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CHAPTER l 

Theory 

1. The subject matter of the theory of images. Drawing a plane 
figure is not geometrically difficult because the image drawn is 
either an exact copy of the original or a similar figure, e.g. the 
drawing of a circle looks like the original circle. 

Drawing geometric solids is quite a different matter. Unfor­
tunately, there are no "spatial pencils" which can trace an object 
in the air. Such a pencil would "draw" a cube by tracing along its 
edges. Hence, we have to sketch a cube on paper with an ordinary 
pencil. A plane image will never be an exact copy of a solid and, 
therefore, a certain routine ought to be followed in drawing a 
solid that would create an image of the original in the best way. 
The meaning of "the best way" is discussed in the next section. 

2. Requirements of an image. There are two requirements: ob­
viousness and easy measurability. Obviousness means that an im­
age should visually resemble the original. This implies the 
resemblance of geometric forms rather than any non-geometric 
property, for example colour. 

Easy measurability means having the ability to determine the 
dimensions of an original with the minimum of effort. 

The two requirements contradict each other. This is the reason 
why descriptive geometry, which deals with representing 
geometric solids on a plane, has developed various techniques that 
either make a compromise between obviousness and easy 
measurability or give priority to one of them. The choice of a 
technique depends on the purpose of the drawing. 

Obviousness is absolutely vital in a picture while easy 
measurability is not important. The message conveyed by an artist 
can be understood, in greater or less degree, without the applica­
tion of mathematics. 
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An engineering drawing is a different thing. Here easy 
measurability rather than obviousness is of major importance 
because the drawing will be given to a craftsman who will 
manufacture the object. 

Some methods of drawing are far from being obvious. A 
layman will not be able to understand an engineering drawing 
because he does not have the special training, whereas a specialist 
will easily be able to determine all the dimensions of the original 
from the drawing. 

3. What is the book about. Descriptive geometry embraces so 
many methods that even a brief account would make up a rather 
thick volume. Therefore, we shall discuss just one of these 
methods, so as to enable the reader to make stereometric drawings 
and solve the respective problems. 

A school pupil studying stereometry sketches objects without 
observing any rules. He usually copies the sample drawings either 
given in his textbook or those drawn on the blackboard by the 
teacher. This book presents a geometric theory of constructing 
stereometric drawings. Having mastered this theory, a reader will 
be able to make the drawings himself rather than have to stick to 
the few sample ones. 

The first chapter presents the theory, the second one is devoted 
to its applications (drawing of a cube, a cone, a cylinder, etc.), 
and the third one describes a method of plotting the points of an 
image if their coordinates are known. 

4. The method of parallel projection. Proper projection 
methods ensure obviousness, and the central projection and 
parallel projection methods are the easiest. 

Figure 1 shows a central projection. Let us fix pointS (the cen­
tre of projection) and plane 1r (the plane of projection) which does 
not contain S. We now draw a line SA · (the projecting line or pro­
jector) through point A · in space. Point A, i.e. the point where 
the line pierces plane 1r, is the projection of A·. Figure 1 shows 
the projections of A · and B •. When all or some of the points of 
the original object have been projected onto the plane the drawing 
obtained is enlarged or reduced and an image is produced. 

Central projection produces the most obvious images since it 
simulates the process of vision. Figure 2 shows that the eye does 
not discriminate between light rays coming from the points on the 
original (A·, B ·, ... )and those coming from their respective pro-
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FIG. I FIG. 2 

jection (A, B, ... ) if it visualizes the original and its projection on 
a plane (1r). • 

Artists use the method of central projections. 
Parallel projection is distinct from central projection only in 

that the projecting lines do not pass through a common point 
since they are all parallel to the same direction (Fig. 3). 

Images obtained by parallel projection are slightly less obvious 
because the technique does not simulate the process of vision so 
well; still they are quite obvious, the original is easily recognized 
because rays of vision tend to be parallel if the eye-to-original 
distance tends to infinity. An image produced by parallel projec­
tion resembles a small object visualized from afar. 

FIG. 3 

• Here we somewhat simplify the actual situation since an original is seen by 
two eyes. 
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FIG.4 

Parallel projection is easier to perform than central projection, 
which is why parallel projection is always used when illustrative 
drawings are made for educational ai].d scientific puplications. 

5. A comment on notation. We are dealing with images rather 
than with their originals when we sketch stereometric drawings. A 
teacher says: "This is a cube", having made its drawing. But, in 
fact, it is the image of a cube. Where is the cube itself? It is 
somewhere above our heads (Fig. 4). Projecting lines pass 
through the cube's vertices and pierce the blackboard at the points 
marked by the teacher. 

The only branch of geometry that deals with originals is called 
descriptive geometry. It investigates the relationships between the 
original and its image. 

All the elements of the originals will be designated by primed 
letters, and the letters without primes will be used for the images. 
This is convenient because originals are dealt with very seldom. 
For example: 

point A ' has an image A; 
line m ' has an image m. 
If we did it otherwise we would have to prime all the letters in 

all the stereometric drawings. 

The drawing in Fig. I and the subsequent ones show planes 
somewhat unusually (with broken edges rather than in the form of 
a parallelogram). This will be discussed in Sec. 19. 
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6. Properties of parallel projections. The procedure of parallel 
projection consists of two sequential steps: 

1. Points of the original are carried along in the direction m 
(direction of projection) onto the plane of projections. 

2. The obtained figure is enlarged or reduced (i.e. scaled up). 
The result of these two steps is called the image. It is clear now 

that the point of an image is not a direct projection of the corre­
sponding point of the original. 

The second step does not affect the shape of the figure. 
Naturally, it may be omitted in some cases. 

Points on an original contained by the same projecting line are 
called concurrent points. Concurrent points have the same image 
point. 

The main properties of parallel projections are: 
Property 1. The image of a line is either a line or a point. 
Suppose that a' is not a projecting line. Mark arbitrary points 

A ', B ', and C' on a· and draw projecting lines through these 
points (Fig. 5). These lines belong to the same plane (that contains 
a· and is parallel to m). The intersection of this plane with the 
plane 1r is also a line•. 

Note that a plane parallel to the direction m is called a pro­
jecting plane. 

A projecting line consists of concurrent points. 
Property 2. Parallel lines have images that are either parallel 

lines or coincident lines or are distinct points. 
Suppose the parallel lines a ·, b ·, and c • are not projecting 

ones. The projecting planes a', {3', and 1'. passing through them 

FIG. 5 

• We shall not always mention the second step (similarity transformation) 
because it is unimportant. 
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are parallel to each other (or coincide) and, henceforth, intersect 
plane 1r along parallel (or coinciding) lines. Now, if the parallel 
lines are projecting ones, their images are the distinct points. 

Property 3. The ratio between two parts in which a point 
divides the segment is the same for both the image and the 
original*. 

Suppose that the segment A 'C' contains a point B '. The lines 
A 'A, B'B, and C'C are parallel (Fig. 5), hence 

AB A 'B' 
BC = B'C'. 

If A ' , B ' , and C ' are points on a projecting line, then the three 

. A B d C . "d d h . AIJ . O • • · d pomts , , an comc1 e an t e ratio - IS- , I.e. IS m e-
BC 0 

terminate. Since.Q_ may be identified with any value the equation 
0 

proved above remains correct in this case as well. 
Property 3 proves that the image of the midpoint of a segment 

is the midpoint of the segment's im~e. 
Note 1. That B ' is an internal point of the segment A 'C' is not 

essential: If B ' lies on the extension ofthe segment A 'C ', then we 

can also assume that B ' divides A 'C' in the ratio ~ ~ ~: and the 

ratio is considered negative. On this assumption any point on the 
line A 'C' divides both the original and the image of segment 
A 'C' in the same ratio. For example, C, D and E in Fig. 6 divide 
segment AB in the following ratios: (ABC) = 3, (ABD) = - 3, 
(ABE) = - 113. 

Note 2. A property of a figure that is not changed by geometric 
transformation is called an invariant property with respect to this 
transformation. An invariable parameter of a figure is called an 
invariant of the transformation. 

FIG. 6 

• This ratio is called the ratio of three points of a line and is designated 

(PQR), with R the point dividing the segment PQ in the ratio (PQR) = PR . 
RQ 

12 



Parallel projection is a transformation that attributes any figure 
F' with an image figure F (projection). 

The three statements proved above establish that rectilinearity 
(the property of a line) and parallelism (the property of two lines) 
are invariant properties of parallel projection, while the ratio of 
three points of a line is an invariant of parallel projection. 

This is true not only for direct projection but also for construc­
ting by parallel projection (see the footnote on page II). 

7. Free images. Two different problems can be posed when con­
structing images. 

Problem 1. Given an original, say a cube with a I m long edge, 
and all the projecting parameters are known, e.g. the direction of 
projection m is parallel to a cube diagonal and inclined to the pro­
jection plane 1r at an angle a = 60°, and the projection is scaled 
up with a factor k = 0.02. Construct the image. 

Problem 2 differs from the first one in that the projecting 
parameters are not given. The problem is defined as follows: con­
struct the image of a cube. In spite of the apparent simplicity of 
the formulation its meaning ought to be clarified. 

When a stereometric image of the cube is being drawn, the posi­
tion of the original with respect to the sheet of paper or the 
blackboard is not essential. One need only be certain that the 
finally drawn figure is the image of any cube. 

We would like to explain this in another way. Suppose a teacher 
has drawn anyhow a cube on the blackboard (Fig. 4). Would it be 
possible to place a cube in the air so that its projection onto the 
blackboard parallel to some direction coincides with the figure? If 
it is not possible to do this, the figure that had been drawn would 
not be the image of any cube. Such a drawing would be incorrect 
and not obvious. 

If there is just one original cube corresponding to the drawn 
figure, then the drawing is correct. Correctness is a necessary but 
not a sufficient condition of obviousness. Obviousness needs two 
more conditions which will be discussed in Sec. 22. 

An image constructed regardless of the position of the original 
is called a free image. Free images are used for illustrations and 
for technical applications. We always draw some cube or some 
sphere. Therefore, this book considers only free images. We must 
follow certain rules to construct correct free images. The state­
ment of these rules is the objective of this book. 
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8. Constructing the images of plane figures. Obtaining the im­
ages of plane figures means that the figures from one plane are 
cast onto the plane of the drawing. However, they might become 
distorted. In solid geometry, we have often to represent geometric 
figures containing various plane elements, e.g. faces of a 
polyhedron are drawn in the same plane of the drawing. 

The theory of constructing the images of plane figures is based 
on the following two theorems. 

Theorem 1. Any given triangle can have another triangle as its 
image. 

Explanatory note. Say we are given the triangle A 'B 'C' with 
4 A'= 60°,A 'B' = 3 mandA 'C' =2m. Wedm draw an ar­
bitrary triangle ABC and state that it is the image of A 'B 'C '. 

Proof. Given two triangles A 'B 'C' (the original) and ABC (the 
image). Pass the plane 1r, which is distinct from the plane of 
A 'B 'C ', through the side A 'B ' (Fig. 7). Construct the triangle 
A 'B 'C1 on A 'B' which is similar to ABC (there are two such 
triangles, and only one is considered). Let m = C'C1 be the pro­
jecting directi~n, then A 'B 'C1 is the projection of A 'B 'C' onto 
1r. Similarity transformation of A 'B 'C' generates the triangle 
ABC. 

Theorem 2. An image of the triangle A 'B 'C' specifies unam­
biguously the image of every point in the plane that contains this 
triangle. 

Proof. Given the original A 'B 'C' and the corresponding image 
ABC (Fig. 8). Choose a point D ' in the plane of A 'B 'C' and join 
this point to a vertex of A 'B 'C', e.g. A·. Designate the point 
where A 'D' intersects the opposite side B 'C' as E' (it is not im­
portant whether E' is inside B 'C' or outside it on its extension). 
A 'D ' may be parallel to B 'C ', but suppose that A 'D' is not 
parallel to B 'C '. Then the image E of the point E' may be con-

FIG. 7 FIG 8 
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structed: it divides the segment BC in the same ratio as E' divides 
the segment B 'C ': 

BE B'E' 
EC = E'C'. 

Point D should lie on the lineAE. The position of D can be deter­
mined from the following ratio: 

AD A 'D' 
DE D'E' 

If A 'D ' II B 'C ', then AD II BC and 
AD A 'D' 
BC = B'C'. 

A practical rule for constructing the images of plane figures 
stems from the two theorems proved above. The image of a plane 
figure may be drawn arbitrarily up to a certain moment after 
which a strict construction procedure must be followed because 
nothing may then be done in an arbitrary way. 

The theorems we have proved help register this crucial moment: 
any three unspecified points (i.e. not contained in the same line) 
may be arbitrarily chosen and three random unspecified points 
ascribed as their images. This is the limit of arbitrariness since the 
images of all the other points should be constructed. In other 
words, it is possible to give the image of a triangle in an arbitrary 
way; it is impossible to do this for a quadrilateral. 

9. Some examples of representing polygons. Example 1. Con­
struct the image of a square. Note that the image of a 
parallelogram is a parallelogram. On the other hand, any given 
parallelogram (e.g. a square) can have any parallelogram as its im­
age. In fact, the triangle A 'B 'C' may be singled out of the 
parallelogram A 'B 'C 'D ' and assigned an arbitrary triangle ABC 
as its image which is then completed to a parallelogram. 

Example 2. Construct the image of a regular hexagon. The con­
struction of the image of a plane figure can be divided into three 
stages. 

Stage 1. Imagine or draw the original as it is (i.e. undistorted). 
Stage 2. Single out a triangle inside the original and assign an 

arbitrary triangle to it as its image. 
Stage 3. Construct the remaining elements of the figure sequen­

tially using their links with those already drawn. But (Attention! 
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FIG. 9 

This is very important.) you may only use those links that are in­
variant with respect to parallel projection. For instance, the ima­
ges of two perpendicular lines may not be perpendicular while the 
images of parallel lines are always parallel. 

Let us solve the problem defined above. Figure 9 displays a 
regular hexagon A 'B 'C 'D 'E 'F' as it is (stage 1 ). Draw an ar­
bitrary image of the triangle A 'B 'C' (stage 2, Fig. 9b ). G ' is the 
midpoint of the segment A 'C ', hence G is the midpoint of AC 
since this property is invariant. Now draw the line BG and mark 
the points 0 and E on it using the invariant ratios B · 0 · = 2B 'G ' 
andB'E' = 4B'G'. ThendrawC'D'II B'G' andA 'F' II B'G'. 
D may be found by drawing either CD = BOor ED II AB or AO. 
F may be constructed in the same way. 

10. The image of a circle. Example 3. Construct the image of a 
circle. 

Explanatory note 1. The image of a circle is an ellipse*. 
Explanatory note 2. The curve is plotted by points. There are 

instruments for drawing curves such as compasses for circles. 
Since there is not an instrument for drawing ellipses, the construc­
tion of an ellipse boils down to plotting the required number of 
points. 

The use of conjugate diameters for constructing an ellipse is 
discussed in Sec. 32. Here, we shall consider the problem of draw­
ing the image of a circle, given its three arbitrary points, a task 
more closely related to the topic being discussed. This problem 
may be formulated another way, viz. draw the image of a circle 
circumscribed about a triangle. 

• The reader can find some more information about ellipses in Appendix 2 
(p 67) 
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Figure 10 shows the original (on the left): a circle with a triangle 
A 'B 'C' inscribed in it. Let us cast the image of A 'B 'C' as the ar­
bitrary triangle ABC (on the right of Fig. 10) and construct the 
point 0, the image of the centre of the circle (the construction is 
not shown here). 

If a point, symmetric with respect to the centre 0 ', is con­
structed for each vertex of the original triangle, then a new 
triangle AJ.BJ.CJ. is formed which is symmetric to A 'B'C'. Its 
vertices are also contained in the circle. The image of A 1 Bi CJ. can 
be easily constructed: just find the points A1, B1, and C1 sym­
metric to A, B, and C with respect to 0 and we thereby obtain 
three more points of the image of the circle. 

Lines symmetric with respect to the centre are parallel to each 
other. Hence, A 'B' II AJ.BJ.. Draw two diametersD'E' II A 'B' 
and F 'G · 1. A 'B' so that they pass through 0 '. The images of 
these lines can easily be constructed: DE II AB and FG passes 
through the midpoints of AB and A 1B1• Their end points D, E, F, 
and G can be determined from the following relations 

OD O'D' OF O'F' 
AB =A 'B'' OH = O'H' 

(H' is the point where F 'G' intersects A 'B ', and H is the mid­
point of AB). 

Thus, we have constructed two conjugate diameters, DE and 
FG, of the ellipse which are the images of the two perpendicular 
diameters D 'E' and F 'G ' of the circle. An ellipse can be con­
structed from its conjugate diameters (see Sec. 32). 

11. Another viewpoint of constructing the images of plane 
figures. Every point can be plotted, given a fixed coordinate 
system. 
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An affine coordinate system (in the plane) consists of the 
following elements (Fig. 11): 

(I) Two lines intersecting each other at an origin 0. 
(2) A positive direction is defined for each line and shown by an 

arrow. 
A line with one specified direction (of the two available) is called 

oriented line or axis. Therefore, (I) and (2) may be replaced by a 
single element, i.e. two intersecting axes. 

(3) The order of axes is defined. This means that one of them is 
the first and the other one is the second. The order is denoted 
either by letters X and Y or by numbers 1 and 2 or by colours, e.g. 
black and red, etc., it is hardly possible to list all the adequate 
notation. It is only important that the axes can be distinguished 
from each other. 

(4) A unit scale is defined on each axis. This is done by marking 
unit points £ 1 and £ 2• 

Given an affine coordinate system, each point M of the plane 
can be defined by affine coordinates. Draw the lines MP2 and 
MP1 through M parallel to the X- and Y-axes, respectively. The 
affine coordinates of M are the numbers: 

OP1 OP2 
x = 0£1' y = OEz' 

the sign being assigned in accordance with the well-known rule. 
Note that coordinates are abstract (dimensionless) numbers rather 
than geometric segments. 

If the X- and Y-axes are perpendicular to each other and their 
unit scales are identical, i.e. 

4 XOY = 90°, 
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FIG 12 

then the coordinate system is called a cartesian system and the x 
and y coordinates, cartesian coordinates. 

A coordinate system has what is called a coordinate grid 
(Fig. 12). The plane is ruled into identical parallelograms parallel 
to the X- and Y-axes. The sides of the parallelograms are the unit 
scales of the axes. 

The coordinates of any point M are evident from its position 
within the grid. We will skirt the technical difficulty encountered 
if M is not a nodal point (i.e. a vertex of a parallelogram) and its 
coordinates are estimated visually. To facilitate this procedure the 
grid lines should be spaced closer together (e.g. each line cor­
responds to one tenth of the scale unit). 

A coordinate grid has as its image a similar coordinate grid con­
sisting of identical parallelograms. Only the parallelograms (their 
side lengths and angles) vary. 

The image of a coordinate grid defines the image of any point in 
the plane. Each point M · has an image M, both points being 
located within their respective coordinate grids. In other words, M 
(the image) is defined by the same coordinates as M · (the original) 
but the coordinates of M · are related to the natural coordinate 
system (this is the common term for the original system), while the 
coordinates of M are related to the image of the natural system. 

Figure 13a shows a figure F' superimposed on a cartesian coor­
dinate grid. Figure 13b represents an arbitrary image of the coor­
dinate system (i.e. coordinate grid) and the image F. 

In the above sections it was sta~ed that only the image of a 
triangle may be defined arbitrarily, everything else is routine. This 
section is entitled 'Another viewpoint ... '.It states that the image 
of a coordinate system may be arbitrarily chosen~ 

We now invite the reader to have a close look at Fig. 11 in order 
to discover a very important fact that a triangle with specified ver-
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tices (i.e. denoted either by letters or numbers or otherwise) 
defines an affine coordinate system. The triangle 0£1£ 2 in Fig. 12 
evidently defines a coordinate grid as this grid may be easily con­
structed from the given points 0, £ 1, and £ 2 • 

12. Pohlke-Schwartz theorem. We know that a triangle plays a 
special role when drawing plane figures. We also understand the 
nature of this role: a triangle (with specified vertices) is itself a 
coordinate system. It is the nucleus of a coordinate grid. Had 
everything been erased from Fig. 12 except for the three points 0, 
£ 1, and £ 2, these points would have been enough to restore the 
whole drawing again. 

Those who have learnt this may realize that a tetrahedron has to 
play a similar role for representing three-dimensional objects. 

Why do we think so? The reason why is that a tetrahedron with 
specified vertices is a spatial affine coordinate system (we are not 
explaining what spatial affine coordinate system means because it 
must be clear to the reader who is now familiar with the plane af­
fine system). It is the nucleus of a spatial affine coordinate grid. If 
points 0, £ 1, £ 2 , and £ 3 (Fig. 14) are all that remained from the 
whole coordinate grid, it would be enough to restore the grid. 

These considerations prompt the following statement (Pohlke­
Schwartz* theorem). 

Theorem 3. Any tetrahedron can be represented as any ar­
bitrary complete quadrilateral. 

Note 1. A quadrilateral with diagonals is called a complete 
quadrilateral. A more accurate definition reads that a complete 
quadrilateral is a plane figure consisting of four points in some 

* Pohlke proved the theorem in 1853 for an iso~celes right tetrahedron (this 
has equally long edges and a right angle between the faces at the apex). Schwartz 
proved the theorem for an arbitrary tetrahedron in 1864. 
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general position (i.e. no three lie on one straight line) and six 
segments joining these points in pairs. 

The quadrilateral in this theorem is not necessarily convex. 
Figure 15a represents tetrahedron A 'B 'C 'D ' as a concave 
quadrilateral, ABCD with diagonals AC and BD. Figure l5b 
depicts the same tetrahedron as a non-convex quadrilateral ABCD 
(the reader is invited to draw it separately without the diagonals) 
with diagonals AC and BD. 

Note 2. Do not think that the broken lines are diagonals. These 
lines are used for showing invisible lines (it is assumed that the 
sides of a polyhedron are opaque). Whatever the positions of 
points A, B, C, and D, the segments AB, BC, CD, and DA in 
quadrilateral ABCD are edges and AC and BD are diagonals. 

Note 3. Remember that Theorem 3 is just a guess that will be 
proved later, therefore we will call it a theorem until then. 

And now, having formulated the theorem and having supplied 
provisos against any possible misunderstanding, we may work on 
the proof. Nevertheless, we shall postpone the proof for a while 
because pondering over the logic of the theorem might help to 
clarify the whole idea even more than obtaining the proof itself. 
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However similar theorems I and 3 may be, there is an important 
difference between them. The original and the image in 
Theorem I are triangles, i.e. a plane coordinate system has 
another plane coordinate system as its image. The original in 
Theorem 3 is a tetrahedron, while its image is a complete 
quadrilateral, i.e. the original and image are different types of 
figures, one of them is a three-dimensional body, while the other 
is a plane figure. 

There is one more difference. Every point of the image of a 
plane figure c:orresponds to a single point of the original. This 
means that one point of the original may be shown just by mark­
ing it on the drawing. When depicting objects, each point of the 
plane of a drawing represents an infinite number of concurrent 
points, i.e. of the whole projecting line. Marking a point on a 
drawing does not mean imaging a definite point of the original. 

There is a way out of this difficulty. A point M' should first 
(i.e. before the image is constructed) be projected from some 
point of the original or in parallel to some line of the original onto 
a plane of the original (this procedure is called internal 
projecting). Designate the point thus obtained M~ . Next, M and 
M 0 are constructed as the images of M' and M~. These two points 
define the position of M' in space. Point M 0 is called the secon­
dary projection (though secondary image is a better term) of M'. 

For example, Fig. 16 has been constructed as follows: first, M' 
was projected in parallel to the Z '-axis onto the X' Y '-plane, then 
the image of the whole of this was cast onto the plane. The point 
Min Fig. 16 is the image of M ', and M 0 is its secondary image. 

The pointE in Fig. 19b (cf. p. 26) is the secondary projection 
of M'. 

Let us consider Theorem 3 again. Its proof is based on the 
following lemma. 

y 

FIG. 16 
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Lemma. The cross section of a triangular prism on a plane may 
be a triangle which is similar to any given triangle. 

A triangular prism is an infinitely long 'triangular tube' rather 
than a polyhedron with five edges. Such a prism may be defined 
by its normal cross section, i.e. by the cross section cut by a plane 
perpendicular to the lateral edges. 

Now, we are given two triangles (Fig. 17). The triangle AoB0C0 

is the normal cross section of the prism, while the triangle 
A 'B'C' is the sample. We need to cut the prism by a plane in 
order to get a triangle similar to A 'B 'C '. 

Now we are going to do some analysis. Suppose a is a plane 
perpendicular to the prism's edges, and~ is the plane sought. The 
triangles AoB0C0 and A "B, C, are the cross sections of the prism 
by a and~. respectively, A "B"C" being similar to A 'B'C'. 

Consider the parallel projection of a on ~ with the projection 
direction parallel to the prism's edges. AoB0C0 is projected onto 
A "B"C". The circle circumscribing Aof10C0 (Fig. 17) is pro­
jected onto the ellipse circumscribing A "B"C". The projecting 
lines form a cylinder circumscribing the prism. Scale up 
A "B"C", together with the circumscribing ellipse so that it is 
converted into A 'B 'C '. Then the ellipse will be transformed into 
the ellipse circumscribing A 'B 'C '. 

Triangle A 'B 'C ', together with the ellipse, is the image of 
AoB0C0 and the circle circumscribing it because the former was 
obtained from the latter by parallel projection and by a subse­
quent similarity transformation. That being the case, the ellipse 
circumscribing A 'B 'C' is defined and may easily be constructed 
by plotting points (this procedure is described in Sec. 10, see 
Fig. 10). Figure 17b shows the centre of the ellipse. 
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We draw the axes of the ellipse (its major axis D 'E' = 2o' and 
its minor axis F'G' = 2b (Fig. 18)) and construct the two mutual­
ly perpendicular diameters Do£0 and F0G0 that correspond to the 
axes (i.e. the diameters of the·circle whose images are the axes of 
the ellipse). We are going to show how a figure (the ellipse with its 
inscribed triangle) which is similar to that constructed above can 
be 'set' upon a cylinder. 

If a circular cylinder is intersected by a plane the resulting cross 
section is an ellipse with 

(I) a minor axis equal to the diameter of normal cross section, 
and 

(2) the ratio of its semi-axes equal to the cosine of the angle be-
tween the intersecting and normal planes (see Sec. 31). 

Now, bearing this in mind, let us 
(I) draw a line parallel to F0G0 on a plane a, and 

(2) pass a plane (3 through this line at the angle tp = arccos b: to 
a 

the plane a. Note that there are two such planes because the angle 
tp may be constructed on both sides of a. 

Plane (3, thus constructed, forms an elliptical cross section by 
intersecting the cylinder. End points F., and G , of its minor axis 
lie 'above' F0 and G0 (on their respective generatrices). Points 
A ., , B ., , and C, are contained along the same generatrices as the 
pointsA0 , 8 0 , and C0 • In fact, triangle A "B"C" is situated with 
respect to the 'cross' (D "E , , F, G , ) in the same way as AoB0C0 

is situated with respect to the 'cross' (Do£0 , F0G0). More precisely, 
point A , has (and this is also true forB" and C ")the same af­
fine coordinates in the (0, D,, 0, F")-coordinate system as 
point A 0 has in the (OoD0 , OoF0 )-coordinate system. 
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Now we are ready to prove Theorem 3. We are given a 
tetrahedron A 'B 'C 'D ' (the original) and a plane quadrilateral 
A0B"COJJO (the sample). The proof employs the following idea. A 
tetrahedron has three pairs of opposite edges: 

A 'B' and C'D', 

A 'C' and B 'D', 

A 'D' and B'C'. 

The opposite edges of the tetrahedron are skew, while the 
respective lines that form the plane quadrilateral intersect. So, any 
plane figure has three points (called the diagonal points of a com­
plete quadrilateral) which a three-dimensional body does not. 
Denote 

the intersection of A 0JJO and C0JJO as P', 

the intersection of A°C0 and JJOJJO as Qo, 

the intersection of A 0V and JJOCO as R 0 • 

One, perhaps even two but not three, of the points may be miss­
ing if the appropriate lines are parallel. 

Hence the diagonal points define the direction of the projec­
tion. It occurs as follows. 

Determine the point Pi that divides A 'B' in the ratio equal to 
that into which the point P' divides A 0JJO and find the point P; on 
C 'D' in the same way, thus: 

A 'Pi A 0po C'P2 copo 
PiB' = poJJO' P2D' = po[)O . 

So one point P' of the sample determines two different points 
Pi and P2 of the original. These are concurrent points, i.e. they 
must be represented by one point. This means that PiP2 is a pro­
jecting line. 

Draw lines parallel to Pi P2 through the vertices of the 
tetrahedron A 'B 'C 'D ' to obtain an infinite tetragonal prism. A 
cross section of this prism by any plane (with the exception of the 
projecting one) is a quadrilateral ABCD for which 
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AP A 0P 0 

PB = poJJO' 
CP copo 
PD = P0JJO. 
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Now we do not take any plane that intersects the triangular 
prism A 'B 'C ', we only take the one that cuts the triangular prism 
to yield a triangle ABC which is similar to A 0H>CO. This plane in­
tersects the quadrilateral prism across the quadrilateral ABCD 
which is similar to the quadrilateral A 0H>COIJO (the sample): 

triangle ABC is similar to A 0H>CO, 
AP A 0P 0 

PB = P 0Hl' 
CP COP0 

PD = P 0IJO. 

These equations show that quadrilateral ABCD is similar to 
quadrilateral A 0H>COIJO and this proves Theorem 3. 

13. Representing geometric solids. Theorem 4. The image of the 
tetrahedron A 'B 'C 'D' defines each point in space. 

Proof. Given that A 'B 'C 'D' is an original and ABCD is its 
image on a plane (Fig. 19), and given the point M' in space, let us 
construct its image. Join M' to some vertex of the tetrahedron, 
e.g. A ', and mark the point E' where the line A 'M' meets the op­
posite face B 'C 'D ' (£' is not necessarily inside B 'C 'D '). The 
reader is invited to analyse the case when A 'M' is parallel to the 
plane of B 'C'D' by himself. By drawing B 'E', C'E', and D'E' 
we obtain the points E; , E;;, and E~, respectively, on the sides of 
6B'C'D'. 

Now to get down to the image; the images of E;, E;;, and E~ 
may be constructed since they divide CD, DB and BC in the ratios 
equal to those of the original. By the way, it is enough to construct 
only two of the three points, say Es and Ec. Point E is the intersec­
tion of BEs and CEc. Next draw AE and construct the point M on 
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it so that it satisfies the following equation: 
AM A 'M' 
ME M'E'" 

The theorem we have proved may also be interpreted in the 
following way: the image of a tetrahedron may be completed to 
become the image of a spatial coordinate system. Figure 16 
represents a spatial coordinate system that is defined by the point 
0 (the origin) and by the points E1, E2 , and E3 (the images of the 
unit points of coordinate axes). With this image one can construct 
the image of any point defined by its coordinates. For instance, 
Fig. 16 illustrates how the image of point M'(2, 3, 4) is con­
structed. 

Example 1. Draw a cube. 
Three of a cube's edges stemming from the same point define a 

tetrahedron. The Pohlke-Schwartz theorem states that the 
tetrahedron may have any arbitrary quadrilateral as its image. 
The remaining portion of the image may be completed since the 
cube's edges which are parallel must retain their parallelism in the 
image. 

So, we may construct A1, 8 1 , D1, and A2 arbitrarily when 
representing the cube (Fig. 20). This is what the Pohlke-Schwartz 
theorem actually states. Most people think that a drawing like the 
one shown in Fig. 20 is not always the image of a cube as the 
angles of the component parallelograms and the ratios of the 
segments must be specially chosen. Confess, reader! What was 
your opinion? Have you ever drawn a cube with perfect freedom 
or did you follow a compulsory procedure? 

Another form of the Pohlke-Schwartz theorem permits us to 
represent a cartesian coordinate system arbitrariiy. For example, 
we can choose angles 4 XOY and 4 YOZ in Fig. 16 to be ar-

n, 0 

FIG 20 
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bitrary and then state that axes X', Y' , and Z ' are perpendicular 
in pairs. We may also take segments OEtt OE2 , and OE3 of any 
length and state that their originals are equal and even have a 
specified length, e.g. 0 'Ei. = 0 'E2 = 0 'E3 = I m. This means 
that a lecturer of analytical geometry in space may freely draw any 
suitable orthogonal cartesian coordinate system. 

Example 2. Draw a regular quadrilateral pyramid. 
The base of a pyramid (a square) can be represented by any 

parallelogram. Besides, according to the Pohlke-Schwartz 
theorem, one edge can be represented arbitrarily, i.e. the vertex of 
the pyramid may be chosen arbitrarily. 

To draw the altitude, the apex should be joined to the point 
where the diagonals intersect. 

14. Reversibility of an image. We have been discussing the con­
ditions for an original to define its image. But in practice the con­
verse problem is more important, since the sole significance of the 
image is the information it communicates about the original. To 
manufa~ture a component, the worker should have a drawing that 
fully defines the component. When we look at a painting, we want 
to recognize the original. • 

An image is called reversible if the original may be restored 
from it (mathematicians usually say reconstructed). 

Let us first solve the reversibility problem for the image of a 
plane figure. Given the image Fof a plane flgure (Fig. 2la), take 
any common points A, B, and C contained in F. We know that 
the triangle ABC may be the image of any triangle. Suppose that 
Fig. 21a is supplemented with the following condition: in the 
original A 'B' = 12.4 mm, B'C' = 6.2 mm, and 4 A 'B'C' = 
90°. With this information we may restore the triangle A 'B 'C' 
precisely (Fig. 2Ib). We may then construct every point of figure 
F', i.e. the whole F'. 

As was explained in Sec. II, a triangle plays the role of a coor­
dinate system. Instead of a triangle, we may superimpose a coor­
dinate grid on the image F and specify the reconstruction of this 
grid. Usually, but not necessarily, the image of a cartesian grid is 
used. Figure 22a depicts F with a coordinate grid superimposed 
on it. Figure 22a is supplemented with the information that the 

* We think that those who like abstract art will not read this book since they 
are not interested in any theory of image. 
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parallelograms of this coordinate grid represent the squares with 
6.2 mm long sides. Figure 22b shows a natural coordinate grid 
with figure F' on it. 

We should stress once more that the image ABC of a triangle 
tells us nothing about its original (except for the fact that it is a 
triangle rather than some other figure). Therefore, the reconstruc­
tion of the original must be specified additionally. If the image F 
of a plane figure (more complicated than a triangle) is given, then: 

(1) this image is irreversible, i.e. its precise original is indefinite; 
(2) this image becomes reversible, given the reconstruction of its 

component triangle. 
More precisely, the image of a plane figure is irreversible in any 

case but the following system is reversible: 
(a) an image and (b) a supplementary condition that specifies 

the reconstruction of some triangle which is a component of the 
image. Given (a) and (b), the original may be precisely deter­
mined. 

The images of geometric solids are similar in this respect. The 
original of a tetrahedron is not defined by its image. In fact, ac­
cording to the Pohlke-Schwartz theorem, this image defines any 
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tetrahedron. Therefore, the reconstruction of the original 
tetrahedron must be specified additionally. The following state­
ment is true for more complicated bodies: 

(1) the image of a geometric solid is irreversible; 
(2) the image becomes reversible, given the reconstruction of a 

tetrahedron corresponding to some complete quadrilateral con­
tained in the image. 

15. Specified images. An image is specified if it is supplemented 
with certain conditions. Without these conditions it is impossible 
to define the original. 

For example, one may not say that Fig. 20 shows a cube since 
the image depicted may be that of any parallelepiped. But if the 
image is described as a cube, it must be none other than a cube. 
Thus, we have the specified image of the cube. 

There is an old story about an artist who supplied one of his 
paintings with the caption: "This is a lion not a dog"*. The joke, 
of course, is on the painter whose work is so bad he must supply it 
with an explanatory note. But in one sense the artist is right: if the 
caption says the picture is of a lion, then the original must have 
been a lion. The painter portrayed the image of the lion in a 
special way. 

Almost all images, paintings included, are specified. Here are 
some examples. 

In geometry, supplementary conditions are formulated explicit­
ly, e.g., the dimensions of the relevant tetrahedron are given. In 
technical drawings, the sizes and the values of angles are in­
dicated. Architects often indicate the scale of projected buildings 
by sketching small human figures and cars on the blue prints. 

In art, supplementary conditions are always implied rather than 
worded (this is the reason the artist's caption 'This is a lion not a 
dog' sounds funny). This means that a picture always represents 
objects familiar to the viewer. For example, if a picture depicts 

• See the book by E. A. Vanan'yan, From the life of words, 2nd ed., Detgiz 
Publishers, Moscow, 1963 (in Russian). The same motif can be found in the folk­
lore of other countries. For example, Don Quixote of Lamancha told the following 
story about a painter: "Once he painted the picture of a cock. But it was so poorly 
done that the cock did not look like a cock at all. So the painter had to write on it: 
'This is a cock', in large letters" 
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rails, the viewer takes for granted that the rails are parallel• and 
equidistant (there is no need to take special note of the distance 
between them). If a telegraph pole is depicted, its perpendicularity 
to the rails is implied, its approximate size assumed, and so on. 
The viewer unconsciously imagines these conditions and restores 
the original in his mind while looking at the picture. 

If a picture depicted the landscape of an alien planet without a 
single familiar object, it would be impossible to get a precise idea 
of the original. Even in such a case, however, certain conditions 
would be assumed. We would perceive, for example, that the sur­
face of the planet is horizontal while imagining the details parallel 
to the sides of the picture to be vertical. Of course, the actual 
dimensions of the original would still be unclear. Perhaps future 
cosmic artists will include at least one object from the Earth in 
their landscapes. 

As mentioned above, almost all images are specified. 'Almost 
all' does not mean all. Certain necessary conditions must still be 
supplied if we want to get a precise idea of the original. But it may 
be, when one studies solid geometry for example, that the metric 
properties of an original (sides and angles) are not important. 

Look at Fig. 20 again. If there are no supplementary condi­
tions, then we may say that this is an image of some 
parallelepiped. Figure 20, as given without any supplementary 
conditions, is sufficient for proving theorems or solving problems 
dealing with arbitrary parallelepipeds. 

Figure 15 without supplementary conditions may be used as an 
illustration for dealing with arbitrary tetrahedrons. If one wants 
to represent a regular tetrahedron, then Fig. 15 must be sup­
plemented with a 'this is a lion, not a dog' condition that would 
read 'this is a regular tetrahedron' or 'A 'B ' = A 'C' = A 'D ' = 
B 'C' = B 'D '= C 'D '•••. If it is necessary to indicate size, then 
one may add 'A 'B' = a' or 'A 'B' = I em'. 

• Recall that a painted image is constructed in compliance with rules that dif­
fer from those expounded in this book. In a painting central rather than parallel 
projections are used. Therefore, the rails in the picture are not parallel. 

•• Do not use primes when studying solid geometry. Write AB = AC = ... as 
if the image is the tetrahedron itself. We have to be pedantic in this book that is 
devoted to image-original relations. 



CHAPTER 2 

Practical Exercises 

16. Cross sections of polyhedrons. Here we shall deal with the 
images encountered in the study of solid geometry. We shall 
primarily consider questions that involve metrics (i.e. the measure 
of segments and angles). We shall show how to construct images 
and analyse the most frequently made mistakes. 

Example 1. Represent a ~ross section of a prism by a plane. 
Figure 23a displays a cross section of a triangular prism. It has 

been 'constructed' very easily: the arbitrary points A3 , B3 , and C3 
have been chosen on the edges of the prism and joined to each 
other with line segments. The same 'method' has been applied to 
the construction of a cross section of a quadrilateral prism in 
Fig. 23b. Figure 23a is correct while Fig. 23b is not. We shall now 
analyse a common mistake using Fig. 23b. 

A plane is defined by three points. Therefore, we may choose 
points on the edges of a triangular prism arbitrarily when con­
structing its plane cross section. This may not be done when deal­
ing with quadrilateral prisms. By choosing the points A3 , B3 , and 
C3 arbitrarily, we define the secant plane; the point of its intersec­
tion with the fourth edge of the prism could not be arbitrary. 

But might not Fig. 23b be correct by chance? Is it not possible, 
in placing the chosen point D3 arbitrarily, to place the point exact­
ly where it should be? We shall show how this may be checked. 

The plane that passes through the edges A;A:l and c; C2 in­
tersects the plane cross section A3B3C3D3 along the diagonal 
A3C3, while the plane that passes through the edges B;B:l and 
D; D:l intersects A 3 B3 C3 D3 along the diagonal B3 D3 . The line of 
intersection of these two planes is parallel to the edges of the 
prism. Therefore, the points of intersection of the diagonals in all 
the plane cross sections of the prism are contained in the line 
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which is parallel to the prism's edges. In Fig. 23b the points at 
which the diagonals of the bases intersect are labelled P 1 and P 2 ; 

the line P 1P 2 is parallel to the edges of the prism. The point P 3 is 
not contained in this line, and therefore the drawing is incorrect. 
This means that the depicted quadrilateral A383C3D3 is not a 
plane figure. Anyone with a trained eye (a painter, for example) 
would notice this at once without any auxiliary constructions. 

The points of intersection of other pairs of lines may be chosen 
instead of the points P 1 , P 2 , P 3 • For example, the point Q1 , which 
is the point of intersection of A 18 1 and C1D 1 , and similar points 
Q2 and Q3 must lie on a line parallel to A 1A2 • The point R1 , at the 
intersection of A1D 1 and 8 1C1 , and similar points R2 and R3 must 
also lie on a line parallel to AtA 2 • 

This property enables us both to check the correctness of the 
drawing and to construct the plane section of a quadrilateral 
prism. Choose the points A3 , 8 3 , and C3 arbitrarily (Fig. 24). 
Construct the points P 1 and P 2 and draw the line P 1P 2 (parallel to 
A1A 2) . Draw the line A 3C3 and find the point P 3 where A 3C3 and 
P 1P2 intersect. Draw the line 8~3 • The point of intersection of 
8~3 and D1D2 is the point sought. 

We shall consider two more examples, but betore domg so we 
shall explain why we have chosen them. This book deals with the 
representation of geometric objects rather than with the solution 
of problems of construction on paper. The second of these two 
topics is more complex than the first. Since it requires construc­
tion of plane cross sections in compliance with certain conditions, 
for example, the construction of a cross section of a polyhedron 
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FIG 24 

by a plane that pa:;ses through three given points. This problem is 
more complicated especially if the given points lie on the edges. 
Therefore, we shall consider only the problem of how to 'repre­
sent some plane cross section of a polyhedron'. 

When representing plane cross sections of polyhedrons, only 
two rules must be followed. 

I. If the planes (3 ' and 'Y ' intersect along the line I' and the 
plane a ' intersects them along the lines b ' and c ' respectively, 
then b ' and c' either meet in a point on I' or are parallel to I·. 

2. If the planes (3 • and 'Y 'are parallel and the plane a ' intersects 
them along the lines b ' and c ' respectively, then b ' and c ' are 
parallel. 

Example 2. Represent a plane cross section of a parallelepiped. 
Draw the images of the lines PQ and QR in the cross section. 

The point of their intersection lies on the line A2B2• In all other 

Q 

FIG 25 
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respects, the lines PQ and QR are arbitrary. The point Q in 
Fig. 25a is contained in the segment A2B2 (however, this is not 
necessarily so). Draw RS II QP and PS ~ QR. Hint: the point of 
intersection of RS and PS should lie on the line C1D1 (but not 
necessarily in the segment C1D 1). 

The lines PQ and QR in Fig. 25b are drawn so that the point Q 
lies on the extension of the segment A2B2• Label the points T = 
PQ n A2D2 and U = QR n A1A2 , and join U to T. Draw RS II 
QP and PS II QR. Hint: the pointS lies on the line C1D1• If S lies 
on the extension of C1D1, then join the points V = RS n B1C1 

and W = PS n C1C2• Hint: VW II TV. 
Example 3. Represent a plaf!e cross section of a quadrilateral 

pyramid (Fig. 26). 
Draw the segments PQ and QR arbitrarily. From the point R, 

the side of the cross section should be drawn across the back face. 
The planes of the back and front faces intersect along the line 
S 'X'. The image of this line can be easily obtained by construct­
ing the point X = AB n CD. The traces of the secant plane a' 
on the front and back faces should intersect along the line S 'X'. 
Find the point T = PQ n SX and draw the line TR. Mark the seg­
ment of this line RU, which lie!. within the triangle SCD. The line 
AB is the image of the line of the intersection of the front face and 
the lower base. This means that the trace of the secant plane on 
the front face (P 'Q ') and the still unknown trace on the lower 
base U 'V' should intersect on the line A 'B '. 

17. Metric problems. Example 1. Cut a cross section of a 
regular quadrilateral pyramid S 'A 'B 'C 'D ' with a plane perpen­
dicular to the edgeS 'A '. 

The base of a regular quadrilateral pyramid is a square. It can 
be represented as an arbitrary parallelogram (Fig. 27). Moreover, 
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FIG 27 FIG 28 

a lateral edge may also be drawn in accordance with the Pohlke­
Schwartz theorem, for example, S 'A·. 

Thus, a tetrahedron S 'A · B 'C · is depicted arbitrarily. The 
Pohlke-Schwartz theorem states that a given tetrahedron can be 
represented arbitrarily. In the problem under consideration, 
however, the tetrahedron S 'A 'B 'C' is not defined because the 
length of the lateral edge (or, instead, the length of the altitude) is 
not given. Only if we add one more condition, for example 

S'T'=2·A'B', 

is the problem fully defined. 
Figure 28 shows the triangle S 'A 'B ' in its natural form, i.e. 

with no distortions. The point E • is the midpoint of the segment 

A 'B', A 'B · = a, S 'E' = a.Jf7. The altitude B ·u· is dropped 
2 

from the vertex B ·. 
Now we need to bring the point U · into the image. The ratio 

S, U, is invariant. We apply similarity transformation and con­
U'A, 

struct S 'AI = SA in Fig. 28. By scaling up the drawing we obtain 
the triangle S 'AI Bi with the altitude Bi u;. We must still bring 
the dimension of s·u; into Fig. 27, i.e. to measure off SU = 
s·u;. 

Now S'A' .l U'B' and S'A' .1 U'D'. Therefore, the line 
S'A' is perpendicular to the plane B'U'D'. This plane can be 
translated. This translation replaces the images UB and UD of the 
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traces of the plane by the parallel lines PQ and QR. This cross sec­
tion can be completed according to the rules given in Sec. 16. 

Note. If the length of the altitude or of the lateral edge is not 
given, even when it is known that the pyramid is a regular one, the 
problem is not defined. In such a case, only the converse problem 
can be solved. Draw BUD arbitrarily (see Fig. 27 again), and 
assume that B 'U'D' 1. S 'A'. The length of the altitude or of the 
lateral edge can now be determined. Draw the segment SA 
separately with the point U in it (Fig. 29). It is set that 
S'U' SU 
U'A, VA 

in Fig. 29. We may assume, for example, that 

S'U' = SU and S'A' = SA. ln Fig. 27 the line BU is not 
perpendicular to SA, while in the original (Fig. 29) we draw a line 
from the point U' perpendicular to the line S'A '. By swinging 
S 'A ' around S' we get a point B '. Now we have the triangle 
S ·A ·B • in its natural form of the lateral face of the pyramid 
(scaled up). 

18. Solids of revolution. Cylinders. A cylinder is shown in 
Fig. 30. Both of its bases are represented as congruent ellipses. 
Figure 30a shows the images of two diameters of the upper (or the 
lower) base. The diameters are perpendicular and conjugate. 

Figure 30b represents a sectional view of the cylinder with a cut 
made into the cylinder to form a dihedral angle equal to 90°. 

Cones. The image of the base of a cone is an ellipse. In the 
classroom (even in school textbooks), a mistake is often made: ex­
treme generatrices are used to represent the sides of the axial cross 
section and are assumed to touch the ellipse at the end points of 
the major axis (Fig. 3la). This is absurd. If tangents to the ellipse 
were drawn through the point S and the points of tangency A and 
B were joined, the line AB would not pass through the centre of 
the ellipse. Some 'draftsmen', nevertheless insist on drawing this 
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line through the centre. Figure 3lb is correct. One of the points of 
tangency, say A , is joined to the centre 0, and the point C, 
diametrically opposite A , is marked on the ellipse. The triangle 
SAC is the image of an axial cross section. 

Figure 3lb clearly shows that we see a bit more than one-half of 
the lateral surface of the cone. From what vantage-point will the 
cone appear to the observer as it is depicted in Fig. 3Ib? In fact, 
the observer would have to be quite far off and above the plane of 
the base (the light rays entering the eye form angles of about 30° 
with the plane of the base). 

To draw the image of an axial cross section, it is not necessary 
to use one of the contour generatrices. Any two diametrically op­
posite generatrices will do. Figure 32 shows one more variant of 
drawing a cone with an axial cross section. 

Spheres. Here we shall begin with a remark of a practical 
nature: the image of a sphere is normally an orthographic projec­
tion. This is explained by the fact that when a sphere is projected, 
the projecting lines form a circular cylinder touching the sphere 
(Fig. 33). The plane ex· is perpendicular to the cylinder's 
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generatrices while the plane ~ · is not; the cross section of the 
cylinder cut by a· is a circle, and that by~· is an elongated ellipse. 
In other words, the projection of the sphere onto a· is a circle 
while its projection onto ~ · is an elongated ellipse. 

The image of a sphere whose contour is an elongated ellipse is 
not obvious and most people would say that the image does not 
resemble a sphere. Therefore, the plane a' is normally used rather 
than the plane ~ · . 

Is it possible that a correctly constructed image of sphere (i.e. 
without mistakes) would still not be obvious? The answer, as seen 
from the example, is yes. In order for an image to be recognizable, 
it must necessarily be correct. That is not, however, sufficient. 
Other conditions will be discussed in Sec. 22. 

Textbooks often contain the erroneous image of the Globe 
(Fig. 34). (In describing spheres, we will use conventional 
geographic terms, such as equator, meridian, and the North and 
South poles as if dealing with the Globe.) 

In Fig. 34 the equator is shown as an ellipse whose lower part 
corresponds to the visible part of the equator. This means that 
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rays projecting from the observer's eye are oblique with respect to 
the plane of the equator and pierce it from above. If so, the im­
ages of the poles cannot be on the contour. The North Pole should 
be situated lower (i .e. some of the area surrounding the pole 
should be depicted), while the South Pole is located on the invisi­
ble part of the sphere (Fig. 35). 

When the poles are situated on the contour, rays projecting 
from the observer's eye are parallel to the plane of the equator, 
and the resulting image of the equator is a line segment (Fig. 36). 

The correct image of a sphere is constructed as follows. The 
equator and meridians are drawn as ellipses, the meridians passing 
through two points Nand S. We must still determine the relation­
ship between the image of the equator and the position of the 
points N and S. 

If the ellipse representing the equator were flattened into a line 
segment, then the points Nand S would be situated on the con­
tour. If the ellipse were extended, then the points Nand S would 
be approaching each other. The wider the ellipse, the lower the 
point N (and the higher the point S). We shall explain this state­
ment in more detail. 

Imagine the original. Draw the equatorial cross section (circle 
A'B 'C'D'), and draw the diameter N'S' (the Globe's axis) 

FIG. 37 
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FIG. 38 

perpendicular to this cross section. Imagine a plane perpendicular 
to A 'C' and passing (for convenience) outside the sphere 
(fig. 37). Project the sphere together with its equatorial cross sec­
tion and the axis N 'S' onto the plane {3' orthogonally. The sphere 
is thus projected onto a circle, while the system (A 'B 'C'D ', 
N 'S ') is projected onto two perpendicular diameters of this cir­
cle. If the figure on the left in Fig. 37 were revolved about A 'C', 
the circle on the plane {3' would not move while the cross con­
sisting of two perpendicular diameters would rotate around the 
centre. 

Figure 38 suggests the answer to the question of how the image 
of the equator is linked to the images of the poles. The diameter 
PQ defines the minor axis of the ellipse while the diameter NS 
defines the position of the poles Nand S. This drawing is explicit, 
and the reader will certainly understand it without explanation. 
The two following problems may be solved with the help of this 
drawing: 

1. Assume the image of the equator is an ellipse. Find the poles. 
2. Given the poles, construct the image of the equator. 
Once the images of the equator and the poles are drawn, it is 

easy to draw a coordinate grid (meridians and parallels) on the 
sphere (fig. 35). The meridians are represented by ellipses that 
pass through the points N and S. Parallel circles are drawn as 
similar ellipses touching upon the contour . 

We are omitting details (i.e. the construction of the axes of all 
the ellipses) since the reader will be perfectly able to complete the 
drawing by himself. 

Obviously, it may be completely unnecessary to show the coor­
dinate grid on the image of the sphere. The original may be 
'clear', i.e. with nothing on its surface. But in such a case, the 
image of the sphere would reduce to a circle (contour). The image 
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would be ambiguous and, therefore, unrecognizable as the image 
of a sphere. To demonstrate that the sphere is convex, one should 
either superimpose a drawing on it (e.g., a coordinate grid) or sup­
ply the image with shadows. The construction of shadows is a 
branch of descriptive geometry, which we shall not discuss here. 

19. The image of a plane. We begin the metrical construction of 
the image of a given original by taking cenain arbitrary steps. 
Each step, however, imposes certain constraints on the steps that 
follow. Finally, when we have constructed the image of a 
tetrahedron that is part of the original, our movements can no 
longer be arbitrary, and all remaining elements of the image must 
be constructed deliberately. 

A plane (or rather 'a piece of a plane') is usually depicted as a 
parallelogram in school textbooks. The implication is that the 
original is a rectangular piece of a plane. 

Representing a rectangular piece of the plane in the form of a 
parallelogram, we borrow a part of available freedom. If we later 
forget this and apply the Pohlke-Schwartz theorem, we run the 
risk of committing serious errors. 

Figure 39, for example, shows a regular quadrilateral pyramid 
resting on a plane. The image SABl:;D, taken separately, is con­
structed correctly (see Sec. 13, example 2), but Fig. 39a as a 
whole is wrong. By using the parallelogram KLMN to define a 
rectangular piece of the plane, we have partially spent the freedom 
allowed by the Pohlke-Schwartz theorem and may not define the 
square A 'B'C'D' by an arbitrary parallelogram. In Fig. 39a 
A NKL and A DAB are drawn as right angles. Since AB ~ KL, 
the condition AD ~ KN should also be true: This is not so and 
Fig. 39a is wrong. 

This mistake could have been avoided by drawing AD I KN. If 
the problem concerns the properties of a pyramid resting on a 

s s 
s s 

(a) {b) 

FIG. 39 FIG. 40 

42 



plane, however, the rectangularity of the piece of the plane is 
unimportant. Therefore, there is no reason to introduce the con­
straint that 4 LKN is a right angle and thus complicate further 
constructions. For this reason, it is feasible to draw the plane as a 
piece with broken edges (Fig. 39b) since such an image does not 
involve any constraints. When casting the image of a quadrilateral 
pyramid placed on a plane, we have the same freedom of action as 
when we cast the image of a pyramid in empty space. 

One other mistake is common. Figure 40 depicts a regular 
quadrilateral pyramid and a right circular cone set on the plane a, 
which has broken edges. If each of these solids has been set on 
separate 'footing', everything would be correct. But when we 
place them on a common plane, the base of each solid defines its 
metrics in that plane separately, and the metrics may not coincide. 

Find a direction perpendicular to the line AB in Fig. 40. Since 
ABCD is the image of a square, A 'D' .LA 'B'. Draw the 
diameter EF II AB in the ellipse, and construct the diameter GH 
conjugate toEF. Thus, G 'H' .L E'F', and the direction perpen­
dicular to AB in the 'pyramid's metrics' has the line AD as its im­
age, while in the 'cone's metrics' its image is the line GH. Since the 
lines GH and AD are not parallel, Fig. 40 is incorrect. 

20. Inscribed and circumscribed solids. Exact drawing of in­
scribed and circumscribed solids requires complicated construc­
tions. A drawing plays an auxiliary role in solving stereometric 
problems, and it is impractical to waste more effort on it than on 
the problem itself. Therefore, we advise the reader to make rough 
sketches. Familiarity with a few basic rules will help the student 
avoid certain mistakes. 

1. Inscribed and circumscribed spheres. Spheres are more dif­
ficult to draw than polyhedrons, cylinders, or cones. Therefore, it 
is best to start with drawing a sphere and then construct the re­
maining figures. 

2. Spheres and cylinders. If a sphere is inscribed in a cylinder 
(Fig. 41), it touches the lateral surface of the cylinder on its great 
circle, e.g. the equator. The point B lies on the equator, AB = 
BC, and AC = NS. All three ellipses (an equatorial cross section 
and the bases of the cylinder) are identical. 

When a cylinder is inscribed in a sphere (Fig. 42), we note that 
the bases of the cylinder are identical parallel circles. 
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3. Spheres and prisms. If a sphere is inscribed in a prism 
(Fig. 43), then the great circle (e.g. the equator) is inscribed in the 
midsection of the prism (i.e. the cross section cut by a plane that is 
parallel to the bases and that passes through the midpoint between 
them). 

The drawing should be constructed as follows: 
1. Draw a sphere. 
2. Circumscribe a polygon about the equator, observing the 

conditions that specify this polygon. For example, if the polygon 
is a square (as in Fig. 43), its sides are parallel to the conjugate 
diameters of the ellipse. 

3. Complete the prism in accordance with the following condi­
tions: AC = NS, AB = BC. 

To draw a prism inscribed in a sphere (Fig. 44), one should 
begin by inscribing a polygon in a parallel circle. Further con­
struction should be clear without explanations. 

4. Spheres and pyramids. If a sphere is inscribed in a pyramid 
(Fig. 45), then the points of tangency of the lateral faces are 
equidistant from the vertex of the pyramid. These points, 
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therefore, lie on the same parallel circle, the plane of which is 
perpendicular to T' 0 · ( 0 · is the centre of the sphere and T' is the 
vertex of the pyramid). 

If the plane of the base of the pyramid is parallel to the plane in 
which the points of tangency of the lateral faces are situated (this 
is true of regular pyramids), the order of construction is as 
follows: 

(I) Draw a sphere with a coordinate grid on it (meridians and 
parallel circles). 

(2) Circumscribe a polygon about a parallel circle (e.g., 
A1B1C1D1). 

(3) Draw tangents from the tangential points X, Y, U, and Vto 
the meridians that pass through these points. These lines meet in 
the point Twhich is the apex of the pyramid. Join Tto the points 
A~o B~o C1 , and D1 • 

(4) Complete the pyramid in accordance with the ratio 
TA TS 

TA1 T01 

(S ·is the South Pole and 0 is the centre of the parallel circle in­
scribed in AJ. BJ. C1 ' DJ. ). 

If the plane of the base of the pyramid is not parallel to the 
plane of the given circle, the problem is much more complicated. 

If a sphere is circumscribed about the pyramid (Fig. 46), then 
the base of the pyramid is inscribed in a parallel circle while its 
vertex may be any point on the sphere. 
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5. Other cases. To be considered by the reader individually. 
21. Some drawing conventions. Section 15 discussed various 

conditions that may supplement a drawing. A drawing, along with 
these supplementary conditions, defines the original in a metrical­
ly precise manner. A drawing of the original without these addi­
tional constraints cannot be metrically precise•. Section 15 out­
lined various verbal conditions that supplement drawings. We 
shall now consider some drawing conventions that make a draw­
ing more obvious, that is, eliminate ambiguity in the interpreta­
tion of a drawing. We shall illustrate this by a few examples. 

Example 1. Figure 47a shows two lines. It is not quite clear 
whether they meet. To overcome this difficulty, the following 
convention is followed: if the lines meet, the point of the intersec­
tion of their images is marked by a small circle (Fig. 47b). If the 
lines do not intersect, the line which is farther from the observer is 
broken (Fig. 47c). 

Example 2. When drawing a surface, we may consider it to be 
either opaque or semi-transparent. In the first case the lines hid­
den are not drawn. This is reasonable when the drawing is to be 
used as an illustration (e.g., when a material object is depicted). 
But it is not convenient in solid geometry where all lines must be 
visible. Therefore, surfaces are considered to be semi-transparent, 
and the lines pas5.ing behind them are drawn broken. 

0 
{a) 
~ 

(bJ 
X 

(C)"" 

FIG 47 

{a) {b) (CI 

FIG 48 

• We mean a drawing of a certain kind: an image on one plane obtained by 
parallel projections. There are other kinds of drawings (e.g., Monge epure, that is, 
orthogonal projections of an original on two mutually perpendicular planes) that 
define an original in a metrically precise manner with no additional constraints. 
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What is depicted in Fig. 48a? There is no unambiguous answer 
to this question. It may be a parallelepiped, or it may be twelve 
separate segments scattered in space (other interpretations are also 
possible). 

In Figs. 48b and 48c the same solid is drawn but the figure is no 
longer ambiguous. It is now obviously a distinct parallelepiped. 
The parallelepiped is situated differently in Figs. 48b and 48c. The 
difference stems from the drawing conventions alone since the 
same figure is shown in both cases. 

22. Drawing obvious images. As was mentioned above 
(Sec. 18), an image must be correct to be recognizable. Obviously, 
an incorrect drawing cannot be visually effective since the rules 
governing the construction of images are in accordance with the 
process of vision. An image must be more than correct, however. 
Figure 49 shows the photograph of a man with an outstretched 
hand. If we did not know that this is a photograph, we would cer­
tainly say: "This is impossible. This is not real. The painter made 
a mistake". But the camera never lies, and the image in Fig. 49, 
although not realistic, is correct. 

Could a cube be drawn as shown in Fig. 50? According to the 
Pohlke-Schwartz theorem, the answer is yes. Yet most people 
would say that the figure depicted is not a cube. Why? 

FIG 49 
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FIG. 50 

Two more constraints are necessary to make an image obvious. 
First, the original must be shown from a normal point of view. 
We usually place an object right before our eyes when scrutinizing 
it. Furthermore, in the method of parallel projection, the object is 
placed very jar from our eyes so that the rays of vision are perpen­
dicular to the plane of projection. An image becomes more ob­
vious if projecting rays are inclined to the plane of projection at 
an angle of 90° or almost 90°. The more this angle differs from 
90°, the less obvious the image. We shall illustrate this statement 
by the following two examples. 

Example 1. Let us return to Fig. 50. From what vantage-point 
does the cube look like this? 

An unexperienced reader would answer: "It should be placed 
somewhat below the eyes and very far off to the right. One should 
squint one's eyes to the right". 

A specialist would answer more precisely: "There are formulas 
in descriptive geometry that enable us to determine the projection 
of the cube, given its image. When the image in Fig. 50 was cast, 
the projecting rays were inclined at an angle of 14° to the plane of 
projection". 

It is clear now why the drawing in Fig. 50 does not resemble a 
cube: we are not used to looking at cubes from such a viewpoint. 

Example 2. As Sec. 18 points out, if the projection of the image 
is not orthogonal, then the sphere's image will not be recognizable 
(see Fig. 33). 

FIG 51 
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The reader may wonder why the angle between the projecting 
rays and the plane of projections is only approximately 90°. Why 
do we not insist that this angle be exactly 90°? 

The answer is simple. For the sake of obviousness, the follow­
ing condition must be met: essential details of the original must 
not obstruct each other. To meet this requirement, it is possible to 
deviate from the exact value of 90°. 

Figure 51 represents a cube. Although it is not recognizable as a 
cube, the image, however, is correct, and the angle is equal to 90°. 
The direction of projection is parallel to the edge AiDi, while the 
plane of projections is parallel to the face AiBiB2A2. This is the 

• way a cube looks if viewed frontally from afar .• This image is 
unclear because front vertices obstruct those located behind. 

The fulfilment of the requirements mentioned above is enough 
to make an image more obvious. 



CHAPTER 3 

A Computation Method 

23. Theory. So far, we have been considering the images of 
most elementary objects. But what if it is necessary to draw the 
image of something much more complicated? Specialists might be 
willing to pour over thick volumes on descriptive geometry look­
ing for the answer, but the layman, who might also need to con­
struct correct images, can use his time better otherwise. 

The computation method solves this problem. Just as a hearing 
aid helps a person with defective hearing, the computation 
method helps a person unused to drawing. To draw an image, it is 
only necessary to compute the coordinates of the points of an im­
age and plot them on a graph paper. 

Fix cartesian orthogonal coordinate systems (X', y· , z·) in 
space and (~, '1) in the plane of images (Fig. 52). A point M · (x', 
y', z') in space has the point M(~. 71) on the plane as an image. 
This means that the coordinates of M are the functions of the 
coordinates of M': 

~ = F(x' ,y·, z'), '1 = G(x' ,y·, z'). 

It is worthwhile finding these functions. This problem can be 
solved with the help of the following theorem. 

Theorem. In parallel projection, the coordinates of an image 
point are linear functions of the original point, i.e. 

~ = a1x' + btY' +c1z • + d1 , '1 = a2X, +bzY, +C2Z. + d2 • (I) 

Note. It does not matter whether both cartesian systems are or­
thogonal or not. The theorem is valid for any affine system. We 
shall, however, use only cartesian orthogonal systems. Interested 
readers will find the proof of the above theorem in Appendix I. 
Those who prefer to take it for granted may omit that proof. 
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The coefficients in formulas (1) may be chosen arbitrarily, but 
the resulting image may not satisfy us. It is better first to deter­
mine an image and then find respective coefficients. 

When fixing the image we must observe the rules: we may fix 
the images of four unspecified points. The other points are deter­
mined from these four. The origin and the unit points are the 
easiest to choose. 

Consider Fig. 53. The· original is shown on the left (consider it 
the actual three-dimensional original rather than a drawing). On 
the right is an arbitrary image. The system (~, 71) serves as a 
reference for the coordinates in the plane of projections. Since the 
position of the origin makes no difference, we shall identify its im­
age 0' with the point~ = 0, 71 = 0. Then formulas (1) take the 
form 

Now we know that (see Fig. 53): 
the point A '(1, 0, 0) is represented by the point A (-a, -a); 
the point B '(0, I, 0) is represented by the point B(2a, 0); 
the point C '(0, 0, I) is represented by the point C(O, 2a). 
By substituting these numbers into formulas (2), we determine 

all coefficients a1 = a2 = -a, b1 = c2 = 2a, c1 = b2 = 0. 
Thus, the image in Fig. 53 corresponds to the following formulas: 

~ = a(2y, - x '), 71 = a(2z' - x '). (3) 

The parameter a enables us to modify the size of the drawing. 
The image of Fig. 53 may correspond to a non-orthogonal pro­

jection. But what if an orthogonal projection is needed? There are 
two solutions to this problem: analytical and geometric. The 
analytical solution, based on the application of formulas that 
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define orthogonal projection*, is mainly of interest to specialists 
in descriptive geometry. The geometric method, on the other 
hand, does not require any theory since it is based on direct obser­
vation. Let us pick, for example, a direction of projection. For the 
sake of simplicity, we will pick the one inclined at congruent 
angles to all coordinate axes. To see it even better, let us place a 
unit cube in the first octant (Fig. 54). Again, imagine the sketch 
on the left as the actual original and not just as a drawing. We 
shall project in the direction of the diagonal G '0' of the cube. 
The plane passing through 0 ' and perpendicular to G '0 ' (this is 
very important!) should be considered as the plane of projections. 
Obviously, the axes X', Y ', and Z' project onto this plane so that 
the angles between the projections are congruent to each other 
(i.e., 120°), while the points A, B, and Care equidistant from 0 
(Fig. 54, on the right). We place the axes(~. 71) as shown in the 
drawing. The distance OA may be arbitrary because the image is 
not a direct projection but has also been subjected to similarity 
transformation. 

Figure 54 shows that ( 
the point A '(I, 0, 0) is represented by the point A - a"j!, 

- ~); 
the point B '(0, I, 0) by the point B ( 

0 "j!, - ~) ; 
the point C '(0, 0, I) by the point C(O, a). 
Determining the coefficients in formulas (2) from these condi­

tions (using the method already explained), we obtain the follow-

y 

FIG. 54 

• SeeN. M. Beskin,MethodsofDrawingObjects,Fizmatgiz,Moscow, 1963, 
p. 273 (in Russian). 
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ing formulas: 

~ = a'f (y'- x'), 11 = ~ [2z' - (x, + y ')). (4) 

Thus, formulas (4) correspond to Fig. 54. From this we can 
conclude that the image defined by formulas ( 4) has been obtained 
by orthogonal projection. 

24. Application of the computation method. Let us apply the 
computation method to the construction of images much more 
complicated than those dealt with so far. Given a sphere in­
tersected by a circular cylinder. The radius of the cylinder is half 
the radius of the sphere. The generatrix of the cylinder passes 
through the centre of the sphere. Represent the sphere, the 
cylinder, and the line of their intersection (this curve called the Vi­
viani curve). Figure 55 represents the cross section of the sphere, 
cut by a plane that passes through the centre of the sphere and is 
perpendicular to the generatrices of the cylinder. Assume the 
radius of the sphere to be equal to unity. Then the equation of the 
sphere is 

X '2 + y '2 + z '2 = I, 

and the equation of the cylinder will be 
2 

( 
, I ) ,2 I 

X -l + y =4 

(5) 

(6) 

Note that the radius of the parallel circle may be found from the 
formula 

r = cos~, (7) 

where ~ is the latitude (here we are not defining the concepts of 
latitude and longitude since they are well-known geographical 
terms). The coordinates of each point contained in the sphere are 

y 

X 

Flu ss 
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expressed as follows: 

y' = r sinO (8) 
x' = r cosO } 

z' = sin\" 
where \Pis the latitude, 0 is the longitude, and r is the radius of the 
parallel containing the point. 

Construction of an image with the help of the computation 
method consists of the following three steps. 

(1) Compute the coordinates of the points of the original; 
(2) Compute the coordinates of the points of the image (ac­

cording to the formulas (2)); 
(3) Plot the points on graph paper. 
Step one. Draw parallel circles through each 30°, and compute 

their radii by formula (7): 

0/1.. 

' 
r = COS,c> 

0 1.000 
30 0.866 
60 0.500 
90 0.000 

(the same values of r correspond to negative values of \P, i.e. 
southern latitude). 

Now choose points on each parallel at longitudinal intervals of 
30°, and compute their coordinates by formulas (8). 

Table I': parallel .p = 0, r = I (equator) 

Point e· X y z 

I 0 1.000 0.000 0000 
2 30 0.866 0.500 0.000 
3 60 0.500 0.866 0.000 
4 90 0.000 1.000 0.000 
5 120 -0.500 0.866 0.000 
6 150 -0.866 0.500 0.000 
7 180 -1.000 0.000 0.000 
8 210 -0.866 -0.500 0.000 
9 240 -0.500 -0.866 0.000 
10 270 0.000 -1.000 0.000 
II 300 0.500 -0.866 0.000 
12 330 0.866 -0.500 0.000 
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Table D. : parallel .p = 3(f, r = 0. 866 

Point 8, 0 X y z 

I 0 0.866 0.000 o.soo 
2 30 0.7SO 0.433 0.500 
3 60 0.433 0.7SO 0.500 
4 90 0.000 0.866 0.500 
s 120 -0.433 0.7SO 0.500 
6 ISO -0.7SO 0.433 0.500 
7 180 -0.866 0.000 0.500 
8 210 -0.750 -0.433 0.500 
9 240 -0.433 -0.7SO 0.500 
10 270 0.000 -0.866 0.500 
11 300 0.433 -0.7SO 0.500 
12 330 0.750 -0.433 0.500 

Table DI ·: parallel .p = 60°, r = 0.500 

Point 9,0 X y z 

0 0.500 0.000 0.866 
2 30 0.433 0.250 0.866 
3 60 0.250 0.433 0.866 
4 90 0.000 o.soo 0.866 
s 120 -0.250 0.433 0.866 
6 ISO -0.433 0.250 0.866 
7 180 -O.SOO 0.000 0.866 
8 210 -0.433 -0.250 0.866 
9 240 -0.250 -0.433 0.866 
10 270 0.000 -O.SOO 0.866 
11 300 0.250 -0.433 0.866 
12 330 0.433 -0.250 0.866 

Table IV· : parallel .p = 90°, r = 0 (North Pole) 

Point 9,0 X y 

0.000 0.000 1.000 



The tables for the parallel circles in the southern hemisphere 
differ only in the sign of z '. For example, the table for the parallel 
<P = - 30° looks as follows: x' and y' are the same as in 
Table II', while z = - 0.500. 

Step two. Compute the tables containing the coordinates of the 
points of the image. Fix the image defined by formulas (4), and set 
a = 100 mm. To save space we shall simplify the tables, with the 
exception of Table I, by consolidating the pairs of parallel circles 
whose latitudes differ only in sign: ordinate 'h refers to the 
northern parallel and fl2 to the southern. 

Note that the two points, symmetric with respect to the plane of 
the equator, are different only in the sign of z '. If we first com­
puted fit by the second ofthe two formulas in (4) ahd then, having 
replaced z ' by - z ', computed z2 , we would obtain 

fit - fl2 = 2az ' 

or (since a = 100 mm) 

fit - fl2 = 200z '. 

In each table z' = const. This makes computation of f12 very 
easy. For example, in Table II 

fl2 = fit - 100. 

Table 1: parallel .p = 0 (equator) 

Point E 'I 

-86.6 -SO.O 
2 -31.7 -68.3 
3 31.7 -68.3 
4 86.6 -SO.O 
s 118.3 -18.3 
6 118.3 18.3 
7 86.6 so.o 
8 31.7 68.3 
9 -31.7 68.3 
10 -86.6 so.o 
II -118.3 18.3 
12 -118.3 -18.3 
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Table II: parallels "' = :30o 

Point E 'It '12 

-75.0 6.7 -93.3 

2 -Z1.5 -9.2 -109.2 

3 27.5 -9.2 -109.2 
4 75.0 6.7 -93.3 

5 102.4 34.2 -65.8 

6 102.4 65.8 -34.2 

7 75.0 93.3 -6.7 

8 27.5 109.2 9.2 

9 -Z1.5 109.2 9.2 

10 -75.0 93.3 -6.7 

11 -102.4 65.8 -34.2 

12 -102.4 34.2 -65.8 

Table III: parallels rp = :600 

Point E 'It '12 

-43.3 61.6 -111.6 

2 -15.8 52.4 -120.8 

3 15.8 52.4 -120.8 

4 43.3 61.6 -111.6 
5 59.1 77.4 -95.8 
6 59.1 95.8 -77.4 

7 43.3 111.6 -61.6 
8 15 8 120.8 -52.4 

9 -15.8 120.8 -52.4 
10 -43.3 111.6 -61.6 
11 -59.1 95.8 -77.4 
12 -59.1 77.4 -95.8 

Table IV: parallels rp = 2:90° (North and South Poles) 

Poinl 'It 

0.0 100.0 -100.0 



At this stage we may move toward step three and draw the im­
age of the sphere. The reader should make the drawing himself, 
plotting points in accordance with Tables I-IV. The following 
four notes will be very helpful. 

Note one (very important!). Tables I-IV give the points of the 
parallels. But how are the images of the meridians to be drawn? 

In the tables, all points with the same numbers have the same 
longitude. Therefore, by joining the points that have the same 
numbers, we obtain the image of a meridian. For example, all the 
points numbered 3 are contained in the meridian 0 = 60°. 

Tables I-IV, therefore, enable us to draw theimageofthewhole 
coordinate grid on the sphere. 

Note two. The coordinates of the points in Tables I-IV are 
given in millimetres. The points should be plotted on graph paper 
in accordance with their coordinates without recomputation. The 
coordinates are given with accuracy to one decimal point because 
0.1 mm is the highest accuracy of which a skilled draftsman is 
capable. 

Parameter a in formulas (4) enables us to control the dimen­
sions of a drawing. Note that if, to increase the scale, we 
multiplied all the coordinates in Tables I-IV by some factor 
significantly greater than unity, then the error would be much 
greater. Therefore, for a large drawing, the coordinates of 
original points should be computed with greater accuracy. 

Note three. There is no need to compute the outline of a sphere 
from its points. It may be drawn with a compass. Its center is (0, 
0), while the radius is equal to 

100~ mm := 122.5 mm. 

Note four. If we are more concerned with drawing clear and 
recognizable figures than with solving geometric problems, the 
hidden lines that are obstructed from view should not be drawn 
because they make the drawing too complicated. 

Let us consider the Viviani curve. It is obvious from equations 
(7) and (8) that the coordinates of each point of a unit sphere can 
be expressed as longitude and latitude in the following way: 
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x' = cosrp cosO,} 
y' = cosrp sinO, 
z' = sinrp. 

(9) 



The points of the sphere contained in the cylinder ought to com­
ply with equations (9) and (6). Therefore, from these equations we 
obtain: 

1 
x = 2 (1 + cos2<p), 

y 1 . 2 ± 2 sm '(J, 

z = sin'(J. 

(10) 

Equations (10) are the parametric equations of the Viviani 
curve. By assigning various values to <P, we obtain the points of 
this curve. If we set <Pat intervals of 15° we obtain 24 points. Of 
course, only computations within the interval 0 ~ <P ~ 90° are 
necessary. Coordinates of other points are obtained symmetrically. 

Note that the upper sign is sufficient for y'. The running point 
will pass through all points of the curve in any case, if <P changes 
from 0 to 360°. In fact, if formulas (10) with the upper sign were 
applied and if <Pt = 90° - a and <Pz = 90° + a, then the same 
two points would be obtained as if formulas (10) were used with 
the double sign. 

We compute the coordinates of the points of the image in accor­
dance with formulas (4) with a = 100 mm. 

To make the figure clearer, 'push' the cylinder slightly out of 
the sphere. Cut a cross section of the cylinder by planes slightly 
above and below the respective poles, e.g. z' = ± 1.1. The 
coordinates of the points of the original may be computed with 
the following formulas: 

x' = ~ (1 + cost), 

y' = ~ sint, (11) 

z'=±l.l. 

Now the reader can easily make the computations himself. The 
drawing in Fig. 56 has been constructed according to the results 
given in the tables (on a reduced scale). Hidden lines are not 
shown, with the exception of the Viviani curve. 

When representing surfaces, obviousness of the image depends 
partly on the resolution power of the coordinate grid. Figure 57 
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FIG. 56 FIG. 57 

Table V · : Viviani curve 

Point "'·0 X y z 

I 0 1.000 0.000 0.000 
2 15 0.933 0.250 0.259 
3 30 0.750 0.433 0.500 
4 45 0.500 0.500 0.707 
5 60 0.250 0.433 0.866 
6 75 0.067 0.250 0.966 
7 90 0.000 0.000 1.000 
8 105 0.067 -0.250 0.966 
9 120 0.250 -0.433 0.866 
10 135 0.500 -0.500 0.707 
II 150 0.750 -0.433 0.500 
12 165 0.933 -0250 0.259 
13 180 1.000 0.000 0.000 
14 195 0.933 0.250 -0.259 
15 210 0.750 0.433 -0.500 
16 225 0.500 0.500 -0.707 
17 240 0.250 0.433 -0.866 
18 255 0.067 0.250 -0.966 
19 270 0.000 0.000 -1.000 
20 285 0.067 -0.250 -0.966 
21 300 0.250 -0.433 -0.866 
22 315 0.500 -0.500 -0.707 
23 330 0.750 -0.433 -0.500 
24 345 0.933 -0.250 -0.259 



differs from Fig. 56 only in that the parallels and the meridians 
have been drawn twice as dense: at intervals of 15°. Compare im-
pressions from each of the drawings. 

Table V: Viviani curve 

Point ~ 'I Point ~ 'I 

I -866 -50.0 13 -86.6 -500 
2 -59.1 -33.3 14 -59.1 -85.0 
3 - 27.5. -9.2 15 -27.5 - 109.2 
4 0.0 20.7 16 0.0 - 120.7 
5 15.8 52 4 17 15.8 -120.7 
6 15 8 80.8 18 15.8 - 112 4 
7 00 100.0 19 0.0 -100.0 
8 -27.5 105.8 20 -27.5 -87 4 
9 -59.1 95.8 21 -59.1 -77.4 
10 -866 70.7 22 -86.6 -70 7 
II -102.4 34 2 23 - 102.4 -65.8 
12 - 102.4 -8.3 24 - 102 4 -60.0 



APPENDIX 1 

Expression of the Coordinates 
of the Image Points Using 

the Coordinates 
of the Original Points 

25. A characteristic property of a linear homogeneous function. 
A characteristic property of an object or a set of objects is a prop­
erty possessed by that object or set alone, which distinguishes it 
from all other objects or sets. For example, the number 2 is an 
even prime. This is its characteristic property. 

The functionf(x) = ax + b is a linear function. When b = 0, 
the function is a linear homogeneous function. 

If the equation 

/(xt + Xz) = /(xt) + /(Xz) (12) 

is an identity, that is, correct for any two values of the argument 
x1 and x2 , then the function f(x) is additive. Clearly, a linear 
homogeneous function is additive. In fact, if f(x) = ax, then 
/(xt + Xz) = a(xt + Xz) = axt + axz = /(xt) + /(x2). Do any 
other additive functions exist? The answer for continuous func­
tions is no. The linear homogeneous function is the only additive 
function. Additivity is its characteristic property. The proof 
follows. 

Lemma 1. If f(x) is a continuous function* and for any two 
values of its argument f(x1 + x2) = /{x1) + /(x2), then 

f(x) =ax. 

Note. Continuity is not obligatory since the lemma is correct for 
more general conditions. We set this condition to simplify the proof. 

Proof. Let a be any nonzero real number. Sincef(2a) = f(a + 
a) =/(a) +/(a) = 2/(a), /(3a) = /(2a + a) = /(2a) + 

• On the continuous function see N. Ya. Vilenkin and S. I. Schwartzburd, 
Mathematical Analysis, Moscow, 1969, Chapter 111,§ 3 (in Russian). 
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f(cx) + 2/(a) + /(a) = 3/(a) and so on, by the induction 
f(ncx) = nf(cx).lfwesetcx = 1,/(1) = a,thenf(n) = an,thatis, 
the lemma is already proved for natural values of the argument. 
Now set ex = 1/q, where q is a natural number. As was proved 

above, a = f(l) = f(qcx) = qf(cx) = qf ( ~ J . Therefore, 

!(~)=a~. 
Let p be a natural number as well . Then 

The lemma has thus been proved for all positive rational values of 
the argument. If xis an irrational (positive) number, then it may 
be presented as the limit of a sequence of rational numbers: 

r~o r 2, ••• , r", ... , lim r" = x. n-.., 

Since the function in question is continuous, 

f(x) = lim f(r") = lim (or") = ax. 
n-oo n-oo 

To extend the lemma to nonpositive values of the argument, note 
that /(0) = /(0 + 0) = 2/(0), therefore 

/(0) = 0. 

Let x = - ex, with ex > 0. We know that/(a - a) = /(0) = 0, 
but we also know thatf(a - a) =/[a + (-a)] =/(a) +/(-a). 
Therefore, 

f(x) =/(-a) = -/(a) = -acx = a(-cx) = ax. 

The lemma has thus been proved for all real numbers and may 
readily be extended to functions of several variables. 

Lemma 2. A function of several variables that is continuous 
with respect to each argument and that possesses the property of 
additivity, i.e. 

F(xt + X2, Yt + Y2) = F(xt, Yt) + F(x2, Y2)*, (13) 

• For the sake of brevity, we use the symbol of a function of two variables but 
the formulation of the lemma and the proof are valid for functions of any number 
of variables. 
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is a linear homogeneous function, i.e. 

F(x, y) = ax + by. 

Proof. If y = 0, then the function F(x, y) becomes a function 
of a single variable F(x, 0). If y 1 = y 2 = 0 in formula (13), then 
F(x1 + X2, 0) = F(xh 0) + F(x2 , 0). Therefore, according to 
Lemma I, F(x, 0) = ax. The equation F(O, y) = by may be 
proved in the same way. 

The property in (13) gives the equation 

F(x, y) = F(x, 0) + F(O, y) = ax + by 

which was to be proved. 
26. Formulas for the coordinates of the points of an image. 

Lemma 3. If the points 0 • (0, 0, 0), Mi. (xi., Yi., zi) and M2 (x;,, 
y;,, z2) are represented by the respective image points 0(0, 0), 
M1 (~1• 111) and M 2 (~2 , 112), then the point M3 (xi. + x;,, Yi. + y;,, 
zi + z2) is represented by the point M3 <~1 + ~2• 111 + 172). 

If the points 0 ·, Mi. , and M2 are not contained in the same 
line, then 0 'Mi.M2M3 is a parallelogram with 0 ·and M3 as its 
opposite vertices. 'fhe image of a parallelogram is a 
parallelogram. With the addition of the point M3(~1 + ~2 • 

171 + 172), the triangle OM1M2 becomes a parallelogram (proof: 
the midpoint of the segment OM3 coincides with the midpoint of 
the segment M 1M 2). Hence, M 3 is the image of the point M]. 

If the points o·, Mi. and M2 are contained in the same line, 
then 

xi Yi zi -=-=-
x;, Yz zi 

(14) 

By adding unity to all parts of equations (14), we get 
xi + x;, = Yi + Yz = zi + zi 

Xz Yz Zz 
(15) 

i.e. the point M3 (xi + x;,, Yi + y;,, zi + zi) lies on the same 
line. 

We know that the points 0, M11and M2 are the images of the 
points o·, Mi. and M2. This means, firstly, that the points 0, M19 

and M2 lie on the same line, i.e. 
~1 171 
~2 = 172, (

16) 
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and, secondly, that (M1M20) = (Mi_M20'). Since 

Mo " M'O' 
(MMO) = - 1- = -~ (M'M'O') = - 1

- = 1 2 OM2 ~2 ' 1 2 0; M2 

we have 

From (16), it follows that 
~1 + ~2 

~2 
111 + 112 

'1J2 

x; - --;-, 
x2 

(17) 

This means that the point M3 (~1 + ~2 , 711 + 712) lies on the line 
OM1M2• We shall prove that this point divides the segment M 1M2 

in the same ratio as the point M3 divides the segment Mi M2 : 
M1M3 (~1 + ~2) - ~1 ~2 -- = --, 
M~2 ~2 - (~1 + ~2) ~1 

Mi_M3 =(xi + Xz)- xi = _x2 
M3M2 x2 - (xi + x2) x; 

From (17), it follows that 
M 1M 3 MiM3 --=---
M~2 M3M2 

This means that the point M 3 is the image of the point M3 . This 
proves Lemma 3. 

If the image of space is cast onto a plane by parallel projection, 
then each point M · (x • , y • , z ·) of space is associated with a point 
on the plane M(~. 71). This means that the coordinates of the point 
M are functions of the coordinates of the point M ·: 

~ = F(x',y',z'), 11 = G(x', y', z '). (18) 

These functions are continuous (both with respect to each argu­
ment and to the totality of the arguments). It is rather easy to give 
a precise proof of the continuity, but we prefer to appeal to the 
reader's intuition: the points of space situated very close to each 
other obviously have their image points also situated close to each 
other.* 

Now Lemma 3; we shall confine ourselves to the first formula 
for the points Mi , M2 , and M3 : 

• The converse statement is not true! 
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~1 = F(xi, Yi, zi ), 
~2 = F(x2, Yi, zi ), 

~1 + ~2 = F(xi + x2 , Yi + Yi , zi + zi ). 
From this it is clear that 

F(xi + Xz, Yi + Yi, zi + zi) = F(xi, Yi , zi) + F(xi, Yi, zi ). 
(19) 

The following expression stems from identity (19) if Lemma 2 
is taken into account: 

F(x', y', z') = a1x' + b,y' + c1z'. 

Similar statements also refer to the function G(x', y', z'): 

G(x', y', z') = azX' + b1JI' + CzZ •. 

Now let us free ourselves from the constraint that an origin must 
have an origin as its image. Suppose that a point 0 · (0, 0, 0) is 
represented by a point O(dtt d2). Introduce one more coordinate 
system (~*, 17*) in the plane of images, in addition to the coor­
dinate system (~. 17), and define it by the following formulas: 

~* = ~ - d1, 11* = 11 - d2. (20) 

The image of the point 0 '(0, 0, 0) has coordinates ~ = d1 and 
11 = d2, while its coordinates in the new system are ~* = 0, 
17* = 0. According to the proof, the new coordinates of each 
point in the image are expressed as follows: 

~* = a1X' + b,y' + C1Z', 17* = azX' + b1)'' + CzZ', 

while the old coordinates are expressed as: 

~ = a1x' + b,y' + c1z' + d1, 

1] = azX' + b1)1' + CzZ' + d2. 

This is what we had to prove. 

(21) 

As seen from the above analysis, the orthogonality of both 
systems is unimportant. 

The converse theorem is also valid: if the coefficients a2, b2 , and 
c2 are not proportional to the coefficients a1,bttand c1, then for­
mulas (21) define the image of space onto the plane by parallel 
projection. 

Since the focus of this book is geometry, we shall not be con­
cerned here with analytical geometry. 



APPENDIX 2 

The Ellipse 

27. Uniform compression. The easiest way to develop a theory 
of the ellipse is by the application of affine transformations. The 
study of affine transformations, however, is such an important 
theme in itself (even more important than that of this book), that 
it would not be proper to expound it as an auxiliary topic in an ap­
pendix. We advise the reader, therefore, if he is interested in a 
serious study of affine transformations and the theory of ellipses, 
to familiarize himself with the literature (e.g., I. M. Yaglom and 
B. G. Ashkinuse, The Ideas and Methods of Affine and Projec­
tive Geometry, Part l. Affine geometry. Moscow, 1962, §§ 1-17, 
in Russian). Here, as a reference only, we shall explain the proper­
ties of the ellipse that are necessary to understand how to repre­
sent the image of a circle. 

Uniform compression involves the following transformation of 
a plane. A line called the axis of compression is chosen, and each 
point M of the plane moves along the perpendicular to the axis of 
compression to a new position M' (Fig. 58). In addition, 

MoM' = A · MoM, (22) 

M0 is the projection of the points M and M' on the axis of com­
pression and A is a constant here, i.e. it has the same value for all 
points of the plane. If M- M' (this notation means: 'point M 
moves to point M'' or 'point M corresponds to point M'') and 
N- N', then 

MoM' = A • MoM, 

NoN' = A • NoN, 
A is called the coefficient of compression. We assume that A > 0. 
It is also possible to define compression using the negative coeffi-
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dent (the corresponding points would then lie on both sides of the 
axis of compression), but we shall do without this operation. 

Let us mention some properties of uniform compression. 
I. Each point of the axis of compression remains stationary (i.e. 

it corresponds to itself). 
2. If A < I; then all points (that do not belong to the axis of 

compression) approach the axis. If A > I, then all points move 
away from the axis. In this case, transformation (22) would more 
properly be called extension rather than compression. But 
uniform terms are preferable in mathem.atics, however much they 
contradict normal usage. Therefore we shall always use the term 
'compression', even if A > 1. 

If A = I, then each point remains stationary, and the axis of 
compression is undefined. This case is hardly interesting except as 
an example of a particular transformation called identical 
transformation. 

3. A straight line becomes a straight line. The transformation of 
a line (and, in general, of any figure) means the transformation of 
its each point. If a line intersects the axis of compression, then the 
corresponding line also intersects it (at the same point) (fig. 59a). 
If line a forms angle a with the axis of compression and line a' 
form~ angle a· , then 

tana· = Atana. 

A line parallel to the axis of compression becomes another line, 
which is also parallel to the axis of compression (Fig. 59b). A line 
perpendicular to the axis of compression becomes itself (although 
its points move along the line). 

4. Parallel lines become parallel lines. This is clear from the 
foregoing property. 
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5. If the three points A, B, and Care contained in a line, then 
their division ratio is invariant with respect to uniform compres­
sion, i.e. 

A 'C' AC 
C'B' CB. 

(23) 

(This may be easily proved. Look at Fig. 59.) In particular, the 
midpoint of the segment becomes midpoint of the line. 

6. Two mutually perpendicular directions do not, as a rule, 
become two mutually perpendicular ones. But there are cases 
when a .l band a' .l b '. We shall list these cases below. 

(I) If >. * I, then there exists the unique pair of mutually 
perpendicular directions that remain perpendicular after compres­
sion: the one parallel to the axis of compression and the one 
perpendicular to it. They are called the principal directions of 
compression. 

(2) If >. = l, then any pair of mutually perpendicular lines re­
mains perpendicular after compression, i.e. the principal direc­
tions remain undefined (all directions are principal). 

7. The transformation inverse with respect to a uniform com­
pression is also a uniform compression (toward the same axis). 

Two transformations are called mutually inverse if the first one 
carries each point M of the plane to a new position M ', while the 
second one returns each point M' to position M. In other words, 
if a plane is subjected to two successive mutually inverse transfor­
mations, then all its points remain at their initial positions. Prop­
erty (7) follows from formula (22), which gives 

MoM =~MoM'. 
>., 

It is clear that the formulas look alike, and the coefficients of 
thF,se mutually inverse compressions are>. and 1/A. 
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8. Let the axis X be the axis of compression (Fig. 58). Now we 
express the uniform compression analytically. If point M(x, y) 
moves into point M '(x ', y · ), then 

X , = X, y , = }.y. (24) 

28. The definition of an ellipse. An ellipse is a curve produced 
by uniform compression of a circle toward its diameter (Fig. 60). 

Note 1. There are different ways to define an ellipse. The best 
way is to define it as a curve obtained from a circle by any affine 
transformation. This is possible if the affine transformation is 
defined. Uniform compression is a special example of an affine 
transformation. 

Note 2. The coefficient of the compression mentioned in the 
definition may have any positive value. In Fig. 60, >. < 1. If 
}. = 1, then a circle would be obtained. Therefore, a circle is a 
particular kind of ellipse. 

Note 3. We can distinguish between a 'periphery' and a 'circle'. 
The term 'periphery' refers only to the contour of a circle. The 
term 'ellipse', which can mean both a part of a plane and its con­
tour, is less exact.* 

29. Some properties of ellipses. The diameters AB and CD in 
Fig. 61 are two mutually perpendicular diameters of a circle. Each 
of them divides in half the chords parallel to the other. The draw­
ing shows the chords parallel to AB and marks their midpoints, 
which lie on CD. 

• This is a specific feature of Russian. In English the term 'circle' may mean 
both a part of a plane and its contour. - Tr. 
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The drawing also shows compression towards a diameter. The 
circle has transformed into an ellipse and the diameters AB and 
CD have become A 'B' and C'D' respectively. Theperpen­
dicularity of the diameters has disappeared, while the chords 
parallel to the diameter AB have transformed into parallel chords 
of the ellipse and their midpoints have become midpoints again. 
We arrive at the following conclusions by comparing the ellipse 
with the circle. 

(I) The midpoints of the parallel chords of the ellipse are con­
tained in the same line. 

The locus of the midpoints of the parallel chords is called the 
diameter of the ellipse conjugate to the chords. 

(2) We may consider the chords to be parallel to this diameter. 
The diameter conjugate to them is contained in the first family of 
chords. Hence, the conjugation is a mutual property. 

Two diameters of an ellipse are called conjugate if each of them 
divides in half the chords parallel to the other. 

(3) All diameters of an ellipse pass through a single point, which 
is called the centre of the ellipse. The centre of an ellipse is the cen­
tre of symmetry. 

(4) The tangents to an ellipse passing through the ends of the 
same diameter are parallel to the conjugate diameter. 

Mutually perpendicular diameters of a circle under compression 
become conjugate diameters of the ellipse. The new diameters are 
not generally perpendicular. The only exception concerns perpen­
dicular diameters that had principal directions. This means that 
one diameter lies on the axis of compression while the other is 
perpendicular to it. Thus: 

FIG 61 
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(5) An ellipse that is distinct from the circle possesses a single 
pair of mutually.perpendicular conjugate diameters. 

These diameters are called the axes of the ellipse and are its axes 
of symmetry. In Fig. 62, A < 1. The line AB is the major axis. 
The line C 'D ' is the minor axis. The major axis is traditionally 
designated as 2a and the minor one as 2b. OB = a is the semi­
major axis, OD' = b the semi-minor axis. The ends of the axes 
are called the vertices of the ellipse. 

It is clear now that if }. > l, then the line AB becomes the 
minor axis while the line C 'D ' becomes the major one. 
Therefore, we shall consider only the case of A < l. 

It should be obvious from the above that b = Aa, i.e. 
b 

A=-. (25) 
a 

(6) Let us derive the equation of an ellipse by placing the coor­
dinate axes as shown in Fig. 60. The equation for a circle is 

(26) 

We express the running coordinates of the points (x, y) of the 
circle in terms of the running coordinates of their respective points 
(x ', y ') on the ellipse using formulas (24). Then equation (26) 
becomes 

'2 
x'2 + L = a2 A2 . 
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Replace A by its expression in (25) 

or simply 

'2 
x'2+ Y =a2 

(:)2 
x'2 y'Z 
-+-=1. az bz 

The prime signs have been introduced here to distinguish the coor­
dinates of the points of the ellipse from those of the circle. 

If we consider the ellipse separately, forgetting thP circle, then 
tht> nrimes are unnecessary: 

:r yz -;;z + b2 = 1. (27) 

(7) The ratio of semi-axes bla lies within the range 
b 

0 <- ~ 1. (28) 
a 

This ratio defines the shape of the ellipse. If bla is small, then the 
ellipse is greatly elongated. If bla increases, then the ellipse 
becomes 'rounder'. If bla = l, then the ellipse becomes a circle. 

We have excluded the possibility of bla = 0, i.e. b = 0, 
because the ellipse then degenerates into a double segment. Is the 
double segment then actually an ellipse? We may consider it to be, 
in which case uniform compression with A = 0 would be valid, 
and some properties of uniform compression, which were dis­
cussed above, would need to be reconsidered. 

30. The ellipse as the projection of a circle. Theorem. If the two 
planes a and {3 are not perpendicular to each other and a circle is 
contained in a, then the orthogonal projection of the circle onto {3 
is an ellipse. 

Proof. Suppose that the planesaand{3 intersect (Fig. 63). Draw 
the diameter A 'B' parallel to {3 in the circle (i.e. parallel to the 
line of intersection of the planes a and {3). The projection of this 
diameter is the segment AB, which is congruent to A 'B ' and also 
parallel to the line of intersection of the planes. Designate the 
length of each of these segments as 2a: A 'B ' = AB = 2a. Con­
sider now any chord M'N' of the circle perpendicular to A 'B'. 
The point P' is the midpoint of the chord M 'N '. The projection 
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FIG 63 

of the semi-chordP 'N' is the segment PN, which is perpendicular 
to AB (remember the theorem about the three perpendiculars). 
The point P occupies the same position on the line AB as the point 
P' on the line A 'B ',i.e. OP = 0 'P'. The length of the projec­
tion of P 'N' may be determined from the well-known formula 
PN = P'N' · cos~. where ~ is a linear angle of the dihedral 
angle between the planes a and {3. 

The diameter A 'B ' has been projected onto {3 in its actual size. 
All semi-chords P'N' have been carried 'into their own 
positions'. If they had retained their original dimensions, then the 
circle in the plane {3 would have been the same as that in the plane 
a. In fact, these semi-chords reduce in size when carried into the 
plane {3: their lengths are multiplied by the same coefficient (At­
tention! This is the main point of the prooQ, which is equal to the 
cosine of the angle between the two planes. Therefore, the projec­
tion in question results from uniform compression of the circle 
toward its diameter, i.e. an ellipse. 

We have assumed that the planes a and {3 intersect. Parallel 
planes represent an even easier case: the projection of a circle is 
also a circle. This completes the proof. 

One more remark. Among the semi-chords of the circle perpen­
dicular to A 'B ', there is a radius 0 'D ' = a. Obviously, the pro­
jection of this radius is the semi-minor axis b of the ellipse. This 
means that b = a · cos~. 

The theorem we set out to prove may, therefore, be completed 
as follows: 'The ratio of the semi-axes of the ellipse is equal to the 
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FIG 64 

cosine of the angle between the planes a and {3', i.e. 
b 
- = cos~. (29) 
a 

If a and {3 are perpendicular, then the projection of the circle is 
a double segment. 

31. The cross sections of a circular cylinder. The following 
theorem is valid: The cross section of a circular cylinder by a plane 
that is not parallel to the cylinder's generatrices is an ellipse. 

Note. An infinite cylinder is implied above, i.e. an infinite tube 
without bases. 

We are not going to expound the proof, because it nearly coin­
cides with the one before it. On one point the proofs differ. 
however. Figure 64 shows the cross section of a circular cylinder 
by the plane {3. It is not yet clear whether this cross section is an 
ellipse. A normal cross section (by the plane a) of the cylinder is 
also shown in Fig. 64. This is a circle. Draw the diameter A 'B' of 
the circle parallel to the plane {3 (such a diameter is unique) and 
'raise' its ends along the generatrices of the cylinder up to {3. We 
thus obtain the chord AB, which is equal to A 'B '.Let P 'N' be a 
semi-chord of the circle which is perpendicular to A 'B '. By rais­
ing this chord to the plane {3, we may obtain the segment PN. 
Thus, this proof differs from the proof preceding it: the segment 
PN may be obtained by division by cos~ rather than by 
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multiplication: 

FIG 65 

P'N' 
PN=--. 

cos~ 

Since the factor -
1 

- is constant, the cross section by the plane (3 
cos~ 

is an ellipse. 
Unlike the former situation, here the diameter of the circle that 

retains its value 

AB =A 'B' 

is the minor rather than the semi-major axis of the ellipse. But for­
mula (29) is also valid in this case. 

32. Some constructions connected with the ellipse. 1. Given an 
ellipse (the ellipse is drawn), find its centre. We draw two parallel 
chords (Fig. 65). Divide each chord in half. Join their midpoints 
to obtain a diameter. Divide the diameter in half. The midpoint of 
the diameter is the centre of the ellipse. 

2. Given a diameter, construct a diameter conjugate to it. We 
draw a chord parallel to the given diameter. Divide the diameter 
and the chord in half. Join the midpoint of the diameter (the cen­
tre of the ellipse) and the midpoint of the chord to obtain the 
diameter conjugate to the given diameter. 

3. Given a point M on an ellipse, construct a line tangent to the 
ellipse at the given point. Join point M and the centre 0 of the 
ellipse. Construct the diameter conjugate to the given diameter 
OM. Pass a line through the point M parallel to this conjugate 
diameter to obtain the desired tangent. 

4. Construct the axes of an ellipse. If point M describes the 
quarter of the ellipse from the end of the major axis to the end of 
the minor axis, then its radius-vector OM changes continuously 
and equals each value between a and b only once. When sweeping 
other quarters of the ellipse, the radius-vector equals those values 
once in each quarter. 
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FIG.66 

Two points of an ellipse that are symmetrical with respect to 
one of its axes have congruent radius-vectors. Conversely, if two 
points of an ellipse situated on one side of the major (minor) axis 
have congruent radius-vectors, then they are symmetrical with 
respect to the minor (major) axis (this stems from the fact that the 
radius-vector equals each of the possible values only once). 

This give~ rise to the following method of axis construction 
(Fig. 66). Construct a circle, whose centre coincides with the cen­
tre of an ellipse 0, and whose radius r is greater than band less 
than a: 

b < r <a. 
This circle intersects the ellipse at the four points M, P, N, and Q. 
These points have congruent radius-vectors and, hence, are sym­
metrical with respect to the axes of the ellipse. Therefore, it re­
mains to reconstruct the axes of symmetry of the four points M, 
P, N, and Q. To this end, one must 

either draw the bisectors of the angles formed by the lines MN 
and PQ. 

or draw the centre lines of the quadrilateral MPNQ . 

.B 4' 3' 2' f' E 

(b) 

FIG 67 
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The obtained axes of symmetry AB and CD are the axes of the 
ellipse. 

5. Given a pair of conjugate diameters, construct an ellipse. We 
have already mentioned (Sec. 10) that 'to construct an ellipse' 
means to construct any number of points of the ellipSe. 

We are given two conjugate diameters AC and BD of an ellipse 
(Fig. 67b). Circumscribe a square about the periphery of the 
ellipse (Fig. 67a). Designate the points of tangency as A0 , B0 , C0 , 

and D0• Suppose that A0C0 and BoDo are the diameters that 
become conjugate diameters of the ellipse AC and BD after com­
pression of the periphery. (Be careful! A0C0 and BoDo are not the 
axes of compression.) Divide OoB0 into several congruent sections 
(Fig. 67 shows four such sections) and Bo£0 into the same number 
of congruent sections. Count an equal number of sections from 
0 0 upward and from E0 leftward. Thus, we obtain the points M0 

and N0 respectively. Draw the lines CoMo and AoN0, the point of 
their intersection is contained in the periphery. In fact, since the 
triangles 0oM0C0 and EoNoAo are congruent, AoN0 .1 CoMo· 

After uniform compression the square transforms into a 
parallelogram. Therefore, while the segments OB and BE remain 
divided into congruent sections, OB and BE themselves are no 
longer congruent. The construction should be made as follows 
(Fig. 67b). Construct a parallelogram on"the lines AC and BD as 
if they were centre lines. The segment OB is divided into con­
gruent sections, and the points of division are designated 1, 2, 3, 
and so on. The segment EB is also divided into congruent sec­
tions, and the points of division are designated l", 2", 3", and so 
on. The points of intersection Cl n Al", C2 n A2", 
C3 n A3 ·, and so on are contained in the ellipse. 

By studying the drawing closely, the reader should be able to 
construct the points of the ellipse in its other quarters. 
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