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Preface 

In recent years there has been explosive growth in the computational power 
of computers, in the ease of access to these computers, and in computer 
graphics. The development of some of the techniques used in computer 
graphics relies on a wide range of mathematical methods for curve and 
surface fitting. Since access to computers requires very little training in 
mathematics, many of these methods may not be easily understood by the 
great variety of people who are now able to use powerful computing 
equipment. The purpose of this book is to reveal to the interested (but 
perhaps mathematically unsophisticated) user the foundations and major 
features of several basic methods for curve and surface fitting that are 
currently in use. In this way, the authors hope to help bridge the gap 
between the users and designers of curve and surface fitting methods. 

The intended readership includes a great variety of users of computer 

graphics, such as geographers, cartographers, surveyors, geophysicists, 
engineers, computer scientists, and applied mathematicians. For most of 
the subject matter, the mathematical preparation required of the reader 
does not exceed the level of first-year university courses. Indeed, beginning 
with a review chapter of basic ideas from calculus and algebra (written in 
a geometrically intuitive way), the reader is brought to some understanding 
of progressively more advanced topics. The presentation is such that this 
book can be used as a reference and learning source for any of the users 

described above. Also, it could very well form the basis of a course for 
students in any of these disciplines. In fact, this book originated as lecture 
notes for a course given to practising geophysicists. 

In some respects, the book is written in a mathematical style (reflecting 
the authors’ profession), but we hope that the reader will not find this 
forbidding. We have tried to be precise and, at the same time, to be 

discursive and to develop a geometrical understanding of the mathematics. 
We have formulated important statements as theorems because we see this 
as a good way to give emphasis in a precise and brief form. In general, the 

theorems are stated without formal proof, although their meaning and the 

concepts involved are fully explained. From the mathematical point of view 

we do not strive for the greatest possible generality in the formulation of 
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theorems (to be found elsewhere in the mathematical literature); the degree 
of generality is simply dictated by the level of mathematical sophistication 
admitted in this presentation. 

The development of our subject matter has many original features and 
takes advantage of some unifying ideas. Almost all of the methods presented 

depend on the use of polynomial functions and, although the more classical 
methods are seen to be inflexible and inadequate in many ways, the 
more advanced methods using ‘“‘piecewise”’ polynomials have extraordinary 
power and flexibility. Thus, there is first a progression from polynomial, 
to piecewise polynomial, to spline methods for curve fitting. A careful 
development of these univariate techniques then admits an efficient pres- 
entation of a corresponding progression for surface fitting in the later 
chapters. 

To be more specific, Chapter 1 contains review material and summarizes 
the minimal information that readers need to have at their fingertips. Of 
course, the better prepared reader should go directly to Chapter 2 in which 
the classical approach to interpolation and smoothing with polynomial 
functions is presented. Chapter 3 is an introduction to the use of piecewise 
polynomial functions leading up to the notion of spline curves and their 
uses, which are the subject matter of Chapter 4. The presentation here is 
a little unusual in that natural cubic splines appear as a mix of two more 
primitive curve fitting methods. This “mixing” is further clarified and 
formalized in Chapter 5 with the introduction of projectors and Boolean 

sums of projectors. The approach taken to the description of cubic splines 
facilitates the discussion of blending and surface spline methods in sub- 
sequent chapters. 

In Chapter 6 we discuss, in general terms, the criteria that might be used 
in comparing different methods for curve and surface fitting and then 
continue, in Chapter 7, with a presentation of classical techniques using 
polynomial methods in two variables. In Chapter 8 we show how any curve 
fitting technique (or pair of techniques) can be combined to generate 
surface fitting methods. These are the so-called tensor product and blending 
methods. We also show how these are conveniently described in terms of 
projectors. 

Chapter 9 contains a presentation of finite element methods. Although 
finite elements were developed by engineers and numerical analysts as part 
of a technique for the solution of differential equations, they appear here 
simply as the basic units in surface construction methods. These can be 
seen as a generalization of some of the piecewise polynomial techniques 
for curve fitting introduced in Chapter 3. Least squares, ‘‘moving” least 
squares, and some hybrid methods are the subject matter of Chapter 10. 
In Chapter 11 we consider ‘‘surface splines” by which we understand 
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bivariate methods having the same general form as spline curves, par- 
ticularly with regard to their representation as Boolean sums of projectors. 
They are presented here in a more elementary way than can be found 
elsewhere in the mathematical literature. 
We should conclude this description with some comment on what we do 

not attempt to do in this book. We have not been exhaustive. We have 
chosen to exclude more sophisticated methods such as Bernstein—Bézier 
curves and surfaces, splines in tension, methods preserving monotonicity, 
parametric splines, isoparametric finite elements, and so on. The reader 
will understand these methods more readily after absorbing the relevant 

ideas from this work. Readers interested in further developments are 
referred, in the first instance, to review papers by Barnhill (1977), Boehm 
et al. (1984), Franke (1979, 1982), Lawson (1977), and Schumaker (1976). 
We have also avoided reference to any but the most primitive techniques 

using statistics. There have recently been important developments in this 
area [see Wahba (1981) and Olea (1975), for example]. Although kriging 
is usually seen as a probabilistic method, we have been at pains to present 
a simplified deterministic approach to this process in Chapter 11. 
We do not provide specific algorithms for obtaining fitted curves and 

surfaces. In view of the great variety of methods considered and the 
difficulty in producing reliable and portable codes, this was considered to 
be an unrealistic objective. However, we do give some guidance on the 
relative merits of different computational lines of attack. It is also the case 
that many software packages are readily available which incorporate the 
methods we describe. One of our purposes in writing the book is to equip 
the reader with the knowledge to make judgements on the relative merits of 
different methods and packages in the light of the user’s own requirements. 

The authors have been ably assisted by Gisele Vezina and Pat Dalgetty 
in the preparation of the final typescript and by M. Paolucci and J. 
Reddekop in computer graphics. Also, our colleague Len Bos has given 

invaluable assistance in programming, advice, and proofreading. Our sin- 

cere thanks go to all of them. Both authors have received some support 

from the Canadian Natural Sciences and Engineering Research Council for 

which we are duly grateful. 
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Functions and Graphs 

1.1 Functions of a single variable 

The need for fitting curves and surfaces arises principally from the fact 
that many physical phenomena are deemed to be continua, although our 
measurement of them is discrete. From such discrete information, often 

using the tools of mathematics, we try to reconstruct the continuum in 
order to learn about its features. In order to apply mathematical techniques, 
it is necessary to be able to describe the phenomenon quantitatively. The 
phenomenon in question may be the depth of a geological layer, the 
deflection of the wing of an aircraft under loading, the population density 
in an urban area, the proportion of a particular genotype in a population, 
and so on. We assume that the magnitude of the phenomenon, expressed as 
a number, depends on some underlying variables (the so-called independent 
variables), which can likewise be assigned numerical values. Not all of the 
independent variables can be taken into account; in fact, we may be 

unaware of some of them. For example, the elevations of the surface of 
the earth above some datum depend more or less continuously on the 
longitude and latitude, at least piecewise, and perhaps the position of the 
planet in its orbit and the state of its tides. For many purposes, however, 
it is sufficient to regard the elevation as a “function” of two independent 
variables representing the longitude and latitude, say. In order to make the 
ideas of “variable”, “function”, etc. more precise, we need some definitions. 

We begin with some terminology and notation associated with the real- 
number system. The absolute value or modulus of a real number a is a 
measure of the distance of a from the origin measured on the real line and 
is denoted by |a|. Thus, |2| = 2, |—13.5| = 13.5, |0| = 0, and so on. A formal 
definition is given by 

a if az=O, 
lal={_ 

a ieee): 



2 1 Functions and graphs 

It is easily seen that for any two real numbers a and b, |a — b| represents 

the distance between the corresponding points on the real line. 

It will be necessary for us to have a precise notation for intervals of real 

numbers, that is, sets of real numbers corresponding geometrically to 
segments of the real line. The symbol [a, b] with real numbers a, b satisfying 
a < b denotes the set of all numbers, say x, for which a = x and x < b. Such 
a set is a closed interval. In contrast, the set of all numbers x, for which 

a<x and x<b, does not contain the numbers corresponding to the 
endpoints of the segment; it is called an open interval and is written (a, b). 

The symbols [a, b) and (a, b] denote half-open intervals in a notation 
hybridized from that for closed and open intervals, and each contains just 
one endpoint, as the notation indicates. 
We have already begun to talk about “sets” (set is an undefined primitive 

term), and in order to abbreviate statements about membership in a set, 

we introduce the symbol that means “belongs to” or “is a member of” or 
“is in”. Thus, if S is a set of objects, then x € S reads “x belongs to the set 

S”, or “x is in S.” For example, x € [1,2] means that x is a real number 
between 1 and 2 and possibly equal to 1 or 2. Here S$ = [1, 2]. Similarly, if 
S is the set of all bearded persons in Inuvik, then x © S means that x is a 

bearded person in Inuvik. 
We turn to the concept of function. Let S be a set and let a rule be given 

so that for every x € S, a real number is uniquely assigned to x. Such a rule 
is called a (real valued) function with domain S. Note that the function is 
not a number but assigns numerical values to objects in S. It is customary 
to name functions by letters or groups of letters; for example, f, g, cos, 
exp, log. If x € S, the value assigned to x by a function fis written f(x) and 
is called the value of f at x. We will here be dealing frequently with sets S 
that are intervals or sets of singletons of real numbers or else with sets of 
pairs of real numbers. The quantities in § are values of the independent 
variable, whereas the function value is the dependent variable. 
We consider first functions of a single independent variable in which 

S is an interval, which may be the whole real line. Normally, functions 
are defined by stating how they affect the independent variable x. 
We may have, for example, f(x) = x + 1 or g(x) = Vx. In the first case, it 
does not matter what the domain S is, although it may be convenient to 
restrict x for some reason or other. In the second case, however, S may 
not contain any negative numbers. These are examples of algebraic func- 
tions; their values may be calculated by using a finite number of algebraic 
operations, such as addition, multiplication, and obtaining roots. We often 
refer to the class of algebraic functions. This class contains polynomials, 
rational functions (quotients of polynomials) and a multitude of others. 
Other familiar classes of functions are those of trigonometric functions 
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and the so-called transcendental functions, etc. Indeed, we may classify 

functions according to some attributes and then use functions of a given 
class to accomplish a certain task. We shall introduce some classes of 
functions, useful for our purposes, in more detail as we progress. In curve 
and surface fitting, desirable attributes are continuity and smoothness. We 
shall therefore introduce classes of functions based on these ideas. A class 
of functions will generally have a common domain S, and we often need 
to consider combinations of such functions. 

First, if f and g are functions with a common domain S, then the sum of 
the two functions is again a function, denoted by f+ g, and its value at 
each x € S is defined by 

(f + g)(x) = flx) + g(x). 

Next, the product function, written fg, is also defined on S and is given by 
taking the pointwise product of function values: 

(fg) (x) = f(x)g(x), 

for each x € S. Finally, if wis any real number, we define a function written 

af on S and called a scalar multiple of f by 

(af) (x) = af(x), 

for each x € S. This is, of course, consistent with addition of functions in 

the sense that f + f and 2f define the same function, for example. 

We turn now to an introduction to the notions of continuity and 

smoothness. 

1.2 Graphs and continuity 

In order to represent a function of one real variable pictorially we make 

use of a graph. We set up a Cartesian coordinate system, labelling the axes 

x and y. The domain S of the function then corresponds to a set of points 

on the x-axis. The collection of all points (x, f(x)) as x varies over S is the 

graph of f; it may or may not be a curve. For the graph to be a smooth 

curve, it is, of course, necessary that S be an interval. In contrast, the 

curve-fitting problem begins with an S that is a set of discrete points. We 

form an interval, say T, containing S and look for a “reasonable” function 

f defined on T that comes close in some sense to the data when x € S (see 

Fig. 1.1). A “reasonable” function may have to be continuous and/or 

smooth and should not display features other than those that are known to 

be present in the physical event giving rise to the data. 
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Fic. 1.1. Domains S, T with S contained in T. 

When the domain is an interval, the idea of a continuous function has a 
precise mathematical meaning. Intuitively it can be described as follows: 
Let f be a function with domain S and let a € S. Then f is continuous at a if 
the values f(x) approach the value f(a) as x approaches a from either side of 
a. a 

In Fig. 1.2, f is continuous at a in the left-hand diagram but not in the 
right-hand diagram, where the value f(a) is indicated by the dot and is 
approached by the values f(x) when x approaches a from the right. However, 

(a) (b) 

Fic. 1.2. (a) Continuity and (b) discontinuity at x = a. 

as x approaches a from the left, f(x) approaches the value b # f(a). Inci- 
dentally, b is not a value of f(x). 
A more precise description of continuity lies in the following. 

Definition Let f be a function with domain S, where S is an interval. Then 
f is continuous at a point a € S if, given any number ¢ > 0, however small, 
there exists anumber 6 > 0, and depending on €, such that whenever x € S 
and satisfies |x — a| < 6, f(x) satisfies |f(x) — f(a)| < e. 

Recall that the absolute value |u — v| of the difference of two numbers 
u and v is the distance between wu and v, so the definition states that the 
distance between f(x) and f(a) is less than ¢ whenever x is sufficiently close 
(within 6) to a. This definition is frequently abbreviated by introducing the 
term “limit” as follows: The function f is continuous at a point x inside an 
interval of the domain S if lime_,, f(&) exists and is equal to f(x). If x is an 
endpoint of the interval S, the formal definition implies that the limit is 
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taken only from one side. Thus, if f is continuous on [a, b], then the “one- 
sided” limits lim,_,,+ f(€) and lim,_,,- f(x) exist and equal f(a) and f(b), 
respectively. 

For practical purposes, it is sufficient to observe that discontinuities will 
generally arise in one of two ways: 

(1) when the denominator of a quotient vanishes. For example, the 
function f(x) = 1/x is not defined at x =0. It has a discontinuity at this 
point. 

(2) by defining f differently in parts of S, e.g. f(x) =0 when 0<x<1 
and f(x) = 1 when x > 1. This results in f not being continuous at x = 1. 

We shall be using (2) in subsequent chapters. An interval will be sub- 
divided into contiguous subintervals, and a function will be constructed 
piecewise, subinterval by subinterval. On each subinterval, the function 
will be given by an expression having some “degrees of freedom”, and 
these will be adjusted to make the total function continuous where the 
pieces join. If f; is the function in the interval S,, and f, is the function in 
S,, and if a is the point at which S, and S, join, we will require f,(a) = 

f,(a) so as to avoid a jump there. 

1.3 Derivatives and smoothness 

The requirement that a function be continuous is not sufficient to make it 
smooth. For example, the important function f defined on all the real 

numbers by f(x) = |x| has the graph indicated in Fig. 1.3. It is, in fact, 

continuous at every real number a, but would we wish to describe it as 

“smooth” at a = 0? The mathematical concept of smoothness involves the 

notion of “derivative of a function”, as well as second and higher derivatives, 

which we shall now describe. 

Fic. 1.3. Function f(x) = |x|. 
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Let x be a number (point) in S, the domain of f. If the graph of f does 

not have a sharp corner at the point with abscissa x, and f is continuous at 

x, we may draw a unique tangent line to the graph there and compute its 

slope. This may be done by calculating the quotient “rise” /“run” for the 

tangent, or by calculus, where we find the derivative of f and then find the 

value of the derivative at the number x. In any event, the slope depends 

on x and is therefore a function of x. 
Let T be the set of points in S at which the slope of the graph of f exists 

and is unique: 

The function whose value at x € T is the slope of the graph of f at x is 

called the derivative of f (or derived function of f) and is denoted by the 

symbol f'. The function f is said to be differentiable at each point of T. 

As in the discussion of continuity, geometric intuition can be subsumed 
in a definition using the idea of limit as follows: 

Definition Consider a function f whose domain is an interval S. The 
function f is differentiable at a point xo € S if lim,_.9 h~'(f(xo + h) — f(xo)) 
exists, where h is restricted to those values for which xy» +h€S. The 
derivative of f at Xo, f'(Xo), is defined to be the value of this limit. 

The restriction on the permissible values of h in this definition implies that 
derivatives at endpoints of S, if any, are determined by appropriate one- 
sided limits. 

Note that the set T is just the set of points in § at which the limit exists. 
Note also that the limit is taken of the difference quotient 

f(xo + h) — f(xo) 

(x9 + h) — Xo 

i.e. the difference of ordinates divided by the difference of abscissas. When 
the derivative at x exists but is not known numerically, such a quotient is 

frequently used as an approximation for f’ (x), provided that h is sufficiently 
small in absolute value. The quotient is then the slope of the chord of the 
graph of y = f(x), as indicated by AB in Fig. 1.4 (for h > 0). As h decreases, 
we anticipate that the slope of the chord will approach the slope of the 
tangent at xo. 

As noted earlier, the set T is just the domain of the derived function f’ 
of f. Other notations for the derivative of f are f’(x), if we choose not to 
make any distinction between a function and its value at x, or d(f(x))/dx 
or dy/dx if we set y = f(x). When fis given by an explicit formula involving 
elementary functions, calculus often enables one to obtain a formula for 
f'(x). 
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B 

A 

= St x 
O Xo Xt h 

Fic. 1.4 Slope of a chord and tangent. 

We may now begin to classify functions as to their continuity and 
smoothness over an interval [a, b]. Note first, however, that, since f’ is a 
function, we may well ask whether it is continuous and whether this new 
function f’ has a derivative at any point of its domain. 

Definition [a,b] denotes the class of functions that are continuous at 
every point of [a, b]. €'[a, b] denotes the class of functions that are continuous 
and have a continuous derivative at every point of [a, b]. 

As we shall see later, the closed interval [a, b] of this definition may be 
replaced by an open or half-open interval, as convenient. 

To illustrate, the function f(x) = |x| with domain [—1, 1] (see Fig. 1.3) is 
in the class €[—1, 1] but is not in the class €'[—1, 1], because it has no 
derivative at x = 0; i.e. the graph does not have a unique tangent at this 
point. In Fig. 1.5, we sketch the graph of the function f(x) = 1+ x! on 
[0, 1]. We can say that fE €[0, 1]. We can also differentiate f to obtain 
f'(x) = 4x, and the graph of this function is also sketched in Fig. 1.5. 
This function is continuous at every point of (0, 1], so that f’ € €(0, 1] and 
hence f € €'(0, 1]. However, f € €'[0, 1]. Note that the graph of f’ has a 
vertical asymptote at x = 0, and since f’ is not defined there, it certainly 
cannot be continuous at this point. 

These examples suggest that, in a certain sense, functions of class €' are 
smoother than those that are in €[a, b] but not also in €![a, b]. We can 
carry the process further to describe classes of functions that may be 
smoother than those of €'[a,b]. If the derived function f" itself has a 
derivative, we denote it by f” and call it the second derivative of f. The 
function f" measures the rate of change of f’, the slope of the tangent, just 
as f’ measures the rate of change of f. We denote by €7[a, b] the class of 
continuous functions with continuous first and second derivatives at every 
point of [a, b]. These are smoother than functions that are only in €'{a, 5]. 
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A primitive but very important class of examples is given by functions of 

the kind f(x) = w + Bx, where a, f are any fixed real numbers. The graph 

of such a function is necessarily a straight line. Furthermore, f’(x) = B, so 

that f’ is a constant function (whose graph is a horizontal straight line), and 

f(x) = 0 for allx. Thus, for any such function, we certainly have f € €°[a, b] 

for any interval [a, b]. 

Fic. 1.5 Function f(x) = 1+ x!?. 

An interesting example of a function that is in €'[0, 2] but not in €7[0, 2] 
is a curve made up of the following parabolic arc joined to a straight line 
tangent to it. This function is defined by 

fle) se aga Le 
XG = 

2x —T1, Te 

and its graph is sketched in Fig. 1.6. This function is certainly continuous 
when x # 1. As x approaches 1 from the left, the rule f(x) = x? applies, and 
this quantity approaches 1 as x approaches 1. When x approaches 1 from 
the right, we use the rule f(x) = 2x — 1, and again, 2x — 1 approaches 1. 
Therefore the function f € €[0, 2]. Using calculus, we compute the func- 
tion f’ and obtain 

2x, Uaaa = E. rey={, 
‘ Nai 
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Fic. 1.6 Function of class &' [0, 2]. The asterisk indicates the point of discontinuity in the 
second derivative. 

By an argument similar to that above, f’ is continuous at x = 1, as well as 
at the other points of [0, 2], so f€ €'[0, 2]. We compute f” now and have 

Q0<x<=1, > 

0, ie Xe. 2: 
ra) =| 

There is no way in which we can make f” continuous at x = 1 because of 
the jump (or discontinuity) in the value of f” at x = 1. 

Fic. 1.7 Function f(x) = e’. 
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It should be observed that, although the curve in this example is math- 

ematically not very smooth because of its failure to have a continuous 

second derivative, it may be deemed smooth enough visually. 
An example of a very smooth function is illustrated in Fig. 1.7. The 

function f(x) = e* is in class €[a, 6] for any interval [a,b] and has the 
interesting property that also f’(x) = e*; i.e. f’ = f. Consequently, f” = f’ = 

f and so f € €7[a, 5]. 
It is useful to define derivatives of higher order than 2 by the statement: 

The nth derivative of f, when it exists, is the (first) derivative of the (n — 1)- 
th derivative of f and is denoted by the symbol f™. Thus, f” =f". Note 
that we generally write f’ for f() and f” for f. 

Definition (a) 6”[a,b] denotes the class of functions that are continuous 
and have continuous derivatives of orders 0, 1, 2,...,n on [a, b]. 

(b) €*[a, b] denotes the class of functions that are continuous and have 
continuous derivatives of all orders 0,1, 2,... on [a, b]; i.e. are infinitely 
differentiable. 

We often omit the [a, b] in the previous notation when [a, b] is obvious 
from the context or is all of the (extended) real line. Thus, we may write 
e* € €*. Note also that €° is just €. 

It is easily verified that for each n (from 0 to ~), the class €”[a, b] has 
the following properties: If f, g € @”[a, b] and a is any real number, then 
the sum f + g and the scalar multiple af (cf. Section 1.1) are also in €"[a, b]. 
These properties of the class of functions are known as closure under 
addition and scalar multiplication, respectively, and they define the useful 
mathematical concept of a vector space. Thus, "[a, b] is the first of several 
examples of vector spaces that we shall encounter. 

In mathematics, among the smoothest curves are those defined by func- 
tions that are infinitely differentiable. Examples of functions in €* are e’, 
sinx, logx (x >0), and polynomials. Visually, however, it seems that 
requiring continuous second derivatives is enough, and even a continuous 

first derivative may suffice. We shall make extensive use of such functions 
in Chapters 3 and 4. 

1.4 Derivatives and the shape of a curve 

If the curve under consideration is the graph of a function having a 
continuous first and second derivative on some interval [a,b] (i.e. 
f © €?[a, b]), then some of its shape characteristics may be described using 
derivatives of the function. 

Let us recall once more that the first derivative of a function f is a 
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function f’ whose value at x is the slope of the graph of f at x. The second 
derivative f" is the function whose value at x is the slope of the graph of f’ 
at x. In terms of rate of change, f' is the rate of change of f, whereas f” is 
the rate of change of f’, as the independent variable increases. 

In order to fix these ideas geometrically, consider the following example. 
In Fig. 1.8 there are sketches of the graphs of f, f’, f” for the function 
depicted in the first sketch. 

The terms increasing and decreasing must be interpreted in the context 
of the ordering of the real numbers, so that negative slopes are less than 

positive ones. In Fig. 1.8, the slope at A is positive and hence larger than 
the slope at B (which is negative). The function is increasing where its slope 
is positive, decreasing where the slope is negative, and is stationary where 
the slope is zero. In Fig. 1.8, one of the stationary points is at a local 
maximum, whereas the other (at C) is a local minimum of the function. 

The function is concave up where the second derivative is positive (B to 
D) and concave down where the second derivative is negative (A to B). 
The changeover occurs at the point of inflection B; there the second 
derivative has value zero. 

ay 

> 

Fic. 1.8 Function with its first and second derivatives. 
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We conclude Section 1.4 with an introduction to the idea of “curvature”, 

which also plays a role in discussions of the smoothness and shape of a 

curve. Consider any function f € €7[a, b], let x9 be any point of [a, b] and 
let P be the point (xo, f(xo)) (Fig. 1.9). Let C be any circle that passes 
through P and has a common tangent with the graph of y = f(x) at P. 

In some neighbourhood of P, an arc of such a circle is the graph of a 
function y = g(x), and by construction we have g(x) = f(xo) and g’(x9) = 
f' (xo). It can be shown that there is a unique circle Co of this type satisfying 
the additional condition that the second derivatives of f and g also agree at 
P, i.e. the condition g"(x9) = f(x) holds. This circle is called the osculating 
circle at P, and its radius p is the radius of curvature at P. The reciprocal 
of this radius, K = 1/p, is the curvature of the graph of f at P. Thus, the 
curvature is large (p is small) at xo if the tangent to y = f(x) is turning 
“rapidly” with x as x increases through x». The curvature is small (p is 
large) at x) when the tangent is turning “slowly” as x increases through xo. 
In particular, the curvature is zero (p is infinite) if the graph of y = f(x) is 
a Straight line. 

It turns out that the curvature can be represented by 

K = |f"(xo) IAL + fo)? P?. (1.1) 
The surd in the denominator is troublesome, but if it is known that f’(x) is 
small at xy, then we may be able to use |f"(x,)| as an approximation for the 
curvature. 

Pp 

+ > X 

O Xo 

Fic. 1.9 Osculating circle. 

1.5 Integration 

In this section we give a heuristic introduction to the idea of integral and 
the important result known as the Fundamental Theorem of Calculus. A 
careful definition of the “definite integral” of a function requires the use 
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ofa limiting process, as in the cases of continuity and differentiability of a 
function at a point. The theory (due to Riemann in the nineteenth century) 
begins with the concept of the area of a rectangle and the idea that 
the definite integral of a positive function f € €[a, b] represents the area 
between the graph of y = f(t) and the t-axis, as in the hatched area of Fig. 
1.10. As indicated in Fig. 1.10, the area under the curve can be approximated 
by using a set of rectangles. By carefully constructing sequences of such 
approximations and then applying a suitable limiting process, a math- 

y 

ol 

Fic. 1.10 Integral and area. 

ematically viable definition is reached for a number representing the area 
under the graph of y = f(t). This number is written as [2 f(z) dt. It is, of 
course, to be expected intuitively that if the graph of y = f(t) is reasonably 
smooth on [a, b], then there really is a unique real number representing 
this area. More generally, a function f defined on (a,b) is said to be 
integrable on (a, b) if this number, f° f(t) dt, defined by the limiting process 

exists. 
Note that where the function takes negative values in (a,b), cor- 

responding contributions to the definite integral will also be negative. The 
following statements will then come as no surprise (cf. Fig. 1.3): 

1 1 

i t df=, | |t| dt = 1. 
al il 

We mention some important properties of the definite integral. First, the 
“range of integration” [the interval (a, b) in the previous discussion] can 
be broken down into subintervals. In symbols, if f is integrable on (a, b) 
and c is a number between a and b, then 

[ 10 dt + [Ao dt = f f(t) dt. (1.2) 
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The next two properties refer to the integral of sums and scalar multiples 
of functions (as described in Section 1.1). If fand g are integrable on (a, b) 
and q@ is a real number, then 

b b b 

| [f(t) + g(t)] at =| f(t) dr+ | g(t) dt, (403) 

b b 

[ af(t) dt = a | fit) dt. (1.4) 

Taking advantage of a notion introduced in Section 1.3, the last two 
statements can be abbreviated to the fact that the class of all integrable 
functions on (a, b) forms a vector space. 

It is important to note that all functions in €[a, b] are integrable on 
(a, b), but the converse statement is not true. For example, the step function 
defined by f(x) =1 on [0, 1], f(x) =2 on (1, 2), is integrable on [0, 2] (in 
fact, {3 f(t) dt = 3), and f is not continuous at 1. 

As we might expect, a function that is integrable on (a,b) is also 
integrable on any subinterval of (a, 6). In particular, if a<x <b and f is 
integrable on (a, b), then J% f(t) dt exists. In fact, this will allow us to define 
a new function F on [a, b] by the rule 

F(x) =| f(t) dt. (275) 

Now the important idea is that forming a function F from f in this way 
can, under widely useful hypotheses, be seen as an operation that is the 
inverse of the operation of forming the derived function from a function. 
A simple but more precise statement of this kind is the following: if 
fe €[a, b], then the function F defined by Eq. (1.5) is differentiable at each 
point of (a, b) and its derivative is f. Thus, F’ = f or 

d ps ; 
Al IC) dh =f (aoe ton | F'(t) dt = F(x) — F(a). 

In particular, if f€ €[a, b], then F € €}[a, b]. 
In other words, we can start with a function f € €[a, b] and use integration 

to form a new function F as in Eq. (1.5); differentiation of F then returns 
the original function f. 
A somewhat more general point of view starts with the following defini- 

tion: let f € €[a, b]; then any function F for which F' = fon (a, b) is called 
an antiderivative or indefinite integral of f, and is written F(x) = ff(x) dx. 
(Note that a definite integral is a number, and an indefinite integral is a 
function.) Our definition [Eq. (1.5)] of a particular function F, together 
with the result in italics ensures that there is at least one indefinite integral. 
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We note that, in the standard calculus course, a lot of time is spent in 
studying indefinite integrals (and derived functions) of the elementary 
functions. 

Being assured of the existence of one indefinite integral of f, it is then 
reassuring to find that every indefinite integral of f is closely related to the 
one we already have. In fact, if f€ €[a, b], then every indefinite integral 
of f differs from the function F of Eq. (1.5) by a constant function (which 
is generally known as “the constant of integration”). 
We are now in a position to remind the reader of the Fundamental 

Theorem of Calculus. 

Theorem 1.5.1. Jf f€ €[a, b] and F is any indefinite integral of f, then 

b 
[ f(t) dt = F(b) — F(a). 

This result summarizes the most important idea used in the evaluation of 
definite integrals. Note that because there is a difference of F values on the 
right, the same conclusion obtains whatever indefinite integral F is chosen. 

1.6 Functions of two independent variables 

In Sections 1.1—1.5, we have used the xy-plane for the purpose of displaying 
the graph of a function of a single independent variable. We may, however, 
use the same device for “coordinatizing” the plane, that is, for assigning to 
each point of the plane a pair of numbers that locate that point with respect 
to the x- and y-axes. The first number is the oriented distance to the 
point parallel to the x-axis and measured from the y-axis. The second 
measurement is taken parallel to the y-axis. 

Fic. 1.11 Cartesian products. 
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Given a set S of points in the plane, we may have a rule assigning 
numerical values to the points. We then say that a function, say f, is defined 
on S. If P is a point in S, then f(P) is the value of f at P. Previously, points 
were real numbers denoted by x, for example. Now P may be replaced by 
its number pair (x, y), and instead of f(P) we write f(x, y). 

The set S has to be described in each case. If S consists of a number of 
discrete points, then its description just consists of a list. If S is a region 
with a boundary, then we may try to mathematically describe the boundary, 
and we check whether a point is in S by testing whether it lies within the 
boundary. There is so much flexibility in the plane, that no systematic 
symbolism can represent every kind of region. 

However, there is a special notation for rectangular regions whose edges 
are parallel to the axes. Then the x-coordinate may lie between some 
numbers a and b; i.e. x € [a, b], whereas y € [c, d]. In this case we denote 
S by the symbol [a, b] x [c, d], the Cartesian product of the two intervals. 
The whole plane may be thought of as an infinite rectangle, with 
x €(-—%,«) and y € (—~,~). The notation R = (— ~, ~) suggests the use 

of R X R or R? for the plane. This notation may be generalized to the case 
where x can take values in some set A of numbers, and y takes values in 
B. Then the points (x, y) € A x B, as in Fig. 1.11. In the second example, 
S =A X B contains a finite number of points, and a function on S$ may 

be defined by a list of function values. This is of course the case when the 
function is obtained by measurement. The problem of surface fitting then 
consists in taking a region containing S and finding a function on this region 
that agrees with the data to some extent and behaves reasonably between 
data points. The reasonableness often includes continuity and smoothness. 

As in the case of functions of a single variable, the notion of continuity 
for functions of two variables can be given a precise, formal definition. 
Intuitively, it can be expressed by the statement: 

A function f is continuous at a point Py in its domain S, if the values f(P) 
approach the value f( Py) as P approaches P, along any path in S whatsoever. 

Discontinuities often arise where division by zero can occur in the 
mathematical formula for the function or where a region is subdivided into 
patches with different formulas for the function on each patch. Such a 
patchwork is a very useful device and will be employed in some later 
chapters. Suppose that A and B are regions with common boundary C. 
Suppose that fis a continuous function defined on A, and g is continuous 
on B. We will have a continuous function on the union of A and B (see 
Fig. 1.12) if f(P) = g(P) for every point P € C. 
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a 
Fic. 1.12 Union of patches A and B. 

The graph of a function is constructed by establishing a scale per- 
pendicular to the xy-plane. We usually draw a z-axis through the inter- 
section of the x- and y-axes, and for each (x, y) € S plot a point distance 
f(x, y) from the coordinate plane, either above or below (x, y) depending 
on whether f(x, y) is positive or negative. The coordinates of such a point 
relative to the three axes are the ordered triple (x, y, f(x, y)) (see Fig. 1.13). 

Fic. 1.13 Surface given by z = f(x, y). 

For the collection of all such points to be a surface, it is necessary but not 
sufficient for S to be a region. We say that the equation of the surface is 

z= f(,y). 
It is important to note that strict adherence to this convention restricts 

the nature of the surfaces we can describe, for we admit only one value of 
f for each pair (x, y). To illustrate, the whole surface of a sphere cannot be 
represented in this way, but a hemisphere obtained by slicing the sphere 
through the equator parallel to the (x, y) coordinate plane is the graph of 
a function. 
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The question of smoothness can be discussed with reference to tangent 

planes. For our purposes it is sufficient to look first at slopes of tangent 

lines in the x- and y-directions. Given a point P in the xy-plane, we 

consider the two planes containing P and parallel to the xz- and yz-planes, 

respectively (Fig. 1.14). These intersect the surface in two curves, along 

which only the first (x) or second (y) of the independent variables can vary, 

Fic. 1.14 Slope of the surface at P. 

respectively. We compute the slopes of these curves as before in the case 
of functions of a single variable. These slopes are themselves functions of 
P [or (x, y), where (x, y) are the coordinates of P]. If these slope functions 
are continuous at some point Py = (Xo, yo) in the domain of f, then we can 
assert the following. 

(1) The graph of f has a uniquely defined tangent plane at the point 

(Xo, Yo, fo; Yo); 
(2) The graph of fis locally flat at the point (x9, yo, f(%o, ¥o)) in the sense 

that if we move away from this point in any direction whatsoever, the graph 
of f stays close to the tangent plane, provided only that we do not go too 
far. This heuristic statement can be made precise by the introduction of 
suitable limiting processes. 
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If there is no slope at a point P, the surface is not smooth there in the 
sense of having slope on every direction through the point P. In calculus, 
the slope is computed with partial derivatives, but the ratio rise/run gives 
the correct result if these are read off the tangent lines. Geometrically, 
slopes are not calculable where the graph is vertical, where there is a 
“fault”, or where there is a sharp ridge on which the “tangent lines” can 
rock. In later chapters the piecewise construction of surfaces will be such 
that along the “seams” where patches are joined up, slopes exist and vary 
in a continuous manner. Since the functions will be constructed from 
functions of a single variable, they will inherit some smoothness from the 
latter. 

For future purposes, we introduce the notations used in calculus to 
describe the slopes of the curves C, and C, defined by the point P (Fig. 
1.14). Along C,, only x varies, so the slope of C;, where it exists, can be 
obtained by computing the derivative (Section 1.3) of the function f defining 
the surface, treating y as a constant. 

Similarly, along Cj, only y varies, so we may compute the slope by 
computing the derivative of f, treating x as a constant. We make the 
following geometric definitions. 

Definition The function, whose value at point P ES is the slope of the 
surface defined by z = f(x, y) in the x-direction evaluated at P, is called the 
partial derivative of f with respect to x, and is denoted by the symbol f,. 
Similarly, the function whose value at P is the slope of the surface in the y- 
direction evaluated at P is called the partial derivative with respect to y, and 
is denoted by f,. 

Other notations are f,; and f, to denote derivatives with respect to the 
first and second variables, respectively, or df(x, y)/ax and df(x, y)/dy, or 
dz/ax, dz/dy. These are referred to as (partial) derivatives of order one. 
More generally, we can define a directional derivative. This is done by 
considering any plane through P that is perpendicular to the xy-plane. This 
plane of section intersects the surface in a curve that may have a tangent 
at P lying in the plane of section. On the line of intersection of the xy- 
plane and the plane of section, we choose a positive direction and denote 
distance by s. Then the slope of the tangent is the directional derivative, 
denoted by df/ds. 

At points corresponding to the boundary of the domain S of the function, 
directional derivatives are defined by one-sided limits analogously with the 
situation for functions of one variable. 

The first-order derivatives, when they exist, are themselves functions of 
two variables, and if their graphs also have slopes, these may be computed 
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via derivatives. Thus, if f, has at some point P a slope both in the x- and y- 
directions, these are denoted variously by 

d*f(x,y) _ 0°z D 
fa =fu = aye ae and fy =fru= 

Observe that the order of the subscripts is not the same as the order of the 
variables in the notation using d. Now, if f, has slope in the x- and y- 
directions, then these are similarly denoted by 

afi) eZ 
Ox Oy ax dy 

Of yi) 62 

dyax  dyax 

_ o°flx,y) _ a°z ye = f= ay? ay?’ 

It turns out that if f,, and f,, are continuous, then they are equal; then the 
order in which the derivatives are taken is not important. In this (very 
common) case, the three functions f,,, f,,, fyy are all of the second-order 
(partial) derivatives of f. 

For a function of two variables, this idea can be generalized to any 
number of derivatives with respect to x and y, as long as the function is 
sufficiently well behaved. Then the notation using @ is advantageous, 
provided that the order in which the operations are performed does not 
matter, and that is indeed the case when all the derivatives are continuous. 

and - = fx 

Then, an nth-order derivative of f, p times with respect to x and q times with 
respect to y, is denoted by 

a"f(x, y)/ax? dy4, ptqz=n. 
There are n +1 such derivatives of order n, obtained by putting p= 
AV OMI pg it: 

We are now in a position to generalize the concept of €"[a, b], the class 
of functions (of one variable) having continuous derivatives of all orders 
up to and including n on the interval [a, b]. 

In our uses of the following definitions, the region § will have a simple 
closed polygon as its boundary. 

Definition Let S be a region in the xy-plane. 

(a) €"(S) denotes the class of functions that are continuous and have n 
continuous partial derivatives of orders 0,1,2,...,nonS. 

(b) €*(S) denotes the class of functions that are continuous and have 
continuous derivatives of all orders 0,1, 2,..., on S, t.e. are infinitely 
differentiable. 

These definitions should be compared with those at the end of Section 1.3. 
As in the case of functions of a single variable, each class ‘€"(S) turns out 
to be a vector space. 
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1.7 Polynomial functions 

In any study of curve and/or surface fitting there is one class of functions 

that plays a supremely important role. This is the class of polynomial 

functions, and we now present a brief introduction to the nature of these 
functions. 

The main reason for their popularity is undoubtedly that it is easy to 
compute with them. Evaluation at a point, addition and multiplication, and 
differentiation and integration are all readily performed. The definition 
shows, in particular, that to evaluate a polynomial at a point it is only 
necessary to multiply and add real numbers together finitely many times. 

Definition (a) A function p defined for all real numbers x by 

D(ey and ae et OF ax ay (1.6) 

where N is a non-negative integer and ay, a,,..., Ay are fixed real numbers, 

is called a polynomial. 
(b) If p(x) has this representation and ay #0, then p(x) has degree N. 
(c) If all coefficients ay, a,,..., ay are zero, then p(x) is called the zero 

polynomial. 

Polynomials of degree one, two, three, . . ., are also known as linear, 

quadratic, cubic, ..., polynomials, respectively. Thus 2x7 +1, 

(3.1) x? — x = (3.1) x? + (—1)x are polynomials of degree two or quadratic 

polynomials. 

Polynomials of degree zero (p(x) = ao, 4) #0), together with the zero 

polynomial, are called the constant polynomials. Their graphs are straight 

lines parallel to the x-axis. 

It will be very useful for us to be able to talk easily of certain classes, or 

sets, of polynomials. For this purpose, we introduce a symbol ?y, which 

denotes the set of all polynomials p with degree not exceeding N, together 

with the zero polynomial. Thus, a function p is in the class Py, (i.e. p © Py) 

if and only if 

09) = yx” MitaicaX aici (haste aint, 

for some real numbers dy, @;,.. -, dy (and here we make no conditions on 

their being zero or non-zero). For example, the class 9, contains all 

constant, linear, quadratic, and cubic polynomials. Also, if p © P,;, then 

four parameters (coefficients in the previous expression) are needed to 

determine p precisely. 

Polynomials can be added together in a natural way to produce a new 

polynomial. Thus, if p, q © Py, then the sum p + q (as defined in Section 
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1.1) is also in Py and is obtained by adding corresponding terms in the 
expressions for p and q. Thus, if 

DO) = Gyx teGye 5 ethene OE Cos 

g(x) = byx™ + by_yx8 1 +... 4+ b,x + Do, 

then p + q is defined by 

(p + 4) (x) = p(®) + q(x) = (an + by)x% + (Qy—-1 + by-1) x87! 
Gr inte (Odeas Ox hart Ogee Dad. 

Note that, given the degrees of p and q, say d, and d>, respectively, there 
is, in general, little that can be said about the degree of p + q. The best 
general statement to be made is that either p + q is the zero polynomial or 

0 < deg(p + q) S max{deg p, deg gq} = max{d,, d>}. 

for example (where > means “implies”), 

PX) =x t.25 qx)=—x—-2, > (p+q)@)=9, 

POS 228.435 Wd) S37? SB So Pe Ware ee 

For a scalar multiple (cf. Section 1.1) of a polynomial p (as above) we 
have that, for any real number aq, the function ap is defined by 

ap(x) = a(ayx’ +... + a,x + a9) = (aay)x® +... + (aa,)x + (aay). 

Several important properties of polynomials are summarized in the 
Theorem 1.7.1. The terms “vector space” and “dimension” used in the 
theorem have precise mathematical meanings which we will not pursue in 
detail. For the first term (as noted in Section 1.3) a class of functions (or 
vectors, or other objects) f with the property that p,q €©¥YF implies 
p+q€fand ap € F for all real numbers a, is called a vector space. This 
property is certainly enjoyed by the class Py where N is any fixed positive 
integer. The dimension of Py is, in effect, determined by the number of 
coefficients ay, a),..., ay needed to pin-down a particular function in Py. 

Theorem 1.7.1 The vector space Py has dimension N + 1. 

Note that, in contrast to this statement, no mention is made of “dimension” 
in the corresponding statements concerning €"[a, b] (in Section 1.3) and 
‘6"(S) (in Section 1.6). The reason for this is that, in the last two examples 
of vector spaces, all the functions in the space cannot be described in terms 
of any finite number of parameters. Consequently, they are said to be 
spaces of infinite dimension. 
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Before completing this introduction, we should note that our definition 
of a polynomial function does not give a good method to evaluate a 
polynomial computationally. If we work directly with the definition, the 
powers of x up to the Nth would be computed, multiplied by the coefficients 
a;, and then summed. This is found to take 3N(N + 1) multiplications and 
N additions. In contrast, Horner’s scheme requires only N multiplications 
and N additions. This scheme can be described by introducing multiple 
parentheses in the expression for p that indicate the order in which opera- 
tions are to be performed: 

p(x) = (... ((ayx + ayes)x + ay-g)e +... +4,)x +a. (1.7) 

1.8. Polynomials as products 

Polynomials can also be multiplied together in the familiar term-by-term 

fashion. Thus, 

[A A pecat, —il q(x) =x+3, D> (pq)(x) = p(x)q@) 

=x? 4+ 2x -3, 

p(x) = (0.1)x* — (1.8)x, q(x) =2, > (pq)(x) =p(~)q@) 

= (0.2)x* — (3.6)x. 

If f is a function with domain S and the number x) € S is such that 

f(xo) = 0, then xp is called a zero of f, or a root of the equation f(x) = 0. 

Clearly, if f is continuous on S, then the graph of f crosses or touches the 

x-axis at xj. For a polynomial p of degree one, we can write p(x) = ax + b 

for some numbers a, b with a # 0. Such a polynomial [defined on (— ~, «)] 

has one and only one zero, namely at Xo = —b/a. 

Consider two such polynomials of the form 

pi(x) =x — x1, P2(x) =x — x2. 

The product polynomial, say q, is in P, and has the form 

q(x) = (x — x1) — x2) mix? — (4, +42 )% + X4%2- 

Thus, g has zeros at x, and x,, where x,,X2 are the zeros of P1,P2> 

respectively. This situation is shown in Fig. 1.15. More generally, if 

X1,--+)Xy are real numbers, then we can define a polynomial q € Py by 

N 

q(x) = (x — x1) (% — x2). cote IT — x), 
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Fic. 1.15 Product of two first-degree polynomials. 

and q will inherit the zeros x,,x2,..., x, from its linear factors. This point 

is illustrated in Fig. 1.16, where the graphs of three polynomials from P, 
are shown. 

Fic. 1.16 Three cubic polynomials on [—1.3, 2.2]. (a) x3, (b) —x3+3x+2, and (c) 
xi — x? —- 2x, 
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We have been considering the construction of polynomials of degree N 
as products of N polynomials of degree one (i.e. of linear polynomials). 
Can every polynomial of degree N with real coefficients be expressed in 
this way? It is very important to realize that the answer is No—not if we 
confine our attention to factors that also have real coefficients. 

y 

Fic. 1.17 Quadratic polynomial with no real zeros. 

To illustrate this, consider the quadratic p(x) = x? + 1. Figure 1.17 shows 
that p(x) has no real zero, and this suggests immediately that p(x) cannot 
be factored into the product of two products of two linear polynomials; 
otherwise the graph would have to meet the x-axis somewhere. The same 

conclusion is reached when one tries to solve the equation x* + 1 = 0 by 
the formula method. 

In order to express every real polynomial of degree N as a product of N 

polynomials of degree one, it is necessary to extend the concept of number 
to admit the complex numbers. Then it can be done. For example, x? + 1 = 
(x —i)(x +1). This is a consequence of the Fundamental Theorem of 
Algebra, which states that every polynomial of positive degree with real or 

complex coefficients has at least one (generally complex) zero. Once this 
important fact is given, it is relatively easy to show that every (complex) 
polynomial of degree N > 0 has N (generally complex and possibly multiple) 
zeros. In Section 1.9, we investigate a little more closely the relationship 
between the zeros of a polynomial and the existence of linear factors. 

1.9 The division process and zeros of polynomials 

The division of one polynomial by another is a fundamental idea of algebra, 

and a technique for performing such a process is included in the high school 

curriculum. Given polynomials a(x) and (non-zero) b(x), the objective is 

to find a quotient polynomial q(x) and a remainder polynomial r(x) whose 

degree is less than that of b(x), or is the zero polynomial, for which 

a(x)/b(x) = q(x) + [r(x)/b@)], 
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or, which is the same, for which a(x) = q(x)b(x) + r(x). A process for 

finding g(x) and r(x) is called a division algorithm. 

In order to clarify the significance of this process, the following result is 

needed and can be found in college or first-year university texts on algebra. 

Theorem 1.9.1 Let a(x), b(x) be polynomials, b(x) #0. Then there exist 
unique polynomials q(x) and r(x) for which 

a(x) = q(x)b(x) + r(x), 
and either r(x) = 0 or r(x) has degree less than that of b(x). 

A particularly important case of this result is that in which b(x) = x — X9 
for some fixed real number x, — a polynomial of degree one. Then the 
result says that there are unique polynomials q(x) and r(x) for which 

a(x) = q(x)(x — Xo) + r(x), 

where r(x) = 0 or r(x) has degree zero; i.e. in either case, r(x) is a constant 
polynomial, say r. Thus, 

a(x) = q(x)(% — x0) +1, 
If we now substitute x, for x, it is found that r = a(x). This is the gist of 
another important result known as the remainder theorem. 

Theorem 1.9.2. The remainder on division of the polynomial a(x) by x — x9 
iS a(Xo). 

The following factor theorem is an immediate consequence of the remain- 
der theorem: 

Corollary 1.9.3 The number x, is a zero of the polynomial a(x) if and only 
if a(x) has a factor x — Xo. 

Thus, Xo is a Zero of the polynomial a(x) if and only if a(x) = q(x)(x — x9) 
for some polynomial q(x). Recall that there may be no real x, that is a zero 
of a given polynomial. This is the case for polynomials 2x? + 3 and 1 (the 
constant polynomial), for example. In order to make a more general 
statement about the existence of a zero of a polynomial, it is necessary (as 
in Section 1.8) to introduce the study of complex numbers and polynomials 
whose coefficients are complex numbers. We shall not go into this. 

Suppose that a(x) has a zero at x9. Then, a(x) = g(x)(x — xo). It is possible 
that the quotient polynomial q(x) also has a zero at x, and it is important 
for us to introduce some terminology for this situation. Thus, we say that 
Xo is a simple zero of a(x) if a(x) = q(x)(x — xo) and q(xo) #0; i.e. x9 is not 
a zero of the quotient q(x). 
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On the other hand, if xo is a simple zero of q(x) [as well as being a zero 
of a(x)], then we have g(x) = q,(x)(x — xo) with q(x 9) #0 and a(x) = 
q(x)(x — xo). Substituting for q(x) from the first equation, we deduce that 

a(x) = q(x)(x — Xo)’, 

and q,(xo) #0. In this case, we say that a(x) has a double zero at x». 
More generally, if a(x) = q(x)(x — x9)”, where q(x) is a polynomial with 

q(Xo) #0, we say that a(x) has a zero of order m at xy. If m> 1, then a(x) 
is said to have a multiple zero at Xp. 

1.10 Graphs of polynomials 

We shall see many examples of graphs of polynomials in the sequel. In 
Section 1.10, a few points are made that are generally useful in sketching 
or reading such graphs. 

(1) The graph of every polynomial of degree one is a straight line. 
Polynomials of degree zero, i.e. constant polynomials, also have straight- 

line graphs; these are parallel to the x-axis (horizontal). 
(2) The graph of every polynomial of degree two is a parabola with axis 

of symmetry vertical. If a, >0, the parabola opens upward; if a, <0, it 

opens downward (cf. Fig. 1.18). 

a a,> O 

Fic. 1.18 Parabolas. 

(3) It is a consequence of the Fundamental Theorem of Algebra that 

the graph of a polynomial of degree N can cross the x-axis at most N times; 

i.e. a polynomial of degree N has at most N zeros. Consequently, graphs 

of high-degree polynomials can display numerous oscillations. 
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(4) A polynomial of degree N behaves very much like its leading term 
ayx‘ when x is large and positive or negative. As a consequence, poly- 
nomials become large in value when x becomes large (+ or —). This 
phenomenon is illustrated in Fig, 1.19. 

Fic. 1.19 Cubic polynomial and its leading term. 

(5) A polynomial p(x) crosses the x-axis at x = c only if p(x) has a zero 
of odd order at c (Section 1.9). If p(x) has a factor (x — c), then the graph 
of p(x) has a horizontal tangent at x = c if and only if c is a multiple zero 
of p(x) (see Section 1.9 and Fig. 1.19). 
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Curve Fitting with Polynomials 

2.1 Polynomial interpolation 

The most primitive and important class of functions for the purpose of 
curve fitting is undoubtedly the class of polynomial functions introduced in 
Sections 1.7-1.10. The most elementary notion of curve fitting is that of 
interpolation, and so we begin by combining these with a discussion of 
polynomial interpolation. 

In applications, we frequently come across a set of data that is thought to 
be derivable from some underlying function that also fills in the gaps 

between the data in some way. More precisely, we often have a set of 

function values (e.g. elevations) at some points, perhaps slopes at the same 
or other points, and wish to find the function that fits this data. This problem 
is still not sufficiently well stated. In the first place, the meaning of “fits” 
is not given, and if this were to be clarified, then “the function” is most 
likely far from unique. Let us examine a situation where this happens. Let 
two distinct x-values x) and x, be given together with corresponding function 
values f, and f;. There exists a unique first-degree polynomial a,x + dy that 
fits the data in the sense that a,x) + a) = fy and a,x, + dy = f);1.e. its graph 

is a straight line passing through the points (x), fo) and (x,, f,). However, : 

there are infinitely many second-degree polynomials (parabolas) that fit 
the same data in the same way. In order to clarify this issue, we must state 

at least 

(1) what concept of fit we are using, and 

(2) what kinds of functions we shall use to achieve this fit. 

If (1) and (2) are properly chosen, there may exist a unique function of the 

kind allowed in (2), achieving the type of fit required in (1). 

In the case of the simplest kind of polynomial interpolation, the data 

29 
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consist of distinct x-values and corresponding f-values; let us denote them 

by 

eae acca Claritas 7s e 

As illustrated above, the fit consists of the requirement that the function 
f(x) employed interpolate; that is, it must satisfy 

(aya R, - = 0,154. 

This means that the graph of f(x) must pass through the points (x,, f;), i= 
0,1,..., N, in the xy-plane. The functions permitted are those in Py, i.e. 
polynomials of degree N or less. In this situation there is a fundamental 
result that shows that we have made a happy choice for (1) and (2). 

Theorem 2.1.1 Jf {x9, x), ..., Xy} is a set of N+ 1 distinct numbers then, 
for any set of numbers { fo, f,, ..., fy} there exists a unique polynomial in 
the class Py, say p(x), such that p(x;) =f;,i=0,1,..., N; i.e. whose graph 
passes through the N + 1 distinct points (x;, f;),i1=0,1,..., N. 

Note carefully that the polynomial has degree N or less. Thus, if the 
N + 1 data points lie on a straight line, the polynomial in Py will look like 

Ox8 + OxN-1 +... 40x? + a,x + ap, 

where a, and ay have appropriate values. 
Note also that the general Nth-degree polynomial contains N + 1 con- 

stants dj, ..., @y that have to be found. The theorem says that the N + 1 
interpolation conditions determine these uniquely. 

As an example, consider first the geometrically obvious case of just two 
points. Let x9 = 0.x, = 1; fy = 1, f; = 3. Since there are two distinct points 
(N + 1=2), N=1, and so there exists a unique first-degree polynomial 
that interpolates. Let it be p(x) = a,x + ap. Imposition of the interpolation 
conditions yields the two equations aj = 1 and a, + ay = 3. Solving, we get 
a) = 1, a, = 2, and so p(x) = 2x +1. 

Next, consider polynomial interpolants as approximations for the func- 
tion 1/(1 + x’) on the interval [—4, 4]. For N = 3, 6, 12, ..., we choose 
for the N + 1 abscissas x; equally spaced points placed on the interval [45 
4], with x9 = —4 and xy = 4. Then, for each x; take f, = 1/(1 + x?). The 
resulting polynomial interpolants of degrees 3, 6, and 12 are shown in Fig. 
2 

It will be observed that, as N increases, the approximation seems to 
improve near the centre of the interval, although oscillatory behaviour is 
pronounced, particularly at the ends of the interval. 
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< 

CO _ ee <—- 
=4 -3 2 -| O 2 x 4 a 

. N=6 

[poe ; 
-3 -2 -| O 

Wj 

ot =e = O 

Fic. 2.1 Polynomial interpolants. 

This example suggests that, if the x; are free for choice, then one may 
do better in the approximation process if, instead of choosing evenly spaced 
abscissas, we allow them to cluster near the ends of the interval. This is 

indeed the case. In Fig. 2.2 we show comparable results where, for each 
N, the numbers Xo, x1, . . ., Xy are proportional to the zeros Zo, Z1,..., Zn 

(known to be all real and distinct) of the Chebyshev polynomial of degree 
N + 1. For convenience, the constant of proportionality is chosen such that 
Xo = —4 and x, = 4. [We refer the interested reader to any standard text 

on Numerical Analysis, such as Conte and de Boor (1980) for further 
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FiG. 2.2 Polynomial interpolants at the (extended) Chebyshev abscissas. 

details.] The point of view of the present volume, that of curve fitting, 
applies most frequently when the data is prescribed and the abscissas are 
not free for choice. The reduction in error of approximation by the choice 
of abscissas is a topic of approximation theory that is not investigated here. 

We next introduce some examples that will be used repeatedly throughout 
this volume in order to facilitate comparisons between different methods 
of curve (and, subsequently, surface) fitting. The data for curve-fitting 
procedures are sampled from mathematically defined functions that can be 
thought of, in a picturesque way, as a “mountain” on a plain together 
with a “ramp/mountain” combination. The graphs of these functions are 
common to the several parts of Figs. 2.3 and 2.4, respectively. 

In Fig. 2.3, we illustrate polynomial interpolants of degrees 4, 8, and 16 
for the mountain example when abscissas are equally spaced (on the left) 
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and randomly selected (on the right). The irregular spacing is likely to be 
representative of many practical situations. In Fig. 2.4, comparable results 
are illustrated for the ramp/mountain case. The sets of abscissas used are 
just those of Fig. 2.3. The oscillatory behaviour and large swings in value 

of the higher degree polynomials are discouraging and indicate that “high 
degree” is not to be equated with “good”. Consider the comments in (3) 
and (4) of Section 1.10. 

2.2 Remarks on the computation of polynomial interpolants 

Let us consider briefly the numerical implementation of the theorem stated 
in Section 2.1. The most natural way of finding the value of the interpolating 
polynomial p at an arbitrary value of x is first to find the coefficients do, a, 
..., Gy in the definition of p (Section 1.7) and then to evaluate p(x) by the 

Horner scheme [cf. Eq. (1.7)]. 
To find the coefficients of p we have the N+ 1 conditions p(x;) = f,, 

i=0,1,..., N, and if we write these out in full, we have 

2 PN as Ay + 4Xp + anxpt+...+ ayxo =fo, 

Ag + a4Xq +aoxt +... + ayx? =f, (2.1) 

Ay + aixXn + anxh +... + ayxh = fr. 

It is customary, useful, and convenient to write this system of N+ 1 

equations in the N + 1 unknowns, do, @;,..-, @y in matrix form. We define 

the following matrices: 

1 x9 x6 ane xp ag fo 

Ce eee ke ay i 
V= 2 ’ a= ; ’ f= : > (2.2) 

1 XN Xi meee x an fy 

(the last two are also known as column vectors), and the set of equations 

can then be abbreviated to Va = f, where V, f are known, and a is to be 

found. 
Now the computational task of solving equations in this form is a familiar 

one. The fact that the abscissas are distinct means that the inverse matrix 

V-! exists and (as our theorem asserts) there is a unique solution to the 

equations, which can be written a=V''f. 
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Every computer installation that has a commitment to scientific work 
will have a package program available for this task, and as long as N is not 
too large and the x;’s not too close together, the package program will 
doubtless give a sufficiently accurate solution. However, the coefficient 
matrix V, known as a Vandermonde matrix, is notorious. For modest sizes 

of N, it is very ill-conditioned (in particular, its determinant is very small), 
and solutions may be subject to severe accumulation of round-off error, or 
the program may fail altogether. Thus, this direct algebraic attack on the 
problem is not recommended for a general-purpose computer code. 

Note also that, for essentially the same reason, when some abscissas are 

very close together, then the polynomial interpolant, even when accurately 
computed, will be very sensitive to errors in the corresponding values f,. 
This is a geometrically obvious phenomenon. 

Thus, although theoretically important, this natural approach to eval- 
uating p is not suitable for large-scale computation. The process to be 
described next in Section 2.3 not only has considerable theoretical interest, 
it is also computationally much more satisfactory. From the strictly com- 
putational point of view, however, even this is not the best. The interested 

reader is referred to appropriate algorithms, depending on divided dif- 
ference representations for some strong competitors [and to be found in 
texts on numerical analysis, such as Conte and de Boor (1980)]. 

2.3 Lagrange’s method for interpolation 

In this section we describe a method attributed to the French mathematician 
Lagrange (1736-1813) for finding the polynomial interpolant p € Py to the 
data pairs (x;, f;),i=0,1,..., N. Instead of calculating the coefficients ao, 
a,,..., Ay Of p, we begin by considering a set of N + 1 different problems, 
each of which is relatively easy to solve and which can subsequently be 
combined to solve the problem posed initially. 

The idea is to solve the N + 1 simple interpolation problems obtained 
by taking the distinct abscissas x9, x;, ..., xy as already presented, but 
taking the N + 1 primitive sets of f values, 

1 Obs ees OP POR RO, 9 0 Uh eee en) ney (2.3) 

in turn. According to the basic theorem (Theorem 2.1.1), each of these 
problems has a unique solution. 

Before considering the general case, let us examine a primitive example 
with just two data points (x9, fo) = (0, 1) and (x,, f,) = (1, 3). 

There are now two primitive sets of f-values: 

{1, 0} and {0, 1}. 
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We solve first for the polynomial in #, passing through (0,1) and 
(1,0). We denote this by Lo. It is found that Lo(x) = —x + 1 [check that 
Lo(Xo) = 1 and Lo(x,) = 0; subscripts identical corresponds to the value 1, 
subscripts different corresponds to the value 0]. 

Then, we solve for the polynomial L, in %, passing through (0, 0) and 
(1,1). It is found that this polynomial is L,(x) =x [check again that 
L,(0) = 0 and L,(1) = 1]. 

It is now clear that the original interpolation problem is solved by the 
simple linear combination of Ly and L, given by 

p@) =folol(x)+ fhli@y= 1-1 1) 43) = 2x +1. 

In fact, we can say more. For any pair of ordinates fo, f;, the polynomial 

in P, given by 

p(x) = foLo(x) + fili() 

solves the interpolation problem with data (0, fo) and (1, f,) because 

P(X%0) = foLo(%o) + fiLio) =fol) + fi) = fo, 

P(%1) = foLo(41) + fi£11) = fo(0) +f) =f. 

The functions Ly, L, are known as the fundamental Lagrange polynomials 

determined by the pair of abscissas 0 and 1. They are also called the cardinal 

functions for polynomial interpolation at these two abscissas. 

Let us return now to the general case in which N + 1 distinct abscissas 

Xo, X1,---, Xn are given. Using the N + 1 data sets [Eq. 2.3], we are to 

construct N + 1 cardinal functions Lo, L;,..., Ly in the class Py with the 

properties 

La 
L,(%;) = ithe (2.4) 

0, iF]. 

When these are found, the original problem is solved by defining 

N 

p(x) =folo() + fili@) +... +fvbw@)= BALI@), 2-5) 

for, using Eq. (2.4), we have p(x;) =fi,i=9,1,..., N, and since Lo, £1, 

..., Ly are in Py and Py is a vector space, it follows that p is also in Py. 

It only remains to find the cardinal functions, and this can be done 

explicitly. Note that, by Eq. (2.4), L; has N distinct zeros at Xo, X1,..-; 

X)-1) Xia1, +--+» ¥y- AS pointed out in Section 1.9, this means that L(x) has 

factors (x — Xo), (x — x;), and so on. Since L; has degree at most N, it 
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follows that we may write 

Ti) Re ye Mia el ae Xe Ma Aged, eat a 

N 

=k II (@-x)), (2.6) 

a 
for some real number k. To evaluate k, we use the remaining piece of data 
about L,;, namely that L,(x;) = 1. Thus, 

N 

L;(x;) — 1 = k S (x; ae X;): 

j=0 
jJ#i 

Solve for k and substitute back into Eq. (2.6) to obtain the result 

Lgl oe) ieee Uo RS pg Pan la 
ie Mo) iin (pea X peat Noe ee a ie otal 

N N 

“Hes [Thess i >Olay, Abner 
j=0 j=0 
J#i J# 

Note that the factor x — x; is missing from the numerator and x; — x; from 

the denominator. 

EXAMPLE The cardinal functions for polynomial interpolation at the three 
abscissas x) = 0, x, = 1, x2 =3 are [using Eq. (2.7)] as follows: 

ee oe a 
Lelia iy ge lead 

pore) Gorb2) watt a 
Le eqy ae ee ee ae 

iol ia) eel) ins a 

The interpolating polynomial for function values fy, f;, f> at 0, 1, 3, 
respectively, is then given by Eq. (2.5): 

P(t) = fo §(x? — 4x + 3) — fy AX? — 3x) + fr AX? — 2x). 
The three cardinal functions are shown in Fig. 2.5. 

It is clear from Eq. (2.7) that each cardinal function has degree N 
(N = 2 in the example). However, if the data points should lie on a straight 
line, then the summation in Eq. (2.5) will have cancellations in such a way 
that the interpolating polynomial p will be in 9). 
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Fic. 2.5 Three cardinal functions; N = 2. 

In fact, it can be proved that every polynomial in ?, can be expressed 
in the form of Eq. (2.5). The summation in Eq. (2.5) is described as a linear 
combination of the functions Ly, L;,..., Ly, so in other words, every 

polynomial in ?y is some linear combination of the fundamental Lagrange 

1] [tetx) 

x 

L4(x) 

y 

Lo( x) 
Picsiie cane RUE ARNE UAE? 

Fic. 2.6 Three polynomial cardinal functions of degree 16. 
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polynomials. Since these functions enjoy another technical property known 
as linear independence, they are said to form a basis for Py (a cardinal 
basis in this case). This particular basis has the defining property that if 

N 

p@) =I), thenpO) = bape 0 ee 
i=0 

If we return to the defining expression [Eq. (1.6)] for a member p of 
Py, we observe that p is expressed there as a linear combination of N + 1 

other functions. In this case, the functions in question are the power 
functions given by 1, x, x*,..., x’. These are also linearly independent, 
and so they also form a basis for Py. (Indeed, any non-trivial real vector 
space will always have infinitely many bases.) It is important to realize that, 
although Eqs. (1.6) and (2.5) may look very different, any given function 
in P, can be represented in either way. 

In Fig. 2.6, we illustrate some polynomial cardinal functions associated 
with 17 equally spaced abscissas. They show how the presence of data at 
the point where the function has the value 1 is incorporated into the 
complete polynomial p(x). Here, the L(x) terms oscillate and grow as |x| 
grows. This behaviour demonstrates again (what are often seen as) some 
unfortunate characteristics of high-degree polynomial interpolation (cf. the 
examples of Section 2.1). 

2.4 Hermite or osculatory interpolation 

The method by which the polynomial interpolation problem was solved in 
Section 2.1 is attributed to Lagrange. The name of Hermite (1822-1901) is 
associated with a more general polynomial interpolation problem that 
can also be solved by means of cardinal functions, although there are other 
methods. In its simplest form, the data is given at N + 1 distinct points Xo, 
X\,...,Xy as before, and at these we are given not only ordinates Tostic 
.. +, fy but also slopes fj, f,,..., fy. We are to find a polynomial p(x) with 
the properties 

Pavel, pix) si.. t= O10 IN 

There are 2(N + 1) =2N +2 conditions here, so p(x) will require that 
many degrees of freedom [i.e. coefficients in Eq. (1.6)]—its degree must 
be 2N + 1. It turns out that the function class Pon +1 iS, in fact, a happy 
match with this set of interpolating constraints. 

Theorem 2.4.1 There exists a unique polynomial in class Pon +1 Satisfying 
the above conditions. 
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The full generality of this theorem is seldom used in computational 

practice. So, for the purpose of illustration, and for future reference, we 
restrict attention to the case N = 1, i.e. two points only. There are four 
pieces of data, two at each point, and the degree of p(x) may be as high as 
three. To solve this problem, we first construct four cardinal functions Ho, 
Ky, H,, K,. These are determined by Hermite interpolation at the points 

X 9 and x, with four primitive data sets. In fact, we impose the interpolatory 

conditions 

Ho (xo) = 1, Ko(%o) = 9, (xo) = 9, K, (xo) = 9, 

Ho (x9) = 9, Koo) = 1, Hj (xo) = 90, Ki (%o) = 9, 

Hy(x,) = 9, Ko (x1) = 9, H,@) = 1, K,(%) = 9, 

H(x;) = 9, Ko(x,) = 9, Hi (x1) = 0, Kia) = 

> X 

K, 

Fic. 2.7 Hermite cardinal functions; N = 1. 

Each of these cardinal functions is a cubic and is not hard to construct. The 

graphs are shown in Fig. 2.7. The interpolating polynomial is then 

p(x) = foHo(x) + foKo(x) + fili() + fi Ki@). (2.8) 

In order to construct the cardinal functions, observe that each is a 

polynomial of degree three. Now Hy has a double zero at x = x, (cf. Section 

1.9), so 

H)(x) = a(x + bye — x1)’, 
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where a and 5 still have to be determined from the conditions Ho(x9) = 1 
and Ho(x,)) = 0. These yield 

a(x + b)(xo — x1) = 1, 

a(Xo Za x42 aa 2a(xo ae b)(Xo in x) ate 

From the second equation, we may cancel out a and (x9 — x;) to get 

(Coun al) 2 cee D aU. 

and so b = (x, — 3x9)/2. Substitute this into the first equation and solve for 
a: 

1 Zz 2 

7 (Xo = xq) ve + 3(x; — 3x9)] ei (xo x1)? (x, —Xo) “Oe (xo 4) 

If we put x, — x9 =/, then a and b simplify to a = 2/h? and b = 4h — xo, 
and Hy is completely determined. 

It is easier to construct Ko(x). Here we observe that xy is a single zero 
of Ky whereas x, is a double zero, so 

K(x) = cl — xo) @ — x)’, 

and c is determined from the slope condition at x9: Ko(x 9) = 1. This gives 

xq — xy) 2e(kp = Xp (ey — ¥q) a ds 

and so 

=e ay) =a 4 

The remaining two cardinal functions are obtained in a similar way. Here 
they are set out in full: 

HyQ)=5 (x=x, +5) =x), AHiij= - 5 (e-¥0)? (x=, -5), 

KWO=Be-we—n), — K@=Ae-m)2@-x). 29) 
Recall that for any four pieces of data fo, fi, fi, fi at xo and x,, the 

unique Hermite interpolating polynomial from #; is now given by sub- 
stitution in Eq. (2.8). As a simple example, the interpolant determined by 
fo=fi = 1, fo =f) = —1 is shown in Fig. 2.8. 



+ + eX 

X6 xy 

Fic. 2.8 Hermite interpolant; N = 1. 

Fic. 2.9 Lagrange and Hermite interpolants to sin (27x) on four abscissas; N = 3. 
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As a second example, consider the Lagrange and Hermite interpolants 
to f(x) = sin(27x) at four abscissas, x = 0, 3, 3, 1. The graph of f(x) is 
indicated by the solid curve in Fig. 2.9, and the four points on the curve at 
which we are to interpolate are indicated by crosses. The Lagrange inter- 
polant reproduces the four function values only and is in the class of 
polynomials ?3. The Hermite interpolant reproduces both function and 
slope values at the four abscissas and is in ?;. The Lagrange interpolant 
deviates from f(x) by as much as 30% in [0, 1], whereas the error in the 
Hermite interpolant on this interval is not visible on the graph and, in fact 
does not exceed 0.002. In both cases, note the rapidly increasing error as 
x increases beyond the extreme abscissa, x; = 1. In general, if there are 
N + 1 abscissas, we may expect the Hermite interpolant (or degree 2N + 1) 

to follow the trend of the data better than the Lagrange interpolant (of 
degree N). 

One way of avoiding high-degree polynomials is to join adjacent pairs 
of data points with polynomials of some degree, different from point to 
point, perhaps, and to make sure that where these join, a certain amount 
of “smoothness” is achieved. Spline functions offer such a possibility 
and are discussed in Chapter 4. Other forms of piecewise polynomial 
interpolation are dealt with in Chapter 3. 

There is no difficulty in principle in the treatment of polynomial inter- 
polation when the number of consecutive derivatives assigned varies from 
one abscissa to another [call f(x;) a zeroth-order derivative at x,]. [For 
discussion and implementation of algorithms for this case, see Section 2.7 
of Conte and de Boor (1980). ] 

2.5 Minimizing the sum of squared deviations 

The concept of fit of a curve used so far in this chapter has been that of 
interpolation. We now consider another idea that also qualifies as a method 
of fitting a curve. The data consists of N + 1 distinct abscissas Xg, Xa, 45, 
..+,Xy at which ordinates fo, f), fo, .. ., fy are assigned. The functions we 
admit in making the fit are those of Y,,, where m<N. We consider a 
typical function p € P,, and call p(x;) — f; the deviation of p from the data 
at x; (cf. Fig. 2.10). If a function were to interpolate the data, then each 
deviation would be zero. Our point of view now is to settle for less and 
admit non-zero deviations for the sake of using a simple function p, i.e. we 
anticipate that m will be very much less than N. This introduction will be 
empirical, and we shall return subsequently to some discussion of the 
philosophy of the approach adopted. 
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For any p € P,,,, we consider the sum of the Squared deviations: 

E(p) = 2 [p(x,) - fi’. (2.10) 
The notation E(p) resembles that used for function values but stands for 
a somewhat more sophisticated idea. Here p is a function rather than a 
point of some domain S. In this context, E is called a functional and assigns 
a number to p according to the rule indicated in Eq: 2:10), 

p(x;) 

| 
| 
| 
| 
| 

! : > xX 

th Xi+t 

Fic. 2.10 Deviations of p(x) from the data. 

Our concept of fit is now prescribed as follows: find a polynomial p € ?,,, 
for which EF is minimized. We shall see that there is only one such minimizing 
polynomial. This polynomial is, of course, determined by m + 1 coefficients 
ay, 41, .-.., An. We can view E of Eq. (2.10) as a function of the m+ 1 

coefficients of p and use multivariable calculus to formulate necessary 
conditions for E to be minimized. This approach to fitting was also intro- 
duced by Lagrange, and he named it the method of least squares. 

The necessary conditions referred to are (Thomas, 1972, p. 522) that 
the partial derivatives dE/aa; vanish ford’ ="0; 1. -,M. (Indeed, this iS 

necessary for any stationary value of E.) Observe that, since E is considered 
a function of do,...,4,, these derivative conditions will provide m+ 1 

equations in these m-+1 coefficients. We proceed to formulate these 
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equations. For j=0,1,...,m, we have [recalling that p(x) = a) + 

Oi. Sa | 

N 

=F = 2 Apo) — A) Be = 2 > sills) -f 
i=0 a; 

N N 
= | > xi(agp t+ayx; +... +4,,x") - »S xf. | 

i=0 i=0 

N N N N 

= 2 (= x!) ay + (= ft" ) Oy het (> ui" ay = (= xifi)]. 
i=0 i=0 i=0 i=0 

Observe that these equations are in fact linear in ao,...,a,, and the 

coefficients are prescribed by the data. We rewrite them as an array (recall 
that for any real number a, we define a° = 1): 

N N N N 
49 xi +a, Rat... + ay Dx? => fis 

He iL bz 

N N N N 
Qo DATA ede Paap ad, Doxet! => xf, (2.11) 

i=0 i=0 i=0 
N n N 

ay Dx + a, Doe +... 4+a_ xem = > x" fi. ia mr i=0 i=0 

These are known as the normal equations for the problem. It is reassuring 
to know that this algebraic system always has a unique solution and that 
this solution defines a minimum of E(p). 

Theorem 2.5.1 If xo, x ,...,Xy are distinct points and m < N, then there 
is a unique polynomial p(x) € ?,, for which E(p) is minimized, and the 
coefficients of this polynomial are given by the solution of the normal 
equations (2.11). 

An interesting special case is that in which m = N. Here, the number of 
coefficients equals the number of data points and the minimum value of 
E(p) is zero. This is because the minimizing polynomial is precisely the 
interpolating polynomial from Py for which each deviation in the sum of 
Eq. (2.10) is zero. The algebraic reason for the coincidence will be indicated 
shortly. First let us consider a simple example. 

EXAMPLE Fit a straight line (m= 1) to the following data by the least 
squares method. 
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& fi 

6.91 
9.62 
9.74 

10.01 
11.48 
11.90 AB WNrF CO NOMARnARN ae 

Here N=5, 2x;= 42, Ux? = 364, Tf, = 59.66, and =x;f;= 448.42. The 
normal equations are 

6a) + 42a, = 59.66, 

42a, + 364a, = 448.42, 

giving 

ay = 6.683, a, = 0.4400, 

and the best least squares straight line is (cf. Fig. 2.11) 

p(x) = 0.4400x + 6.863. 

Fic. 2.11 Least squares fit of a straight line 
(i.e. a polynomial p(x) from ;). 

Another example is illustrated in Fig. 2.12 for which we omit the com- 
putational details. The data are taken from the ramp/mountain function 
of Fig. 2.4. The abscissas are 17 equally spaced points (N = 16). Figure 
2.12 indicates two least squares fits, one of sixth degree (m = 6) and the 
other of ninth degree (m = 9). 
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Fic. 2.12 Two least squares fits to the ramp-and-mountain function; N = 17. 

2.6 Matrix-vector form of the normal equations 

It is illuminating, and will subsequently be useful, to describe the normal 
equations in matrix form. Thus, if X is the (m+ 1) x (m+ 1) matrix with 
elements 

N 

Mri Qe xT ors = Onl oom, 

and we introduce column vectors 

ao fi fo 

cg) lal ee Daf . f= f (2.12) 

a, Sxry fr 

Then Eq. (2.11) are simply Xa =f. Define an N x (m+ 1) matrix V in 
terms of the abscissas by 

xh xe xo 

Ler KiiteiX Same cwen hat tt 
V= —eae Ts (2.13) 
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Then it is easily verified, by using the definition of matrix multiplication, 
that X = V’V and f = V’f. Thus, the normal equations Xa = f can also be 
written in the factored form: 

V7Va = VE. (2.14) 
It is no accident that the matrix V is a more general form of the 

Vandermonde matrix introduced in Eq. (2.2) in connection with polynomial 
interpolation. Note, in particular, that if m= N then V is square and (as 
noted in Section 2.2) has an inverse. It follows that (V7)~! also exists in 
this case, and so multiplying Eq. (2.14) on the left by (V")~!, we obtain 
Va =f and then a=V'f, the solution of the polynomial interpolation 
problem. Thus, as remarked above, the least squares fit is Just the poly- 

nomial interpolant in this special case. 
The warning remarks made in Section 2.2 concerning direct computation 

with V are doubly appropriate when applied to the normal equations. The. 
factorization X = V’V of the coefficient matrix can lead to fiercely ill- 
conditioned numerical problems. It is necessary to design general-purpose 
computer codes for this problem with great care. The interested reader is 
referred to Lawson and Hanson (1974) or chapter 7 of Forsythe et al. (1977) 
for detailed discussion and codes. 

2.7 The rationale for least squares methods: polynomial regression 

Our introduction of the least squares process has been empirical—as a 

process, which, by minimizing the sum of squared deviations, provides a 

function that may represent a mean value (or even the value) of a function 

from which the data has been sampled. There are other ways of finding 

such a mean function, however, which may look quite different from the 

least squares fit. For example, if we continue working with the deviations, 

we could equally well choose to find p(x) € P,, so as to minimize 

N 

D [pte fil or max, |p) ~ fl 

instead of E(p) of Eq. (2.10). 

The primary reason for choosing E(p) is simply computational 

convenience. In the absence of a good reason for choosing another of these 

criteria, one would choose E(p) because the resulting least squares fit is 

much the easiest to compute. The other two criteria suggested here have 

been the subjects of analysis, but they give rise to nonlinear equations for 

the coefficients of p, requiring rather more mathematical expertise for their 

solution than the confines of this volume allow us to present. 
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There are, however, certain problems where the least squares technique 
has a rational justification. The relevant process is of a statistical nature 
and is known as polynomial regression. To give a quick introduction to this 
we first need the notion of a normal probability distribution. Here, it is 
supposed that the outcome of a statistical experiment can take any real 
numerical value. A probability distribution is then a function n(x) defined 
for x € (—*,%) with the property that the probability that a measured 
outcome y of the experiment is between a and £ (for any real aw and £) is 
(where P is probability) 

B 
Pia y= fh) = i n(x) dx. 

Since certainty is measured by a probability 1 and all probabilities are non- 
negative, a probability distribution must satisfy the conditions 

ia n(x) dx = 1, (2.15) 
—<% 

and n(x) = 0 for all real x. 

Fic. 2.13. Three normal distributions. 



2.7 Rationale for least squares methods 51 

The normal probability distribution with mean wu and variance o” is 
defined by the function 

n(x) = (V2m0)~! exp{—(x — p)?/207}. (2.16) 

Three such functions are plotted in Fig. 2.13. Changing u simply shifts the 
curve to the right or left without changing its shape. Thus, the distributions 
illustrated have the same mean with different variances. 

The verification of property (2.15) for the normal distribution is a 
mathematical nicety that the reader will find in books on the theory of 
statistics or of probability. 

The point of view of regression theory is to interpret a piece of data 
(x;, f;) as follows: x; is a (precisely known) value of an independent variable 
or parameter, and f; is the outcome of an experiment conducted at x = x; 
in which the probability distribution is normal. The mean of this distribution 
is supposed to be a function of the independent variable x, whereas the 
variance is constant. Polynomial regression is then a process that requires 
that uw be a polynomial function of x, say, 

uG)= Dax 69, (2.17) 
i=0 

so that the probability distribution at x has the form 

n,(y) = (V2s0)! exp{-(y — (x))?/20°F. (2.18) 

The situation is illustrated in Fig. 2.14 in which y = u(x) is the regression 

curve. 
The primary purpose of regression theory is then to obtain estimates of 

the coefficients do, . . ., @ in Eq. (2.17), which determine u(x), and of the 

variance 0”. This is done by observing that the probability that f; is observed 

atexmiwhered = 0; Ly2jac aNdas 

N 1 N 

Il et) = (Om) N+ Di gNet OXP s 2 (fF? = u(x))?/20°} 
i=0 

Then an estimate of the regression curve is determined by that choice of 

function u(x) € %,, which maximizes this probability of the N + 1 actual 

observations. This is seen to be equivalent to minimizing the exponent on 

the right, and this in turn is equivalent to minimizing E(u) [cf. Eq. (2.10)]. 

Thus, the estimated regression curve u(x) is just the polynomial in ?,,, 

determined by the method of least squares. 

Note that this process determines estimates of the coefficients of the 

regression curve and of o”, which themselves have associated probability 
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distributions. Following up this observation leads to an “unbiased” estimate 

of o°: 
N 

—S (fF, = (x))?, 
N=—m jzo 

a2 
Oo~ = 

where f(x) = 27.» 4;x' and dy,...,4,, are given by the solution of the 

normal equations. The summation in 6° is, not unnaturally, called the 

residual sum of squares. 

O Xo x, Xo 

Fic. 2.14 Model for polynomial regression. 

The polynomial f(x) has two convenient properties, namely, 

N 

A(x;) = Df Bg I 

and 

» fi(x;)? = 
i=0 i 

Ff A(x;). 
II (Mz 
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(These can be confirmed using equation (2.14) and the fact that 
[f(xo),.. ., &(xy)] = 47V".) The first implies that the mean of the values of 
the fitted curve at the data points is equal to the mean of the values fy, 
fi,.--., fy at the same points. Using the second of these, it is not difficult 
to see that 6° can be written in a more easily computed form: 

1 N N 

= (SP - D Fited). (2.19) 
The advantage of this approach, when it applies, is that there is a more 

objective theory behind it than the simple least squares argument. This 
theory admits statistical evaluation of the goodness of the fit and confidence 
intervals for the coefficients of u(x). In numerical practice, when the best 
choice of m is not clear from the data or the underlying phenomenon, a 
value of 6? is obtained from Eg. (2.19) for a few integers m, and the 
smallest m making 6° reasonably small may be chosen as most appropriate. 
This choice makes the distribution curves on Fig. 2.14 narrower and more 
peaked. More sophisticated tests are available based on significance tests 
of the hypothesis that some coefficients a,,..., a, are zero. A useful survey 
is given by Hemmerle (1967). For the statistical theory, we refer the reader 
to Mood and Graybill (1963). 

To conclude this account of the (polynomial) regression approach, let 

us review once more the usual working assumptions that are made: the 
ordinates f, are subject to random error; with each x there is an associated 
probability distribution (usually the normal distribution) with mean u 
depending on x and variance o” independent of x; there is a priori infor- 
mation allowing one to say that, for some m (usually as small as possible), 

PIES. 0 

2.8 Smoothing, or finding a trend? 

The preceding discussion of regression introduces a notion of statistical 

variation into the data. This may be appropriate in some physical situations 

and not in others. This point serves to illustrate the distinction between 

smoothing of the data and finding a trend in the data, both of which are 

widely used ideas. 
The point of view of smoothing is that the data is subject to error, but 

that there is some underlying relationship between abscissas and ordinates 

that would have certain properties not apparent in the perturbed data. For 

example, there may be good reason to believe that there is an underlying 

function that has slope varying only slowly in the x-domain of interest. An 

interpolant to the perturbed data may, however, have a wildly fluctuating 
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slope and therefore be unacceptable as a model for the underlying phenom- 
enon. To get an acceptable representation of slopes, it may then be 
necessary to smooth the data. The smoothing process itself may simply be 
empirical or, if there is a theory (such as regression) whose hypotheses are 
satisfied by the phenomenon being modelled and which is computationally 
acceptable, then this would likely be preferred. 

The process of smoothing is sometimes referred to as graduation, and is 
perhaps best known under this name in actuarial work. A great deal of this 
work uses the hypothesis that the abscissas X9,x,,...,Xy) are equally 
spaced. This is an assumption that we do not care to make at this point. 
Furthermore, several classical methods can now be superseded by moving 
least squares techniques and by spline function methods, both of which will 
be discussed in the sequel. Consequently, we shall not linger on these 
topics, but refer the reader to Chapter 11 of the classic work by Whittaker 
and Robinson (1944) or to the more modern presentation of Davis (1973). 
There are also points of contact here with methods of moving averages 
used in “filtering” techniques. We shall omit specific discussion of these 
for similar reasons. 

The point of view of the analysis of trends is rather different, although 
the process for numerical implementation (via the normal equations, for 
example) could be exactly the same as for smoothing. In this case, the data 
need not be seen as being subject to error, but there is some reason for 
seeing the ordinates as the sum of two components. There may be a good 
physical reason for this, each component being the result of a different 
physical process, probably on different scales [of the independent 
variable(s), x in this case]. The component varying more slowly with the 
independent variable is then conveniently described as the trend and the 
other as the residual or deviation from the trend. In the parlance of 
geophysics, the trend may be known as the “regional” component. 

On the other hand, this separation into two components may be simply 
for convenience. For example, the detection and removal of a trend may 
facilitate computation with a residual that is thought to contain all the 
information of interest. From the point of view of frequency analysis, one 
may attempt to remove undesirable low-frequency components in this way. 

Whether the appropriate context is smoothing or trend analysis, the 
following quantity is frequently used empirically as a measure of the degree 
to which the trend, of a smoothed curve, fits the data. Define 

x fi ti A(x;))? 2 hers f(x;))? 
R2 = il Se a ra Lee ne i ere is a 5) (ee fyneenls She GR sas 

where f= (Zf,)/(N + 1) is just the arithmetic mean of the N+1 data 
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values. The expression in the denominator of these fractions is then just 
the variance of all the observations about this mean, often written in the 

alternative form (2 f?) — (2 f,)?/(N + 1). 
Note that 0 < R*? <1, and when R = 1 we have fi(x;) = f; for each i so 

that all of the data lies on the smoothed, or regression, curve; i.e. this curve 

interpolates the data, and there is no residual or deviation. On the other 
hand, when R = 0, f(x;) =f (a constant) for each i, and the analysis has, 
in effect, failed to show any trend. Thus, values of R* between 0.8 and 1 
are often thought to show a marked or significant trend in the data, and 

values of R? between 0 and 0.2 suggest that the trend is not well established. 
The parameter R? is also significant from the point of view of statistical 

theory, but this is in the context of maximum likelihood estimation rather 
than the regression theory introduced above. This means, of course, a 

different theory and a different set of statistical hypotheses to satisfy [See 
Hemmerle (1967) for accessible comments on statistical theory and Unwin 
(1975) for the point of view of a geographer on trend surface analysis. ] 

2.9 Moving least squares 

In this section we introduce a variant of the method of least squares. What 

we describe here is not recommended as a viable fitting procedure in its 

own right. The discussion is purely expository and leads to interesting 

interpolation procedures whose descriptions are completed next in Section 

2.10. The “weighted least squares” method to be presented here and the 

“interpolating moving least squares” method of Section 2.10 find their main 

application in (multivariate) surface interpolation with scattered data and 

are discussed in that context in Chapter 10. 

We first modify the point of view adopted in Section 2.5 for the method 

of least squares and propose that, if g is to be the function associated with 

the fitted curve, then the value of g at a point x should be most strongly 

influenced by the data (the numbers f;) at those points x; that are closest to 

x. For the same reason, it is proposed that as the distance of x; from x 

increases, the influence of the data on g at x should decrease. This can 

be accomplished very easily if, instead of minimizing a sum of squared 

deviations, as formulated in Eq. (2.10), we associate positive weights w; 

(which will depend on x) with each deviation and minimize 

N 

E,(p) = & wi(x)[pOa) — fil’. (2.21) 
i=0 

For the time being, we assume that the numbers w((x) are to be chosen 
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so that they are positive, relatively large for the x; close to x, and relatively 

small for the more distant x;. More precisely, we assume that w,(x) decreases 

monotonically as |x — x, increases. As in Section 2.5, we assume here that 

p is a polynomial in ,,,, say p(x) = Uo a;x'. 
The normal equations are found just as before by consideration of 

the m + 1 necessary conditions 0E,/da; = 0,i=0,1,...,m. The resulting 
normal equations for the coefficients ay, a,,..., 4, look very much like 

Eq. (2.11). The latter are modified by insertion of the weights under the 

summation signs as follows: 

(Zw; x?)ag +... + (CL wix? an = 2 wifi, 

(Sw x)agt...+ wart! )a, =Uwixifi, (2.22) 

(Tw x™)ag t+... + (Lwrx")ay = Zw; x7'f;. 

In Eq. (2.22), we have abbreviated w;(x) as w;, and as long as all of these 
numbers are positive, a theorem such as Theorem 2.5.1 obtains. That is, 
we are guaranteed a unique solution for dy, d,,.. .,@ ,, SAY 4g, . . -, G», and 

the polynomial p that they define does indeed give the least value to E, of 
all polynomials in ?,,. Note also that Eq. (2.11) can be obtained from 
(2.22) by the choice of weights w(x) =1,i1=0,1,2,....N. 

Since the coefficients of (2.22) depend on x (through the w,), the solution 

@y,...,@, Will also depend on x. For the ordinate of the function g at x 
(which we are now constructing), we take 

BU) = Pi. (2.23) 

Now this prescription for the value of g(x) applies for any x whatever. 
Thus, we have given a constructive definition of the function g, defined on 
the whole real line. The snag is, that to evaluate g we have to be prepared 
to expend the effort of solving a set of normal equations for each x. For 
this reason, the process is generally only applied for small values of m, say, 
0,1, or 2. This function g may be described as a moving least squares fit to 
the data. 

It is important to keep in mind that, in spite of the relation (2.23), valid 
for fixed x, g will not generally be a polynomial function. This is because 
the coefficients of p in Eq. (2.23) also depend on x. To illustrate the point, 
we consider the data of Fig. 2.11 again. As with the least squares fit in that 
illustration we take m = 1. To calculate a moving least squares fit we have 
to specify a distribution of weights for each x. 

Consider the function e~*’, also written as exp(—=x"). For’ x = 0)4t is 
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a monotonically decreasing function of x. In view of the abscissas of our 
example, it Is convenient to consider the function exp{—x7/50} for x > 0 
(shown in Fig. 2.15) and then to define 

w;(x) = exp{—(x — x;)?/50}, (2.24) 

y = exp(-x?/50) 

y = exp(-x?/20) 

0.2 

2 6 10 14 

Fic. 2.15 Two exponential functions. 

In this way we use the same underlying exponential function for each i; 
only its centre of symmetry depends oni. [Note that this ubiquitous function 
has already appeared in Eq. (2.16).] The resulting moving least squares fit 
f is illustrated in Fig. 2.16. 

What desirable properties does a function g constructed by the moving 
least square process possess? First, it has a reproducing property (which it 
shares with the least squares fit). Namely, if the data all happen to be on 
the graph of a function from #,, (and polynomials p from ,, are used in 
the construction of g), then g will be this same polynomial from ?,,. 
Second, the function g is smooth in the sense that it can be differentiated 
repeatedly (for as many times as w is differentiable). Thus, we have g € €”. 

To complete this preparatory section, it will also be useful to examine 
the matrix-vector form of Eqs. (2.22) in anticipation of a generalization of 
Eq. (2.14). In addition to the definitions of Eqs. (2.12) and (2.13), we 
introduce an (N + 1) x (N+ 1) diagonal matrix: 

W(x) = diag[wo(x), w(x), w(x), ..., Wwy(x)]. (2.25) 
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ZW (x) = exp[—(x — x,)?/20] 

w(x) = exp[-(x — x,)?/50] 

Fic. 2.16 Two moving least squares fits (data of Fig. 2.11; M = 1). 

The matrix product V’WV is then (m + 1) x (m + 1), and itis easily verified 
that, in matrix form, the normal equations [Eqs. (2.22)] are, more concisely, 

V7W(x)Va = VTW(x)F. (2.26) 

This obviously reduces to Eq. (2.14) when W(x) is the identity matrix (and 
so is independent of x). 

2.10 Interpolating moving least squares (IMLS) methods 

Comparing Figs. 2.11 and 2.16 to contrast the least squares and moving 
least squares fits, we observe that the effect of introducing variable weights 
has been to draw the fitted curve towards each data point. The idea behind 
the interpolation process is to assign weights in such a way that this trend 
towards interpolation of the data is carried to its limit. This is achieved by 
readjustment of the relative weights. 
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To see the effect of such a readjustment consider the function 
exp{—2/20}, also illustrated in Fig. 2.15, which is more peaked than 
exp{—x?/50}. If we assign weights, as before, by putting 

w;(x) = exp{—(x — x;)°/20}, 
this will put relatively higher weights on points x; close to x and lower 
weights on points far removed from x. The resulting fitted curve shown in 

Fig. 2.16 comes closer to interpolating the data then that obtained with 
more evenly distributed weights. Note that, because the weights appear in 
a similar way on both sides of Eq. (2.22) or Eq. (2.24), the w,’s can be 
scaled (i.e. all multiplied by the same positive number) without affecting 
the solution of the equations and hence the fitted curve defined by g. 

To go to the extreme and ensure interpolation at x;, the trick is to use a 
weight function w,(x) that becomes infinite at x;, a property which will also 
be invariant under scaling. By assigning different weight functions to 
different points, some with vertical asymptotes and some without, we can 
even arrange for interpolation at some points and not at others. 

For simplicity, we shall always assume [as in Eq. (2.24)] that a simple 
function w(x) is prescribed that is monotonically decreasing for x > 0 and 
then assign weight functions w,(x) by defining 

w(x) = w(x — x,|), p=) U2 oe IN (2:27) 

In this way, if w(x) > » as x — 0, then we will have w(x) — © as x > x; for 

every I. 
From the point of view of analysis, one might anticipate difficulties in 

the solution of Eqs. (2.22) and (2.26) near a data point x;, because the 

coefficients “blow up” near x;. However, this does not necessarily lead to 

difficulties, largely as a result of the homogeneity in the weights already 

referred to. Indeed, it can be proved that under quite general assumptions 

about the weight function and in spite of singularities in the weights, the 

equations have a unique solution for every x, that these solutions define a 

curve given by y = g(x), and that the function g retains the reproducing 

and smoothness properties described in Section 2.9 for the non-interp- 

olating case [cf. Lancaster and Salkauskas (1981)]. 

For interpolating moving least squares methods, the exponential func- 

tions used previously in Section 2.9 are no longer candidates for weight 

functions since they do not have the right asymptotic behaviour as \x| > 0. 

The most popular choices probably involve inverse even powers of |x|. In 

particular, if w(x) = 1/x? or 1/x*, we would obtain either 

w;(x) = 1/(x - x;)? or w;(x) = 1/(x — x;)*. 
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Alternatively, w(x) = exp(—x’)/x? would have similar properties to w(x) = 
1/x? near x = 0 but would attenuate more rapidly as |x| increases. In general, 

the user of the technique must decide on the proper weight function on 

such qualitative grounds as the rate of attenuation in relation to density of 

abscissas, the need for interpolation, and the nature of the singularity at 

x = 0. Fortunately, these are the only important questions since in general 

the shape of the fitted curve is not sensitive to the precise nature of the 

chosen weight function. 
More generally, considering inverse distance weight functions of the form 

w(x) =x *, k>0, it is found that the smoothness of g (in the sense of 

differentiability) depends critically on k. We shall return to this point in 

Section 2.11 where we discuss Shepard’s method. For the time being, we 
assume that g is always to be differentiable, and for this to be the case it is 

necessary that k > 1. In fact, this should be seen as a necessary condition 
on the nature of the singularity introduced into the weight function to 
ensure differentiability of g at the data points. If the function g is to be €*, 

it is necessary that k be a positive, even integer. 

For example, the formula 

w(x) = wexp(—Bx*)/x*, (2.28) 

defines a family of weight functions dependent on three positive parameters 

aw, B, and k. Since exp(—fx’) is a function with horizontal tangent at 
x = 0 (cf. Fig. 2.15), the nature of the singularity in w at x = 0 is determined 
by the exponent k. As with a simple inverse power law (when 6 = 0), 
differentiability of g will be retained as long as k > 1. The main disadvantage 

of a choice such as Eq. (2.28) with B>0 is the added computational 
expense implied by many evaluations of the exponential function. 

Before going on to discuss examples, there is one other freedom in the 
choice of weight function that is very important to applications. The idea 
here is to consider the extreme case of attenuation of the weight function 

for large x. Instead of arranging for w to become very small for large |x|, 
we arrange for w to be zero for all sufficiently large x. For interpolation 
we would like to retain the infinity in w at x = 0, and for cosmetic reasons, 
we would like w to be at least once differentiable for all x #0. A function 
w that satisfies these three desiderata is, for example, 

ax *{1 — |x|/d}?, for |x|<d, wea) =| 2.29 
‘ for |x|>d, oe 

Note that w involves three parameters, a, d, and k, all assumed to be 
positive, and w(x) = 0 for |x| > d. As indicated earlier, it would generally 
be the case that k is a positive, even integer. The function is said to have 



2.10 Interpolating moving least squares methods 61 

support (—d, da), i.e. wis non-zero for any x in this set and is zero otherwise, 
and the support is assigned when we fix d. The parameter a is convenient 
and simply allows us to scale w, having no effect on the final fitted 
curve. T'wo such weight functions are illustrated in Fig. 2.17. The function 
(1 — |x|/d)? is also indicated for comparison. 

Similar truncated weight functions are described by the family 

ax * cos*(ax/2d), for |x| <d, 
w(x) = (2.30) 

0, fore d) 

although these will be rather more expensive in computer time due to the 
presence of the cosine function. 

w(x) =(1-Ixl/d)? 

Fic. 2.17 Two truncated weight functions. 

Careful adjustment of the diameter of support for the weight function 
(i.e. of the parameter d) is most important. It must be large enough so 
that, for every x at which g is to be defined, the interval (x — d, x + d) 
contains at least m + 1 data points. At an x where this is not satisfied, the 
normal equations will have a singular coefficient matrix and the process 
will break down. 
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In terms of the matrices V and W(x) of Eq. (2.24), we must have m + 1 
non-vanishing weights w,(x) appearing on the diagonal of W. In this case, 

the (m+ 1) X (m+ 1) matrix V’W(x)V will be invertible, and the moving 

least squares calculations can be completed. 
There are two principal advantages in truncation of the weight function. 

The first has to do with economy of computation. In formulating the 
coefficients of the normal equations [in the form of Eq. (2.22)], the 
summations can be restricted to only those i for which w; is non-zero. It 
must be noted, however, that this can only be done at the expense of 
careful programming. We must have a good procedure to decide for which 
values of i it is true that |x — x < d. 

The second advantage is qualitative and can be stated concisely by saying 
that it produces a local interpolation scheme. This means that the value of 
g (determining the fitted curve) at x is determined only by the data 
sufficiently close to g. For example, we can be quite sure that if the weight 
function at x has support (x — d, x + d), then perturbations in the data 
outside this interval will not affect g(x). 

2.11 Examples of the IMLS methods 

(a) The case m=0. Shepard’s scheme. When m=0, the normal 
equations of Eq. (2.22) reduce to a single equation: 

N N 

ag(x) = 2 wile)fi / & wilt), (2.31) 

so that the computational effort in the solution of the normal equations is 
no longer so important. The family of methods in which the weights are 
determined by inverse powers of the distance, i.e. w(x) =x -* with k > 0 
together with Eq. (2.27), are associated with the name of Shepard (1968). 
The differentiability of the interpolating function is relatively easy to 
determine in this case. 

It can be shown that for 0 <k <1, the interpolating curve has cusps at 
the data points (being otherwise €”), and if k = 1, the fitted curve has 
corners at the data points. Thus, we have g(x) = f; for each i, but g is not 
differentiable at x; as long as O0<k<1. For k>1, g is at least once 
differentiable everywhere, i.e. g € €'. These facts seem to argue in favour 
of even integers for k where the choice of k is open and, for simplicity, 
k = 2 is to be preferred. Some examples (particularly with k < 1) together 
with analysis are to be found in the paper of Gordon and Wixom (1978); 
see also the survey of Barnhill (1977). 
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Before looking at some examples of Shepard’s method, note some simple 
special cases of Eq. (2.31): First, if w(x) = 1 fori=0,1,2,...,N and all 
x, then Eq. (2.31) reduces to ay = (2 f;)/(N + 1) which is the average, or 
arithmetic mean of the ordinates, and the fit is simply a straight line parallel 
to the x-axis. If the w; are different but independent of x, ap is also 
independent of x and is a weighted average of the ordinates. 
A moving average is obtained if we choose, for example, 

1 ite exe Xl d.X 1 a), 
w;(x) = | 

0 if) eee 2 Xa, 

where @ is some fixed positive number. In this case ao(x) does depend on 
x and is a piecewise constant (or step) function. The result of applying this 
process to the data of Fig. 2.11 with a = 3 is illustrated in Fig. 2.18. The 
weight function in this case is truncated, as in Eq. (2.29) or Eq. (2.30), but 
without the smoothness properties of those examples at the frontier of the 

y 

Fic. 2.18 Moving average to the data of Fig. 2.11. 
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support [and hence no smoothness in ao(x)] and without the singularity at 
x = x; (and hence no interpolation, in general). 

Figure 2.19 shows three Shepard interpolants to the data of Pipe aie 
The interpolant corresponding to k = 2 is at least once differentiable, it 
exhibits the “flat-spot” phenomenon: The derivative of the interpolant is 
zero at every data point. This is true for every Shepard interpolant with 
k > 1 and severely limits its usefulness. 

(b) The casem=1. Nowa pair of normal equations stemming from 
Eq. (2.22) must be solved for each abscissa x of the interpolant. They are 

(x w;(x))ay + (2 wi(x)x;)a; =z wi(x)fi, 

(2 w;(x)x;)ag + (2 w,(x)x?)a, = = Wi (x)xif;. 
The computational effort is now bigger. As in the Shepard interpolant, 

care must be exercised when the calculations are carried out near a data 
point in view of the singularity of w(x) there. The interpolating curve 
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resulting from the weight w(x) =x ? is shown in Fig. 2.20. The flat-spot 
phenomenon is no longer present. 

(c) The case m=2. Here, a quadratic fit involving three normal 
equations is carried out for each point of the graph. For the data of Fig. 
2.20, and with the same weight function as in (b), namely w(x) = x’, the 
resulting interpolant is also shown in Fig. 2.20. There is not much change 

from the curve using m = 1. 

Fic. 2.20 Interpolating moving least squares fits with N = 1, 2. 
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3 

Interpolation with Piecewise 
Polynomial Functions 

3.1 Introduction 

From the preceding discussion of polynomial interpolation, it is evident 
that as the number of interpolation points increases, the necessary flexibility 
of the interpolating polynomial is obtained by increasing both the degree 
and the risk of severe oscillations of the fitted curve. 

In the following sections we shall consider alternatives that allow the 
degree of the polynomials involved to be kept low and provide flexibility 
by making use of a sufficient number of polynomial segments joined in a 
smooth way. The resulting interpolating or smoothing function is called a 
piecewise polynomial function. Perhaps the most famous of these is the 
cubic spline, which is introduced in this chapter but discussed in more detail 
in Chapter 4. Before proceeding to these rather sophisticated functions, 
we shall consider the more simple situation involving piecewise linear 
functions, or /inear splines, which lack smoothness but serve to prepare the 
ground for our later discussion as well as being useful themselves in some 
cases. 

3.2 Piecewise linear functions: linear splines 

In Section 1.7 we introduced the family of functions Py (a vector space) 
consisting of polynomials of degree less than or equal to N. There they 
were defined as linear combinations of the N + 1 very simple functions 
1,x,x?,...,x% [cf. Eq. (1.6)]. Subsequently, either an interpolant or 
smoothing function was chosen from this family. Here we shall proceed in 

a similar manner, although a few more complications are necessary. First, 

we shall insist that the piecewise linear functions that we use be continuous 

so that their graphs are basically zigzag. Thus, the location of the corners 

67 



68 3 Interpolation with piecewise polynomial functions 

is relevant; we shall call their abscissas Knots, and they will of course be 

distinct. In describing graphs of this kind mathematically, the translates of 

the absolute-value function of Fig. 1.3 can play a useful role. The graph of 

such a function, |x — k| (there is a simple knot at &) is illustrated in Fig. 

3.1. We shall take advantage of such functions in the following definition. 

Fic. 3.1. Translate of the absolute-value function. 

Definition Let K denote the set {ky,..., ky} of knots (real numbers) satis- 
fying ky <k,<...<ky. A function | defined for all real numbers x by 

U(x) = ag|x — ko| + ay\x —k,| +... + aylx — ky > 

where dy, 41,-.-,4y are fixed real numbers, is a (continuous) piecewise 

linear function (or linear spline) with knot sequence K. 

In order to see that / is a function of the desired kind, we observe that 

lx — kj,i=0,1,..., N, is the absolute value function of Fig. 1.3, translated 

so as to have its corner at x = k;. Observe that / is a linear combination of 

the continuous functions |x — ko|,..., |x — ky| and as a result / is itself 

continuous. Between any two knots, each of the functions |x — kj, i= 

0,...,N, contributes a straight-line segment to the graph, and thus, / has 
a graph consisting of straight-line segments joined at the knots. It will have 
a continuous first derivative for all x € [a, b] only if aj =a, =...ay=0. 
Following the discussion in Section 1.7, we find: 

Theorem 3.2.1 The set of all linear splines | with fixed knot sequence K 
containing N + 1 knots is a vector space of dimension N + 1. 
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We denote the space of piecewise linear functions of Theorem 3.2.1 by 
£y(K). Observe that every function of £\(K) is in the class €[a, b] intro- 
duced in Section 1.3, and so £)(K) is known as a subspace of €[a, b]. 

In our further work we assume that the required interpolation or smooth- 
ing is carried out on a finite interval [a, b]. Flexibility outside [a, b] is of no 
interest; however, in order to avoid certain technical difficulties, it will be 

assumed that ky = a and ky = b so that all the knots of K are in [a, b]. 

3.3 Interpolation with linear splines 

As in Section 2.1, we are required to find a function, this time from £y(K), 
that interpolates the data (x;, f;), 1=0,1,...,.N, the abscissas x; being 
distinct points in [a, b]. This is particularly easy if the points x; are simply 
the knots k;, which determine the space £)(K). In this case we have 
Theorem 3.3.1. 

Theorem 3.3.1 Leta knot sequence K = {xo,X,,...,Xy} and arbitrary real 
numbers fo, f,,..-,fy be given. Then, there is a unique spline 1 in £y(K) 
that satisfies I(x;) = f; forj =0,1,...,N. 

The nature of this interpolant is of course quite obvious: One connects 
the data points from left to right by a broken-line segment, bearing in mind 
that we have adopted the convention a= xy <x,<...<xy=b. On the 

other hand, if the number of knots exceeds N + 1, or if they are unfor- 
tunately located with respect to the x;’s, a unique (or indeed any) interpolant 
may fail to exist. 

In order to determine the coefficients a;, i= 0,..., N of the interpolant 
of Theorem 3.3.1 we may proceed as in Section 2.2 and find that in view 

of the interpolation conditions, 

Ao\xo — Xo] +... + anlXo — xnl = fo» 

aglxy —Xol +... + anlxy —Xn| = fr, 

and thus in matrix form, 

0 xo ae x, te xo = ry ay fo 

Ix — Xo| 0 3 4 _ 5 (3.1) 

: ene Lal , 

Ixy — Xo Ixy — X4| sae 0 an. fi 

the matrix being invertible (non-singular). 
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A much more convenient representation results if a cardinal basis is 
chosen at the outset. This is a set of functions /; from £)(K) such that each 

l; solves the elementary interpolation problem 

L(x, )= Ox, Rar tr ees Net Ut ete 

Here 6,, is the useful Kronecker symbol, taking the value 1 when i = k and 
the value 0 when i#k. Although the functions /p,/,,...,/,y could be 

constructed by selecting the vectors [1,0,...,0]7, [0,1,0,...,0]7, ..., 
[0,...,0,1]’ as the right-hand members of Eq. (3.1) in turn, it is geo- 
metrically clear what these functions are. They are the pyramid or tent 
functions illustrated in Fig. 3.2 and defined by Eq. (3.2) in which j takes 
the. values 142. aN = 1: 

X XA 
? aSx=X, 

Io (x) =4%0 — *1 

0, Xs 0, 

0, a=xX=X;-1. 

Kee a xjJpex =x, 

J 7rd (3:2) 

E(t) = avs 
ee Xj SX <Xj41> 

Xj ~ Xj+1 

0, ene TsO, 

0, @=x=Xy-1, 

xX —~Xn-1 Lyx) 34 Sey ep = ee 
Xn ~XN-1 

In terms of this basis, the interpolant has the simple form 

Ux) = lo(x)fo +... + Inf 

fo 

= [lo(x),- - -, lv ()] 

fiy 
=il(x)7 fs 

in which the values of the function being interpolated appear explicitly, 
and it is not necessary to solve equations of the form of Eq. (3.1). Indeed, 
we may represent any function in £y(K) by the form 

I(x) = lo(x)yo +... + lv )yw = Ux)"y, (3.3) 
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Fic. 3.2 Tent functions. 

the values yo, . . ., yy being parameters controlling the form of /(x). This is 
completely analogous with the Lagrange interpolation process (cf. Section 

Zo). 
Functions of this kind can also be used to carry out least squares 

approximation rather than interpolation. In this event one must work with 
the vector space £,,(K) in which 1 < M <N, and the only restriction on 
the knot sequence K is that ky = a, ky = b, andky<k,<...<ky. Thus, 
the interior knots k,, k, ..., ky-_, that define the space /y(K) may bear 

no relation to the more numerous interior points x;, X2,..., Xy—1 at which 

data are assigned. This idea will be developed next in Section 3.4. 

3.4 Least squares approximation by linear splines 

The simplest least squares approximation problem in the present context 

results when we choose M = 1. Then there are no knots between a and b, 

and the general function /(x) has the form 

PORN PO 
x)= game + pay ang 3 

This is an arbitrary function of the form A + Bx, and so this least squares 

approximation problem is identical with the usual linear regression 

problem, as discussed in Chapter 2. Therefore the first case of interest 

occurs when M = 2, and there is an interior knot k, between a and b. For 

the time being we assume that the position of the interior knot, or knots, 

is fixed a priori: The approximating function has the form of Eq. (3.3), and 

the sum of the squares of its deviations from the data fj at the points x;, j = 

rte aN ls 

B= B {3 ytte) sf 3.4) 
Keep in mind that there are now N + 1 distinct points at which data are 

given and also M + 1 distinct knots, which may or may not coincide with 
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data points at which the deviations are calculated. In view of the small 

support property of the cardinal functions /;, many of the values [i(x;) in 

Eq. (3.4) will be zero. In order for y; to be actually present in E(J), it is 

necessary to locate the knots so that each /; contains some data in its support 

[that is, the points x at which /,(x) # 0]. 
Now the necessary conditions for a minimum of E(/) are 

BED ee ee 
=>) ps value) bale) =0 for k=0...,M.- (3.5) 
OVE j=0 Li=0 

The required values of the parameters yo, ..., yy can be obtained from 

these equations, which can be rearranged into the form 

Goo +--+ Gomu Yo bo 

= : (3.6) 

Ayo ++: 4ym YM bu 

where 

M 

Oy =D Ae i, kee 0, lo 
j=0 

M 

n= 2 file(), RAORTAURE - 

In view of the small support property of /;, the product /,/; = 0 whenever 
|k — i| = 2, and hence the matrix [a,;] in Eq. (3.6) is tridiagonal. This feature 
makes the invertibility of the coefficient matrix easy and the solution of 
Eq. (3.6) inexpensive. 

Concerning the placement of knots and the choice of M, we can follow 
the algorithm of Ichida et al. (1976) and begin by selecting M =2 and 
placing the only interior knot k, such that there are nearly as many data 
points as possible to the left as to the right of k,;. The best approximation 
is computed, and the sum of squared deviations is evaluated to the left and 
to the right of k,. Whichever of the intervals [a, k], [k, b] has the larger 
sum is again subdivided by the insertion of a knot. The insertion of knots 
is terminated when the value of 6, defined by 

5 = E(l)/(N - M), (3.7) 
where E(/) is as in Eq. (3.4), reaches a plateau, at which point additional 
knots do not significantly reduce 6 [See Ichida et al. (1976) and de Boor 
(1978), p. 267]. The quantity 6 should be compared with 6? defined in Eq 
Hor 
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Figure 3.3 shows a number of approximations to experimentally obtained 
data, the abscissa being the travel time below the surface of the earth of a 
sonic signal and the ordinate being the velocity of sound in the rock at that 
time. 

Fic. 3.3 Piecewise linear least squares fits. (a) M=5, N= 25, 6 = 0.005; (b) M=8, N= 

25, 6 = 0.002; and (c) M=15, N= 25, 6 = 0.001. 

3.5 An alternative construction of the space of linear splines 

Clearly, every linear spline / with knot sequence K has a derivative /’ that 
is piecewise constant. Typical graphs of a linear spline / together with its 
derivative /' are shown in Fig. 3.4. 

The function /’ illustrated in Fig. 3.4 is known as a step function. A very 
primitive step function is the jump function illustrated in Fig. 3.5. It is 
defined by 

se ae eA oN 
J(x) = | 

1852 0). 



(b) 

Fic. 3.4 (a) Linear spline / and (b) its derivative I’. 
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Fic. 3.5 Jump function J(x). 

It is important to observe here that J(x) is the derivative of |x|, except at 
x = 0, where |x| is not differentiable because of its sharp corner. The jump 
function can be used to generate more general step functions, such as that 
in Fig. 3.6. This function has the representation a + a,J(x — k;). Observe 
also that |x — k,| is an antiderivative or indefinite integral of J(x — x;). Using 
this idea, /’ can now be expressed in the form 

Nal 

'(x)=At+ a a,J(x — k;), 

since the first jump occurs at the knot, k, and the last at ky_,. The values 
2\a;|, i=1,..., N—1, are precisely the magnitudes of the jumps. By 

integration we find that 

N= 

(x) = Ax+B+ > a;|x — kil, (3.8) 
i=l 

where B is the integration constant. In this expression we see that the 

number of parameters is now N + 1, which confirms the claims of Theorem 

3.2.1 that the dimension of £)(K) is N + 1. 
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Fic. 3.6 Step function. 

3.6 Piecewise cubic functions 

Although the nature of the linear spline precludes its being smooth, in the 
sense of having at least one derivative for every x, it is possible to obtain 
piecewise cubic functions that have at least a continuous first derivative 
and in some cases, even a continuous second derivative. As in Theorem 
3.2.1, let K be the set of knots k;, satisfying a = ky << k,<...<ky =D. Let 

us first observe that, if function values and first derivatives are prescribed at 
the knots, then a technique for constructing a piecewise cubic interpolating 
function with continuous first derivative is already at our disposal. The 
technique developed in Section 2.4 must simply be applied to each segment 
[k;-,, k] fori=1,2,..., N [see especially Eqs. (2.8) and (2.9)]. The fact 
that the same slope is used at k; for intervals [k;_,, kj] and [k;, k).,] @ = 1, 
2,...,.N-— 1) guarantees continuity of slope for the interpolating function 
at all interior knots. 

We shall return to this procedure shortly; initially, a more general 
approach is to be taken to the construction of piecewise cubics with at least 
one continuous derivative at the interior knots. 

Let us construct a representation for any function in the family (in fact, 
the vector space) of all functions that are ordinary cubic polynomials 
between consecutive knots and are not only continuous but also possess a 
continuous derivative on [a, b], i.e. they are to belong to €'[a, b]. If S(x) 
is such a function, then its second derivative has the form 

N-1 

S"(x) = Ux) + a bJ(x — k;), (3.9) 
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in which /(x) is as in Section 3.5. The justification for this form for S"(x) is 
that S(x) is assumed to be piecewise cubic and at least once differentiable 
at the knots. Hence its second derivative is piecewise linear, though not 
necessarily continuous at the knots. Now I(x) is piecewise linear and 
continuous, and the term with the jump functions serves to introduce jumps 
of as yet arbitrary size 2|b,| at the knots. 

By integrating Eq. (3.9) twice, taking advantage of expression (3.8) for 
l'(x) and denoting the integration constants by C and D, we obtain 

A 3 B 2 N= 1 

Sx) =- + + Ce+ D+ x Gibltm Kil? 

N-1 i 

+ >) b;4lx — k;|2J(x — k,). (3.10) 
i=1 

Here we have also used the facts that |x| is the second derivative of 4|x|?, 
and J(x) is the second derivative of 3|x|7J(x). It follows that a typical function 
é|x — k;|* under the first summation is twice continuously differentiable at 
k,; its second derivative is simply |x — k;|, which is continuous at k;. On the 
other hand, the function 3|x — k,|"J(x — k;) has only a first derivative at k,, 
We see that S(x) contains 2(N — 1) +4 =2N + 2 parameters. 

Theorem 3.6.1 Let K denote the set of knots {ko, ..., ky}, with a= 
ky <ky<...<ky=b. The set of all (piecewise cubic) functions of the 
form of Eq. (3.10) is a vector space of dimensions 2N + 2. 

We denote the space of Theorem 3.6.1 by €,(K) and note that it is a 
subspace of €'[a, b]. 

The fact that the space €,(K) has dimension 2N +2 can be made 
plausible by the following argument: The knot sequence K defines N 
subintervals and a cubic polynomial having four coefficients is defined on 

each of these, so there are 4N coefficients in all. To obtain ' continuity, 

we apply two constraints at each interior knot—a total of 2N — 2 constraints. 
The number of coefficients minus the number of constraints is simply 
2N + 2, the dimension of €)(K). 

3.7 Interpolation with piecewise cubic functions 

Clearly, the dimension of €,(K) is too large to permit unique interpolation 
if, as is usual, the abscissas x; of the data coincide with the knots ;. If, 

however, the slopes m, of the interpolant are also specified at the points x,, 

then the number of conditions of interpolation is equal to the number of 

free parameters in a typical function S € €y(K) and, furthermore, a unique 

interpolant exists. 
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Theorem 3.7.1 There exists a unique function S in €y(K) that has prescribed 

values f, and prescribed slopes m;,i=0,1,..., N, at the knots k;. 

We shall examine the nature of this interpolation scheme in a moment, 

but first let us make a further comment on Eq. (3.10) that will be important 
in Chapter 4. Theorem 3.7.1 leads to the construction of an interpolant in 
€[a, b], and, although the form [Eq. (3.10)] of S(x) is not convenient for 
computation, it shows explicitly the conditions under which S(x) will be 
twice differentiable. For, if there are to be no discontinuities in S”, then all 

the coefficients b; = 0 in Eqs. (3.6.1) and (3.6.2). In this case, the resulting 
S(x) is called a cubic spline. (Unless otherwise stated, it is understood 
throughout this book that a cubic spline is twice differentiable at the knots.) 

Denote by f,(K) the family of such functions. Thus S(x) is a cubic spline 
on the set of knots K if and only if it has the form 

N-1 

S(x) = 44x? + 4Bx? + Cx + D +4 D> aj|x — k; 
i=l 

3 (3.11) 

for some constants A, B, C, D, a;, a), ..., Ay-}. 

Theorem 3.7.2 If K is aset of N + 1 distinct knots on [a, b], then the family 
Sy(K) is a vector space of dimension N + 3 and is a subspace of €[a, b]. 

We conclude that unique interpolation at N + 1 knots in [a, b] with cubic 
splines is also not possible. There remain two degrees of freedom. We shall 
pursue this topic in Chapter 4 and concentrate in the remainder of this 
chapter on piecewise cubics with just one continuous derivative. As in the 
case of piecewise linear interpolation, the use of cardinal functions leads 
to very convenient and transparent representation of interpolants. 

Consider interpolation in the context of Theorem 3.7.1, in which the 
knots k; = x;, and two distinct types of data are supplied at each knot. Thus 
it is necessary to construct 2N + 2 cardinal functions. Theorem 3.7.1 assures 
us of the existence of unique functions ®;, Y;,i=0,1,..., N, in €y)(K) 
with the properties 

for i,;=0,1,..., N. Each of these functions has prescribed values and 
slopes at the knots. Now an interpolant can be written immediately: 

Sx) =D PiGfi + D Vim. (3.13) 

The precise form of these cardinal functions could be obtained from Eq. 
(3.10) by imposing the conditions in Eq. (3.12). However, it is easier to 
exploit the fact that the ©; and W; are piecewise cubic polynomials and can 
be constructed with the aid of the technology of Section 2.4. 
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It has been shown in Section 2.4 that a cubic is uniquely determined by 
its values and slopes at the ends of an interval. Consequently, for i = 1, 2, 

pa Nit Ve (eye when «= x,-) Or xx; (See Fig 73:7). 

pn rl ae 
itl Xn-1 b 

Fic. 3.7 Cardinal functions ®,. 

Also, ®o(x) = 0 when x > x,, and ®)(x) = 0 when x < xy_,. Hence the 
®; enjoy the small support property. Now, fori=1,..., N—1, ®; on 
[x;- 1, X;+1] is composed of left and right segments; these are essentially the 
H, and H, functions of Section 2.4. Several of these cardinal functions are 

shown in Fig. 3.7. Thus, fori=1,..., N—1, with h; =x; — x;-1, 

0, Nase 

—(2/h3)(x —x;_1)?(x —x; —th,), es oF! bfx) <4 7 CME) me 
(Qh A asx, Fah) — Xin)? Xp =X = Xj415 

0, MeeX eas 

For i = 0, only the last two parts of this definition of ®; apply, whereas if 

i= N, only the first two parts are needed. 

pa Y, 
— 3 X 

a Ky Xi xj Kiel NP 
N 

Fic. 3.8 Cardinal functions Yj. 

In a similar way we can determine the W,, shown in Fig. 3.8, from Ko 

and K, of Section 2.4. For i= 1, ee. fiver Ls 

0, eh ass 

(heal Ge Xue exe) Xjeyp =X, 
: (3.15) 

Gi) aii) Ap eX ~Xi4is 
Le 

0, X > Xi41- 

When i = 0 or N, the remarks concerning ®, and ®y apply. 
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We emphasize here that, although they appear visually quite smooth, 
these cardinal functions are only in €'[xo, xy] and not in €7[xo, xy]. In many 
applications, only the values f; are available. The slopes m; are then 
parameters whose values can be manipulated in order to adjust the shape 
of the interpolating curve. 

In some interpolation methods, the slopes are determined from the 
ordinates in a linear way. That is, the method involves a matrix M such 
that 

mo fo 

=M| : ‘ (3.16) 

Mn fn 

Then we can write S(x) [cf. Eq. (3.13)] in the form, 

fo mo 

S(x) = [Po(x),..., Py (x)] + Po ayy. ee v(x) 

fn myn 

fo 

= ([Po(x),-.-, Pv(*)] + [Wol%),.--, Bn) |: (3.17) 

fy 
fo 

=[@olx)s. - 35 Pn (X)] 

Ol 
where we have put 

bi(x) = B(x) + [Wo(x),..., Py(X)]M;, (3.18) 
and M, is the ith column of M. 

The matrix M thus makes the interpolant unique and determines a 
corresponding set of cardinal functions ¢;, i= 0,..., N. The function P(x) 
will not have the small support feature unless M; has non-zero elements 
only near the ith row. Even if the small support is lost, it is important that 
p(x) at least attenuate strongly as x moves away from x;. The reason for 
this is revealed by examining the effect on S(x) of a perturbation € in the 
value of one ordinate, say f,. Then the perturbed interpolant is 

N 

wer & fidi(x) + (fx + €)b¢ (x) = S(x) + €, (x). 
i#k 
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Consequently, the effect of the perturbation at x, is localized near x, only 
when ¢, attenuates rapidly. 

An especially important choice of M is that which renders S(x) twice 
differentiable. There is a two-parameter family of such matrices in view of 
the dimensionality comment in Theorem 3.7.2. It then turns out that M7! 
can be tridiagonal, but M itself is “full”, with the result that the cardinal 
functions of the resulting cubic spline do not have small support. They 
do, however, have good attenuation. Cubic splines are the subject of 
Chapter 4. 

It is also possible to make non-linear choices for the determination of 
(mo, ..., My) in the form 

mo 

= F(fo,---s fn); (3.19) 

My 

where F is a vector-valued function of fo, . . ., fy. In that event the cardinal 
functions @{x) can no longer be used for a simple representation of an 
interpolant. We present some linear and non-linear schemes next in Section 
2.8. 

3.8 Choice of slopes in piecewise cubic interpolation 

In the case of computer aided design, numerical values can be assigned to 
the slopes, the interpolating function can be examined and then modified 
in shape by readjusting the slopes. Clearly, a reasonable initial choice is 
necessary and can be made on the basis of the schemes discussed below. 
The result may then be accepted or rejected on the basis of visual and 
frequently unquantifiable criteria. 

If a linear scheme of the form of Eq. (3.16) is desired, then perhaps the 
simplest choice for m;,i=1,..., N—1, is the slope at x; of the unique 

parabola that interpolates at x;_,, x;, x;4,. This is easily found to be 

pelle — fi )/hisi i + (Gi — fi-r)/hilhiss 

oy hiss +h 

where h; = x; — x;_,. For end slopes we may use ' 

my = (fi — fo)/hi, my = (fw — fy-1)/hy- 
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It is convenient to set 

Ai = hiss [(hi THis) uj, =1-A, =h;/(h; + his), bee ae eee 

and Ay = 0, Ay = 1, Uo = 1, Uy = 0. Then 

m; = [(fi+1 —Fi)/hi+i1] ui + ice — fi-1)/hilAi, Be Us Lo aay. 

The associated matrix M is 

Ar ta Lo : 0 
Fe it a hy 

An-2 An-2 | Mn-2 0 

; se: hy-2 i hn-1 Ay-1 
F M2 \— HN-} HN-1 

a : 9 Ay-\ hy hy hy 

1 1 

: 1¢ ; 0 Fis hy 

Since M is tridiagonal, the cardinal function $(x) has the form 

p(x) = ®, (x) +m, Bi-1 (4) +m; Bi) + mis Visi), 

1) alee NS 

where m,_; is the element in row i, column j of M, and we use the convention 
that m,; with some subscripts outside the range 1, ..., N are set equal to 
zero. Thus, the support of $,(x) is [x;-2, xj42] wheni=2,..., N—2 and 
somewhat smaller when i = 0, 1, N — 1, N, making this a local method. It 
is sometimes referred to as Bessel’s method. 

A non-linear choice, suggested by Akima (1970), is 

we [Siea Sys hS; 1S; — 8,3 |Sear 

1S 73357 PSE Se Tie 

where S;, is the slope of the line segment joining the points (x,_,, f,_1) and 
(x, f,) fork = P= 1 re ee: 

When i = 0 or N, m; requires the provision of an auxiliary point outside 
the interval. It is also possible to choose M so that the curve S(x) has a 
continuous second derivative. The resulting function is the classical cubic 
spline which is to be discussed in Chapter 4. 



Fic. 3.9 Akima’s method. 

Fic. 3.10 Bessel’s method. 

Fic. 3.11 Akima’s method. 
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In Figs. 3.9-3.11, we show interpolants by Bessels’ and Akima’s methods 

for the data of Fig. 3.3 as well as for other data, which exhibit great 

variation and can cause difficulties for many interpolation methods. 
Figures 3.12 and 3.13 show the piecewise cubic interpolants to the 

mountain and ramp—mountain data introduced in Section 2.5. Bessel’s 
method is used to obtain the necessary slopes, and both the underlying 
function and interpolant are shown. 



4 

Curve Fitting with Cubic Splines 

4.1 Introduction 

It has been indicated in Chapter 3 that in many curve-fitting problems, 
curves constructed as “piecewise” polynomials have significant advantages 
over simple polynomials of high degree. There are, of course, many ways 
of forming piecewise polynomial fits, but the history of the past several 
years shows that cubic splines take pride of place as the most widely useful. 
Recall that, with a given knot sequence K, a=ky<k,<...<ky=b,a 
cubic spline S(x) is a cubic polynomial in each subinterval [ko, k,], [k,, k2], 
.. +, [Ky-1, ky], but these cubic segments of the function are joined together 
at the interior knots k,, kj, ..., kKy_; in such a way that S(x) has two 
continuous derivatives on [a, b], i.e. so that S(x) € €7[a, b]. 

It is easily verified that if xp € (a, b), the function 

f(x) = |x — xo]? 

is in €7[a, b]. Indeed, we can compute 

roy= 4 lasagne niahesmabeunad isola 
—3(x — x)’ for x <Xpo, 

and observe that f’(x) is continuous on [a, b]. In particular, f"(xo) is well 

defined and has the value zero. In Fig. 4.1 we sketch f, f’, and f”. 

It has been shown in Section 3.7 that every cubic spline can be written 

in the form 
N-1 

S(x) = ax? + Bx? + yx+6 + Dy a;|x —k;|°, (4.1) 
ied 

87 
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x 
Xo 

x 
Xo 

X 
Xo 

Fic. 4.1 Function f(x) = |x — x9|3 and its derivatives. 

[cf. Eq. (3.11)] for some constants a, B, y, 6, a), a2, ..., Ay_,. With the 

above observation, it is clear that S(x) € €°[a, b] and also that S(x) is a 
cubic polynomial on each subinterval [k;,k;.,] for i=0, 1,..., N-1. 
Indeed, S(x) is simply a linear combination of the functions 

Bor Nate he ee > . 3] sais |x —ky-, 

i.e. any S(x) can be formed by multiplying each of these functions by a 
constant and summing, as in Eq. (4.1). 

In Chapter 2 we have emphasized the point that, although a polynomial 
function in Py is a linear combination of the primitive functions 1, x, x7, 

., x‘, in finding a particular polynomial p(x) = =™.y a,x‘, which fits 
certain data, it is generally not a good idea to try to calculate the coefficients 
ay, 4,,..., Ay directly. The same applies to the representation of Eq. (4.1) 
for a cubic spline.* Thus, the Sections 4.2 and 4.3 are devoted to the 
presentation of two very different approaches to the representation and 
computation of cubic splines. 

* For the same reason we have also omitted a discussion of the so-called truncated power 
functions for the representation of a cubic spline. 
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4.2. Finding slopes from function values 

Our first approach to the representation of interpolating cubic splines takes 
advantage of Eq. (3.13) in which any piecewise cubic function defined on 
[a, b], which is also in €'[a, b] (note only one continuous derivative), is 
written in terms of the 2N + 2 primitive cardinal functions 

De TD, De Ps oe ay 

defined by Eq. (3.12). The representation (3.13) contains 2N + 2 par- 
ameters and the condition that S(x) takes the values fo, f;, ..., fy at Ko, 
k,,..., ky, respectively, applies N + 1 constraints. The remaining N + 1 
constraints include the N — 1 conditions that S"(x) be continuous at the 
interior knots k,, kz, ..., ky_,. These ensure that S(x) € €7[a, b] and not 
merely €'[a, b]. 
We show first that these higher smoothness constraints allow us to express 

the slope parameters m; in Eq. (3.13) explicitly in terms of the function 
values fo, f; ..-, fy. Once this is done, the spline is determined for all 
x € [a, b] by means of Eq. (3.13). As in this equation, we assume that 
k;=x;,i=0,1,...,N 

For a general function with the form of Eq. (3.13), we first calculate the 
jumps in second derivative at the interior knots k;,..., ky_, and equate 
these to zero. We do this by calculating the difference in values between 
S"(x,,.) computed from the left segment of the piecewise cubic and denoted 
by S"(x;),* and the similar quantity S"(x{~) obtained from the segment to 
the right of x,. Thus, 

S"(xK) — S"(xe) (4.2) 

= > fli (xe) — BF (xt)] + 2 m,[! (xz) — BY (xt) 
i=0 

2 

k+1 k+1 

- > ALP! (xe) — BIE + 2 m,[W" (x; ) — BY (x¢)] = 0. 
i=k-1 i=k-1 

The sums have three terms each because of the small support of the cardinal 

functions. When the indicated computations are carried out, we find that 

the N + 1 slopes satisfy the N — 1 equations 

1 1 1 1 iu alr det learnt —s eecltee eae + —m,,, =3>—sCO++:35> 
hy Lee +2(h a ca ih Ags oe hi hiss 

k=1,...,N-1. (4.3) 
* In the notation of Section 1.2, S"(x;) = lim S’(x) and S"(x{) = lim S"(x). 

K— > Fie LXE 
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There remain two degrees of freedom, as claimed in Theorem 3.7.2. It 

is customary to select values for 7) and my in order to define the remaining 

slopes uniquely, or more generally, one may supply two more equations 

involving mp and my. These are normally written in the form 

2M + Wom, =Co, AnMmy-1 + 2my = Cy, (4.4) 

where Lo, Ay, Co, and cy are parameters at our disposal. 

With the notation 

Ay = Nes s/(he + herr), p= La Ags 

CP =O NAG re D/A + Stele te eats ee 4 : 

Eqs. (4.3) and (4.4) can be written in the form el 

2st tgs wQvet ab 0 0 0 my | Co 

Ney ee ey Macrae 0 0 0 m, Cy 

De Apia caer e: 0 0 0 my C2 

oer eee 

OautOy 2 suns 2 Un-2 0 Myn-2 Cn-2 

ee Oe Ura aed 2 Hn-1} | ™n-1 Cn-1 

Oa Oe Cl aaa. 0 An 2 My CN 

More details concerning the derivation of this system can be found in 
Ahlberg et al. (1967), who also give a convenient algorithm for solving this 
tridiagonal system. This algorithm can also be used for the least squares: 
linear spline. 

Concerning Eqs. (4.4), various end conditions can be imposed on the 
spline by specializing the values of Uy, Ay, Co, and cy. For example, if the 
numerical value of the slope of S(x) at the left end is given, then we set 
Uo = 0 and cp = 2S'(xXo) to obtain my = S’(xo). A corresponding strategy at 
the right end, when S’(x,) is known, is to set Ay = 0 and cy = 2S'(xy). 

The two extra freedoms of the interpolating cubic spline can also be used 
to specify the second derivative of S(x) at the two end points. If the 
second derivative of the spline is given at x9, the choices uy = Ay = 1, and 
appropriate choices for cy and cy yield, at the left end, 

2my +m, = 3[(fi — fo)/hi] — (h1/2)S"(x0), (4.7) 

and at the right end, 

my-1 + 2my = 3[(fy — fy-1)/hw] + (Ay /2)S"(xN)- (4.8) 
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A particularly important spline is obtained on setting the second derivatives 
(and hence the curvatures) equal to zero at the end points. 

Definition A natural cubic spline S is a cubic spline with the additional 
properties S"(x9) = S"(xy) = 0. 

Accordingly, an interpolating natural cubic spline satisfies Eq. (4.6) in 
which the first and last equations are simply Eqs. (4.7) and (4.8), with 
S"(x9) = S"(xy) = 0. In other words, it satisfies Eq. (4.6) together with 

ees, c= 3h — fo)/hi); Ay = 1, cy = 3[(fy — fy-1)/hy]. 

In Theorem 4.2.1, we summarize some of the most common end con- 

ditions giving rise to a unique interpolating cubic spline. Note that the 
natural cubic spline interpolant is covered by case (2) (on putting S’(x,) = 
S"(xy) = 0). It is often necessary to construct interpolants for periodic data, 
in which case the interpolant should also be periodic. This can be achieved 
in the following way: The end conditions and ordinates are determined in 
such a way that if S(x) is translated through the distance xy — x, to the left 
or right, the translates join up in a €* way at x) and xy. This means that 
S(x) satisfies the periodic end conditions 

fo =fn = S(xo) = S(xy), S'(Xo) = S'(xn), S"(Xo) = S"(xw), 

together with the periodicity condition 

S(x + n(xy — Xo)) = SQ), m0 ee 

Theorem 4.2.1 There exists a unique cubic spline satisfying the conditions 

of interpolation S(x;) =f; for j=0, 1, ..., N together with one of the 

following sets of end conditions: 

(1) prescribed slopes mo, My at Xo, Xn, respectively, 

(2) prescribed second derivatives S"(x9) and S"(xy); 

(3) end conditions of the form of Eq. (4.4) with Ay <4 and Uy < 4; 

(4) periodic end conditions. 

In Fig. 4.2 we illustrate a cardinal natural cubic spline. The rapid 

attenuation is evident. Natural cubic spline interpolants to the mountain 

and ramp-—mountain data are shown in Figs. 4.3 and 4.4, and should be 

compared with the polynomial interpolants in Figs. 2.3 and 2.4. 

Rather than impose end conditions exclusively, one or the other can be 

replaced by a not-a-knot condition at x; Or Xy-1 [see de Boor (1978)]. This 

is simply the requirement that the third derivative be continuous at the 

selected knot. The result of this is that the two cubic segments that join at 

the knot are portions of one and the same cubic polynomial, which is 6”, 
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Fic. 4.2 Cardinal natural cubic spline. 

and the knot has effectively vanished. The appropriate equations relating 
the slopes are obtained by evaluating Eq. (4.2) with third, instead of 
second, derivatives, and then using the second and next-to-last equation 
from Eq. (4.6) to eliminate m, and my _», respectively. The resulting choice 
for the parameters Mo, Co, Ay, Cy in Eq. (4.4) is then 

a _ 2, + hz) i _ 28h, + 2h2) (fi —fo)  2hi(f ala) 

‘ hed dns : (hy + hz)hy hy(hy +h)’ 
for third-derivative continuity at x,, and 

vet 2(hy-1 + hy) 

hy-| 

oe 2hn(fn-1 —fw-2)  2(2hy_a + 3hy) (fw — fr-1) 
- Ay-(An-, + hy) (Ay-; + hy)hy : 

Ay 

for third-derivative continuity at xy_,. 

ee é ico nll 5 points Cae 

* « ik apc oan A PA swan gerhon EH 

——_—_-~—+ 17 points ity Mghes aeeomel 

Uniform data points Random data points 

Fic. 4.3. Natural cubic spline interpolants: mountain. 
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Using the definitions of Eq. (4.5), the right-hand side of the system (4.6) 
can be written in the matrix form, 

Co 0 0 0 OF es OTT fs a 

A A 

C2 0 fs 0 
=3 ovileal eee (4.9) 

oe Ayer Aner Hiner tower |] Fe2} | ° 
Cn-1 hy-1 hy-1 hy hy f-1 

en ig Bares 0 0 fy B 

aw and f# being determined by the specific end conditions of the form 
(4.4) that are selected. If the slopes S’(x9) and S’(x,) of the interpolating 
spline are created linearly from the function values, e.g. if S’(x9) = 
(fi — fo)/hi and S'(xy) = (fw — fv—1)/hy, then the vector [v,0,...,0, 8]? 
above can be absorbed into the matrix-vector product by changing the 
first row of the matrix to [—3(1/h,), 3(1/h,), 0,..., 0] and the last row to 
[0,...,0, —3(1/hy), 3(1/hy)]. If a natural cubic spline is desired then in 

pAb aid yaboy Tow in © ead bal jo! siene 7eGaaage —- 

[ Ricawo dee hissiinibgioon Baad maseet amy it wan SOREN) 

faite with those. given on Eg. (4.12). Onyapriox Eq. (4.13) 7 Nad 
Uniform data points Random data points 

Fic. 4.4 Natural cubic spline interpolants: ramp plus mountain. 
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view of Eqs. (4.7) and (4.8), the top row becomes [—1/h,, 1/h,, 0,.. ., O], 
and the last row is [0,...,0, —1/hy, 1/hy]. In both of these cases, Eq. 
(4.9) takes the form 

c= Cf, 

with an appropriate choice of the square matrix C. Then we may write 

mi=.4--Cf, 

where A denotes the coefficient matrix in Eq. (4.6). Thus, the matrix M of 
Eq. (3.15) is given by 

M=A'C. (4.10) 

Even though A is tridiagonal, this product is full, and hence the associated 
cardinal splines, which could be constructed by setting f = (1,0,...,0), 

(0, PO, oa Oyo) te (Oe Uy cs Op L) in tum in Be (3.17 are notnt sent 
support. Because the small-support property is advantageous for compu- 
tation, one is led to enquire whether there exist non-cardinal spline basis 
functions having minimal support. That is indeed the case—the basis 
functions are known as B-splines. 

4.3 B-splines 

We have seen that the tent functions of Section 3.3 form a convenient basis 
for £)(K), the vector space of linear splines. We are now to construct an 
analogous basis for the space Sy(K) of cubic splines. The underlying idea 
is the generation of a basis of minimal support. 
We observe that the support of the tent functions that belong to interior 

knots is two intervals. As well, the functions /) and Jy can be viewed as 
restrictions to [x9,X,] of tent functions with support [x_,,x,] and 
[xy-1,Xv+41], respectively, x_, and xy,, being exterior knots that play no 
role in the interpolation process. 

Consider now the parallel situation with cubic splines. It turns out that 
the (twice differentiable) smoothness of a cubic spline requires it to have 
a support of at least four consecutive intervals. 

Theorem 4.3.1 Let K be a knot sequence satisfying ky < Kp eee 
For j= 2,3,..., M —2, there exists a choice of non-zero ordinates Lael 
fj+1 such that the natural cubic spline with knot sequence K that satisfies 

ste = [fd IA, 
0, otherwise, 

vanishes outside the interval (kj->, kj+2) (and has zero slope at Kj-2, kj+2). 
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We denote such a B-spline by B;_,. A spline with the property of 
Theorem 4.3.1 is shown in Fig. 4.5. 
We shall demonstrate this theorem in the case when the knots are equally 

spaced h units apart and when M = 4. In Eq. (4.6), set N= M=4, mj) = 
m,=0, fo =f4 = 0, and select the natural spline end conditions via Eqs. 
(4.7) and (4.8), and Definition 4.2.1. The right-hand side of Eq. (4.6) can 
be calculated by using Eq. (4.9) with the comments following Eq. (4.9) 
taken into account. The resulting system is 

2 RAD TAD FTO 

2 3 0. 0] 1m, 

O44 2 440) 

OO Pek hl rrr 

COs T ae 2G 

—1/h 1/h 0 0 0 0 

Sp 2h 0 1/2h 0 0 ip 

ea —1/2h 0 1/2h 0 rls (4.11) 

0 0 -1/2h 0 1/2h |} f; 

0 0 0 -1/h i/h |L0 

If f;, fo, fs are chosen arbitrarily, the corresponding natural cubic spline 

will not have my = m, = 0. The first and last rows of Eq. (4.11) immediately 

yield 

m, = 3f;/h, m3 = —3f3/h, (4.12) 

whereas the remaining ones condense to the system 

2 2 O}}m, 4 hr 

0 2 2}[ms, —fo 

We must arrange f), fo, f; so that the values m,, ™3 coming from Eq. (4.13) 

coincide with those given in Eq. (4.12). On solving Eq. (4.13) for m, and 

m3, we obtain 

i ¥i3 

1 14h 
(RAtn fh, m= {- Sh +f fh, m 
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ko ky ko ks ka 

Fic. 4.5 AB-spline. 

which must be equated to 3f,/h and —3f;/h, respectively. The resulting 
equations can be solved for f; and f; in terms of f, and give 

fi =4ho, fs =tf2, fx non-zero, arbitrary. 

We could choose f, = 1; then, f; = f; = 4. Thus, this minimal support B- 
spline By is defined by the ordinates fy = fy = 0, fi=fs=4, f2=1, and 
the slopes my = m, = 0, m, = —m, — 3/4h, m, = 0, and its values can be 
computed by using these in conjunction with the cardinal basis in the form 
of Eq. (3.12). A better choice of f, will be made shortly. 
We are now in a position to construct all of the B-splines that are non- 

zero on the interval [a, b] = [ko, ky] on which interpolation is being carried 
out. For simplicity we retain the hypothesis of equally spaced knots. First, 
we define the B-spline Bo, defined for all real numbers, by attaching 
identically zero extensions to Bo: 

0, i << ay 

Be(x) =1" Bat), Rice. Geek, (4.14) 

0, ke aX = &, 

This is a piecewise cubic, degenerately so outside [ky,k,], and has a 
continuous second derivative everywhere, because by definition the cubic 
spline Bo(x) is twice differentiable on (ko, k,4). Furthermore, Bi (ki) = 
Bo(k4 ) = 0, and the second derivative is identically zero outside [Ko, Ka]. 
Now we define all of the B-splines whose support is entirely within [kp, ky] 
by translating By to the right: 

B,(x)=By(x—-k),  j=0,1,...,.N—4, (4.15) 

where kj = jh ae ko. 

There are a few more B-splines whose support is not entirely in [ko, ky] 
and which either “start” at the knots k_,, k_y, k_3 to the left of ko, or 
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terminate at the knots ky .,, ky 42, ky43 to the right of ky (Fig. 4.6). Thus, 
the complete set of B-splines that have at least part of their support in 
[ko, ky] are the restrictions to [ko, ky] of the following translates of Bo: 

B,(x) = Bo(x — k,), Wee shei 25a] pOaloty, shiV cel fur(4i16) 

We see now that at any point of [ko, ky], there are at most four B-splines 
that are not zero there (Fig. 4.6). In particular, consider any point x in 
[k;, ki,,]. The non-identically zero B-splines at this point are B,_;, peas 
B;_-,, and B;. It is interesting that the values of these four B-splines at x 
sum to a constant, which is independent of x, just as the tent functions sum 
to unity in the case of the linear spline. 

Bus B.y Bo B, Bp Bs By 

ko hy he hs Ka ks ke 

Fic. 4.6 B-splines. 

Assuming the last assertion to be true, we can see what this sum 
must be by examining the sum at k; (Fig. 4.6). We get 

B;_3(k;) + Bj-2(ki) + By-i(k;) + B(ki) =4+1+4+0=%. 
We can get these splines to have a sum of unity by readjusting the value 

of f, in our construction of the minimal support prototype B-spline Bo. 
What we want is 

fa + tf, + af. =1; 

from this, 

a) f2=% hirer oz 

When this normalization is used, the following theorem can be proved. 
(Although our discussion has been in the context of equally spaced knots, 
the following results hold for unequal spacing of knots.) 

Theorem 4.3.2 Let the knots k;, i= —3, -—2,..., N+2, N+3, satisfy 

ki, >k; and ky =a, ky = b. Then, for any value x in [a, b], the B-splines 

B_;,.. +, By-1 [Eq. (4.16)] satisfy 

N 

2, Bilt) = 1, 
i=-3 
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and any cubic spline S(x) with the knots ko,...,ky can be written in the 

form 
N 

S(x) = Dd a;B;(x). (4.17) 
i=-3 

There are N + 3 coefficients a; in this representation, showing again that 

the vector space of cubic splines has dimension N + 3, so that the N+ 1 
function values will not determine S(x) uniquely—two additional con- 
straints must be supplied. Cardinality of the basis has been sacrificed for 
small support in the basis. Consequently, in evaluating S(x) for any x in 
[a,b], only four terms at most of the sum (4.17) will be non-zero. 

4.4 Recursive construction of B-splines 

The techniques developed so far do not lend themselves to the efficient 
calculation of a B-spline basis for S\(K). They can be replaced by a 
recursive calculation, which we outline below. This technique offers a 
numerically stable computational process. Without striving for great gen- 
erality (for which see de Boor [1978]), we first define B-splines that may 
be piecewise constant, linear, quadratic, or cubic polynomials. 

Definition Let k;,i=—3,-2,...,N+3, be knots _ satisfying 
k_3<k_.<...<kyi3,k) =a,ky=b. A B-spline of order n,n =1, 2, 3, 
4, with these knots is a piecewise (n — 1)th degree polynomial function not 

By 4 

———— SS = == — >» x 

ko ky ko ks ka ks 

By 3 

+ x 
ko hy ho hz ka ks 

Fic. 4.7 B-splines of orders one and three. 
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identically zero, of continuity class €"~[k_3, ky+3], and of minimal 
support. When n= 1, we interpret the class €~'[k_3, ky+3] as admitting 
functions with discontinuities at the knots. 

We have already seen B-splines of order two, namely, the tent functions 
of Section 3.3, and of order four (although with equally spaced knots): 
These are our cubic B-splines. When n = 1 and n = 3, we have in mind 
piecewise constant and piecewise quadratic functions, as illustrated in 
Fig. 4.7. We may reasonably assume the existence of such functions. We 
can prove the following theorem as well. 

Theorem 4.4.1 The support of a B-spline of order n is n +1 intervals. 
Denote by B;,, an nth-order B-spline whose support is [k;, k; +n] (this 
contains n + 1 intervals created by the knot sequence). Then, it is possible 
to normalize these splines so that for any x in [a, b] and n= 1, 2, 3, 4, 

N+3 

= Bi n(x) ao 
i=-3 

The cubic B-splines (of order n = 4) that we require can now be computed 
by means of Eq. (4.18), which is derived in de Boor (1978), and is used 
extensively in computation. 

Theorem 4.4.2 The B-splines of order n are related to those of ordern — 1 

by the recurrence relation 

Lk k; n role 

Se Bs (a) =~" ——— Bis i n-1(), (4-18) 
I pas x k; 

BAe = 
n@) Ki eet 

where i= —3,...,N—1 and n= 1, 2, 3, 4. 

In computing with this relation we start with the B-spline of order one 

(Fig. 4.7). A precaution is necessary here in order to avoid uncertainty as 

to the value of, say, B; ; at ki and k;,,. A useful convention is to define the 

first-order splines as right-continuous, so that 

B; 4k) =A, B; 1(kj41) = 9, 

or, more generally, 

0, eee ks 

By Sd Dre Rikpii ess kpppp el PAE BH? LN OS pone) 

0, Kix, SX. 
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The evaluation of B; ,(x) for any x in its support [x;, x;,4] can be carried 
out by working within the following triangular array, working from left to 
right, one column at a time, according to Eq. (4.18): 

Byy 

Bisa Bio 

Bi421 Bi 41,2 By 3 (4.20) 

Bi31 Bisa Biny3 Bee 

For any x, the values in the first column will be 0 or 1, in view of Eq. (4.19). 
As an illustration, consider the case of equally spaced knots and the 

associated triangular table for finding B; 4(k;), 7 =i+1,i+ 2. Forx =k;j,, 
[erm (4-19): 

By (key) = 0 

Bisikea=t 2 

Biza (Kiar) =O. 0 

Big 1 (Ke) 0 OU 

bh 

ale 

For x = kj+2: 

Bii(ki+2) =0 

Biii(ki2)=0° 0 

Bio (Gone) =) 41 

Bis31(kin2) =90 0 

nie 

Nhe wits 

The values § and 3 are of course the same as those obtained by actual 
construction of B; 4 earlier in this section. It is convenient to suppress the 
index 4 for simplicity of notation. 

In order to construct an interpolating cubic spline in its cubic B-spline 
form [Eq. (4.17)], the conditions S(kj) =f;, /=9,1,...,N, are imposed, 
giving 

N-1 

2 4iBi(k;) = fj, ll he ee (4.21) 
i=-2 

The required values B(k;) can be computed via Eq. (4.18). In the jth 
equation, this is only necessary for the B-splines B;_3, B;-2, B;_,, all other 
values being zero. Two more conditions have to be supplied as well, usually 
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in the form of end conditions. For a natural spline these are S’(k)) = 
S"(ky) = 0, or in B-spline form, 

a_3B"3(ko) + a_,B" (ko) + a_; B",(ko) = 
; , (4.22 

ay-3By_3(ky) + @n-2 By_2(ky) + ay-,By-1(kn) =0 ) 

The required second derivatives are given by 

6 
B" (ky) = ———_—___ to) ~ (ERR NOE Ea 

—6 | 1 
Bok fc + | (Ko) = Lithes betes eousniails en aeceac 

_1(ky) = ———————__. , Yaak Che Gop wkz,) FA) 
6 (4.23) 

-3(ky) = a _—_. , 
(Ky41 = Kn-1)(kn+1 re Ky-2) 

6 ik 1 16) beats ee) ea Sd en ae a 2 a Oa 
"” 6 

By-1(ky) ig 
(Kn+1 a Ky-1) (Kn+2 rie Kua) 

The extra knots k_3,k_,,k_,,kni1,kn+2,ky+3 should satisfy k_;< 

k_,»<...<ky+3, but are otherwise arbitrary. Once the a; values are 
determined from Eqs. (4.21) and (4.22), the calculation of values of S(x) 
for any x € [a, b] can be carried out by the use of the recurrence (4.18). 

Clearly, the theory of B-splines is very involved, and we have only 
scratched the surface here. For problems with N not too large and which 
are not to be repeated many times with different parameter configurations, 
the computation of a piecewise polynomial representation for a cubic spline 
by means of the methods of Section 4.2 will prove satisfactory. 

4.5 Natural cubic splines as optimal interpolants 

A mechanical means of producing smooth interpolating curves, heavily 
used in the past in the shipbuilding and aircraft industries, consists in the 
use of a thin, flexible batten or spline, held in place by weights. This spline 
bends in such a way, that its internal energy due to bending is minimal, 
consistent with the interpolation constraints imposed on it. At any point of 
the spline, the bending energy depends on the curvature there. If the form 
of the interpolating spline is viewed as the graph of a function S(x) with 
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x € [a, b], a and b being two of the points of interpolation, then it can be 

shown that the energy is proportional to the integral 

> [S"@)F* ax 
ret 

which can be rewritten as 

| : [x(x)]*[1 + (S'(x))7]! dex, (4.24) 
a 

where K(x) is the curvature of the curve S(x) as defined in Section 1.4. 
We can now pose the following problem: Find that function S(x) which 

interpolates at the knots a= xy<x,;<...<xXy=b5, and for which the 
integral of Eq. (4.24) exists and is least in value. By finding this minimizing 
function, we hope to reproduce mathematically the natural shape taken by 
the flexible spline. This is a rather difficult problem. A good discussion of 
it can be found in a paper by Malcolm (1977). 
A simplification results if we ignore the contribution of the slope S'(x) 

to the integral of Eq. (4.24) and set it to zero. Then the integral collapses 
to the functional [see the comments following Eq. (2.10)] 

(8) = | * [9p ae. (4.25) 

The set of all functions for which the above quantity can be computed is 
recognized as a useful mathematical entity. We denote it here by ,[a, b] 
and refer to it as “the class of functions having a square integrable second 
derivative on [a,b]”. The set §,[a,b] contains, among others, all the 
functions of %, for any n, all cubic splines on [a, b], and all €!' piecewise 
cubics on [a, b]. The latter possess second derivatives everywhere except 
possibly at the knots. With an appropriate interpretation of the integral, 
this causes no difficulties. 

Now we pose the problem: Find a function in #,[a, b] that interpolates 
to given data at the knots a= ky<k,<...<ky=b and minimizes the 
functional J of Eq. (4.25). 

The solution is surprising. It is unique and is the interpolating natural 
cubic spline. Hence, even if the search for an optimal interpolant had been 
carried out in the smaller function classes €y(K) (cf. Theorem 3.6.1) or 
Sy(K) (cf. Theorem 3.7.2), which are subspaces of §,[a, b], the same 
solution would have been obtained. We can use this idea to develop natural 
cubic splines from the interpolating Hermitian piecewise cubics in €,(K), 
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(b) 

Fic. 4.8 (a) Weighted spline and (b) natural spline. 

using the slopes as parameters, with respect to which the minimization of 
J can be carried out. The result is the set of Eq. (4.6), together with the 
natural end conditions. 

The term “natural” refers to the fact that a mechanical spline that 
interpolates but is not subject to torques at the data point will flatten out 
to zero curvature at its extremities. This corresponds to zero second- 
derivative end conditions. 
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(b) 

FiG. 4.9 (a) Weighted spline and (b) natural spline. 

Although the natural cubic spline is optimal in the sense of minimizing 
Eq. (4.25), it should not be regarded as optimal in some universal sense. 
Different optimality criteria yield different optimal interpolants. An 
example is the weighted cubic spline in €y(K), which interpolates and 
minimizes 

b 

[ we ts'@r ar, 
where w(x) is a positive weight function. A fairly elementary account of its 
theory can be found in Salkauskas (1984). If w(x) is constant, then a natural 
spline results. Otherwise, the spline is only of continuity class @!. The use 
of a suitable weight function allows this spline to accommodate itself to 
rapidly varying data without experiencing the severe over- and undershoot 
phenomena that occur often with €? splines. Its defining equations (which 
yield the necessary slopes) are identical in appearance to those of the 
natural spline, but the values of the A,;, u;, and c; terms are computed 
somewhat differently. 



=e 
Fic. 4.10 (a) Weighted spline and (b) natural spline. 

Fic. 4.11 Smoothing cubic spline; all weights 10. 
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Figures 4.8-4.10 compare the effects of one weighting scheme on various 
sets of data. Here we have used a simple weight function. It is a piecewise 
constant defined by 

w(x) = {1 + [0 — yi-1)/AiJ7} 7, 47 @XO2;, O1,2-,,N. 

4.6 Smoothing with cubic splines: introduction 

The idea of fitting a polynomial curve of degree m to more than m + | data 
points has been introduced in Section 2.5. The notion of fitting used there 
was a fit in the least squares sense. Thus, a polynomial p in the class 
P., (m + 1<N) was found so that the functional 

N 

E@) = x (p(x;) -f)) (4.26) 
j=0 

was as small as possible. 
It was noted that if we allowed m + 1 = N, the best least squares poly- 

nomial became capable of interpolating and thus reducing E(p) to zero. 
On the other hand, we have another notion of smoothness associated with 
the functional J of Eq. (4.25). Whatever the magnitude of J may be for a 
particular interpolating spline S [which has E(S) = 0], it is obvious that J 
could likely be decreased if the condition E(S$)=0 were relaxed and 
interpolation were not required. This is the reasoning behind the creation 
of the functional 

K,(f) =J(f) +AE(f), A>, (4.27) 

which is defined for all f € ¥,[a, b] and has the non-negative number A as 
a parameter. Note that the data occurs in E(f) but not in J(f). Hence, if 
we allowed A = 0, then K,(f) would be minimized by any straight line, for 
a straight line has zero second derivative and hence zero J(f). If A is very 
close to zero, the minimizer of K,(f) should be close to a least squares 
straight-line approximation to the data. On the other hand, if A is very 
large, a minimization of K,(f) would be dominated by AE(f), which is least 
when f interpolates. It turns out that the problem of minimizing K,(f) for 
a fixed A over all of §,[a, b] (which contains many more functions than just 
splines) has a solution paralleling that of the minimization problems of 
Section 4.5. 

Theorem 4.6.1 There exists a unique function S, in $,[a, b] for which — 

min {J(f) + AE(f)} = J(S,) + AE(S,), 
fEF2 
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i.e. which minimizes K,(f), and this minimizing function is a natural cubic 
spline on [a, b] with knots a=x)<x,<...<xy=b. 

We note that the points x9, x;,..., x, are fixed a priori and are used in the 
definition of E(p). 
Armed with this result, we may search in the small (N + 1)-dimensional 

subspace Py(K) of F,[a, b] composed of natural cubic splines with knot 
sequence K = {ky, k,,..., k,} defined by k; = x;,,i=0,1,...,N. This per- 
mits a constructive description of $,. The only parameters at our disposal 
for the optimization of K,(f) are just the ordinates y,,j=0,1,...,N, ofa 
non-interpolating natural cubic spline at the knots kj <k, <<... < ky. The 
required smoothing spline can be obtained by a simplified version of the 
method described next in Section 4.7. 

4.7 The smoothing spline 

A useful and more general functional than K,(f) is obtained by modifying 
E(f) in Eq. (4.26) by means of the provision of weights for the squares of 
the differences between the values of the approximating function f and the 
observations f;. Hence we take 

E,(f) = 2 A, (f(k;) — f;)?, (4.28) 

with A = [Ao,.. ., An]7, and put 

K\(f) = Jf) + E,(f). (4.29) 

Concerning the choice of A, it is evident that a large value of some A, in 
A will, through the minimization process, cause f(k;) to be close to f;, and 
near-interpolation of k; will result. Thus, from a statistical viewpoint, the 
values 4; should be inversely proportional to the variances o7 of the 
observations f;. Hence we take 

Ape alors p= 0,2 NP SO. (4.30) 

Some statistical guidance is required here. We shall return to this question 
later in this section and concentrate on the problem of minimizing K,(f) 
for f € #,[a, b]. It turns out (Schoenberg, 1964) that the minimizing function 
is unique and is again a natural cubic spline with knots a=xj)<x,<... 
<xy=b, i.e. Theorem 4.6.1 applies with a small change in notation. 
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In order to carry out the computation of the smoothing spline, it is 

tempting to attack the problem directly, working in terms of the yet 
unknown ordinates of the spline. This approach leads to complications that 

are avoided by a somewhat different strategy. The first move is to represent 

a natural spline by means of its ordinates and second, rather than first 

derivatives at the knots. 
Let the values of the second derivatives at the knots be denoted by M,, 

i=0,...,N. Then, since a spline S(x) is in €7[a, b], its second derivative 
is a continuous piecewise linear function in £y(K) (Section 3.2), given 

explicitly by 

S"(x)=Mj-1[(%j —x)/hj]+Mj[(x-x;-1)/hj), xE[x;- i. (4.31) 

Integrating twice, we obtain on [k;_,, kj], 

S(x) = 8M,_1 [Qj — x)°/hy-1] + BMy[@ — x)-1)?/hj] + ax + b, 

with integration constants a and 6b that can be evaluated by making sure 
that this segment of S(x) interpolates to values y;_, and y; at the knots kj_ 

and k,, respectively. 
Setting S(k;-,) = y;-, and S(k;) = y; and solving for a and b, we arrive 

at 

S(x) = 6Mj—1[(x; — x)°/Aj-1] + ML — x)-1)°/hy] 

m2 6(6y;— = Ana ri x)/h;] 

+ &(6y; — MjhF)[(x — x;-1)/hy], (4.32) 

for any x in [kj_,, ky]. 
Now we are assured of the continuity of S"(x) as well as that of S(x) (by 

interpolation), and we must make certain that the particular values of M, 
that we are using permit S’(x) to be continuous too. To achieve this goal, 
we compute S’(x) for the interval [k;_;, k|] and for its neighbouring interval 
[kj, kj+i], evaluate it at x = k;, and equate the two expressions to obtain 
Eq. (4.33): 

= (1/hjs 1) Vj41 — yj) — (1/h)) 0; ee as (4.33) 

for j = 1, ok. &) MeedieThesevaren =ahvequations relating the N + 1 second 
derivatives of S(x) at the knots. As before, the two remaining degrees of 
freedom can be absorbed by imposing end conditions. It is traditional to 
divide Eq. (4.33) by a(h; + hj+1), j= 1,...,N—1, thereby arriving at a 
coefficient matrix very similar to that of Eq. (4.6). [The interested reader 
can find the details in Ahlberg er al. (1967).] 



4.7 The smoothing spline 109 

For our present purpose, the equations are best left as they are. Since 
we are looking for a natural cubic spline minimizing K,(S), we can put 
My = My = 0 at the outset and write Eq. (4.33) in the form 

3(h, ate h2) sh, 0 eee 0 M, 

gh 3(h> 5B h3) sh, er teh ia 0 M, 

0 

ty 1 
0 a 0 @ghy-1 3(hy-1 + hy) Ma, 

(4.34) 

aren ; : 
Be sii teds lon onvyl'a : a 
0 1 1 1 1 J 

aoe — ==: = a == = 

hy ew At Sie 

: 0 
hy-\ 

1 1 i 1 
0 0 See ae YN 

hn- hn-1 hy hy 

or, more compactly, as 

BM = Dy, (4.35) 

noting that B = (N — 1) x (N- 1), D=(N- 1) X (N +1), Mis of length 
(N — 1), and y is of length N+ 1. Furthermore, B is a symmetric matrix 
that is diagonally dominant and consequently possesses a symmetric inverse. 
We are now in a position to carry out the minimization of K,(S). This 

procedure is outlined next and results in the linear systems (4.39) and 
(4.40), which are solved in turn for M and y. In matrix—vector form, 

K,(S) = fi MI(x)I(x)7M dx + (y — f)’A(y — f) 

ay! DI(BoAyh f I(x)17 (x) dx B~ Dy + (y — f) A(yf). 

, (4,36) 
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Here, I(x) = [/,(x),. . ., ly_-1(x)]’ is a vector of those tent functions that are 
needed to form S"(x) for a natural spline, My and My being zero, and A is 

the diagonal matrix 

N= diaglAg, .. -> Ay]. 

When K,(S) is differentiated with respect to yo,..-., yy in order to obtain 
the necessary conditions for a minimum, we obtain the system 

DEB as \t F I(x)I7 (x) dx B"! Dy + A(y — f) = 0. (4.37) 

The integral appearing here is a square matrix whose elements are 

b 
| I;(x) L(x) dx. 

The computation of these is quite easy, and it turns out that this matrix is 
simply B. As a result, Eq. (4.37) simplifies to 

D™B"'Dy + A(y-f) =0. (4.38) 

Rather than solving this system for y and then solving Eq. (4.34) for M so 
as to be able to use Eq. (4.32) for the calculation of S(x), we rewrite Eq. 
(4.38) in terms of M by using Eq. (4.35). We do this by first multiplying 
Eq. (4.38) on the left by DA! and then replacing Dy by BM. Then, 

(DA~'D? + B)M = Df, (4.39) 

where A“! = diag[1/Ay, .. ., 1/Ay]. This system can be solved for M; then 
y can be computed from Eq. (4.38) by replacing Dy in that equation by 
BM and rearranging it to obtain 

y=f—A-'D™. (4.40) 
Equation (4.32) can now be used to compute S(x) segment by segment. 
We observe at this point that if all A;’s are chosen large, then roughly 

speaking, A~' is close to zero, the system of Eq. 4.39 is close to that in Eq. 
4.35, and Eq. (4.40) is close to y = f. In other words, we are then close to 
interpolating with a natural cubic spline. 

In order to obtain the solution S$, of the simpler smoothing problem 
described in Section 4.6, it is only necessary to replace the matrix A by the 
scalar A and, of course, A7! by A“. 

Concerning the choice of A and of the weights A; in general in a statistical 
setting, we refer the reader to the work of Craven and Wahba (1977) and 
Wahba (1981), where the ideas of cross-validation are discussed. In the 
simplest case, we can assume that all 4; are equal, as in Section 4.6, and 
experiment with the value of A until a satisfactory fit is obtained. 
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Figure 4.11 shows a smoothing approximation to the same velocity data 
as those used in Fig. 3.3. Other interesting illustrations and discussion can 
be found in de Boor (1978). 
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Curve Fitting and Projectors 

5.1 The projector defined by simple polynomial interpolation 

The fundamental theorem described in Section 2.1 tells us that, if we are 
given a set of N + 1 distinct points in an interval [a, b] at which to interp- 
olate, then we can associate with any function fin the class €[a, b] a unique 
interpolating polynomial p of the class Py. If the points of interpolation are 
X9,X1,-.-,Xy, then this association is determined by p(x;) = f(x;) for j = 
0,1,...,N. We now use this association to define a new function, which 

we call P, defined on the set @[a, b] and with values in Py (which can be 
seen as a subset of €[a, b]). Thus, for any f € €[a, b], Pf = p, where p is 
the polynomial interpolant for f in Py. [In this context it is customary to 
write Pf rather than P(f).] 
We recall that this function can be determined explicitly in the following 

way: If p(x) = 2, ax’, then, as in Eqs. (2.1) and (2.2), the coefficients 
dy,---,4y are the components of the vector a given by 

a=V“f (1) 

Also, the components of f are f(xo),. . ., f(xy), and V is the Vandermonde 

matrix of the powers bys). bX" evaluated at x6, 01.540 y. 

Because #y is contained in €[a,b], we can apply the function P once 

more to the function Pf = p. Writing P” for the composition of P with itself, 

we get P’f= Pp. However, the definition of P means that Pp is the 

polynomial interpolant for p, which is obviously just p itself, i.e. Pp = p = 

Pf. Thus, for any f € €[a, b], P?f = Pf, and this means that P’ = P (the 

effect of applying P twice is just the same as applying P once). This is the 

essential property of a “projector”, and the function P described here is 

known as the “interpolating projector” for polynomial interpolation on the 

points x9, X;,...,Xy. We say that P projects (or maps) the functions of 

€[a, b] onto Py, the image of P. 

113 
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Consider now the functions in €[a, b], which are projected by P onto 
the identically zero function (which is, of course, a member of Py). Thus, 
we ask which functions f € €[a, b] are such that Pf = 0. It is apparent from 
the definition of P that this is the case if and only if f(xo) =f(x,)=...= 
f(xy) = 0. The class of all such functions in €[a, b] is known as the nullspace 
(or kernel) of P; call it %. For any function f in €[a, b], write 

fate ry = ye (5.2) 

where / is the identity transformation; it maps any member of €[a, b] into 
itself. Since f and Pf have the same values at x), x,,..., xy, the difference 
f-— Pf=(U— P)f must belong to #. Thus, Eq. (5.2) tells us that any f in 
‘6[a, b] can be expressed as the sum of two functions—one of them (Pf) in 
Py and the other [(J — P)f] in X. Also, it is not difficult to see that these 
components of fin Py and X are unique. Referring to the heuristic diagram 
in Fig. 5.1 we want to develop the geometrical idea of the whole space 

i 

Fic. 5.1 Decomposition of €[a, b]. 

€[a, b] as a direct sum of Py and X (written €[a, b]=2Py@X) and the 
component parts of a member f of €[a, b] obtained by projection onto Py 
and onto X. 

Note that since P*? = P, ]— Pisalsoa projector for 

(I- P)*=([- P)(I- P)=1-2P+P?=I1-P. 

Furthermore, J — P projects the functions of €[a, b] onto X. 
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5.2 A formal definition and further examples 

In general, a function F defined on a vector space ¥ (Ff = €[a, b] in the 
above example) with values in a vector space J is said to be linear if it is 
additive and homogeneous; that is to say, 

FU Va Ey). 
for allx, yin S, and 

F(ax) = aF(x) 

for any real @ and all x in &. Such a function is said to form a linear 
transformation from & into J. It is often convenient to express this in the 
iGrekisih sc ; 

It is easily verified that the projector introduced in Section 5.1 is a linear 
transformation from €[a, b] into €[a, b]. In general, a projector is defined 
to be any linear transformation P : > & with the property that P? = P. 
Such a linear transformation determines a decomposition of S as a direct 
sum of two subspaces, the image of P (onto which the members of & are 
projected) and the nullspace of P (consisting of members f of # annihilated 
by P, i.e. for which Pf = 0) (see Fig. 5.2). 

Nullspace of P 

Fic. 5.2 Decomposition of # by a projector. 

To understand fully a projector arising in a specific application, it is 

generally useful to look for a complete description of the two component 

subspaces: the image and the nullspace of P. Then the use of projectors 
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allows us to take a broader perspective of curve- and surface-fitting pro- 

cedures, to rise above the computational detail, and to see more readily 

how more complicated processes involving more than one projector can be 

developed. 
Let us illustrate with more examples. First, consider the case of Hermitian 

polynomial interpolation, as described in Section 2.4. Theorem 2.4.1 shows 

that, given N + 1 distinct points x9, x,,...,xy in [a, b] and any function f, 

which, together with its first derivative, is well defined at these points, there 
is a unique associated polynomial p in P24, that takes the same function 
and derivative values as f at x), X;,...,Xy- In particular, we may take any 

fin €'[a, b] and map it in this way onto a p in P>y,,;. This map determines 
the function H, say. Thus, we write Hf = p. 

Because of the uniqueness of the Hermitian interpolant, the function H 
will simply reproduce functions p in Pj,,,. Thus, if Hf =p, then H*f = 
Hp = p, and H’f = Hf for any f in €'[a, b]. Again, H is linear, and so it is 
a projector of €![a, b] onto the subspace jy, of €'[a, b]. In this case, 
the nullspace of H obviously consists of those functions f in €'[a, b] for 
which 

F(xo) = fi) =... =flen) =0, FY (Xo) =f (1) = tee = fYCxy)= 0. 

We turn now to the method of least squares, as described in Section 2.5. 
Again, we may start with a function f from €[a, b], which is evaluated at 
N +1 points, x9, x ,,...,Xy. Then, if m is an integer, with 0 <m<N, the 

least squares technique described there associates a unique polynomial 
p€&P,, with f, i.e. the technique determines a function L:€[a, b] > P,,. 
This association is given computationally by Eq. (2.14), i.e. 

a=(V'V)-'V'f, (5.3) 

where p(x) = 27, ajx!, f” = [f(xo),. . ., f(xy)] and V is the Vandermonde 
matrix-ofel,x;.. Va ate ee 

Again, we easily see that if p€ 9,,, then Lp = p and hence L?= L. 
Also, L is linear and is therefore a projector of €[a, b] onto ,,,. The null 
space of L is, however, harder to describe. It certainly contains all those 
functions in €[a, b] that vanish at x9, x,,..., xy, but will generally contain 
more. 

There is a projector associated with the interpolating moving least squares 
technique of Section 2.10, but this is, as one might expect, rather more 
complicated. If, as above, there are N + 1 data points in [a, b] and m is an 
integer with 0 < m SN, then it can be shown that the associated projector 
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defined on €[a, b] has an image of dimension N + 1. Indeed, a basis for 
this image can be made up of the N+ 1 cardinal functions obtained by 
setting 

f(x) =1 and =e f(x;) = 0 for i#j, 

andj =0,1,..., N. It can also be shown that ?,,, is contained in this image. 

The functions in the image of the projector are no longer mere polynomials. 
At each x, the value of the image of f is given by solving Eq. (2.26) and 

then setting (Pf)(x) = 27% a,x’. Thus, the coefficients a; also depend on 
x. [For more details, the interested reader is referred to Lancaster and 
Salkauskas (1981).] 

Turning now to piecewise polynomial interpolants, we consider interp- 
olation by linear splines, as described in Section 3.3. The vector space 
Ly(K) of linear splines with knot sequence K is a subspace of €[a, b], and 
every member of £y(K) can be expressed as a linear combination of the 
functions |x — k;|,i=0,1,...,N. For any f € €[a, b], there exists a unique 
linear spline /in £y(K) interpolating f at the knots in K. This spline depends 
linearly on the values of f. Thus, there is defined a linear transformation L 
such that Lf = /. Furthermore, it is clear that L/ =/, so that L* = L. and 

L is a projector. 
The representation of the function Lf depends on our choice of basis 

for £y(K). If we choose the set |x —k, i=0,1,...,N, then Lf(x) = 
=» a\x — k,|. Here the coefficients a; are given by 

a=V~'f, (5.4) 

where V is the Vandermondian of the basis shown in Eq. (3.1). On the 

other hand, if we choose a cardinal basis of tent functions, then the 

associated Vandermondian is simply the identity matrix J, and the matrix 

inversion indicated in Eq. (5.4) is avoided. The same applies to any 

interpolation method; however, it may be difficult to know ahead of time 

what the cardinal functions are. 

To conclude this section, we consider the following fairly general 

problem. Let ®o, ®;,..., By be linearly independent functions defined 

and at least continuous on [a, b]. Then the set of all linear combinations 

=, a;®; forms a subspace J of & = €[a, b]. Suppose now that we desire 

an interpolant ® € J to a function f in €[a, b] interpolating at distinct 

points x, X;,---, xy in [a,b]. Then, given the existence of ®, it follows 

that ®(x,) = f(x), 7=90, 1,...,N, and since ® is a linear combination of 

D5, O55. 5 Py, 

N 

2, a: i(x)) = fle); j=0, Le, NS 
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for some numbers dp, a), ..., @y. This is, in matrix form, 

Va =f. (5-3) 

Here, V is the Vandermondian [®,(x;)]. This matrix is also called a gen- 
eralized Grammian. Its invertibility is related to the idea of unisolvency. 
[For a good discussion of this and other matters related to interpolation, 
see Davis (1963).] If V is invertible, a unique interpolant ® does indeed 
exist and can be written in the form 

ao 

® = [®Dp,. r ., Py] : =O ig = QV f. (5.6) 

an 

The row vector of functions formed by the product ®’V~! is in fact a 
vector of cardinal functions, say 7 = [y,..., Wy]. The reason for this is 
that the row vector ®’ becomes a row of V when x = x;,i=0,1,..., N, 

and hence ®’V~! becomes a row of the identity matrix, revealing that all 
y; S are zero at x;, except for y;, which has value 1 there. We deduce that 

every interpolating projector P: f— J of the form considered here can 
be expressed in terms of cardinal functions: 

Pf=0='a= w't. (5.7) 

We shall find representations of this kind useful in the sequel. 

5.3 A general least squares projector 

This section contains a brief discussion of a rather general form of least 
squares projector, which contains the classical method of Section 2.5 as a 
special case and will be useful later. Let ®), ®,,..., ®,, be linearly 
independent functions in €[a, b], and again let J be the vector space of all 
linear combinations 27) a;®;. Assume that m < N. Now, in general we 
cannot find a ® in 9 that would interpolate a function f € €[a, b] at N+ 1 
distinct points Xo, X;,..., Xy of [a,b] because the dimension of J is too 
small. The least squares problem analogous to that of Section 2.5 is to find 
a ® to approximate f in the sense of minimizing 

E(®) = & [®(x,) — fee) P 
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by a suitable choice of coefficients a; involved in the formation of ®. A 
more general functional is 

N WN 

Eyw(®) = 2 [®(x;) — fx; wil ®(x;) — fe)], (5.8) 

into which some “weights” w, are introduced and which reduces to 
the functional of Section 2.5, when the matrix W = [w,] =J and when 
®)(x) = 1, B(x) =x,..., ®,,(x) =x”. Without loss of generality, we 
can assume that W is symmetric; that is, w; = w;, i,j =0,1,..., N. 

By computing the partial derivatives 0Ey(®)/da;, i=0,1,..., m, and 
equating them to zero, we obtain the following normal equations for the 
m+ 1 unknowns @p,..., Gy: 

B'’WBa= B'We, (5.9) 

in which 

Do(Xo) Pi(%o) ... Pm(Xo) 

Be : 
Do(xy) Diy) ... Onn) 

The matrix B is the analogue of the matrix V in Eq. (2.13). 

Provided that the (m+ 1) Xx (m+ 1) matrix B'WB is invertible, we 

obtain 

a = (B™WB)"'B'We, (5.10) 

the analogue of Eq. (5.5) and see that a depends linearly on f. Since the 

function ® is given by ® = ®’a [see Eq. (5.7)], this relation determines a 

procedure for obtaining ® from f. That is, we have defined a function Ow 

whose defining property is Owf =. In fact, Ow is a projector because 

Owf=® EJ and Qy® = ®, and hence Owf = Owf for any f € €[a, 5). 

Also, Ow will be an interpolating projector if we put m= N. If f is by 

chance already in J, i.e. if it is representable by some linear combination 

of ®, D;,..., ®,, then Qyf=f and Eq. (5.10) will reveal the precise 

nature of the combination. 

For B'™WB to be nonsingular it is sufficient but not necessary for W to 

be positive definite. It turns out that the W employed next in Section 5.4 

to construct natural cubic splines is indefinite. [See Bos and Salkauskas 

(1985) for more details. ] 
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5.4 Cubic spline projectors 

Although it was quite simple to construct the interpolating projector that 
yields linear splines, this is not the case for €* cubic splines. The difference 
stems from the fact that the dimension of the space €y(K) of €? cubics 
with knots k; = x;,i=0,1,..., N, is N +3 (cf. Section 3.7), which is two 

too many for unique interpolation at the knots, whereas the space £)(K) 
of linear splines has just the correct dimension. On the other hand, there 
is an important feature common to both that will provide the mechanism 
for constructing the cubic spline projector. 

Consider Eqs. (3.8) and (3.10) for linear and cubic splines respectively: 

Nie 

x) = Ax + B+ > a;|x - kil, (5.11) 
i=1 

N=1 

S(x) = 4Ax3 + $Bx? + Cx + D+4 > ajlx—kif’. (5.12) 
i=1 

We intend to interpolate on the interval [a, b] with knots satisfying a = 
ky<k,<...<ky=b, andx;=k;,i=0,1,..., N. Then we may also use 

the representations (cf. Section 3.2): 

N 

x) => aix— Kk; 
i=0 

(5.13) 

N 

S(x) = ax +b +4 D a;|x — k,/. (5.14) 
i=0 

Here we have used the facts that |x — ky| =x — kj, when x>ky, and 
|x — ky| = ky — xy, when x <ky, so that the terms Ax + B from I(x) and 
most of 3A4x>+3Bx?+Cx+D from S(x) can be absorbed into the 
summations. 

From Eq. (5.11) we see that /(x) is capable of being a straight line, whereas 
Eq. (5.12) shows that S(x) can be a simple cubic. The representation (5.14) 
shows that S(x) has a part that is similar to (x) (the summation), with 
(N + 1) degrees of freedom and a straight-line part ax + b that contributes 
two more degrees of freedom. This suggests that a non-zero function of 
the form ax + b cannot be represented as a sum 2), a;|x — k;|> for any 
choice of do, a),..., @y. Consequently, if we were to construct an inter- 
polating projector P using only N + 1 basis functions |x — k;|°,i=0,1,..., 
N, and the general method of Section 5.2, then Pf will not be able to be a 
straight line even if the data were to lie on a line. 
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This deficiency can be overcome by forming the following composite 
projector, known as a Boolean sum, out of P and any projector Q from 
€[a, b] onto P,. In fact, a least squares projector Qw of Section 5.3, with 
m= 1 and ®,(x) = 1, ®,(x) = x, will do. Also, it should be realized that 
there is a lot of freedom in the choice of the symmetric matrix W. (Indeed, 
we will see that in some important cases, W can be indefinite in the sense 
that it has both positive and negative eigenvalues.) Our composite projector 
is written P © Q (the order is important) and is defined by its action on f: 

(P® O)f = P(f — Of) + Of. (5.15) 

It is easy to see that (P © Q)f has the structure of Eq. (5.14), for Qf is a 

linear function ax + b, whereas P(f — Qf) is a linear combination of the 
functions |x — k;\’p#=)0; 1yncu, 

If f happens to have values at the knots that lie on a straight line, we 
will suppose that f is a line. Then in light of the comments of Section 5.3, 
Of =f and (P® Q)f = P(0) + f=f, for the interpolant of the zero func- 
tion (or of zero data) is zero. Hence the Boolean sum preserves those 
functions that are in the image of Q, , in this case. It also interpolates. 
To see this, notice that P(f— Qf) must have values f(k;) — (Qf)(k;) at 

the knots because P is an interpolating projector. Therefore (P ® Q)f 
has values f(k;) — (Of)(k;) + (Qf)(k;) = f(k;). Using Q = Qy and the con- 
crete representations of P and Qy given by Eqs. (5.6) [with Eq. (5.7)] and 
(5.10), we can summarize these results as follows. 

Theorem 5.6.1 Let P be the interpolating projector formed from the basis 

functions |x — k;?, i=0,1,..., N, and let Qy be a least squares projector 

onto P,. Then Sw =P ® Qy is an interpolating projector, and for any 

fe €fa, b], Swf is a cubic spline. Furthermore, Swf has the explicit form 

Swf = P(f- Qwf)+ Qwf 

= [lx —kol?, |x A 2,.- |e kw 2] [f — B(B7 WB) 1B? We] 

+ [1,x](B™WB) BW, 

3 
a 

where 

‘aie Revita 
VA cea deol Wand hae ae 

fl iP Wri=0 ee ey 

(It can be shown that the matrix V is non-singular so that Swf ts well-defined 

whenever B'WB is also non-singular.) 
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Since the weight matrix W is as yet unspecified, the Boolean sum P © Ow 
generates a large class of spline projectors. This formulation replaces the 
freedom to choose end conditions as described in Section 4.2 with the 
possibility of choosing weight matrices W. It turns out that the simple 
splines interpolating linear data but with derivative end conditions that are 
not consistent with the linear data cannot be produced in this way. However, 

the following important results can be proved: 

Theorem 5.4.2 (a) For any nonsingular, symmetric, weight matrix W, the 
class of functions f for which Sw f = f (the image of Sy) has dimension N + 1. 

(b) If W=V", then B'WB is non-singular, and Sy = P® Oy is the 
interpolating natural spline projector. 

We show next in Section 5.5 that the transformation Sy is indeed a 

projector. This result gives us an alternative description of the interpolant 
that is best in the sense of minimizing the measure of curvature or bending 
energy given by Eq. (4.25). As well, when formulated in this way, natural 

spline interpolation can be interpreted as a one-variable version of the 
interpolating process known in geostatistics as “kriging” with generalized 
covariance |x|*. [See, for example, Delfiner (1975) and Huigbregts and 
Matheron (1970).] 

It is possible to choose a much simpler projector Q onto 9. In particular, 
one could select any two knots and define Qf as the straight-line interpolant 
to f at these knots. Then the two necessary extra degrees of freedom 
that are not used up by the interpolation conditions must somehow be 
incorporated into the projector P in order for P@Q to represent an 
arbitrary interpolating cubic spline projector. This is essentially what hap- 
pens in the process used by Meinguet (1978) for the construction of optimal 
interpolants. 

5.5 Interpolation with Boolean sums of projectors 

In Section 5.4 we met the Boolean sum of projectors in the context of cubic 
spline interpolation. Now we take a somewhat broader point of view and 
examine a wide class of interpolation schemes that include cubic splines as 
a special case. 

The projectors we have discussed have been shown to act on functions 
fin €[a, b]. In practical terms, however, our knowledge of a particular f 
is limited to some values of f at the points x;,i=0,1,...,.N, in [a, b]. The 
projectors we employ use only these values. We then hope that Pf computed 
from them is a good representation of the function f underlying the data. 
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We also expect our projectors to recognize when the function values lie on 
a straight line or perhaps a parabola and in such a case to produce the 
linear or quadratic function, respectively. In symbols, then, we want P to 
be such that 

Pf=f forall yg. in. a2, (5.16) 

and m is typically 0, 1, or 2. 
We also want P to be an interpolating projector; it will be constructed 

much as in Section 5.2 from some basis functions ®o, .. ., By. The shapes 

of these individual functions will influence the shape of the interpolant. If 
we choose P exactly as in Eq. (5.6), then most likely Eq. (5.16) will be 
violated. We can, however, achieve our aim by the use of a Boolean sum 

of projectors. 

Theorem 5.5.1 Let R be a projector from &[a, b] onto P,,, and let Q be 
an interpolating projector defined on &{a, b| for interpolation at the distinct 
points Xo, X1,-.-,Xy in [a, b| (with N= m). Then the linear transformation 
QO@®R (Boolean sum) defined on €[a,b|] by (OQ@®R)f = O(f — Rf) + Rf 
has the interpolation property (Q ® R)f(x;) = f(x;), 1=90,1,...,.N, and the 

property (Q@®R)f=f, fEPm. In addition, if RQ=R, thn OPRis a 
projector. 

The meaning of RO=R is that (RQ)f=Rf for all fE [a,b], and 
(RQ)f = R(Qf). This always holds for our projectors because R needs only 
information about the values of f at the x,’s and since Qf is an interpolant, 
R “sees” the same values in Of as in f. 

The verification of the claims of Theorem 5.5.1 concerning interpolation 
and property (5.16) proceeds exactly as in Section 5.4. To show that OQ @ R 

is a projector, we write it in the form Q — QR + Rand “square” it carefully. 

(Q-—QR+R)(Q-QR+R) 

= Q?—Q?R+OR-ORQ+ QROR- OR? +RO-ROR+R’. 

Since Q and R are projectors, Q? = Q and R? = R. Using this together with 

RO=R, we get 

(O@R)’=Q-OR+ R=OOR. 

Since Q and R are linear, so is Q ® R, and hence it is a projector. 

We have now verified that the transformation Sy of Section 5.4 is indeed 

a projector, as claimed in Theorem 5.4.1. 

At this point it is worth summarizing the ingredients necessary for the 

formation of an interpolating projector P of Boolean sum type. We need 
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the following: 

(1) m, the degree of the polynomials preserved by P, 

(2) R, a projector onto ?,,, and 

(3) Q, aninterpolating projector onto a space spanned by some functions 

oe ees oN 

The choice of m is not very critical; however, a value of m = 1 at least 
is recommended so that “flat” data will have a flat interpolant. In this case, 

R is any projector onto ?,. For example, the general least squares projector 
as discussed at the end of Section 5.2 is suitable. For the time being, the 
weight matrix remains arbitrary—we shall have more to say about it shortly. 
In order to define Q, we must choose the functions ®p, ..., By. Since the 

Vandermondian matrix (see, e.g. Eq. (5.5) et seq.) of these functions 
comes into play in the construction of Q, some care must be taken to ensure 
its invertibility. It is known that the choice ®)(x)=1, ®,(x) =x,.... 
D(x) = x, results in a non-singular Vandermondian; however, this choice 

leads back to polynomial interpolants that are often unsuitable and, in any 
case, low-degree polynomial behaviour is accounted for by the projector 
R. We therefore do not choose polynomials for the ®;’s. 
A source of functions that have a non-singular Vandermondian can be 

found in the theory of Chebyshev systems and the theory of totally positive 
kernels [see Karlin and Studden (1966) and Karlin (1968)]. These theories 
are difficult and we content ourselves with some examples. 

EXAMPLE 1 The functions ®o(x) = 1, ®,(x) = e*,..., By(x) = e®* have 
a non-singular Vandermondian (its determinant is strictly positive for all 
values of N). 

EXAMPLE 2 The functions ®y(x) =e", ®, (x) =e*",..., Dy (x) =e""" 

have a non-singular Vandermondian. 

EXAMPLE3 The functions ®y(x) = |x — xo|*,..., ®y(x) = |x — xy 
1,3,..., have a non-singular Vandermondian. 

‘A= 

5.6 Concluding remarks on the definition of projectors Q and R 

It is reasonable to seek interpolants that are translation-invariant in the 
sense that a horizontal shift in the data simply results in a shifted interpolant. 
Polynomial interpolation has this property, as do the interpolants con- 
structed from the functions of Examples 1 and 3 above. More generally, 
one may attempt to employ translates of a fixed function ® for the basis. 
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Thus, 

® (x) = B(x — x;), Rs OST oN: (6.17) 

Of course, ® must be defined on a domain that is large enough to admit 
the definition of the translates ®; on [Xxo, x,|. If the resulting functions have 
a nonsingular Vandermondian, they can be used for the construction of an 
interpolating projector. It is also desirable that the interpolation process 
be independent of the direction of the x axis. To achieve this in conjunc- 
tion with translation-invariance, one chooses ® so that ®(—x) = ®(x). 
Examples are ®(x) = |x|, which gives rise to linear splines, and ®(x) = 
|x|3, which generates cubic splines. 

Some attempts have been made to tailor the choice of ® to the nature 

of the data. This has been done in a two-dimensional context and is 
discussed in Chapter 11 in connection with the interpolation process known 
as kriging. 
We conclude with some remarks concerning the choice of the projector 

R that accounts for low-degree polynomial behaviour in the data. It seems 
reasonable to suppose that there is an optimal choice of R once m, the 
degree of polynomials to be preserved by the interpolation process, and 
the functions ®;, which are to account for a non-polynomial form of the 
interpolant, are selected. 

In fact, if the Vandermondian of the functions 9, is invertible and has a 

certain additional property, then an optimal choice of R is that weighted 
least-squares approximant of the form discussed in Section 5.3 whose weight 
matrix is the inverse of the Vandermondian. The additional property to 
which we refer is known as conditional positive-definiteness of orderm + 1 of 
the Vandermondian. It turns out that the Vandermondian of the functions 
|x — x;/> has this property when m = 1 and that a corresponding optimal 
interpolant exists. It is in fact the natural cubic spline of Corollary 5.4.2, 
which is also optimal in the sense of minimizing the functional J(s) of Eq. 
(4.25). In the present context, the optimality results from minimizing an 
upper bound on the error of interpolation. 

Again, these ideas form a part of the kriging process. In contrast to 
the deterministic arguments used here, they are normally derived from 

statistical considerations and in a multivariate setting. We shall return to 

this topic in Chapter 11. 
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6 

Criteria for Curve and Surface 
Fitting 

We are now at a mid-point of our development; we have dealt with curve 
fitting, as far as we wish to go, and are about to embark on the problems 
of surface fitting. The sequence of techniques will be broken at this point 
to allow for reflection on the considerations that are likely to go into the 
choice of an appropriate technique for a particular problem. There are no 
universal answers here: The technique chosen should depend on the nature 
of the data, the nature of the phenomenon modelled (as far as it is known), 
and the characteristics of the technique considered by the user to be most 
important. We shall list some of these general characteristics and illustrate 
them by referring back to the techniques developed in Chapters 2-4. 
However, they will all apply (with small changes of language) to the 
discussion of surface fitting. 

6.1 Differentiability of the fitted curve 

By far the simplest curve-fitting procedure is the linear spline. That is, the 
points (x;, fi), (4:41, f;41) are joined by straight segments, giving rise to a 
curve of class €. In general, this is not acceptable because it is known that 
the physical curve we are trying to represent is not like that. If the 
data points were sufficiently dense, then the broken linear curve may be 
acceptable, but this is not usually the case. Even so, it is worth bearing in 
mind that the piecewise linear interpolant does very well in the rep- 

resentation of ramps or steps, such as those which may well occur in sections 

of geological faults, for example. 
Also, it is possible to refine successively a linear interpolant until it is 

apparently smooth. In the case of surface fitting, a similar phenomenon 
occurs (see Sections 7.4 and 7.9). This is the idea behind the algorithm of 

Ichida discussed in Section 3.4. 

127 
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If the user agrees that piecewise linear techniques produce fits that really 
are not smooth enough, then the next natural question is: How smooth 
should the fitted curve be? For an answer to this question it is useful to 
think in terms of the classes of functions €’, r= 0,1, 2,..., introduced in 

Section 1.3. A linear spline is of class € and a curve with a well-defined 
tangent at every point (having no “corners”) is of class €'. If the curve 
representing the slope of a &' curve is itself of class €', then the original 
curve is of class €*, and so on. 

It is important to bear in mind what is meant by “smooth” in this context. 
We now say that a curve is “very smooth” on a set S if it has “many” 
successive derivatives at every point of S. We are thinking of smoothness 
in the sense of differentiability. Thus, in this sense, the polynomial curves 
of Fig. 2.10 are smoother than the spline curves of Fig. 4.4. The polynomial 
function has as many derivatives as we care to compute at any value of x. 

In contrast, there are points at which the spline has only two derivatives. 
If a curve of smoothness (differentiability) class €% is required, then, for 

example, one might use a spline technique of degree N + 1 or higher. If 
very high differentiability is required, then this may indicate the fit of a 
polynomial (all polynomials are of class €*), either by interpolation or by 
a least squares method. However, it is worth having in mind that the eye 
probably cannot distinguish among curves of the classes @’, where r= 2. 

6.2 Confidence in the data 

Does the user have sufficient confidence in his data to demand that the 
fitted curve must contain (i.e. interpolate) every data point? Or, is there a 
sizeable experimental error that enters in a random way and that should, 
if possible, be smoothed out of the fitted curve? 

If the answer to the first question is yes, then the user must focus on 
interpolation schemes for his curve fits. If the answer to the second question 
is yes, then judgement is to be exercised in assessing the degree of smoothing 
to be applied and the choice of smoothing procedure. In this instance we 
refer to smoothing in the statistical sense—a sense that implies the removal 
of “extraneous” maxima and minima and the identification of the underlying 
trend with some degree of confidence. Here the user may consider the 
smoothing spline techniques of weighted least squares fitting described in 
Section 4.7 or the least squares fitting of piecewise linear € or piecewise 
cubic €! functions discussed in Section 3.3. 

There are also “filtering” techniques that apply to the smoothing problem. 
Here the data are in effect decomposed as a superposition of sinusoidal 
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functions, and smoothing then generally consists of removing some selected 
high-frequency components. This is a very useful line of attack, but one 
that cannot be included in this work [see, for example, Gelb (1974)]. 

6.3 Global versus local techniques 

Should the data at a given point influence the nature of the fitted curve at 
distant points? The answer to this is likely to depend on the user’s knowledge 
of the physical phenomenon being modelled and on the density of data 
points. 

If this is not thought to be an issue of significance, then it imposes no 
constraint on the choice of technique. If it is thought to be significant, then 
we should ask: How significant? If variations in the data at one point should 
not affect distant points, how far distant should the perturbation due to 

such a variation be propagated? 
We have noted that the classical polynomial schemes and most of the 

spline schemes are global but that they differ in the degree of attenuation. 
A good intuitive picture of this characteristic is obtained by comparison of 
the cardinal functions for various schemes. The local schemes we have 
considered include the piecewise linear and cubic schemes of Chapter 3, 
and this is the motivation for the surface-fitting techniques to be developed 
in Chapter 9. For some problems the local schemes may have a decided 
advantage in that additional data points can be added to an interpolated 
curve, and the effect of this is confined to some small neighbourhood of 
the new points. Thus, it is not necessary to recalculate the whole of the 
interpolated curve. 
A case in which a global technique is clearly indicated is that of analysis 

of “trends”, which are either apparent or, for physical reasons, known to 
be present. For these problems, a trend in the data is usually identified, 

either by “eye-balling” or by analysis. The trend may be polynomial, 
exponential, oscillatory, etc., and when identified, a global least squares fit 
is made of the appropriate simple curve or surface. 

6.4 Computational effort 

This is an easily understood criterion whose significance will depend on the 

magnitude of the computation involved. In general, it is likely to become 

significant only for surface-fitting problems with very large numbers of data 

points. Precise comparisons are made more difficult by the variability of 

performance with different computer installations, different programming 
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languages, different algorithms for implementation, and different levels of 
programming skills. However, one or two general statements can be made. 

First, it is clear that, for either spline or polynomial techniques, the 
computational effort increases rapidly with the degree of the fitted curve. 
Second, fitting techniques that are local (as described in Section 6.3) in 
nature will generally offer significant computational advantages over global 
techniques. 

6.5 Convergence 

This is a consideration dear to the heart of the mathematician. The kinds 
of questions posed are as follows: Suppose that the data values correspond 
to a particular function f, and suppose that with n data points a curve-fitting 
technique determines a function g,; with n + 1 points a function g,,,, is 
determined, and so on. Thus, in theory, a sequence of fitted functions 
Bn> &n+1>8n+2.+++, 18 determined. Can it be asserted that, in some sense, 

the g,,r=n,n+1,..., converge to f? If so, how fast, and how “close” is 

&, to f? 
Much the greater part of the mathematical literature on curve and surface 

fitting is devoted to this kind of study. Its relevance for the practitioner will 
sometimes be unclear, especially for problems presented with a fixed 
number of data points. The possibility of adding more data and refining 
the calculations in order to take advantage of high rates of convergence 
may not be realistic. However, the study of convergence does give valuable 
insights into curve-fitting problems and can provide some further infor- 
mation on the choice of procedure. There is generally a trade-off to be 
considered between rate of convergence and volume of computation. 

6.6 Visual criteria 

In some fields of application, a major difficulty in designing curve- and 
surface-fitting techniques is the formulation of clear criteria for 
acceptability. For example, the intuition of the experienced geophysicist 
seems to involve a mixture of differentiability, smoothing, and frequency 
analysis all applied visually. There may also be (conscious or subconscious) 
considerations of bounds on the curvature and on distance from a piecewise 
linear interpolant to all the data points. The closer one can get to quantifying 
all of these visually applied criteria, the better the chances are of finding 
an acceptable curve- or surface-fitting method for a particular class of 
problems. 
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In this connection one may also ask which techniques lend themselves 
to interactive computer-aided design. There are problems for which a 
graphic display of a fitted curve can be utilised to apply visual criteria and 
then modify the curve accordingly. Certain algorithms lend themselves to 
such a procedure, whereas others do not. Methods based on piecewise 
cubic Hermite interpolation are among those that can be used in this way. 



(¢ wa il 

devon one meeorens Heit Hh D 
nip Senbaie aertenpmnenis setrdan anal} el 

ore owe des ee 

rule a00Ps ‘nentrson owed Str ibis cree 

' rem el i eae » 

i un onitbetpo ines oiob 

a 

== = - a ‘i Loon, Thetis 
her the lame * Te i 

hats penairn 6 leet i¢. 
< | Denes @ hiantjugd oe 

tx 4 fitiowl (uinw 
 Uaers o} that ak vena Weep: 

“re (set. @ i tere les gh _ 
7 : aT 

vivibenetive Serine ah mane gil atte 
hic oly Th rctewangy foo the gaalih er 
mv ciate f vera rite preermal ihe 

cc riley = adding mre whe taal 

la tits obvertoog Af high cmbie al 
bhiwever, (lic oealy ot & vet prame 

jrollems amub Ciro goemethe 
' ; : ae a at jroo. hele pee 

af coer peg Gan) eg ene wi atindy. 

ve ta 

eaten, & onapee clilTtally 
‘Geryters os the foreman 

mw exempt, he ah ee jm 
 miiiues of wbitezent @ sething 

Sat sith ikaw +e reaper to, 

mardi cow eee, cus wat =a 
Y ok ites «Seat Tes re a can 

ails tr erunrhe. thw ue the ae 

roe tS» pm 



7 

Surface Fitting with Polynomials 

7.1 Introduction 

Our treatment of curve fitting in previous chapters has not depended very 
heavily on the location of the data points. We have worked mostly with 
arbitrary data points xy< ...<x,y on the line. When we consider an 

arbitrary set of points in the plane, there is not generally an obvious, unique 
ordering of the points, and this gives rise to some difficulties for surface 
fitting. The general interpolation problem in the plane might be defined as 
follows: Given N data points (x,, y;) and N numbers f,, i= 1,2,..., N, find 
a function f(x, y) from some class and defined on the whole plane (or at 
least a region containing the data points) for which f(x;, y;) =f, for i= 

We ao tN: 
If there is a pattern in the distribution of data points, it may be possible 

to use it to advantage, and in Chapter 8 we shall discuss the simplest such 
pattern, namely, a set of points in a rectangular lattice. In this chapter we 
confine our attention to introductory ideas, to constructions that will be 
useful in later chapters, and to the classical problem of least squares fitting 
of a polynomial. More sophisticated developments of least squares fitting 
appear in Chapter 10. 

7.2 Polynomials in two variables 

The role played by polynomials in surface fitting is as important as that in 

curve fitting, but we now have to cope with polynomials in two variables. 

We list here basis functions (monomials) in four classes of such polynomials: 

Class Basis functions 

Po 1 
P, ay 

P, ee ye oye 
P, xy 2 xy Vy? x° x*y xy? y? 

133 
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Thus, any function p in the class ?,, for example, must be of the form 

P(x, y) =a, + ax + ayy + ax? + asxy + agy’, (7.1) 

for some real numbers a,,4@>,..., a. More generally, #, is the class of 

polynomials containing all functions of the form x‘y’, where 0<i+j<n 
and i=0,/=0. 

Note particularly the number of basis functions in each class (this is the 
dimension of the corresponding vector space). In fact, for any n, the number 
of basis functions in 9, is 1+2+3+...+(n+1)=#m +1) (4+ 2). 
Once again Py, P,, P,, and Y; are known as the spaces of constant, linear, 

quadratic, and cubic polynomials, respectively. More specifically, the poly- 
nomials may now be described as bivariate. 

x 

Fic. 7.1 Function defined on [xo, xy] X [yo, yy]. 

If we introduce a third rectangular axis (Fig. 7.1), then the equation z = 

p(x, y) will determine a surface over the rectangle [x 9, xy] X [yo, yal, a 
domain chosen for pictorial convenience. With each point (x, y) in the 
rectangle, a point with coordinates (x, y, z) on the surface is determined 

by putting z = p(x, y). In Fig. 7.2 we illustrate two such surfaces: One 

corresponds to a function in %,, the other to one in #3. Note also that, if 

p ©®,, then the surface represented by z = p(x, y) =a, + a,x +a,y isa 
plane. If a, = 0, the plane is parallel to the x-axis and if a, = 0, the plane 
is parallel to the y-axis. 

If a vertical section is taken of a quadratic surface, the resulting curve 
will be a (possibly degenerate) quadratic arc. A degenerate case would be 
a straight line. Similarly, a vertical section of a cubic surface is generally a 
cubic arc, although it may “degenerate” to a quadratic arc or a straight 
line. 
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FiG. 7.2 Two polynomial surfaces: (a) z = xy + x* and (b) z = —1 + 2x? + 2y? — xy — 4y}, 

7.3 Bivariate polynomial interpolation—the bad news 

We first consider what is, perhaps, the most obvious surface-fitting scheme. 
If we have a problem with six data points, for example, we can try to fit a 
polynomial of class ?, to the data. This is a reasonable suggestion because 
there are six basis functions in ?,. However, the number of data points is 

usually not free for choice. For example, eight data points seems to be too 
many for a 9, surface but not enough for a ?;. One can try to get around 
this by taking six basis functions from , and two additional ones chosen 
from those in ; that are not already in 9). 
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Suppose then that we succeed in deciding on an appropriate set of basis 
functions equal in number to the number of data points. In the case of 
interpolation on a line by polynomials (Section 2.7), we were able to state 

the theorem assuring us of the existence of a unique polynomial interpolant. 
There is no such theorem for interpolation in the plane. 

To illustrate this fact consider two problems, each with four data points 
arranged in a square as illustrated in Fig. 7.3. For both problems we 

y 
Py +(-1,4) Packie) 

0 2» X 

P;+(-1,-1) fPaect (aloes) 

Fic. 7.3 Bilinear interpolation on four points. 

make a natural choice of basis functions: 1, x, y, xy. Let the point P; have 
coordinates (x;, yj) fori = 1, 2,3, 4, and let f; be the assigned function value 
at point P;. Now the problem is to find numbers a,, a>, a3, @, such that 

A, + AX; + A3Y; + agxiy; =fi, (7.2) 

fori=1,2,3,4. If we can do so, then 

P(X, Y) =a, + a,x + a3y + ayxy (7.3) 

will determine the interpolating surface. This function is termed bilinear 
because when either x or y is assigned a constant value, the function 
describes a straight line in the remaining variable. Consequently, sections 
of this surface by planes parallel to the xz- or yz-planes are straight lines. 
In the case of the first problem of Fig. 7.3, we obtain four equations for 
a,, 4,43 and ay: 

a; +a, +a; +a,=f;, 

Oy Bide hile Oye fo 

a; — a, — a3; +4, =f, 

a; + ay > a3 — Gy =fe, 
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which have the unique solution 

a, =4fi + fo + fs + fy), Gy = fi fo ta fa) 

a3’ =3( fp fo fz = fy), a4 =4(f1 —fo t+ fs + fa), 
and this is the case whatever values f,, fy, f3, f; may take. This looks 
encouraging. However, if we follow the same procedure in the second 
problem, we get into trouble. The four equations [Eq. (7.2)] are in this 
case, 

a, + az EFI 5 

ay +a; =f, 

a, ~ a2 = fs; 

ay as Sis 

and these are contradictory if, for example, f; + f; # f. + f,. This means 

that, in general, for arbitrarily chosen f,, fs, f;, and f,, there is no surface 

determined by a function of the form of Eq. (7.3) that will interpolate the 
data. 

If the choice of basis functions is thought to be suspect, the next natural 
choice is the set 1, x, y, x? + us In this case it is found that, for both sets 
of data of Fig. 7.3, interpolants do not generally exist. 

Difficulties of these kinds, coupled with the weaknesses inherited from 
polynomial interpolation in one dimension (cf. Section 2.2) mean that 
direct polynomial interpolation is not generally recommended; this is par- 
ticularly so when the number of data points is large. In this case, even 
though an interpolating surface exists there may be very real computational 
problems in the form of large, ill-conditioned systems of equations to be 
solved. These computational problems are alleviated by the use of orthog- 
onal polynomials [see discussion and references by I. K. Crain (1970)], but 
this does not overcome the more fundamentally unsatisfactory features of 
polynomial interpolation. 

7.4 Bivariate polynomial interpolation—the good news 

We have deliberately emphasized the negative aspects of polynomial interp- 
olation in Section 7.3. It is important to recognize the limitations and 
possible pitfalls, but we must not throw out the baby with the bathwater. 
In this section we make some limited but nonetheless important positive 
statements that will be helpful in subsequent chapters. 

Returning to the first problem of Section 7.3, we know that, at least, 
there is a unique bilinear interpolant p(x, y) [of the form of Eq. (7.3)] to 
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any given data at the vertices (1, 1), (—1, 1), (1, —1), (1, —1) of Problem 
1 in Fig. 7.3. In fact, it is not difficult to verify that if the square is oriented 
as in Fig. 7.4, with centre at the origin of coordinates, then the interpolation 
problem using the four vertices and a bilinear interpolant has a unique 
solution for every 6 except 6 = 0 and 6 = a. Thus, the “bad case” of Section 
7.3 might be seen as pathological and arises from an unfortunate orientation 

of the square with respect to the coordinate axes. 

Fic. 7.4 Square with centre at the origin. 

A more useful generalization of the “good case” of Section 7.3, and one 
which clearly avoids the angular orientation problem, is the following: 

Theorem 7.4.1 Let D denote any rectangle in the plane with sides parallel 
to the coordinate axes. Then there is a unique bilinear polynomial 

P(x, y) =a, + anx + azy + ayxy, 

which interpolates prescribed data at the vertices of D. 

To see this we could set up coordinates x, y in the plane of D. Let D 
have vertices (Xq, Yo), (Xo, Yi), (41, Yi), and (x1, yo) (with x) < x4, Yo <1), 
and then map D onto the “standard square” with vertices (1, 1), (—1, 1), 
(1, —-1), (1, 1) in the &, 7 coordinate plane (cf. Fig. 7.5) by means of the 
transformation 

ea] _ 200 city a 201 si > 
XxX, ~ Xo bg ere 

Then do the interpolation on Dy, which we know to be possible, and 
transform the interpolating bilinear function po(&, 7) back to the x, y- 
coordinates by substituting from Eq. (7.4). thus, the interpolant p(x, y) on 

(7.4) 



7.4 Positive aspects 139 

(Fleet) 

Fic. 7.5 Mapping a rectangle on the standard square. 

D is given by 

(7.5) ° 

ae — x) geen | 

x; — Xo Vr Vo 3 
P(X. ¥) = Po 

The point is that the coordinate transformations are such that the trans- 
formed function p(x, y) remains bilinear, but in the x, y-coordinates. 

This procedure may appear cumbersome, but it is a fundamental idea in 
the computer implementation of finite-element methods in general. We 
consider some of these in Chapter 9. 

Let us now examine a more primitive question. Suppose we are given 
just three points in the plane that are not collinear. It is geometrically 

Fic. 7.6 Linear interpolation on a triangle. 
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obvious that, given three such points A, B, and C in the x, y-coordinate 

plane, the three function values fo, f,, and f, assigned to A, B, and C, 
respectively, determine a unique triangle in space (Fig. 7.6). The equation 
of the plane containing this triangle has the form 

Z=a, + a,x+azy, (7.6) 

for some coefficients a,,a,, and a3. If A, B, and C have coordinates 

(Xo. Yo). (41. Yi), and (x2, y2), respectively, then the function on the 
right of this equation is precisely the (bivariate) linear polynomial p(x, y) 

for which p(X, Yo) = fo» P11. ¥1) = fi, and p(x2, 2) = fy. Thus, given A, 
B, and C and fy, f,, and f,, the coefficients a;, a), and a; are determined 
by the three simultaneous equations 

ay + XQ + V9d3 = fo, 

a, +X a, + y\d3=f,, CP) 

a, + X7a + Y7Q3 = fo. 

By Cramer’s rule, these have the explicit solution in terms of determinants: 

fo Xo Yo 1 fo Yo 

ay = A~! det fi Xq Vas Gy ee det | 1 fi Yt 

fo XxY> lL fe y2 

1, Xa 16 

Le xe? Ms 

where 

1 Xo Yo 

A*= det) Tae yy |: (7.8) 

1 x2 yo 

It can be shown that A = 0 precisely when triangle ABC has area equal 
to zero, and then there is no longer a unique solution for Eas Udon nis 
expresses in mathematical terms the geometrically obvious condition that, 
for unique linear interpolation, the data points A, B, and C must not be 
collinear. Some of these findings are summarized in Theorem 7.4.2. 
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Theorem 7.4.2 Let T be any non-degenerate triangle in the plane. There is 
a unique linear polynomial 

P(x, y) = a, + aox + asy, 

which interpolates prescribed data at the vertices of T. 

As with bilinear interpolation on rectangles, the interpolation can always 
be done on a “standard” triangle and then transformed to any given triangle 
T. One such transformation (known as an affine transformation) is 

E=ayxtapnyt by, (7.9) 
N =X + ayy + bo, 

where 

ZV Vey Vo _ 72k, + Xo +X 
ayy SA a a12 ee Sec a 

x2(y1 + Yo) — y2%1 +0) . 
Dy a a oe edn 

—V3(y1 — Yo) - V3(e1 — Xo) 
eee ea oe Oe ear ae a 

Qin N3(ts pao) a V2 %)) 
bs a 73 A ’ 

and A is given by Eq. (7.8). This will map triangle T in the xy-plane (cf. 

Fig. 7.7) onto the standard equilateral triangle in the €7-plane with sides 

y 7 

Fees (0, 23/3) 

(X69 Yo) Triangle T Anam 

> xX >é 

t= 75/3) = 7573) 
(x4, Ya) 

Fic. 7.7 Mapping a triangle on a standard triangle. 
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of length 2. The vertices are transformed as follows: 

(Xp, Yo) (a1 V3/3) i. Grae) a> Asie V 9/3), 
(x2, ¥2) > (0, 2V3/3). 

The mapping in the reverse direction, from the standard triangle onto 
T, is given by 

x= by, (§ — bi) + by(y — bp), (7.10) 
y = bx (E — b1) + by (N - bp), 

where 

1 
by, = 3(x1 — Xo), bin = sa73 (242 — 0 — 1); 

il 
by = 2(¥1 — Yo), bx = 5473 (22 — Yo — V1)- 

and b,, b, are as in Eq. (7.9). 

EXAMPLE Let T be the triangle with vertices (—1, 2), (—2, 3), and (1, 4) 
in the x, y-coordinate plane. It is found that A = —4, and Eq. (7.9) becomes 

Seer oa nee 

Pe ee ae 

ST ee 
TT Sida ea 

It is easily verified that (—1, 2) > (—1, -V3/3), (—2, 3) > (1, — V3/3), 
and (1, 4) > (0, 2V3/3). 

The reverse, or inverse transformation, is 

ee 5V3 > 
Se ae le ete ee Be 

BT RR ae are 

a +3 yr 55 > , 

and maps the standard triangle onto T. 

If function values fo, f,, f2 are assigned to the vertices of a general triangle 
T, then to find the value of the linear interpolant at a point (x9, yo) of T, 
Eq. (7.9) is used to find the corresponding point (&), 79) of the standard 
triangle. The linear interpolant po(&, 7) is found on this triangle and 
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evaluated at (&, 9). The interpolant on T then takes this same value, 
Po(So» No) at (Xo, Yo). Thus, [ef. Eq. (7.5)], 

POY) =polaux+apyt+b,, ayxt ayy + bo), 

where the a and b coefficients are as in Eq. (7.9). It is easily verified that 
the linear interpolant po(&, 7) on the standard triangle determines a linear 
interpolant p(x, y) on T. 

As in the case of rectangles, this procedure of transforming to a standard 
set of vertices comes into its own when interpolation on many different 
triangles is required. It also increases the efficiency of computation more 
dramatically in the case of interpolation with polynomials of higher degree, 
and that is the topic to be introduced next in Sections 7.5 and 7.6. 

7.5 Higher degree interpolation on triangles 

Consider first the possibility of interpolating on any triangle T with poly- 
nomials containing some of the monomials x’, xy, y from >). If the process 
is to be valid under affine transformations mapping an arbitrary triangle 
onto a standard triangle, it is easily seen that all of these three monomials 
must be admitted. That is, we must look for interpolation with (possibly) 
“complete” quadratic functions from P. Since ?, has dimension six (recall 
that it is spanned by the six monomials 1, x, y, x”, xy, and y”), we must 

seek a configuration of six nodes on a triangle, i.e. points at which data are 
to be assigned. Symmetry considerations then suggest that the vertices of 
T and points in the middle of each side be used as nodes. It turns out that 
there is, indeed, a unique polynomial in P, taking assigned values at the 
vertices and mid-sides of a triangle T. 

For reasons that will be made clear in Chapter 10, this result is not very 
useful in large-scale surface fitting (i.e. with many data points). A similar 
result applies for polynomials from #; and the set of nodes of interpolation 
indicated in Fig. 7.8. The sides are trisected by nodes of interpolation, 
and the centroid of 7 determines the tenth node required to match the 
dimensionality of ?;. Like the so-called “quadratic triangle”, this will not 
be very useful for us, but let us take advantage of this example to illustrate 
the possibility of using derivative nodes as in the case of Hermite interp- 
olation on the line. 

It turns out that the precise location of the six nodes in Fig. 7.8a on the 
edges (and not at the vertices) is not important. They can be moved back 
and forth along the edges without upsetting the fundamental statement on 
the existence of a unique interpolant from 9,. Now suppose that on each 
side of the triangle one interior node approaches each vertex. Thus, three 
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nodes converge onto each vertex of T. It is plausible that, in the limit, we 
obtain one function-value node at each vertex and two (partial) derivative 

nodes at each vertex. (See Section 8.4 for a formal definition of the term 

“node”.) In fact, what is sometimes known as the “Hermite form of the 
cubic triangle” is arrived at in this way. 

If we are interpolating to a function f(x, y) on T, the values of f to be 
reproduced by a polynomial p € 93 are the values of f and of the first 
partial derivatives f,, f, at each vertex and the value of f at the centroid of 
T. This nodal configuration is indicated in Fig. 7.8b, where the circled dot 
at each vertex means three nodal values are to be used, namely, the values 
of f, f,, and f,. Once again, there is a unique polynomial in ?; taking 
assigned values at these ten nodes of interpolation. 

(a) (b) 

Fic. 7.8 Interpolation on a triangle with functions from P3. 

These constructions can be continued to admit interpolation with higher 

degree polynomials at the expense of introducing more points of interp- 
olation or higher order derivatives of interpolation. As a final example of 
this kind, note the existence of a “complete quintic triangle”. There are 21 
nodes defined by values of f, f., fy, fer» fry and f,, at each of three vertices 
together with normal derivatives af/dn at the mid-point of each side. 
These match the 21 monomials x/y*, where 0 <j + k <5 in Ps. The nodal 
configuration is indicated schematically in Fig. 7.9. The position of this 
interpolation scheme in a family of interpolation schemes of high poly- 
nomial degree is discussed by Morgan and Scott (1975). A modified scheme 
consisting of 18 nodes and reproducing functions in P, has been devised 
by Mitchell (1973). 

For the purposes of surface construction there is good reason to avoid 
the use of derivative nodes of order two or more if possible and hence the 
complete quintic triangle. Another criterion, depending on the nature of 
interpolants on adjacent triangles, appears in Chapter 9 and generally 
disqualifies the other schemes developed in this section. More suitable and 
more complicated procedures for interpolation on triangles (as a tool for 
surface construction) are presented in that chapter. 
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Fic. 7.9 Nodal configuration for complete quintic triangle. 

7.6 Higher degree interpolation on rectangles 

In Sections 7.4 and 7.5, interpolation schemes on triangles using complete 
polynomials in ?,, P,, P3, or P; have been discussed. These have the 

useful property that the interpolating polynomial function values are 
invariant under arbitrary affine transformations [as in Eq. (7.9)] of the 
underlying triangle. Thus, the triangle can be translated and rotated in the 
plane and stretched or contracted in the directions of the axes without 
disturbing the value of the interpolating polynomial at corresponding 
points. As the discussion of Sections 7.3 and 7.4 might lead us to expect, 
interpolation on rectangles is not well matched with the use of complete 
polynomials. It seems that the bilateral symmetries of the rectangle do not 
lend themselves to distributions of nodes in the numbers 3, 6, 10,15, 

Zia wet + 1)... Lnese are, Or Course, the dimensions of, 95, 
De ae 

2 y? xy 
y xy xy 
qu ree x2 

(a) (b) 

Fic. 7.10 Two quadratic interpolation schemes. 
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So, in general, the best that we can hope for is invariance of interpolants 
on rectangles under translation parallel to the axes and changes of scale. 
These are represented by equations of the form €=a,x +b, and n= 
ary + bz, with a,a, # 0. Equations (7.4), which map an arbitrary rectangle 

onto a standard rectangle, are of this type. 
One of the most primitive interpolation schemes on rectangles is, of 

course, that using bilinear polynomials and described in Theorem 7.4.1. 
There are two interpolation schemes on rectangles that are precise for all 
polynomials in , (and not 3) and which must, therefore, have at least 
six nodes. They are indicated schematically, together with a basis of 
monomial functions, in Fig. 7.10. That of Fig. 7.10b is known as the 
“biquadratic rectangle”. 

For interpolation with cubic polynomials, it turns out that at least 12 
nodes are required (the dimension of 9; is ten). At this point, the possibility 
of interpolation of Hermite type arises. The 12 nodes indicated in Fig. 
7.11a are a natural choice and they do, indeed, match the 12 monomials 

in the array 

yeni 
ye xy? 

iyod coe ala witty 
1g ee eee 

As in the discussion of the complete cubic in Section 7.5, it turns out that 
the locations of the nodes on the (interiors of the) sides of the rectangle in 
Fig. 7.11a are not critical. Once this is recognized it is not surprising that 
the nodes indicated in Fig. 7.11b also form a viable interpolation scheme 
together with the same monomials of the above array (see also Section 
9.2). Recall that, in this illustration, a circled dot at a point implies that three 
nodes, the values of f, f,, and f, at this point, are to be used. 

(a) (b) 

FIG. 7.11 Two cubic interpolation schemes. 
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The place of these interpolation methods in the context of families of 
interpolating schemes of higher degree on rectangles has been developed 
by Melkes (1972) and Lancaster and Watkins (1977). 
A final, and particularly interesting example, is indicated in Fig. 7.12. 

There are 16 nodes consisting of the values of f, f,, f,, and f,, at each vertex. 
The array of 16 monomials associated with these nodes is also indicated in 

Fay ty xy3 x2y3_x3y3 

xy? x2 y2 Kove 

XV XG VEREEXGY, 

x se x? Ne 

Nm 

Fry fry 

Fic. 7.12 The bicubic rectangle. 

Fig. 7.12. Observe that their span includes all of 3. Any polynomial 
obtained as a linear combination of these monomials is called a bicubic 
polynomial and, consequently, this combination of polynomials and nodes 
of interpolation is known as the bicubic rectangle. Further discussion of the 
bicubic rectangle appears in Chapter 8, and it will be found useful in the 
constructions of Chapter 9. 

The construction of interpolation schemes on triangles, rectangles, and 
other figures in two or more dimensions plays an important role in the 

finite-element method for the numerical solution of partial differential 
equations [see, for example, Strang and Fix (1973) and Ciarlet (1978)]. 
However, in that context, inter-element smoothness is not as important as 

it is for us. This issue will be one of our main concerns in Chapter 9. 

7.7 Least squares fitting of polynomial surfaces 

In Sections 2.5—2.8, curve fitting by the least squares method was discussed. 
The intuitive ideas in the context of surface fitting are the same. Thus, as 
pointed out in Section 2.8, least squares fits generally involve either smooth- 
ing of the data or identifying an apparent frend in the data. However, as 
in the case of fitting a polynomial surface by interpolation, there are certain 

inherent difficulties in fitting a polynomial surface by the least squares 

methods. For example, after reading Section 7.7, the reader may wish to 

try fitting a surface determined by a linear combination of functions 1, x, 

y, xy to data at the five points (0,0), (1, 0), (0, 1), (-1, 0), (0, -1). From 

the computational point of view, it is not these pathological cases that give 

trouble, but the cases where the data points lie close to a pathological 
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example, in which case ill-conditioned problems may result. However, we 
disregard these difficulties for the time being and proceed with a formal 
analysis. 
We assume that values f; are given at N + 1 arbitrary data points (x;, y;), 

i=0,1,...,N, and for the purpose of illustration, we suppose that N > 5, 
and we fit a quadratic surface to the data. Then, the surface is to be 

determined by a function having the form 

p(x, y) =a, + aox + ay + ayx? + asxy + agy’, (7.11) 

for some choice of a,, @>,..., a. At each data point the difference between 

the surface elevation and f; is p(x;, y;) — f;. We are then to adjust p (by 
choice of a,,...,@ ) so as to minimize 

E(p) = 2 (pi, ¥) — fi), (7.12) 

which should be compared with Eq. (2.10). The technique is then just that 
used in Section 2.5. The function E of a,,...,a, will have a minimum 
only when dE/da; = 0 for i=1,2,...,6. These conditions yield six linear 
equations in the unknowns 4d), . . ., dg (the normal equations). We omit the 
details and assert that the equations turn out to be 

(N + l)a, + (2x; )ay + (Zy,)az + (2x? )ay 

+ (2x; yas + (Zy?)a, = Sf, 

(2x; )a, + (2x7 )ay + (Zx;y,)a3 + (Ex? Jay 

t (Sri Valds + (2x aye de = tots 

(Zy;)ay + (Zx,y;)ay + (Zy?)as + (Zx?y,)ay 

+ (Zxjy7)as + (Zy?)ag = Ly fi, (7.13) 
(2x7 )a, + (Zx})ay + (Lx? y,)as + (ExP)ay 

+ (Zxiy)as + (Zx?y?)ag = XxPf,;, 

(Sxiyilay + (2x7 yi)ay + (Zxiy?)a3 + (UxFy,)ay 
+ (2x7 y7)as + (Zx:y?)as = Ixy; f;, 

(Zy?)a, + (Zxiy?)az + (Zy})a3 + (2x7 y7 ay 

+ (2x;y))as + (Zyi)as = Ly?f;, 
and all the summations are for i from zero to N. 
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To obtain the normal equations for fitting a polynomial of first degree 
(a plane surface), simply take the first three equations and put a, =a; = 
as = 0. Similarly, for a fitted bilinear surface, take the first, second, third, 
and fifth equations and set ay = a, = 0. 

As in the case of one variable, the normal equations are conveniently 
expressed in matrix-vector form. In the case of the full set of Eq. (azloy. 
we introduce the (N + 1) x 6 matrix 

ie) Xo vate = eoYow Yo 

ie : Xi, Vi xi i 

1 Xn Yn xN XNYN yw 

and the column vectors, 

ay fo 

az fi 

a= ; f= 
a4 

as 

a6 fn 

Then it is easily verified that Eq. (7.13) takes the form 

Vila = Vit. (7.14) 

Comparison should be made with Eq. (2.14) for the one-variable case. 
Solution of Eq. (7.14) or Eq. (7.13) for a now determines the polynomial 

of Eq. (7.11) that best fits the data in the sense of least squared deviations. 
The cautionary remarks made at the end of Section 2.6 with regard to 
large-scale computation apply equally well here. 

Note that if there are only six points of interpolation, then N+ 1=6, 
and so V is square. If the six points are on the mid-sides and vertices of a 
triangle, then (cf. Section 7.5) V and V’V will be nonsingular. That is, 
(V'V)~ exists, Eq. (7.14) has the unique solution a = (V’V)"'V’f, and the 
corresponding function p(x, y) is the interpolant to the data; the deviations 

are now Zero. 
More generally, if the N + 1 points (0, yo),. - -, (Xv, Yn) (N 2 5) contain 

a subset of six points on which a unique quadratic interpolant exists, then 
(V7V)~ exists (V has “full rank”), and the least squares problem has a 
unique solution. 
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1.5 

SRY 

NYY) 

1.0 

0.5 

-1.0 

Fic. 7.13 Model problem for surface fitting. 

For illustrating surface-fitting techniques, we shall often use a standard 
example. The model used is illustrated in Fig. 7.13 and represents a 
mountain on a plane and a ramp leading to another plane. Clearly, the two 
examples used in Chapters 2 and 4 are sections of our surface. The surface 
specifies the underlying function f(x, y), which we sample at various sets 
of data points and then attempt to represent by various surface-fitting 
techniques. 

The surface heights z of the model problem are defined more precisely 

by 
z= 1, iW. yore 

22 —xys if) 0=y—x <4, 

z = {cos(4n[(x — 3)? Cbs! 

+o(yobb)8] 2) oly Saif ek (eF bE sate, 
aa) otherwise, 

and the boundary of the region is the rectangle with vertices (0, 0), (2, 0), 
(2,1), (0,1). This model is deliberately chosen to have two “creases” 
(where discontinuities in the first derivatives occur). It is interesting to see 
how different interpolation schemes cope with such features. In particular, 
schemes for 6! interpolating surfaces can be expected te run into difficulties 
here. 
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Fic. 7.14 Quadratic least squares surface: (a) perspective view and (b) contour map. 

Figure 7.14 shows the quadratic surface determined by solving Eq. (7.13) 
using N = 150 randomly spaced data points. The function values at these 
points are determined by the model problem of Fig. 7.13. Note that the 
quadratic surface is unable to “follow” the mountain, and the net effect is 
simply to smooth out this feature. 
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8 

Surface Interpolation by Tensor 
Product and Blending Methods 

8.1 Introduction 

In this chapter the first techniques for surface construction with large 
data sets are presented. It is assumed that data points lie on a complete 
rectangular lattice in the xy-coordinate plane and function values (and 
possibly slopes) are assigned to each point. Thus, if there are 
(M + 1) X (N + 1) points in the lattice, M + 1 in one direction and N + 1 
in the other, the coordinate axes are supposed to be drawn parallel to 
the edges of the lattice. Then each point is assigned coordinates (x;, yj), 
where @ takes valucs 0,1, 2,"...) Moy takes values 0, 1). J. Nand 

Xp <xX,<...<Xy and yyo<y,;<...<yy. Given such an array of data 
points and numbers f,, 0 <i < M and 0 <j <N, the interpolation problem 
would require the determination of a function f of x and y defined on the 
rectangle [x9, Xu] < [Yo, yn], for which f(x;, y;) = fj for each i and j. 

We shall describe a rectangular lattice as uniform if the x;’s are uniformly 

spaced and the y,’s are uniformly spaced. 
It is clear that, in many practical problems, the data points are not so 

conveniently arranged. However, it is important that we treat this case first 
before going on to the more difficult problems with less regularity in the 

data points. Also, it is often the case in practice that data points are close 

to some regular pattern. We may then wish to do some preliminary 

processing to produce modified data which does lie in a manageable and 

useful configuration. Two such techniques are discussed in Chapter 11. 

8.2 Product schemes 

The basic idea of this chapter is to take advantage of interpolation methods 

already discussed with data given on a line and, by first considering interp- 

153 
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olation along the lines of a rectangular lattice parallel to the coordinate 
axes, to combine them somehow into a function defined over the whole 
rectangle [x 9, xy] X [Yo, yn] of the introduction. 
We shall consider first the relatively simple case in which data is given 

only in the form of function values at the grid points. In Section 8.4 
we deal with more general product interpolation schemes which admit 

derivative data as well. 
First, it is assumed that we have available a scheme for curve fitting by 

interpolation. Several candidates for this have been developed in Chapters 
2-4. The curve-fitting technique may be that of polynomial interpolation 
or natural cubic spline interpolation, for example. Whichever technique 
we have in mind, we suppose that a set of cardinal basis functions has been 
constructed. Thus, if the data points on the line are xy <<x,<...<Xy, 

then the ith cardinal basis function is defined by setting f; = 1 and f; = 0 if 
j#iforj;=0,1,...,M. In this way, M + 1 basis functions are generated, 
which we call @o, @;, ..-, @y. Then use the same technique to construct 
cardinal basis functions Wo, W,,..-., Wry on the data points yo, yj, ..., Yn. 
Now we form products of these basis functions. Consider the set of 

(M + 1) (N + 1) functions of the form 

Cp(a.y) Flips), Omequhe Oye paz6, Anis 0A). res 

It is clear from the definition of the @; and wy, that these functions satisfy 
the following conditions at the points of the lattice: 

1 if k=i and [=j, 
Ci (Xe. V1) = Pix) Yi) = (8.2) 

0 otherwise. 

So the functions c; also behave like cardinal functions but are based now 

on the rectangular lattice. Each c; takes the value 1 at one and only one 
point of the lattice, the point (x;, y;), and is zero at all of the other points. 

As an illustration, we suppose that the curve-fitting technique chosen is 
natural cubic spline interpolation, as described in Section 4.2. Some cardinal 
basis functions (@; or y;) on a set of seven points are illustrated in Fig. 4.2. 
Two product cardinal functions on a rectangular grid of 5 x 9 = 45 points 
are illustrated in Fig. 8.1. 
A function that takes the value fj; at (x;, yj) and the value zero at all other 

data points is then the function f,c;(x, y), and so a function taking the value 
fi; at (x;, yj) for every i and | is 

N M 

Pay) = 2 2 ficy(t, 9). (8.3) 



Fic. 8.1. Bicubic spline cardinal functions. 
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Thus, we have constructed an interpolant to the data, and z = P(x, y) will 
determine the fitted surface. 

Before going on to provide illustrations, one further point should be 
made. In this discussion we have used cardinal basis functions. It is not 
necessary to use cardinal functions to develop the product scheme; any set 
of basis functions for the curve-fitting process could be used. For example, 
we described in Section 4.3 the construction of B-spline basis functions. 
Utilizing this idea, we might construct bases of B-splines @,..-, Py on 
Xo, ++) Xy and Wo,..., Py ON Yo,..., ¥y- Product functions would then 

be of the form 

ey (x, y= gi(x) p(y), 

but would not satisfy the cardinality functions of Eq. (8.2). 
Nevertheless, we consider a surface defined by a function of the form 

N M N M a y 

P(x, y) = 22 OC ny y= x > ai Pi(x)W;(y), (8.4) 

for some (M + 1) (N + 1) real numbers qj. It can be proved that the a's 
can be determined uniquely in such a way that P(x;, y,) = f,; for each i and 
j. The surface fitted would be exactly that of Eq. (8.3)—it would only be 
described in a different way. 

A surface defined in this way [using Eq. (8.3) or Eq. (8.4), for example] 
from natural cubic splines will be called a bicubic spline surface (although 
the term is used elsewhere for splines which do not necessarily satisfy the 
“natural” boundary conditions), and it will represent a €? function on the 
defining rectangle. 
We state a general theorem containing the essentials of all product 

schemes. 

Theorem 8.2.1 Let @,. . ., Py be aset of functions GR BRK ele 
a set of points with the property that, for any fo...» fu, there exist unique 
numbers a, @,..., &y such that 2M 5 ap (x;) =f; forj=0,1,..., M. 
Let Yo, Wi, -.., Wy have the corresponding property with respect to points 
Yo <i <...<yy and define 

fae Oe aes 
C(x, y) = Pi(x) p(y), , 

K=O. 1 Sesei Ns 

Then, given any set of numbers fi there exists a unique corresponding set of 
numbers a; such that the function P(x, y) = 2; 2; w;C,(x, y) satisfies the 
interpolatory conditions P(x,, yj) = fy for each i and j. 
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We chose to introduce the product functions via the cardinal bases 
because this seems the most intuitive and easily visualized approach. 
However, cardinal bases are not necessarily the best for computational 
purposes. The evaluation and storage of the cardinal functions @; and yw; 
themselves can be very costly. For spline techniques with large numbers of 
data points, the use of B-spline bases is likely to be most reliable from the 
computational point of view. [For more details on the use and application 
of bicubic spline surfaces, see, for example, de Boor (1962, 1978), Bhat- 
tacharyya (1969), and Spath (1969, 1974).] 

8.3 Illustrations of product schemes 

EXAMPLE 1 The simplest possible rectangular lattice has precisely two 

points in each direction. Thus, there are four points at the vertices of a 

rectangle with sides parallel to the coordinate axes (Fig. 8.2). For interp- 
olation in the x- and y-directions, use linear polynomial interpolation. Thus, 

the cardinal functions are 

P(x) = (x, - x)/(X1 a) P(x) = (x - xo)/O1 ao (8.5) 

Woy) =O1 —y)/O1-Yo), = 1) = (Y — Yo)/1 — Yo). (8-6) 

There are four basis functions for interpolation in the plane at these four 

points given by Eq. (8.1): 

éeoles9) = ole¥o0) = (= — (> }, 

cni(2,9) = Poli) = (= )(2—**), 

ews) = #1 2)¥o(”) = (<2) (>), 

seventh =5)( 28) 
Note that all of these cardinal functions are bilinear, i.e. they have the 

form a, + a,x + a3y + Agxy for some constants a, a>, a3, a4 (depending 

oniand j). Thus, this product scheme produces a basis of cardinal functions 

for bilinear interpolation on the rectangle of Theorem 7.4.1. 
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(xo,y,) (x,,y)) 

e © 

e e 

(X93 YQ) (x),YQ) 

= X 

O 

Fic. 8.2 Primitive lattice. 

EXAMPLE 2 Suppose now that the lattice is 3 x 3, and we form a product 

scheme using quadratic Lagrangian interpolation in each direction. Thus, 
the cardinal basis functions @o(x), ~) (x), P(x) and wWo(y), Wily), Woy) 
are quadratic polynomials. Their formulation (on a special set of abscissas) 
has been considered in detail in Section 2.3. | 

Then the nine basis functions c;(x, y) of Eq. (8.1) are biquadratic poly- 
nomials, i.e. they are linear combinations of monomials xy with 
1<i+j)2. If the points happen to form a uniform lattice, then this 
construction provides a cardinal basis for the “biquadratic rectangle” of 
Fig. 7210b. 

EXAMPLE 3 Suppose that the lattice has M+ 1 points x9, x1, ..., Xy in 

the x-direction and just two, yo, y,, in the y-direction. Then there are 

just two cardinal basis functions in the y-direction wo(y) and w,(y) and, 
combining Eqs. (8.2) and (8.3), the interpolating function has the form 

M M 

P(x, y) = & fin ile) Woy) - 2 fa Pile) Yr (9), 

where @ (x), ..., P(x) are the cardinal basis functions in the x-direction. 
Linear interpolation in the y-direction would imply the use of the func- 

tions Wo, Y, of Eq. (8.6). In this case, the surface can be visualized by first 
considering the x-interpolants on the lines y = yo, y = y, (cf. Fig. 8.3, where 
M = 3). These two curves are then joined by straight-line segments in the 
y-direction, thus generating a “ruled” surface. This procedure is sometimes 
known as “railing” between the two curves on y = yp and y= yy. 

If piecewise linear interpolation is used in the x-direction, then the result 
on each rectangle [x;-;, x;] < [o. yi] is simply a bilinear interpolant again, 
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as in the first example above. These bilinear patches are joined on the lines 
X= Xj, X =X2,..., X =Xy-_, in such a way as to generate a continuous 
surface; in fact, a €° surface, as defined in Section 1.6. 

More generally, the smoothness of such a ruled surface is limited only 
by that of the interpolation scheme in the x-direction. If Lagrangian 
polynomial or cubic spline procedures are used in the x-direction, for 
example, then the surfaces generated will generally be of classes @% and 
€*, respectively (cf. Section 1.6). 

Fic. 8.3 Tensor product interpolant—linear in the y direction. 

EXAMPLE 4 Now consider the model surface of Fig. 7.13. The procedure 
is to form a uniform lattice on the rectangular base, sample function values 
at the lattice points from the heights of the model surface, and construct 
an interpolating surface. Comparisons are made among the results of some 
such interpolation procedures. 

Lagrangian polynomial interpolation is used first on lattices of 5 x 3 = 
15 points and 9 x 5 = 45 points. The results are illustrated in Fig. 8.4. The 
lower degree surface indicates the main features of the model surface 
reasonably well. In the second case, the main features are still visible, but 

the increased degree of the polynomial produces large anomalies near the 
edges. These polynomial surfaces are in marked contrast to the following 
results using the same numbers of data points but cubic spline interpolation 
in place of Lagrangian polynomial interpolation. 

Six bicubic spline interpolating surfaces are shown in Figs. 8.5 and 8.6. 
The first three are on uniform lattices with3 x 5= 15,5 x9=45,9 x 17= 

153 points, respectively. The second three are on rectangular lattices with 
corresponding numbers of points, but in this case, the x,s are chosen 
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Fic. 8.4 Two product polynomial interpolants: (a) 15 points and (b) 45 points. 
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Fic. 8.5 Three bicubic splines on regular lattices: (a) 15 points, (b) 45 points and (c) 153 

points. 



Fig. 8.6 Bicubic spline interpolating surfaces: (a) 15 points, (b) 45 points and (c) 153 points. 
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randomly, as are the ys. In Fig. 8.6a the points of interpolation chosen 
“missed” the mountain almost completely so that this feature is hardly 
visible. 

In Fig. 8.7 we illustrate a contour diagram of the bicubic surface in Fig. 
8.6c. This illustrates very clearly that anomalies may arise which are peculiar 
to the technique involved and bear no relation to the data. In particular, 
this makes clear a “dimpling” phenomenon, which is based on the under- 
lying grid. 

FIG. 8.7 Contour map of bicubic surface of Fig. 8.6c. 

8.4 Product schemes with derivative data 

This section is devoted to the problem of interpolation on a rectangular 
lattice in the case when we are given not only function values but derivative 
values as well. In particular, the definitions and theorems given will allow 
us to extend the piecewise Hermitian interpolation procedure of Section 
3.7 to surface fitting. In order to do this, it is useful to make a more precise 
definition of the term node, first encountered in Chapter 3. The first step 
is to define a node in the context of curve fitting. 

Definition Jf a function f is known to belong to the class €*{a, b], and if 
the value of f(u) is given for some i, 0<i<k, and u€ [a, b], then the 
ordered pair (u; i) is said to be anode. We refer to f(u) as the nodal value 
of f at this node. 

These conventions are illustrated in the two following descriptions of 
interpolation processes on an interval. 
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EXAMPLE 1 Simple Interpolation. Here we are looking for a continuous 
function taking on prescribed values at the N + 1 distinct points x9, x;,..., 
xy. Therefore the space [a, b] is appropriate, and the nodes are (x;; 0), 
j=0,1,..., N, indicating that zeroth-order derivatives (function values) 
are givenat gl Vg pts eH! 

EXAMPLE 2 Simple Hermitian Interpolation. Now, slopes as well as func- 
tion values are given at the distinct points x9, x;,..., Xy. The interpolating 
function must be differentiable, so we work with functions from €'[a, bj. 

The nodes:are.(x;;,0), j= 071,255, NV, and. (4-‘1), = 0, 4, .. .3 N. 
It is important to keep in mind that specification of the space €*[a, b] 

and of a set of nodes does not guarantee the existence of a unique 
f € €*[{a, b] having the prescribed nodal values. To illustrate the lack of 
uniqueness, we need only recall that the simple interpolation problem could 
be solved by polynomials, linear splines, or natural cubic splines, for 
example. Once we have chosen a family of functions in €“{a, b], which, 
for a given set of nodes, yield a unique interpolant, the idea of nodal value 
is useful in obtaining representations of the interpolant in terms of cardinal 
functions. Keeping in mind that two ordered pairs (uw; i), (v;j) are equal 
if and only if vu = v and i =j, the following assertion holds. 

Theorem 8.4.1 Let a set of m+ 1 distinct nodes M,,i=0,1,..., m. be 
given (each being an ordered pair as in the definition), involving at most a 
kth derivative. Let ¥ be a family of functions in €*[a, b| with the property 
that there exists a unique f in ¥ having the given nodal values. Then there 
exist m+ 1 unique (cardinal) functions y;, i=0, 1, ..., m, having the 
properties: 

1, bed, 
0, iFj. 

Furthermore, if the given nodal values of f at M, is denoted by v;, then the 
interpolant has the representation 

nodal value of ~; at M; = 

fx) = & vig,(x). 

We have seen explicit examples of such cardinal functions and associated 
representations of f in the previous chapters. 

It is now a comparatively simple matter to extend the idea of “node” to 
two-dimensional problems on rectangular regions and to see how one- 
dimensional schemes can be combined to find interpolants ona rectangular 
lattice. For this purpose it is useful to have a formal definition of a “node” 
in the context of bivariate interpolation. 
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Definition Jf a function f defined on [a, b] X [c, d] is known to belong to 
the class €**'(S), where S = [a, b] x [c, d], and if the value of a'*'f(u, v)/ 
ax' dy! is given for some i, j satisfying 0<i<k,0<j <I, with (u, v) € [a, 
b| X [c, d], then the ordered 4-tuple (u, v; i, j) is said to be a node. We call 
the value of the partial derivative 0'*'f(u, v)/dx'dy! the nodal value of f at 
this node. 

With reference to schemes of Section 8.3, we observe that if an interp- 
olation scheme along the x-axis has nodes located at x9, x), ..., Xy, and 

another scheme along the y-axis has nodes at yo, y1, ..., yy, then the 
product scheme has nodes at the points (x;, y;). This tells us where the 
nodes are but not what they are. The following tells us how to construct 
nodes for more general product schemes and how we may get a rep- 
resentation for an interpolating function. 

Theorem 8.4.2 Let a set of distinct nodes M;,i=0,1,..., m, located in 

(a, b] be given, involving at most a kth derivative. Let ¥ be a family of 
functions in €*[a, b] with the property that there exists a unique f © # having 
the given nodal values. Let a second set of distinct nodes Nj, j=9,1,..., 
n, located in [c, d] be given, involving at most an Ith derivative, and let G 

be a family of functions in C'[a, b] such that a unique g © G exists having 

the given nodal values. Then there exists a unique interpolant P on {a, b| 
Sales wise Rodes are 4-luples Po. 1= 0, 1) wong tt, f= O01, oe, Ai 

obtained by combining all the nodes M,; with all the nodes N, as follows: 
If M, = (u;r) and N; = (v;5), then 

Py = (u, v;71, Se 

The nodal value of P at the nodes P;; is then 0'**P(u, v)/ax"dy’. 

In addition, if the cardinal functions for the interpolation from ¥ are ®o, 

-., Pm and those from G are Wo... .. W, and if the nodal values of P at P; 

are denoted by v,, then a representation for P ts 

m n 

Powis 2 x vi Pilx) Wj (y). 

The (m + 1) (n + 1) products p(x) Wy), i= 9,1,...,m,7=9,1...,nare 

the cardinal functions for the interpolation problem with nodes P,. 

For the purpose of illustration, Theorem 8.4.2 will now be applied to 

construct Hermitian interpolation schemes on a rectangle. Let the rectangle 

be [xo,Xm] X [Yo. yx]. In both the x- and y-directions, Hermitial interp- 

olation is to be used, as described in Section 2.4. Then for each i = Oot 

oi, Miand jp =O) 1joi0; Nythere are two nodes for linear interpolation, 

namely, (x;; 0), (x); 1), and (y;;9), (y;3 1), respectively. These combine to 
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give four nodes at each point (x;, y;) for the product scheme: 

eve), avi LU), a ee a ey kt 

and they represent the values of f, f,, f,, and f,,, respectively, evaluated at 
(x;, y;). Thus, there are 4(M + 1)(N + 1) nodes in all. 

It is important to note that, although the one-dimensional Hermitian 
interpolant requires only first derivatives (slope) information, the product 
scheme requires some second derivatives at the lattice points. 

For this osculatory interpolation there are 2(M + 1) and2(N + 1) cardinal 
basis functions p(x) and y,(y), respectively, associated with interpolation in 

the two coordinate directions. Hence, there are 4(M + 1)(N + 1) bivariate 

cardinal functions (x)y,(y), matching the total number of nodes. The 
simplest special case of this procedure will be, for us, the most important. 

EXAMPLE 3 Consider the case M = N= 1 of the above discussion. Now 
the rectangle of interpolation is [x , x,] X [vo, y,]. In the x-direction four 
nodes are given: (X30), (9; 1), (%;;0), and (x,; 1). Construction of cor- 

responding cubic cardinal functions and interpolants has been considered 
in detail in Section 2.4 (although, for convenience, on the interval [0, 1]) 
and there are, in particular, just four basis functions in each direction which 
combine to give 16 basis functions for interpolation on the rectangle, 
matching the total of 16 nodes, four at each vertex. This is precisely the 
bicubic rectangle discussed in Section 7.6 (see especially Fig. 7.12). In 
contrast to the discussion of Section 7.6 we now have a constructive 
approach to the formulation of a cardinal basis for this interpolation 
scheme. 

EXAMPLE 4 Consider once more a general rectangular lattice of points on 
the rectangle [x9, xy] X [yo, yy]. Instead of the one-dimensional osculatory 
interpolation proposed above, we consider the piecewise cubic interpolation 
discussed in detail in Section 3.7 and to be implemented in both the x- and 
y-directions. 

It is not difficult to see that the local property (on subintervals) of the 
one-dimensional scheme is inherited by the product scheme (on subrec- 
tangles [x;-, x;] < [yj-1, yj]). Thus, the implementation of this product 
scheme leads to a “patchwork” of (M+ 1) (N+ 1) problems posed on 
elementary rectangles. On each rectangle a problem like that of Example 
3 is to be solved, and the 16 nodes on the perimeter of the rectangle 
determine completely the bicubic interpolant on the interior of the 
rectangle. 
A point which will be particularly important subsequently is, that the 

one-dimensional €! property of the piecewise cubic Hermite interpolant is 
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inherited by the patchwork of bicubic rectangles. Thus, the surface z = 
P(x, y) defined over [xo, xy] X [yo, yn] is a €!-surface, as defined in Section 
1.6. Examples of this application can be found in Chapter 9. 

8.5 Blending-function methods 

These methods seem to have originated with manufacturers of car bodies 
and have since found many other industrial applications, ranging from the 
design of ship hulls to thermodynamics. As in the preceding sections, we 
desire a smooth surface to fit some data, but in this case the data is given 
in the form of functions describing the complete cross-sections of the surface 
on a number of intersecting curves. For the present purposes we look at 
the simpler situation where the curves are straight lines intersecting at right 
angles, and the region over which we are working is a rectangle with sides 
parallel to the lines (as described in Section 8.1). 

Suppose then that the data occurs on the rectangle [xo, xy] X [Yo, yal- 
On the lines x =X), Xx = X,, ..., X =Xy in the xy-plane, y can vary. We 
suppose that we are given M + 1 functions g)(y), ..., gu(y) representing 
cross sections of a surface on these lines. These functions may be produced 
from data available along the lines by means of interpolation methods for 
functions of a single variable, as discussed in earlier chapters. 

Similarly, we are given N + 1 functions ho(x), ..., hy(x) describing the 

cross sections of the surface along the lines y = yo, y= yq,-.-, Y= Yn. 

It turns out that, by using cardinal functions as in the product schemes 

already discussed, we are able to produce a surface z = B(x, y) over the 

whole rectangle [x , xy] X [yo, Yw], which has the specified cross sections. 

As in Section 8.2, let.q@{x),/1 =10,315.12.,.@, and Ay), j= 9, 1,..., , 

be the cardinal functions for two selected interpolation methods, one to be 

used in each direction. Consistency demands that the cross-section curves 

agree in value where an x-section crosses a y-section. This means that 

gi(yj) = h(i), PHO eat, f= Ole 

These common values occur at the grid points and were previously denoted 

by fi. 
bas shall first develop the blending method in the simple case of data 

given along the four edges of the unit square (0, 1] * [0,1]. The interp- 

olation method we choose is linear because there are only two grid points 

(or lines) in each direction. Referring to Figs. 8.8 and 8.9, we see that in 

our case yo = 0, y; = 1, X) = 9, x, = 1, N=M =1. The given profiles are 

ho(x), h(x), Bo(y), gi(y), and the consistency conditions are 

gi(y;) = h(x;) =fi, i,j =0,1. (8.7) 
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The cardinal functions for linear interpolation in the two directions are [cf. 

Eqs. (8.5) and (8.6)]: 

90(%) Hho ee vet @i= *%, Vol) = leincteds Mie, 

It is quite easy to find two surfaces which effect the transition from h(x) 

to h,(x) and from go(y) to g,(y). These are 

A(x, y) =ho(x) poly) +A) yi), 

G(x, y) = 80(y) Pox) + 81-2) G1), 

respectively. 
It is the cardinality properties of Mo(x), @i(x), Wo(y). Wily) that ensure 

that 

H(x, 0) = ho(x), H(x, 1) = h,(x), 

Gry) = #50),. Gly —s0 

It turns out that the functions H(x, y) and G(x, y) can be combined with 
the product interpolant defined in Section 8.2, P(x, y), to produce the 
desired function B(x, y) that coincides with the four given profiles at the 
edges (Fig. 8.10). We have [see Eqs. (8.2) and (8.3)], 

P(x, Y) = foo Po) Vo(y) + fin G1) Yo) + fi Pid)vi0) 

+ fr Pox)Yi(y), 

and claim that 

B(x, y) = H(x, y) + G(x, y) — P(x, y) 

will do the trick. Certainly, this makes sense at the corners, where the 
consistency of the given profiles results in H(x, y) + G(x, y) having double 
the required value, this being corrected by subtracting P(x, y). Let us check 
along the line y = 0: 

B(x, 0) ="Htx, 0) + Gix, 0) PGs 0) 

=ho(x) + go(O)Po(X) + 81(0) G1) — fw Po(X) Wo (0) 

— fio Pi) WoO) — fir Pi (X) HW (0) — fr Pox) Y, (0) 

=ho(x) + foo Po) + fro G1) — foo Po(x) +1 

— fioi%) 1 — fir Pi (x) + 0 — for Po(X) - 0 

= ho(x). 
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Fic. 8.8 Blending grid. 

Here we have exploited the consistency conditions of Eq. (8.7) and the 
cardinality conditions satisfied by @o(x), @1(X), Wo(y), WiCy). In a similar 
way we can verify that B(x, 1) = h,(x), B(0, y) = go(y), and B(, y) = g,(y), 
so that B(x, y) performs as required. The function B(x, y) is called a linearly 
blended interpolant because it blends together the functions given on the 

edges using linear interpolation in the two directions. 

Fic. 8.9 Consistency condition. 

The same construction can be employed in the general case with data 
and consistency conditions as in Figs. 8.8 and 8.9. The general result is 
presented in a formal statement. 

Theorem 8.5.1. Let a rectangular lattice be defined by the points 
Xp < Xj, <...<Xy and yo<y,<...<yy. Let M+1 functions g,, i=0, 
1,..., M, defined for yy = y = yy, and N + 1 functions h,,j =0,1,..., N, 
defined for xy <x <Xy, be given, satisfying 

gj)=h@)=fy, 1=0,1,...,M, j=0,1,...,N. 
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Fic. 8.10 Blending data on the unit square. 

If Po. +++ Pu and Wo, ..., Wy are cardinal functions for interpolation at 
the nodes (Xo; 0), ..., (X30) and (yo; 9), ..., (v3 0) (in the notation of 
Section 8.4), respectively, then the blended interpolant B(x, y) defined by 

MN 

YD fiPilX¥i(y), (8.8) 
i=0 j= 

M N 

B(x. y) = 2 Mi(x)gi(y) + x hj(x)p;(¥) — 
i=0 j=0 

has the properties 

Bix;, y)=g,;(y), i=0,1,...,M, B(x, yj)=h;(x), j=0,1,...,N. 

In applications, the functions g; and h; will usually not be available, and 
will have to be constructed by using interpolation or smoothing methods. 
These methods need not be the same as the methods implied by the cardinal 
functions g; and y; being used for blending. 

An important distinction between product interpolants and blended 
interpolants is that whereas the former uses only a finite number of nodes, 
the latter utilizes information along entire lines which are formed from 
infinitely many points. 
Theorem 8.5.1 concerns itself with blending information about function 

values along lines and does not utilize derivative information. However, a 
more general statement can be made that provides for blending with, for 
example, the cardinal functions for piecewise cubic Hermitian 
interpolation. 

Theorem 8.5.2 Let all the conditions and notation be as in Theorem 8.4.2. 
In addition, assume that the nodes M;,i=0,1,.. ..m, m= M are located 
at the points X) <x, <...<xXxy (several nodes can have the same location), 
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and that the nodes N;, j=0,1,...,n, n= WN are located at yo<y,<.. 
<yy. Let a given function f defined on [xo, xy] X (yo, yy] be continuously 
differentiable k times with respect to x and | times with respect to y. 

If a node M; has the form (u;r), define the nodal value of f at this node 
by 

gi(y).= 0’flu,y)/ax", i =0,1,...,m. 

Similarly, if a node N; has the form (v; s), define 

hytx) =a" f(xyv)/oy", pS Opes ayn. 

The blended interpolant of f is then given by 

B(x, y) = & wix)Bi(y) + Zhi Yj) — DD v9 F:0N¥)0), ps j= jZ0;= 

and has the properties 

DBL, YW Oe BV ob Dnligngigng 5 
OBS voy = Cop = 0, 15.0.5 

Note that in this statement, by expressing the blended interpolant in terms 
of nodal values of an underlying function f, we have automatically taken 
care of the kind of consistency conditions that appear in Theorem 8.5.1 in 
the form g,y;) = h;(x;). Also, recall that v, is the nodal value of f at node 
P; (see Theorem 8.4.2). If, as will often be the case in practice, such a 
function is not available, consistency conditions will have to be imposed. 

These are too complicated to express here in full generality, and we will 

content ourselves with an example. 

EXAMPLE Hermitian Blending. We select the region [0, 1] x [0, 1] with 

the lattice defined by x) = 0, x; = 1, yo = 0, y; = 1. The nodes are the same 

as in the example of Section 8.4, so m =n = 3, whereas M = N= 1. Now, 

Mo = (0; 0) > Boy) = 0, y), No = (0; 0) > ho(x) = f(x, 9), 
0 

=0;1) 4:0) = 22, = >A) = e) LODE 

M;=(1;0) > a2.) =f. y), No = 0; 0) > ho@) = fe, 1), 

sh 
= (1;1)>83(y) = nw) ah Ns=(:)>h5@) = 2? 
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h3(x) (slope) 

Fic. 8.11 Consistency conditions in blending. 

The presence of the functions g, and g; expresses the fact that the slope of 
the surface in the x-direction is to be given when progressing along the 
lines x = 0 and x = 1 in the y-direction. A similar statement applies with 
respect to the nodes N,, N;3 and corresponding functions h,, h3. If the 
function fis not given, then go, g2, Ao, h2 must be obtained by interpolating 
or smoothing whatever data are available along the lines x = 0, x = 1, 
y = 0, y = 1. The transverse slopes in both the x- and y-directions will have 

ec 

(a) 

Fic. 8.12. Three spline blended surface interpolants. 
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Fic. 8.12 continued. 

to be estimated and smoothed or interpolated to yield g,, g3, h,, h3. The 
functions g; and h; are not independent of each other, for they must conform 
to an underlying continuously differentiable function. Thus, we impose the 

conditions 

8 (0) = ho (0), 8o(1) = h2(0), g2(0) = ho(1), 82(1) = h2(1), 
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Fic. 8.13 Three Hermite blended interpolants. 

in order that the cross-sectional profiles agree at the corners. Further, the 
transverse slope along an edge must agree with the slope of the tangent to 
the profile encountered at the corners: 

81) =A), 1) =800), gil) =h500), ay (1) = 85(1), 
g3(0)=Ao(1), AsO) = gh(1), 831) = AS (1), 31) = g5 (1). 

Some of these are illustrated in Fig. 8.11. 
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In Fig. 8.12 we illustrate the performance of the cubic spline blending 
technique on the model problem described in Section 7.7. The improved 
resolution with the increasing numbers of data points is clear. Irregularities, 
which appear with a wavelength determined by the underlying grid, are also 
apparent. The points on the grid lines alongside the figures of 8.12 show 
where data were supplied. The cubic spline required only elevations at the 
points to produce the interpolants g;(y) and h;(x); These were then blended 
using cardinal spline functions based on the coarser grid line spacing. 
The surface of Fig. 8.12c has larger oscillations than the bicubic spline 
interpolant of Fig. 8.5c; however, it, unlike the bicubic spline, does fit the 

data along entire lines. Another example of spline blending occurs in 

Section 9.11. 
The surfaces of Fig. 8.13 were generated by a Hermitian blending 

technique. In this case, transverse slopes were supplied as well as elevations. 

For interpolation along the lines, slopes were approximated as at the end 

of Section 3.2. The transverse slope was interpolated in the same way, and 

thus the blended surface has close to correct elevations and transverse 

slopes on all grid lines. A contour map of Fig. 8.13c is presented in Fig. 

“3 
Fic. 8.14 Contour map of the surface in Fig. 8.13c. 

8.14. Comparison of Figs. 8.12 and 8.14 suggests that the Hermitian 

technique has not produced a noticeably better resolution of the model 

surface, even though it requires considerably more programming and 

computational effort. 

All of the interpolation and blending methods introduce anomalies that 

were certainly not in the original surface. Part of the problem is that the 
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original surface is only of class € because of the sharp corners of the ramp, 
whereas all of the approximating surfaces are smooth, at least to the extent 
of having continuous slopes; they are of class €' and cannot fit sharp 
corners. More details and references on blending function methods can be 
found in papers by W. J. Gordon (1968; 1969a, b), for example. 

8.6 Product and blending schemes as projection methods 

We now indicate how the language of projectors, as introduced in Chapter 
5, can be used in the discussion and analysis of product and blending 
methods. This formalism becomes particularly useful and elegant in this 
context. For simplicity we confine discussion to the interpolation problems 
in which only function value data is given at the vertices of our standard 
rectangular lattice in the case of product schemes and at all points of the 
edges of the lattice in the case of blending. 

Recall first the projector associated with interpolation to function values 
f(Xo),-- +> f(%m) at points x9,x,,...,xy on a line and, in particular, the 
meaning of Eq. (5.7). We suppose that we have a well-defined interpolation 
scheme with corresponding cardinal functions @o(x),. . ., @y(x). Thus, for 
a given function f(x) € €[a, b], say, there is a unique interpolant in the set 
J, of linear combinations of o(x),..., Py(x) given by 

M 

(Pof)(x) = & pile \flx). (8.9) 

Equation (8.9) defines the map Py from functions f in €[a, b] to functions 
in J,, and Py is a projector in the sense that P? = Py. 
We now wish to extend the definition of P, to apply to functions f(x, y) 

that are continuous on [x9, xy] X [yo, yx]. This can be done formally by 
simply introducing y as a “sleeping partner” in Eq. (8.9). Thus, Eq. (8.10), 

M 

(PA (xy) = & pier, y); (8.10) 

determines the action of P on horizontal lines in one coordinate plane 
determined by fixed values of y. This defines the image of P as being 
functions that for each fixed y are in J, but for each fixed x are merely 
continuous functions on [yo, yy]. 
Now introduce an interpolation scheme with respect to the y-variable 

and determined by cardinal functions wo(y), Wily),-.., Wv(y). Then, in 
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just the same manner, we construct a map Q by means of the relation 

(Of) (x, y) = 2 p (W)Flx, y;), (8.11) 

and functions in the image of Q will be continuous with respect to x for 
each fixed y, and for each fixed x they are functions in the class J, of linear 
combinations of Wo(y),..., Yy(y). It is easily verified that the maps P 
and Q constructed in this way are indeed projectors. That is, they satisfy 
Po =F anne) aa) 
Now consider the function of x and y given by Eq. (8.11) and apply the 

projector P to this function. It is found that 

N M N M 

(POF) (x, y) = = Q(x) 2 vw (Wf%i,¥)) = x 2 fi PilX)Y; (9). (8.12) 

However, comparing with Eqs. (8.3) and (8.1), we see that this is just the 
interpolant of the product scheme discussed earlier. 

On applying the projector Q to both sides of Eq. (8.10), it is found that 

(OPf) (x, y) = 2 2 fii), 

as well. Thus, the projectors P and Q commute; we have PQ = QP. Let 

us summarize our findings: The maps P and Q defined by Eqs. (8.10) and 
(8.11) are commuting projectors and, for any function f defined at the vertices 
of the lattice, the function OPf = PQf is the interpolant to f at the vertices 
determined by the product scheme with cardinal functions p(x) w;(y) fori = 
Od,...,M@M and ;=0,1,...,.N. Furthermore, the map PQ. is.itself a 

projector. 
The last statement follows from the commutativity of P and Q. For 

(PQ)? = P(QP)Q = P*Q’ = PQ. This formulation simplifies the analysis 
of product interpolation schemes enormously and admits a geometric 
interpretation of the associated projector PQ. 

Now consider Eq. (8.8), giving an explicit formula for a blended interp- 
olant to the data f(x;, y) = gy) on the lines x = x; ((=0,1,...,M) and 
f(x, y;) = h(x) on the lines y = y; (7 =0,1,...,N). Comparing this with 
Eqs. (8.10)-(8.12), we see at once that the blended interpolant can be 
written in terms of the projectors P and Q: 

B(x, y) = (Pf) («, y) + (Qf) (x, y) — (POP) (x, y), 
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or, more concisely, the blended interpolant to f(x, y) is obtained by applying 
the map P + Q — PQ to f. This composite map is the Boolean sum of P 
and Q and is written P@Q. (Compare with Section 5.4. There, the 

situation is significantly different because the projectors P and Q do not 
commute.) 

It is easily verified that, once more, P@ Q is a projector and useful 
properties of P@ Q, and hence blending interpolation, can be derived 
directly from properties of the separate projectors P and Q. 

For the benefit of readers familiar with the ideas of the intersection and 
sum of subspaces, we record the following useful facts. If P and Q are any 
commuting projectors, then 

Im PQ = (Im P) NM (Im Q), Ker PQ = (Ker P) + (Ker Q), 

Im(P @ Q) = (Im P) + dm Q), Ker(P ® Q) = (Ker P) M (Ker Q). 
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Finite Element Methods 

9.1 Introduction 

Our purpose in this chapter is to describe the use of finite element techniques 
for surface construction, and, in the main, we shall develop the exposition 

through successively more difficult problems. Indeed, for the purpose of 
this introduction, we can use techniques of interpolation on a line to develop 
the underlying ideas in a simple way. 

First, recall the technique of interpolation on a line with the use of 
piecewise linear functions, as described in Sections 3.2 and 3.3. In the 
notation of Theorem 3.3.1, distinct abscissas x9 <x,<...<Xy are given 
and function values of fo, f,, . . ., fy are assigned. In contrast to the “global” 
view of Theorem 3.3.1, the interpolation can obviously proceed “locally”, 
sub-interval by sub-interval. On each sub-interval [x;,x;4:], j= 
0,1,...,M-—1, we can construct a unique linear interpolant, 

L(x) = (j41 —f)/@ja1 — xpl@ -— xj) +f, (9.1) 

which we apply only to those values of x in [x;, x;.,]. By “abutting” these 
interpolants and sub-intervals to one another, the unique interpolant /(x) 
on [x, Xn] (whose existence is asserted in Theorem 3.3.1) is generated. 

In this construction the components of each interpolation problem on a 

sub-interval determine a finite element. Thus, a typical finite element 

consists of the following three parts: 

(1) an interval [x;, x41]; 
(2) the nodes (x;; 0) and (x;,;; 0) (in the notation of Section 8.4); and 

(3) the class of functions P,. 

Now it seems trivial in this context, but the function of Eq. (9.1) for the 

jth sub-interval can be generated by first interpolating on the “standard” 

interval [0,1] and then transforming to [x;,x;,,]. Note first that if we 

179 
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introduce a new variable & by writing 

E=(x - x;)/(Xj41 = x); (9.2) 

then the interval [x;, x;,] on the x-axis maps onto the interval [0, 1] of the 

&-axis. ; 

For linear interpolation on [0, 1] we have the simple cardinal functions 

po(E)=1-§6 (8) =§, 

which immediately tell us that the linear interpolant to the values fj, fj, at 

0 and 1, respectively, is 

(2) =f). — &) + fier = far Ap + fi. 

To recover the interpolant [Eq. (9.1)] on [x;, xj], we simply substitute 
fonstiront Equ(.2): 

The purpose of this manoeuvre is to replace interpolation on N different 
finite elements by N interpolation problems on the same standard element, 
using the same cardinal functions in each case, and followed by the coor- 
dinate transformation of Eq. (9.2). The “standard” finite element for this 
procedure is, of course, determined by 

(1) the interval [0, 1]; 
(2) the nodes (0; 0) and (1; 0); and 
(3) the class of functions P,. 

Let us briefly indicate how the same ideas apply to the piecewise cubic 

interpolation (on the line) of Sections 3.6 and 3.7. It is supposed that 
abscissas and function values are assigned as above and, in addition, the 

slopes of the interpolating function my, m,,..., my (at x9,X1,...,XN, 

respectively) are assigned. A cubic function Sj(x) is to be determined 

which interpolates the data fj, m; at x; and fj,,, mj,, at x;,,, this for j = 

0,1,...,N-—1. Again, the problem can be handled sub-interval by sub- 
interval. However, as with the piecewise linear functions we choose to 
perform all the interpolation on a standard sub-interval. In this case the 
standard finite element consists of 

(1) the interval [0, 1]; 
(2) ‘the nodes (0;.0), (0; 1); (1; 0), and (13 sand 
(3) the class of functions 3. 

The cardinal functions are, respectively [see Eqs. (2.9), (3.14), and (3.15)], 

Fg (6) = (2c 3 Le 1 Rae) ete tle 

Hp Syste (3 28), KG (E) 967 (Gar Ip 
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To construct the interpolant on [x;,x;4,], we first construct a cor- 
responding interpolant on the standard element [0, 1]. Compared to the 
previous example involving a piecewise linear interpolant, a new feature 
enters at this point. The function value data f; and f;, ; can simply be carried 
over to the standard element, but the slope data m;, m,,, must be adjusted 
to account for the change in scale in going from one element to the other. 
We define the transformed data values 

Ht, = (Xja1 = x;)m,;, ADE 6 Far Xj)Mja1; 

and apply the data fj, ;, f,+1, #;+, on the standard element to construct 
the interpolant 

5;(§) = fj Ho(§) + m;Ko(§) + fi41Ai (8) + 41K, (8), 

where & € [0, 1]. Then the interpolant on [x;, x;,,] is determined by means 
of Eq. (8.2): 

Sj (x) = Sil ia X)/ (X41 ag x;)I. 

On repeating this process for j = 0,1,..., N — 1, the complete interpolant 
on [X9, Xv] is obtained. 

The point to be emphasized here and carried to interpolation in the plane 
is that a finite element consists of a geometrical figure together with an 
interpolation scheme (consisting of a set of functions and a set of nodes) 
defined on that figure. Furthermore, if possible, interpolation is to be 
performed on a “standard” geometrical figure of simple form, and interp- 
olants on more general figures are to be determined by (affine) 
transformations. 

In these two examples the standard “geometrical figure” is the same, but 
the prescribed interpolation schemes are different. In the first case the 
result is a €° interpolant on [x 9, xy], and there is continuity of the function 
values at x,,X>,...,Xy-, but not (in general) of the derivatives. In the 

second case, by including derivative values as nodes at x,,%2,...,Xy-1, 

an interpolating curve of class €' is guaranteed. 
For surface construction our presentation will be confined to rectangular 

and triangular “geometrical figures”. The region of the plane on which the 
surface is to be constructed will be filled with rectangles or triangles and 
an interpolation scheme associated with each one. Recall that several ideas 
relevant to this program have already been developed in Chapter 7; the 
reader should be sure to have the material of that chapter firmly in mind 
before proceeding. We draw attention to the interpolation schemes on 
rectangles of Section 7.6 and the associated transformations of Eq. (7.4). 
The reader should recall as well the construction of interpolation schemes 
on triangles of Section 7.5 and the associated affine transformations of Eqs. 
(7.9) and (7.10). 
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9.2 The bilinear rectangle 

We begin with a discussion of a finite element scheme in the plane based 
on Theorem 7.4.1. Suppose that (as in Section 8.1) a surface is to be 
constructed on a rectangular domain [x9, xy] X [yo, yy] and that this is 
broken down into sub-rectangles [x;, xj+41] < [Ye ¥e+i], where j= 
Q,1,...,M@M—-1 and k=0,1,.. aoMee Rey papa SE a a 

Yo <i <...<yy. It is assumed that function values fj, are given at each 
of the (M + 1)(N + 1) vertices (x;, y,). Thus, Theorem 7.4.1 may be applied 
to each sub-rectangle and the data used to construct a bilinear interpolant 
defined on the interior of each sub-rectangle by the data at the four vertices 
of the same sub-rectangle. In this way we can construct an interpolant over 
the whole rectangle [x9, xy] X [yo, yn] as a patchwork of the separate 
bilinear interpolants defined one on each sub-rectangle. 

Sete ets 
B A 

ela (I, !) 

c D 

Fic. 9.1 Standard “rectangle”. 

Thus, in this technique a finite element consists of 

(1) a sub-rectangle [x;, x41] < Lyx, Yeoil, 
(2) the nodes (see the definition of Section 8.4) 

(xj, 9x39, 0), (ah sd 92.0), 

(Weer Vers Os 0); (ar Vents Us Os 

(3) The class of bilinear functions. 

(Recall that the class of bilinear functions is spanned by the monomials I, 
x,y, and xy.) For the implementation of the technique we reintroduce (Fig. 
9.1) the standard “rectangle” [—1, 1] x [—1, 1] (see also Fig. 7.5). There is 
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a corresponding standard finite element in which x), X41, Yx, Ye+1 are re- 

placed in the above definition by —1, 1, —1, and 1, respectively. 

Then, in numerical practice all the interpolation is completed on this 
standard rectangle. The corresponding functions are 

Olen) = al +4) + Sheer Sia = S  — 57), 

Male.) aia Las 6 pian), Pplean) = alr 6 = 9 167). 

Here, g,4(§, 7) has function value 1 at vertex A and 0 at the other vertices, 
and so on. 
When working on the sub-rectangle [x;, x;41] < Yc, ¥x+1], the interpolant 

to data fi41.4415 F441) 55,.e fj+1,4 at vertices A, B, C, D, respectively, is first 

constructed in the form 

(9.3) 

Bic (§.0) = fivtjner PaaS, 0) + f+. 00 (8 9) + fx PclS, 0) 

+ fii @n(&, 0)- (9.4) 

The bilinear interpolant on [x;, x41] X Ye. ¥¢+1] itself is then formed using 

the transformation [see Eq. (7.4)], 

De eee ee 
Kit a; oe 

(9.5) 

That is, these expressions are simply substituted in Eq. (9.4) to obtain the 

desired interpolant 

Pix (x, y) = pi (§, n). 

This completes our description of the method for generating an interp- 

olating surface on [x , xy] X [yo, yx] using the bilinear finite element (see 

also Examples 1 and 3 of Section 8.3); however, what can we say about 

the properties of the surface generated in this way? First, it represents a 

function of class 6° — a function which is continuous on the whole rectangle. 

It is obviously continuous on the interior of any sub-rectangle, so the only 

question arises at an edge common to two sub-rectangles. For example, 

consider the edge joining points (x;, y,) and (x), ¥¢+1), as in Fig. 9.2, in 

e AIS F 
B 

R, Ro 

D : E 
(x), Yq) 

Fic. 9.2 Adjacent sub-rectangles. 
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which the adjacent rectangles are denoted by R, and R,. Let the interp- 

olating functions in these two rectangles be p,(x, y) and P2(x, y), respect- 

ively. Then, they have the forms 

pix, y) =a, + bx + cyy + dyxy, P2(X, Y) = ay + Dox + Coy + doxy, 

for some constants a1, b,,¢C;, d;, 42, b2, C2, do. 
Why should these two functions take the same value on the edge common 

to R, and R,? For this is what €° continuity of the whole patchwork surface 

implies. The reason is that when restricted to this common edge, both 
p(x;,y) and p2(x;,y) are simply linear functions of y. Since they take 
common values fj, and f;,4) at (4), yx) and (xj, ¥e+1), respectively, they 
must be the same linear function, i.e. p,(x;, y) = p2(x;, y) for all y. This 
argument applies to every edge between two sub-rectangles and shows that, 
indeed, a €° surface is obtained. However, it is easily seen that, in general, 
the whole surface is nor of class €'. There will generally be “creases” along 
the edges common to two subrectangles. For example, suppose that function 
values 1 are assigned to vertices A and B in Fig. 9.2 and the value 0 is 
assigned to the other four. Then the interpolant on each rectangle is simply 
a plane, and the two planes join (in a continuous way) along AB. The 
interpolating surface has the form of a “ridge-tent” with a crease along AB. 

For many practical purposes, the fact that the surfaces generated by the 
bilinear rectangle are not generally €! will disqualify this procedure. If we 
insist on using rectangles and generating a €!' surface, it is necessary to 
consider more sophisticated interpolation schemes on rectangles, with a 
view to increasing the interelement continuity. Thus, although the bilinear 
rectangle may be useful in some cases, its inclusion here is mainly for 
expository purposes. 

In principle, the higher order interpolation schemes summarized in Fig. 

7.10 can also be used as bases for finite element schemes, but like the 
bilinear rectangle, they will not generally determine a surface with con- 
tinuous transverse derivatives across element boundaries. (The scheme 
associated with the nodes of Fig. 7.10b is widely used in the solution of 
partial differential equations and is known as the Adini rectangle.) 

Let us introduce an illustrative example that will be used repeatedly in 
the subsequent sections. Let a function f(x, y) be defined on the square 
[15 2] < pie 2) by the Eq. (9-6): 

z= 10(e* — 1) sin w(y — 1) — 15(y — 3/2) (y — 5/2)(%=1), (9.6) 

The surface z = f(x, y) is illustrated in Fig. 9.3. 
To illustrate the use of rectangular finite elements, we suppose the 

domain to be split into two parts, as indicated in Fig. 9.4. For rectangle 1 



a0 10.0 20.0 

-10.0 

“20. 0 

Fic. 9.3. An illustrative example. 

L : 
| 2 3 

Fic. 9.4 Two rectangular elements. 
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in Fig. 9.4, the mapping by Eq. (9.9) onto the standard square is simply, 

C= en, n= 4y —5. (9.7) 

The nodal values are read from Eq. (9.6), beginning with the top right 
vertex and proceeding anti-clockwise to the other vertices: 

f(2,3/2) = 0.0, — f(1, 3/2) = 17.183, 

f,1)=0.0, f(2,1) = -11.25. 
Using Eqs. (9.3) and (9.4), we obtain the bilinear interpolant on the 
standard rectangle: 

4B(E,. a= 0.0 CURSE 0p teS 1) orale |S Oteee e steapemet}) 

+ 0.01 Seca tete terete Pre (L + G — I al) 

= 5.933 — 28.433E + 28.433n — 5.933En. 

Finally, the interpolant at any point (xy, yp) in rectangle 1 (Fig. 9.4) is now 
found by using Eq. (9.7): 

P(X0, Yo) = P(2xo — 3, 4¥0 — 5) 

= —34.982 + 0.616x, + 46.232y9 — 11.866x9 yo. 

The computation on rectangle 1 is completed by taking as many values of 
(Xo, Yo) aS required to define the surface adequately and by evaluating the 
last expression on each occasion. 

Starting with the coordinates of the vertices of rectangle 2, the procedure 
can be repeated, beginning with the reformulation of Eq. (9.7). The result 
of these calculations on rectangles 1 and 2, is illustrated in Fig. 9.5. The 
discontinuity in the first derivative along the common edge of rectangles 1 
and 2 is clear and, on comparison with Fig. 9.3, it is clear that for most 
purposes we do not have a useful approximation to the original surface. 

If we are to keep the ridge from appearing in the approximation of Fig. 
9.5 to the smooth surface of Fig. 9.3 (and retain polynomial interpolation 
on rectangles 1 and 2 of Fig. 9.4), it is necessary to examine interpolants 
of higher degree—those having the ability to ensure continuity of the first 
derivatives across the common edge of rectangles 1 and 2. On examining 
Section 7.6, the quadratic and cubic schemes of Figs. 7.10 and 7.11 suggest 
themselves. Unfortunately, neither of these have the property that this 
degree of continuity on the common edge can be guaranteed. The scheme 
of Fig. 7.11b gives a unique first derivative at each of the common vertices 
but not at points in the interior of the common edge. This Adini rectangle 
is not adequate for our purposes. It is necessary to tackle the complications 
of the “bicubic rectangle” of Fig. 7.12 before attaining the necessary 
interelement continuity. 



9.3 The bicubic rectangle 187 

10.0 20.0 

0.0 

-10. 0 

-20.0 

Fic. 9.5 Two bilinear rectangles and the model problem. 

9.3 The bicubic rectangle 

We have discussed a particular interpolation scheme in Chapters 7 and 8 
known as the bicubic rectangle. The point of view of Chapter 7 (Fig. 7.12) 
was simply that a certain specification of 16 nodes and 16 monomial 
functions generate a well-defined interpolation scheme. In Chapter 8 
(Examples 3 and 4 of Section 8.4), it was shown that this interpolation can 
be generated as a tensor product scheme based on hermite interpolation 
on the line, as developed in detail in Section 2.4. 
Now we observe that in the context of Section 9.2, the bicubic rectangle 

can be used as a finite element. Furthermore, as Example 4 of Section 8.4 
shows, the surface generated by the use of this finite element will be of class 
€!. This gives the bicubic rectangle an important place in an armory of 
finite element techniques. However, the @' continuity is bought at the 
expense of introducing the second-order derivatives 0*f/dx dy evaluated at 
the vertices as nodes (Fig. 7.12). This is a disadvantage in some cases. 
There are many problems in which first-derivative nodes can be reasonably 
estimated when they are not given explicitly, but the estimation of second- 





(d) 

Fic. 9.6 Cardinal functions for the bicubic rectangle. (a) Node at (1,0; 0,0), (b) node at 

(1031.0); (c) nodevat (1, 050, 1) and (d) node-at (1,0; 1, 1). 
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order derivatives introduces greater uncertainties to the procedure. We 
introduce a scheme in Section 9.9, which is €!, that avoids the use of second- 

order derivative nodes but at the expense of some further complication in 
the definition of the basis functions. 

Let us summarize the details needed to implement the bicubic element. 
In this case it is convenient to use [0, 1] x [0, 1] as the standard geometrical 
figure. Thus, the standard finite element consists of the following: 

(1) the square [0, 1] x [0, 1]; 
(2) the 16 nodes indicated in Fig. 7.12; and 
(3) the span of the 16 monomial functions listed in Fig. 7.12 (the 

“bicubic” polynomials). 

We use Theorem 8.4.2 to generate the cardinal functions for interpolation 
on the standard element. First Eq. (2.9) applied to Hermite interpolation 
on [0, 1] gives the following cardinal functions (again, we use the notation 
of Section 8.4 to specify the nodes): 

Node Cardinal function 

(0; 0) GE + 1)(E = 1)? 
(0; 1) e(6 = iP 
(1; 0) e2(3 s2e) 
(131) deem 4) 

TABLE 9:1 
Cardinal Functions for the Bicubic Rectangle 

Node Cardinal function 

(0,.030, 0) (26 #)(§ — 1)72n' + 1)(y— 1? 
(0,0;1,0)  &(E — 1)?(2n + 1)(n - 1)? 
(0,0;0,1) (2& + 1)(& — 1)?n (n — 1)? 
(0,0;1,1)  &(& — 1)?n(m — 1)? 
(1,0; 0,0)  €%(3 = 2&)(2n + 1)(y = 1)? 
GH0) 1, OF s EXE = 1) (anus 1) - 1)? 
(1505 00s) &(3 — 2E)n(m — 1)? 

(1, OF 2) SE yy = 2) 

(1,1;0,0) (3 — 2&)n2(3 - 2n) 
(Ts) &7(E — 1)n2(3 — 2n) 

(1,15, GL) E7(3. =: 28) tae ay 
Ul, 19,7) E(x lin 1) 

(OP aR KOs0) (25 + 16 = 1)7476: — 2} 
(Ol 75 FO) EE = 1)*9*3 — 29) 
(0,1; 0,1). E+ Ie = 1)28?(y — 1) 

dads) ee — yen ty 2) ee tn TS et a ae) 
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Theorem 8.4.2 then gives the results of Table 9.1 for the standard bicubic 
rectangle. Four of these cardinal functions, all associated with the vertex 
(1,0), are illustrated in Fig. 9.6. The formulae of Table 9.1 may look 
formidable, but keep in mind that in numerical practice, these are stored 
once and for all in computer memory and evaluated as required. 

Suppose, as in Section 9.2, that interpolation is to be carried out on 
[xo, xm] X [Yo, yn] where x9 <<x,<...<x,y and Ve~ y=... < ya. and 
the four items of dataf, f,, f,, and f,, are given at each of the (M + 1)(N +1) 
vertices of the array of sub-rectangles. (Here, subscripts denote partial 
derivatives. ) 

For a typical sub-rectangle [x;, x41] X [ve.¥x+1] [call it the (j,k) sub- 
rectangle], there are then 16 associated nodes. To construct the interpolant 
on the (j, k) sub-rectangle we actually interpolate on the standard element, 
but we must be careful to adjust the nodal values involving derivatives to 
account for the change in size of the elements. The modifications required 
are indicated in Table 9.2. An interpolant is then formed on [0, 1] x [0, 1] 
using the modified nodal values and the cardinal functions of Table 9.1. 
The substitutions 

E=(x — x;)/(Xj41 meek) pe Cy = Veli Views Vis (9.8) 

then produce the bicubic interpolant on the (j, k) sub-rectangle. Of course, 
Eq. (9.8) defines the affine transformation mapping the (j, k) sub-rectangle 
onto [0, 1] x [0, 1]. 

Let us see how the computations proceed with rectangles 1 and 2 of Fig. 
9.4, together with the function of Eq. (9.6) and Fig. 9.3. For rectangle 1, 
the Eq. (9.8) is 

Ems n = 2y — 2. (9.9) 

In Table 9.3 the nodal values for the surface of Fig. 9.3 on rectangle 1 are 
computed and listed in the first column. The third column shows the 
corresponding nodes of the standard element, and the second column gives 
the modified nodal values calculated according to Table 9.2. 

TABLE 9.2 

Modified Nodal Values 

Nodal values for the Nodal values for the 

(j, k) subrectangle standard element 

ie p 
fe (X41 = x fr 

ik Veet Wiis 

i Cars Oru sw hey 



TABLE 9.3 

Modified Nodal Values for a Test Problem 

Nodal values of Modified Node 
rectangle (1) nodal values 

0.0 0.0 (0, 0; 0, 0) 
lil. 25) = 11.25 (0, 0; 1, 0) 
53.981 26.99 (0;.0; 0) 1) 
23.981 Sow (070215 1) 

eell25 =11725 (1, 0; 0, 0) 
i125 1125 (le 03 12.0) 
30.0 15.0 C020; ¥) 
30.0 15.0 (E0551) 

17.183 17.183 (0, 1; 0, 0) 
—17.183 = 17.183 (Osi: 4,0) 

0.0007 0.00035 (O10, 1) 
15.0 eS (Wxtlegiagiy 

0.0 0.0 CE E050) 
0.0 0.0 Ci 1s) 

15.0 Meds (15 15 OM) 
15.0 sd (Uae) 

10.0 20. 0 

a.0 
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WT Ltheahnhand Ad 
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FiG. 9.7 Two bicubic rectangles and the model problem. 
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Fic. 9.8 Bicubic rectangle for the model problem: 3 x 2 sub-division. 

To find the bicubic interpolant at a point x9, yo of rectangle 1, first use 

Eq. (9.9) to compute §) = x9 — 1 and po = 2yo — 2, evaluate the cardinal 
functions of Table 9.1 at &, mo (these functions will, of course, generally 

be stored in computer memory), and multiply the resulting values by the 
corresponding nodal values of Table 9.3. Sum the resulting 16 products, 
and this gives p(X9, Yo). We repeat this for enough points on rectangle 1 to 
define the surface as closely as required. 
We now repeat the whole process on rectangle 2. The result is illustrated 

in Fig. 9.7. The surface appears to be 6! (in contrast to Fig. 9.5) and seems 
to reproduce the model surface of Fig. 9.3 very well. 

As a second, more ambitious, illustration we work with the model 

problem of Section 7.7. In Fig. 9.8 we indicate the result of applying this 
technique on a uniform sub-division of the base rectangle into 3 x 2 = 6 
sub-rectangles. This implies a total of 48 nodal values, all of which are read 
from the analytically defined model problem. [Note that, even though 
f(x, y) is not differentiable at (0, 0), there are natural choices for the values 
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2.0 

Fic. 9.9 The bicubic rectangle for the model problem: 6 X 4 sub-division. 

of the first-derivative nodes obtained using “one-sided” derivatives. Also, 
the natural choice for f,, here is zero. ] 

The effect of refining the lattice to 6 x 4 = 24 sub-rectangles is indicated 
in Fig. 9.9. This implies the use of 140 nodal values, which are, again, 
known precisely from the defining properties of the model surface. Other 
examples using the bicubic rectangle can be found in Section 9.11 and in 
Chapter 10. 

9.4 The linear triangle 

A scheme for linear interpolation on a triangle and its implementation with 
the use of a standard triangle has been discussed in some detail in Section 
7.4. This procedure has great flexibility when viewed as the fundamental 
building block of a finite element scheme. To construct an interpolating 
surface to function values lying at the vertices of any polygonal domain and 
at a set of points inside this polygon, one may begin by triangulating the 
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polygon in such a way that a function value is assigned at a point P if 
and only if P is a vertex of the triangulation. Then, we complete linear 
interpolation in each triangle (Theorem 7.4.2), and it is clear that a ° 
surface consisting of plane triangular faces is formed. 

If there are only four data points and they are at the vertices of a 
quadrilateral, it is already clear that there is more than one possible 
triangulation and that the surface generated depends on the choice of 
triangulation. We postpone discussion of the triangulation itself until Sec- 
tion 9.10. 

A standard finite element for this scheme can be defined as consisting of 

(1) the equilateral triangle of Fig. 7.7, _ - 
(2) the nodes (—1, —-V3/3; 0, 0), (1, -V3/3; 0, 0), and (0, 2/3; 0, 0), 

and 
(3) the class ?, of linear polynomials in & and n. 

Then, given any triangle of the triangulation (take triangle T of Fig. 7.7 
as typical), the function values assigned to the vertices of T are used to 

interpolate linearly on the standard triangle and to determine a function, 
say, Pr(&, n) =a+b&+ cn. The interpolant on T itself is then determined 
by substituting for § and 7 from Eq. (7.9). 

As with the bilinear rectangle, the €° smoothness of surfaces generated 
in this way may be acceptable if the data points are very dense (when 
triangulation is likely to be the major problem), but there are also many 
cases when €° smoothness is not acceptable. Achieving €! smooth surfaces 
with triangular finite elements requires more ingenuity of the interpolation 
scheme. . 

To illustrate, we consider interpolation to the surface of Fig. 9.3 whose 
domain [1, 2] x [1, 2] (cf. Fig. 9.4) is triangulated as in Fig. 9.10. First, use 

y 
A 

ML 2) (22s) 

Fic. 9.10 Two triangular elements. 
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the technique described in Section 7.4 to map triangle 1 onto the standard 
triangle. We have to find the coefficients of Eq. (7.9). First, we let 

(xox Yo) = (151) G1 yy) = 2; 1), and. 3, \y2) = Ci 2)eThen, 

ly Le 

A=det{1 2 1)]=1, 

Poa ee 

and it is found that 

ip 2 ay Bea, 

ay, = 0, a VS: b, = -4/3V3. 

Thus, the required transformation is 

E=2x+y-—4, n= V3(y — 4/3). (9.10) 

The cardinal functions for interpolating on the standard triangle of Fig. 
7.7 are easily found to be 

pa(S,n) = &(—-3§ — V3n + 2), 
pa(&,n) = 4(3& — V3n + 2), (9.11) 

@c(E, n) = 4(V3n + 1). 

2.0 10.0 20.0 

10.0 

a 

So 
Fic. 9.11 Two linear triangles. 
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The nodal values at A, B, and C are obtained from Eq. (9.6): 

U0, fp = 12 fa = 0, 0005, 

and the interpolant on the standard triangle is therefore 

P(S, 0) =faPal&, n) + feos (&, n) + fecl&, n). 

The interpolant at points of triangle 1 is simply, 

P(x, y) = p(S, 0), 
as long as (x, y) and (&, 7) are related as in Eq. (9.10). The result of this 
procedure applied to triangles 1 and 2 is illustrated in Fig. 9.11. It will be 
noted that the surface has “caved in”. 

9.5 Some higher degree triangular elements 

In this section we make some brief comments on the schemes described in 
Section 7.5 as candidates for finite element techniques. We consider first 
the interpolation scheme described in the first paragraphs of Section 7.5. 
There are six function-value nodes, one at each vertex and one at the mid- 

point of each side. Interpolation at these nodes will reproduce all functions 
in P, (the quadratic polynomials in two variables). The array of nodes for 
a triangulated polygon is illustrated in Fig. 9.12. 

ae 
Fic. 9.12 Nodal array for quadratic triangles. 

This scheme can certainly be used in a finite element procedure. Com- 

paring this with the linear triangle scheme we see that there is, in general, 

a curved surface associated with each triangle. Each side common to two 

triangles supports a quadratic arc common to the two surfaces. However, 

the normal derivatives across the side need not be continuous. Also, at an 

interior vertex all directional derivatives may be discontinuous. Thus, the 

scheme generates a surface over the whole polygon, which is €° but not 

generally €'. 
The same is true of the more complicated schemes whose nodal con- 

figurations are indicated in Fig. 7.8 and which determine all polynomials 
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in ?;. The scheme of Fig. 7.8b will produce continuous directional deriva- 
tives at interior vertices, but otherwise, the directional derivative normal 

to interior edges need not be continuous. 
It turns out that if we pursue this line of attack we must go as far as the 

“complete quintic” scheme of Fig. 7.9 before a! interpolating surface on 
the whole domain can be guaranteed. However, this requires complete 
information on the function values and first and second derivatives at all 
vertices, and this is rarely accessible in practice. Consequently, we simply 
note the feasibility of producing ' surfaces using the complete quintic 
element; we do not investigate it in any more detail but go on to other 
schemes that do not require values of second derivatives as nodal values. 

To accomplish this, it is necessary to change the basis functions of a 
finite element in some way, since the geometrical figure and the nodal 
configuration are essentially prescribed. We shall discuss one way of mod- 
ifying the basis functions: that of introducing “seams” into the geometrical 
figure. Another way is to admit some -rational functions (quotients of 
polynomials) as well as polynomials into the class of functions which can 
be reproduced by interpolation. One approach due to Zienciewicz and to 
Mitchell and Wait is described by Mitchell and Wait (1977). Other lines of 
attack developed by Birkhoff, Mansfield, Barnhill, Gordon, and others, 
using rational functions and blending techniques are described by Barnhill 
(1977), as are several other approaches. Alfeld and Barnhill (1984) give a 
construction for a €* triangular element. 

9.6 The biquadratic seamed element 

For the purpose of illustration, we describe a “seamed” rectangular 
element, which has precisely the same nodal configuration as the bicubic 
rectangle but different associated functions in the interpolation scheme. 
We consider first an interpolation problem posed on an interval [xo, x4]. 
The nodes concerned are simply the four nodes of Hermitian interpolation: 
(x9; 0), (%93 1), (v1; 0), and (x,; 1). We know that in conjunction with the 
class ?3 of cubic polynomials there is a well-defined interpolation scheme. 
We retain these nodes but change the admissible functions to the class 2, 
defined in the following way: The function q(x) € 9, if and only if it is a 
quadratic polynomial on [x9, 3(x9 + x;)] and a (generally different) quad- 
ratic polynomial on [3(x9 + x1), x;] and q€€'[a, b]. Thus, there-are 
constants a,, b,,C;, a2, by, and cy such that 

(x) a, + byx + ¢,x? if x & [x9,3(x9 + x;)], 
q\X) = 

Go shiboXsh ide ton eal: EE (xechitn), xy, 
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and these constants are chosen so that q(x) and the derivative q'(x) are 
continuous at the mid-point of [x 9, x,]. In general, q(x) € €7[xo, x;]. These 
constraints can be shown to imply that, like 23, the class 2, has dimension 

four. Furthermore, it is not hard to verify that the interpolation problem 
posed on [xo, x;] is well defined: Given nodal values fy, fj ,f;, and f; at the 
respective nodes listed above, there is a unique q(x) € 9, such that 

q\%o) = fa, q'(xo) =f; q(«i)=fi, G (x3) = fi. 

Now recall Example 3 of Section 8.5. There, the classical Hermitian 
scheme on an interval is employed with the tensor product process to obtain 
the bicubic rectangle. In just the same way, our scheme using the functions 
of 2, generates an interpolation process on a rectangle [x9, x,] X [yo, yi]. 
Indeed, the nodal configuration is precisely that of the bicubic rectangle 
and is indicated in Fig. 7.12. The basis functions are now biquadratic 
polynomials however, one in each quarter of the rectangle [x9, x;] 
x [yo, yi] (the functions r;,7r2,73, and r, of Fig. 9.13). All the basis 

functions and their first partial derivatives are continuous on the complete 

rectangle. 
The two bisectors here are sometimes referred to as the seams of the 

element. Thus, any interpolating function defined by this element is ¢€' on 

the whole element and may have discontinuities in the second derivatives 

on the seams. 

This element could now be used in just the same way as the bicubic 

rectangle to produce €! interpolating surfaces over a mesh of adjoining 

rectangles, given the data f, f,, f, and f,, at each vertex of the mesh. Our 

main purpose in discussing this element has been to introduce the idea of 

a seamed element and not to supply the reader with a widely useful 

technique. We therefore present no further details and go on to discussion 

of rather more complicated but useful elements. 

y 

A 

O Xo a 

Fic. 9.13 Biquadratic seamed rectangle. 
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9.7 The Clough-Tocher triangle 

The element to be described here was developed by R. W. Clough and J. 
L. Tocher (1965) for use in problems in structural mechanics. Some of 
its theoretical properties were established by P. Percell (1976), and our 
exposition is based on the work of S. Ritchie (1978). 

As in Sections 9.4 and 9.5, we suppose that an interpolation problem is 
posed on a polygonal domain, and that this domain has been triangulated. 
We are to describe an interpolation scheme which, when applied on each 
triangle, will generate a €! surface over the complete polygonal domain. 
It has been remarked in Section 9.5 that this can always be done by means 
of the complete quintic scheme described in Section 7.5. However, this has 
21 nodes for each triangle (many of them shared with other triangles, of 
course) and requires second-derivative data at all vertices. By using a 
seaming technique, the Clough—Tocher triangle achieves &' interelement 
continuity with only 12 nodes for each triangle and with cubic polynomials. 

The Clough-Tocher triangle has seams that are lines joining each vertex 
to the centroid of the triangle, thus dividing the triangular element into 
three subtriangles (Fig. 9.14). The functions admitted in the interpolation 

Fic. 9.14 Nodal configuration for the Clough—Tocher triangle. 

belong to the class i3, say, of functions which are (bivariate) cubic poly- 
nomials in each sub-triangle and are continuous, together with their first 
derivatives over the whole triangle. The class i; also depends on the choice 
of triangle, of course. Thus, a function in X; is of class €! over the triangular 
element. It turns out that the dimension of this class %; is 12. 
Now we introduce the 12 nodes indicated in Fig. 9.14. The nodal values 

are, say, f, f,, and f, at each vertex and a derivative df/dn at the mid-point 
of each side in the direction of the normal to the side. It is a remarkable 
fact that the 12 freedoms of %{; match these 12 nodes to produce a well- 
defined interpolation scheme. Thus, given the 12 nodal values on any 
triangle, there is a unique interpolating function, which is €! on the whole 
triangle, and a cubic polynomial in each sub-triangle. 
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To use the Clough—Tocher triangle to generate a €! surface over a 
triangulated region, it is also necessary that, when applied on adjacent 
triangles, a €! surface be generated on the union of the triangles. Again, 
it turns out that this is the case. 

To implement the technique, it remains to consider the problem of 
transforming the interpolation on each triangle to interpolation on a stand- 
ard triangle and to indicate how this is done in terms of the 12 associated 

cardinal functions. 
We use the standard triangle of Fig. 7.7, so that the mapping of an 

arbitrary triangle onto this one is defined by Eq. (7.9). Note that a function 
of 33 will, under this transformation, correspond to a €! function on the 
standard triangle, which is again a cubic polynomial on each sub-triangle. 

(This is sometimes described as an “affine invariance” property.) 
To list the cardinal functions for interpolation on the standard triangle, 

the 12 nodes must be separately identified. This is done by means of Fig. 
9.15. Note that the first-derivative nodes at the vertices are specified in the 
direction of the radius from the centroid to the vertex and the (clockwise) 

orthogonal direction. 

Fic. 9.15 Clough-Tocher standard element. 

Let T and 7, denote an arbitrary triangle and the standard triangle, 

respectively. Suppose that f(x, y) is the function in H3(T) to be found and 

u(&, n) is the corresponding function in H3(To). Thus, u is determined from 

f by substituting the expressions in Eq. (7.10) for x and y in f(x, y). Let us 
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first consider how the nodes are transformed by supposing that values of f 
and the partial derivatives f, and f, are given at each vertex of T and 
(although there is some redundancy here) that f, and f, are given at the 
mid-points of the sides of T. The corresponding values of the derivative 
nodes on Tp (indicated in Fig. 9.15) are obtained in two steps. First, the 
chain rule implies that, at any point of To, 

Us = buf, + baf,, Uy = bypf, + bvfy, (9.12) 

and b,,, b3;, by, and bx, are determined by the vertices of T as in Eq. 

(7.10). Second, the required nodal values are determined in terms of values 
of us and u, by Eq. (9.13): 

Ou Ou V3 
yuh taas pee Bes pyr Eahmisdugt Ra) thonrat, Ua): 

V3 
madi 3)=- DU <(P3 ee 5 Uy (P3), 

de J= uw (P 1), ie 
Ow, OW> 

As 
P) ia a Us(P2) a 3U,(P>), 

(9.13) 

ee y= Sig (P;) — 4u, (Ps), 

se Pyar Sug (P,) + 4u, (Ps), 
nh 

Ou V3 du 
) a Us(Ps) + 2u,(Ps), an, Po) = —u, (Ps). 

N6 

The Clough—Tocher triangle is sometimes simplified to what is, effec- 
tively, a nine-node element. These nodes are the three required at each 
vertex. The normal derivative at a mid-side is then estimated as the mean 
of the corresponding derivative nodes at the two vertices associated with 
the side. Clearly, this can all be done on the standard triangle Ty without 
reference to mid-side nodes on T. A considerable amount of labour is saved 
in this way but at the expense of a smaller class of polynomials reproduced 
by the interpolant. The full Clough—Tocher triangle will reproduce all cubic 
polynomials, whereas, with this approximation, all quadratic polynomials 
are reproduced and some cubic polynomials are not. 
We now know how to transfer the nodal values from T to Ty and, in 

combination with the 12 corresponding cardinal functions on Tp» [which 
form a basis for {3(T)], this allows us to determine u(&, 7) completely. 
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The interpolant f(x, y) on T is then obtained by substituting from Eq. (7.9) 
for & and n in u. It only remains for us to list the twelve cardinal functions. 

Their values are, of course, zero at all the nodes except one. In the following 
list, this exceptional node is indicated in the right-hand column. Triangles 

T,, T, and T; are the sub-triangles determined by the seams, as shown in 

Fig. 9.15: 
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Let us illustrate the use of this finite element with data drawn from the 
surface of Fig. 9.3 and Eq. (9.6). The triangulation of Fig. 9.10 is adopted. 
Thus, to interpolate on triangle 1 of Fig. 9.10, we first need Eq. (9.10), 

E=2x+y—-4, n= V3(y — 4), (9.14) 

which maps triangle 1 onto the standard equilateral triangle Ty of Fig. 9.15. 
The coefficients b,,, 51>, b>; and bz, of the inverse transformation [Eq. 

(7.10)] are 

By = 3, “big SURV be =O) Peps, Se). 
These numbers are used in Eq. (9.12), which, together with Eq. (9.13), 
determines the transformed nodal data. Of course, in numerical practice 
this is automated, so that all calculations proceed in exactly the same way 
once the vertices of a triangle and the nodal values are specified. 

In Tables 9.4 and 9.5 we show that the nodal values on triangle 1, 
determined from Eq. (9.6), and the transformed nodal values for triangle 
Ty, obtained by means of Eq. (9.12) and (9.13). 
To evaluate the value of the interpolant p(x, y) at any point (xo, yo) of 

triangle 1, we first find the corresponding point (&, 7) of Ty by using Eq. 
(9.14). Evaluate each of the 12 cardinal functions at (&, 9), i-e. B;(§o; no), 

TABLE 9.4 
Nodal Values on Triangle 1 

—— eee OS eee 
Position f f. i. 

eee 
Vertex (1, 2) 0.0005 3.75 —53.981 
Vertex (1, 1) 0.0 =11.25 53.981 
Vertex (2, 1) —11.25 ~11.25 30.0 
Mid-side (3, 2) 6.487 —6.487 7.5 
Mid-side (1, #) W7.183>  -=17483 0.0007 
Mid-side (3, 1) -—5.625. 11.25 35.38 

_—_— oo SSeSSsSSSSSSSSSSSssse 
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TABLE 5 

Transformed Nodal Values on Triangle Ty 

Vertex P, u = 0.0005 ele = 1.875 Au, = —34.414 
02 OW, 

Vertex P, u=0.0 a = 32.615 ue = —12.335 
0Z> OW> 

Merter Pete 10.95 oe 004 R55 
023 OW3 

Mid-side P, oY _ 19.335 
ny 

Mid-side P; ie tas 
On, 

Mid-side P, —— = 23.674 
On; 

j=1,2,..., 12. Multiply each function value by the corresponding nodal 

value of Table 9.5 and add the results to get p(&, No). Then, we have 

P(Xo; Yo) = P(Eo, No)- 

a0 10.0 20. 0 

-10.0 

-20. 0 

Zo 

FiG. 9.16 Model problem represented by two Clough-Tocher triangles. 
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The result of applying this procedure to our model problem on triangles 
1 and 2 is illustrated in Fig. 9.16. The result should be compared with 
the interpolated surface of Fig. 9.3, and the apparent ' nature of the 
interpolated surface should be noted. 

Further illustrations of the use of the Clough—Tocher triangle occur in 
Chapter 10, where it is used in combination with a moving least squares 
technique. 

9.8 Piecewise quadratic triangular elements 

Surface construction is often followed by the development of contour maps 
to represent the surface. For this purpose it is advantageous to have the 
surface composed of quadratic pieces, such as triangular patches (or finite 
elements), for example, on each of which the surface is represented by an 
associated quadratic function. At the same time the whole surface should 
be €'. It has been remarked in Section 9.5 that the quadratic triangle 
scheme does not produce a %' surface over several triangles. Indeed, in 
order to produce ' smoothness on triangles, we first noted the complete 
quintic, which is very complicated and has too many nodes, and in Section 
9.7, we succeeded in producing ' surfaces but with cubic patches. 

There does not seem to be a satisfactory solution to the construction of 
a general-purpose finite element which is “patch-wise” quadratic and glo- 
bally €' [Powell and Sabin (1977)]. However, there are some special cases 
in which these two properties can be achieved. The most general is probably 
the case in which all triangles are known to be acute. We shall confine 
attention to two simple cases of regular triangulations. 

Consider first a domain tessellated by isosceles triangles, as in Fig. 9.17. 
We associate with these isosceles triangles the equilateral standard triangle 
of Fig. 9.18 (and Fig. 7.7). Here, the dotted lines are the three per- 
pendiculars from vertices to opposite faces, and they divide the triangle 

FiG. 9.17 Tessellation of isosceles triangles. 
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into six subtriangles. The admissible functions are those that are @! on the 
whole triangle and quadratic in each patch. It turns out that the space of 
these functions has dimension nine, and matched with the nine nodes of 
interpolation indicated in Fig. 9.18, a well-defined interpolation procedure 
results. Furthermore, when applied to a regular tessellation like that of Fig. 
9.17, a globally €' interpolant is produced. 

COMP 2R/ 5/3) 

oy 8/312 i 373) 

Fic. 9.18 Standard piecewise quadratic triangle Ty. 

If T is a triangle of the tessellation, the coordinates of the vertices will 
either have the form 

(x0, Yo), (x1, Yo), (3(%o + x1), y1), (9.15) 

where x; > X,9 and y, > yg, or the form 

(2(xo + x1), y1), (3(3x, KGS VU) (%1, Yo). (9.16) 

For a triangle with vertices of the form of Eq. (9.15), Tis mapped onto Ty 
by means of 

g=3(——) -1, n= V3(2 - 2), (9.17) 
X; — Xo ve yo 2 

and in case Eq. (9.16) applies: 

me = ~ 2 p= (7) a1, n=V3 (22 +2), (9.18) 
xX; — Xo VG 

The nine given nodal values on T are now to be transferred to Ty with 
scaling of the derivative nodes, as indicated by Eq. (9.17) or Eq. (9.18). 
As one might expect, the cardinal functions are quite difficult to describe. 
We do it in two stages [following Ritchie (1978)]. We first define nine 
functions g,,..., go and then define the cardinal functions B,,..., By in 

terms of them. 
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It will be convenient to introduce the truncated function denoted by a 
subscript + as follows: 

S if os = 0; (9.19) 
S, = . 

it if s<0. 
The function (x + y), in the x-, y-coordinate plane then takes the value 

x+y when x + y 20, i.e. to the right of the line y = —x, and takes the 
identically zero value when x + y < 0, or to the left of the line y = —x. 
We will need functions defined by expressions like £7. , or (E — n).. Here, 

it is to be understood that the operation of truncation, denoted by the 
subscript +, is performed first and is followed by the operation of 
exponentiation. 
Now define, 

£:(§, 9) =1, 82(6, 0) = &, 

£36.) — 1, ga(&, n) = &4, 

es(&,n) =(—8)3, nonin any ius. 
Els Hy ya et 

vey : 3 + 
27(&, n=( s- 7) , 2 3 Z V3 

8s(§,n) =(n+ re 
J+ 8 V3.)? go(&.) =(-n-~S8) . 

+ 

It is easily seen that each of these functions is a quadratic on each subtriangle 
of the standard triangle and is €' on the whole triangle. 

The nine cardinal functions can now be defined as follows: 

7 (Nyce ae ee 
B,(S, n) = 3 Tt 370 384 — 385 — 786 +589 ~ 488 — 589 

B,(P,) =1; 

By(E eee -s Eek ad I 1 1 20S.) 3 °° 3 384 385 4° 467 + 588 — 789 

B,(P2) =1; 

1 WF ok 2 1 1 1 1 Bate Ue ~ 384 + 385 + 586 — 787 — 78s — 789, 

B3(P3) = 1; 

3 3 
B4(§,n) = — 386 + 28s, 

0B,/d&(P,) = 1; 
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(acho 2 1 1 . DRAPE Neg nel 0) 1 1 5(&, 9) = a= 58 6 0 + 384 385 36 ‘a 37 Bn 3°38 me goo 

pies enah = ; 

Riley ets See 1 1 1 1 1 B.(&,) = 'afihee tan at oe 28s — £6 + 87 tee + 2, 2 6 3 3 4 8 8 8 
0Bo/d&(P3) = 1; 

= DORN SD V3 5V3 V3 5V3 B a ae —, SS i 1(&,) = us 9 ae ru ve 9 act 7A 86 6 87 74 88 

V3 
a “9 8% 

dB,/dn(P,) = 1; 

a ao eee as. V3 eee 18 6 6! 9 §4 9 85 ~ 5486 ~ 44 87 

V3 IW3 
ete 34 £72 

dB;/dn(P2) = 1; 

2 ae a as V3 V3 V3 
BC Sag Pe Go Gt cy bb 5 es +7586 — 5 87 

i, v5 

dB,/dn(P3) = 1. 

An interpolant on the standard triangle is now determined by the (trans- 

formed) nodal values and cardinal functions in the following form: 

3 

WE, 4) = > ur 8.G +> (H =) (P)Bavi(& 

+3 (2 4) (PB..8n) +S (2 at) (Pare) Boru(E 1). 
Let us make two comparisons. This triangular element can be compared 

with the bicubic rectangle. In both cases a regular mesh of vertices is 
required. For the triangle there is the disadvantage of handling the finer 
subdivision of triangles into the subtriangles formed by the seams. However, 
it has two advantages that may be very significant: It is piecewise quadratic 
(rather than bicubic), and it requires only function-value and first-derivative 
nodes. 
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In making comparisons with the Clough—Tocher triangle, let us suppose 
that the “averaging” idea is used to avoid use of the mid-side-derivative 
nodes. In this case the two can be used with precisely the same nodal 
configuration. Also, the two triangular elements will reproduce all quadratic 
functions but not all cubics. The present element is piecewise quadratic, 
whereas the Clough—Tocher element is piecewise cubic but with fewer 
subtriangles. The main advantage of the Clough—Tocher triangle is, of 
course, the fact that it can be applied on arbitrary triangulations. 

There are other regular triangulations on which the piecewise quadratic 
strategy is successful. One is illustrated in Fig. 9.19 in which rectangular 

Fic. 9.19 Regular triangular mesh. 

mesh is uniformly subdivided by diagonals (with negative slopes). However, 
one must use an appropriately chosen standard element (Fig. 9.20); one of 
equilateral shape will not do. The right-angled triangle with vertices at 
(0,0), (1, 0), and (0,1) is appropriate. The seams of the triangle are 
segments of the lines n + 26 =1, €=n, and 2n+ €=1. 

A cardinal basis is again constructed in two stages. First, we define 

Fic. 9.20 Standard piecewise quadratic triangle. 
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h,,..., Ag on the standard triangle by 

h(§,n) = 1, h2(&, n) = &, 
h3(§,) =n, ha(S,m) =(n- 3, 
hs(&,n) =(E—n)+, he(, n) = (1 -2€—n)2, 
h(E, n= 2E+n-—1)3, . hg(E,n) = (1 — € - 2n)2, 

NS, a) P(E 27 — 1) 

Then, the nine cardinal functions are as follows: 

1 1 1 2 | 2 
2-2 2 ep ce AE ee 2 BE, 7) = Spr aiia ait its zits + 3hy gis + Sho, 

B,(0, 0) B, 

2 1 1 1 
BA (6, n) = -;+ 2E + she - ahs + 36 — 3h — ahs = zits. 

B,(1, 0) = 1, 

1 2 1 1 2 1 
Be.) = -+ 2m — aha + Ghs ~ she — shy + he eat, 

B;(0, ee 

Le 1 1 a 1 1 1 
WGeneny reersiigters sess —h,+—he +- 

dB,/a&(0, ‘he aly 

Z 2 5 1 
B;(&, n) = =e 35 — gts + 7 ghts — olte + Teh + 5 

aB;/d&(1, 0) = 1, 

i Et 
BE.) = Tg * 37 — ig 

dB,/d&(0, 1) =1 
1 1 1 1 1 Le 1 

— — — —— — a =, + — 

ee Ov ie 
1 1 i 1 1 

B;(6,1) = —7gt s+ she - hs + sts + Sfty — he — Hh, 

dB;/dn(1, 0) = l, 

1.2 5 2 1 1 2 5 
Bo(E, 9) = 5 — 30 + jglta — gilts + gite + oft — gts + gars 

dB,/dn(0, 1) = il 
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The reader will easily determine the affine transformation of triangles of 
the mesh onto the standard triangle and hence the necessary scaling of 
derivative nodes. 
We may ask why the negative sloping diagonals are used in Fig. 9.19 

rather than those of positive slope. Indeed, the same data set can be used 
to generate two (possibly different) interpolants, depending on the choice 
of triangulation. This is illustrated in Figs. 9.21 and 9.22, in which the same 
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Fic. 9.21 Piecewise quadratic interpolant on 2 x 2 element rectangular grid, triangulated 
via positive sloping diagonals. Interpolated data at grid points: unit function values at five 

points, zero derivatives at all nine points. 

FiG. 9.22. Piecewise quadratic interpolant on 2 x 2 element rectangular grid, triangulated 
via negative sloping diagonals. Interpolated data as in Fig. 9.21. 
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| O | 

| O | 

Fic. 9.23 Function value nodes for Figs. 9.21 and 9.22. 

data set is used. On a regular lattice of nine points (Fig. 9.23), the function 
value nodes are as indicated, and all first derivative nodes are set equal to 
zero. We see that completely different surfaces are generated by the two 

choices of diagonal subdivision. This asymmetry is removed in our last 
example of a finite element. 

9.9 A piecewise quadratic rectangular element 

We take advantage of the discussion of the last paragraphs of Section 9.8 
to determine an interpolant in the following way. The rectangle has the 
nodal configuration of Fig. 9.24, and we suppose the 12 nodal values are 

given. 

Fic. 9.24 Twelve-node piecewise quadratic element. 



216 9 Finite element methods 

Step1. Using the negative sloping diagonal of the rectangle to determine 
two triangles, use the piecewise quadratic triangles of Section 9.8 to find 
an interpolant u,(&, 7). 

Step 2. Repeat step 1 using the positive sloping diagonal to obtain an 
interpolant u,(&, 7). 

Step 3. Since 3(u; + u2) will again be an interpolant, we define 

u(§, n) = 3(u,(&, n) + u2(&, n)). 

Note that the averaging of step 3 removes the bias associated with the 
choice of diagonal. To illustrate, Fig. 9.25 shows the averaged interpolant 

tPCT 
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ae 

Fic. 9.25 Averaged piecewise quadratic interpolant on 2 x 2 element rectangular grid. 
Interpolated data as in Figure 9.23. 

for the data of Fig. 9.23. This should be compared with Figs. 9.21 and 9.22. 
Another example in which this element is used can be found in Section 
ot 

In effect, the averaging procedure determines a single piecewise-quad- 
ratic rectangular finite element, although, as indicated in Fig. 9.24, the 
configuration of the seams is now complex. A related and more efficient 
piecewise quadratic element has been developed by Sibson and Thomson 
(1984). 

9.10 Triangulation 

Many interpolation problems, whether on the line or in the plane, require 
that a curve, or a surface, be fitted to assigned function values at nodes 
that are irregularly spaced. When the interpolation is on the line, this 
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presents no great difficulties, but if the data points are scattered in the 
plane, the situation is not so clear. One useful way to handle this problem 
is to construct a triangulation of the region formed by the convex hull of 
the data points in such a way that the set of triangle vertices is precisely 
the set of data points. The purpose of this section is to indicate a “natural” 
way of doing this. Once it is done, a finite element method using general 
triangular elements may be used to generate an interpolating surface. The 
simplest of these is, of course, the surface composed of plane triangular 
faces, as described in Section 9.4. If derivative data is available at the 
vertices (or can be “boot-strapped” from the function value data), then the 
possibility arises of using the Clough-Tocher triangle of Section 9.6 to 
generate a &! interpolating surface. 

Returning to the triangulation problem it is first clear that, even with as 
few as four points, more than one triangulation may be possible, and a 
technique is needed to select a “good” triangulation. Intuitively, one 
anticipates that the goodness of a triangle is measured by its proximity to 
an equilateral triangle. Thus, the triangulation should eschew long, thin, 
and obtuse triangles as much as possible. 

There is a technique with this property which has a long history and which 
has been rediscovered several times. First, it is convenient to approach a 
dual problem. We are given aset of N points, P;,..., Py, scattered through 

the plane and we wish to divide the plane into N regions, R,;, R2,..., Ry. 

Borja 2p. wos! N; R; consists of all the points of the plane that are closer 

to P; than to any of the other N — 1 points. Hence, R; contains P; itself and 
no other given point. It turns out that each R; is a (possibly infinite) convex 
polygon. 

To construct R;, we have only to form the perpendicular bisectors of the 
lines P;P,, where k=1,2,...,N and k #j. These lines will determine a 

unique polygon containing P; in its interior with the defining property 
of R;. The sides of each polygon are segments (or half-lines) of these 
perpendicular bisectors. Following this construction for each j, we generate 
the regions R,, Rz,..., Ry, and (the closures of) these regions are found 

to fill the whole plane. 
These regions are variously associated with the names of Dirichlet, 

Voronoi, and Thiessen. We shall call them a Dirichlet tessellation of the 

plane. Their position in a more general mathematical context is described 

by Rogers (1964). Rhynsburger (1973) gives a useful introduction to the 

theory and application. Green and Sibson (1978) seem to develop the first 

algorithmic approach to finding the Dirichlet tessellation, and a more recent 

reference is the paper by Cline and Renka (1984). 

Once the Dirichlet tessellation is found, a corresponding triangulation 

of the convex hull of P;, P2,..., Py is obtained by joining the point P; to 
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each other point P, for which R; and R, share an edge. This procedure is 

found to generate a triangulation of the convex hull of P;, Py, ..., Py. 
In Fig. 9.26 we illustrate the Dirichlet tessellation and corresponding 
triangulation for a set of nine points. 

\ 
1 

Fic. 9.26 Dirichlet tessellation and corresponding triangulation. 

To support our claim that this construction generates triangulations that 
tend to favour acute triangles, consider the two triangulations of the same 
four points in Fig. 9.27. The reader should carry through the construction 
via a Dirichlet tessellation and confirm that the configuration of Fig. 9.27a 
results. 

(a) (b) 

Fic. 9.27 Two triangulations of four points. 

9.11 Approximation of a topographic map 

In this section we present a more ambitious example and use it to illustrate 
three of the techniques developed in Chapters 8 and 9. A topographic map 
on the scale of 1:50,000 was selected which represents a 12 km X 8km 
rectangle of a mountainous region of central British Columbia (Fig. 9.28). 
Sections of the region were constructed along longitudinal and latitudinal 
grid lines at 1km spacing. Thus, 21 such sections were developed as 
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Fic. 9.29 Spline blended representation. 



Fic. 9.30 Representation made up of bicubic rectangles. 
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Fic. 9.31 Representation made up of piecewise quadratic rectangles. 
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accurately as possible by a curve-fitting method using €! cubic splines which 
minimize a weighted norm of the second derivative of the spline (cf. Section 
4.4). These sections were then interpolated to generate smooth surfaces, 
as described next in Examples 1-3. Constructing a surface from sections, 
as we do in these examples, could be seen as modelling procedures com- 
monly used in seismic surveys in which data is generated on sections by 
acoustic or electromagnetic techniques. 

EXAMPLE 1 Our first procedure is to use spline blending as described in 
Section 8.5 and especially Theorem 8.5.1. A contour map of the result is 
presented in Fig. 9.29. Recall that, in effect, heights on all the sections 
reproduce the heights of the topographic map accurately (although some 
smoothing inevitably occurs in generating our sections). So the errors 
produced (which are apparent) result mainly from the surface-fitting pro- 
cedure used to “fill-in” a smooth surface between the grid lines. Although 
some of the main surface features are reproduced well, it is clear that the 
surface-fitting procedure has real difficulty in reproducing the dendritic 
character of the region. 

EXAMPLE 2 In the second procedure we utilize the bicubic rectangle 
interpolant as described in Sections 7.6, 8.4 (Example 4), and 9.3. In this 
case, each 1 km X 1 km square is treated as a finite element, and the 16 

nodal values required for the interpolating surface are obtained from the 
sections of the region described above. The nodal values for heights and 
slopes at the vertices were obtained directly from those sections and the 
cross-derivatives estimated by an averaging technique. The resulting €! 
surface is illustrated in Fig. 9.30. As one might expect, the fact that we do 
not interpolate along entire sections, but only use data at the vertices, 
means that we lose a lot of information about the original, and the result 
is a poorer representation than that of Example 1. 

EXAMPLE 3 This example is produced mainly for comparison with Exam- 
ple 2. It is a similar technique but, instead of using the bicubic rectangle 
with each of the 1 km x 1 km squares, the piecewise quadratic element of 
Section 9.9 is employed. In this case the cross-derivative nodes of the 
bicubic rectangle are not required. A contour diagram of the resulting 
surface appears as Fig. 9.31. As one might expect, the repesentations of 
Examples 2 and 3 are very much alike. 
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10 

Moving Least Squares and 
Composite Methods 

10.1 Introduction 

The basic problem which motivates this chapter is that of surface fitting to 

function values assigned at data points that are scattered in the plane. 
A moving least squares procedure is discussed first. This is a natural 
generalization of the corresponding techniques for curve fitting discussed 
in some detail in Sections 2.9-2.11, especially when combined with the 
orthodox least squares surface-fitting method of Section 7.7. Indeed, our 
exposition will rely heavily on the earlier discussions. 

As in one space dimension, it will be found that interpolants can be 
generated by moving least square techniques, so we shall use the IMLS 
methods once more. These will be seen to provide a class of complete 
solutions to the problem of interpolating smooth functions to scattered 
data. However, it will also be seen that these solutions are computationally 
expensive and (a lesser criticism) subject to unfortunate edge effects. 
Consequently, IMLS methods are more frequently used in surface-fitting 
problems in combination with other methods. For example, if the scattered 
data points are used as the vertices of a triangulation as outlined in Section 
9.10, then it will be possible to find the gradient of the IMLS surface at 
each data point. There would then be sufficient information to implement 
a finite element procedure (e.g. the Clough—Tocher triangle), which will 
determine a €' interpolating surface. Alternatively, the IMLS surface may 
be sampled at a regular lattice of points on which a surface can be con- 
structed by tensor product or by other finite element methods. These are 
among the “composite” methods to be discussed later in Sections 10.5 and 
10.6. 

225 
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10.2 Weighted least squares fitting 

It will be convenient to abbreviate the notation (x, y) for a point in the 
plane to z. Thus, we shall suppose that the (generally scattered) distinct 
data points in the plane are given by z; = (x, y,;), fori=1,2,..., N. If 
the function value f; is given at z; for each i, a function u is to be found, 

which is defined on a domain containing the convex hull of z,, z>,. . ., Zy 
with the properties that u is€! on this domain and u(z;) =f, for i= 
L222 ee aN 

For this discussion it is easier (from the point of view of notation) 
to consider more general least squares techniques than those based on 
polynomials. We shall suppose that n linearly independent functions are 
given and are defined on the whole plane. We call them 5,(z), bo(z),. . .. 
b,(z) and assume that n < N; usually, n is very much less than N. For least 
Squares approximation with bivariate quadratic polynomials, we would take 
n = 6, and the functions would be simply, 

bi(z)=1, b3(z) =x, b3(z) =y, 

biz) = ae Bay ae OP (2 ae (10.1) 

and similarly for fitting with polynomials of other degrees. There are 
situations in which exponential or trigonometric functions, for example, 
can be used for b;, b;,.. ., b,, but in the great majority of applications 
these are likely to be the monomials, which form a basis for a space of 
bivariate polynomials (see Section 7.2). 
We now assume that the fitted surface will be a linear combination of 

the chosen functions b,, by, . . ., b,. Thus, we assume initially that, for 
any point z, Y 

u(z) = > a;b,(z), (10.2) S 

for some choice of the numbers a,, a, . . ., a,, which is independent of z 
and is to be determined. 

As in the formulation of Eq. (7.12), the fit of such a function u(z) to the 
data values f,,. . ., fy can be measured by the size of the error functional 

N N n 2 

Bw) = Due) f= E(Laeo-f). aoa) 
i= i= j= 

We take a more general position and suppose that the separate terms in 
the summation over i are given different weights w; > 0. Thus, we consider 
the functional N 

E(u) = a w;(u(z;) aA fe)A. (10.4) — 
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Of course, we recover Eq. (10.3) by setting w; = w,=...=wy =1, and 
it is found that the final fitted surface is drawn closer to f; at those points 
z; with a relatively large weight w;. 

As in Section 7.7, the function u that minimizes E is obtained by first 
finding the coefficients a,, a),.. ., a, of Eq. (10.2), and these coefficients 
are found by solving the normal equations dE/da; = 0 fori=1,2,..., 7. 
It is not difficult to verify that these equations can be written in the following 
matrix-vector form. Define the n x N matrix B whose jth row is [b(z,), 
b(Z2), . . -, b{zy)], for j= 1, 2,.. ., n, and an N X N diagonal matrix 
W = diag[w,, w2,. . ., Wy]. Define column vectors a and f, the first with 
elements a,, a),...,a, (to be found) and the second with the data 
fi, fo, . - -» f, aS elements. Note that the matrix product BWB’ is then an 
n X n matrix. Furthermore, the normal equations have the form, 

BWB'‘a = BWE. (10.5) 

These equations then have a unique solution and can be solved by standard 
methods as long as the matrix BWB’ is nonsingular (see the remarks and 
references at the end of Section 2.6). Note that with the choice [Eq. (10.1)] 
of basis funetions, the matrix B can be identified with matrix V’ of Eq. 
(7.14). Also, in Eq. (7.14) we have W = I. 
We conclude that on solving the n simultaneous linear equations repre- 

sented by Eq. (10.5), the coefficients a,, a2, ..., a, are obtained, and the 

function u(z) that minimizes the error functional E(u) of Eq. (10.4) is 
obtained on substitution into Eq. (10.2). 

This technique may sometimes be useful in its own right, but our objective 
is to use this discussion in the development of moving least squares methods. 
This is done next in Section 10.3. 

10.3 Moving least squares methods 

Let us return in the discussion of Section 10.2 to the formulation of the 
error functional E(u) of Eq. (10.4). As in Section 2.9 it can be argued that 
the value of u at a point z should be most strongly influenced by the values 
of f, at those points z; that are closest to z. This implies that weights w,, 
W>,..., Wy, which should be assigned in Eq. (10.4), are dependent on z 
and have the property that w,(z) decreases in magnitude as the distance 
from z to z; increases. Then, Eq. (10.4) is replaced by 

N 

E.(u) = & w;(z)(u(zi) — fi)’. (10.6) 
i=1 
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Holding z fixed, the analysis proceeds as before to obtain normal equations 
of the form 

BW(z)B‘a(z) = BW(z)f. (10.7) 

Here, B and f are as before; the essential difference is that 

W(z) = diag[w,(z), w2(z),..-, Wx(z)], 

is now z-dependent so that the solution a is also z-dependent. From Eq. 
(10.2) we have now 

u(z)-= >, 4;(2)B,(z): (10.8) 
j=l 

The great disadvantage of this process is, of course, that a set of normal 

equations [Eq. (10.6)] must be solved for every value of z at which the 
surface height is to be calculated and, in addition, the weights w,,..., Wy 

must be recalculated in a systematic way for each z. 
The Euclidean distance between points z = (x, y) and Z = (X, ¥) is given 

by 
d(z,2)=V(x-—%)? + (y— 9)”. (10.9) 

Since the weighting scheme is to depend only on the distance between 
points in the plane, the weights w,(z), . . ., wy(z) will depend on one 

function w(d). Thus, they are determined by a non-increasing function 
w(d) by writing 

w;(z) = w(d(z, z;)). (10.10) 

As in Section 2.9, there are many candidates for the function w, and the 

criteria for determining a suitable w are much the same. The important 
questions are the behaviour as w as d— ~ and as d> 0. 

First, if the procedure is to interpolate at all the data points, then we 
must have w— x as d— 0. This suggests that, at least for small values of 
d, w(d) should behave like d~* or d™*. For large values of d, w must 
attenuate rapidly enough to minimize, or remove entirely, the influence of 
remote data values. The arguments for truncation when N is very big (as 
in Section 2.9) are persuasive. The two-dimensional analogues of Eqs. 
(2.29) and (2.30) are easily formulated. 

McLain (1974) recommends the use of a function such as 

wid) =e [d= (10.11) 

which clearly has the correct asymptotic behaviour at d = 0 and d= ~, In 
numerical practice the singularity at d= (0 may present some difficulties 
when d is small. In this case it has been proposed that the function w(d) = 
d~*, for example, may be replaced by w(d) = (d? + €)~', for some small 
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fixed ¢€ >0. Indeed, € should be so small that, to numerical and visual 

accuracy, interpolation is achieved at d= 0. 
The weight function in Eq. (10.11) can be similarly modified in an effort 

to control overflow. As well, the exponent can be changed to alter the rate 
of attenuation in the exponential function. Indeed, the function 

w(d) = e~ 4" /(d? + €) (10.12) 

with ¢€ = 0.001 and a = 1/16 was used in Fig. 10.1, 10.2, and with some 
examples of Section 10.5. 

Fic. 10.1 Distance weighted least squares interpolant, perspective view. 

If the objective is only to produce information on the slopes at the data 

points, it is possible to avoid the singular behaviour at d = 0. For example 

[following Lodwick and Whittle (1970)], another useful convention is 

simply to assume w,(z) = 1 for the r data points closest to z (where r > n) 

and w;(z) = 0 otherwise. Then the surface will not generally interpolate 

but may nevertheless give useful gradient approximations. Note that if 
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r<n, the coefficient matrix BW(z)B’ of Eq. (10.7) will be singular, and 
the process will break down. If r= n and is too “close” to n, there will be 
some risk that this matrix will be singular, or nearly so, for some values of 
z. Lodwick and Whittle (1970) use r = 15 when n = 3. 

In general, if all the weights are positive, then the coefficient matrix 
BW(z)B' will be nonsingular for all z, provided there is one set of n data 
points on which the functions b,, b5,.. ., b, are linearly independent. In 

other words, if z;,,2z;,,...,2;, are the data points in question, the 

determinant 

b,(z;,) bi (zi) aes b\(z;,) 

b3(z;,) b,(z;,) se b2(z;,) 
det ’ ; 

| Dilip) b,(Z;,) ro a b(zr) 

is non-zero. We assume throughout that this is the case. 
The smoothness and other properties of the surfaces generated by moving 

least squares methods have been investigated by Lancaster and Salkauskas 
(1981). If the basis functions b,, b5,.. ., b, are of class €” (and they are 
generally €*, in fact), and if w(d) = d~** for some positive integer k, then 
it is shown in that paper that the function u(z), which determines the fitted 
surface, is also of class @”. In particular then, when b,,. . ., b, are 
polynomials, the surface generated is &*. 

These techniques are also reproducing in the sense that, if the 
data corresponds to a function b(z), which is a linear combination of 
b\(z),..., b,(z), then the result of the moving least squares process is 
simply b(z) = u(z). This is an important property for many applications. 
For example, one may like to insist that the chosen procedure will reproduce 
all plane surfaces, and this can be guaranteed by including the functions 1, 
x, and y among b,, b),.. ., by. 

The interest of the smoothness result concerns the behaviour of an 
IMLS surface near the data points because, at the points themselves, the 
coefficients of Eq. (10.7) are not defined. There is a singularity there in 
one of the elements of W(z). The first step toward resolving this difficulty 
is to divide both sides of Eq. (10.7) by =“, wz). Since this is always 
positive, this operation does not affect the solution. Defining 

v;(z) = wi(2)/ > N22 \,dsnbnectaeiis, 2 on tcc (10.13) 
and V(z) = diag[v,(z), . . ., vy(z)], Eq. (10.7) becomes 

BV(z)B‘a(z) = BV(z)f. (10.14) 
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Now the functions v,(z), . . ., vy(z) are relatively well-behaved near the 
data points and can be defined by continuity at the data points themselves. 
We think of them as normalized weight functions and note the following 
properties: 

(1) vz) = 6, (the Kronecker delta) for i, heh A ee Sea 
(2) 0<v(z) <1 for all z and v{z) = 0 if and only if z = z; and j #1; 
(3) 2%, vz) =1 for all z, and 
(4) vf(z)—>N' as d(z,0) >”. 

It follows immediately from properties 1 and 2 that, if v,(z) is dif- 
ferentiable at z;, then the gradient of vz) at z= z; 18 zero for any j. 
That is, all the directional derivatives of vz) evaluated at Z are zero. 
Consequently, v,(z) has a local maximum at z; and a local minimum at each 
z;, with j #1. The differentiability of v,(z) certainly follows if all the weight 
functions w,(z) with j # i are differentiable at z;. This is invariably the case. 

This discussion applies immediately to the two-dimensional Shepard’s 
method (see Section 2.11). In this case we take n = 1 and b,(z) = 1. Then 
the matrix B of Eq. (10.14) is simply, 

B=[b,(z,), bi (22), Sella b,(zy)] =[1, te, alata ih tl; 

and so Eq. (10.14) reduces to 

N N 

(Zo) a= dvr, 
and the interpolant is given by Eq. (10.8). Noting property (3) of the 
normalized weight functions, we have simply, 

N 

u(z) = 2 fivi(2). (10.15) 

In particular, we see that v,(z) is the ith cardinal function for Shepard’s 
method and, since every such function displays the “flat-spot” phenomenon 
at all data points (i.e. all gradients there are zero), it follows from Eq. 
(10.15) that all Shepard interpolants have the same characteristic. This flat- 

spot phenomenon is one that may be useful in certain circumstances (see 
Gordon and Wixom (1978) for examples) but rules out Shepard’s method 
as a general-purpose surface (or curve) interpolation scheme. 

Concerning the choice of n, in extensive tests carried out by McLain 
(1974) polynomials with one, three, four, six, eight, ten, and fifteen terms 
are used. His recommendation, based on a trade-off of accuracy against 
computing time, is the use of the complete quadratic [Eq. (10.1)] together 
with a weighting function like Eq. (10.11) or Eq. (10.12). 
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To illustrate the general technique we return to our model problem (see 
Fig. 7.13). In Fig. 10.2 we indicate 150 randomly selected points in the 
domain of the model problem; thus, N = 150. The values of f,, fa, . - -, fiso 

are calculated from the analytically defined heights of the model surface 
[sessBqw(Gals)i: 
An IMLS interpolant was then computed using the six basis functions of 

Eq. (10.1) and the weight function of Eq. (10.12). Figure 10.2 shows a 
contour map while Fig. 10.1 is a perspective view of the interpolant. 

9 
Oo 

Fic. 10.2 Set of 150 random data points for model problem and contour map. 

Note that this is, in fact, a @* surface. There is an obvious coarseness 
superimposed by the plotting routine and the size of the mesh used for 
plotting. Anomalies at other points, especially on the edges, are largely 
due to the distribution and low density of data points in these regions. 

10.4 Calculating derivatives on MLS surfaces 

It has been remarked in Section 10.1 that, rather than using the IMLS 
surface itself, it is often useful simply to sample the height and the deriva- 
tives of such a surface at a coarse net of points and then to generate a 
surface by tensor product or finite element procedures. Before illustrating 
such composite methods, let us first consider the problem of computing the 
derivatives of a function u(z) generated by an IMLS method, as described 
in Section 10.3. We shall see that the derivatives of u(z) at the data points 
are relatively easy to find. 
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Recall that u is defined at any z by Eq. (10.8), where a,(z), . . ., a,(z) 
are the elements of the solution vector a(z) of Eq. (10.14). Introduce the 
column vector b(z) with elements b,(z),.. ., b,(z). Then Eq. (10.8) can 
be written in the form 

u(z) = b(z)7a(z). (10.16) 

To find the partial derivative of u in the direction of s, say, we differentiate 
as a product to obtain (using subscripts for partial derivatives): 

u, =bla+b/a,, (10.17) 

and all these functions are, of course, evaluated at the same point z. 

Differentiating once more in the direction of a variable t, we obtain the 
second derivative 

uy, =bla+ bla, +b7a, +b’a,,. (10.18) 

In general, b(z) is a simple function and the calculation of its derivatives 
will pose no problem. The derivatives of a(z) are more troublesome and 
must be obtained from the defining Eq. (10.14). Differentiating both sides 
of Eq. (10.14) with respect to s yields 

BV,B'a+ BVB‘a, = BV,f, 

so that a, is obtained by solving 

(BVB")a, = BV,(f — B’Aa), (10.19) 

keeping in mind that a itself is already determined by Eq. (10.14). One 
can, of course, take computational advantage of the fact that the coefficient 
matrices of Eqs. (10.14) and (10.19) are the same. 

Consider, however, the right-hand side of Eq. (10.19) when evaluated 
at a data point. The matrix V, is diagonal, and we have seen in Section 10.3 
that for an IMLS method, all first-order derivatives of the functions v,(z), 

i=1,2,..., N, vanish at any data points. Consequently, V, = 0 at data 

points, and Eq. (10.19) implies a, = 0 also. Thus, in a more explicit notation, 
Eq. (10.17) reduces at the data points to 

du(z;)/ds = [db"(z;)/ds]a(z;). 

At all other points it is, of course, necessary to calculate da/ds from Eq. 
(10.19) or the equivalent equation following from Eq. (10.7). 

For second-order derivatives, it is found that 

(BVB")a,, = BV,,(f — B'a) — BV,B™a, — BV,Va,. (10.20) 

Combining the solution with first derivatives from Eq. (10.19), d°u/ds dt is 
obtained from Eq. (10.18). 
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Fic. 10.3 Bicubic spline interpolant of IMLS surface. (a) Contour map and (b) perspective 
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Fic. 10.4 Bicubic spline interpolant of IMLS surface. (a) Contour map and (b) perspective 

view. 
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Fic. 10.5  Bicubic rectangle interpolant of IMLS surface; 3 x 2 grid. (a) Contour ma 

(b) perspective view. 
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When finding second-order derivatives at a data point, we will again have 
a, = a,= 0 so that Eqs. (10.18) and (10.20) reduce to 

uy, =blat+bla,, (BVB")a, = BV,(f — Ba). 

10.5 Composition of the IMLS and bicubic spline methods 

As our first illustrations of composite methods we consider the model 
problem of Fig. 7.13 once more and two sets of 150 randomly distributed 
data points. These appear as crosses in the lower parts of Figs. 10.3 and 
10.4. (The points of Fig. 10.3 are the same as those of Fig. 10.1.) 

Using the IMLS method with complete quadratic basis [as in Eq. (10.1)] 
and the weight function of Eq. (10.12), the IMLS surface height is sampled, 
in each case, on a uniform grid of 17 x 9 = 153 points. These points lie on 
the grid induced by the triangles shown on the edges of Figs. 10.3 and 10.4. 
A bicubic spline surface is then constructed which interpolates this data 
(see Sections 8.2 and 8.3). The perspectives and contour maps of these 
final composite surfaces are shown in Figs. 10.3 and 10.4. These should be 
compared with Fig. 8.5c in which the same data points are used in a 
bicubic spline interpolating surface but without the intermediate step of 
constructing the IMLS approximation. 

Comparison of Fig. 10.3 with Fig. 10.1 is also interesting. This shows the 
smoothing effect of the bicubic surface on the IMLS surface, which it 
interpolates. 

In comparison with our subsequent examples, the bicubic spline surface 
has the advantage that the calculation of derivatives of the IMLS surface 
(as described in Section 10.4) is not required. However, like subsequent 
examples based:on a regular lattice of points, it has the disadvantage that, 
in general, it will no longer interpolate to the data at the original 150 

random points. 

10.6 Composition of the IMLS and bicubic rectangle methods 

In this section the IMLS method is first implemented as in Section 10.5 and 

based on the 150 random data points of Fig. 10.2. Next, the bicubic 

rectangle is used (as a finite element technique) to approximate the IMLS 

surface. First, we subdivide the domain of the test problem into 3 x 2=6 

rectangles. Thus, we sample only 12 distinct points of the IMLS surface. 

However, we need four pieces of data at each point f, fr, fy. and f,,. The 

derivative data are computed as described in Section 10.4. The resulting 

€1 surface is illustrated in Fig. 10.5. 
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Fic. 10.6 Bicubic rectangle interpolant of OMLS surface; 6 X 4 grid. (a) Contour map and 
(b) perspective view. 
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The procedure adopted for the surface of Fig. 10.6 is the same but on a 
finer grid. There are 6 x 4 = 24 rectangles and hence 35 points and 140 
nodal values. 

These surfaces should be compared with those of Figs. 9.7 and 9.8 where 
the data are read directly from the model surface, without reference to the 
IMLS surface. Note that the bicubic rectangle requires the calculation of 
second-order derivatives and hence the implementation of an equation like 
Eq. (10.20) to find these derivatives. 

10.7 Composition of the IMLS and seamed-triangle methods 

Calculation of the second-order derivatives required by the bicubic rec- 
tangle can be avoided with use of the Clough-Tocher triangle. Here, we 
do not use the full power of the Clough-Tocher triangle. Although it can 
be used on a general triangulation, it is used here on a set of regular 
isosceles triangles, as illustrated in Fig. 10.7. To avoid difficulties with edge 
effects, interpolation is completed on the 18 isosceles triangles shown in 
Fig. 10.7, and the results are presented only on the truncated domain 
indicated by the dotted lines of Fig. 10.7. To reduce computation time, the 

AY 
Fic. 10.7 Isosceles triangulation. 

mid-side nodes are obtained by averaging the corresponding directional 
derivatives at the two associated vertices (see Section 9.7). Thus, it is 
necessary to compute from the IMLS surface just three nodal values at 
each vertex, making a total of 48 nodes. The resulting composite surface 
is shown in Fig. 10.8. 

Comparison with Fig. 10.5 is interesting. The same number of nodal 
values is used in each case to produce a ©! surface. We obtain a similar 
resolution in the two cases, but the present method is easier to implement 

since no second derivative nodes are required. However, this method has 
missed most of the mountain. 
A refined tessellation of 65 complete isosceles triangles (5 rows of 13 

triangles) produces 45 vertices and 135 nodes. This is used in a similar way 
to obtain Fig. 10.9. This result compares favourably with Fig. 10.6 which 
required a similar number of nodal values and use of the bicubic rectangle. 



Fic. 10.8 Clough-Tocher interpolant of IMLS surface: 48 nodes. (a) Contour map and (b) 
perspective view. 
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Clough-Tocher interpolant of IMLS surface, 135 nodes. (a) Contour map and (b) 

perspective view. 
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Fic. 10.10 Seamed rectangle interpolant of IMLS; 45 nodes. (a) Contour map and (b) 
perspective view. 
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Fic. 10.11 Seamed rectangle interpolant of IMLS; 135 nodes. (a) Contour map and (b) 
perspective view. 
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Now recall the seamed quadratic triangle interpolation scheme of Section 
9.8. Because of the regularity of the triangulations considered here, this 
can be used in the same way as the Clough—Tocher triangle and using just 
the same nodal values. The results are, in fact, visually much alike but the 
surface is now made up of (more) quadratic patches rather than the cubic 
patches of the Clough—Tocher triangle. 

10.8 Composition of the IMLS and seamed-rectangle methods 

Now consider a rectangular finite element scheme based on the “averaged” 
piecewise quadratic element of Section 9.9. The number of rectangles used 
in this procedure is adjusted so that the total numbers of nodes admit 
comparison with the surfaces generated using the bicubic rectangle, as 
described in Section 10.6. Since the quadratic rectangle requires three 
nodes per vertex, a rectangular grid of 4 x 2 = 8 rectangles produces a total 
of 15 vertices and 45 nodal values. 

The resulting surface is illustrated in Fig. 10.10. The extra labour involv- 
ing in “averaging” two separate solutions may be justifiable on the grounds 
that the cardinal functions involved are less complicated than those in the 
other schemes used here, and the resolution of the model surface seems to 
be improved. 
A refined rectangular mesh of 8 x 4 = 32 rectangles produces 45 vertices 

and 135 nodal values. The corresponding surface is presented in Fig. 10.11. 
Again, this compares favourably with Figs. 10.4, 10.6 and 10.8, each of 
which is obtained using a similar number of nodal values and the same 
underlying IMLS approximation to the model surface. However, the use 
of a rectangular element results in some boxiness in the contour lines 
defining the mountain. This effect is somewhat less pronounced in Figs. 
10.5 and 10.6. 
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Surface Splines 

11.1 Introduction 

Before embarking on the topic of this chapter, it is helpful to review some 
aspects of the linear and cubic splines discussed in Chapters 3 and 4. 

In the case of linear splines, one interpretation of them is as linear 
segments, each defined on a subinterval [k;, k;,] created by a partition of 

the domain by knots a=ky<k,<...<ky=b and joined together by 

the requirement of continuity at the knots. In contrast to this piecewise 
interpretation, we also considered linear splines as linear combinations of 
the functions |x — k;|, which are smooth everywhere but at x = k;, where 
they have a corner and thus fail to possess a first derivative. One may like 
to think of a straight-line function, which is too rigid for use in interpolation, 
being loosened by permitting non-differentiability at just one point. Seen 
from this point of view, it is not the piecewise nature of linear splines which 
is paramount; rather, the location of non-differentiabilities (or singularities) 
is the dominant feature. 

Cubic splines can also be viewed from two directions. As piecewise cubics, 
they are third-degree polynomial segments connected by the requirement of 
continuity of the spline and its first and second derivatives at the knots. On 
the other hand, they can be constructed from linear combinations of the 
€7 functions |x — k;,|? which fail to be €* only at the knots, together with 
the functions 1 and x. This is the approach taken in Section 3.6. 
When we come to surface interpolation at scattered points in the plane, 

the two points of view can be generalized. The piecewise approach leads 
to the consideration of finite elements (Chapter 9), the domain being 
subdivided by lines joining the knots in some rectangular or triangular 
pattern. The second line of attack leads us to employ translates of a 
function usually with some non-differentiability at the knots as a basis for 
interpolation. This method follows almost verbatim the approach taken in 

245 
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Chapter 5 (Section 5.4 et seq.), where Boolean sums are employed in 
order to ensure that even when the basis of translates does not contain 
polynomials, low-degree polynomial data will be correctly interpolated. 

11.2 Interpolation with translates 

In Chapter 5 we indicated the value of choosing as an interpolant the linear 

combination X/_, a(x — x,) of translates w(x — x;) of a basic function 
g(x). This results in an interpolant whose shape is independent of the 
position of the origin on the (horizontal) x-axis. We should do the same in 
the case of surface interpolation. As well, the direction of the horizontal 
axis will not affect the form of the interpolant, provided that @(—x) = 
p(x). In the bivariate case this means that @ should have rotational 
symmetry. That is, that m should take the same value at all points of a 
circle with centre at the origin of coordinates. 

oO 

Fic. 11.1 Cone y(p) = |p|. 
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Before proceeding with the technical details, some remarks concerning 
notation are in order. For simplicity, a point with coordinates (x, y) (in the 
xy-plane) will be denoted by the single letter p, while fixed points at which 
elevations etc. are supplied will be denoted p,, p2,..., py, each being in 
fact a number pair: p; = (x;, y;). When we write f(p), we mean, of course, 
f(x, y). The given information about f consists of its N values f; = f(p;) = 
f(x, y;) fori=1,2,..., N. Further, the analogue of “absolute value” is 
|p|, which is defined to be the (Euclidean) distance of p from the origin. 
Thus, 

pl=Vx?+y?, p=(x,y). 
Also, |p; — p;| is the distance between p; and p,, so that 

lpi — pl = V@i —%;)? + Oi - yj)” = |p; — Pil- 

We can now express the rotational symmetry requirement by demanding 

that the values of the basic function depend only on the absolute value of 

p. Perhaps the simplest useful function of this form is 

(Pp) = [pl (11.1) 

In this case the Grammian (cf. Eq. 3.1) associated with the basis of translates 

op) = |p — p;| is the N X N matrix 

V =[9,(p,)] = i - | 

0 lpi — Pol tee lpi — Pnl 

Ip2 Pal 0 : Ilp2 ~ Pal (11.2) 

pw -P i| tee 0 

When V is invertible, the coefficients a; in the interpolant =a;,~(p — Pi) 

are given by 

a=V-'f, (1133) 

as in Chapter 5. Of course, g(p — pi) = |p —p\i= Va- mG +(y- yj)" : 

here. 
We should inquire as to the nature of the interpolating surface. First, 

the graph of z = y(p) = Vx? + y? is a right-circular cone with its vertex 

at the origin, opening upward. The graph of the translate p(p — Pi) has its 

vertex at p;. Consequently, the interpolant, being a linear combination of 

cones, may have sharp points at the points pj. To get more insight into the 

shape of the interpolant, consider a cross-section of the surface by a vertical 
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plane. This cross-section is a linear combination of the sections of the 
cones. It is well known that a cone of the form considered here yields a 
branch of an hyperbola when cut by the plane in question (see Fig. 11.1). 
If the plane happens to pass through the vertex, the hyperbola degenerates 
to a V-shaped curve like |x|. Consequently, the section is smooth only when 
it does not pass through a data point. Since each hyperbola has asymptotes 
which are linear, so does the section in the sense that, far from the data, 
the cross-section is asymptotic to a straight line. 

These properties are illustrated in Fig. 11.2. A surface is constructed 
which takes assigned heights z at five points (x, y) as follows: 

x | 2-135 eanlaLO 
vol O. 0.) pleat 
2121013135 

The lack of smoothness at the data points and the linear trend at a distance 
from these points are apparent. 

This interpolation process will not reproduce a plane. To obtain a related 
interpolant which will do so, one may form a Boolean sum (ref. Section 
5.3) of this projector with a projector onto #,, the vector space of first- 
degree polynomials in x and y. We consider this in subsequent sections. 
We have dwelt on this particular interpolant for several reasons. One is 

that the Hardy multiquadric method (see Hardy, 1971) is very closely 
related and can give good results. In this method, the cone vertex is rounded 
off by using the modified basic function 

o(p) = V pi? +7’, (11.4) 
where r is a parameter. This function, whose graph is the upper portion of 
an hyperboloid (Fig. 11.3), is actually very smooth, and a surface derived 
from it should perhaps not be called a surface spline. 

Another reason for considering the interpolant based on |p], is that it has 
frequently been employed in the kriging method of estimation of function 
values at points other than the data points. We discuss this in Section 11.6. 

The data used for Fig. 11.2 is now interpolated using the basic function 
of Eq. (11.4) with r = 0.6. The result is illustrated in Fig. 11.4. We see that 
the desired smoothness of the interpolant is attained. 

In Figs. 11.5—11.8 we show the results of some experiments using multi- 
quadric interpolation on the standard example of Section 7.7. In Figs. 11.5 
and 11.6 surfaces are fitted at 40 points chosen at random. Figure 11.5 
indicates the dramatic effect of varying the parameter r and suggests that 
some thought is necessary in determining an appropriate value. The curious 
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“noisy” surface generated when r = 0.6 is, we conjecture, due to the ill- 

conditioning of the matrix V in Eq. (11.3), which is likely to arise when r 

is large compared to the spacing of the data points. [See Franke (1979, 

1982) for more examples and discussion. ] 
In Figs. 11.7 and 11.8 we set the parameter r equal to the value 0.1 and 

show results for surfaces at three different randomly selected sets of data 
points. The set of Figs. 11.7b and 11.8b is that used in Figs. 11.5 and 11.6. 
We conclude this section with examples of functions ~ that can be used 

for interpolation. At this time there is no guarantee that all of the associated 
Grammians are invertible for all choices of distinct points p;. Some of these 

functions have subtle properties to which we return later, in Section 11.5. 

EXAMPLE 1 q@(p) = |p|*. This analogue of the basis used for cubic splines 
is smoother than |p|, but does not have a smooth second partial derivative. 

EXAMPLE 2 g(p) = |p/P**t!, k=0, 1, 2,.... As k increases, so does the 

smoothness. Even powers will not work, because |p|** is just a polynomial 
of degree 2k, and its translates are not linearly independent. Certain linear 
combinations of these functions are used in kriging. 

2.0 

Fic. 11.3. Hardy multiquadric function @(p) = V |p +r. 
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Fic. 11.5 Multiquadric interpolants; three values of r. (a) r = 0, (b) r = 0.2, and (c) r= 0.6. 
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EXAMPLE 3 @(p) = |p|? In|p|. When used in a certain Boolean sum, this 
yields the so-called thin-plate spline, a minimum-energy analogue of the 
natural cubic spline. It does not have a smooth second derivative. 

EXAMPLE 4 g(p) = e “”!*, w>0. This so-called rotated Gaussian is very 
smooth. The interpolant is sensitive to the value of the parameter a. 

All of these interpolants are global in that every data point enters into 
the Grammian. Consequently, they may be expensive and time-consuming 
to compute. By contrast, the finite-element methods are local. 

11.3 Interpolation with Boolean sums 

All of the interpolants of Section 11.2 can be augmented by using them as 
the interpolating projector P in Boolean sums, exactly as in Section 5.5. 
For this we must select a projector Q onto the space of polynomials that 
one wishes to preserve. The main purpose of this section is to indicate how 

the constructions used in curve fittings are generalized to give constructions 
for projectors Q onto spaces of bivariate polynomials. 

As a first example, for the Boolean sum interpolant to preserve planar 
data by returning a planar interpolant, we may choose any three non- 
collinear points and define Of as the plane interpolant to f at these points. 
This plane is uniquely defined and can be expressed in terms of three 
cardinal functions and the three values of f at the chosen points (cf. Section 
7.4). 

More generally, one may choose to define Q in terms of a weighted least 
squares polynomial approximant to f, involving all the f-values and a weight 
matrix that has still to be chosen. Suppose that the approximating function 
is to be a bivariate polynomial from the space ?,, (see Section 7.1). The 
procedure is the two-dimensional analogue of that discussed in Section 5.3 
and follows the format of Section 7.7 with a modification because of the 
use of weights. Accordingly, Eq. (7.14) is modified to 

V’WVa = VWF, (11.5) 

the element w, of the matrix W being the weight assigned to the contribution 

of [p(x;, yi) — fil[p(@;. y;) — f] to the error E(p). The freedom of choice 

that we have for the matrix W will be a vital point in the construction of 

Section 11.4. 
If W is positive-definite and V has full rank (ref. Section 7.7), then Eq. 

(11.5) yields coefficients a so that the corresponding polynomial is an 

optimal approximant of the data with respect to W. Even if W is not 
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positive-definite, provided V’WV is non-singular, a projector Oy onto the 
space P,,, of polynomials is defined by the coefficients a. The table in Section 
7.2 shows how long the vector a will have to be for some values of m, the 
degree of the approximating polynomial. 

Regardless of how the projector Qy is constructed, its final form will be 

fi 

Ons = lbv, Bote, 0u)2| - |; (11.6) 

fn 
where b,,. . ., by are the basis functions for ?,,, (see the table in Section 
7.1) and 2 is an M X N matrix. 

In Section 11.4, next, we discuss one way of optimizing some Boolean 
sum interpolants by an appropriate choice of W. In the remainder of this 
section we show that this formulation does, indeed, include the example 

mentioned in the first paragraph of this section. 
The formulation of the projector Qy in terms of a weighted least squares 

approximation does not prevent it from actually being an interpolating 
projector at a subset of the N given points, as we shall now illustrate. For 
simplicity, we suppose that Qyf is to be a plane (i.e. m = 1) interpolant to 
f at the non-collinear points p;, p2, p3. Take for W the N x N matrix 

1 0/0 

OATIaG. 0 
a | ata 
(atid 

| 
0 | 0 

in which the top left corner is the 3 x 3 identity matrix, and the rest consists 

of zeros. Now we compute the coefficient matrices from Eq. (11.5). It will 

be found that V’WV collapses to 

1 1 il il xy yi 

X,; X22 %X3 Lets V5-49 

Yi Yo Vapo( lh X33 

whereas V’W becomes 

Xi 2 *3 QO Se: 

Va Vo Ve Ue cay 
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Consequently, V’Wf is the same as 

eee [eee fi 

X, X2 3 fa 

1¥1 Yo Y3a\Lfs 

The small 3 x 3 Vandermonde matrix is non-singular in view of the non- 
collinearity of p,, p2, p3 and can now be cancelled from both sides of the 
equation. Thus, we obtain the reduced system 

1 re a, fi 

TL X2e Yo a,|=|fr|, 

Lye PP fs 

which simply says that the plane a, + ax + azy has elevations f;, f,, f; at 
P1, P2, p3- This plane can be obtained by solving the above system for a, 
ay, 43, Or by any other means; with the help of cardinal functions, for 
example (see Section 7.4). 

11.4 Optimal interpolation with Boolean sums 

In the construction of any interpolation scheme, it is natural to ask whether 
the resulting interpolant is, in some sense, optimal. We have discussed a 
univariate example of optimality in Section 4.4, where it is claimed that the 
best interpolant from the class of functions denoted by #5 (having square 
integrable second derivative), is the natural cubic spline. The criterion 
“best” is in that case based on the minimization of the functional J(s) [see 
Eq. (4.19)]. This is not the only criterion that can be employed; for our 
present purposes it is significant that it selects the natural spline function as 
best among some class of functions. Other criteria have been devised which 
optimize not the function but some property of the function at a point. We 
shall elaborate on this next in Section 11.5. 

In this section we record the existence of a bivariate analogue of the 
natural cubic spline which is also optimal in an appropriate sense. This is 
the so-called thin-plate spline, which, while interpolating, also minimizes 
a functional J(s) analogous to that defined by Eq. (4.19). This functional 
is 

wo=[ [ial lal tieee. aoe 
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In contrast to the situation in equation (4.19), the integration here is to be 
carried out over the whole plane, hence J(s) will exist only for rather special 
functions whose second derivatives are close to zero far away from the 
origin, i.e. functions which flatten out rapidly. The functional J(s) is an 
approximation to the energy of a thin plate of infinite extent which deforms 
only by bending. It turns out that the interpolant s which minimizes J(s) 

can be expressed as a Boolean sum: 

Theorem 11.4.1 Subject to the invertibility of the matrices V and B'V"'B 
(see below), the thin plate spline s is the Boolean sum s = (P ® Qw)f, where 
P is the interpolating projector formed from the translates of the basic 
function p(p) = |p|? In|p|, and Qy is the projector onto P, defined by the 
weighted least squares process [Eq. (11.5)], with weight matrix W equal to 

the inverse of the Vandermondian of the translates of the basic function. 

In symbols, Theorem 11.4.1 states that 

fi 

s=[9(p-Pi),---.P(p—pw)lV"| - 
fn 

fi 

+[ij)x, y|/(BIV BIB Vs) | - |, 

fy 

where V is the (symmetric) Vandermondian of the translates of y(p); the 

vector [f7,..., fx ]7 is equal to [f,. . ., fy|? reduced by the values of the 

projector Owf: 

ft =f— B(BTV 'B) ‘BV "rf, 

and 
(oon... 

Bi= Xqy 2X7 ee ON, 

Vy a rs RN 

This formulation of s is, except for small details, just like that of the natural 

spline, as in Theorem 5.4.1 and its corollary 5.4.2. 

Computationally, this surface spline is an expensive function. In the 

univariate ease it is possible to reduce computational effort by exploiting 

the fact that the natural spline can be computed in a piecewise fashion once 

the simple tridiagonal system [Eq. (4.6)] has been solved. When we move 
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to the bivariate case, the piecewise approach separates from the functionally 
optimal one to become a finite-element method. 

Of course, the basic function here is intimately related to the functional 
J(s) whose minimization has an obvious physical interpretation. A number 
of similar functionals and associated basic functions appear in the technically 
advanced work of Meinguet (1978, 1979). 

Figs. 11.9 and 11.10 show the appearance of thin plate spline interpolants 
to the standard surface. The data sets are simply those of Figs. 11.7 and 
ors 

In Section 11.5 we next present a set of interpolation methods which are 
based on a more elementary optimization criterion. 

11.5 Optimization at the points of interpolation 

We shall now describe a process of optimization of the interpolant at a 
point. Computationally the result is identical with the probabilistic kriging 
method, and in some cases it is also functionally optimal in the sense of the 
thin plate spline. 

As before, let f;, i= 1,..., N denote the given values of f(x, y) at the 
distinct points p; = (x;, y;), i= 1, ..., N. Then, whichever interpolating 
projector P is constructed, the interpolant has a representation in terms of 
the cardinal functions A; associated with P: 

N 

(PA) (p) = LA(P\hi, P= (*,). (11.9) 

When p is fixed, the value of Pf at p [denoted above by (Pf)(p)] is 
just a linear combination of the known function-values. We impose the 
condition that P preserve polynomials of degree m, and that m is much 
smaller than the number N of data points. This means that Pf = f when 
f(p) =1, x, y,..., up to terms of degree m in x and y. The table in Section 

7.2 shows what the polynomial basis functions are for some small values of 
m. If we denote the dimension of %,, by M, then we may conveniently 
write a basis for %,, as consisting of the functions b,,.. ., by, with 

b, =1, b, =x, etc., and our requirement is that 

Pb; = 5,, T Sele ee (11.10) 

or, in view of Eq. (11.9), 

N 

> AAD)O AD) = 0p), J =1,..., M. (11.11) 
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Now, with p still fixed, the error at p committed by interpolation is 

N 

E(p) = fp) — & Afi (11.12) 

This can be written as the (dot) product of two vectors: 

EPpy = -[(@) fry wile aie Clay 

As well, Eq. (11.11) can be written in the vector-matrix form 

bi(p) bi(pi) ... “i (pw) at 0 

b; b> we ee A AP) Bi) ee LOolP yee) ee A aia) 

bu(p) bu(pi) --- Su(pn)] [An(P) 0 

which we shall abbreviate using partitioned matrices as 

br )1 8 | a | (11.14a) eee. =}--. 14a 
fs | r 0 

Equation (11.14a) is a constraint on the permissible values of A,(p),. . ., 
Ay(p). At this point it may be useful to review the concept of vector 
norm. This is a way of attributing length to a vector. In the simplest case, 
let x’ = [x,,..., xy] be a vector with M components. Its Euclidean norm 
or length is given by the familiar expression 

ix) = xd xg $e bd) 7, 

An alternative form for this is 

sl = (x) 
A different length will emerge if we modify this expression by choosing 

a positive-definite M x M matrix W and define the W-norm (or W-length) 
of x by 

xi w= (x Wx). (11.15) 
The positive-definiteness of W guarantees that |x| > 0. Now, it is possible 
to show that the magnitude of E(p) in Eq. (11.13) can be bounded as 
follows. For any positive-definite (N + 1) x (N + 1) matrix W, ‘ 

IE(p)| = Cl[-1, Ai (p),..., An(P)lw, (11.16) 
where the constant C depends on W and the values f(p), f(p;), . . > f(pn). 
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This is a consequence of the well known Cauchy-Schwarz inequality [see 
Lancaster and Tismenetsky (1985)]. In fact, since the A,’s are constrained 
by Eq. (11.14), W need not be positive-definite for all vectors of length 
(N + 1)—only for those satisfying (11.14). Such a matrix has been called 
conditionally positive-definite of order m + 1, m being the maximum degree 
of the polynomials involved in Eq. (11.10). For our purposes we shall insist 
that W be symmetric. 
We come now to the optimization of the quantity 2™_, 4,(p)f,. Ideally, 

we would like to minimize the error E(p), but since f(p) is unknown, this 
is not possible. Instead, we choose a suitable W and minimize the upper 
bound on |E(p)|, which appears in Eq. (11.16): 

Definition 11.5.1 Let W be an (N+1) X (N+1) matrix which is con- 
ditionally positive-definite of order m+ 1. The optimal approximation to 
f(p) with respect to W has the form X_, A,f;, where the i,’s are chosen to 
minimize 

I[-1,A1,..., Awllw (11.17) 

subject to the constraints of Eq. (11.14). (For simplicity of notation, the 
dependence of the A;’s on p has not been indicated here.) 

This minimization problem can be handled very easily by the method of 
Lagrange multipliers. However, a few remarks concerning the result of the 
optimization can already be made. First, in order to obtain an interpolant, 
W will have to depend on the variable p and the given points p; in a special 
way. A second observation is that although this optimization is done at a 
point p, if its numerical coordinates are left as variables, then the result 

will be a function of x and y. 
Third, the resulting interpolant is not optimal in any universal sense. For 

each proper choice of W the result is optimal in that it minimizes the 
corresponding W-norm of the vector involved in the bound of Eq. (11.16). 
It is a different question whether the chosen W results in an interpolant 
which is optimal for the data. 
We now indicate the result of the minimization. This is carried out with 

the aid of Lagrange’s multipliers 4,, M2, ..-, fy, Which are equal in 
number to the number of equations in the constraints of Eq. (11.10). The 
technique will be found in almost any advanced calculus book. One obtains 
the following result concerning the optimal values of A,, . . ., Ay and the 
associated multipliers “,, . . ., 4 (for which we have no further use). 
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Theorem 11.5.1 The vectors X and p (or equivalently the numbers 
Ai... +, An, Mi,» -, Uy) Satisfy the system of equations 

ViBiTra Vv SIE ft an BT! Otlp b(p 
in which B and b(p) are as in Eqs. (11.14) and (11.14a), and V and v are 
portions of the symmetric matrix W obtained by partitioning it as indicated: 

i wbiwe 

wf fone (11.19) 
vy 

By using techniques appropriate to partitioned matrices, the required 
solution A can be displayed explicitly. One finds that there are two matrices 
P and Q such that 

A = Pv + Ob(p). (11.20) 

Here, P and Q have a rather complicated form, but will be seen to be just 
like the expressions appearing in the Boolean sum of Theorem 11.4.1 and 
earlier related theorems. Thus, provided the indicated matrix inversions 
are possible, 

P=V5=|V ABB Vi Bie Rv | = [Vi BULB Bl 4: 
(11.21) 

and P?’=V-1—V"B[B'V-!B] BTV"! and O?= [BIW B)T SB Var 
Consequently, the estimate f(p) is given by 

f(p) = Af =v'P'£ + b (p)Q't. (11.22) 

We can see here that the second term is just like a weighted least squares 
approximation to the data, using a weight matrix V~!. Since V is not 
necessarily positive-definite, this is not a proper least Squares approxi- 
mation. Nevertheless, it is a projector onto ,,, since b(p) is a vector of 
basis polynomials for ,,, (see also the comments in Section 11.3). Denote 
the projector by 2. 

Concerning the second term, we see that Pv contains V~'v, an expression 
reminiscent of the construction of a cardinal basis from the (possibly non- 
cardinal) basis functions which make up the vector v. This shows us what 
can be done to make this whole process interpolate. We choose W so that 
apart from the top left element the first column and first row consist of 
some basis functions @,. . ., @y, and make the large block V in W [see 
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Eq. (11.19)] equal to the Vandermondian (or Grammian) of the gs. A 
simple way to achieve this is to choose for each @,(p) the translate to p;, of 
a basic function @(p), and to let W be the matrix 

P(p—p) @P(pi-p) ... @(py-p) 

vont CRP? (Pi ~ Pr) Ki (PN ~ Pr) (11.23) 

op - Pw) oe at (Py - Py) 

Then the requirements for interpolation will be fulfilled, and V~'v is a 
cardinal basis vector for an interpolating projector ?. Then Eq. (11.22) is 
just a Boolean sum ? © 2 of the two projectors exactly as in Section 11.4. 

It remains for us to comment on the choice of @. This choice has to be 
such that W will be conditionally positive-definite of order m+ 1. The 
theory of such functions is sophisticated and difficult. It also only guarantees 
semi-definiteness. Functions which have been used are: 

(1) p(p) =e-*'*, which yields a matrix conditionally positive-semi- 
definite of any order; 

(2) (-1)‘*!|p/**!, O< k <m, W positive-semi-definite of order m + 1; 
and 

(3) |p|? In|p|, W positive-semi-definite of order m+ 1 =2. 

Interpolants using the first function will be very smooth, whereas those 

using the second will have some discontinuous derivatives. In particular, 
the choice k = 0 yields the surface which was discussed at some length in 
Section 11.2. In a one-dimensional version of this, the choice k = 1 and 

m = 2 in item 2 yields natural cubic splines. The last choice is the one which 
generates the thin-plate spline. 

11.6 Kriging 

In recent years, a surface-fitting technique known as “kriging” has been 
used with increasing frequency, especially in geostatistics. Although this 
book is primarily concerned with deterministic methods, it will be useful 
to discuss the most elementary forms of kriging and to show that these 
simple forms are identical with the Boolean sum processes of Section 11.5. 
What distinguishes kriging from our approach is that, in the hands of its 
practitioners, attempts are made to 

(1) localize the computation by excluding distant points from the cal- 
culation of the interpolant at any fixed point p, and 
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(2) analyse the data in order to assist in the choice of an appropriate 
conditionally-positive-function. 

A context in which kriging is used is that of producing contour maps of 
surfaces derived from irregularly scattered points in the plane. There are, 
of course, other techniques that can be applied here, as discussed in 
Chapters 9 and 10. Because some contouring processes cannot cope directly 
with data points scattered irregularly in the plane, kriging is used to estimate 
values at the points of a regular rectangular grid. The original data is then 
discarded, and the new data contoured. However, the contouring process 
itself contains, implicitly at least, another interpolation process which may 
not even be known to the user if the contouring method is part of a 
computer package. The result is that the contour map so generated is 
neither a map of an interpolant of the original data nor of the kriging 
interpolant. In this way, the actual features of the kriging interpolant may 
be obscured. This is especially “fortunate” when the latter is rough, as is 
the case when the positive-definite function @(p) = —|p| is used. The 
contouring process may then serve to “smooth” the surface generated by 
kriging. This situation can be described as the composition of two projectors 
that do not sample the data at the same points (cf. Section 10.5). 

Let us sketch some of the underlying ideas of kriging. We assume that 
the data is a sample from a random function f(p), which is the sum of a 
“slowly” (space) varying random polynomial d(p) of degree m, called the 
drift, and a “rapidly” (space) varying random component r(p), which is 
assumed to have zero mean or expected value E(r) =0, and which is 
responsible for the noise-like nature of f(p). Thus, 

fip)=d(p)+r(p), — E(r)=0. (11.24) 

One assumes further that the covariance structure of r(p) can be obtained 
and that the covariance between values of r(p) at points p and q depends 
only on the distance between p and q. Then [see Eq. (11.1)], 

covif(p), (q)] = ®(|p — q|). (11.25) 
Now we are to estimate f(p) by the linear combination 2%, A,f(p;) in 

such a way that the variance of the error f(p) — 2%, A;f(p;) is minimized. 
At the same time, the A;’s should be defined in such a way that the variance 
is independent of the drift m(p), for nothing is assumed about the statistical 
properties of m(p). This is achieved by applying to the A,’s the constraints 
of Eq. (11.11) or Eq. (11.14). The result of this optimization is a vector A 
given by (11.20) provided we choose 
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®(lp—pl|) P(\p-—pil) ... &(\p—pyl) 

We Pipi pi) lpi —pi|) .<. Dp: —py)) 
= ; ; (11.26) 

®(\py — pl) ®(\py — pil) i ®(\py — pw) 

Of course, this covariance matrix W is identical in form with that in Eq. 
(11.23), since p(p) = ®(\p]). 

The main thrust of kriging is to choose ® in a way that is consistent with 
the data. This is the source of the claim made by some, that kriging is an 
optimal process of interpolation. 

For an introduction to kriging in an entirely statistical setting, we refer 
the reader to the work of Olea (1975) and Huijbregts and Matheron (1970). 
It will be found there that the function ®(|p|) need not be an ordinary 
covariance, decaying to zero with increasing values of |p|; rather, semi- 
variograms and generalized covariances related to the conditionally posi- 
tive-definite functions of Section 11.5 come into play. 
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