcs; but this result

had appeared in somewhat different form in 1668 in the Exercitationes

geometricae of James Gregory. Saunderson's life, by contrast, was an ex-

ample of personal triumph over an enormous handicap—total blindness

from the age of one, resulting from an attack of smallpox.

Algebra textbooks of the eighteenth century illustrate a tendency toward

increasingly algorithmic emphasis, while at the same time there remained

considerable uncertainty about the logical bases for the subject. Most au-

thors felt it necessary to dwell at length on the rules governing multipli-

cations of negative numbers, and some rejected categorically the possibility

of multiplication of two negative numbers. The century was, par excellence,

a textbook age in mathematics, and never before had so many books

appeared in so many editions. Simpson's Algebra had a companion volume,

Elements of Plane Geometry, which went through five editions from 1747

to 1800. But among the host of textbooks of the time few achieved quite

the record of the edition by Robert Simson (1687-1768) of the Elements

of Euclid. This work, by a man trained in medicine who became professor

in mathematics at the University of Glasgow, first appeared in 1756, and

by 1834 it boasted a twenty-fourth English edition, not to mention trans-

lations into other languages nor geometries more or less derived from it,

for most modern English versions of Euclid are heavily indebted to it.

SYNTHETIC GEOMETRY

Simson sought to revive ancient Greek geometry, and in this connection

he published "restorations" of lost works, such as Euclid's Porisms and

the Determinate Sections of Apollonius. Partly as a result of Simson's en-

thusiasm for antiquity, England throughout the eighteenth century re-

mained a stronghold of synthetic geometry, and analytic methods made
little headway in geometry. This may be one of the reasons that progress

in analysis in Britain lagged far behind that on the Continent. It is cus-

tomary to place much of the blame for this backwardness on the supposedly

clumsy method of fluxions as compared with that of the differential calculus,

but such a view is not easily justified. Fluxional notations even today are

conveniently used by physicists, and they are readily adapted to analytic

geometry; but no calculus, whether differential or fluxional, is appropriately

wedded to synthetic geometry. Hence, the British predilection for pure

geometry seems to have been a far more effective deterrent to research in

analysis than was the notation of fluxions. Nor is it fair to place the blame
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for British geometric conservatism largely on the shoulders of Newton.
After all. Newton's Method of Fluxions was replete with analytic geometry,

and even the Principia contained more analysis than generally is recog-

nized. Perhaps it was an excessive insistence on logical precision that had
led the British into a narrow geometric view. We noted previously the

arguments of Berkeley against the mathematicians, and Maclaurin had felt

that the most effective way to meet these on a rational basis was to return

to the rigor of classical geometry. Almost 2000 years earlier, in Greece,

an insistence on rigor seems to have hampered the development of a nu-

merical algebra; in England in the eighteenth century the situation was

somewhat similar. On the Continent, on the other hand, the feeling was

akin to the advice that d'Alembert is said to have given to a hesitating

mathematical friend: "Just go on ahead, and faith will soon return." It is

easy to criticize the logic of Euler and d'Alembert, but it is unthinkable

that anyone should question their immensely significant roles in the de-

velopment of mathematics.

Synthetic geometry was not entirely forgotten on the Continent, for in

1741 Clairaut published an Elemens de geometrie which also boasted some
half dozen editions, but this was an insipid textbook with little solidity and

less rigor. Euler and d'Alembert contributed little to the field, despite the

fact that today the line containing the circumcenter, the orthocenter, and

the barycenter of a triangle is known as the Euler line of the triangle. That

these centers of a triangle are collinear seems to have been known earlier

to Simson, whose name has been attached to another line related to a

triangle. Such minor additions to pure geometry pale into insignificance,

however, when compared to Continental contributions to analytic geom-

etry during the mid-eighteenth century.

We have described the analytic geometry of Clairaut, especially in con-

nection with developments in three dimensions, but the material in the

second volume of Euler's Introductio was more extensive, more systematic,

and more effective. As early as 1728 Euler contributed to the Petersburg

Commentarii papers on the use of coordinate geometry in three-space,

giving general equations for three broad classes of surfaces: cylinders,

cones, and surfaces of revolution. He recognized that the equation of a

cone with vertex at the origin is necessarily homogeneous. He showed also

that the shortest curve (geodesic) between two points on a conical surface

would become the straight line between these points if the surface were

flattened out into the form of a plane—one of the earliest theorems con-

cerning developable surfaces. Euler's awareness of the significance of mak-

ing work as general as possible is seen especially in the second volume of

his Introductio. This book did more than any other to make the use of

coordinates, in both two and three dimensions, the basis of a systematic

study of curves and surfaces. Instead of concentrating on the conic sections,

Euler gave a theory of curves in general, based on the function concept
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that had been central in the first volume. Transcendental curves are not

given short shrift, as had been customary, so that here, practically for the

first time, graphical study of trigonometric functions formed a part of

analytic geometry. The other common transcendental curves also are in-

cluded, as well as some not so common, such as y = x x
, y

x = xy
, and

y = (-1)*.

SOLID ANALYTIC GEOMETRY

The Introductio includes also two accounts of polar coordinates which are

so thorough and systematic that the system frequently, but erroneously, is

attributed to Euler. Whole classes of curves, both algebraic and transcen-

dental, are considered; for the first time the equations for transformations

from rectangular to polar coordinates appear in strictly modern trigono-

metric form. Moreover, Euler made use of the general vectorial angle and

of negative values for the radius vector, so that the spiral of Archimedes,

for example, appeared in its dual form, symmetric with respect to the 90°

axis. D'Alembert evidently was influenced by this work when he wrote the

article on "Geometrie" for the Encyclopedic. Euler's Introductio also was

chiefly responsible for the systematic use of what is called the parametric

representation of curves, that is, an expression of each of the Cartesian

coordinates as a function of an auxiliary independent variable. For the

cycloid, for example, Euler used the form

x = b - b cos -
a

y = z + b sin -.

a

A long and systematic appendix to the Introductio is perhaps Euler's

most significant contribution to geometry, for it represents virtually the

first textbook exposition of solid analytic geometry. Surfaces, both alge-

braic and transcendental, are considered in general and then are subdivided

into categories. Here we find, evidently for the first time, the notion that

surfaces of second degree constitute a family of quadrics in space analogous

to the conic sections in plane geometry. Beginning with the general ten-

term quadratic equation /(jc, y, z) = 0, Euler noted that the aggregate of

terms of second degree, when equated to zero, gives the equation of the

asymptotic cone, real or imaginary. More importantly, he used the equa-

tions for translation and rotation of axes (in the form that, incidentally,

still bears Euler's name) to reduce the equation of a nonsingular quadric

surface to one of the canonical forms corresponding to the five fundamental

types: the real ellipsoid, the hyperboloids of one and two sheets, and the
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elliptic and hyperbolic paraboloids. One aspect of modern courses in an-

alytic geometry that is not found in the Introductio (or in other books of

the time) is a systematic study of the loci of elementary geometry, the line

and the circle, the plane and the sphere. Nevertheless, the work of Euler

comes closer to modern textbooks than did any other book before the

French Revolution.

LAMBERT AND THE PARALLEL POSTULATE

Many mathematicians of all ages have fancied themselves also as philos-

ophers. Euler and d'Alembert were among these, but both of them missed

an opportunity that another philosophically inclined mathematician tried

to exploit. This was Johann Heinrich Lambert (1728-1777), a Swiss-Ger-

man writer on a wide variety of mathematical and nonmathematical

themes, who for a couple of years was an associate of Euler in the Berlin

Academy. It is said that when Frederick the Great asked him in which

science he was most proficient, Lambert curtly replied, "All." He might

be better known today if he had not tried, immodestly, to master all fields

of science, for he was indeed a man of exceptional ability.

We have seen that Saccheri had believed that he had demolished the

possibilities that the sum of the angles of a plane triangle might be more
or less than two right angles. Lambert called attention to the well-known

fact that on the surface of a sphere the angle sum of a triangle is indeed

more than two right angles, and he suggested that a surface might be found

on which the triangle angle sum falls short of two right angles. In trying

to complete what Saccheri had attempted—a proof that denial of Euclid's

parallel postulate leads to a contradiction—Lambert, in 1766, wrote Die

Theorie der Parallellinien, although this appeared, posthumously, only in

1786. Instead of beginning with a Saccheri quadrilateral, he adopted as his

starting point a quadrilateral having three right angles (now known as a

Lambert quadrilateral) and then considered for the fourth angle the three

possibilities, namely, that it might be acute, right, or obtuse. Corresponding

to these three cases he showed, in the manner of Saccheri, that the angle

sum of a triangle would be respectively less than, equal to, or greater than

two right angles. Going beyond Saccheri, he demonstrated that the extent

to which the sum falls short of, or exceeds, two right angles is proportional

to the area of the triangle. In the obtuse-angled case this situation is similar

to a classical theorem in spherical geometry—that the area of a triangle is

proportional to its spherical excess—and Lambert speculated that the hy-

pothesis of the acute angle might correspond to a geometry on a novel

surface, such as a sphere of imaginary radius. In 1868 it was shown by

Eugenio Beltrami (1835-1900) that Lambert had indeed been correct in

his conjecture of the existence of some such surface. It turned out to be,
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however, not a sphere with an imaginary radius but a real surface known
as a pseudosphere, that is, a surface of constant negative curvature gen-

erated by revolving the tractrix above its axis.

Although Lambert, like Saccheri, tried to prove the parallel postulate,

he seems to have been aware of his lack of success. He wrote:

Proofs of the Euclidean postulate can be developed to such an extent that

apparently a mere trifle remains. But a careful analysis shows that in this

seeming trifle lies the crux of the matter; usually it contains either the prop-

osition that is being proved or a postulate equivalent to it.

No one else came so close to the truth without actually discovering non-

Euclidean geometry.

Lambert is known today also for other contributions. One of these is

the first proof, presented to the Berlin Academy in 1761, that n is an

irrational number. (Euler in 1737 had shown that e is irrational.) Lambert

showed that if x is a nonzero rational number, then tan jc cannot be ra-

tional. Inasmuch as tan nlA = 1, a rational number, it follows that nIA

cannot be a rational number, hence neither can n. This did not, of course,

dispose of the circle-squaring question, for quadratic irrationalities are

constructible. At about this time circle-squarers had become so numerous

that the Academy at Paris in 1775 passed a resolution that no purported

solutions of the quadrature problem would be officially examined. As an-

other contribution of Lambert to mathematics we should recall that he did

for the hyperbolic functions what Euler had done for the circular functions,

providing the modern view and notation. Comparisons of the ordinates of

the circle x 2 + y
2 = 1 and of the hyperbola x 2 - y

2 = 1 had fascinated

mathematicians for a century, and by 1757 Vincenzo Riccati, an Italian,

had suggested a development of hyperbolic functions. It remained for

Lambert to introduce the notations sinh jc, cosh jc, and tanh x for the

hyperbolic equivalents of the circular functions of ordinary trigonometry

and to popularize the new hyperbolic trigonometry that modern science

finds so useful. Corresponding to Euler's three identities for sin jc, cos jc,

and e", there are three similar relationships for the hyperbolic functions

expressed by the equations

pX P~* P* -\- P~*
sinh jc = , cosh jc =

2 2

and

ex = cosh jc + sinh jc.

Lambert also write on cosmography, descriptive geometry, map making,

logic, and the philosophy of mathematics, but his influence did not match

that of Euler or d'Alembert.
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BEZOUT AND ELIMINATION

Euler and d'Alembert died in the same year, 1783; this was also the year

of death of Etienne Bezout (1730-1783), a mathematician who represents

a characteristic aspect of the subject at that time. We have mentioned that

the eighteenth century produced many enormously successful textbooks.

We might add that it was the second half of the century that produced also

the genre often known as a Cours d'analyse—a multivolume work covering

the subject matter of mathematics from the lowest to the highest level.

One of the most successful of all of these was Bezout's Cours de mathe-

matique, a six-volume work that first appeared in 1764-1769, which was

almost immediately issued in a new edition of 1770-1772 and which boasted

many versions in French and other languages. (The first American textbook

in analytic geometry, incidentally, derived in 1826 from Bezout's Cours.)

It was through such compilations, rather than through the original works

of the authors themselves, that the mathematical advances of Euler and

d'Alembert became widely known. Bezout himself was no mere hack, and

his name is familiar today in connection with the use of determinants in

algebraic elimination. In a memoir of the Paris Academy for 1764, and

more extensively in a treatise of 1779 entitled Theorie generate des equations

algebriques, Bezout gave artificial rules, similar to Cramer's, for solving n

simultaneous linear equations in n unknowns. He is best known for an

extension of these to a system of equations in one or more unknowns in

which it is required to find the condition on the coefficients necessary for

the equations to have a common solution. To take a very simple case, one

might ask for the condition that the equations a
x
x + b

xy + c
x
= 0, a2x

+ b 2y + c2
= 0, a3x + b3y + c3

= have a common solution. The
necessary condition is that the eliminant

a\ &, C\

a2 b 2 c-i

<*3 bi c3

here a special case of the "Bezoutiant," should be 0. Somewhat more

complicated eliminants arise when conditions are sought for two polynomial

equations of unequal degree to have a common solution. Bezout also was

the first one to give a satisfactory proof of the theorem, known to Maclaurin

and Cramer, that two algebraic curves of degrees m and n respectively

intersect in general in m • n points; hence, this is often called Bezout's

theorem. Euler also had contributed to the theory of elimination, but less

extensively than did Bezout.

During the eighteenth century the French universities were not out-

standing in mathematics. It was the academies and military schools that

produced a substantial number of mathematicians, and a Cours de math-
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ematique like that of Bezout was likely to be used at institutions such as

these. Bezout himself taught at a military school and was an examiner for

the navy, hence he was in touch with the curricula of the time. However,

within a few years of the deaths of the mathematicians featured in this

chapter (Buffon died only a year before the fall of the Bastille in 1789) the

system of higher education in France was to undergo a drastic revision as

a result of the upheaval produced by the French Revolution. During this

short but significant period France became once more the mathematical

center of the world, as she had been during the middle of the seventeenth

century. The next chapter is devoted to a group of mathematicians who
lived and worked in the city of Paris during some of her most trying days.
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Mathematicians of the

French Revolution

The advancement and perfection of mathematics are intimately connected with the

prosperity of the State.

Napoleon I

THE AGE OF REVOLUTIONS

The eighteenth century had the misfortune to come after the seventeenth

and before the nineteenth. How could any period that followed the "Cen-

tury of Genius" and which preceded the "Golden Age" of mathematics

be looked upon as anything but a prosy interlude? Analytic geometry and

the calculus were invented in the seventeenth century; the rise of mathe-

matical rigor and the flowering of geometry are associated with the nine-

teenth century. There are histories of mathematics of the sixteenth and

seventeenth centuries and for the nineteenth century; but thfere is no com-

parable history of mathematics in the eighteenth century, nor do we readily

look to the eighteenth century for significant trends in mathematics. This

is in marked contrast to what is true in other fields. For Americans the

date 1776 was decisive; in France the year 1789 was crucial. Nor was the

Age of Revolutions confined to the sphere of politics. The Industrial Rev-

olution changed the whole fabric of Western society, and the thermotic

466
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revolution during the same years laid the foundations of modern chemistry.

Can it be that mathematics during these stirring events was enjoying a

nap? This chapter will show that mathematicians of France at the time of

the Revolution not only contributed handsomely to the fund of knowledge,

but that they were in large measure responsible for the chief lines of

development in the explosive proliferation of mathematics during the suc-

ceeding century. We are even tempted to add to the already impressive

list of revolutions of the time two more: a "geometric revolution" and an

"analytic revolution."

Every age is inclined to think of itself as one of revolution—a period

of tremendous change. But almost every age of rapid change has been

preceded by a long period in which preparations for the revolution are

made, sometimes consciously, more often unconsciously. Among the her-

alds of the French Revolution were Voltaire, Rousseau, d'Alembert, and

Diderot, not one of whom lived to see the fall of the Bastille (Voltaire and

Rousseau died in 1778, d'Alembert in 1783, and Diderot a year later), and

their associate Condorcet, who fell a victim in the holocaust he helped to

father. In mathematics six men who were to show the way—Monge, La-

grange, Laplace, Legendre, Carnot, and Condorcet—were to be in the

midst of the turmoil, and it is with these men that this chapter is chiefly

concerned.

Our half dozen mathematicians were almost of an age: Lagrange, the

oldest, was born in 1736; Condorcet was born in 1743; Monge in 1746;

Laplace in 1749; Legendre in 1752; Carnot, the youngest, was born in 1753.

With the exception of Condorcet, who died a suicide in prison, these

mathematicians all lived to be septuagenarians, and one, Legendre, an

octogenarian.

LEADING MATHEMATICIANS

In France of the eighteenth century, universities were not the mathematical

foci that they are today, and one is hard put to it to name even one

eighteenth-century mathematician at, say, the University of Paris. During

the fourteenth century Paris had been one of the scientific centers of the

world (the other being at Oxford), but it had long since lost this position.

It was behind the times: when Europe turned to Cartesianism, Paris clung

to Peripatetic Scholasticism; and when most of the scientific world had

turned to Newtonianism, Paris fought a rearguard action for Cartesianism.

Most of the French mathematicians of the eighteenth century were asso-

ciated not with the universities, but with either the church or the military;

others found royal patronage or became private teachers. Lagrange (1736-

1813), the only one of our group who was not strictly a Frenchman, was

born at Turin of once prosperous parents with French and Italian back-
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grounds Joseph-Louis, the youngest of eleven children and the only one

to survive beyond infancy, was educated there and as a young man became
professor of mathematics in the military academy of Turin; but later he

found successive royal patrons in Frederick the Great of Prussia and Louis

XVI of France. The family of Condorcet (1743-1794) included influential

members in the cavalry and the church, hence his education presented no

problem. At Jesuit schools and later at the College de Navarre he made
an enviable reputation in mathematics; but instead of becoming a captain

of cavalry, as his family had hoped, he lived the life of a scholar in much
the same sense as Voltaire, Diderot, and d'Alembert. The third of our

sextet, Gaspard Monge (1746-1818), was the son of a poor tradesman.

However, through the influence of a lieutenant colonel who had been struck

by the boy's ability, Monge was permitted to attend some courses at the

Ecole Militaire de Mezieres; he so impressed those in authority that he

soon became a member of the teaching staff—the only one of our group

of six who was primarily a teacher, perhaps the most influential mathe-

matics teacher since the days of Euclid. Laplace (1749-1827) also was born

without wealth; like Monge, he found influential friends who saw that he

obtained an education, again in a military academy. Legendre (1752-1833)

experienced no difficulty in securing an education; but even he was not a

university teacher in the strict sense, although for five years he taught in

the Ecole Militaire at Paris. The youngest of our group, Lazare Carnot

(1753-1823), was sufficiently above bourgeois standing to be permitted to

attend the Ecole Militaire at Mezieres, where Monge was one of his teach-

ers. Upon graduation Carnot entered the army, although, lacking a title,

he could not, under the ancien regime, aspire to a rank above that of

captain. This must have rankled in his mind, as it did in the case of so

many others that the proverb arose at examination time that "the com-

petent were not noble and the noble were not competent. " The economic

wastefulness of the government may have been the immediate cause of the

French Revolution, but it was far from the only one. The enormous waste

of human resources was also an important factor, and symptomatic of this

was the failure at first of the men of our group to win positions commen-
surate with their ability. Not one of the six expressed regret later when

the old order passed away.

Of the mathematical encyclopedias of the late eighteenth century the

most successful, judging from repeated editions, was that by Bezout, in-

structor in the school at Mezieres that both Monge and Carnot attended.

The Cours de mathimatique of Bezout was, during the first third of the

nineteenth century, still a very influential work, especially in America

where parts of it appeared in English translation at West Point and other

academies. The fourth part of Be/out's Cours—the principles of me-

chanics— is the raison d'etre of the program. The emphasis given to me-

chanics and to the closing section on navigation is in keeping with the use
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of the Cours de mathematiques as a text in a military academy. The math-

ematical preeminence of France (and, indeed, of Continental Europe as

a whole) in the eighteenth century was based in large measure on the

application of analysis to mechanics as taught in technical schools, and it

was under this influence that the mathematicians of the French Revolution

had been brought up, in marked contrast to the situation in England. One
should naturally expect the contrast in mathematical spirit to become
sharper during the Revolution, for France had greater need for technical

training, and England became more thoroughly isolated from the Conti-

nent.

PUBLICATIONS BEFORE 1789

Every one of the six men we have named as the mathematical leaders

during the Revolution had produced abundantly before 1789. Lagrange

had published his Mecanique analytique (1788), as well as frequent papers

on algebra, analysis, and geometry. Condorcet, perhaps the most inter-

esting of the six because of the breadth of his interests, had published De
calcul integral as early as 1765 and Essai sur Vapplication de I'analyse a la

probability des decisions rendues a la pluralite des voix in 1785. A firm

believer in the perfectibility of man, a basic tenet of the Philosophies,

Condorcet was the only one of our six who can be said to have played an

anticipatory role in the events leading to 1789. (It is ironic to note that of

our mathematical sextet the one who did most to bring about the Revo-

lution was the only one to lose his life through it, although two others,

Carnot and Monge, were not always safe from the guillotine.) Monge had

contributed numerous mathematical articles to the Memoires of the Aca-

demie des Sciences. Inasmuch as he succeeded Bezout as examiner for the

School of the Marine, Monge was urged by those in authority to do what

Bezout had done—write a Cours de mathematiques for the use of candi-

dates. Monge, however, was interested in teaching and research rather

than in writing textbooks, and he completed only one volume of the project:

Traite elementaire de statique (Paris, 1788). He was attracted not only to

both pure and applied mathematics, but also to physics and chemistry. In

particular, he participated with Lavoisier in experiments, including those

on the composition of water, which led to the chemical revolution of 1789.

Through his numerous activities Monge had become, at the time of the

revolution, one of the best known of French scientists. In fact, his repu-

tation as a physicist and chemist was perhaps greater than that as a math-

ematician, for his geometry had not been properly appreciated. His chief

work, the Geometrie descriptive, had not been published because his su-

periors felt that it was in the interests of national defense to keep it con-

fidential. (Classified material is not a monopoly of the mid-twentieth
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century!) Laplace and Legendre were regular contributors to learned pe-

riodicals, and Carnot by 1786 had published a second edition of his Essai

sur les machines en general, as well as some verses and a work on fortifi-

cations.

LAGRANGE AND DETERMINANTS

In looking at the achievements of these six men, one is struck by a lack

of utilitarian motive in their work. Carnot's Essai would appear, from the

title, to be technically oriented, but a glance at the book shows that it deals

with broad principles, not with technology. The Mecanique of Lagrange

likewise is concerned with a postulational treatment of the subject, far

removed from criteria of practicability. The beauty of Lagrange's work is

apparent not to the engineer but to the pure mathematician; even in the

more elementary portions of his work there is an aesthetic quality. It is

primarily to him that we owe such compact forms, though somewhat dif-

ferently expressed, as

*2 yi i

*3 yi i

and —

X\ y\ z\ l

1 *2 yi zi l

3! *3 y?> Z) l

JC4 y* z4 l

for the area of a triangle and for the volume of a tetrahedron respectively,

results that appeared in a paper, "Solutions analytiques de quelques prob-

lemes sur les pyramides triangulares," delivered in 1773 and published in

1775. Such work looks pretty, but inconsequential; yet it contained an idea

that was to become, through the educational reforms of the Revolution,

very important. As Lagrange expressed it, "I flatter myself that the solu-

tions which I am going to give will be of interest to geometers as much for

the methods as for the results. These solutions are purely analytic and can

even be understood without figures." True to his promise, there is not a

single diagram throughout the work. Monge, too, although he used dia-

grams and models in descriptive and differential geometry, seems somehow
to have come to the conclusion that one should avoid the use of diagrams

in elementary analytic geometry. Perhaps Carnot felt somewhat the same

way, for his Essai, antedating the Micanique of Lagrange, contains not a

single diagram.

Laplace, of all the members of our sextet, came closest to being an

applied mathematician, but even in his case we must interpret the phrase

in a very broad sense. After all, how "practical" in those days was the

theory of probability or celestial mechanics? We can safely conclude that,
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in spite of their education in predominantly technical schools, the great

figures in mathematics just before the Revolution had shown remarkable

"purity" of interest.

COMMITTEE ON WEIGHTS AND MEASURES

The fall of the Bastille in 1789 found our six men divided into two cate-

gories: the three L's (Lagrange, Laplace, and Legendre) took no significant

part in shaping the political events that were to follow; the other three

(Carnot, Condorcet, and Monge) welcomed the changed outlook and

played definite roles in revolutionary activities. Men from both groups,

however, participated in at least one mathematical project during the Rev-

olution.

The reform of the system of weights and measures is an especially

appropriate example of the way in which mathematicians patiently persisted

in their efforts in spite of confusion and political difficulties. As early in

the Revolution as 1790 Talleyrand proposed the reform of weights and

measures. The problem was referred to the Academie des Sciences, in

which a committee of which Lagrange and Condorcet were two of the

members was established to draw up a proposal. Legendre should have

been a member, for he had achieved quite a reputation for his triangulation

of France; revolutionary politics seem to have been responsible for his

being overlooked. The Committee agreed on a decimal system, although

there appear to have been some earnest supporters of a duodecimal

scheme. Lagrange firmly supported the decimalists against the duodeci-

malists, for he was not greatly impressed by the argument about divisibility.

(He is reported to have almost regretted not adopting as a base for the

system some prime number, such as eleven, but it has been suggested that

he may have done this simply to obstruct the duodecimalists.)

As is well known, the Committee considered two alternatives for the

basic length in the new system. One was the length of the pendulum which

should beat seconds. The equation for the pendulum being T = 2n\Ug,
this would make the standard length gin 1

. But the Committee was so

impressed by the accuracy with which Legendre and others had measured

the length of a terrestrial meridian that in the end the meter was defined

to be the ten-millionth part of the distance between the equator and the

pole. The resulting metric system was ready in most respects in 1791, but

there was confusion and delay in establishing it. The National Convention

in 1793 suppressed the Academie des Sciences, while the Jardin des Plantes

was greatly expanded. This inconsistency seems to have been the result of

political forces. The Academie was led by older and more conservative

men, the Jardin by younger scientists who were eager in their support of

the new government. There was, moreover, quite a cult of Robespierre
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which represented a back-to-nature attitude derived in part from Rousseau.

Evidently there was in France an attitude toward physical science some-

thing like Goethe's belligerency toward Newtonian physics. The Jardin des

Plantes represented "safe" science, that of the Academie was suspect.

The closing of the Academie was a blow to mathematics; but the Con-

vention continued the Committee on Weights and Measures, although it

purged the Committee of some members, such as Lavoisier, and enlarged

it by adding others, including Monge. At one point Lagrange was very

nearly lost to the Committee, for the provincially minded Convention had

banned foreigners from France; but Lagrange was specifically exempted

from the decree and remained to serve as head of the Committee. Still

later the Committee was made responsible to the Institut National that

had replaced the Academie des Sciences; Lagrange, Laplace, Legendre,

and Monge all served on the Committee at this stage. By 1799 the work

of the Committee had been completed, and the metric system as we have

it today became a reality. It will be noted that five of our group of six

revolutionary mathematicians took active part in this project, only Carnot

being unconnected with it; but we shall find that Carnot was engaged in

many other essential activities, both political and mathematical. The metric

system is, of course, one of the more tangible mathematical results of the

Revolution, but in terms of the development of our subject it cannot be

compared in significance with other contributions.

CONDORCET ON EDUCATION

Condorcet, a physiocrat, a philosophe, and an encyclopedist, belonged to

the circle of Voltaire and d'Alembert. He was a capable mathematician

who had published books on probability and the integral calculus, but he

was also a restless visionary and idealist who was interested in anything

related to the welfare of mankind. He, like Voltaire, had a passionate

hatred of injustice; although he held the title of marquis, he saw so many
inequalities in the ancien regime that he wrote and worked toward reform.

With implicit faith in the perfectibility of mankind and believing that ed-

ucation would eliminate vice, he argued for free public education, an ad-

mirably forward-looking view, especially for those days. Condorcet is

perhaps best remembered mathematically as a pioneer in social mathe-

matics, especially through the application of probability and statistics to

social problems. When, for example, conservative elements (including the

Faculty of Medicine and the Faculty of Theology) attacked those who
advocated inoculation against smallpox, Condorcet (together with Voltaire

and Daniel Bernoulli) came to the defense of variolation.

With the opening of the Revolution, Condorcefs thoughts turned from

mathematics to administrative and political problems. The educational sys-
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tern had collapsed under the effervescence of the Revolution, and Con-

dorcet saw that this was the time to try to introduce the reforms he had

in mind. He presented his plan to the Legislative Assembly, of which he

became President, but agitation over other matters precluded serious con-

sideration of it. Condorcet published his scheme in 1792, but the provision

for free education became a target of attack. Not until years after his death

did France achieve Condorcet's ideal of free public instruction.

Condorcet had had high hopes for the Revolution—until extremists

seized control. He then boldly denounced the Septembrists, and was or-

dered arrested for his pains. He sought hiding, and during the long months

of concealment he composed the celebrated Sketch for a Historical Picture

of the Progress of the Human Mind, l indicating nine steps in the rise of

mankind from a tribal stage to the founding of the French Republic, with

a prediction of the bright tenth stage that he believed the Revolution was

about to usher in. Shortly after completing this work (in 1794), and be-

lieving that his presence endangered the lives of his hosts, he left his hiding

place. Promptly recognized as an aristocrat, he was arrested. The following

morning he was found dead on the floor of his prison, presumably a suicide.

MONGE AS ADMINISTRATOR AND TEACHER

Condorcet had been sympathetic to the moderate Gironde wing of the

Revolution. Monge was plebeian and an important member of the more
radical Jacobin Club; but he, too, was to have some trouble, even though

he was an enthusiastic partisan and joined patriotic organizations. He was

assigned a role in the reform of weights and measures, ordered by the

Constituent Assembly in 1790, but his post as examiner for the navy had

kept him from Paris for a couple of years. On his return to the city in 1792

he was named Ministre de la Marine, apparently on the suggestion of

Condorcet, and it was in his capacity as Minister of the Navy that to Monge
fell the task of signing the official record of the trial and execution of the

King. The French fleet, however, was so poorly organized and so ineffectual

that Monge was unable to achieve anything significant, and within a year

he demanded that he be replaced. He nevertheless remained active in

politics and governmental operations, and he devoted an enormous amount
of energy to meeting the needs for gunpowder of the revolutionary arsenal.

At the instance of the Committee of Public Safety he published also a

Description de Vart de fabriquer les canons. Throughout the Revolution

'A convenient English translation by June Barraclough appeared in 1955 (New York:

Noonday Press).
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Monge found himself in a precarious position, for he was too liberal for

the conservatives and too conservative for the extremists.

More important for the future of mathematics were the efforts of Monge,
after the crisis of foreign invasion had subsided, to establish a school for

the preparation of engineers. As Condorcet had been the guiding spirit in

the Committee on Instruction, so Monge was the leading advocate of

institutions of higher learning. The result was the formation in 1794 of a

Commission of Public Works, of which Monge was an active member,
charged with the establishment of an appropriate institution. The school

was the famous Ecole Polytechnique, which took form so rapidly that

students were admitted in the following year. At all stages of its creation

the role of Monge was essential, both as administrator and as teacher. It

is gratifying to note that the two functions are not incompatible, for Monge
was eminently successful in both. He was even able to overcome his re-

luctance to write textbooks, for in the reform of the mathematics curriculum

the need for suitable books was acute.

Monge found himself lecturing on two subjects both essentially new to

a university curriculum. The first of these was known as stereotomy, now
more commonly called descriptive geometry. Monge gave a concentrated

course in the subject to 400 students, and a manuscript outline of the

syllabus survives. This shows that the course was of wider scope, both on

the pure and the applied side, than is now usual. Besides the study of

shadow, perspective, and topography, attention was paid to the properties

of surfaces, including normal lines and tangent planes, and to the theory

of machines. Among the problems set by Monge, for example, was that

of determining the curve of intersection of two surfaces each of which is

generated by a line that moves so as to intersect three skew lines in space.

Another was the determination of a point in space equidistant from four

lines. Such problems point up a change in mathematical education which

was sponsored primarily by the French Revolution. As long ago as the

Golden Age of Greece Plato had pointed out that the state of solid ge-

ometry was deplorable, and the medieval decline in mathematics had hit

solid geometry harder than it had plane geometry. One who could not

cross the pons asinorum could scarcely be expected to reach the study of

three dimensions. The inventors of analytic geometry, Descartes and Fer-

mat, had been well aware of the fundamental principle of solid analytic

geometry that every equation in three unknowns represents a surface, and

conversely, but they had not taken steps to develop it. One can say that

whereas the seventeenth century was the century of curves—the cycloid,

the limac,on, the catenary, the lemniscate, the equiangular spiral, the hy-

perbolas, parabolas, and spirals of Fermat, the pearls of Sluse, and many
others—the eighteenth was the century that really began the study of sur-

faces. It was Euler (see above) who called attention to the quadric surfaces
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as a family analogous to the conies, and his Introductio in a sense established

the subject of solid analytic geometry (although we must perforce mention

Clairaut as a precursor); but Euler was not a proselytizer, hence his subject

found no place in the school curriculum. One reason may have been that,

like Descartes, he did not begin with the simplest rectilinear cases. La-

grange, influenced perhaps by his calculus of variations, manifested interest

in problems in three dimensions and emphasized their analytic solution.

He was first, for example, to give the formula

_ ap + bq + cr - d

Va2 + b2 + c2

for the distance D from a point (p, q, r) to the plane ax + by + cz = d.

But Lagrange did not have a geometer's heart, nor did he have enthusiastic

disciples. Monge, by contrast, was a specialist in geometry—almost the

first since Apollonius—as well as a superior teacher and a curriculum

builder. (Parenthetically it may be mentioned that Monge had two brothers

who also were professors of mathematics, thus putting the name of Monge
in a class with that of the Bernoullis, the Cassinis, the Clairauts, and the

Pascals as designating a family of mathematicians.) The rise of solid ge-

ometry consequently was due in part to the mathematical and revolutionary

activities of Gaspard Monge. Had he not been politically active, the Ecole

Polytechnique might never have come into being; had he not been an

inspiring teacher, the revival of geometry in three dimensions might not

have taken place.

The Ecole Polytechnique was not the only school created at the time.

The Ecole Normale had been hastily opened to some 1400 or 1500 students,

less carefully selected than those at the Ecole Polytechnique, and it boasted

a mathematical faculty of high calibre, Monge, Lagrange, Legendre, and

Laplace being among the instructors. It was the lectures of Monge at the

Ecole Normale in 1794-1795 that finally were published as his Geometrie

descriptive; but administrative difficulties made the school short-lived. The

idea behind the new descriptive geometry, or method of double ortho-

graphic projection, is essentially very easy to understand. One simply takes

two planes at right angles to each other, one vertical, the other horizontal,

and then projects the figure to be represented orthogonally on these planes,

the projections of all edges and vertices being clearly indicated. The pro-

jection on the vertical plane is known as the "elevation," the other pro-

jection is called the "plan." Finally, the vertical plane is folded or rotated

about the line of intersection of the two planes until it also is horizontal.

The elevation and plan thus provide one with a diagram in two dimensions

of the three-dimensional object. This simple procedure, now so common
in mechanical drawing, produced in the days of Monge almost a revolution

in military engineering design.
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DESCRIPTIVE GEOMETRY AND ANALYTIC GEOMETRY

Descriptive geometry was not the only contribution of Monge to three-

dimensional mathematics, for at the Ecole Polytechnique he taught also a

course in "application of analysis to geometry. " Just as the abbreviated

title "analytic geometry" had not yet come into general use, so also there

was no "differential geometry," but the course given by Monge was es-

sentially an introduction to this field. Here, too, no textbook was available,

and so Monge found himself compelled to compose and print his Feuilles

d*analyse (1795) for the use of students. Here the analytic geometry of

three dimensions really came into its own; it was this course, required of

all students at the Ecole Polytechnique, that formed the prototype of the

present program in solid analytic geometry. Students, however, evidently

found the course difficult, for the lectures skimmed very rapidly over the

elementary forms of the line and plane, the bulk of the material being on

the applications of the calculus to the study of curves and surfaces in three

dimensions. Monge was ever reluctant to write textbooks on the elementary

level or to organize material that was not primarily his own. However, he

found collaborators ready to edit material that he included in his course;

and so in 1802 there appeared in the Journal de l'Ecole Polytechnique an

extensive memoir by Monge and Jean-Nicolas-Pierre Hachette (1769—

1834) on Application d'algebre a la geometric Its first theorem is typical

of a more elementary approach to the subject. It is the well-known eight-

eenth-century generalization of the Pythagorean theorem: The sum of the

squares of the projections of a plane figure upon three mutually perpen-

dicular planes is equal to the square of the area of the figure. Monge and

Hachette proved the theorem just as in modern courses; in fact, the whole

volume could serve without difficulty as a text in the twentieth century.

Equations for transformations of axes, the usual treatment of lines and

planes, the determination of the principal planes of a quadric are treated

fully. It is in the analytic geometry of Monge, rather than that of Clairaut

and Euler, that we first find a systematic study of the straight line in three

dimensions. Monge showed that if, for instance, the line is given by

the intersection of the planes ax + by + cz + d = and a'x + b'y +
c'z + d = 0, a plane through a point (x\ y\ z') that is orthogonal to the

line has the form A(x - x') + B(y - y') + C(z - z') = 0, where A,

B, and C are respectively the expressions (now called direction numbers

of the line) be' - b'c, ca - c'a, and ab' - a'b. Other formulas give the

distance from a point to a line and the shortest distance between two skew

lines. For the latter, Monge wrote the given lines in the projection form

y = Ax + B
f\

• = Ax + B'
and

{

z = Cx + D U - Cx + D'
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and the equations of the desired common normal as

(y = ax + p

lz = yx + 8.

Inasmuch as the common normal intersects both given lines, we know that

(y - C)(0 - B) = {a- A)(b - D) and (y - C')(0 - B')

= (a - A')(b - D').

From the fact that the common normal is perpendicular to each of the

given lines we have 1 + Aa + Cy = and 1 + A'a + C'y = 0. Solving

the four simultaneous equations for a, p, 7, and 8, the equations of the

desired normal are known.

Most of the results of Monge on the analytic geometry of the line and

plane were given in memoirs dating from 1771. In his systematic arrange-

ment of the material in the Feuilles d 'analyse of 1795, and especially in the

1802 memoir with Hachette, we find most of the solid analytic geometry

and the elementary differential geometry that are included in undergrad-

uate college textbooks. One thing that might be missed is the explicit use

of determinants, for this was the work of the nineteenth century. Never-

theless, we might, as in the case of Lagrange, look upon Monge's use of

symmetric notations as an anticipation of determinants, but without the

now customary arrangement (due to Cayley).

Among the new results given by Monge are two theorems that bear his

name: (1) The planes drawn through the midpoints of the edges of a

tetrahedron perpendicular to the opposite edges meet at a point M (which

has since been called the "Monge point" of the tetrahedron); M turns out

to be the midpoint of the segment joining the centroid and the circum-

center. (2) The locus of the vertices of the trirectangular angle whose faces

are tangent to a given quadric surface is a sphere, known as the "Monge
sphere," or director sphere, of the quadric. The equivalent of this locus

in two dimensions leads to what is called the "Monge circle" of a conic,

even though the locus had been given a century earlier in synthetic form

by Lahire. In 1809 Monge proved in various ways that the centroid of a

tetrahedron is the point of concurrency of the lines joining the midpoints

of opposite edges; he gave also the analogue of the Euler line in three-

space, showing that for the orthocentric tetrahedron the centroid is twice

as far from the orthocenter as from the circumcenter. Lagrange was so

impressed by the work of Monge that he is said to have exclaimed, "With

his application of analysis to geometry this devil of a man will make himself

immortal."
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TEXTBOOKS

As already indicated, Monge possessed a quite unusual combination of

talents, for he was at once a capable administrator, an imaginative research

mathematician, and an inspiring teacher. The one trait of a pedagogue he

might have had, but lacked, was that of a textbook compilator. But if

Monge here showed a deficiency, it was more than made up for by his

young and eager students. We can say with no fear of contradiction that

the pupils of Monge let loose a spate of elementary textbooks on analytic

geometry such as has never been equaled—not even in our own day,

deluged as we are with new books. If we judge from the sudden appearance

of so many analytic geometries beginning with 1798, a revolution had taken

place in mathematical instruction. Analytic geometry, which for a century

and more had been over-shadowed by the calculus, suddenly achieved a

recognized place in the schools. This "analytical revolution" can be credited

primarily to Monge. Between the years 1798 and 1802 four elementary

analytic geometries appeared from the pens of Sylvestre Franqois Lacroix

(1765-1843), Jean-Baptiste Biot (1774-1862), Louis Puissant (1769-1843),

and F. L. Lefranc,ais, all directly inspired by the lectures at the Ecole

Polytechnique; Polytechnicians were responsible for as many books again

in the next decade. Most of these were eminently successful texts, appearing

in numerous editions. The volume by Biot achieved a fifth edition in less

than a dozen years; that by Lacroix, student and colleague of Monge,

appeared in twenty-five editions within ninety-nine years! Perhaps we
should speak instead of the "textbook revolution," for Lacroix's other

textbooks were almost as spectacularly successful, his Arithmetic and his

Geometry appearing in 1848 in the twentieth and sixteenth editions re-

spectively. The twentieth edition of his Algebra was published in 1859, and

the ninth edition of his Calculus in 1881. These figures do not include

translations into other languages.

LACROIX ON ANALYTIC GEOMETRY

Monge is known to most readers as a founder of modern pure geometry.

Through Poncelet and other anciens eleves of the Ecole Polytechnique,

pure or synthetic geometry did indeed undergo a glorious renaissance,

largely through the inspiration of Monge; but there is an aspect of Monge's

work that is less well known. Virtually without exception, the textbook

writers in analytic geometry ascribe the inspiration for their work to Monge,
although Lagrange occasionally is mentioned as well. Lacroix most clearly
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expressed the point of view as follows:

In carefully avoiding all geometric constructions, I would have the reader

realize that there exists a way of looking at geometry which one might call

analytic geometry, and which consists in deducing the properties of extension

from the smallest possible number of principles by purely analytic methods,

as Lagrange has done in his mechanics with regard to the properties of

equilibrium and movement.

Lacroix held that algebra and geometry "should be treated separately,

as far apart as they can be; and that the results in each should serve for

mutual clarification, corresponding, so to speak, to the text of a book and

its translation." Lacroix pointed to Lagrange's work on the tetrahedron as

an instance of this point of view, but he believed that Monge "was the first

one to think of presenting in this form the application of algebra to ge-

ometry." (The historian of astronomy J. B. J. Delambre likewise ascribed

to Monge the "resurrection of the alliance of algebra and geometry.") His

own section on solid analytic geometry Lacroix admitted to be almost

entirely the work of Monge. Perhaps teachers today can take satisfaction

in the thought that analytic geometry as presented by Fermat and Des-

cartes, a lawyer and a philosopher respectively, remained ineffectual, and

that only when it was given a new form by genuine pedagogues—Monge
and those of his students who in turn became teachers at the Ecole Po-

lytechnique—did it show vitality.

It is interesting to note that Lacroix declined to use the name "analytic

geometry" as a title for this textbook, and edition after edition carried the

ponderous title Traite elementaire de trigonometrie rectiligne et spherique

et application de Valgebre a la geometrie. Although the phrase "analytic

geometry" had appeared every now and then during the eighteenth cen-

tury, it seems first to have been used as the title of a textbook by Lefrangais

in an edition of his Essais de geometrie of 1804 and by Biot in an 1805

edition of his Essais de geometrie analytique, the latter of which, translated

into English as well as other languages, was used for many years at West

Point. We need not look in detail at the contents of the texts of Lacroix,

Lefrangais, Biot, and others, for they resemble very closely the books of

the early twentieth century in this country.

THE ORGANIZER OF VICTORY

Monge was an outstanding figure of the Revolution; yet the mathematician

whose name was on the tongue of every Frenchman during the Revolution

was not Monge but Carnot. It was Lazare Carnot who, when the success

of the Revolution was threatened by confusion within and invasion from

without, organized the armies and led them to victory. As ardent a re-



480 MATHEMATICIANS OF THE FRENCH REVOLUTION

publican as Monge, Carnot nevertheless shunned all political cliques; hav-

ing a high sense of intellectual honesty, he tried to be impartial in reaching

decisions. After investigation he absolved the royalists of the infamous

charge that they had mixed powdered glass in flour intended for the Rev-

olutionary armies, but he felt bound by conscience to vote for the death

of the king. (The American Tom Paine, sometimes regarded in his country

as dangerously radical, voted against the execution of the king.) Reasoned

impartiality, however, is difficult to maintain in times of crisis, and Ro-

bespierre, whom Carnot had antagonized, threatened that Carnot would

lose his head at the first military disaster. Had Carnot been merely a

mathematician and a politician, like Monge and Condorcet, he might well

have gone to the guillotine. But Carnot had won the admiration of his

countrymen for his remarkable military successes; and when a voice in the

Convention proposed his arrest, the deputies spontaneously rose to his

defense, acclaiming him the ''Organizer of Victory." Hence, it was instead

the head of Robespierre that fell, and Carnot survived to take an active

part in the formation of the Ecole Polytechnique. Carnot was greatly in-

terested in education at all levels, even though he seems never to have

taught a class. His son Hippolyte served as minister of public instruction

in 1848. (Another son, Sadi, became a celebrated physicist; and a grandson,

also named Sadi, became the fourth president of the Third French Re-

public. See the genealogical chart.)

Carnot led a charmed political life until 1797. He had gone from the

National Assembly to the Legislative Assembly, to the National Conven-

tion, to the powerful Committee of Public Safety, to the Council of Five

Hundred and the Directorate. In 1797, however, he refused to join a

partisan coup d'etat and was promptly ordered deported. His name was

stricken from the roles of the Institut and his chair of geometry was voted

unanimously to General Bonaparte. Even Monge, fellow republican and

mathematician, approved the intellectual outrage. About the only thing

that can be said in extenuation of his action is that Monge seems to have

Lazare Carnot

(1753 1823)

Mathematician, Organizer of Victory

Sadi Carnot Hippolyte Carnot

(17% |v (1801 1888)

Physicist Assemblyman. Life Senator

(Carnot s cycle)
I

1
.

Sadi Carnot Adolphe Carnot

(1837 1894) (1839 1920)

President of F- ranee Chemist

(1887 1894) Academie des Sciences 1895

Celebrated Carnots: a genealogical chart.
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been mesmerized by Napoleon. Monge followed his idol through thick and

thin, his devotion being such that he became literally sick every time Na-

poleon lost a battle. This is in contrast to Carnot, who initially was re-

sponsible for Bonaparte's rise to power through his appointment to the

Italian campaign, but who did not hesitate to oppose the Frankenstein he

had created, although it nearly cost him his life.

Mathematically, Carnot's proscription turned out to be a good thing,

for it gave him an opportunity, while in exile, to complete a work that had

been on his mind for some time. One should expect that a man engaged

in affairs of enormous practical exigency, as was Carnot, would tend to

think in terms of immediate practicality. Trajectories would appear to be

a more likely subject for study than abstract metaphysical reflections. But

the work that Carnot had been planning during his politically busy days

was, mirabile dictu, the Reflexions sur la metaphysique du calcul infinites-

imal, which appeared in 1797. This was not a work on applied mathematics;

it came closer to philosophy than physics, and in this respect it adumbrated

the period of rigor and concern for foundations so typical of the next

century. Carnot's Reflexions became very popular and ran through a num-
ber of editions in several languages, proving that even in times that try

men's souls pure mathematics finds many devotees.

METAPHYSICS OF THE CALCULUS AND GEOMETRY

Throughout the second half of the eighteenth century there was enthusiasm

for the results of the calculus but confusion about its basic principles. No
one of the usual approaches, whether by the fluxions of Newton, the dif-

ferentials of Leibniz, or the limits of d'Alembert, seemed to be satisfying.

Hence, Carnot, considering the conflicting interpretations, sought to show

"in what the veritable spirit" of the new analysis consisted. In his selection

of the unifying principle, however, he made a most deplorable choice. He
concluded that "the true metaphysical principles" are "the principles of

the compensation of errors." Infinitesimals, he argued, are "quantites in-

appreciables" which, like imaginary numbers, are introduced only to fa-

cilitate the computation and are eliminated in reaching the final result.

"Imperfect equations" are made "perfectly exact," in the calculus, by

eliminating the quantities, such as infinitesimals of higher order, the pres-

ence of which occasioned the errors. To the objection that vanishing quan-

tities either are or are not zero, Carnot responded that "what are called

infinitely small quantities are not simply any null quantities at all, but rather

null quantities assigned by a law of continuity which determines the rela-

tionship"—an argument that is strongly reminiscent of Leibniz. The divers

approaches to the calculus, he claimed, were nothing but simplifications

of the ancient method of exhaustion, reducing this in various ways to a

convenient algorithm.
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FIG. 22.1

Carnot's Reflexions enjoyed a wide popularity, appearing in many lan-

guages and editions. Unsuccessful though its synthesis of views was, it

undoubtedly helped to make mathematicians dissatisfied with the "abom-
inable little zeros" of the eighteenth century and to lead toward the age

of rigor in the nineteenth. Carnot's reputation today, however, depends

primarily on other works. In 1801 he published De la correlation des figures

de geometrie, again a work characterized by its high degree of generality.

In it Carnot sought to establish for pure geometry a universality comparable

to that enjoyed by analytic geometry. He showed that several of Euclid's

theorems can be regarded as specific instances of a more inclusive theorem

for which a single demonstration suffices. We find in the Elements, for

instance, the theorem that if two chords AD and BC in a circle intersect

in a point K, the product of AK by KD is equal to the product of BK by

KC (Fig. 22.1). Later we run across the theorem that if KDA and KCB
are secants to a circle, the product of AK by KD is equal to the product

of BK by KC. These two theorems Carnot would regard merely as special

cases, correlated through the use of negative quantities, of a general prop-

erty of lines and circles. If we note that for the chords CK = CB - BK,
whereas for the secants CK = BK - CB, the relationship AK • KD =

CK • KB can be carried over from the one case to the other simply by a

change of sign. And tangency is only another case in which B and C, say,

coincide, so that BC = 0. Although the graphical representation of complex

numbers had not yet come into general use, Carnot did not hesitate to

suggest also a correlation of figures through imaginary numbers. He cited

as an example the fact that the circle y
2 = a2 - x 2

is related to the hyperbola

y
2 = x 2 - a2 through the identity x 2 - a 2 = (V- l)

2
(fl

2 - x 2
).

GEOMETRIE DE POSITION

Carnot greatly expanded his correlation of figures in his Geometrie de

position in 1803, a book that placed him beside Monge as a founder of

modern pure geometry. The development of mathematics has been char-
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acterized by a striving for ever higher and higher degrees of generality,

and it is this quality that gives significance to the work of Carnot. His

penchant for generalization led him to beautiful analogues of well-known

theorems of plane geometry. The equivalent of the familiar law of cosines

in trigonometry, a2 = b2 + c2 - 2bc cos A, had been known at least as

far back as the days of Euclid; Carnot extended this ancient theorem to

an equivalent form, a2 = b2 + c2 + d2 - led cos B - 2bd cos C - 2bc

cos D, for a tetrahedron, where a, b, c, and d are the areas of the four

faces and B, C, and D are the angles between the faces of areas c and d,

b and d, and b and c respectively. The passion for generality that is found

in his work has been the driving force of modern mathematics, especially

in the twentieth century. Topology in particular, concerned as it is with

the properties of figures that remain invariant under a continuous defor-

mation, would delight Carnot, if he could return today, for he would

recognize it as going far beyond his correlation of figures.

The Geometrie de position is a classic in pure geometry, but it contains

also significant contributions to analysis. Although analytic geometry had

completely overshadowed synthetic geometry for more than a century, its

supremacy had been won in terms of two coordinate systems, rectangular

and polar. In the rectangular system the coordinates of a point P in a plane

are the distances of P from two mutually perpendicular lines or axes; in

the polar system one of the coordinates of P is the distance of P from a

fixed point O (the pole), and the other is the angle that line OP makes

with a fixed line (polar axis) through O. Carnot saw that coordinate systems

could be modified in many ways. For example, the coordinates of P may
be the distances of P from two fixed points O and Q; or one coordinate

may be the distance OP and the other the area of the triangle OPQ. In

such generalizations Carnot simply rediscovered and extended a suggestion

that Newton had made, but which had been generally overlooked; but

Carnot's thought characteristically carried him further. In all of the cases

so far considered, the equation of a curve depends on the particular co-

ordinate frame of reference that is used; yet the properties of a curve are

not bound to any one choice of pole or axes. It should be possible, Carnot

reasoned, to find coordinates that do not "depend on any particular hy-

pothesis or on any basis of comparison taken in absolute space." Thus he

initiated the search for what now are known as intrinsic coordinates. One
of these he found in the familiar radius of curvature of a curve at a point.

For the other he introduced a quantity to which he gave no name but which

since has come to be called aberrancy, or angle of deviation. This is an

extension of the ideas of tangency and curvature. The tangent to a curve

at a point P is the limiting position of a secant line PQ as Q approaches

P along the curve; the circle of curvature is the limiting position of the

circle through the points P, Q, and R as Q and R approach P along the

curve. If, now, one passes a parabola through points P, Q, R, and S and
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finds the limiting position of this parabola as the points Q, R, and S ap-

proach P along the curve, the aberrancy at P is the angle between the axis

of this parabola and the normal to the curve. Aberrancy is related to the

third derivative of a function in much the same sense that slope and cur-

vature arc related to the first and second derivatives respectively.

TRANSVERSALS

Carnot's name is known among mathematicians for a theorem that bears

his name, which appeared in 1806 in an Essaisurla theorie des transversales.

This again is an extension of an ancient result. Menelaus of Alexandria

had shown that if a straight line intersects the sides AB, BC
}
and CA of

a triangle (or these sides extended) in points P, Q, and R respectively, and

if a' = AP, b' = BQ, c' = CR and a" = AR
y
b" = BR c" = CQ

y
then

a'b'c' = a"b"c" (Fig. 22.2). Carnot showed that if the straight line in the

theorem of Menelaus is replaced by a curve of order n which intersects

AB in the (real or imaginary) points P
x

, P2 , P3 , . . . , Pn , BC in the points

Q\< Qi* (?3, • • • , Qn, and CA in the points R u /? 2 , R3 , . . . , Rn , then the

theorem of Menelaus holds if one takes a' as the product of the n distances

/4f\, AP2 , AP3 , . . . , APn , with similar definitions for b' and c' and anal-

ogous definitions for a\ b" , and c" (Fig. 22.3). The theory of transversals

is only a small part of a work that contains other interesting generalizations.

From the familiar formula of Heron of Alexandria for the area of a triangle

in terms of its three sides, Carnot went on to a corresponding result for

the volume of the tetrahedron in terms of its six edges; finally he derived

a formula, comprising 130 terms, for finding the tenth of the ten segments

joining five points at random in space if the other nine are known.

Carnot was a soldier, a politician, a poet, and a geometer; but he was

also a speculator. The failure of colonial ventures, in which he had invested

far too heavily, resulted in financial ruin in 1809, at which point the emperor

magnanimously granted him a position.

FIG. 22.2
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FIG. 22.3

LEGENDRE'S GEOMETRY

Carnot was not the only one of our Revolutionary group who felt the need

for greater rigor in mathematics. We have mentioned the lamentable state

of geometry as portrayed by Bezout's Cours de mathematiques. This

prompted Legendre, who was, after all, primarily an analyst, to revive

some of the intellectual quality of Euclid. The result was the Elements de

geometrie which appeared in 1794, the year of the Terror. Here, too, we
see the very antithesis of what generally is regarded as practical. As Le-

gendre says in the preface, his object is to present a geometry that shall

satisfy Yesprit. The result of Legendre's efforts was a remarkably successful

textbook—one of the mathematical products of the Revolution that had

pervasive influence, for twenty editions appeared within the author's life-

time. Legendre wrote that his object was "to compose a very rigorous

elements" of geometry, but he did not wax pedantic to the point of making

a fetish of rigor at the expense of clarity.

Often we are inclined to think of American mathematics as influenced

primarily by German scholarship, for a generation ago one went to Got-

tingen to be in touch with the foremost scholars in the field. We are prone

to forget that during much of the nineteenth century it was French math-

ematics that dominated American teaching, and this was primarily through

the work of the men whom we have been considering. Textbooks by Lac-

roix, Biot, and Lagrange were published in America for use in the schools,

but perhaps the most influential of all was the geometry of Legendre.

Davies' Legendre became almost a synonym for geometry in America. As
late as 1885 Dean Van Amringe of Columbia University wrote in the

preface of still another edition:

It is believed that in clearness and precision of definition, in general simplicity

and rigor of demonstration, in orderly and logical development of the subject,

and in compactness of form, Davies' Legendre is superior to any work of its
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grade tor the general training of the logical powers of pupils, and for their

instruction in the great body of elementary geometric truth.

ELLIPTIC INTEGRALS

The success of Legendre's Elements should not lead one to think of the

author as a geometer. The fields in which Legendre made significant ad-

vances were numerous, but chiefly nongeometric—differential equations,

calculus, theory of functions, theory of numbers, and applied mathematics.

He composed a three-volume treatise, Exercises du calcul integral (181 1—

1819), which rivaled that of Euler for comprehensiveness and authorita-

tiveness; later he expanded aspects of this in another three volumes com-

prising the Traite des fonctions elliptiques et des integrates euleriennes (1825-

1832). In these important treatises, as well as in earlier memoirs, Legendre

introduced the name "Eulerian integrals" for the beta and gamma func-

tions. More importantly, he provided some basic tools of analysis, so help-

ful to mathematical physicists, which bear his name. Among these are the

Legendre functions, which are solutions of the Legendre differential equa-

tion (1 - x 2
)y" - 2xy' + n(n + \)y = 0. Polynomial solutions for positive

integral values of n are known as Legendre polynomials.

Legendre spent much effort in reducing elliptic integrals (quadratures

of the form fR(x, s)dx, where R is a rational function and s is the square

root of a polynomial of third or fourth degree) to three standard forms

that have since borne his name. The elliptic integrals of first and second

kind in Legendre's form are

f(k, 4)) = r
Jo

and

rf<t>

Vl - K 2
sin

2
<t>

E(K, <f>)
= f* Vl - K2

sin
2

<\> d<\>

Jo

respectively, where K 2 < 1; those of the third form are somewhat more

complicated. Tables of these integrals, tabulated for given K and varying

values of <J>, can be found in most comprehensive handbooks, for the

integrals arise in many problems. Legendre's elliptic integral of the first

kind arises naturally in solving the differential equation for the motion of

a simple pendulum; that of the second kind appears in seeking the length

of arc of an ellipse. Elliptic integrals arose also in Legendre's earlier mem-
oirs, especially in one of 1785 on the gravitational attraction of an ellipsoid,

a problem in connection with which there appeared what are known as

zonal harmonics or "Legendre's coefficients"—functions used effectively

by Laplace in potential theory.
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Autograph letter of Legendre. In some of his letters the form "Le Gendre" appears, as in

this case. In general the name is spelled Legendre.

»«#**'

Legendre was an important figure in geodesy, and in this connection he

developed the statistical method of least squares. A simple case of the

method of least squares may be described as follows. If observations have

led to three or more approximate equations in two variables, say, a
x
x +

b
xy + d = 0, a2x + b2y + c2

= 0, and a3x + fr3y + c3
= 0, one adopts

as the "best" values of x and y the solution of the two simultaneous equa-

tions

{a} + a| + a\)x + (a
x
b

x
+ a2b2 + a3b3)y + (a^ + a2c2 + a3c3 ) =

(a
x
b

x
+ a2b2 + a3b 3)x + (b\ + b\ + ^)y + (Vi + b2c2 + 63c3 ) = 0.
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THEORY OF NUMBERS

The Memoirs of the Institut contain also one of Legendre's attempts to

prove the parallel postulate, but of all his contributions to mathematics

Legendre was most pleased with the works on elliptic integrals and the

theory of numbers. He published a two-volume Essai sur la theorie des

nombres (1797-1798), the first treatise to be devoted exclusively to the

subject. The famous "last theorem of Fermat" attracted him, and in about

1825 he gave a proof of its unsolvability for n = 5. Almost equally famous

is a theorem on congruences which Legendre published in the treatise of

1797-1798. If, given integers p and q, there exists an integer x such that

x 2 - q is divisible by p, then q is known as a quadratic residue of p; we
now write (following a notation introduced by Gauss) x 2 = q (mod /?),

reading this as "jc
2

is congruent to q modulo p." Legendre rediscovered a

beautiful theorem, given earlier in less modern form by Euler, known as

the law of quadratic reciprocity: if p and q are odd primes, then the con-

gruences x 2 = q (mod p) and x 2 = p (mod q) are either both solvable or

both unsolvable, unless both p and q are of the form An + 3, in which

case one is solvable and the other is not. For example, x 2 = 13 (mod 17)

has the solution x = 8, and x 2 = 17 (mod 13) has the solution jc = 11;

and it can be shown that x 2 = 5 (mod 13) and x 2 = 13 (mod 5) have no

solution. On the other hand, x 2 = 19 (mod 11) is not solvable, whereas

x 2 = 11 (mod 19) has the solution x = 7. The theorem is here stated in

the customary modern form. In the exposition of Legendre it becomes

P
j(^)

_ (_ !)(/>- D(<7-l)/4^

where the Legendre symbol (plq) denotes 1 or - 1 according as x ? = p
(mod q) is, or is not, solvable for x.

Ever since the days of Euclid it had been known that the number of

primes is infinite; yet it is obvious that the density of prime numbers

decreases as we move on to ever larger integers. Hence, it became one of

the most famous problems to describe the distribution of primes among
the natural numbers. Mathematicians were looking for a rule, known as

the prime number theorem, which should express the number of primes

less than a given integer n as a function of m, usually written -n(n). In his

well-known treatise of 1797-1798 Legendre conjectured, on the basis of a

count of a large number of primes, that Ti(n) approaches n/(\nn - 1.08366)

as n increases indefinitely. This conjecture comes close to the truth, but a

precise statement of the theorem that Tr(n) — n/\n h, suggested several

times during the following century, was not proved until 1896. Legendre

showed that there is no rational algebraic function that always gives primes,

but he noted that n 2 + n + 17 is prime for all values of n from 1 to 16

and In 2 + 29 is prime for values of n from 1 to 28. (Euler earlier had

shown that n 2 - n + 41 is prime for values of n from 1 to 40.)
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THEORY OF FUNCTIONS

If Carnot and Legendre were disciples of clear and rigorous thought, La-

grange was the high priest of the cult. At the height of the Terror, Lagrange

had thought seriously of leaving France; but just at this critical juncture

the Ecole Normale and the Ecole Polytechnique were established, and

Lagrange was invited to lecture on analysis. Lagrange seems to have wel-

comed the opportunity to teach, although it had been many years since he

had done lecturing at Turin. In the interval he had been under the patronage

of sovereigns, but during the Revolution he did not take sides for or against

the king or the second estate. Perhaps this was the result of political apathy,

or possibly it was due to Lagrange's mental depression at the time. At all

events, his appointment to the newly established schools woke him from

his lethargy. The new curriculum called for new lecture notes, and these

Lagrange supplied for various levels. For students at the Ecole Normale

in 1795 he prepared and delivered lectures that today would be appropriate

for a high school class in advanced algebra or for a course in college algebra;

the material in these notes enjoyed a popularity that extended to America,

where they were published as Lectures on Elementary Mathematics. For

scholars on the higher level of the Ecole Polytechnique, Lagrange lectured

on analysis and prepared what has ever since been regarded as a classic in

mathematics. The results, in his Theorie desfonctions analytiques, appeared

in the same year as Carnot's Reflexions, and together they make 1797 a

banner year for the rise of rigor.

Lagrange's function theory, which developed some ideas that he had

presented in a paper about twenty-five years earlier, certainly was not useful

in the narrower sense, for the notation of the differential was far more expe-

ditious and suggestive than the Lagrangian "derived function," from which

our name "derivative" comes. The whole motive of the work was not to

try to make the calculus more utilitarian, but to make it more logically satis-

fying. The key idea is easy to describe. The function /(x) = 1/(1 - x),

when expanded by long division, yields the infinite series 1 + 1* + lx 2

+ Ijc
3 4- • • • + lxn + • • •. If the coefficient of xn

is multiplied by «!,

Lagrange called the result the value of the nth derived function of f(x) for

the point x = 0, with suitable modification for expansions of functions

about other points. To this work by Lagrange we owe the commonly used

notation for derivatives of various orders, /'(*), f"(x), . . . , f
n
(x) ....

Lagrange thought that through this device he had eliminated the need for

limits or infinitesimals, although he continued to use the latter side by side

with his derived functions. But, alas, there are flaws in his fine new scheme.

Not every function can be so expanded, for there were lapses in Lagrange's

putative proof of the expandability; moreover, the question of the con-

vergence of the infinite series brings back the need for the limit concept.

Yet the work of Lagrange during the Revolution can be said to have had

a broader influence through the initiation of a new subject which has ever
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since been a center of attention in mathematics—the theory of functions

of a real variable.

CALCULUS OF VARIATIONS

Lagrange generally is regarded as the keenest mathematician of the eight-

eenth century, only Euler being a close rival, and there are aspects of his

work that are not easily described in an elementary historical survey.

Among these is Lagrange's first, and perhaps his greatest, contribu-

tion—the calculus of variations. This was a new branch of mathematics,

the name of which originated from notations used by Lagrange from about

1760. In its simplest form the subject seeks to determine a functional

relationship y = f(x) such that an integral Jfl

6
g(x, y) dx shall be a maximum

or minimum. Problems of isoperimetry or of quickest descent are special

cases in the calculus of variations. In 1755 Lagrange had written to Euler

about the general methods that he had developed for handling problems

of this type, and Euler generously held up publication of somewhat related

work of his own in order that the younger man should receive full credit

for the newer methods that Euler regarded as superior.

From the time of his first publications in the Miscellanea of the Turin

Academy in 1759-1761, the reputation of Lagrange was established. When
in 1766 Euler and d'Alembert advised Frederick the Great on Euler's

successor at the Berlin Academy, they both urged the appointment of

Lagrange. Frederick then presumptuously wrote Lagrange that it was nec-

essary that the greatest geometer of Europe should live near the greatest

of kings. Lagrange assented; he remained in Berlin for twenty years, leaving

only after Frederick's death, three years before the start of the French

Revolution.

It was during his days at Berlin that Lagrange published important

memoirs on mechanics, the three-body problem, his early ideas on derived

functions, and important work on the theory of equations. In 1767 he

published a memoir on the approximation of roots of polynomial equations

by means of continued fractions; in another paper in 1770 he considered

the solvability of equations in terms of permutations on their roots. It was

the latter work that was to lead to the enormously successful theory of

groups and to the proofs by Galois and Abel of the unsolvability, in the

usual terms, of equations of degree greater than four. The name of La-

grange is today attached to what is perhaps the most important theorem

of group theory: if o is the order of a subgroup g of a group G of order

O, then o is a factor of O. Finding that a resolvent of a quintic equation,

far from being of degree less than five, as one should have expected, was
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a sextic, Lagrange conjectured that polynomial equations above fourth

degree are not solvable in the usual sense.

LAGRANGE MULTIPLIERS

Ever on the lookout for generality and elegance in the treatment of prob-

lems, Lagrange was responsible for the method of variation of parameters

in the solution of nonhomogeneous linear differential equations. That is,

if c
x
u

x
+ c2u2 is a general solution of y" + a

x
y' + a2y = (where u

x
and

u2 are functions of jc), he replaced the parameters c
x
and c2 by undetermined

variables v
x
and v2 (functions of jc) and determined the latter so that v

x
u

x

+ v2u2 should be a solution of y" + a
x
y' + a2y = f(x). In the determination

of maxima and minima of a function such as /(jc, y, z, w) subject to

constraints g(jc, y, z, w) = and h(x, y, z, w) = 0, he suggested the use

of Lagrange multipliers to provide an elegant and symmetric algorithm.

Under this method one introduces two undetermined constants X and //;

forms the function F = f + kg + [ih from the six equations Fx = 0,

F
y
= 0, Fz

- 0, Fw = 0, g = 0, and h = 0; eliminates the multipliers k

and /r, and solves for the desired values of jc, y, z, and w.

Like so many of the leading modern mathematicians, Lagrange had a

deep interest in the theory of numbers. Although he did not use the lan-

guage of congruences, Lagrange showed, in 1768, the equivalent of the

statement that for a prime modulus p the congruence /(jc) m can have

not more than n distinct solutions, where n is the degree (except for the

trivial case in which all coefficients of /(jc) are divisible by p). Two years

later he published a demonstration of the theorem, for which Fermat

claimed to have had a proof, that every positive integer is the sum of at

most four perfect squares; hence, this theorem often is known as Lagrange's

four-square theorem. At the same time he gave also the first proof of

a result known as Wilson's theorem, which had appeared in Waring's

Meditationes algebraicae of the same year—for any prime /?, the integer

(p - 1)! + 1 is divisible by p. Lagrange contributed also to the theory of

probability, but in this branch he took second place to Laplace, who was

younger.

LAPLACE AND PROBABILITY

We have said little so far about Laplace, who in his day was regarded, as

a mathematician, as highly as Lagrange. There are two reasons for the

relative neglect. First, Laplace took virtually no part in revolutionary ac-

tivities. He seems to have had a strong sense of intellectual honesty in

science, but in politics he was without convictions. This does not mean
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that he was timid, for he seems to have associated freely with those of his

scientific colleagues who were suspect during the period of crisis. It has

been said that he, too, would have been in danger of the guillotine except

for his contributions to science, but this statement seems to be questionable,

since he often appeared as a brazen opportunist. He played a role in the

Committee on Weights and Measures, but this was not of great significance.

He naturally was a professor at the Ecole Normale and the Ecole Poly-

technique, but, unlike Monge and Lagrange, he did not publish lecture

notes. His publications were primarily on celestial mechanics, in which he

stands preeminent in the period since Newton. Laplace did have one fling

at political administration some years later, when Napoleon, a great ad-

mirer of men of science, appointed him Minister of the Interior, a post

that Carnot also had held for a while under Napoleon. But it is well known
that Laplace, unlike Carnot, showed no aptitude for the office, and Na-

poleon quipped that he "carried the spirit of the infinitely small into the

management of affairs." A second reason for our failure to emphasize the

work of Laplace is that it did not have the immediate and persistent influ-

ence that can be traced to others in our group. His compilations represent

in a sense the end of an era rather than the beginning of a new period,

although we must make an exception in the case of his work in probability

and potential theory.

The theory of probability owes more to Laplace than to any other

mathematician. From 1774 on he wrote many memoirs on the subject, the

results of which he embodied in the classic Theorie analytique des proba-

bility of 1812. He considered the theory from all aspects and at all levels,

and his Essai philosophique des probabilites of 1814 is an introductory

account for the general reader. Laplace wrote that "at the bottom the

theory of probabilities is only common sense expressed in numbers"; but

his Theorie analytique shows the hand of a master analyst who knows his

advanced calculus. It is replete with integrals involving beta and gamma
functions; and Laplace was among the earliest to show that /*. e~ x ~ dx,

the area under the probability curve, is \fn. Although the method by which

he achieved this result was somewhat artificial, it is not far removed from

the modern device of transforming

e~ x ~ dx -

[ e
y2
dy =

[ \
e

(x^ yl)

dxdy
h h h h

to polar coordinates as

Jo Jo

re
r dr d()<

which is easily evaluated and leads to
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Among the many things to which Laplace called attention in his Theorie

analytique was the calculation of n through Buffon's needle problem, which

had been all but forgotten for thirty-five years. This sometimes is known
as the Buffon-Laplace needle problem, inasmuch as Laplace extended the

original problem to a crisscross of two mutually perpendicular sets of equi-

distant parallel lines. If the distances are a and /?, the probability that a

needle of length / (less than a and b) will fall on one of the lines is

2l(a + b) - I
2

P = ^b
'

Laplace also rescued from oblivion the work of the Rev. Thomas Bayes

(1*1761) on inverse probability. Further, we find in Laplace's book the

theory of least squares, invented by Legendre, together with a formal proof

that Legendre had failed to give. The Theorie analytique also contains the

Laplace transform which is so useful in differential equations. If f(x) =

Jo e~ xt
g(t) dt, the function /(jc) is said to be the Laplace transform of the

function g(x).

CELESTIAL MECHANICS AND OPERATORS

The works of Laplace involve a considerable application of higher math-

ematical analysis. Typical was his study of the conditions for the equilibrium

of a rotating fluid mass, a subject that he had considered in connection

with the nebular hypothesis of the origin of the solar system. The hypothesis

had been presented in a popular form in 1796 in Exposition du systeme du

monde, a book that bears the same relation to the Mecanique celeste (1799-

1825, 5 vols.) as does the Essai philosophique des probabilites to the Theorie

analytique. According to the theory of Laplace the solar system evolved

from an incandescent gas rotating about an axis. As it cooled, the gas

contracted, causing ever more rapid rotation, according to the conservation

of angular momentum, until successive rings broke off from the outer edge

to condense and form planets. The rotating sun constitutes the remaining

central core of the nebula. The idea behind this hypothesis was not entirely

original with Laplace, for it had been proposed in qualitative skeletal form

by Thomas Wright and Immanuel Kant, but the quantitative fleshing out

of the theory forms part of the multivolume Mecanique celeste. It is in this

classic also that we find, in connection with the attraction of a spheroid on

a particle, the Laplacian use of the idea of potential and the Laplace

equation. In a highly technical paper of 1782 on "Theorie des attractions

des spheroides et de la figure des planetes," included also in the Mecanique

celeste, Laplace developed the very useful concept of potential—a function

whose directional derivative at every point is equal to the component of

the field intensity in the given direction. Also of fundamental importance
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in astronomy and mathematical physics is the so-called Laplacian of a

function u = f(x, y, z). This is simply the sum of the second-order partial

derivatives of u, namely, uxx + u vy + u„, often abbreviated V 2w (read "del-

squared of u), where V 2
is called Laplace's operator. The function V 2u is

independent of the particular coordinate system that is used; under certain

conditions gravitational, electrical, and other potentials satisfy the Laplace

equation u„ + uyv + u zz
= 0. Euler had run across this equation somewhat

incidentally in 1752 in studies on hydrodynamics, but Laplace made it a

standard part of mathematical physics.

The publication of the Mecanique celeste of Laplace commonly is re-

garded as marking the culmination of the Newtonian view of gravitation.

Accounting for all the perturbations in the solar system, Laplace showed

the motions to be secular, so that the system could be regarded as stable.

There no longer appeared to be any need for occasional divine intervention.

Napoleon is said to have commented to Laplace on the latter's failure to

mention God in his monumental work, whereupon Laplace is reported to

have replied, "I have no need for that hypothesis." Lagrange, being told

about this, is quoted as saying, "Ah, but it is a beautiful hypothesis."

Laplace completed not only the gravitational portion of Newton's Prin-

cipia, but also some points in the physics. Newton had computed a velocity

of sound on purely theoretical grounds, only to find that the calculation

resulted in too small a value for the speed. Laplace in 1816 was the first

one to point out that the lack of agreement between calculated and ob-

served speeds was due to the fact that the computations in the Principia

were based on the assumption of isothermal compressions and expansions,

whereas in reality the oscillations for sound are so rapid that compressions

are adiabatic, thereby increasing the elasticity of the air and the speed of

sound.

The minds of Laplace and Lagrange, the two leading mathematicians

of the Revolution, were in many ways direct opposites. For Laplace nature

was the essence, and mathematics was only a kit of tools that he handled

with extraordinary skill; for Lagrange mathematics was a sublime art that

was its own excuse for being. The mathematics of the Mecanique celeste

has often been described as difficult, but no one calls it beautiful; the

Mecanique analytique, on the other hand, has been admired as "a scientific

poem" in the perfection and grandeur of its structure.

POLITICAL CHANGES

This chapter should, in a sense, close with the date 1799, for at that time

Bonaparte seized power and one can regard the period of the Revolution

as ended. However, under Napoleon the favorable conditions for the

growth of mathematics persisted. Moreover, this date was far from the end
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of the activity of the five survivors in our group, for every one of them
continued, as we have seen, to make contributions to mathematics, and
some to politics as well. Honors came to all of them, Monge, Carnot, and
Lagrange being named counts of the empire and Laplace achieving the

title of marquis. Of our group of six, only Legendre seems never to have

borne a title. Mathematically the chapter has a happy ending, for our

scholars were able to continue their work until the end. Politically, how-
ever, two were to suffer defeat. Carnot and Monge had strong political

convictions, and both of them had voted for the death of Louis XVI.
Carnot, the more consistent of the two, ever was opposed to dictators, and

in 1804 he was the only Tribune with sufficient courage and conviction to

vote against naming Napoleon emperor. Yet later, when he felt that the

welfare of France demanded it, Carnot willingly served under Napoleon,

both in the army and in governmental administration. Monge, on the other

hand, supported his idol from the revolutionary corporal to the despotic

emperor. He and Fourier accompanied Bonaparte on the Italian and Egyp-

tian campaigns, and it was Monge who executed the delicate task of de-

termining what works of art were to be brought back to Paris as war booty.

Following the restoration of the French monarchy, Carnot was forced

to seek exile in Magdeburg, and Monge was banished and stripped of all

his honors, including his place in the Ecole Polytechnique and Institut

National. The turn in events was accepted courageously by Carnot, who
continued his scholarly activities, but it broke the spirit of Monge, who
died shortly afterward. Lagrange had died a few years before the Napo-

leonic crisis. Legendre seems to have remained politically neutral through-

out the changes, for he was shy and retiring; but he produced a steady

stream of publications on elliptic integrals and the theory of numbers, as

well as contributions to other parts of mathematics. Toward the end of his

life he, too, suffered politically. Because he resisted the move of the gov-

ernment to dictate to the Academie des Sciences, he was deprived of his

pension. Laplace, on the other hand, made peace with each regime as it

came along, including in editions of his works glowing tributes to whichever

side happened to be in power. Posterity, as a result, has admired Laplace

for his mathematics while disdaining his political maneuvering.

It is now more than a century and a half since the days of which we
have been speaking, and we can look back on the period dispassionately.

One lesson that can be drawn from the survey is that the things that really

count in mathematics, and have lasting influence, are not those that im-

mediate practicality dictates. Even in times of crisis it is things of the

"spirit" (in the French sense) that count most, and this spirit is perhaps

best imparted by great teachers. But perhaps more important than this is

the moral that, like Carnot, one should never lose heart, no matter how
disillusioning the political or intellectual outlook may be.
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The Time of Gauss
and Cauchy

Mathematics is the queen of the sciences and number theory the queen of

mathematics.

Gauss

NINETEENTH-CENTURY OVERVIEW

The nineteenth century, more than any preceding period, deserves to be

known as the Golden Age in mathematics. The additions to the subject

during these one hundred years far outweigh the total combined produc-

tivity of all preceding ages. The century was also, with the possible excep-

tion of the Heroic Age in ancient Greece, the most revolutionary in the

history of mathematics. The introduction into the mathematician's reper-

toire of concepts such as non-Euclidean geometries, >?-dimensional spaces,

noncommutative algebras, infinite processes, and nonquantitative struc-

tures all contributed to a radical transformation which changed the ap-

pearance as well as the definitions of mathematics.

The geographic distribution of mathematical activity began to change

also. Hitherto each major period of history seemed to be characterized by

specific geographic clusters where most advances in mathematics took place.

For example, at the end of the eighteenth century the leading mathema-

496
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ticians had been, with few exceptions, French. During the first half of the

nineteenth century the center of mathematical activity became diffused.

Nevertheless, several decades passed before there were institutions that

could boast the mathematical strength of the French, epitomized by the

Ecole Polytechnique. Most countries supported mathematical efforts di-

rected toward surveying, navigation, or other areas of application. Support

for research in pure mathematics—in time or money—was the exception

rather than the rule. This is illustrated in the career of the greatest math-

ematician of the time, who was German.

GAUSS: EARLY WORK

Carl Friedrich Gauss (1777-1855), unlike the men discussed in the pre-

ceding chapter, was an infant prodigy. His father was an upright but au-

tocratic Brunswick cooper who died shortly before Gauss's thirty-first birth-

day. His mother outlived her husband by another thirty-one years, and

she resided with Carl Friedrich and his family for most of that time. Gauss

enjoyed numerical computation as a child; an anecdote told of his early

schooling is characteristic: One day, in order to keep the class occupied,

the teacher had the students add up all the numbers from one to a hundred,

with instructions that each should place his slate on a table as soon as he

had completed the task. Almost immediately Carl placed his slate on the

table, saying, "There it is." The teacher looked at him scornfully while

the others worked diligently. When the instructor finally looked at the

results, the slate of Gauss was the only one to have the correct answer,

5050, with no further calculation. The ten-year-old boy evidently had com-

puted mentally the sum of the arithmetic progression 1 + 2 + 3 +
• • • + 99 + 100, presumably through the formula m(m + l)/2. His

teachers soon called Gauss's talent to the attention of the Duke of Bruns-

wick who supported his education, first enabling him to study at the local

college, then at the University in Gottingen, where he matriculated in

October 1795.

The following March, still a month short of being nineteen years old,

he made a brilliant discovery. For more than 2000 years men had known

how to construct, with compasses and straightedge, the equilateral triangle

and the regular pentagon (as well as certain other regular polygons, the

numbers of whose sides are multiples of two, three, and five), but no other

polygon with a prime number of sides. Gauss showed that the regular

polygon of seventeen sides, too, could be constructed with compasses and

straightedge.

Gauss commemorated his discovery by starting a diary in which for the

next eighteen years he noted many of his discoveries. He obtained nu-

merous results while still a student. Some were rediscoveries of theorems

established by Euler, Lagrange, and other eighteenth-century mathema-
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Facsimile of page in the famous diary of Gauss.

ticians; many were new. Among the more significant discoveries of his

student days we may single out the method of least squares, the proof of

the law of quadratic reciprocity in number theory, and his work on the

Fundamental Theorem of Algebra. He obtained his doctorate with a thesis

entitled "New Demonstration of the Theorem that Every Rational Integral

Algebraic Function in one Variable can be Resolved into Real Factors of
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First or Second Degree." In this, the first of four proofs of the Fundamental

Theorem of Algebra that he published during his life, Gauss stressed the

importance of demonstrating the existence of at least one root in proving

the theorem in question. The following illustration will indicate the lines

of his thought.

We shall solve the equation z 2 - 4/ = graphically, showing that there

is a complex value of z = a + bi which will satisfy the equation. Replacing

z by a + bi and separating real and imaginary parts in the equation, we
have a 2 - b2 = and ab - 2 = 0. Interpreting a and b as variable

quantities and sketching these equations on the same set of axes, one for

the real part a, the other for the imaginary part b, we have two curves;

one consists of the lines a + b = and a - b = 0, the other of the

rectangular hyperbola ab = +2 (Fig. 23.1). It is clear that the curves have

a point of intersection P in the first quadrant (and, incidentally, another

P' in the third). We should note in particular that one branch of the first

curve moves away from the origin along the directions = In 1 4 and =
3n/4 and that a branch of the second curve moves asymptotically toward

the directions 9 = On/4 and 9 - 2n/4\ the point of intersection lies between

the last two directions, = and = n/2. The a and b coordinates of

this point of intersection are the real and imaginary parts of the complex

number which is a solution of the equation z 2 - 4/ = 0. Had our original

polynomial equation been of third degree instead of second degree, there

would have been a branch of one curve approaching the directions =
In/ 6 and 9 = 3n/6 and the other curve would have been approaching the

directions = On/6 and 6 = 2n/6. The branches are in each case contin-

uous; hence, they are bound to intersect somewhere in the interval from

to to 6 = n/3. For an equation of degree n there will be a branch of

one curve having asymptotic directions = \n/2n and = 3n/2n, while

a branch of the other curve will have asymptotic directions = 0n/2n

and = 2n/2n. These branches necessarily intersect in the interval from

9 = to = n/n, and the a and b coordinates of the point of intersection

FIG. 23.1
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will be the real and imaginary parts of the complex number satisfying the

equation. Hence, we see that, no matter what the degree of a polynomial

equation, it is bound to have at least one complex root. It will be noted

that Gauss relied on the graphs of the curves in question to show that they

intersect. Granting this result, the thesis that the polynomial can be factored

into real linear and quadratic factors can be proved.

Gauss presented this doctoral thesis to the University of Helmstedt.

Until dissolved under French occupation in 1809, this institution, located

in the Duchy of Brunswick, had on its faculty Johann Friedrich Pfaff (1765—

1825), next to Gauss widely regarded as the ranking German mathema-
tician of his time. Today he is best known for an 1813 memoir on the

integration of systems of differential equations. This poses the Pfaffian

problem of classifying certain differential expressions; later in the century

this was treated as a problem involving alternating bilinear forms with

cogredient variables. Gauss and Pfaff maintained cordial relations until the

latter's death, but Gauss never took up residence in Helmstedt. Upon
leaving Gottingen in 1798 he returned to his native Brunswick where he

spent the next nine years enjoying the continued support of the Duke,

waiting for a suitable job, getting married, and making some of his major

discoveries.

NUMBER THEORY

While still a student in Gottingen, Gauss had begun work on a major

publication in number theory; appearing two years after his doctoral dis-

sertation, the Disquisitiones arithmeticae is one of the great classics of

mathematical literature. It consists of seven sections. Culminating in two

proofs of the law of quadratic reciprocity, the first four sections are essen-

tially a tightened recasting of eighteenth-century number theory. Funda-

mental in the discussion are the concepts of congruence and residue class.

Section 5 is devoted to the theory of binary quadratic forms, specifically

the question of solutions for equations of the form ax 2 + 2bxy +

cy 2 = m\ the techniques developed in this section became the basis for

much work done by later generations of number theorists. Section 6 consists

of various applications. The last section, which created the most attention

initially, deals with the solution of the general cyclotomic equation of prime

degree.

Gauss called the law on quadratic reciprocity, which Legendre had pub-

lished a couple of years earlier, the thcorema uureum, or the gem of arith-

metic. In later work Gauss sought to find comparable theorems for con-

gruences xn = p (mod q) for n = 3 and 4; but for these cases he found it

necessary to extend the meaning of the word integer to include the so-

called Gaussian integers, that is. numbers of the form a + bi, where a and
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b are integers. The Gaussian integers form an integral domain like that of

the real integers, but more general. Problems in divisibility become more
complicated, for 5 no longer is a prime, being factorable into the product

of the two "primes" 1 + 2/ and 1 - 2i. In fact, no real prime of the form

4n + 1 is a "Gaussian prime," whereas real primes of the form 4n - 1

remain primes in the generalized sense. In the Disquisitiones Gauss in-

cluded the Fundamental Theorem of Arithmetic, one of the basic principles

that continues to hold in the integral domain of Gaussian integers. In fact,

any integral domain for which factoring is unique is known today as a

Gaussian integral domain. One of the contributions of the Disquisitiones

was a rigorous proof of the theorem, known since the days of Euclid, that

any positive integer can be represented in one and only one way (except

for the order of the factors) as a product of primes.

Not all that Gauss discovered about prime numbers is contained in the

Disquisitiones. On the back page of a copy of a table of logarithms that

he had obtained as a boy of fourteen is written cryptically in German:

Primzahlen unter a ( = °°) — •

\a

This is a statement of the celebrated prime number theorem: the number
of primes less than a given integer a approaches asymptotically the quotient

a/In a as a increases indefinitely.

Legendre had come close to anticipating this theorem, as we have seen;

but the odd thing is that if Gauss wrote this, as we presume he did, he

kept this beautiful result to himself. We do not know whether or not he

had a proof of the theorem, or even when the statement was written. The
distribution of primes has had a fascination for mathematicians. In 1845,

when Gauss was an old man, a Parisian professor, Joseph L. F. Bertrand

(1822-1900), guessed that if n > 3, there always is at least one prime

between n and In (or, more precisely, In - 2) inclusive. This conjecture,

known as Bertrand's postulate, was proved in 1850 by Pafnuti Tchebycheff

(or Chebychev or Chebichev or Tschebytschew) of the University of St.

Petersburg. Tchebycheff was a rival of Lobachevsky as the leading Russian

mathematician of his day and became a foreign associate of the Institut de

France and of the Royal Society of London. Tchebycheff, evidently una-

ware of Gauss's work on primes, was able to show that if n(n)(\n ri)ln

approaches a limit as n increases indefinitely, this limit must be one; but

he could not demonstrate the existence of a limit. Not until two years after

Tchebycheff's death was a proof generally known. Then, in 1896, two

mathematicians, working independently, came up with demonstrations in

the same year. One was the Belgian mathematician C. J. de la Vallee-

Poussin (1866-1962), who lived to be almost ninety-six; the other was a

Frenchman, Jacques Hadamard (1865-1963), who was almost ninety-eight

when he died.
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Problems on the number and distribution of primes have fascinated many
mathematicians from Euclid's day to our own. What may be regarded as

a deep and difficult corollary to Euclid's theorem on the infinity of primes

was proved by a mathematician who in 1855 was to succeed Gauss at

Gottingen. This was Peter Gustav Lejeune Dirichlet (1805-1859), the man
who did more than anyone else to amplify the Disquisitiones. The Dirichlet

theorem states not only that the number of prime numbers is infinite, but

that if one considers only those integers in an arithmetic progression 0,

a + /?, a + 2b, . . . , a + nb, ... in which a and b are relatively prime,

then even in this relatively more sparse subset of the integers there still

will be infinitely many primes. The proof Dirichlet gave required compli-

cated tools from analysis, where Dirichlet's name is again preserved in the

Dirichlet test for uniform convergence of a series. Among other contri-

butions of Dirichlet was the first proof of the theorem known as Bertrand's

postulate. We cannot go into these ever more specialized intricacies of

nineteenth-century number theory, but it should be noted that Dirichlet's

theorem showed that the discrete domain of the theory of numbers cannot

be studied in isolation from the branch of mathematics dealing with con-

tinuous variables—that is, that number theory required the aid of analysis.

Gauss himself, in the Disquisitiones, had given a striking example of the

fact that the properties of prime numbers intrude in the most unexpected

ways even into the realm of geometry.

Toward the end of the Disquisitiones Gauss included the first important

discovery he had made in mathematics: the construction of the regular

polygon of seventeen sides. He carried the topic to its logical conclusion

by showing which of the infinitely many possible regular polygons can be

constructed and which cannot. General theorems, such as that which Gauss

now proved, are of ever so much more value than a single case, no matter

how spectacular this may be. It will be recalled that Fermat had believed

that numbers of the form 2 2 " + 1 are primes, a conjecture that Euler had

shown to be incorrect. The number 22 + 1 = 17 is indeed prime, as

are also 2 2 ' + 1 = 257 and 2 2' + 1 = 65,537. Gauss already had shown

the polygon of seventeen sides to be constructible, and the question nat-

urally arises whether a regular polygon of 257 or 65,537 sides can be

constructed with Euclidean tools. In the Disquisitiones Gauss answered

the question in the affirmative, showing that a regular polygon of N sides

can be constructed with Euclidean tools if and only if the number N is of

the form N = 2mp x p 2ps . . . p r , where m is any positive integer and the

ps are distinct Fermat primes. There remains one aspect of the problem

that Gauss did not answer, and which has not yet been answered. Is the

number of Fermat primes finite or infinite? For n = 5, 6, 7, 8, and 9 it is

known that the Fermat numbers are not prime, and it appears possible

that there are five and only five constructible regular polygons of a prime

number of sides, two that were known in antiquity and the three that were
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discovered by Gauss. A man whom Gauss much admired, Ferdinand Gott-

hold Eisenstein (1823-1852), instructor of mathematics at Berlin, added

a new conjecture about prime numbers when he hazarded the thought,

unverified up to the present time, that numbers of the form 2 2 + 1, if' +
1, 2

22 + 1, and so on, are primes. To Gauss is attributed the remark that

"There have been only three epoch-making mathematicians, Archimedes,

Newton, and Eisenstein." Whether, given a normal span of years, Eisen-

stein might have fulfilled such a glowing prediction is a matter of conjecture,

for the young man died when not yet thirty years old, having remained a

Privatdozent.

RECEPTION OF THE DISQUISITIONES ARITHMETICAE

Many mathematicians introducing new methods or concepts have found

that these are viewed with skepticism until it becomes clear not only that

they are useful in obtaining new results but that they so far exceed existing

techniques as to make it worthwhile for a mature researcher to learn them.

Gauss, too, found this to be true in the case of his great book on number
theory. It created little initial attention; only the algebraic contribution of

the last section was noted with approbation by French authors of the time.

One of the very few individuals who initiated a correspondence with Gauss

for the purpose of exchanging ideas about the number-theoretic aspects of

the book was a certain "Monsieur Leblanc"; this turned out to be Sophie

Germain (1776-1831), a French mathematician who worked outside the

established institutions that were closed to women. Germain earned the

respect and assistance not only of Gauss but of Lagrange and Legendre;

the latter attached her name to a theorem that marks a major step in the

three century marathon effort to prove Fermat's Last Theorem. In another

field, the Paris Academy of Sciences awarded her a prize for a memoir on

the mathematical theory of elastic surfaces.

In general, however, Gauss' Disquisitiones arithmeticae lay dormant

until the late 1820s when C. G. J.'Jacobi (1804-1851) and P. G. Lejeune

Dirichlet first brought to light some of the deeper consequences to be

derived from the work.

GAUSS'S CONTRIBUTIONS TO ASTRONOMY

It was astronomy rather than number theory that gained immediate fame

for the twenty-four-year-old author of the Disquisitiones arithmeticae. On
January 1, 1801, Giuseppe Piazzi (1746-1826), director of the Palermo

observatory, had discovered the new minor planet (asteroid) Ceres; but a

few weeks afterward the tiny body was lost to sight. Gauss realized that

he had most unusual computational ability, as well as the added advantage
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of the method of least squares, and he took up the challenge to compute,

from the few recorded observations of the planet, the orbit in which it

moved. For the task of computing orbits from a limited number of obser-

vations he devised a scheme, known as Gauss's method, which still is used

to track satellites. The result was a resounding success, the planet being

rediscovered at the end of the year in very nearly the position indicated

by his calculations. Gauss's orbit computations captured the attention of

astronomers internationally, and soon brought him to prominence among
German mathematical scientists, most of whom were engaged in astro-

nomical and geodesic activities at the time. In 1807 he was appointed

director of the Gottingen observatory, a post he held for nearly half a

century. Two years later his classic treatise on theoretical astronomy, the

Theoria motus, appeared. It provided a clear guide for carrying out orbital

computations, and by the time of his death had been translated into English,

French, and German.

Orbital computations were not the only area of astronomical research

in which Gauss distinguished himself and paved a path for succeeding

generations, however. Much of his time during the first decade of the

nineteenth century was spent in working on the problem of perturbations.

This had moved to the foreground of astronomers' interests after the dis-

covery in 1802 of the minor planet Pallas by Gauss's good friend, the phy-

sician and amateur astronomer Heinrich Wilhelm Olbers (1758-1840). Pal-

las has a relatively large eccentricity and is particularly affected by the

attraction of other planets such as Jupiter and Saturn. Determining the

effect of these attractions is a specific example of the n-body problem that

Euler and Lagrange had previously attacked for n = 2 or 3. For Gauss,

who was conscious from early manhood of following in the footsteps of

these two giants, the difficult question of finding the best approximate

solutions was especially intriguing. Although he deemed only a fraction of

his results of publishable quality, his work on this problem resulted not

only in astronomical memoirs but in two classical papers, one dealing with

infinite series, the other with a new method for numerical analysis. The

first of these two papers, presented to the Gottingen Society in 1812, was

devoted to a study of the hypergeometric series. Because of the conver-

gence criteria put forward in this memoir, it has often been cited as opening

a new era of rigor in mathematical analysis. It should be noted, however,

that a better understanding of convergence did not keep either Gauss or

other great mathematicians of the time from using divergent series in the

solution of physical problems when they thought they could do so "safely."

GAUSS'S MIDDLE YEARS

The decade in which Gauss arrived at the preceding results had been filled

with new discoveries as well as emotionally draining events. He had ex-
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perienced early recognition and honors, happiness in marriage, and fath-

erhood. But then came financial concerns resulting from levies imposed

by the occupying administration in Gottingen; the deaths of his patron,

the Duke of Brunswick, and of his wife and third child; annoyance at the

lack of appreciation of his work among scientists such as the French as-

tronomer Delambre; concern over raising his children; and rapid entry into

a second marriage. The previously cheerful young genius became an austere

figure whose strict sense of duty often led him to seemingly rigid decisions

in the nonscientific realm. This image was intensified after the 1820s by

the lingering illness of his second wife who died in 1831, and an estrange-

ment from one of his sons that lasted for more than a decade.

In the meantime, Gauss's position as director of the Gottingen observ-

atory presented new challenges. Between 1810 and 1820 much of his energy

was absorbed by the building and outfitting of a new observatory. He made
the acquaintance of major instrument makers of the period and involved

himself with the details of instrument construction. Studies of instruments

and observations led him to significant results in error theory. After 1815

his increasing comprehension of the nature of instrumental, observational,

and technical errors was reinforced by his immersion in surveying and

geodesy. The result was a set of reports on error theory. During the 1820s

he was charged with the survey of the Kingdom of Hannover, which meant

that he spent numerous summers in the field, personally conducting mea-

surements, often under primitive and hazardous conditions. Again, these

activities resulted in reports. An example is the 1828 publication on com-

parisons of latitude between Gottingen and Altona, which had an observ-

atory headed by Gauss's friend H. C. Schumacher (1780-1850); other

examples utilizing results of this period are the two large memoirs on

geodesy published in the 1840s. The most significant publication that re-

sulted from the geometric considerations of the decade appeared in 1827,

however; it opened a new direction in geometric and, ultimately, in physical

research.

THE BEGINNINGS OF DIFFERENTIAL GEOMETRY

The new branch of geometry that Gauss initiated in 1827 is known as

differential geometry, and it belongs perhaps more to analysis than to the

traditional field of geometry. Ever since the days of Newton and Leibniz

men had applied the calculus to the study of curves in two dimensions,

and in a sense this work constituted a prototype of differential geometry.

Euler and Monge had extended this to include an analytic study of surfaces;

hence, they sometimes are regarded as the fathers of differential geometry.

Nevertheless, not until the appearance of the classical treatise of Gauss,

Disquisitiones circa superficies curvas, was there a comprehensive volume

devoted entirely to the subject. Roughly speaking, ordinary geometry is
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interested in the totality of a given diagram or figure, whereas differential

geometry concentrates on the properties of a curve or a surface in the

immediate neighborhood of a point on the curve or the surface. In this

connection Gauss extended the work of Huygens and Clairaut on the

curvature of a plane or gauche curve at a point by defining the curvature

of a surface at a point—the "Gaussian curvature" or "the total curvature."

If at a point P on a well-behaved surface S one erects a line N normal to

S, the pencil of planes through N will cut the surface 5 in a family of plane

curves each of which will have a radius of curvature. The directions of the

curves with the largest and smallest radii of curvature, R and r, are called

the principal directions on S at P, and they happen always to be perpen-

dicular to each other. The quantities R and r are known as the principal

radii of curvature of S at P, and the Gaussian curvature of S at P is defined

as K = 1/rR. (The quantity Km = |(l/r + 1//?), known as the mean
curvature of S at P, also turns out to be useful.) Gauss gave formulas for

K in terms of the partial derivatives of the surface with respect to various

coordinate systems, curvilinear as well as Cartesian; he also discovered

what even he regarded as "remarkable theorems" about properties of

families of curves, such as geodesies, drawn on the surface.

Gauss begins the treatment of curved surfaces by using the parametric

equation of a surface introduced by Euler. That means if a point (jc, y, z)

of a surface can be represented by the parameters u and v so that x -

x(u, v), y = y(u, v), and z = z(u, v), then dx = a du + a' dv, dy =

b du + b' dv, dz = c du + c' dv, where a = xmt a' = x v , b = yui b' =

yv , c = z u , and c' = z v . Considering the arc length ds 2 = dx 2 + dy 2 +
dz 2

, expressing this in the parametric coordinates gives ds 2 = (a du +
a' dv) 2 + (b du + b' dv) 2 + (c du + c' dv) 2 = E du 2 + IF du dv +
G dv 2

, where E = a 2 + b2 + c2
, F = aa' + bb

r + cc' , and G =

a'
2 + b'

2 + c'
2

. Gauss proceeds to show that the properties of a surface

depend only on E, F, and G. This leads to many consequences. In partic-

ular, it becomes easy to say what properties of the surface remain invariant.

It was in building on this work of Gauss that Bernhard Riemann and later

geometers transformed the subject of differential geometry.

GAUSS'S LATER WORK

By the time the work on curved surfaces had appeared, the mathematical

climate in Germany was beginning to change. One of the most significant

aspects of this change was the founding of a new journal. As previously

noted, the initiative for the establishment of mathematical periodicals came
from the Ecole Polytechnique when it began publishing its Journal. Shortly

thereafter, in 1810, the first privately established mathematical periodical

was begun by an artillery officer who was an ancien elive of the Ecole
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Polytechnique. This was the Annales de Mathematiques Pures et Appli-

quees
y
edited by Joseph-Diaz Gergonne (1771-1859). The editor was a

thoroughly capable mathematician who contributed articles to his journal,

but these will be described in the next chapter. In Germany a periodical

similar to Gergonne's Annales, and even more successful, was begun in

1826 by August Leopold Crelle (1780-1855) under the title Journal fur die

reine und angewandte Mathematik. Again the editor was primarily an en-

gineer, but so heavily weighted were the articles in the direction of pure

{reine) mathematics (notably those by Abel, six of which appeared in the

very first volume) that wags suggested the title might be more appropriate

if the two German words und angewandte ("and applied") were replaced

by the single word unangewandte ("unapplied"). Gauss contributed two

short articles to this new venture: one was a proof of "Harriot's theorem

in algebra," the other contained the statement of Gauss's principle of least

constraint. He continued to submit his major memoirs to the Gottingen

Gesellschaft der Wissenschaften, however. An important memoir on cap-

illarity was published by the Gottingen Society, as were his two influential

memoirs on number theory. Historians often cite the first of these, pub-

lished in 1832, because it contains Gauss's geometric representation of

complex numbers. The importance of the memoir as a whole lies in the

fact that it pointed the way to extending the theory of numbers from the

reals to the complex field and beyond. As noted above, this was crucial in

the work of later workers in the field.

At the more elementary level, it is interesting to observe that the graph-

ical representation of complex numbers already had been discovered in

1797 by Caspar Wessel (1745-1818) and published in the transactions of

the Danish academy for 1798; but the work of Wessel went virtually un-

noticed, hence the plane of complex numbers today usually is referred to

as the Gaussian plane, even though Gauss did not publish his views until

some thirty years later. Ever since the days of Girard it had been generally

known that the real numbers—positive, negative, and zero—can be pic-

tured as corresponding to points on a straight line. Wallis had even sug-

gested that pure imaginary numbers might be represented by a line per-

pendicular to the axis of real numbers. Oddly enough, however, no one

before Wessel and Gauss took the obvious step of thinking of the real and

imaginary parts of a complex number a + bi as rectangular coordinates

of points in a plane. Taking this simple step made mathematicians feel

much more comfortable about imaginary numbers, for these now could be

visualized in the sense that every point in the plane corresponds to a

complex number, and vice versa. Seeing is believing, and the old ideas

about the nonexistence of imaginary numbers were generally abandoned.

During the last twenty years of his life, Gauss published only two major

papers of mathematical interest. One was his fourth proof of the funda-

mental theorem of algebra, which he released at the time of his doctoral
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jubilee in 1849, fifty years after the publication of his first proof. The other

was an influential memoir on potential theory, which appeared in 1840, in

one of the volumes of geomagnetic results which he co-edited with his

younger friend, the physicist Wilhelm Weber (1804-1891). Geomagnetic

issues occupied much of his time in the 1830s and early forties; he also

devoted time in the late thirties to issues pertaining to weights and mea-

sures. Most of his publications of the last decade of his life pertain to work

at the astronomical observatory; they deal with the newer minor planets,

with observations of the recently discovered planet Neptune, and with other

data of interest to astronomers of the day, who read of them in the As-

tronomische Nachrichten.

Gauss's mathematics provided the starting point for some of the major

research areas of modern mathematics. Except for his personal fame and

the fortune he amassed by shrewd investments, his external circumstances

were similar to those of many earlier mathematicians, however. His main

obligations lay in running an observatory and performing various duties

for his government. He had teaching responsibilities, but since most of his

students were ill-prepared, he avoided classroom teaching as much as pos-

sible, feeling the returns were not worth the investment in time. His best

students tended to become astronomers rather than mathematicians, al-

though some, like Mobius, made a name for themselves in mathematics.

Aside from those published as books, most of his research results appeared

in the publications of the Gottingen Society of Science or in journals de-

voted to astronomy and geodesy—initially, Zach's Monatliche Correspon-

denz\ after 1820, in the Astronomische Nachrichten. His mathematical com-

munications were restricted to correspondence with a few friends and

occasional visits from abroad of younger colleagues.

PARIS IN THE 1820s

In contrast to the isolated conditions of a university such as Gottingen,

Paris appeared particularly attractive to students of mathematics in the

1820s. Not only did it boast the opportunity for systematic training epit-

omized by the Ecole Polytechnique with its sizable staff of exceptional

mathematicians who offered lectures on a wide area of subjects in pure

and applied fields; but there were publications: Aside from independent

works printed in the French capital, both the Memoires of the Academy

of Sciences and the Journal of the Ecole Polytechnique brought major new

mathematical research results. Moreover, the College de France and other

institutions harbored additional mathematicians. Still living in Paris, though

at the end of their careers, were Laplace and Legendre. Laplace published

the last volume of his Mecamque celeste in 1825, two years before his death.

Legendre was active in the Academy, reviewing the work of younger men
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and updating his own results, such as his standard work on number theory,

the third edition of which appeared in 1830.

Perhaps the most influential of the next generation of mathematicians

active in Paris in the 1820s was J.-B. Fourier (1768-1830). Fourier was the

son of a tailor in Auxerre. Having been orphaned in childhood, he obtained

his education through the guidance of the Church, first at the local military

school, then in a school run by the Benedictine Order. During the Rev-

olution he taught school in his home town and was politically active. Ar-

rested during the Terror, upon his release he enrolled in the Ecole Normale,

which led to his becoming an assistant to Lagrange and Monge at the newly

formed Ecole Polytechnique. In 1798 he joined Monge in Napoleon's Egyp-

tian adventure, becoming secretary of the Institut d'Egypte and compiling

the Description de VEgypte. On his return to France he held a number of

administrative posts, but he had opportunity nevertheless to continue schol-

arly pursuits. In 1822 he was elected secretaire perpetuel of the Academie
des Sciences in Paris, which placed him in an influential position during

the 1820s. Among the young foreigners in Paris in the 1820s who came
under Fourier's influence were Dirichlet from Prussia, Sturm (1803-1855)

from Switzerland, and Ostrogradsky (1801-1861) from Russia. Compa-

triots who benefitted from his counsel included Sophie Germain and Joseph

Liouville (1809-1882).

Fourier is best known today for his celebrated Theorie analytique de la

chaleur of 1822. This book, described by Kelvin as "a great mathematical

poem," was a development of ideas that ten years earlier had won him

the Academie prize for an essay on the mathematical theory of heat.

Lagrange, Laplace, and Legendre, the referees, had criticized the essay

for a certain looseness of reasoning; the later clarification of Fourier's ideas

was to some extent the reason that the nineteenth century came to be

called the age of rigor.

The chief contribution of Fourier and his classic in mathematics was the

idea, adumbrated by Daniel Bernoulli, that any function y = f(x) can be

represented by a series of the form

v = ia + a
x
cos x + a 2 cos 2jc + • • • + «„ cos nx + • • •

+ b
x
sin x + b2 sin 2x + • • • + bn sin nx + • •

•

now known as a Fourier series. Such a series representation affords con-

siderably greater generality in the type of functions that can be studied

than does the Taylor series. Even if there are many points at which the

derivative does not exist (as in Fig. 23.2) or at which the function is not

continuous (as in Fig. 23.3), the function may still have a Fourier expansion.

This expansion is easily found on noting that

«o
If 71 If 71

f(x) dx, a n
= - f(x) cos nx dx,

nj-n TlJ-n
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FIG. 23.2 FIG. 23.3

and

1 f
71

ft J-n
x) sin nx dx.

Fourier, like Monge, had fallen from grace when the Bourbon resto-

ration followed the exile of Napoleon in 1815, but his work has ever since

been fundamental both in physics and in mathematics. Functions no longer

needed to be of the well-behaved form with which mathematicians had

been familiar. Lejeune Dirichlet, for instance, in 1837 suggested a very

broad definition of function: If a variable v is so related to a variable x

that whenever a numerical value is assigned to jc, there is a rule according

to which a unique value of v is determined, then v is said to be a function

of the independent variable x. This comes close to the modern view of a

correspondence between two sets of numbers, but the concepts of "set"

and "real number" had not at that time been established. To indicate the

completely arbitrary nature of the rule of correspondence, Dirichlet pro-

posed a very "badly behaved" function: When x is rational, let v = c, and

when x is irrational, let v = d # c. This function, often known as Dirichlet's

function, is so pathological that there is no value of x for which it is

continuous. Dirichlet gave also the first rigorous proof of the convergence

of Fourier series for a function subject to certain restrictions, known as

Dirichlet's conditions. A Fourier series does not always converge to the

value of a function from which it is derived, but Dirichlet in Crelle's Journal

for 1828 proved the following theorem: If /(jc) is periodic of period 2n, if

for -n < x < n the function /(jc) has a finite number of maximum and

minimum values and a finite number of discontinuities, and if /_„ /(jc) dx

is finite, then the Fourier series converges to /(jc) at all points where /(jc)

is continuous, and at jump points it converges to the arithmetic mean of

the right-hand and left-hand limits of the function. Useful also is another

theorem known as Dirichlet's test: If the terms in the series a
x
b

x
+

a 2 b :
+ • • • + a n b n + -are such that the fr's are positive and mono-

tonically tending toward zero, and if there is a number M such that

\a
]
+ a 2

+ • • • + am \
< M for all values of m, then the series converges.



CAUCHY 511

The name of Dirichlet arises in many other connections in pure and

applied mathematics. Especially important in thermodynamics and elec-

trodynamics is the Dirichlet problem: Given a region R bounded by a

closed curve C and a function /(jc, v) continuous on C, find a function F(jc,

v) continuous in R and on C that satisfies the Laplace equation in R and

is equal to / on C. In pure mathematics Dirichlet is well known for his

application of analysis to the theory of numbers, in connection with which

he introduced the Dirichlet series, ^a ne~
knS

, where the Dirichlet coefficients

an are complex numbers, the Dirichlet exponents kn are real monotonically

increasing numbers, and 5 is a complex variable.

CAUCHY

The star of the 1820s, however, was a man born in the year of the revo-

lution, when Fourier was 21. Augustin-Louis Cauchy (1789-1857), the son

of well-educated parents, studied at the Ecole Polytechnique, which he

entered in 1805, and the Ecole des Ponts et Chaussees, where he matri-

culated in 1807. He served as an engineer until 1813, when he returned to

Paris. By that time he had already solved several problems of interest to

mathematicians. These included the determination of a convex polyhedron

by its faces, the expression of a number as a sum of rc-gonal numbers, and

a study of determinants. The latter is one of the few branches in which

the role of Gauss was slight, although it was from the terminology of Gauss

in a somewhat different context that Cauchy derived the name "determi-

nant" for what he otherwise described as a class of alternating symmetric

functions, such as a
x
b2

- b
x
a 2 . A good case could be made for having the

definitive history of determinants begin in 1812, when Cauchy read to the

Institut a long memoir on the subject, although in doing so one would fail

to do justice to some pioneer work as early as 1772 by Laplace and Van-

dermonde. Both Lagrange and Laplace had taken an interest in Cauchy's

progress, and he followed in the tradition of Lagrange in his preference

for pure mathematics in elegant form with due attention to rigorous proofs.

His 1812 paper on determinants, to be followed by many others from him

on the same topic, was in this tradition in giving emphasis to the symmetries

of notation with which it abounds.

In the pedagogical approach to determinants today it is customary to

begin with the square array and then to attach a meaning or value to this

through an expansion in terms of transpositions or permutations. In the

memoir of Cauchy the author did the opposite. He began with the n

elements or numbers, a
{ , a 2 , a 3 , . . . an , and formed the product of these

by all the differences of distinct elements: a
l
a 1a 2)

. . . a n (a 2
- «i)(«3 ~~ a \)

...(«„- a,) (a 3
- a2) . . . (a n

- a 2) . . . (a„ - <*„_,). He then defined

the determinant as the expression obtained upon changing every indicated
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power into a second subscript, so that a s

r becomes ars \
he wrote this as

S(± a, ,a :2 flv3 • • fl„„). Then, he arranged the n 2
different quantities in

this determinant in a square array not unlike that used today:

fll-l , a l2 , fl| 3, • • • d\n

a2X , a22 , Qis, • . . a2n

an \ j
an2'> an-3i -ann .

As thus arranged, the n 2 quantities in his determinant were said to form
tk
a symmetric system of order az." He defined conjugate terms as elements

the orders of whose subscripts are reversed, and he called terms that are

self-conjugate principal terms; the product of the terms in what we call the

main diagonal or the principal diagonal he called the principal product.

Later in the memoir Cauchy gave other rules for determining the sign of

a term in the expansion, using circular substitutions.

Cauchy's eighty-four-page memoir of 1812 was not his only work on the

subject of determinants; from then on he found many opportunities to use

them in a variety of situations. In a memoir of 1815, on wave propagation,

he applied the language of determinants to a problem in geometry and

also to one in physics. Cauchy asserted that if A, B, and C are the lengths

of three edges of a parallelepiped, and if the projections of these on the

jc, y, and z axes of a rectangular coordinate system are

A
i

, t>\ , Ci

A 2 , B2 , C2

i4 3 ,
£3 , C3

then the volume of the parallelepiped will be A
X
B2C^ - A

{
B^C2 + A 2B3Cy

- A 2B X
C3 + A^B

X
C2

- y4 3£2 Ci = S(±A
l
B2C3 ). In the same memoir, in

connection with the propagation of waves, he applied his determinant

notation to partial derivatives, replacing a condition that required two lines

for its expression by the simple abbreviation

JdxdydA
\ da db dc)

The left-hand side of this is obviously what now is called the
44
Jacobian

,,

of jc, y, z with respect to a, b, c. The name of Jacobi is attached to functional

determinants of this form not because he was the first to use them, but

because he was an algorithm builder who was especially enthusiastic about

the possibilities inherent in determinant notations. It was not until 1829

that Jacobi first used the functional determinants that bear his name.

By this time Cauchy was well established in Paris. In 1814, two years

after the memoir on determinants, he had presented to the French Acad-
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emy a paper that contains the germs of some of his major contributions

to the theory of complex functions. After another two years, he received

praise for a prize-winning memoir on hydrodynamics. The year 1819 finds

him displaying the method of characteristics in the solution of partial dif-

ferential equations; shortly thereafter he submitted a classic on the theory

of elasticity. During this decade he was appointed to membership in the

Academy of Sciences as well as a professorship at the Ecole Polytechnique;

after this he married.

Cauchy in one respect was quite unlike Gauss: he leaped into print as

soon as he had achieved something. Perhaps this is one of the reasons that

the chief characteristic of nineteenth-century mathematics—the introduc-

tion of rigor—is attributed to Cauchy rather than to Gauss, despite the

high standard of logical precision that Gauss set for himself. Possibly also

it was the pedagogical tradition of the Ecole Polytechnique that played a

role here, for there was far more of the pedagogue in Cauchy, who enjoyed

teaching, than in Gauss, who hated it. Gauss had latent theorems on

complex variables written down here and there in a diary or in memoranda,

but it was Cauchy who kept filling the Journal of the Ecole Polytechnique

and the Comptes Rendus of the Academie with ever longer memoirs. These

were on a variety of topics, but especially on the theory of functions of a

complex variable, a field in which, from 1814 on, Cauchy became the

effective founder. In 1806 Jean Robert Argand (1768-1822) of Geneva

had published an account of the graphical representation of complex num-

bers. Although at first this went almost as unnoticed as the work of Wessel,

by the end of the second decade of the nineteenth century most of Europe

was familiar, through Cauchy, not only with the Wessel-Argand-Gaussian

diagram for a complex number, but with the fundamental properties of

complex functions as well. In the eighteenth century problems in complex

variables occasionally had arisen in connection with the physics of Euler

and d'Alembert, but now they became a part of pure mathematics. Inas-

much as two dimensions are required for a pictorial representation of the

independent variable alone, it would take four dimensions to portray graph-

ically a functional relationship between two complex variables, w = /(z).

Of necessity, therefore, complex variable theory entails a higher degree

of abstraction and complexity than does the study of functions of a real

variable. Definitions and rules of differentiation, for example, cannot read-

ily be carried over from the real case to the complex, and the derivative

in the latter case is no longer pictured as the slope of the tangent to a

curve. Without the crutch of visualization, one is likely to require more

precise and careful definitions of concepts. To supply this need was one

of Cauchy's contributions to the calculus, both for real variables and for

complex variables.

The first teachers in the Ecole Polytechnique had set a precedent ac-

cording to which even the greatest of mathematicians are not above writing

textbooks on all levels, and Cauchy followed in this tradition. In three
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books

—

Cours d'analyse de I'Ecole Polytechnique (1821), Resume des le-

cons sur le calcul infinitesimal (1823), and Lecons sur le calcul differentiel

(1829)—he gave to elementary calculus the character that it bears today.

Rejecting the Taylor's theorem approach of Lagrange, he made the limit

concept of d'Alembert fundamental, but he gave it an arithmetic character

of greater precision. Dispensing with geometry and with infinitesimals or

velocities, he gave a relatively clear-cut definition of limit:

When the successive values attributed to a variable approach indefinitely a

fixed value so as to end by differing from it by as little as one wishes, this

last is called the limit of all the others.

Where many earlier mathematicians had thought of an infinitesimal as a

very small fixed number, Cauchy defined it clearly as a dependent variable:

One says that a variable quantity becomes infinitely small when its numerical

value decreases indefinitely in such a way as to converge toward the limit

zero.

In the calculus of Cauchy the concepts of function and limit of a function

were fundamental. In defining the derivative of y = /(jc) with respect to

jc, he gave to the variable jc an increment Ajc = i and formed the ratio

by _ f(x + i) -/(*)

Ajc i

The limit of this difference quotient as / approaches zero he defined as the

derivative f'(x) of y with respect to x. The differential he relegated to a

subsidiary role, although he was aware of its operational facility. If dx is

a finite quantity, the differential dy of y = /(jc) is defined simply as f'(x)

dx. Cauchy also gave a satisfactory definition of a continuous function.

The function /(jc) is continuous within given limits if between these limits

an infinitely small increment / in the variable jc produces always an infinitely

small increment, /(jc + j) - /(jc), in the function itself. When we bear in

mind Cauchy's definition of infinitely small quantities in terms of limits,

his definition of continuity parallels that used today.

During the eighteenth century integration had been treated as the in-

verse of differentiation. Cauchy's definition of derivative makes it clear

that the derivative will not exist at a point for which the function is dis-

continuous; yet the integral may afford no difficulty. Even discontinuous

curves may determine a well-defined area. Hence, Cauchy defined the

definite integral in terms of the limit of the integral sums in a manner not

very different from that used in elementary textbooks today, except that

he took the value of the function always at the left-hand end point of the

interval. If 5„ = (jc, - jc,,)/(jc ) + (x 2
- *,)/(*,) ••• + (X - x„. ,)/(*„_,),



CAUCHY 515

then the limit S of this sum S„, as the magnitudes of the intervals x
t
- *,_i

decrease indefinitely, is the definite integral of the function f(x) for the

interval from x = x to x = X. It is from Cauchy's concept of the integral

as a limit of a sum, rather than from the antiderivative, that the many
fruitful modern generalizations of the integral have arisen.

Having defined the integral independently of differentiation, it was nec-

essary for Cauchy to prove the usual relation between the integral and the

antiderivative, and this he accomplished through use of the theorem of

mean value. If f(x) is continuous over the closed interval [a, b] and dif-

ferentiate over the open interval (a, b), then there will be some value jc

such that a < x < b and f(b) - f(a) = (b - a)f'(x ). This is a fairly

obvious generalization of Rolle's theorem, which was known a century

earlier. The mean-value theorem, however, did not attract serious attention

until the days of Cauchy, but it has since continued to play a basic role in

analysis. It is with justice, therefore, that a still more general form,

f(b) ~ f(a) _ /'(so)

g(b) - g(a) g'(x )

with suitable restrictions on f(x) and g(jc), is known as Cauchy's mean-

value theorem.

Cauchy's career took a dramatic turn in 1830, when Charles X was

deposed and Louis-Philippe became king of France. Cauchy, a conserva-

tive, refused to take the new oath of allegiance and exiled himself. For

the next eight years he moved about the continent, successively supported

by the Jesuits, the king of Sardinia, and Charles X. When he returned to

Paris in 1838, he resumed his activities at the Academy of Sciences, which

did not require the oath of allegiance; he only returned to teaching after

1848, when the oath was no longer required.

The history of mathematics teems with cases of simultaneity and near

simultaneity of discovery, some of which have already been noted. The
work by Cauchy that we have just described is another case in point, for

similar views were developed at about the same time by Bernhard Bolzano

(1781-1848), a Czechoslovakian priest whose theological views were frowned

upon by his church and whose mathematical work was most undeservedly

overlooked by his lay and clerical contemporaries. Cauchy, during his exile,

for a time lived at Prague, where Bolzano was born and died; yet there is

no indication that the men met. The similarity in their arithmetization of

the calculus and of their definitions of limit, derivative, continuity, and

convergence was only a coincidence. Bolzano in 1817 had published a book,

Rein analytischer Beweis, devoted to a purely arithmetic proof of the lo-

cation theorem in algebra, and this had required a nongeometric approach

to the continuity of a curve or function. Going considerably further in his

unorthodox ideas, he disclosed some important properties of infinite sets

in a posthumous work of 1850, Paradoxien des Unendlichen.
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From Galileo's paradox on the one-to-one correspondence between in-

tegers and perfect squares, Bolzano went on to show that similar corre-

spondences between the elements of an infinite set and a proper subset

are commonplace. For example, a simple linear equation, such as y = 2jc,

establishes a one-to-one correspondence between the real numbers y in

the interval from to 2, for example, and the real numbers x in half this

interval. That is, there are just as many real numbers between and 1 as

between and 2, or just as many points in a line segment 1 inch long as

in a line segment 2 inches long. Bolzano seems even to have recognized,

by about 1840, that the infinity of real numbers is of a type different from

the infinity of integers, being nondenumerable. In such speculations on

infinite sets the Bohemian philosopher came closer to parts of modern
mathematics than had his better-known contemporaries. Both Gauss and

Cauchy seem to have had a kind of horror infiniti, insisting that there could

be no such thing as a completed infinite in mathematics. Their work on

"orders of infinity" in reality was far removed from the concepts of Bol-

zano, for to say, as Cauchy in essence did, that a function y is infinite of

order n with respect to x if limx_ x ylxn = K # is quite different from

making a statement about correspondences between sets.

Bolzano was a "voice crying in the wilderness," and many of his results

had to be rediscovered later. Among these was the recognition that there

are pathological functions that do not behave as mathematicians had always

expected them to behave. Newton, for instance, had assumed that curves

are generated by smooth and continuous motions. There might be occa-

sional abrupt changes in direction or even some discontinuities at isolated

points; but throughout the first half of the nineteenth century it was gen-

erally assumed that a continuous real function must have a derivative at

most points. In 1834, however, Bolzano had thought up a function con-

tinuous for an interval but, despite physical intuition to the contrary, having

no derivative at any point in the interval. The example given by Bolzano

unfortunately did not become known; hence, credit for building the first

continuous but nowhere differentiate function generally goes to Weier-

strass about a third of a century later. Similarly it is the name of Cauchy,

rather than that of Bolzano, that is attached to an important test of con-

vergence for an infinite series or sequence. Occasionally before their time

there had been warnings about the need to test an infinite series for con-

vergence. Gauss as early as 1812, for example, used the ratio test to show

that his hypergeometric series

1 • 2y(y + 1)

afi(a + !)(/? + !) (a + n - !)(// + n - 1)

1-2 ••(«- !)•/(;• +!)•••(;• + n - 1)
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converges for |jc| < 1 and diverges for |jc| > 1. This test seems to have been

first used long before, in England, by Edward Waring although it generally

bears the name of d'Alembert or, more occasionally, that of Cauchy.

In 1811 Gauss informed an astronomer friend, F. W. Bessel (1784-1846),

of a discovery he had made in what was soon to become a new subject in

the hands of Cauchy and which today bears the latter's name. The theory

of functions of a real variable had been developed by Lagrange, but the

theory of functions of a complex variable awaited the efforts of Cauchy;

yet Gauss perceived a theorem of fundamental significance in the as yet

unworked field. If in the complex or Gaussian plane one draws a simple

closed curve, and if a function /(z) of the complex variable z = x + iy is

analytic (that is, has a derivative) at every point on the curve and within

the curve, then the line integral of /(z) taken along the curve is zero.

The name of Cauchy appears today in connection with a number of

theorems on infinite series, for, despite some efforts on the part of Gauss

and Abel, it was largely through Cauchy that the mathematician's consci-

ence was pricked concerning the need for vigilance with regard to con-

vergence. Having defined a series to be convergent if, for increasing values

of n, the sum Sn of the first n terms approaches a limit 5, called the sum
of the series, Cauchy proved that a necessary and sufficient condition that

an infinite series converge is that, for a given value of p, the magnitude of

the difference between Sn and Sn+P tends toward zero as n increases in-

definitely. This condition for "convergence within itself" has come to be

known as Cauchy 's criterion, but it was known earlier to Bolzano (and

possibly still earlier to Euler).

Cauchy also announced in 1831 the theorem that an analytic function

of a complex variable w = /(z) can be expanded about a point z = z in

a power series that is convergent for all values of z within a circle having

z as center and passing through the singular point of /(z) nearest to z .

From this time on the use of infinite series became an essential part of the

theory of functions of both real and complex variables. Several tests for

convergence bear Cauchy's name, as does a particular form of the re-

mainder in the Taylor series expansion of a function, the more usual form

being attributed to Lagrange. The period of rigor in mathematics was taking

hold rapidly. It is said that when Cauchy read to the Academie his first

paper on the convergence of series, Laplace hurried home to verify that

he had not made use of any divergent series in his Mecanique celeste.

Toward the end of his life Cauchy became aware of the important notion

of "uniform convergence," but here, too, he was not alone, having been

anticipated by the physicist G. G. Stokes (1819-1903) and others.

As broader classes of differential equations were considered, the ques-

tion under what conditions a solution exists moved to the foreground.

Cauchy provided two widely used methods for answering this question.

Building on the work of Euler, Cauchy showed how to utilize a method
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of approximations by difference equations, providing an existence proof

for the approximate solutions; this became the basis of the Cauchy-Lip-

schitz technique in the solution of ordinary differential equations. Lipschitz

(1831-1904), a student of Dirichlet, in 1876 refined and generalized Cau-

chy's work; he replaced with the so-called Lipschitz condition Cauchy's

condition that the first derivatives be continuous and extended the work
to systems of higher-order equations. Also due to Cauchy, though best

known in the form given by the French mathematicians Briot and Bouquet
in 1854, is the method of majorants, which Cauchy called his calcul des

limites. After successfully using it for ordinary differential equations, Cau-

chy applied it to certain systems of first-order partial differential equations.

Here again his work came to be known in the generalized form it received

from a later nineteenth-century mathematician. Sonia Kowalewski (1853—

1891) extended Cauchy's result to a broad class of equations of higher

order, simplifying his technique in the process; further streamlined by

subsequent analysts, the Cauchy-Kowaleswki theorem received its best-

known form in a textbook by Goursat widely used in the twentieth century.

Because of the legendary, voluminous nature of his publications, Cauchy

often lost track of results he had obtained. Also, as often happens, he

assessed the relative significance of his own work quite differently from

the way later generations have seen it. The best-known illustration of this

is found in complex function theory; here he had provided a powerful tool

for analysts with the so-called Cauchy integral theorem; yet he attached

far more significance to his "calculus of residues," which failed to gain

favor with later workers in the field.

The prolific Cauchy contributed to almost as many fields as did his

contemporary, Gauss. He, too, contributed to mechanics and error theory.

Although in the theory of numbers his work is less well known than that

of Legendre and Gauss, it is to Cauchy that we owe the first general proof

of one of the most beautiful and difficult theorems of Fermat—that every

positive integer is the sum of at most three triangular numbers or four

square numbers or five pentagonal numbers or six hexagonal numbers,

and so on indefinitely. This proof is a fitting climax to the study of figurate

numbers initiated by the Pythagoreans some 2300 years earlier.

Cauchy evidently was little attracted to geometry in its various forms.

In 1811, however, in one of his very earliest memoirs, he presented a gen-

eralization of the Descartes-Euler polyhedral formula E + 2 = F + V,

where £, /\ and V are respectively the number of edges, faces, and

vertices of the polyhedron; we have noted a case of his application of

determinants in finding the volume of a tetrahedron. Gauss, too, was not

especially fond of geometry, yet he thought about the subject sufficiently

to do two things: (1) to arrive, by 1824, at an important unpublished

conclusion on the parallel postulate and (2) to publish in 1827 a classic

treatise which generally is regarded as the cornerstone of a new branch of
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geometry. Gauss, while still a student at Gottingen, had tried to prove the

parallel postulate, as had also his intimate friend Wolfgang (or Farkas)

Bolyai (1775-1856). Both men continued to look for a proof, the latter

giving up in despair, the former eventually coming to the conviction that

not only was no proof possible, but that a geometry quite different from

that of Euclid might be developed. Had Gauss developed and published

his thoughts on the parallel postulate, he would have been hailed as the

inventor of non-Euclidean geometry, but his silence on the subject resulted

in credit going to others, as we shall see below.

GAUSS AND CAUCHY COMPARED

It is tempting to look for comparisons and contrasts between Gauss and

Cauchy, the two men regarded as the leading mathematicians of their time.

Both covered a wide spectrum of mathematics in their research; both were

conservative in their politics; both have been accused of not paying suffi-

cient attention to the research efforts of certain young unknowns; both

showed genuine interest in the work of some others. Their styles differed.

Gauss was notoriously reluctant to publish research results that were not

fully polished or that were likely not to be understood. He is identified

with the motto "Pauca sed matura." Cauchy seemed, especially after his

return to Paris in the 1840s, to be willing to rush into print. Cauchy became

famous for his lectures at the Ecole Polytechnique; Gauss left a reputation

for not liking to teach. Both built on the work of their great eighteenth-

century predecessors, especially Euler and Lagrange. Both were reluctant

to cite their indebtedness to others, especially to their contemporaries;

these included each other and, in the case of Cauchy, Ampere. Yet one

must recall that "footnoting" was not a well-established custom in their

time. Perhaps of greatest interest is the fact that both left a distinct imprint

on their work, whether it was a result that was uniquely theirs or one that

they shared with others.

NON-EUCLIDEAN GEOMETRY

In non-Euclidean geometry, also, we find a startling case of simultaneity

of discovery, for similar notions occurred, during the first third of the

nineteenth century, to three men, one German, one Hungarian, and one

Russian. We already have noted that Gauss during the second decade of

the century had come to the conclusion that the efforts to prove the parallel

postulate made by Saccheri, Lambert, Legendre, and his Hungarian friend

Farkas Bolyai were in vain and that geometries other than Euclid's were

possible. However, he had not shared this view with others; he had simply
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elaborated the idea, as he said, "for himself." Hence, efforts to prove the

parallel postulate continued, and among those attempting such a proof was

young Nicolai Ivanovich Lobachevsky (1793-1856), the son of a minor

government official who died when Nicolai was only seven. Lobachevsky

attended the University of Kazan, despite the straitened circumstances of

the family, and there he came in touch with distinguished professors whom
the university had attracted from Germany, including J. M. Bartels (1769-

1836), a man under whom Gauss had earlier studied. At the early age of

twenty-one Lobachevsky became a member of the teaching staff, and by

1827 he had been appointed Rector of the university. There he remained,

as teacher and administrator, to the end of his days, despite the fact that

blindness and lack of appreciation of his work saddened his last years.

Lobachevsky and Ostrogradsky were both eminent Russian mathema-
ticians, but they differed sharply on things mathematical and political.

Ostrogradsky had studied extensively at Paris, where he came under the

influence of the French analysis of Cauchy—a conventional subject in which

rapid progress was being made. Lobachevsky, on the other hand, had been

brought up with a more German and geometric background, where the

frontiers and direction of progress were more controversial. Moreover,

Ostrogradsky came from a prosperous, aristocratic, and conservative social

background, whereas Lobachevsky, constantly faced by poverty and pri-

vation, never enjoyed social position and often espoused unpopular liberal

causes. Thus it was that in their days Ostrogradsky enjoyed an esteem that

Lobachevsky did not; but today the name of Ostrogradsky is known, if at

all, in connection with a single theorem, whereas Lobachevsky is regarded

as the "Copernicus of geometry," the man who revolutionized the subject

through the creation of a whole new branch, Lobachevskian geometry,

showing thereby that Euclidean geometry was not the exact science or

absolute truth it previously had been taken to be. In a sense the discovery

of non-Euclidean geometry dealt a devastating blow to Kantian philosophy

comparable to the effect on Pythagorean thought resulting from the dis-

closure of incommensurable magnitudes. Through the work of Lobach-

evsky it became necessary to revise fundamental views of the nature of

mathematics; but Lobachevsky's colleagues were too close to the situation

to see it in proper perspective, and the trailblazer had to pursue his thoughts

in lonely isolation.

Lobachevsky's revolutionary view seems not to have come to him as a

sudden inspiration. In an outline of geometry that he drew up in 1823,

presumably for classroom use, Lobachevsky said of the parallel postulate

simply that "no rigorous proof of the truth of this had ever been discov-

ered." Apparently he did not then exclude the possibility that such a proof

might yet be discovered. Three years later at Kazan University he read in

French a paper (now lost) on the principles of geometry, including "une

demonstration rigoreuse du theoreme des paralleles." The year 1826 in
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which this paper was delivered may be taken as the unofficial birthdate of

Lobachevskian geometry, for it was then that the author presented many
of the characteristic theorems of the new subject. Another three years

later, in the Kazan Messenger for 1829, Lobachevsky published an article,

"On the Principles of Geometry," which marks the official birth of non-

Euclidean geometry. Between 1826 and 1829 he had become thoroughly

convinced that Euclid's fifth postulate cannot be proved on the basis of

the other four, and in the paper of 1829 he became the first mathematician

to take the revolutionary step of publishing a geometry specifically built

on an assumption in direct conflict with the parallel postulate: Through a

point C lying outside a line AB there can be drawn more than one line in

the plane and not meeting AB. With this new postulate Lobachevsky de-

duced a harmonious geometric structure having no inherent logical con-

tradictions. This was in every sense a valid geometry, but so contrary to

common sense did it appear, even to Lobachevsky, that he called it "imag-

inary geometry."

Lobachevsky was well aware of the significance of his discovery of "imag-

inary geometry," as is clear from the fact that during the score of years

from 1835 to 1855 he wrote out three full accounts of the new geometry.

In 1835-1838 his New Foundations of Geometry appeared in Russian; in

1840 he published Geometrical Investigations on the Theory of Parallels in

German; and in 1855 his last book, Pangeometry, was published simulta-

neously in French and Russian. (All have since been translated into other

languages, including English.) From the second of the three works Gauss

learned of Lobachevsky's contributions to non-Euclidean geometry, and

it was on his recommendation that Lobachevsky in 1842 was elected to the

Gottingen Scientific Society. In letters to friends Gauss praised Lobach-

evsky's work, but he never gave it support in print, for he feared the jibes

of "the Boeotians." Partly for this reason the new geometry became known
only very slowly.

The Hungarian friend of Gauss, Farkas Bolyai, had spent much of his

life trying to prove the parallel postulate, and when he found that his own
son Janos Bolyai (1802-1860) was absorbed in the problem of parallels,

the father, a provincial mathematics teacher, wrote to the son, a dashing

army officer:

For God's sake, I beseech you, give it up. Fear it no less than sensual passions

because it, too, may take all your time, and deprive you of your health,

peace of mind, and happiness in life.

The son, not dissuaded, continued his efforts until in about 1829 he came
to the conclusion reached only a few years before by Lobachevsky. Instead

of attempting to prove the impossible, he developed what he called the

"Absolute Science of Space," starting from the assumption that through
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a point not on a line infinitely many lines can be drawn in the plane, each

parallel to the given line. Janos sent his reflections to his father, who
published them in the form of an appendix to a treatise that he had com-
pleted, bearing a long Latin title beginning with Tentamen. The elder

Bolyai's Tentamen bears an imprimatur dated 1829, the year of Lobach-

evsky's Kazan Messenger article, but it did not actually appear until 1832.

The reaction of Gauss to the "Absolute Science of Space" was similar

to that in the case of Lobachevsky—sincere approval, but lack of support

in print. When Farkas Bolyai wrote to ask for an opinion on the unorthodox

work of his son, Gauss replied that he could not praise Janos' work, for

this would mean self-praise, inasmuch as he had held these views for many
years. The temperamental Janos was understandably disturbed, fearing

that he would be deprived of priority. Continued lack of recognition, as

well as the publication of Lobachevsky's work in German in 1840, so upset

him that he published nothing more. The lion's share of the credit for the

development of non-Euclidean geometry consequently belongs to Loba-

chevsky.

Bolyai and Lobachevsky were far removed from Paris and Gottingen.

Still, presence in Paris did not guarantee success to even the brightest

young mathematical minds of the day. The most illustrious examples of

men who felt frustrated by their failure to find the recognition they sought

in Paris are the Norwegian Niels Henrik Abel (1802-1829) and the French-

man Evariste Galois (1812-1832).

ABEL AND JACOBI

Abel's short life was filled with poverty and tragedy. He was born into a

large family, the son of the pastor of the little village of Findo in Norway.

When he was sixteen, his teacher urged him to read the great books in

mathematics, including the Disquisitiones of Gauss. In his reading Abel

noted that Euler had proved the binomial theorem for rational powers

only, and so he filled the gap by giving a proof valid for the general case.

When Abel was eighteen, his father died, and much of the care of the

family fell on his young and weak shoulders; yet within the next year he

made a remarkable mathematical discovery. Ever since the cubic and quar-

tic equations had been solved in the sixteenth century, men had studied

the quintic. Abel at first thought he had hit upon a solution; but in 1824

he published a memoir, kOn the Algebraic Resolution of Equations," in

which he reached the opposite conclusion: He gave the first proof that no

solution is possible, thus putting an end to the long search. There can be

no general formula, expressed in explicit algebraic operations on the coef-

ficients of a polynomial equation, for the roots of the equation if the degree

of the equation is greater than four. An earlier proof, less satisfactory and

generally overlooked, of the unsolvability of the quintic had been published
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in 1799 by Paolo Ruffini (1765-1822), and hence the result now is referred

to as the Abel-Ruffini theorem.

Abel begins his memoir on the insolvability of the quintic by defining

algebraic, rational, and "entire" (that is, polynomial) functions. He follows

this with a classification of algebraic functions suggestive of generating a

rational function field. This allows him to state the problem at hand as that

of "simply expressing] its roots as algebraic functions of the coefficients."

Abel then states as proposition a tacit assumption of previous authors: "If

an equation is algebraically solvable, [the expression for] its roots can

always be put into such a form that all algebraic functions of which it is

composed can be expressed by rational functions of the roots of the given

equation." Applying all this to theorems on symmetric functions, the proof

of the main theorem eventually follows by a number of reductio ad ab-

surdum arguments.

When Abel visited Paris in 1826, he hoped his research results would

gain him recognition by members of the Academy. He found the city

inhospitable, however, and wrote home to a friend: "Every beginner has

a great deal of difficulty in getting noticed here. I have just finished an

extensive treatise on a certain class of transcendental functions . . . but

Mr. Cauchy scarcely deigns to glance at it." The publication in question

contained what he considered the jewel in his bag of mathematical treas-

ures, "Abel's addition theorem," a grand generalization of Euler's addition

theorems on elliptic integrals. Before arriving in Paris, Abel had spent

some time in Berlin and had been well received by Crelle, who was about

to inaugurate his new Journal. He invited Abel to contribute to the pub-

lication. Abel complied; the first volume contained six articles by him,

which were followed by more for succeeding volumes. They included the

expanded version of his proof of the insolvability of the quintic, as well as

his further contributions to the theory of elliptic and hyperelliptic functions.

While these were appearing in Berlin, Abel had returned to his native

Norway; increasingly weakened by tuberculosis, he kept sending more

material to Crelle. He died in 1829, scarcely aware of the interest his

publications were creating. Two days after his death a letter arrived offering

him a position in Berlin.

What created something of a sensation and helped increase the read-

ership of Crelle's new journal was the fact that Abel was not alone in his

new discoveries. The Prussian mathematician Carl Gustav Jacobi (1804-

1851) was obtaining many of the same results independently; moreover

he, too, was publishing them in the early volumes of Crelle's journal. It

became apparent to men such as Legendre that both Abel and Jacobi were

forging new tools of great consequence. What was not generally known
was that the unpublished memoranda of Gauss hung like a sword of Da-

mocles over mathematics of the first half of the nineteenth century. When
an important new development was announced by others, it frequently
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turned out that Gauss had had the idea earlier, but had permitted it to go

unpublished. Among the striking instances of this situation was the disclo-

sure of elliptic functions, a discovery in which four outstanding figures are

involved. One of these was, of course, Legendre, who had spent some
forty years studying elliptic integrals almost single-handedly. He had de-

veloped a great many formulas, some of them resembling relationships

among inverse trigonometric functions (a number of which had been known
long before to Euler). This was not surprising inasmuch as the elliptic

integral
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as the special case for which K = 0. However, it remained for Gauss and

his two younger contemporaries to take full advantage of a point of view

that greatly facilitates the study of elliptic integrals. If
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then u = arcsin v. Here u is expressed as a function of the independent

variable u (x being only the dummy variable for integrating), but it turns

out to be more felicitous to reverse the roles of u and v by choosing u as

the independent variable. In this case we have v = f(u), or, in the language

of trigonometry, v = sin u. The function v = sin u is more expeditiously

manipulated, and it has a striking property that u = arcsin u does not

have: it is periodic. The private papers of Gauss show that perhaps as early

as 1800 he had discovered the double periodicity of elliptic (or lemniscatic)

functions. It was not until 1827-1828, however, that this remarkable prop-

erty was disclosed by Abel.

In 1829 Jacobi wrote to Legendre to inquire about the memoir Abel

had left with Cauchy, for Jacobi had intimations that it touched on his

outstanding discovery. Upon looking into the matter, Cauchy in 1830 dug

up the manuscript, which Legendre later described as "a monument more

lasting than bronze," and it was published in 1841 by the French Institut

among the memoirs presented by foreigners. It contained an important

generalization of Legendre's work on elliptic integrals. If
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u is a function of v , u = f(u), the properties of which had been very
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extensively described by Legendre in his treatise on elliptic integrals. What
Legendre had missed, and what Gauss, Abel, and Jacobi saw, was that by

inverting the functional relationship between u and i>, one obtains a more
useful and more beautiful function, v = f(u). This function, usually written

v = sn u and read "v is the sine amplitude of w," together with others

defined in a somewhat similar manner, are known as elliptic functions. 1

The most striking property of these new higher transcendental functions

was, as their three independent discoverers saw, that in the theory of

complex variables they have a double periodicity, that is, there are two

complex numbers m and n such that v = f(u) = f(u + m) = f(u + n).

Whereas the trigonometric functions have a real period only (a period of

In) and the function e
x has an imaginary period only (2ni), the elliptic

functions have two distinct periods. So impressed was Jacobi with the

simplicity achieved through a simple inversion of the functional relationship

in elliptic integrals that he regarded the advice, "You must always invert,"

as the secret of success in mathematics.

Priority, with respect to the discovery of double periodicity, is not easily

established. Jacobi's classic treatise, Fundamenta nova theoriae functionum

ellipticarum, appeared in 1829, the year of Abel's death, and Abel's work

was published in 1827-1828. But Gauss seems to have been by far the

earliest to make the discovery, which had lain dormant among his papers

for a quarter of a century before Abel and Jacobi again hit upon it. Jacobi

deserves credit also for several critical theorems related to elliptic functions.

In 1834 he proved that if a single-valued function of one variable is doubly

periodic, the ratio of the periods can not be real, and that it is impossible

for a single-valued function of a single independent variable to have more

than two distinct periods. To him we owe also a study of the "Jacobi theta

functions," a class of quasi doubly periodic entire functions of which the

elliptic functions are quotients.

The fateful misplaced memoir by Abel contained the hint of something

even more general than the elliptical functions. If one replaces the elliptic

integral by

Jo

dx
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where P(x) is a polynomial the degree of which may exceed four; and if

one again inverts the relationship between u and v to obtain v = f(u),

this function is a special case of what is known as an Abelian function. It

was Jacobi, however, who in 1832 first demonstrated that the inversion

can be carried out not only for a single variable but for functions of several

variables.

1 Some historical confusion has arisen because Legendre used the phrase "fonctions el-

liptiques" in the title of his treatise on elliptic integrals. As used by Legendre, however, the

phrase referred to elliptic integrals, and not to what are now known as elliptic functions.
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The early years of Jacobi's life were in a way the antithesis of those of

Abel, for Jacobi's father was a prosperous banker whose children never

felt the pinch of want. C. G. J. Jacobi, the second son, secured a good

education at the University of Berlin, with concentrations in philology and

mathematics. Like Gauss, he finally settled for the latter, but, unlike Gauss,

Jacobi was a born teacher who delighted in instructing others. The most

celebrated results of his research were those in elliptic functions, published

in 1829, which brought him the praise of Legendre. By means of this new
analysis Jacobi later proved again the four-square theorem of Fermat and

Lagrange. In 1829 Jacobi also published a paper in which he made extensive

and general use of Jacobians, expressing these in a more modern form

than had Cauchy:
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Jacobi became so enamoured of functional determinants that he insisted

on thinking of ordinary numerical determinants as Jacobians of n linear

functions in n unknowns.

Jacobi's use of functional determinants in a paper on algebra in 1829

was only incidental, as had been that of Cauchy. Had this been the only

contribution from the pen of Jacobi, his name would have not been attached

to the particular determinant that we are considering. In 1841, however,

he published a long memoir "De determinantibus functionalibus," specif-

ically devoted to the Jacobian. He pointed out, among other things, that

this functional determinant is in many ways an analogue, for functions of

several variables, to the differential quotient of a function of a single vari-

able; and, of course, he called attention to its role in determining whether

or not a set of equations or functions are independent. He showed that if

a set of n functions in n variables are functionally related, the Jacobian

must vanish identically; if the functions are mutually independent, the

Jacobian cannot be identically zero.

GALOIS

Young geniuses whose lives were cut short by death from dueling or con-

sumption are part of the real and fictional literary tradition of the Romantic

Age. Someone wishing to present a mathematical caricature of such lives
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could do no better than to create the characters of Abel and Galois. Galois

was born just outside Paris in the village of Bourg-la-Reine, where his

father served as mayor. His well-educated parents had not shown any

particular aptitude for mathematics, but the young Galois did acquire from

them an implacable hatred of tyranny. When he first entered school at the

age of twelve, he showed little interest in Latin, Greek, or algebra, but

he was fascinated by Legendre's Geometry. Later he read with understand-

ing the algebra and analysis in the works of masters like Lagrange and

Abel, but his routine classwork in mathematics remained mediocre, and

his teachers regarded him as eccentric. By the age of sixteen Galois knew
what his teachers had failed to recognize—that he was a mathematical

genius. He hoped, therefore, to enter the school that had nurtured so many
celebrated mathematicians, the Ecole Polytechnique, but his lack of sys-

tematic preparation resulted in his rejection. This disappointment was fol-

lowed by others: A paper Galois wrote and presented to the Academy
when he was seventeen was apparently lost by Cauchy; he failed in a second

attempt to enter the Ecole Polytechnique; worst of all, his father, feeling

persecuted because of clerical intrigues, committed suicide. Galois entered

the Ecole Normale to prepare for teaching; he also continued his research.

In 1830 he submitted another paper to the Academy in a prize competition.

Fourier, as secretary of the Academy, received the paper but died shortly

thereafter, and this memoir, too, was lost. Faced on all sides by tyranny

and frustration, Galois made the cause of the 1830 revolution his own. A
blistering letter criticizing the indecision of the director of the Ecole Nor-

male resulted in Galois' expulsion. A third effort to present a paper to the

Academy resulted in its being returned by Poisson with a request for proofs.

Thoroughly disillusioned, Galois joined the National Guard. In 1831 he

was twice arrested; he had proposed a toast in a gathering of republicans

that was interpreted as a threat on the life of King Louis Philippe. Shortly

afterward he became involved with a coquette and was challenged to a

duel. The night before the duel, with forebodings of death, Galois spent

the hours jotting down, in a letter to a friend named Chevalier, notes for

posterity concerning his discoveries. He asked that the letter be published

(as it was within the year) in the Revue Encyclopedique and expressed the

hope that Jacobi and Gauss might publicly give their opinion as to the

importance of the theorems. On the morning of May 30, 1832, Galois met

his adversary in a duel with pistols, which resulted in his death the following

day. He was twenty years old.

In 1846 Liouville edited several memoirs and manuscript fragments of

Galois and published these along with the last letter to Chevalier in his

Journal de Mathematiques. This marks the beginning of the effective dis-

semination of Galois' ideas, although some clues to Galois' work had been

published earlier. Two papers by Galois had appeared in Ferussac's Bulletin

Sciences Mathematiques of 1830. In the first, Galois had listed three criteria
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for the solvability of a "primitive" equation; the chief of these was the

beautiful proposition that

In order that an irreducible equation of prime degree be solvable by radicals,

it is necessary and sufficient that all its roots be rational functions of any two

of them.

Aside from referring to Gauss's cyclotomic equation and noting that his

results had been derived from the theory of permutations, this paper con-

tained no indication of the method used to derive results, and no proofs.

In the other paper, on number theory, Galois showed how to construct

finite fields of order p given the root of an irreducible congruence of degree

n mod p. Here, too, he stressed the analogy to Gauss's results in Section

III of the Disquisitiones arithmeticae . His letter to Chevalier, published in

September 1832, had contained an outline of the main results of the memoir
that had been returned by the Academy. Here Galois had indicated what

he considered to be the essential part of his theory. In particular, he stressed

the difference between adjoining one or all of the roots of the resolvent,

and related it to the decomposition of the group G of the equation. In

modern terminology, he indicated that an extension of the given field is

normal if and only if the corresponding subgroup is a normal subgroup of

G. He observed that an equation whose group cannot be properly decom-

posed (one whose group does not have a normal subgroup) should be

transformed into one that can. Then, he noted the equivalent of saying

that an equation is solvable if and only if one obtains a chain of normal

subgroups of prime index. Unaccompanied by proofs, definitions, or ad-

equate explanations of the new concepts involved, the profound content

of the letter was not understood until Liouville published the full memoir

along with these previously published papers.

The main goal of the memoir is the proof of the theorem quoted above.

The memoir contains the important notion of "adjunction":

We shall call every quantity rational which is expressed as a rational function

of the coefficients of the equation and of a certain number of quantities

adjoined to the equation and selected arbitrarily.

Galois noted that Gauss's cyclotomic equation of prime degree n is irre-

ducible until a root of one of the auxiliary equations is adjoined. Gauss, in

his criteria for the constructibility of regular polygons, had in essence solved

the question of the solvability of the equation a
()
X n + a n

= in terms

of rational operations and square roots on the coefficients. Galois general-

ized the result to provide criteria for the solvability of a
{)
X" + a^Xn ~

x +
• • - + a n .

x
X + a n

= torn terms of rational operations and nih roots on
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the coefficients. His approach to the problem, now known as Galois theory,

was another of the highly original contributions to algebra in the nineteenth

century. However, it has been said that Galois theory is like garlic in that

there is no such thing as a little of it. One must make a substantial study

of it to appreciate the reasoning—as Galois' experience with his contem-

poraries snowed. Nevertheless, we can indicate in a general way what is

behind Galois theory and why it has been important.

Galois began his investigations with some work of Lagrange on per-

mutations on the roots of a polynomial equation. Any change in the ordered

arrangement of n objects is called a permutation on these objects. If, for

example, the order of the letters a, b, c is changed to c, a, b, this per-

mutation is written succinctly as (acb), a notation in which each letter is

taken into the letter immediately following, the first letter being understood

to be the successor of the last letter. Thus the letter a was carried into c,

c in turn was carried into b, and b went into a. The notation (ac) or (ac,

b), however, means that a goes into c, c goes into a, and b goes into itself.

If two permutations are performed successively, the resulting permutation

is known as the product of the two permutation transformations. Thus the

product of (acb) and (ac, b), written as (acb)(ac, b), is the permutation

(a, be). The identical permutation / takes each letter into itself—that is,

it leaves the order a, b, c unchanged. The set of all permutations on the

letters a, b, c clearly satisfies the definition of a group, given in Chapter

24 on geometry; this group, containing six permutations, is known as the

symmetric group on a, b, c. In the case of n distinct elements, x
x
,x2 , . . . ,

x„, the symmetric group on these contains n\ transformations. If these

elements are the roots of an irreducible equation, the properties of the

symmetric group provide necessary and sufficient conditions that the equa-

tion be solvable by radicals.

Inspired by Abel's proof of the unsolvability by radicals of the quintic

equation, Galois discovered that an irreducible algebraic equation is solv-

able by radicals if and only if its group—that is, the symmetric group on

its roots—is solvable. The description of a solvable group is quite com-

plicated, involving as it does relationships between the group and its sub-

groups. The three permutations (abc), (abc)2
, and (abc)3 = / form a subgroup

of the symmetric group on a, b, and c. Lagrange had already shown that

the order of a subgroup must be a factor of the order of the group; but

Galois went deeper and found relations between the factorability of the

group of an equation and the solvability of the equation. Moreover, to

him we owe the use in 1830 of the word group in its technical sense in

mathematics.

Galois theory can provide an algorithm for actually finding the roots of

an equation, when these are expressible in radicals; but the emphasis in

the Galois approach in the theory of equations generally is directed more

toward algebraic structure than toward the handling of specific cases. Al-
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though his work was done before that of most of the British algebraists of

the great period 1830-1850, his ideas were without influence until they

were published in 1846.

DIFFUSION

The leadership role of the mathematical community in Paris diminished

rapidly after 1830. This was due in part to the dying out of an older

generation; in part to efforts elsewhere, notably in England and Prussia,

to establish mathematics more solidly; and in part to political circumstances

in France. After the deaths in 1827, 1830, and 1833 respectively of Laplace,

Fourier, and Legendre, and the departure of Cauchy from Paris in 1830,

the best known French mathematician born before the Revolution and still

active was Simeon-Denis Poisson (1781-1840).

Poisson was the son of a small-town administrator who took charge of

local affairs when the Revolution broke out, and the child was reared under

republican principles; but he later became a staunch Legitimist and in 1825

was rewarded with the title of baron. In 1837, under Louis Philippe, he

became a peer of France. Relatives at first had hoped that the young man
would become a physician, but strong mathematical interests led him in

1798 to enter the Ecole Polytechnique, where on graduation he became

successively lecturer, professor, and examiner. He is said to have once

remarked that life is good for only two things: to do mathematics and to

teach it. Consequently he published almost 400 works, and he enjoyed a

reputation as an excellent instructor. The direction of his research is in-

dicated in part by a sentence from a letter written in 1826 by Abel con-

cerning the mathematicians in Paris: "Cauchy is the only one occupied

with pure mathematics; Poisson, Fourier, Ampere, etc., busy themselves

exclusively with magnetism and other physical subjects." This should not

be taken too literally, but Poisson, in memoirs of 1812, did help to make
electricity and magnetism a branch of mathematical physics, as did Gauss,

Cauchy, and Green. Poisson was also a worthy successor to Laplace in

studies on celestial mechanics and the attraction of spheroids. The Poisson

integral in potential theory, the Poisson brackets in differential equations,

the Poisson ratio in elasticity, and Poisson's constant in electricity indicate

the importance of his contributions to various fields of applied mathematics.

Two of his best-known treatises were the Traite de mecanique (2 vols.,

1811 , 1833) and Recherches sur la probability des jugements (1837). In the

latter appears the familiar Poisson distribution, or Poisson's law of large

numbers. In the binomial distribution (p + q)\ (where/? + q = 1 and

n is the number of trials), as n increases indefinitely the binomial distri-

bution ordinarily tends toward a normal distribution; but if, as n increases
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indefinitely, p approaches zero, the product np remaining constant, the

limiting case of the binomial distribution is the Poisson distribution.

His analytic skill in refining the mathematical physics of Lagrange and

Laplace gained him early fame. His critical analyses of the work of others

often led him to innovative new concepts; an example is his memoir on

potential theory following his study of the work of James Ivory (1765-

1842). Poisson's important memoir, in turn, was studied by George Green

(1793-1841) and was an important ingredient in Green's 1828 memoir on

the subject. Yet Poisson's clinging to superseded physical concepts, and

his claims to a rigor which applied to his self-assurance more than his

mathematics, kept him from assuming the mantle of mathematical lead-

ership in later years. When men like Jacobi and Dirichlet chose the prob-

lems of Poisson for special treatment in their lectures and memoirs, it was

to recast them in a new mold.

REFORMS IN ENGLAND AND PRUSSIA

Reform characterized much of the activity affecting mathematicians in

England as well as in Prussia. The turning point in British mathematics

came in 1813 with the formation at Trinity College, Cambridge, of the

Analytical Society, which was led by three young Cantabrigians: the al-

gebraist George Peacock (1791-1858), the astronomer John Herschel (1792-

1871), and Charles Babbage (1791/2-1871) of "Calculating Engines" fame.

The immediate purpose of the Society was to reform the teaching and

notation of the calculus; and in 1817, when Peacock was appointed an

examiner for the mathematical tripos, differential notation replaced flux-

ional symbols on the Cambridge examination. Peacock was himself a Cam-
bridge graduate and teacher, the first of many Trinity College men who
were to lead in the development of algebra. He graduated as second wran-

gler—that is, he took second place in the celebrated tripos examination

(initiated in 1725) for undergraduates who had specialized in mathemat-

ics—the first wrangler being John Herschel, another of the founders of the

Analytical Society. Peacock was a zealous administrator and reformer,

taking an active part in the modification of the university statutes and in

the establishment of the Astronomical Society of London, the Philosophical

Society of Cambridge, and the British Association for the Advancement

of Science, the last of which set the pattern for the American Association

for the Advancement of Science. The last twenty years of his life were

spent as dean of Ely cathedral.

Peacock did not produce any outstanding new results in mathematics,

but he was of great importance in the reformation of the subject in Britain,

especially with respect to algebra. There had been at Cambridge a tendency

in algebra as conservative as that in geometry and analysis. Whereas on

the Continent mathematicians were developing the graphical representa-
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tion of complex numbers, in England there were protests that not even

negative numbers had validity.

In the words of Charles Babbage, the aim of the Analytical Society was

to promote "the principles of pure d-ism as opposed to the dot-age of the

university." (A second aim of the Society was "to leave the world wiser

than they found it.
,,

) This was, of course, a reference to the continued

refusal of the English to abandon the dotted fluxions of Newton for the

differentials of Leibniz; more generally it also implied a desire to take

advantage of the great strides in mathematics that had been made on the

Continent. In 1816, as a result of the Society's inspiration, an English

translation of Lacroix's one-volume Calculus was published, and within a

few years British mathematicians were in a position to vie with their con-

temporaries on the Continent. For example, George Green (1793-1841),

a self-educated miller's son, in 1828 published for private circulation an

essay on electricity and magnetism that contained the important theorem

bearing his name: If P(x, y ) and Q(x, y) have continuous partial derivatives

over a region R of the Jty-plane bounded by a curve C, then Jc P dx +

Q dy = JSr(Q x
~ P

y ) dx dy. This theorem, or its analogue in three

dimensions, also is known as Gauss's theorem, for Green's results were

largely overlooked until rediscovered by Lord Kelvin in 1846. The theorem

meanwhile had been discovered also by Mikhail Ostrogradski (1801-1861),

and in Russia it bears his name to this day.

In Prussia, a large share of the credit for the rejuvenation of mathematics

goes to the brothers Humboldt. Wilhelm von Humboldt (1767-1835), a

philologist, is best known for his reform of the Prussian educational system.

Alexander von Humboldt (1769-1859), liberal courtier, natural historian,

and friend of mathematical scientists, used his considerable influence in

Berlin to assure Dirichlet's return to Prussia from Paris; he also aided the

careers of C. G. J. Jacobi and G. Eisenstein, among others, and showed

interest in Abel.

As a result, by mid-century there was a substantial number of mathe-

maticians actively pursuing research in France, Prussia, and England. Each

country had established a major mathematical journal in the second quarter

of the century: In 1836 Liouville had founded the Journal de Mathematiques

Pures et Appliquees. The Cambridge Mathematical Journal followed. Crelle's

journal continued to thrive, with much active support from Dirichlet and

his students.

Gauss and Cauchy died within two years of each other, the former in

1855, the latter in 1857. They had been preceded in death by many of their

contemporaries, including some of their younger followers; they were fol-

lowed, in 1859, by Dirichlet and Alexander von Humboldt. In this respect,

the 185()s mark the end of an era. But the decade also brought a new
direction to the continued unfolding of the mathematical legacy of Gauss

and Cauchy: that which emerged from the work of Bernhard Riemann

(1826-1866).



24

Geometry

There is no branch of mathematics, however abstract, which may not some day be

applied to phenomena of the real world.

Lobachevsky

THE SCHOOL OF MONGE

Geometry, of all the branches of mathematics, has been most subject to

changing tastes from age to age. In classical Greece it had climbed to the

zenith, only to fall to its nadir at about the time that Rome fell. It had

recovered some lost ground in Arabia and in Renaissance Europe; in the

seventeenth century it stood on the threshold of a new era, only to be all

but forgotten, at least by research mathematicians, for nearly two more

centuries, languishing in the shade of the ever-proliferating branches of

analysis. Britain, especially throughout the later eighteenth century, had

fought a losing battle to restore Euclid's Elements to its once glorious

position, but she had done little to advance research in the subject. Through

the efforts of Monge and Carnot, there were some stirrings of revival in

pure geometry during the period of the French Revolution, but the almost

explosive rediscovery of geometry as a living branch of mathematics came

chiefly with the dawn of the nineteenth century. As one might have antic-

ipated, Monge's students at the Ecole Polytechnique made significant con-

tributions to the new geometric movement. Reflecting the multiple nature

533
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of their teacher's researches, some pursued geometric applications to en-

gineering, some to pedagogy, some to physics; many studied the subject

for its own sake. Thus Charles Dupin (1784-1873) applied his geometric

knowledge primarily to problems of naval architecture, and established

technical training courses at the Conservatoire des Arts et Metiers. Still,

he is best remembered among geometers for contributions to the theory

of surfaces, where he introduced concepts such as that of the cyclide, the

surface enveloped by all spheres tangent to a given set of spheres. Theodore

Olivier (1793-1853) went beyond Monge in creating geometric models to

develop powers of visualization of geometric concepts; this work began

the building of geometric model collections, heavily promoted by the end

of the century through the pedagogic influence of Felix Klein (1849-1925).

Jean-Baptiste Biot (1774-1862), though primarily remembered as a phys-

icist, in his lectures passed on Monge's emphasis on geometric visualization

of physical and mathematical problems. Charles Jules Brianchon (1785-

1864) is best known today for one theorem, which he discovered only a

year after his entrance at the Ecole Polytechnique where he studied under

Monge and read Carnot's Geometrie de position. The twenty-one-year-old

student, later an artillery officer and teacher, first reestablished the long-

forgotten theorem of Pascal, which Brianchon expressed in the modern
form: In any hexagon inscribed in a conic section, the three points of

intersection of the opposite sides always lie on a straight line. Continuing

through some other demonstrations, he came to the one that bears his

name: "In any hexagon circumscribed about a conic section, the three

diagonals cross each other in the same point." As Pascal had been im-

pressed by the number of corollaries that he had been able to derive from

his theorem, so Brianchon remarked that his own theorem "is pregnant

with curious consequences." The theorems of Pascal and Brianchon are,

in fact, fundamental in the projective study of conies. They form, in ad-

dition, the first clear-cut instance of a pair of significant "dual" theorems

in geometry, that is, theorems that remain valid (in plane geometry) if the

words point and line are interchanged. If we let the phrase "a line is tangent

to a conic" be read as "a line is on a conic," the two theorems can be ex-

pressed in the following combined form:

{vertices
of a hexagon lie on a conic if

and only if the three I
J.

common to the three pairs of

[sides , [line
opposite i have a < .in common.rr [vertices [point

Such relationships between points and lines on conies were later ex-

ploited effectively by another alumnus of the Ecole Polytechnique, the man
who became the effective founder of projective geometry. This was Jean-



PROJECTIVE GEOMETRY: PONCELET AND CHASLES 535

Victor Poncelet (1788-1867), who also studied under Monge. Poncelet

entered the army corps of engineers just in time to take part in Napoleon's

ill-fated 1812 campaign in Russia and be taken prisoner.

PROJECTIVE GEOMETRY: PONCELET AND CHASLES

While in prison, Poncelet had composed a treatise on analytic geometry,

Applications a"analyse et de geometrie, which was based on the principles

he had learned at the Ecole Polytechnique. This work, however, was not

published until about half a century later (2 vols., 1862-1864), despite the

fact that it originally was intended to serve as an introduction to the author's

far more celebrated Traite des proprietes projectives des figures of 1822.

The latter work differed sharply from the former in that it was synthetic,

rather than analytic, in style. Poncelet's tastes had changed on his return

to Paris, and from that time on he was a staunch advocate of synthetic

methods. He realized that the advantage that analytic geometry had ap-

peared to have lay in its generality, and he, therefore, sought to make
statements in synthetic geometry as general as possible. To further this

design he formulated what he called the "principle of continuity" or "the

principle of permanence of mathematical relations." This he described as

follows:

The metric properties discovered for a primitive figure remain applicable,

without other modifications than those of change of sign, to all correlative

figures which can be considered to spring from the first.

As an example of the principle Poncelet cited the theorem of the equality

of the products of the segments of intersecting chords in a circle, which

becomes, when the point of intersection lies outside the circle, an equality

of the products of the segments of secants. If one of the lines is tangent

to the circle, the theorem nevertheless remains valid upon replacing the

product of the segments of the secant by the square of the tangent. Cauchy

was inclined to scoff at Poncelet's principle of continuity, for it appeared

to him to be nothing more than a bold induction. In a sense this principle

is not unlike the view of Carnot, but Poncelet carried it further to include

the points at infinity that Kepler and Desargues had suggested. Thus one

could say of two straight lines that they always intersected—either in an

ordinary point or (in the case of parallel lines) in a point at infinity, called

an ideal point. In order to achieve the generality of analysis, Poncelet

found it necessary to introduce into synthetic geometry not only ideal

points, but also imaginary points, for only thus could he say that a circle

and a straight line always intersect. Among his striking discoveries was

that all circles whatsoever, drawn in a plane, have two points in common.

These are two ideal imaginary points, known as the circular points at infinity

and usually designated as / and / (or, more informally, as Isaac and Jacob).
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Poncelet argued that his principle of continuity, which presumably had

been suggested by analytic geometry, was properly a development of syn-

thetic geometry, and he quickly became a champion of the latter against

the analysts. During the second half of the eighteenth century there had

been some controversy, especially in Germany, about the relative merits

of analysis and synthesis. In 1759 the mathematician and historian A. G.

Kaestner (1719-1800), professor at Leipzig and Gottingen, had argued that

analysis was superior as a heuristic approach to problems, affording power

and economy of thought. One of his students, G. S. Klugel (1739-1812),

in 1767 wrote that he suspected the English of seeking, through the difficulty

of their synthetic proofs, to enhance their reputations. During the early

nineteenth century interest in the rival methodologies in France was such

that a prize was offered in 1813 by the Bordeaux Scientific Society for the

best essay characterizing synthesis and analysis and the influence that each

had exerted. The winning essay, by a teacher at Versailles, closed with the

hope that there might be a reconciliation between the two camps; but half

a dozen years later the controversy broke out again and became increasingly

bitter. The two chief rivals, interestingly, were Poncelet and Gergonne,

both students of Monge, a man who had been equally at home in analytic

and synthetic geometry. At first the rivalry was friendly, and both men in

1818, the year Monge died, published papers in Gergonne's Annates, Pon-

celet arguing for the superiority of synthetic geometry and Gergonne de-

fending analytic methods. But by 1826 there arose a priority controversy

over the newly discovered principle of duality. We saw earlier how the

theorems of Pascal and Brianchon were related through a simple inter-

change of the words point and line, and Gergonne had become convinced

that analytic methods would show that such an interchange is universally

valid. That is, for any theorem of plane geometry involving points and

lines, Gergonne confidently assumed that the dual of this theorem, ob-

tained by interchanging the words point and line, also will be valid, and

he began publishing pairs of dual theorems in parallel columns in his An-

nates. Poncelet argued that he had discovered duality first, and that the

principle was a consequence of the relationships in pure geometry between

a pole and its polar line with respect to a conic.

The history of geometry in the nineteenth century is replete with cases

of independent discovery and rediscovery. Another example involving Pon-

celet is that of the nine-point circle. Poncelet and Brianchon published a

joint paper in Gergonne's Annates for 1820-1821, which, though entitled

"Recherches sur la determination d'une hyperbole equilatere," contained

a proof of the beautiful theorem that

The circle which passes through the feet of the perpendiculars, dropped from

the vertices of any triangle on the sides opposite to them, passes also through

the midpoints of these sides as well as through the midpoints of the segments

which join the vertices to the point of intersection of the perpendiculars.



PROJECTIVE GEOMETRY: PONCELET AND CHASLES 537

This theorem generally is named for neither Brianchon nor Poncelet, but

for an independent German mathematician, Karl Wilhelm Feuerbach (1800-

1834), who published it in 1822. The little monograph containing this and

some related propositions also included proofs of several fascinating prop-

erties of the circle. Among these is the fact that the center of the nine-

point circle lies on the Euler line and is midway between the orthocenter

and the circumcenter, and "Feuerbach's theorem" that the nine-point circle

of any triangle is tangent internally to the inscribed circle and tangent

externally to the three escribed circles. One enthusiast, the American geo-

meter Julian Lowell Coolidge (1873-1954), called this "the most beautiful

theorem in elementary geometry that has been discovered since the time

of Euclid." It should be noted that the charm of such theorems supported

considerable investigation in the geometry of triangles and circles through-

out the nineteenth century. Aside from Jakob Steiner (1796-1863), about

whom we shall learn more, perhaps the most famous contributor to this

field was the Anglo-American geometer Frank Morley (1860-1937), the

fifteenth president of the American Mathematical Society; the popular

writer Christopher Morley was one of his sons. Named after Frank Morley

is the theorem that the triangle formed by the points of intersection of

adjacent trisectors of the angles of a second triangle is equilateral.

Returning to Poncelet, let us note that we remember him primarily for

his using existing Desarguesian concepts of central (point) projections and

points of infinity to establish the notion of the complex projective plane.

Basic is the study of projective properties defined as those remaining in-

variant under perspectivities. Given a point O and a line / in the plane, a

perspectivity assigns to each point P a point P' on / such that if Q is a

second point there exists a point Q' on OQ such that PQ intersects P'Q'

on /. A sequence of perspectivities is called a projectivity. Again, calling

upon an approach used by Desargues, Poncelet brought to the fore the

Apollonian concepts of pole and polar to which, as we have noted, he

attributed his discovery of the principle of duality.

The work of Poncelet was continued by Michel Chasles (1798-1880),

also a graduate of the Ecole Polytechnique, where he became professor

of machine technology in 1841; from 1846, he held a chair for higher

geometry at the Sorbonne. To Chasles was due the emphasis in projective

geometry on the six cross ratios, or anharmonic ratios, (c - a)/(c - b):

(d - a)/(d - b) of four collinear points or four concurrent lines, and the

invariance of these under projective transformations. His Traite de geo-

metric superieure (1852) was influential as well in establishing the use of

directed line segments in pure geometry. Chasles, who is noted also for

his Aperqu historique sur I'origine et la developpement des methodes en

geometrie (1837), was one of the last great projective geometers in France.

Late in life he initiated the study of enumerative geometry, that branch of

algebraic geometry whose task it is to determine the number of solutions
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of algebraic problems by means of geometric interpretation. Here and

elsewhere he made prominent use of the "principle of correspondence."

SYNTHETIC METRIC GEOMETRY: STEINER

Chasles' results overlapped in many respects with those of several German
geometers. Foremost among them was Jakob Steiner, the man who has

been regarded as the greatest synthetic geometer of modern times. Steiner

was born in Switzerland, came under Pestalozzian influence, and then was

educated at Heidelberg and Berlin. Through Jacobi he obtained a profes-

sorship at Berlin that he held until his death. In his hands synthetic ge-

ometry made strides comparable to those made earlier in analysis. He
intensely disliked analytic methods. The term analysis implies a certain

amount of technique or machinery; analysis is often referred to as a tool,

a term never applied to synthesis. Steiner objected to all kinds of tools or

"props" in geometry. He demonstrated by synthetic methods alone, in a

paper in Crelle's Journal, a striking theorem that appears naturally to

belong to analysis: that a surface of third order contains only twenty-seven

lines. Steiner proved also that all Euclidean constructions can be performed

with straightedge alone, provided that one is given also a single fixed circle.

This theorem shows that one cannot, in Euclidean geometry, dispense

entirely with the compasses, but that having used them to draw one circle,

one can thereafter discard them in favor of the straightedge alone, some-

what as Mascheroni had used compasses alone. Incidentally, in 1822 Pon-

celet, inspired by the work of Mascheroni, had suggested the same theorem.

Steiner's name is recalled in many connections, including the properties

of the Steiner points: If one joins in all possible ways the six points on a

conic in Pascal's mystic hexagon, one obtains sixty Pascal lines that intersect

three by three in twenty Steiner points. Among Steiner's unpublished dis-

coveries are those relating to the fruitful geometric transformation known

as inversive geometry: If two points P and P' lie on a ray from the center

O of a circle C of radius r p* 0, and if the product of the distances OP and

OP' is r
2

, then P and P' are said to be inverse to each other with respect

to C. To every point P outside the circle there is a corresponding point

inside the circle. Inasmuch as there is no outside point P' corresponding

to P when P coincides with the center 0, one has in a sense a paradox

similar to that of Bolzano: The inside of every circle, no matter how small,

contains, as it were, one more point than the portion of the plane outside

the circle. In an exactly analogous manner one readily defines the inverse

of a point in three-dimensional space with respect to a sphere.

A host of theorems in plane or solid inversive geometry are readily

proved by either analytic or synthetic methods. In particular, it is easy to

show that a circle not passing through the center of inversion is transformed,
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under a plane inversion, into a circle, whereas a circle through the center

of inversion goes into a straight line not passing through the center of

inversion (with analogous results holding for spheres and planes in three-

dimensional inversive geometry). Somewhat more difficult to establish is

the more significant result that inversion is. a conformal transformation,

that is, that angles between curves are preserved in this geometry. That

angle-preserving transformations are far from usual is clear from a theorem

proved by Joseph Liouville that in space the only ones that are conformal

are inversions and similarity and congruency transformations. Steiner did

not publish his ideas on inversion, and the transformation was rediscovered

several times by other mathematicians of the century, including Lord Kel-

vin (or William Thomson, 1824-1907), who in 1845 arrived at it through

physics and who applied it to problems in electrostatics.

If the center O of the circle of inversion of radius a is at the origin of

a plane Cartesian coordinate system, the coordinates x' and v' of the in-

verse P' of a point P(x, y) are given by the equations

and
^

x 2 + y
2 x 2 + y

r

These equations later suggested to Luigi Cremona (1830-1903), a professor

of geometry successively at Bologna, Milan, and Rome, the study of the

much more general transformation x' = R\(x, y), y' = R2(x, y), where

/?! and R 2 are rational algebraic functions. Such transformations, of which

those for inversion are only a special case are now known as Cremona
transformations, in honor of the man who in 1863 published an account

of them and who later generalized them for three dimensions.

SYNTHETIC NONMETRIC GEOMETRY: VON STAUDT

Steiner, in his Systematische Entwicklungen of 1832, had produced a treat-

ment of projective geometry based on metric considerations. Some years

later pure geometry found another German devotee in K. G. C. von Staudt

(1798-1867), a one-time student of Gauss, whose Geometrie der Lage of

1847 built up projective geometry without reference to magnitude or num-
ber. Von Staudt, after defining the cross ratio of four points xu x2 , x3 ,

and jc4 as x
x
- x^lx

x
- x4 : x2

- x3/x2
- jc4 , made a harmonic set of points

(a set whose cross ratio is -1) fundamental to building up projective

geometry; two pencils of points are said to be projective if harmonic sets

are preserved. Von Staudt's geometry was exceedingly significant in show-

ing how a projective geometry could be established without the concept

of distance, thus paving the way for the idea of having a nonmetric geometry

on which a notion of distance could be defined. A few years later Laguerre
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( L834-1886) in France discussed the possibility of imposing a measure on

a nonmetric angle geometry. It was Arthur Cayley, however, who subse-

quently presented the most influential elaboration on the whole concept

of defining a metric on a projective geometry in his "Sixth Memoir on

Quantics."

ANALYTIC GEOMETRY

Let us now turn to achievements in analytic geometry during this period.

As Monge had been perhaps the first modern specialist in geometry in

general, so Julius Plucker (1801-1868) became the first specialist in analytic

geometry in particular. His earliest publications in Gergonne's Annates in

1826 had been largely synthetic, but inadvertently he became so embroiled

in controversy with Poncelet that he forsook the camp of the synthesists

and became the most prolific of all analytic geometers. Algebraic methods,

he came to believe firmly, were much to be preferred to the purely geo-

metric approach of Poncelet and Steiner. That his name survives in co-

ordinate geometry in what is called Plucker's abridged notation is a tribute

to his influence, although in this case the phrase does him more than justice.

During the early nineteenth century a number of men, including Gergonne,

had recognized that analytic geometry was burdened by awkwardness in

algebraic computation; hence, they began to abbreviate notations drasti-

cally. The family of all circles through the intersection of the two circles

x 2 + y
2 + ax + by + c = and x 2 + y

2 + a'x + b'y + c' = 0, for

instance, was written by Gabriel Lame (1795-1870) in 1818 simply as

mC + m'C = 0, using two parameters or multipliers m and m' . Gergonne

and Plucker preferred a single Greek multiplier, the former writing C +

XC = 0, from which we have the word "lambdalizing," and the latter

using C + nC = 0, resulting in the phrase "Plucker's p.
n Lame seems

to have been the initiator in the study in analytic geometry of one-parameter

families through abridged notation, but it was Plucker who, especially

during the years 1827-1829, carried this study furthest. Incidentally, that

the linear pencil of circles C + pC - forms an interesting "radical

family," whether or not C, = and C2
= intersect, had been recognized

some fifteen years earlier by L. Gaultier in connection with pure geometry;

hence, the radical axis (the straight-line member of the family C +

nC = 0) is sometimes known as the "line of Gaultier." This line has the

property that from any point on it the tangents drawn to members of the

radical family of circles are equal—or. as Steiner expressed it, the "power"

of a point on the radical axis with respect to members of the family is the

same for all circles in the family.

Among the many uses Plucker made of abridged notation was one of

1828, in Gergonne's Annates, in which he explained the Cramer-Euler
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paradox. If, for example, one has fourteen random points in a plane, the

quartic curve through these points can be written as Q + nQ' = 0, where

Q = and Q' = are distinct quartics through the same thirteen of the

fourteen given points. Let fi be so determined that the coordinates of the

fourteenth point satisfy Q + \xQ' = 0. Then, Q = 0, Q' = 0, and Q +

nQ' = all have in common not only the original thirteen points, but also

all sixteen points of intersection of Q = and Q' = 0. Hence, with any

set of thirteen points there are three additional points dependent upon, or

associated with, the original thirteen, and no set of fourteen or more points

selected from the combined set of sixteen dependent points will determine

a unique quartic curve, despite the fact that a random set of fourteen points

will in general determine a quartic curve uniquely. More generally, any

given set of

n(n + 3) _
2

random points will determine a concomitant set of

1)(« - 2)[ n(n + 3) _ 1
] = (JL

additional "dependent" points such that any curve of degree n through the

given set of points will pass also through the dependent points. Pliicker

gave also a dual of his theorem on the paradox, as well as generalizations

to surfaces in three dimensions.

It was Pliicker who, in the first volume of his Analytisch-geometrische

Entwicklungen (1828), elevated the abridged notation of Lame and Ger-

gonne to the status of a principle; in the second volume of this influential

work (1831) Pliicker effectively rediscovered a new system of coordinates

that had been independently invented three times before. This was what

we now call homogeneous coordinates, of which Feuerbach was one in-

ventor. Another discoverer was A. F. Mobius (1790-1860), also a student

of Gauss, who published his scheme in 1827 in a work with the title Der

barycentrische Calcul. He introduced his "barycentric coordinates" by con-

sidering a given triangle ABC and defining the coordinates of a point P as

the mass to be placed at A, B, and C so that P is the center of gravity of

these masses. Mobius classified transformations according to whether they

were congruences (leaving corresponding figures equal), similarities (cor-

responding figures similar), affine (corresponding figures preserving parallel

lines), or collineations (lines going into lines), and suggested the study of

invariants under each family of transformations. The author of Der bary-

centrische Calcul is best known, however, for the one-sided surface that

bears his name—the Mobius strip or band obtained by joining the ends of

a segment of ribbon after one end has been turned upside down.

Still another inventor of homogeneous coordinates was Etienne Bobillier
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(1798-1840), a graduate of the Ecole Polytechnique who published his new
coordinate system in Gergonne's Annales for 1827-1828.

The notations and patterns of reasoning of the four inventors of ho-

mogeneous coordinates differed somewhat, but they all had one thing in

common—they made use of three coordinates instead of two to locate a

point in a plane. The systems were equivalent to what are also known as

trilinear coordinates. Pliicker, in fact, at first specifically took his three

coordinates jc, y, and / of a point P in a plane to be the three distances of

P from the sides of a triangle of reference. Later in Volume II of his

Analytisch-geometrische Entwicklungen he gave the more usual definition

of homogeneous coordinates as any set of ordered number triples (jc, y, t)

related to the Cartesian coordinates (X y Y) of P such that x = Xt and

y = Yt. It will be apparent immediately that the homogeneous coordinates

of a point P are not unique, for the triples (jc, y, t) and (/cjc, ky y kt)

correspond to the same Cartesian pair (xlt, ylt). This lack of uniqueness,

however, causes no more difficulty than does the lack of uniqueness in

polar coordinates or the lack of uniqueness of form in the case of equal

fractions. The name homogeneous stems, of course, from the fact that

when one uses the equations of transformation to convert the equation

of a curve f(X, Y) = in rectangular Cartesian coordinates to the form

f(x/t, ylt) = 0, the new equation will contain terms all of the same degree

in the variables jc, y, and t. More importantly, it will be noted that there

is in the system of Cartesian coordinates no number pair corresponding to

a homogeneous plane number triple of the form (jc, y, 0). Such a triple

(provided that jc and y are not both zero) designates an ideal point, or a

"point at infinity." At long last the infinite elements of Kepler, Desargues,

and Poncelet had been tied down to a coordinate system of ordinary num-

bers. Moreover, just as any ordered triple of real numbers (not all zero)

in homogeneous coordinates corresponds to a point in a plane, so also

does every linear equation ax + by + ct = (provided that 0, b, and c

are not all zero) correspond to a straight line in the plane. In particular,

all the "points at infinity" in the plane obviously lie on the line given by

the equation t = 0, known as the line at infinity or the ideal line in the

plane. It is obvious that this new system of coordinates is ideally suited to

the study of projective geometry, which up to this time had been ap-

proached almost exclusively from the point of view of pure geometry.

Homogeneous coordinates were a big step in the direction of the arith-

metization of geometry, but in 1829 Pliicker contributed to CreMe's Journal

a paper with a revolutionary point of view that broke completely with the

old Cartesian view of coordinates as line segments. The equation of a

straight line in homogeneous coordinates has the form ax + by + ct = 0.

The three coefficients of parameters (a, fr, c) determine a unique straight

line in the plane, just as the three homogeneous coordinates (x, y, t)

correspond to a unique point in the plane. Inasmuch as coordinates are
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numbers, hence not unlike coefficients, Pliicker saw that one could modify

the usual language and call (a, b, c) the homogeneous coordinates of a

line. If, finally, one reverses the Cartesian convention so that letters at the

beginning of the alphabet designate variables and those near the end of

the alphabet designate constants, the equation ax + by + ct = represents

a pencil of lines through the fixed point (jc, y, t) rather than a pencil of

points on the fixed line (a, b, c). If, now, one considers the noncommittal

equation pu + qv + rw = 0, it is clear that one can consider this indif-

ferently as the totality of points (w, v, w) lying on the fixed line (/?, q, r)

or as the totality of lines (p, q, r) through the fixed point (w, v, w).

Pliicker had discovered the immediate analytic counterpart of the geo-

metric principle of duality, about which Gergonne and Poncelet had quar-

reled; it now became clear that the justification that pure geometry had

sought in vain was here supplied by the algebraic point of view. The in-

terchange of the words "point" and "line" corresponds merely to an in-

terchange of the words "constant" and "variable" with respect to the

quantities p, q, r and w, v, w. From the symmetry of the algebraic situation

it is clear that every theorem concerning pu + qv + rw = appears

immediately in two forms, one the dual of the other. Moreover, Pliicker

showed that every curve (other than a straight line) can be regarded as

having a dual origin: It is a locus generated by a moving point and enveloped

by a moving line, the point moving continuously along the line while the

line continues to rotate about the point. Oddly enough, the degree of a

curve in point coordinates (the "order" of the curve) need not be the same

as the degree of the curve in line coordinates (the "class" of the curve),

and one of Pliicker's great achievements, published in Crelle's Journal for

1834, was the discovery of four equations, bearing his name, that relate

the class and order of a curve with the singularities of the curve:

m = n(n - 1) - 23 - 3/c and n = m(m - 1) - 2r - 3/,

/ = 3n(n — 2) - 63 - Sk and k = 3m(m - 2) - 6t - 8f,

where m is the class, n the order, 3 the number of nodes, k the number
of cusps, / the number of stationary tangents (points of inflection), and r

the number of bitangents. From these equations it is clear at a glance that

a conic (of order two) can have no singularities and thus must also be of

class two.

In a paper in Crelle's Journal for 1831 Pliicker had extended the principle

of duality to three dimensions, where the relationships between homoge-
neous coordinates (a, b, c, d) of a plane and the homogeneous coordinates

(jc, y, z, i) of a point showed that the dual of a theorem in three-space is

obtained through an interchange of the words "point" and "plane," the

word "line" remaining unchanged. The French geometer Michel Chasles

(1793-1880) claimed to have had the idea of line and plane coordinates at
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about the same time as Plucker, adding still another instance of simultaneity

of discovery in nineteenth-century geometry. In later papers and volumes

Plucker extended his work to include imaginary Cartesian and homoge-

neous coordinates. It was now a trivial matter to justify Poncelet's theorem

that all circles have in common two imaginary points at infinity, for the

points (1, i f 0) and (/, 1, 0) both satisfy the equation x 2 + y
2 + axt +

byt + a 2 = 0, no matter what values a, b, c may take on. Plucker showed

also that the foci of conies have the property that the imaginary tangents

from these points to the curve pass through the above two circular points;

he, therefore, defined a focus of a higher plane curve as a point having

this property.

During the days of Descartes and Fermat, and again during the time of

Monge and Lagrange, France had been the center for the development of

analytic geometry, but with the work of Plucker leadership in the field

crossed the Rhine to Germany. Nevertheless, Plucker was to a considerable

extent the proverbial prophet without honor in his own country. There,

Steiner, the champion of synthetic methods, was inordinately admired.

Mobius remained neutral in the analysis-synthesis controversy, but Jacobi,

despite the fact that he himself was an algorithm-builder, joined Steiner

in polemically opposing Plucker. Discouraged, Plucker in 1847 turned from

geometry to physics, where he published a series of papers on magnetism

and spectroscopy.

One notes with surprise that Plucker had not taken advantage of de-

velopments in determinants, possibly because of his feud with Jacobi; this

may have been why he did not systematically develop an analytic geometry

of more than three dimensions. Plucker had come close to this notion

through his observation in 1846 that the four parameters determining a

line in three-dimensional space can be thought of as four coordinates; but

only long afterward, in 1865, did he return to analytic geometry and develop

the idea of a "new geometry of space"—a four-dimensional space in which

straight lines, rather than points, were the basic elements. Meanwhile,

Cayley in 1843 had initiated the ordinary analytic geometry of tt-dimen-

sional space, using determinants as an essential tool. In this notation, using

homogeneous coordinates, the equations of the line and plane respectively

can be written as

x y t

*\ y\ 'i
= and

x\ y\ z\ fi

= 0.

*2 V: z 2 t
2

x^ >':

y3



REIMANNIAN GEOMETRY 545

Cayley pointed out that the corresponding fundamental (n - ^-dimen-
sional element in rc-dimensional space can be expressed in homogeneous
coordinates by a determinant, similar to those above, of order n + 1. Many
of the simple formulas for two and three dimensions, when properly ex-

pressed, can easily be generalized to n dimensions. In 1846 Cayley pub-

lished a paper in Crelle's Journal in which he again extended some
theorems from three dimensions to a space of four dimensions; in 1847

Cauchy in the Comptes Rendus published an article in which he considered

"analytical points" and "analytical lines" in space of more than three

dimensions.

RIEMANNIAN GEOMETRY

Non-Euclidean geometry continued for several decades to be a fringe as-

pect of mathematics until it was thoroughly integrated through the re-

markably general views of G. F. B. Riemann (1826-1866). The son of a

village pastor, Riemann was brought up in very modest circumstances,

always remaining frail in body and shy in manner. He nevertheless secured

a good education, first at Berlin and later at Gottingen, where he took his

doctorate with a thesis in theory of functions of a complex variable. It is

here that we find the so-called Cauchy-Riemann equations, ux
= v v ,

u
y
= — vx , which an analytic function w = f(z) = u + iv of a complex

variable z = x + iy must satisfy, although this requirement had been

known even in the days of Euler and d'Alembert. The thesis also led to

the concept of a Riemann surface, anticipating the part that topology

ultimately was to play in analysis.

In 1854 Riemann became Privatdozent at the University of Gottingen,

and according to custom he was called upon to deliver a Habilitationsschrift

before the faculty. The result in Riemann's case was the most celebrated

probationary lecture in the history of mathematics, for it presented a deep

and broad view of the whole field of geometry. The thesis bore the title

"Uber die Hypothesen welche der Geometrie zu Grunde liegen" ("On the

Hypotheses Which Lie at the Foundation of Geometry"), but it did not

present a specific example. It urged instead a global view of geometry as

a study of manifolds of any number of dimensions in any kind of space.

His geometries are non-Euclidean in a far more general sense than is

Lobachevskian geometry, where the question is simply how many parallels

are possible through a point. Riemann saw that geometry should not even

necessarily deal with points or lines or space in the ordinary sense, but

with sets of ordered ^-tuples that are combined according to certain rules.

Among the most important rules in any geometry, Riemann saw, is that

for finding the distance between two points that are infinitesimally close

together. In ordinary Euclidean geometry this "metric" is given by ds 2 =
dx2 + dy 2 + dz 2

; but infinitely many other formulas can be used as a
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distance formula, and, of course, the metric used will determine the prop-

erties of the space or the geometry. A space whose metric is of the form

ds 2 = g,, dx 2 + gu dx dy + g 13 dx dz

+ g21 dy dx + g 22 dy
2 + g 23 dy dz

+ g 13 dz dx + g23 dz dy + g33 <fz
2

,

where the g's are constants or, more generally, functions of jc, y, and z, is

known as a Riemannian space. Thus (locally) Euclidean space is only the

very special case of a Riemannian space in which gn = g22
= g33

= 1 and

all the other g's are zero. Riemann even developed from the metric a

formula for the Gaussian curvature of a "surface" in his "space." It is no

wonder that after Riemann's lecture, and for almost the only time in his

long career, Gauss expressed enthusiasm for the work of someone else.

There is a more restricted sense in which we today use the phrase

Riemannian geometry: The plane geometry that is deduced from Saccheri's

hypothesis of the obtuse angle if the infinitude of the straight line is also

abandoned. A model for this geometry is found in the interpretation of

the "plane" as the surface of a sphere and of a "straight line" as a great

circle on the sphere. In this case the angle sum of a triangle is greater than

two right angles, whereas in the geometry of Lobachevsky and Bolyai

(corresponding to the hypothesis of the acute angle) the angle sum is less

than two right angles. This use of Riemann's name, however, fails to do

justice to the fundamental change in geometric thought that his 1854

Habilitationsschrift (not published until 1867) brought about. It was Rie-

mann's suggestion of the general study of curved metric spaces, rather than

of the special case equivalent to geometry on the sphere, that ultimately

made the theory of general relativity possible. Riemann himself contributed

heavily to theoretical physics in a number of directions, and it was, there-

fore, fitting that in 1859 he should have been appointed as successor to

Dirichlet in the chair at Gottingen that Gauss had filled.

In showing that non-Euclidean geometry with angle sum greater than

two right angles is realized on the surface of a sphere, Riemann essentially

verified the consistency of the axioms from which the geometry is derived.

In much the same sense Eugenio Beltrami (1835-1900), a colleague of

Cremona at Bologna and later professor at Pisa, Pavia, and Rome, showed

that there was at hand a corresponding model for Lobachevskian geometry.

This is the surface generated through the revolution of a tractrix about its

asymptote, a surface known as a pseudosphere inasmuch as it has constant

negative curvature, as the sphere has constant positive curvature. If we
define the "straight line" through two points on the pseudosphere as the

geodesic through the points, the resulting geometry will have the properties

resulting from the Lobachevskian postulates. Inasmuch as the plane is a

surface with constant zero curvature, Euclidean geometry can be regarded

as an intermediary between the two types of non-Euclidean geometry.
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SPACES OF HIGHER DIMENSIONS

The unification of geometry that Riemann had achieved was especially

relevant in the microscopic aspect of differential geometry, or geometry

"in the small." Analytic geometry, or geometry "in the large," had not

been much changed. In fact, Riemann's lecture was given at about the

midpoint of Pliicker's self-imposed geometric retirement, during which

there had been something of a lull in analytic geometric activity in Ger-

many. In 1865 Pliicker again resumed mathematical publication, this time

in British publications instead of in Crelle's Journal, probably because

Cayley had shown interest in Pliicker's work. In this year he published a

paper in the Philosophical Transactions (often known simply as Phil. Trans.),

expanded three years later into a book, on a "New Geometry of Space."

Here he explicitly formulated a principle at which he had hinted about

twenty years before. A space, he argued, need not be thought of as a

totality of points; it can equally well be visualized as composed of lines.

In fact, any figure that formerly had been thought of as a locus or totality

of points can itself be taken as a space element, and the dimensionality of

the space will correspond to the number of parameters determining this

element. If our ordinary three-space is considered a "cosmic haystack of

infinitely thin, infinitely long straight straws," rather than an "agglomer-

ation of infinitely fine birdshot," it is four-dimensional rather than three-

dimensional. In 1868, the year of Pliicker's book based on this theme,

Cayley developed analytically in the Phil. Trans, the notion of the ordinary

two-dimensional Cartesian plane as a space of five dimensions, the elements

of which are conies. There are in Pliicker's Neue Geometrie des Raumes
also other new ideas. The geometric representation of a single equation

/(jc, v, z) = in point coordinates is called a surface, two simultaneous

equations correspond to a curve, and three equations determine one or

more points. In the "new geometry" of his four-dimensional line space

Pliicker called the "figure" represented by a single equation /(r, s, f, u)

= in the four coordinates of his line space a "complex," two equations

designated a "congruence," and three a "range." He found that the quad-

ratic line complex has properties similar to those of the quadric surface,

but he did not live to complete the extensive study he planned. He died

in 1868, the year in which his New Geometry appeared, edited by one of

his students, Felix Klein (1849-1925).

FELIX KLEIN

Klein had been Pliicker's assistant at the University of Bonn during the

latter's return to geometry, and in a sense he was Pliicker's successor in

his enthusiasm for analytic geometry. However, the young man's work in

the field took a different direction—one that served to bring some element
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of unity into the diversity of new results of research. The new view may
have been in part the result of visits to Paris, where Lagrange's hints of

group theory had been developed, especially through substitution groups,

into a full-blown branch of algebra. Klein was deeply impressed by the

unifying possibilities in the group concept, and he spent much of the rest

of his life in developing, applying, and popularizing the notion. In some
of this work he collaborated with the Norwegian mathematician Sophus

Lie (1842-1899), fellow student with Klein at Gottingen, who discovered

contact transformations and wrote a ponderous three-volume treatise on

the theory of transformation groups (1888-1893). Lie's contact transfor-

mations, systematized by Klein, set up a one-to-one correspondence be-

tween the lines and spheres in Euclidean space in such a way that inter-

secting lines correspond to tangent spheres. (In conformity with Plucker's

view, the lines and spheres in Euclidean three-space each constitute a four-

dimensional space.) In general, contact transformations are analytic trans-

formations that carry tangent surfaces into tangent surfaces.

A set of elements are said to form a group with respect to a given

operation if (1) the set of elements is closed under the operation, (2) the

set contains an identity element with respect to the operation, (3) for every

element in the set there is an inverse element with respect to the operation,

and (4) the operation is associative. The elements can be numbers (as in

arithmetic), points (in geometry), transformations (in algebra or geome-

try), or anything at all. The operation can be arithmetic (such as addition

or multiplication) or geometric (as a rotation about a point or an axis), or

any other rule for combining two elements of a set (such as two transfor-

mations) to form a third element in the set. The generality of the group

concept is readily apparent. Klein, in a celebrated inaugural program in

1872, when he became professor at Erlangen, showed how it could be

applied as a convenient means of characterizing the various geometries

that had appeared during the century.

The program that Klein gave, which became known as the Erlanger

Programm, described geometry as the study of those properties of figures

that remain invariant under a particular group of transformations. Hence,

any classification of groups of transformations becomes a codification of

geometries. Plane Euclidean geometry, for example, is the study of such

properties of figures, including areas and lengths, as remain invariant under

the group of transformations made up of translations and rotations in the

plane—the so-called rigid transformations, equivalent to Euclid's unstated

axiom that figures remain unchanged when moved about in a plane. An-

alytically the rigid plane transformations can be written in the form

I

x' = ax + by + c

y' = dx + ey + f,

where ae - bd = 1 ; these form the elements of a group. The ''operation"

that "combines" two such elements is simply that of performing the trans-
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formations in order. It is easy to see that if the transformation above is

followed by a second,

(x" = Ax' + By' + C,

tv" = Dx' + Ey' + F,

the result of the two operations performed successively is equivalent to

some single operation of this type that will carry the point (x, y) into the

point (x", y").

If in this transformation group one replaces the restriction that ae -

bd = 1 by the more general requirement that ae - bd ^ 0, the new
transformations also form a group. However, lengths and areas do not

necessarily remain the same, but a conic of given type (ellipse, parabola,

or hyperbola) will, under these transformations, remain a conic of the same

type. Such transformations, studied earlier by Mobius, are known as affine

transformations; they characterize a geometry known as affine geometry,

so called because a finite point goes into a finite point under any such

transformation. It is clear, then, that Euclidean geometry, in Klein's view,

is only a special case of affine geometry. Affine geometry in its turn becomes

only a special case of a still more general geometry—projective geometry.

A projective transformation can be written in the form

ax + by + c , Ax + By + c
x =

, v = .

dx + ey + / dx + ey + f

It is clear that if d = = e and / = 1, the transformation is affine.

Interesting properties of projective transformations include the fact that

(1) a conic is transformed into a conic and (2) the cross ratio remains

invariant. Pappus had been aware of these properties a millenium and a

half earlier, but he had no inkling of the group concept that made possible

such neat classifications of geometries. In fact, for Pappus there had been

only one geometry, for the ideal points of projective geometry would have

been unthinkable in antiquity. The Erlanger Programm of Klein was so

clearly a product of the nineteenth century that it could not meaningfully

be transferred to any earlier age. At first it had only a limited circulation,

but before the end of the century it came to enjoy a wide influence through-

out the international mathematical world. The continuing influence of the

Erlanger Programm today can be seen in almost any modern college survey

of geometry.

The work of Klein is in a sense a fitting climax to "The Heroic Age in

Geometry," for he taught and lectured for half a century. So contagious

was his enthusiasm that some late-nineteenth-century figures were willing

to prophesy that not only geometry, but all of mathematics, ultimately

would be comprised within the theory of groups. Nevertheless, not all of

Klein's work was concerned with groups. His classic history of mathematics
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in the nineteenth century (published posthumously) shows how familiar he

was with all aspects of the subject; his name is also recalled today in

topology in the one-sided surface known as the Klein bottle. He was much
concerned with non-Euclidean geometry, to which he contributed the names

"elliptic geometry" and "hyperbolic geometry" for the hypotheses of the

obtuse and acute angle respectively; for the latter he proposed a simple

model as an alternative to that of Beltrami. Let the hyperbolic plane be

pictured as the points interior to a circle C in the Euclidean plane, let the

hyperbolic "straight line" through two points P
x
and P2 be that portion of

the Euclidean line P
X
P2 that lies within C, and let the "distance" between

the two points P
x
and P2 within the circle be defined as

,

P2Q1 ' P1Q2

PxQxPzQi

where Q x
and Q 2 are the points of intersection of the line P

X
P2 with the

circle C (Fig. 24.1). With an appropriate definition of "angle" between

two "lines," the "points," "lines," and "angles" in Klein's hyperbolic

model have properties similar to those in Euclidean geometry, except for

the parallel postulate.

Not since Monge had there been a more influential teacher, for in

addition to giving inspiring lectures, Klein was concerned with the teaching

of mathematics at many levels and exerted a strong influence in pedagogical

circles. In 1886 he became professor of mathematics at Gottingen, and

under his leadership the university became the Mecca to which students

from many lands, including America, flocked. In his later years Klein

played very effectively the role of an "elder statesman" in the realm of

mathematics. Thus the golden age of modern geometry that had begun so

auspiciously in France at the Ecole Polytechnique, with the work of La-

grange, Monge, and Poncelet, reached its zenith in Germany, at the Uni-

versity of Gottingen, through the research and inspiration of Gauss, Rie-

mann, and Klein.

FIG. 24.1
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POST-RIEMANNIAN ALGEBRAIC GEOMETRY

There were several new approaches to geometry toward the end of the

century that are usually classified as versions of algebraic geometry. These

had a common basis in the work of Riemann. Rather than Riemann's

explicitly geometric publications, it was his work on complex function

theory, especially as linked to the concept of a Riemann surface in a classic

paper on Abelian functions, that provided the stimulus for most of these

investigations.

Initially, Alfred Clebsch (1833-1872) did more than anyone else to

exploit Riemann's function theory for geometric purposes. Clebsch, a

mathematical grandson of Jacobi via the geometer Hesse, had studied in

Konigsberg, where he came under the influence of the mathematical phy-

sicist Franz Neumann. His teaching career took him from the polytechnic

high school in Karlsruhe to Giessen, where he spent five years, before

being called to Gottingen. In 1868, he and Carl Neumann cofounded the

journal Mathematische Annalen.

Clebsch first called attention to our subject in a paper "On the Appli-

cation of Abelian Functions to Geometry," which appeared in the Journal

fur reine und angewandte Mathematik. This was the beginning of a triply

oriented attack. Clebsch initially set out simply to apply Riemann's theory

of complex functions to the study of algebraic curves. He was well equipped

to carry this out; he was familiar with the previous work of the complex

projective geometers, with the Jacobi tradition of Abelian function theory,

and with Riemann's papers. He obtained many fruitful results, which laid

the basis for further research. For example, he obtained a classification of

curves by genus and also considered subclasses of curves having the same

genus but different branching points.

Another approach was used in work that Clebsch did in collaboration

with Gordan of Erlangen. In a book of 1866, the Theorie der Abelschen

Functionen, they set out to reestablish the theory of Abelian functions on

the basis of algebraic geometry. Gordan is remembered as a champion of

nineteenth-century invariant theory, and we note in this context that the

turn-of-the-century school of Italian geometers, which included Castel-

nuovo, Enriques, and, somewhat later, Severi, relied heavily on invariants

as well.

Finally, Clebsch turned to surfaces. He introduced double integrals,

hoping to obtain results by exploring the analogy with the Abelian integrals

applied to the study of curves. He, along with Cayley, Noether, and the

Danish mathematician H. G. Zeuthen (1839-1920), was successful for a

large number of cases. Their work was continued by Emile Picard, a spe-

cialist in the study of double integrals. His research was the basis for later

results by Beppo Levi (1875-1928). Yet, because of the complicated nature

of many surfaces, this approach was less successful than was hoped for

initially.
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The most active direction followed was that in which geometers applied

birational transformations to the study of curves; many of them put their

studies in Riemannian terms by noting that Riemann's moduli are simply

birational invariants. Despite much activity by mathematicians in the major

European centers, eventually the results seemed disappointing. By the

1920s most of these
kk

algebro-geomet^ic
,,

efforts began to take a backseat

to a purely algebraic approach, which dominated algebraic geometry for

several decades while increasing in generality and abstractness.
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Analysis

In most sciences one generation tears down what another has built, and what one

has established another undoes. In mathematics alone each generation builds a

new story to the old structure.

Hermann Hankel

BERLIN AND GOTTINGEN AT MID-CENTURY

Analysis, the study of infinite processes, had been understood by Newton
and Leibniz to be concerned with continuous magnitudes, such as lengths,

areas, velocities, and accelerations, whereas the theory of numbers clearly

has as its domain the discrete set of natural numbers. We have, neverthe-

less, seen that Bolzano tried to give purely arithmetic proofs of proposi-

tions, such as the location theorem in elementary algebra, that seemed to

depend on properties of continuous functions; and Plucker had thoroughly

arithmetized analytic geometry. The theory of groups had originally been

concerned with discrete sets of elements, but Klein envisioned a unification

of both discrete and continuous aspects of mathematics under the group

concept. The nineteenth century was indeed a period of correlation in

mathematics. The geometric interpretation of analysis and algebra was one

aspect of this tendency; the introduction of analytic techniques in number
theory was another. Toward the end of the century, the strongest current

was that of arithmetization; it affected algebra, geometry, and analysis.

In 1855, Dirichlet succeeded Gauss in Gottingen. He left in place, in

553
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Berlin, a tradition of lectures on the applications of analysis to physical

problems and number theory. He also left a small group of his and Jacobi's

friends and students who continued to influence mathematics at the Acad-

emy, in the Journal fur reine und angewandte Mathematik, and at the

University. In Gottingen mathematical lectures were less solidly estab-

lished. As already noted, Gauss's limited teaching had usually emphasized

subjects such as the method of least squares that would be useful to his

observatory assistants. Most mathematics proper was taught by one lec-

turer, Moritz Stern (1807-1894). Dirichlet sought to emphasize the "true"

Gaussian legacy with lectures on number theory and potential theory.

There were two young men in Gottingen who were to be profoundly

influenced by Dirichlet, although they differed greatly in personality and
mathematical orientation. One was Richard Dedekind (1831-1916); the

other, Bernhard Riemann. Riemann had already been exposed to Dirichlet

and Jacobi a few years before, when he spent some semesters as a student

in Berlin. When Dirichlet died unexpectedly in 1859, it was Riemann who
succeeded him.

RIEMANN IN GOTTINGEN

When Riemann became professor in Gottingen, he was no stranger to that

university. He had matriculated there in 1846, spent several semesters in

Berlin to get his mathematical training from Jacobi and Dirichlet, then

returned to Gottingen, obtained good training in physics from Wilhelm

Weber, assisted Weber, obtained his doctoral degree, and was appointed

lecturer (Privatdozent) in 1854. His research as well as his career was split

between mathematics and physics. By the time he succeeded Dirichlet, he

had published five memoirs; two of these dealt with problems in physics.

A similar division characterized his later work; yet, conceptually, it is not

the division but the commonality of many concepts that predominates.

Having touched on some of his geometric and function-theoretic work in

the last chapter, we shall here cite only the example of his shortest and

possibly most famous paper before proceeding to note his influence on

mathematical physics.

Riemann also arrived at deep theorems relating number theory and

classical analysis. Euler had noted connections between prime number

theory and the series

1 1 1 i— + — + — + •
• + — +

r 2* y tV

where s is an integer— a special case of the Dirichlet series. Riemann

studied the same series for S a complex variable, the sum of the series

defining a function £(s), which has since been known as Riemann's zeta
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function. One of the tantalizing suggestions that mathematicians have not

yet been able to prove or disprove is the famous Riemann conjecture that

all of the imaginary zeros s = a + iz of the zeta function have real part

a = i. Probably no branch of mathematics has bequeathed so many un-

solved problems as has the theory of numbers. Riemann was a many-sided

mathematician with a fertile mind, contributing not only to geometry and

the theory of numbers but also to analysis. In analysis he is recalled for

his part in the refinement of the definition of the integral, for emphasis on

the Cauchy-Riemann equations, and for the Riemann surfaces. These

surfaces are an ingenious scheme for uniformizing a function, that is, rep-

resenting a one-to-one mapping of a complex function that in the ordinary

Gaussian plane would be multivalued. Here we see the most striking aspect

of Riemann's work—a strongly intuitive and geometric background in

analysis that contrasts sharply with the arithmetizing tendencies of the

Weierstrassian school. His approach has been called "a method of discov-

ery," whereas that of Weierstrass was, as we shall see, "a method of

demonstration." His results were so significant that Bertrand Russell de-

scribed him as "logically the immediate predecessor of Einstein." It was

Riemann's intuitive genius in physics and mathematics that produced such

concepts as that of the curvature of a Riemannian space or manifold,

without which the theory of general relativity could not have been for-

mulated.

MATHEMATICAL PHYSICS IN GERMANY

There had been several centers of growing activity in mathematical physics

in Germany before Riemann. Beginning in the 1830s, Dirichlet had intro-

duced the techniques of Fourier and the results of his great French con-

temporaries to a large group of students in mathematics and physics in

Berlin. Dirichlet interacted with the Berlin physicists; he had been a friend

of Wilhelm Weber years before they became colleagues in Gottingen.

Similarly, in Konigsberg, Jacobi had worked closely with the mathematical

physicist Franz Neumann (1798-1895) in research and teaching. In Leipzig

the new analysis was not yet well represented; but when the Weber brothers

felt the need to consult their mathematical colleagues, there were no bar-

riers. When Weber involved Riemann in his electrodynamic investigations

in Gottingen, the subject had also been dealt with in Konigsberg; both

German traditions drew on the pioneering work of Ampere and Poisson.

When Riemann initiated his influential study of the propagation of sound

waves, he elaborated on a topic which Poisson had furthered in the early

years of the century and on which Dirichlet had frequently lectured in

Berlin. It is an important chapter in the history of the wave equation.

Riemann's approach involved dealing with a second-order linear differ-
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ential equation in two variables and finding a "characteristic" function

satisfying a certain adjoint partial differential equation. Riemann's tech-

nique has been widely adopted for hyperbolic equations.

Paul Du Bois Reymond (1831-1889), who had obtained his doctorate

in Berlin just before Dirichlet's departure, built on Riemann's work in

obtaining a generalization of Green's theorem. Hermann Helmholtz (1821—

1894), who came to mathematical physics from a background in physiology,

overlapped with Riemann in acoustical studies. Many of his notable con-

tributions to the study of sound were included in his popular work On the

Sensations of Tone. The reduced wave equation Aw + k 2w = is often

called the "Helmholtz equation" because he was the first to tackle the

issue of finding a general solution. The physicist Gustav Kirchhoff (1824—

1887), who was a contemporary of these men, obtained further significant

results in the study of partial differential equations, particularly the wave

equation.

MATHEMATICAL PHYSICS IN THE
ENGLISH-SPEAKING COUNTRIES

By the middle of the nineteenth century, a number of English-speaking

men whose names were to become familiar to later generations of math-

ematicians and physicists promoted mathematical physics in Great Britain

and elsewhere. The earliest significant nineteenth-century contributions to

mathematical physics across the channel were those of the Irishman William

Rowan Hamilton (1805-1865). When he initiated his studies on dynamics

in the 1830s, he drew heavily on concepts he had developed while estab-

lishing a mathematical theory of optics in the late 1820s. Key to his method

was the introduction of variational principles into the treatment of certain

partial differential equations. He built on work by Lagrange and Poisson

but utilized physical principles established earlier. Jacobi, working out his

own dynamics in the 1830s, recast Hamilton's innovative ideas and called

attention to them in the context of his own theory. The result is now known
as the Hamilton-Jacobi theory. Hamilton's primary champion was the

Scottish physicist Peter Guthrie Tait (1831-1901). Among his mathematical

contributions are early studies of knots; in this he followed a little-known

line of researches by Gauss and Listing, prompted by electrodynamic in-

vestigations. His name came to be known to generations in linkage with

that of William Thomson through the classic Treatise on Natural Philos-

ophy, usually simply referred to as "T and T" or
4T and T'." This work,

which first appeared in 1867, went through several editions. Although it

does not make for light reading, nearly a century after its first publication

it reappeared as a paperback with the title Principles of Mechanics and

Dynamics.
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William Thomson, Tait's coauthor, is better known by his title as Lord

Kelvin. Born in Belfast, raised in Glasgow, and educated in Cambridge,

he discovered Fourier's book on heat theory as an adolescent and shortly

thereafter was given a copy of Green's rare 1828 Essay. Thomson not only

studied Green's work himself but made it known on the continent. His

earliest mathematical contributions of the 1840s were furthered through

communication with Liouville, in whose Journal they appeared. They re-

late to the method of inversion, noted in the last chapter, and to Dirichlet's

principle, both treated with regard to electricity and magnetism. Thomson
next turned to researches in thermodynamics, which were followed by a

period of studies in geophysics. At this time he also became involved with

the Atlantic cable; subsequent studies tended to be more physically and

experimentally oriented.

Thomson was a contemporary of an English physicist whose name is

familiar to every student of advanced calculus: George Gabriel Stokes

(1819-1903). Stokes graduated from Cambridge in 1841; like Thomson,

he had been senior wrangler. Much of his research was done before 1850;

during the second part of the century he held the Lucasian chair of math-

ematics at Cambridge and was an active member of the Royal Society

whose Copley medal he had won for a major study on optics in the early

fifties. William Thomson knew the theorem that bears Stokes' name in

1850, although it first appeared in print in the form of an exam question

in 1854. Stokes proved the theorem when Thomson sent it to him in 1850

and seems to have chosen it as an examination question.

One of those taking this examination in 1854 was James Clerk Maxwell

(1831-1879). Best known for his stunningly successful derivation, in 1864,

of the electromagnetic wave equations, he was influential in urging upon

mathematicians and physicists the use of vectors. A friend of Tait's, he,

too, admired Hamilton. Yet he avoided becoming heavily involved in the

notational quarrels surrounding many advocates of the use of vector anal-

ysis.

Before leaving the English-speaking analysts of the period, we should

note some important contributions from those studying celestial mechanics.

As previously noted, nineteenth-century theoretical astronomers had two

great guidebooks: one was Laplace's Mecanique celeste, the other Gauss's

Theoria motus. The translation of Laplace's work into English brought to

European attention an American, Nathaniel Bowditch (1773-1838) in the

1830s. The subject was one in which American analysts were to make their

mark repeatedly, the most notable American nineteenth-century contri-

bution being that of George William Hill (1838-1914). In 1877-1878 Hill

published two important papers on lunar theory in which he established

the theory of linear differential equations with periodic coefficients. After

Poincare in 1885 noted the importance of this work, the first of these papers

was republished in Mittag-Leffler's Acta Mathematica and attention was
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drawn to the recently established American Journal of Mathematics, the

first volume of which had contained his other paper.

Finally, it should be noted that the Astronomer Royal of England, G.

B. Airy (1801-1892), made numerous contributions to the study of series

and integrals which, while they belong to the age of Gauss and Cauchy,

were important in the effect they had on England's mid-century analysts

and mathematical physicists. For example, in his optical studies in 1850,

Stokes was confronted with an integral that Airy had used to describe a

certain situation involving diffraction. Stokes set up a differential equation

having Airy's integral as a special solution and solved the equation by

"semiconvergent" series. This was one of the early examples of work that

subsequently led to the more general theory of such series established by

T.-J. Stieltjes (1856-1894).

WEIERSTRASS AND STUDENTS

The leading analyst in Berlin in the second half of the nineteenth century

was Karl Weierstrass (1815-1897). Weierstrass had been brought up in a

devout but liberal Catholic family, his father having been converted from

Protestantism. Karl, the eldest son, had a brother and two sisters, but not

one of the four children married, possibly because of the father's domi-

neering attitude; and Karl had at least one other eccentricity—a dislike of

music. He did so well in school that his father insisted that he prepare for

public service by studying law at the University of Bonn, where he became

an expert in drinking and fencing, rather than in law or mathematics, and

left without a degree. He then prepared himself at Miinster for secondary

school teaching, where an instructor, Christoph Gudermann (1798-1851),

took Weierstrass under his wing. Gudermann was especially interested in

elliptic and hyperbolic functions, where his name is still recalled in the

Gudermannian: If u is a function of x satisfying the equation tan u = sinh

x, then u is known as the Gudermannian of x, written as u = gd x. More
important to mathematics than this minor contribution were the time and

inspiration the teacher gave to his student, who was destined in turn to

become the greatest mathematics teacher of the mid-nineteenth century

—

at least as measured in terms of the number of successful research workers

he produced. Gudermann had impressed upon the young Weierstrass what

a useful tool the power series representation of a function was, and it was

in this connection that Weierstrass produced his greatest work, following

in the footsteps of Abel.

Weierstrass earned his teacher's certificate at the late age of twenty-six,

and for more than a dozen years he taught at various secondary schools.

In 1854, however, a paper on Abelian functions, appearing in Crelle's

Journal, brought him such recognition that shortly thereafter he was of-
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fered, and accepted, a professorship at the University of Berlin. Weierstrass

was then almost forty, making him a striking exception to the common
notion that a great mathematician must make his mark early in life. Despite

his delayed start, during the last third of the century, he was considered

by many to be the leading analyst in the world.

It had been generally assumed, before the middle of the nineteenth

century, that if an infinite series converges for some interval to a continuous

and differentiable function /(*), then a second series obtained by differ-

entiating the original series term by term necessarily will converge, for the

same interval, to f'(x). Several mathematicians showed that this is not

necessarily the case and that term-by-term differentiation can be trusted

only if the series is uniformly convergent for the interval—that is, if a single

N can be found such that for every value of x in the interval the partial

sums Sn(x) will differ from the sum S(x) of the series by less than a given

e for all n > N. Weierstrass showed that for a uniformly convergent series

term-by-term integration also was permissible. In the matter of uniform

convergence Weierstrass was far from alone, for the concept was hit upon

independently at about the same time by at least three other men—Cauchy

in France (perhaps by 1853), Sir G. G. Stokes at Cambridge (in 1847),

and P. L. V. Seidel (1821-1896) in Germany (in 1848). However, perhaps

no one is more deserving to be known as the father of the critical movement
in analysis than is Weierstrass. From 1857 until his retirement in 1890 he

urged a generation of students to use infinite series representations with

care. Heine, in 1870, proved that the Fourier series development of a

continuous function is unique if one imposes the condition that it be uni-

formly convergent. In this respect he was smoothing out difficulties in the

work of Dirichlet and Riemann on Fourier series.

One of the important contributions of Weierstrass to analysis is known
as analytic continuation. Weierstrass had shown that the infinite power

series representation of a function /(*), about a point P
x
in the complex

plane, converges at all points within a circle C\ whose center is P
x
and

which passes through the nearest singularity. If, now, one expands the

same function about a second point P2 other than P
x
but within Q, this

series will be convergent within a circle C2 having P2 as center and passing

through the singularity nearest to P2 . This circle may include points outside

C\, hence one has extended the area of the plane within which f(x) is

defined analytically by a power series; the process can be continued with

still other circles. Weierstrass, therefore, defined an analytic function as

one power series together with all those that are obtainable from it by

analytic continuation. The importance of work such as that of Weierstrass

is felt particularly in mathematical physics, in which solutions of differential

equations are rarely found in any form other than as an infinite series.

Weierstrass' influence was exerted through his students as much as

through his own lectures and publications. In the field of differential equa-
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tions this brings us to Lazarus Fuchs (1833-1902). Building on work by

the French mathematicians Briot and Bouquet, and on Riemann's memoir
about the hypergeometric equation, Fuchs initiated the systematic study

of regular singularities of linear ordinary differential equations in the com-

plex domain. His immediate motivation came from lectures on Abelian

functions that Weierstrass had given in 1863. Fuchs' work was sharpened

by G. Frobenius (1849-1917) at Berlin and served as a takeoff point for

Poincare.

Another Weierstrass student who made major contributions to complex

analysis was H. A. Schwarz (1848-1921). Schwarz was interested in map-

ping questions and was especially affected by Weierstrass' criticism of Rie-

mann's use of the Dirichlet principle. Riemann's famous mapping theorem,

translated into a later terminology, states that "there exists one and only

one conformal mapping of a given bounded simply connected surface onto

a second one, for which the images of one interior point and one boundary

point are prescribed." (Birkhoff 1973, p. 47.) Weierstrass noted that Rie-

mann's proof was unacceptable because it extended the use of Dirichlet's

principle beyond the limitations that would assure the existence of a min-

imizing integral. Schwarz thereupon set out to find specific instances for

which he could validate the mapping theorem. This search led him to two

very useful tools, one known as his "reflection principle," the other as his

"alternating process. " He was able to obtain a number of specific mappings;

for example, he could map a simply connected plane region onto a circle,

but he could not achieve the hoped-for broader generalization.

Another follower of Weierstrass who was to assume international im-

portance because of his journal and support of mathematicians from dif-

ferent parts of the world was the Swede Gosta Mittag-Leffler (1846-1927).

Mittag-Leffler had studied with Hermite in Paris and Schering in Gottingen

before he came to Berlin. He made independent contributions to complex

function theory. More importantly, he founded the journal Acta Mathe-

matical was a friend of Weierstrass and Hermite, exchanged information

with mathematicians around the world, and supported numerous mathe-

maticians directly as well as through his connections in Sweden and else-

where. Thus he played an important role in the lives of such diverse in-

dividuals as Sonia Kowaleski, Henri Poincare, and Georg Cantor.

THE ARITHMETIZATION OF ANALYSIS

The year 1872 was a red-letter year not only in geometry but more par-

ticularly in analysis. In that year crucial contributions toward the arith-

metization of analysis were made by no fewer than five mathematicians,

one French, the others German. The Frenchman was H. C. R. (Charles)

Meray (1835-191 1 ) of Burgundy; the four Germans were Karl Weierstrass
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(1815-1897) of the University of Berlin, H. E. Heine (1821-1881) of Halle,

Georg Cantor (1845-1918), also of Halle, and J. W. R. Dedekind (1831-

1916) of Braunschweig. These men in a sense represented the climax in

half a century of investigation into the nature of function and number that

had begun in 1822 with Fourier's theory of heat and with an attempt made
in that year by Martin Ohm (1792-1872) to reduce all of analysis to arith-

metic in Versuch eines vollstdndig konsequenten Systems der Mathematik.

There were two chief causes of uneasiness in this fifty-year interval. One
was the lack of confidence in operations performed on infinite series. It

was not even clear whether or not an infinite series of functions—of powers,

or of sines and cosines, for example—always converges to the function

from which it was derived. A second cause for concern was occasioned by

the lack of any definition of the phrase "real number" that lay at the very

heart of the arithmetization program. Bolzano by 1817 had been so fully

aware of the need for rigor in analysis that Klein referred to him as the

"father of arithmetization"; but Bolzano had been less influential than

Cauchy, whose analysis was still encumbered with geometric intuition.

Even Bolzano's continuous nondifferentiable function of about 1830 was

overlooked by successors, and the example of such a function given by

Weierstrass (in classroom lectures in 1861 and in a paper to the Berlin

Academy in 1872) was generally thought to be the first illustration of it.

Riemann meanwhile had exhibited a function f{x) that is discontinuous

at infinitely many points in an interval and yet the integral of which exists

and defines a continuous function F{x) that, for the infinity of points in

question, fails to have a derivative. Riemann's function is in a sense less

pathological than are those of Bolzano and Weierstrass, but it made clear

that the integral required a more careful definition than that of Cauchy,

which had been guided largely by geometric feeling for the area under

a curve. The present-day definition of the definite integral over an interval

in terms of upper and lower sums generally is known as the Riemann
integral, in honor of the man who gave necessary and sufficient conditions

that a bounded function be integrable. The Dirichlet function, for instance,

does not have a Riemann integral for any interval. Still more general

definitions of the integral, with weaker conditions on the function, were

proposed in the next century, but the definition of the integral used in most

undergraduate courses in the calculus still is that of Riemann.
There was a gap of some fifty years between the work of Bolzano and

that of Weierstrass, but the unity of effort in this half century and the need

for rediscovering Bolzano's work were such that there is a celebrated theo-

rem that bears the name of both men, the Bolzano-Weierstrass theorem:

A bounded set S containing infinitely many elements (such as points or

numbers) contains at least one limit point. Although this theorem was

proved by Bolzano and apparently was known also to Cauchy, it was the

work of Weierstrass that made it familiar to mathematicians.
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Skepticism about Fourier's series had been expressed by Lagrange, but

Cauchy in 1823 thought he had proved the convergence of the general

Fourier series. Dirichlet had shown that Cauchy's proof was inadequate

and had provided sufficient conditions for the convergence. It was in seeking

to liberalize Dirichlefs conditions for the convergence of a Fourier series

that Riemann developed his definition of the Riemann integral; in this

connection he showed that a function f(x) may be integrable in an interval

without being representable by a Fourier series. It was the study of infinite

trigonometric series that led also to the theory of sets of Cantor, to be

described later.

Only a year after the critical year 1872 there died at the early age of

thirty-four a young man who had given promise of significant contributions

both to mathematics and to its history. This was Hermann Hankel (1839-

1873), a student of Riemann and professor of mathematics at Leipzig. In

1867 he had published a book, Theorie der komplexen Zahlensysteme, in

which he pointed out that "the condition for erecting a universal arithmetic

is therefore a purely intellectual mathematics, one detached from all per-

ceptions/' We have seen that the revolution in geometry took place when
Gauss, Lobachevsky, and Bolyai freed themselves from preconceptions of

space. In somewhat the same sense the thoroughgoing arithmetization of

analysis became possible only when, as Hankel foresaw, mathematicians

understood that the real numbers are to be viewed as "intellectual struc-

tures" rather than as intuitively given magnitudes inherited from Euclid's

geometry. The view of Hankel was not really new; for a generation, as we
shall see in the next chapter, algebraists, especially in Great Britain, had

been developing a universal arithmetic and multiple algebras. The impli-

cations for analysis, however, had not been widely recognized. Bolzano

during the early 1830s had made an attempt to develop a theory of real

numbers as limits of rational number sequences, but this had gone unno-

ticed and unpublished until 1962. Sir William Rowan Hamilton (1805-

1865) perhaps had felt some such need, but his appeal to time rather than

space was a change in language, although not in logical form, from the

usual geometric background. The crux of the matter was first effectively

seized upon and published by the quintet of 1872 mentioned earlier.

Meray was prompt to present his thoughts, for as early as 1869 he had

published an article calling attention to a serious lapse in reasoning of

which mathematicians from the time of Cauchy had been guilty. Essentially

the petitio principii consisted in defining the limit of a sequence as a real

number and then in turn defining a real number as a limit of a sequence

(of rational numbers). It will be recalled that Bolzano and Cauchy had

attempted to prove that a sequence that "converges within itself," that is,

one for which Sn . p
differs from Sn (for a given integer/; and for n sufficiently

large) by less than any assigned magnitude 6, also converges in the sense

of external relations to a real number S, the limit of the sequence. Meray,

in his Nouveau precis d 'analyse infinitesimale of 1872, cut the Gordian knot
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by not invoking the external condition of convergence or the real number
S. Using only the Bolzano-Cauchy criterion, where n, p, and e are rational

numbers, convergence can be described without reference to irrational

numbers. In a broad sense he regarded a converging sequence as deter-

mining either a rational number as a limit or a "fictitious number" as a

"fictitious limit." These "fictitious numbers" can, he showed, be ordered,

and in essence they are what we know as the irrational numbers. Meray
was somewhat vague as to whether or not his converging sequence is the

number. If it is, as seems to be implied, then his theory is equivalent to

one developed at the same time by Weierstrass.

Weierstrass sought to separate the calculus from geometry and to base

it upon the concept of number alone. Like Meray, he also saw that to do

this it was necessary to give a definition of irrational number that is in-

dependent of the limit concept, inasmuch as the latter had up to this point

presupposed the former. To correct Cauchy's logical error Weierstrass

settled the question of the existence of a limit of a convergent sequence by

making the sequence itself the number or limit. The scheme of Weierstrass

is too subtle to be presented in detail here, but in considerably oversim-

plified form we may say that the number 3 is not the limit of the series

A + too + Tom + * * + \h + • * • ; it is the sequence associated with

this series. (Actually, in Weierstrass' theory, the irrational numbers are

more broadly defined as aggregates of the rationals, rather than more

narrowly as ordered sequences of rationals as we have implied.)

Weierstrass did not publish his views on the arithmetization of analysis,

but they were made known by men such as Ferdinand Lindemann and

Eduard Heine, who had followed his lectures. In 1871 Cantor had initiated

a third program of arithmetization, similar to those of Meray and Weier-

strass. Heine suggested simplifications that have led to the so-called Cantor-

Heine development, published by Heine in Crelle's Journal for 1872 in the

article "Die Elemente der Funktionenlehre." We cannot go into this in

detail, but in essence the scheme resembled that of Meray in that conver-

gent sequences that fail to converge to rational numbers are taken by fiat

to define irrational numbers. A thoroughly distinct approach to the same

problem, and the one that today is best known, was given in the same year

by Dedekind in a celebrated book, Stetigkeit und die Irrationalzahlen {Con-

tinuity and Irrational Numbers).

CANTOR AND DEDEKIND

Dedekind's attention had been directed to the problem of irrational

numbers as early as 1858, when he found himself lecturing on the calculus.

The limit concept, he concluded, should be developed through arithmetic

alone, without the usual guidance from geometry, if it were to be rigorous.

Instead of simply seeking a way out of Cauchy's vicious circle, Dedekind
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asked himself, as the title of his book implies, what there is in continuous

geometric magnitude that distinguishes it from the rational numbers.

Galileo and Leibniz had thought that the
k

'continuousness
,,

of points on a

line was the result of their density—that between any two points there is

always a third. However, the rational numbers have this property yet they

do not form a continuum. Upon pondering this matter, Dedekind came
to the conclusion that the essence of the continuity of a line segment is

not due to a vague hang-togetherness, but to an exactly opposite property:

the nature of the division of the segment into two parts by a point on the

segment. In any division of the points of the segment into two classes such

that each point belongs to one and only one class, and such that every

point of the one class is to the left of every point in the other, there is one

and only one point that brings about the division. As Dedekind wrote,

"By this commonplace remark the secret of continuity is to be revealed."

Commonplace the remark may have been, but its author seems to have

had some qualms about it, for he hesitated for some years before com-

mitting himself in print.

Dedekind saw that the domain of rational numbers can be extended to

form a continuum of real numbers if one assumes what now is known as

the Cantor-Dedekind axiom, namely, that the points on a line can be put

into one-to-one correspondence with the real numbers. Arithmetically ex-

pressed, this means that for every division of the rational numbers into

two classes A and B such that every number of the first class. A, is less

than every number of the second class, B, there is one and only one real

number producing this Schnitt, or Dedekind cut. If A has a largest number,

or if B contains a smallest number, the cut defines a rational number; but

if A has no largest number and B no smallest, then the cut defines an

irrational number. If, for example, we put in A all negative rational num-

bers and also all positive rational numbers whose squares are less than

two, and in B all positive rational numbers whose squares are more than

two, we have subdivided the entire field of rational numbers in a manner

defining an irrational number—in this case the number that we usually

write as V2. Now, Dedekind pointed out, the fundamental theorems on

limits can be proved rigorously without recourse to geometry. It was ge-

ometry that had pointed the way to a suitable definition of continuity, but

in the end it was excluded from the formal arithmetic definition of the

concept. The Dedekind cut in the rational number system, or an equivalent

construction of real number, now has replaced geometrical magnitude as

the backbone of analysis.

The definitions of real number are, as Hankel indicated they should be,

intellectual constructions on the basis of the rational numbers, rather than

something imposed on mathematics from without. Of the definitions above,

one of the most popular has been that of Dedekind. Early in the twentieth

century a modification of the Dedekind cut was proposed by Bertrand

Russell ( 1872-1970). He noted that since either of Dedekind's two classes
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A and B is uniquely determined by the other, one alone suffices for the

determination of a real number. Thus V2 can be defined simply as that

segment or subclass of the set of rational numbers made up of all positive

rational numbers whose squares are less than two and also of all negative

rational numbers. Similarly, every real number is nothing more than a

segment of the rational number system.

In some respects the life of Dedekind was similar to that of Weierstrass:

He, too, was one of four children, and he, too, never married; and both

men lived into their eighties. On the other hand, Dedekind made an earlier

start in mathematics than had Weierstrass, entering Gottingen at the age

of nineteen and earning his doctorate three years later with a thesis on the

calculus which elicited praise from Gauss. Dedekind stayed at Gottingen

for a few years, teaching and listening to lectures by Dirichlet, and then

he took up secondary school teaching, chiefly at Brunswick, for the rest

of his life. Dedekind lived so long after his celebrated introduction of "cuts"

that the famous publishing house of Teubner had listed his death in its

Calendarfor Mathematicians as September 4, 1899. This amused Dedekind,

who lived more than a dozen years longer, and he wrote to the editor that

he had passed the day in question in stimulating conversation with his

friend Georg Cantor.

The life of Cantor was tragically different from that of his friend De-

dekind. Cantor was born in St. Petersburg of parents who had migrated

from Denmark, but most of his life was spent in Germany, the family

havong moved to Frankfurt when he was eleven. His parents were Chris-

tians of Jewish background—his father had been converted to Protestant-

ism, his mother had been born a Catholic. The son Georg took a strong

interest in the finespun arguments of medieval theologians concerning con-

tinuity and the infinite, and this militated against his pursuing a mundane
career in engineering as suggested by his father. In his studies at Zurich,

Gottingen, and Berlin the young man consequently concentrated on phi-

losophy, physics, and mathematics—a program that seems to have fostered

his unprecedented mathematical imagination. He took his doctorate at

Berlin in 1867 with a thesis on the theory of numbers, but his early pub-

lications show an attraction to Weierstrassian analysis. This field prompted

the revolutionary ideas that sprang to his mind in his late twenties. We
have already noted the work of Cantor in connection with the prosaic

phrase, "real number"; but his most original contributions centered about

the provocative word "infinity."

Ever since the days of Zeno men had been talking about infinity, in

theology as well as in mathematics, but no one before 1872 had been able

to tell precisely what he was talking about. All too frequently in discussions

of the infinite the examples cited were such things as unlimited power or

indefinitely large magnitudes. Occasionally attention had been focused

instead, as in the work of Galileo and Bolzano, on the infinitely many
elements in a collection, for example, the natural numbers or the points
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in a line segment. Cauchy and Weierstrass saw only paradox in attempts

to identify an actual or "completed" infinity in mathematics, believing that

the infinitely large and small indicated nothing more than the potentiality

of Aristotle—an incompleteness of the process in question. Cantor and

Dedekind came to a contrary conclusion. Dedekind saw in Bolzano's par-

adoxes not an anomaly, but a universal property of infinite sets which he

took as a precise definition:

A system S is said to be infinite when it is similar to a proper part of itself;

in the contrary case S is said to be a finite system.

In somewhat more modern terminology, a set S of elements is said to be

infinite if the elements of a proper subset S' can be put into one-to-one

correspondence with the elements of S. That the set S of natural numbers

is infinite, for instance, is clear from the fact that the subset S' made up

of all triangular numbers is such that to each element n of S there corre-

sponds an element of S' given by n(n + l)/2. This positive definition of

a "completed infinite" set is not to be confused with the negative statement

sometimes written with Wallis' symbol as 1/0 = ». This last "equation"

simply indicates that there is no real number that multiplied by zero will

produce the number one.

Dedekind's definition of an infinite set appeared in 1872 in his Stetigkeit

und irrationale Zahlen. (In 1888 Dedekind amplified his ideas in another

important treatise, Was sind kund was sollen die Zahlen.) Two years later

Cantor married, and on the honeymoon he took his bride to Interlaken,

where they met Dedekind. In the same year, 1874, Cantor published in

Crelle's Journal one of his most revolutionary papers. He, like Dedekind,

had recognized the fundamental property of infinite sets, but, unlike De-

dekind, Cantor saw that not all infinite sets are the same. In the finite case,

sets of elements are said to have the same (cardinal) number if they can

be put into one-to-one correspondence. In a somewhat similar way, Cantor

set out to build a hierarchy of infinite sets according to the Mdchtigkeit,

or "power," of the set. The set of perfect squares or the set of triangular

numbers has the same power as the set of all the positive integers, for the

groups can be put into one-to-one correspondence. These sets seem to be

much smaller than the set of all rational fractions, yet Cantor showed that

the latter set also is countable or denumerable, that is, it, too, can be put

into one-to-one correspondence with the positive integers, hence has the

same power. To show this, we merely follow the arrows in Figure 25.1,

"counting" the fractions along the way.

The rational fractions are so dense that between any two of them, no

matter how close, there always will be another; yet Cantor's arrangement

showed that the set of fractions has the same power as does the set of
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integers. One begins to wonder if all sets of numbers have the same power,

but Cantor proved conclusively that this is not the case. The set of all real

numbers, for example, has a higher power than does the set of rational

fractions. To show this, Cantor used a reductio ad absurdum. Assume that

the real numbers between and 1 are countable, are expressed as non-

terminating decimals (so that i, for example, appears as 0.333 . . . , i as

0.499 . . . , and so on), and are arranged in denumerable order:

a
x
= Q.a n a l2a l3

• • •

,

a 2 = 0.021022^23

a3
= Q.a 3l a 32a 33

where au is a digit between and 9 inclusive. To show that not all of the

real numbers between and 1 are included above, Cantor exhibited an

infinite decimal different from all of those listed. To do this, simply form

the decimal b = 0.b
Y
b2b3 . . . , where bK = 9 if aKK = 1 and bK = 1 if

aKK ^ 1. This real number will be between and 1 and yet it will be unequal

to any one of those in the arrangement that was presumed to contain all

of the real numbers between and 1.

The real numbers can be subdivided into two types in two different

ways: (1) as rational and irrational or (2) as algebraic and transcendental.

Cantor showed that even the class of algebraic numbers, which is far more

general than that of rational numbers, nevertheless has the same power as

that of the integers. Hence, it is the transcendental numbers that give to

the real number system the "density" that results in a higher power. That

it is fundamentally a matter of density that determines the power of a set

is suggested in the fact that the power of the set of points on an infinitely

extended line is just the same as the power of the set of points in any

segment of the line, however small. To show this, let RS be the infinitely
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extended line and let PQ be any finite segment (Fig. 25.2). Place the

segment so that it intersects RS at a point O but is not perpendicular to

RS and does not lie on RS. If the points M and N are so chosen that PM
and QN are parallel to RS, and MON is perpendicular to RS, then, by

drawing lines through M intersecting both OP and OR and lines through

N intersecting OQ and OS, a one-to-one correspondence is easily estab-

lished.

More surprising still is the fact that dimensionality is not the arbiter of

the power of a set. The power of the set of points in a unit line segment

is just the same as that of the points in a unit area or in a unit volume

—

or, for that matter, all of three-dimensional space. (Dimensionality, how-

ever, retains some measure of authority in that any one-to-one mapping

of points in a space of unlike dimensionality is necessarily a discontinuous

mapping.) So paradoxical were some results in point-set theory that Cantor

himself on one occasion in 1877 wrote to Dedekind, "I see it, but I don't

believe it"; and he asked his friend to check the proof. Publishers, too,

were very hesitant about accepting his papers, and several times the ap-

pearance of articles by Cantor in Crelle's Journal was delayed by editorial

indecision and concern lest error lurk in the unconventional approach to

mathematical concepts.

Cantor's amazing results led him to the establishment of the theory of

sets of a full-fledged mathematical discipline, known as Mengenlehre

(theory of assemblages) or Mannigfaltigkeitslehre (theory of manifolds), a

branch that in the mid-twentieth century was to have profound effects on

the teaching of mathematics. At the time of its founding Cantor spent

much effort in convincing his contemporaries of the validity of the results,

for there was considerable horror infiniti, and mathematicians were reluc-

tant to accept the eigentlich Unendliche or completed infinity. In piling evi-

dence upon evidence, Cantor in the end built a whole transfinite arithmetic.

The "power" of a set became the "cardinal number" of the set. Thus the

"number" of the set of integers is the "smallest" transfinite number, £,

and the "number" of the set of real numbers or of points on a line is a

"larger" number, C, the number of the continuum. Still unanswered is the

question whether or not there are transfinite numbers between E and C.

Cantor himself showed that there are indefinitely many transfinite numbers
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beyond C, for he proved that the set of subsets of a set always is of a

higher power than the set itself. Hence, the "number" of the set of subsets

of C is a third transfinite number, the set of subsets of this set of subsets

determines a fourth number, and so on indefinitely. As there are infinitely

many natural numbers, so also are there infinitely many transfinite num-
bers.

The transfinite numbers described above are cardinal numbers, but Can-

tor developed also an arithmetic of transfinite ordinal numbers. Ordering

relations are a ticklish matter in mathematics, and so it turns out that

transfinite ordinal arithmetic differs strikingly from finite ordinal arithmetic.

For finite cases the rules for ordinal numbers are essentially the same as

for cardinal numbers. Thus 3 + 4 = 4 + 3, whether these digits represent

cardinal or ordinal numbers. However, if one designates by co the ordinal

number of the "counting numbers," then co + 1 is not the same as 1 +
a>, for 1 + co obviously is the same as co. Moreover, one can show that

co + co = co and co - co = co, properties unlike those of finite ordinals but

resembling those of transfinite cardinals.

Dedekind and Cantor were among the most capable mathematicians,

and certainly the most original, of their day; yet neither man secured a

top-ranking professional position. Dedekind spent almost a lifetime teach-

ing on the secondary school level, and Cantor spent most of his career at

the University of Halle, a small school without particular reputation. Can-

tor had hoped to achieve the distinction of a professorship at the U niversity

of Berlin, and he blamed Leopold Kronecker (1823-1891) for his lack of

success. Kronecker had been a student of Kummer's, first at the secondary

school level, when the latter was a teacher in the Gymnasium which Kro-

necker attended, later at the University of Breslau. Kronecker studied with

Steiner and Dirichlet at Berlin, where he obtained his doctoral degree in

1845. The son of wealthy parents, he did not pursue an academic career

initially, but looked after the family's financial interests. He continued to

do mathematical research, however. When he moved to Berlin in 1855,

he led the life of a private scholar. His prodigious output, covering number

theory, the theory of equations, and elliptic function theory among others,

in 1861 gained him membership in the Academy of Sciences in Berlin. This

made him eligible to teach at the University of Berlin, which he proceeded

to do, being appointed to a regular professorship in 1883, when Kummer
retired. Kronecker's research contributions were significant both for in-

dividual results and for his overall attempt to arithmetize algebra as well

as analysis. His influence on early twentieth-century algebra was consid-

erable, as was that on number theory; the work of Hecke serves as an

example. The importance of Kronecker's work has been overshadowed in

most historical accounts by rather hostile versions of his conflict with Can-

tor. In fact, his predilection for the integers and his espousal of constructive

procedures also estranged him from Weierstrass. Well known is the attri-
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bution to him of the statement "God made the integers, and all the rest

is the work of man." He categorically rejected the real-number construc-

tions of his day on the ground that they cannot be achieved through finite

processes only. He is said to have asked Lindemann of what use was the

proof that n is not algebraic inasmuch as irrational numbers are nonexistent.

Sometimes it is reported that his movement died of inanition. We shall see

later that it can be said to have reappeared in a new form in the work of

Poincare and Brouwer.

Not only did Kronecker stand in the way of a position for Cantor at

Berlin, but he sought to undermine the branch of mathematics that Cantor

was creating. Cantor, in turn, wrote a vigorous defense in 1883 in his

Grundlagen einer allgemeinen Mannigfaltigkeitslehre {Foundations of a

General Theory of Manifolds), holding that "definite numerations can be

undertaken with infinite sets just as well as with finite." He had no fear

of falling into what he described as an "abyss of transcendentals," yet

occasionally he did lapse into arguments of theological type. Kronecker

continued his attacks on the hypersensitive and temperamental Cantor,

and in 1884 Cantor suffered the first of the nervous breakdowns that were

to recur throughout the remaining thirty-three years of his life. Fits of

depression sometimes led him to doubt his own work, although he was

comforted to some extent by the support of men such as Hermite. Toward

the end he did earn recognition for his achievements, but his death in 1918

in a mental institution in Halle is a reminder that genius and madness

sometimes are closely related. The tragedy of his personal life is mitigated

by the paean of praise of one of the leading mathematicians of the early

twentieth century, David Hilbert, who described the new transfinite arith-

metic as "the most astonishing product of mathematical thought, one of

most beautiful realizations of human activity in the domain of the purely

intelligible." Where timid souls had hesitated, Hilbert exclaimed, "No one

shall expel us from the paradise which Cantor has created for us."

ANALYSIS IN FRANCE

Before examining some of the fruits of Cantor's paradise, we should regard

some nineteenth century analytic work in the country so far ignored in this

chapter—France. Although analytic activity during the latter part of the

nineteenth century was most conspicuous in Germany and England, there

had been a steady stream of contributions from Paris. These took a variety

of forms, in teaching and research. Primarily associated with teaching were

the great textbooks, usually based on lecture notes. Sturm's Cours d'analyse

was but one of the longest-lasting successors to Cauchy's record of the

course taught at the Ecole Polytechnique; at the turn of the century it was

overtaken by Goursat's work, which exerted a special influence in the
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United States through its English translation. Briot and Bouquet's Theorie

des fonctions elliptiques was a comprehensive compendium on the subject

of elliptic functions. H. Laurent produced an elementary textbook on the

subject more suitable for classroom use. Toward the end of the century

Jules Tannery and J. Molk produced multivolume "Elements" of the theory

of elliptic functions. There were authors who ranged across a wider field,

such as Serret, who taught and produced textbooks on practically every

area of mid-nineteenth-century mathematics. Also significant was the work

of popularizers such as the Abbe Moigno, editor of Cosmos, a journal that

reported on scientific and mathematical activities, and self-appointed ex-

plicator of Cauchy in the 1840s.

Not surprisingly, Cauchy 's work provided ample takeoff points for many
analysts of the time. For example, Pierre-Alphonse Laurent (1813-1854)

and Victor Puiseux (1820-1883) are still remembered for their contributions

to complex function theory. Laurent's expansion replaces Taylor series at

certain points of discontinuity; Puiseux went beyond Cauchy in a clear

discussion of essential singularities and related matters.

French mathematics continued to influence activity elsewhere—we have

noted this in connection with Liouville and Jordan already. Another ex-

ample may be found in the work of Gabriel Lame (1795-1860), whose

name is primarily associated with the introduction of curvilinear coordi-

nates to the treatment of the partial differential equations, especially the

heat equation, describing physical problems. Eduard Heine, a much younger

member of the Dirichlet circle, who concentrated on spherical harmonics

and the potential equation, first followed, and for a while was in close

competition with Lame, in his research. Also inspired by Lame's concept

of curvilinear coordinates and overlapping with Heine was E. Mathieu

(1835-1900), who introduced elliptic cylindrical coordinates and the func-

tions named after him in his study of the wave equation, in connection

with the problem of a vibrating elliptic membrane.

Perhaps the best-known French analytic work of mid-century was that

of Sturm and Liouville, dealing with the theory of second-order ordinary

differential equations with boundary conditions. In fact, the papers in ques-

tion were published in the early issues of Liouville's Journal in the 1830s.

Their tremendous significance emerged only gradually, however, especially

through the use made of them by the British mathematical physicists of

the later period. The problem at issue was that of the expansibility into

characteristic functions (eigenfunctions) of the expression at hand. It can

be regarded as a generalization of the theory of Fourier series. Sturm had

studied not only Fourier's theory of heat but also his work on numerical

solutions of equations; the influence of this work seems apparent as soon

as one reads Sturm's first major result of the theory. This is his Separation

Theorem, which states that the oscillations of any two (real) solutions

alternate, or separate each other. Sturm-Liouville theory not only con-
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tinned the expansibility but provided criteria for solutions and for the

evaluation Of the eigenfunctions. The theory was not altogether rigorous

at the outset. Toward the end of the century refinements in applications

and proofs were provided. Especially active in the field was the American

mathematician Maxime Bocher (1867-1918). Bocher, trained at Harvard

in the 1880s under Byerly, Benjamin O. Peirce, and James Mills Peirce,

had earned his doctoral degree at Gottingen under Klein in 1891 with a

prize-winning dissertation on the series expansions of potential theory.

After the turn of the century, Bocher was briefly joined in the study of

Sturm-Liouville issues by his fellow countrymen Max Mason, G. R. D.

Richardson, and G. D. Birkhoff. As a token of appreciation for Sturm and

Liouville's theory and the research opportunities it had provided for this

small band of American analysts, Bocher chose Sturm's methods as his

topic when he was invited to give a set of lectures at the University of Paris

in the winter of 1913-1914.

Liouville is also noted for a variety of other contributions. In complex

analysis his work is recalled in Liouville's theorem: If /(z), an entire analytic

function of the complex variable z, is bounded over the complex plane,

then /(z) is a constant. From this theorem the fundamental theorem of

algebra can be deduced as a simple corollary as follows: If /(z) is a po-

lynomial of degree greater than zero, and if /(z) were nowhere zero in the

complex plane, then its reciprocal F(z) = l//(z) would satisfy the con-

ditions of the Liouville theorem. Consequently F(z) would have to be a

constant, which obviously it is not. Therefore, the equation /(z) = is

satisfied by at least one complex value z = z
()

. In plane analytic geometry

there is another "Liouville theorem": The lengths of the tangents from a

point P to a conic C are proportional to the cube roots of the radii of

curvature of C at the corresponding points of contact. Finally, let us con-

sider Liouville's best-known contribution to the theory of real numbers.

The theory of numbers deals primarily with the integers or, more gen-

erally, with ratios of integers—the so-called rational numbers. Such num-

bers always are roots of a linear equation ax + b = with integral

coefficients. Real analysis deals with a more general type of number that

may be either rational or irrational. It had been known in essence to Euclid

that the roots of ax 1 + bx + c = 0, where a, b, and c are integral multiples

of a given length, can be constructed geometrically with straightedge and

compasses. If the coefficients of ax n + bxnX + ex" 2 + • • • + px +
q = 0, where n and a, 6, c, • • •

, q are integers and n > 2, the roots of

the equation generally are not constructive with Euclidean tools. The roots

of such an equation, for n > 0, are known as algebraic numbers, to indicate

the manner in which they are defined. Inasmuch as every rational number
is a root of such an equation for n = 1 , the question naturally arises whether

or not every irrational number is a root of such an equation for some n >

2. The negative of this question was finally established in 1844 by Liouville,
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who in that year constructed an extensive class of nonalgebraic real num-

bers. The particular class that he developed are known as Liouville num-

bers, the more comprehensive set of nonalgebraic real numbers being called

transcendental numbers. Liouville's construction of transcendental num-

bers is quite involved, but if one does not insist on a proof of transcen-

dentalism, some simple examples of transcendental numbers can be given

—

such as 0.1001000100001 . . . , or numbers of the form

i-

To prove that any particular real number, such as e or n, is not algebraic

is usually quite difficult. Liouville, for example, was able to show, in his

Journal for 1844, that neither e or e2 could be the root of a quadratic

equation with integral coefficients; hence, given a unit line segment, lines

of length e or e
2 are not constructible by Euclidean tools. But it was almost

thirty years before another French mathematician, Charles Hermite (1822—

1901), pursuing the views of Liouville, was able to show in 1873 in an

article in the Comptes Rendus of the Academie that e could not be the

root of any polynomial equation with integral coefficients—that is, that e

is transcendental.

The status of the number n baffled mathematicians for nine years longer

than did the number e. Lambert in 1770 and Legendre in 1794 had shown

that both n and n2 are irrational, but this proof had not put an end to the

age-old question of the squaring of the circle. The matter was finally put

to rest in 1882 in a paper in the Mathematische Annalen by C. L. F.

Lindemann (1852-1939) of Munich. The article, entitled "Uber die Zahl

n" showed conclusively, in extending the work of Liouville and Hermite,

that n also is a transcendental number. Lindemann in his proof first dem-

onstrated that the equation e
lx 4-1 = cannot be satisfied if x is algebraic.

Inasmuch as Euler had shown that the value x = n does satisfy the equation,

it must follow that n is not algebraic. Here, finally, was the answer to the

classical problem of the quadrature of the circle. In order for the quadrature

of the circle to be possible with Euclidean tools, the number n would have

to be the root of an algebraic equation with a root expressible in square

roots. Since n is not algebraic, the circle cannot be squared according to

the classical rules. Emboldened by his success, Ferdinand Lindemann later

published several purported proofs of Fermat's last theorem, but they were

shown by others to be invalid.

Hermite was one of France's most influential nineteenth-century ana-

lysts. Despite, or perhaps because, of the fact that he had fared badly as

a student when faced with educational pedantry and examinations, Hermite

at one time or another was affiliated with the major mathematically oriented
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institutions of Paris. Hermite served as examiner at the Ecole Polytech-

nique, substituted at the College de France, taught at the Ecole Normale,

and, from 1869 to 1897, held the chair as professor of higher analysis at

the Sorbonne. In school he had the same teacher who had encouraged the

young Galois; his first reading in the mathematical classics consisted of

Lagrange's work on the solution of numerical equations and the French

translation of Gauss's Disquisitiones arithmeticae . He had first come to

notice in 1842, while still a preparatory school student, by submitting two
papers to the Nouvelles Annates de Mathematiques, a journal aimed at

mathematics teachers and their more advanced students. One of these

papers was a very elegant exposition of the insolvability of the quintic. In

1858 he, as well as Kronecker, solved the quintic equation using elliptic

modular functions. During the intervening years he had come under the

protection of Liouville, who introduced him to his friends in Prussia, es-

pecially Jacobi. The ensuing correspondence shows his early feats in the

theory of elliptic and Abelian functions and analytic number theory. The
connection with Jacobi and Liouville, and through them their mutual friend

Dirichlet, paved the way for continued cooperation with the younger gen-

eration in Prussia. In 1864 he contributed a new class of special functions

in connection with the problem of functional expansions over unbounded

intervals. Ironically, the name of this great analyst nowadays appears more

frequently in algebra than analysis: Given a matrix (an n x n array) H\

let each of its elements be replaced by its complex conjugate and call the

resulting matrix H*. If H = //*, the matrix is called Hermitian. Hermite

showed in 1858 that the eigenvalues of such a matrix are real. Previously

he had coined the term "orthogonal" for a matrix M if -M equals the

inverse of M*.
The steady contributions of nineteenth-century French analysts attest

to the continuing fertility of French analytic soil; but the most telling sign

was the spectacular display of new concepts that Poincare and his younger

contemporaries presented to the new century.
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Algebra

It is no paradox to say that in our most theoretical moods we may be nearest to

our most practical applications.

A. N. Whitehead

INTRODUCTION

Nineteenth-century algebra has two characteristics that appear to coun-

teract one another. One is a growing tendency to generalization and ab-

straction; the other is a focusing on expressions subject to more carefully

defined constraints than those dealt with in preceding centuries. This ap-

parent contrariety relates directly to the change in the kind of questions

nineteenth-century algebraists raised and wished to answer.

The development of algebraic concepts in England in the first half of

the nineteenth century differed fundamentally from that on the Continent.

Abel, Galois, and other Continental mathematicians evolved new concepts

while working on unsolved problems and adapting—through fusion, gen-

eralization, or straight transfer—existing successful methods. As we have

seen, this allowed their work to be recognized for its immediate results

even if the full significance of a new concept contained therein went un-

detected. The British contributors to algebra belonging to the generation

575
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of Abel and Galois, on the other hand, set out to establish algebra as a

"demonstrative science." These men were strongly affected by the fact that

England's analytic contributions lagged behind those of the Continent.

This was attributed to the superiority of "symbolic reasoning," or, more

specifically, of the Leibnizian dyldx notation over the fluxional dots still

prevalent in England. However, since the seventeenth century, mathe-

maticians had been noting that neither higher analysis nor algebra had

attained the degree of rigor found in geometry. While on the continent

the success of evolving techniques in the eighteenth century overshadowed

such concerns, British mathematicians had remained painfully aware of

their inability to answer Bishop Berkeley's attacks on both higher analysis

and the lack of sound principles in algebra.

BRITISH ALGEBRA AND THE OPERATIONAL CALCULUS
OF FUNCTIONS

As previously noted, it was George Peacock, a one-time member of the

Cambridge Analytical Society, who produced the first major work "written

with a view of conferring upon Algebra the character of a demonstrative

science." To accomplish this goal Peacock proposed a reevaluation of the

relationship between arithmetic and algebra. Rather than being viewed as

the foundation of algebra, arithmetic "can only be considered as a Science

of Suggestion, to which the principles and operations of Algebra are adapted,

but by which they are neither limited nor determined." Peacock, therefore,

separated "arithmetical" from "symbolical" algebra. The elements of

arithmetical algebra are numbers, and its operations are those of arith-

metic. Symbolical algebra, however, is "a science, which regards the com-

binations of signs and symbols only according to determinate laws, which

are altogether independent of the specific values of the symbols them-

selves." Peacock related the two by a principle reminiscent of Servois'

principle of the preservation of formal laws; it is the "principle of the

permanence of equivalent forms":

Whatever form is algebraically equivalent to another when expressed in

general symbols, must continue to be equivalent whatever these symbols

denote.

Conversely,

Whatever equivalent form is discoverable in arithmetical algebra considered

as the science of suggestion when the symbols are general in their form,

though specific in their value, will continue to be an equivalent form when

the symbols are general in their nature as well as in their form.



BOOLE AND THE ALGEBRA OF LOGIC 577

The justification for such a bold extrapolation is not made clear. Peacock

merely accepts this as a "principle of the permanence of equivalent forms"

somewhat akin to the correlation principle that Carnot and Poncelet had

used so fruitfully in geometry. However, the algebraic form of this fuzzy

postulate in one respect served as a deterrent to progress, for it suggested

that the laws of algebra are the same no matter what the numbers or

objects within the algebra may be. Peacock, it appears, was thinking pri-

marily of the number system of integers and the real magnitudes of ge-

ometry, and his distinction between the two types of algebra was not so

different from that which Viete had made between logistica numerosa and

logistica speciosa. Hence, it was that the subtitle for Peacock's second

volume is On Symbolical Algebra and its Applications to the Geometry of

Position, the last three words of which might imply that the author had

been reading Carnot.

Peacock restated his views on algebra in a report on analysis presented

to the British Association for the Advancement of Science in 1833, whereby

they became widely known. Within a few years, several authors treated

the subject anew, to varying degrees linking the foundations of algebra to

the operational calculus of functions, which was also treated with renewed

interest. Robert Murphy (1806-1843) did so in a paper read to the Royal

Society in December 1836; Augustus DeMorgan (1806-1871) did so in a

Treatise on the Calculus of Functions published the same year; and D. F.

Gregory (1813-1844) did so in a series of memoirs on the nature of algebra

published in the Transactions of the Edinburgh Royal Society a few years

later, Gregory remarked on the identity of the laws of combination for the

symbols of differentiation and differences, and those of number, and placed

his and Peacock's studies in line of succession to those of Leibniz, Lagrange,

Herschel, and Servois on the calculus. Gregory's friend George Boole, in

a prize-winning essay presented to the Royal Society in 1844, stressed that

. . .any great advances in the higher analysis must be sought for by an in-

creased attention to the laws of combinations of symbols. The value of this

principle can scarcely be overrated. . . .

Three years later, Boole illustrated his position by applying the laws of

combination of symbols to logic.
1

BOOLE AND THE ALGEBRA OF LOGIC

While the Trinity mathematicians Hamilton and Cayley (one from Dublin,

the other from Cambridge) were developing two new types of algebra, a

'Portions of the preceding and other sections of this chapter (esp. Sections 5 and 6) are

derived from Merzbach 1964.
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third and radically different form of algebra was being invented by an

essentially self-taught Britisher, George Boole. Born into an impecunious

lower-class tradesman's family at Lincoln, England, Boole had only a com-

mon school education; but he learned both Greek and Latin independently,

believing that this knowledge would help him to rise above his station.

During his early years as an elementary school teacher, Boole found that

he had to learn more mathematics, and he began mastering the works of

Laplace and Lagrange, as well as studying additional foreign languages.

Having become friendly with De Morgan, he also took a keen interest in

a controversy over logic that the Scottish philosopher Sir WilliLm Hamilton

(1788-1856), not to be confused with the Irish mathematican Sir William

Rowan Hamilton (1805-1865), had raised with De Morgan. (The Scottish

Sir William was a baronet who had inherited his title, the Irish Sir William

was a knight who had earned the title.) The result was that Boole in 1847

published a short work entitled The Mathematical Analysis of Logic, a little

book that De Morgan recognized as epoch-making.

The history of logic may be divided, with some slight degree of over-

simplification, into three stages: (1) Greek logic, (2) Scholastic logic, and

(3) mathematical logic. In the first stage, logical formulas consisted of words

of ordinary language, subject to the usual syntactical rules. In the second

stage, logic was abstracted from ordinary language but characterized by

differentiated syntactical rules and specialized semantic functions. In the

third stage, logic became marked by the use of an artificial language in

which words and signs have narrowly limited semantic functions. Whereas

in the first two stages logical theorems were derived from ordinary language,

the logic of the third stage proceeds in a contrary manner—it first constructs

a purely formal system, and only later does it look for an interpretation

in everyday speech. Although Leibniz sometimes is regarded as a precursor

of the latter point of view, its floruit date is really the year in which Boole's

first book appeared, as well as De Morgan's Formal Logic. The work of

Boole, in particular, emphasized that logic should be associated with math-

ematics, rather than with metaphysics, as the Scottish Sir William Hamilton

had argued.

More important even than his mathematical logic was Boole's view of

mathematics itself. In the introduction to his Mathematical Analysis of

Logic the author objected to the then current view of mathematics as the

science of magnitude or number (a definition still adopted in some of the

weaker dictionaries). Espousing a far more general view, Boole wrote:

We might justly assign it as the definitive character of a true Calculus, that

it is a method resting upon the employment of Symbols, whose laws of

combination are known and general, and whose results admit of a consistent

interpretation. ... It is upon the foundation of this general principle, that

I propose to establish the Calculus of Logic, and that I claim for it a place

among the acknowledged forms of Mathematical Analysis.
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Peacock's Algebra of 1830 had suggested that the symbols of objects in

algebra need not stand for numbers, and De Morgan argued that inter-

pretations of the symbols for operations also were arbitrary; Boole carried

the formalism to its conclusion. No longer was mathematics to be limited

to questions of number and continuous magnitude. Here for the first time

the view is clearly expressed that the essential characteristic of mathematics

is not so much its content as its form. If any topic is presented in such a

way that it consists of symbols and precise rules of operation upon these

symbols, subject only to the requirement of inner consistency, this topic

is part of mathematics. Although the Mathematical Analysis of Logic did

not achieve wide recognition, it probably was upon the weight of this work

that Boole two years later was appointed professor of mathematics at the

newly established Queens College in Cork.

A great mathematician and philosopher of the twentieth century, Ber-

trand Russell, has asserted that the greatest discovery of the nineteenth

century was the nature of pure mathematics. He adds to this claim the

words, "Pure Mathematics was discovered by Boole in a work which he

called The Laws of Thought." In this assertion Russell is referring to

Boole's best-known work, published in 1854. To be more accurate it might

have been better to have cited the earlier book of 1847, in which much
the same views had been presented.

Boole's Investigation of the Laws of Thought of 1854 is a classic in the

history of mathematics, for it amplified and clarified the ideas presented

in 1847, establishing both formal logic and a new algebra, known as Boolean

algebra, the algebra of sets, or the algebra of logic. Boole used the letters

jc, y, z, . . . to represent objects of a subset of things—numbers, points,

ideas, or other entities—selected from a universal set or universe of dis-

course, the totality of which he designated by the symbol or "number" 1.

For example, if the symbol 1 represents all Europeans, x might stand for

all Europeans who are French citizens, y might be all European men over

twenty-one, and z might be all Europeans who are between five and six

feet tall. The symbol or number Boole took to indicate the empty set,

containing no element of the universal set, what now is known as the null

set. The sign + between two letters or symbols, as jc + y, he took to be

the union of the subsets x and y , that is, the set made up of all the elements

in jc ory (or both). The multiplication sign x represented the intersection

of sets, so that jc x y means the elements or objects that are in the subset

jc and also in the subset y. In the example above, x + y consists of all

Europeans who are French citizens, or are men over twenty-one, or both;

jc x y (written also as jc • y or simply as jcy) is the set of French citizens

who are men over twenty-one. (Boole, unlike De Morgan, used exclusive

union, not permitting common elements in jc and y; but modern Boolean

algebra more conveniently takes + to be the inclusive union of sets that

may have elements in common.) The sign = represents the relationship

of identity. It is clear that the five fundamental laws of algebra now hold
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for this Boolean algebra, for x + y = y + jc, xy = yx, x + (y + z) =

(jc -»- y) + j, c(yz) = (jcy)z, and jc(y -l- z) = jcy + jcz. Nevertheless,

not all of the rules of ordinary algebra continue to be valid: for example,

1 + 1 = 1 and x • x = x. (The second of these appears in the work of

Boole, but not the first, since he used exclusive union.) The equation

x2 = x has only the two roots, in ordinary algebra, x = and x = 1; in

this respect the algebra of logic and ordinary algebra are in agreement.

The equation x 2 = jc, when written in the form x{\ - x) = 0, also suggests

that 1 - x should designate the complement of the subset jc, that is, all

the elements in the universal set that are not in the subset jc. Although it

is true in Boolean algebra that jc
3 = jc or jc(1 - jc

2
) = or jc(1 - jc)(1 +

jc) = 0, the solution in ordinary algebra differs from that in Boolean algebra,

in which there are no negative numbers. Boolean algebra differs from

ordinary algebra also in that if zjc = zy (where z is not the null set), it

does not follow that jc = y; nor is it necessarily true that if jcy = 0, then

jc or y must be 0.

Boole showed that his algebra provided an easy algorithm for syllogistic

reasoning. The equation jcy = jc, for example, says very neatly that all jc's

are y's. If it is also given that all y's are z's, then yz = y. Upon substituting

in the first equation the value of y given by the second equation, the result

is jc( yz) = jc. Using the associative law for multiplication, the last equation

can be written as (jcy)z = jc, and, upon replacing jcy by jc, we have jcz =

x, which is simply the symbolic way of saying that all jc's are z's.

The Mathematical Analysis of Logic (1847) and, a fortiori, The Laws of

Thought (1854) contain much more of the algebra of sets than we have

indicated. In particular, the latter work includes applications to probability.

Today Boolean algebra is used widely not only by pure mathematicians

but also by others who apply it to problems in insurance and information

theory. Notations have changed somewhat since Boole's day, so that union

and intersection are generally indicated by U and Pi rather than + and

x
, and the symbol for the null set is

<f>
rather than 0; but the fundamental

principles are those that were laid down by Boole more than a century

ago.

There is an aspect of Boole's work that is not closely related to his

treatises in logic or the theory of sets but which is familiar to every student

of differential equations. This is the algorithm of differential operators,

which he introduced to facilitate the treatment of linear differential equa-

tions. If, for example, we wish to solve the differential equation ay" +

by* •¥ cy = 0, the equation is written in the notation (aD : + bD +

c)y = 0. Then, regarding D as an unknown quantity rather than an op-

erator, we solve the algebraic quadratic equation aD 2 + bD + c = 0. If

the roots of the algebraic equation are p and q, then e
px and e

qx are solutions

of the differential equation and Aepx + Be qx
is a general solution of the

differential equation. There are many other situations in which Boole, in

his Treatise on Differential Equations of 1859, pointed out parallels between
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the properties of the differential operator (and its inverse) and the rules

of algebra. British mathematicians in the second half of the nineteenth

century were thus again becoming leaders in algorithmic analysis, a field

in which, fifty years before, they had been badly deficient.

Boole died in 1864, only ten years after publishing his Laws of Thought,

but recognition, including an honorary degree from the University of Dub-
lin, had come to him before his death. It is curious to note that Cantor,

who like Boole was one of the chief trailblazers of the century, was one

of the few who declined to accept the work of Boole. On the other hand,

Boole's work prompted a sequence of axiomatic studies by W. S. Jevons

(1835-1882), C. S. Peirce (1839-1914), E. Schroder (1841-1902), and oth-

ers, which led to a complete set of postulates for the algebra of logic after

1900.

DE MORGAN

Among the supporters of the new view of algebra was Augustus De Mor-

gan, a prolific writer who had helped also to found the British Association

for the Advancement of Science (1831). De Morgan had been born in

India, his father having been associated with the East India Company, but

he attended Trinity College, graduating as fourth wrangler. He could not

hold a fellowship at Cambridge or Oxford because he refused to submit

to the necessary religious test, despite the fact that he had been brought

up in the Church of England, in which his mother hoped he would become

a minister. De Morgan consequently was appointed, at the early age of

twenty-two, a professor of mathematics at the newly established London
University, later University College of the University of London, where

he continued to teach except for short periods following resignations

prompted by cases of abridgement of academic freedom. He always re-

mained a champion of religious and intellectual toleration, and he was

equally a writer and teacher of exceptional ability. He was born blind in

one eye, a handicap that might account for some of his innocuous eccen-

tricities, such as his dislike of rural life, his refusal ever to vote in an

election, and his failure to apply for membership in the Royal Society. He
was a lover of conundrums and witticisms, many of which are collected in

his well-known Budget of Paradoxes, a delightful satire on circle-squarers

edited after his death by his widow.

Peacock was something of a prophet in the development of abstract

algebra, and De Morgan was to him somewhat as Elisha was to Elijah. In

Peacock's Algebra the symbols were generally understood to be numbers

or magnitudes, but De Morgan would keep them abstract. He left without

meaning not only the letter that he used, but also the symbols of operation;

letters such as A, B, C might stand for virtues and vices and + and -

might mean reward and punishment. De Morgan insisted that, "with one



582 ALGEBRA

exception . no word or sign of arithmetic or algebra has one atom of meaning

throughout this chapter, the object of which is symbols and their laws of

combination, giving a symbolic algebra which may hereafter become the

grammar of a hundred distinct significant algebras." (The exception men-

tioned by De Morgan is the symbol of equality, for he thought that in

A = B the symbols A and B must "have the same resulting meaning, by

whatever steps attained.") This idea, expressed as early as 1830 in his

Trigonometry and Double Algebra, comes close to the modern recognition

that mathematics deals with propositional functions, rather than with prop-

ositions; but De Morgan seems not to have realized the entirely arbitrary

nature of the rules and definitions of algebra. He was sufficiently close to

Kantian philosophy to believe that the usual fundamental laws of algebra

should apply to any algebraic system whatsoever. He saw that in going

from the "single algebra" of the real number system to the "double al-

gebra" of the complex numbers, the rules of operation remain the same.

And De Morgan believed that these two forms exhaust the types of algebra

that are possible and that a triple or quadruple algebra could not be de-

veloped. In this important respect he was shown to be wrong by Hamilton,

another man of Trinity, but this time not Trinity College, Cambridge, but

Trinity College, Dublin. Yet another mathematician of Trinity (Dublin)

was George Salmon (1819-1904), who taught both mathematics and di-

vinity there and was the author of excellent textbooks on conies, algebra,

and analytic geometry.

HAMILTON

Hamilton's father, a practicing attorney, and his mother, said to have been

intellectually gifted, both died while he was a boy; but even before he was

orphaned, the young Hamilton's education had been determined by an

uncle who was a linguist. An extremely precocious youngster, William read

Greek, Hebrew, and Latin by the time he was five; at the age of ten he

was acquainted with half a dozen oriental languages. A meeting with a

lightning calculator a few years later perhaps spurred Hamilton's already

strong interest in mathematics, as friendships with Wordsworth and Col-

eridge probably encouraged him to continue to produce the bad poetry he

had been writing since boyhood. Hamilton entered Trinity College, Dublin,

and while still an undergraduate there, at the age of twenty-two, he was

appointed Royal Astronomer of Ireland, Director of the Dunsink Ob-
servatory, and Professor of Astronomy. In the same year he presented to

the Irish Academy a paper on systems of rays in which he expressed one

of his favorite themes—that space and time are "indissolubly connected

with each other." In a sense this view could be taken to presage the theory

of relativity, but Hamilton drew from it a less fruitful conclusion: Inasmuch
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as geometry is the science of space alone, algebra must be the science of

pure time. Perhaps Hamilton here was following in algebra the lead of

Newton who, when he had difficulty defining abstract concepts in the method

of fluxions, felt more comfortable in appealing to the notion of time in the

physical universe. Possibly he was simply concluding that, since geometry

is the science of space, and space and time are the two aspects of sensuous

intuition, algebra should be the science of time.

Shortly after presenting his first paper, Hamilton's prediction of conical

refraction in certain crystals was experimentally confirmed by physicists.

This verification of a mathematical theory assured his reputation, and at

the age of thirty he was knighted. Two years earlier, in 1833, he had

presented a long and significant paper before the Irish Academy in which

he introduced a formal algebra of real number couples the rules of com-

bination of which are precisely those given today for the system of complex

numbers. The important rule for multiplication of the couples is, of course,

(a, b)(a, P) = (aa - bfi, ap + ba),

and he interpreted this product as an operation involving rotation. Here

one sees the definitive view of a complex number as an ordered pair of

real numbers, an idea that had been implied in the graphical representations

of Wessel, Argand, and Gauss but which now for the first time was made
explicit.

Hamilton realized that his ordered pairs could be thought of as directed

entities in the plane, and he naturally tried to extend the idea to three

dimensions by going from the binary complex number a + hi to ordered

number triples a + bi + cj. The operation of addition created no difficulty,

but for ten years he was baffled by multiplication of n-tuples for n greater

than two. One day in 1843, as he was walking with his wife along the Royal

Canal, he had a flash of inspiration: His difficulty would vanish if he used

quadruples instead of triples and if he abandoned the commutative law for

multiplication. It had been more or less clear that for number quadruples

a + bi + cj + dk one should take i
2 = j

2 = k 2 - - 1 . Now Hamilton

saw in addition that he should let ij = k, but ft
= —k, and similarly jk -

i = -kj and ki - j = -ik. In other respects the laws of operation are

as in ordinary algebra.

Just as Lobachevsky had created a new geometry consistent within itself,

by abandoning the parallel postulate, so Hamilton created a new algebra,

also consistent with itself, by discarding the commutative postulate for

multiplication. He stopped in his walk, and with a knife he cut the fun-

damental formula i
2 = j

2 = k 2 = ijk on a stone of Brougham Bridge; the

same day, October 16, he asked the Royal Irish Academy for leave to read

a paper on quaternions at the next session. The key discovery was sudden,

but the discoverer had been working toward it for some fifteen years.

Hamilton, quite naturally, always regarded the discovery of quaternions

as his greatest achievement. In retrospect it is clear that it was not so much
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this particular type of algebra that was significant, but rather the discovery

ot the tremendous freedom that mathematics enjoys to build algebras that

need not satisfy the restrictions imposed by the so-called "fundamental

l.iws. which up to that time, supported by the vague principle of per-

Bianence of form, had been invoked without exception. For the last twenty

yean of his life Hamilton spent his energies on his favorite algebra, which

he was inclined to imbue with cosmic significance and which some British

mathematicians regarded as a kind of Leibnizian arithmetica universalis.

His Lectures on Quaternions appeared in 1853. Much of this bulky work

is devoted to applications of quaternions to geometry, differential geom-

etr\ . and physics. Of primary significance for the history of modern algebra

is the fact that Hamilton here presented a detailed theory of a noncom-

mutative algebraic system.

Among the basic concepts discussed in the book are those of vectors

and scalars. The quaternion units /, /, and k were variously described as

operators and coordinates. Generally, Hamilton treated quaternions as

vectors and essentially showed that they form a linear vector space over

the real number field. He defined the addition of quaternions and intro-

duced the notion of two types of products, obtained by multiplying a vector

b\ a scalar or by another vector respectively; he observed that the first is

associative, distributive, and commutative, whereas the latter is associative

and distributive only. He also discussed the inner product ("scalar prod-

uct") of two vectors and demonstrated its bilinearity.

Subsequently, Hamilton devoted himself to the preparation of the en-

larged Elements of Quaternions. This was not quite completed when he

died in 1865, but it was edited and published by his son in the following

year. The tragedy of a semi-invalid wife had dogged his later years, and

occasional alcoholic intemperance led wags to say that while he might

indeed be a master of pure time, he was not a master of sublunary time.

Nevertheless, it is gratifying for Americans to recall that in those unhappy
years of civil strife the newly established National Academy of Sciences

named Sir William Rowan Hamilton its first foreign associate.

GRASSMANN AND AUSDEHNUNGSLEHRE

I he concept of an ^-dimensional vector space had received detailed treat-

ment in Hermann (irassmann's Ausdehnungslehre, published in Germany
in ls44. Grassmann also was led to his results by studying the geometric
interpretation of negative quantities and the addition and multiplication

ot directed line segments in two and three dimensions. He emphasized the

dimension concept and stressed the development of an abstract science of

spaces and "subspaces" which would include the geometry of two and
three dimensions as special cases. It is interesting to note that Grassmann,
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like Hamilton, was a linguist, being a specialist in Sanskrit literature. Unlike

Hamilton, he never occupied a position of prominence but taught on the

secondary school level. His father, Justus Grassmann, had belonged to the

so-called "combinatorial school" of German mathematicians at the begin-

ning of the century. This undoubtedly affected his views on the nature of

mathematics. Grassmann defined pure mathematics as the science of forms

(Formenlehre) , stressing the difference between this view and that which

regards mathematics merely as the science of quantities. The concepts basic

to his science of forms are those of equality and combination, which he

denoted by = and n respectively. He defined the inverse, U of fl by

stating that a U b is the form which satisfies a U b Pi b = b H a. The
science of extension is "the abstract foundation of geometry," freed from

spatial conceptualizations and restriction to three dimensions. A single

element generates a one-dimensional space (einstufiges System); the set of

elements derived from a given element by a constant change gives a two-

dimensional space, corresponding to lines in geometry. Generally,

... if all elements of an n-dimensional domain are subjected to one and the

same kind of change which leads to new elements (not contained in the

domain), then the totality of the elements generated by this change and its

inverse is called a domain of dimension n + 1 [trans, in Merzbach 1964, p.

78].

This definition was made more precise in the revised 1862 edition of

Grassmann's Ausdehnungslehre, where he elaborated on the concepts of

linear dependence and independence of vectors and discussed subspaces,

their unions and intersections, and spanning sets. He also stated theorems

equivalent to the proposition that if S and T are two subspaces of a vector

space V, then d[S] + d[T] = d[S UT] + d[S D F], where d[S] represents

the dimension of 5, and S U T, S D T the union and intersection of S and

T respectively.

Grassmann laid great stress on the different kinds of multiplication that

arose in the Ausdehnungslehre. He distinguished between "inner" and

"outer" or "combinatorial" products. In the particular case treated by

Hamilton, these reduce to the latter's scalar and vector products. Other

types of multiplication treated by Grassmann included "algebraic" prod-

ucts, namely, those where ab = ba, as in common algebra, and "outer"

products, which correspond to matrix products. One could translate many
details of Grassmann's work into the language of modern abstract vector

space theory; suffice it to say that, using the basic concepts cited above,

Grassmann showed how an n-dimensional system containing various new
operations could be established, which for special cases reduced to more
familiar mathematical structures.

The significance of the Ausdehnungslehre was slow to be recognized,

for the book was not only unconventional but difficult to read. One reason
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was that Grassmann, like Desargues before him, used a very unconven-

tional terminology; more fundamental was the novelty and extreme gen-

eral^ of the author's approach to the question of extension.

Largel) under the urging of Mobius, Grassmann not only revised the

Ausdehnungslehre but also published various articles in Crelle's Journal in

* hich he summarized some of his basic results. It was through these articles

that most mathematicians became acquainted with the substance of his

work.

Word of the Ausdehnungslehre began to spread after the publication in

1867 of Hankel's work on systems of complex numbers. Hankel, a student

of Riemann, attempted to present a rigorous introduction to complex num-

bers. His work, which reflected study of Grassmann, referred to Peacock,

gave the first German account of Hamilton's quaternions, and presented

a theory of "alternating numbers" equivalent to Grassmann's outer prod-

Uds. Among those whose attention to Grassmann's work was drawn through

Hankel's book was Felix Klein. He wrote to F. Engel in 1911:

As is well known, Grassmann in his Ausdehnungslehre is an affine, rather

than a projective, geometer. This became clear to me in the late fall of 1871

and (besides the study of Mobius and Hamilton and the working out of all

the impressions I had received in Paris) led to my conception of my later

Erlanger Program [trans, and preceding material from Merzbach 1964, pp.

79-83).

In England, William K. Clifford championed Grassmann's cause; in the

United States, the Ausdehnungslehre supported the development, primar-

ily through the efforts of a Yale University physicist, Josiah Williard Gibbs

(1839-1903), of the more limited algebra of vectors in three-dimensional

space. The algebra of vectors is again a multiple algebra in which the

commutative law for multiplication fails to hold. In fact, it was proved in

1867 by Hankel that the algebra of complex numbers is, as De Morgan
suspected, the most general algebra that is possible under the fundamental

laws of arithmetic. The Vector Analysis of Gibbs appeared in 1881 and

again in 1884, and he published further articles throughout the decade.

I hese works led to a spirited and not too genteel controversy with the

proponents Of quaternions over the relative merits of the two algebras. In

i colleague of Gibbs at Yale organized an International Association

tor Promoting the Study of Quaternions and Allied Systems of Mathe-
matics, ol which the first president was a rabid supporter of quaternions.

It was not long before allied systems (such as vectors and their generali-

zation, tensors) tor a time eclipsed quaternions, but today they have a

recognized place in algebra, as well as in quantum theory. Moreover,
although Hamilton's name is infrequently linked with vectors, since Gibbs'

notations came mostly from Grassmann, nevertheless the chief properties

ol vectors had been worked out in Hamilton's protracted investigations in

multiple algebras.
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CAYLEY AND SYLVESTER

By the middle of the nineteenth century German mathematicians had stood

head and shoulders above those of other nationalities in analysis and ge-

ometry, with the universities of Berlin and Gottingen in the lead and with

publication centering in Crelle's Journal. Algebra, on the other hand, was

for a while almost a British monopoly, with Trinity College, Cambridge,

in the forefront and the Cambridge Mathematical Journal as the chief

medium of publication. Peacock and De Morgan both were from Trinity,

as was also Cayley, a heavy contributor to both algebra and geometry,

who had graduated as senior wrangler. We have noted Cayley's work in

analytic geometry, especially in connection with the use of determinants;

but Cayley also was one of the first men to study matrices, another instance

of the British concern for form and structure in algebra. This work grew

out of a memoir of 1858 on the theory of transformations. If, for example,

we follow the transformation

by another transformation

(x' = ax +

[y' = ex +

by

dy

fx" = Ax' + By'

\y" = Cx' + Dy'

then the result (which had appeared earlier, for example, in the Disquis-

itiones arithmeticae of Gauss in 1801) is equivalent to the single composite

transformation

fx" = (Aa + Bc)x +
r2 7\J

\y" = (Ca + Dc)x +

(Ab + Bd)y

(Cb + Dd)y.

If, on the other hand, we reverse the order of T
{
and T2 , so that T2 is the

transformation

V = Ax + By

y' = Cx + Dy

and 7\ is the transformation

\x" = ax' + by'

\y" = cx' + dy',{;

then these two, applied successively, are equivalent to the single transfor-

mation

t

,
h" = {aA + bC)x + (aB + bD)y

\y" = (cA + dC)x + (cB + dD)y.
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Reversing the order of the transformations in general gives a different

result Expressed in the language of matrices,

b\ (A B\ laA + bC aB + bD'

C DI \cA + dC

but

A B\ (a b\ (Aa + Be Ab + B(T

C D/ \c d! \Ca + Dc Cb + Dd,

Inasmuch as two matrices are equal if and only if all corresponding elements

are equal , it is clear that once again we have an instance of noncommutative

multiplication.

The definition of multiplication of matrices is as indicated above, and

the sum of two matrices (of the same dimensions) is defined as the matrix

obtained by adding the corresponding elements of the matrices. Thus

b\ (A B\ la + A b + B

d) \C DI \c + C d + D,

Multiplication of a matrix by a scalar K is defined by the equation

a b\ (Ka Kb'
K •

dl

The matrix

1

s

,0 1

which is usually denoted by /, leaves every square matrix of second order

invariant under multiplication; hence, it is called the identity matrix under

multiplication. The only matrix leaving another such matrix invariant under

addition is, of course, the zero matrix

N

,0 0,

which consequently is the identity matrix under addition. With these def-

initions we can think of the operations on matrices as constituting an

"algebra," a step that was taken by Cayley and the American mathema-
ticians Benjamin Pence ( 1809-1880) and his son Charles S. Peirce (1839-
1914) The Peirces played somewhat the role in America that Hamilton,

Grassmann, and Cayley had tilled in Europe. The study of matrix algebra

and ol other noncommutative algebras has everywhere been one of the

chief factors in the development of an increasingly abstract view of algebra,

especiall) in the twentieth century.

Shortl) after receiving his degree at Trinity, Cayley took to the law for

fourteen years; this interfered little with his mathematical research, and
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he published several hundred papers during these years. Many of the papers

were in the theory of algebraic invariants, a field in which he and his friend

James Joseph Sylvester were preeminent. Cayley and Sylvester were a

study in contrasts, the former being mild and even-tempered, the latter

mercurial and impatient. Both were Cambridge men—Cayley at Trinity,

Sylvester at St. John's—but Sylvester was ineligible for a degree because

he was a Jew. For three years following 1838 Sylvester had taught at

University College, London, where he was a colleague of his former teacher,

De Morgan; after this he accepted a professorship at the University of

Virginia. Discipline problems so upset the temperamental mathematician

that he left precipitately after only three months. Upon returning to Eng-

land he spent almost ten years in business and then turned to the study of

law, in connection with which, in 1850, he first met Cayley. The two men
were ever afterward friends and mathematicians, and ultimately both left

the law. In 1854 Sylvester took a position at the Royal Military Academy
at Woolwich, and in 1863 Cayley accepted the Sadlerian professorship at

Cambridge. In 1876 Sylvester had one more fling at teaching in America,

this time at the newly established Johns Hopkins University, where he

remained until he was almost seventy, when he accepted a professorship

offered him by Oxford University. In 1881, while Sylvester was still at

Johns Hopkins, Cayley accepted an invitation to deliver there a series of

lectures on Abelian and theta functions. Although Cayley's papers, which

rival those of Euler and Cauchy in number, are predominantly in algebra

and geometry, he did contribute also to analysis, and his only book, pub-

lished in 1876, is a Treatise on Elliptic Functions.

Cayley's interests were divided, but Sylvester's loyalty to algebra was

firm, and it is fitting that his name is attached to what is known as Sylvester's

dialytic method in eliminating an unknown from two polynomial equations.

The device is a simple one and consists in multiplying one or both of the

two equations by the unknown quantity to be eliminated, repeating the

process if necessary until the total number of equations is one greater than

the number of powers of the unknown. From this set of n + 1 equations

one can then eliminate all the n powers, thinking of each power as a

different unknown. Thus, to eliminate x from the pair of equations x 2 +
ax + b = and x 3 + ex 2 + dx + e - 0, one multiplies the first by x

and then multiplies the resulting equation, and also the second equation

above, by x. Then, thinking of each of the four powers of x as a separate

unknown, the determinant

1 a b

1 a b

1 a b

1 c d e

1 c d e
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known as the resultant in Sylvester's method, when equated to zero gives

the result of the elimination.

More important than his work in elimination was Sylvester's collabo-

ration with C a\le\ in the development of the theory of'forms" (or "quan-

as C a\le\ preferred to call them), through which the men came to

he know n as 'invariant twins." Between 1854 and 1878 Sylvester published

almost a dozen papers on forms—homogeneous polynomials in two or

more variables—and their invariants. The most important cases in analytic

geometry and physics are the quadratic forms in two and three variables,

James Joseph Sylvester.
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for, when equated to a constant, these represent conies and quadrics. In

particular, the quantic or form Ax 2 + 2Bxy + Cv 2
, when equated to a

nonzero constant, represents an ellipse (real or imaginary), a parabola,

or a hyperbola according as B2 - AC is less than, equal to, or greater

than zero. Moreover, if the form is transformed under a rotation of axes

about the origin into the new form A'x 2 + IB'xy + Cy 2
, then (B') 2 -

A'C = B2 - AC, that is, the expression B2 - AC, known as the char-

acteristic of the form, is an invariant under such a transformation. The
expression A + C is another invariant. Still other important invariants

associated with the form are the roots k
x
and k2 of the characteristic equa-

tion

A - k B

B C - k
= or

A' - k B'

B' C - k

These roots are, in fact, the coefficients of x 2 and v
2
in the canonical form

k
x
x 2 + k2 y

2 to which the form, if not of parabolic type, can be reduced

through a rotation of axes. The effervescent Sylvester boasted that he had

discovered and developed the reduction of binary forms to canonical form

at one sitting "with a decanter of port wine to sustain nature's flagging

energies."

If we designate by M the matrix of coefficients of the form and by / the

identity matrix of order two, the characteristic equation can be written as

\M - kl\ - 0, where the vertical lines represent the determinant of the

matrix. One of the important properties of the algebra of matrices is that

a matrix M satisfies its characteristic equation, a result given in 1858 and

known as the Hamilton-Cayley theorem. It sometimes is held that Cayley's

algebra of matrices was an outcome of Hamilton's algebra of quaternions,

but Cayley in 1894 specifically denied such a link. He admired the theory

of quaternions, but he asserted that his development of matrices stemmed
from that of determinants as a convenient mode of expressing a transfor-

mation. In fact, Cayley's publication of 1858 reflects not only the influence

of Hamilton's quaternions but Cayley's concern with the issues raised by

the operational calculus of the day. These two factors are also evident in

an earlier publication (1845) in which he had provided an example of a

nonassociative algebra.

LINEAR ASSOCIATIVE ALGEBRAS

It was the classification of linear associative algebras that marks the be-

ginning of contributions by Americans to modern algebra. Benjamin Peirce,
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tor main \ears affiliated with the U.S. Coast Survey as well as professor

ot mathematics at his alma mater, Harvard, presented this work to the

American Academy of Arts and Sciences in the 1860s and had it printed

with limited circulation in 1870. It only became generally known in a version

that appeared posthumously, in the American Journal of Mathematics in

1881, with ample notes and addenda by his son Charles S. Peirce, who
had also contributed basic ideas to the original paper. Linear associative

algebras include ordinary algebra, vector analysis, and quaternions as spe-

cial cases, but are not restricted to the units 1, i, /, k. Peirce worked out

multiplication tables for 162 algebras, a far cry from the idea prevalent

early in the century that there was only a single algebra! C. S. Peirce

continued his father's work in this direction by showing that of all these

algebras there are only three in which division in uniquely defined: ordinary

real algebra, the algebra of complex numbers, and the algebra of quater-

nions.

It was in connection with his work on linear associative algebra that

Benjamin Peirce in 1870 gave the well-known definition, "Mathematics is

the science which draws necessary conclusions." His son was in whole-

hearted agreement with this view, as a result of Boole's influence, but he

stressed that mathematics and logic are not the same. "Mathematics is

purely hypothetical: it produces nothing but conditional propositions. Logic,

on the contrary, is categorical in its assertions." This distinction was to be

argued further throughout the mathematical world in the first half of the

twentieth century.

In England somewhat similar ideas were pursued by William Kingdon

Clifford (1845-1879), still another Trinity graduate, whose brilliant work,

like that of an earlier Trinity graduate, Roger Cotes, was cut short by

premature death in his thirty-fourth year. Clifford was extraordinary in

several respects. For one thing, he was a gymnast who could pull himself

up on the bar with either hand—a most unusual feat for anyone, and

especially almost unheard of for one who graduated as second wrangler.

Also, like the Oxford mathematician C. L. Dodgson (1832-1898), better

known as Lewis Carroll, author of Alice in Wonderland, he composed The

Little People, a collection of tales for children. In 1870 Clifford wrote a

paper "On the Space-Theory of Matter" in which he showed himself to

be a staunch British supporter of the non-Euclidean geometry of Loba-

chevsky and Riemann. In algebra Clifford also espoused the newer views,

and his name is perpetuated today in the so-called Clifford algebras, of

which octonions or biquaternions are special cases. These noncommutative
algebras were used by Clifford to study motions in non-Euclidean spaces,

certain manifolds of which are known as spaces of Clifford and Klein. How
different was the progressive British mathematics of the latter part of the

ninteenth century from the stultifyingly conservative views at the opening

ot the century!
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Charles Sanders Peirce.

ALGEBRAIC GEOMETRY

In 1882 two works appeared which, in hindsight, foreshadowed important

twentieth-century trends. One was a deep study by Leopold Kronecker

dealing with an arithmetic theory of algebraic quantities. This difficult paper

had a pronounced impact on algebraists and number theorists at the turn

of the century. The other work was a joint memoir by Dedekind and Weber
on the theory of algebraic functions. Dedekind and Weber used the al-

gebraic theory developed by the former in his treatment of algebraic num-
bers to strip Riemann's work on function theory from its geometric un-

derpinnings. This allowed them to define parts of a Riemann surface

algebraically in such a way that it could be considered invariant with respect

to an algebraic function field. The purely algebraic approach opened up

an entirely new avenue for post-Riemannian algebraic geometry; indeed,
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it turned out to be one ol the most fruitful paths pursued by twentieth-

ccntur\ investigators. Almost half a century was to pass before this became

apparent, however.

ALGEBRAIC AND ARITHMETIC INTEGERS

The work o\ Galois had been important not only in making the abstract

notion o\ group fundamental in the theory of equations, but also led,

through the contributions of Dedekind, Kronecker, and Kummer, to what

ma\ be called an arithmetical approach to algebra, somewhat akin to the

anthmetization of analysis. This does not mean a return to the medieval

and Renaissance view of algebra as an algorithm for finding an unknown
number. It means rather the development of a careful postulational treat-

ment of algebraic structure in terms of various number fields. The concept

of field was implicit in work by Abel and Galois, but Dedekind in 1879

seems to have been the first one to give an explicit definition of a number
field— a set of numbers that form an Abelian group with respect to addition

and with respect to multiplication (except for the inverse of zero) and for

which multiplication distributes over addition. Simple examples are the

system of rational numbers, the real number system, and the complex

number field. Kronecker in 1881 gave other instances through his domains

of rationality. The set of numbers of the form a + frV2, where a and b

are rational, form a field, as is easily verified. In this case the number of

elements in the field is infinite. A field with a finite number of elements is

known as a Galois field, and a simple instance of this is the field of integers

modulo 5 (or any prime).

The concern for structure and the rise of new algebras, especially during

the second half of the nineteenth century, led to broad generalizations in

number and arithmetic. We have noted already that Gauss extended the

idea of integer through the study of Gaussian integers of the form a + 6i,

where a and b are integers. Dedekind generalized further in the theory of

algebraic integers"—numbers satisfying a polynomial equation with in-

tegral coefficients having leading coefficient unity. Such systems of "inte-

do not. of course, form a field, for inverses under multiplication are

lacking. They do have something in common in that they satisfy the other

requirements tor a number field; they are thus said to form an "integral

domain.** Such generalizations of the word integer are, however, bought

at a price— the loss of unique factorization. Therefore, Dedekind, adapting

ideas developed by a contemporary mathematician, Ernst Eduard Kummer
( 1810- 1893), introduced into arithmetic the concept of an "ideal."

\ set of elements is said to form a ring if ( 1 ) it is an Abelian group with

respect to addition. (2) the set is closed under multiplication, and (3)

multiplication is associative and is distributive over addition. (Hence, a

ring that is commutative under multiplication, has a unit element, and has
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no divisors of zero is an integral domain). An ideal, then, is a subset / of

elements of a ring R which (1) form an additive group and (2) are such

that whenever x belongs to R and y belongs to /, then xy belong to /. The
set of even integers, for example, is an ideal in the ring of integers. It turns

out that in the ring (or integral domain) R of algebraic integers, any ideal

/ of R can be represented uniquely (except for the order of the factors) as

a product of prime ideals. That is, uniqueness of factorization can be saved

through the theory of ideals.

Kummer had been left fatherless at the age of three, but his mother

saw to it that her son secured an education at the University of Halle,

earning his doctorate at the age of twenty-one. After about a dozen years

of teaching in gymnasia, he succeeded Dirichlet at Berlin when in 1855 the

latter became the successor of Gauss at Gottingen; Kummer remained

there until his retirement in 1883. Shortly after earning his degree, Kummer
had become interested in Fermat's last theorem, for which Cauchy at one

time mistakenly thought he had a proof. Kummer was able to prove the

theorem for a large class of exponents, but a general proof eluded him.

The stumbling block seems to have been the fact that in the factoring of

x n + y", through the solution of x" + y
n = for x in terms of y, the

algebraic integers, or roots of the equation, do not necessarily satisfy the

fundamental theorem of arithmetic that is, they are not uniquely factorable.

The result was that, although he failed to solve Fermat's theorem, in the

attempt to do so he created in a sense a new arithmetic. This was a theory,

not of our ideals, but of devices that he called "ideal complex numbers."

One of the lessons that the history of mathematics clearly teaches is that

the search for solutions to unsolved problems, whether solvable or un-

solvable, invariably leads to important discoveries along the way.

Dedekind's concern with algebra goes back to the 1850s, when he at-

tended Dirichlet's lectures on number theory in Gottingen and pursued

intensive studies of Galois theory. His notes of the period show that he

developed an abstract treatment of elementary group theory at that time.

After Dirichlet's death, Dedekind was charged with publishing Dirichlet's

lectures on number theory. In appendices to that work he presented a

number of results of his own. Best known among these was his ideal theory,

various versions of which can be compared in the successive editions of

Dirichlet-Dedekind. The most axiomatic approach, which appeared in the

1894 edition, was the one that especially influenced Emmy Noether and

her school of algebraists in the 1920s.

In 1897 and 1900 Dedekind also published two memoirs on a new struc-

ture he called a "dual group." In the first of these memoirs, the modern
reader easily recognizes a set of axioms for a lattice. In the second, devoted

to a study of the free modular lattice with three generators, he showed
that a lattice forms a partially ordered set. Here the reader also finds the

important concepts of a covering relation and of the dimension of a lattice.

Dedekind also utilizes chain conditions. During the last quarter of the
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centur\ numerous other abstract and often axiomatic treatments of groups

and fields WCIt published. Several of these were instigated by Dedekind;

this is true particularly of the work of Heinrich Weber, whom Dedekind

interested in algebra.

AXIOMS OF ARITHMETIC

Mathematics often has been likened to a tree, for it grows through an ever

more widely spreading and branching structure above ground, while at the

same time it sinks its roots ever deeper and wider in the search for a firm

foundation. This double growth was especially characteristic of the devel-

opment of analysis in the nineteenth century, for the rapid expansion of

the theory of functions had been accompanied by the rigorous arithmeti-

zation of the subject from Bolzano to Weierstrass. In algebra the nineteenth

century had been more notable for new developments than for attention

to foundations, and Peacock's efforts to provide a sound basis were feeble

in comparison with the precision of Bolzano in analysis. During the closing

years of the century, however, there were several efforts to provide stronger

roots for algebra. The complex number system is defined in terms of the

real numbers, which are explained as classes of rational numbers, which

in turn are ordered pairs of integers. But what, after all, are the integers?

Everyone thinks that he or she knows, for example, what the number three

is—until he or she tries to define or explain it—and the idea of equality

of integers is assumed to be obvious. Not satisfied to leave the basic con-

cepts of arithmetic, hence of algebra, in so vague a state, the German
logician and mathematician F. L. G. Frege (1848-1925) was led to his well-

known definition of cardinal number. The basis for his views came from

the theory of sets of Boole and Cantor. It will be recalled that Cantor had

regarded two infinite sets as having the same "power" if the elements of

the sets can be put into one-to-one correspondence. Frege saw that this

idea of the correspondence of elements is basic also in the notion of equality

oi integers. Two finite sets are said to have the same cardinal number

—

that is. to be equal—if the elements in either class can be put into one-to-

one correspondence with the elements in the other. If, then, one were to

begin with an inital set, such as the set of fingers on the normal human
hand, and were to form the much more comprehensive set of all sets the

elements ot which can be put into one-to-one correspondence with the

elements ot the initial set, then this set of all such sets would constitute a

cardinal number, in this ease the number five. More generally, Frege's

definition ot the cardinal number of a given class, whether finite or infinite,

is the class o\ all classes that are similar to the given class (where by

similar one means that the elements of the two classes in question can
He placed in one-to-one correspondence).
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Frege's definition of cardinal number (amended later to avoid para-

doxes) appeared in 1884 in a well-known book, Die Grundlagen der Arith-

metik {The Foundations of Arithmetic), and from the definition he de-

rived the properties of the whole numbers that are familiar in grade school

arithmetic. During the succeeding years Frege amplified his views in the

two-volume Grundgesetze der Arithmetik {Basic Laws of Arithmetic), the

first volume of which appeared in 1893 and the second, ten years later.

Here the author undertook to derive the concepts of arithmetic from those

of formal logic, for he disagreed with the assertion of C. S. Peirce that

mathematics and logic are clearly distinct. Frege had been educated at the

universities of Jena and Gottingen, and he taught at Jena during a long

career. Nevertheless, his program did not meet with much response until

undertaken independently early in the twentieth century by Bertrand Rus-

sell, when it became one of the chief goals of mathematicians. Frege was

keenly disappointed by the poor reception of his work, but the fault lay

in part in the excessively novel and philosophical form in which the results

were cast. History shows that novelty in ideas is more readily accepted if

couched in relatively conventional form.

Italy had taken a somewhat less active part in the development of abstract

algebra than had France, Germany, and England, but during the closing

years of the nineteenth century there were Italian mathematicians who
took a deep interest in mathematical logic. Best known of these was Giu-

seppe Peano (1858-1932), whose name is recalled today in connection with

the Peano axioms upon which so many rigorous constructions of algebra

and analysis depend. His aim was similar to that of Frege, but it was at

the same time more ambitious and yet more down to earth. He hoped in

his Formulaire de mathematiques (1894 et seq.) to develop a formalized

language that should contain not only mathematical logic but all the most

important branches of mathematics. That his program attracted a large

circle of collaborators and disciples resulted in part from his avoidance of

metaphysical language and from his felicitous choice of symbols—such as

G (belongs to the class of), U (logical sum or union), n (logical product

or intersection), and D (contains)—many of which are used even today.

For his foundations of arithmetic he chose three primitive concepts: zero,

number (that is, nonnegative whole number), and the relationship "is the

successor of," satisfying five postulates:

1. Zero is a number.

2. If a is a number, the successor of a is a number.

3. Zero is not the successor of a number.

4. Two numbers of which the successors are equal are themselves equal.

5. If a set S of numbers contains zero and also the successor of every

number in S, then every number is in S.
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The last requirement is, of eourse, the axiom of induction. The Peano

axioms, first formulated in 1889 in Arithmetices principia nova methodo

cxposua. represent the most striking attempt of the century to reduce

common arithmetic, hence ultimately most of mathematics, to the stark

essentials of formal symbolism. (He expressed the postulates in symbols,

rather than in the words that we have used.) Here the postulational method

attained a new height of precision, with no ambiguity of meaning and no

concealed assumptions. Peano also spent much effort in the development

of symbolic logic, a favorite pursuit of the twentieth century.

A further contribution by Peano to mathematics should perhaps be

mentioned, inasmuch as it represented one of the disquieting discoveries

of the time. The nineteenth century had opened with a recognition that

curves and functions need not be of the well-behaved type that had thereto-

fore preempted the field, and Peano in 1890 showed how thoroughly math-

ematics could outrage common sense when he constructed continuous space-

filling curves, that is, curves given by parametric equations x = /(f), y -

g(t), where / and g are continuous real functions in the interval < t
<

1, the points of which completely fill the unit square < x < 1, < y <
1. This paradox, of course, is all of a piece with Cantor's discovery that

there are no more points in a unit square than in a unit line segment, and

it was among the factors that caused the following century to devote much
more attention to the basic structure of mathematics. Peano himself, how-

ever, in 1903 was distracted by his invention of the international language

which he called "Interlingua" or ''Latino sine flexione," with vocabulary

drawn from Latin, French, English, and German. This movement turned

out to be far more ephemeral than his axiomatic structure in arithmetic.

In retrospect we can admire the nineteenth century as a period of un-

paralleled achievement, whether in geometry, analysis, or algebra. In ex-

tent, imagination, rigor, abstraction, and generality no previous century

could compare with it. Nevertheless, despite the rapid advance and the

definitive formulations, there was little feeling that mathematical devel-

opments were destined to slow down. The fin de siecle pessimism that

Lagrange had expressed at the close of the eighteenth century was con-

spicuously absent at the end of the nineteenth. The Victorian Era exuded

nothing but optimism, as far as mathematics was concerned. In the con-

cluding chapters we shall point to a few of the respects in which this

sanguine expectation was amply fulfilled—but not before serious mistrust

had assailed the serenity of mathematicians during the early years of the

neu century. Paradox was to follow paradox until the twentieth century

resembled more a period of great doubts than one of great expectations.

Fortunately, the principle of challenge and response seems to have operated;

in mathematical achievements already recorded, this century easily leads all

the rest.
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Poincare and Hilbert

It is the simple hypotheses of which one must be most wary; because these are the

ones that have the most chances of passing unnoticed.

Poincare

TURN-OF-THE-CENTURY OVERVIEW

By the end of the nineteenth century it was clear that not only the content

of mathematics but its institutional and interpersonal framework had changed

radically since the early 1800s. In addition to the growth of mathematical

journals and academic departments during the century, and the traditional

individual communication among mathematicians of different countries,

the exchange of mathematical ideas was furthered greatly by the estab-

lishment of national mathematical societies and international meetings of

mathematicians. The London Mathematical Society, founded in 1865, and

the Societe Mathematique de France, established in 1872, led the way.

They were followed in the 1880s by the Edinburgh Mathematical Society

in Scotland, the Circolo Matematico Palermo in Italy, and the New York

Mathematical Society, soon renamed the American Mathematical Society.

The Deutsche Mathematiker-Vereinigung followed in 1890. Each of these

groups held regular meetings and issued periodical publications. An In-

ternational Congress of Mathematicians was first held in Chicago in 1893,

in conjunction with the Columbian Exposition. This was followed in 1897

by the first of a series of "official" congresses of mathematicians held every

599
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tour years except for disruption by the two world wars and the "cold" war.

The first of these took place in Zurich; in the 1980s there was one in

MOSCOW and one in Berkeley, California (1986).

POINCARE

The increased number of individuals occupied with mathematical research

and teaching would suggest that one could no longer single out a few

dominant figures as representing the state of the art in a given period, and

that no one person could find a clear path through the enlarged and in-

tergrown mathematical landscape. Indeed, when Gauss died in 1855, it

was generally thought that there never again would be a universalist in

mathematics—one who is at home in all branches, pure and applied. If

anyone has since proved this view wrong, it is Poincare, for he took all

mathematics as his province. In several respects, however, Poincare dif-

fered fundamentally from Gauss. Gauss had been a calculating prodigy

who throughout his life did not flinch from involved computations, whereas

Poincare was not especially early in showing mathematical promise and

readily admitted that he had difficulty with simple arithmetic calculations.

Poincare's case shows that to be a great mathematician one need not excel

in number facility; there are other, more advantageous aspects of innate

mathematical ability. Also, whereas Gauss wrote relatively little, polishing

his works, Poincare wrote hastily and extensively, publishing more memoirs

per year than any other mathematician. Moreover, Poincare, especially in

later life, wrote popular books with a philosophical flair, something that

had not tempted Gauss. On the other hand, similarities between Poincare

and Gauss are numerous and fundamental. Both so teemed with ideas that

it was difficult for them to jot the thoughts down on paper, both had a

strong preference for general theorems over specific cases, and both con-

tributed to a wide variety of branches of science.

Poincare was born at Nancy, a city that was to harbor quite a number
of leading mathematicians in the twentieth century. The family achieved

eminence in various ways; his cousin Raymond served as president of

France during World War I. Henri was clumsily ambidextrous, and his

ineptitude in physical exercise was legendary. He had poor eyesight and
was very absentminded; but, like Euler and Gauss, he had a remarkable
capacity for mental exercises in all aspects of mathematical thought. Upon
graduating from the Ecole Polytechnique in 1875, he took a degree in

mining engineering in 1879 and became attached to the Department of

Mines for the rest of his life. In 1879 he earned also a doctorate in science

at the University of Paris, where, until his death in 1912, he held several

professorships in mathematics and science.
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Poincare's doctoral thesis had been on differential equations (not on

methods of solution, but on existence theorems), which led to one of his

most celebrated contributions to mathematics—the properties of auto-

morphic functions; in fact, he was the virtual founder of the theory of these

functions. An automorphic function /(z) of the complex variable z is one

which is analytic, except for poles, in a domain D and which is invariant

under a denumerably infinite group of linear fractional transformations

az + b
z = >

cz + d

Such functions are generalizations of trigonometric functions (as we see if

a = 1 = d, c = 0, and b is of the form 2lcn) and of elliptic functions.

Hermite had studied such transformations for the restricted case in which

the coefficients a, b, c, and d are integers for which ad - be = 1 and had

discovered a class of elliptic modular functions invariant under these. But

Poincare's generalizations disclosed a broader category of functions, known
as zeta-Fuchsian functions, which, Poincare showed, could be used to solve

the second-order linear differential equation with algebraic coefficients.

This was only the beginning of many important contributions by Poincare

to the theory of differential equations. The subject runs like a red thread

through most of his work. In a synopsis of his own work he commented
that analysts had faced three major problems since the establishment of

the calculus: the solution of algebraic equations; the integration of algebraic

differentials; and the integration of differential equations. He observed that

in all three cases history had shown that success lay not in the traditional

attempts at reduction to a simpler problem but in a head-on attack on the

nature of the solution. This had been the key to the algebraic problem

provided by Galois. In the second case, the attack on algebraic differentials,

successes had been achieved for several decades by those who no longer

attempted a reduction to elementary functions but utilized the new tran-

scendental functions. Poncare had been certain that a similar approach

would aid with the previously intractable problems in the solution of dif-

ferential equations.

As noted above, the outlook was already present in his doctoral thesis.

It had been entitled "On the Properties of Functions Defined by Partial

Differential Equations." He tackled the major problem in a series of papers

published in the early 1880s in which he set out to provide a qualitative

description of solutions. He first attacked the general equation dx/f(x, y)
= dy/g(x, y), where /and g are real polynomials. To handle the problem

of infinite branches, he projected the jcy-plane onto a sphere. He now
examined his equation paying special attention to the points at which both

polynomials vanish. Utilizing the classification by Briot and Bouquet, based

on Cauchy, of such singularities into nodes, saddle points, foci, and centers,
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he M as ibk to establish general properties of the solutions which depended

purcK on the presence or absence of a specific type of singularity. For

example, he established that the traditional solution of the type T(x,

v ) = ( (with / analytic and C constant) occurs only if there are no nodes

or foci. In the third of the four papers containing this theory, Poincare

extended his analysis to higher-degree equations of the form F(x, y, y')

<>. / being a polynomial. He approached such equations by considering

the surface defined by F(x, y, y ) = 0. Letting the genus of the surface

be p. the number of foci be F, of nodes /V, and of saddle points S, Poincare

showed that

N + F-S = 2-2p.

After exploring the ramifications of this and of other results, Poincare

proceeded to the study of equations of higher order. Though not able to

establish as comprehensive a set of results as he had for dimenison two,

he generalized the new technique utilizing hypersurfaces and firmed up

relationships between the singularities and the Betti number of the hy-

persurface.

Among many other results in the study of differential equations we cite

only a few. One of his earliest pertains to linear equations and the neigh-

borhood of an irregular singularity; here he provided a path-breaking ex-

ample of expanding solutions into asymptotic series. In 1884 he turned to

the study of first-order differential equations with fixed singularities in the

complex domain. Picard utilized this work in his study of second-order

equations. Poincare's work here is also at the basis of Paul Painleve's (1863—

1933) profound investigations of nonlinear second-order equations with or

without (movable) singularities. Poincare's subsequent work in ordinary

and partial differential equations related mostly to physical applications,

especially in celestial mechanics and the Ai-body problem.

MATHEMATICAL PHYSICS AND OTHER APPLICATIONS

Poincare did not stay in any field long enough to round out his work. A
contemporary said of him, "He was a conqueror, not a colonist. " In his

teaching at the Sorbonne he would lecture on a different topic each school

year

—

capillarity, elasticity, thermodynamics, optics, electricity, telegra-

phs, cosmogony, and others; the presentation was such that in many cases

the lectures appeared in print shortly after they had been delivered. In

astronomy alone he published half a dozen volumes

—

Les methodes nou-

\ flics dc la micanique celeste (3 vols., 1892-1899) and Lecons de mecanique

C&este (3 vols., 1905-1910)—being in this respect a worthy successor of

Laplace. Especially important were the methods he used to attack the

three-bod) problem and its generalizations. Significant also for cosmogony
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was a memoir of 1885 in which he showed that a pear shape can be a figure

of relative equilibrium assumed by a homogeneous fluid subject to New-

tonian gravitation and rotating uniformly about an axis, and the question

of a pear-shaped earth has continued to interest geodesists to our day. Sir

George H. Darwin (1845-1912), son of Charles Darwin (1809-1882), wrote

in 1909 that Poincare's celestial mechanics would be a vast mine for re-

searchers for half a century.

It is interesting that Poincare, like Laplace, also wrote extensively on

probability. In some respects his work is only a natural continuation of

that of Laplace and the analysts of the nineteenth century; but Poincare

was Janus-faced and to some extent anticipated the great interest in to-

pology that was to be so characteristic of the twentieth century. Topology

was not the invention of any one man. Some topological problems are

found in the work of Euler, Mobius, and Cantor, and even the word

"topology" had been used in 1847 by J. B. Listing (1808-1882) in the title

of a book, Vorstudien zur Topologie (Introductory Studies in Topology).

But as a date for the beginning of the subject none is more appropriate

than 1895, the year in which Poincare published his Analysis situs. This

book for the first time provided a systematic development.

TOPOLOGY

Topology is now a broad and fundamental branch of mathematics, with

many aspects; but it can be subdivided into two fairly distinct subbranches:

combinatorial topology and point-set topology. Poincare had little enthu-

siasm for the latter, and when in 1908 he addressed the International

Mathematical Congress at Rome, he referred to Cantor's Mengenlehre as

a disease from which later generations would regard themselves as having

recovered. Combinatorial topology, or analysis situs, as it was then gen-

erally called, is the study of intrinsic qualitative aspects of spatial config-

urations that remain invariant under continuous one-to-one transforma-

tions. It is often referred to popularly as "rubber-sheet geometry," for

deformations of, say, a balloon, without puncturing or tearing it, are in-

stances of topological transformations. A circle, for example, is topolog-

ically equivalent to an ellipse; the dimensionality of a space is a topological

invariant, as is also the Descartes-Euler number NQ
- N

{
+ N2 for simple

polyhedra. Among Poincare's original contributions to topology was a

generalization of the Descartes-Euler polyhedral formula for spaces of

higher dimensionality, making use of what he called "Betti numbers," in

honor of Enrico Betti (1823-1892), who had taught at the University of

Pisa and had noted some of the properties of these topological invariants.

Most of topology, nevertheless, deals with qualitative rather than quan-

titative aspects of mathematics, and in this respect it typifies a sharp break
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bom the stvies prevailing in nineteenth-century analysis. Poincare's atten-

tion teems to have been directed toward analysis situs by attempts at

qualitative integrations of differential equations. Poincare, like Riemann,

was especially adept at handling problems of a topological nature, such as

finding out the properties of a function without worrying about its formal

representation in the classical sense, for these men were intuitionists with

sound judgment. Had Poincare's interests in topology continued, he might

have anticipated more of this branch of mathematics, one of the most

favored and most fruitful lines of research in the twentieth century. His

restless mind, however, was occupied with everything that was happening

in physics and mathematics at the turn of the century, from Hertzian waves

and X-rays to quantum theory and the theory of relativity.

Poincare stated that practically every problem he touched led him to

analysis situs. We have seen an example in his attack on differential equa-

tions. In the decade surrounding the turn of the century he published a

series of papers on the subject. These became the basis of twentieth-century

combinatorial, or algebraic, topology. Here he elaborated on the concepts

derived from Riemann and Betti that we encountered in his work on

differential equations: treating a figure as an Ai-dimensional manifold and

considering the order of connectedness. He set forth the fundamental def-

initions and theorems of simplicial homology theory; he established the

relationship between the fundamental group of a manifold and the first

Betti number; he also pointed to further relationships involving the Betti

numbers. These papers contained theorems and conjectures which led to

many of the subsequent explorations of twentieth-century topologists.

OTHER FIELDS AND LEGACY

Of his many other contributions to mathematics we only mention additional

work in function theory, including Abelian functions; substantive work on
Lie groups and related problems in algebra; and influential nontechnical

writings—some polemical—on mathematics and the philosophy of math-

ematics.

As an instance of Poincare's many-sidedness, it is to him that we owe
a suggestive model of Lobachevskian geometry within a Euclidean frame-

work. Suppose that a world is bounded by a large sphere of radius R and
the absolute temperature at a point within the sphere is R 2 - r

2
,
where r

is the distance from the center of the sphere; suppose also that the index

of retraction of the pellucid medium is inversely proportional to R 2 - r
2

.

Moreover, assume that the dimensions of objects change from point to

point, being proportional to the temperature at any given place. To in-

habitants of such a world, the universe would appear to be infinite; and
rays of light, or "straight lines/' would not be rectilinear, but would be

circles orthogonal to the limiting sphere and would appear to be infinite.
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"Planes" would be spheres orthogonal to the limiting sphere, and two such

non-Euclidean "planes" would intersect in a non-Euclidean "line." The

axioms of Euclid would hold, with the exception of the parallel postulate.

In addition to his universality, the powerful new tools he developed,

and the results he obtained, Poincare's importance for the twentieth cen-

tury lies in the "unfinished" but very open nature of many of his memoirs.

An example is a famous paper he wrote on number theory. Published in

1901, this dealt with the study of diophantine equations. In the direction

established twenty years before by Dedekind and Weber, this subject was

now approached through the birational theory of algebraic curves. In other

words, given a curve /(*, y) = with rational coefficients, one wishes to

find points with rational coordinates lying on the curve. Poincare again

examined the genus of the curve, especially for the case p = 1. Utilizing

a technique made popular by Clebsch, he used elliptic functions for a

parametric representation of the curve and noted that the rational points

on the Jacobian form a subgroup; its rank is what he called the rank of

the curve. This paper has led to several important studies. A 1917 paper

by Hurwitz was followed by Mordell in 1922; Mordell proved that the rank

of the subgroup is finite. Andre Weil in 1928 extended this result to arbitrary

p. Echoing Fermat, Mordell and Weil used a "method of infinite descent"

based on the bisection of the elliptic functions, which Poincare may have

suggested in related trisections. The subsequent history of the Mordell

conjecture and other expansions of these ideas belongs to contemporary

mathematics; we note the 1901 paper simply as an example of the tre-

mendously suggestive nature of Poincare's publications.

On the day Poincare died, Paul Painleve issued a brief tribute. He ended

it by stressing Poincare's intellectual sincerity. In particular, he linked to

this quality Poincare's willingness to issue partial results when he felt there

was no time or little chance that he could bring a problem to a complete

solution. As an example, Painleve quoted from Poincare's last publication

in which Poincare had justified his presenting partial results. After noting

that there seemed little chance he might take the problem up again in the

future, Poincare had written:

The importance of the subject is too great and the collection of results

obtained too considerable already for me to resign myself to leave them
definitely barren. I can hope that geometers who will interest themselves in

this problem, and who will be undoubtedly more fortunate than I, can turn

this to good use and have it serve them to find the direction they must take.

HILBERT

David Hilbert (1862-1943), like Immanuel Kant (1724-1804), had been
born at Konigsberg in East Prussia, but unlike Kant he traveled widely,



606 POINCARE AND HILBERT

especial!) U) Attend the international congresses of mathematicians that

have become so characteristic o\ this century. Except for a semester spent

at the University of Heidelberg, where he studied under the analyst Lazarus

\-uchs ( 1833 -1902), Hilbert obtained his mathematical training at the Uni-

\crsit\ of Ktaigsberg. The main professor for mathematics there was Hein-

nch Weber (1842-1913), who had been encouraged to turn to the study

of abstract concepts in algebra and number theory by Dedekind. Weber
presented some of the first abstract definitions for groups and fields in the

- and 1890s, was author of a well-known and influential three-volume

textbook of algebra, and coauthor, with Dedekind, of the important paper

on algebraic functions mentioned in the last chapter. In 1883, Weber left

Konigsberg. His successor, F. Lindemann, had just published his proof of

the transcendence of it. Lindemann suggested to Hilbert his doctoral thesis

topic in invariant theory and encouraged Hilbert's early work in this field.

Hilberts interest in invariants was further stimulated by two men closer

to his own age, of whom he saw a great deal in the 1880s. They were Adolf

Hurwitz (1859-1919), who had studied with Felix Klein and joined Lin-

demann on the Konigsberg faculty in 1884, and Hermann Minkowski (1864-

1909), who, although still a student, in April 1893 won the ''Grand Prix

des Sciences Mathematiques" awarded by the Paris Academy of Sciences

for his essay on the decomposition of integers into the sum of five squares.

Hurwitz's early work dealt with number-theoretic and geometric questions.

Most of the research he did in Konigsberg applied Riemannian function-

theoretic methods to problems in algebra, specifically algebraic functions.

He left Konigsberg for Zurich in 1892 where he spent the rest of his life,

making important contributions to the theory of algebraic numbers and
number fields. Minkowski obtained his doctorate in July 1885, a few months
after Hilbert. His thesis dealt with investigations of quadratic forms utilizing

methods introduced by Dirichlet. Hilbert was the "opponent" in debating

the thesis with Minkowski at the latter's public promotion. As will be seen,

Minkowski and Hilbert remained close friends.

INVARIANT THEORY

Hilbert worked predominantly in invariant theory until 1892; his most
important contributions to that subject were published in 1890 and 1893.

To understand their place in the history of invariant theory it is useful to

follow Hilbert's own account of that theory prepared for the International

Mathematical Congress in Chicago in 1893.

1 or three decades after Boole, Cayley, and Sylvester's early work on
invariant theory, much time was spent on computing specific invariants.

Aside from the English mathematicians previously mentioned, leading con-

tributors to this activity were Clebsch and Siegfried Heinrich Aronhold
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(1819-1884), who discovered invariants for ternary cubic forms and estab-

lished a "symbolic" method for computing. To systematize this work it

was proposed to find a complete system, or basis, of invariants; that is,

given a form of x of degree n, to find the smallest number of rational

integral invariants and covariants so that any other rational integral in-

variant or covariant could be expressed as a rational integral form with

numerical coefficients of the complete set. Paul Gordan (1837-1912), pro-

fessor of mathematics at the University of Erlangen, proved the existence

of a finite complete set for binary forms. He showed that every binary form

has a finite complete system of invariants and covariants and that any finite

system of binary forms has such a system. Gordan's proof was cumbersome
but showed how the complete system could be computed; Franz Mertens

(1840-1927) in 1886 provided a more streamlined inductive proof, which

did not exhibit the system. Hilbert's famous result of 1888, known as his

"basis theorem/' was far more general. It was published as theorem I of

a paper "On the Theory of Algebraic Forms" in the Mathematische Annalen

in 1890. As was customary, Hilbert defined an algebraic form as an integral

rational homogeneous function in certain variables whose coefficients are

numbers in a certain "domain of rationality." The theorem states that for

any infinite sequence S = F\, F2 , F3 , . . . of forms in n variables x
{ , jc2 ,

. . . , xn there exists a number m such that any form of that sequence can

be expressed as

F= A
X
F

X
+ A 2F2 + • • -AmFm ,

where the A
t
are forms in the sme n variables. Hilbert applied this result to

the proof for the existence of a finite full system of invariants for systems

of forms in arbitrarily many variables. In a subsequent influential paper,

published in 1893, "On a Full System of Invariants" Hilbert developed his

new methods for attacking problems in invariant theory. He stressed that his

approach was fundamentally different from that of his predecessors because

he treated the theory of algebraic invariants as part of the general theory of

algebraic function fields.

HILBERT'S ZAHLBERICHT

The three-year period 1892-1895 brought major changes in Hilbert's life.

He had begun his academic career as a Privatdozent in Konigsberg in 1886,

having spent the year after his doctorate on a study trip, spent partly in

Leipzig to visit Felix Klein, partly in Paris to meet Charles Hermite. In

1892 he became Hurwitz's successor as an associate ("extraordinary") pro-

fessor in Konigsberg; he married the same year. Already the next year,

upon Lindemann's departure for Munich, Hilbert was made a full ("or-
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dinars) professor. Yet he stayed in Konigsberg only until 1895; for in that

year Heinnch Weber, who had left Konigsberg for Gottingen twelve years

earlier, now followed a call to Strassburg. Felix Klein arranged to have

Hilbert succeed Weber at Gottingen, and since then his name has been

linked with that center of mathematical activity, where he resided for nearly

half a century.

At the 1893 meeting of the German Mathematical Society Hilbert and

Minkowski were asked to write a report on number theory for the Jahres-

bericht of that organization. The resulting work by Hilbert on "The

Theory of Algebraic Number Fields" became a classic; it is commonly

referred to as the "Zahlbericht." Minkowski, who was working on his

Geometry of Numbers at that time, withdrew from the project, although

he provided Hilbert with critical comments on his manuscript, as he did

with most of Hilbert's manuscripts up to his untimely death in 1909.

In the introduction to his "Zahlbericht," Hilbert expressed a point of

view that was to become typical of his work and his influence. It is char-

acterized by emphasis on the abstraction, arithmetization, and logical de-

velopment of mathematical concepts and theories. Noting that while num-
ber theory has the fewest prerequisites necessary for an understanding of

its truths, it had been blamed for requiring a high degree of abstraction to

fully master arithmetic concepts and proof techniques, Hilbert expressed

the opinion that all other branches of mathematics require at least an

equally high degree of abstraction, provided one subjects the foundation

of these branches to the same rigorous and complete study that is necessary.

Next, he stressed the interrelationship between number theory and algebra

as well as between number theory and function theory that had become
apparent during the nineteenth century. He saw the development in math-

ematics taking place in his lifetime as being guided by number: According

to Hilbert, Dedekind and Weierstrass' definition of arithmetic fundamental

concepts and Cantor's work led to an "arithmetization of function theory"

while modern investigations on non-Euclidean geometry with their concern

for a rigorous logical development and a clear introduction of the number
concept led to "arithmetization of geometry." In the body of the report

Hilbert attempted to present a logical theory of algebraic number fields.

He joined in his comprehensive treatment the work of his immediate pred-

ecessors and contemporaries, and also included his own results. Hilbert

contributed a few more papers to this subject in the 1890s; these are his

most mature efforts in the direction of obtaining a generalized law of

quadratic reciprocity over a variety of number fields. With one notable

exception, Hilbert produced no more new results in number theory after

the turn of the century; but until World War I he continued to supervise

doctoral dissertations on number theory, including those of R. Fueter

(1880-1950) and E. Hecke (1887-1947).
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THE FOUNDATIONS OF GEOMETRY

Hilbert, whose work tended to concentrate on one subject at a time, turned

to geometry after completion of the "Zahlbericht." In 1894 he had lectured

on non-Euclidean geometry and in 1898-1899 he presented a small but

celebrated volume entitled Grundlagen der Geometrie {Foundations of Ge-

ometry). This work, translated into the major languages, exerted a strong

influence on the mathematics of the twentieth century. Through the arith-

metization of analysis and the axioms of Peano, most of mathematics,

except for geometry, had achieved a strict axiomatic foundation. Geometry

in the nineteenth century had flourished as never before, but it was chiefly

in Hilbert's Grundlagen that an effort was first made to give it the purely

formal character found in algebra and analysis. Euclid's Elements did have

a deductive structure, to be sure, but it was replete with concealed as-

sumptions, meaningless definitions, and logical inadequacies. Hilbert

understood that not all terms in mathematics can be defined and, therefore,

began his treatment of geometry with three undefined objects—point, line,

and plane—and six undefined relations—being on, being in, being be-

tween, being congruent, being parallel, and being continuous. In place of

Euclid's five axioms (or common notions) and five postulates, Hilbert for-

mulated for his geometry a set of twenty-one assumptions, since known as

Hilbert 's axioms. Eight of these concern incidence and include Euclid's

first postulate, four are on order properties, five are on congruency, three

are on continuity (assumptions not explicitly mentioned by Euclid), and

one is a parallel postulate essentially equivalent to Euclid's fifth postulate.

Following the pioneer work by Hilbert, alternative sets of axioms have

been proposed by others; and the purely formal and deductive character

of geometry as well as of other branches of mathematics has been thor-

oughly established since the beginning of the twentieth century.

Hilbert, through his Grundlagen , became the leading exponent of an

"axiomatic school" of thought which has been influential in fashioning

contemporary attitudes in mathematics and mathematical education. The
Grundlagen opened with a motto taken from Kant: "All human knowledge

begins with intuitions, proceeds to concepts, and terminates in ideas," but

Hilbert's development of geometry established a decidedly anti-Kantian

view of the subject. It emphasized that the undefined terms in geometry

should not be assumed to have any properties beyond those indicated in

the axioms. The intuitive-empirical level of the older geometric views

must be disregarded, and points, lines, and planes are to be understood

merely as elements of certain given sets. Set theory, having taken over

algebra and analysis, now was invading geometry. Similarly, the undefined

relations are to be treated as abstractions indicating nothing more than a

correspondence or mapping.
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Like the major papers on algebra and number theory discussed above,

Hilbert*S research on the elements of geometry was partly instigated by

one of the mathematical meetings of the 1890s that he attended. In 1891

he had heard and been captivated by a talk that H. Wiener gave at a

scientific meeting in Halle on the possibility of axiomatizing the rules gov-

erning the unions and intersections of points and lines without regard to

the existing (Euclidean) axioms of geometry. Following this talk Hilbert

is reputed to have stated the need for the abstraction of familiar geometric

concepts in the form: "One must at all times be able to replace 'points,

lines, planes' by 'tables, chairs, beermugs.'
"

THE HILBERT PROBLEMS

Perhaps no contribution to an international congress has been as celebrated

as that which Hilbert made in his address to the second congress, held in

Paris in 1900. Hilbert's talk was entitled "Mathematical Problems." It

consisted of an introduction which has become a classic of mathematical

rhetoric, followed by a list of twenty-three problems designed to serve as

examples of the kind of problem whose treatment should lead to a fur-

thering of the discipline. In fact, on advice of Hurwitz and Minkowski,

Hilbert cut the spoken version of the talk so that it contained only ten of

the twenty-three problems. However, the complete version of the talk as

well as excerpts were soon translated and published in several countries.

For example, the 1902 volume of the Bulletin of the American Mathematical

Society carried an authorized translation by Mary Winston Newson (1869—

1959), a specialist in partial differential equations, who had been the first

American woman to obtain a Ph.D. degree in mathematics at Gottingen.

Although Hilbert objected to the view that the concepts of arithmetic

alone are susceptible of a fully rigorous treatment, he admitted that the

development of the arithmetic continuum by Cauchy, Bolzano, and Cantor

was one of the two most notable achievements of the nineteenth century

—

the other being the non-Euclidean geometry of Gauss, Bolyai, and Lo-

bachevsky—and thus the first of the twenty-three problems concerned the

structure of the real number continuum. The question is made up of two

related parts: (1) Is there a transfinite number between that of a denu-

merable set and the number of the continuum; and (2) can the numerical

continuum be considered a well-ordered set? The second part asks whether

the totality of all real numbers can be arranged in another manner so that

every partial assemblage will have a first element. This is closely related

with the axiom of choice named for the German mathematician Ernst

Zermelo (lo71-1956) who formulated it in 1904. Zermelo's axiom asserts

that, given any set of mutually exclusive nonempty sets, there exists at

least one set that contains one and only one element in common with each
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of the nonempty sets. As an illustration of a problem involving Zermelo's

axiom, consider the set of all real numbers n such that < n < 1; let us

call two of these real numbers equivalent if their difference is rational.

There obviously are infinitely many classes of equivalent real numbers. If

we form a set 5 made up of one number from each of these classes, is S

denumerable or nondenumerable? The axiom of choice, indispensable in

analysis, was in 1940 proved by Kurt Godel (1906-1978) to be consistent

with other axioms of set theory; but in 1963 it was demonstrated by Paul

Cohen (b. 1934) that the axiom of choice is independent of the other axioms

in a certain system of set theory, thus showing that the axiom cannot be

proved within this system. This seems to preclude a clear-cut solution to

Hilbert's first problem.

Hilbert's second problem, also suggested by the nineteenth-century age

of rigor, asked whether it can be proved that the axioms of arithmetic are

consistent—that a finite number of logical steps based upon them can never

lead to contradictory results. A decade later there appeared the first volume

of Principia mathematica (3 vols., 1910-1913), by Bertrand Russell and

Alfred North Whitehead (1861-1947), the most elaborate attempt up to

that time to develop the fundamental notions of arithmetic from a precise

set of axioms. This work, in the tradition of Leibniz, Boole, and Frege

and based on Peano's axioms, carried out in minute detail a program

intended to prove that all of pure mathematics can be derived from a small

number of fundamental logical principles. This would justify the view of

Russell, expressed earlier, that mathematics is indistinguishable from logic.

But the system of Russell and Whitehead, not entirely formalized, seems

to have met with more approval among logicians than among mathema-

ticians. Moreover, the Principia left unanswered the second query of Hil-

bert. Efforts to solve this problem led in 1931 to a surprising conclusion

on the part of a young Austrian mathematician, Kurt Godel. Godel showed

that within a rigidly logical system such as Russell and Whitehead had

developed for arithmetic, propositions can be formulated that are unde-

cidable or undemonstrable within the axioms of the system. That is, within

the system there exist certain clear-cut statements that can be neither

proved or disproved. Hence, one cannot, using the usual methods, be

certain that the axioms of arithmetic will not lead to contradictions. In a

sense Godel's theorem, sometimes regarded as the most decisive result in

mathematical logic, seems to dispose negatively of Hilbert's second query.

In its implications the discovery by Godel of undecidable propositions is

as disturbing as was the disclosure by Hippasus of incommensurable mag-

nitudes, for it appears to foredoom hope of mathematical certitude through

use of the obvious methods. Perhaps doomed also, as a result, is the ideal

of science—to devise a set of axioms from which all phenomena of the

natural world can be deduced. Nevertheless, mathematicians and scientists

alike have taken the blow in stride and have continued to pile theorem
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upon theorem .it a rate greater than ever before. Most assuredly no scholar

ot toda\ would echo the assertion of Babbage in 1813 that 'The golden

of mathematical literature is undoubtedly past."

I he problems raised by Godel's theorem have been approached from

outside arithmetic itself through a new aspect of mathematical logic that

rose toward the middle of the twentieth century and is known as meta-

matbematics. This is not concerned with the symbolism and operations of

arithmetic, but with the interpretation of these signs and rules. If arithmetic

cannot lift itself from the quagmire of possible inconsistency, perhaps me-

tamathematics, standing outside the arithmetic bog, can save the day by

other means—such as transfinite induction. Some mathematicians would

at least hope for a means of determining, for every mathematical propo-

sition, whether it is true, false, or undecidable. In any case, even the

discouragingly negative answer to Hilbert's second query has thus spurred,

rather than daunted, mathematical creativity.

The next three problems, Problems three, four, and five, were among
those omitted at the actual reading of the paper. Problem three was geo-

metric; it asks to give two tetrahedra of equal basis and equal height which

cannot be decomposed into congruent tetrahedra, either directly or by

adjoining congruent tetrahedra. As Hilbert noted, this problem goes back

to a question raised by Gauss in his correspondence. A negative answer

was provided by a student of Hilbert's, Max Dehn, in 1902, and clarified

by W. F. Kagan in 1903.

Problem four was formulated somewhat broadly; it asked for geometries

whose axioms are "closest" to those of Euclidean geometry if the axioms

of order and incidence are retained, but the congruence axioms are weak-

ened and the equivalent of the parallel axiom is omitted. The earliest

answer was provided in a doctoral dissertation of another Hilbert student,

G. Hamel.

The fifth problem was to prove more influential and difficult. It asked

whether one could avoid the assumption of differentiability for the functions

defining a continuous transformation group. This problem came to be

closely tied to the early history of topological groups. Lie's continuous

transformation groups were locally Euclidean with differentiable opera-

tions As the concept of a topological group was made the subject of special

studies, tirst by L. E. J. Brouwer (1882-1966), then by Pontrjagin (1908-

1960). the Hilbert problem was reformulated to apply to the larger realm
o! topological groups: Is a locally Euclidean topological group a Lie group?

The problem and related issues occupied numerous topologists until the

- In the 1930s John von Neumann solved it for bicompact groups; L.

s Pontrjagin, tor commutative locally bicompact groups. C. Chevalley

obtained the answer for solvable groups; in 1946 Malcev solved it for a

still wider set ot locally bicompact groups. By now, the problem had become
truly international. In 1952 three Americans, Andrew Gleason as well as
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Deane Montgomery and Leo Zippin, finally obtained the answer for all

locally bicompact groups.

The sixth problem asked for an axiomatization of physics, a subject to

which Hilbert himself devoted some effort. In Problem seven it is asked

whether the number a fi
, where a is algebraic (and not zero or one) and /?

is irrational and algebraic, is transcendental. In alternative geometric form,

Hilbert expressed this by asking whether in an isosceles triangle the ratio

of the base to a side is transcendental if the ratio of the vertex angle to

the base angles is algebraic and irrational.

This question was disposed of in 1934 when Aleksander Osipovich Gel-

fond (1906-1968) proved that Hilbert's conjecture, now known as Gel-

fond's theorem, was indeed correct

—

a? is transcendental if a is algebraical

and neither zero nor one, and /? is algebraic and not rational. However,

in mathematics an answer to one question merely raises others, and math-

ematicians are as yet unable to answer a question such as whether or not

ap is transcendental if a and ft are transcendental. It is not known, for

example, if e
e or n n or n e or the Eulerian constant y is transcendental. It

is, however, known that e
n

is transcendental, for e
n = l/e~ n = l//

2
' and

i
2

' is transcendental by Gelfond's theorem.

Hilbert's eighth query simply renewed the call, familiar in the nineteenth

century, for a proof of Riemann's conjecture that the zeros of the zeta

function, except for the negative-integral zeros, all have real part equal to

one half. A proof of this, he felt, might lead to a proof of the familiar

conjecture on the infinity of prime pairs; but no demonstration has yet

been given, although it is more than a century since Riemann hazarded

the guess.

These examples may suffice to indicate the diversity of formulation and

interest of the problems Hilbert chose; let us simply list the nature of the

remaining, which include some of the most intriguing and have involved

a large number of twentieth-century mathematicians:

The ninth problem called for generalizations of the reciprocity laws of

number theory. The tenth was the decision problem for solvability of Dio-

phantine equations. The eleventh called for extending results obtained for

quadratic fields to arbitrary algebraic fields. The twelfth asked for an ex-

tension of a theorem by Kronecker to arbitrary algebraic fields.

These number-theoretic problems were followed by the thirteenth, which

asked to show the impossibility of solving the general seventh-degree equa-

tion by functions of two variables; the fourteenth problem asked about the

finiteness of systems of relatively integral functions; the fifteenth asked for

a justification for Schubert's enumerative geometry.

The sixteenth problem was an invitation to develop a topology of real

algebraic curves and surfaces. The seventeenth asked for the representation

of definite forms by squares; the eighteenth posed the challenge to build

spaces with congruent polyhedra. The nineteenth deals with the analytic
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character of solutions of variational problems. Closely related to this was

the twentieth, concerned with general boundary problems. The twenty-

first, which Hilbert himself solved in 1905, asked for the solution of dif-

ferential equations with a given monodromy group. The twenty-second was

the uniformi/ation problem, and the final, twenty-third, problem asked for

an extension of the methods of the calculus of variations; in recent years

this has been tied to research in optimization questions.

HILBERT AND ANALYSIS

Hilbert's chief contributions to analysis fall in the period between 1900 and

World War I. They revolve primarily about the study of integral equations.

His contributions to this subject were preceded, however, by his "revival"

of the Dirichlet principle. As previously noted, the criticism of the Dirichlet

principle had been followed by only partially successful attempts to show

its validity. The last major effort in this direction had been published by

Poincare in 1890, in a paper containing his ingenious "sweeping-out" (ba-

layage) method, published in 1890. Hilbert proceeded to establish the

Dirichlet principle in its most general form by treating it as a problem in

the calculus of variations. First, he sketched a constructive proof of the

existence of minimal curves; then, he showed how the existence of a func-

tion minimizing the Dirichlet region for plane regions could be inferred.

This memoir was followed by a very readable Weierstrassian review of the

problem by the American W. F. Osgood the following year; in 1904 Hilbert

himself elaborated on his argument in a more detailed paper.

It was during this period, in 1901, that the subject of integral equations

captured Hilbert's attention. One of his Scandinavian students presented

a seminar report on work done in that field by his professor in Stockholm,

Ivar Fredholm (1866-1927). Hilbert's results, first published between 1904

and 1910, were collected in a book which appeared in 1912 and was de-

signed to present a systematic theory of linear integral equations. His work

was streamlined by Erhard Schmidt (1876-1959). What is interesting in

following Hilbert's progress of the subject is the interplay between his

often rough new approaches and refinements and generalizations brought

to bear b\ others. Indeed, the great value of this work nowadays lies in

the tact that from it came many of the twentieth century's most important

ideas basic to the study of abstract linear spaces and spectra.

WARING'S PROBLEM AND HILBERT'S WORK AFTER 1909

Perhaps as relief from his rather cumbersome work in integral equations,

Hilbert during this time returned to number theory and proved Waring's
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theorem that every positive integer can be represented as a sum of at most

m nth powers, m being a function of n. This triumph, tempered by the

unexpected death of his good friend Minkowski in 1909, marks the end of

the period during which Hilbert produced his most concentrated, purely

mathematical work.

Hilbert spent much of the next decade on mathematical physics. Until

the beginning of World War I he studied the application of integral equa-

tions to physical theories such as the kinetic theory of gases. With the

appearance of Einstein's general theory of relativity, Hilbert turned to that

subject, which also occupied his colleague Felix Klein. Interestingly, the

most lasting mathematical contribution out of this effort came from an

algebraist who had recently engaged in studies of differential invariants.

This was Emmy Noether (1888-1935), the daughter of the algebraic geo-

meter Max Noether, whom Hilbert and Klein brought to Gottingen to

assist them in this research. Her results were published in 1918; best known
is "Noether's Theorem," which is still referred to in the discussion of

correspondences between certain invariants and conservation laws.

Hilbert had initiated his studies in mathematical physics in the hope of

proceeding to the axiomatization for which he had called in 1900. He came
closest to this goal in his last work on physics dealing with quantum me-

chanics. Because Hilbert had begun to have serious health problems by

this time, this research was conducted in collaboration with two younger

men, L. Nordheim and J. von Neumann.
Hilbert's major results in his last great effort at the axiomatization of

arithmetic and logic have come to us in the form given to them by his

successors, too. They are contained in the comprehensive treatises Grund-
lagen der Mathematik and Grundziige der mathematischen Logik, better

known by the names of the coauthors as Hilbert-Bernays and Hilbert-

Ackermann.
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Aspects of the

Twentieth Century

The golden age of mathematics—that was not the age of Euclid, it is ours.

C. J. Keyser

GENERAL OVERVIEW

Much of twentieth-century mathematics has been characterized by trends

that were becoming noticeable toward the end of the nineteenth century.

These include the emphasis on common underlying structures that point

up correspondences among areas of mathematics that had been considered

unrelated until then. They also include the growing interaction among
mathematicians in different parts of the world. Despite major economic

and political differences, for the most part twentieth-century mathemati-

cians have had more awareness of the work of their colleagues on other

continents than their precursors had of results obtained by someone in a

neighboring province. By the end of World War I mathematicians from

Italy, the USSR, and the United States were part of the mathematical

mainstream that during the preceding two hundred years seemed to be

restricted to contributions from Western and Northern Europe. Since the

end of World War II the same has become true of numerous mathematical

communities in Asia and South America.
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The present century is no less immune to fashions and the dominance

of certain mathematical schools than previous periods in our history. This

is attributable to the state of research in a given mathematical area as well

as to the strength of individual contributors; but there are also external

factors such as developments in allied fields like physics, statistics, and

computer science, or economic and social pressures, which usually serve

to support applications.

INTEGRATION AND MEASURE

Toward the end of the nineteenth century the emphasis on rigor had led

numerous mathematicians to bring forth examples of "pathological" func-

tions which because of some unusual property violated a theorem previ-

ously held to be generally valid. There was concern among some distin-

guished analysts that a preoccupation with such special cases would divert

younger mathematicians from seeking answers to the major open questions

of the day. Hermite said that he turned away "with fright and horror from

this lamentable plague of functions which have no derivatives." Poincare

shared his teacher's concern:

Formerly, when one invented a new function it was in view of some practical

goal; today one invents them expressly to point out flaws in the reasoning

of our fathers and one will never derive anything from them but that [trans.

from quotation in Saks, 1964].

Yet through the study of unusual cases and the questioning of their elders,

two younger French mathematicians arrived at the definition of concepts

that were to be fundamental to the development of some of the most

general theories of twentieth-century mathematics. Henri Lebesgue (1875—

1941) had had the usual type of mathematical training, although he had

shown exceptional irreverence in questioning statements made by his pro-

fessors; but his dissertation, accepted at Nancy in 1902, was most unusual

in virtually remaking the field of integration. His work was so great a

departure from accepted views that Lebesgue, like Cantor, at first was

assailed both by external criticism and by internal self-doubt; but the value

of his views was increasingly recognized, and in 1910 he was appointed to

the Sorbonne. However, he did not create a ''school of thought, " nor did

he concentrate on the field that he had opened. Although his concept of

the integral was in itself a striking case of generalization, Lebesgue feared

that, "Reduced to general theories, mathematics would be a beautiful form

without content. It would quickly die." Later developments seem to in-

dicate that his fears concerning the baneful influence of generality in math-

ematics were without foundation.
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1 he Riemann integral had dominated studies in integration before Le-

besgue became the "Archimedes of the extension period/' But toward the

close of the nineteenth century studies in trigonometric series and the

Mengeniehre of Cantor had made mathematicians more keenly aware that

the essential idea in functionality should be a pointwise correspondence or

"mapping" in the newer sense, and not smoothness of variation. Cantor

had even struggled with notions of measurable sets, but under his definition

the measure of the union of two sets could be less than the sum of the

measures of the sets. Defects in Cantor's definition were removed by Emile

Borel (1S71-1956), the immediate predecessor of Lebesgue in studies on

measure theory. Borel, like Carnot, to some extent lived a double life, for

from a professorship at Paris he turned to active participation in govern-

mental affairs. From 1924 through 1936 he served in the Chamber of Dep-

uties, and, before his arrest in 1940 under the Vichy regime, he had been

minister of the navy. His record in mathematical publication before 1924

had been impressive, including more than half a dozen books. One of the

earlier volumes had been on an unusual theme: Leqons sur les series di-

vergentes (1901). Here the author showed how for some divergent series

a "sum'' can be defined that will make sense in relationships and operations

involving such series. For example, if the series is 2w„, then a "sum" can

be defined as /,* e~* 2J u nx
n
ln\ dx if this integral exists. During the first

decades of this century there was lively interest in such definitions; but

BoreLs more lasting influence was in the application of the theory of sets

to the theory of functions, where his name is recalled in the familiar Heine-

Borel theorem:

If a closed set of points on a line can be covered by a set of intervals so that

every point of the set is an interior point of at least one of the intervals, then

there exists a finite number of intervals with this covering property.

In somewhat different terminology this theorem had been expressed by

Heine in 1872, but it had been overlooked until reenunciated in 1895 by

Borel. BoreLs name is attached also to any set that can be obtained from

closed and open sets on the real line by repeated applications of the op-

erations of union and intersection to denumerable numbers of sets. Any
Borel set is a measurable set in his sense.

Lebesgue. pondering Borel's work on sets, saw that Riemann's definition

ot the integral has the drawback of applying only in exceptional cases, for

it assumes not more than a few points of discontinuity in the function. If

a function ) f(x ) has many points of discontinuity, then, as the interval

*,., - x, becomes smaller, values of /(*,,) and f(x,) do not necessarily

become closer together. Instead of subdividing the domain of the inde-

pendent variable, Lebesgue, therefore, subdivided the range / - / of the

function into subinter\als Ay, and within each subinterval selected a value
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rjj. Then, he found the ''measure" ra(£,) of the set E, of points on the x-

axis for which values of f(x) are approximately equal to n
t

. As Lebesgue

liked to express the difference informally, the earlier integrators had added

indivisibles, large or small, in order from left to right, whereas he preferred

to group together indivisibles of comparable size before adding. That is,

for the earlier Riemann sums S„ = 2 /(jc,)Ajc, he substituted the Lebesgue-

type sum Sn
= //,ra(£,) and then let the intervals tend toward zero.

The Lebesgue integral that we have here described very roughly is in

actuality defined far more precisely in terms of upper and lower bounds

and the Lebesgue measure of a set, an abstruse concept that cannot be

explained here, but an illustrative example may suggest how the Lebesgue

procedures operate. Let it be granted that the Lebesgue measure of all

rational numbers in the interval [0, 1] is zero and that the Lebesgue measure

of all irrational numbers in this interval is one; let the integral of f(x) be

required over this interval, where f(x) is zero for all rational values of x

and f(x) is one for all irrational values of x. Inasmuch as ra(£,) = for

all values of i except i = n, where rj n = 1, we have S„ = + + • •
•

+ n nm{En ) = 11 = 1; hence, the Lebesgue integral is 1. The Riemann
integral of the same function over the same interval does not, of course,

exist.

We have not defined the phrases "measure of a set" or "measurable

function" because this is not easily done in a few elementary words. More-

over, the word "measure" can take on various meanings. When Lebesgue

presented his new concept of the integral, he used the word in the specific

sense now known as the Lebesgue measure. This was an extension of

classical notions of length and area to sets more general than those asso-

ciated with the usual curves and surfaces. Today the word "measure" is

used more broadly still, a measure on a field R being simply a nonnegative

function ju with the property ju(UAj) = 2^(y4,) for every countable disjoint

class Aj contained in R. Not only does the new concept of integral cover

a wider class of functions than does that of Riemann, but the inverse

relationship between differentiation and integration (in Lebesgue's gen-

eralized sense) is subject to fewer exceptions. For example, if g(x) is

differentiate in [a, b] and if g'(x) = f(x) is bounded, then f(x) is Lebesgue

integrable andg(jc) - g(a) = L$
x

a f(t)dt, whereas with the same restrictions

on g(x) and g (x) the Riemann integral R fZ f(t)dt might not even exist.

Lebesgue's ideas date from the closing years of the nineteenth century,

but they became widely known through his two classic treatises: Leqons

sur les series trigonometriques (1903) and Leqons sur Vintegration et la

recherche des fonctions primitives (1904). The revolutionary views they

contained paved the way for further generalizations. Among these are the

Denjoy integral and the Haar integral, proposed by a Frenchman, Arnaud
Denjoy (1884-1974), and a Hungarian, Alfred Haar (1885-1933), respec-

tively. Another well-known integral of the twentieth century is the Le-
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besguc Stieltjes integral, a combination of the ideas of Lebesgue and the

Dutch analyst I J. Stieltjes (1856-1894). The work of these men and

others has so altered the concept of the integral, through generalization,

that it has been said that although integration is as old as the time of

Archimedes, "the theory oi integration was a creation of the twentieth

century." Word of the new theory spread. For example, N. N. Luzin(1883-

1950), who had spent the years 1912-1914 in Paris, introduced many of

the new ideas to Moscow upon his return.

FUNCTIONAL ANALYSIS AND GENERAL TOPOLOGY

The new theories of integration were closely allied with another pro-

nounced characteristic of the twentieth century: the rapid growth of point

set topology. Maurice Frechet (1878-1973) at the University of Paris, in

his doctoral dissertation of 1906, showed clearly that function theory no

longer could do without a very general view of set theory. What Frechet

had in mind were not necessarily sets of numbers, but sets of elements of

arbitrary nature, such as curves or points; upon such arbitrary sets he built

a 'functional calculus'" in which a functional operation is defined on a set

£ w hen to each element A of E there corresponds a numerically determined

\alue U(A). His interest was not in a particular instance of a set £, but

in those set-theoreticai results that are independent of the nature of the

set elements. In this very broad calculus the notion of limit is much broader

than limits as previously defined, the latter being included in the former

as special cases, just as the Lebesgue integral includes the integrals of

Riemann and Cauchy. Probably no aspect of twentieth-century mathe-

matics stands out more clearly than does the ever greater degree of gen-

eralization and abstraction. From the time of Hilbert and Frechet the

notions of abstract set and abstract space have been fundamental in re-

search.

It is interesting to note that Hilbert and Frechet came to their gener-

alizations of the concept of space from somewhat differing directions. Hil-

bert had become interested, as had Poincare, in the study of integral equa-

tions, especially through the work of Ivar Fredholm (1866-1927). In a

sense an integral equation can be considered an extension of a system of

n equations in // unknowns to a system of infinitely many equations in

infinitely main unknowns, a topic that had been touched upon, in the form

ot infinite determinants. b\ von Koch. As he worked in integral equations

from 1904 to 1910, Hilbert did not explicitly refer to infinite dimensional

spaces, but he did develop the concept of continuity of a function of in-

tiniteK man) variables. To what extent Hilbert formally constructed the

space that later was named for him may be a moot point, but the basic
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ideas were there, and their impact on the mathematical world was great.

His work on integral equations was soon extended to more general func-

tions and abstract spaces by Friedrich Riesz (1880-1956) and Ernst Fischer

(1875-1959). During the years that Hilbert was concerned with integral

equations, Hadamard was doing research in the calculus of variations, and

his protege Frechet consciously sought in 1906 to generalize the methods

in this field through what he called functional calculus. Whereas the or-

dinary calculus deals with functions, the functional calculus concerns func-

tional. Whereas a function is a correspondence between a set 5, of numbers

and another set S2 of numbers, a functional is a correspondence between

a class C, of functions and another class C2 of functions. Frechet formulated

generalized definitions, corresponding roughly to terms such as limit, de-

rivative, and continuity in the ordinary calculus, applicable to the function

spaces he thus created, to a considerable extent introducing a new vocab-

ulary for the new situation.

Topology is said by some to have begun with the analysis situs of Poin-

care; others claim that it dates from the set theory of Cantor, or perhaps

from the development of abstract spaces. Still others regard Brouwer as

the founder of topology, especially for his topological invariance theorems

of 1911 and for his fusion of the methods of Cantor with those of analysis

situs. At all events, with Brouwer there began the period of intensive

evolution of topology that has continued to the present day. During this

"golden age" of topology American mathematicians have been conspicuous

contributors. It has been said that "topology began as much geometry and

little algebra, but that now it is much algebra and little geometry." Whereas

once topology could be described as geometry without measurement, al-

gebraic topology came to dominate the field, a change that resulted largely

from leadership in the United States.

Weyl, lecturing on Riemann surfaces at Gottingen, also emphasized the

abstract nature of a surface, or a "two-dimensional manifold," as he pre-

ferred to call it. The concept of a manifold, he asserted, should not be tied

to a point space (in the usual geometric sense), but given broader meaning.

We merely begin with a collection of things called "points" (which can be

any objects whatsoever) and introduce a concept of continuity through

appropriate definition. The classical formulation of this view was given a

year later by Felix Hausdorff (1868-1942), the "high priest" of point set

topology.

The first portion of Hausdorff's Grundziige der Mengenlehre {Basic Fea-

tures of Set Theory) of 1914 is a systematic exposition of the characteristic

features of set theory, where the nature of elements is of no consequence;

only the relations among the elements are important. In the latter portion

of the book we find a clear-cut development of "Hausdorff topological

spaces" from a set of axioms. By a topological space the author understands

a set E of elements x and certain subsets 5 r known as neighborhoods of
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i [lie neighborhoods arc assumed to satisfy the following four "Hausdorff

axioms":

1 To each point x there corresponds at least one neighborhood U(x),

lid each neighborhood U(x) contains the point x.

I, It I { \ ) and V(x) are two neighborhoods of the same point jc, there

must exist a neighborhood W(x) that is a subset of both.

If the point y lies in l7(jc), there must exist a neighborhood U(y)

that is a subset of U(x).

4 For two different points x and y there are two neighborhoods U(x)

and U(y) with no points in common.

Neighborhoods as so defined permitted Hausdorff to introduce the concept

of continuity. Through additional axioms he developed the properties of

\arious more restricted spaces, such as the Euclidean plane.

If any one book marks the emergence of point set topology as a separate

discipline, it is HausdorrTs Grundziige. It is interesting to note that although

it was the arithmetization of analysis that began the train of thought that

led from Cantor to Hausdorff, in the end the concept of number is thor-

oughly submerged under a far more general point of view. Moreover,

although the word "point" is used in the title, the new subject has as little

to do with the points of ordinary geometry as with the numbers of common
arithmetic. Topology has emerged in the twentieth century as a subject

that unifies almost the whole of mathematics, somewhat as philosophy

seeks to coordinate all knowledge. Because of its primitiveness, topology

lies at the basis of a very large part of mathematics, providing it with an

unexpected cohesiveness.

ALGEBRA

The high degree of formal abstraction that had found its way into analysis,

geometry, and topology in the early twentieth century could not help but

Invade algebra. The result was a new type of algebra, sometimes inade-

quately described as "modern algebra," a product largely of the third

decade Ofl the century. It is indeed true that a gradual process of gener-

alization in algebra had developed during the nineteenth century, but in

the twentieth century the degree of abstraction took a sharp turn upward.

For example, in 1903, the American Leonard Eugene Dickson (1874-

1954). E. H. Moore's first student, published an axiomatic definition of a

linear associative algebra over an abstract field. Next, Dickson, J. H. M.
Wedderburn (1882-1948), who spent the year 1904-1905 in Chicago, and
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others published a series of papers dealing with various aspects of hyper-

complex number systems and finite algebras. The best known of these is

one by Wedderburn in which he abstracted his subject from dependence

on a specific number field, thereby taking it beyond the work done by

Frobenius, Molien, and Cartan on the Continent. Wedderburn here pre-

sented his influential structure theorems. These state the following:

1. Any algebra can be expressed as the sum of a nilpotent and a semi-

simple algebra.

2. Any semisimple algebra which is not simple is the direct sum of simple

algebras.

3. Any simple algebra is the direct product of a primitive algebra and

a simple matrix algebra.

Another paper of great influence in the trend to abstraction was Ernst

Steinitz's (1871-1928) work on the algebraic theory of fields, which ap-

peared in the winter 1909-1910 and had been motivated by Kurt Hensel's

work on /?-adic fields. Analogous work in ring theory was first undertaken

by A. Fraenkel, who had been a student of Hensel's. Following his work,

Emmy Noether, in 1921, transferred decomposition theorems for ideals in

algebraic number fields to those for ideals in arbitrary rings. On the basis

of this work, Wolfgang Krull published a series of papers on the algebraic

theory of rings in which he carried out the analogy to Steinitz's memoir
on fields. Noether and her students made other major contributions to ring

theory before she turned to a treatment of finite group representations

from an ideal-theoretic point of view. By now Noether's work and that of

her students overlapped with related work of Richard Brauer, Emil Artin

(1898-1962), B. L. van der Waerden, and Helmut Hasse. Simultaneously

Wedderburn and the American school continued their generalizations.

Against this background of increased activity in abstract ring theory and

hypercomplex systems theory, Artin published a generalization of the Wed-
derburn structure theorems to rings satisfying chain conditions. Chain con-

ditions had been used since the days of Holder and Dedekind but were

brought to the fore in the 1921 paper of Emmy Noether just mentioned.

Through Noether's influence, these algebraic notions were linked to to-

pology in the work of Heinz Hopf and Paul Alexandroff , both of whom
had obtained their topological orientation from L. E. J. Brouwer.

DIFFERENTIAL GEOMETRY AND TENSOR ANALYSIS

Early-twentieth-century differential geometry would make an interesting

case study for examining the impact of external forces on changing attitudes

toward a branch of mathematics. The joint papers of Ricci and Levi-Civita
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on Rica's absolute calculus provided a fitting summary of late-nineteenth-

centurj accomplishments in differential geometry. The subject had reached

I certain plateau: workers in the field made minor contributions, interesting

alternatives welC formulated, and complex computational results were

modified and simplified—yet altogether it was a field apparently doomed

to be of interest only to the specialist. This changed dramatically after the

announcement by Albert Einstein (1879-1955) of his theory of general

relativity. In 1915 he presented the discovery of his gravitational equations

h\ noting that it marked ik
a true triumph of the methods of the general

differential calculus founded by Gauss, Riemann, Christoffel, Ricci, . .
."

{Sitzungsbericht der Preussischen Akademie der Wissenschaften, 1915:778-

786 ) Interest in the general theory of relativity led to a spate of publications

designed to clarify or expand both the theory of general relativity and

differential geometry. In 1916 the German set theorist Gerhard Hessenberg

(1874-1925) had introduced the concept of a connection. Levi-Civita in-

troduced his concept of parallelism in 1917 and in the early 1920s lectured

at the University of Rome on the subject which he continued to call the

absolute differential calculus; he published a systematic exposition in 1923.

Just the year before, Dirk Struik (b. 1894), student and collaborator of

the Dutch differential geometer J. A. Schouten (1883-1971), had issued a

volume on the elements of multidimensional differential geometry; it was

followed in 1924 by a treatise on the Ricci calculus by Schouten himself.

Simultaneously a group of books by mathematicians and physicists ap-

peared that combined exposition of known principles with new contribu-

tions to the physical interpretation and the mathematical theory. Among
the best known of these works published between 1916 and 1925 were

those by the Americans G. D. Birkhoff and R. Carmichael, the Englishman

A. S. Eddington, and the Germans Max von Laue and Hermann Weyl.

Although some of these volumes were brilliant examples of exposition,

treating as clearly as possible a subject the mathematical basis of which

was wrapped up in a cumbersome theory, their very popularity among the

scientifically and philosophically oriented reading public did much to spread

the notion of the incomprehensibility of mathematics and mathematical

physics. For more than a generation, relatively few mathematicians were

av* are that the seeds of a new approach to differential geometry had already

been sown.

When Hermann Weyl (1885-1955) left his position as Privatdozent in

Gdttingen in 1913 to accept a professorship at the University of Zurich he

had just completed a period of immersion in the mathematics of Riemann.

In the v\ inter of 191 1-1912 he had lectured on Riemanns function theory;

his stated theme was to base Riemann's work not on "visualizable plau-

sibility" but on set-theoretically exact proofs meeting requirements of rigor.

I he outgrowth of this was Weyl's classic book on the concept of the Rie-

mann surface, completed in April 1913. New concepts and definitions, such
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as the introductory one of a complex manifold, made this small work basic

to much subsequent research on manifolds. Weyl spent more time on

Riemannian geometry after his move to Zurich and during World War I.

He explored the concept of a linear connection, thinking for some time

that linking this to the group of similitudes might result in a unified field

theory. A set of classical papers on the theory of linear representations of

Lie groups written in the mid- 1920s was partially an outgrowth of this work.

In the meantime, Elie Cartan (1869-1951), who had begun his career with

the study of Lie groups, revamped differential geometry.

Cartan, early in his research work, had developed the calculus of exterior

differential forms. He shaped it into a powerful tool which he applied to

differential geometry as well as many other areas of mathematics. In his

approach to differential geometry, he expanded the nineteenth-century

notion of a "moving frame" that had been utilized by Darboux, among
others. His main achievements were based on the use of two concepts he

fashioned: One was his definition of a connection, which was widely adopted

by differential geometers. The other was the notion of a symmetric Rie-

mann space. In such a space each point is assumed to be surrounded by a

"symmetry," that is, a certain distance-preserving transformation that leaves

the point fixed. Cartan had earlier succeeded in classifying simple real Lie

algebras and in determining the irreducible linear representations of simple

Lie algebras. It turns out that the classification of simple Lie groups can

be applied to the description of symmetric Riemann spaces.

Among Cartan's contribution to other areas of mathematics we note

only his important work in the theory of differential systems. Here, too,

he was able to abstract the traditional problem from choice of variables

or functions, by defining a truly "general" solution of an abstract system.

He then turned his attention to seeking all singular solutions; this work
was completed by Kuranishi four years after Cartan's death.

THE 1930S AND WORLD WAR II

The rise to power of Hitler and the National Socialist Party in Germany
precipitated a catastrophe that soon affected mathematical institutions

around the world. In the spring of 1933 numerous professors were dismissed

from German universities. This and the subsequent more serious actions

taken against individuals of Jewish background or opposing political beliefs

resulted in a vast migration of scholars from Germany or German-occupied

countries, as well as in the death of many who remained. Among those

who came to the United States were Hermann Weyl and also the algebraists

Emil Artin, Richard Brauer and Emmy Noether; the analysts Richard

Courant and Jacques Hadamard; the probability specialist William Feller;

the statistician Jerzy Neyman; the logicians Kurt Godel and Alfred Tarski;

the historian of mathematics Otto Neugebauer, to name but a few.
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Ihe relocation ol so many mathematicians resulted in the infusion of

new ideas in main mathematical centers. Mathematicians were equally

challenged by the new problems they confronted in World War II. Espe-

cially important at that time were the needs in applied mathematics. Table

computations and the methodology of operations research are but two

examples of areas that redirected the attention of many mathematicians

trained in entirely different fields.

PROBABILITY

If mathematics changed form between the wars, it is equally true that much
of the mathematics following World War II represented a radically new

departure heralding a new era. Set theory and measure theory throughout

the twentieth century have invaded an ever widening portion of mathe-

matics, and few branches have been as thoroughly influenced by the trend

as has the theory of probability, to which Borel had contributed his Ele-

ments de la theorie des probabilites (1909). The opening year of the new
century was auspicious for probability both in physics and in genetics, for

in 1901 Gibbs published his Elementary Principles in Statistical Mechanics,

and in the same year the Biometrika was founded by Karl Pearson (1857—

1936). Francis Galton (1822-1911), precocious cousin of Charles Darwin

and a born statistician, had studied regression phenomena; in 1900 Pearson,

Galton Professor of Eugenics at the University of London, had popularized

the chi-square test. One of Poincare's titles had been "Professor of the

Calculus of Probabilities," indicating the rising interest in the subject.

In Russia the study of linked chains of events was initiated, especially

in 1906-1907, by Andrei Andreyevich Markov (or Markoff, 1856-1922),

student of Tchebycheff and coeditor of his teacher's Oeuvres (2 vols. , 1899-

1904). In the kinetic theory of gases and in many social and biological

phenomena the probability of an event depends often on preceding out-

comes, and especially since the middle of the twentieth century Markov
chains of linked probabilities have been widely studied. As mathematical

foundations for the expanding theory of probability were sought, statisti-

cians found the appropriate tool at hand, and today no rigorous presenta-

tion of probability theory is possible without using the notions of measura-

ble functions and modern theories of integration. In Russia, for example,

Andrei Nicolaevich Kolmogoroff (1903-1987) made important advances in

Markov processes ( 1931) and satisfied in part Hilberfs sixth project, calling

tor axiomatic foundations of probability, through the use of Lebesgue

measure theory Classical analysis had been concerned with continuous

functions, whereas probability problems generally involve discrete cases.

Measure theory and the extensions of the integration concept were ideally

suited to bring about a closer association of analysis and probability, espe-

cially after the middle of the century when Laurent Schwartz (b. 1915) of
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the University of Paris generalized the concept of differentiation through

the theory of distributions (1950-1951).

The Dirac delta function of atomic physics had shown that the patho-

logical functions that long had occupied mathematicians were useful also

in science. In the more difficult cases, however, differentiability breaks

down, with resulting problems in the solution of differential equations

—

one of the chief connecting links between mathematics and physics—es-

pecially where singular solutions are involved. To surmount this difficulty

Schwartz introduced a broader view of differentiability, one made possible

by the development, in the first half of the century, of general vector spaces

by Banach, Frechet, and others. A linear vector space is a set of elements

a, b, c, . . . satisfying certain conditions, including especially the require-

ment that if a and b are elements of L, and if a and p are complex numbers,

then aa + fib is an element of L. If the elements of L are functions, the

linear vector space is called a linear space, and a mapping of this case is

called a linear functional. By a "distribution" Schwartz meant a linear and

continuous functional on the space of functions that are differentiate and

satisfy certain other conditions. The Dirac measure, for example, is a

special case of a distribution. Schwartz then developed an appropriate def-

inition of the derivative of a distribution such that the derivative of a distri-

bution always is itself a distribution. This provides a powerful general-

ization of the calculus, with immediate applications to probability theory

and physics. Functional analysis, essentially a generalization of the calculus

of variations, and the theory of distributions have also been important

topics of mathematical research since the middle of the century.

HOMOLOGICAL ALGEBRA AND CATEGORY THEORY

The fundamental concepts of modern (or abstract) algebra, topology, and

vector spaces were laid down between 1920 and 1940, but the next score

of years saw a veritable upheaval in methods of algebraic topology that

carried over into algebra and analysis. The result was a new subject known
as homological algebra, the first book on which, by Henri Cartan (b.1904)

and Samuel Eilenberg (b.1913), appeared in 1955, to be followed in the

next dozen years by several other monographs, including Saunders Mac
Lane's Homology. Homological algebra is a development of abstract al-

gebra concerned with results valid for many different kinds of spaces—an

invasion of algebraic topology in the domain of pure algebra. The rapidity

with which this general and powerful cross between abstract algebra and

algebraic topology has grown is apparent in the swift increase in the number
of articles on homological algebra listed in Mathematical Reviews. More-

over, so widely applicable are results in the field that the older labels of

algebra, analysis, and geometry scarcely fit the results of recent research.

Never before has mathematics been so thoroughly unified as in our day.
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Symptomatic of this trend was the introduction in 1942 by Eilenberg

Uld Mac Lane of the notions of functor and category. In the words of

Eilenberg:

\ category A has "objects" A, B, C, and so on, and arrows A —> B, C -%

/). and so on. Two consecutive arrows, A —> B -^ C, may be composed to

give A -5 C. This composition is associative. Each object A has an identity,

that is. an arrow A —^-* A, which, when composed with any other arrow,

docs not change it. Functors are simply ways of transforming one category

into another. . . . For those familiar with the terms, we list some examples.

The category of groups: here the objects are groups, and the arrows (tech-

nically called morphisms) are homomorphisms of groups. Category of to-

pological spaces: the objects are topological spaces and the morphisms con-

tinuous mappings. Category of differentiable manifolds: the morphisms are

differentiable mappings. Category of vector spaces: the morphisms are linear

transformations. Now some examples of functors. The rule which associates

with each topological space its one-dimensional homology group and with

each continuous mapping of one space into another the induced homo-

morphism of homology groups is a functor from the category of topological

spaces to that of Abelian groups. The rule which associates with each dif-

ferentiable manifold the vector space of differentiable functions defined on

it and with each differentiable mapping the induced linear mapping of the

vector space is a functor from the category of differentiable manifolds to that

of vector spaces [COSRIMS, 1969, p. 159].

Most of the enormous development during the twenty years following

World War II has had little to do with the natural sciences, being spurred

on by problems within pure mathematics itself; yet within the same period

the applications of mathematics to science have multiplied exceedingly.

The explanation for this anomaly seems to be clear: Abstraction and the

discernment of patterns have been playing more important roles in the

study of nature, just as they have in mathematics. Hence, even in our day

ol h\perabstract thinking, mathematics continues to be the language of

science, just as it was in antiquity. That there is an intimate connection

between experimental phenomena and mathematical structures seems to

be fully confirmed in the most unexpected manner by the recent discoveries

of contemporary physics, although the underlying reasons for the agree-

ment remain obscure. "From the axiomatic point of view, mathematics

appears thus as a storehouse of abstract forms—the mathematical struc-

tures; and it so happens—without our knowing why—that certain aspects

ol empirical reality fit themselves into these forms, as if through a kind of

preadaptation." 1

'N. Bouftaki, The Architecture of Mathematics. American Mathematical Monthly, 57

I 1950), 221 232 This is | translation of an article that appeared in l.cs grands courants de

la pens ft' mathfmatKfuf. ed. by F. Le Lionnais (19fi2). See especially p. 231.
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BOURBAKI

It has been repeatedly stressed here that mathematics of the twentieth

century has seen an emphasis on abstraction and an increasing concern

with the analysis of broad patterns. Perhaps nowhere is this more clearly

apparent than in the mid-twentieth-century works that have emanated from

the polycephalic mathematician known as Nicolas Bourbaki. This is a non-

existent Frenchman with a Greek name that has appeared on the title pages

of several dozen volumes in a continuing major work, Elements de mathe-

matique, which is intended to survey all of worthwhile mathematics. The

home of Bourbaki is given as Nancy, a city that has provided a number of

leading mathematicians of this century; it may not be a coincidence that

in Nancy there is a statue to the colorful and once very real General Charles

Denis Sauter Bourbaki (1816-1897), who in 1862 was offered, but declined,

the throne of Greece and whose role in the Franco-Prussian War was very

tangible. Nicolas Bourbaki, nevertheless, is not a relative in any sense of

the word; the name has simply been appropriated to designate a group of

mathematicians, almost exclusively French, who form a sort of cryptic

societe anonyme. 1 As an institutional connection N. Bourbaki sometimes

uses the University of Nancago, a playful reference to the fact that two of

the moving spirits within the group were for a while connected with uni-

versities in the Chicago area—Andre Weil (b.1906) at the University of

Chicago (more recently, however, at the Institute for Advanced Study at

Princeton) and Jean Dieudonne (b.1906) at Northwestern University (for-

merly at the University of Nancy, later at the University of Paris). The
first volume of Bourbaki's Elements appeared in 1939, the thirty-first in

1965; so far the work has not yet exhausted what is known as Part I, Les

structures fondamentales de Ianalyse. This part contains half a dozen sub-

headings: (1) Set Theory, (2) Algebra, (3) General Topology, (4) Functions

of a Real Variable, (5) Topological Vector Spaces, and (6) Integration.

These headings indicate that only a small portion of the mathematics con-

tained in these volumes was in existence a century earlier. The presentation

of the subject by Bourbaki is characterized by uncompromising adherence

to the axiomatic approach and to a starkly abstract and general form that

portrays clearly the logical structure. The hope is that the emphasis on

structure will effect a considerable economy of thought. For example, in

the early nineteenth century the discovery that the structure of the complex

number system was the same as that of points in the Euclidean plane

showed that the properties of the latter, studied for over two millennia,

could be applied to the former. The result was an exuberant proliferation

in complex analysis. There is no reason why the current concern for sim-

ilarities in structure should not, in the years to come, yield similar divi-

dends.

2Paul R. Halmos, "Nicolas Bourbaki," Scientific American, 196 (May 1957), 88-99.
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Romantics in mathematics earlier in the century had feared a takeover

of their subject by an arid formalism encouraged by logicism. By the middle

of the century the feud between formalists and intuitionists had quieted,

and Bourbaki saw no need to take sides in the controversy. "What the

axiomatic method sets as its essential aim," he wrote, "is exactly that which

logical formalism by itself can not supply, namely the profound intelligi-

bility of mathematics." In the same vein one of the leaders of the group,

generally regarded as an outstanding mathematician of the mid-twentieth

century, wrote that "If logic is the hygiene of the mathematician, it is not

his source of food."

LOGIC AND COMPUTING

It is one of the ironies of history that while Bourbaki and many other pure

mathematicians pursued the goal of substituting ideas for calculations,

engineers and applied mathematicians developed a tool that revived in-

terest in numerical and algorithmic techniques and sharply affected the

composition of many departments of mathematics: the computer. In the

first half of the twentieth century the history of computing machines in-

volved more statisticians, physicists, and electrical engineers than mathe-

maticians. Desk calculating machines and punched card systems were in-

dispensable to business, banking, and the social sciences. The slide rule

became the symbol of the engineer; and integrators of various types were

used by physicists, geodesists, and statisticians. Paper and pencil remained

the chief tools of the mathematician. The situation changed somewhat in

the 1940s because of the involvement of mathematicians in the war effort.

Although most of the major efforts were driven by physicists and engineers,

numerous younger mathematicians played a part in the development of

the automatic digital electronic computer. Some of these pioneers stayed

in the computer field; others went into new fields more closely related to

the new technology; some turned to applied mathematics; a few returned

to their original field. Most of these mathematicians were at an early stage

of their careers when they became involved with computers, many having

received their Ph.D.s in the 1930s. Let us consider three mathematicians

whose contributions to the emerging computer field were notable largely

because of the fact that they already had gained a reputation as mathe-

maticians.

John von Neumann (1903-1957) was born in Budapest. After good

preparatory training which included individualized mathematical instruc-

tion he earned early recognition for his mathematical talents. This per-

mitted his obtaining a Ph.D. in mathematics from Budapest practically in

absentia while he spent his time in Zurich and Berlin. He did, however,
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earn a degree in chemical engineering at the Polytechnic Institute in Zurich.

In a paper published when he was only twenty-one he gave a new definition

for ordinal numbers; two years later he presented a system of axioms for

set theory that provided an alternative to those of Zermelo and Frankel.

In 1926 he produced a pioneering paper on game theory, following work

by Borel. His teaching career began in Germany, where he spent the three

years from 1927 to 1930 at the universities of Berlin and Hamburg. In 1930

he moved to Princeton, New Jersey, where he was affiliated with Princeton

University until asked to become a member of the Institute for Advanced

Study in 1933. One of the most creative and versatile mathematicians of

our century, von Neumann was a pioneer in a new approach to mathe-

matical economics. Econometrics had long made use of mathematical anal-

ysis, but it was especially through the Theory of Games and Economic

Behavior of von Neumann and Oskar Morgenstern in 1944 that so-called

finite mathematics came to play an increasing role in the social sciences.

Interrelationships among the various branches of thought had become
so complicated that Norbert Wiener (1894-1964), a mathematical prodigy

and for many years professor of mathematics at the Massachusetts Institute

of Technology, in 1948 published his Cybernetics, a book establishing a

new subject devoted to the study of control and communication in animals

and machines. Von Neumann and Wiener both were deeply involved also

in quantum theory, and the former in 1955 was appointed to the Atomic

Energy Commission. It would be wrong, however, to conclude that men
like these were just applied mathematicians. They contributed at least as

extensively to pure mathematics—to set theory, group theory, operational

calculus, probability, and mathematical logic and foundations. It had been

von Neumann, in fact, who in about 1929 had given Hilbert space its name,

its first axiomatization, and its present highly abstract form. Wiener had

been important in the early twenties in the origins of the modern theory

of linear spaces, and in particular in the development of Banach space.

Alan Turing (1913-1954), the youngest of the three, was an Englishman

who graduated from King's College at Cambridge University in 1934. The
following year he made history by solving one of the outstanding problems

in mathematical logic. The paper containing this result, published in 1937,

was entitled "On Computable Numbers, with an Application to the Ent-

scheidungsproblem." In 1936 Turing had gone to the United States to study

at Princeton. While there, he worked with the logician A. Church, who
brought out his own proof of the Entscheidungsproblem, and became ac-

quainted with John von Neumann. Having been awarded a Ph.D. degree

in 1938, he returned to England. Upon the outbreak of World War II,

Turing reported to the Government Code and Cipher School at Bletchley

Park. From then until his untimely death in 1954 he was deeply involved

in cryptanalytic activity, the design of electronic computers, and the design

of programming systems.
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FUTURE OUTLOOK

Among its more notable aspects, contemporary mathematics has featured

I resurgence ofgeometry, albeit in modern garb, and progress in the settling

of numerous famous problems, ranging from Poincare's conjecture (for

dimension 4) to the classification of finite groups. As the twentieth century

draws to a close, attitudes concerning the future of mathematics display

neither the pessimism of those late eighteenth-century thinkers who stated

that most major problems had been solved nor the optimism of Hilbert at

the end of the nineteenth century when he proclaimed that all problems

could be solved. Occasionally it appears as though the dominant question

is whether mathematical problems should be solved. For mathematical

teaching and research in many sectors are caught between the Scylla of

those who condemn the subject because of applications that make it a

potential conveyor of human destruction and the Charybdis of those who
wish to strip it of anything but its applications so as to render it more

socially useful, whether for medicine or war. Yet history appears to support

the reflection of Andre Weil that emerged from an even darker period:

"The great mathematician of the future, as of the past, will flee the well-

trodden path. It is by unexpected rapprochements, which our imagination

would not have known how to arrive at, that he will solve, in giving them
another twist, the great problems which we shall bequeath to him." Look-

ing ahead, Weil is confident also of one further thing: "In the future, as

in the past, the great ideas must be simplifying ideas."



References

CHAPTER 1

Ascher, M. and R. Ascher, "Ethnomathematics," History of Science, 24 (1986),

125-144.

Bowers, N. and P. Lepi, "Kaugel Valley Systems of Reckoning," Journal of the

Polynesian Society, 84 (1975), 309-324.

Closs, M. F., Native American Mathematics (Austin, Texas: The University of Texas

Press, 1986).

Conant, L., The Number Concept. Its Origin and Development (New York: Mac-

millan, 1923).

Dibble, W. E., "A Possible Pythagorean Triangle at Stonehenge," Journal for the

History of Astronomy, 17 (1976), 141-142.

Dixon, R. B. and A. L. Kroeber, "Numeral Systems of the Languages of Cali-

fornia," American Anthropologist, 9 (1970), 663-690.

Eels, W. C, "Number Systems of the North American Indians," American Math-

ematical Monthly, 20 (1913), 263-272 and 293-299.

Harvey, H. R. and B. J. Williams, "Aztec Arithmetic: Positional Notation and

Area Calculation," Science, 210 (Oct. 31, 1980), 499-505.

Kalmus, H., "Animals as Mathematicians," Nature, 202 (1964), 1156-1160.

Lambert, J. B. et al., "Maya Arithmetic," American Scientist, 68 (1980), 249-255.

Marshak, A., The Roots of Civilisation. The Cognitive Beginnings of Man's First

Art, Symbol and Notation (New York: McGraw-Hill, 1972).

Menninger, K. Number Words and Number Symbols, transl. by P. Broneer (Cam-

bridge, Mass: MIT Press, 1969).

Schmandt-Besserat, D., "Reckoning Before Writing," Archaeology, 32, No. 3

(1979), 23-31.

633



634 REFERENCES

Sekfeaberg, A . I he Ritual Origin of Geometry," Archive for History of Exact

Sciences, 1
| L962a), 488 527. "The Ritual Origin of Counting," Ibid., 2 (1962b),

1 40 me Ritual Origin of the Circle and Square, Ibid., 25 (1972), 269-327.

Smclt/cr. I) .. Man and Numbers (New York: Emerson Books, 1958).

Smith, D. E. and J. Ginsburg, Numbers and Numerials (Washington, D.C.: Na-

tional Council of Teachers of Mathematics, 1958).

Struik. D. J., "Stone Age Mathematics," Scientific American, 179 (Dec. 1948),

44-49.

Zaslavsky, C, Africa Counts: Number and Pattern in African Culture (Boston:

Pnndle, Weber and Schmidt, 1973).

Zaslavsky, C, "Symmetry Along with Other Mathematical Concepts and Appli-

cations in African Life, pp. 82-97 in: Applications in School Mathematics. 1979

Yearbook of the NCTM (Washington, D.C.: National Council of Teachers of

Mathematics, 1979).

CHAPTER 2

Bruins, E. M., "Egyptian Arithmetic," Janus, 68 (1981), 33-52.

Bruins, E. M., "The Part in Ancient Egyptian Mathematics," Centaurus, 19 (1975),

241-251.

Chace, A. B. et al., eds. and transl., The Rhind Mathematical Papyrus. Republi-

cation of 1927-1929 ed. Classics in Mathematics Education, No. 8 (1979) (Res-

ton, Va.: National Council of Teachers of Mathematics).

Engels, H., "Quadrature of the Circle in Ancient Egypt," Historia Mathematica,

4(1977), 137-140.

Gillings, R. J., Mathematics in the Time of the Pharaohs (Cambridge: MIT Press,

1972), xi + 286 pp.

Gillings, R. J., "What is the Relation Between the EMLR and the RMP Recto?"

Archive for History of Exact Sciences, 14 (1975), 159-167.

Gillings, R. J., "The Recto of the Rhind Mathematical Papyrus and the Egyptian

Mathematical Leather Roll," Historia Mathematica, 6 (1979), 442-447.

Guggenbuhl, L., "Mathematics in Ancient Egypt: A Checklist," The Mathematics

Teacher, 58 (1965), 630-634.

Hamilton, M., "Egyptian Geometry in the Elementary Classroom," Arithmetic

Teacher, 23 (1976), 436-438.

knorr, W. , "Techniques of Fractions in Ancient Egypt and Greece," Historia

Mathematica, 9 (1982), 133-171.

Neugebauer, O., "On the Orientation of Pyramids," Centaurus, 2A (1980), 1-3.

Parker, R. A., "A Mathematical Exercise: P. Dem. Heidelberg 663," Journal of
Egyptian Archaeology, 61 (1975), 189-196.

Parker, R A., "Some Demotic Mathematical Papyri," Centaurus, 14 (1969), 136-

141.

Parker, R. A., Demotic Mathematical Papyri. Brown Egyptological Studies, 1

(Providence: Brown University Press, 1972).



REFERENCES 635

Rees, C. S., "Egyptian fractions," Mathematical Chronicle, 10 (1981), 13-30.

Robins, G. and C. C. D. Shute, "Mathematical Bases of Ancient Egyptian Ar-

chitecture and Graphic Art," Historia Mathematica, 12 (1985), 107-122.

Rottlander, R. C. A. "On the Mathematical Connections of Ancient Measures of

Length," Acta Praehistorica et Archaeologica, 7-8 (1978), 49-51.

Van der Waerden, B. L., Science Awakening (New York: John Wiley, 1963; pa-

perback version of 1961 ed.).

Van der Waerden, B. L., "The (2:n) Table in the Rhind Papyrus," Centaurus, 23

(1980), 259-274.

Wheeler, N. R, "Pyramids and Their Purpose," Antiquity, 9 (1935), 5-21, 161-

189, 292-304.

CHAPTER 3

Bruins, E. M., "The Division of the Circle and Ancient Arts and Sciences," Janus,

63 (1976), 61-84.

Buck, R. C, "Sherlock Holmes in Babylon," American Mathematical Monthly,.

87 (1980), 335-345.

Friberg, J., "Methods and Traditions of Babylonian Mathematics: Plimpton 322,

Pythagorean Triples, and the Babylonian Triangle Parameter Equations," His-

toria Mathematica, 8 (1981), 277-318.

Friberg, J. "Methods and Traditions of Babylonian Mathematics. II," Journal of

Cuneiform Studies, 33 (1981), 57-64.

H0yrup, J., "Investigations of an Early Sumerian Division Problem," Historia

Mathematica, 9 (1982), 19-36.

Neugebauer, O., The Exact Sciences in Antiquity (New York: Harper, 1957; pa-

perback publication of the 2nd ed.).

Neugebauer, O. and A. Sachs, Mathematical Cuneiform Texts (New Haven, Conn:

American Oriental Society and the American Schools of Oriental Research,

1945).

Powell, M. A. Jr., "The Antecedents of Old Babylonian Place Notation and the

Early History of Babylonian Mathematics," Historia Mathematica, 3 (1976),

417-439.

Price, D. J. de Solla, "The Babylonian 'Pythagorean Triangle' Tablet," Centaurus,

10 (1964); 219-231.

Schmidt, O., "On 'Plimpton 322': Pythagorean Numbers in Babylonian Mathe-
matics," Centaurus, 24 (1980), 4-13.

Van der Waerden, B. L., Science Awakening, trans, by A. Dresden (New York:

Wiley, 1963; paperback version of 1961 ed.).

CHAPTER 4

Allman, G. J., Greek Geometry from Thales to Euclid. (New York: Arno Press,

1976; facsimile reprint of the 1889 ed.).



636 REFERENCES

Berggren, J 1 ... 'Histor\ Of Greek Mathematics. A Survey of Recent Research,"

liiMorm Mathematics 11 (1984), 394-410.

Boyer, C B., "Fundamental Steps in the Development of Numeration," Isis, 35

(1944), 153-168.

CUgett, M . Greek Science in Antiquity (New York: Collier, 1966; paperback ed.).

Dailtlig, 1, The Bequest of the Greeks (Greenwood, 1969; reprint of 1955 ed.).

Freeman, K.. The Pre-Socratic Philosophers, 2nd ed. (Oxford: Blackwell, 1949).

Gow, J.. A Short History of Greek Mathematics (New York: Hafner, 1923).

Heath, T. L., History of Greek Mathematics (New York: Dover, 1981; 2 vols.,

reprint of 1921 ed.).

Knorr. W. R.. The Evolution of the Euclidean Elements (Dordrecht and Boston:

D. Reidel, 1975).

Neugebauer, O., The Exact Sciences in Antiquity (New York: Harper, 1957; pa-

perback publication of 2nd ed.).

Szabo, A., The Beginnings of Greek Mathematics, trans, by A. M. Ungar (Dor-

drecht and Boston: Reidel, 1978).

Thomas, I., ed., Selections Illustrating the History of Greek Mathematics (Cam-

bridge, Mass.: Harvard University Press, 1939 and 1941, 2 vols.).

Van der Waerden, B. L., Science Awakening, trans, by A. Dresden (New York:

Wiley, 1963; paperback publication of the 1961 ed.).

CHAPTER 5

Allman, G. J., Greek Geometry from Thales to Euclid, (New York: Arno Press,

1976; facsimile reprint of the 1889 ed.).

Cajori. F, "History of Zeno's Arguments on Motion," American Mathematical

Monthly, 22 (1915), 1-6, 39-47, 77-82, 109-115, 145-149, 179-186, 215-220,

253-258, 292-297.

Clagett, M., Greek Science in Antiquity (New York: Collier, 1966; paperback ed.).

Freeman, K., The Pre-Socratic Philosophers, 2nd ed. (Oxford: Blackwell, 1949).

Gow, J., A Short History of Greek Mathematics (New York: Hafner, 1923).

Heath, T. L., History of Greek Mathematics (New York: Dover, 1981, 2 vols;

reprint of 1921 ed.).

Knorr. W. R , The Evolution of the Euclidean Elements (Dordrecht and Boston:

Reidel. 1975).

Lee. H. D. P., Zeno of Elea (Cambridge: Cambridge University Press, (1936).

Neugebauer, ()., The Exact Sciences in Antiquity (New York: Harper, 1957; paper

publication of the 2nd ed).

Szabo, A.. "The Transformation of Mathematics Into Deductive Science and the

Beginning! of its Foundation on Definitions and Axioms," Scripta Mathematica,

27 (1964), 27-48, 113-139.

Szabo, A The Beginning! of Greek Mathematics, trans, by A. M. Ungar (Dor-

drecht Boston London: Reidel, 1978).



REFERENCES 637

Thomas, I., ed. Selections Illustrating the History of Greek Mathematics (Cam-

bridge, Mass.: Harvard University Press, 1939 and 1941, 2 vols.).

Van der Waerden, B. L., Science Awakening, trans, by A. Dresden (New York:

Wiley, 1963; paperback publication of 1961 ed.).

Von Fritz, K., "The Discovery of Incommensurability by Hippasus of Metapon-

tum," Annals of Mathematics, (2) 46 1945, 242-264.

CHAPTER 6

Brumbaugh, R. S., Plato's Mathematical Imagination (Bloomington, Ind.: Indiana

University Press, 1954).

Burnyeat, M. F., "The Philosophical Sense of Theaetetus' Mathematics," Isis, 69

(1978), 489-513.

Cornford, F. M., Plato's Cosmology. The Timaeus of Plato, trans, with a running

commentary (London: Routledge and Kegan Paul, 1937).

Fowler, D. H., "Anthyphairetic Ratio and Eudoxan Proportion, " Archive for

History of Exact Sciences, 24 (1981), 69-72.

Giacardi, L. , "On Theodorus of Cyrene's problem." Archives Internationales d'His-

toire des Sciences, 27 (1977), 231-236.

Heath, T. L., History of Greek Mathematics (New York: Dover, 1981; 2 vols.,

reprint of 1921 ed.).

Heath, T. L., Mathematics in Aristotle (Oxford: 1949).

Knorr, W. R., The Evolution of the Euclidean Elements (Dordrecht and Boston:

Reidel, 1975).

Lasserre, F., The Birth of Mathematics in the Age of Plato, trans, by H. Mortimer

(London: Hutchinson, 1964).

McCabe, R. L., "Theodorus' Irrationality Proofs," Mathematics Magazine, 49

(1976), 201-202.

McClain, E. G., "Musical "Marriages" in Plato's Republic," Journal of Music

Theory, 18 (1974), 242-272.

Mueller, I., "Aristotle and the Quadrature of the Circle," in: Infinity and Continuity

in Ancient and Medieval Thought, N. Kretzmann, ed. (Ithaca, N.Y: Cornell

University Press, 1982), pp. 146-164.

Plato. Dialogues, trans, by B. Jowett (Oxford: Oxford University Press, 1931, 5

vols., reprint of 3rd ed. of 1891).

Smith, R., "The Mathematical Origins of Aristotle's Syllogistic." Archive for His-

tory of Exact Sciences, 19 (1978), 201-209.

Stamatakos, B. M., "Plato's Theory of Numbers. Dissertation," Michigan State

University Dissertation Abstracts, 36 (1975), 8117-A, Order no. 76-12527.

Wedberg, A., Plato's Philosophy of Mathematics (Westport, Conn.: Greenwood,

1977).

White, F. C, "Plato on Geometry," Apeiron, 9 (1975), 5-14.



638 REFERENCES

CHAPTER 7

Archibald. R. C, ed., Euclid's Book on Divisions of Figures (Cambridge: Cam-
bridge University Press, 1915).

Barker. A.. "Methods and Aims in the Euclidean Sectio Canonis," Journal of

Hellenic Studies, 101 (1981), 1-16.

Burton. H., "The Optics of Euclid," Journal of the Optical Society of America, 35

(1945), 357-372.

Cohen. MR. and I. E. Drabkin, eds., A Source Book in Greek Science, (Cam-

bridge, Mass: Harvard University Press, 1958; reprint of the 1948 ed.).

Coxeter, H. S. M., "The Golden Section, Phyllotaxis, and WythofTs Game,"
Scripta Mathematica, 19 (1953), 135-143.

Fischler, R., "A Remark on Euclid II, 11," Historia Mathematica, 6 (1979), 418-

4::.

Fowler, D. H. , "Book II of Euclid's Elements and a Pre-Eudoxan Theory of Ratio,"

Archive for History of Exact Sciences, 22 (1980), 5-36, and 26 (1982), 193-209.

Heath, T. L., A History of Greek Mathematics (New York: Dover, 1981, 2 vols.;

reprint of 1927 ed.).

Heath, T. L., ed.. The Thirteen Books of Euclid's Elements (New York: Dover,

1956; 3 vols., paperback publication of 1908 ed.).

Herz-Fischler, R., "What are Propositions 84 and 85 of Euclid's Data all about?"

Historia Mathematica, 11 (1984), 86-91.

Ito. S., ed. and transl. The Medieval Latin Translation of the Data of Euclid,

foreword by Marshall Clagett (Boston: Birkhauser, 1980).

Knorr, W. R., The Evolution of the Euclidean Elements (Dordrecht and Boston:

Reidel, 1975).

Szabo, A., The Beginnings of Greek Mathematics, trans, by A. M. Ungar (Dor-

drecht/Boston: Reidel, 1978).

Theisen, W., "Euclid, Relativity, and Sailing," Historia Mathematica, 11 (1984),

81-85.

Thomas, I., ed., Selections Illustrating the History of Greek Mathematics (Cam-
bridge, Mass.: Loeb Classical Library, 1939-1941; 2 vols.).

Thomas-Stanford, C, Early Editions of Euclid s Elements (San Francisco: Alan

Wofsy Fine Arts, 1977; reprint of the 1926 ed.).

CHAPTER 8

Bankoff. I ... Arc the Twin Circles of Archimedes Really Twins?" Mathematics

Magazine, 47 (1974). 214-218.

Berggreo, J. L., "Spurious Theorem in Archimedes' Equilibrium of Planes: Book
I irchsve for History <>t Exact Sciences. 16 (1978), 87-103.

Berggren, J L . A lacuna in Book I of Archimedes' Sphere and Cylinder,"

Historia Mathematica. 4 (1977). 1-5.



REFERENCES 639

Clagett, M., Archimedes in the Middle Ages (Amsterdam: University of Wisconsin,

and Philadelphia: American Philosophical Society, 1963-1984; 5 vols, in-10).

Davis, H. T., "Archimedes and Mathematics," School Science and Mathematics,

44(1944), 136-145,213-221.

Dijksterhuis, E. J., Archimedes, trans, from the 1938-1944 ed. (New York: Hu-

manities Press, 1957).

Erhardt, E. von and R. von Erhardt, "Archimedes' Sand-Reckoner," Isis, 33

(1942), 578-602.

Heath, T. L., The Works of Archimedes (New York: Dover, 1953; reprint of 1897

ed.).

Knorr, W. R., "Archimedes and the Measurement of the Circle: A New Inter-

pretation," Archive for History of Exact Sciences, 15 (1976), 115-140.

Knorr, W. R., "Archimedes and the Spirals. The Heuristic Background," Historia

Mathematica, 5 (1978), 43-75.

Knorr, W. R., "Archimedes and the Pre-Euclidean Proportion Theory," Archives

Internationales d'Histoire des Sciences, 28 (1978), 183-244.

Neugebauer, O., "Archimedes and Aristarchus," Isis, 34 (1942), 4-6.

Phillips, G. M., "Archimedes the Numerical Analyst," American Mathematical

Monthly, 88 (1981), 165-169.

Smith, D. E., "A Newly Discovered Treatise of Archimedes," Monist, 19 (1909)

202-230.

Taisbak, C. M., "An Archimedean Proof of Heron's Formula for the Area of a

Triangle: Reconstructed," Centaurus, 24 (1980), 110-116.

Thomas, I., ed., Selections Illustrating the History of Greek Mathematics (Cam-

bridge, Mass: Loeb Classical Library, 1939-1941; 2 vols.).

CHAPTER 9

Coolidge, J. L., History of the Conic Sections and Quadric Surfaces (New York:

Dover, 1968; paperback publication of 1945 ed.).

Coolidge, J. L., History of Geometrical Methods, (New York: Dover, 1963; pa-

perback publication of 1940 ed.).

Coxeter, H. S. M., "The Problem of Apollonius," American Mathematical Monthly,

75 (1968), 5-15.

Heath, T. L., "Apollonius," in: Encyclopedia Britannica, 11th ed. (Cambridge:

1910), Vol. 2, pp. 186-188.

Heath, T. L., ed., Apollonius of Perga. Treatise on Conic Sections. (New York:

Barnes and Noble, 1961; reprint of 1896 ed.).

Neugebauer, O., "The Equivalence of Eccentric and Epicyclic Motion According

to Apollonius," Scripta Mathematica, 24 (1959), 5-21.

Taylor, C, An Introduction to the Ancient and Modern Geometry of Conies (Cam-
bridge: Deighton Bell, 1881).

Thomas, I. ed., Selections Illustrating the History of Greek Mathematics (Cam-
bridge, Mass.: Loeb Classical Library, 1939-1941; 2 vols.).



$40 REFERENCES

I neuru. S . A Very Early Acquaintance with Apollonius of Perga's Treatise on

Conk Sections in the Latin West," Centauries, 20 (1976), 112-128.

Win del Waeiden, B. L., Science Awakening, trans, by Arnold Dresden. (New

York: Wiley, 1963; paperback publication of 1961 ed.).

CHAPTER 10

Aaboe. A.. Episodes from the Early History of Mathematics (New York: Random
House, 1964).

Carmody, F. J., "Ptolemy's Triangulation of the Eastern Mediterranean, " Isis, 67

(1976), 601-609.

Cohen, M. R. and I. E. Drabkin, Source Book in Greek Science (Cambridge, Mass:

Harvard University Press, 1958; reprint of the 1948 ed.).

Dantzig, Tobias, The Bequest of the Greeks (New York: Scribner, 1955).

Diller. A., 'The Ancient Measurements of the Earth, " Isis, 40 (1949), 6-9.

Goldstein, B. R., "Eratosthenes on the 'measurement' of the Earth," Historia

Mathematica, 11 (1984), 411-416.

Heath. T. L.. Aristarchus of Samos: The Ancient Copernicus (New York: Dover,

1981; republication of the 1913 ed.).

Heath. T. L., A History of Greek Mathematics (New York: Dover, 1981; 2 vols.;

reprint of 1921 ed.).

Neugebauer, O., The Exact Sciences in Antiquity , 2nded. (Providence, R.I.: Brown

University Press, 1957).

Ptolemy, Ptolemy's Almagest, trans, and annotated by G. J. Toomer (New York-

Berlin/Heidelberg/Tokyo: Springer-Verlag, 1984).

Sarton. George, Ancient Science and Modern Civilization (Lincoln, Nebr.: Uni-

versity of Nebraska Press, 1954).

Thomas, Ivor, Selections Illustrating the History of Greek Mathematics (Cambridge,

Mass: Loeb Classical Library, 1939-1941; 2 vols.).

Van der Waerden, B. L., Science Awakening, transl. by A. Dresden. (New York:

Wiley. 1963; paperback version of 1961 ed.).

CHAPTER 11

Barhera. A., interpreting an Arithmetical Error in Boethius's De Institution

Musica (iii. 14-16)," Archives Internationales d'Histoire des Sciences, 31 (1981),

26-41.

Barrett. H. M., Boethius. Some Aspects of his Times and Work (Cambridge: Cam-

bridge University Press, 1940).

( laizett, M., Greek Science in Antiquity (New York: Collier, 1963; paperback ed.).

( ohen. M R. and I. E. Drabkin, Source Book in Greek Science (Cambridge,

Mass.: Harvard University Press, 1958; reprint of the 1948 ed.).



REFERENCES 641

Heath, T. L., Diophantus of Alexandria: A Study in the History of Greek Algebra,

2nd ed. (New York: Dover, 1964; paperback ed.).

Heath, T. L., History of Greek Mathematics, Vol. 2 (New York: Dover, 1981;

reprint of 1921 ed.).

Knorr, W., "The Geometry of Burning-Mirrors in Antiquity," Isis, 74 (1983), 53-

73.

Nicomachus of Gerasa, Introduction to Arithmetic, trans, by M. L. D'Ooge, with

Studies in Greek Arithmetic by F. E. Robbins and L. C. Karpinski. (New York:

Johnson Reprint Corp., 1972; reprint of the 1926 ed.).

Pappus of Alexandria, Book 7 of the ''Collection,
7

' ed. and trans, with commentary

by A. Jones (New York/Heidelberg/Berlin: Springer, 1986; 2 vols.)

Robbins, F. E., "P. Mich. 620: A Series of Arithmetical Problems," Classical

Philology, 24 (1929), 321-329.

Sarton, G., The History of Science (Cambridge, Mass.: Harvard University Press;

1952-1959; 2 vols.).

Sesiano, J., Books IV to VII of Diophantus' "Arithmetica" in the Arabic Translation

Attributed to Qusta ibn Luqa (New York/Heidelberg/Berlin: Springer, 1982).

Stahl, W. H., Roman Science (Madison, Wise: University of Wisconsin Press,

1962).

Swift, J. D., "Diophantus of Alexandria," American Mathematical Monthly, 43

(1956), 163-170.

Thomas, I., ed., Selections Illustrating the History of Greek Mathematics (Cam-

bridge, Mass.: Loeb Classical Library, 1939-1941; 2 vols.)

Thompson, D'A. W., On Growth and Form, 2nd ed. (Cambridge: Cambridge

University Press, 1942).

Van der Waerden, B. L., Science awakening, trans, by Arnold Dresden. (New
York: Wiley, 1963; paperback ed.).

Vitruvius, On Architecture, ed. and trans, by F. Granger (Cambridge, Mass.: Har-

vard University Press, and London: William Heinemann, 1955; reprint of the

1931 ed. Loeb Classical Library, 2 vols.).

CHAPTER 12

Ang Tian-se, "Chinese Interest in Right-Angled Triangles," Historia Mathematica,

5 (1978), 253-266.

Boyer, C. B., "Fundamental Steps in the Development of Numeration," Isis, 35

(1944), 153-168.

Clark, W. E., ed., The Aryabhatia of Aryabhata (Chicago: The University of

Chicago Press, 1930).

Colebrook, H. T., Algebra, with Arithmetic and Mensuration, from the Sanskrit of
Brahmagupta and Bhaskara (London: 1817).

Datta, B. and A. N. Singh, History of Hindu Mathematics, (Bombay: Asia Pub-

lishing House, 1962; reprint of 1935-1938 ed.). Note review by Neugebauer in

Isis, 25 (1936), 478-488.



642 REFERENCES

GtUon, B S . "Introduction, Translation, and Discussion of Chao Chun-Ch'ing's

Notes to the Diagrams of Short Legs and Long Legs and of Squares and

C tales,'" Historia Mathematics 4 (1977), 253-293.

(iupta. R C-, Sine of Eighteen Degrees in India up to the Eighteenth Century,"

Mm Journal of the History of Science, 11 (1) (1976), 1-10.

Hoe, J.. The Jade Mirror of the Four Unknowns—Some Reflections," Mathe-

matical Chronicle, 7 (1978), 125-156.

Lam Lay-yong. "On the Chinese Origin of the Galley Method of Arithmetical

Division," British Journal for the History of Science, 3 (1966), 66-69.

Lam Lay-yong, A Critical Study of the Yang Hui Suan Fa, a 13th Century Math-

ematical Treatise (Singapore: Singapore University Press, 1977).

Lam Lay-yong, "The Chinese Connection Between the Pascal Triangle and the

Solution of Numerical Equations of Any Degree," Historia Mathematica, 7

(1980), 407-424.

Lam Lay-yong and Shen Kang-sheng, "Right-Angled Triangles in Ancient China,"

Archive for History of Exact Sciences, 30 (1984), 87-112.

Lattin. H. P.. "The Origin of our Present System of Notation According to the

Theories of Nicholas Bubnov." his, 19 (1933), 181-194.

Libbrecht, U. Chinese Mathematics in the Thirteenth Century (Cambridge, Mass.:

MIT Press, 1973).

Mikami, Y. , The Development of Mathematics in China and Japan (New York:

Chelsea, 1974; republication of the 1913 ed.).

Morley, S. G.. An Introduction to the Study of Maya Hieroglyphics (Washington:

Carnegie Institution, 1915).

Needham, J., Science and Civilization in China, Vol. 3 (Cambridge: Cambridge

University Press, 1959).

Pingree, D., Census of the Exact Sciences in Sanskrit (Philadelphia: American

Philosophical Society, 1970-1981, 4 vols.).

Rajagopal, C. T. and T. V. Vedamurthi Aiyar, "On the Hindu Proof of Gregory's

Series," Scripta Mathematica, 17 (1951), 65-74 (also cf. 15 (1949) 201-209, and

18(1952) 25-30).

Rajagopal, C. T. and M. S. Rangachari, "On an Untapped Source of Medieval

Keralese Mathematics," Archive for History of Exact Sciences, 18 (1978), 89-

102.

Smha. K. N.. "Sripati: An Eleventh Century Indian Mathematician," Historia

Mathematica. 12 (1985), 25-44.

Sin in. Nathan, ed. , Science and Technology in East Asia (New York: Science History

Publications, 1977).

Smith. D. E.. History of Mathematics (New York: Dover, 1958; paperback issue

of 1923 -1925 ed.; 2 vols )

Smith. D. E. and L. C Karpmski, The Hindu-Arabic Numerals (Boston: Ginn,

1911)

Smith. D. E. and Y. Mikami, A History of Japanese Mathematics (Chicago: Open
Court. 1914).



REFERENCES 643

Struik, D. J., "On Ancient Chinese Mathematics," Mathematics Teacher, 56 (1963),

424-432.

Swetz, F, "Mysticism and Magic in the Number Squares of Old China," Mathe-

matics Teacher, 71 (1978), 50-56.

Swetz, F. J. and Ang Tian-se, "A Chinese Mathematical Classic of the Third

Century. The Sea Island Mathematical Manual of Liu Hui," Historia Mathe-

matica, 13 (1986), 99-117.

Wagner, D. B., "An Early Chinese Derivation of the Volume of a Pyramid: Liu

Hui, Third Century a.d., Historia Mathematica, 6 (1979), 164-188.

Yeldham, F. A. , The Story ofReckoning in the Middle Ages (London: G. G. Harrap,

1926).

CHAPTER 13

Amir-Moez, A. R., "A Paper of Omar Khayyam," Scripta Mathematica, 26 (1963),

323-337.

Berggren, J. L., Episodes in the Mathematics of Medieval Islam (New York: Sprin-

ger-Verlag, 1986).

Gandz, S., "The Origin of the Term 'Algebra,'" American Mathematical Monthly,

33 (1926), 437-440.

Gandz, S., "The Sources of al-Khowarizmi's Algebra," Osiris, 1 (1936), 263-277.

Garro, I., "Al-Kindi and Mathematical Logic," International Logic Review, Nos.

17-18 (1978), 145-149.

Hamadanizadeh, J., "The Trigonometric Tables of al-Kashi in his Zij-i Khaqani,"

Historia Mathematica, 7 (1980), 38-45.

Hamadani-Zahdeh, J., "A Second-Order Interpolation Scheme Described in the

Zij-i Ilkhani," Historia Mathematica, 12 (1985), 56-59.

Hermelink, H., "The Earliest Reckoning Books Existing in the Persian Language,"

Historia Mathematica, 2 (1975), 299-303.

Hill, G. F., The Development of Arabic Numerals in Europe (Oxford: Clarendon,

1915).

Hogendijk, J. P., Ibn al-Haythams Completion of the Conies (New York et al:

Springer, 1985).

Hogendijk, J. P., "Thabit ibn Qurra and the Pair of Amicable Numbers 17296,

18416," Historia Mathematica, 12 (1985), 269-273.

International Symposium for the History of Arabic Science, Proceedings of the

First International Symposium, April 5-12, 1976, vol. 2, papers in European

languages, ed. by Ahmad Y. al-Hassan et al. (Aleppo, Syria: Institute for the

History of Arabic Science, University of Aleppo, 1978).

Kasir, D. S., ed. The Algebra of Omar Khayyam (New York: AMS Press, 1972:

reprint of 1931 ed.).

Karpinski, L. C, ed. Robert of Chester's Latin Translation of the Algebra of al-

Khowarizmi (New York: Macmillan, 1915).



644 REFERENCES

Kennedy, E S , Studies in fht Islamic Exact Sciences, ed. by D. A. King and M.

H Kenned) (Beirut: American University of Beirut, 1983).

King, D A ., "On Medieval Islamic Multiplication Tables, " Historia Mathematica,

I (

l

ir4). 317 323; Supplementary notes, ibid., 6 (1979), 405-417.

1 evey,M ,ed. The Algebra ofAbu Kamil (Madison, Wise: University of Wisconsin

Press. 1966).

Lord), R .. "The Qibla-Table Attributed to al-Khazini," Journal for the History of
Arabic Science. 4 (1980), 259-264.

Lord), R . "Al-Khazini's 'Sphere that Rotates by Itself," Journal for the History

oj Arabic Science, 4 (1980), 287-329.

Lumpkin, B.. "A Mathematics Club Project from Omar Khayyam," Mathematics

Teacher. 71 (1978), 740-744.

Sabra, A. I., "Ibn-al-Haytham's Lemmas for Solving 'Alhazen's Problem
1

," Ar-

chive for History of Exact Sciences, 26 (1982), 299-324.

Saidan, A. S., "The Earliest Extant Arabic Arithmetic," Isis, 57 (1966), 475-490.

Saidan, A. S., "Magic Squares in an Arabic Manuscript," Journal for History of

Arabic Science, 4 (1980), 87-89.

Savili. A.. "Thabit ibn-Qurra's Generalization of the Pythagorean Theorem," Isis,

51 (1960), 35-37; also ibid., 55 (1964) 68-70 (Boyer) and 57 (1966), 56-66

(Scriba).

Smith, D. E.. "Euclid, Omar Khayyam, and Saccheri," Scripta Mathematica, 3

(1935), 5-10.

Smith. D. E. and L. C. Karpinski, The Hindu-Arabic Numerals (Boston: Ginn,

1911).

Struik, D. J., "Omar Khayyam, Mathematician," Mathematics Teacher, 51 (1958),

280-285.

Yadegari, M., "The Binomial Theorem: A Widespread Concept in Medieval Is-

lamic Mathematics," Historia Mathematica, 7 (1980), 401-406.

CHAPTER 14

Clagett, M.. The Science of Mechanics in the Middle Ages (Madison, Wise: Uni-

versity of Wisconsin Press, 1959).

Clagett. M., Archimedes in the Middle Ages (Philadelphia: American Philosophical

Society, 1963-1984; 5 vols, in-10).

( lagett, M
. Studies in Medieval Physics and Mathematics (London: Variorum

Reprints. 1979).

Clagett, M Mathematics and its Applications to Science and Natural Philosophy
in the Middle Agei (Cambridge and New York: Cambridge University Press.

1967).

Coxeter, H M S . "The Golden Section. Phyllotaxis, and Wythoffs Game,"
Scripta Mathematica. 19(1953). 135-143.

Drake. S "Medieval Ratio Theory vs. Compound Indices in the Origin of Brad-

wardine's Rule."" /sis. 64 (1973). 66-67.



REFERENCES 645

Evans, G. R., 'The Rithmomachia: A Medieval Mathematical Teaching Aid?"

Janus, 63(1975), 257-271.

Evans, G. R., "Due Oculum. Aids to Understanding in Some Medieval Treatises

on the Abacus," Centaurus, 19 (1976), 252-263.

Evans, G. R., "The Saltus Gerberti: The Problem of the 'Leap,'" Janus, 67 (1980),

261-268.

Fibonacci, Leonardo Pisano, The Book of Squares, annotated, trans, by L. E.

Sigler (Boston: Academic Press, 1987).

Gies, J. and F. Gies, Leonard of Pisa and the New Mathematics of the Middle Ages

(New York: Crowell, 1969).

Ginsburg, B., "Duhem and Jordanus Nemorarius," Isis, 25 (1936), 340-362.

Glushkov, S., "On Approximation Methods of Leonardo Fibonacci, " Historia

Mathematica, 3 (1976), 291-296.

Grant, E., "Bradwardine and Galileo: Equality of Velocities in the Void," Archive

for History of Exact Sciences, 2 (1965), 344-364.

Grant, E., "Nicole Oresme and His De proportionibus proportionum," Isis, 51

(1960), 293-314.

Grant, E., "Part I of Nicole Oresme's Algorismus proportionum," Isis, 56 (1965),

327-341.

Grim, R. E., "The Autobiography of Leonardo Pisano," Fibonacci Quarterly, 11

(1973), 99-104, 162.

Hill, G. F., The Development of Arabic Numerals in Europe (Oxford: Clarendon,

1915).

Jordanus de Nemore. De numeris datis, a critical edition and translation, trans, by

B. B. Hughes (Berkeley/Los Angeles/London: University of California Press,

1981).

Molland, A. G., "An Examination of Bradwardine's Geometry," Archive for His-

tory of Exact Sciences, 19 (1978), 113-175.

Murdoch, J. E., "Oresme's Commentary on Euclid," Scripta Mathematica, 27

(1964), 67-91.

Murdoch, J. E., "The Medieval Euclid: Salient Aspects of the Translations of the

Elements by Adelard of Bath and Campanus of Novara," Revue de Synthese,

(3) 89, Nos. 49-52 (1968), 67-94.

Oresme, N., De proportionibus proportionum and Ad pauca respicientes, ed. by

E. Grant (Madison, Wise: University of Wisconsin, 1966).

Rabinovitch, N. L., Probability and Statistical Inference in Ancient and Medieval

Jewish Literature (Toronto: University of Toronto Press, 1973).

Smith, D. E. and L. C. Karpinski, The Hindu-Arabic Numerals (Boston: Ginn,

1911).

Unguru, S., "Witelo and Thirteenth Century Mathematics: An Assessment of his

Contributions," Isis, 63 (1972), 496-508.



646 REFERENCES

CHAPTER 15

American Philosophical Society, S\mposium on Copernicus, " Proceedings APS,

117(1973), 413-550.

Bond. J. D.. "The Development of Trigonometric Methods Down to the Close of

the Wth Century/
1

Isis, 4 (1921-1922), 295-323.

Boycr, C. B.. "Note on Epicycles and the Ellipse from Copernicus to Lahire,"

bis, 38 (1947), 54-56.

Brooke, M., "Michael Stifel, the Mathematical Mystic," Journal of Recrea-

tional Mathematics, 6 (1973), 221-223.

Cardan, J., The Book ofMy Life, trans, by J. Stoner (New York: Dover, 1962;

paperback publication of 1930 ed.).

Cardan, J., The Great Art, trans, and ed. by T. R. Witmer with a foreword by

O. Ore (Cambridge, Mass.: MIT Press, 1968).

Clarke. F. M., "New Light on Robert Recorde,
,,

Isis, 7 (1926), 50-70.

Copernicus, On the Revolutions, trans, by E. Rosen, Vol. 2, in: Complete Works

(Warsaw-Cracow: Polish Scientific Publishers, 1978).

Davis, M. D., Piero della Francesco's Mathematical Treatises: The Trattato d'abaco

and Libellus de quinque corporibus regularibus (Ravenna: Longo ed., 1977).

Easton, J. B., "A Tudor Euclid," Scripta Mathematica, 27 (1966), 339-355.

Ebert, E. R., "A Few Observations on Robert Recorde and his Grounde of Artes,"

Mathematics Teacher, 30 (1937), 110-121.

Fierz, M., Girolamo Cardano, 1501-1576: Physician, Natural Philosopher, Math-

ematician, Astrologer and Interpreter of Dreams (Boston et al: Birkhauser, 1983).

Flegg. G.. C. Hay and B. Moss, eds. Nicolas Chuquet, Renaissance Mathematician

(Dordrecht/Boston/Lancaster: Reidel, 1985).

Franci, R. and L. T. Rigatelli, "Towards a History of Algebra from Leonardo of

Pisa to Luca Pacioli," Janus, 72 (1985), 17-82.

Glaisher, J. W. L., "On the Early History of the Signs -I- and - and on the Early

German Arithmeticians," Messenger of Mathematics, 51 (1921-1922), 1-148.

Green, J. and P. Green, "Alberti's Perspective: A Mathematical Comment," Art

Bulletin, 64(1987), 641-645.

Hanson, K. D., "The Magic Square in Albrecht Diirer's 'Melencolia V: Meta-

physical Symbol or Mathematical Pastime?" Renaissance and Modern Studies,

23 (1979), 5-24.

Hughes, B., Regiomontanus on Triangles (Madison, Wis.: University of Wisconsin

Pre*, 1%7).

Jayauardene, S. A., "The Influence of Practical Arithmetics on the Algebra of

Rafael BombeUi," Isis. 64 (1973), 510-523; also see his, 54 (1963), 391-395

and 56 (1965), 298-306.

Jay&wardene, S. A.. "The "Trattato d'abaco" of Piero della Francesca," in: Cul-

tural Aspects of the Italian Renaissance, ed. by C. H. Clough (Manchester:

Manchester University Press, 1976), pp. 229-243.

Johnson. F. R. and S. V. Larkey. "Robert Recorde's Mathematical Teaching



REFERENCES 647

and the Anti-Aristotelean Movement," Huntington Library Bulletin, 7 (1935),

59-87.

MacGillavry, C. H., "The Polyhedron in A. Durer's 'Melencolia V: An Over 450

Years Old Puzzle Solved?" Koninklijke Nederlandse Akademie van Wetenschap-

pen, Proc. Series B84 No. 3 (1981), 287-294.

Ore, Oystein, Cardano, the Gambling Scholar (Princeton, N.J.: Princeton Uni-

versity Press, 1953).

Pedoe, D., "Ausz disem wirdt vil dings gemacht: A Durer Construction for Tangent

Circles," Historia Mathematica, 2 (1975) 312-314.

Ravenstein, E. G., C. F. Close and A. R. Clarke, "Map," Encyclopedia Britannica,

11th ed., Vol. 17 (1910-1911), pp. 629-663.

Record[e], R., The Grounde of Artes, and Whetstone ofWitte (Amsterdam: Thea-

trum Orbis Terrarum, and New York: Da Capo Press, 1969; reprints of 1542

and 1557 ed.). The Path-way to Knowledg (Amsterdam: Theatrum Orbis Ter-

rarum, and Norwood, N.J.: Walter J. Johnson, 1974; reprint of 1551 ed.).

Rosen, E., "The Editions of Maurolico's Mathematical Works," Scripta Mathe-

matica, 24 (1959), 59-76.

Ross, R. P., "Oronce Fine's De sinibus libri II: The First Printed Trigonometric

Treatise of the French Renaissance," Isis, 66 (1975), 379-386.

Sarton, G., "The Scientific Literature Transmitted Through the Incunabula," Osiris,

5 (1938), 41-247.

Smith, D. E., Kara arithmetica (Boston: Ginn, 1908).

Swetz, F. J., Capitalism and Arithmetic. The New Math of the 15th Century, In-

cluding the Full Text of the Treviso Arithmetic of 1478, Translated by David

Eugene Smith (La Salle, 111.: Open Court, 1987).

Tanner, R. C. H., "The Alien Realm of the Minus: Deviatory Mathematics in

Cardano's Writings," Annals of Science, 37 (1980), 159-178.

Taylor, R. E., No Royal Road. Luca Pacioli and his Times. (Chapel Hill: University

of North Carolina Press, 1947).

Zeller, Sr. M. C, The Development of Trigonometry from Regiomontanus to Pi-

tiscus (Ann Arbor, Mich.: Edwards Brothers, 1946).

CHAPTER 16

Andersen, K., "Cavalieri's Method of Indivisibles," Archive for History of Exact

Sciences, 31 (1985), 291-367.

Boyer, C. B., "Viete's Use of Decimal Fractions," Mathematics Teacher, 55 (1962),

123-127.

Brasch, F. E., ed., Johann Kepler, 1571-1630. A Tercentenary Commemoration of
his Life and Works (Baltimore: Williams and Wilkins, 1931).

Bruins, E. M., "On the History of Logarithms: Biirgi, Napier, Briggs, de Decker,

Vlacq, Huygens," Janus, 67 (1980), 241-260.

Cajori, F., "History of the Exponential and Logarithmic Concepts," American

Mathematical Monthly, 20 (1913), 5-14, 35-47, 75-84, 107-117.



646 REFERENCES

Cijori, \ . William Oughtred, a Great Seventeenth-Century Teacher of Mathematics

(Chicago: Open Court, 1916).

Cttptr, M . Kepler, trans, by D. Hellman (New York: Abelard-Schuman, 1959).

DijksterhutS, E. J. and D. J. Struik, eds.. The Principal Works of Simon Stevin

(Amsterdam: Swcts and Zeitinger, 1955-1965).

Drake. S., "Mathematics and Discovery in Galileo's Physics," Historia Mathe-

manca. 1 (1973). 129-150.

Galilei. G., Discourses on the Two Chief Systems, ed. by G. de Santillana (Chicago:

University of Chicago Press, 1953); also see ed. by S. Drake (Berkeley: Uni-

versity of California Press, 1953).

Galilei, G, On Motion, and On Mechanics (Madison, Wise: University of Wis-

consin Press, 1960).

Galilei, G., Two New Sciences, trans, with introduction and notes by S. Drake

(Madison, Wise: University of Wisconsin Press, 1974).

Glaisher, J. W. L., "On Early Tables of Logarithms and Early History of Loga-

rithms," Quarterly Journal of Pure and Applied Mathematics, 48 (1920), 151—

192.

Glushkov, S., "An Interpretation of Viete's 'Calculus of Triangles' as a Precursor

of the Algebra of Complex Numbers," Historia Mathematica, 4 (1977), 127—

136.

Gridgeman, N. T., "John Napier and the History of Logarithms," Scripta Math-

ematica, 29 (1973), 49-65.

Hawkins. W. F, "The Mathematical Work of John Napier (1550-1617)," Bulletin

of the Australian Mathematical Society, 26 (1982), 455-468.

Hobson, E. W., John Napier and the Invention of Logarithms, 1614 (Cambridge:

The University Press, 1914).

Kepler, J., The Six-Cornered Snowflake (Oxford: Clarendon, 1966).

Lohne. J. A., "Essays on Thomas Harriot: I. Billiard Balls and Laws of Collision.

II. Ballistic Parabolas. III. A Survey of Harriot's Scientific Writings," Archive

for History of Exact Sciences, 20 (1979), 189-312.

MacLachlan, J., (1979), "Mersenne's Solution for Galileo's Problem of the Ro-

tating Earth." Historia Mathematica, 4 (1977), 173-182.

Napier, J., The Construction of the Wonderful Canons of Logarithms (London:

Dawsons of Pall Mall, 1966).

Napier. J., A Description of the Admirable Table of Logarithms (Amsterdam:

Theatrum Orbis Terrarum; New York: Da Capo Press, 1969).

Naylor, R H., "Mathematics and Experiment in Galileo's New Sciences," Annali

dell' Inst ituto \ Museo di Storia delle Scienza di Firenze 4(1) (1979), 55-63.

Pierce. R ( Jr.. Sixteenth Century Astronomers Had Prosthaphaeresis," Math-

ematics Teacher, 70 (1977), 613-614.

Rosen, E., Three Imperial Mathematicians (New York: Abanis, 1986).

SaitOO, (. . Simon Stevin of Bruges (1548-1620)," Isis, 21 (1934), 241-303.

Sarton, G., The 1 irst Explanation of Decimal Fractions and Measures (1585),"

his. 23 (1935). 153-244.



REFERENCES 649

Smith, A. M., "Galileo's Theory of Indivisibles: Revolution or Compromise?"
Journal for the History of Ideas, 37 (1976), 571-588.

Swerdlow, N. M., "The Planetary Theory of Francois Viete. 1. The Fundamental

Planetary Models," Journal for the History of Astronomy, 6 (1975), 185-208.

Tanner, R. C. H., "On the Role of Equality and Inequality in the History of

Mathematics," British Journal of the History of Science, 1 (1962), 159-169.

Tanner, R. C. H., "Nathaniel Torporley's 'Congestor analyticus' and Thomas Har-

riot's 'De triangulis laterum rationalium,"' Annals of Science, 34 (1977), 393-

428.

Tanner, R. C. H., "The Ordered Regiment of the Minus Sign: Off-beat Mathe-

matics in Harriot's Manuscripts," Annals of Science, 37 (1980), 159-178.

Viete, F, The Analytic Art: Nine Studies in Algebra, Geometry, and Trigonometry

from the Opus restitutae mathematicae analyseos, seun algebra nova, trans,

with introduction and annotations by T. R. Witmer (Kent, Ohio: Kent State

University Press, 1983).

Zeller, Sr. M. C, The Development of Trigonometry from Regiomontanus to Pi-

tiscus (Ann Arbor, Mich.: Edwards Brothers, 1946).

CHAPTER 17

Andersen, K., "The Mathematical Technique in Fermat's Deduction of the Law
of Refraction," Historia Mathematica, 10 (1983), 48-62.

Bos, H. J. M., "On the Representation of Curves in Descartes' Geometrie, " Archive

for History of Exact Sciences, 24 (1981), 295-338.

Boyer, C. B., "Pascal's Formula for the Sums of the Powers of the Integers,"

Scripta Mathematica, 9 (1943), 237-244.

Boyer, C. B., "Pascal: The Man and the Mathematician," Scripta Mathematica,

26 (1963), 283-307.

Bussey, W. H., "Origin of Mathematical Induction," American Mathematical Monthly

,

24 (1917), 199-207.

Cajori, F, "Origin of the Name 'Mathematical Induction,'" American Mathemat-

ical Monthly, 25 (1918), 197-201.

Campbell, W. L., "An Application from the History of Mathematics," Mathematics

Teacher, 70 (1977), 538-540.

Court, N. A., "Desargues and his Strange Theorem," Scripta Mathematica, 20

(1954), 5-13, 155-164.

Descartes, R., The Geometry, trans, by D. E. Smith and Marcia L. Latham (New
York: Dover, 1954; paperback edition).

Edwards, Harold M., Fermat's Last Theorem. A Genetic Introduction to Algebraic

Number Theory (New York: Springer-Verlag, 1977).

Field, J. V. and J.J. Gray, The Geometrical Work ofGirard Desargues (New York:

Springer-Verlag, 1987).

Forbes, E. G., "Descartes and the Birth of Analytic Geometry," Historia Math-

ematica, 4 (1977), 141-151.



650 REFERENCES

Isms. W. M . Jr., "A Note on Girard Desargues," Scripta Mathematical 9 (1943),

48.

Lenoir. T.. "Descartes and the Geometrization of Thought: A Methodological

Background of Descartes' Geometric" Historia Mathematica, 6 (1979), 355-

379.

Lutzen, J., "The Relationship Between Pascal's Mathematics and his Philosophy,"

Ccntauriis, 24 (1980), 263-272.

Mahoney, M. S., The Mathematical Career of Pierre de Fermat, 1601-1665 (Prince-

ton, N.J.: Princeton University Press, 1973).

Ore, O., "Pascal and the Invention of Probability Theory," American Mathematical

Monthly, 47 (1960), 409-419.

Ribenboim, P., "The Early History of Fermat's Last Theorem," The Mathematical

Intelligencer, 11 (1976), 7-21.

Scott, J. F, The Scientific Work of Rene Descartes (1596-1650), with a foreword

by H. W. Turnbull (London: Taylor & Francis, 1976; reprint of the 1952 ed.).

Walker, E., A Study of the Traite des indivisibles of Gilles Persone de Roberval

(New York: Teachers College, 1932).

Weil, A., Number Theory: An Approach Through History, Chapter II (Boston/

Basel/Stuttgart: Birkhauser, 1983).

CHAPTER 18

Barrow, I., Geometrical Lectures, ed. by J. M. Child (Chicago: Open Court, 1916).

Barrow, I., The Usefulness of Mathematical Learning Explained and Demonstrated

(London: Cass, 1970).

Bennett, J. A.. The Mathematical Science of Christopher Wren (Cambridge: Cam-
bridge University Press, 1982).

Boyer, C. B., "Note on Epicycles and the Ellipse from Copernicus to Lahire,"

Isis, 38 (1947), 54-56.

Boyer, C, "Johann Hudde and Space Coordinates," Mathematics Teacher, 58

(1965), 33-36.

Cajori, F, "A Forerunner of Mascheroni," American Mathematical Monthly, 36

(1929), 364-365.

Dehn, M. and E. D. Hellinger, "Certain Mathematical Achievements of James

Gregory," American Mathematical Monthly, 50 (1943), 149-163.

Dutka. J., "Wallis's Product, Brouncker's Continued Fraction, and Leibniz's Se-

ries." Archive for History of Exact Sciences, 26 (1982), 115-126.

Dutka, J., "The Early History of the Hypergeometric Function," Archive for

History of Exact Sciences, 31 (1984), 15-34.

Easton, J. W., "Johan De Witts Kinematical Constructions of the Conies," Math-

ematics Teacher, 56 (1963), 632-635.

Easton, J., "A Historical Note on a Problem in this Monthly," American Mathe-

matical Monthly, 72 (1965), 53-56.



REFERENCES 651

Hallerberg, A. E., "Georg Mohr and Euclidis curiosi," Mathematics Teacher, 53

(1960), 127-132.

Halleux, E., ed., "Rene-Francois de Sluse (1622-1685)," Bulletin de la Societe

Royale des Sciences de Liege, 55e annee, 1 (1986), 1-269.

Jones, H. W., "A Seventeenth-Century Debate," Annals of Science, 31 (1974),

307-333.

Mohr, G., Compendium Euclidis curiosi (Copenhagen: C. A. Reitzel, 1982; pho-

tographic reproduction of Amsterdam 1673 publication and the English trans-

lation by Joseph Moxon published in London 1677).

Rigaud, S. P. , Correspondence ofScientific Men ofthe Seventeenth Century (Oxford:

University Press, 1841; 2 vols.).

Scott, J. E, "Brouncker," Notes and Records of the Royal Society of London, 15

(1960), 147-157.

Scott, J. F, The Mathematical Works of John Wallis, D. D., F. R. S. (1616-1703)

(New York: Chelsea 1981; second publication of 1938 London ed.).

Scriba, C. J., "Gregory's Converging Double Sequence," Historia Mathematica,

10 (1983), 274-285.

Smith, D. E., "John Wallis as a Cryptographer," Bulletin of the American Math-

ematical Society, (1918), 24 (2) 82-96.

Turnbull, H. W., James Gregory Tercentenary Memorial Volume (London: G. Bell,

1939).

Whiteside, D. T., "Wren the Mathematician," Notes and Records of the Royal

Society of London, 15 (1960), 107-111.

CHAPTER 19

Aiton, E. J., Leibniz: A Biography (Bristol and Boston: A. Hilger, 1984).

Ball, W. W. R., "On Newton's Classification of Cubic Curves," Proceedings of the

London Mathematical Society, 22 (1890-1891), 104-143.

Bos, H. J. M., "Differentials, Higher-Order Differentials, and the Derivative in

the Leibnizian Calculus," Archive for History of Exact Sciences, 14 (1974), 1-

90.

Boyer, C. B., "Newton as an Originator of Polar Coordinates," American Math-

ematical Monthly, 16 (1949), 73-78.

Calinger, R., Gottfried Wilhelm Leibniz (Troy, N.Y.: Rensselaer Polytechnic In-

stitute, 1976).

Child, J. M., ed., The Early Mathematical Manuscripts of Leibniz, trans, by C. I.

Gerhardt (Chicago: Open Court, 1920).

Cohen, I. B., Introduction to Newton's Principia (Cambridge: Cambridge Univer-

sity Press, 1971).

Costabel, P., Leibniz and Dynamics. The Texts of 1692, trans, by R. E. W. Mad-
dison of the 1960 ed. (Paris: Herman; London: Methuen; Ithaca, N.Y.: Cornell

University Press, 1973).



652 REFERENCES

Eannan, J . infinities. Infinitesimals, and Indivisibles: The Leibnizian Labyrinth,"

Studi* Leibnitiana, 1 (1975), 236-251.

Hall. A R . Philosophers at War: The Quarrel Between Newton and Leibniz (Cam-

bridge Cambridge University Press, 1980).

Hall. A. R and M. B. Hall, The Correspondence of Henry Oldenburg (Madison,

Wise University of Wisconsin Press (vols. 1-9) and London: Mansell (vols. 10

and 11). 1965-1977).

I lofmann , J . E. , Leibniz in Paris (1672-1676): His Growth to Mathematical Maturity

(London: Cambridge University Press, 1974).

Kitcher, P., "Fluxions, Limits, and Infinite Littlenesse. A Study of Newton's Pre-

sentation of the Calculus," Isis, 64 (1973), 33-49.

Knobloch. E., "The Mathematical Studies of G. W. Leibniz on Combinatorics,"

Histona Mathematica, 1 (1974), 409-430.

Newton, I.. Isaac Newton's Papers and Letters on Natural Philosophy and Related

Documents, ed. by I. B. Cohen (Cambridge, Mass.: Harvard University Press,

1958).

Newton, I., The Mathematical Papers, ed. by D. T. Whiteside (Cambridge: Cam-
bridge University Press, 1967-1980; 8 vols.).

Newton, L, Isaac Newton's Philosophiae Naturalis Principia Mathematica, ed. by

A. Koyre and I. B. Cohen, 3rd ed., with variant readings (Cambridge: Cam-
bridge University Press, 1972; 2 vols.).

Palter. R., ed.. The Annus Mirabilis of Sir Isaac Newton 1666-1966 (Cambridge,

Mass., and London: MIT Press, 1970).

Rickey, V. F., "Isaac Newton: Man, Myth, and Mathematics," College Mathematics

Journal, 18 (1987), 362-389.

Turnbull, H. W., J. F. Scott, A. R. Hall, and L. Tilling, The Correspondence of
Isaac Newton (Cambridge: Cambridge University Press, 1959-1977; 7 vols.).

Westfall, R. S., Never at Rest: A Biography of Isaac Newton (Cambridge: Cam-
bridge University Press, 1980).

Whiteside. D. T. , "Patterns of Mathematical Thought in the Late Seventeenth

Century," Archive for History of Exact Sciences, 1 (1961), 179-388.

Whiteside, D. T., "Newton the Mathematician," in: Contemporary Newtonian

Research, ed. by Z. Bechler (Dordrecht: D. Reidel, 1982), pp. 109-127.

CHAPTER 20

A\oub. R.. The Lemniscate and Fagnanos Contributions to Elliptic Integrals,'

Archive fur History OJ Exact Sciences, 29 (1984), 131-149.

Baum. R J . The Instrumentalist and Formalist Elements of Berkeley's Philos-

ophy of Mathematics," Studies in History and Philosophy of Science, 3 (1972),

119-134

Berkeley G.. Philosophical Works (London: Dent. 1975).

Boyer, C B . "The First Calculus Textbooks," Mathematics Teacher, 39 (1946),

167.



REFERENCES 653

Boyer, C. B., "Colin Maclaurin and Cramer's Rule," Scripta Mathematica, 27

(1966), 377-379.

Cajori, F, A History of the Conceptions of Limits and Fluxions in Great Britain,

from Newton to Woodhouse (Chicago: Open Court, 1919).

Corr, C. A., "Christian Wolff and Leibniz," Journal of the History of Ideas, 36

(1975), 241-262.

Dunham, W., "The Bernoullis and the Harmonic Series," The College Mathematics

Journal, 18 (1987), 18-23.

Edleston, J., Correspondence of Sir Isaac Newton and Professor Cotes (London:

Cass, 1969; reprint of the 1850 ed.).

Feigenbaum, L., "Brook Taylor and the Method of Increments," Archive for

History of Exact Sciences, 34 (1985), 1-140.

Honic, P. S., "History and Mathematical Analysis of the Fusee," in: The Clockwork

Universe: German Clocks and Automata 1550-1650, ed. by K. Maurice and O.

Mayr (New York: Neale Watson, 1980), pp. 114-120.

Lokken, R. N., "Discussions on Newton's Infinitesimals in 18th Century Anglo-

America," Historia Mathematica, 7 (1980), 141-155.

Maclaurin, C, The Collected Letters of Colin Maclaurin, ed. by S. Mills (Nantwich,

Chesh.: Shiva, 1982).

Milliken, S. F, "Buffon's Essai d'Arithmetique Morale," in: Essays on Diderot

and the Enlightenment, in Honor of Otis Fellow, ed. by John Pappas (Geneva:

Droz, 1974), pp. 197-206.

Mills, S., "The Controversy Between Colin Maclaurin and George Campbell over

Complex Roots, 1728-1729," Archive for History of Exact Sciences, 28 (1983),

149-164.

Shafer, G., "Non-Additive Probabilities in the Work of Bernoulli and Lambert,"

Archive for History of Exact Sciences, 18 (1978), 309-370.

Turnbull, H. W. , Bicentenary ofthe Death of Colin Maclaurin (Aberdeen: Aberdeen

University Press, 1951).

Tweedie, C, "A Study of the Life and Writings of Colin Maclaurin," Mathematical

Gazette, 8 (1915), 132-151, and 9 (1916), 303-305.

Tweedie, C, James Stirling: Sketch of his Life and Works (Oxford: Clarendon,

1922).

Walker, H. M., "Abraham De Moivre," Scripta Mathematica, 2 (1934), 316-333.

CHAPTER 21

Aiton, A. J., "The Contributions of Newton, Bernoulli and Euler to the Theory

of Tides," Annals of Science, 11 (1956), 206-223.

Archibald, R. C, "Euler Integrals and Euler's Spiral, Sometimes called Fresnel

Integrals and the Clothoide or Cornu's Spiral," American Mathematical

Monthly, 25 (1918), 276-282.

Archibald, R. C, "Goldbach's Theorem," Scripta Mathematica, 3 (1935), 44-50.

Ayoub, R., "Euler and the Zeta Function," American Mathematical Monthly, 81

(1974), 1067-1086.



654 REFERENCES

Btfben, E. J., "Euler Subdues a Very Obstreperous Series," American Mathe-

matical Monthly. 86 (1979), 356-372.

Baibeail, B. J and P. J. Leah, "Euler's 1760 Paper on Divergent Series," Historia

Maihcmatua. 3 ( 1976), 141-160; also see 5 (1978), 332 for errata.

B iron. M E., "A Note on the Historical Development of Logic Diagrams: Leibniz,

\ ulcr and Venn," Mathematical Gazette, 53 (1969), 113-125.

Boyer, G B., "Clairaut and the Origin of the Distance Formula," American Math-

ematical Monthly, 55 (1948), 556-557.

Boyer. C. B., "The Foremost Textbook of Modern Times (Euler's Introductio in

analysin infinitorum)" American Mathematical Monthly, 58 (1951), 223-226.

Boyer, C. B., "Clairaut le Cadet and a Theorem of Thabit ibn-Qurra," his, 55

(1964), 68-70; also see his, 57 (1966), 56-66 (Scriba).

Brown, W. G., "Historical Note on a Recurrent Combinatorial Problem," Amer-

ican Mathematical Monthly, 72 (1965), 973-977.

Cajori, F., "History of the Exponential and Logarithmic Concepts," American

Mathematical Monthly, 20 (1913), 38-47, 75-84, 107-117.

Calinger, R., "Euler's 'Letters to a Princess of Germany' as an Expression of his

Mature Scientific Outlook," Archive for History of Exact Sciences, 15 (1976),

211-233.

Carlitz, L., "Eulerian Numbers and Polynomials," Mathematics Magazine, 33

(1959), 247-260.

Daston, L. J., "D'Alembert's Critique of Probability Theory," Historia Mathe-

matica, 6 (1979), 259-279.

Davis, P. J., "Leonhard Euler's Integral: A Historical Profile of the Gamma Func-

tion," American Mathematical Monthly, 66 (1959), 849-869.

Deakin, M. A. B., "Euler's Version of the Laplace Transform," American Math-

ematical Monthly, 87 (1980), 264-269.

Dutka, J., "The Early History of the Hypergeometric Function," Archive for

History of Exact Sciences, 31 (1984), 15-34.

Euler, L., Elements of Algebra (New York et al.: Springer, 1985).

Forbes, E. G., The Euler-Mayer Correspondence (1751-1755). A New Perspective

on Eighteenth Century Advances in the Lunar Theory (New York: American
Elsevier, 1971; also published in 1971 in London by Macmillan).

Fraser, C, "J. L. Lagrange's Early Contributions to the Principles and Methods
of Mechanics," Archive for History of Exact Sciences, 28 (1983), 197-241.

Frisinger, H. H., "The Solution of a Famous Two-Century-Old Problem: The
Leonhard Euler-Latin Square Conjecture," Historia Mathematica, 8 (1981),

56-60.

Glauber, J. W. L., "On the History of Euler's Constant," Messenger of Mathe-

matics. 1 (1871), 25-30.

Grattan-Guinness, I., The Development of the Foundations of Mathematical Anal-

ysk from Euler to Riemann (Cambridge, Mass.: MIT Press, 1971).

Grattan-Guinness, I., "On the Influence of Euler's Mathematics in France During

the Period 1795-1825," in: Festakt und Wissenschaftliche Konferenz aus Anlass

des 200. Todestags von Leonhard Euler, ed. by W. Engel, Abhandlungen der



REFERENCES 655

Akademie der Wissenschaften der DDR, Abt. Mathematik-Naturwissenschaft-

Technik No. IN, 1985, pp. 100-111.

Gray, J. J. and L. Tilling, "Johann Heinrich Lambert, Mathematician and Scientist,

1728-1777," Historia Mathematics 5 (1978), 13-41.

Gridgeman, N. T., "Geometric Probability and the Number n" Scripta Mathe-

matical 25 (1960), 183-195.

Grimsley, R., Jean d'Alembert (1717-83) (Oxford: Clarendon, 1963).

Hankins, T. L., Jean d'Alembert (Oxford: Clarendon, 1972).

Iushkevich, A. P., "The Concept of Function Up to the Middle of the Nineteenth

Century," Archive for History of Exact Sciences, 16 (1982), 37-85.

Kawajiri, N., "The Missed Influence of French Encyclopedists on Wasan," Japanese

Studies in the History of Science, 15 (1976), 79-95.

Lander, L. J. and T. R. Parkin, "Counterexample to Euler's Conjecture on Sums

of Like Powers," Bulletin of the American Mathematical Society, 72 (1966),

1079.

Mathematics Magazine, "Euler," Vol. 56 No. 5 (1983); an issue devoted to Euler

with contributions by J. Liitzen, H. M. Edwards, P. Erdos, U. Dudley, G. L.

Alexanderson, G. E. Andrews, J. J. Burckhardt, and M. Kline.

Sheynin, O. B., "J. H. Lambert's Work on Probability," Archive for History of

Exact Sciences, 7 (1971), 244-256.

Sheynin, O. B., "On the Mathematical Treatment of Observations by L. Euler,"

Archive for History of Exact Sciences, 9 (1972/1973), 45-56.

Steinig, J., "On Euler's Idoneal Numbers," Elemente der Mathematik, 21 (1966),

73-88.

Truesdell, C, "Leonhard Euler, Supreme Geometer (1707-1783)," in: Studies in

the Eighteenth Century Culture, Vol. 2, ed. by H. E. Pagliaro (Cleveland and

London: Case Western Reserve, 1982), pp. 51-95.

Truesdell, C. , "The Rational Mechanics of Flexible or Elastic Bodies. " Introduction

to Leonhardi Euleri Opera Omnia (2) 10-11 in (2) 11, Pt. 2 (Zurich: Orell

Fussli, 1960).

Truesdell, C, "Rational Mechanics 1687-1788," Archive for History of Exact Sci-

ences, 1(1960/1962), 1-36.

Van den Broek, J. A., "Euler's Classic Paper 'On the Strength of Columns,'
"

American Journal of Physics, 15 (1947), 309-318.

Van Oss, R. G., "D'Alembert and the Fourth Dimension," Historia Mathematica,

10 (1983), 455-457.

Volk, O., "Johann Heinrich Lambert and the Determination of Orbits for Planets

and Comets," Celestial Mechanics, 21 (1980), 237-250, also see the earlier

Celestial Mechanics, 14 (1976), 365-382.

Weil, A., Number Theory. An Approach Through History from Hammurapi to

Legendre, Chapter 3 (Boston/Basel/Stuttgart: Birkhauser, 1983).



656 REFERENCES

CHAPTER 22

AmgO, F . "Biographies of Distinguished Scientific Men. (Laplace)," in: Annual

Report of the Smithsonian Institution (Washington, D.C., 1874), pp. 129-168.

Baker . R M . ( ondorcet. From Natural Philosophy to Social Mathematics (Chicago

and London: University of Chicago Press, 1975).

Barnes, C. W., "The Representation of Primes of the Form 4n + 1 as the Sum of

Two Squares," Enseignement Mathematique, 12 (1972), 289-299.

Burlingame. A. E., Condorcet, the Torch Bearer of the French Revolution (Boston:

Stratford. 1930).

Caratheodorv, C "The Beginnings of Research in the Calculus of Variations,"

Osiris, 3 (1938), 224-240.

Carnot, L. N. M., "Reflections on the Theory of the Infinitesimal Calculus," trans.

by W. Dickson, Philosophical Magazine, 8 (1800), 222-240, 335-352; and Ibid.,

9(1801), 39-56.

Carnot, L. N. M., Reflexions on the Metaphysical Principles of the Infinitesimal

Analysis, trans, by W. R. Browell (Oxford: University Press, 1832).

Coolidge. J. L., "The Beginnings of Analytic Geometry in Three Dimensions,"

American Mathematical Monthly, 55 (1948), 76-86.

Dale, A. I.. "Bayes or Laplace? An Examination of the Origin and Early Appli-

cations of Bayes' Theorem," Archive for History of Exact Sciences, 27 (1982),

23-47.

Deakin. M. A. B., "The Development of the Laplace Transform, 1737-1937. I.

Euler to Spitzer, 1737-1880," Archive for History of Exact Sciences, 25 (1981),

343-390.

Engelsman. S. B., "Lagrange's Early Contributions to the Theory of First-Order

Partial Differential Equations," Historia Mathematica, 7 (1980), 7-23.

Fraser, C. "J. L. Lagrange's Changing Approach to the Foundations of the Cal-

culus of Variations," Archive for History of Exact Sciences, 32 (1985), 151-191.

Gillespie, C. C, Lazare Carnot Savant (Princeton: Princeton University Press,

1971).

Grabiner. J. V, The Origins of Cauchy's Rigorous Calculus (Cambridge, Mass.:

MIT Press, 1981).

Gridgeman, NT., "Geometric Probability and the Number tt," Scripta Mathe-

matica. 25 (1960), 183-195.

Hamburg, R. Rider, "The Theory of Equations in the Eighteenth Century: The
Work of Joseph Lagrange," Archive for History of Exact Sciences, 16 (1976),

17

Jourdain, P. E. B., "The Ideas of the Fonctions analytiques' in Lagrange's Early

Work/1

Proceedings of the International Congress of Mathematicians, 2 (1912),

540 54 1.

Lagrange, J. L., Lectures on Elementary Mathematics, trans, by T. J. McCormack
(Chicago: Open Court. 1901).

Laplace. P. S., A Philosophical Treatise on Probabilities, trans, by F. W. Truscott

and F. L. Emory (New York: Dover, 1951).



REFERENCES 657

Laplace, P. S., Mecanique celeste, trans, and ed. by N. Bowditch (New York:

Chelsea, 1966; 4 vols, reprint of the 1829-1839 ed.).

Plackett, R. L., "Studies in the History of Probability and Statistics. XXIX. The

Discovery of the Method of Least Squares," Biometrika, 59 (1972), 239-251.

Sarton, G., "Lagrange's Personality," Proceedings of the American Philosophical

Society, 88 (1944), 457-496.

Schot, S. H., "Aberrancy: Geometry of the Third Derivative," Mathematics Mag-

azine, 51 (1978), 259-275.

Sheynin, O. B., "P. S. Laplace's Work on Probability," Archive for History of

Exact Sciences, 16 (1977), 137-187.

Stigler, S. N., "Napoleonic Statistics: The Work of Laplace. Studies in the History

of Probability and Statistics, xxxiv," Biometrika, 62(2) (1975), 503-517.

Stigler, S. N., "An Attack on Gauss Published by Legendre in 1820," Historia

Mathematica, 4 (1977), 31-35.

Stigler, S. N., "Laplace's Early Work: Chronology and Citations," Isis, 69 (1978),

234-254.

Woodhouse, R., A History of the Calculus of Variations in the Eighteenth Century

(New York: Chelsea, 1964; reprint of the 1810 ed.).

CHAPTER 23

Birkhoff, G., "Galois and group theory," Osiris, 3 (1937), 260-268.

Birkhoff, G. with U. Merzbach, ed., A Source Book in Classical Analysis (Cam-

bridge, Mass.: Harvard University Press, 1973).

Bolzano, B., Paradoxes of the Infinite, trans, by D. A. Steele. (London: Routledge

and Kegan Paul, 1950).

Breitenberger, E., "Gauss's Geodesy and the Axiom of Parallels," Archive for

History of Exact Sciences, 31 (1984), 273-289.

Biihler, W. K., Gauss. A Biographical Study (Berlin/Heidelberg/New York: Sprin-

ger-Verlag, 1981).

Dunnington, G. W., Carl Friedrich Gauss. Titan of Science (New York: Exposition

Press, 1955).

Edwards, H. M., Galois Theory (New York et al.: Springer-Verlag, 1984).

Fisher, G., "Cauchy's Variables and Orders of the Infinitely Small," British Journal

of the Philosophy of Science, 30 (1979), 261-265.

Gauss, C. F., Inaugural Lecture on Astronomy and Papers on the Foundations of

Mathematics, trans, by G. W. Dunnington (Baton Rouge, La.: Louisiana State

University, 1937).

Gauss, C. F., Theory of the Motion of Heavenly Bodies (New York: Dover, 1963).

Gauss, C. F., General Investigations of Curved Surfaces, trans, by A. Hiltebeitel

and J. Morehead (New York: Raven Press, 1965).

Gauss, C. F., Disquisitiones arithmeticae, trans, into English by A. A. Clarke (New
Haven, Conn.: Yale University Press, 1966).

Goodstein, R. L., "A Constructive Form of the Second Gauss Proof of the Fun-



658 REFERENCES

damental Theorem of Algebra," in: Constructive Aspects of the Fundamental

Theorem of Algebra, ed. by B. Dejon and P. Henrici (London, New York et

I: Wile) Interscience. 1%9), pp. 69-76.

Grabiner, J. V.. The Origins of Cauchy's Rigorous Calculus (Cambridge, Mass.:

MIT Press. 1961).

Grabiner, J. V., "Who Gave you the Epsilon? Cauchy and the Origins of Rigorous

Calculus," The American Mathematical Monthly, 90 (1983), 185-194.

( ira\ .J. "A commentary on Gauss's mathematical diary, 1796-1814, with an Eng-

lish translation/' Expositiones Mathematicae 2 (1984), 97-130.

Hall, T., Gauss, a Biography (Cambridge, Mass.: MIT Press, 1970).

Heideman, M. T., D. H. Johnson and C. S. Burrus, "Gauss and the History of

the Fast Fourier Transform," Archive for History of Exact Sciences, 34 (1985),

265-277.

Jourdain. P. E. B., "The Theory of Functions with Cauchy and Gauss," Bibliotheca

Mathematica (3) 6 (1905), 190-207.

Jourdain, P. E. B., "Note on Fourier's Influence on the Conceptions of Mathe-
matics," International Congress of Mathematicians {Cambridge), 2 (1912), 526-

527.

Jourdain, P. E. B., "The Origins of Cauchy's Conceptions of a Definite Integral

and of the Concept of a Function," Isis, 1 (1913), 661-703.

Lakatos, I.. "Cauchy and the Continuum," Mathematical Intelligencer, 1 (1978),

151-161.

Nagel, E., "Impossible Numbers," Studies in the History of Ideas, 3 (1935), 427-

474.

Ore, O., Niels Henrik Abel (Minneapolis: University of Minnesota Press, 1957).

Robinson, A., Non-Standard Analysis (Amsterdam: North Holland, 1966), esp.

pp. 269ff.

Robinson, D. W., "Gauss and Generalized Inverses," Historia Mathematica, 7

(1980), 118-125.

Sarton, G., "Evariste Galois," Osiris, 3 (1937), 241-259.

Stigler, S. N., "Gauss and the Invention of Least Squares," Annals of Statistics, 9

(1981). 465-474.

Truesdell, C, "Cauchy's First Attempt at a Molecular Theory of Elasticity," Bol-

letino di Storia delle Scienze Matematica, 1 (1981), 133-143.

Zasscohaus, H., "On the Fundamental Theorem of Algebra," American Mathe-

matical Monthly, 74 (1967), 485-497.

CHAPTER 24

Bonola. R . Non-Euclidean Geometry (New York: Dover, 1955; contains trans-

lation ofl relevant work by Bolyai and Lobachevsky).

Borel, A . "On the Development of Lie Group Theory," Mathematical Intelligen-

cer, 2(2) (1980), ^7-72.



REFERENCES 659

Boyer, C. B., "Analysis: Notes on the Evolution of a Subject and a Name,"
Mathematics Teacher, 47 (1954), 450-462.

Coolidge, J. L., "The Heroic Age of Geometry," Bulletin of the American Math-

ematical Society, 35 (1929), 19-37.

Court, N. A., "Notes on Inversion," Mathematics Teacher, 55 (1962), 655-657.

De Vries, H. L., "Historical Notes on Steiner Systems," Discrete Mathematics, 52

(1984), 293-297.

Hawkins, T., "Non-Euclidean Geometry and Weierstrassian Mathematics: The

Background to Killing's Work on Lie Algebras," Historia Mathematica, 7 (1980),

289-342.

Hawkins, T., "The Erlanger Programm of Felix Klein: Reflections on its Place in

the History of Mathematics," Historia Mathematica, 11 (1984), 442-470.

Hermann, R., ed., Sophus Lie's 1884 Differential Invariant Paper, trans, by M.
Ackerman, Vol. 3 of Lie Groups: History, Frontiers and Applications (Brook-

line, Mass.: Math. Sci. Press, 1976).

Kagan, V., N. Lobachevski and his Contribution to Science (Moscow: Foreign

Languages Publishing House, 1957).

Klein, E, "A Comparative Review of Recent Researches in Geometry," trans.

M. W. Haskell Bulletin of the New York Mathematical Society, 2, (1893), 215-

249.

Nagel, Ernest, "The Formation of Modern Conceptions of Formal Logic in the

Development of Geometry," Osiris, 7 (1939), 142-224.

Patterson, B. C, "The Origins of the Geometric Principle of Inversion," Isis, 19

(1933), 154-180.

Portnoy, E., "Riemann's Contribution to Differential Geometry," Historia Math-

ematica, 8 (1982), 1-18.

Reid, C, "The Road Not Taken," Mathematical Intelligencer, 1 (1978), 21-23.

Rowe, D. E., "A Forgotten Chapter in the History of Felix Klein's Erlanger

Programm," Historia Mathematica, 10 (1983), 448-454.

Rowe, D. E., "Felix Klein's 'Erlanger Antrittsrede': A Transcription with English

Translation and Commentary," Historia Mathematica, 12 (1985), 123-141.

Scott, C. A., "On the Intersection of Plane Curves," Bulletin of the American

Mathematical Society, 4 (1897) 260-273.

Segal, S., "Riemann's Example of a Continuous 'Non-differentiable' Function Con-

tinued," Mathematical Intelligencer, 1 (1978), 81-82.

Struik, D. J., "Outline of a History of Differential Geometry," Isis, 19 (1933), 92-

120, and Ibid., 20 (1933), 161-191.

Vucinich, A., "Nikolai Ivanovich Lobachevski. The Man Behind the First Non-

Euclidean Geometry," Isis, 53 (1962), 465-481.

Weil, A., "Riemann, Betti, and the Birth of Topology," Archive for History of

Exact Sciences, 20 (1979), 91-96.

Zund, J. D., "Some Comments on Riemann's Contributions to Differential Ge-

ometry," Historia Mathematica, 10 (1983), 84-89.



660 REFERENCES

CHAPTER 25

Birkhoff, G, with U. Merzbach, A Source Book in Classical Analysis (Cambridge,

Mass Harvard University Press, 1973).

Buchwald. J. Z. . From Maxwell to Microphysics: Aspects of Electromagnetic Theory

m the Last Quarter of the Nineteenth Century. Chicago: University of Chicago

Press. 1985.

Cantor. G., Contributions to the Founding of the Theory of Transfinite Numbers,

trans, by P. E. B. Jourdain (New York: Dover, n.d.; paperback reissue of the

1915 ed.).

Cooke, R., The Mathematics of Sonya Kovalevskaya (New York/Berlin/Heidel-

berg: Springer-Verlag, 1984).

Dauben, J. W., Georg Cantor: His Mathematics and Philosophy of the Infinite

(Cambridge, Mass.: Harvard University Press, 1979).

Dedekind, R. . Essays on the Theory ofNumbers, trans, by W. W. Beman (Chicago:

Open Court, 1901).

Grattan-Guinness, I., "Georg Cantor's Influence on Bertrand Russell," History

and Philosophy of Logic, 1 (1980), 61-93.

Harman, P. M. , ed. , Wranglers and Physicists (Manchester: University Press, 1985).

Hawkins, T., Lebesgues Theory of Integration: Its Origins and Development (New
York: Chelsea Publishing Company, 1975; reprint of the 1970 ed.).

Hewitt, E. and R. E. Hewitt, "The Gibbs-Wilbraham Phenomenon: an Episode

in Fourier Analysis," Archive for History of Exact Sciences, 21 (1979), 129-160.

Jourdain, P. E. B., "The Development of the Theory of Transfinite Numbers,"

Archiv der Mathematik und Physik (3) 10 (1906), 254-281; Ibid., 14 (1909),

289-311; 16 (1910), 21-43; 22 (1913), 1-21.

Jourdain, P. E. B., "On Isoid Relations and Theories of Irrational Numbers,"

Proceedings of the International Congress of Mathematicians, 2 (1912), 492-496.

Jungnickel, C. and R. McCormmach, Intellectual Mastery of Nature: Theoretical

Physics from Ohm to Einstein, Vol. 1: The Torch of Mathematics, 1800-1870

(Chicago and London: The University of Chicago Press, 1986).

Katz, V. J., "The History of Stokes' Theorem," Mathematics Magazine, 52 (1979),

146-156.

Klein, F., On Riemann's Theory of Algebraic Functions and Their Integrals, trans.

by F. Hardcastle (Cambridge: Cambridge University Press, 1893).

Loria, G., "Liouville and His Work," Scripta Mathematica, 4 (1936), 147-154, 257-

262, 301-305.

Manning. K. R., "The Emergence of the Weierstrassian Approach to Complex
Analysis," Archive for History of Exact Sciences, 14 (1975), 297-383.

Mathews. J., "William Rowan Hamilton's Paper of 1837 on the Arithmetization

of Analysis," Archive for History of Exact Sciences, 19 (1978), 177-200.

Mitchell, U. G. and M. Strain, The Number ?," Osiris, 1 (1936), 476-496.

Monna, A. P., Dirichlet's Principle. A Mathematical Comedy of Errors and its

Influence on the Development of Analysis (Utrecht: Oosthoek, Schoutema &
Holkema, 1975).



REFERENCES 661

Rootselaar, B. von, "Bolzano's Theory of Real Numbers," Archive for History of

Exact Sciences, 2 (1964-1965), 168-180.

Smith, C. W., "William Thomson and the Creation of Thermodynamics: 1840-

1855," Archive for History of Exact Sciences, 16 (1977), 231-288.

Stanton, R. J. and R. O. Wells, Jr., eds., "History of Analysis. Proceedings of an

American Heritage Bicentennial Conference Held at Rice University -March

12-13, 1977," Rice University Studies, 64; Nos. 2 and 3(1978).

Stolze, C. H., "A History of the Divergence Theorem," Historia Mathematica, 5

(1978), 437-442.

CHAPTER 26

Crilly, T., "Cayley's Anticipation of a Generalized Cayley-Hamilton Theorem,"

Historia Mathematica, 5 (1978), 211-219.

Crowe, M. J., A History of Vector Analysis; The Evolution of the Idea of a Vectorial

System (New York: Dover, 1985; corrected version of 1967 ed.).

De Morgan, S. E., Memoir of Augustus De Morgan by his Wife Sophia Elizabeth

De Morgan with Selections from his Letters (London: Longmans, Green, 1882).

Dubbey, J. M., The Mathematical Work of Charles Babbage (New York and Lon-

don: Cambridge University Press, 1978).

Edwards, H. M., Galois Theory (New York: Springer, 1984).

Feldmann, R. W., "History of Elementary Matrix Theory," Mathematics Teacher,

55 (1962), 482-484, 589-590, 657-659.

Hankins, T. L., Sir William Rowan Hamilton (Baltimore and London: Johns Hop-

kins University Press, 1980).

Hawkins, T., "Hypercomplex Numbers, Lie Groups, and the Creation of Group
Representation Theory," Archive for History of Exact Sciences, 8 (1971), 243-

287.

Hawkins, T., "Another Look at Cayley and the Theory of Matrices," Archives

Internationales d'Histoire des Sciences, 27 (1977), 83-112.

Kleiner, I., "The Evolution of Group Theory: A Brief Survey," Mathematics Mag-

azine, 59 (1986), 195-215.

Koppelman, E., "The Calculus of Operations and the Rise of Abstract Algebra,"

Archive for History of Exact Sciences, 8 (1971), 155-242.

LaDuke, J., "The Study of Linear Associative Algebras in the United States, 1870-

1927," in: Emmy Noether in Bryn Mawr, ed. by B. Srinivasan and J. Sally (New

York et al.: Springer-Verlag, 1983), pp. 147-159.

Lewis, A., "H. Grassmann's 1844 Ausdehnungslehre and Schleiermacher's Di-

alektik," Annals of Science, 34 (1977), 103-162.

MacHale, D., George Boole. His Life and Work (Dublin: Boole Press, 1985).

Mathews, J., "William Rowan Hamilton's Paper of 1837 on the Arithmetization

of Analysis," Archive for History of Exact Sciences, 19 (1978), 177-200.

Merzbach, U. C, Quantity to Structure: Development of Modern Algebraic Con-

cepts from Leibniz to Dedekind (Cambridge, Mass.: Harvard University [doc-

toral thesis], 1964).



662 REFERENCES

Now . 1 ... Origim ofModem Algebra (Prague: Academia, 1973; trans, by J. Tauer).

Orestrom, P.. "Hamilton's View of Algebra and his Revision," Historia Mathe-

mmk*, 12 (1985), 45-55.

Peine, C. S .. The New Elements of Mathematics, ed. C. Eisele (Hague: Mouton,

1976).

Pyrior, H .. "George Peacock and the British Origins of Symbolic Algebra," His-

toria Mathematica, 8 (1981), 23-45.

Pyoor, H., "At the Intersection of Mathematics and Humor: Lewis Carroll's Alice

and Symbolic Algebra," Victorian Studies, 28 (1984), 149-170.

Sarton, G., "Evariste Galois," Osiris, 3 (1937), 241-259.

Smith, G. C, The Boole-DeMorgan correspondence, 1842-1864 (London: Oxford

University Press, 1982).

Winterbourne, A. T., "Algebra and Pure Time: Hamilton's Affinity with Kant,"

Historia Mathematica, 9 (1982), 195-200.

Wussing, H., The Genesis of the Abstract Group Concept: A Contribution to the

History of the Origin ofAbstract Group Theory (Cambridge, Mass. , and London:

MIT Press, 1984; trans, of the German 1969 ed. with minor revisions and updated

bibliography).

CHAPTER 27

Bernkopf, M., "The Development of Function Spaces with Particular Reference

to Their Origins in Integral Equation Theory," Archive for History of Exact

Sciences, 3 (1966), 1-96.

Browder, F., ed., Mathematical Developments Arising from Hilbert Problems. Pro-

ceedings of a Symposium at Northern Illinois University, 1974 (Providence, R.I.:

American Mathematical Society, 1976).

Cohen, P. J., "The Independence of the Continuum Hypothesis," Proceedings of

the National Academy of Sciences, 50 (1963), 1143-1148, and Ibid., 51 (1964),

105-110.

Gurel, O., "Poincare's Bifurcation Analysis," in: Bifurcation Theory and Appli-

cations in Scientific Disciplines (New York: New York Academy of Sciences,

1979), pp. 5-26.

Hilbert, D., "Mathematical problems," trans, by M. W. Newson, Bulletin of the

American Mathematical Society (2), 8 (1902), 437-439.

Hilbert, D., Foundations of Geometry, trans, by E. J. Townsend, 2nd ed. (Chicago:

Open Court, 1910).

Moore, G H., Zermelo's Axiom of Choice: Its Origins, Development, and Influ-

ence. New York/Heidelberg/Berlin: Springer-Verlag, 1982.

Nagel, E. and J. R. Newman, "Godel's Proof," in: The World of Mathematics,

Vol. 3 (New York: Simon and Schuster, 1956).

Putnam, H. and P. Benacerraf, eds., Philosophy of Mathematics: Selected Readings

(Englewood Cliffs, N.J.: Prentice Hall, 1964).

Reid, C , Hilbert (New York/Heidelberg/Berlin: Springer, 1970).



REFERENCES 663

Resnick, M. D., "The Frege-Hilbert Controversy," Philosophy and Phenome-

nological Research, 34 (1974), 386-403.

Schmid, W., "Poincare and Lie groups," Bulletin of the American Mathematical

Society, 50 (1982), 612-654.

Weyl, H., "David Hilbert and his Mathematical Work," Bulletin of the American

Mathematical Society, 50 (1944), 612-654.

Zassenhaus, H., "On the Minkowski-Hilbert Dialogue on Mathematization," Bul-

letin of the Canadian Mathematical Society, 18 (1975), 443-461.

CHAPTER 28

Aull, C. E., "E. R. Hedrick and Generalized Metric Spaces and Metrization," in:

Topology Conference 1979: Metric Spaces, Generalized Metric Spaces, Continua

(Greensboro, N.C.: Guilford College, 1979).

Aull, C. E., "E. W. Chittenden and the Early History of General Topology,"

Topology and Its Applications, 12 (1981), 115-125.

Birkhoff, G. D. and B. O. Koopman, "Recent Contributions to the Ergodic Theory,"

Proceedings of the National Academy of Sciences, 18 (1932), 279-282.

Chandrasekharan, K., ed., Hermann Weyl 1885-1985: Centenary Lectures (Berlin

et al.: Springer-Verlag, 1986).

Committee on Support and Research in the Mathematical Sciences (NAS-NRC),
The Mathematical Sciences. A Collection of Essays (Cambridge, Mass.: MIT
Press, 1969).

Gallian, J. A., "The Search for Finite Simple Groups," Mathematics Magazine,

49 (1976), 163-179.

Green, J. and J. LaDuke, "Women in the American Mathematical Community:

The Pre-1940 Ph.D.'s," Mathematical Intelligencer, 9 (No. 1)(1987), 11-23.

Hodges, A. Alan Turing: The Enigma (New York: Simon & Schuster, 1983).

Kac, M., Engimas of Chance. An Autobiography (New York: Harper and Row,
1985).

Kenschaft, P. C, "Charlotte Angas Scott. 1858-1931," The College Mathematics

Journal 18 (1987), 98-110.

Kuratowski, K., "Some Remarks on the Origins of the Theory of Functions of a

Real Variable and of the Descriptive Set Theory," Rocky Mountain Journal of

Mathematics, 10 (1980), 25-33.

Lebesgue, H., Measure and the Integral, ed. by K. O. May (San Francisco: Holden-

Day; 1966).

Littlewood, J. E., Littlewood's Miscellany (Cambridge: Cambridge University Press,

1986).

Lyusternik, I. A., "The Early Years of the Moscow Mathematical School," Russian

Mathematical Surveys, 22 (No. 1) (1967), 133-157; 22 (No. 2) (1967), 171-211,

22 (No. 4) (1967), 55-91; and Ibid., 25 (No. 4) (1970), 167-174.

Mackey, G. W., "Origins and Early History of the Theory of Unitary Group
Representations," in Representation Theory of Lie Groups. London Mathe-



664 REFERENCES

matical Society Lecture Notes Series, 34 (Cambridge: Cambridge University

Press. 1979), pp. 5-19.

May, K. O.. ed.. The Mathematical Association of America: Its First Fifty Years

(AP: MAA, 1972).

McCrimmon, K. , "Jordan Algebras and Their Applications," Bulletin of the Amer-

ican Mathematical Society, 84 (1978), 612-627.

Novikoff, A. and J. Barone, "The Borel Law of Normal Numbers, the Borel Zero-

One Law, and the Work of Van Vleck," Historia Mathematica, 4 (1977), 43-

65.

Pais, A., "Subtle is the Lord." The Science and Life of Albert Einstein (Oxford:

Oxford University Press, 1982).

Parshall, K., "Joseph H. M. Wedderburn and the Structure Theory of Algebras,"

Archive for History of Exact Sciences, 32 (1985), 223-349.

Phillips, E. R., "Nicolai Nicolaevich Luzin and the Moscow School of the Theory

of Functions," Historia Mathematica, 5 (1978), 275-305.

Polya, G., The Polya Picture Album. Encounters of a Mathematician (Boston Basel:

Birkhauser, 1987).

Porter, Brian, "Academician Lev Semyonovich Pontryagin," Russian Mathematical

Survey, 33 (1978), 3-6.

Rankin, R. A., "Ramanujan's Manuscripts and Notebooks," Bulletin of the Lon-

don Mathematical Society, 14 (1982), 81-97.

Reid, C, Courant (New York, Heidelberg, Berlin: Springer-Verlag, 1976).

Reid, C, "The Autobiography of Julia Robinson," The College Mathematics Jour-

nal, 17(1986), 3-21.

Reingold, N., "Refugee Mathematicians in the United States of America, 1933-

1941: Reception and Reaction," Annals of Science, 38 (1981), 313-338.

Rickey, V. F., "A survey of Lesniewski's Logic," Studia Logica, 36 (1977), 407-

426.

Saks, S., Theory of the Integral, 2nd revised ed. (New York: Dover, 1964).



General Bibliography

In contrast to the chapter references, this section includes traditional and

recent works in a variety of languages. In general, books listed here pertain

to more than one or two of the chapters in this book.

Those seeking guidance to further reading should note that, in addition

to the bibliographical references listed below, there are several periodicals

that publish abstracts of new or recent publications. We single out Historia

Mathematica, which has a comprehensive, concisely annotated listing of

recent works in the history of mathematics at the end of each issue. The
abstract editor, Albert C. Lewis, prepared cumulative author and subject

indexes covering Volumes 1-13. These splendid sources are found in Vol-

ume 13, Issue 4 and Volume 14, Issue 1 respectively. Another readily

available source is Section 01 of Mathematical Reviews; in recent years,

especially, this has become very useful. The annual cumulative bibliography

of Isis is still the main source for publications in the history of science and

technology that may not appear in the more mathematically oriented jour-

nals.

For earlier work, May 1973 is very comprehensive and well indexed. It

is heavily based on reviews in Mathematical Reviews and the Jahrbuch ixber

Fortschritte der Mathematik. It omits the titles of journal articles, however;

does not always indicate the language of the material listed; and provides

few comments on individual listings. For that reason, the newcomer to the

field is better served by Dauben 1985, which is very selective, but heavily

annotated, and provides an easy, relatively portable guide to reading in

specific areas and to further bibliographical sources.

Readers interested in biographies are well served by the Dictionary of

Scientific Biography (Gillispie 1970-1980). We do not list below standard
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reference \sorks such as the major "national" biographical dictionaries

found in most libraries, although they often contain useful information

about mathematicians.

The availability of primary source material depends greatly on the size

and scope of the readers library. It is usually worthwhile to browse in the

author and serial indexes; even a small library may hold surprises. In recent

yean there has been a considerable increase in Collected or Selected Works

published. Also, there have been more English-language translations of

mathematical authors. For the earlier periods, numerous English-language

editions and translations have been listed as part of our chapter bibliog-

raphies. For other source materials in the English language, covering broader

periods or topics, see Birkhoff 1973, Calinger 1982, Midonick 1985, Smith

1959, Struik 1986, and van Heijenoort 1967.

Many students of the history of mathematics are interested in solving

historical problems. This can be approached in two ways. One is to use

the techniques at the disposal of those with whom the problems are as-

sociated historically; the other one is to use present-day methods. Often

it is instructive to do both. Sometimes the two approaches coincide. One
gains great understanding of our mathematical predecessors by the histor-

ical approach. This is difficult to carry out, however, particularly for the

period preceding Euler. To do so, it is generally best to go back to the

work of the author or the group with whom we associate the problem. The
original source is often not accessible; many later translations, especially

those of the Ancients, tend to distort the problems by modernizing the

language or the notation used by the original author, a difficulty that is

compounded in most modern secondary accounts. This does not mean one

should simply desist from historical problem-solving; rather, one should

keep in mind the differences between a modernized approach and the

original and analyze one's attacks on the problem accordingly. Conversely,

it can be enjoyable to take theorems or problems from a contemporary

textbook and consider to what extent they would have been meaningful

to a mathematician in a specified period and place of history or how they

might have been solved or proved by a certain group. Better yet, one can

formulate one's own mathematical statements, proofs, and solutions in

accordance with a historical period or tradition. This is somewhat analogous

to composing a rondo in the style of Mozart, and has similar drawbacks

and advantages.

Readers interested in historical problems are referred to three types of

sources First, there are primary sources; for the last century, at least, even

smaller libraries often contain old textbooks with problems and examples.

Recalling that our textbook tradition of problems dates* back only a little

more than a century, we list Gregory 1846 and Scott 1924 below. The former,

which is scarce, illustrates the type of "examples" that supplemented regular

textbooks until after 1850. The latter, more readily available, is a pioneering

example of a "modern" textbook in its use of problems that illustrate several
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areas of late-nineteenth-century mathematics. Then, there are problem col-

lections. Dorrie 1965 and Tietze 1965 are examples of collections of historical

problems. Polya is an example of contemporary problems, the historical roots

of which frequently provide food for thought. Finally, there are problems

linked to historical accounts such as those in Burton 1985 and Eves 1983.

These make clear the relationship to the source, but the cautionary remarks

about modernized adaptations appy to both.

American Mathematical Society, Semicentennial Addresses (New York: American

Mathematical Society, 1938).

Historical surveys by E. T. Bell and G. D. Birkhoff; other articles of interest.

Archibald, R. C, A Semicentennial History of the American Mathematical Society

(New York: Mathematical Society of America, 1938).

An informative, well-organized survey with biographical sketches of the presidents of the

Society.

Archibald, R. C, Outline of the History ofMathematics (Buffalo: Slaught Memorial

Papers of the Mathematical Association of America, 1949).

Has an extensive bibliography.

Ball, W. W. R., A History of the Study of Mathematics at Cambridge (Cambridge:

Cambridge University Press, 1889).

Still the most informative general work on the topic.

Ball, W. W. R., Mathematical Recreations and Essays (Toronto: University of

Toronto Press, 1974).

Very popular; contains considerable history; first edition in 1892.

Baron, M. E., The Origins of the Infinitesimal Calculus (New York: Dover, 1987;

paperback reprint of the 1969 ed.).

Bell, E. T, Men of Mathematics. (New York: Simon and Schuster, 1965; Seventh

paperback printing of 1937 ed.).

Readability exceeds reliability; assumes relatively little mathematical background.

Bell, E. T, Development of Mathematics 2nd ed. (New York: McGraw-Hill, 1945).

Readable, opinionated account; especially useful for modern mathematics, for a reader

with mathematical background.

Birkhoff, G. with U. Merzbach, ed., A Source Book in Classical Analysis (Cam-

bridge, Mass.: Harvard University Press, 1973).

Eighty-one selections ranging from Laplace, Cauchy, Gauss, and Fourier to Hilbert,

Poincare, Hadamard, Lerch, and Fejer, among others.

Bochenski, I. M., A History of Formal Logic, trans, by I. Thomas (Notre Dame,
Ind.: University of Notre Dame Press, 1961).

A standard work.

Bonola, R., Non-Euclidean Geometry (New York: Dover, 1955; paperback reprint

of the 1912 ed.).

Many historical references.
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Bourhaki. N . Elements d'Histoire des Mathematiques (Paris: Hermann, 1974).

\ot | connected history hut accounts of certain aspects, especially of modern times.

Boyer, C B., History of Analytic Geometry (New York: Scripta Mathematica,

1956)

\ well-referenced account.

Boyer, C. B.. The History of the Calculus and Its Conceptual Development. (New

York: Dover, 1959; paperback ed. of The Concepts of the Calculus).

I he standard work on the subject.

Braunmuhl. A. von, Vorlesungen uber Geschichte der Trigonometric (Wiesbaden:

Sandig, 1971: reprint of the B. G. Teubner 1900-1903 ed. 2 vols, in 1).

Still the standard in the field.

Bunt. L. N. H., P. S. Jones and J. D. Bedient, The Historical Roots of Elementary

Mathematics (Englewood, N.J.: Prentice Hall, 1976).

Topical treatment; all but last chapter relates elementary mathematics to major works of

antiquity: last chapter deals with numeration and arithmetic.

Burckhardt. J. J., E. A. Fellmann and W. Habicht, eds., Leonhard Euler. Beitrdge

zu Leben und Werk. Gedenkband des Kantons Basel-Stadt (Basel: Birkhauser,

1983).

A splendid, multilingual one-volume compendium.

Burton, D. M., The History of Mathematics. An Introduction (Boston: Allyn and

Bacon, 1985).

An episodic, readable account, with many mathematical exercises.

Cajori, F, The Early Mathematical Sciences in North and South America (Boston:

Gorham, 1928).

Cajori, F, A History of Mathematics (New York: Chelsea, 1985).

One of the most comprehensive, nontechnical, single-volume sources in English.

Cajori. F, A History of Mathematical Notations (Chicago: Open Court, 1974; 2

vols., reprint of 1928-1929 ed.).

The definitive work on the subject.

Cajori, Florian, History of Mathematics in the United States (Washington, D.C.:

Government Printing Office, 1890).

Calinger, R., ed.. Classics of Mathematics (Oak Park, III.: Moore Publishing, 1982).

Campbell. P. and L. Grinstein, Women of Mathematics (New York, Greenwood
Press. 1987).

( antor. M .. Vorlesungen uber Geschichte der Mathematik (Leipzig: Teubner, 1880-

1908; 4 vols).

I he most extensive histors of mathematics so far published. Lncstrom's corrections in

Bibiiothtai Mathematica should be used in conjunction. Some volumes are in a second

edition and the whole is available in a reprint.

( 'arruccio. E., Mathematics and Logic in History and in Contemporary Thought,

trans b> I. Qtligl) (Chicago: Aldmc. 1964).

An eclectic survev Italian authors predominate in the bibliography.
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Chasles, M., Apercu historique sur I'origine et le developpement des methodes en

geometrie, 3rd ed. (Paris: Gauthier-Villars, 1889).

A classic work; especially strong on early nineteenth-century synthetic geometry.

Cohen, R. S. et al., eds., For Dirk Struik. Scientific, Historical and Political Essays

in Honor of Dirk J. Struik (Dordrecht & Boston: D. Reidel, 1974).

Coolidge, J. L., History of the Conic Sections and Quadric Surfaces (Oxford:

Clarendon, 1945).

Coolidge, J. L., A History of Geometrical Methods (New York: Dover, 1963;

paperback reissue of 1940 ed.).

An excellent work presupposing mathematical background.

Coolidge, J. L., The Mathematics of Great Amateurs (New York: Dover, 1963).

Paperback Republication of 1949 edition.

Dauben, J. W., ed., Mathematical Perspectives (New York: Academic Press, 1981).

Essays by Bockstaele, Dugac, Eccarius, Fellmann, Folkerts, Grattan-Guinness, Iushkev-

ich, Knobloch, Merzbach, Neumann, Schneider, Scriba, and Vogel.

Dauben, J. W., ed., The History of Mathematics from Antiquity to the present. A
selective bibliography (New York and London: Garland, 1985).

Davis P. and R. Hersh, The Mathematical Experience (Boston: Birkhauser, 1981).

Dickson, L. E., History of the Theory of Numbers (New York: Chelsea, 1966; 3

vols., reprint of 1919-1923 Carnegie Institution publication).

Definitive source survey, arranged by topics.

Dieudonne, J. A., ed. Abrege d'histoire des mathematiques 1700-1900 (Paris: Her-

mann, 1978; 2 vols.).

Reliable mathematically oriented treatment of topics leading to present-day mathematics.

Dieudonne, J. A., History of Algebraic Geometry, trans, by J. D. Sally (Montery,

Calif.: Wadsworth Advanced Books, 1985).

Excellent mathematically oriented presentation utilizing contemporary terminology and

notation.

Dorrie, H., 100 Great Problems of Elementary Mathematics: Their History and

Solution, trans, by D. Antin (New York: Dover, 1965).

Dugas, R., A History of Mechanics (New York: Central Book Co., 1955).

Edwards, C. H., Jr., The Historical Development of the Calculus (New York/

Heidelberg: Springer-Verlag, 1979).

Edwards, H. M., Fermat's Last Theorem. A Genetic Introduction to Algebraic

Number Theory (New York/Heidelberg/Berlin: Springer-Verlag, 1977).

Carefully crafted introduction to work of some major figures in history of algebraical

number theory; a model of the genetic method.

Elfving, G., The History of Mathematics in Finland 1828-1918 (Helsinki: Frenckell,

1981).

Encyclopedic des sciences mathematiques pures et appliquees. (Paris: Gauthier-

Villars, 1904-1914).

Essentially a partial translation of the following, left incomplete because of the advent of

World War I. The French version contains significant additions in history source citations.
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ElKykhpmedk der mathcmatischen Wissenschaften. 1898-1904 and new series 1904-

1935 (Leipzig: Teubner).

In eel. F. and P. Stiickel. Die Theorie der Parallellinien von Euklid bis auf Gauss

(Johnson Reprint Corp., 1968; 2 vols, in 1, reprint of the 1895 ed.).

Eves, H . An Introduction to the History of Mathematics. (Philadelphia: Saunder,

1983).

A notably successful textbook.

Folkerts, M. and U. Lindgren, eds., Mathemata: Festschrift fur Helmuth Gericke

(Stuttgart: Franz Steiner, 1985).

Fuss, P. H., Correspondance mathematique et physique de quelques celebres geo-

metres du XVIIIeme siecle (New York: Johnson Reprint Corp., 1968); 2 vols.,

reprint of the St. Petersburg 1843 ed.).

Gillispie, C. C, Dictionary of Scientific Biography (New York: Scribner, 1970—

1980; 16 vols.).

Major biographic reference source for dead scientists.

Goldstine, H. H., A History of Numerical Analysis from the 16th Through the 19th

Century (New York: Springer-Verlag, 1977).

Goldstine, H. H., A History of the Calculus of Variations from the 17th Through

the 19th Century (New York/Heidelberg/Berlin: Springer-Verlag, 1977).

Grattan-Guinness, I., The Development of the Foundations of Mathematical Anal-

ysis from Euler to Riemann (Cambridge, Mass.: MIT Press, 1970).

Grattan-Guinness, I., From the Calculus to Set Theory, 1630-1910. An Introductory

History (London: Duckworth, 1980).

Chapters by H. J. M. Bos, R. Bunn, J. W. Dauben, I. Grattan-Guinness, T. W. Hawkins,

and K. Moller Pedersen.

Gray, J., Ideas of Space: Euclidean, Non-Euclidean, and Relativistic (Oxford: Clar-

endon, 1979).

Gray, J., Linear Differential Equations and Group Theory from Riemann to Poin-

care {Boston: Birkhduser, 1985).

Gregory, D. F., Examples of the Processes of the Differential and Integral Calculus,

2nd ed., ed. by W. Walton (Cambridge: Deighton, 1846).

Exercises for use by Cambridge students.

Hawkins, T., Lebesgue's Theory of Integration: Its Origins and Development (New
York: Chelsea, 1975; reprint of the 1970 ed.).

Heath, T. L., A History of Greek Mathematics (New York: Dover, 1981; 2 vols.,

paperback version of 1921 ed.).

Still the standard survey.

Hofmann, J. E., Geschichte der Mathematik (Berlin: Walter de Gruyter, 1953-

1963; 3 vols).

The hands pocket-size volumes contain extraordinarily useful biobibliographical indexes.

I bete indexes tragically were omitted from the English translation which appeared in two

volumes (Neil York: Philosophical Library, 1956-1959) under the titles The History of
Mathematics and Classical Mathematics.

Howson, G., A History of Mathematics Education in England (Cambridge: Cam-
bridge University Press, 1982).
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Itard, J. and P. Dedron, Mathematics and Mathematicians, trans, by J. V. Field

from 1959 French ed. (London: Transworld, 1973; 2 vols.).

Elementary but useful. Contains excerpts from sources.

Iushkevich, A. P., Geschichte der Mathematik im Mittelalter (Leipzig: Teubner,

1964).

A substantial and authoritative account.

James, G. and R. C. James, Mathematics Dictionary (Princeton, N.J.: D. Van
Nostrand, 1976).

Useful but not so thorough as Naas and Schmid. (see below).

Kaestner, A. G., Geschichte der Mathematix (Hildeshelm: Olms, 1970;) 4 vols.,

reprint of the Gottingen 1796-1800 ed.).
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Karpinski, L., The History of Arithmetic (Chicago: Rand McNally, 1925).

Kitcher, P., The Nature of Mathematical Knowledge (New York: Oxford University

Press, 1983).

Klein, F., Development of Mathematics in the Nineteenth Century, trans, by M.

Ackerman (Brookline, Mass.: Math Sci Press, 1979).

Survey on a high level; left incomplete by the death of the author.

Kline, M., Mathematics in Western Culture. (New York: Oxford, 1953).

Attractively written on a popular level.
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Not .i lystematk historv . hut I scries of biographies, chronologically arranged, listing the

duel works ot the individuals.

May, K. O., Bibliography and Research Manual of the History of Mathematics

(Toronto: University of Toronto Press, 1973).

\cr\ comprehensive; see introductory comments to this bibliography.

Mehrtens. H.. H. Bos and I. Schneider, eds., Social History of Nineteenth Century

Mathematics (Boston/Basel/Stuttgart: Birkhauser, 1981).
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545

D'Alembert's theorem, see Algebra,

Fundamental Theorem of

Dantzig, T., 636, 640

Darwin, C, 1, 603, 626

Darwin, G. H., 603

Daston, L. J., 654

Datta, B, 641

Dauben, J. W., 660,669/

Davies, C, 485

Davis, H. T.,639

Davis, M. D.,646

Davis, P., 669

Davis, P. J., 654

Deakin, M. A. B., 654, 656

Debeaune, F., 353, 371

Decimal point, 303, 317

Decimal system, 4, 10, 12, 25, 61, 199-201,

211-213, 316f, 471f

Decision problem, 613
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De Moivre, A., 424-427; 432, 435, 444

De Morgan, A., 581f; 254, 364, 577-579,

586f, 589, 661

De Morgan, S. E., 661
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Erhardt, R. von, 639

Erlangen, University of, 551, 607

Erlanger Programm, 548f

Ethnomathematics, 3-7

Euclid of Alexandria, 100-119; 51, 53, 66,
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Fior, A. M., 283

Fischer, E., 621

Fischler, R., see Herz-Fischler
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Dirac delta, 627

Dirichlet, 561

elliptic, 523-525, 574, 589, 601, 605

elliptic modular, 574, 605

Euler $, 457

graphic representation of, 264-266,

513

hyperbolic, 463

hyperelliptic, 523

Mathieu, 571

notation for, 422, 443

symmetric, 305, 412

theory of, 489f, 513, 517, 558-560, 601,

608

theta, 527, 589

transcendental, 264

trigonometric, 601

zeta, 613

zeta-Fuchsian, 601

Functor, 628

Fuss, P. H.,670

Galileo, G., 315-317, 319-322, 326-329;

247, 266, 289, 302f, 315f, 333, 342f,

346, 356-358, 379, 391, 423, 516,

565, 648

Gallian, J. A., 663

Galois, E., 522, 526-529; 594, 601

Galois theory, 529f

Galton, F., 626

Gandz, S., 643

Garro, I., 643

Gaultier, L., 540
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Gauss C I 496 508; 511. 513, 516-527,

M6, 550. 5531. 556,

$94, 600, 610, 612. 657/

l)i\qut\itn>nc\ iinihnntuin . 500-503; 442,

Qdfoad, \ . 613

l.c.yicsKs. 422. 506

Oeodny, 173, 505, 603

Olin—irj 192, 275. 307, 322, 368-370,

609f, 612

Ipfaril, 172. 55 If

analstic. 335-349, 368-373, 476-479,

540-545, 547-549

ancient Hgsptian. 8f. 11. 16-22, 37-40,

206

ancient Greek, 90-99, 100-119, 140-157,

184-190; 216

anthmetization of, 336

axioms of, 609f

Babylonian, 37-41, 172

Chinese ancient and medieval, 196, 202f

coordinate, see Geometry, analytic

descriptive. 469, 474f; 463

differential, 505f, 623-625; 476

early modem, 323

elliptic, 550

enumerative, 613

hyperbolic, 550

inversive, 538f

Lobachevskian, 520f, 604f

medieval European, 25 If, 257-261, 263-

266

medieval Hindu, 207-211, 215f, 219f, 222f

modem, 481-486, 533-552

n-dimensional. 544f, 547

non- Euclidean, 520-522; 242, 437, 462f,

550, 604f

origins of, 6f, 8, 52f, IV if

Platonic. 86f

projective. 360f. 535-538

Renaissance, 293-301

Kicmannian. 545-547

solid analytic. 444, 452, 46If, 475-479

synthetic. 53K-540

(icrdrd ot Cremona. 25 If. 261

Gerbcn. 249f

nnc J I). 507. 536. 543

*, ( I . 651

Germain. S

(n.Kardi. 1 . 637

(.ibbs. J W
. 5K6. 626

Qfet, 1 . 645

Gillings. R J . 2/. 634

Gillispie, C. C, 656, 670

Gillon, B. S.,642

Ginsburg, B., 645

Ginsburg, J., 634, 674

Giovanni di Cosali, 264

Girard, A., 303, 305, 310, 319, 393, 412,

448, 507

Glaisher, J. W. L., 646, 648, 654

Gleason, A., 612

Glushkov, S., 645, 648

Gnomon, 54, 110, 231, 238, 240

Godel, K., 61 If, 625

Goldbach, C.,449, 457

Goldbach's conjecture, 457f, 613

Goldstein, B. R., 640

Goldstine, H. H., 670

Goniometry, 308 f. See also Trigonometry,

analytic

Goodstein, R. L., 657

Gordan, P., 607

Gottingen, University of, 497, 545, 550

Goursat, E., 570

Gow, J., 636

Grabiner, J. V., 656, 658

Grandi, G., 437

Granger, F., 64

J

Grant, E., 645

Graphs, see Functions, graphical representation

of

Grassmann, H., 584-586, 588

Grattan-Guinness, I., 654, 660, 669f
Gravitation, law of, 407-409; 393, 603

Gravity, center of, 121f, 136, 190, 322f, 413,

477

Gray, J., 649, 655, 658, 670

Greece, mathematics in ancient, 43-194

Greek Anthology, 192f; 178

Green, G., 530-532, 557

Green, J., 646, 663

Green, P., 646

Green's theorem, 532, 556

Gregory, D., 385

Gregory, D. F., 511,670

Gregory, J., 385-388; 393, 396f, 403, 405,

413, 429, 459

Gregory of St. Vincent, 352, 370

Gridgeman, N. T., 648, 655, 656

Grim, R. E., 645

Grimsley, R., 655

Grinstein, L., 668

Grosseteste, R., 260

Groups:

definition of, 548

Lie, 548, 560f, 604, 612
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name of, 529

theory of, 490, 529, 548f

topological, 612f

transformation, 548f

Gudermann, C, 558

Gudermannian, 558

Guggenbuhl, L., 634

Guldin, P., 189f

theorem of, 189f

Gunther, S., 675

Gupta, R. C, 642

Gurel, O., 662

Haar, A., 619

Habicht, W., 668

Hachette, J. N. P., 476f

Hadamard, J., 501, 621, 625

Hall, A. R.,652

Hall, M. B, , 652

Hall, R., 671

Hall, T., 658

Hallerberg, A. E., 651

Halleux, E., 651

Halley, E., 144,408,410

Hamadanizadeh, J., 643

Hamburg, R. Rider, 656

Hamel, G., 612

Hamilton, M., 634

Hamilton, W. R., 562, 582-586

Hankel, H., 553, 562, 564, 586

Hankins, T. L., 655, 661

Hanson, K. D., 646

Hardcastle, F., 660

Hardy, G. H., 223

Harman, P. M., 660

Harriot, T., 302, 304, 306f

Harvey, H. R., 633

Haskell, M. W., 659

al-Hassan, A. Y., 643

Hasse, H., 623

Hausdorff, F., 62 If

Hawkins, T., 659-661, 670

Hawkins, W. F., 648

Hay, C, 646

al-Haytham, 240

Heath, T. L., 11On, 122n, 145n, 636-641

670

Hecke, E., 569, 608

Heiberg, J. L., 138

Heidel, W. A., 55

n

Heidelberg, University of, 606

Heideman, M. T., 658

Heine, H. E., 561, 563,571,618

Heine-Borel theorem, 618

Hellinger, E., 650

Hellman, D., 648

Helmholtz, H., 556

Helmstedt, University of, 500

Hemisphere, area of, 21, 131

Henrici, P., 658

Hensel, K., 623

Heptagon, construction of, 307

Hermann, J., 434, 436, 439

Hermann, R., 659

Hermann the Dalmatian, 251

Hermelink, H., 643

Hermite, C., 560, 570, 573f, 607, 617

Herodianic notation, see Numeration, Attic

Herodotus, 6, 8, 16, 22, 47, 61, 196, 199

Heron of Alexandria, 172-174; 28, 134, 161,

177f, 187, 233, 257, 272, 484

Heron's formula, 134, 172, 219, 239

Herschel, J., 531

Hersh, R., 669

Herz-Fischler, R., 638

Hesse, L. O, 551

Heuraet, H. van, 378

Hewitt, E., 660

Hewitt, R.E., 660

Hexagon, Pascal's mystic, 362, 429, 534, 538

Hicetas, 70

Hieroglyphics, see Numeration, hieroglyphic;

Writing, hieratic and hieroglyphic

Hilbert, D., 570, 605-615, 620f, 632, 662

Hill, G. ¥.,643,645

Hill, G. W., 557f

Hiltebeitel, A., 657

Hindu mathematics, see India, mathematics in

Hipparchus of Nicaea, 152, 162f, 165f, 169f,

175

Hippasus of Metapontum, 62, 71f, 73, 76, 81,

610

Hippias of Elis, 63, 68f, 81, 96f, 321

Hippocrates of Chios, 63, 65-68, 81, 91, 93,

97, 104, 113, 158, 162, 192

Hippopede, 93

Hobbes, T.,384

Hobson, E. W., 648

Hodges, A., 663

Hoe, J., 642

Hofmann, J. E., 652, 670

Hogendijk, J. P., 643

Holder, O., 623

Honic, P. S.,653

Hooke, R., 392,408,410

Hopf, H., 623

Horner, W. G., 204,411

Horner's method, 204; 202, 244, 256, 307,411
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Hospil.il. Ci 1 A dc I'. see 1 Hospital

Him son. Ci . 670

Hosnip. J

Hr.iknus M.uinis. 24 l
>

Huddc. J . 372-374; 387

Huddc \ rules. 373. 398

Huvihcs. B . 645J

Humanism. 169-271, 273. 275

Humboldt. A. \on. 532

Humboldt. W. von. 532

Hurv.it/. A . 605-607, 610

rkyfOK, C. 374-379; 364, 370, 372, 385f,

391, 400, 407f, 417, 425, 506

H\drodynamics. 481, 513

H\patia. 190; 178. 192

Hsperbola. 93f. 133, 145-147, 149f, 152;

185. 241, 323, 347, 372, 380, 387,

474. 482, 536

area of, 129, 378f

Hyperboloid, 138, 383

Hvpercomplex systems, 623

Hypsacles, 119, 162

Ibn-al-Haitham, see al-Haytham

Ibn-Sina, see Avicenna

Ibn-Turk, see Abd-al-Hamid ibn-Turk

Ibn-Yunus, 240, 309

kosahedron. 50, 84f, 87, 143

Ideal. 595

Identities, Euler, 444, 448, 463

Incommensurability, 72-74; 51, 76, 81, 83,

85, 88f, 208, 520, 611

India, mathematics in, 206-224

Induction:

mathematical, 353, 364, 597f

transfimte, 612

Inequality. Bernoulli, 416

Infinite. Cantonan, 565-569; 263, 610

Infinite processes. 27f. 75f, 80f, 98, 265-267,

321, 323f, 349

Infinitesimal, 75, 80, 90, 98, 135f, 263, 266,

326. 328. 355f. 358, 370, 381, 385,

397f. 402-404, 416, 421, 429f, 481,

4K4. 514

Infinity

orders of. 45 1 . 516

points at. 323. 359f, 535. 542, 544

symbol for, 382, 566

Inscriptions. 10

Integers

algebraic

( iaussian. 594

Integral, see also Cakuius. integral

definition of, 514

Denjoy, 619

elliptic, 436, 486, 488, 524f

Eulerian, 454, 486

generalizations of, 619f

Haar, 619

Lebesgue, 618-620

Riemann, 555, 561, 618

Stieltjes, 620

Integration, 350, 617-620

Interest, compound, 30, 211, 419

Interpolation:

linear, 30, 33

principle of, 382, 385, 394

Intuitionism, 263, 555

Invariants:

algebraic, 588f, 607f

differential, 615

geometric, 548f

topological, 603, 621

Involute, 376-379

Isidore of Miletus, 119, 193, 247

Isidore of Seville, 249

Islam, mathematics in, 225-245

Isochrone, 374-376

Isoperimetry, 187

Hard, J., 671

Ito, S.,638

Iushkevich, A. P., 655, 669, 671

Ivins, W. M., Jr., 650

Ivory, J., 531

Jacob of Cremona, 271

Jacobi, C. G. J., 523-527; 503, 512, 532,

551,554-556, 574

Jacobian, 512, 526

James, G., 677

James, R. C, 671

Jayawardene, S. A., 646

Jerrard, G. B., 433

John of Halifax, see Sacrobosco

John of Seville, 251

John Philoponus, see Philoponus

Johns Hopkins University, 589

Johnson, D. H., 658

Johnson, F. R., 646f

Jones, A., 641

Jones, H. W., 651

Jones, P. S., 668, 674

Jones, W.,442

Jordanus de Nemore, 257-259; 278, 304, 317,

361,645

Jourdain, P. E. B., 656, 658, 660
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Journal de VEcole Polytechnique, 476, 506,

508, 513

Journal de mathematiques pures et appliquees,

532

Journal fur die reine und angewandte

Mathematik, 507, 523

Jowett, B., 637

Jungnickel, C, 660

Justinian, 193, 250

Kramer, E. E., 677

Kremer, G., see Mercator, G.

Kretzmann, N., 637

Kroeber, A. L., 633

Kronecker, L., 569f, 574, 593f, 613

Krull, W.,623

Kummer, E. E., 569, 593f

Kuranishi, 625

Kuratowski, K., 663

Kac, M., 663

Kaestner, A. G., 536, 671

Kagan, V.,659

Kagan, W. F., 612

Kalmus, H., 633

Kant, I., 493, 605, 609

al-Karkhi, 236

Karpinski, L. C, 641-643, 645, 671

al-Kashi, 247, 321

Kasir, D. S., 643

Katz, V. J., 660

Kawajiri, N., 655

Kazan, University of, 520

Keill, J.,414

Kelvin, Lord, see Thomson, W.

Kennedy, E. S., 644, 672

Kennedy, M. H., 644

Kenschaft, P. C, 663

Kepler, J., 323-326; 50, 118, 303, 315, 321,

329f, 359, 391, 408, 535, 542, 648

Kepler's laws, 408

Keyser, C. J., 616

al-Khwarizmi, 227-234, 252, 443

Al-jabr, 228-230, 281

Kinematics, 26 If

King, D. A., 644

Kirchhoff, G., 556

Kitcher, P., 652, 677

Klein, F., 548-550; 534, 553, 572, 586, 592,

606f, 615, 659/, 677.

See also Erlanger Programm

Klein bottle, 550

Kleiner, I., 667

Kline, M., 655, 671

Klugel, G. S., 536, 677

Knobloch, E., 652, 669

Knorr, W. R., 634, 636-639, 641

Koch, H. von, see Von Koch

Kolmogoroff, A. N., 626

Konigsberg, University of, 606-608

Koopman, B. O., 663

Koppelman, E., 667

Kovalevskaya [Kowalewski], S., 518, 560

Koyre, A., 652

Lacroix, S. F., 478f, 485, 532

LaDuke, J., 667, 663

Lagrange, J. L., 467-473, 475, 477f, 489-

492, 494f, 497, 503, 509, 511, 514,

526, 544, 548, 550, 556, 574, 578,

656

Lahire, P. de, 361, 368-370

Lakatos, I., 658, 671

Lalouvere, A. de, 366

Lam Lay-yong, 642

Lambert, J. B., 633

Lambert, J. H., 462f, 519, 573. See also

Quadrangle

Lame, G., 540f, 571

Lander, L. J., 655

Laplace, P. S., 491-495; 333, 349, 408, 467f,

470-472, 475, 508f, 511, 557, 578,

602f, 656f
Mecanique celeste, 506, 557

Larkey, S. V.,646f

Lasserre, F., 637

Latham, M. L., 649

Lattice, 595

Lattin, H. P., 642

Latus rectum, 95, 146

Laue, M. von, 624

Laurent, H., 571

Laurent, P.-A., 571

Lavoisier, A. L., 469, 472

Leah, P. J., 654

Least squares, 487, 498, 504

Leather roll, 19

Lebesgue, H., 617-620, 663; see also

Measure

Lee, H. D. P., 636

Lefrancais, F. L., 478

Legendre, A. M., 485-488; 467f, 470f, 475,

500f, 503, 508f, 519, 524-527, 573

Leibniz, G. W., 399-407; 322, 355, 363,

367, 371, 373, 391, 394, 397, 414,

415-419, 421f, 424, 426, 433f, 440,

443f, 450, 457, 505, 532, 564, 578,

584, 611

Leipzig, University of, 607
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Loje— Mrirhkit. tee Dirichiet

l <.• l ionnais. I . h7l

Lcmniscatc. 417. 474

U-nou. I . 650

I eon. s

I III— llll di \ ma. 261. 279f. 297, 316

1 III— llll o\ Pisa. 254-257; 260, 267, 274,

f>45 See also Sequence, Fibonacci

liber tihtui. 254-256. 277f

f'rtuina ^eometriae, 257, 274

Lopi, P., 633

I.cucippus. 80

Lever, lau of the. 121f

Levey. M., 644

Levi, B . 551

Levi-Gvitft, T.. 624

leu is. A., 66/, 674

1 Hosp.tal. G. F. A. de, 420f; 405, 433-435,

452

LHospilal's rule, 420

Libbrecht, U., 642

Li Ch.h, 204

Lie, S., 548. 612

Limacon, 474

Limit, concept of, 397, 450f, 514; 90, 130,

349, 481,489, 563

Lmdemann, C. L. F., 563, 570, 573, 606f

Lmdgren, U., 670

Line, Euler, 460, 477, 537

Liouville, J., 509, 532, 539, 557, 571-574

Listing. J. B., 556, 603

Littlewood, J. E., 663

Liu Hui, 202f

Li Yeh, see Li Chih

Lohachevsky, N. I , 520-522; 533, 546, 562,

583, 610

Loom problem, three- and four line, see

Pappus, problem of

ithms. 311-315; 29, 125, 240, 277, 322,

129, 387. See also Number, Tables

definition of. 312f

name of, 313, 387

596. 61 If. 631

lyjbll of, 407. 578-581

swnhols in. 596

k. 61. 86. 1231. 172

l.ohnc. J A . 64%

Lotto, k n . 653

London Mathematical Society, 599

l>ondon. lrmcrsit\ of, University College,

589

Loffeh, R.,644

I orit, G . w). 671

l.ucas. H . *88

Lumpkin, B., 644

Lune, quadrature of, 65-67, 97, 192

Lutzen, J., 650, 655

Luzin, N. N., 620

Lyusternik, I. A., 663

Macfarlane, A., 671

MacGillavry, C. H., 647

MacHale, D., 661

Mackey, G. W., 663

MacLachlan, J., 648

Mac Lane, S., 627f

Maclaurin, C, 428-432, 441, 460, 464,

653

Treatise of Algebra, 43 If, 458

Treatise of Fluxions, 429

Maclaurin series, 386, 419, 429

Maddison, R. E. W., 651

Magic square, 197, 296-298, 353

Magini, G. A., 303

Mahoney, M.S., 650

Malcev, A. N., 612

Manheim, J. H., 671

Manning, K. R., 660

Marie, M., 672

Markov, A. A., 626

Marshak, A., 633

Mascheroni, L., 370, 538

Mason, M., 572

Mathematics Magazine, 655

Mathematics:

definition of, 1 , 592

nature of, 41 f, 46f, 60f, 64, 98, 105f, 210,

579

origins of, 1-7

Mathews, J., 660f
Mathieu, E., 571

Matrices, 587f; 197, 591

Maupertuis, P. L.M. de, 409

Maurice, K., 653

Maurolico, F., 294, 301, 302, 364

Maxima and minima, 349

Maxwell, J. C, 557

May, K. 0.,663f,672
Mayr, O., 653

McCabe, R. L., 637

McClain, E. G., 637

McCormack, T. J., 656

McCormmach, R., 660

McCrimmon, K., 664

Mean, 56, 161, 274f

arithmetic, 56, 70, 186

geometric, 56, 67f, 70, 186



INDEX 707

harmonic, 56, 70, 186

subcontrary, see Mean, harmonic

Mean value theorem, Cauchy's, 515

Measure:

Dirac, 627

Lebesgue, 618f. See also Borel

Mechanics:

celestial, 602f

quantum, 615

Mehrtens, H., 672

Menaechmus, 84, 93-98, 101, 241, 336

Menelaus of Alexandria, 163f, 183, 484

Menelaus, theorem of, 164, 436, 484

Mengenlehre, see Set theory; Infinite,

Cantorian

Mengoli, P., 370f, 373, 387

Menninger, K., 633

Mensuration, 191, 271

Meray, H. C. R., 560, 562f

Mercator, G., 300

Mercator, N., 386-388, 397, 403

Mere, Chevalier de, 363

Mersenne, M., 334f, 342, 350, 353, 355-358,

385

Mertens, F., 607

Merton rule, 262, 264f

Merz, J. T., 672

Merzbach, U. C, 657, 660f, 667, 669, 672

Meschkowski, H., 672

Mesopotamian mathematics, see Babylonian

mathematics

Metamathematics, 612

Metrodorus, 192f

Meyer, R., 675

Midonick, H. O., 672

Mikami, Y., 642

Miller, J. D., 674

Milliken, S. F., 653

Mills, S.,653

Minkowski, H., 606, 608, 610, 615

Mitchell, U. G., 660

Mittag-Leffler, G., 557, 560

Mobius, A. F., 541, 544, 549, 586, 603

Moerbeke, see William of Moerbeke

Mohr, G., 370, 433, 651

Moigno, Abbe, 571

Moivre, see De Moivre

Molien, T., 623

Molland, A. G., 645

Monge, G., 467-469, 471-482, 495, 505,

509f, 533-536, 540, 544, 550

Monna, A. F., 660

Montgomery, D., 613

Monte Cassino, 193

Montucla, J. E., 672

Moore, E. H., 622

Moore, G. H., 662

Mordell, L. J., 605

Morehead, J., 657

Morgenstern, O., 631

Moritz, R. E., 672

Morley, C, 537

Morley, F., 537

Morley, S. G., 214, 642

Mortimer, H., 637

Moschopoulos, M., 248

Moss, B., 646

Mueller, I., 637

Muller, J., see Regiomontanus

Muir, T., 672

Multinomial theorem, 405

Multiplication:

Babylonian, 27f

Egyptian, 14

gelosia, 216

Hindu, 215f

lattice, see Multiplication, gelosia

Multipliers, Lagrange, 491

Munich, University of, 607

Murdoch, J., 645

Murphy, R., 577

Music, 55, 70f, 83, 191

Mysticism, number, 52f, 70, 86

H-body problem, 602

Naas, J., 672

Nagel, E.,658f,662

Napier, J., 303, 309, 311-315, 317, 387, 648

Napoleon I, 466, 479, 492, 494, 509f, 535

Nasir Eddin al-Tusi, 243f, 274, 369, 437

theorem of, 243f, 292, 369

National Council of Teachers of Mathematics,

672

Naylor, R. H., 648

Needham, J., 206, 642

Needle problem, Buffon-Laplace, 455, 493

Neil, W., 383

Neoplatonism, 271

Neopythagoreanists, 57

Neugebauer, O., 2, 10, 29n, 31, 47n, 140,

625, 634-636, 639-641

Neumann, C, 551

Neumann, F., 551, 555

Neumann, O., 669

Neumann, von, see Von Neumann

Neusis, 133, 143

New York Mathematical Society, 601

Newman, J. R., 662, 673
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Newtoa, M w
. 610, 662

Newton. I . 143. 151, 322, 335, 340, 367,

371. 373. 383, 385, 388. 390, 391-

4(K). 402 405, 400 414. 415. 418,

424. 427 430, 443. 450, 481, 492,

v 505, 516, 532, 553. 583. 652

Anthmrina universalis. 143n, 41 2f, 431

/V analvsi. 395. 397. 400,411

/)< quadrature! cunarum, 397, 410, 414,

450

r numeration of cubic curves, 410

Methodus fiu.xumum, 397. 41 If, 460

Optia, 410. 412

Pnnapia. 397-400; 152, 156, 379, 408-

410, 412f, 429, 460, 494, 652

Norton's method, 41 If

Newton's parallelogram, 41 If

Ne>man, J., 625

Nicholas of Cusa. 27 If

Nicomachus of Gerasa, 178-180, 191, 248,

641

Nielsen. N., 673

Nieuwentijt, B., 433f

Nine Chapters on the Mathematical Art, 196,

202

Noether, E., 595, 615, 623, 625

Noether, M , 551, 615

Nordheim, L., 615

Notation. 303, 333, 483

algebraic and arithmetic, 180f, 263f, 277-

282, 286, 290f, 303f, 306, 317-319,

337, 347, 373, 382, 406, 442

calculus, 395, 403

determinants, 405

hieratic, 12

hieroglyphic, 10-12

Souvelles annates de mathematiques, 574

Novikoff, A., 664

Novy, L, 662, 673

Number

abundant. 57

algebraic. 567, 572, 593f, 606

amicable. 57. 235. 353, 457

Bernoulli. 4IY

Belli. 6021

cardinal. 5951

complex, see Number, imaginary

concept of, I 6, 53, 55

deficient. 57

even. 5. 57. 179

tiguratc. 541. 171, 1X3. 353. 400f, 518

lerniai. 355. 456, 502

imaginary. 278. 286. 288. 3051. 318, 406,

442 44X. 499T, 507. 513, 555

integral, 593f

irrational, 72f, 79, 220, 242, 287, 353,

563f, 572, 613. See also Incom-

mensurability

irregular, 29, 36, 41

logarithm of negative, 422, 438, 448

Mersenne, 355

negative, 201, 219f, 228, 232, 278, 282,

287, 305f, 345, 373, 459

oblong, see Number, figurate

odd, 5, 57, 179

perfect, 57, 114, 116, 179, 353, 457

prime, 57, 115, 161, 353f, 446f, 457f, 492,

500-503

real, 562-565, 567; 220, 242

transcendental, 567, 573, 613

transfinite, see Infinite, Cantorian

triangular, see Number, figurate

Numbers, theory of, 114f, 179f, 310, 353-

355, 364f, 446, 488, 491, 498, 500-

503, 518, 554f, 605f, 608, 613

Numerals, see also Numeration, Arabic;

Numeration, Hindu

Gobar, 250

Hebraic, 252

Hindu-Arabic, 212-214, 236f; 222, 226-

228, 247, 250, 252-256, 277

Numeration:

Arabic, 227, 232, 236f, 252. See also

Hindu-Arabic numerals

Attic, 57f, 61, 124, 212

Babylonian, 25-27, 199

Byzantine, 248

Chinese, 198f

decimal, 10, 58, 198-201, 211, 252f, 316-

318

Devanagari, 237

Hebraic, 252

Herodianic, see Numeration, Attic

hieratic, 12, 27, 59

hieroglyphic, 10, 12, 25, 27, 59

Hindu, 211-215, 227, 237, 248, 252

Ionian, 58-60, 124, 141, 212

Mayan, 213f

sexagesimal, see Fraction, sexagesimal

Octahedron, 49f, 84, 87

Ohm, M., 561

Olbers, H. W., 504

Oldenburg, H., 393f, 397, 400, 408, 433, 444

Olivier, T., 534

Omar Khayyam, 225, 240-243, 279, 282, 336

Optimization, 614
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Ore, O., 646f, 650, 658, 673

Oresme, N., 262-267, 271, 276, 325-327,

328, 346, 358, 370, 382, 416, 645

Algorismus proportionum, 263f

De latitudinibus formarum, 266

De proportionibus proportionum, 263

Tractatus de figuratione potentiarum, 266

Orestrom, P., 662

Organizations, see Societies

Osgood, W. F.,614

Osiander, A., 292

Ostrogradsky, M., 509, 520, 532

Otho, V., 293, 321

Oughtred, W., 302, 306, 373, 380, 391

Oxford University, 268, 589

Merton College, 262

Pachymeres, G., 248

Pacioli, L., 278-280, 282, 289, 294, 297f,

316

Pagliaro, H. E., 655

Painleve, P., 602, 605

Pais, A., 664

Palter, R., 652

Pappas, J., 653

Pappus of Alexandria, 96, 142f, 154, 176,

178, 183-191, 234, 261, 293, 301,

305f, 336, 339f, 360, 370, 549, 641

Mathematical Collection, 141, 184-190,

278, 301, 322, 346

Treasury of Analysis, 189

Pappus, problem of, 188f; 142, 336, 339-341

343, 346f, 409

Papyrus:

Ahmes, 11-14, 16, 192, 255, 634

Berlin, 19

Golenishev, see Papyrus, Moscow
Kahun, 19

Moscow, 9, 19-21

Rhind, see Papyrus, Ahmes

Parabola, 93f, 132, 145, 193, 240, 323, 327,

332, 347, 356-359, 372, 378f

area of, 128f, 136

length of, 357

Neil's, 383

Paraboloid, 123, 129f, 138, 379

Parallel postulate, 106, 242, 605, 609. See

also Geometry, non-Euclidean

Parameter, concept of, 241, 304

Paris, University of, 262, 268, 574, 600, 602,

617, 620, 627

Parker, R. A.,634

Parkin, T. R., 655

Parmenides of Elea, 74

Parshall, K., 664

Pascal, B., 333, 361-367, 368, 374f, 378f,

383, 393, 401f, 452, 534, 536, 538

Pascal, E., 361

Patterson, B.C., 659

Paul of Alexandria, 209

Pavia, University of, 546

Peacock, G., 531, 576f, 579, 561

Peano, G.,596f, 609, 611

Peano's axioms, 596f, 609, 611

Pearson, K., 626

Pedersen, K. Moller, 670

Pedoe, D., 647

Peirce, B., 588, 591f

Peirce, B. O., 572

Peirce, C. S., 588, 592f, 597, 662

Peirce, J. M., 572

Pell, J., 221. See also Equation

Pellos, F., 279

Pendulum, 374-377

Pentagon, 50, 72f, 167f, 298

Pentagonal number, see Number, figurate

Pentagram, 49f

Pericles, 63, 140

Perseus, 188

Perspective, 295-298; 280, 429

Petersburg paradox, 423

Peuerbach, G., 273f

Pfaff, J. F.,500

Phillips, E. K., 664, 673

Phillips, G. M.,639

Philolaus, 53, 55, 70

Philoponus, J., 247f

Philosophy, 19 If

Philosophy of mathematics, 604

Physics, 602-604, 613, 615

Pi, 320f

infinite product for, 370

irrationality of, 463, 573

symbol for, 442

transcendental nature of, 386, 573

value of, 11, 17f, 21, 38, 126, 141, 168,

173, 177, 196, 202f, 209f, 215, 219,

223, 244f, 303, 321, 384, 384, 405

Piazzi, G., 503

Picard, E., 551, 602, 673

Pierce, R. C, Jr., 648

Piero della Francesca, 297

Pingree, D., 642

Pisa, University of, 546, 603

Pitiscus, B., 311

Place value, see Positional principle

Plackett, R. L., 657
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Plane

(iaussian. 507. 555

la* of inclined. 174. 187, 258, 283, 317

Planudes. M . 248

Plato. U B8; 62, 68f, 81. 93, 173, 180, 316,

474. 637

Plato of IWoK, 249!

Platonic solids. \<r Polyhedra, regular

Plm\. 46

Meter, J.. 540-544, 547f; 428, 553

Plutarch. 46. 64, 159

Poggendorff. J. C, 673

Pomcare. H., 557, 570, 574, 599-605, 614,

615. 620, 626,632

Poincare. R.. 600

Point, ideal and imaginary, see Infinity, points

at

Poisson, S.-D , 527, 530f, 555f

Pole and polar, 360, 369, 483, 536

Polya. G., 664

Polygons:

area of. 38

construction of, 497, 502

star. 263

Polyhedra, 603, 613

regular, 49, 56, 84f, 86f, 118

semiregular, 134, 184

Polyhedral formula, Descartes-Euler, 119,

336, 518

generalization of, 518, 602f

Poncelet, J.-V., 478, 534-537, 540, 542-544,

550

Pont. J-C.,673

Pontrjagin, L. S, 612

Ponsm. 189. See also Euclid Porisms

Porter, B.. 664

Portnoy. E., 659

Posidonius, 170

Positional principle, 25-27, 29f, 33f, 59f,

198f. 211

Postulate, fifth, see Parallel postulate

Postulational thinking. 579. 597f, 609-11

PomtM, M A. Jr., 635

Powers, fractional. 263f. 319. 382, 393, 396
Prasad, (i . 673

us Mirror. 203

Price, I) J dC Sol la. 635

Prime number theorem. 488, 501. See also

Number, prime

Printing. 269

Probability 363f, 3721. 418-420. 423f, 454-
456. 469. 472. 4"2f. 530. 603, 626f

Produs. PXM; 4o-4K. 56. 65. 85. 93, 95,

im. |(W. |77. I'M

Product, infinite, 321, 364

Progressions, see also Series

arithmetic, 210

geometric, 16, 37, 116, 222

Projections:

map, 170

Mercator, 300

stereographic, 170

Proof, 17, 41, 46f, 66, 88, 106, 611

Proportion, 15, 55f, 65f, 88f, 113f, 242, 262f,

277, 380

Prosthaphaeresis, 240, 307-309, 312, 315

Psellus, M. C, 248

Pseudosphere, 463, 546

Ptolemy of Alexandria, 164-172, 640; 60,

152, 158, 161, 177f, 184, 190, 209f,

219, 234, 238, 240, 251f, 273f, 276,

298, 309

Almagest, 164-166, 170, 177, 190f, 227,

238, 25 If, 273f

Analemma, 170

Geography, 170

Optics, 171

Tetrabiblos, 171, 177, 226

Ptolemy, formulas of, 165f, 309

Puiseux, V., 571

Puissant, L., 478

Putnam, H.,662

Pycior, H.,662

Pyramid, 11, 18-20, 46f

Cheops, 18

frustum of, 9, 19f, 38, 202

volume of, 19f, 80, 210

Pythagoras of Samos, 44f, 47-52, 55f, 62,

70, 72, 80, 85, 87, 98, 207, 253

Pythagorean theorem, 108; 17, 39, 49f, 72,

163, 168, 186, 196, 202, 206

generalizations of the, 186, 285, 257, 476

Pythagorean triples, 34-37, 57, 88, 207, 220,

222, 353

Pythagoreans, 48-58, 60f, 62, 65, 68, 70-72,

83-85, 113, 323, 518, 520

Quadrangle:

complete, 360, 409

Lambert's, 242, 462

Quadratrix, 68f, 96f

Quadratures, 270f, 388. See also Circle,

squaring of

Quadrilateral, see also Quadrangle, Lambert's

area of, 219; 17, 39, 41, 210, 223

cyclic, 219, 223, 239

Saccheri, 242, 437, 462

Quadrivium, 71, 83, 248
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Quaternions, 583f

Quibell, J. E., Wn
Quigly, I., 668

Qusta ibn Luqa, 641

Rabinovitch, N. L., 645

Rajagopal, C. T., 642

Raleigh, SirW., 305

Ramanujan, S., 223

Ramee, P. de, 293

Rangachari, M. S., 642

Rankin, R. A., 664

Ravenstein, E. G., 647

Read, C. B., 673

Reciprocity laws, 613

Recorde, R., 269, 289-291, 306, 406, 647

Reductio ad absurdum, 66, 90f, 118, 127, 153

Rees, C. S., 635

Reflection, 240

law of, 173f

Refraction, 240

law of, 173

Regiomontanus, 272-276; 247, 308, 278, 280,

291-293, 308, 322, 353

De triangulis omnimodis, 274

Epitome astronomiae, 21

A

Reid, C, 659, 662, 664

Reingold, N., 664

Reisch, G., 253, 273

Relativity, theory of, 546, 555, 572, 615, 624

Resnick, M. D., 663

Rhabdas, N., 248

Rheticus, G. J., 292f, 308

Rhind, H., 11

Ribenboim, P., 650

Riccati, J., 436, 453

Riccati, V, 453, 463

Ricci, M., 385

Ricci-Curbastro, G., 623

Richardson, G. R. D., 572

Rickey, V. F., 652, 664

Riemann, G. F. B., 506, 532, 545-547, 550-

552, 554-556, 560-562, 604, 613,

624f. See also Integral; Space

mapping theorem of, 560

Riemann 's conjecture, 555, 613

Riese, A., 281

Riesz, F., 621

Rigatelli, L. T., 646

Rigaud, S. P., 657

Rings, 593f, 623

Robbins, F. E., 641

Robert of Chester, 251, 261f, 643

Roberval, G. P. de, 333, 355-358, 366, 368,

374

Robins, G., 635

Robinson, A., 658, 673

Robinson, D. W., 658

Robinson, R. W., 674

Roche, E. de la, 278, 289

Rod numerals, 198

Rolle, M.,435

Rome, mathematics in ancient, 177, 191. See

also Boethius

Roomen, A. van, 31 Of, 322

Rootselaar, B. van, 661

Rope-stretchers, 6, 16, 79, 207

Rosen, E., 646-648

Rosetta Stone, 10

Ross, R. P., 647

Rottlander, R. C. A., 635

Roulette, see Cycloid

Rowe, D. E., 659

Rudolff, C.,281

Rudolph of Bruges, 251

Ruffini, P., 522f

Rule of three, 15, 30, 196, 211

Russell, B., 555, 564, 579, 597, 611

Principia mathematica, 611

Sabra, A. I., 644

Saccheri, G., 436f; 243, 462, 519, 546

Sachs, A., 635

Sacrobosco, 254, 273

Saidan, A. S., 644

Saks, S., 617, 664

Sally, J., 667

Sally, J. D.,669

Salmon, G., 582

Santillana, G. de, 648

Sarton, G., 640f, 647f, 657f, 662, 673

Saunderson, N., 458

Sayili, A., 644

Schaaf, W. L., 673f
Schering, E., 560

Schmandt-Besserat, D., 633

Schmid, H. L., 672

Schmid, W., 663

Schmidt, E., 614

Schmidt, O., 635

Schneider, I., 669, 672

Scholz, E.,674

Schooten, F. van, 371-373; 378f, 391

Schooten, F. van, Sr., 371

Schot, S. H., 657

Schouten, J. A., 624

Schroder, E., 581

Schubert, 613

Schumacher, H. C, 505
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Schwartz, I 626

Scfawarz, H \ . 560

Soon, C \ 659, 674

Scott, J l .

" s " 652, 674

Scribe C J . 65/, 609

Sep \1irr t >r <>f the Circle Measurements, 204

Sebokt, Bishop s . 212. 232

Section, goMea, 50f, I lit; 93. 1 18, 256, 280,

297

Sections, conic, see Ellipse; Hyperbola;

Parabola

Segal, s . 659

Sc.del. P. L. V., 559

Seidenberg. A., 634

Seleucid penod, 24, 26, 40

Seqt, 18

Sequence:

Fibonacci. 255f

infinite. 385

Series, see also Convergence; Progressions

asymptotic, 602

Dirichlet, 511

Fourier, 509f, 559, 562

Gregory's, 386

harmonic, 267, 370, 416, 420, 446

infinite, 393-397; 266f, 370f, 373, 385-

387, 392-397, 400-405; 416f, 419r,

426, 437f, 444-448, 509-511, 516f,

559, 562, 602

Leibniz's, 405

Mercator's. 387, 403

sine. 403

Stirling's, 425

Taylor, 386, 422, 429, 509, 517

Ser\ois, F.-J., 576

Sesiano, J., 641

Sets. 579. 609

infinite. 566f, 596; 329, 451, 516, 543f

Set theory, 566f. 596f, 62 If

Se\erus Sebokt. see Sebokt

imals. iee Fractions; Numeration

Shater. (i . 653

Shen Kanu-shen^i. (>42

Shesmn. OH. 655/, 657

Shute. C C 1) I

Snldhantas. 20K1. 215. 219. 226, 274

Sifter, l- E . 643

Similarit) . 3

Simplieius. 65, 67. 97. I92f. 247

Simpson. I . 458f

Siimon. K . 454

Sindhirni. sec Brahmugupta

Sine. 209, 215; 159, 224. 237f, 274f, 291f,

443, 449

law of, 159, 219, 238

origin of name, 252

versed, 252, 328

Singh, A. N.,641

Singularities, 602

Sinha, K. N., 642

Sivin, N., 642

Sluse, R. F. de, 373f; 388, 398

Sluse, pearls of, 376, 474

Smeltzer, D., 634

Smith, A. M., 649

Smith, C. W., 661

Smith, D. E., 634, 639, 642, 644f, 647, 649,

651,674

Smith, G. C, 662

Smith, R., 637

Societe mathematique de France, 599

Societies:

mathematical, 599

scientific, 334, 362, 380

Socrates, 83; 63, 69, 101

Soroban, see Abacus

Space:

symmetric Riemann, 625

vector, 584-586, 627

Speidell, J., 314

Sphere, volume of, 131, 137, 210

Spiral:

Archimedean, 127, 331

logarithmic, 342f, 388, 418

Srinivasan, B., 667

Ssu-yuan yu-chien see Precious Mirror

Stackel, P., 670

Stahl, W. H.,641

Stamatakos, B. M., 637

Stanton, R. J., 667

Staudt, K. G. C. von, 539

Steele, D. A., 657

Steiner, J., 537-540, 569

Steiner points, 538

Steinig, J., 655

Steinitz, E., 623

Stern, M, 554

Stevin, S., 302f, 316-319, 321-323, 382,

393, 648

Stieltjes, T. J., 558, 620

Stifel, M., 281f, 291, 304, 311

Stigler, S. N., 657

f

Stirling, J., 425,428

Stokes, G. G., 515, 557-559

Stolze, C. H., 661

Stone, M.,674

Stoner, J., 646

Strain, M., 660
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Strassburg, University of, 608

Straik, D. J., 624, 634, 643f, 648, 659, 674

Struve, W. W., 21 n

Sturm, J., 570-572

Suan-pan, see Abacus

Suidas, 165

Suiseth, R., 266f

Sulvasutras, 201f; 7

Sumerians, 23

Surfaces: See also Area, surface; Geometry,

solid analytic

quadric, 461, 476, 547

Riemann, 555

Swerdlow, N. M., 649

Swetz, F. J., 643, 647

Swift, J. D., 641

Sylvester, J. J., 589-591, 606

Sylvester's dialytic method, 589

Sylvester II, Pope, see Gerbert

Szabo, A., 636, 638

Tables:

logarithm, 313-315; 29f, 277, 282, 330

multiplication, 28, 178

powers and roots, 28f, 282

reciprocals, 28f

refraction, 171

trigonometric, 162, 165, 215, 237f, 275,

308, 330

Tablets:

Akhmim wooden, 19

Baghdad museum, 38

cuneiform, 25-29, 40, 107

Plimpton Collection, 34-37

Susa, 38

Yale Collection, 27, 32, 39

Taisbak, C. M., 639

Tail, P. G.,556f

Tangent to a curve, see Curves, tangents to

Tangent, trigonometric, 36, 238, 275, 293,

463

Tanner, R. C. H., 647, 649

Tannery, P., 74n, 674

Tarski, A., 625

Tartaglia, N., 282-284, 301

Tarwater, J. D., 674

Tauer, J., 662, 673

Taylor, B., 386, 422f, 429f, 451, 514, 517

Taylor, C, 639

Taylor, E. G. R., 674

Taylor, R. E., 647

Tchebycheff, P. L., 454, 501, 626

Telegraphy, 602

Telescope, 413

Tetractys, 53, 70, 180

Tetrahedron, 202, 477. See also Polyhedra

Thabit ibn-Qurra, 234-236; 252

Thales of Miletus, 43-48; 52, 60, 62f, 76

theorem of, 40, 46, 163, 168

Theaetetus, 83-85, 93, 443

Theisen, W., 638

Theodoras of Cyrene, 83, 85, 93

Theon of Alexandria, 119, 162f, 190

Theon of Smyrna, 180

Thomas Aquinas, 260, 263

Thomas, I., 48, 636-641, 667

Thomas-Stanford, C, 638

Thompson, D'A. W., 641

Thomson, W., 509, 532, 539, 556f

Three-and-four-line locus, see Pappus,

problem of

Three-body problem, 602

Thureau-Dangin, Fr., 10

Tietze, H., 674

Tilling, L., 652, 655

Timaeus of Locri, 84

Todhunter, I., 674f

Toeplitz, O., 675

Toomer, G. J., 640

Topology, 603f, 613, 621f; 483, 545, 550

algebraic, 604

combinatorial, 603f

point-set, 603

Torricelli, E., 333, 342, 356-359, 366, 370,

374, 388, 396, 418

Townsend, E. J., 662

Trajectories, orthogonal, 405

Transform, Laplace, 493

Transformations:

affine, 549

algebraic, 30f, 33f, 345, 432f, 587f

geometric, 17, 19f, 149, 170, 299f, 347,

388, 411, 418, 434, 461, 476, 538,

548f, 590. See also Geometry,

projective

Translations of classical works, 210-213

Trapezoid, area of, 17, 20, 210

Treasury of Analysis, 141

Triangle:

area of, 7, 17, 20, 35f, 38, 134, 219, 274

arithmetic, 205f, 242, 245, 282, 299f, 364f,

394, 401

center of gravity of, 322

harmonic, 401

Pascal's, see Triangle, arithmetic

Trigonometry, 274, 307-311, 668. See also

Tables, trigonometric

analytic, 357, 422, 426, 443, 582
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l rifoaooietf) [i oof)

.incicni Bah\ Ionian. 35, 1 58

aiKicnl I i:\ptian. IK. 1 58

a.KK-m Greek, 158-175, 252

frtirvil European, 252

medieval Hindu. 209, 215, 224, 252

odteval Mamie. 237. 240, 243, 252

cut) modem, 307-31

1

name of, 31 I

Renaissance. 274f, 291-293

rtuectiu, Mf C^uadratrix

Tropfte, J . 675

Truesdell. C, 655%
658. 675

nratcott, F. W.. 656

Tschimhaus, E. W. von, 432f

Ts'e-xuan hatching, see Sea-Mirror of the

Circle Measurements

Tsu Cheng-chih, 202

Tsu Ch'ung-chih, 202

Tunng. A., 631

Tumbull. H. W., 650-653, 675

al-Tusi, see Nasir Eddin

Tweedie, C, 653

Ungar. A. M., 636, 638

L'nguru, S., 640, 645

Uniformization, 614

Vallee Poussin, C. J. de la, 501

Van den Broek, J. A., 655

Vandermonde, C. A., 511

Van der Waerden, B. L., 21 n, 29n, 47n, 74n,

623, 635-637, 640f, 675

Van Heijenoort, J., 675

VanOss. R. G, 655

Varahamihira, 208

\ anations. calculus of, 422, 475, 490, 613f,

621. 627

VvigDOO, P., 434-436

Vector anal>sis. 586

VcdOfi, 5K4 Sec also Space, vector

Velocity, instantaneous. 74t. See also

fluxions. Derivative

Wte. I . 102 311; 315-319, 32 If, 347, 374,

385, 191, 406, 412, 432, 443,649
\ 'igesimal s\stem. see Bases, number

\ 'irginia. I in\ersity of, 589

\ itruMus. 177. Ml
K . 29m, 669

Yolk .
O •

\oltaire. 120, 407. 409, 414, 447, 467, 472

Voi Me, K . 637

Vea Koch, H . 620

Von Neumann, J., 612, 615, 630f

Vucinich, A., 659

Waerden, see Van der Waerden

Wagner, D. B., 643

Walker, E., 650

Walker, H. M., 653

Wallis, J., 379-385; 366, 370, 387-390, 391

414, 442, 454

Arithmetica infinitorum, 381f; 379, 419

Conies, 380f

Walsh, J. J.,260n

Walton, W.,670

Waring, E.,457f, 491, 515

Waring' s problem, 614

Waves, propagation of, 512

Weber, H., 593, 596, 605f, 608

Weber, W., 555

Wedberg, A., 637

Wedderburn, J. H. M., 622f

Weierstrass, K., 558-563; 516, 555, 565,

569, 596, 608

Weil, A., 605, 629, 632, 650, 655, 659,

675

Wells, R. O., Jr., 66/

Werner, J., 294f, 297, 301, 309

Wessel, C, 507, 583

Westfall, R. S., 652
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