
FRACTALS, 
ayes 
POWER LAWS 

> a 
Da 

I MCIMGlelhX 

MANFRED SCHROEDER © 





Fractals, Chaos, Power Laws 



Library of Congress Cataloging-in-Publication Data 

Schroeder, M. R. (Manfred Robert), 1926— 

Fractals, chaos, power laws: minutes from an infinite paradise/ 

Manfred Schroeder. 

: cm. 
Includes bibliographical references and index. 
ISBN 0-7167-2136-8 ISBN 0-7167-2357-3 (PBK) 

1. Symmetry (Physics) 2. Self-similarity 3. Recursion 4. Scaling I. Title. 

QC174.17.S9S38 1990 

530.1—dc20 90-36763 

Dedication page: Portrait of Georg Cantor. (Akademie der Wissenschaften zu Gottingen) 

Copyright © 1991 by W. H. Freeman and Company 

No part of this book may be reproduced by any mechanical, photographic 
or electronic process, or in the form of a phonographic recording, nor 
may it be stored in a retrieval system, transmitted, or otherwise 
copied for public or private use, without written permission from 
the publisher. 

. 

Printed in the United States of America 

Seventh printing, 1999 



To Georg Cantor 

From his paradise no one shall ever evict us 

—DAVID HILBERT, defending Cantor's set theory 
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Color Plates 

Plate 1 Three heavenly bodies meet. (A) As a double star (yellow and red, approaching from 
the left) and a single star (blue, closing in from the right) get close to each other, their orbits 

become wildly chaotic. After some time, they separate again, the double star orbiting off to 
the upper left and the single star receding to the lower right. (B) In this three-body rendezvous 
there is a switch of partners. The yellow member of the incoming double star exchanges its 

red partner for the single blue star, dancing away with its new mate to the lower left. The 
discarded red partner wanders off alone to the upper right. (Courtesy of Wolf Dieter Brandt.) 

Plate 2 This fanciful self-similar leaf was generated by iterated affine transformations. 
(Courtesy of Holger Behme.) 

Plate 3 Newton’s iteration has three basins of attraction (“countries,” shown in red, green, 

and blue). They meet at a fractal border with the following bizarre property: wherever two 
countries meet, the third is also present. Paradoxically there are no border lines, only 

three-sided border posts. Would international borders so designed promote peace? (Courtesy 
of Holger Behme.) 

Plate 4 “Rainbow to Infinity,” combines a large number of logarithmic spirals in different 
colors. (Courtesy of Holger Behme.) 

Plate 5 “Clouds over Eastern Europe,” a photograph taken by the author from his home 
near the crumbling “wall.” 

Plate 6 Real-world fractals. (A) Peeling paint at the Berkeley Swim Club, a multiply 

connected fractal. (B) Fractal growths in microorganisms: red algae on a rock in Point Reyes 
National Seashore, California. 

Plate 7 Plants and flowers produced by turtle algorithms. (A) Rose campion, also called 
dusty miller (Lychnis coronaria), raised by Przemyslaw Prusinkiewicz and James Hanan. 
(B) Vervain (Verbena). (C) Lilac twig, grown by Prusinkiewicz and Hanan. (D) “The Garden 
of L,” planted by Prusinkiewicz, Hanan, David Fracchia, and Deborah Fowler. (E) Plant with 
basipetal flowering sequences. (F) Flower field, fertilized with stochastic L-systems. (Plates 7A—F 
copyright © 1988 by P. Prusinkiewicz, University of Regina.) 

Plate 8 (A) The Mandelbrot set (black) of complex numbers c for which the iteration 
Zn+1 = Zs + with z) = O stays bounded. Colored areas signify c-values for which the 
iteration is unbounded. For c-values from the main “cardioid” area of the M set, the iteration 
has a period length equal to 1. The circular disk to the left of the cardioid has a period 
length of 2, and so on. Each disk or “wart” comprises c-values for a given finite period length. 
The M set is a connected set, but it is not known whether it is locally connected. (B) A 
blow-up in the complex plane reveals a wart and filaments connecting it to smaller replicas of 
the M set. (C) Another enlargement in the complex plane shows an eleven-armed “whirlpool” 
in which smaller M sets swim. The arms themselves embrace smaller whorls whose parts, no 
doubt, contain still smaller whorls. (D) Self-similar descent: zeroing in on one of the “baby” 
M sets frolicking in the whirlpool reveals its patent parentage, the “mother” M set shown in 
A. (Courtesy of Holger Behme.) 

Plate 9 Self-organized genetic drift between 16 different “species,” n = 1 to 16 (shown in 
different rainbow colors). (A) Initially, the different species are randomly intermingled on a 
square lattice. At every click of the evolutionary clock, each lattice point occupied by species n 
will change any of its four nearest neighbors that belong to the species n — 1 to its own 
species number (n = 0 corresponds to n = 16). (B) At a later stage, different genes dominate 
larger and larger coherent areas, but many fine-grained neighborhoods persist. (C) Still later in 
the evolutionary process, a new kind of genetic pattern emerges: spirals with periodically 
repeating species. (D) Although the genetic interactions are strictly local, large spirals are the surviving dominant pattern. As in quasicrystals and numerous other natural phenomena, local tules engender long-range order and global designs. (Courtesy of Holger Behme.) 



REFACE 

Symmetry, as wide or as narrow as you 

may define its meaning, is one idea by 

which man through the ages has tried to 

comprehend and create order, beauty, 
and perfection. 

—HERMANN WEYL 

The unifying concept underlying fractals, chaos, and power laws is self-similarity. 

Self-similarity, or invariance against changes in scale or size, is an attribute of 

many laws of nature and innumerable phenomena in the world around us. 

Self-similarity is, in fact, one of the decisive symmetries that shape our universe 

and our efforts to comprehend it. 
Symmetry itself is one of the most fundamental and fruitful concepts of 

human thought [Wey 81]. By symmetry we mean an invariance against change: 

something stays the same, in spite of some potentially consequential alteration. 

Mirror symmetry, that is, invariance against “flipping sides,” is perhaps the most 

widely noticed symmetry. Nature built many of her organisms in nearly sym- 

metric ways, and most fundamental laws of physics, such as Newton’s law of 

gravitation, have an exact mirror symmetry: there is no difference between left 

and right in the attraction of heavenly (and most earthbound) bodies. However, 

the nonconservation of parity in radioactive decay—that is, the violation of 

point symmetry in the “weak” interactions—has finally taught even the phys- 

icists to take the distinction between right and left seriously. 

Another important symmetry is invariance with respect to geometric trans- 

- Jation. Our trust in invariance under transpositions in space and time is, in fact, 

so unlimited that we believe that the laws of nature are the same all over the 

cosmos—and that they have been, and will remain so, for all time. 

An equally momentous symmetry is invariance with respect to rotation. 

A circle is invariant under rotation around its center by any angle. A square 
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can be rotated only through angles that are multiples of 360°/4 = 90°; it is said 
to have a fourfold symmetry axis. A regular hexagon has a sixfold symmetry. 
While the rotational symmetry of a flower or a starfish may be imperfect, the 
exact isotropy found in the fundamental laws of nature is one of the most power- 
ful principles in elucidating the structure of individual atoms, complicated mole- 
cules, and entire crystals. Transposition, rotation, and mirror symmetries, acting 
together, shape crystals from diamonds to snowflakes. And the same three 
symmetries govern much of what we find pleasing in ornamental designs. 

An even more astounding symmetry is the exact identity of like elementary 
particles. There simply is no difference between an electron here and an electron 
there—on a distant star, for example. In fact, the perfect identity of photons, 
the particles of light, has disqualified them from being counted as so many 
identifiable individuals, resulting in a new kind of particle statistics, discovered 
by S. N. Bose and rendered palatable by Einstein—a way of counting not here- 
tofore encountered in a world filled with tangible objects. 

It was one of the greatest mathematicians of our century, Emmy Noether, 
who first pointed out the connection between the symmetries of the fundamental 
laws of physics with respect to displacements in space and time and rotations, 
on the one hand, and the conservation of linear momentum, energy, and angular 
momentum on the other. (Noether taught at Gottingen, where David Hilbert, 
overcoming obstinate prejudice, had finally secured a faculty position for her. In 
the dismantling of German science in 1933, she was forced to leave Gottingen. 
She died at Bryn Mawr in 1935.) 

Other symmetries have had equally profound consequences in our under- 
standing of the universe we inhabit. Invariance against uniform motion has given 
us special relativity, a fusion of space and time into space-time and, as its best- 
known consequence, the equation E = mc”. The equivalence of acceleration and 
gravity postulated by Einstein is the basis of his general theory of relativity, 
which further revolutionized our appreciation of space, time, and matter. 

Yet, among all these symmetries flowering in the Garden of Invariance, 
there sprouts one that, until recently, has not been sufficiently cherished: the 
ubiquitous invariance against changes in size, called self-similarity or, if more than 
one scale factor is involved, self-affinity. The enormously fruitful concepts of 
self-similarity and self-affinity pervade nature from the distribution of atoms in 
matter to that of the galaxies in the universe. And in mathematics, too, self- 
similarity is deeply entrenched. Some 300 years ago the German philosopher 
and polymath Gottfried Wilhelm Leibniz used the scaling invariance of the 
infinitely long straight line for its definition. Cantor sets and Weierstrass func- 
tions are other early examples—albeit less smooth—of self-similar structures in mathematics, later joined by Julia sets and other marvels of set theory. 

It is perhaps symptomatic that with set theory still another abstract branch 
of mathematics has penetrated the real world. There simply seems to be no limit to Eugene Wigner’s “unreasonable effectiveness” of mathematics. Indeed, who would have thought that such utterly mathematical constructions as Cantor sets, 
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invented solely to reassure the skeptics that sets could both have zero measure 

and still be uncountable, would make a real difference in any practical realm, 

let alone become a pivotal concept? Yet this is precisely what happened for 

many natural phenomena from gelation, polymerization, and coagulation in col- 

loidal physics and chemistry to nonlinear systems in innumerable branches of 

science. Percolation, dendritic growth, fracture surfaces, electrical discharges 

(lightnings and Lichtenberg figures), and the composition of quasicrystals are 

best described by set-theoretic constructs. 

Or take the weird functions Karl Weierstrass invented a hundred years ago 

purely to prove that a function could be both everywhere continuous and yet 

nowhere differentiable. The fact that such an analytic pathology describes some- 

thing in the real world—nay, is elemental to understanding the strange attractors 

of nonlinear dynamic systems (such as the double swing and the three-body 

problem)—gives one pause. 

The word symmetric is of ancient Greek parentage and means well- 

proportioned, well-ordered—certainly nothing even remotely chaotic. Yet, para- 

doxically, self-similarity, the topic of this tome, alone among all the symmetries 

gives birth to its very antithesis: chaos, a state of utter confusion and disorder. 

As we shall endeavor to show, the genesis of chaos is, in fact, closely related 

to self-similarity and its inherent lack of “smoothness.” 

Perhaps not surprisingly, self-similarity entails numerous paradoxes in mea- 

surements of time, length, and even musical pitch. Think of Zeno’s tardy turtle, 

pursued—but never overtaken—by swift Achilles. Why do certain lengths in- 

crease without bound when we measure them with ever smaller yardsticks? How 

would Euclid have explained plane geometric figures whose areas scale not as 

the squares of their apparent perimeters but as some lesser power, such as 1.77 

and other fractional exponents? What should we think of musical sounds that, 

when scaled up in frequency, sound—incredibly—lower in pitch? How are such 

monstrosities possible? And how can we describe them in a consistent, meaning- 

ful manner? 
Here a particularly felicitous thought by Felix Hausdorff comes to the 

rescue. His and Abram Besicovitch’s new ways of looking at dimension dethrones 

it from its integer position and propels it into the realm of real numbers, giving 

us one of the sharpest tools—the Hausdorff dimension and its ramifications—with 

which to attack the strange sets that self-similarity breeds. 

And while recalling some of the glorious names of the past, we should 

never forget our great contemporary, the inimitable Benoit B. Mandelbrot, 

who, single-handed, rescued set theory’s most brittle functions and “dustiest” 

sets from near-oblivion and planted them right in the middle of our daily 

- experience and consciousness. Yes, for all these years, we have been living with 

fractal arteries, not far from fractal river systems draining fractal mountain- 

scapes under fractal clouds, toward fractal coastlines. But, kin to Moliere’s 

would-be gentleman, we lacked the proper prose—fractal, noun and adjective— 

that Benoit B. begot. 
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But our story also has a silent and immobile hero: the digital computer. 
There can be little doubt that computers have acted as the most forceful forceps 
in extracting fractals from the dark recesses of abstract mathematics and de- 
livering their geometric intricacies into bright daylight. In fact, the impact of 
fractal images, often of unimagined beauty and appeal, has given computer 
graphics a surprising new dimension. 

Synopsis 

We open our treatise with one of the most charming uses that similarity was 
ever put to: the young Einstein’s proof of Pythagoras’s theorem. By adding just 
a single straight line, in the right place, to a right triangle and applying plenty 
of similarity, the popular theorem is proved without further prodding. 

We then invade the unlimited domain of self-similarity as manifest in 
fractals, multifractals, and the scaling laws of physics, psychophysics, and bound- 
less other fields. 

In phase spaces, we encounter deterministic chaos and strange attractors. 
Percolation and other phase transitions lead us to critical exponents and a 
hierarchy of different dimensions. Following Poincaré, we immerse ourselves in 
the self-similarities of iterated mappings, from baker transformations and Ber- 
noulli shifts to logistic parabolas and circle maps. Neither tori, cantori, nor Arnold 
tongues will faze us as we (sur)mount devil's staircases to unwind among the 
rational winding numbers festooning Farey trees. 

And when we talk about nonlinear dynamics we must remember some of 
the great contributors of recent vintage: Siegel, Moser, Lorenz, Wilson, Feigen- 
baum, and—last but not least—the great Russian “school” exemplified by such 
names as Lyapunov, Arnold, Sinai, Chirikov, Alexeev, Anosov, Pesin, and the 
recently deceased master mathematician Kolmogorov. 

Cayley trees, also known as Bethe lattices, will provide us with a fitting 
point of departure for many a practical fractal, such as our bronchial and vascular 
systems. Cellular automata concern us as models of both biological growth and 
chemical reactions. 

We are also strangely attracted to symbolic dynamics, kneading (and 
needing) the Morse-Thue sequence and, especially, the Fibonacci rabbit sequence 
and their discrete self-similarities that, indiscreetly, tell us so much about period 
doubling, mode locking, frustrated Ising spins, and fivefold symmetric quasi- 
crystals. Many of these subjects were shrouded in mystery and beset by paradoxes 
before the sharp scalpels, fashioned by scaling and renormalization theories, 
revealed the underlying tissue and made them tractable. In fact, it is no accident 
that viable fundamental field theories in physics are renormalizable, as they must be if they are to shun sham scales. 

And, of course, we will not hesitate to run down random fractals, from Brownian motion to diffusion-limited aggregation and stock market hiccups 
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(some hiccups of late!). The poor gambler’s ruin and the St. Petersburg paradox 
will provide further food for fractal reflections. 

These, then, are some of the exciting, and sobering, themes sounded in 
the present volume. The aim of this exposition is to enhance the reader's 
understanding of self-similarity, perhaps the most pregnant of all of nature’s 
symmetries, and to illustrate the wide-ranging applications of scaling invariance 
in physics, chemistry, biology, music, and—particularly—the visual arts, as 
manifested in the recent renaissance of computer graphics through fractal images 
and their iterative beauty. 
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ntroduction 

I want to knew how God created this 

world. I am not interested in this or that 

phenomenon, in the spectrum of this or 
that element. I want to know His — 

thoughts; the rest are details. 
—ALBERT EINSTEIN 

Nature abounds with periodic phenomena: from the motion of a swing to the 

oscillations of atoms, from the chirping of a grasshopper to the orbits of the 

heavenly bodies. And our terrestrial bodies, too, participate in this universal 

- minuet—from the heart beat and circadian rhythms to monthly and even longer 

cycles. | 

Of course, nothing in nature is exactly periodic. All motion has a beginning 

and an end, so that, in the mathematical sense, strict periodicity does not exist 

in the real world. Nevertheless, periodicity has proved to be a supremely useful 

concept in elucidating underlying laws and mechanisms in many fields. 

One reason for the universality of simple harmonic motion is the linearity— 

or near-linearity —of many physical systems and the invariance with displacement 

in space and time of the laws governing their behavior. 

But there are numerous other phenomena in which linearity breaks down 

and, instead of periodicity, we get aperiodic or even chaotic motion: the smooth 

waves on a well-behaved lake turn to violent turbulence in the mountain brook, 

and the daily sunrise, the paradigm of predictability, is overshadowed by cloud 

formations, a haven for chaos—albeit deterministic chaos. 

But no matter how chaotic life gets, with all regularity gone to bits, another 

fundamental bulwark often remains unshaken, rising above the turbulent chaos: 

self-similarity, an invariance with respect to scaling; in other words, invariance not 
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with additive translations, but invariance with multiplicative changes of scale. In 

short, a self-similar object appears unchanged after increasing or shrinking its 

size. Indeed, in turbulent flows, large eddies beget smaller ones, and these spawn 

smaller ones still—and so on ad infinitum (almost). In general, one of the con- 

spicuous consequences of self-similarity is the appearance of exceedingly fine- 

grained structures, now generally called fractals after Benoit B. Mandelbrot, the 

father of fractals [Man 83]. 
Many laws of nature are independent, or nearly so, of a scaling factor. The 

fact that scaling usually has a limit (Planck’s constant, when things get too small, 
or the speed of light, when objects fly too fast) does no harm to the usefulness 
of “thinking self-similar,” just as the lack (outside mathematics) of strict periodicity 
is no great impediment in the real world. In a sense, self-similarity is akin to pe- 
riodicity on a logarithmic scale. 

Self-similarity, strict or otherwise, reigns in many fields in many guises, and 
in this book we shall explore some of the many manifestations of self-similarity 
in the world around us. Among the topics treated are the following: 

¢ Scaling laws and their exponents in physics, psychophysics, and physiology 

¢ Random walks in the stock market and under the microscope; floods, forest 
fires, the distribution of galaxies, and other “accidents” with statistical self- 
similarity 

* Scaling invariance, self-similarity, and some of their mathematical models, such 
as Cantor sets and Julia sets 

¢ Fractals and their characterization by Hausdorff, and other noninteger dimen- 
sions; fractal paradoxes and their resolution; Weierstrass functions and Hilbert 

curves; Koch flakes, Sierpinski gaskets, and other non-Euclidean constructions in 
two and more dimensions; fat fractals and multifractals 

° Iterated mappings and a selection of the ensuing self-similarities 

¢ The logistic parabola and other unimodal maps with universal scaling laws; 
period-doubling bifurcation to chaos; the Feigenbaum constant, symbolic dy- 
namics and the Morse-Thue sequence; Sharkovskii’s universal ordering of orbits 

¢ Complexification of the quadratic map and the Mandelbrot set 

° Devil's staircases, Farey trees, Arnold tongues, and modelocking; the “rabbit 
sequence” and the quasi-periodic route to temporal and spatial chaos; Ising spins 
and quasicrystals 

e Laplace's triangle and cellular automata 

1. References in brackets are listed alphabetically at the end of the book. The numbers refer to 
the year of publication. 
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c 

Figure 1 Pythagoras’s theorem: sketch for proof by the 11-year-old Einstein based on 
similarity. 

In this chapter some of these topics are introduced informally, together with the 

leading dramatis personae. 

Einstein, Pythagoras, and Simple Similarity 

I will a little think. 
—ALBERT EINSTEIN, in America 

When Jacob Einstein taught (Euclidean) geometry to his 11-year-old nephew 

Albert, the young Einstein—even then striving for utmost parsimony—felt that 

some of Euclid’s proofs were unnecessarily complicated.’ For example, in a typical 

proof of Pythagoras’s theorem a’ + b* = c’, was it really mandatory to have all 

those extra lines, angles, and squares in addition to the basic right triangle with 

hypotenuse, c and sides a and ? 

After “a little thinking” the sharp youngster came up with a proof that 

required only one additional line, the altitude above the hypotenuse (see Figure 

1). This height divides the large triangle into two smaller triangles that are similar 

to each other and similar to the large triangle. (Triangles are similar if their angles 

are the same, which is easily seen to be the case in Figure 1.) 

Now, in Euclidean geometry, the area ratio of two similar (closed) figures 

is equal to the square of the ratio of corresponding linear dimensions. Thus, the 

areas E,, E,, and E, (E as in German Ebene) of the three triangles in Figure 1 are 

related to their hypotenuses a, b, and c by the following equations: 

E, = ma’ (1) 

Renee ae ret Ree ee ee é' 

2. Ihave the story from Schneior Lifson of the Weizmann Institute in Tel Aviv, who has it from 

Einstein’s assistant Ernst Strauss, to whom it was told by old Albert himself. 
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E, a mb’? (2) 

E = mc’ (3) 

where m is a dimensionless nonzero multiplier that is the same in all three equations. 
Now a second look at Figure 1 will reveal that the area of the large triangle 

is, of course, the sum of the areas of the two smaller triangles, 

E,+E,=E, 
or, with equations 1 to 3, 

ma’ + mb” = mc 

Dividing this identity by the common measure m promptly produces Pythagoras’s 
renowned result 

a+bv=ac 

proved here by an 11-year old person® by combining two fertile scientific prin- 
ciples that were going to stand the grown-up Einstein in good stead: simplicity 
and symmetry, of which self-similarity is a special case. Yet the true beauty of 
Einstein’s proof is not that it is so simple, but that it exposes the true essence 
of Pythagoras’s theorem: similarity and scaling. 

The resemblance of equation 3 to Einstein’s later discovery, his famous 
E = mc’, is of course entirely fortuitous. The equivalence of mass m and energy 
E, which is at the basis of nuclear power in all its guises, is a consequence of 
Lorentz invariance. This invariance, which underlies special relativity, was pre- 
dicted by Einstein in 1905 after, it seems, several false starts and a “little more 
thinking” (see Figure 2). 

A Self-Similar Array of Self-Preserving Queens 

One of numerous chess problems is the placement of as many queens as possible 
on a chessboard of a given size so that no queen “attacks” (shares a row, column, 
or +45° diagonal with) any other queen. For a k x k square board, there can 
be at most k nonattacking queens. But are k peacefully coexisting queens always 
possible? What if k is very large? Doesn't the complexity of placing the queens 
grow exponentially with the size of the board? As we shall see, the placement 
is actually very simple, even for arbitrarily large boards, if we focus our attention 

3. Really a “nonperson” at that stage, considering the neglect he suffered in his Munich high 
school [Pye 85]. 
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Figure 2 Einstein on the verge of discovering his famous formula E = mc’—a cartoonist’s 

view [Har 77]. (© 1991 by Sidney Harris) 

on boards for which k is a pure power of an integer and judiciously exploit the 

principle of self-similarity in the construction of the solution. (Again, we describe 

an object or a structure as self-similar if it looks the same when we magnify the 

object or a properly chosen part of it.) 

Figure 3 shows a pattern of queens, the 5 x 5 board sustaining five non- 

attacking pieces. (This particular placement could have been obtained by a greedy 

algorithm: Starting on the lower left and proceeding column by column, always 

place the next queen in the lowest position still “eligible.”) 
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Figure 3 Five nonattacking chess queens on a 5 x 5 board (top) and solution for the 25 X 25 board derived from the 5 x 5 board by similarity. 
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From a solution on the 5 x 5 board, we can immediately construct a possible 
placement for the 25 x 25 board, which can be considered to be composed of 
5 X 5 = 25 boards of size 5 x 5. We simply leave most of those twenty-five 
5 x 5 boards empty, except those five that correspond to the positions of the 
queens in the original board. Figure 3 illustrates the procedure without the need 
for more words. 

To filla 125 x 125 board with peaceful queens, simply think of it as twenty- 
five boards of size 25 X 25, five of which are filled in the by now familiar pattern 
with the 25 x 25 solutions while the remaining twenty boards are left void. 
Continuing in this manner, we have, after n steps, a5” x 5” board with 5” pieces. 

This process can be extended ad infinitum to yield an immaculately self- 
similar distribution of self-preserving queens. Indeed, selecting one of the five 
occupied subboards of side length one-fifth of the entire board and magnifying 
it by a factor of 5 will precisely reproduce the entire board. The factor 5 is called 
the scaling or similarity factor of the board. 

What numbers other than 5 can be used as scaling factors in such self- 
similar schemes? Can we exploit self-similarity for the construction of boards 

whose side is not a pure power of an integer (as 5” is)? The interested reader 

can find further clues in the illuminating article by Clark and Shisha [CS 88]. 

A Self-Similar Snowflake 

Repeating a given operation over and over again—on ever smaller scales— 

culminates, almost inescapably, in a self-similar structure. Here the repetitive 

operation can be algebraic, symbolic, or geometric, as in the case of the five 

dormant queens whom we have just allowed to come alive and multiply without 

limit, proceeding on the path to prefect self-similarity. 

The classical example of such a repetitive construction is the Koch curve, 

proposed in 1904 by the Swedish mathematician Helge von Koch. The basic 

principle and the final result are equally charming: Take a segment of straight 

line (Figure 4A, the initiator) and raise an equilateral triangle over its middle third 

as shown in Figure 4B. The result is called the generator. Note that the length 

of the generator is four-thirds the length of the initiator. 

Repeating once more the process of erecting equilateral triangles over the 

middle thirds of straight line segments results in Figure 4C. The length of the 

fractured line is now (4) Iterating the process infinitely many times results in a 

“curve” of infinite length, which—although everywhere continuous—is nowhere 

- differentiable. It is approximated, as far as pen and ink permit, in Figure 4D. 

Similarly lamentable “functions,” continuous but without tangents, were 

first defined a century ago by the German mathematician Karl Weierstrass, just 

to show his skeptical colleagues (a horrified Hermite among them) that such 

functions did indeed exist. But other authorities, not least the great Austrian 
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(A) 

(B) 

(C) 

(D) 

Figure 4 Initiator (A) and generator (B) for the Koch curve, the next stage in the con- struction of the Koch curve (C), and high-order approximation to the Koch curve (D). 

physicist Ludwig Boltzmann, saw the light: Boltzmann wrote to Felix Klein (in 1898) that nondifferentiable functions could have been invented by physicists because there are problems in statistical mechanics “that absolutely necessitate the use of nondifferentiable functions.” And his French colleague Jean Perrin went even further when, in 1906, he presaged present sentiment about such mathematical monsters, saying that “curves that have no tangents are the rule, and regular curves, such as the circle, are interesting but quite special.” How politely put! Now, following Mandelbrot, we simply call such nondifferentiable curves fractals. 
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A New Dimension for Fractals 

The universe is not only queerer than we 
suppose but queerer than we can suppose. 
—J. B. S. HALDANE 

Applying the Koch generator (see Figure 4) to an equilateral triangle and painting 
the interior black results in a solid star of David (Figure 5A). Infinite iteration 
converges on the Koch snowflake (intermediate stages of the construction are 
shown in Figure 5B). How long is its perimeter? After n iterations it has increased 
(5)"-fold over the perimeter of the initial triangle. Thus, as n approaches infinity, 

the perimeter becomes infinitely long. To characterize the perimeter’s size, we 

can therefore no longer use its length. We have to invent a new measure that 

can distinguish between fractals manufactured from different generators. But while 

inventing new measures, we want to stay as close as possible to what we have 

always done when measuring lengths. 
For a smooth curve, an approximate length L(r) is given by the product of 

the number N of straight-line segments of length r needed to step along the 

curve from one end to the other and the length r: L(r) = N° r. As the step size 

r goes to zero, L(r) approaches a finite limit, the length L of the curve. 

Not so for fractals! The product N - r diverges to infinity because, as r goes 

to zero, we enter finer and finer wiggles of the fractal. However, asymptotically, 

this divergence behaves according to a well-defined homogeneous power law 

of r. In other words, there is some critical exponent D,, > 1 such that the product 

N-1?# stays finite. For exponents smaller than D,, the product diverges to 

infinity, while for larger exponents the product will tend to zero. This critical 

exponent, Dy, is called the Hausdorff dimension after the German mathematician 

(A) (B) 

Figure 5 Initiator and generator for the Koch flake (A) and intermediate stages in the 

construction of the Koch flake (B). 
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Felix Hausdorff (1868-1942). Equivalently, we have 

log N 
De = ln ee 

f=<nO) log (1/r) 

For the nth generation in the construction of the Koch curve or snowflake, 
choosing r = r,/3", the number of pieces N is proportional to 4”. Thus, 

log 4 
Dips eeeiy 26h y 

log 3 

The fact that D,, lies between 1 and 2 is somehow satisfying, because an 
infinitely long curve is, in some metric sense, more than just a one-dimensional 
object—without being a two-dimensional area, since the curve does not cover 
a region in the plane. In fact, we shall soon see that Hausdorff’ definition of dimension, which, as we now know, can take on fractional values, makes much sense in many ways. Of course, for a smooth curve, D, = 1; and for a smooth surface the number N of covering disks is proportional to 1/1? and therefore Dy = 2. Here r is the diameter of the N little disks needed to cover the area. Similarly, for a compact three-dimensional volume, D,, comes out equal to 3. Surprisingly, however, for D,, to equal 2, we do not need an area: a topologically one-dimensional entity, a line, suffices. A well-known example is the asymptotically self-similar Hilbert curve (see Figure 6A), which comes ar- bitrarily close to each point in the unit square. Its construction is illustrated in Figure 6B. The final result is, of course, self-similar. Blow up any appropriately chosen subsquare by a linear factor 2” and it will resemble the entire figure. Since the nth generation of the Hilbert curve consists of 2°" — I segments of length 1/2”, its Hausdorff dimension equals 2, as behooves an area-filling curve. Figure 7 shows an artistic variation on the Hilbert curve theme. Can you recognize that the underlying image is a human face? 

Adjacent points on the Hilbert curve are adjacent in the unit square, but not vice versa! This property distinguishes the Hilbert curve from broadcast TV scans, which are discontinuous at the line ends,? and from Cantor's totally discontinuous mapping of the unit square onto the unit interval, whereby the point in the square x = 0.x, x, 31-5 +7 Y= OYy Yo, Y3,-.. is mapped to the point on the line 0.x, y,, x,, YEE. . oun 
When Cantor first saw that, in this manner, an area could be reversibly mapped to a line, he wrote “I see it, but | don’t believe it.” But evolution, in constructing our brain, discovered millenia ago that in order to fill a volume 

4. Interestingly, some sophisticated image-scanning techniques do follow Hilbert’ prescription for a space-filling curve. The reason is that points adjacent in time along a “Hilbert scan” are also adjacent in space in the scanned image, making for simpler image processing. 
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Figure 7 Contorted Hilbert curve: an artist’s version, to be viewed from a distance. 
(Courtesy of W. J. Moller.) 

while preserving two-dimensional adjacency, it had to construct the gray matter of our cortex in a folded manner resembling a three-dimensional Hilbert curve. Hilbert curves in higher-dimensional spaces have also found interesting applications in information theory: the so-called Gray codes [Gil 58], so named after their inventor. In a binary Gray code for the integers, only a single bit of the code changes between one integer and the next. Thus, the four integers 0 to 3 are encoded by two binary bits as follows: 0 = 00, 1 = 01, 2 = II and 3 = 10 (and not as in the standard binary code, where 2 = 10 and 3 = 11, creating a two-bit jump between the codes for 1 and 2). Figure 8 shows successive stages for the construction of a Hilbert curve in three-space, visualizing generalized Gray codes [Gil 84]. 
hile Cantor's mapping of an area to a line is discontinuous in both di- rections, the Hilbert curve is discontinuous in only one direction. There are other 
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Figure 8 Constructing a three-dimensional version of the Hilbert curve (A); Hilbert curve 

for illustrating Gray code (B). 

mappings from an area to a line, due to Bernhard Bolzano (1781-1848) and 

Giuseppe Peano (1858-1932) but none are continuous in both directions. 

A Self-Similar Tiling and a “Non-Euclidean” Paradox 

Look at the seven fractal “tiles” shown in Figure 9A. They are obtained from 

seven hexagons (see Figure 9B), by breaking up each side into a three-piece zig- 

zag as shown on one of the sides. If the inner angles of the three pieces are 

120°, then the lengths of the three segments will be 1/,/7 times the length of 

the unbroken side. 
Iterating the breaking up process ad infinitum results in a fractal tiling pattern, 

of which Figure 9A is an approximation. As a result of this construction, the 
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(A) 

(B) 

Figure 9 (A) Fractal tiles that fit together to cover the plane. The seven tiles shown, 
taken together, are similar to a single tile, giving rise to a “non-Euclidean” paradox. (B) Tiling hexagons: the initiator of the fractal tiles shown in part A. One generator, consisting of three straight-line segments, is also shown. 

perimeter of the entire figure, consisting of seven fractal “hexagons,” is similar 
to each of the seven hexagons. 

Thus, we have found a self-similar tiling of the plane based on “hexagons,” 
where each tile is surrounded by six like tiles. (Note that while regular hexagons 
do tile the plane, the tiling is not self-similar. A hexagon surrounded by six like 
hexagons is not a larger hexagon.) 

Simple inspection of Figure 9A shows that the perimeter of the large fractal hexagon contains the perimeter of the small fractal hexagons precisely three times. Thus, following Euclid’s scaling rule for the areas of similar geometric 
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figures, the total area should be 3* = 9 times the area of one of the small fractal 
hexagons. But it isn’t! The area ratio is only 7. 

What went wrong? Where did we go astray? Has Euclid finally been caught 
napping? Well, the ancient Greeks (with the possible exception of one of the 
Zenos) can continue to rest in peace. Fractal geometric objects like the one illus- 
trated in Figure 9A were never on exhibit in Euclid’s school (nor were they used 
to tile its floors). Euclid probably never considered nondifferentiable functions 

or bounded curves of infinite length. But later generations of mathematicians 
did, and since Hausdorff we know that the dimensions of such curves are not 

necessarily equal to 1 but perhaps exceed 1. For example, the Hausdorff dimension 
D, of the perimeter of our fractal hexagons is log 3/log ol S12905 ....: 
Thus, in adapting Euclid’s scaling idea, we should raise 3 (the perimeter “ratio”) 
not to the power 2 to obtain the area ratio, but—since the perimeter already 
has dimension 1.12915 ...—to the power 2/1.12915 ... = 1.77124.... This 
gives an area ratio of 6.999999999 on my pocket calculator—close enough to 
the true area ratio of 7 to 1 that is immediately apparent in Figure 9A. Thus, 

we can reformulate Euclid’s scaling theorem about similar areas and obtain a 
more generally valid result, applicable to fractals and nonfractals alike: 

For similar figures, the ratios of corresponding measures are equal when reduced to the 

same dimension on the basis of their Hausdorff dimensions. 

It is because of properties like this that Hausdorff dimension is such a useful 

concept. It is one proper extension of the concept of dimension to fractal objects, 

which model, however approximately, a great many phenomena in the real world 

surrounding us—and in us. Just think of the human vascular system, or your 

lungs with their hierarchical branchings, leading to astonishingly large surface 

areas that are well described by fractal geometries and Hausdorff dimensions. 

Thus, the idea of the Hausdorff dimension has resolved a potentially disas- 

trous paradox by widening our concept of dimension to include fractional and 

even transcendental values. We shall resume this theme in the body of this book 

and get to know other fractal paradoxes such as that of a musical chord that 

sounds lower in pitch when reproduced at a higher tape speed! (See pages 96— 

98 in Chapter 3.) 

At the Gates of Cantor’s Paradise 

I place myself in a certain opposition to 

‘widespread views on the nature of the 

mathematical infinite. 

—GEORG CANTOR 

The Hausdorff dimension D,, is useful not only for characterizing fractal curves 

of infinite length but also point sets, or “curves” of zero length. Not surprisingly, 
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for such point sets Dy is typically less than 1. A famous example is Georg 
Cantor's original self-similar “middle-third—erasing” set with which he demon- 
strated, to the astonishment and disbelief of the contemporary mathematical 
community, that there are sets having measure (“length”) zero with uncountably 
many members. 

Cantor constructed his highly counterintuitive set as follows. He started 
with the closed unit interval [0, 1], that is, a straight-line segment of length 1 

including the two endpoints. He then “wiped away” the open middle third 
(5, 3) and repeated the process on the remaining two segments of length 3 (see 
Figure 10). 

Repeating the middle-third wiping-out process over and over again leaves 
not a single connected line segment; the total length or measure of the remaining 
set is zero. Yet, as we shall later see, the leftover “dust” still contains infinitely 
many, in fact uncountably many, “points.” In fact, one can already appreciate this 
from the arithmetic description of the Cantor set: its members are precisely all 
those fractions in the interval [0, 1] that eschew the digit 1, such as 0.2 or 0.2022. 

How do we characterize the content of a set whose length measure is zero? 
Again Hausdorff offers help. After n wiping stages, we are left with N = 2" 
straight-line pieces, each of length r = (3). Thus, the Hausdorff dimension De 
equals log 2/log 3 = 0.63..., a value between 0 and 1, as expected because 
the Cantor dust is more (a lot more!) than just a point (dimension 0) and much 
less than a length of line or curve (dimension 1). As in the case of the fractal 
Koch curve, the value of D,, is not an integer; in fact, it is a transcendental 
number. 
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Figure 10 Construction of the “middle-third—erasing” Cantor set. It has zero measure, 
yet is uncountable. Its. fractal dimension equals log 2/log 3 = 0.63... 
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In the course of this book we shall encounter “innumerable” other instances 
of dusty, Cantor-like sets in a wide variety of settings—such as the celebrated 
Sierpinski gasket, which we will introduce next. 

The Sierpinski Gasket 

Fog on Fog. 

—HERMANN WEYL, commenting on 

Cantor's transfinite numbers 

Are there Cantor-like dusts spread out in two dimensions? Yes, there are. Start 
with the equilateral triangle shown in Figure 11A and remove the open central 
upside-down equilateral triangle with half the side length of the starting triangle. 
This leaves three half-size triangles. Repeating the process on the remaining 
(right-side-up) triangles leaves, after n iterations, N = 3” triangles of side length 

r=r,(2") (see Figure 11B). The Hausdorff dimension D, for the set resulting 

from an infinite iteration of this procedure, called the Sierpinski gasket after 

the prolific Polish mathematician Waclaw Sierpinski (1882-1969), equals log 3 

/log 2 = 1.58..., an irrational number smaller than 2, in spite of the fact that 

the gasket is embedded in two dimensions. 
It is interesting to note that the Sierpinski gasket combines self-similarity 

with another important, but classical, symmetry: rotation. Indeed, the gasket is 

congruent to itself when rotated around its center by an angle of 120° (or any 

integer multiple of 120°). Such symmetries, combining infinite scaling and finite 

rotation, can be observed in many fractals—and the prescient works of Maurits 

Escher (see Figure 12). 

Incidentally, the “fractal” dimension of a fractal set is not necessarily a non- 

integer. For example, the Hausdorff dimension of the self-similar board of non- 

attacking queens (see pages 4—7) equals 1. 

A bs £2 dd 
Figure 11 (A) Generator for the Sierpinski gasket. (B) Toward the Sierpinski gasket: 

a two-dimensional uncountable set with zero measure and fractal dimension log 3 

Nog 2 = 1.58... 
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Figure 12 An image by Escher that combines rotational symmetry and infinite scaling 
[Esc 71]. 

Figure 13 illustrates a three-dimensional generalization of the Sierpinski 
gasket. Its construction starts with a regular tetrahedron (a pyramid bounded by four equilateral triangles) from which a half-size upside-down regular tetrahedron has been cut out. This process is repeated on the four remaining tetrahedra and all subsequent tetrahedra to yield the spidery tower shown in Figure 13. 

The Hausdorff dimension of this self-similar construction follows immedi-. ately from the first step: with N = 4 remaining pieces of size r= +, we have D,, = log 4/log 2 = 2, a fractal dimension that happens to be an integer, but a full unit less than the embedding Euclidean dimension d = 3. 
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Figure 13 A three-dimensional version of the Sierpinski gasket. Its fractal dimension, 

log 4/log 2 = 2, has an integer value (2), albeit smaller than the dimension of the supporting 

space (3). 

Sierpinski gaskets in two or more dimensions model many natural phe- 

nomena and man-made structures. Think of the Eiffel Tower in Paris, designed 

by Gustave Eiffel. If, instead of its spidery construction, it had been designed as 

a solid pyramid, it would have consumed a lot of iron, without much added 

strength. Rather, Eiffel used trusses, that is, structural frames whose members 

exploit the rigidity of the triangle. (A triangle, in contrast to a rectangle, cannot 

- be deformed without deforming at least one of its sides.) However, the individual 

members of the largest trusses are themselves trusses, which in turn are made 

from members that are trusses again. This self-similar construction guarantees 

high resilience at low weight. The structures of Gothic cathedrals, too, betray 

great faith in this principle of achieving maximum strength with minimum mass. 
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And Buckminster Fuller (1895-1983) and his skeletal domes popularized the 
fact that strength lies not in mass but in branch points. In fact, counter to intuition, 
the Sierpinski gasket and like constructions consist.of nothing but branch points. 
(A branch point on a curve has more than two points arbitrarily close to it.) 
Certain boundary sets (of strange attractors, for example) share this property 
with the Sierpinski gasket (see pages 38—40, where this exclusive branching is 
exploited to “settle” an international boundary problem). 

The Sierpinski gasket is good for another counterintuitive surprise. For Eu- 
clidean bodies in d dimensions, the volume V is proportional to R*, where R is 
some linear measure of size. Surface area S varies as R“~'. Thus, S ~ V4 2/4 
For example, for d=3, S~ V”. In fact, for the sphere, S=47R? = (36m)? - V?/?. 

However, for fractal objects this simple Euclidean relation often breaks down. 
As we have seen, the Hausdorff dimension of the Sierpinski gasket equals log 3 
/log 2 % 1.58. What is the Hausdorff dimension of its edges? It is easy to see 
that every time we reduce the yardstick by a factor 2, the number of edge 
segments goes up by a factor 3. Thus, the Hausdorff dimension of the edges, 
the “surface” of the Sierpinski gasket, is also log 3/log 2: “volume” and “surface” 
have the same dimension. We can also see this by expressing the mass M(R) of 
the gasket, that is, the number of points inside a circle of radius R, as a function 
of the radius: on average we find V(R) ~ R**. But for the total edge lengths 
S(R) inside the circle we find the same dependence: R***. As a consequence, for 
the Sierpinski gasket, area V and edge length S are proportional to each other: 
V ~ S, a paradoxical result indeed. 

We shall have the pleasure of meeting the Sierpinski gasket again, both in 
its original form and, in Chapter 17, in a discrete version, the Laplace triangle 
modulo 2. In the Meantime, let us relish some of its refreshing implications, such 
as the board game invented by the mythical Sir Pinski. 

Sir Pinski’s Game and Deterministic Chaos 

Consider the following “parlor game” played by two or more persons: 

° Each player picks an initial point inside an equilateral triangle. 
° Then the player doubles its distance from the nearest comer along a straight line from that corner, thereby arriving at a point p,. 

The player who can repeat the distance doubling most often without falling outside the triangle wins the game. As we shall see, there are uncountably many, but still very few, initial points that guarantee winning or a tie, “very few” in the sense that a random choice has a zero probability of infinite survival under the rules of the game. 
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Figure 14 shows the equilateral triangle with an initial choice, marked by 
O, and its three successors or “images” marked 1, 2, and 3. Note that the point 

3 already lies outside the triangle; the initial choice is therefore not a good pick. 
How can we avoid such bad points? We will answer the question first geo- 
metrically and then arithmetically. 

Note that point 2, which lies inside the small, white (upside-down) triangle, 
is mapped outside the large triangle. In fact, a little reflection (in more than one 

sense of the word) will show that all points inside the small white triangle will 

be mapped to the outside. Thus, the white triangle is out as a good starting 

area—and so, of course, are its preimage and the preimages of the preimage 

and so on ad infinitum. In other words, any point that, sooner or later, is mapped 

into the white triangle is a loser. 
But what are the preimages of the white triangle? A little more reflection 

will show that they consist of three half-size upside-down triangles, one inside 

o 

Figure 14 Sir Pinski’s chaos game: How many times can you double your distance to 

the nearest vertex without leaving the large equilateral triangle? 
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each of the remaining three dark triangles. And the preimages of these three 
preimages are nine upside-down triangles, again scaled down in side length by 
a factor 2 and cut out of the centers of the nine remaining quarter-size triangles. 

Thus, in delimiting good initial choices, we find ourselves constructing a 
self-similar figure, the well-known Sierpinski gasket (see Figure 15), a Cantor set 
embedded in two dimensions, with zero area and Hausdorff dimension equal to 

log 3/log 2 % 1.58. Picking an initial point at random, however, will almost 
certainly land us in white territory, a prelude to the disaster of being eventually 
mapped outside the big triangle. 

In order to avoid potential disputes resulting from poor drafting, the just 
described Sir Pinski game should be played arithmetically; that is, the initial points 
and all their images should be stated by their coordinates in a suitable coordinate 
system. Although two coordinates suffice to locate a point in the plane, a more 
convenient system, matched to the symmetry of the triangle, uses three coor- 
dinates, x, y, and z, as shown in Figure 14. The corners of the triangle have the 
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Figure 15 Sierpinski gasket, the winning set of Sir Pinski’s game. 
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value 1 for the corresponding coordinates, and the opposite sides have the value 
0. Thus, the midpoint on the horizontal side, for example, has the coordinates 

x=Oandy=z=35. 
Of course, a set of three coordinates in the plane is redundant, and the 

coordinate values cannot be chosen independently, because of the constraint 

x+y +z = 1. The points inside the triangle are further subject to the constraints 
0; y S20; and:z > 0. 
Now, how does our mapping, defined by doubling the distance to the 

nearest corner, look arithmetically? Suppose for our initial choice (%», Yo, Zo) the 

nearest corner is the lower left (y) corner. Then the image of (x9, Yo, Zo) iS (2Xo, 

2y. — 1, 2z,). The factors of 2 occurring in this mapping suggest using binary 

notation for the coordinates. Multiplication by 2 is then a simple left shift of 

the digits. Thus, the point 0 in Figure 14, which has the approximate coordinates 

(=, 2, &) = (0.0101, 0.100111, 0.000101), suffers the following fate: 

X= 0.0101 y,=O0.100111 x2 = 0.000101 

x, = 0.101 y; = O.O0OIII Z, = 0.00101 

x, = 0.01 y, = 0.0111 Z, = 0.0101 

x, = 0.1 y; = —0.001 z; = 0.101 

Here y; is negative—that is, (x, ys, Zs) lies outside the triangle—and the player 

who picked the point (Xp, Yo, Zo) is eliminated from the game. 

Once outside the triangle, the images “escape” to infinity. Arithmetically, 

what are the good initial choices that stay inside the triangle and thus are never 

eliminated? If we can find a complete answer to this question, we will also have 

discovered an arithmetic description of the Sierpinski gasket to boot! 

Then what led to the unwanted negative value of y, in the mapping? The 

answer is that y,, the largest preceding coordinate, was smaller than 3; in other 

words, the first fractional binary digit of y, was a 0 and not a 1. Hence, a good 

initial point must not have Os in all three coordinates for any of its fractional 

binary places. This rule is violated by (xo, Yo, Zo), which has only Os (not a single 

1) in the third binary places. Taken together with the constraint x + y + z= 1, 

this means that good points (x, y, 2), that is, members of the Sierpinski gasket, 

have precisely one 1 and two Os in every binary place of x, y, and z. 

There is a charming similarity here with the ternary representation of the 

original (middle-third—erasing) Cantor set, which contains only Os and 2s and 

no Is. In fact, the connection between this arithmetic representation of the 

' Sierpinski gasket and Cantor's construction is quite close: the first missing 1 of 

a Cantor number (right behind the “ternary point”) corresponds to the deletion 

of the interval (4, 2) from the unit interval. The absent 1 in the second ternary 

place corresponds to the subsequent elimination of the two intervals (5, =) and 

(, 3), and so on. 
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What does the absence of three Os in the binary representation of the 
Sierpinski gasket mean geometrically? Three Os in the first binary place to the 
right of the binary point would mean that neither x, y, nor z exceeds +. Geo- 
metrically speaking, this corresponds to the central half-size upside-down triangle, 
left white in Figure 14, which is thus excluded from the Sierpinski gasket—as 
indeed it is in the first step of the geometric construction of the gasket. We 
could also argue that a 1 in the first binary place of x, y, or z means that either 
x, y, or zis greater than (or equal to) +. Geometrically, these three cases correspond 
to the three half-size right-side-up triangles (shaded in Figure 14). 

What would three Os in the second binary place correspond to geometri- 
cally? A little triangular reasoning will reveal that they correspond to quarter- 
size upside-down triangles cut from the centers of the three half-size shaded 
triangles left over after the first cutting operation. In general, three 0s in the nth 
binary place imply the elimination of 3"! upside-down triangles of side length 
2~" from the 3"! right-side-up triangles left standing after k"—1 cutting op- 
erations. Thus, the binary representation of the Sierpinski gasket corresponds, 
place by place, to its geometric construction. The two descriptions are equivalent. 

A proper Sierpinski point is (5, $, 0) = (0.01, 0.10, 0), for example, which 
lies on the left side of the triangle, one-third up from the lower left corner. Our 
distance-doubling mapping will make it alternate, with period length 2, with the 
point (3, 3, 0) as is clear both geometrically and from the period length of 2 
of the binary fractions for > and 2. 

Are there periodic points with period length 3? If so, our mapping should 
be equivalent to a 120° rotation. To find such points, we simply have to consider 
binary fractions with period length 3. And indeed, (0.010, 0.001, 0.100) = 
, 7, 7), which is marked by a star in Figure 14, is such a point. The other two 
points of its orbit are (5, >, +>) and G, +, 3), reached by twice rotating 120° 
counterclockwise. The only other period-3 orbit is obtained by interchanging 
two coordinates—for example, by starting with (¢, 2, >), whose two successors 
are found by 120° rotations clockwise: (2, +, 7) and (, 3, 2). 

Periodic points exist for all period lengths. Thus, for example, the point (1, 0, 0), the upper comer of the triangle, has period length 1; that is, it (and the 
other two corners) are fixed points. We shall later encounter this scenario and similar mappings again, and we shall derive a formula for the number of different orbits of a given period length. (This derivation will involve the Moebius function from number theory, a function whose multifarious functions in higher arithmetic one should know about; it “twists things around,” much like the much better known Moebius strip.) 

Under the rules of the game, the image of a point in the Sierpinski gasket (called a Sierpinski point) is a Sierpinski point. The Sierpinski points therefore form what is called the invariant set of the map: once a Sierpinski point, always a Sierpinski point. If you start with a Sierpinski point with irrational coordinates, its orbit may look completely chaotic, but the succession of image points is fully determined by the coordinate values of the initial point. This is why such behavior, 



Introduction 25 

which abounds in nature, is called deterministic chaos: the rules governing the 
“game” are unambiguously deterministic, but the results are ultimately unpre- 

dictable because, ironically, the real world does not admit the vast majority of 

real numbers, namely, all those with infinite precision. 

Three Bodies Cause Chaos 

One will be struck by the complexity of 
this figure which I do not even attempt to 
draw. Nothing more properly gives us an 
idea of complication of the problem of 
three bodies and, in general, of all the 

problems in dynamics where there is no 

uniform integral 
—HENRI POINCARE 

A more attractive property of the Sierpinski points is that they are all repulsive 

points, or repellors; that is, a point arbitrarily close to a Sierpinski point will not 

stay near its images under our mapping, let alone be attracted to it; rather, its 

distances will diverge from the corresponding images of the Sierpinski point. In 

fact, the divergence will be exponential. The reader with a personal (or impersonal) 

computer is encouraged to try this and see for him- or herself. The reason for 

this exponential divergence is easy to see because our mapping corresponds to 

left shifts of the binary digits that encode the coordinates of the points. Thus, 

sooner or later, the first “error” bit will arrive at the binary point, which means 

that the initial difference, no matter how small, will have been magnified to half 

the height of the triangle. After that, all succeeding bits are random errors; the 

motion of an initially almost periodic point will become chaotic. In fact, this sim- 

ple example contains the very essence of chaos and accords fully with its definition: 

small initial errors grow exponentially until they “dominate” any regular motion. 

Although we may still not be aware of it, chaotic motion is much more 

widespread in nature than regular motion [Wis 87]. In fact, the jury is still out 

on whether planetary motion, the repository of regularity, is not chaotic in the 

long run. Certainly, Pluto and several other heavenly bodies already “stand” 

convicted of causing (or suffering) chaos. The smoke rising from a motionless 

cigarette in still air, first forming a regular (“laminar”) flow, becomes a turbulent 

swirl only a few inches above the ashtray (see Figure 16). And what happens 

when two stars (a “double star’), encircling each other elliptically (good behavior!), 

* meet a third star? Their regular motion turns wildly chaotic, (see Color Plate 

1A). But, just as with human triangular relations, in the end two stars may pair 

off again to resume a regular orbit, as is the case in Color Plate 1A. However, 

one member of the initial couple may have switched partners in the course of 

the chaotic confusion during the three-body encounter (see Color Plate 1B). 



Figure 16 The laminar and the turbulent in cigarette smoke. 
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Of course, Newton's laws of gravitation, which govern the motions of our 

three heavenly bodies, are completely deterministic. But the far-future fate of 

the three partners can depend very sensitively on their initial positions and 

velocities. Here we have another case of deterministic chaos. In fact, the ultimate 

stability of the sun’s planetary system, including Earth, humankind’s common 

spaceship, has still not been rigorously proved—even without meddling from 

Nemesis, the hypothetical dark and distant sister of our sun. 

We shall encounter more of this chaos, so intimately related to self-similarity, 

in the body of this book. And for the insatiable reader who has become addicted 

to disorder, there is James Gleick’s recent bestseller Chaos [Gle 87] to devour. 

Strange Attractors, Their Basins, and a Chaos Game 

Determinism, like the Queen of England, 

reigns—but does not govern. 

—MICHAEL BERRY 

Let us look at the inverse mapping of Sir Pinski’s game (see pages 20-25) and 

see whether it holds any surprises (or can teach us a lesson or two). Inverses 

are generally good to look at for a variety of reasons. For one, repellors turn 

into attractors (and vice versa). And new concepts arise, such as basins of attraction 

and strange attractors. 
In the inverse of Sir Pinski’s map, we again pick a point inside (or outside) 

an equilateral triangle, but now we halve the distance to the most distant corner. 

We can be pretty sure that halving will never lead to a divergent explosion. But 

what points will we converge on? 

First we remember that in Sir Pinski’s game a Sierpinski point will remain 

a Sierpinski point, and since the map has a unique inverse (except for points 

with equal distances to two or all three corners), the same will be true for the 

inverse map. 

But what happens to all the other points inside the triangle? Arithmetically, 

the inverse map looks as follows. If x is the smallest coordinate (i.e., if the x 

corner is the most distant one), then the inverse map of (z, y, z) is (I + x)/2, 

y/2, 2/2). In binary notation the division by 2 means a right shift and adding 

+ means inserting a 1 in the place to the right of the binary point. 

Let us start with a non-Sierpinski point, for example, (=, = =) = (0.001, 

- 0,010, 0.101), and follow its course. By our rule it will map into (0.1001, 0.001, 

0.0101), which will go into (0.01001, 0.1001, 0.00101), and so forth. Note that 

with each mapping we insert exactly one 1 and two 0s in the first place behind 

the binary point. With each further mapping this triplet will move one binary 

place to the right. Thus, asymptotically, no matter where we start, we approach 
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a Sierpinski number, which has exactly one 1 in all binary places. (And if we 
start with a Sierpinski number, we will, of course, stay with the set.) 

In fact, we will converge on one of the two period-3 cycles: 
(0.001, 0.010, 0.100) and its two successors, or (0.001, 0.100, 0.010) and its 
orbit—which of the two is determined by the coordinate values of the initial 
point (whether its ordered values constitute an even or odd permutation of x, 

, 2). 
: This insight, too, can be exploited in a game in which one has to predict, 
as closely as possible, the twelfth iterate, say, given only a rough initial location. 
If for the initial point x, > y) > z, holds, then after 3n mappings the image will 
approach the period-3 point with x > y > z, namely, (0.100, 0.010, 0.001), within 
less than 2~* (for an initial point inside the triangle). This point is thus the 
attractor for the 60° sector defined by x > y > z (whose apex is the center of 
Figure 14). This sector is its basin of attraction for the threefold iterated inverse 
Sir Pinski map. The five other period-3 points have the remaining five 60° sectors 
as their basins of attraction. The boundaries of these basins are smooth (in fact, 
straight) lines, in contrast to many other basins that we shall get to know, which 
have fractal rims. 

The inverse Sir Pinski game is kin to a “game” called chaos game invented 
by Michael Barnsley, as described in his recent book Fractals Everywhere [Bar 88]. In Barnsley’s chaos game, players “roll” a three-sided die, marked x, y, and z, and halve the distance of a preselected point inside a given triangle to the 
corresponding corner, also marked x, y, or z. (We leave the construction of the die to the reader as an exercise.) Alternatively, a random number generator with three possible outcomes will do. 

What is the basin of attraction of the chaos game? The Sierpinski gasket (affinely transformed if the given triangle is not equilateral)! The proof follows directly from our analysis of Sir Pinski’s game. However, the orbit of any initial point, as its iterates approach the attractor, will be completely chaotic. Such an attractor with infinitely many points that form a Cantor-like set is called a strange attractor—strange, because familiar attractors consist of either single points (fixed points), finitely many points (periodic orbits), or continuous manifolds that give rise to periodic or aperiodic orbits. 
Strange attractors are encountered in many (nonlinear) physical, chemical, and biological systems that are “not integrable” and therefore show ultimately unpredictable, chaotic behavior. In fact, the usual “textbook” cases, nicely in- tegrable, are now recognized as singular exceptions; the real world outside the textbooks, including romantic attraction, remains largely unforeseeable, moving along strange attractors, sometimes very strange attractors indeed. However, not all is lost; the world is not complete chaos. Strange attractors often do have structure: like the Sierpinski gasket, they are self-similar or ap- proximately so. And they have fractal dimensions that hold important clues for our attempts to understand chaotic systems such as the weather, , Strange attractors have recently found another, most surprising application. Barnsley has shown in his abovementioned book that many ordinary images, be 
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they black-and-white or in color, can be approximated by a superposition of the 

strange attractors of a limited number of affine transformations, each transfor- 

mation occurring with a given probability. An affine transformation in the plane 

is specified by a rotation, a scaling, and a displacement for each of the two 

coordinates. Since affine transformations in the plane are thus completely specified 

by six real numbers, an entire picture can be specified by some multiple of seven 

numbers, say 7° 13 = 91 numbers.’ 
To understand the approximation of images by strange attractors better, 

we note first that the Sierpinski gasket consists of three triangular regions, each 

of which is a contractive affine transformation of the entire gasket. (A contractive 

transformation decreases the distances between all pairs of points.) Geometrically, 

these affine transformations correspond to moving a point along a straight line 

to half the distance to one of the three corners of the Sierpinski gasket. Nu- 

merically, the transformations are given by inserting a 1 behind the binary point 

for x, y, or z and one 0 each for the other two coordinates while shifting all 

binary digits of the point (x, y, z) one place to the right. 

To generate the entire gasket, we start with an arbitrary initial point (xo, 

Yo, Zo) somewhere near the gasket and select one of the three transformations— 

rotation, scaling, or displacement—at random to give us a point (x1, yy Z1). On 

successive mappings, these three transformations are selected independently with 

given probabilities p,, p,, and p;. 

Because of the rules for inserting Is and 0s, it is clear that the iterates will 

soon grow closer and closer to Sierpinski points, that is, members of the gasket. 

Because of the randomness of selecting the different mappings, the iterates will 

not become stuck in a “periodic rut” but will “hop” around and “illuminate” the 

entire gasket. 
For equal probability, or p; = p2 = Ps = + each of the three parts of the 

gasket will be visited with equal likelihood. By choosing other values for the p;, 

we can produce different degrees of illumination or shadings for different parts 

of the attractor. 
This process for generating images can be further generalized as follows. 

Instead of selecting the three corners of an equilateral triangle, we can pick any 

three points in the plane. In fact, we can specify any number of completely 

general affine transformations, each with its own probability of being chosen. 

But even with these generalizations, it is still surprising that, using fewer than 

100 parameters, realistic looking scenes from nature can be generated by this 

“strangely attractive” method. 

The promises for highly effective image data compression by iterated f
unction 

systems, as the method is called by Barnsley, are mind-boggling—once image 

ePhcnbeld. UV} 4 ee oe ie a 

5. In number theory, 91 is jocularly known as the smallest composite number that looks like a 

prime, the reason being that there is no simple rule (other than division) to recognize its two 

factors. But note that 91 times 11 equals 1001, so that for numbers above 1000 divisibility by 7, 

11, or 13 can be tested by subtracting the appropriate multiple of 1001. Thus, 9399 is divisible 

by 13 because 390 is. 
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decomposition in terms of attractors is computationally expedited. Color Plate 2 
illustrates an image generated in this fashion. 

Percolating Random Fractals 

The Sierpinski gasket is an example of a two-dimensional deterministic fractal. 
Picking a point inside the triangle from which the gasket has been carved, we 
know immediately whether it is a member of the fractal set or “falls through the 
cracks.” Many man-made deterministic fractals, like the Sierpinski gasket, are 
visually attractive and algebraically intriguing. However, most of nature's fractal 
gaskets are best modeled by random fractals, generated by stochastic processes. 
Among the many cases that have been diagnosed from the point of view of 
random fractals is the spread of epidemics and forest fires. Other examples of 
such fractals are random resistor networks, polymer bonds, and, apparently, the 
ice floes drifting through the Bering Sea. 

To make things as discrete and simple as possible, consider a large square 
lattice whose lattice points are “occupied” independently with probability p<i1 
(see Figure 17). The “occupants” could be trees, people, atoms, or whatever; it 
does not matter. The fraction of the lattice points that are unoccupied or “empty” 
equals 1 — p. An important question is the following: Do the occupied sites form 
a continuous path from the lower edge of the lattice to the upper edge? A 
continuous path is defined as a path that goes from an occupied site to a neighboring occupied site. (The neighbors of a site are the sites immediately to 
the north, east, west, or south of it.) If such a path exists, the lattice is said to percolate (as in a coffee percolator, from Latin, “to flow through”). If the occupied sites were occupied by air and the “empty” sites by ground coffee, then the water could indeed percolate through the coffee. 

The smallest density p of occupied sites for which the infinite lattice per- colates is called the critical density or percolation threshold p.- In spite of its simple definition, the exact percolation threshold of sites on the square lattice is still unknown. Massive Monte Carlo simulations put it at approximately 0.59275, with more digits constantly being appended as increasingly more powerful computers are brought to bear. 
In addition to sife percolation, there is bond percolation, in which all the sites are occupied but the “bonds” from a site to its immediate neighbors occur with probability p < 1. Missing bonds have a probability of 1 — p. Percolation here means a connected path of bonds through the lattice. The bond percolation threshold for the infinite square lattice is known exactly: p. = 0.5. But it took two decades of simulation and theory to prove this simple-looking result. Thus, in a large random network of electrical resistors based on a square lattice, electric current could flow between two opposite sides if at least half the bonds were 
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Figure 17 Square lattice with randomly occupied sites below percolation threshold. 

conducting. The resistors through which the current actually flows are called the 

backbone of the cluster; the other resistors are called dangling bonds. 

At the site percolation threshold (p © 0.5927 for the square lattice), the 

occupied sites of the infinite lattice form clusters of connected sites of all sizes. 

In fact, their distribution follows a simple power law: the number n(s) of clusters 

having s occupied sites is proportional to s * with t = 187/91 = 2.054945 for 

the square lattice [Sta 85]. The power law n(s) ~ s * means that the ratio of the 

numbers of clusters of two different sizes is independent of cluster size s; it 

depends only on the size ratio. 
Figure 18 shows clusters of many sizes from pairs of sites (s = 2) to a 

“spanning cluster” that connects the upper and lower edges. A large lattice, 10 

times larger than the one shown in Figure 18, would show exactly the same 

- cluster distribution, except that it could accommodate clusters 10 times larger. 

Thus, percolating clusters are self-similar or free of scale, from the distance of 

neighboring sites to the size of the entire lattice. However, below the percolation 

threshold, the upper cutoff length for self-similarity is not the size of the lattice 

but rather the correlation length €, defined as the length over which the probability 
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Figure 18 Square lattice, probability of occupied sites equal to percolation threshold. Clusters occur on many size scales. These clusters form a statistically self-similar pattern. 

of two sites belonging to the same cluster has decayed to I/e © 0.368. For 
distances smaller than €, the occupied sites form a fractal; above & Euclidean 
geometry prevails, with the number of occupied sites M(R) ~ R* where d is the 
Euclidean embedding dimension. At the percolation threshold, & diverges to 
infinity and the probability that two sites, even at an arbitrarily large distance, belong to the same cluster is bounded away from zero. 

Percolating clusters, being self-similar fractals, ought to have fractal dimen- sions. The first measure that comes to mind is the so-called mass exponent D,,, which measures the number of occupied sites (the “mass”) M(R) within a circle 
of radius R: M(R) ~ R?». For Euclidean objects, of course, D,, equals the Euclidean dimension; for example, the area M(R) = 2R?, or, in other words, D,, = 2, for a filled disk. But for fractals, D,, is generally smaller than the Euclidean dimension (also called the embedding dimension) that contains (“embeds”) the fractal. For the triadic Cantor set, for example, the fraction of the included set M(R) grows on average as R®*; that is, D,, equals the Hausdorff dimension Dg=dog2 [log 3 © 0.63. Similarly, for the two-dimensional Sierpinski gasket, M(R) ~ R**. that is, D,, again equals the Hausdorff dimension D,; = log 3/log 2 © 1.58. 
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What is the mass exponent of the percolating cluster on a two-dimensional 
lattice? Theory gives a value of D,, = 91/48 = 1.89583, in good agreement with 
the best values found by simulation [Sta 85]. 

The integer 91 that appears in the numerical values for both t and D,, 
suggests that they are related. In fact, tT — 1 = 2/D,,. We shall return at some 
length to the interesting relationships between characteristic exponents in the 
chapters on percolation (Chapter 15) and phase transitions (Chapter 16). In Chap- 
ter 10, we’shall see that in many cases the mass exponent equals the correlation 
dimension D,, one—albeit an important one—in an infinite hierarchy of fractal 
dimensions. 

Power Laws: From Alvarez to Zipf 

Homogeneous power laws, like Newton’s universal law of gravitational attraction 

F ~r_’, abound in nature—dead and alive alike. Since homogeneous power 

laws, upon rescaling, remain homogeneous power laws with the same exponent 

(—2 in Newton’s case), such laws are, by definition, self-similar. In other words, 

Newton’s law is true on all scales, from the wavelength of light to light-years; it 

has no built-in scale of its own. Newton’s gravitational universe, if we so wished, 

could be compressed or inflated at will.° 
The same inverse square law that governs gravitation also describes the 

falloff of radar power with distance. This simple fact was exploited by German 

submarines during World War II. By measuring the increase in radar intensity, 

they could gauge the rate of approach of an enemy plane and dive undersea for 

safety before the plane could attack. 
This tactic worked very well for Grand Admiral Karl Donitz until the 

American physicist Luis Alvarez (1911-1988) had a foxy vision, code-named 

Vixen. Alvarez suggested reducing the radar power so that it would be pro- 

portional to the third power of the range of the submarine. Thus, while the plane 

was approaching, the power incident on the unsuspecting U-boat was actually 

decreasing, giving the false impression that the radar plane was flying away. A 

grand idea indeed! (For the attacking plane, however, the received radar power 

reflected from the boat would still increase as it closed in [Alv 87].)’ 

6. Recently, though, some doubt has been cast on the unlimited validity of Newton’s law. A 

still mysterious “fifth force” appears to knock on Newton’s underpinnings, adding terms that 

introduce a natural length scale of a few hundred meters [AZLPAGNCFFMSSBCGHHHKSW 89]. 

. At very small scales, Newton’s law runs into the Planck length (10”**’m), which reminds us that 

eventually gravitation needs to be properly quantized and endowed with uncertainty. 

7. This scheme of Alvarez is somewhat reminiscent of Genghis Khan (“Universal Ruler”) and 

the wily Mongol tactic perfected by the horsemen of the Golden Horde. While seemingly galloping 

away from their pursuers, they would actually allow them to close in and then suddenly stand 

up in their stirrups, turn around in their saddles, and launch their arrows at the dumbfounded 

enemy. 
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Another wide-ranging example of a homogeneous law is the one that 
connects the areas A of similar plane figures with their diameters, their perimeters, 
or any other of their linear dimensions /: areas are proportional to linear dimensions 
squared, or A ~ I’. Of course, this is not true for areas on curved surfaces; the 
radius of curvature introduces a length scale that destroys “truth on all scales.” 
In fact, as everyone knows, distances and areas on the surface of a sphere are 
limited to a maximum size, given by the radius of the sphere. 

In contrast to gravitation, interatomic forces are typically modeled as in- 
homogeneous power laws with at least two different exponents. Such laws (and 
expontential laws, too) are not scale-free; they necessarily introduce a characteristic 
length, related to the size of the atoms. 

Power laws also govern the power spectra of all kinds of noises, most 
intriguing among them the ubiquitous (but sometimes difficult to explain) 1/f 
noise. Thus, the noise in many semiconductor devices is not “white” (i.e., in- 
dependent of frequency) and not “brown” (with a 1/f* frequency dependence, 
like Brownian motion), but has an in-between exponent, which is why it is 
sometimes called pink noise. Pink noise is also a preferred test signal in auditory 
research, because it has constant power per octave (not per hertz) and is thus 
well matched to the inner ear’s frequency scale. 

And, as we shall see in the course of our excursion into the world of fractals, 
power-law exponents do not have to be integers; they can be, and often are, 
fractions. 

Not surprisingly, we find homogeneous power laws not only in the inanimate 
world; they inhabit living nature, and particularly human perception, too. Thus, over much of the auditory amplitude range, subjective loudness L is proportional 
to the physical sound intensity I raised to the three-tenths power: L ~ I°?. This means that merely to double the loudness of a rock group of five musicians, say, we have to increase their number tenfold, to 50 players of equal power output. (This minor calculation explains the resounding enamoration of popular music makers with electronic amplifiers.) 

By the same token, if we want to halve the loudness of a continuous “rumble” emanating from a busy highway, we have to reduce the acoustic noise output by a factor of ten! This may sound difficult, but it is not, at least not from a purely physical point of view: tire noise—the main culprit at steady highway speeds—decreases drastically with decreasing vehicle speed. In fact, the noise intensity is approximately proportional to the fourth power of speed. On the other hand, a tenfold increase in the average intensity of traffic noise caused by a tenfold increase in traffic density can raise the rate of complaints by irate residents perhaps a hundred fold: one loud truck every 5 minutes may be tolerable, but one every 30 seconds could be a nightmare and would certainly make outdoor conversation nearly impossible. And what is true for trucks is just as true for low-flying aircraft. 
Power laws are also ubiquitous in economics, In fact, nearly 100 years ago, the Italian economist Vilfredo Pareto (1848-1923), working in Switzerland, found 
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that the number of people whose personal incomes exceed a large value follows 
a simple power law [Par 1896, Man 63a]. Other instances of power laws in 
economics and the fallacies of trading schemes based on them are discussed by 
Mandelbrot [Man 63b, 63c]. 

One of the more surprising instances of a power law in the humanities is 
Zipf's law connecting word rank and word frequency for many natural languages. 
(The word with rank r is the rth word when the words of a language are listed 
with decreasing frequency.) This law, enunciated by George Kingsley Zipf (1902— 
1950), states that, to a very good approximation, relative word frequency f in 
a given text is inversely proportional to word rank r: 

1 

HO r In (1.78R) 

where R is the number of different words [Zip 49]. Laws like f(r) ~ 1/r are called 

hyperbolic laws. If we assume R = 12,000, for example, we find that the relative 
frequencies of the highest-ranking words (the, of, and, to, and so on, in order of 

rank) are approximately 0.1, 0.05, 0.033, 0.025, and so on. 
Figure 19 shows the close match between Zipf’s homogeneous power law 

and actual data. Claude Shannon, the creator of information theory, has used 

Zipf’s law to calculate the entropy of a source of English text that sputters words 

independently with Zipf’s probabilities [Sha 51]. This entropy is given approx- 

imately by 

a 
i x log, (2R In 2R) bits per word 

For R = 12,000, we get H ¥ 9 bits per word, while R = 300,000 yields an 

entropy of about 11.5 bits per word. Of course, this is only an upper bound, 

because words (though perhaps independent of actions) are not independent of 

each other—except in random “poetry.” This interdependence of words (“re- 

dundancy”) in a meaningful text, of course, reduces the entropy. 

Considering that the average length of English words is about 4.5 letters, 

or 5.5 “characters” including one space between words, we see that the entropy 

of English text is roughly bounded by 2 bits per character. 

Zipf’s hyperbolic law, which is applicable not only to the language as such 

but also to individual writers, has some rather curious consequences. To wit, for 

a good writer with an active vocabulary of R = 100,000 words, the 10 highest- 

ranking words occupy 24 percent of a text, while for basic (newspaper?) English 

with one-tenth the vocabulary (R = 10,000), this percentage barely increases (to 

about 30 percent). Of course, any writer would find it difficult to avoid words 

like the, of, and, and to. 

Zipf has endeavored to derive his law from Human Behavior and the Principle 

of Least Effort (the title of his 1949 treatise). But Mandelbrot, in an early effort, 

has shown that a monkey hitting typewriter keys at random will also produce a 
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Figure 19 Word frequency as a function of word rank follows Zipf’s law. 

“language” obeying Zipf’s hyperbolic law [Man 61]. So much for lexicographic 
Least Effort! 

A detailed analysis shows that if the monkey's typewriter has N equiprobable 
letter keys and a space bar (with probability p,), then his words (defined as letter 
sequences between spaces) have relative frequencies. 

fi) wee 1+log(1— po)/log N 

With N = 26 and p, =F, say, the exponent of r equals — 1.068, only slightly less than — 1. In general, the monkey words can be modeled as a Cantor set with a fractal dimension D that equals the reciprocal of the exponent of tie 
In our example, 

I 
D = ——____ les 0.936 1 — log (1 — p,)/log N 
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For a nine-letter alphabet and p, = 75, the exponent equals — 1.048, cor- 
responding to a Cantor “dust” with D ~ 0.954. An arithmetic model for the 
(infinitely many) words of this nine-letter “language” is all the decimal fractions 
between 0 and 1 in which the digit 0 never occurs (not counting Os at the end 
of terminating fractions). 

Here are a few “three-letter” words of this language: .141, .241, .643, .442, 
.692, .121. Of course, .103, .707, and .03 are nonwords because they contain Os. 

Such languages do not have an average rank, but the median word rank of 
our “exemplary” language is an astonishing 1,895,761; that is, it takes the 
1,895,761 most frequent words of the language to reach a total probability of 
one-half. (By contrast, the median word rank of English texts lies between 100 

for typical media output and 500 for highly literate writers.) Thus, the monkey, 
while strictly clinging to Zipf’s law, produces a rather wordy (and otherworldly) 
language. 

Another, equally surprising “speech pathology” of the monkey language is 

the impossibility of constructing a dictionary for it, because its words form an 

uncountable Cantor set. (We would perhaps not be put off by an infinitely thick 

dictionary, as long as its entries could be sequentially numbered—but we could 

never countenance an uncountable compendium.) 

If the monkey language has a fractal dimension, does it have any self- 

" similarities? It certainly has. Multiply all words of the “decimal language” by 10 

and drop the integer part (or, in general, just strike out the leftmost “letter” of 

each word) and you have another monkey word (most likely forming a nonsensical 

word sequence). In fact, the words of such languages grow on self-similar trees. 

Take any branch, no matter how high it is and seemingly small: it is identical to 

the entire tree. 
And here we see the difference from natural languages most clearly: com- 

monly spoken and written languages do not grow on self-similar trees—or, if 

we insist on hanging them from such trees (perish the thought), most branches 

would be dead. 
Indeed, in natural languages many letter combinations are nonwords. Never- 

theless, numerous English words are homographs (identical spellings) of words in 

other languages. And I do not mean such trivial cases as the uni(n)formed 

GENERAL, which means the same “thing” in many idioms. No, the interesting 

instances are “incognates” (unrelated words) such as the English word STRICKEN, 

which means to knit in German, or FALTER (a German butterfly) and LINKS (the 

German left). And what about such triplets as ART, which is a German word 

for KIND, which may mean MINOR in German, which in tur is a technical 

term in the theory of determinants (in either language). Finally, a fivefold string: 

~ ROT-RED-TALK-STEATITE-SOAPSTONES. Who can conceive sextuplets? 

There are “letterally” hundreds of Anglo-German words like that, and | 

once composed a (short) German story using only English words. When I showed 

this story to a German-speaking Hungarian in the United States, his bored 

comment was “nothing but random poetry”—even after repeated proddings to 
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look at the text with an open mind, as in visual texture (figure-background) 
discrimination, one of his research interests. When, half a year later, I showed 
the same text once more to the same Hungarian friend, this time in Germany, 
he read it and commented “Interessant! Interessant!!” Talk about the impact of 
context in human perception! (I leave it as an exercise to the linguistically inclined 
reader to compose a novel that makes sense in both German and English, or any 
other pair of languages in which at least the letter frequencies are not too different.) 

How about the French woman who was amazed at the quantities of “soiled 
underwear” offered for sale in the United States when she first came upon the 
common come-on Lingerie Sale? 

Sometimes a double-duty word engenders a double entendre, or rather a 
twofold misunderstanding. Shortly after I moved to Géttingen, the building 
superintendent of the physics institute, who collected my foreign parcel post 
from customs, went around the campus confiding that “Professor Schroeder is 
importing poison from the U.S.A. It even says so right on the packages: Gift!” 
Gift indeed, the German word for poison, and cognate to the English gift, because 
gift is something one gives (occasionally, anyhow), as in the surviving Mitgift, 
the bride’s dowry. 

When I told this tale to the (research) chemist Francis O. Schmitt of the 
Massachusetts Institute of Technology, he parried with the perfect misunder- 
standing in reverse. One of his students had once reported from a postdoctoral 
stay in Germany how generous indeed the indigenous chemical industry was: 
every other bottle in his lab was labeled GIFT! So, in certain parts of the world, 
better not to swallow the “presents.” 

Of course, not all homographs are quite so harmless. Consider Not, the 
German emergency. An Australian friend of mine (a linguist, no less) once found 
himself trapped inside a building in Austria (was the place on fire?), but every 
door that he approached repulsed him with a forbidding “verboten” sign saying 
NOTAUSGANG!—not exit? My increasingly frantic friend, desperately seeking 
Ausgangs, knew enough Latin and German (besides his native English) to properly 
decode aus-gang as ex-it. But in the heat of the emergency, he never succeeded 
in severing the Gordian knot: Not is not not. 

Newton’s Iteration and How to Abolish 
Two-Nation Boundaries 

As every pupil learns, the equation z” = 1 has not one but two solutions: z = +1 
and z = —1. But suppose we did not know this; we could then start with some initial guess z, and use Newton’s tangent method of finding a “closer” approxi- mation z,. In our case, Newton’s method gives z, = (z5 + 1)/2z,. For positive Zo, the approximation z, will lie closer to the solution +1. For example, for Z = 0.5 we get z, = 1.25. In fact, all z, whose real part is larger than zero, upon 
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repeated application of the formula, “migrate” toward +1. Similarly, z, with 
negative real parts will converge on —1. Thus, the line in the complex number 
plane for which the real part of z, vanishes (i.e., the imaginary axis) is the boundary 
between the two basins of attraction of the two solutions + 1 and — 1, respectively. 
Easy as pie. 

What about z* = 1? It has, of course, three solutions: z = 1, z = @, and 
z = w’, where w is the standard abbreviation for exp (i27/3). Starting again with 
an initial guess, Newton’s method now gives z, = (2z) + 1)/3z5 for the next 

. approximation. Iterating this formula, we expect to converge on one of the three 
solutions (1, w, or @”), depending on the sector in which the initial value z, is 

located. In other words, we expect the three basins of attraction to partition the 

complex plane into three 120° pie-shaped pieces. But nothing could be further 

from the truth, as the English mathematician Arthur Cayley (1821-1895) first 

noted with utter surprise in 1879. (We shall encounter Cayley again when we 

‘consider self-similar trees.) 

The real behavior of the harmless looking iteration z,,, = R(z,) = 

(2z3 + 1)/3z2 is complex almost beyond belief. For one, there are no pie-shaped 

pieces for the basins of attraction of 1, @, and cw’. In fact, there is, in the entire 

complex plane, not a single connected piece of boundary between two basins. 

Suppose we have a point z, that, upon iteration, converges on + 1, and suppose 

further that we have another point nearby that converges on @; then there is 

always a third point, even nearer to zo, that iterates toward the third solution, 

@’. It is as if international jealousy (or prudence) abhorred two-nation boundaries 

and a third country always interposed itself between two others. 

This kind of incredible behavior, and of such a simple equation at that, has 

stunned not only mathematical laity but many a hard-boiled professional too, 

until, from 1918 on, Gaston Julia (1893-1978) and Pierre Fatou (1878-1929) 

showed that, for iterations of rational functions in general, the boundary points 

of one basin of attraction are the boundary points of all basins. These boundary 

‘points form a set that is now called a Julia set in Gaston's honor (the complementary 

set of complex numbers is appropriately called a Fatou set). Thus, iterations that 

have more than two basins of attraction cannot have basin boundaries that are 

simple connected line segments. Such boundaries must, per force, be fractals 

consisting of totally disconnected point sets—an infinitely fine sprinkling of 

uncountable numerical “dust”. 

Color Plate 3 shows, in red, green, and blue, the three basins of attraction 

of 1, w, and w’, respectively, in the complex Gaussian plane. In the center of 

the figure (z = 0), we see a kind of cloverleaf where the three basins (each 

represented twice) meet in a single point. The central cloverleaf has three pre- 

images, again cloverleafs, albeit somewhat distorted. These three cloverleafs have 

nine even smaller cloverleafs as preimages, and so on ad infinitum, in a beautiful 

display of self-similarity. It is in this manner that all boundary points become 

boundary points of all three attractors, precisely as the point z = 0. In fact, the 

Julia set is the set of preimages of z = 0. But the true dustiness of the set can 
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never be shown with man-made machinery of finite resolution. In fact, a Julia 
set that is not the entire complex plane has no interior points. So it’s all or 
(almost) nothing for Julia sets. 

Instead of attractors, we can define a Julia set also in terms of repellors. 
Indeed, the Julia set J, of a rational function R comprises all of its (uncountably 
many) repellors. This makes intuitive sense because Jz is the boundary of R’s 
basins of attraction, but does not belong to the attractive basins themselves. 
However, the fact that the forward orbit of any repellor should “visit” all other 
repellors is a bit surprising. 

Interestingly, not only the forward orbit of a repellor, but its backward 
orbit too (generated by the inverse map), is dense in J». Since repellors become 
attractors for the inverse map, Julia sets can be computationally constructed in 
a stable, albeit nonuniform, manner from a single repellor subjected to the inverse 
map; small errors in the computation will not explode, as they would for the 
forward map. All this is beautifully explained in The Science of Fractal Images by 
Peitgen and Saupe [PS 88]. 

We shall come upon Julia sets again on pages 243-248 in Chapter 11, 
where we will deepen our knowledge of these fascinating and often fractal sets. 

Could Minkowski Hear the Shape of a Drum? 

When, in late 1910, the great Dutch physicist Hendrik A. Lorentz delivered the 
Wolfskehl lectures® at Gottingen, he threw in a conjecture that Hilbert (his host) 
immediately predicted to be unprovable in his lifetime. Lorentz’s conjecture, 
which is important in thermodynamics (for calculating the specific heat of solids), 
blackbody radiation, and concert hall acoustics, says that the number of resonances 
N,(f), up to some large frequency f, depends only on the volume V of the 
resonator and not on its shape. 

Someone in the audience by the name of Hermann Weyl (who later suc- 
ceeded Hilbert in Géttingen) didn’t share the great man’s pessimism. In fact, 
within a short while, Weyl succeeded in proving that, asymptotically, for large 
f and for resonators with sufficiently smooth but otherwise arbitrary boundaries, 

Fe ee ee ee 
8. Paid for from the proceeds of the (still unclaimed) Wolfskehl Prize, administered by’ the Gottingen Academy of Sciences and to be awarded for the settlement (one way or another) of Fermat's last theorem. The original amount of the prize was 100,000 gold marks, but inflation, engendered by two world wars, reduced this to 7600 deutsche marks. 
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where c is the velocity of sound (or light, in the case of blackbody radiation). 
The corresponding formula for two-dimensional resonators (think of drums or 
surface waves on a lake) is 

/ NG = aA (‘) 
iC 

where A is the surface area of the resonator. The result is asymptotically correct, 

to order f’, again independent of the shape of the boundary (perimeter). 

These stunning formulas were later improved by correction terms involving 

lower powers of f [HBM 39]. For example, for a given boundary condition, the 

correction term for N,(f) is 

AN(f) = =P 
NI RR a lH 

where P is the length of the resonator’s perimeter. 
What happens if we drop Weyl’s smooth-boundary restriction? What if 

the perimeter is a fractal, with fractal dimension D > 1? M. V. Berry surmised 

[Ber 79] that 
D 

JANA) = (: ‘ 

where L is a length constant and D is perhaps the Hausdorff dimension of the 

perimeter. This is a reasonable assumption because the exponent of f in any of 

the terms of these formulas, including the correction terms, equals the Euclidean 

dimension (3, 2, or 1) of the content measure (volume, area, or length) of the 

resonator. Thus, for a fractal perimeter that has infinite length and frac
tal dimension 

D, the corresponding power of f might very well be f”. 

Berry’s conjecture that D was in fact the Hausdorff dimension turned out 

to be wrong in some cases. Rather, as Lapidus and Fleckinger-Pellé have shown, 

the proper fractal dimension is that of Minkowski (LF 88]—another kind of 

nontrivial dimension, introduced by Hermann Minkowski (1864—1909)’ for dif- 

ferent purposes (and extended to fractals by Bouligand); it does not always 

coincide with the Hausdorff dimension. 

The definition of the Minkowski dimension D,, for a curve (be it fractal or 

smooth) is roughly as follows. Let the center of a small circle with radius r follow 

the curve to measure the Minkowski content, that is, the area F(r) of the resulting 

eee ee 
9. Minkowski, like Hilbert, was born in Konigsberg, where their lifelong friendship began. 

Minkowski fused geometry and number theory and gave special relativity its proper four-dimen- 

sional space suit (“space-time”) in preparation for its voyage, under Captain Einstein, into general 

relativity and modern cosmology. 
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“Minkowski sausage” traced out by the circle (see Figure 20). Divide the area 
F(r) by 2r and let r go to zero. For a smooth curve, the result will be the length 
of the curve. But for a fractal “curve,” the result may “explode,” that is, exceed 
any finite limit. In fact, the quotient F(r)/2r will be proportional to r'~°™, which— 
for Dy, > 1—will diverge to infinity for r > 0. The value of Dy, that measures 
this explosion is defined as the Minkowski-Bouligand dimension. Equivalently, we 
can define D,, by 

log F(r) 
Dy := lim —?>—— 

- ee log (1/r) 

provided the limit exists. (For some fractals, it is in better taste to distinguish 
between the two sides of the sausage.) For a smooth curve, Fir) ~r and 
Dy = —1+ 2 = 1, as expected. 

“Se 

Figure 20 A “Minkowski sausage” defines the “content” of a curve. 
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The preceding formula for D,, is reminiscent of that for the Hausdorff 
dimension, but note that in place of the number of “covering pieces” Nir) we 

have an “area,” F(r), the content of the Minkowski sausage. And there is a + 2 
added to the ratio of the logarithms. (This +2 could be made to disappear, 
however, by replacing F(r) by F(r)/r’ inside the logarithm.) 

It is conjectured that for all strictly self-similar fractals the Minkowski 
dimension is equal to the Hausdorff dimension D. If they are different, D,, ex- 
ceeds D. 

Why is it that the Minkowski, rather than the Hausdorff, dimension controls 

the number of resonant modes associated with the boundary? Intuitively, the 

reason is simple. Normal modes need a certain area (or volume) associated with 

the boundary (not the number of covering pieces as for the Hausdorff dimension). 
What happens if the resonator domain itself is a fractal, not just its boundary, 

that is, if the solid isn’t solid but has holes on all scales? How does such a fractal 

“sponge” vibrate? We might conjecture that the foregoing equation for N,(f) 
would then have to be modified to 

where d is an appropriate fractal dimension, called the spectral dimension, and a 

is some characteristic length. But we have to be careful here, because a fractal 

with D < 2 embedded in two dimensions is often but a “dust,” and how can a 

dust support normal modes? However, as we shall see in the chapter on percolation 

(Chapter 15), there exist, at and above the percolation threshold, infinite connected 

clusters of “atoms” that have a finite mass and can support normal modes of 

vibration. For wavelengths exceeding the typical cluster size, called the correlation 

length, the density of modes is that of a homogeneous body; that is, it is 

proportional to f 4—~1 where d is the (integer) Euclidean dimension of the space 

in which the percolating network is embedded. But for wavelengths below the 

correlation length, the normal modes “see” the self-similar fractal structure of 

the clusters and the mode density exponent drops from d — 1 to d — 1, where 

the spectral dimension d typically has a fractal value that differs from that of 

other fractal dimensions (the Hausdorff and Minkowski dimensions, for example). 

By analogy to the particles of light —the ubiquitous photons—normal modes 

of vibration, familiar from musical instruments, are commonly called phonons 

when quantized. Phonons are crucial to our understanding of many physical 

phenomena, including the specific heat of solids and superconductivity, at both 

‘low and high temperatures—perhaps even room temperature (in Alaska, with 

windows wide open, no doubt). Phonons live in crystal lattices and feel at home 

in amorphous substances too. Phonons in fractal media, when they exist, are 

now often called—what else?—fractons. Fractons are believed to play an in- 

creasingly important role in our understanding of a vibrant nature. 



44 CHAPTER ONE 

A related subject is the diffraction of waves from fractal structures (“dif- 
fractals”). Since far-field or “Fraunhofer” diffraction is essentially a Fourier trans- 
form, the self-similarities (deterministic or statistical) of the scattering fractal must 
be fully reflected in the diffraction pattern of the incoming radiation, be it 
electromagnetic, audible, or ultrasound, electrons, neutrons, or neutrinos. (Is 
neutrino diffraction by the fractal structure of the universe observable?) Clearly, 
wave diffraction is a sensitive tool not only for classical bodies, but for fractal 
matter too. Fractal diffraction is also pressed into (military) service to simulate 
radar clutter with (confusing) detail on many length and size scales. 

What happens to the density of normal modes for vibrating fractals whose 
fractal dimension exceeds their Euclidean dimension? Imagine a violin string whose 
local matter density varies in a Cantor-like way: the middle third of the string, 
say, has twice the density of the remaining two thirds, which in turn have their 
central mass densities increased by a factor of 2, and so forth ad infinitum. For 
a “classical” string of length L with uniform mass density, the number of normal 
modes is given by 

f 
c 

N,(f) = 2L 

In analogy with Weyl’s formulas, we expect the number of modes of the “jazzy” 
fractal string to vary as 

EV 

with D,, > 1. Here b is again a characteristic length. 
This brings up an interesting and, as it turns out, important question: Can we calculate the (variable) thickness of the string from its resonance frequencies? Such inverse problems occur in many guises in many fields. (For example, can we find the location of a tumor inside the brain from the x-ray shadow it casts in different directions? The answer, within limits, is yes—by computer tomography.) For the violin string, unfortunately, the answer is no. However, if we know the resonance frequencies for two independent boundary conditions, then we have all the information necessary to calculate the mass distribution of the (lossless) 

vibrating string. 
The solution of the string problem became important at one point in the author's research on basic mechanisms of human speech production (a prerequisite for better-sounding talking computers, without the unfeeling “electronic accent” that can still be heard today when machines “talk’”). One would, of course, learn a lot about human speech production if one could deduce the shape of the vocal tract (tongue position, for example) from the recorded speech sounds (which reflect the vocal-tract resonances). Such a capability would also help the deaf and hard-of-hearing as an adjunct to lipreading, because these people could then “see” the (computed) positions of the tongue on a video monitor. 
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Regrettably, this is difficult for the reasons just stated, namely, that fwo 
sets of resonances are needed. However, it turns out that determination of the 
input impedance of the vocal tract, measured at the lips, together with certain 
other assumptions, permits one to calculate the vocal-tract area function and 
therefore the motions of the tongue as the subject articulates different speech 
sounds [Schr 67]. 

Thus, the question whether we can hear the shape of the vocal tract has 
to be answered with caution. Yes, we can hear it (that is, after all, how we per- 

ceive speech)—but the solution is not unique: there are always several different 

tongue positions that sound alike. This articulatory ambiguity is in fact exploited 
by the ventriloquist, who manages to keep the lips immobile while using other 
articulators to “take up the slack” from the lips. 

Enough of Lorentz, Hilbert, Weyl, Minkowski—and ventriloquists! 

Discrete Self-Similarity: Creases and Center Folds 

Repetition is a seldom-failing source of self-similarity, beginning with such 

simple things as paper folding: Take a piece of paper and fold it once. This 

creates a V-shaped (left-turn) crease (see Figure 21A, generation 1). Fold it 

over again (parallel to the first fold) and you get three creases, V V A: the 

original center fold V, surrounded by a V on the left and a A-shaped fold on 

the right (Figure 21A, generation 2). Another folding in the same direction 

yields the crease sequence V V A V V A A (Figure 21A, generation 3). Further 

folding creates crease sequences of increasing lengths. Each new generation is 

obtained from the previous one by interpolating alternating V’s and A’s around 

its letters, beginning with a single V. Thus, the fourth generation reads 

VVAVVAAVVVAAVAA. In an alternative construction, generation 

n + 1 is obtained from generation n by copying it, appending a center fold V, 

and then appending generation n read backward with V and A interchanged 

[DMP 82]. This operation is equivalent to “pivoting” generation n around the 

center fold V (which is what the folding in fact does). 

But where is the self-similarity in this crazy succession of creases? Let the 

untold truth unfold! Pick every other “letter” in V V A V V A A, say, beginning 

with the second letter (V), an operation appropriately called unfolding, and you 

get the “mother” sequence V V A, which, by our alternative construction, must 

also be the initial part of the daughter sequence VV AV V A A. Thus, the 

infinite folding sequence, obtained in this manner, is precisely self-similar: taking 

- every second (even-numbered) crease recreates the entire sequence. Discrete self- 

similarity could hardly be simpler. 

Can you construct a direct, nonrecursive formula for the nth letter in the 

universal crease word? Suppose n is written as a binary number and the first 

digit to the left of the first 1 is. .. 
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(B) 

Figure 21 (A) Basic dragon curve, generated by right-angle creases. (B) Self-similarity revealed in later generations of the dragon curve. (C) Center creases (marked by dots) fall on a self-similar logarithmic spiral. 
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(C) 

Figure 21 (continued) 

The self-similarity inherent in the crease sequence can be brought to visual 

life by making all creases right angles (see Figure 21A). The fractal so generated 

is known as the dragon curve, because later generations (see Figure 21B) resemble 

a dragon. Two such dragons produce the twin dragon [DK 88]. The dragon curve 

is self-similar (see Figure 21C). The successive center folds, marked by little dots, 

fall on a logarithmic spiral, one of the basic (and smooth!) self-similar objects, 

with many interesting applications (see pages 89-92 in Chapter 3). 

A twin dragon (see Figure 22A) comes alive in a noteworthy number system 

using a complex base. With the advent of digital computers, the binary system, 

using only the two digits 0 and 1, became the most widely used notation 

for numbers.!° Nowadays computers deal a lot with complex numbers, that is, 

numbers having two “components”: a real part and an imaginary part. Complex 

numbers thus require fwo sets of binary numbers. It would be nice, of course, if 

10. True, Claude Shannon once built a computer called THROBAC based on the Roman numerals 

(I, I, Il, IV, and so on), but this exercise in masochism somehow did not catch on (in contrast to 

Shannon’s information theory, which continues to shine brightly). 
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(A) (B) 

Figure 22 (A) Twin dragon. (B) The proper fractions in the binary number system for 
complex numbers using 1 — i as a base: a mirrored twin dragon. Twin dragons tile the plane 
[DK 88]. 

complex numbers, too, could be written as single binary numbers, but that seems 
impossible (eschewing such foul play as interleaving digits). 

Yet there exists a complex number system using only the two digits 0 and 1, but its base is not 2. Obviously, the base must be a complex number, and its magnitude must not exceed ,/2. Otherwise, two binary digits would have to cover a magnitude range larger than 2. If we further call for evenhandedness between the real and imaginary parts, then a best-base bet would be (1 — i)= (2) exp (—iz/4) (or one of the other three primitive eighth roots of 16). Of course, we are paying a penalty in “programming” when using this ingenious system. For example, the number 2, which is simply 10 in the real- valued binary systems, is a little more “complex” (in both senses of the word) when using the base 1 — i. 
| Actually, calling the system based on 1 — i complex is something of an understatement. Figure 22B shows all those numbers in the complex (Gaussian) number plane that are proper fractions, that is, numbers in which only negative powers of the base appear, such as 0.1 = i= De or OF = (i a), (li) 77 +++ aj (Note that the periodic fraction 0.1 does not equal 1, as it does in the real binary system.) 

As is readily apparent from this illustration, the proper fractions occupy a simply connected area with a fractal perimeter, the twin dragon. But, in contrast 
that we encountered in previous 
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Figure 23 The generator for the twin dragon’s skin: Hausdorff dimension 1.52 .... 

can be written Nr? = 1. Replacing the unique length r of the generator by N 
different lengths r,, r,,... ry results in 

D, D D ee ei, ia 

Of course, for 1 = '2 = 1: = Ts = 3 we get the old value for the Koch flake: 
A(3)?" = 1 or Dy = log 4/log 3. 

To obtain D,, for the twin-dragon generator, we have to solve a cubic 
equation in r?#, namely, r?* + 2r;°" = 1. Although there are closed formulas 

involving radicals for cubic equations, I prefer a more conservative approach: 

my pocket calculator tells me that r7¥ = 0.5897545123... and, with r, = 

f/,/2, Dy = 1.523627... 
The twin dragon can be cut up into four pieces similar to itself (see Figure 

24). Thus, according to our generalization of Euclid’s scaling theorem for fractal 

figures (see pages 13-15), the skin of the mother dragon must contain the 

skin of one of the four child dragons not 2 times but 2°" = 2.875... times. 

(Now, of course, one wishes for the radical solution to see what this irrational 

ratio could possibly mean.) 

Golden and Silver Means and Hyperbolic Chaos 

Iteration, as was noted before, is one of the richest sources of self-similarity. 

Given the proper jump start, the repeated application of some self-same operation, 

be it geometric, arithmetic, or simply symbolic, leads almost invariably to self- 

similarity. Take for example the simple rule F,,, = F,4, + F,. Starting with 

F, = 0 and F, = 1, this recursion generates the well-known Fibonacci numbers: 

0, 1, 1, 2, 3, 5, 8, 13, 21,... What is self-similar about them? Multiplying each 

number by 1.6 and rounding to the nearest integer, we get 0, 2, 2, 3, 5, 8, 13, 
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Figure 24 The twin dragon contains four smaller replicas similar to itself, but its fractal skin violates Euclid’s scaling law for areas and perimeters of similar figures. 

21, 34, .. .—the same sequence, except for a few initial terms (and perhaps later 
ones). 

Taking ratios of successive numbers, we find Ese, 41 = 0, 1, 0.5, 0.6, 0.6, 0.625, 0.615 . . . ,0.619 . . . —numbers that appear to approach some constant. In fact, a little arithmetic shows that these ratios approach the irrational number r= (V5 — 1/2 = 0618... , the famous golden mean that tells us how to subdivide a piece of straight line so that the ratio of the shorter segment to the larger equals the ratio of the larger to the whole. Thus, the rith Fibonacci number should equal, approximately, some constant times y-". In fact, the approxima- tion is uncannily close: simply divide ¥-" by V5, which yields 0.45.1. 1. YO.7sdus 
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and—presto—the Fibonacci numbers, even for n = 0. 
What about the golden mean jy itself? Does it hide any self-similarities? 

Perhaps they are revealed if we write y down in the proper number notation: 
not in “dumb” decimal (0.61803 .. .), not in “bitsy” binary (0.100111 ...), and 
not in any other system that elevates some base number beyond its proper 
station. Rather, let us try a more natural representation, namely, continued fractions. 

Written as a continued fraction, becomes [1, 1, 1, . . .]. In general, [a), ay, az, . . .] 

is shorthand for 
iL 

Anrats 

eet 
I 

a,+-°° 

which should be banished even as a typist’s punishment. 
Figure 25 shows a rendering of the periodic continued fraction for the 

golden mean y that is geometrically self-similar. But what is self-similar about 

arithmetically? 
The continued fraction for a given positive irrational number « < 1 is 

calculated as follows: set x, = 1/a and apply the iteration x, 4, = 1/<x,>1, where 

the pointed brackets with the subscript 1 mean “take the remainder modulo 1” 

(for example, <1),=0.14 :..). Then the continued fraction for « is [|x], [x], 

\x,|, [x3], .--], where | | stands for rounding down to the nearest integer and 

the left-most term is the integer part of «. Since all terms (except the first) in 

the continued fraction for the golden mean equal 1, the number is a fixed point 

of the iteration x, +; = 1/<x,>,, also called the hyperbolic map. 

The hyperbolic map is particularly simple to execute if the “condemned” 

number x, is given as a continued fraction: simply move all terms of [ao, 4, 

a>, ...] one place to the left and drop the first term: [a,, a,, . . .]. Thus, the golden 

mean y = [1, I, 1, ...] is indeed a fixed point of the hyperbolic map. 

This map is also called the Gauss map because Gauss derived many of its 

properties, including the invariant distributions of x and a, [Schr 90]. 

Are there other such precious numbers expressible as periodic continued 

fractions with periodic length 1? Note that 1/y =y + 1. If we replace the +1 

by any other positive integer, we get the silver means T,, defined by 1/T,, = T, + 1, 

which have the continued fractions tT, = [n, 1, n,...] = In). 

The silver means [n] play an enormous role in a sheer, limitless wonderland 

of applications, encompassing curious quasicrystals, (easy) Ising spins, the mode- 

locking route to chaos, the “multiplication” of rabbits—and some even curiouser 

"games, such as the Fibonacci fleecing, effected by the golden mean. 

These numbers, like so many self-similar objects, contain the seeds of chaos. 

Try iterating the hyperbolic map, starting with a silver mean, on a computer of 

any finite precision: after a while the result will be utter chaos. As an example, 
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\ 

Figure 25 Geometrically self-similar continued fraction for the reciprocal golden mean. 

take as a starting value Qi13 — 3)/2 = 3, 3, 3, .. = 03027756 1. , the silver 
mean T;. Just keeping the first decimal digit, the hyperbolic map iterated on a 
small pocket calculator gives 0.3 eight times, followed by 0.2, 0.8, 0.2, 0.6, 0.4, 
0.0, 0.2, and so on—a completely unpredictable sequence with a totally chaotic 
tail. 

Similarly, the successive continued fraction obtained from T; by iterating 
the hyperbolic map eventually become chaotic: showing only the first term, 
[3,...] occurs nine times, followed by Ti ghia, Oar oe [2,04 TOS eer 
(Aras In, SPP POOr ee et ae ach eee Peer Where does this chaos come 
from? The continued fraction of any irrational number does not terminate: it has 
infinitely many terms. But finite machines have finite precision, and no matter how high the precision, the less significant terms, starting with some term, must 
be indeterminate. Thus, in our example, tT, is represented not by [3], where the line over the 3 stands for infinitely many 3s, but by [3, 3, 3, 3, 3523003, Ona: 1 4, 1, 2, 10, 4, 11, 90, 1, . . .]. After iterating the hyperbolic map nine times, the random digits have “moved to the front” and take over after that in a characteristic case of chaos. 
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Winning at Fibonacci Nim 

Let us put the golden mean y through some of its paces right now. Consider 
the two integer sequences. 

Bekiy l= 1 73)-4) 628505. 

bredk/yet= 25, 7et0! 13,4... 

called a pair of Beatty sequences. Between them, they “exhaust” the positive 

integers. Note that b, = a, + k and that a, is always the smallest positive integer 

not already used up by a, and b, for n < k. 
This property of the Beatty sequences just given leads to an interesting 

game called Fibonacci nim (also named Wythoff’s nim): two players alternate 

taking coins from two piles, always at least one coin, and if a player takes coins 

from both piles, then he must take the same number of coins from both. The 

player who takes the last coin(s) wins. 

Suppose initially there are 7 and 12 coins in the two piles and I have the 

first move. To win, I have to leave my opponent a Beatty pair (b,, a,), which I 

can always attain from a non-Beatty pair. The Beatty partner of the smaller’ 

number (7 = b,) is a; = 4; thus I take 12 — 4 = 8 coins from the larger pile, 

leaving my opponent the Beatty pair (7, 4), which means that he has now lost, 

because he cannot obtain another Beatty pair. 

Suppose he leaves me the pair (5, 4), which I cannot convert into (7, 4). 

But notice that the difference between 5 and 4 is 1. Thus, by taking 3 coins 

from each pile, I can realize the Beatty pair with the difference 1, namely, (2, 1). 

I leave it to the reader to convince himself that no matter which of the four 

possible options my opponent now chooses, I can always take the last coin(s) 

and thereby win. Once you receive a Beatty pair, you cannot, by yourself, recover 

from it, and you are beaten. 

It is interesting to note that there is a simple board game, called “corner 

the lady” [Gar 89], that is equivalent (“homomorphic”) to Fibonacci nim. Take 

a chessboard and place a “queen” anywhere in the top row or the rightmost 

column, shown in gray in Figure 26A. Two players alternate moving the queen 

either “west,” “southwest,” or “south.” To which cells should I move the queen 

so that, no matter what my opponent does, I have the last move to the starred 

square and win? 

The queen’s moves to the west or south correspond, of course, to taking 

_tokens from either of the two piles in the nim game. And the moves to the 

southwest correspond to taking on equal numbers of tokens from both piles. The 

etien hele! Ce 
11. If both numbers are equal, | take all the coins and win immediately. 
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(A) 
(B) 

Figure 26 (A) The board game “corner the lady” of Rufus P. Isaacs: The initial positions for the queen are shown in gray. The goal is to reach the lower left corner. (B) The safe squares for the lady are shown in dark shading. They are all those squares for which two opposing sides are pierced by one of two straight lines whose slopes equal the golden mean and its reciprocal. 

“safe” squares are therefore whose coordinates correspond to our Beatty pairs 
derived from the golden mean: (1, 2), (3, 5), (4, 7), (6, 10), (8, 13), and so on. These safe squares are black in the large board shown in Figure 26B. 

Is there a simple, purely geometric, method of finding all the safe squares? There certainly is. Draw a straight line from the lower left corner with slope equal to the golden mean (see Figure 26B). The squares whose east and west sides are pierced by the straight line are all the lower safe squares. (The upper safe squares are their images mirrored at the 45° diagonal.) 
We also remark in passing that Fibonacci’s “multiplying” rabbits have known this strategy since long ago—which is why the nim version of the game is called Fibonacci nim. 
In his Liber Abaci, published in 1202, the Italian mathematician Leonardo da Pisa, better known as Fibonacci (son of Bonacci), considered the question of how many rabbit pairs one would have after n breeding seasons, starting with a simple immature pair and assuming the following idealized rules for the growth of their numbers [Fib 1202]: 

¢ Rabbits mature in one season after birth. 

* Mature rabbit pairs produce one new pair every breeding season. 
© Rabbits never die. 
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It is easy to see that, with these rules, the number of rabbit pairs F,, in the nth 
generation must equal the sum of the number of rabbit pairs in the two preceding 
generations: F, = F,_, + F,,,. Starting with F, = F, = 1 yields the justly famous 
sequence of Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,..., which appears 
in innumerable situations. 

But the rabbits produce still another number sequence, a binary bit sequence 
which I have called the rabbit sequence [Schr 90]. Consider the two maps 0 > 1 

(“young rabbits grow old”) and 1 — 10 (“old rabbits stay old and beget young 

ones”). Beginning with a single 0, continued iteration gives 1, 10, 101, 10110, ..., 
resulting in the infinite rabbit sequence 1011010110110.... Is this sequence 
self-similar? Naturally it is. Just underline all the “10” pairs— 
10 110 101101 10-~--—and read them as Is, and read the nonunderlined 1s 
as Os, and the infinite rabbit sequence reproduces itself: 10110101... ! 

Where are all the Is in the rabbit sequence? They occupy the places numbered 
1, 3, 4, 6, 8, 9, 11, 12,..., which is the first of our golden-mean Beatty sequences, 

a,. And the Os are located at places 2, 5, 7, 10, 13, which is our second Beatty 
sequence, b,. So, apparently, the rabbits know the ropes of Fibonacci nim—but 
they have to go on multiplying... . 

There is still another curious connection between the rabbit sequence and 
the Fibonacci numbers, discovered by John Horton Conway [Gar 89, p. 21]. The 
“rabbit constant,” defined by the binary fraction .1011010110110... ob- 

tained by putting a “decimal” point in front of the rabbit sequence, equals the 

continued fraction [2°, 27, 2’, 27, 2°, 2°, 2°, 2**, 277, 2°"... .], where the exponents 

are none other than the Fibonacci numbers. 
We leave it to the reader to concoct similarly mean games based on a 

silver—rather than the golden—mean. What are the corresponding rabbit mul- 
tiplication rules for t, = [2] = J2 — I, say? 

Self-Similar Sequences from Square Lattices 

Take a square lattice (see Figure 27) and draw a straight cutting line through 

the origin with a slope equal to the golden mean y = [1] = 0.618... . Next, 

write a 1 every time the inclined line crosses a vertical lattice line and write a 

0 when it crosses a horizontal lattice line. The resulting sequence of 1s and 0s 

is aperiodic, because the golden mean is irrational, yet it has infinite long-range 

order because the sequence is deduced from an infinite rigid square lattice. 

What other properties are there to the infinite sequence, which begins 

- 1011010110110 ...? It is self-similar in the following sense. Consider each 1 

the beginning of a new “sentence,” and abbreviate the sentence 10 by 1 and 

the other possible sentence, 1, by 0. The result is the original (infinitely long) 

“novel’: 10110101 .... In fact, our novel is not that novel after all: it is the 

same old-young rabbit sequence we have just encountered in the Fibonacci nim 
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Figure 27 Square lattice and straight line with golden-mean slope ) generates the rabbit 
sequence 10110 . .. .The lower straight line has the silver-mean slope ,/2 — 1 and generates 
another self-similar binary sequence. 

game, only here the rabbits emerge from a square lattice. (I am sorely tempted— 
but will resist for the moment—to call such a lattice lettuce.) 

If, instead of abbreviating the golden-mean novel, we want to write it in 
the first place, we can start (like most authors) with nothing (0) and iterate the 
“rabbit” mapping 0 > 1, 1 > 10. 

What if the slope of the cutting line is one of the silver means T, = [n]? For 
n = 2, we have t, = 1/2 + 1/2 +---)) = J2 — I (see the lower cutting line 
in Figure 27). It generates the infinite sequence IIOIIOIIIO1101110110110.... 
It, too, is self-similar, another “scaling” novel. But where do the sentences start 
or end that reproduce the novel? Consider each 0 and likewise the first 1 of each 
triple 1 the end of a sentence. Abbreviate the first kind of sentence (110) by 1 
and the other sentence (1) by O. The result? The same old story: LIOI101110.... 

Conversely, the cutting sequence for T, is generated by the iterated mapping 
0 > 1and 1 > 110. 

For a cutting line with a slope corresponding to the next silver mean, Ty (3) te TR — 3)/2, the cutting sequence is 11101110111011110110..._ 
Where are the periods (“full stops”) between sentences? And how do we write the novel by iteration starting from scratch (0)? 
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Self-similar sequences, similar to the ones just exhibited, have recently gained 
notoriety as generators of one-dimensional quasiperiodic ‘lattices’ whose gen- 
eralizations to three dimensions are good mathematical models for a newly 
discovered state of matter called quasicrystals (see Chapter 13). 

Sequences, similar to the one discussed here, have also become prominent 
in computer graphics—specifically, the digitization of straight lines. For any slope 
m (not just the golden or silver means), the staircase function that best approx- 
imates a straight line running through an integer lattice is characterized by a 
sequence of Os and Is, called a chain code. Each horizontal step in the staircase 
is represented by a 1 in the chain code, and each vertical step by 0. Chain codes 
have the following property: one symbol occurs always in isolation, and the 
other symbol occurs in runs with at most two different run lengths. If the two 
run lengths differ, they differ by 1. In fact, for m > 1, the run lengths are |m| 
and [m]. (The “gallows” [| ] stand for rounding up to the nearest integer.) For 
m < 1, the run lengths are |1/m] and [1/m]. The run lengths are different only 
for noninteger m or 1/m. 

One method of recoding chain codes with different run lengths by two 
symbols is to assign one symbol to the shorter run length and the other symbol 

to the longer run length. The result of this recoding is another sequence of 

symbols of which one occurs in isolation and the other occurs with at most two 

run lengths that differ by 1. This invariance was discovered by Azriel Rosenfeld 

in 1973 [RK 82]. But the underlying number-theoretic question, namely, whether 

a given sequence of integers can be represented by rounding a linear function, 

was already addressed by one of the Bernoullis [GLL 78]. 

These results have been applied to efficient image coding and in picture 

recognition, specifically, for distinguishing straight lines from curved contours 

[WWM 87]. Present research in this area focuses on computationally efficient 

algorithms for detecting straight-line segments [KS 87]. 

A related recoding simply counts the number of places between two suc- 

cessive symbols that occur with different run length. Thus, the chain code 

1011010110110... is recoded as 10110101 .. . . | conjecture that this recoding 

of chain codes corresponds to a left shift in the continued fraction representing 

the slope m. 

John Horton Conway’s “Death Bet” 

-John H. Conway, the prolific British mathematician—now serenely ensconced 

in Princeton, New Jersey—became widely known, even outside mathematics, 

through his ingenious game called life (see Chapter 17, Cellular Automata). During 

a captivating talk entitled “Some Crazy Sequences” at AT&T Bell Laboratories 

in Murray Hill, New Jersey, on July 15, 1988, Conway delivered himself of one 



58 CHAPTER ONE 

tty (dd ff 

a 

aan , / Ble. 
7 

ANA‘ + % 5 

we 
af 

7! te 

ee 

oi 
a4, 

Figure 28 John Horton Conwa y wearing self-similar horned sphere. (Drawing by Fraser; courtesy of J. H. Conway.) Simon 
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more direct proof that mathematics is not only great fun but outright funny. 
After a few preliminary reminiscences about the Fibonacci numbers and the like, 
he introduced a sequence, a(n), that began, harmlessly enough, 1, 1, 2, 2, 3, 4, 
4,4, 5,.... The simple iterative law for this sequence is 

a(n) = a(a(n — 1)) + a(n — a(n — 1)) 

with a(1) = a(2) = 1 for starters. As in the Fibonacci sequence, each new term 
is the sum of two previous terms. 

Numerical evidence suggests that a(n)/n approaches 3 as n becomes large, 
and Conway challenged the audience to find an n, such that for all n > n, the 
absolute error |a(n)/n ~ A is smaller than 0.05. Since he and his wife (also a 

mathematician) found the sequence rather intractable, he offered $100 for the 
first solution to reach him. In a barely audible aside (but clearly detectable on 
the videotape that was made of his talk), he offered a $10,000 bet to the first 

finder of the smallest such ny. 
Precisely 34 days later, on August 18, 1988, Colin Mallows, a most capable 

colleague at Bell, presented the solution, including a formal proof, to Conway’s 

$10,000 question: n, = 317 3375556. I have written the solution as a U.S. 

telephone number, in Indiana, incidentally, because it was suggested that Conway 

was just kidding, that he knew the solution all along and that—upon dialing 

(317) 337-5556—his voice would come on the line to reassure the keen caller 

that he had the right number, all right, but was, unfortunately, a bit too late. 

(Actually, when dialing n,, one gets a recorded message to “try again.” Try 

again? After all the trouble to get the number in the first place!) 

As one might have guessed, the sequence a(n), being generated by a simple 

recursion, is replete with appealing self-similarities that contain the clue to the 

problem's solution. These self-similarities were speedily brought to light by 

Mallows, a statistician and data analyst, employing nothing more sophisticated 

than straightforward numerical computation and graphic displays [Mal 91]. 

We leave it to the PC-equipped rapt reader to discover for himself the tip- 

off self-similarities and other symmetries of Conway’s sequence a(n) or the simpler 

b(n) = 2a(n) — n (to take out the trend). What happens to b(n) for n = 2”, and 

why? And what is the Hausdorff dimension of the fractal function to which a 

properly normalized b(n) between n and 2n converges as n goes to infinity? Is 

there a simple direct formula for b(n)? As a warm-up workout, the reader may 

want to unravel the run-length law of a(n). 

Mallows, the grand winner, and Conway later agreed that Conway had 

meant to offer one thousand dollars instead of ten thousand. So Conway sent 

- another check, for the smaller amount, but Mallows kept the original prize check 

for framing. (Figure 28 shows John Horton Conway wearing a self-similar head- 

gear, the aptly named horned sphere.) 
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imilarity and Dissimilarity 

The Universe is built on a plan the 
profound symmetry of which is somehow 
present in the inner structure of our 

intellect. 
—PAUL VALERY 

The concepts of similarity and dissimilarity have long played an important role 

in human affairs and nature. We welcome similarity, but are often more powerfully 

attracted by the dissimilar. Mass attracts mass, but electrons are attracted by their 

opposite numbers: antielectrons, or positrons. In fact, electrons and positrons can 

consummate their love in a small bang with an energy of a million electron volts. 

(But more often than not, the dissimilar evokes discrimination. For a mild example, 

think of the Russian word for German: nyemets, meaning “the mute one” or “not 

one of us.” The reader will have no difficulty finding more partisan instances.) 

In the sciences, similarity has both mystified and illuminated. Why are all 

electrons similar to each other—in fact, for all we know, identical? Here is one 

of the great unsolved riddles that Nature likes to tease us with. Once we know 

the answer and why the electron and other “elementary” particles have precisely 

the masses, charges, and spins they have, we shall know a lot more about the 

environment we inhabit (and inhibit). In this chapter, before indulging further in 

self-similarity, we shall touch upon some of the uses to which the ideas of similarity 

and dissimilarity have been put in physics, psychophysics, biology, geology 

(mountaineering?), and other fields in which scaling is a crucial concept. 

More Than One Scale 

Measurement is usually thought of as an unambiguous, if imprecise, process. A 

soccer field has an area of roughly 50 meters times 100 meters. Thus, 5000 square 



62 CHAPTER TWO 

meters is the area of the field as far as the soccer player is concerned, or the 
real estate agent who sold the land. 

But there is another area associated with a soccer field or any other lawn 
or meadow: the area important to the little bug that stalks up and down the 
grass blades. This area, corresponding to the total surface area of all the grass 
blades, is much larger than the soccer-playing area of the field, perhaps by a 
factor of 100. This larger area is also the relevant area for the sun’s photons that 
are absorbed by the chlorophyll in the grass to convert carbon dioxide in the 
air to carbohydrates and oxygen. 

Thus, for a soccer field, the question What is its area? has at least two true 
answers; the field is characterized by two area scales that differ by a very large 
factor. In other situations, measurements can lead to many answers. For example, 
the boundary between two European countries typically depends on the scale 
used in its determination. Thus, on a globe of the world, the length of the border 
between Spain and Andorra (or Austria and Liechtenstein, if shown) is consider- 
ably shorter than that determined from a map of Europe, which in turn is shorter 
than the border length obtained from a map of the Pyrenees (or the Alps). 

TO 5 Australian Coast 

10,000 
z Oo —=O= (km) 

South African coast 

Measured length of coast 1,000 

10 100 1,000 
Length of yardstick (km) 

Figure 1 Measured lengths increase as the length of the yardstick is reduced. 
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Still longer lengths are obtained from more detailed maps, showing just 
the region in question, and from hiking maps. And actually walking (swimming 
or climbing) along the border will reveal an even longer length (see Figure 1). 
Thus, there is no one border length—there are many. In contemporary parlance, 
the border, like the fractal Koch curve discussed on pages 7—8 in Chapter 1, 
is said to have many length scales, an important concept in self-similarity and 
fractals. 

In physics, there are numerous phenomena that are said to be “true on all 
scales,” such as the Heisenberg uncertainty relation, to which no exception has 
been found over vast ranges of the variables involved (such as energy versus 
time, or momentum versus position). But even when the size ranges are limited, 
as in galaxy clusters (by the size of the universe) or the magnetic domains in a 

piece of iron near the transition point to ferromagnetism (by the size of the 
magnet), the concept true on all scales is an important postulate in analyzing 
otherwise often obscure observations. 

To Scale or Not to Scale: A Bit of Biology 

and Astrophysics 

Elephants and hippopotamus have grown 
clumsy as well as big, and the elk is of 
necessity less graceful than the gazelle. 
—D’ARCY THOMPSON 

Ironically, Galileo (see Figure 2), who discovered the scaling law for falling objects 

and thereby inaugurated modern experimental science, was also the one who 

noticed that some laws of physics (and biology) are not unchanged under changes 

of scale. In reflecting about the strength of bones, he argued that an animal twice 

as long, wide, and tall will weigh 8 times more. But, he pointed out, bones that 

are twice as wide have only four times the cross section and can support only 

four times the weight. Thus, to support the full weight, bone width must be 

scaled up by a factor greater than 2. This deviation from simple similarity intro- 

duces a natural scale in the design of animals, land-bound or aquatic: at some 

roughly predictable size, the bones become larger than the rest of the animal, 

and scaling (and the hypothetical beast) break down; see the essay by J. B. S. 

Haldane (1892-1964) On Being the Right Size [Hal 28]. 

Another instance of scaling in biology is the energy dissipation of warm- 

blooded animals as a function of their weight or mass (see Figure 3). One would 

naively expect the energy dissipation P as measured by daily caloric consumption 

to be proportional to the animal’s surface area, which, for “similar” animals, is 

roughly proportional to the two-thirds power of its volume or mass m: P ~ m’!°. 
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Figure 3 Energy dissipation of warm-blooded animals as a function of their weight. 

In fact, the slope in Figure 3 is tantalizingly close to +, yet there is a small but 

systematic deviation from the expected slope: larger animals dissipate more power 

than the relation P ~ m”> would predict. Actually, the data for a wide variety 

of species, including Homo sapiens, are much better fitted by an exponent of 3. 

Why? This is a good question that merits further study. Is it that larger animals 

are less energy-efficient? Are they pushing at the same constraint on size that 

finally did the dinosaurs in? It seems that people are getting taller and bigger by 

the decade and they should perhaps be careful lest they join the extinct mammoth 

in oblivion. 
A similar scaling failure occurs in photography, commonly referred to as 

reciprocity failure. It was discovered by the German astrophysicist (in fact, the 

founder of astrophysics) Karl Schwarzschild (1873—1916).' Schwarzschild, in 

é 
1. Schwarzschild was barely 16 when he published his first papers (on the orbits of double stars). 

As early as 1899 he developed theories of the curvature of space, and in 1916 he gave the first 

exact solution of Einstein's general relativity equations, predicting the existence of black holes once 

a star shrinks below the “Schwarzschild radius”, a characteristic length at which gravity overpowers 

all other forces. Thus, gravity limits the mass of both stars and animals. 
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cataloging the brightness of stars, found that a star half as bright as a reference 
star required more than twice the exposure, time to blacken the photographic 
plate to the same degree as the reference. To achieve a given degree of blackening 
at low brightness b, the required exposure time f is not proportional to the re- 
ciprocal of the brightness (as is true at higher brightnesses and shorter exposure 
times). Rather, Schwarzschild found, t? ~ b~ *, where the Schwarzschild exponent 

p is less than unity. 
Thus, when it gets dark (or when you stop down the lens of your camera 

too much), you should expose longer than you might think. In color photography, 
since the different colors show different reciprocity failures, the color balance 
may change at low illumination unless corrected by special filters. 

In spite of these failures, there is much to be gained by scaling—from fish 
to physics. 

Similarity in Physics: Some Astounding Consequences 

In physics, similarity arguments have carried us quite far. But even on an ele- 
mentary level, similarity reasoning can help a great deal. Think of a physical 
system whose potential energy LI is a homogeneous function of degree k of the 
spatial coordinates r,,: 

Uergstig =o Ub, Feed) (1) 

If we scale all spatial coordinates by a factor « and time by a factor B, then 
velocities are changed by a factor «/B and kinetic energy changes by «7/f”. 
Now, if «’/B* equals the factor «* for the potential energy U, then the Lagrangian 
of the physical system is multiplied by a constant factor w* and the equations 
of motion are unaltered. The resulting paths of all mass points (“particles”) remain 
similar to the original ones; the only change is a change of scales [LL 76]. 

Time intervals along the new path scale as 8 = «'~ “?, Energies, of course, 
vary as @", and angular momenta, having the same dimension as Planck’s quantum 
of action (energy x time), are multiplied by a! +. 

What can we conclude from all this? Let us look at a linear oscillator, whose 
potential energy is a homogeneous quadratic function, that is, a function for 
which the exponent k in equation I equals 2. A pendulum swinging with very 
small amplitudes is a simple example of a linear oscillator. Does the period of 
oscillation depend on the amplitude of the oscillation? We could, of course, solve 
the equation of motion and see that it does not. But that is unnecessary just to 
answer the question. As we just noted, times scale as «'~"/? which, for k = 2 
equals «°. Thus, we see immediately that all times, including the period of 
oscillation, are unaffected: the natural frequency of a linear oscillator, adhering 
strictly to a quadratic potential energy function, is independent of its amplitude 
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or energy. (In quantum mechanics this fact is reflected in the constant spacing, 
hv, between adjacent energy levels.) 

What about a nonlinear oscillator with a cubic-law restoring force, that is, 
a quartic (fourth-power, k = 4) homogeneous potential? Now we cannot solve 
the equation of motion with a simple trigonometric function. But similarity tells 
us that times must scale as «'~ "/” = a” *, that is, that frequencies are proportional 
to a: the higher the energy of the oscillator, the higher its resonance frequency, 
as might be expected for a spring with increasing stiffness. More precisely, the 
resonance frequency of such a nonlinear oscillator scales as the fourth root of 
its energy. (Quantum mechanically, E, ~ n*”*,) 

In a uniform force field, the potential energy is a homogeneous linear func- 
tion of the spatial coordinates; that is, k = 1. As a consequence, times scale 
as «' ‘/? =”, as indeed they do, a fact that an early practitioner of scaling, 
Galileo, discovered a long time ago in Pisa: he had to scale 4 times as many 
steps on the Leaning Tower to double the fall time (a fine tale, albeit apocryphal). 

In Newtonian attraction, the potential energy is inversely proportional to 

distance. Thus, k = —1 and, for circular orbits around a massive center, we must 
expect times to scale as «' “/* = a!” In other words, the square of a planetary 

orbital period is proportional to the cube of its size. And so we have just 

rediscovered a special case of Kepler's immortal third law of celestial mechanics— 
without solving a single integral! 

Isaac Newton, in his Principia, even considered more general “planetary” 

laws. For a circular orbit of radius r and period t, he deduced, from an assumed 

scaling relation t ~ 1”, the following law for the gravitational potential: U ~ fen 

The same result follows directly from our similarity principle. For n = +, we are 

back to U ~ 17‘ and the real world of falling apples and orbiting moons. In fact, 

it was Newton’s sudden inspiration’ that the gravitational pull the earth exerted 

on an apple was 3600 = 60’ times larger than the pull it exerted on the moon 

(60 times more distant from the earth’s center) that led him to formulate his 

universal law of gravitation: gravitational force must be proportional to the 

reciprocal of the distance squared. 
For U ~ r~2, a possible orbit is a logarithmic spiral: r(p) = re’? in polar 

coordinates, a self-similar object! See pages 89-92 in Chapter 3 and Figure 4 

for ait artistic elaboration of the logarithmic spiral by S. Kim. What does scaling 

tell us about velocities and timing for this motion as a “planet” spirals into (or 

away from) its sun? 

For U ~ r~?, acardioid r = r,(1 + sin @(f)) is a possible motion. What can 

we say about the angle (f)? 

Exploiting similarity, we can even prove the virial theorem, which relates 

average potential energy UL to the average kinetic energy T for bounded motions. 

Since the kinetic energy T is a homogeneous quadratic function of the velocities 

pei eee ie 
2. Intriguingly, the German word for inspiration is Einfall, spelled like ein Fall (a fall). 
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Figure 4 Logarithmic spiral to infinity [Kim 81]. 

and the potential energy U is a homogeneous function of degree k of the spatial 
coordinates, it follows (almost) immediately from equation 1 that 2T = kU. 

For the linear oscillator (k = 2) we recover the well-known equality between 
average kinetic and potential energies: T = U. 

‘ 

Similarity in Concert Halls, Microwaves, 
and Hydrodynamics 

Similarity transformations have been particularly fruitful in hydrodynamics and 
other difficult fields. Already in the nineteenth century, Sophus Lie (1842—1899) 
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and later George David Birkhoff (1884—1944) had looked for transformation 
groups that leave given partial differential equations, and thus their solutions, 
invariant. Such solutions are called similarity solutions. 

Suppose the following limit of a solution (x, y) exists: 

lim e*(e’x, ey) = D(z, y) (2) 
é>0 

Then the similarity solution, O(x, y), obeys the following scaling law: 

D(x, y) = A’°D(A'x, Ay) 

which follows immediately from equation 2 and is, in fact, a generalization of 
equation 1. 

But scaling is not always that easy. A good method of designing concert 
halls and opera houses, for example, is to build scale models first and study sound 
transmission in them, instead of in the finished hall.* Linear dimensions, wave- 
lengths, and frequencies scale easily. In a one-tenth scale model, for example, all 
linear dimensions are one-tenth of those in the real hall. Thus, since sound 
diffraction from hard surfaces depends only on the ratio of the wavelength to 
the linear dimensions of the scattering surfaces, wavelengths should likewise be 

scaled down by a factor of 10. For a fixed sound velocity (c = 343 m/s in dry 

air at room temperature), this means that frequencies should be scaled up by a 

factor of 10. Travel times are, of course, 10 times shorter in the scale model. 

Thus, times scale inversely with respect to frequencies—a good thing, because 

frequencies are measured in reciprocal seconds. But sound absorption (by people, 

for example) is more difficult to scale. Nevertheless, special materials (known as 

“instant people”) have been invented that mimic human absorption at upscale 

frequencies. 
Absorption, friction, and other energy loss mechanisms generally cause 

scaling difficulties. For example, a microwave cavity (a hollow metallic resonator) 

scaled down in size by a factor of 10 has its resonance frequencies scaled up by 

the same factor of 10. However, the minimum bandwidths of its resonant modes 

(es determined by skin-effect losses) will go up by a factor of 10°” = 32, because 

the small penetration depth of electromagnetic fields in conductors (the finite 

penetration depth causes the skin effect) is proportional to f” ‘A not f™etThe 

relative bandwidth of an electromagnetic cavity resonance is given approximately 

by the ratio of two volumes: the inner surface area of the cavity times the skin 

depth—i.e., the volume where the energy losses occur—divided by the total 

Pa eee ene eee ee 
3. But the alternative approach, first building the full-scale hall and then the scale models, has 

also been tried——with disastrous consequences requiring expensive “remodeling” (a euphemism if 

there ever was one). 
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volume of the cavity, or the volume where the energy is stored. At least some 
things about microwaves seem safe and simple. 

Another instance where friction causes endless scaling problems is in ship- 
building model basins. A battleship scaled down in size by a factor of 50 
experiences rather ill-mannered drag forces because drag is caused by viscous 
boundary layers, which, like the skin effect, follow a different scale. 

How much size can affect scaling is illustrated perhaps best by the following 
eyewitness observation. A large ocean liner, “steaming” into New York harbor 
during a tugboat strike, had to shut off its engines miles ahead of its berth and 
then drift with the slowing tide up the Hudson River to arrive exactly at its pier 
just as the tide began to turn. This is no mean feat, because stopping distances 
of ocean liners, without external assist, are rather larger than even those of titanic 
trucks on glare ice. 

By contrast, stopping distances on microscopic scales in anything but fric- 
tionless fluids (superfluids) are so short that any particles suspended in a liquid 
seem devoid of inertia. This was, in fact, the experience of the present investigator 
while observing hydrodynamic streaming in a model of the inner ear under a 
microscope: the moment the sound was turned off, the streaming motion stopped 
instantly, as if everything were massless. Such is “life at low Reynolds numbers” 
as described in an engaging article of that name by Edward Purcell [Pur 77]. 
Reynolds numbers are only one kind in a long list of dimensionless numbers 
that reflect the importance and difficulty of scaling in hydrodynamics [McG 71]. 

Scaling in Psychology 

Whereas measurement in classical physics is a well-understood process, relating 
an observed quantity to a well-defined unit, the situation in psychology was not 
so clear-cut until the physiologist E. H. Weber (1795—1878)—brother of the 
physicist Wilhelm Weber (1804-1891), collaborator of C. FE. Gauss— 
made careful studies of the sensations of sound and touch, thereby laying the 
foundations of a new science, the science of sensations. According to Weber's 
law, an increase in stimulus necessary to elicit a just noticeable increase in sensation 
is not a fixed quantity, but depends on the ratio of increase to the original 
stimulus. Later, the physicist and philosopher G. T. Fechner (1801—1887) restated 
Weber's law (as the Weber-Fechner law) and specified its domain of validity.* 
Modern psychologists, and particularly S. S. Stevens, have succeeded in intro- 
ducing measurement methods into psychology that are nearly as unambiguous 

Sr Se eek ee 
4. Fechner also fathomed experimental aesthetics by measuring which shapes and dimensions 
are most pleasing. He may have been the first to conduct a public opinion poll (to discover which 
of two Holbein paintings was preferred by most people). 
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as objective measurements in physics [Ste 69]. The new discipline has therefore 
tightly earned the designation psychophysics, of which psychoacoustics is a special 
branch, as is psychovisual research. 

One of Steven's great contributions was the introduction of ratio scales for 
subjective variables (like loudness and brightness) and the discovery of simple 
power-law relations between these subjective variables and corresponding physical 
quantities (like energy flux or intensity). 

For example, for a sound to double in loudness L, its intensity I has to be 
multiplied by a factor of 10; this is true over much of the intensity range that 
the human ear can perceive without pain (a range exceeding 12 orders of mag- 
nitude at mid-range audio frequencies). Thus, because log, 2 0.3, we have the 
following power law for loudness as a function of acoustic intensity: 

baw T** (3) 

Someone who has not participated in a psychoacoustic scaling test might object 
that “loudness doubling” is not a well-defined concept. But surprisingly, the ran- 
dom scatter encountered in such tests is remarkably small even between different 
listeners. 

The exponents found in psychophysical power laws, such as the value 0.3 
in equation 3, are not universal but are specific to the sense modality studied 
(subjective brightness, perceived weight, or apparent length, for example) and 
have been analyzed in great detail by psychophysicists.’ One important research 
question concerns the transitivity of these exponents when comparing loudness 
with weight and weight with brightness, for example, and what it might reveal 
about brain functions. 

If we replace the sound intensity I in equation 3 by the sound pressure p, 
then, because intensity is proportional to pressure squared, we have 

L PS, pe 

Interestingly, the exponent 0.6 can be derived from an exponent of 0.5 found 

at a more fundamental level, the Fourier-like “critical” frequency-band decom- 

position of sounds in the inner ear. The exponent 0.5, in turn, turns our attention 

in the direction of statistical analysis and uncertainty, resulting in the following 

simplified model of loudness perception. If loudness were perceived as the mean 

rate of nerve pulses traveling along the acoustic nerve up to higher auditory 

centers in the brain, and if these pulses were a modulated Poisson process whose 

mean rate was proportional to the sound pressure p, then the uncertainty of the 

- number of pulses in a given time interval (100 ms, say) would be proportional 

to p°°. Since many ratio scales in psychophysics are found to be directly related 

5. Thus, universality, so beloved by physicists, is lacking in psychophysics. 
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to perceptual uncertainties (“just noticeable differences”), the observed power 
law for subjective loudness versus physical intensity would then indeed be pre- 
dicted by such a statistical model of neural firing rates. 

In reality, loudness perception is more complicated, but the observed power 
laws and their exponents have yielded important clues and steered researchers 
in the right direction. 

Acousticians, Alchemy, and Concert Halls 

Concert halls are built to transmit pleasing sounds from performing musicians 
to attentive listeners (while keeping everybody dry and comfortable at the same 
time). Thus, nothing seems more apropos for an acoustical scientist than to 
measure the “frequency response” of a concert hall between the stage and various 
points in the audience area. Here frequency response means the effectiveness with 
which various frequencies (musical pitches) are transmitted between two distant 
points in the hall. Figure 5 shows a typical sample of such a frequency response 
on a logarithmic scale versus frequency. 

The many ups and downs of such a response, even over narrow frequency 
intervals, are immediately apparent, as they were to Edward C. Wente (1889-— 
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Figure 5 Sound transmission between two points in a concert hall as a function of fre- quency. Note large statistical fluctuations. 
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1972), inventor of the condenser microphone, who first published such a response 
in 1935. As a communications expert, Wente wondered (in print) why people 
could actually enjoy music in concert halls, given such large response fluctua- 
tions—fluctuations that exceed even those of the cheapest loudspeaker. The 
answer is that, when listening to speech or music, the ear unconsciously “switches” 
to a short-time spectral analysis, which, in accordance with Heisenberg’s uncer- 
tainty principle, does not resolve fluctuations on such a fine frequency scale as 
shown in Figure 5. 

Oblivious to the profound perceptual insignificance of these high-resolution 
frequency responses, acousticians around the world kept measuring them with 
great abandon. Worse, before too long, various supposedly objective criteria for 
acoustical quality were concocted from these responses. Of course, every time 
a new concert hall “came on line” (was inaugurated, to use a more archaic term), 

the extant criterion had to be modified to make the new hall’s response char- 
acteristics conform with its perceived musical quality. These “scientific” attempts 
have been compared, quite appropriately I think, to tea-leaf reading and alchemy 
(although one should not unduly belittle the latter). 

When the author, then a young student at Gottingen, heard about these 
activities—still going strong in 1954—he thought that maybe these frequency: 
responses were nothing but noise in the frequency domain (technically: the mod- 

ulus of a complex Gaussian process, resulting from the random interference of 

many overlapping room resonances). If this was indeed so, then practically all 

frequency responses in large halls should be similar to each other, characterized 

by a single scaling parameter: the reverberation time of the hall. 

This turned out to be the case, as further measurements soon revealed. For 

example, the average frequency spacing (in hertz) of the response maxima was 

found to be about 4 divided by the reverberation time (in seconds), in excellent 

agreement with the theoretical prediction [Schr 54, or, in the most recent English 

translation, Schr 87]. Thus, people have been measuring nothing but reverberation 

time all these years, and in a very complicated and roundabout way at that. 

Ironically, the “new” criteria that had been distilled from frequency responses 

were supposed to supplement reverberation time, which had been found wanting 

in its predictive power of acoustical quality. Thus, a little insight and a good 

similarity argument liberated a lot of manpower from a useless pursuit. 

High-resolution frequency responses became important later in solving the 

problem of stability of public-address systems, for which acoustic feedback (“howl- 

ing”) always threatens to become a problem. By shifting all frequency components 

of a speech signal by the average spacing between the room’s response maxima 

and minima (a few hertz, according to the aforementioned statistical theory), the 

- stability can be considerably increased—a howling success [Schr 64]. 

More generally (and perhaps more important), the theory of randomly 

interfering coherent waves has assumed a central role in the analysis of hologram 

laser speckles and electromagnetic multipath propagation; think of mobile cellular 

telephones in cars and the cordless handset at home, a marvelous invention, 



74 CHAPTER TWO 

wy especially when it comes with the matchless sound quality of a good “corded 
phone. 

Preference and Dissimilarity: Concert Halls Revisited 

In this section we shall make a brief call on a problem in psychological scaling 
with which the author, although not a psychologist himself, is somewhat familiar: 
the ranking of concert hall acoustics. 

A deeply entrenched procedure for getting a reading on the acoustical 
quality of a concert hall (or opera house) is to collect comments from listeners, 
musicians, conductors, and music critics. These subjective ratings are then cor- 
related with various architectural and physical characteristics of the hall (such as 
width of the listening area, reverberation time, and frequency response). From 
these correlations a mathematical formula is then constructed for predicting 
acoustic quality on the basis of measurable, objective parameters; see, for example, 
Beranek’s book Music, Acoustics and Architecture [Ber 62]. 

Typical responses elicited from German-speaking music lovers to charac- 
terize the acoustics of concert halls include such lovely locutions as glasklar, 
jammerlich, krankhaft, ruinés, unheimlich, and—last but not least—wunderbar. To 
translate these high-sounding words into basic English would be sheer waste 
because they are not only ill defined but nearly meaningless in any language. 

At Lincoln Center for the Performing Arts in New York City, Philharmonic 
Hall (now Avery Fisher Hall) had been designed on the basis of the aforementioned 
approach, and thus it is unsurprising that it required a major acoustic rescue 
effort. When the author was confronted with this, he and his colleagues recognized 
that as a first order of business, more reliable methods for the subjective (and 
objective) evaluation of concert halls had to be developed. 

New objective measurement techniques [ASSW 66] revealed that the over- 
head acoustic panels (“‘clouds”; see Figure 6) did not reflect low-frequency com- 
ponents (especially from the cellos) with sufficient strength into the main audience 
area [SASW 66]. This was partly the result of poor scaling: to properly reflect 
musical notes of different wavelengths from an acoustic panel (not a panel of 
listeners), the panel's geometric dimensions must be at least comparable in size 
with the longest wavelength present in the sound. In actual fact, they were much 
too small, a failure that evoked both seering sarcasm and much mirth.° 

6. The maestro of the acclaimed Cleveland Orchestra, the none-too-reticent George Szell, was 
so enraged by the whole debacle that he dubbed the panels “schwangere Frésche mit beleuchtetem 
Bauchnabel” (pregnant frogs with illuminated navels—on account of their double-duty function as lighting fixtures). A contemporary New Yorker cartoon showed two ladies walking in the foyer 
under the Lipchitz sculpture (vaguely reminiscent of suspended acoustic panels) and remarking, 
“No wonder the acoustics is so bad in there; it’s all hanging out here!’ 
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Figure 6 The acoustic panels (“clouds”) in Philharmonic Hall, Lincoln Center for the 

Performing Arts, New York. ' 

To put the subjective evaluation of concert hall quality on a firmer basis, 

the author suggested eschewing the use of any ill-defined epithets, such as those 

quoted in this section, and restricting listeners’ responses strictly to an expression 

of acoustic preference between two halls or a degree of dissimilarity that they 

perceived. To preserve individual differences in musical preference, these re- 

sponses were not simply averaged but were analyzed by modern multidimensional 

scaling algorithms [SGS 74]. With a sufficient number of responses—even just 

binary responses as in the case of two-valued preference judgments—these al- 

gorithms are capable of constructing a well-defined Euclidean space, usually of 

two or three dimensions, in which Euclidean distances are closely proportional 

to the perceived dissimilarities or differences in preference. 

Figure 7 shows an example of a so-constructed preference space. The different 

symbols T,, Q;, and so forth, represent different concert halls and recording 
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Figure 7 Preference space for concert halls. 

locations in these halls (e.g., Q, is the third location in concert hall Q). The 
numbered arrows are unit vectors representing the 10 listeners who participated 
in this preference test. (The fact that some arrows appear shorter than others 
indicates that they have nonnegligible components in the third dimension used 
in the analysis, which is not shown here.) 

For each pair of the 10 test conditions, for example T, and E,, each of the 
10 listeners states which of the two conditions he prefers. The accumulated 
preference data (a total of 450 paired comparisons) is subjected to multidimen- 
sional scaling by a metric linear factor analysis [Sla 60]. 

A computer program that implements this factor analysis iteratively changes 
the position in the preference space of each test condition, for example T,, and 
the direction of each listener vector in a three-dimensional Euclidean space 
until the normal projections for all 10 test conditions on each of the 10 listener 
vectors agree, as closely as possible, with the preference data. Thus, Figure 7 
tells us, for example, that listener 3 prefers test condition T, least and Q, most. 

For an exact representation, a 10-dimensional Euclidean space would gen- 
erally be required. In fact, almost 90 percent of the total variance in the data is 
accounted for by the two first dimensions of the preference space. 
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Since almost all listener's arrows in Figure 7 point into the right half plane, 
the abscissa could be labeled “consensus preference.” Indeed, if some architectural 
modification of a hall would move the position in the preference space for a 
given location in that hall to the right, all listeners, except one (listener 4), would 
respond with a higher preference score for that seat. 

By contrast, about half the arrows point into the upper half plane and about 
half into the lower. Thus, the ordinate strongly reflects “individual differences” 
in musical tastes—a personal dimension that should be honored in the design 
of spaces for the enjoyment of music. 

Subjective tests in which judgments of dissimilarity were elicited from the 
listeners gave very similar results. Thus, our confidence in multidimensional scaling 
methods for constructing perceptual spaces was further strengthened. The success 
is doubtless due to two ingredients (or, rather, omissions): 

1 Avoiding the use of ill-defined terms or empty words to describe acoustic 
quality 

2 Not forcing musical tastes into a one-dimensional Procrustean bed (Procrustes 
would have loved the very thought of one-dimensional cots) 

In conclusion, we should mention one “technical detail’ without which the 
cited results could not have been achieved. Comparisons between the (often 
subtle) acoustic differences prevailing in different halls are notoriously difficult. 
Listening experiences separated by days or weeks, based on different musical 
programs, executed (good word!) by different orchestras, are highly unreliable. 

Thus, much would be gained by the possibility of instantaneous comparisons 

between different halls. This requirement was realized in the aforementioned 

study by an ingenious method that allowed faithful reproduction of music recorded 

in different halls at different times, using a tape recording of Mozart's Jupiter 

Symphony (and representatives of other musical styles) played by the English 

Chamber Orchestra in an anechoic environment and kindly made available to 

the author. 
Figure 8A shows three crucial collaborators in this project. The reproduction 

method [Schr 70] is based on the fact that most people have just two ears. By 

properly preprocessing the two audio signals from the dummy head shown in 

Figure 8A, it is possible to transfer these two signals, via two loudspeakers, to 

the eardrums of a listener seated at some distance in front of the loudspeakers 

(see Figure 8B). The preprocessing, a kind of inverse filtering, compensates for 

the cross talk from each of the loudspeakers to the “wrong” ear. Since the sound 

- transfer matrix between loudspeakers and ears is nonsingular for proper loud- 

speaker placement in an anechoic listening room, a physically realizable inverse 

exists, which is then incorporated into appropriate cross-talk compensation filters. 

The transfer matrix and its inverse depend upon the geometry and sound dif- 

fraction around the listener’s head, which is measured for a “standard” head 



(A) 

Signal for left ear Signal for right ear 

Cross-talk compensation filter 

Figure 8 (A) Three crucial collaborators 
in concert hall measurements. (B) Listening 
to loudspeakers with compensated cross- 

(B) Listener talk between the two speakers. 
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shape. (For once, success depends not so much on a head’s inner workings but 
on its outer shape.) 

To test this method of sound reproduction, sound waves arriving laterally 
from an angle of 90° were simulated using two loudspeakers located at + 22.5°. 
The simulation turned out to be so realistic that many listeners turned their heads 
90° to locate a third (nonexistent) sound source. (Of course, when they turn 
their heads, the effect disappears because the geometry is changed.) 

When this reproduction method was first applied to concert halls, the effect 
was truly overwhelming: at a flick of a switch the listener could “transport” 
himself from the Vienna Musikvereinssaal, say, to the Amsterdam Concertgebouw 
and back again. These instantaneous comparisons finally made reliable quality 
judgments possible that had eluded acousticians for so long. 

The preference coordinates obtained in these tests were correlated with 
various physical parameters, revealing a consistent absence of strong laterally 
traveling sound waves in the less preferred halls. Thus, good acoustics— given 
proper reverberation time, frequency balance, and absence of disturbing echoes— 
is mediated by the presence of strong lateral sound waves that give rise to a 
preferred “stereophonic” sound. In old-style, narrow and high halls, such lateral 
sound is naturally provided by the architecture. By contrast, in many a modern, 
fan-shaped hall with a low ceiling, a “monophonic” sound, arriving in the sym- 
metry plane through the listener's head, predominates, giving rise to an unde- 
sirable sensation of detachment from the music. 

This, in a nutshell, is the reason why many modern halls project such a 
poor musical sound. The stimulating role that the concepts of (dis)similarity and 
multidimensional scaling [She 62] have played in the clarification process can 

hardly be overemphasized. 
To increase the amount of laterally traveling sound in a modern hall, highly 

efficient sound-scattering surfaces have been invented recently [Schr 90]. These 

“reflection phase gratings,” to use the physicist’s term, are based on number- 

theoretic principles (primitive polynomials over finite fields, quadratic residues, 
and discrete logarithms) and have the remarkable property of scattering nearly 
equal acoustic (or radar) intensities into all directions. Such broadly scattering 

surfaces are now also being introduced into recording studios, churches, and even 
individual living rooms—and who knows where else. 

These sound-dispersing structures should also find good use in noise abate- 

ment, because a dispersed (and therefore weakened) noise is more easily “masked” 

(rendered inaudible) by other sounds. 
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elf-Similarity— Discrete, Continuous, 

Strict, and Otherwise 

Big fleas have little fleas upon their backs 
fo bite them, 
and little fleas have lesser fleas, and so ad 
infinitum 

—SWIET, 

Poems 11.651 (1733) 

We say that an object—a geometric figure, for example—is invariant with 
scaling, or self-similar, for short, if it is reproduced by magnifying some portion 

of it. 
Self-similarity comes in many different shapes and forms. Some of it con- 

tinuous, some discrete; some is accurate over many powers of 10 and some over 

less than a factor of 10. We find examples of self-similarity in our daily sur- 

roundings or deeply hidden in the behavior of physical or biological systems. 

Some self-similarity is fully deterministic, some is only probabilistic. A few cases 

of self-similarity are mathematically exact; however, most instances in the real 

world are only asymptotically self-similar or just approximately so. Cantor sets 

and Weierstrass functions (see pages 96—98 and Chapter 7) are two well-known 

delegates from mathematics at this reunion. Brownian motion represents both 

the physical sciences and probabilistic self-similarity. And Bach’s tempered 12- 

tone scale shows the importance of self-similarity in music. 

A well-known example of discrete, albeit limited, self-similarity is a set of 

Chinese boxes or Russian dolls—the (usually wooden) kind where a large doll 

(discreetly) hides a similar smaller one inside its “body” and the smaller doll hides 

a similar third one and so forth for two or three more “generations.” If we had 

a doubly infinite number of dolls, both ever smaller and ever larger dolls, then, 

provided the scaling ratio of doll sizes between successive generations was 
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constant, we would have a set with exact discrete self-similarity. But such a set 
could, of course, exist only in our imagination; real dolls have finite measurements: 
they must be both larger than single atoms and smaller than the full universe. 
(For Charles Addams’s vision of incipient self-similarity, see his posthumously 
published cartoon given in Figure 1.) 

Another example of discrete, if severely limited, self-similarity can be dis- 
covered on some product labels. Think of a beer bottle that shows the same 
beer bottle on its label, which shows the same beer bottle on ifs label. 

Or take a look at the cover of Paul Halmos’s book Naive Set Theory [Hal 
74], which shows the cover of the book, which shows the cover of the book, 

which shows the cover of the book without showing the cover. Of course, 
printing costs (not to mention other constraints) put an early and abrupt end to 
this progression of ever smaller images. A cheaper way to get many more scaled- 
down images is*to stand between two almost parallel mirrors such as those found 
in clothing stores (see Figure 2). But of course, the high-order reflections are 

Figure 1 Self-similarity 4 la Addams. (Drawing by Chas. Addams; © 1987 The New Yorker 
Magazine, Inc.) 



Figure 2 A long row of candles: self-similarity induced by parallel mirrors. 
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Figure 3 Castel del Monte, an emperor's early attempt at self-similarity. 

distorted and weakened, because no real mirror is perfectly planar (or 100 percent 
reflective). 

The result of an early attempt at self-similarity in architecture is the mon- 
umental Castel del Monte (Figure 3), designed and built by Holy Roman Em- 
peror—also King of Sicily, Germany, and Jerusalem—Frederick II (1194—1250), 
the great falconer, rare mathematician (among medieval emperors, anyhow), and 
last but not least, irrepressible castle builder. The basic shape of the castle is a 
regular octagon, fortified by eight mighty towers, again shaped like regular 
octagons. (These towers were devised for the easy release and retrieval of hunting 
falcons.) 

Ironically, Frederick himself was born in a tent, hastily erected in the market 
square of the little town of Iesi in the Italian Marches near Ancona on the Adriatic 
Sea.’ Frederick, who of course wrote and illustrated the book on falconry [Fri 
1240], was graced with one of the most stupendous minds of his time (hence 

1. Frederick’s birth in a tent may have been intentional rather than unexpected because his mother, 
the Norman queen Constance, had taken “forever” to become expectant with the sorely awaited 
future sovereign, the prospective Hohenstaufen ruler. Thus, to forestall any suspicion of double- 
dealing, the precious child was delivered in the most public of places, with no double walls and 
no false bottoms to conceal a surrogate mother. As an adult, Frederick revisited lesi, which he 
called his “Bethlehem” (he was born during Christmas). 

tie 
ES j 
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his Latin epithet stupor mundi). He grew up in Palermo and Apulia, speaking and 
reading mostly Arabic, Greek, and Latin. He later introduced—by way of po- 
etry—the Italian volgare spoken by the people at the imperial court, thereby 
strengthening its linguistic links with Italy and elevating the vulgar language to 
official status. Frederick was also a friend of Fibonacci (Leonardo Pisano), furnishing 
the latter with algebraic problems whose solutions became part of the history 
of mathematics. 

In music, too, self-similarity abounds. Adjacent notes of a well-tempered 
scale are in a constant frequency ratio (2 for an octave divided into 12 
semitones). Thus, because of the inverse proportionality between resonant fre- 
quency and the length of a tube, clusters of organ pipes exhibit self-similarity. 
Less pleasing (and more dangerous) but self-similar nevertheless is the perspective 
of railroad tracks and ties receding to a distant vanishing point (in Figure 10, 
on page 93, this self-similarity is exploited in a proof of the formula for the sum 
of an infinite geometric sequence). 

Other examples of discrete self-similarity are “log-periodic” antennas (see 
Figure 4), which cover a wide spectrum of wavelengths in many discrete steps. 
Note that both the lengths of the adjacent dipoles and their spacings are scaled 
by the same similarity factor. Thus, except for end effects, these antennas cover 
a wide range of wavelengths with nearly the same sensitivity and spatial res- 
olution. TV antennas adorning our roofs are but poor cousins of the antenna 
shown in the illustration; but they, too, must capture many different channels 
with equal gain and clarity.’ 

Another kind of wideband “antenna,” albeit for sound, is the basilar mem- 
brane, the frequency analyzer in our inner ears. Different frequencies excite 
different places along the basilar membrane. This resonating membrane therefore 
effects a mapping from frequency to place. To cover the enormous frequency 
range of human hearing, from 20 Hz to 20,000 Hz, without unduly compressing 
the space available for the important low and middle frequencies, the ear must 

map frequencies on a logarithmic scale. In fact, above about 600 Hz, constant 
frequency ratios correspond to constant shifts in the locations of the resonances 
along the basilar membrane. In the frequency range from 600 Hz to 20,000 Hz, 

frequency ratios and places (i.e., the locations of the resonance) scale almost 

perfectly, the scaling factor being 5 mm along the basilar membrane per octave. 

There is another good reason for this logarithmic mapping of frequency to 

place. It means that the relative change with place of the parameters (mass density, 

stiffness) controlling resonance frequency is constant along the basilar membrane. 

The basilar membrane therefore behaves like an exponential acoustic horn, such 

as the horn in a woofer loudspeaker, for example, thus minimizing the reflection 

pare 50 oe ra ne, : 
2. Unfortunately, the abovementioned end effects that limit exact self-similarity often manifest 

themselves at the expense of public television channels occupying the less sensitive band edge 

(such as channel 13 for the VHF band in the United States). 
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Figure 4 Self-similar TV antenna. 

of acoustic energy for a given total length and frequency range. This must have 
been an important design consideration in the evolution of our ears to a highly 
sensitive acoustic receptor. (The healthy ear is almost able to detect the Brownian 
motion of the air molecules!) 

For the physicist, the fact that the mechanical parameters change relatively 
slowly along the length of the basilar membrane—indeed, as slowly as possible 
for a given total length and frequency range—means that he can analyze wave 
motion on the basilar membrane in terms of the convenient Wentzel-Kramers- 
Brillouin approximation [ZLP 76]. This useful method was invented by Joseph 
Liouville (1809-1882) and rediscovered by the three named authors, who in- 
troduced it into quantum mechanics. 
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Below 600 Hz, the mapping between place and frequency itself (not frequency 
ratio) is linear. Otherwise, the five octaves below 600 Hz would be given the 
same space on the basilar membrane as the five octaves above 600 Hz. Since 
the density of auditory neurons along the basilar membrane is approximately 
constant, the neural representation of the high frequencies would thus suffer 
relative to the low frequencies. 

The response of the basilar membrane shows another interesting scaling 
behavior that obtains for its entire frequency range: local wave velocity is pro- 
portional to local resonance frequency. The constant of proportionality is a char- 
acteristic length that equals about 1 mm. As a consequence the delays of acoustic 
signals along the basilar membrane are inversely proportional to place of detection. 
This scaling behavior leads to a simple integrable mathematical model of the 
basilar membrane [Schr 73]. 

Hierarchical structures, such as phylogenetic trees, for example, often show 
self-similarity, as do mathematical Cayley trees (also called Bethe lattices in physics). 
A Cayley tree is defined as a graph without loops in which each node has the 
same number of branches (namely, two, in Figure 5). The self-similarity of such 
graphs is not necessarily manifest in their geometric representation, but is seen 

Figure 5 Artistic Cayley tree with 1:2 branching ratio [Man 83]. 
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in their connectivity or topology. Bethe lattices, although highly unphysical. 

often afford the only exactly solvable models in difficult situations such as 

Anderson localization and percolation (important concepts in contemporary phys- 

ics; see Chapter 16). 
Figure 6 shows another example, a binary-code tree. It is interesting to 

note that if we define the distance between two “leaves” (endpoints) by how 
many generations we have to go back to find a common ancestor, then the space 
so generated is ultrametric. For phylogenetic trees, this means that either the 
three distances between three existing species are all equal or two are equal and 
the third is smaller. In other words, all triangles in such a space are either equilateral 
or short-base isosceles, with interesting consequences in Hensel codes and error- 
free computing [Schr 90]. 

If one can identify an ultrametric space in a given problem, there is usually 
a hierarchical structure lurking behind it that holds the key to better understanding; 
such structures are found in problems from taxonomy to statistical physics and 
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Figure 6 Binary-code tree: a self-similar hierarchical structure. 
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optimization theory. For an excellent overview of ultrametricity for the math- 
ematical amateur, see the paper by Ramal, Toulouse, and Virasoro [RTV 86]. 

The Logarithmic Spiral, Cutting Knives, and 

Wideband Antennas 

A charmingly simple example of a self-similar object, with a practical application 
to boot, is the logarithmic spiral—well known from high school mathematics. In 
polar coordinates (r, @) we have r(@) = 1, exp (kd), where r, > 0 and k are 
constants. Scaling the radius vector r, that is, the size of the spiral, by a factor 
s results in the same spiral rotated by a constant angle (log s)/k. Since the angle 
@ is defined only modulo 217, scaling factors equal to s = exp (2mmk), where m 
is an integer, leave the infinite spiral invariant—that is, the logarithmic spiral is 
self-similar, with a similarity factor s = exp (27|k]). If we disregard rotations, the 

logarithmic spiral is self-similar for any real scaling factor. 
The self-similarity of the logarithmic spiral has several interesting conse- 

quences and useful applications. For one, the direction of the tangent to the spiral 
depends only on the angle @ and not on which branch of the spiral one considers 
(see Figure 7). This follows directly from the scaling invariance but can also be 
verified, of course, by a more circuitous calculation. Furthermore, since the rotated 
logarithmic spiral is similar to itself, the angle B between the radius vector and 

Figure 7 Logarithmic spiral: a smooth self-similar curve. 
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the tangent at any point must be the same for the entire spiral. A little thought 
(or a small sketch) shows that cot B must equal (dr/d)/r = dilog r)/d@ = k. So 
that is the geometric meaning of k: it is the cotangent of the constant angle 
between the radius vector and the tangent at any point. (For k = 0, 6 equals 
7/2 and the spiral has degenerated into a circle.) 

The just-stated property of the logarithmic spiral has an interesting appli- 
cation. Suppose you had to design a cutting tool with a rotating knife in the 
form of a disk. Which form should the knife have so that the cutting angle is 
constant, independent of the angle of rotation of the knife? Why, the perimeter 
of the knife should follow a logarithmic spiral! Since the perimeter of the knife 
is necessarily a single-valued function of the rotation angle, it must, of course, 
‘jump back,” by an amount 1, exp (2z|k|), at some angle. 

But things can be even more exciting. As we discovered, the logarithmic 
spiral is self-similar with arbitrary scale factors if we disregard rotation. This 
means that, if we do not care about rotations, the logarithmic spiral has no length 
scale—contrary to the impression that its mathematical formula, r(@) = 

To exp (k@), imparts because the factor r, seems to imply a length scale. However, 
to can be absorbed into a rotation, as can be seen by writing r() = 
exp {kp + (log r.)/kl}, where (log r,)/k is just a constant angle. 

Once we have something that is scale-free, we should find any number of 
useful applications. People are forever baffled by problems engendered by changes 
in scale or size.” Suppose we could construct scale-free footwear, shoes that fit 
all sizes—what a boon! (But to whom?) For stockings, of course, limited scale- 
free-ness has in fact been achieved: stretch hose that fit all sizes (or perhaps 
none). 

Another field where scale-free-ness is urgently desired is the design of 
transmitting and receiving antennas for communication systems that have to 
cover a wide range of wavelengths, such as the log-periodic antenna shown in 
Figure 4, which is self-similar at a set of discrete wavelengths. If only such 
antennas were equally efficient at a continuous range of wavelengths! Well, suppose 
we use circularly polarized waves; then a rotation of the antenna would have 
no effect on the antenna’s gain and directivity. And if we gave the antenna the 
form of a logarithmic spiral (ideally, of thin superconducting wire), then it would 
work equally well for all wavelengths within any desired range [CM 90]. An- 
tennas exploiting this enticing principle do in fact exist. They look like tapered 
bedsprings. 

But nature, too, has exploited the self-similarity of the logarithmic spiral. 
In the chambered nautilus (see Figure 8), each chamber is an upscaled replica of 
the preceding chamber with a constant scale factor. As a result, the nautilus will 
grow along a logarithmic spiral. And not just nature: Even artists have been 

3. Think of the two holes the thoughtful Sir Isaac (Newton) is said to have cut in his door to 
accommodate his two different-size pets. 
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Figure 8 The chambered snail Nautilus follows a logarithmic spiral in its self-similar de- 
sign. (Photo by Edward Weston; © 1981 Center for Creative Photography, Arizona Board 
of Regents.) 

inspired by spirals. Color Plate 4 shows an infinity of logarithmic spirals in the 
colors of the rainbow infinitely intertwined. 

A logarithmic spiral with a specific value of the scale factor occurs in the 
following geometric problem. Take a rectangle with sides a > b and cut off a 
square of side b from one side of the rectangle (see Figure 9). From the remaining 
rectangle cut off a square of side a — b, as shown in Figure 9. For the construction 

to work as shown, a — b must be smaller than J; that is, a must be smaller than 

2b. At the second stage of construction, the inequality is 2a > 3b, and at the 

(2n)th stage, the condition that cutting off a square will result in a rectangle 

whose longer side is the shorter side of the preceding rectangle is F,,, a > F,,,b, 

where the F, are the Fibonacci numbers. Similarly, F,,4 < F,,.4,b must hold. For 

the construction to carry through for arbitrarily large n, the side ratio b/a of the 

initial rectangle must equal the limit as n > 00 of F,,,-1/F.», that is, the golden 

mean y = (/5 — 1)/2. 
i The result of this construction is a limitless spiral of ever smaller squares 

with a scaling factor equal to the golden mean. The logarithmic spiral with 

k = —(n/2) log », passing through successive cutoff points, is also shown in the 

illustration. The vanishing point of the squares and origin of the spiral is given 

by the common intersection of the diagonals of the rectangles. 
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Figure 9 A self-similar succession of golden-mean rectangles. 

There is a charming connection between our amputating of squares from 
residual rectangles and continued fractions. Observe that the continued fraction 
for the golden mean is I/(a, + I/@,+---)), usually abbreviated as [a,, en 
with a, = a, =*+:=1. Thus y =[1,1,...]. Suppose we want to be able to 
cut off two squares at each stage so that the longer side of the remaining rectangle 
equals the shorter side of the preceding rectangle. What is the appropriate side 
ratio b/a of the initial (and all subsequent) rectangles? A little experimentation 
will show that b/a must equal ,/2 — 1, which has the continued fraction expansion 
[2, 2, 2,...]. In general, the nth term a, in the continued fraction of b/a tells us 
how many squares we must cut off at the nth stage. Thus, self-similar cascades 
and logarithmic spirals emerge for initial rectangles whose side ratio b/a equals 
a periodic continued fraction with period length 1. The resulting irrational numbers 
[n, n,...] with n > 1, which I have called silver means, also play a role in the construction of quasiperiodic lattices (see Chapter 14) and the modeling of 
quasicrystals (see Chapter 13). 

By the way, the logarithmic spiral, like the infinite straight line, is a specimen of a self-similar object that is smooth, in stark contrast to the fractals that we 
usually associate with self-similarity such as rocky coasts, Brownian motion, and other nondifferentiable functions. 
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Some Simple Cases of Self-Similarity 

One of the simplest self-similar entities is a two-sided infinite geometric sequence, 
for example, 

ela 8 
Cole 

el 
NI 

Multiplying each member of this sequence by a factor of 2 produces 

I 
peep ay 4S, LO 
oe ane 

Dist irae 
n 

which is of course the same sequence. The factor of 2 is called the similarity 
factor or scaling factor. Obviously, together with 2 all integer powers of 2 are 
also scaling factors, including + +, 8, and =z. Of all those scaling factors, we shall 

call the smallest factor whose magnitude exceeds 1 the primitive scaling factor. 
In our example, 2 is the primitive scaling factor; 4 is not primitive. (And 3, 
although capable of generating all scaling factors, is excluded by our definition 
because it is not greater than 1.) 

In many practical applications, the self-similar sequence will be only one- 
sided; for example, 

2 3 
itp Tatas, 

This self-similar sequence is illustrated geometrically in Figure 10, where it is 

D 1 r aia L 

Figure 10 Proof by self-similarity [KB 88]. 
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exploited in a lovely “look-see” proof, due to Benjamin Klein and Irl Bivens 

[KB 88], of the formula for the sum of geometric series: 

1 
Beata ont ae ae (W<D) (1) 

Note that the two right triangles ABC and EDA are similar because the angle 
a equals 8. Thus the ratios of corresponding sides must be the same. Specifically, 
the side ratio DE/DA =1+r+1r+?r+--- must equal BA/BC = 1/(1 — 
r). End of proof. (But how would the figure have to be drawn for r < 0?) 

Another geometric proof of equation 1 relying on self-similarity, due to 
Warren Page, is shown in Figure 11 [Pag 81]. Starting with the unit square, we 
cut off a rectangle with side 0 < q < 1. From the remaining rectangle we cut 
off a cascade of rectangles, each having an area smaller by a factor 1 — g than 

q(1 — q)? 

q(1 — q)? 

q(1 — 4) 

Figure 11 Another proof by self-similarity [Pag 81]. 
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the preceding rectangle. Since all the rectangles together cover the original unit 
square, we have q + q(I — q) + q(1—q)’ +°*-=1. Setting 1 —g=r, we 
obtain equation 1. 

Most readers, I am sure, are familiar with three-way light bulbs and benefit 
from the three different levels of brightness they offer: low, medium, and bright. 
Of course, most commercial bulbs accomplish this with just two filaments, con- 
suming separately x watts and y watts, respectively; and x + y watts when both 
are turned on together. For typical values, say, x = 50 watts and y = 100 watts, 
the bright condition (150 watts) unfortunately is not much brighter than the 
medium one (100 watts). It would be preferable if the three wattages formed a 
self-similar geometric progression; that is, for y > x, (x + y)/y should equal y/x. 
The solution involves the golden mean y = (,/5 — 1)/2 = 0.618. Indeed, for 
x/y = y, y/(x + y) will likewise equal y. 

Similarly, with three filaments, one can realize five different wattages that 
form a self-similar sequence if the third filament has a wattage z = y/y”. With 
y = 100 watts, for example, the self-similar wattages, rounded to the nearest 

integer watt, are x = 62, y = 100,x + y = 162,z = 262,andx + y = 424 watts. 

Of course, the reader reading by the light of a multifilament bulb is not 
really interested in self-similar physical wattages; he is concerned with subjective 
brightnesses. Fortunately, over a fairly large brightness range, brightness B follows 
a simple power law, B ~ W”, as a function of wattage W. Since power laws are 
themselves self-similar (see Chapter 4), our choice of filaments is still the proper 
one even if we desire equal brightness ratios. 

An amusing auditory paradox, based on a finite self-similar sequence of 
musical notes, was devised by Roger Shepard [She 64]. The paradoxical sound 
consists of a superposition of 12 notes with each note an octave higher in 
frequency than its lower-frequency neighbor. Beginning with 10 Hz, the other 
11 frequencies in the composite sound are then 20, 40, 80, 160, 320, 640, 1280, 
2560, 5120, 10,240, and 20,480 Hz. Increasing all 12 frequencies by a semitone 

(about 6 percent) will yield a sound with frequency components at 10.6, 
21.2,..., 10,489, and 21,698 Hz, which will of course sound a bit higher in 

pitch (in fact, a semitone higher) because all frequencies have been increased by 
a semitone. 

Increasing the frequencies by another semitone will result in a sound still 

higher in pitch. Repeating the process a few more times will give rise to further 

increases in pitch. But after 12 increases in pitch, the sound will be indistinguishable 

from the original sound! (The 10-Hz component present in the original stimulus 

and the extra component at 40,960 Hz are inaudible.) 

By supplying a sufficient number of (inaudible)low-frequency components, 

Shepard was able to generate a succession of sounds whose pitches increase 

forever! With a personal computer, connected to a digital-to-analog converter, 

such sounds are now easy to generate and | encourage interested readers to 

subject themselves to this weird perceptual paradox. Figure 12 shows a self- 

‘similar waveform that has a constant pitch when all frequencies are doubled. 
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Figure 12 Paradoxical self-similar waveform. Frequency doubling leads to same pitch. 

Weierstrass Functions and a Musical Paradox 

The ever-ascending tones of Shepard are closely related to the nondifferentiable 
functions introduced by Karl Weierstrass (1815—1897) as examples of continuous 

functions that are nowhere differentiable. Such functions seemed to defy common 
sense and were hotly debated in the nineteenth century. A Weierstrass function 
is defined by 

wihs= > a" cos (B*t) a real, § odd 
k=1 

Weierstrass showed that, for af > 1 + 37/2, w(t) is a continuous but nowhere 
differentiable function, such as the fractal Koch flake and Hilbert’s space-filling 
curve, which we first encountered in Chapter 1. Like Cantor sets, nondifferentiable 
functions are a rich mine of paradoxes, such as Shepard's ever-ascending tones. 

Another example of a musical chord patterned after a Weierstrass function 
can have the following weird property. If recorded on magnetic tape and replayed 
at twice the recording speed, the chord will not sound an octave higher in pitch, 
as every well-behaved recorded sound would, but a semitone lower [Ris 71, 
Ris 75, Schr 86]. How is this possible? Let us construct a finite-sum approximation 
to a Weierstrass function (we can omit the factors a‘ that are needed to make 
the infinite series converge): 

K 

wx(f) = > cos (Bt) 
= 
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If we scale the time dimension t by a factor 8, we obtain 

K Kt 

wx(Bt) = )) cos (B'*"t) = ¥° cos (Bt) 
k=1 k=2 

That is, except for end effects, w,(ft) equals the unscaled function w,(f). Thus, 
wx(t) is approximately self-similar (see Figure 12, where K = 7 and f = 2).! 
Obviously, in the limit as k > 00, such a function cannot have a finite nonzero 
derivative anywhere, because derivatives change with scaling. 

Now suppose we select 8 = 2'*/” to give 

WAL = yy cos (2*13/12)4) 
k 

and make w,(t) audible as a sound. Then the frequencies ges 27 have to 
cover only the audio frequency range (10 Hz to 20,000 Hz). Recording w,(#) on 
magnetic tape and playing it back at twice the speed produces 

w2t) = > cos Qe) = yy cos (23/22) . 27 Ui2p 

k KR 

where k’ = k + 1. Now, if these summations cover the entire audio range, then, 

as far as the human ear is concerned, 

(D2) = 10, (20 8) 

Thus, a doubling of the tape speed will produce a sound with a pitch lowered 
by a factor of 2'/’*. In musical terms, the chord will sound one semitone lower 
rather than an octave higher. Such are the paradoxes engendered by fractals! 

It is easy to program a personal computer to produce a w,(f) with 11 
components comprising the frequencies from 10.0 Hz to 18,245.6 Hz. By doubling 
the playback speed, the sixth component, for example, will change in frequency 
from 427.15 Hz to 854.3 Hz. But in comparing the two chords, the human 
auditory system will identify the doubled sixth component at 854.3 Hz with the 
nearest component of the original chord, namely, the seventh at 905.1 Hz. Since 
854.3 Hz is a semitone lower than 905.1 Hz and the same argument can be 
made for all frequency-doubled components, a pitch lowered by one semitone 
will be perceived. 

4. It is interesting to note that the concept of self-similarity entered mathematics at two inde- 
pendent points, Cantor sets and Weierstrass functions, at about the same time and for similar 
reasons: to elucidate two of the foundations of mathematics, numbers and functions. Even earlier, 

however, Leibniz had used the concept of self-similarity (“worlds within worlds”) in his Monadology 
{Lei 1714] and in his definition of a straight line. 
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_ A frequency ratio B = 2" will produce a lowering by a full note upon 

tape speed doubling, and $'*””” will lower the perceived pitch by three semitones, 

and so on. However, for B = 2” = 4, the percept will be ambiguous, because 

when the numbers 1, 4, 16, 64, ... are doubled, the resulting sequence (2, 8, 32, 

_..) could be considered either one octave lower or one octave higher. 

All physical objects that are “self-similar” have limited self-similarity —just 

as there are no perfectly periodic functions, in the mathematical sense, in the 

real world: most oscillations have a beginning and an end (with the possible 

exception of our universe,’ if it is closed and begins a new life cycle after every 

“big crunch”; see the admirably equationless bestseller by Stephen Hawking, 

A Brief History of Time [Haw 88]). Nevertheless, self-similarity is a useful abstrac- 

tion, just as periodicity is one of the most useful concepts in the sciences, any 

finite extent notwithstanding. 
A mathematical object that is self-similar except for an “end effect” is the 

sinc function 

sin 7x 
SMe 66 = 

TEX 

which describes the wave diffraction pattern of a rectangular slit and plays an 
important role in interpolating sampled functions in discrete-time digital systems. 
(Here the slit is a rectangular “window” through which the function's spectrum 
is seen.) 

By applying the trigonometric identity 

SINE — HAN Se Cos ae 

to the sinc function, we obtain 

; mx \ sin (1x/2) TE ee 
sinc’: ==¢0s ||] = COs i Sie pe 

2) nx/2 2 2 

Thus, except for the factor cos (7x/2), the sinc function is self-similar with a 
similarity factor of 2. 

By repeating the factoring process, we obtain Euler’s famous infinite product 

: TX Tx Tx 
SINC % =-cOS| —= cos: | —— | cos. — 4 

2 4 8 

5. A universe is something that happens once in a while—according to some of the latest physical 
phantasies. 
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The sinc function has zeros for all positive and negative integers x. The first 
factor in the Euler product produces the zeros of sinc x at all odd values of x. 
The second factor gives the zeros for x equal to twice an odd number. The third 
factor creates the zeros at x equal to 4 times an odd number, and so forth, giving 
the required zeros at all integer values of x except at x = 0. (Note that each 
nonzero integer n can be written, uniquely, in the form n = 2k, where k is an 
odd integer and m > 0.) 

In many applications, self-similarity is only approximate; there may be 
statistical or deterministic “perturbations.” Thus, the sequence (based on another 
well-known infinite product, namely, for 2/7) 

zi 2 
%= [ha 

with the recursion 

1/2 

fins = (+44) fo =0 

is self-similar only in the limit as n > 00. For n = 1, 2, 3, 4,..., we obtain 

S, = 0.070482, 0.01662, 0.004109, 0.0001024,... 

Its terms approach a constant scaling factor of 4. Such asymptotic self-similarities 
are often encountered in recursive computations. 

In subsequent chapters we shall meet the other deviation from strict self- 
similarity: statistical self-similarity, in which the statistical laws that govern the 
object exhibit a scaling invariance. The object itself may change upon scaling, 
but its probabilistic aspects remain the same. 

Mere Self-Similarity in Music: The Tempered 

Scales of Bach 

The ancient Greeks, with their abundance of string instruments, discovered that 
dividing a string into two equal parts resulted in a pleasant musical interval, now 
called the octave. The corresponding physical frequency ratio is 2:1. 

“Chopping off” one-third of a string produced another pleasant interval, 
the perfect fifth, with a frequency ratio of 3:2. 

The Pythagoreans asked themselves whether an integral number of octaves 
could be constructed from the fifth alone by repeated application of the simple 
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frequency ratio 3/2. In mathematical notation, they asked for a solution of the 

equation 

) s 

zd =2 

2 

in positive integers n and m. But the fundamental theorem of number theory 

tells us that no positive power of 3 can equal a power of 2, that is, that the 
equation 3" = 2* has no integer solutions for n > 0. 

However, the Greeks were not discouraged and, by trial and error, found 

an excellent approximate solution: 

3 TS 

Z 

which is based on the near equality of 3”? and 27, 
A systematic way of finding such near-coincidences is to write the ratio of 

the logarithms of the two integer bases (2 and 3) as a continued fraction: 

log 2 
—— ay ee 

log 3 

where the bracket notation is a convenient way to write the continued fraction 

I 

Jer 

t= 

Poste 
dL 

2s = 
ac 

Continued fractions generally yield good rational approximations to irrational 

numbers; for example, 7 © 433. This excellent approximation to 7 using not 
very large integers was known already to the ancient Chinese. 

Breaking the foregoing continued fraction off after the fifth term (as shown) 
yields the excellent approximating fraction for the musical fifth: 

log2 12 

log 3 19 

from which follows (3)'? % 2’. 
Another important fact here is that the exponents 12’ and 7 are coprime, 

so that repeated application of the perfect fifth modulo the octave (the “circle 
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of fifths”) will not be close to a previously generated frequency until the twelfth 
step. These 12 different frequencies within an octave are all approximate powers 
of the basic frequency ratio 1:2", the semitone. Thus, there is always some 
value of k for which 

3 k 

(3) Ae ON rest, Bratt 

The solution of this approximate equation is k = r/7 = 7r mod 12. One-third 
of the octave, or 2” (r = 4, frequency ratio © 1.260), for example, is equivalent 
(modulo the octave) to k = 4 fifths (frequency ratio © 1.266). 

The third part of the octave, is also close to the pure major third (frequency 
ratio 5/4). This is the lucky result of another, independent, number-theoretic 
near-coincidence, 5° ~ 2’, relating the next prime number above 3, namely 5, 
with the smallest prime, 2. 

The fifth itself is approximated by seven semitone intervals with an accuracy 
of 0.1 percent: 27” = 1.4983. The resulting shortfall from the exact value 1.5 
is called the Pythagorean comma. It is interesting to note that not only do seven 
semitones make one fifth, but, modulo the octave, seven fifths make one semitone.° 
This coincidence results from still another number-theoretic fluke, namely, that 
7 is its own inverse modulo 12: to wit, 7° 7 = 49 = 1 mod 12. 

To ensure that fixed-note instruments, such as the piano, can be played in 
many different musical keys, the frequencies of the different keys should be 
selected from the same basic set of frequencies. This led to the development of 
Bach’s tempered scales, based on the semitone with a frequency ratio of 2/. 
A musical instrument tuned according to the tempered scale thus has frequencies 
approaching the following multiples of the lowest note: 

J 2312 92/12 73/12 44/12 45/12 

up to some highest note. 
Thus we see that the frequencies of a well-tempered instrument form a self- 

similar sequence, with the similarity factor 2”. If all these notes were sounded 
simultaneously, the instrument would produce an acoustic output (to put it mildly) 
that approximates a self-similar Weierstrass function. (Actual tuning of pianos 
differs from exact self-similarity, the tuning being somewhat “stretched” to min- 
imize the beating of overtones, which are not precisely harmonic, as a result of 
the finite bending stiffness of the strings.) 

For an excellent introduction to the science of musical sound see the book 
of that title by John R. Pierce [Pie 83]. 

6. Of course, seven fifths can also make one “semiconscious.” 
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The Excellent Relations between the Primes 3, 5, and 7 

John R. Pierce of communications satellite fame asked himself a few years ago 

whether one could not replace the frequency ratio 2:1 of the octave by the 

frequency ratio 3:1, which he called the tritave, and design a self-similar (equal- 

tempered) scale that matches frequency ratios constructed from the next two 

prime numbers, namely, 5 and 7 [MPRR 88]. In other words, is there some integral 

root of 3, 3%, such that 3 and are well approximated by integer powers of 
3"__in analogy to the good approximations + ~ 2”? and + = 27!” for Bach's 
well-tempered scale? 

To answer this question in a systematic way, we have to expand the ratios 
log 3/log 5 and log 3/log 7 into continued fractions. This yields for the first ratio 

log 3 
seen Ry al 
log 5 

Breaking the continued fraction off after the 6 gives the following rational 
approximation: 

logs "3 

log 5 19 

or 3? = 5‘. This means that the basic frequency ratio 3° = 1.088... is a 
good “semitone” for constructing a musical scale that closely matches, modulo 
the tritave, notes that are generated from the frequency ratio 5:3. In fact, 3°” 
equals } within 0.4 percent! 

But what about the frequency ratio 7:3? Continued fraction expansion of 
log 3/log 7 gives the excellent approximation 3” ~ 7°. Again 3” emerges 
as the preferred basic interval to construct the well-tempered Pierce scale— 
another number-theoretic fluke! In fact, the match between = and a power of 
3% namely, 3“/”, is uncannily close: the difference is but 0.16 percent. The 
resulting frequency ratios again form a self-similar sequence: 

1, 31/8 32/13 33/13 

But while the number theory of this new musical scale may be nearly perfect, 
its compositional value is a matter of taste and open to debate.’ 

7. This patient listener, who has served as a subject in musical tests involving the Pierce scale, 
showed a stubborn preference for compositions written in well-established traditional scales. 
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What really interests me is whether 
God had any choice in the creation of 
the world. 

—ALBERT EINSTEIN 

Similarity not only reigns in plane geometry, as in Einstein's triangles (see Chapter 

1), but underlies much of algebra too. Think of a homogeneous power function 

such as 

f(x) = cx® 

where c and «@ are constants. For example, for « = 1 we get the special case 

f(x) = cx, which, for c < 0, describes the restoring force of a linear spring; for 

a = —2 (and c still negative) we get Newton's law of gravitational attraction 

fix) = cx~”. Such simple power laws, which abound in nature, are in fact self- 

similer: if x is rescaled (multiplied by a constant), then f(z) is still proportional 

to x*, albeit with a different constant of proportionality. As we shall see in the 

rest of this recitation, power laws, with integer or fractional exponents, are one 

of the most fertile fields and abundant sources of self-similarity. 

The Sizes of Cities and Meteorites 

Many objects that come in different sizes have a self-similar power-law distribution 

of their relative abundance over large size ranges. This is true for objects that 
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have grown, like cities, as well as for objects that have been shattered, like crushed 
stones [Mek 90]. The only prerequisite for a self-similar law to prevail in a given 
size range is the absence of an inherent size scale. (Of course, no earthly “city” 
has fewer than 1 inhabitant or more than 1 billion, and no stone on earth is 
smaller than an atom or larger than a continent.) 

One of the best behaved shattering mechanisms occurs not on earth but 
in outer space: the mean frequency with which different kinds of interplanetary 
debris (shooting stars or meteors) slam into the earth’s atmosphere is inversely _ 
proportional to the squared diameter of the projectile, and this is true over 10 
orders of magnitude (see Figure 1). Whereas the space shuttle is hit at a rate of 
one particle every 30 microseconds (10” particles per year) with a diameter 
under 1 micrometer (uum), meteorites of the size that created the Arizona crater, 
with a diameter of 100 meters or more, are expected (thank heavens!) only once 
every 10° years. And the next “shooting star’ of the size that hit Sudbury, 
Ontario, with an “astronomical” 10,000-meter diameter, should not rock the earth 
for another 10° years. 

10 |-@ Impactors on space shuttle 
1 um 

ne ° 
cy 

@ Shooting stars 
1 mm 

10° 

1 @ Meteorites 
tia 

Frequency of impact with Earth (yr~?) 
Om @ Arizona crater 

100 m 

10°? Ontario crater @ 

10 km 

OS: 1 104 

Diameter (m) 

Figure 1 Frequency of meteor collisions with earth in relation to particle di ed ter. E. Schoemaker, U.S. Geological Survey.) Particle diameter. (After 
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Figure 2 Number of species of terrestrial animals in relation to individuals’ lengths 
[May 88]. 

Luis Alvarez, whom we already encountered chasing submarines during 
World War II (see pages 33—34 in Chapter 1), and his associates used the data 
in Figure 1 to help support his theory of the sudden disappearance of the dinosaurs 
65 million years ago. According to Alvarez, the impact of a large meteorite 
kicked up a lot of sunlight-blocking dust, thereby depriving the dinosaurs of the 
greenery necessary for their survival [AAMA 82]. 

Speaking of dinosaurs, one is reminded of the sizes of animals and their 

distribution. Figure 2 shows the estimated distribution of the number of species 

of terrestrial animals as a function of their length. Again we find a power law 

with an exponent of —2 over four orders of magnitude, from 1 millimeter to 

10 meters [May 88]. 

A Fifth Force of Attraction 

One of the early laws of physics that shows self-similarity resulted from Galileo's 

observation that large stones and small stones dropped from the Leaning Tower 

of Pisa fall with (nearly) equal speed.’ In fact, ignoring aerodynamic drag, the 

1. Actually, Galileo used rolling balls on inclined plains, but the Leaning Tower story has taken 

on a life of its own. 
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falling time ft is simply proportional to the square root of the dropping height 
h, independent of the stone’s mass: t ~ h"””, a law that is independent of scale— 
or nearly so, because when one goes to astronomical heights (or even up a tall 
mountain), the gravitational pull of the earth is diminished. Thus, there is a natural 
length scale that limits the scale invariance or self-similarity of Galileo’s f ~ 
h’”*; the radius of the earth. Self-similarity is only approximate, a situation that 
we shall encounter again and again: self-similarity reigns supreme, but only over 
bounded domains. 

In fact, even Newton’s just mentioned universal law of gravitation—in full, 
f(x) = GMx~’, where G is the gravitational constant and f(x) is the attractive 
force of a mass M at distance x—is being called into question these days (even 
before the advent of a theory of quantum gravity, which will fuse Newton's G 
and Planck’s h). A reexamination of the old attraction data and careful new force 
measurements seem to have revealed a nonscaling correction to Newton’s law, 
called the “fifth force” by some imaginative minds. (The other four forces are 
gravity, electromagnetism, and the weak and strong nuclear interactions.) The 
fifth force, whatever its origin and if it is real, appears to depend on distance x 
as exp (—x/x,)* x *, which is not a homogeneous power law and therefore not 
self-similar: it contains a characteristic cutoff length, x,, as it must because the 
exponential function calls for a dimensionless argument. 

What is the significance of x,, whose order of magnitude is 100 m? Forces 
in modern physics are mediated by particles, with a rest mass equal to h/cx., 
where h is again Planck’s constant and c is the velocity of light. For forces with 
an infinite range (x, = 00), as for electromagnetic fields, the rest mass is zero, 
which is believed to be the case for the electromagnetic particle, commonly called 
the photon. In fact, efforts to establish an upper limit for the rest mass of the 
photon focus on the range of the electromagnetic field. And the same is true for 
the rest mass of the neutrino—with potentially enormous consequences for the 
total weight (and the final fate) of our universe if the neutrino’s rest mass should 
turn out to be nonzero. 

The importance of scaling (or rather nonscaling) with distance was never 
as dramatically demonstrated as when the Japanese physicist Hideki Yukawa 
(1907-1981), in the 1930s, concluded from the finite cutoff length of nuclear forces (x, & 10°“ m) that a particle, called the meson, must exist with a mass of approximately 240 electron masses. A bit later, such a particle was indeed found 
(in the cosmic showers of particles that “rain” down on earth), but it turned out 
to be just a heavy brother to the common electron, now called the muon (with amass 207 times that of the electron). Thus, the search for Yukawa’s hypothetical meson continued until it was found, weighing in at 270 electron masses and 
baptized pi-meson or pion. 

af iD ; 2. “Who ordered that?” as Isidor Rabi (1898-1987) asked, in an often quoted question, when this completely “unnecessary” particle was first brought to his attention. 
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Now what particle goes with the fifth force? With x, 100 m, its mass 
would have to be less than 107 * of the electron’s mass, which is already extremely 
small. Perhaps the apparent range of the fifth force is the result of two (or more) 
new forces that almost cancel each other. Or maybe there is no new force at 
all, as mass scaling and the latest experimental results would suggest 
[TKFFHKMM 89, BBFT 89, JER 90]. 

Free of Natural Scales 

As we said, homogeneous functions have an interesting scaling property: they 
reproduce themselves upon rescaling. This scaling invariance can shed light into 
some of the darker corners of physics, biology, and other sciences, and even 
illuminate our appreciation of music. 

Scaling invariance results from the fact that homogeneous power laws lack 
natural scales; they do not harbor a characteristic unit (such as a unit length, a 
unit time, or a unit mass). Such laws are therefore also said to be scale-free or, 
somewhat paradoxically, “true on all scales.” Of course, this is strictly true only 
for our mathematical models. A real spring will not expand linearly on all scales; 
it will eventually break, at some characteristic dilation length. And even Newton’s 
law of gravitation, once properly quantized, will no doubt sprout a characteristic 
length. 

This concept of something happening on all scales (another much liked 
locution) is one of our central themes. In fact, it is said (and Mandelbrot was 

perhaps the first to say it emphatically enough) that for mountainscapes to be 
interesting they must have features (cliffs, crevices, peaks, and valleys) on many 
length scales. And music, written in any scale, to be appealing, had better have 
pitch changes on many frequency scales and rhythm changes on more than one 
time scale. This is in fact how the Bachs (J. S. et al.) composed their music, 

although they never said so. 

Bach Composing on All Scales 

When Johann Sebastian Bach (1685-1750) composed his Brandenburg Concertos 

he was, unwittingly no doubt, using homogeneous power functions in the se- 

lection of his notes [VC 78]. The power spectrum (the squared magnitude of the 

3. Heisenberg heralded the appearance of a new constant of nature, a characteristic length, in the 

basic laws of physics more than 50 years ago, but it still has not happened. (The Planck length, 

(Gh/c?) = 10~*° m, which governed the “big bang” that may have created our universe, is but 

a derived entity.) 
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Figure 3 Spectrum of amplitude variations for Bach’s First Brandenburg Concerto [VC 78]. 

Fourier transform) f(x) of the relative frequency intervals x between successive 
notes can be approximated over a large range by a homogeneous power function 
with an exponent of —1: 

(OS a~ 

which is also called a hyperbolic law (because its plot looks like a hyperbola). 
Taking logarithms yields 

log f(x) = const — log x 

where x is in semitones. Thus, on a doubly logarithmic plot, log f versus log x, 
the data follow a straight line with a slope of — 45°. 

Not only does the spectrum of the frequency intervals follow a homogeneous 
power law, but the spectrum of the amplitudes (instantaneous “loudness”) of 
Bach’s music follows a homogeneous power law with the same exponent (see 
Figure 3). The amplitude of the music is obtained by temporal smoothing of 

4. The smoothing, which could falsify the result, can be circumvented by taking Hilbert transforms 
and computing the so-called Hilbert envelope. The Hilbert envelope of a function is defined as the 
envelope of the family of functions generated by phase-shifting the Fourier transform of the given 
function through all angles from 0 to 2r. 
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the magnitude of the sound pressure recorded near the orchestra. Note that the 
time scale for these amplitude or envelope variations extends to 100 s, corre- 
sponding to 0.01 Hz. 

Why is it that Bach should have chosen the simple hyperbolic power law 
when composing his music? Well, first one has to say that he (and countless 
other composers) did nothing of the kind. Composers compose to create inter- 
esting music. So the real question should perhaps be, Why does (at least some) 
interesting music have hyperbolic spectra for frequency intervals and amplitudes? 

Birkhoff’s Aesthetic Theory 

A partial answer may come from the “theory of aesthetic value” propounded by 
the American mathematician George David Birkhoff (1884-1944). Birkhoff’s 
theory, in a nutshell, says that for a work of art to be pleasing and interesting 
it should neither be too regular and predictable nor pack too many surprises. 
Translated to mathematical functions, this might be interpreted as meaning that 
the power spectrum of the function should behave neither like a boring “brown’’ 
noise, with a frequency dependence f ’*, nor like an unpredictable white noise, 
with a frequency dependence of f°. 

In a white-noise process, every value of the process (e.g., the successive 
frequencies of a melody) is completely independent of its past—it is a total 
surprise (see Figure 4A). By contrast, in “brown music” (a term derived from 
Brownian motion), only the increments are independent of the past, giving rise 
to a rather boring tune (see Figure 4B). Apparently, what most listeners like best, 
and not only in Bach’s time, is music in which the succession of notes is neither 
too predictable nor too surprising—in other words, a spectrum that varies 
according to f%, with the exponent « between 0 and —2. As Richard Voss 
discovered, the exponents found in most music are right near the middle of this 
range: & = —1, giving rise to the hyperbolic power law f° (see Figure 4C) 
[VC 78]. Or, as Balthazaar van der Pol once said of Bach’s music, “It is great 

because it is inevitable [implying « < 0] and yet surprising [« > —2].” (I found 

this quotation in Marc Kac’s captivating autobiography, Enigmas of Chance 

[Kac 85].) 

Figure 5B shows a sample of a noise waveform with hyperbolic power 

spectrum, f-*. Such time functions are also called pink noise, because they are 

intermediate between brown(ian) (f *) and white (f°) (see Figure 5C and 5A, 

- respectively). Since the power spectrum of any noise that obeys a homogeneous 

power law (f*) is self-similar, the underlying waveform must likewise be self- 

similar. In fact, if the frequency axis of the power spectrum is scaled by a factor 

r, then, by the law of Fourier reciprocity, the time axis of the corresponding 
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(C) 

Figure 4 (A) “White” music produced from independent notes; (B) “brown” music pro- 
duced from notes with independent increments in frequency; and (C) “pink” music—frequencies 
and durations of notes are determined by 1/f (pink) noise [VC 78]. 

waveform is scaled by 1/r. Of course, in the case of noise (and other probabilistic 
phenomena), the self-similarity is only statistical; a magnified excerpt is not an 
exact, deterministic replica of the unscaled waveform. 

Also, to preserve power when rescaling frequencies, amplitudes should be 
adjusted by a factor r_ *’”. Strictly speaking, such stochastic processes are therefore 
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(B) 

Figure 5 Sample of (A) white noise with f ° power spectrum; (B) “pink” noise with 1/f 

power spectrum; and (C) “brown” noise with 1/f? power spectrum. 
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self-affine—that is, they have more than one scaling factor: r for frequencies (or, 

equivalently, 1/r for times) and r_“” for amplitudes. 
In fact, a pink (or white, or brown) noise is the very paradigm of a statistically 

self-similar process. Phenomena whose power spectra are homogeneous power” 
functions lack inherent time and frequency scales; they are scale-free. There is no 
characteristic time or frequency—whatever happens in one time or frequency 
range happens on all time or frequency scales. If such noises are recorded on 
magnetic tape and played back at various speeds, they sound the same—unlike 
a human voice, which sounds like the cartoon character Donald Duck when 
played at twice the tape speed. There are even self-similar tones that go down 
in pitch when the tape speed is doubled (see pages 96—98 in Chapter 3). We 
shall further explore noises of different colors in Chapter 5. 

Heisenberg’s Hyperbolic Uncertainty Principle 

Hyperbolic laws are so widespread that they are often not even recognized as 
such, especially when they are written as a product that equals a constant. A 
case in point is Heisenberg’s famous uncertainty relation of quantum mechanics: 

Ag: Ap >i 

where g and p are two (quantum mechanically) “canonical conjugate” variables 
such as position and momentum or energy and time, and where fi is Planck’s 
constant (divided by 27).° The uncertainty principle says that the smaller the 
error (in the sense of a statistical standard deviation) in one variable, the greater 
the error in the conjugate variable. Thus, if someone wants to determine, in a 
Gedanken (thought) experiment, the position of, say, an electron very accurately, 
he has to use photons (light particles) of very short wavelengths, that is, very 
high momentum, which, after bouncing off the poor electron, leave it in a state 

5. Note the double duty that the noun power is serving here: power as an exponent, as in third 
power; power as a force, as in third-rate power or nuclear power (both physical and political) 

6. “What is this thing called ‘h bar’?’”—a whispered question overheard at a recent physics 
conference (between two metallurgists?). It seems that Planck’s “quantum of action” needs more 
time (or energy) to penetrate universal consciousness. In fact, sad to say, this can even be said of 
some professional physicists. This patient chair of the Géttingen General Physics Colloquium was 
once witness at a talk in which the speaker (quite matter-of-factly) mentioned that a (camera) 
shutter chopping up a stream of Méssbauer gamma quanta in time would (of course) widen their 
energy spectrum. Whereupon one of the experts in the field (of Mossbauer spectroscopy!) objected 
that the shutter, moving only laterally to the quanta, could not possibly alter their energy. Well, 
as Richard Feynman said in 1967, “I think it is safe to say that no one understands quantum 
mechanics!” 
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of highly uncertain momentum. This statement is often phrased more qualitatively 
as “any observation disturbs the system to be observed.” 

But, however phrased, the uncertainty principle is nothing but a consequence 
of the well-known reciprocal scaling relationship predicted by Fourier transfor- 
mation theory for a pair of Fourier variables. (However, the fact that Fourier 
transformation—and the Hilbert spaces—are the proper domains for quantum 
systems is anything but trivial; it is one of the deeper insights into the makings 
of nature so far afforded the human mind.) 

The greatest possible accuracy in p and q is achieved if both variables are 
distributed according to Gauss’s normal law of probability, in which case the 
equal sign in the preceding inequality holds: 

hi 
mee iA 

Although this minimal-uncertainty relation is not usually thought of as a hy- 

perbolic law, once we have written it as such, we can ask, What is its range of 

validity? The answer is perhaps one of the more awesome in all of physics: 

although tested and retested over vast ranges of energy, time, position, and 

momentum, never has the slightest violation of Aq > %/Ap been found. There 

is no doubt in the mind of physicists that uncertainty, like relativity, is of an 

absolutely fundamental nature that admits no exceptions. Theories may come 

and go, but “h bar” will always be with us. 

One of the fundamental consequences of uncertainty is the very size of 

atoms (which, without it, would collapse to an infinitesimal point). In fact, we 

can calculate the radius of the lightest atom, hydrogen, directly from the un- 

certainty relation: the potential energy U of the atom is proportional to the 

reciprocal of the radius. Thus, making the radius smaller increases the magnitude 

of the potential energy. By the virial theorem (see pages 66—68 in Chapter 2), 

this engenders a proportional increase in the atom’s kinetic energy , which 

means that the atom would have to increase in size. The minimum or Bohr radius, 

sone iS given by the uncertainty relation with the equal sign, Ax: Ap = hi: we 

simply identify r5,,, with Ax and the momentum corresponding to the kinetic 

energy with Ap. Using the exact relations for these two energies (U = e’/rané, 

and T = p’/2m,, where e and m, are the charge and mass of the electron and &, 

is the permittivity of the vacuum) yields, in one fell swoop, without the usual 

extensive calculations, the correct value for the Bohr radius. This radius, also 

called the atomic unit of length, equals, in terms of four fundamental physical 

constants, 

Ane hi 
2 

m,e€ 
1Bohr — 
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or 5.3: 10 "'m. Thus, the diameter of the hydrogen atom, 2r,,,,, equals ap- 
proximately 10° *° m, or 1 angstrom (A). 

The immense range of validity of the uncertainty relation is impressively 
illustrated by the large coherence length of laser light, which is of great importance 
in holography and refined tests of relativity. With a relative energy uncertainty 
AE/E = 10’, the “length uncertainty” Ax (i.e., the coherence length) for a helium- 
neon laser with a wavelength A = 630 nm becomes Ax = AE/AE : 27, or about 
1 m—a macroscopic length more than 10 powers of 10 larger than the Bohr 
radius derived from the same principle. 

In Mossbauer spectroscopy, we deal with even smaller relative energy 
uncertainties (10- “* or less), yet Heisenberg’s principle still holds. 

While the coherence time (time uncertainty) Af for laser light, say, 10’ s, 

is perhaps not very long, neutron spectroscopy makes energy measurements with 
an incredibly small uncertainty of AE = 2: 10 *° watt-seconds (W - s) possible, 
because of the macroscopic coherence time for neutron waves of 50 seconds! 
Again, the hyperbolic uncertainty relation is still firmly entrenched, spanning 
more than 10 orders of magnitude. 

Perhaps the most astounding consequence of uncertainty is the excom- 
munication of nothingness, innocently called vacuum, from our worldview. A 
classical vacuum contains neither matter nor energy. But zero energy would be 
a precise value, and that is forbidden by uncertainty. Thus, the modern, quantum 
mechanical vacuum has finite energy fluctuations as dictated by Heisenberg’s 
prescription—just as the finite size of the smallest atom in its state of lowest 
energy is prescribed by the same law. 

The reality of vacuum fluctuations is now an integral part of quantum 
physics, with numerous consequences that are testable with great precision, such 
as the hyperfine structure of atomic spectra. There are even creditable theories 
of the origin of our universe as a vacuum fluctuation run amok [Haw 88]. As 
Thomas Cranmer, archbishop of Canterbury, wrote as early as 1550, “Naturall 
reason abhorreth vacuum.”” 

For all we know, the range of validity of the uncertainty relation is unlimited. 
On the other hand, for any homogeneous power law representing energy as a 
function of frequency (called a spectrum), there must, of course, be an upper or 
a lower limit (or both) beyond which the homogeneous power law cannot hold. 
White noise, for example, has a flat power spectrum only up to some, possibly 
very high, frequency. And pink noise must have an upper (“ultraviolet”) and a 
lower (“infrared”) transition frequency, possibly far apart, beyond which the 
hyperbolic law breaks down because otherwise the total power (the integral over 
the spectrum) would be infinite. (Of course, physicists use such laws anyhow— 

7. This authentic citation, recalled in the Oxford English Dictionary [Bur 87], is not to be confused 
with a more modern quote, circulated by John Robinson Pierce on the occasion of the transistor’s 
birth (which he so baptized in 1948): “Nature abhors vacuum tubes.” 
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since they scale so well—and then they complain of ultraviolet and infrared 
“catastrophes.”) 

Fractional Exponents 

Power laws are not restricted to integer exponents as in white, pink, and brown 

noises. In fact, fractional exponents abound in nature. After all, self-similarity 

prevails for integer and noninteger exponents alike. And not infrequently a 

fractional exponent contains an important clue to the solution of an intricate 

puzzle. Often such exponents seem to be the same in rather different situations 

(such as melting or magnetism, for instance), providing a hint of similar underlying 

“universal” mechanisms. 
A simple example of the appearance in nature of a self-similar law with a 

fractional exponent is the relation between the radiation density p, and matter 

density p,, in the expanding universe which prevailed shortly after its creation: 

Gt Por 

From this simple relation Alpher and Herman were able to calculate, back in 

1948, the present radiation density of the universe [AH 48]. Given other, albeit 

defective, data, they predicted a blackbody radiation—a remnant from the big 

bang that gave birth to the universe and is now bathing it (like a baby?) in a 

“warm” background—corresponding to a temperature of about 5 kelvins (degrees 

centigrade above absolute zero). Later Arno Penzias and Robert Wilson, while 

“tuning” microwave antennas, found this cosmic background radiation with a 

temperature of 2.7 degrees, and received the 1978 Nobel Prize for their discovery 

of this ancient “footprint” of the early universe. 

In subsequent chapters we shall encounter other simple power laws with 

fractional exponents showing scaling invariances with far-reaching consequences 

in a wide variety of real-world situations, from the floods of the Nile to the 

gambler’s ruin and the distribution of galaxies in the universe. In fact, in a surprising 

number of instances, complicated functions of two or more variables exhibit 

simple power-law behavior near “critical points.” Thus, the function of two 

variables f(x, y) can very often be written in the generic form 

fix, y) = x*gly/x") 

in which f(x, y), has been replaced by a function of only one variable, g. For any 

- range of the variables over which g is relatively constant, f(x, y) is then ap- 

proximated by a simple power law in z. 

This kind of representation, in terms of power laws and their exponents, 

is enormously fruitful in the analysis of critical phenomena from percolation (see 

Chapter 15) to ferromagnetism and superconductivity. 
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The Peculiar Distribution of the First Digit 

Power laws, or relations of the form f(x) ~ x*, lead to skewed nonuniform 

distributions of the first (leftmost) digit when the self-similar data are listed 
numerically. For the exponent « = — 1, the probability p,, that the most significant 
digit equals m > 0 is given by 

1 
= I+ - Pm os ( +2) 

where b is the base of the number system used [Pin 62, Rai 76]. For decimal 
data, these probabilities are approximately p, = 0.301, p, = 0.176, p, = 0.125, 

. +, Py = 0.046. Note that p, + p; equals p,, as it must because the digits 2 and 
3 cover the same relative data range as the digit 1. 

These probabilities p,,, which favor the digit 1 as the leftmost digit, are 
obtained by integrating x*, with « = —1, from m to m + I. For other values 
of « this integration yields 

a+ I ati m — (m + 1) 

Be) eae ne Ape eae 

where b is again the base of the number system in which the self-similar data 
are_ expressed. For example, for b=10 and «= —2, p,=05,p,= 
0.185, p; = 0.0925, ..., py = 0.012345679. 

Real-world data are of course never exactly scale-invariant, if only because 
of “end effects.” No living village has fewer than 1 inhabitant or more than 100 
million, say—except the proverbial “global village.” For recent results on leading 
digits, see the paper by Diaconis [Dia 77]. 

There are of course plenty of nonscaling “data,” such as telephone numbers 
and the digits on automobile license plates, for which our skewed distributions 
of digits do not hold. 

Skewed distributions of numbers (rather than digits) are also known from 
continued fractions. According to Carl Friedrich Gauss (1777-1855), for most 
irrational numbers, the asymptotic probability that a given term a, in the continued 
fraction expansion equals k is given by the following expression: 

(kay 
k(k + 2) 

prob (a, = k) = log, 

The exceptional irrational numbers, such as the golden mean y = (,/5 — 1)/2, 
for which a, = 1 for all n, have measure zero. 
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Again, much as in the case of self-similar power laws, the number 1 has 

the greatest probability: prob. (a, = 1) 0.415. 
In Chapters 5 and 6 we shall further explore the connection between power 

laws and statistics. 

The Diameter Exponents of Trees, Rivers, 

Arteries, and Lungs 

Consider a tree trunk of diameter d bifurcating into two main branches with 
diameters d, and d,. Is there any consistent relationship between these diameters 
as one moves up the tree to branches bifurcating into subbranches and subbranches 
bifurcating into twigs and so on up to the leaf-bearing stems? 

Leonardo da Vinci argued that for the sap to be able to flow unimpeded 
up the tree, the combined cross-sectional areas of the two main branches must 
equal that of the trunk [RI 57]. In other words, Leonardo believed that d? = 

d? + d>. This claim has stood the test of time and is now enshrined in the “pipe 
model” of biological tree design [Zim 78]. The pipe model rests on the mental 

image of the sap being carried up the tree from roots to leaves by many 

nonbranching vessels (“pipes”), which occupy a fixed proportion of the cross 

section of each branch. 
The same relationship, namely, 

d* = di + d} (1) 

with A = 2, holds for the confluence of two rivers, where d, d,, and d, are the 

river widths. In fact, the width d of a river is found proportional to the square 

root of the quantity of water Q transported by the river: d ~ Q”* [Leo 62]. But 

the depth f of a river typically varies only as Q°*. The resulting slack is taken 

up by an increase in the water's velocity v, which is found to be proportional 

to Q™. In other words, a river having two tributaries of equal size and thus 

carrying twice the volume of water per second is typically 1.4 times wider but 

only 1.3 times deeper than one of its tributaries. But its water velocity is about 

1.1 times higher than that of the tributaries. Of course, 1.1 times 1.3 times 1.4 

equals very nearly 2, as it should if no water is lost or is added at the confluence. 

As Mandelbrot has pointed out, it is impossible to estimate the scale of a 

map if all river widths are shown to scale. And if the meanders of the river are 

also self-similar, the course of the river, too, contains no clue to the map’s scale. 

By contrast, converging or bifurcating roads, which, unlike rivers, possess 

no depth, should have widths that scale according to equation 1 with an exponent 

A = 1 provided that the traffic flow in cars per lane and minute is the same on 

all roads. Here the traffic lanes play the same role as the sap pipes in the pipe 

- model for trees. 
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Arteries and veins in mammalian vascular systems, too, have been found 
to obey the scaling law (equation 1) over a range of 20 bifurcations between 
heart and capillaries. Estimates of the exponent A give values near 2.7 [ST 71]. 
This is a reasonable value for biological evolution to have attained, given the 
requirement that arteries and veins should come close to every point of the body 
that needs nourishment and waste disposal. But the ideal value A = 3 for this 
purpose is, of course, unattainable, because a space-filling vascular system leaves 
too little tissue for other tasks. 

By contrast, the bronchi of the lung do attain a scaling exponent very close 
to A = 3, the value for a fractal that fills three-dimensional space. In fact, the 
bronchial tree is nearly self-similar over 15 successive bifurcations (see Figure 6 
[Com 66)). 

The exponent A = 3 can be derived from assuming that the geometry of 
the bronchial tree is determined by the least possible resistance to airflow in the 

entire bronchial system [Tho 61]. This implies a fixed branching ratio of 

d/d, = d/d, = 2". With equation 1, the exponent A must therefore equal 3 

[Wil 67]. 
However, Mandelbrot has a much more convincing argument, which does 

not require the branching ratio d/d, to be encoded genetically [Man 83]. Rather, 

Mandelbrot assumes a simple self-similar growth process during the prenatal 

stage of lung developments: “The growth starts with a bud, which grows into 

a pipe, which forms two buds, each of which behaves as above.” 

Iteration of these rules results in a self-similar tree structure for the lung. 

Thus, the empirically observed self-similarity is obtained not because it is optimum 

but as a result of the shortest growth-governing program: each step repeats the 

previous one on a smaller scale. The lung’s geometry is therefore fully determined 

by two parameters: the width/length ratio of the branches and the diameter 

exponent A. In this model, the value A ~ 3 simply results from the fact that a 

large number of bifurcations should be nearly space-filling without crowding 

each other out. 
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And the rain was upon the earth 
forty days and forty nights. 

—GENESIS 7.12 

Earnings momentum and visibility should 
continue to propel the market to new highs. 

—E. F. HUTTON, the Wall Street brokerage 
firm, from a forecast issued on October 19, 1987, 

moments before the stock market plunged 

Among the many domains where self-similar power laws flourish, statistics ranks 

very high. Especially, the power spectra (squared magnitude of the Fourier trans- 

form) of statistical time series, often known as noises, seem addicted to simple, 

homogeneous power laws in the form f ~8 as functions of frequency f. Prominent 

among these is white noise, with a spectral exponent B = 0. Thus, the power 

spectrum of white noise is independent of frequency. But white noise, that is, a 

noise with a constant or flat power spectrum, is a convenient fiction—a little 

white lie. Just like white light (whence the name white noise), the spectrum of 

white noise is flat only over some finite frequency range. Nevertheless, white 

spectra provide a supremely practical paradigm, modeling untold processes across 

a wide spectrum of disciplines. The increments of Brownian motion and numerous 

other innovation processes, the learned name for a succession of surprises, belong 

- to this class. Electronic and photonic shot noises, thermal noise, and many a hiss 

from man or beast aspire to membership in the white noise “sonority.” 

If we integrate a white noise over time, we get a “brown” noise, such as 

the projection of a Brownian motion onto one spatial dimension. Brown noise 

has a power spectrum that is proportional to f-* over an extended frequency 
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range. Some of the paradoxical consequences of such processes, such as the 
gambler’s bad fortune, and the “dusty” consistency of their isosets (sets of constant 

capital), will be discussed in Chapter 6. However, white and brown noises are 
far from exhausting the spectral possibilities: between white and brown there is 
pink noise with an f° spectrum. And beyond brown, black noise lurks, with a 
power spectrum proportional to f-’ with B > 2. Figure 5 on page 111 in Chapter 
4 showed waveforms of white, pink, and brown noise; Figure 1 shows a waveform 
of black noise with fp = 3. 

As it turns out, both pink and black noises are widespread. Pink processes 
make their appearance in many physical situations and have surprising aesthetic 
implications in music and other arts. 

Black-noise phenomena govern natural and unnatural catastrophes like 
floods, droughts, bear markets, and various outrageous outages, such as those 
of electrical power. Because of their black spectra, such disasters often come in 
clusters. Indeed, “Wyse men sayth... that one myshap fortuneth never alone”; 
so says A. Barclay in his translation of The Ship of Fools [Bar 1509]. 

All of these phenomena share an important trait: their power spectra are 
homogeneous power functions of the form f~* over some respectable range of 
frequencies, with the exponent f running the gamut from 0 to 4. 

Such homogeneous spectra, and the space or time records from which they 
result, exhibit a simple scaling invariance: if such a process is compressed by a 
constant scale factor s, the corresponding Fourier spectrum is expanded’ by the 
reciprocal factor 1/s. However, changing the frequency scale by any constant 
factor does not change the frequency dependence for power-law spectra; they keep 
their form. This can be nicely demonstrated acoustically: when such processes 
(properly time-scaled to fall into the audio frequency range) are recorded on 
magnetic tape and played back at a higher or lower tape speed, they do not 
sound higher or lower in “pitch”; apart from a change in volume, they sound 
the same! Thus, such spectra are self-similar and the underlying processes are 
statistically self-similar or self-affine. 

Pink Noise 

Pink noise, also called 1/f noise, has equal power in octave frequency bands or 
any constant intervals on a logurithmic frequency scale. This is a desirable attribute 
in many applications. For example, pink noise is a favorite test signal in hearing 
research and acoustics in general because it approximates many naturally occurring 
noises. Pink noise also has the approximate property of exciting equal-length 
portions of the basilar membrane in our inner ears to equal-amplitude vibrations, 
thus stimulating a constant density of the acoustic nerve endings that report 

1. This is a fundamental property of the Fourier transform, which underlies the uncertainty 
principle (see pages 112-114) and many other facts of physics that don’t wear such a nice label. 
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Figure 1 Waveform of “black” noise with B = 3. 

sounds to the brain (see pages 85—86 in Chapter 3). Pink noise is therefore the 

psychoacoustic equivalent of white noise. 

Pink noise is also encountered in a wide variety of physical systems, including 

semiconductor devices. One possible reason for the ubiquity of 1/f noises is their 

genesis through parallel relaxation processes, which abound in nature [Agu 76]. 

In a relaxation process (think of electrons trapped inside the walls of a potential 

well in a semiconductor), the trapped particle enters an excited state, where it 

remains for an exponentially distributed time interval with relaxation time T. The 

power spectrum—that is, the squared magnitude of the Fourier transform— P,(f) 

of such a process is the familiar Lorentz resonance line centered at O frequency 

(a first-order lowpass filter response, to the electrical engineer): 

ATP. 

~ + (2nfty we Pf) 

Here the total power P, of the relaxation process— that is, the integral over 

~ all positive frequencies P,(f)—is independent of t. 

In many physical, chemical, or biological systems there is not just one 

relaxation time but there are a whole spectrum of relaxation times t that depend 

on the energy barriers E which keep the structure temporarily trapped in the 

excited state. The relation between relaxation time t and energy barrier E is the 
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famous law named after Svante August Arrhenius (1859-1927): 

t= Tet (2) 

where T is the absolute temperature and k is Boltzmann’s constant. Suppose 

these energies are distributed uniformly in the interval [E,, E,]; then the distribution 

of the relaxation time p(t) can be obtained from equation 2 by applying the 

elementary rules for transforming probabilities, yielding a hyperbolic distribution 

for T 

pe Oey (3) 

where T,, = Ty ° exp (E;,,/kT) 
Superposition of many independent relaxation processes with power spectra 

given by equation 1 and relaxation times distributed according to equation 3 

yields 

2kTP, 
P(f) = TE ey [arctan (27fT 2) — arctan (27fT,)] 

where the difference inside the brackets, in spite of its somewhat forbidding 
appearance, is roughly constant in the frequency interval 

E 1 
— <= fre 
TT, ANT, 

(4) 

The main point now is that the frequency interval in expression (4) could be, 

and in numerous situations is, very wide. Suppose, for example, that the barrier 
energies span a range as narrow as 7kT; then t,/t, 10°. The corresponding 
frequencies for which the 1/f law P(f) ~ f~* holds within an accuracy of 
3 decibels (dB) range over a factor greater than 1200. 

Distributions of relaxation times over wide ranges of values have been 
observed in many physical and biological phenomena [Man 83]. Thus, the electrical 
voltage on a Leyden jar, an early storage capacitor for electricity, does not decay 
exponentially with time, with a single relaxation time. Rather, the charge decays 
hyperbolically, implying a wide range of relaxation times [Koh 1854]. The ubig- 
uitous electret microphone, a kind of latter-day Leyden jar, shows a kindred 
decay of its internal charge [Ses 80]. 

Similarly, the recovery times of neurons after firing were found by Jerry 
Lettvin to stretch from fractions of milliseconds to hours and days. And when 
Wilhelm Weber, following a suggestion by Carl Friedrich Gauss, measured the 
lengthening of elastic silk threads used in his apparatus, he found that an applied 
load would give rise not only to an immediate stretching but to a long-lasting 
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aftereffect, a continual further lengthening that followed a hyperbolic law with 
elapsed time [Koh 1847]. 

Hyperbolic decay with time can even be observed in concert halls with 
insufficient sound diffusion. As a consequence, sound decay in such halls cannot 
be characterized by a single reverberation time even at a single frequency [Schr 

70]. It seems that wherever we look or listen, we see or hear that exponential 
behavior is much less common than commonly supposed. 

We shall later encounter still another mechanism for hyperbolic behavior 

that gives wide-range 1/f spectra: intermittency, stemming from tangent bifurcation 

in the logistic parabola and other iterated nonlinear mappings. A generator for 

generic 1/f noise in chaotic Hamiltonian systems, hostage to a self-similar hierarchy 

of “cantori,” was recently proposed by Geisel [GZR 87]. 

While brown noise is easy to generate (just keep summing independent 

random numbers), pink noise is a bit more difficult to produce. A relatively simple 

method of generating pink or 1/f noise on a computer is to add several relaxation 

(first-order lowpass) processes with power spectra like equation 1 and relaxation 

times t that form a self-similar progression with a similarity factor equal to 10 

(or less for a better approximation). In this manner, just three relaxation times 

will cover a frequency range of nearly three powers of 10 (see Figure 2). 

Power spectrum 

0.01 0.1 1 10 100 

Frequency f (Hz) 

Figure 2 Pink noise from relaxation processes. Solid curve: superposition of three relax- 

ation processes. Dashed curve: Superposition of values on three dice. 
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A relaxation process with discrete time samples x, can be generated with 
the help of a computer's internal random number generator for producing in- 
dependent random samples r,, and using these (zero mean) samples in the recursion 
relation 

Xn41 = px, #+V1—p' 7, X) =O 

Here p is the desired correlation coefficient between adjacent samples. It is related 
to the relaxation time t by the equation p = exp (—1/t). Thus, for a set of 
relaxation times that increase by a factor of 10 (t = 1, 10, 100,. . .), the correlation 

coefficients are obtained by taking successive tenth roots (e.g., 9 = 0.37, 0.90, 
0.99, ...). 

For less accuracy, three dice, instead of a computer, suffice as random number 
generators: the first die is rolled for every new sample of the pink noise, the 
second die is “updated” only every other time, and the third die is thrown only 
every fourth time. This ingeneously dicey idea is due to Richard Voss [Gar 78]. 
The sum of the dots on all three dice then forms a random variable with a mean 
of 10.5 and a variance (noise power) of 8.75 that is a rough approximation to 
a pink noise over a limited frequency range. 

In this parlor-game approach to pink noise, the different relaxation times 
are mimicked by different persistence times of the dice (increasing by a factor 

of 2 in our example). However, the three-dice method (the dashed curve in Figure 

2) does not approach a straight 1/f slope nearly as well as three relaxation 
processes (the solid curve in Figure 2). 

Self-Similar Trends on the Stock Market 

One of the neighborhoods where power-law noises dominate the scene, and 
chaos reigns the charts, is Wall Street, U.S.A. At stock and commodity exchanges, 
self-similarity weighs in on many scales. This is perhaps best illustrated by my 
once mistaking a chart of minute-by-minute stock averages (see Figure 3) for day- 
by-day fluctuations. I would not have been surprised by self-similarity between 
daily, weekly, and monthly prices, but I never suspected the same kind of 
fluctuations to prevail right down to 30-second intervals, which is what the 
“minute-by-minute” charts actually show. 

Of course, once in a while there is an uncharacteristic jump in the data, as 
in October 1987 (see Figure 4), when the computers that handle programmed 
trading went wild (through no fault of theirs, of course). Technically, such price 
jumps are also known as “innovation processes”—some inriovation, and certainly 
no consolation to the unlucky trader waiting impatiently for his broker to answer 
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Figure 3 Minute-by-minute stock averages look much like daily averages because stock 

averages are a self-affine process. 

the phone! But after the “novelty” has worn off, price fluctuations resume their 

habitual course.” 
The trends and fluctuations of stock prices have been analyzed in great 

detail in terms of information-theoretic concepts, such as cross entropy and mutual 

information. In fact, Claude Shannon, the father of communication theory (as he 

called it), is reported to have become quite rich after he began to apply his 

theory to the stock market. Now, market analysis is a firmly entrenched branch 

of information theory, as are other economic applications of entropic principles. 

But the emergence of programmed trading, executed by fast and soulless machines 

governed by instant feedback, will necessitate much rethinking of the rules by 

all concerned: the exchange board, the numerical analyst, and the hapless investor. 

eS a eee 

_ 2. Speech signals, which are highly redundant (no matter what the semantic content), can also 

be reduced to innovation sequences (by linear prediction from past sample values). T
hese “prediction 

residuals” can then be quantized and encoded by a single binary information bit for every four 

samples of the speech signal, or 0.25 bit per sample, without loss of quality [SA 85]. Ordinarily, 

speech signals require 8 bits per sample, and compact disks use 16 bits per channel. 
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Figure 4 Drop of stock market in October 1987. 

In a first approximation to stock averages, one assumes the actual prices 

to be generated by independent increments. The resulting price “noise” has a power 

spectrum that is proportional to the inverse square of the frequency. Such random 

runs are now often called brown noises, in an allusion to Brownian motion, that 

jittery dance of floating dust specks seen in a microscope by the Scottish botanist 

Brown. (In Brownian motion, the innovation process consists of the independent 

kicks given the suspended particles by the molecules of the liquid in which they 

float.) 
Another, purer paradigm of brown noise is the fluctuating capital of a 

gambler, for which independent rolls of dice constitute the innovation process. 
Suppose the probability of winning a dollar is p for every roll (and that of losing 
a dollar is 1 — p). What optimum strategy does information theory teach? Answer: 
Unless your chances of winning exceed 50 percent, don’t play! (Another case of 
science most profound confirming common sense.) 

But what to do if p > 0.5? This is not as unrealistic as it may seem. The 
gambler could have side information—legal or otherwise—of the mechanical 
statistics of the roulette wheel. Here information theory provides another useful 
answer: Bet, but don’t bet all your money! To maximize your capital growth, 

bet the fraction 2p — 1 of your present capital [Kel 56]. Then the logarithmic 
growth rate of your capital will attain its highest value, given by Shannon's 
information capacity C(p) = 1 — H(p) of the binary symmetric channel with error 
probability p. Here H(p) is the entropy function H(p) = —[p log p + (1 — p) log 
(1 — p)]. Thus, for p = 0.6, say, the gambler should invest 20 percent of his 
current capital at every roll. Taking logarithms to base 2, H(p) equals 0.97 bits 
per roll and 2° = 1.02. Thus, the well-informed gambler can expect an average 
gain of 2 percent per roll—which is a lot better than the taxable 2 percent interest 
per year that a major European bank recently offered the author, without blushing. 
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The more timid player who bets only 5 percent of his capital will gain an 
average of less than 1 percent per roll. After 200 rolls, his gain will be only one- 
tenth that of the optimum player who properly exploits information theory. 

By contrast, the greedy gambler who always bets half of his current capital 
will, on average, lose 3.5 percent of his money per roll, or practically all of it 
(99.9 percent) during a 200-roll evening. And the reckless player who bets all 

his current money on every roll will, of course, be cleaned out completely after 
surviving an average of two rolls. (See also pages 150-152 in Chapter 6.) 

Brownian motion contains several subtle statistical self-similarities, and we 
shall return to the Brownian theme, including more on gambling and the topic 
of constructing interesting topographies from noise, in the following sections 
and in Chapter 6. 

Black Noises and Nile Floods 

If the gambler thinks brown noise is bad enough, expose him to processes with 

power spectra proportional to f-* with B > 2, which we have called black noises. 

A diffusion process with independent increments Ax diverges but does so only 

with the square root of elapsed time f; that is, the root mean square distance is 

proportional to the square root of time: 

Kae 1 ~ pl? 

To characterize black processes, we need a new measure of divergence. This was 

provided by Harold Edwin Hurst (1900-1978) [HBS 65] and Mandelbrot [Man 

83]. 
The quantity in question is the rescaled range R/S, which is essentially the 

range R(Af) of the data over a time interval At (after subtracting any linear trend) 

divided by the sample standard deviation S(Ab). For a white Gaussian noise, the 

ratio R/S tends to a constant for large At. In a sense, both R and S measure the 

range of the data, but R “looks” at the data linearly and S is based on the squared 

data. For some processes this yields no new information and R/S is asymptotically 

constant, that is, proportional to Af’, But this is not so for numerous geophysical 

records such as floods and a host of other inhospitable data. 

For a Brownian function (power spectrum proportional to f Bekins 

proportional to At®®, reflecting the long-range dependence, or persistence, hiding 

behind brown processes. The water-flow statistic of the river Rhine (at the Swiss- 

- French-German triple point near Basel, anyhow) converges on a similar long- 

term behavior with R/S ~ Af°*’ (see Figure 5A). 

But other rivers are not as mild and tame as the Rhine [MW 69]. The water- 

level minima of the river Nile, for instance, taken between the years 622 and 

1469 (the drought-dreading Egyptians must have been very patient papyrus 
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Figure 5 (A) Water-flow statistics of the Rhine; (B) water-level statistics of the Nile 
[MW 69]. 

keepers!) show a dependence R/S ~ At®” (see Figure 5B), an exponent that reflects 
a high degree of persistence, of which the Bible has taken due note in the heart- 
(and coat-) rending Joseph story (Genesis 41). 

The Hurst exponent, defined by H:= log (R/S)/log (Af), is a convenient 
measure of the persistence of a statistical phenomenon. For white noise, which 
has no persistence, H = —0.5; for brown noise, which does have persistence, 
H=0.5. 

Interestingly, there is a simple relation between the Hurst exponent H and 
the spectral exponent f: 8B = 2H + 1. Thus, the Nile noise has a power spectrum 
proportional to f-’ = f~**, implying, like the large Hurst exponent 0.9, a long- 
range persistence that requires unusually high barriers, such as the Aswan High 
Dam, to contain damage and rein in the floods. 
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Warning: World Warming 

Processes with pronounced persistence pose perplexing puzzles—and are prone 
to frequent misinterpretation. Again and again one hears alarmists crying wolf 
when confronted with seemingly threatening data, but impartial analysis may 
reveal nothing more threatening than a statistical artifact. 

Let us look at a Nile-like noise, with a power spectrum that decays as f * 

for large frequencies f. Of course, for small frequencies, the spectrum would 

diverge, implying an infinite energy. But no matter how catastrophic, real calam- 

ities are finite. If nothing else, finite observation times T would limit observable 

excesses. Thus, a realistic power spectrum P(f) with asymptotic f- * dependence, 

obtained from data collected over a time period T, might look like this: 

P at (f) 14+ TF (f > 0) 

This spectrum is plotted in Figure 6 for an observation period T = 1 (say, 1 

year). 

But now suppose observations are extended over two years. The “new” 

power spectrum, as seen by the extended observations, is shown by a dashed 

line in Figure 6. Thus, just extending the observations from 1 year to 2 years 

has added all the doom-ordaining power shown in gray in the plot. 

For an actual example, let us look at a study of the annual population 

variation of a large number of terrestrial animals over a period of 50 years. 

Ecologists found that fluctuations over 20 years are roughly twice as large as 

those observed over 2-year spans—in spite of the fact that the populations 

appeared to be relatively stable over half a century [RP 88]. 

Thus, before drawing doomsday conclusions from the exceedingly warm 

1988 summer in the continental United States, one should remember Hurst and 

his exponent, and the strong dependence of extremes on the length of observation. 

There may well be a “greenhouse” effect of global warming in the air, but 

confirmation requires a lot more patience (but perhaps not much more carbon 

dioxide [Fis 90, Wei 90)). 

On the other hand, minimum viable populations of endangered species must 

be considerably larger than current estimates, based on time-limited data, would 

indicate [Law 88]. (For further paradoxes resulting from power-law statistics, see 

Chapter 6.) 

- Fractional Integration: A Modern Tool 

Brownian motion is obtained from summing independent increments. Summing 

(or integrating) the increments changes the spectrum from f°, for innovation 
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Figure 6 Dependence of measured spectrum on observation time T. 

processes, to f ” for the integrated process. Can we not get f° processes from 
integration? Yes, but we must first reinvent fractional integration, and before that, 
we must define it.” 

Since integration multiplies a power spectrum by f ’, let us define a half 
integration as an operator that multiplies the power spectrum by f *. In the 
conjugate Fourier variable (time or space, say), the operation is a convolution 

3. Amazingly, as already noted, Leibniz thought of fractional differentiation and integration 300 
years ago, right after the invention of calculus proper. (The incredible Leibniz also seems to have 
invented the grooves under the head of a nail to improve its cohesion with the material into which 
it has been hammered.) - 
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integral whose kernel is the inverse Fourier transform of | f ~*? « exp (i(f)) with 
appropriate phase @(f). 

More’ generally, we can define v-fractional integration by an operator that 
multiplies the power spectrum by f 7”. The corresponding convolution kernel 
is proportional to ¢”* [Erd 54]. 

Fractional integration and differentiation have been useful tools in quantum 
mechanics and other fields for some time. Now they may also serve in the 
automated assembly of fractal landscapes and other self-similar structures. While 
the required numerical convolution in the time or space domain may consume 
much computer time and memory space, the alternative—Fourier synthesis from 
the prescribed spectrum—imposes potentially unrealistic periodicities on the 

resulting fractal. 

Brownian Mountains 

How can we generalize the Brownian function, B(f), to a function of two variables, 

B(t,, t,)? In other words, we want to erect a Brownian mountain, B(t,, t,), over 

the (f,, f,) plane in such a way that any cut of the mountain with a plane 

perpendicular to the (f,, t,) plane will be a typical Brownian function B(t). Inter- 

estingly, as seen in the next section, the answer is connected with computer 

tomography—and, equally unlikely, with imaging by rotating cylinder lenses. 

We begin by recalling that B(t) has a power spectrum proportional to f~*. 

Its amplitude spectrum is therefore proportional to |f|~*. For the two-dimensional 

case, we need an amplitude spectrum which is proportional to |f|~*, where f is 

the frequency vector (f;, f,.) with components f, (corresponding to the “time” 

variable f,) and f, (corresponding to t,). The length of the frequency vector is 

lel = Of + A)". 
Thus, one method of constructing a Brownian mountain B(t), where t is 

the “time” vector (t,, t,), is to take sufficiently many independent, identically 

distributed random samples on a square lattice in the frequency plane, to multiply 

them by |f|~*, and to Fourier-transform the product into the time plane. For 

mountains in our world, the time plane will, of course, be a spatial plain, measured 

in square kilometers. 
An alternative method of constructing B(t) is to start with independent 

samples in the time plane and perform an operation on them that is equivalent 

to multiplying by |f|~! in the frequency plane. This equivalent operation is a 

- convolution with the inverse Fourier transform of the function |f|-!, which, in 

two dimensions, happens to be the function |t|-1 (within a constant factor that 

is of no interest). In other words, the two functions |£|-! and |t|~! form a Fourier 

pair for the two-dimensional Fourier transform. (Another, better known case where 

a function is similar to its Fourier transform is, of course, the Gaussian distribution 
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function. In fact, for the Gaussian function this similarity holds in any number 

of dimensions.) 

Thus, if we use Wit) to refer to a two-dimensional array of independent, 

identically distributed random samples in the time plane, a Brownian mountain 

is given by 

B(t) = Wit) x |t|~* (5) 

where * stands for a convolution integral. Figure 7 shows a mountainscape 

generated in this fashion. Other methods for generating fractal landscapes and 

other self-affine fractals are described by Richard Voss [Vos 88] and Dietmar 

Saupe in The Science of Fractal Images [PS 88}. 

Radon Transform and Computer Tomography 

B. Julesz has shown that imaging an object in the t plane with a rotating cylinder 

lens, combined with time averaging, is equivalent to convolving with the function 

|t|~* [JSS 69]. The same is true for tomographic imaging (using x rays or some 

Figure 7 Computer-generated Brownian mountain [Man 83]. 
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other shadow-casting radiation) [SHJ 88]. The transformation in equation 5, which 

describes these“fuzzy” imaging methods, is also called the Radon transform. Figure 
8 shows the image of a letter A obtained with a rotating cylinder lens and time 
averaging. 

To recreate a sharp image Wit) from the “blurred image” B(t), we need to 

execute an inverse Radon transform on B(t). And we already know how to do 

this! We Fourier-transform the B(t) information (preferably on a computer; hence 

the term computer tomography), multiply the result by |f| to cancel the factor 
l¢| ~*, and Fourier-transform back into the t plane to yield the sharp image Wit). 
Computer tomography is that simple—if we shun dull and deadly detail! 

Fresh and Tired Mountains 

A Brownian mountain with an |f|~ * power spectrum has a surface whose Hausdorff 
dimension is D = 2.5 [Vos 85], which makes it look rather rugged, like a geo- 

logically very young, ragged mountain (see Figure 9A) whose jagged peaks have 

had no time to erode. 
If we want smoother mountains, like the North American Rockies (except 

the Grand Tetons), the power spectrum must fall off faster than |f|~*. A good 

earthlike mountainscape is obtained by multiplying independent samples in the 

frequency plane by a factor le? with y > 1. Fourier transformation then yields 

Figure 8 Image of letter A obtained with rotating cylinder lens. 
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(A) 

(B) 

Figure 9 (A) Brownian mountain with fractal surface dimension 2.5, (B) mountain with 
surface dimension 2.1 [Vos 88]. 
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Figure 10 Coastline with fractal dimension 1.33 [Man 83]. 

mountains with a fractal surface dimension D = 3.5 — y. For the spectral exponent 

B = 2y, we thus have B = 7 — 2D. 
Figure 9B shows a mountainscape with D,, = 2.1 having a power spectrum 

proportional to |f|~**. 
Many mountain lakes (see the white areas in Figure 9A) have coastlines 

with Hausdorff dimensions equal to D, = D — 1, which equals D, = 1.5 in the 

Brownian case (8 = 2) and D, = 1.1 for B = 2.8 (Figure 9B). This is somewhat 

less than the fractal dimension of the west coast of Britain (D, © 1.25). 

-A coastline with D, ~ 1.33 generated in this manner is shown in Figure 10. 

In general, for a fractal embedded in E Euclidean dimensions, the fractal 

dimension D is given by 

pee eee 
2 

There is also a connection between D and the previously introduced Hurst 

exponent H (see pages 129-130). With B = 2H + 1, we have 

DimaE Pied 

Since for many shapes in nature (mountains and clouds, for instance) D © E + 0.2, 

Hurst exponents near 0.8 are an excellent general choice for generating such 

natural designs. Today, the use of computer-generated fractal landscapes in movie 

animation is pervasive. 
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rownian Motion, Gambling Losses, and 

Intergalactic Voids: Random Fractals 

par Excellence 

As far as the laws of mathematics refer 
to reality, they are not certain; and as far 
as they are certain, they do not refer 

to reality. 
—ALBERT EINSTEIN 

Some of the most fertile fields for fractals are fluctuating phenomena. In fact, 

nature abounds with self-similar structures that are statistical in nature, covering 

many different disciplines: from the distribution of galaxies in astronomy to cloud 

formation, climate, and the weather in meteorology; from polymerization and 

rusting in chemistry to the design, in biology, of our lungs and vascular systems 

and the growth patterns of many plants; from “fingering” in oil exploration, the 

branching and drainage basins of river systems, and the occurrence of floods in 

geophysics to physics proper, where we encounter fractals and statistical self- 

similarity in Brownian motion, fracture surfaces, soap bubbles, coagulation, 

percolation, diffusion-limited aggregation, and dielectric breakdown—such as 

lightning and Lichtenberg figures—not to mention the energy valleys in spin 

glasses and, last but not least, turbulence. 

Cosmic strings, too, those wispy threads thought to have been created 

_ during the birth of the universe and potentially responsible for the clumping of 

galaxies, are statistically self-similar as the universe expands [Vil 87]. 

In view of this encompassing scope of statistical self-similarity, it is perhaps 

not surprising that fractals have even invaded the art industry. Following Man- 

_ delbrot’s pioneering work and his specific suggestions, mountains and other 
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“backdrops” in videos, movies, and images in general are increasingly being 

generated by computers, programmed to produce self-similar structures with the 

desired pleasing statistics—pleasing, it is said, because fractals have interesting 

features on many size scales. 
In this chapter we shall first explore the random fractal par excellence: 

Brownian motion and certain games of chance. 

The Brownian Beast Tamed 

Brownian motion, the paradigm of random fractals, was first observed in the 

nineteenth century by the Scottish botanist Robert Brown (1773-1858) and 

properly described by him in 1827 as a physical’ phenomenon. 

Thus, the stage was set for mathematical physics to step in, and it was 

none other than Albert Einstein, in 1905, and Marian Smoluchowski (1872— 

1917), a bit later, who first shed light into a very murky situation [Pai 82]. 

Interestingly, when Einstein began thinking about random thermal motions of 

macroscopic objects, he was not even sure that there was such a thing as Brownian 

motion.” But he felt that there should be macroscopic manifestations of molecular 
motion and that their observation would confirm the molecular theory of heat, 

thereby proving the existence of finite-size atoms. This is what Jean Baptiste 
Perrin (1870-1942) proceeded to do, and in 1926 he was awarded the Nobel 
Prize in physics for his work on Brownian motion. In fact, proper observation 
of the motion under the microscope and an application of the law of large 
numbers allowed Perrin, following Einstein’s suggestion, to “count” the number 
of molecules in a given volume. 

But the headaches that Brownian motion had caused were far from over. 
Now the puzzling questions arose in mathematics, owing to the nondifferentiability 
of the motion, until laid to rest by Norbert Wiener (1874—1964) and others. So, 

to mathematical physicists, Brownian motion is now known as a Wiener process 
really nothing new or novel, considering that Weierstrass functions had been 
available for some time as a good mathematical model for nondifferentiable 
continuous functions. In fact, it was one of the great minds of the nineteenth 
century, Ludwig Boltzmann (1844-1906), who felt that there were physical 

1. This is not the place to retell the hilarious tales stimulated by that wiggly motion seen under 
the microscope, the fanciful interpretations ranging from living molecules—endowed with their 
own free will—to the outright supranatural. Suffice it to say that, when Brown had the liquid 
boiled, frozen, and reheated, the little specks still wiggled as madly as many a modern disco crowd. 

2. In his first paper on the subject Einstein wrote: “It is possible that the motions discussed here 
are identical with the so-called Brownian molecular motion; the references accessible to me on the 
latter subject are so imprecise, however, that I could not form an opinion about this,”[Ein 05]. 



Brownian Motion, Gambling Losses, and Intergalactic Voids 141 

problems that are best described by nondifferentiable functions and that one 
could have invented such functions from the proper consideration of physical 
problems.” 

Brownian Motion as a Fractal 

Figure 1A shows a typical way of portraying the Brownian motion of a dust 
particle, say, as seen under the microscope. However, this portrayal is exceedingly 

misleading: Does the particle really move in straight lines between vertices? No! 

Does it move in curved lines then? No again! Then how does the particle move 
from point A to point B in Figure 1A? 

Let us photograph the particle's motion at a shutter speed 100 times faster 

so that we see the particle 100 times between A and B. The result, magnified 

10 diameters, is shown in Figure 1B: the straight line connecting A with B has 

metamorphosed into 100 straight-line segments, each, on average, about as long 

as the segments in Figure 1A (really 10 times shorter, because Figure 1B is 

magnified tenfold). 
Does the particle move in a straight line from C to D in Figure 1B? Once 

more the answer is no. Looking again 100 times more often and magnifying 10 

diameters will result again in a picture statistically similar to Figure 1B. That is 

why we call the Brownian motion statistically self-similar.’ Every time we make 

our spatial resolution 10 times higher, we get 100 times as many pieces. In 

general, if we increase the spatial resolution by a factor of 1/r, we get N(r) ~ 

1/r more pieces to cover. Hence, the Hausdorff dimension (see pages 9-10 

in Chapter 1) of Brownian motion is given by 

_ log NY) _ 

toe - 

which happens to be an integer. With D,, = 2, Brownian motion in two dimen- 

sions could be plane-filling, but it is not; there is much self-overlap (see Figure 

1A and B). In fact, for a Brownian motion in two dimensions (think of enzymes 

wandering around on the surface of a cell), the probability of returning to the 

neighborhood of a given location, no matter how narrowly defined, is 1. By 

contrast, for Brownian motion in three dimensions, the embedding dimension 3 

eee ee 

_3. Ina letter dated Vienna, January 15, 1898, to Felix Klein (1849-1925). 

4. More accurately, geometric figures whose parts can be brought into correspondence with the 

whole by scaling different directions by different factors are called self-affine. Thus, Brownian motion 

is statistically self-affine, with a scaling factor r, say, in the spatial dimensions and a scaling factor 

r” in the time dimension. 
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Figure 1 (A) Brownian motion. (B) The segment AB of the Brownian motion in part A 

sampled 100 times more frequently and magnified 10 times. 
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being larger than the Hausdorff dimension of the motion (D,, = 2), the return 
probability is smaller than 1.° 

As we remarked earlier, every self-similar process in the real world has to 
have a largest and a smallest scale; scaling up or down cannot go on forever. 
But for Brownian motion, the range of lengths over which self-similarity prevails 
covers many powers of 10: from the size of the vessel containing the liquid, 
0.1 m, say, to the mean free path between molecular impacts, which, for small 
test particles, could be as small as 10” m. In many situations we are willing to 
call an object self-similar if it scales over a range of just 10 to 1 or even less, in 
perhaps as few as three discrete steps. By contrast, Brownian motion scales over 
a range of 10° to I, covered by a continuum of intermediate scales. 

Brownian motion is as close as we get in physics to a nondifferentiable 
function. And, as Boltzmann remarked so soberly in his previously cited letter 
to Klein (of Klein bottle fame), if [Weierstrass] had not already thought of such 
functions (in his attempt to show the world how totally counterintuitive some- 
thing innocently called a function could be) then physicists, or botanists, would 
have had to invent the strange mathematical beast themselves. 

How Many Molecules? 

The physical law behind the scaling behavior that leads to equation 1 is the 
diffusion equation 

sl 
x = 2Dt (2) 

where x’ is the mean square displacement of a Brownian particle in time f. 
Equation 2 is simply an expression of the mathematical fact that if independent 
random lengths (whose average is zero and whose distribution has a second 

moment) are added, then the total distance is obtained by adding up the squared 

individual lengths and then taking the square root. We have called the constant 

of proportionality 2D in equation 2, following Einstein’s original nomenclature. 

The so-called diffusion constant D must be related to the “microscopic” 

variables (really, the variables the botanist cannot see under the microscope), 

“namely, the mean free path A and the average time between collisions, t. A “little 

thinking” will reveal that the relationship is as follows: 

2 

2D ‘ (3) 

5. This is believed to be an important reason why Mother Nature lets many crucial life-sustaining 

chemical reactions occur on surfaces rather than in three-dimensional space. 
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or, introducing the thermal velocity v ~ A/t of the observed particle, 

2D'=0't (4) 

where v” is the mean square velocity. Now, the thermodynamic equipartition of 

energy tells us that 

S| I w (5) 2/5 

where k is Boltzmann’s constant, T is the absolute temperature, and m is the 

mass of the particle. 
The average time between collisions is given by 

— (6) onF 

where n is the number of buffeting molecules per unit volume and F is the cross 
section of the buffeted particle (which, like m, can be measured macroscopically). 

Now, measuring x” and putting equations 2 to 6 together, allows us to 
determine the number of molecules n in a given volume. If the result is finite, 
as it will be, then there must be a finite number of molecules in the liquid. And 
since the total weight is also known, measuring Brownian motion under the 
microscope allowed Perrin to measure the weight of an individual molecule. To 
have foreseen this possibility of establishing the finite, nonvanishing reality of 
atoms and molecules is one of Einstein’s greatest contributions to our under- 
standing of the physical world in which we live—almost on a par with his 
redefinitions of time and space in special and general relativity. 

The Spectrum of Brownian Motion 

What is the power spectrum of a Brownian function B(f), which we define as the 
projection of Brownian motion onto one spatial dimension as a function of time? 
Brownian motion is generated by independent increments (the individual impacts 
of the buffeting molecules), which have a flat (“white”) power spectrum. The 
sum or integral of the increments therefore has a power spectrum that is pro- 
portional to f-*. Noises having such spectra are now called brown noises (see 
Chapter 5)—an allusion also to the fact that brown light has a stronger admixture 
of red light (low optical frequencies) than white light. 
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The Gambler’s Ruin, Random Walks, 

and Information Theory 

Other instances of brown noise are stock market prices and gains or losses from 
other jeux d’hasard and, generally, random walks subject to independent incre- 
ments. Let us look at the infamous paradigm called the “gambler’s ruin.” Each 
time a coin is thrown and heads come up (with probability p), the player wins 
a dollar, and he loses a dollar when tails shows. His capital as a function of time 
(number of throws) is a Brownian process with fixed increments, also called a 

Markov-Wiener process, after A. A. Markov (1903-1922) and Wiener. 

Let the player start with an initial capital K (K as in Karl Marx and Das 
Kapital). After the first trial (apt word!) his capital is either K + 1 (with probability 
p) or K — 1 (with probability g = 1 — p). Calling his probability of ultimate ruin 
gx, we have the following difference equation: 

Gx = P9x+1 + 9Gx-1 Or Kb (7) 

where B is the capital of the bank, gq, = 1, and q,; = 0. 
Such difference equations can be solved by the generating-function (or z- 

transform) ansatz q, = z*, which yields a quadratic equation in z: z = pz’ + q, 
with the two solutions (for p # q) z = 1 and z = q/p. Thus, for p ¥ q, with the 

particular solutions qx = 1 and qx = (q/p)", the general solution is 

K 

n=ato(2) 
p 

or, with the “boundary conditions” g, = 1 and q; = 0, 

_ lp)’ — Gln)" 
= P (8) 

For p = q, we apply |’Hospital’s rule to the limit as p — 0.5, yielding for the 

probability of ultimate ruin the simple result 

Pee 
Gx = B 

which satisfies the necessary symmetry for p = 0.5, namely, qx + 9s—x = 1. Of 
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course, for the poor gambler whose capital K is small compared with that of the 
bank B, ultimate ruin is almost certain:° g, ~ 1. 

Counterintuition Runs Rampant in Random Runs 

One of the several counterintuitive facts of the fair-coin tossing game is that 
the expected number of times equals 1 that a player will increase his capital by 
any given amount G before the first return to his initial capital— independent of 
how large the gain G is! More tangibly, in a $1 per bet fair-coin tossing game, 
the player will reach $1 million on the average once before he has incurred any 
loss (i.e, dropped below his initial capital). The only consolation for the bank is 
that the expected gain is still 0. (As we saw in the preceding section, for the game 
without a time limit, the probability that the player will lose his entire capital 
of K < B dollars is 1 — K/B, and the probability that the bank will go broke 
is K/B). 

A similarly counterintuitive result concerns the duration D, of the fair game, 
obtained by solving a difference equation similar to equation 7: 

D, = K(B— K) 

In other words, if the player has just a single dollar and the bank $1 million, the 
expected duration of the game is 999,999 tosses! As we shall see in what follows, 
these mind-boggling conclusions are related to the fact that returns to a given 
position in the unconstrained (B = 00) fair game, while occurring with probability 
I, are Cantor sets with fractal dimension 5. 

The counterintuitive results just described are symptomatic for unbiased 
random walks, expressed most forcefully by the so-called arcsine law. Couched 
in the language of a discrete random walk of a diffusing particle in one spatial 
dimension, the arcsine law says: The probability p,,(2k) that in the time interval 
from 0 to 2n the particle will spend 2k time units on the positive side is given 
by 

2k\/2n — 2k 
ek) = at Pan(2k) heer 

1 
os m[k(n ees kf? (9) 

ee ee ee 
6. Surprisingly, a certain statistics professor, who shall remain nameless, was not able to derive the formula for the probability of ruin for the finite-duration game which he had posed as an exercise for the students at the beginning of the summer semester in 1948. During the entire semester his recurrent refrain was “we'll tackle that one next week.” But he never did tackle it. 
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[Fel 68], a distribution which has most of its weight near k = 0 and k = n (just 

like the amplitude distribution of a sine wave oscillating between its extreme 
values, a fact on which time-averaging holography of vibrating bodies is based). 

The arcsine law, so named because the integral of equation 9 is the arcsine 
function, has many curious consequences. For example, for a fair game, the 
probability that in 20 tosses each player will lead 10 times (which seems fair 
enough) is only about 6 percent. But the probability that one of the players will 
lead for all 20 tosses (how unfair!) is greater than 35 percent! In other words, in 

more than one-third of the cases the lead never changes! 

More Food for Fair Thought 

Another “unfair” result of fair-coin tossing is as follows. Consider 2n tosses, half 

of which turn out heads (and half tails). And let 2k again measure how often 

the accumulated number of occurrences of heads is greater than the accumulated 

number of occurrences of tails. Then the number of possibilities N,,,(2k) for this 

outcome is given by the “Catalan number:” 

an i 
N,,(2k) = ( s 

n eet 

independent of k.’ 
This kind of counterintuitiveness has led to numerous false conclusions in 

the history of science, and statistics in particular. In 1876 Sir Francis Galton 

(1822-1911), inventor of the Galton board (a kind of fakir’s bed for bouncing 

balls), tested some data on plants furnished him by the even more famous Charles 

Darwin (1809-1882). There were 15 treated plants and 15 untreated specimens 

(the control group). In rank-ordering the data, Galton saw that the treated plants 

were ahead of the untreated plants with the same rank in 13 out of 15 cases. 

Galton concluded, understandably, that the treatment was effective. But assuming 

perfect randomness in the data (30 measurements from the same pool of plants), 

the probability of Galton’s observation is =. In other words, in 3 out of 16 cases 

a perfectly ineffectual treatment appears very effective. How many bad answers 

and bogus inferences have been drawn from this single source of statistical 

misdemeanor alone? 

7. Catalan numbers, although perhaps not widely known, are truly ubiquitous. For example, N,, 

is the number of ways 2n people seated around a table can shake hands in n pairs without their 

arms crossing. For many other applications of Catalan numbers, see the paper by Eggleton and 

. Guy [EG 88]. 
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The St. Petersburg Paradox 

Games of chance have led to more than one paradox, most often related to the 
counterintuitive aspects of random walks and their inherent fractal nature. 

Around 1700, Nicolas Bernoulli (1687-1759), nephew of Jakob (1654— 
1705) and Johann (1677—1748), introduced a curious game of chance with infinite 
mean winnings (mean certainly from the bank’s point of view). The game was 
analyzed by still another Bernoulli, Daniel (1700-1782), in the Commentarii of 
the St. Petersburg Academy—depository of much of Euler's writings. 

Suppose a coin has a probability p > 7 of coming up heads. The player 
flips the coin until heads comes up for the first time. If it takes n flips, the player 
wins 2" * dollars. What are his expected winnings VW if the game can continue 
indefinitely? The answer is simple enough: 

W = 2% + 21 — pp + 2°11 — pyp+-:: (10) 

or 

bya EE 
T= 2(1 — p) 

For p = 0.55, for example, the expected gain is W = 5.5 dollars, and for p = 0.51 it is W = 25.5 dollars. 
What happens for a “fair” coin? For p = 3, the geometric series (equation 10) does not converge, and the expected winnings become infinite! Thus, a fair fee for the game would be an infinite ante, or so a bickering banker could reason. But a prudent player, quite apart from being “temporarily out of” infinite 

How can mean and median be so different? The answer is, of course, that for p = 3, the mean does not even exist, and what does not exist lacks the ability of being different. 
The divergent mean winnings may be reminiscent of the infinite length of a fractal curve, and indeed we can tame the St. Petersburg paradox by introducing fractals and Hausdorff dimensions, as we shall see in subsequent sections. 

8. A parallel between t ee he abundant Bernoullis and the shingle of a typical American law firm is 
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WWaicr Bernoucu Do YoU WISH To See— 
'‘yprobyNAmics* Bernovirt, Carcucws’ Beevourtt, 
‘GEODESIC’ BERNOULLI, ‘ZaRGe NUMBERS 

PERNOULLI OR ‘FRoepBiLity' PERNOULLI et 

Figure 2 Bernoulli, Bernoulli, Bernoulli & Company [Har 77]. (© 1991 by Sidney Harris) 

Shannon’s Outguessing Machine 

Not all games of chance are fair, perhaps least of all those which (who) proclaim 

fairness the loudest (“I am not a crook”). But some games make no pretensions 

- of fair play; in fact, unfairness is their very reason for being—such as Claude 

Shannon’s engaging “outguessing machine” [Sha 53]. 
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Shannon’s entrapping contraption initially makes random heads-tails choices 
against a human contender. But once the machine has experienced its first win, 
it begins to analyze the opponent's “strategy” to a depth of two throws. Does 
he or she change after losing a throw? Does the player keep on choosing tails 
if tails has brought two previous wins? Or does the gambler get chary and head 
for heads next? For most people such strategies are mostly subconscious, but 
the machine assumes the human to act like a second-order Markov process and 
uncovers the underlying transition probabilities without fail. Exploiting these, 
the machine always wins over the long haul, except against its creator. Shannon, 
keeping track of his machine's inner states, can beat it 6 times out of 10. Of 
course, anyone could win 5 out of 10 throws on average by playing random (perhaps by flipping a true coin), But this is precisely what people, deprived of Proper props, are incapable of doing, as Shannon's machine has demonstrated again and again by beating a wide variety of human would-be winners. Specifically, man’s mind appears to abhor long strings of like outcomes—as occur perfectly naturally in truly random sequences. 

Of course, the machine can have bad luck too, especially in its initial guessing phase. I once wanted to show off the machine’s prowess to a foreign friend (mathematician Fritz Hirzebruch) visiting Bell Laboratories. As luck would have it, Hirzebruch won 13 times in a row before his first loss. But thereafter the machine took off with a vengeance, overtaking the renowned mathematician on throw 31 (i.e., the machine won 16 out of the next 18 throws!) and never fell behind again—in spite of the fact that Hirzebruch had been told (in general terms) how the machine worked. 

The Classical Mechanics of Roulette and 
Shannon’‘s Channel Capacity 

While Shannon’s outguessing machine is intrinsically (and intentionally) unfair, some ostensibly fair games of chance can be subverted into unfairness. Great fortunes (and some unfortunate lives) have been lost through gambling at roulette 
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size regulation roulette wheel lodged in my basement: at the time the average 
croupier cries rien ne vas plus (no more bets, nichts geht mehr), the final resting 
position of the ball is not totally unpredictable; its probability distribution is 
anything but exactly uniform. In fact, the modulation depth of the probability 
amplitude around the wheel is typically 10 percent. Thus, instead of losing on 
average 19 out of 37 even bets, one could win about 20 out of 37. For some 
casinos the winning chances are even greater, as, for example, in Evian, where 
an easy-going croupier at one table spun the wheel so slowly that the ball, once 
having left the upper rim, sailed down into its final slot without further hopping 
to and fro. 

To reap the promised harvest, one first has to determine the friction coef- 
ficients of the ball and the wheel (usually quite small) and enter these parameters 

into a small portable computer. (A friend and I had built ourselves a special- 
purpose analog computer for this task. Now, a quarter century later, one would 
of course place one’s trust in a digital chip to dislodge the bank’s chips and steer 
them in the right direction [Bas 90].) The computer, through two pushbuttons, 
gets timing information signaling two successive passes of the ball and the zero 
of the wheel past a preselected mark on the rim. This fixes speeds and relative 
positions of wheel and ball. (Friction is determined in a prior measurement.) The 

most likely outcome computed from these data is communicated via a modified 
hearing aid to the prospective winner. 

How does one maximize the expected rate of increase of one’s capital 
knowing that the chances of winning, p, are better than even (p > 0.5)? How 
much of one’s capital should one risk for each spin of the wheel? The answer 
comes from information theory, in fact, one of its earliest applications to gambling. 
In a landmark paper that we already mentioned on pages 128-129 in Chapter 5, 
John L. Kelly, Jr. [Kel 56], proved that, in order to maximize the rate of increase 

of one’s capital, one should bet a fraction 2p — 1 of the current capital. And of 

course, for p < 0.5 one should abstain completely and seek another pastime. The 

expected (exponential) growth of one’s capital is then given by the factor Pye 

where C(p) is Shannon’s channel capacity of a binary symmetric channel with error 

probability p: 

C(p) = 1+ p log, p + (1 — p) log, (1 — p) 

Thus, for p = 0.55, for example, one should risk 2p — 1 or 10 percent of one’s 

capital for every spin and expect a rate of enrichment of 2-027) 0,005 sar0:5 

percent with each spin. (This means that, during a weekend of 138 spins, one’s 

“holdings would be doubled—less tips and taxes, of course.) 

This application of information theory was the first instance (and is still the 

only one, as far as I know) in which a benefit can be reaped without the elaborate 

_ coding that is necessary to realize the error-free transmission promised by Shan- 

non’s theory. 
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How much did I win? Well, once I knew that classical mechanics (and my 
analog computer) worked, I lost all interest in the project. Also, I knew that 
casinos can banish anyone who wins “too much” from their hallowed halls without 
having to state any reason. Finally, once the management learns the mechanics 
behind the winning method, it can simply instruct its croupiers to spin their 
wheels a bit faster and to call rien ne va plus a little earlier. End of dream, Eden 
lost. 

The Clustering of Poverty and Galaxies 

Certain perfectly simple statistical rules generate random collections of points, 
called point processes, that exhibit unexpectedly large voids with a statistical self- 
similar structure. The distribution of galaxies in the universe is a good case in 
point: the voids between the largest clusters of galaxies are only a few times 
smaller than the entire universe itself. And the voids between galaxies are as 
large as large clusters of galaxies, and so on. A similar structure also governs 
games of chance between successive ruins and numerous other events infested 
by holes. Let us look at a fair game of chance, with probability p = 0.5 of either 
winning or losing a yen. The current capital, K(f), of the player as the game progresses may look somewhat like Figure 3A: the capital has a tendency to drift to large positive or negative values but eventually returns to 0. (The ruined player, who has lost all, is allowed to continue on credit.) Once the capital has reached 0, the probability that it will do so several times in a short time span 

0 
500 

(A) 

0 5000 

(B) 

Figure 3 (A) Gambler’s capital as a function of time in an honest game of chance. (B) Fluctuations of the gambler’s capital over very long times. 
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is, for obvious reasons, very high. In other words, the zeros of the capital function 

K(f) form clusters. 
What else can we say about the function K(f)? Other than the sizes of the 

basic steps in time (Af = 1) and money (AK = 1), the problem has no further 

scales. We therefore expect the player's ruin to exhibit self-similarity and self- 

affinity. Indeed, if we plot K(f) over a longer time span and scale t and K 

appropriately, the new plot (see Figure 3B) will look much like the old one. The 

proper scaling factor for K is the square root of the scaling factor for f, just as 

in Brownian motion. 
The number of expected zeros, No, in the time interval t also scales with 

the square root of f [Fel 68]: N, ~ #”””. Waiting 4 times as long will increase the 

number of ruins only by a factor 2 (sounds good). 

What is the probability p(z) of observing a given distance z between suc- 

cessive zeros? Since the problem, given infinite capital resources, contains no 

long-range cutoff, p(z) must approach a self-similar power law, for long games: 

p(z) © const + z* L<zet 

Since N, is proportional to t!/2, so is the mean gap length z= 

t/N,. With Zz ~ const - po+2 ~ 71/2 we havea = —3/2 and, asymptotically, 

p(z) & const ° Za te 1«z<t 

From this we obtain the cumulative distribution of the lengths of the zero-free 

voids exceeding length z: 

P(z):= > p(k) © const ° z (11) 

k=z 

This distribution has a very long tail that drops off to zero very slowly with 

increasing gap size. Figure 4 shows experimental results (obtained with a pocket 

calculator) that confirm equation 11 over five orders of magnitude. 

Figure 5 shows the “voids within voids within voids” structure of the zero- 

free regions. Roughly one-half of every “cluster of zeros” is actually devoid of 

zeros! Going to the limit of a continuous time scale, the zeros form a rather thin 

dust indeed, a Cantor set with Hausdorff dimension equal to the negative of 

the exponent in the cumulative distribution equation (equation 11): Dy = 0.5. 

This value can also be derived from the value Dy
 = 2.5 for the surface of Brownian 

mountains (pages 134—136 in Chapter 5). A vertical cut through such a mountain 

produces a Brownian “profile” with Dy = 1.5, which corresponds to our K(f). A 

further cut with the line K = 0 produces our zero set (i.e., the set of f values for 

which K(f) = 0) with Dy = 0.5. In general, lowering the topological dimension 

of a fractal by 1 by forming a zero set also reduces the fractal dimension by 1. 

For example, Brownian mountains with a surface D,, = 2.2 generate coastlines 
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Figure 4 Distribution of time intervals without ruin. 

0 27,854 47,272 64,464 

Figure 5 Ruin-free time intervals (shown by thin lines) occur on all scales. 
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(i.e., lines at zero elevation) with D,, = 1.2, similar to the Hausdorff dimension 
of the west coast of Britain. 

Levy Flights through the Universe 

Another way to generate such point processes as the zero set of the gambler 
and to generalize them to more dimensions is the so-called Levy flight [Man 83]. 
In a Levy flight, named after the French mathematician Paul Lévy (1886-1971), 
one strings together independent increments (“flight paths”) whose lengths z are 
(cumulatively) distributed according to a homogeneous power law: 

P(z) = const: z ? (12) 

where D turns out to be the Hausdorff dimension of the resulting “dust.” For 
D=0.5 and one spatial dimension, equation 12 generates the voids in the 
gambler’s ruin. 

Figure 6A shows a two-dimensional isotropic Levy flight with exponent 
D = 1.26, making larger voids more probable than for D = 0.5. The turning 
points, that is, the “galaxies,” generated by this process are shown in Figure 6B. 
For D = 1.26, the resemblance with the distribution of galaxies in the universe 

as seen from earth is astounding [Haw 88]. The implication, of course, is that 

the universe is a Cantor dust that has no natural length scales other than its own 
size. But the best-matching exponent, D = 1.26, for the galaxies and their soap- 
bubble-like aggregation still cries out for a proper explanation. One of the 
persistent puzzles in understanding the evolution—past, present, and future— 
of our universe is the mysterious role of dark matter, including black holes and, 
at the other end of the mass scale, the long-elusive but ubiquitous neutrino.” 

Paradoxes from Probabilistic Power Laws 

Probability distributions that follow a self-similar power law can have some rather 

paradoxical consequences. Consider a random variable 1 < x < © with a prob- 

ability of exceeding a given value x given by x ”. The conditional probability 

that the random variable exceeds the value x, given that x > x», equals (qa). 

9. Enduring enigmas in the distribution of quasi-stellar objects (“quasars”) at the far end of the 

universe have recently been interpreted as resulting from gravitational lens effects of dark matter 

surrounding “foreground” galaxies [BPS 87]. This optical effect, predicted by Einstein but believed 

by him to be unobservable, may yet turn out to be the most legible “fingerprint” of the dark 

universe. (The imaging properties of a gravitational lens are akin to those of the foot of a wine 

glass, producing multiple images.) 
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(A) 

Figure 6 (A) Two-dimensional Levy Flight. (B) Resulting cluster of “galaxies,” 
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For D > 1, the mean exists and equals D/(D — 1). The conditional mean, 
given that x > x», equals, innocently enough, 

gi XLd 
i. = ———_ Qe aE (13) 

As expected for a self-similar distribution, the conditional expectation depends 
linearly on xp. 

Now suppose that the completion times of a given human endeavor— 
writing a difficult report, for instance—are distributed according to a power law 
with an exponent D = 1.5, say. The expected completion time of the job is then 
D/(D — 1) = 3 hours or days or whatever unit of time one chooses. Intuitively, 
one would expect, 5 days after starting the work and not having completed it, 
that the expected completion time would be considerably less than 3 days 
after all, it was only 3 days at the start of the project. However, equation 13 
tells us that the expected completion time is now 15 days. And after another 
60 days without finishing the job, the expected completion time has moved on 
to 180 days! In other words, the longer one works on such a project without 
actually concluding it, the more remote the expected completion date becomes. 

Is this really such a perplexing paradox? No, on the contrary: human 

experience, all-too-familiar human experience, suggests that in fact many tasks 

suffer from similar runaway completion times. In short, such jobs either get done 

soon or they never get done. It is surprising, though, that this common conundrum 

can be modeled so simply by a self-similar power law. In fact, it might not be 

a bad idea to classify such dragging jobs by their characteristic exponents D— 

and pay the laggard contractor accordingly. For D = 2, ¥,, — X equals x5, which 

is characteristic of the proverbial undertaking whose completion is always prom- 

ised for mariana. 

Invariant Distributions: Gauss, Cauchy, and Beyond 

The sum of two Gaussian random variables is another Gaussian variable. The 

Gaussian distribution is therefore said to be invariant under addition. The variance 

a” of the sum variable equals the sum of the individual variances 0; and 03: 

e=04+0; (14) 

The invariance of the Gaussian distribution is intimately connected with 

the central limit theorem of probability theory, which states that the suitably 

normalized sum of many independent random variables with finite variances 

converges on a Gaussian distribution. 
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For the summation rule in equation 14, the Gaussian distribution is the only 
one that is invariant under addition. However, if we introduce a general exponent 
D and replace the (possibly diverging) standard deviations o by some other 
measure s of the width of a distribution that is guaranteed to exist (such as the 
interquartile range), we have instead of equation 14 the more general rule 

ste shits? (15) 

Are there distributions that are invariant under addition with exponents D 
other than 2? There are indeed, and the solutions are related to the self-similar 
power-law distributions that we encountered in the preceding sections. 

For the exponent D equal to 1, the invariant distribution is the bell-shaped 
Cauchy density 

p(x) = : (16) 
(1 + 2) 

which has the same functional form as the intensity resonance (the “resonance 
line”) of a linear oscillator as a function of frequency. 

The Cauchy distribution, named after the French mathematician Augustin 
Louis Cauchy (1789-1857), is the source of several noteworthy paradoxes. Its 
mean and variance do not exist, because the corresponding integrals diverge. 
One therefore characterizes the Cauchy distribution by its median and its inter- 
quartile range. The median is the value for which the distribution integrated from 
x to OO: 

‘00 dy fl i 
P << SS (x) f al eh ea arctan x (17) 

equals >. Here the median equals 0. The interquartile range is the difference of 
the two x-values for which P(x) equals = and > respectively. For equation 16 it equals 2. 

The Fourier transform (“characteristic function”) of the Cauchy distribution (equation 16) is the symmetric exponential function exp (—|é). (Once we rec- ognize the Cauchy distribution as having the shape of a resonance line, the exponential is, of course, to be expected, because the amplitude of the oscillation of a linear resonator decays exponentially.) 
Since adding two random variables means convolving their probability distributions or multiplying their Fourier transforms, we see that the sum of two variables distributed according to equation 16 has the Fourier transform exp (—2lt)). The corresponding probability density is thus the same as equation 16, but with the abscissa x stretched by a factor 2. More generally, the width s of the distribution of the sum of two Cauchy variables is the sum of their individual widths: 

S = S, +iS3 
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Thus, for the Cauchy distribution, the exponent D in equation 15 is indeed equal 
to 1. The underlying reason for this linear scaling behavior is that the Cauchy 
distribution has an exponentially decreasing Fourier transform and that, upon 
multiplying two exponentials, their arguments add linearly. 

As a result of this linear scaling, the distribution of the average of N identically 
distributed Cauchy variables is the same as the original distribution. Thus, av- 
eraging Cauchy variables does not improve the estimate; averaging begets no 
benefit. This is in stark contrast to all probability distributions with a finite variance 
o°, for which averaging over N variables reduces the uncertainties by a factor 
1/,/N. This nonstandard behavior of the Cauchy distribution is a consequence 
of its weakly decaying “tails” that produce too many “outliers” to lead to stable 
averages. 

The reader is encouraged to sample this paradoxical behavior by simulating 
the averaging of Cauchy variables on a pocket calculator or home computer. In 
general, a random variable witk an integrated distribution P(x) is obtained from 
a uniform variable u in the interval [0, 1], which is available on many calculators, 
by inverting the equation u = P(x). With equation 17, this gives the “recipe” 

x = tan [7(0.5 — u)] 

to produce a Cauchy variable x from a uniform variable u. 
The Cauchy distribution occurs in numerous practical applications. For 

example, the ratio of two independent identically distributed zero-mean random 
variables is Cauchy-distributed. In other words, any two-dimensional isotropic 
distribution p(x, y) centered on the origin has a Cauchy-distributed ratio x/y or 
y/x. This statement also implies that if a variable is Cauchy-distributed, so is its 

reciprocal. Thus, the logarithm z of a Cauchy variable also has a symmetric 

distribution: namely, 1/(z cosh z), an important function in several branches of 

physics. (Light beams with a 1/cosh z profile in time or space lead to solitons in 

optical fibers, for example. Sound velocity profiles in the ocean that vary according 

to I/cosh z with depth result in self-focusing and thereby engender low-loss 

transmission of acoustic energy over intercontinental distances.) 

As we have seen, the exponent D = 1 in equation 15 for the Cauchy 

distribution follows directly from the fact that its Fourier transform is an exponential 

function, exp (—||), with a linear dependence of its argument on the Fourier 

variable ¢. Similarly, the exponent D = 2 for the Gaussian distribution results 

from the fact that its Fourier transform is an exponential function, exp (—?’), 

with a quadratic dependence on the Fourier variable t. Following Cauchy, we 

therefore surmise that the inverse Fourier transform of exp (— |e?) will lead to 

a random variable that has an invariant distribution under addition with an 

exponent D. This is indeed the case in the range 0 < D < 2. (For D > 2, Cauchy's 

prescription gives verboten negative probability values.) 

Thus, the cherished Gaussian distribution with D = 2 stands revealed as 

but an extreme, albeit ubiquitous, member of an entire clan of distributions. And 
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instead of just one central limit theorem, there are many. Depending on the 
scaling exponent D in equation 15, a properly normalized sum of random variables 
will converge on a specific limiting distribution that is invariant under summation 
of random variables. 

For example, for D = 5, the invariant distribution is 

eo Gt gitcap ah p(x) = iG op ( x) (18) J2n 

which is the probability density that a Brownian noise function B(f) starting out 
at the value 0, that is, B(0) = 0, equals 0 again in the interval x < # <x + dr. 

The fact that a variable distributed according to equation 18 scales with an 
exponent D = 3 is immediately obvious from the distribution integrated from 
x to 00, which yields P(x) = erf (1/s/. 2x). The interquartile range s = 9.12 of this 
distribution can be obtained from tables of the error integral [JE 51]. Because the 
Fourier transform of p(x), equation 18, is of the form exp (—|él” 1. adding two 
independent random variables changes the Fourier variable f to 4t and therefore 
the random variable x to x/4. The interquartile range for the sum of two variables 
is therefore equal to 4s = 36.5. Thus the average of two independent random 
variables of this sort has an interquartile range that is twice as large as that of an individual variable. In general, the average of N independent variables dis- 
tributed according to equation 18 has a width that is increased by a factor N— instead of being reduced by a factor 1/,/N as in standard cases. No wonder that this kind of statistics is sometime called nonstandard. Yet the world harbors a lot more nonstandard statistics than many experts innocently expected. 

For large x, the distribution p(x) according to equation 18 is proportional to x *” and the integrated distribution is proportional to x“? , that is, x7”. More generally, for all invariant distributions other than the Gaussian, the in- tegrated distribution is asymptotically proportional to x”, where D is the exponent in equation 15. Conversely, since we already know (see pages 155—156) that Levy flights, with integrated distributions following a power law x? generate fractal sets with Hausdorff dimension D, we recognize the exponent in the equation s” = s? + s? as a bona fide fractal dimension for this geometric realization of the distribution. However, such exponents do not generally have the significance of a fractal dimension. 
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antor Sets: Self-Similarity and 

Arithmetic Dust 

Eine Menge stelle ich mir 
vor wie einen Abgrund. 
(I imagine a set to be an abyss) 

—GEORG CANTOR, ca. 1888, 
as related by Emmy Noether 

In this chapter we shall further pursue one of the most important sources of self- 

similarity: Cantor sets. Originally constructed for purely abstract purposes, Cantor 

sets have of late turned into near perfect models for a host of phenomena in the 

real world—from strange attractors of nonlinear dynamic systems to the dis- 

tribution of galaxies in the universe. 

A Corner of Cantor’s Paradise 

Most numbers in the continuum cannot be 

defined by a finite set of words. 
—MARK KAC 

In the midst of the animated debates during the nineteenth century on the 

foundations of mathematics—and the very meaning of the concept of number— 

Georg Cantor (1845-1918) wanted to present his colleagues with a set of numbers 

between 0 and 1 that has measure zero (i.e, a randomly thrown “dart” would 

be very unlikely to hit a member in the set) and, at the same time, has so many 

members that the set is in fact uncountable, just like all the real numbers between 

O and 1. 
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Many mathematicians, and even Cantor himself for a while, doubted that 
such a “crazy” set existed'— but it does exist, and its construction is in fact quite 
straightforward. Imagine the real line between 0 and 1 (drawn with chalk on a 
blackboard, if you will) and wipe out the open middle third, that is, the interval 
from = to 2 excluding the endpoints + and >. Next erase the open middle third 
of each remaining third, and so forth ad infinitum. The result of the first five 
erasures was illustrated in Figure 10 in Chapter 1 (page 16), but there is no way 
to draw the final result, aptly called Cantor dust by Mandelbrot [Man 83]. In 
fact, the Cantor dust has holes on all scales?: No matter how powerful the 
“microscope” that we use to inspect the set, we always see holes; there is not 
a single continuous interval in the entire unit interval, but only isolated points. 
No Cantor number has another Cantor number as an immediate neighbor. The 
Cantor dust is totally discontinuous— yet infinitely divisible, just like a continuum. 
As much as it would have amazed the ancient Greeks, there is no fundamental 
antinomy or philosophical contradiction between the discontinuous (like matter 
composed of atoms) and the infinitely divisible; the Cantor dust is both. 

Formally, a Cantor set is defined as a set that is totally disconnected, closed, 
and perfect. A totally disconnected set is a set that contains no intervals and therefore has no interior points. A closed set is one that contains all its boundary elements. (A boundary element is an element that contains elements both inside and outside the set in arbitrarily small neighborhoods.) A perfect set is a nonempty set that is equal to the set of its accumulation points. All three conditions are met by our middle-third—erasing construction, the original Cantor set. 

In spite of its counterintuitive nature, there is a neat number-theoretic way to represent the Cantor dust, namely, by ternary fractions employing the digits 0, 1, and 2. For example, 0.5 = sti+ pt: corresponds to 0.111... in the ternary notation. Representations in the ternary system, like those in the decimal system, are not unique. For example, 3 can be written either as 0.1 or 0.02, where the bar over the 2 stands for an infinite sequence of 2s. One way to make such number representations unique is to outlaw terminating fractions. Thus, writing 0.1 for + is illegal—one has to write 0.02 for = Here we shall adopt the following convention for making ternary fractions unique: we forbid a 1 followed by all Os or all 2s. Thus, 5 = 0.1 is represented by 0.02, and + becomes 0.2 (not 0.12). 

RT PIE Bene eas eee I. See the excellent new biography Georg Cantor [PI 87] for Cantor's arduous career and the genesis and eventual acceptance of set theory. 

’ physical systems—as opposed to simple mathematical models—the “all” in the expression on all scales has to be taken with a grain of salt. For example, in percolation, cluster sizes lie, of course, somewhere between the size of an individual “atom” and the size of the entire sample. 
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With this convention, the numbers in the open interval (5, 3) are precisely 
all those numbers that in the ternary system have the digit 1 in the first position 
to the right of the ternary point. Wiping these numbers away on our route to 
the Cantor dust, we are left with numbers that begin with 0.0 or 0.2. 

Similarly, the second wiping (third line in Figure 10 of chapter 1) elim- - 
inates all numbers with a 1 in the second place to the right of the ternary point. 
In the end, having arrived at the Cantor dust, we are left with all those proper 
ternary fractions that have no 1s in any place, such as 0.02, 0.2, 0.2002, and 
0.2002. 

The members of the Cantor set form a self-similar set in the following sense: 
take any line in Figure 10 of Chapter 1, leave out the right half, and magnify 
the remainder threefold. This results in the line immediately above it. More 
precisely, the Cantor set is invariant, modulo 1, to scaling by a factor of 3. In 
fact, in the ternary notation, this scaling is nothing but shifting all digits one 
place to the left and dropping any 2s that protrude to the left of the ternary 
point. For example, the Cantor number 0.202202 maps into 0.02202, another 
Cantor number. 

With the ternary notation, it is easy to see why the Cantor set has measure 
zero: the probability that a random digit in the interval [0, 1] has not a single 
1 in its ternary expansion is, of course, zero. More precisely, the expression for 
the probability that there is no 1 in n ternary places equals (3)", which goes to 
zero when n goes to infinity. 

The ternary number system is also useful to show that no two Cantor 
numbers could be adjacent to each other. For example, a Cantor number close 
to the Cantor number 0.2 would be 0.20... 002. By making the sequence of Os 
in this “neighbor” longer and longer, we can approach 0.2 arbitrarily closely, 

but there are always non-Cantor numbers between 0.2 and, say 0.20002— for 

example, 0.200012. 
But how can we prove that the members of this extremely sparse set are 

so numerous that they are not even countable? (Note that the integers and the 

rational numbers—and even the algebraic irrational numbers—are countable.) 

The reason is that we can bring the members of the Cantor set, although it is 

very spotty, into a one-to-one correspondence with all the real numbers in the 

interval between 0 and 1. To accomplish this feat, we simply identify with each 

Cantor number the binary number obtained by changing all 2s to 1s. Thus, for 

example, 0.020222 corresponds to 0.010111 (= =). In this manner, each member 

of the Cantor set can be mapped into a real number and, conversely, all real 

numbers between 0 and 1 can be mapped into Cantor numbers, which have thus 

the same cardinality as the real numbers. 

The well-known fact that the real numbers form an uncountable set was 

proved by Cantor using the “diagonal method” already known to Galileo. The 

diagonal method is used in an indirect proof that proceeds as follows. 

Assume that all the real numbers between 0 and 1 form a countable set; 

they could then be written down, one after another, in a counting sequence. In 
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decimal notation, for example, the list might look as follows: 

O.9I1971 2c 

O.29Z107%.. 

0.36638... 

CIID" 222 

To make the notation unique, we use only nonterminating fractions. Thus, 0.5 
is written as 0.49999 ..., for example. 

Now write down a number whose first digit to the right of the decimal 
point is different from the corresponding digit in the first number in the preceding 
list and whose second digit is different from the second digit in the second 
number, and so forth. To avoid ambiguities, do not use the digits O and 9 in 
the replacements. The resulting number, say, 

OS8578 2. 

cannot be found anywhere in the list because it differs from each number in at 
least one place. Thus, the list cannot be complete and our assumption that the 
real numbers form a countable set was false. 

There are several ways to prove that rational numbers are countable. I find 
the following proof particularly appealing [Sag 89]. Write the rational number 
as m/n, where m and n are integers that are relatively prime. Let 
m= pl: p}:-: pk andn= qi gee q be the prime-number decompositions 
of m and n. Then the desired counting function for the rational numbers is AV=1 and 

i(”) = pi . pr ree pit i es : ie eee ght? 

This function is uniquely invertible. For example, the rational number 2 is the twelfth number on the list; and the eighteenth number on the list is =. Another, completely counterintuitive consequence of Cantor's set theory is the equivalence of two-dimensional areas and one-dimensional lines. Two sets are said to be equivalent if there is a one-to-one mapping between them. Thus, the unit square (an area) and the unit interval (a line) are equivalent: each point in the unit square corresponds uniquely to a point on the unit interval, and vice versa. In communicating this discovery to his friend Dedekind in Brunswick (on June 20, 1877), Cantor wrote, “I see it, but I don’t believe it.” 
Actually, Cantor’s mapping from the unit square to the unit interval is almost trivial. For example, the point with the rectangular coordinates x = 0.123 and y = 0.456 is mapped into the point 0.142536 on the unit interval. Can you see what is going on and do you believe it? 
Perhaps equally astounding is the fact that any number in the interval [0, 2] can be represented by the sum of two Cantor numbers, their extreme sparseness 
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in the unit interval not withstanding. The reader may find it instructive (and 
amusing) to prove this counterintuitive property either arithmetically or 
geometrically. 

Cantor Sets as Invariant Sets 

One of the arenas in which Cantor sets cavort is that of the so-called invariant 
sets of iterated mappings. (A member of an invariant set maps into a member of 
the set. An invariant set is the set of all such elements.) Let us consider the 

simple “tent map” (so called because of its tentlike shape) 

X,+1 = 1.5 — 3|x, — 0.5| 

(see Figure 1). Because the slope of this mapping exceeds unity everywhere, 
there are no attractors, except x = — 00. The two fixed points x = Oandx = 0.75 
are repellors: points near them diverge to infinity. 

Lay = 1.5- | 32n— 1.5 | 

Figure 1 A tent map whose invariant set is the Cantor set of Figure 10 in Chapter 1. 



166 CHAPTER SEVEN 

Are there any points that do not diverge, that is, points whose iterates stay 
forever in the unit interval? To find the answer we write x, in ternary notation. 
Then the mapping in Figure 1 says that, for x, < 0.5, the next iterate, x,,,, is 
given by a simple left shift of the digits of x,. For x, > 0.5, before left-shifting, 
we must first complement each digit, that is, replace 0 by 2 and 2 by 0, while 
digit 1 remains 1. 

Now, if the initial value x, has a 1 anywhere in its expansion, this I will 
eventually be shifted to the left of the ternary point so that thereafter the iterates 
x, Will exceed 1 and diverge to infinity (unless the fraction terminates with a 1). 

But suppose there is not a single 1 in the ternary expansion of Xp, that is, 
that x) is a Cantor number; then all the iterates will also be Cantor numbers 
(remember 0 — 0 or 2, and 2 > 2 or 0). In fact, the iterates will remain forever 
bounded in the unit interval. To see this, suppose that x, = 0.2022... , which 
is greater than 0.5. Thus, x, has first to be complemented (0.0200. . .) and then 
left-shifted to yield 0.200. .., which is smaller than 1. Of course, if x, has 0 as 
a first digit, x,4, is likewise smaller than 1. Thus, Cantor numbers and only 
these—remain forever bounded, and they remain invariably Cantor numbers, 
which is why they are called the invariant set of the tent Map) S49 
1.5 — 3lz, — 0.5]. 

A mapping similar to the one discussed here, but restricted to the unit 
interval, was described by Bau-Sen Du [Du 84]. 

Symbolic Dynamics and Deterministic Chaos 

There is another important point that we can illustrate with the mapping described in the preceding section. Instead of characterizing a succession of iterates (called an “orbit’”) by the precise values of the x,, they are often quantized to just two values. For example, if x, is smaller than 0.5 that is, if it lies to the left of 0.5, we represent the values of x, by a single symbol: L (for left). If x, exceeds 0.5, then we write R. 
Now, curiously, given any initial value x) from the invariant set, we can immediately predict the succession of L’s and R's, called the symbolic dynamics of its iterates. For example, x, = 0.022020002 .. . has the symbolic dynamics LRLRRRLLR ..., which is obtained by writing L if, in x, a digit and its left neighbor are the same and R otherwise. The symbolic dynamics describes the evolution in time of a dynamic system such as a playground swing —or the voting pattern of a political population. 
Even curiouser, from the (discrete!) symbolic dynamics we can uniquely determine the exact value of Xp (if it belongs to the invariant set). For example, the orbit with the symbolic dynamics RLRLLLRRL ... has started at La 0.220000200 .... Can the reader see why? 
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Understandably, invariant sets (and their complements) play a crucial role 
in dynamic systems in general because they tell the most important fact about 
any initial condition, namely, its eventual fate: will the iterates be bounded, or 
will they be unstable and diverge? Or will the orbit be periodic or aperiodic? 

As we can see from these examples, invariant sets can be (and often are) 

self-similar Cantor sets, that is, uncountable sets with measure 0 and a scaling 
property. For the Cantor set, the similarity factor is 3, corresponding to a left 
shift by one digit in the ternary number system. 

Representing the evolution in time of a dynamic system by left shifts of 
the digits in a suitable number system brings out another important property of 
systems for which such a representation is possible. No matter how accurately 
the initial condition x, of a coordinate is known, the accuracy will always be 
finite, that is, the digits of x, to the right of the last known digit will be unknown. 
As the dynamic system evolves in time, these unknown digits will be shifted 

to the left; that is, they will grow in significance, and will sooner or later arrive 
at the “decimal” point and thus dominate the behavior of the system. And because 
the digits are unknown, this behavior will be completely unpredictable. The 

resulting motion is called chaotic. To emphasize the fact that this chaos is caused 

by strictly causal, deterministic rules, it is called deterministic chaos. Thus we see 

that there is no contradiction between complete determinism and chaos. In fact, 

deterministic chaos can be found almost anywhere in nature from turbulence to 

population dynamics. 
This analysis also tells us why the weather is so unpredictable. The reason 

is that the mathematical equations governing it are those of a chaotic system. 

To add a single day to reliable weather forecasting, the initial conditions of 

temperature, air pressure, wind velocity, and other variables at a large number 

of points on the earth would have to be known with a much greater accuracy 

than is presently feasible—not to mention the logistic and computational effort 

to deal with this mass of data. However, supercomputers now on the horizon, 

employing large-scale parallel processing, promise more reliable forecasting over 

a slightly extended time span. 

Devil’s Staircases and a Pinball Machine 

One of the more interesting constructions based on Cantor sets is the devil's 

staircase. Take the original Cantor set, the middle-third—erasing set, and plot, as 

a function of x in the unit interval, the relative weight y of the set that lies to 

the left of x. In the first stage of construction, y rises from 0 to as goes from 

0 to 5. Then y stays constant up to x = +. Beyond this plateau at y = 7, y rises 

again from 7 to 1 as x goes from 2 to 1. The second stage of construction has 

two more plateaus, at y = +andy= = (see Figure 2A). 
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Figure 2 (A) Second stage and (B) a more a dvanced stage in construction of a devil's staircase. Plateaus from_all earlier stages remain visible. 
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In the limit, the staircase function y(x) has plateaus almost everywhere, yet 
it manages to rise from 0 to 1 at uncountably many values x; see Figure 2B, 
which shows an advanced stage of the resulting devil's staircase. 

In order to know how high the staircase is for any given value of x, we 
have to write x as a ternary number and convert it into a binary fraction, replacing 
any digits 2 up to the first 1 (reading from left to right) by Is. Keep the first 1 
(if any) and write Os for all following digits to the right. For example, 

1652 
x = 0.20210012... = —— 

; 2187 
is mapped into 

att 
y = 0.1011000... = — 

16 

Thus, for every value of x, there is a unique y value. 

To go from a given y value to the corresponding value(s) of x, we have 

to write y as a binary fraction and convert all 1s to 2s, except the last (if any) 

1. After that, we replace each 0 by all combinations of 0, 1, and 2, thereby 

creating an interval. For example, 

no 
ae 16 

goes into 

000 

C—O ZOLTT UT 

222 

which represents all the numbers in the open interval (0.20210, 0.20212) or, in 

decimal notation, the interval (¢;, ¢r). In other words, y = <¢ corresponds to 

one of the plateaus of the devil's staircase with a step width of =. 

In general, any y value whose denominator (in lowest terms) is an nth 

power of 2 lies on a plateau with width 3~". All other y values (namely, all 

nonterminating binary fractions) have unique x coordinates. This is a devilish 

function indeed: it is constant (doesn’t rise) almost everywhere, but it has un- 

countably many infinitely small discontinuities that allow it to “sneak up” all the 

way from 0 to I. 
Devil's staircases are excellent models for numerous complex situations in 

the real world—and the not so real world of mathematical physics. Michel Hénon 

once invented a kind of pinball machine (see Figure 3), whose symbolic dynamics 

for a given initial position x),0 < %) < I, were obtained by computing the devil’s 

~ function y(x,) as just described [Hen 88]. If y(x,) lies on a plateau of the devil's 

staircase, the ball will escape to plus or minus infinity. The devil’s plateaus are, 

in effect, locked-in intervals for the attractor at infinity. However, if x, is a Cantor 

number, then y(x,) will not lie on a plateau and the orbit of the ball will forever 

remain confined to the interval [0, 1]. Its symbolic dynamics are then given by 
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Figure 3 Hénon’s pinball machine. 

y(%o) written as a binary fraction with 0 interpreted as L (for left, ie., x, < +) and 
I interpreted as R (for right, i.e., x, > 5). This is much like the tent map illustrated in Figure 1. (However, Hénon assures me that there are also substantial differences between the tent map and his “inclined billiard,” as he called his pinball machine.) © If Hénon’s pinball machine were a game played on a computer and the aim were to keep the ball in constant confined motion, then the winning strategy would be to pick a Cantor number for the ball’s initial position. This is reminiscent of Sir Pinski's game, discussed in Chapter 1 on pages 20-25, for which the Sierpinski gasket (a two-dimensional Cantor set) contains the winning points. 

—0.5 0 0.5 1 & 

Figure 4 Distribution function for a random variable with a Cantor—set density. 
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Devil's staircases also appear in probability theory. Figure 4 shows the 
cumulative distribution of a random variable x given by 

T= 3) op: p=- 
jaa 

where the g; are independent equiprobable + 1s or —1s. It is easy to see that 
x can never fall inside the ranges (—s, >), (—t —2), & 2, and so forth. This 

entails the large plateaus in the cumulative distribution seen in Figure 4. Similar 
staircase distributions that are constant almost everywhere and rise only at a set 
of x values forming a Cantor set are obtained for any positive B < 3. 

Mode Locking in Swings and Clocks 

One of the more pervasive oscillatory phenomena in nature goes by the names 
of mode locking, frequency pulling, phase locking, or simply synchronization of two 

oscillators. Here, too, devil's staircases play an illuminating role. In mode-locking 

applications, the height of the devil's staircase corresponds to the frequency ratio 

of the two oscillators and the plateaus represent locked-in frequency ratios, locked 

in at any rational number (not just terminating binary fractions, as in the staircase 

derived from the original Cantor set). Also, the self-similarity may be only 

asymptotic and not exact. 
Think of a playground swing. It has a natural frequency with which it 

oscillates when driven by a child moving his or her center of gravity up or down 

at twice the natural frequency, as the child soon discovers—long before ever 

having heard of parametric amplifiers. 
But a swing can also be driven externally by a patient parent who pushes 

and pulls with a frequency not necessarily equal to the swing’s natural frequency. 

Provided that the external force is coupled strongly enough to the swing, the 

latter will follow the external force; that is, it will be synchronized with the 

external frequency over a certain range of driving frequencies. 

The first scientist to describe such a synchronizing phenomenon was the 

Dutch mathematical physicist and astronomer Christian Huygens (1629-1695), 

the discoverer of the Huygens principle of wave propagation. In a letter from 

Paris to his father in Holland he described how two pendulum clocks hanging 

back to back on the same wall separating two rooms would synchronize their 

motions and tick away in perfect lockstep (see Huygens’s book Horologium 

_ Oscillatorium [Huy 1673]). As this example shows, even the tiniest coupling force 

can “enslave” one oscillator to another if the ratio of their natural frequencies is 

close to a small-integer rational fraction, such as o 

Another early observation of synchronization, this time in outer space, came 

in 1812 when Gauss discovered that the orbit of the asteroid Pallas was locked 

to the orbital period of Jupiter in the precise integer ratio 7 to 18, two Lucas 

numbers L,, which obey the same recursion as the Fibonacci numbers, namely 
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L, =L,-; + L,—,, but with the initial condition L, = 1 and L, = 3. Gauss never 
published this epochal finding, except for a brief note in the Gelehrte Anzeigen, 
the rapid-communications bulletin of the Gottingen Academy—in encrypted 
form! But he did communicate his arresting result on May 5, 1812, to his close 
friend the astronomer Friedrich Wilhelm Bessel (1 784—1846), imploring him to 
keep it completely secret “for the duration.” It seems that Bessel functioned 
exactly as requested, because Gauss never got his due credit. In fact, the “prince 
of mathematicians” was later not a little miffed by this turn of events, apparently 
having forgotten his own secretiveness. (Why was Gauss so loath to let the 
world know about Pallas and Jupiter? Was he afraid to have uncovered some 
divine interference in the planetary clockwork? No, Gauss knew full well that it 
was pure and simple nonlinear mechanics. Perhaps he felt that the news would 
be too upsetting, as in the case of his non-Euclidean geometry, which he kept 
encased in his desk for decades.) 

A similar synchronization can be observed in some radio (and television) 
receivers with automatic frequency control (AFC): the dial (if the set still has one) can be detuned manually over a certain frequency range, yet the chosen channel will remain locked in. Still another example is the synchronization by an external signal of the horizontal deflection (the “time base”) of an oscilloscope or television set. The internal time-base generator will lock in to an external frequency over a certain frequency range and then jump discontinuously to another rational frequency ratio, preferably a ratio involving small integers in the numerator and denominator, such as + or +. In fact, the frequency ranges over which the two frequencies are locked into a rational ratio depend, in many applications, on the magnitude of these integers and particularly the denominator. Thus, in a given 
mode-locking situation, the locked frequency range for the frequency ratio = will 
be larger than that for frequency ratios such as + + or + 

Interestingly enough, these locked frequency ranges show a high degree of universality covering innumerable, seemingly unrelated phenomena such as the oscillations of superionic conductors [MM 86] or the heartbeat of periodically stimulated chicken embryos. In fact, these phenomena can be modeled by asymp- totically self-similar fractals, which in many cases have identical Hausdorff di- mensions: D = 0.86 .... We will resume the topic of periodic, aperiodic, and chaotic oscillations in Chapter 14. 

The Frustrated Manhattan Pedestrian 

One of the more “charming” mode-locking situations is regularly suffered by this devoted pedestrian on his occasional forays to the Big Apple (also known as New York City). Walking along one of Manhattan's avenues, he is invariably caught, at every intersection, by a traffic light changing to red as he approaches. Suppose the pedestrian’s speed is just under two-thirds of the “speed” of the traffic lights (ie, the distance between cross streets divided by the period 
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of one complete green-yellow-red cycle). The red lights will force him to wait 
at every intersection and slow him down to a speed of one-half. 

Assuming for simplicity that the green cycle, during which the walker can 
safely traverse the cross street, lasts exactly half a period and that all lights are 
perfectly synchronized (as they certainly would not be on a one-way avenue), 
then, in the walker’s speed range > <s < 4,he is locked into an effective velocity 
= In general, in the speed range 

Sa = (1) 
n+1 2n+1 

where n = I, 2, 3,..., he is locked into an effective velocity v = 1/(n + 1). 
But the walker can be locked into many more rational speeds (although they 
may not appear “rational” to him). In fact, for 

2(k — 1) 2k 
ae es Se (2) 

2k —In+1 2kn + 1 

k = 2, 3, 4,..., the walker’s effective velocity is locked into the lower limit of s. 

The staircase function corresponding to these locked intervals is illustrated 

in Figure 5. Although the graph of v versus s is not exactly self-similar, the 

locking pattern in the interval 7 < s < 1 is approximately rescaled and repeated 

1 

ae 
2 3 
S 
2 
Pied 
© 2 

= 

ae 

0 

0 3 2 3 1 

Pedestrian velocity s 

Figure 5 Progress of the frustrated Manhattan pedestrian as an illustration of mode 

locking. 
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in the intervals 1/(n + 1) <s < 1/n. One also notices that the locked-in plateaus 
become smaller and smaller for increasingly larger denominators in inequalities 
1 and 2 in the preceding paragraph. In fact, the locked-in speed intervals equal 
2 divided by the product of the two denominators. 

This scenario of locked intervals, being reciprocally related to the denom- inators of certain reduced fractions, goes far beyond the hapless Manhattan walker. In fact, we shall encounter staircase functions that, in contrast to Figure 5, have an uncountable number of steps. 

Arnold Tongues 

The plateaus of the devil's staircase encountered previously occur at all heights y = (2k — 1)/2", withk, n= 1, 2,3,.... However, there are even more satanic staircases that have plateaus at every rational number in the interval [0, 1]. While the staircase based on the Cantor set is exactly self-affine (with scaling factors of 3 in the x direction and 2 in the y direction), this is no longer true for satanic staircases, such as the one shown in Figure 6, obtained from the so-called circle map: 

Op =O) os oo sin (270,) 
27 

Q 

Figure 6 Satanic staircase with plateaus at every rational number. 
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oO le nie WI = 

oO 

Figure 7 Arnold tongues: locked frequency intervals. 

which models many mode-locking phenomena (see Chapter 14). Here K is a 
coupling strength parameter that controls the degree of nonlinearity and Q. is a 
frequency ratio, called the bare winding number. This frequency ratio may represent 
the ratio of a driving-force frequency and the resonance frequency of an oscillator 
(think of the swing, including the one “executed” on the dance floor; or con- 
template the frequency ratios of planetary or lunar orbits and spins). 

Without coupling (K = 0), the so-called dressed winding number w, defined 
as the limit as n > 00 of (6, — 0,)/n, equals the bare winding number Q. But 
for K > 0, w “locks” into rational (frequency) ratios, preferably ratios with small 
denominators. 

Figure 7 shows some of the frequency-locked regions in the 92-K plane. 

The shaded regions are called Arnold tongues, after their discoverer, the Russian 

mathematician V. I. Arnol’d. (There never seems to be a lack of suggestive terms 

in fractal heaven or hell.) 

In other applications, the dressed winding number w may represent, for 

example, the relative number of up spins in an Ising model of an antiferromagnetic 

material or the relative abundance of a given element (or molecular structure) in 

a crystal or quasicrystal (see Chapter 13). 
For the critical value K = 1 of the coupling parameter, the infinitely many 

locked frequency intervals corresponding to all the rational dressed winding 

numbers w between 0 and 1 actually cover the entire Q range of bare winding 

numbers. Irrational values w correspond to an uncountably infinite set of zero 

measure of Q values—in other words, a Cantor dust. 
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ractals in Higher Dimensions 

and a Digital Sundial 

Jetzt Mengenlehre (Now set theory) 
—KURT GODEL, in 1937, 

when he decided to turn his mental scalpel loose 
on set theory, after completing his proof of 

undecidability in number theory 

Self-similar or self-affine sets in higher dimensions are models of strange attractors 

and their basins of attraction; of porous materials, dendritic crystal growth, and 

quasicrystals; of mountainscapes, Brownian motion, and related stochastic pro- 

cesses that describe an assortment of catastrophes (plus a few happier happenings). 

Some of these “practical fractals” will be visited in Chapter 10. Here we examine 

some of their foundations and design a digital sundial based on a Cantor set. 

Cartesian Products of Cantor Sets 

The original one-dimensional Cantor set can be generalized to dusty sets in two 

or more dimensions in several different ways. Consider the set of all points in 

the unit square for which both the abscissa x and the ordinate y belong to the 

Cantor set C. The resulting Cartesian product of the Cantor set with itself, usually 

written C x C, is a Cantor dust embedded in two dimensions (see Figure 1). 

What is the Hausdorff dimension D of this dust? The set C x C can obviously 

be covered by N(r) = 4" squares of side length r = 1/3) Thus 

log (4")_ log 4 
EXC_x..C)-= lim E20 jax: 

wo log 3") log 3 
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(A) (B) 

Figure 1 Toward a two-dimensional Cantor dust: the Cartesian product of the middle- third Cantor set with itself. (A) The first step and (B) the second step of construction. Fractal dimension = 1.26.... 

or twice the value of the original one-dimensional Cantor set. In fact, it is easy to guess (and not difficult to prove) that for the three-dimensional Cartesian 
product C X C x C, the Hausdorff dimension equals 

log 8 log 2 DC Se CX Cy ee ey log 3 log 3 

and so forth: forming a k-fold Cartesian product multiplies the Hausdorff di- mension by the factor k, just as for ordinary Euclidean dimensions. (Note that C x C x C, a dust floating around in three-dimensional space, is so thin that its Hausdorff dimension doesn’t even reach the value 2.) 

A Leaky Gasket, Soft Sponges, and Swiss Cheeses 

Consider another Cartesian product, that of the complement C’ of the Cantor set C with itself: C’ x C’. The complement of C’ x C’, that is, (C’ x C’’, can be constructed recursively in the following way. The initiator is the unit square, and the generator is the unit square with the central square of side length + deleted. In the next iteration, the central squares of side length > are removed from the eight remaining squares of side length > (see Figure 2A—C). Infinite iteration produces the Cantor gasket, approximated by the dark area in Figure 2D. 
What is its Hausdorff dimension? Figure 2 suggests that (C’ x C’)' has a larger dimension than C x C. In fact, since the Cantor gasket is strictly self- similar, we need to consider only the generator. To cover it, we need eight 
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(A) (B) (D) 

Figure 2 The first three steps in the construction of the Cantor gasket. Fractal di- 
mension = 1.89.... 

squares of side length 3. Thus, 

log 8 
D(C’ x CY) = 2 & 1.89 

log 3 

which is the same value we found for the three-dimensional dust C x C xX C. 

What about (C’ x C’ x C’Y, nicknamed Cantor cheese? The generator can 

be covered by 27 — 1 = 26 cubes of side length = Lhus, 

log 26 
De 

log 3 

a value close to 3 because the Cantor cheese is quite solid and has only isolated 

holes. 
The generalization of the Cantor cheese to k Euclidean dimensions, the set 

(Gea Dre 190C),, has Hausdorff dimension D = log (3° — Dflog 3. 

k — 1/(3* log, 3), a value just below the embedding dimension k. 

There exists still another symmetric fractal set in three dimensions based on 

C (or any other fractal set in one dimension). It is called the Menger sponge, after 

its architect, Karl Menger, and is depicted in Figure 3 [Men 79]. It has no two- 

dimensional analogue. Its “holes” are open channels that penetrate the unit cube. 

Applying the inclusion-exclusion principle, one sees that the generator leaves 

27 —9 +3 —1= 20 cubes of side length 5, giving a Hausdorff dimension 

D = log 20/log 3 © 2.73. Thus, the Menger sponge is intermediate between 

Cantor dust and cheese, but closer to the latter, as one might expect. Mandelbrot 

suggested the Menger sponge independently as a model of turbulent intermit- 

tency [Man 74]. 

A good set-theoretic description, which brings out the symmetry of the 

Menger sponge in the three Cartesian coordinates x, y, and z, can be constructed 

as follows. Call the set C in the x direction X, the set in the y direction Y, and 
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The original Cantor set generalized to higher embedding dimensions and 
similar sets produce an increasingly varied zoo of dusty sets. 

A Cantor-Set Sundial 

By applying the Cantor construction in two dimensions, we obtain, as we have 
seen, a Cantor “dust” dispersed in the plane. It can be generated from the unit 
square by eliminating center thirds in both the x and y directions and repeating 
the process ad infinitum (see Figure 1). Mathematicians call the resulting set also 
the direct product of the Cantor set C with itself and denote it by C x C. As we 
have seen, its Hausdorff dimension D follows directly from the generator, which 
consists of 4 remaining squares out of 9. Since C x C can be covered by 4” (but 
no fewer) squares of side length 3~”, we obtain 

_ log 4 2log2 _ 

tiles 3 > “log 3 

which equals twice the value for C itself. In general, we will find that the Hausdorff 

dimensions of Cartesian product sets are the sums of the dimensions of the 

individual sets. Thus, for example, the Cantor dust C x C x C floating around 

in three-space has D = 3 log 2/log 3 = 1.89.... 
Arithmetically, such n-dimensional Cantor sets are described by n-tuples of 

Cantor numbers (x, x, ..., X,), where each x, is a Cantor number, that is, a 

ternary fraction using only Os and 2s an no Is, as described in pages 162-163 

in Chapter 7. 
It is interesting to note that fractal sets embedded in higher-dimensional 

Euclidean spaces, when projected into spaces with fewer Euclidean dimensions, 

generate fractal sets whose Hausdorff dimensions depend on the direction of the 

projection. Consider, for example, the Cantor-like one-dimensional set C,, defined 

by eliminating central quarters of the unit interval. The dust in three-space 

constructed from the triple Cartesian product of this set has Hausdorff dimension 

D = 3 log 2/log + = 2.12..., which exceeds 2. This set, C, x C, x C, when 

projected along one of its three coordinate axes, generates the set C, x C, with 

Hausdorff dimension 2 log 2/log $ = 1.41. . ., which is smaller than 2. But other 

projection directions can produce sets with dimensions equal to 2 having connected 

pieces. In other words, the Cantor-like dust C, x C, x C, will cast “weightless” 

shadows in some directions and shadows with visible patterns in other directions. 

On the basis of this observations, K. J. Falconer [Fal 87] has proposed one 

of the most paradoxical sets ever conceived: a digital sundial (see Figure 4). 

Depending on the position of the sun in the sky, the set will cast a shadow that 

changes every minute to correspond to the local time. If desired, the set can 
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Figure 4 A digital sundial based on a Cantor set [Fal 87]. 

even be “enlarged” to show the correct date between winter and summer solstices. Here we have the ultimate timepiece driven by sun power. Of course, the shadow-casting set is likely to be rather complicated, and the inventor understandably refrains from detailed instructions for its construction (presumably while patents are pending and diffraction limits are being circum- vented). However, an inkling of how to set out constructing sets with projections of varying sizes is illustrated in Figure 5, 
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Figure 5 Idea underlying digital sundial: a set of bars that casts very different shadows, 
depending on the direction of projection. 

Fat Fractals 

The sundial fractal discussed in the previous section is an example of a fractal 

set that for certain projection direction has nonzero measure. There are numerous 

serious applications that are well characterized by fractal sets of nonzero measure. 

This is particularly true for nonlinear dynamic systems and their basins of at- 

traction. For example, the parameter values for which the prototype of such 

systems, the logistic parabola (see Chapter 12), shows aperiodic behavior is such 

a set [Jak 81]. 

Corresponding to each periodic orbit is a finite interval of parameter values, 

called a periodic window. The union of periodic windows does not exhaust all 

parameter values. Thus, the parameter values for aperiodic orbits have a nonzero 

_ Lebesgue measure. On the other hand, the distribution of such parameter values 

has a fractal structure: it has holes (periodic windows) on all scales. Such fractal 

sets, with nonzero measure, have been called fat fractals [EU 86]. Another example 

of a fat fractal is the set of parameter values for which the subcritical circle maps 

show aperiodic behavior, that is, parameter values that do not lead to mode 

locking. 
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Clearly, such sets cannot be usefully characterized by their Hausdorff di- 
mension, which would simply be equal to the embedding Euclidean dimension 
and would therefore not provide any additional information. Rather, fat fractals 
are distinguished by scaling exponents. 

A simple example of a fat fractal is obtained by starting with the unit 
interval and removing the central 3 in the first generation, the central 3 of the 
two remaining thirds in the second generation, the central % of the four resulting 
pieces, and so on, always cutting out central pieces of relative length 1/3* (see 
Figure 6). After n iterations, we obtain 2” pieces with a total length 

“= TT Ga (2) 

which for n — 00 converges on a nonzero value, Hop = 0.5851874.... 
A somewhat leaner fat fractal is obtained by excising central pieces of 

relative length 3~‘ at each iteration, resulting in a remaining length 

Hao = [] 1-37) = 0560... (3) 

Fat fractals are distinguished by one or another of several scaling exponents. The most useful scaling exponent is defined as follows: Fill all holes of length up to é and approximate the measure su() of the resulting set for € > 0 by the power law 

H(é) = (0) + ce? (4) 

where c is a constant and f is the scaling exponent; f lies in the range 0 < B < oo. 

Figure 6 Construction of a fat fractal. It has inifinitely many holes, but the remainders keep a total length that is greater than zero. 
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In the present example, with the excising rule 3~“, setting e = 3~" gives 

wie) = [] a —3-) = AO 
Ul (hae) 

or 

ple) = pO 37" 30" 1---) 

and, asymptotically for n > oo, 

H(é) — WO) = wO)(3") = w(O)E 

Thus, for the fat fractal defined by equation 3, the scaling exponent f equals 1. 
Denoting the measure of the holes smaller than ¢ by F(é), the scaling exponent 

B is also given by 

log Fi 
B = lim eer 

eno loge 
(5) 

The exponent f is determined by the rate with which the measure of the small 
holes vanishes. 

For the quadratic map, J. Doyne Farmer determined (0) numerically as 

0.89795 + 0.00005. Both for the quadratic map and for a trigonometric map 

with a quadratic maximum, x, ,, = y sin (wx,), Farmer found B = 0.45 + 0.04. 

This is a hint that the exponent P is universal, that is, the same for all maps 

with a quadratic maximum [Far 85]. 

Another scaling exponent, «, is obtained by fattening all holes by ¢. This 

not only fills in the small holes but also reduces the size of the large holes. Let 

G(e) be the additional contribution to the measure. The exponent « is then defined 

by 
a= lim log |Fle) + Gle)| (6) 

0 log € 

It can be shown that a < f. If « < B, then « is determined by the large holes. 

Since, in most applications, the fine-grain fractal structure is more important than 

the coarse-grain structure, f is the more useful exponent. However, the exponent 

a can still contain useful information in the case of fat fractals, describing, for 

_ example, parameter values for which a nonlinear system shows chaotic motion. 

For « = , such systems exhibit sensitive dependence on the parameter; that is, 

arbitrarily close to some parameter value resulting in chaotic motion, there are 

other values for which the motion is periodic, while for « < B this is not the 

case. Thus, the equality « = f signals an important property of nonlinear dynamic 

systems called parameter sensitivity. 
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.ultifractals: Intimately 

Intertwined Fractals 

Cantorism is a disease from which 
mathematics would have to recover. 

—HENRI POINCARE 

Fractals have immeasurably enlarged our ability to describe nature. The abstract 

constructions going back to Bernard Bolzano (1781-1848), Cantor, and Giuseppe 

Peano (1858-1932) have furnished us with models of reality much more realistic 

than the Euclidean empire of integer exponents and smooth shapes. Yet there 

are many phenomena in physics, chemistry, geology, and crystal growth, in 

particular, that require a generalization of the fractal concept to include intricate 

structures with more than one scaling exponent. Many of these matters are in 

fact characterized by an entire spectrum of exponents, of which the Hausdorff 

dimension is only one. The generalized fractals fashioned to cope with these 

cases are called multifractals. Their applications range from the distributions of 

people or minerals on the earth to energy dissipation in turbulence or fractal 

resistor networks. Diffusion-limited aggregation, viscous fingering, and the dis- 

tribution of faults in computer networks, or that of impurities in semiconductors, 

are likewise well modeled by multifractals, as are certain games of chance. And 

many strange attractors of nonlinear dynamic systems are also clearly multifractals. 

In fact, it was mainly with multifractals that the “fractal geometry of nature” 

overtook pure geometry to conquer the natural sciences. 

The Distributions of People and Ore 

Gold is everywhere on earth. Not only can it be found in a few rich veins; there 

are thousands of lesser deposits where gold can be profitably produced. And 



188 CHAPTER NINE 

there are millions of sites on earth where gold is known to exist but not worth 
mining. In fact, gold is all around us and even in us. The total amount of gold 
in the oceans is estimated at billions of tons, but its concentration is less than 
6 parts in 1 trillion parts of seawater. Thus, there seem to be no total voids in 
the distribution of gold on earth. 

And what is true of gold is manifest for many minerals too. As the Dutch 
geologist H. J. de Wijs once wisely observed, a mineral is typically not concen- 
trated exclusively in ore veins, but can be found between the veins, too, albeit 
in lesser concentrations. And the veins themselves show characteristic variations 
of the concentration [deW 51]. In fact, every time a volume of ore is bisected 
along the vein, the relative amounts of the mineral in the two half volumes are 
p and I — p, respectively. Interestingly, the maximum value of the parameter p, 
which measures the variability of the mineral’s concentration, stays roughly 
constant from bisection to bisection. But does this law live for ore alone? 

How are people distributed over a large connected landmass, say, Eurasia 
or the Americas? If we cut the total land area into two equal-area pieces, we 
may find that perhaps 70 percent of the people live on one side of the dividing 
line, while only 30 percent live on the other side. In general, the proportion of 
people on one side may be p, with p > 0.5, whereas it is only 1 — p on the 
other side. In the present example, p = 0.7. The excess proportion p depends, 
of course on the direction of the cut. Let us therefore assume that the cut direction 
is chosen to maximize p. 

If we now proceed to cut the denser half area into quarter areas, again 
positioning the cut to maximize the Proportion in one of the quarters, we may 
find that the population percentages are approximately p* and p(I — p), respec- 
tively. Similarly, cutting the sparser half into two equal areas will result in quarter 
areas with densities near (I — p)p and (1 — p)’. 

Iterating this bisecting process results in an asymptotically self-affine dis- 
tribution (see Figure 1). We begin with a uniform probability distribution over 
the unit interval (Figure 1A). After bisecting the interval once, we find two 
probabilities, 1 — p and p, for the two halves of the unit interval. With I — p < p, 
we obtain the single-step distribution shown in Figure 1B for p = 3. Bisecting 
once more results in four intervals and the probability distribution shown in 
Figure 1C. A third bisecting results in distributions shown in Figure 1D. In the 
limit of infinitely many bisectings, we obtain a self-affine probability distribution: 
the left half of the distribution stretched by a factor of 2 in the horizontal direction 
and by a factor of 1/(1 — p) in the vertical direction reproduces the entire dis- 
tribution [PS 86]. 

If we consider p = 0.7 as characteristic for the distribution of people on 
the earth as a whole, then 18 bisections of the earth’s land area will leave just two hermits living on an area of 576 km? = 24 km x 24 km in the sparsest region, say, in central Siberia, while 8 million people will share the same area in a dense megalopolis. According to this simple bisecting model, most people (3.5 billion) live in 60,000 communities of 20,000 to 300,000 people each. 
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Figure 1 Constructing a self-similar distribution by iterated bisecting [PS 86]. 

And what is true of people and ore obtains for photons too. Take a beam 

of light from an old-fashioned incandescent lamp and cut it into two equal 

portions. The number of photons in the two halves will not be the same, nor 

will the numbers be equal in the four quarter beams, and so on, for each bisection. 

Or take electromagnetic cavity radiation, produced in a hollow space whose 

walls are heated to a given temperature. (A tiny hole in the cavity’s wall will 

emit the justly famous blackbody radiation, as described by Planck’s law.) The 

number of photons in one of the cavity’s phase cells or modes of oscillation is 

distributed according to a geometric distribution: add one photon, and the 

probability decreases by a constant factor m/(m + 1), where m is the expected 

number of photons (given by the “Bose-Einstein” distribution). The variance o° 

of this distribution equals m” + m, where the first term (m’) stems from the heat- 

induced random fluctuations of the classical electromagnetic field. The second 

term (m) reflects the “granularity” of the energy due to Einstein's photons, the 

_ particles of light whose existence he deduced from the added m in o* = m’ + m. 

(This granularity was originally introduced by Planck to match theory to 

experiment.) 
For large m, o° © m’; and bisecting the cavity’s volume will result in an 

expected proportion p of photons in one half and 1 — p in the other half, with 

p © 0.6 for a cutting direction that maximizes p—independent of the number of 
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photons. For large m the geometric distribution is in fact scale-invariant or self- 
similar, because o ~ m. Thus, repeated bisections will continue to apportion the 
available photons in a self-similar branching ratio p/(1 — p) © 1.5 until their 
number becomes so small that o/m is no longer constant and the existence of 
individual photons destroys strict self-similarity. 

In laser light, by contrast, photons obey a Poisson distribution with 0? = m. 
Thus, the scale of the distribution, ¢ ~ ./m, is not proportional to its mean m, 
and self-similarity does not obtain. 

Self-Affine Fractals without Holes 

The repeated bisecting and multiplying of proportions in each half by (1 — p) 
for each left half and by p for the right half intervals, which we exercised in the 
preceding section, is a special case of a multiplicative random process. Infinite 
iteration of such a process results in a self-affine distribution of densities (see 
Figure 1, which shows the initial uniform density over the unit interval and the 
results of the first three iterations). 

After n iterations, the probability in the interval m-2-"<x< 
(m + 1)(2~") is given by p‘(1—p)"~*, where k is the number of 1s in the first 1 
binary places of x. For example, for n = 6 and x = + = 0.00110011 .. . ,k =2. 
Hence the proportion equals p*(1—p)*, as it does for the entire interval 
0.001100 =  < x < 0.001101 = 4 of length 2-¢ that contains x = ;- In the 
sixth iteration, there are (;) = ($) = 15 intervals with this density, namely, those 
15 intervals whose x values have precisely two 1s in their first six binary places. 
The most frequent density for n = 6 corresponds to k = 3. It occurs (8) = 20 
times, the leftmost interval beginning at x = 0.000111 = <q. The reason the 
binary notation for x describes this kind of distribution is that each 0 in the 
binary expansion of x corresponds to a left half interval and each 1 to a right 
half interval. 

Note the incipient self-affinity in this recursive construction: the right half 
of each distribution (see Figure 1) equals the left half times p/(1 — p), and the 
entire distribution tends to be invariant as the left half is stretched by a factor 
of 2 in the horizontal direction and a factor of 1/(1 — p) in the vertical direction 

In the limit as n > oo, the distribution P(x) over the entire unit interval 
equals the one over the left half interval stretched horizontally by a factor of 2 
and vertically by the factor 1/(1 — p): 

1 x z 
P(x) = rep (=) (1) 

This is a functional equation that we shall encounter again in an intriguing 
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gambling strategy (see pages 207—210). The factors 2 and 1/p are the two scaling 
factors of this self-affine fractal. 

How else can we characterize this fractal function? The usual Hausdorff 
dimension D, based on the limit as r > 0 of log N/log (1/n), is of little help 
here. After n iterations the number of pieces N equals 2” and the length r of 
each piece equals 2~”". Thus D = 1, reflecting the fact that the fractal shown in 
Figure 1 has no holes. 

On the other hand, if we focus on the percentages and their distribution, 
we find that after n = 2m iterations a large number of the segments, namely, 
(;,), have a probability of (1 — p)"p™. Their locations within the unit interval are 
precisely all those half-open intervals of length 2~” whose abscissa values x have 
an equal number of Os and Is in the first n binary places of x. For example, for 
n =A, these (>) = 6 special intervals are given by x= 0.0011... 4 A Gs, 3), 
<= 0.0101... ,, 4% = 00110... ,.% = 00,1001 ....,,.and = .Ot0i0n... and 
x =0.1100.... (Here the Fpl dots indicate all possible combinations of Os 
and Is, thereby defining an interval and not just a single value.) 

In general, there are (;) segments of length 2~" with density (1 — p)'p pases 

representing a total probability 

n 

Poi = at aa pip 2%) 

Note that 

» Pun = at 

k=0 

Using Stirling’s formula for factorials and ignoring an immaterial factor 

(n/2nk(n — k)"!”, we can write 

Oty n n 

where H is the entropy function, well known from thermodynamics and infor- 

mation theory: 

H(é) := —€é log, € — (1 — €) log, (1 — ¢) 

shown in Figure 2. 
The fractal dimension of the set of all those subintervals having the common 

~ probability (1 — p)‘(p)"* is given by 

af) 
Soren 3 f(g) = tS tog U) (3) 
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—— 

Figure 2 The entropy function. 

where € = k/n. With r = 7 and the approximation in equation 2, we have 

flé) = HE) (4) 
Thus, depending on the value of & representing a given probability, we get 
different fractal dimensions for the support of that probability. In fact, f(€) ranges 
from the smallest value f(é) = 0 for the lowest and the highest densities (€ = 0 
and é = 1, respectively) to a maximum value f(x) = 1 for é = 0.5. This is one 
reason why such fractals are called multifractals. Note that the subsets of the 
unit interval that correspond to a given fractal dimension f(€) are scattered all 
over the unit interval and are intimately intertwined with subsets of other 
dimensions. This is another characteristic feature of multifractals. Thus, for 
€ = 0.25, for example, the fractal dimension f(€) equals approximately 0.811 and 
the corresponding subsets are all those points 0 < x <1 for which the binary 
expansion of x has 25 percent 0s and 75 percent 1s. For example, 
x = 0.0111 = is one of uncountably many such points. Again, the fractal 
dimension of this Cantor-like dust equals 0.811... . 

After having considered the fractal dimension f(£) of the support of a mul- 
tifractal, we ask how the probabilities (1 — p)‘p"~"(2~") of equation 1 scale as we 
let n — 00. For this purpose we introduce the Lipshitz-Hélder exponent a(€), which 
is defined to ensure that the product p‘(1 — p)"~‘r~"*® does not diverge to zero 
or infinity as n + 00. Thus, the Lipshitz-Hélder exponent, which characterizes 
the singularities of the probabilities, is given by 

_ flog p + (1 ~ 8) log (1 ») a(¢) 
log r (5) 

where ¢ = k/n, as before, and r = = for our particular bisecting process. 
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As equation 5 shows, «(€) is a linear function of & that is monotonically 
increasing for p< 0.5. For € = 0, & = nin = —log, (1 — p); and for € = 1, 
& = Unax = —log, p. Thus, for p = 0.3, for example, the Lipshitz-Hdlder ex- 
ponent & ranges from Opin = 0.51 tO max = 1.74. The value Onin represents the 
least probable part of the multifractal and «,,,,. the most probable. 

Although the fractal subsets of a multifractal are perfectly deterministic, as 
opposed to random fractals, they exhibit much less geometric regularity than 
the original Cantor set. For example, at the twelfth stage of construction, the 
triadic Cantor set consists of 2’* pieces of length 3° ~ 2~”’, which form a 
regular geometric pattern. Its Hausdorff dimension, we recall, is D ~ 0.631. 

A multifractal without holes having about the same Hausdorff dimension 
(D 0.629) is characterized by binary fractions with a proportion of Is equal 

to 3/19. Its nineteenth stage of construction consists of (2) = 969 pieces, which 
like the triadic Cantor set, have length 2” *°. But these intervals form a rather 
irregular pattern, as dictated by the binary fractions of length 19 containing three 
Is. By contrast, ternary fractions with missing 1s, which describe the triadic Cantor 
set, result in a well-ordered pattern. 

Another irregularity of our multifractal is betrayed by the number of pieces. 
If one estimated its Hausdorff dimension by the number of pieces at the nineteenth 
stage of construction, the result would be D = log 969/log 2” ® 0.522, which 
is considerably less than the asymptotic value D % 0.629. Even at the 190th 
stage of construction, generating 7.74: 10” pieces, the estimated value of 

D = 0.610 still falls short of the final value by 3 percent. Such subsets of 

multifractals thus demonstrate how slowly estimates of fractal dimensions can 

converge if a fractal is not self-similar—even if the structure from which the 

fractal is derived is perfectly self-affine (Figure 1). 

To illustrate the irregularity of such multifractals, Figure 3 shows successive 

stages of construction of the subset with k = |n/2| of the multifractal illustrated 

in Figure 1. 

Figure 3 Successive stages of construction of the subset with the highest probability of 

occurence of the multifractal illustrated in Figure 1. 
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The Multifractal Spectrum: Turbulence and 
Diffusion-Limited Aggregation 

In most applications, one has no direct access to the variable € [Fed 88]. In fact, 
¢, being related to a very specific bisecting process, is often irrelevant. The 
important parameters for describing a multiplicative random process, like the one 
considered in the preceding sections, are the fractal dimension f of the support, 
the Lipshitz-Hélder exponent « of the density distributions, and their relation 
f(a) :=f(E(a)), called the “strength of the singularity” «, that is, the Hausdorff 
dimension of its support, or simply the multifractal spectrum. In our example, in 
which « is a linear function of €, the spectrum f(x) is simply a stretched and 
transposed version of f(€) (see Figure 4). 

The maximum of f(a) occurs for € = 0.5. According to equation 5, the 
corresponding value of a is 7) = — log, p(1 — P) = (Onin + %max)/2. The value 
of the multifractal spectrum equals f(a) = 1, that is, the Hausdorff dimension of 
the unit interval (or any interval). For multiplicative random processes on a fractal 
(as opposed to an interval) with Hausdorff dimension D, the highest value of 
f(a) equals D. In other words, the maximum of the multifractal spectrum f(«) 
equals the Hausdorff dimension of the support of the process. 

Another special point of f(«) is the value f(a,) at which its slope, df/da, 
equals 1. With 

df df dé _logé—logi—8 
dx d¢ dx log p—log (1 — p) (6) 

0.8 

0.6 
S 
= 
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0.2 1 
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a 

Figure 4 Multifractal spectrum of multiplicative random process. 
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we see that, for df/da = 1, the corresponding value of € is given by €, = p. 
With equation 5 we then obtain «(¢,) = «, = H(p), which, according to equation 

4, equals f(p) = f(a,). Hence, f(a) = «,, and f(«,) lies on the tangent of the f(a) 
curve with slope 1 through the origin. The value f(«,) equals the information 
dimension D, (see pages 203-207). 

Figure 5 shows the multifractal spectrum for the energy dissipation in fully 
developed turbulence along a one-dimensional straight-line path through the 
turbulent flow. The turbulent regions form the support of the multifractal. The 
experimental points are from different physical realizations of turbulence (such 
as atmospheric turbulence, boundary-layer turbulence, and turbulence in the wake 
behind a circular cylinder or wire grid). Note that these measurements are well 
matched by a single f(«) curve, the best match being obtained for p = 0.3. Thus, 
it seems that turbulence is indeed well modeled by multifractals as originally 
suggested by Mandelbrot [Man 74]. 

Another beautiful example of a multifractal phenomenon is diffusion-limited 

aggregation (DLA) as analyzed by Meakin and his coworkers [MSCW 85, MCSW 

F(a) 

Figure 5 Multifractal spectrum in turbulence [MS 87]. 



196 CHAPTER NINE 

» 

86]. In DLA, single molecules perform a random walk until they become “stuck” 
on the aggregate, producing attractive random fractals (see Figure 6), reminiscent 
of certain biological growth patterns and “Lichtenberg” figures of electrical break- 
down on insulating surfaces (see Figure 7 [NPW 84]). These patterns are char- 
acterized by a dendritic design with “fjords” on many size scales. The reason 
for this structure in DLA is that a wandering molecule will settle preferentially 
near one of the tips of the fractal, rather than inside a deep fjord; the probability 

Figure 6 Crystal growth by diffusion-limited aggregation (DLA) [HF] 87]. 



Multifractals: Intimately Intertwined Fractals 197 

of penetrating a deep fjord without having become stuck earlier is simply too 
low. Thus, different sites have different growth probabilities, which are high near 
the tips and decrease with increasing depth inside a fjord. This is the precise 
paradigm for which multifractals are tailor-made. 

Lichtenberg figure of electrical discharge. Fractal dimension D ~ 1.7 [NPW 84]. 
Figure 7 
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Figure 8A shows a two-dimensional DLA cluster and Figure 8B shows the 
sites with a relatively high growth probability. As expected, these high-probability 
growth sites favor the tips of the cluster. The experimental multifractal spectrum 
f(a), which extends from & ni, © 0.5 to &,,, > 5, models the theoretical one quite 
well; see the review by Stanley and Meakin and the references cited there [SM 88]. 

Figure 9 shows the result of an early computer simulation of DLA by Witten 
and Sander. The fractal dimension for two-dimensional DLA is found to lie near 
1.7. This means that the mass of the aggregate increases with its linear dimension 
L as L'” and the average density goes as L!7/L? = L-°3—that is, it decreases, 
in accordance with the visual appearance of such growth patterns. In three- 
dimensional DLA the fractal dimension is typically near 2.5 [WS 81]. 

The visual similarity between Lichtenberg figures and DLA patterns is not 
accidental. Both processes are governed by the Laplace equation of potential 
theory, the gradient of the potential corresponding to the diffusion field in DLA. 
The surface of the DLA cluster is an equipotential surface. In this approach to 
DLA, particles will attach themselves preferentially at those sites of the cluster 
for which the potential gradient is high, which is near the tips. 

In lightning and Lichtenberg figures,and similar electrical breakdowns, the 
potential is, of course, the electrical potential. The growth of a lightning stroke 
or a discharge occurs preferentially in the direction of the highest gradient of 
the potential. The deep “fjords” of the pattern, by contrast, are well shielded 
electrically and therefore experience little or no growth. This correspondence 
between potential theory and fractal growth has been fully confirmed in careful 
measurements and numerical solutions of the potential equation [NPW 84]. 

(B) 

Figure 8 (A) DLA cluster. (B) Sites with high probability of growth [MCSW 86]. 
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Figure 9 Fractal cluster grown by computer simulation of diffusion-limited aggregation 
[WS 83]. 

Viscous Fingering 

A related problem is viscous fingering, observed most conveniently at the interface 

of two liquids between two glass plates. For two miscible liquids, like gelatin 

- and water, a DLA-like structure appears when one liquid invades the other see 

(Figure 10A). This growth process is the result of a hydrodynamic instability 

between the liquids. As in DLA, any small “bump” on the interface will tend to 

grow predominantly at the tips because the pressure gradient, which drives the 

growth, is largest at the tips. 
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(A) (B) 

Figure 10 Viscous fingering at the interface of two liquids. The shape of the “fingers” 
depends on the mutual miscibility of the liquids. (A) A dark-colored water was injected through 
a central cannula (visible as a black bar) into fluid gelatin, which is highly miscible with water. 
(B) A less miscible concentrated sugar solution was injected into the gelatin. 

For two immiscible liquids, like glycerine and oil, the fingers are much wider 
because the surface tension between the two liquids prevents the formation of 
thin dendrites— that is, tips with high curvature (see Figure 10B). Because of 
this kind of fingering, much of the oil stays in the ground when water is injected 
with high pressure into oil-containing shale. By increasing the surface tension of 
the water through additives, the tips can be made even rounder, thereby lowering 
the fractal dimension and increasing the amount of oil that can be extracted 
before the first water arrives at the point where the oil is extracted. 

Multifractals on Fractals 

Considering the awe that multifractals have inspired in some quarters, the gen- 
eralization that leads from fractals to multifractals is surprisingly simple. We will 
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next consider multifractals on a fractal support. Take the unit interval from which 
a number of open intervals have been removed, leaving individual line segments 
of lengths r;, separated by empty “holes.” We associate with each line segment 
r, a weight or probability p,. Iterating this generalized process of removal and 
assignment of probability, we arrive at a generalization of the Cantor set with 
probabilities associated with each speck of “dust.” This is the prototypical mul- 
tifractal on a fractal support that we want to study in this chapter. 

Associating a probability p; with each segment r, will allow us to model 
fractal growth processes in which the different segments correspond to the 
different sites at which growth takes place. The probabilities p; represent the 
different growth rates at these sites as in diffusion-limited aggregation (see pages 
193-199). In the application to strange attractors, the segments r; converge on 
the different values a dynamic variable can assume, called the support of the 
attractor, while the probabilities p, model the frequencies with which the segments 
are “visited.” 

While a self-similar Cantor set, generated from segments of equal length, 
is characterized by a single scaling exponent, the Hausdorff dimension D, mul- 
tifractals are described by two scaling exponents, one for the supporting fractal 
and one for the probabilities. 

To properly introduce these two scaling exponents, we first recall the 
definition of the Hausdorff dimension. The Hausdorff dimension D of a set is 
given by the limit as r > O of the expression log N/log (1/r), where N is the 
smallest number of pieces of diameter r to completely cover the set: 

log N 
:= lj 

2 a log (1/r) 
(7) 

This definition of D can also be rendered in the following implicit form: 

lim Nr? = c Ou <0 0 (8) 
r>0 

where c is a constant. Equation 8 brings out an important property of the Hausdorff 

dimension: it is the exponent that keeps the product Nr finite and nonzero as 

+ — 0. If Dis altered even by an infinitesimal amount, this product will diverge 

either to O or to 00. 
In the recursive construction of a self-similar set, the number of pieces N 

after n iterations is N’, where Ng is the number of pieces of the generator. 

Similarly, r equals rj, where rc is the length of the segments of the generator. 

- (These segments are assumed to have equal lengths at this point.) Thus, instead 

of equation 8, we may write 

lim (Norg)" =c (9) 

n— © 
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which of course requires 

Nef ak 

or 

pas oui (10) 
log (1/rg) 

Hence, for a strictly self-similar set it is not necessary to take the limit as 
r — 0 as in equation 7. It suffices to use the parameters of the generator N, 
and rg. 

For generator segments of different length r, equation 9 becomes 

lim (x ?) = (11) 
n> © i=1 

which implies 

N 

yrs (12) 

For the generalized generator with line segments r, and probability p,, we 
introduce two exponents, the exponent t for the support intervals r,, and the 
exponent q for the probabilities p,. Thus, instead of the limit in equation 11, we 
consider 

N n 

lim ( rt) (13) 
noo 

and we ask for the values of g and t for which expression 13 stays finite—in 
other words, which q and 7 satisfy 

N 

pi =4 (14) 
ll H 

It is obvious from equation 14 that there are no unique values of g and Tt. 
Rather, there is a continuous range of exponents t = 1(q) corresponding, as we 
shall see, to a continuum of fractal dimensions. 

In the case of the original Cantor set (N = 2, r, = 3, equation 14 reads, 
with p, = 3, 

se =} ak) Ps = |) saat 

PJP NG LS NS 

which has the solution t = (I — q) log 2/log 3. Injecting the Hausdorff dimen- 
sion D = log 2/log 3 for the original Cantor set, we can also write t = (1 — q)D . 
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This relation between t and D is also borne out by comparing expression 
13 with equation 11: for q = 0, t corresponds to D, in agreement with the 
relation tT = (1 — q)D. This comparison suggests that t/(I — q) may play the 
role of a generalized dimension D, that agrees with the Hausdorff dimension for 
q = O but may be different for other values of g. 

Another method of creating new dimensions is discussed in the following 
section. 

Fractal Dimensions from Generalized Entropies 

In his attempt to generalize the concept of entropy of a probability distribution, 
the Hungarian mathematician A. Rényi introduced the following expression based 
on the moments of order q of the probabilities p;: 

se= : log y pi (15) 
ss q 1 i=1 

where q is not necessarily an integer [Ren 55]. For q — 1, the definition in 
equation 15 yields the well-known entropy 

N 

S, = — )) pilog p, (16) 
i=1 

of a discrete probability distribution. The definition in equation 15 can therefore 

be considered, as was Rényi’s intent, a generalized entropy. 

Taking a cue from Rényi, we define the generalized dimensions 

N 

log >) pt 
D,:= lim —— ——— (17) 

0g —1 logr 

where p; is the probability that the random variable falls into the ith “bin” of 

size r. The parameter q ranges from — 00 to + 00. Note that, for a self-similar 

fractal with equal probabilities p; = 1/N, the definition in equation 17 gives 

D, = D, for all values of q. For such a fractal, going to the limit as r > 0 is not 

necessary. Thus 

1 log N@/N)’ log N 

g— Lyn lesy, ~ log (1/1) 

which is independent of q. 
It is clear that for q = 0, the definition in equation 17 agrees with that for 

the Hausdorff dimension D. For this reason we call the D, generalized dimensions, 
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hoping that they will prove another potent tool in describing multifractals. This 
is indeed the case. In fact, the D, are uniquely related to the two exponents q 
and t for the general multifractal. 

This relation can easily be deduced from the limit in expression 13 by 
introducing N constant bin sizes r, = r, which, for n > 00, does not affect the 
values of t and q for which the limit in expression 13 converges. Thus, 

N 

log ). pi 
t = (4) = —lim —— 

roo ogy 

and, with the definition in equation 17. 

t(q) = (1 — q)D, (18) 

For a self-similar fractal, the dimensions D, can be obtained directly form 
the p; and r, of the generator using equation 14 and the identity in equation 18: 

Mek. a) 
For q = I, tq) = 0 and D, is given by 

which, with equation 14, becomes 

N 

d Pilog p, 
p= (20) 

Y p; log r, 
i=1 

or, for N equal probabilities p, = 1/N, 

N log N D, ==-—2—— (21) 
> log (1/r)) 
i=1 

For q — 1, the definition in equation 17 yields 

Di =slim 
ro log r 

where S, is the entropy of the probabilities p, given by equation 16. 



Multifractals: Intimately Intertwined Fractals 205 

This entropy and D,, also called the information dimension, play an important 
role in the analysis of nonlinear dynamic systems, especially in describing the 
loss of information as a chaotic system evolves in time. In this context, the 
entropy S, is called the Kolmogorov entropy. 

For q = 2, equation 17 yields the so-called correlation dimension 

N 

log ) pi 
D, = lim pea 

r>0 log it 

which, in addition to D, and D,, is another important fractal dimension. Its main 
practical advantage is the relative ease with which it can be determined 
forpractical” fractals (see Chapter 10). The theoretical importance of D, lies in 
its close relation with the fundamental concept of correlation. In fact, we will 
show in Chapter 10 that D, is determined by the “correlation function” of the 
fractal set, that is, the probability of finding, within a distance r of a given member 
of the set, another member. Thus, measuring D, comes down to a simple counting 
process. 

In principle D, can be determined for all q in accordance with its definition 

(equation 17). In practical applications, however, one sometimes encounters dif- 

ficulties for gq > O because positive g diminish the terms with small p, (corre- 

sponding to the “rarely visited” parts of the fractal). As a result the limit as 

r — 0 converges very slowly. This drawback can be overcome by calculating 

the numerator in equation 17 for both r and r/2 and requiring that their ratio 

equal 1 as r > 0; see Halsey et al. [HJKPS 86]. 

The Relation between the Multifractal 

Spectrum f(«) and the Mass Exponents ™(q) 

In the preceding sections, we have introduced two different functions for de- 

scribing a multifractal: 

e the multifractal spectrum f(«) that describes the fractal dimension f of a subset 

with a given Lipshitz-Hdlder mass exponent «, and 

e the generalized fractal dimensions D, or, equivalently, the exponents 

1(q) = (1 — q)D, 

Since both functions, f(x) and t(q), describe the same aspects of a multifractal, 

they must be related to each other. In fact, the relationships are 

T(q) = f(a) — qo (22) 
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where « is given as a function of q by the solution of the equation 

ee a — f(a)) = 0 (23) 
da. 4 

Conversely, if the fractal dimension D, or the exponents 1(q) are known, 
the multifractal spectrum is given by 

f(a(q)) = t(q) + ga(q) (24) 

where «(q) is given by 

d 
= —— 25 (4) a T(q) (25) 

which, with equation 24, implies 

df == 26 re q (26) 

Equations 24 and 25 give a parametric description of the f(«) curve in terms of 
q. These two equations represent a Legendre transform from the variables g and 
t to the variables « and f. Such transformations play an important role in 
thermodynamics in converting, for example, energy as function of volume and 
entropy into free energy as a function of volume and temperature. 

In fact, the analogies.between multifractals and statistical mechanics go much 
further than a change of variables mediated by the Legendre transform. As the 
physicist will appreciate, equation 14 is patterned after one of the most powerful 
analytical tools in statistical mechanics, the partition function invented by the 
noted theoretical physicist and chemist J. Willard Gibbs (1839-1903). Because 
of this mathematical analogy, several of our parameters are formally equivalent 
to such thermodynamic concepts as energy (a), free energy (t/q), entropy (f), 
and temperature (1/q). 

Strange Attractors as Multifractals 

Strange attractors are among the most important realizations of multifractals. An 
attractor of an iteration x,,, = f(x,) is a single point or an indecomposable 
bounded set of points to which starting values x, from the attractor’s “basin of 
attraction” converge as n > 00. A strange attractor is an attractor for which the 
iterates x, depend sensitively on the initial x,; that is, arbitrarily close initial 
values will become macroscopically separated for a sufficiently large n. Strange 
attractors are fractal dusts with a fractal dimension smaller than the Euclidean 
dimension of the embedding space. 
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A prototypical strange attractor is furnished by the logistic parabola (see 
Chapter 12) defined by the “quadratic map” f(x) = rx(1 — x). For r<ry = 
3.5699456 ..., the iterates of f(x), f(x), witho < x < Lare periodic with period 
length 2”. But for r = r,,, the iterates are aperiodic and converge on a strange 
attractor. This strange attractor is a Cantor set that is asymptotically well modeled 
by a generator with two intervals with lengths r, = 0.408 and r, = 1, and with 
equal weight p, = p, = 0.5. 

The Hausdorff dimension D = D, of this model attractor is given by equa- 
tion 19 for q = 0: 

‘a 

Gobir, sl 

which, for r, = 1, has the solution 

D V5 —-1 
fi = 2 = 0.618... 

Thus, D = D, % log 0.618/log 0.408 % 0.537. 
The information dimension is given by equation 21. With N = 2 and the 

values for r, just used one obtains D, = 0.515. For all other g and p, = p, = 0.5, 
equation 14 gives 

ter c= 2! 

which yields 

p _ og lat + 277) = DI 
med 

¢ (1 — q) log r, : 

With 1, = 0.408, this gives D_,, = —1/log,r, = 0.773,...., D_-, = 0.561 

D, = 0.537, D, = 0.497, D, = 0.482,..., Do = —1/log,r; = 0.387. 

The entire multifractal spectrum f(«), calculated from D,, is shown in Figure 

11. Because df(«)/da equals q, the maximum of f(«) equals D, = 0.537, while 

f(0) corresponds to df(«)/da = +00, yielding the values 4,,, = Dx = 0.387 

and a,,,, = D_.. = 0.774, which are within 2.5 percent of the best numerical 

values [HJKPS 86]. This discrepancy, albeit small, reflects the fact that, contrary 

to our assumption, the period-doubling strange attractor is not exactly self- 

similar. 

_A Greedy Algorithm for Unfavorable Odds 

In Chapter 6 (pages 150-152), we outlined a strategy for optimally playing a 

game of chance when the odds are favorable. And we advised against gambling 

when the odds are unfavorable. Nevertheless, for those who persist in the face 



208 CHAPTER NINE 

f(a) 

0.2 0.4 0.6 0.8 

a 

Figure 11 Multifractal spectrum of iterates of quadratic map at period-doubling accu- 
mulation point [HJKPS 86]. 

of adversity and are willing to risk everything, there is a small chance of “making 
a killing” if they follow a simple rule based on maximum avarice: a greedy algorithm. 

Suppose a player has an initial capital of K dollars and the bank has B 
dollars, and the probability of winning a single play is p, with p < 0.5. Of course, 
a reasonable person, intent on a positive expected gain, should not play against 
odds that are less than even (p = 0.5). But suppose our player is willing to risk 
his entire capital for a small chance of winning all the money in the bank. From 
equation 8 in Chapter 6 we see that the probability of achieving this goal, while 
betting always exactly one dollar, is given by 

r—J 
= ] — = PK qx eee (27) 

where r := (1 — p)/p > 1. An unbiased roulette wheel with 36 positive numbers 
and only one 0 gives p = 37, or r = 4, for an “even” chance. More generally, 
K in equation 27 is the player's initial capital divided by the size of his bet and 
B is the bank's capital divided by the bet. 

Say that the player has an initial capital of $1000 (K = 1000) and the bank 
has $10,000 (B = 10,000); then, according to equation 27, the probability p, of 
breaking the bank is approximately 107 ~"*. In other words, our player looses all 
his money with probability indistinguishable from certainty. 

A less timid player might wager $10 on every play, thereby changing K 
to 100 and B to 1000 in equation 27. This “improves” his chances of winning 
$10,000 to px % 10°**. And an even bolder player, always wagering $100, 
corresponding to K = 10 and B = 100, is rewarded with p, % 0.0025. This 
suggests that the higher the wager, the better the chances of winning the pot. 

Why should this be so? Obviously, a player who wagers very little, like 
$1 or $10, has to play very often reaching $10,000 (if ever), and every time one 
plays, one gives the unfavorable odds another chance to come into play. This 
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suggests that always betting all one’s money would be an optimum strategy in 
the face of unfavorable odds. More specifically, as long as x = K/B is smaller 
than 3, one would bet all and, upon winning, would double one’s money. Thus, 
if P(x) is the probability under this greedy algorithm of ultimately winning all, 
then we have the following functional recursion: 

P(x) = pP(2x) + (1 — p): 0 OS (28) 
NI RR 

Of course, if x > +, one only has to wager the difference B — xB to reach B. In 
this case, even if one loses, one still has K — (B — K) = 2K — Bdollars to continue 

playing [Bil 83]. Hence, 

Pi) pe TET — p)Pi2r — 1) SS (29) 
NI R 

Now the only remaining question is how to calculate P(x) from the equations 

28 and 29. Of course, for0O < p<7z +, PO) = 0 by equation 28 and P(1) = 1 by 

equation 29. For other values of x, we note that P(x) must be a self-affine function. 

Indeed, according to equation 28, compressing x by a factor of 2 and multiplying 
P by p reproduces the left half of P(x). 

In fact, P(x) is precisely the function that we encountered earlier in this 

chapter (with p replaced by 1 — p, see Figure 1 and equation 1). However, like 

many other self-similar or self-affine functions, P(x) is not well behaved: its 

derivative vanishes almost everywhere except at values of x which form a Cantor 

set. In other words, P(x) is a devil's staircase—see Figure 12, where P(x) is plotted 

for p'='0.25: 
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zt 

Figure 12 The cumulative probability of winning the pot when playing according to a 

“greedy” algorithm: a self-affine devil's staircase. 
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To calculate P(x), we express x as a binary fraction. If this fraction does not 
terminate, we truncate it after n places. In our example, x = 75 has the periodic 
binary expansion x= 0.00011, which we can approximate by z= 
0.00011 = 37. Now P(%) is given by the following expression: 

PUL) = PoPoPoPoPo + PoPPoP oP: + PoPoPoPiPo (30) 
where p, = p and p, = (1 — p). The three sequences of indices correspond to all 
binary fractions with n = 5 places which are smaller than = = 0.00011; that is, 
0.00000, 0.00001, and 0.00010. Thus, for p,=7 and p,=+, 
P(x) = p&(po + 2p,) © 0.084. Since ¥ < x and P(x) is a nondecreasing function, 
P(x) is actually somewhat larger than 0.084. This is quite an improvement over 
the winning probability px = 0.0025 for constant $100 bets. And even constant 
$1000 bets give only p, = 0.077. 

The three terms in equation 30 reflect the three different routes to success 
under our greedy algorithm if we stop after five plays. For example, the third 
term, PoPoPoP:Po, represents three wins, followed by a loss and a final win. The 
corresponding capital sequence is, in thousands of dollars: 1, 2, 4, 8, 6, 10. The 
capital sequence corresponding to the second term in equation 30, popPoPoPop, is 
1, 2, 4, 8, 10, 10. The first term, popopopoPo, has the same capital sequence because 
once the goal ($10,000) is reached, the player stops playing. 

Of course, if the player isn’t ruined after five plays, he can continue to play 
and improve his chances of breaking the bank. This corresponds to truncating 
x in P(x) after more than five places. For example, 2+ is an excellent approximation 
tos, giving P75) > 0.09. For irrational x, which have aperiodic binary fractions, 
the calculation of P(x) is of course an infinite process. But for rational x, with 
periodic binary fractions, there is a closed formula, which we leave the reader 
to discover. So what is P(=s)? 

And what is the expected duration of the game until either the player or 
the bank is broke under the greedy algorithm? Like P(x), it should be a self-affine 
function, and it should be less than the expected duration of the game with any 
constant wager [Fel 68]: 

I pe 
; A= Be : po 

pase — 1) ae 
I 
— K(B — K) r=1 
P 

(31) 

For p = 37, r = 7s, and $1 bets, K = 1000 and B = 10,000, giving an expected 
duration of Dx = 37,000 plays. For $100 wagers, K = 10 and B = 100, giving 
a duration of 358 plays. And for $1000 wagers, K = 1 and B = 10, resulting in 
a duration of only 25 plays. Thus, the greedy algorithm should have an expected 
duration of less than 25 plays. 
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The equality that we demand is the most 
endurable degree of inequality. 

—GEORG CHRISTOPH LICHTENBERG 

In this chapter we shall pay a belated visit to the world of practical fractals. As 

Mandelbrot and others have so aptly observed, nature loves fractals at least as 

much as regular shapes. For every smooth curve or surface seen around us, there 

are as many, if not many more, that are highly irregular and often in fact fractal, 

with detailed structure on many size scales. 
Why are fractals so prevalent in nature? The overriding reason is that a 

smoothly curved surface embodies an inherent length scale: the radius of curvature. 

And for such an inherent length there must of course be a reason. For example, 

the earth, seen from afar, is a ball with a curved surface with a radius of curvature, 

R. What is this R? It can be expressed in terms of the total mass M of the earth 

and its mean density p: 
3 M 1/3 (ee An p 

With M x 6: 10% kg and p © 6° 10° kg/m’, the radius becomes about 6000 

km. Thus, the earth ball’s natural length scale is ultimately determined by the 

amount of aggregating dust, and its mean density, that formed the primordial 

earth 4.7 billion years ago. 
: But many objects and laws of nature, by luck, lack such a natural scale 

within the range of observation. Thus, whatever is true at one magnification 

must be true over a whole range of magnifications. In other words, the object 

must exhibit self-similarity—statistical, asymptotic, or even strict self-similarity. 

And if the object has any structure, then a similar structure must appear on many | 
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of Norway by counting how 
g the fractal dimension of the coast Determinin 

many boxes the outline of the coast penetrates [Fed 88]. 

Figure 1 
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size scales. In other words, lack of scales breeds self-similarity, and a self-similar 
object, exempting a few featureless entities such as the infinite straight line, must 
be fractal. 

Let us look at Mother Earth again, not from outer space, but from distance 

at which her gross curvature becomes irrelevant. For many coastlines (as for 
some man-drawn boundaries) there is no natural length scale. The processes that 

shape many an interface between water and land are similar over a wide range 
of scales. Figure 1 shows a piece of the coast of Norway, the homeland of Jens 
Feder, from whose book Fractals [Fed 88] this illustration is drawn. There are 

large fjords and smaller fjords and ever littler inlets. And if we consult maps 
showing more and more detail and finally walk (or row) along the beach, we 
see that the little inlets harbor still littler inlets and so forth, down to the level 
of the seawater penetrating the spaces between individual pebbles. 

How do we measure the length of such a fractal coast? Obviously, the more 
detail we “consult,” the longer the apparent length L. In fact, if the coast is self- 
similar, we shall find a self-similar power law connecting L and the scale unit r 

employed in its measurement: 

L(r) ~ r* (1) 

where the exponent € is negative if L increases as r decreases. By contrast, for 

a smooth curve, the measured length approaches an asymptotic value as r + 0O— 

that is, the exponent é is zero. 
As we have seen in earlier chapters, fractal objects are characterized by a 

fractal dimension, such as the Hausdorff dimension 

log N(r) 

ee pee 

where N(r) is the minimum number of disks of diameter r needed to cover the 

fractal. If we measure L in this manner, Nir) equals L(r)/r and the exponent ¢€ in 

equation 1 is seen to equal 1 — D. Thus, the Hausdorff dimension is given by 

D=1-é6 (3) 

which, for ¢ < 0, will exceed 1 (the value for a smooth curve). 

- Dimensions from Box Counting 

The Hausdorff prescription of covering the fractal with disks is not always the 

most convenient way to measure a fractal dimension, nor is the Minkowski 

sausage recipe that we divulged in pages 41-43 in Chapter 1. Rather, for 
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Figure 2 Measured length of Norwegian coast against grid size r. The slope of the straight 
line gives the fractal dimension of the coast D ~ 1.52 [Fed 88]. 
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Figure 3 Apparent lengths and fractal dimension of different coasts and land frontiers [Man 83]. 
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many practical fractals, box counting is the method of choice. In box counting, 
we superimpose a square grid over the fractal (see Figure 1) and count the number 
of boxes N(r) that are penetrated by the fractal. Again, as r, the spacing between 
grid lines, becomes very small, we find that log Nir)/log (1/r) converges to a 

finite value, the Hausdorff dimension D. 
Figure 2 shows the result of Feder’s counting the coast of Norway with 

grid sizes ranging from r = 0.6 km to 80 km. The measured length L(r) decreases 
with increasing r by a factor of 12—from about 30,000 km to 2500 km. On a 
double logarithmic plot, all measurement points fall near a straight line with a 
slope of € = —0.52. Thus, the Hausdorff dimension, according to equation 3, 
is D = 1 — ¢ = 1.52—halfway between the Euclidean dimension of a smooth 
curve and that of a smooth surface. 

Figure 3 shows data publicized by Mandelbrot [Man 83] for the apparent 
lengths L(r) of several other coasts and land frontiers, whose Hausdorff dimensions 

range from a smooth D ~ 1 for the coast of South Africa to a ragged D © 1.3 

for the west coast of Britain. But no coast or country can match Norway's 

D® 1.52. 

The Mass Dimension 

For many purposes, the box-counting dimension is still not the most appropriate 

or convenient fractal measure. Look at a “Lichtenberg figure” (see Figure 4), one 

of the first physical fractals made by man. It is the electrical discharge pattern 

from a metallic tip placed on an insulator, first made visible in 1777 (the year 

of Gauss’s birth in nearby Brunswick) by the Gottingen physicist and aphorist 

Georg Christoph Lichtenberg (1742-17 99).' If we measure the bright area M of 

Lichtenberg’s figure, we find that it increases with the characteristic radius R 

according to a simple, homogeneous power law: 

M~ R? (4) 

But the exponent D does not equal 2, as for a homogeneous figure in the plane 

(e.g., a circular disk, whose area M equals 7R’). Rather, the exponent D for the 

Lichtenberg figure lies between 1.7 and 1.9. 

The exponent D in equation 4 can serve as another fractal dimension, more 

conveniently measured and easier to grasp than the dimensions introduced so 

1. Lichtenberg traveled twice to England, once as a guest of George III. There he encountered 

and came to admire British science and urbanity. His fame rests on the plethora of penetrating 

aphorisms with which he needled fellow scientists and citizens. Lichtenberg’s major literary oeuvres 

are his illuminating comments on William Hogarth’s engravings (including Marriage a la Mode and, 

The Rake’s Progress). 
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Figure 4 Another Lichtenberg figure: an electrical discharge pattern on the surface of a 
glass plate. Mass dimension D 1.9 [NPW 86]. 

far. It applies to many fractals, from the man-made Cantor dust (see Figure 5) 
to the natural soft down (see Figure 6) that still fills a few (all too few!) 
pillows. In each case, the “mass” inside a radius R does not increase with the 
Euclidean dimension as an exponent but with some lesser power, such as about 
1.6 for the down (depending on its price—smaller D costs more). 

In the Sierpinski gasket, too (see pages 17-19 in Chapter 1), D is smaller 
than 2 because the area M enclosed by a circle of radius R increases by a 
factor of 3 (not 4) every time the radius is doubled. Thus M ~ R2 with Dae 
log 3/log 2.1.58)... 

For strictly self-similar mathematical fractals, such as the Sierpinski gasket and the Cantor dust, the mass dimension is the same as the Hausdorff dimension 
(and any other fractal dimension considered here). They are all given by the similarity dimension of the scaling law, defined by the initiator and the generator that generates the fractal. But for practical fractals, there are significant differences, as we saw when we introduced the Minkowski dimension in pages 41—43 in Chapter 1 to account for the number of vibrating modes of a drum with a fractal 
perimeter. 
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Figure 5 Cantor dust from the output of a digital-to-analog converter. Mass dimension 

D & 1.26. 

The mass dimension is particularly appropriate to parameterize the packing 

of powders. Primary powder particles are apt to form clusters with a packing 

density of, say, p. Assume that these clusters have radii that are r times larger 

than those of the primary particles. Now very often these clusters will again 

cluster with the same or similar values of p and 1, and so forth, for several 

generations; see Figure 7 [OT 86]. 

After n such generations, the density of the powder P equals p" and the 

cluster radius R is equal to r". The total mass M is of course proportional to 

PR, where d is the Euclidean dimension in which the powder resides (di octor 

most powders in a three-dimensional world). Thus, 

M ~ PR‘ = R° 

- with the mass dimension D = d + log p/log r, which, since p < 1 and r > 1, is 

smaller than d. In Figure 7, d equals 2, r is about 7, and p is roughly 0.7, giving 

a mass dimension D % 1.82. For the Sierpinski gasket with d= 2, r= 2, 

and p= +, for comparison, we get a smaller mass dimension, namely, 

2 + log 3/log 2 © 1.58, the same value as its Hausdorff dimension. 



218 CHAPTER TEN 

Figure 6 Natural down. Its softness results from its low mass dimension D © 16. 

Figure 7 Three generations of a self-similar agglomerate in a powder [OT 86]. 
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The mass dimension, as the name suggest, can be applied in higher Euclidean 
dimension, too, especially to spongy substances, such as the Menger sponge 
shown in Figure 3 of Chapter 8, with D = log 20/log 3 © 2.73, and crystals 
grown by diffusion-limited aggregation (DLA), for which D = 2.4 is a typical value 
[Mea 87]. In DLA, (see Figure 9 in Chapter 9 for the result of two-dimensional 
computer simulation), one “atom” at a time is released at a large distance from 
the growing aggregate and allowed to diffuse until it attaches itself to the 
aggregate once it comes under the short-range attractive forces of the atoms 
already captured. Simple probability tells us that new atoms will attach themselves 
preferentially near the tips of the outreaching “dendrites” rather than deep inside 
the crystal’s “fjords.” 

Measurement of the mass dimension gives values of D ~ 2.4 for three- 
dimensional DLA and D ~ 1.7 in two-dimensional DLA. However, the exact 
values of D do depend on the physical and chemical parameters of the process 
and contain important clues for the manufacture of new materials and for practical 
applications in which fractal processes dominate. 

Take viscous fingering (see Figure 10 in Chapter 9), produced by the surface 

instability as one liquid or gas invades the “territory” of another, more viscous 

liquid. (The reader is encouraged to produce his own viscous fingers with the 

help of water and glycerol, squeezed between two glass plates.) 

Viscous fingering has also been observed as one liquid (say, water) replaces 

another (oil) in a porous medium (shale), a standard method of squeezing oil 

form bituminous rock (see Figure 8). The fractal mass dimension of the watery 

fingers depends sensitively on the liquid’s viscosity, the porosity of the rock, 

Production of oil 

t 
Injection of water 

Figure 8 Squeezing oil from bituminous rock. 
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and wetting properties of the liquid and the rock surface [SWGDRCL 86]. If the 
water's edge were smooth (D = 2), most of the oil could be extracted from a 
distant well before the water reached the extracting pump. But, unfortunately 
for an oil-hungry world, D is much larger than 2, and the first water reaches the 
pump long before all the oil has been pumped out. However, the addition to 
the water of viscosity-increasing polymers reduces the fractal dimension and the 
oil industry hopes thereby to double the amount of oil that can be recovered 
by injecting water into shale. (The additives, the industry also hopes, will cost 
less than the value of the extra crude oil extracted.) 

The Correlation Dimension 

One of the most widely used fractal dimensions is the correlation dimension, 
because it is experimentally the most accessible, especially if the fractal comes 
as a “dust”—isolated points, thinly sprinkled over some region of space. 

To determine the correlation dimension, one first counts how many points 
have a smaller (Euclidean) distance than some given distance r. As r varies, so 
does the relative count C(r), defined as the total count divided by the squared 
number of points. The quantity C(r) is also called the correlation sum (or correlation 
integral) [GP 83, Gra 83]. 

The correlation dimension is then defined by 

] ey oe (5) r>o0 logr 

Figure 9 shows the experimental determination of D, for the strange attractor 
of the iterated Hénon map, which yields a straight-line dependence of log C(r) 
on log r over six orders of magnitude, with a slope D, = 1.21 [GP 83] 

Infinitely Many Dimensions 

The correlation dimension D, belongs to an infinite family of dimensions D, 
defined by 

Dl= lin ———— — SS $ pee log r yer 6) 

where the sum is over all the cells of linear size r into which the space has been subdivided and p, is the relative frequency or probability with which points of the dusty fractal fall inside cell k [HP 83a, Gra 83] (see also pages 202—205 in Chapter 9). 
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Figure 9 Determining the correlation dimension of a strange attractor [GP 83]. 

For q = 0, we recover our old friend, the box-counting or Hausdorff di- 

mension D,, because the sum vi ie vie 1 simply counts how many boxes or 

cells are “invaded” by the fractal. Thus, Dy = Do. 

For q = 2, it is easy to show that, in the limit as r > 0, the sum )°, pi 

equals the relative count C(r), which yields the correlation dimension introduced 

. in the preceding section [Schu 84]. 

For q — 1, equation 6 yields the so-called information dimension 

—), Plog 7 

a esas)” " 
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—so called because the numerator in equation 7 is Shannon's entropy, as intro- 
duced in his “information theory” (following Boltzmann’s invention of entropy 
in statistical mechanics). The dimension D, does in fact measure the loss of 
information in the dynamic development of chaotic systems. 

For q — 00, only the highest probability p,,.,, in the sum in equation 6, 
counts. Hence 

Conversely, for q > — oo, the smallest probability p,,,, controls the sum. 
Thus, 

D_.., depending, as it does, on the smallest probability, is difficult to measure 
for practical fractals. The sites with low probability are visited too infrequently. 

Note that D_,, > D,,. In general, for any two dimensions with different 
Y, 

Dre), for q<q (8) 

Thus, D, is a monotone nonincreasing function of q. Only in exceptional cases 
does D, not depend on q at all and does it have the same value in the entire 
range —0O0 <q< oo. 

One such exception is a strictly self-similar fractal generated from “non- 
erased” segments of equal length, such as those that generate the triadic Cantor 
dust. For the calculation of D, according to equation 6, we consider the generator 
to consist of N = 2 segments with equal probabilities P1 = Pp, = 5. Since the 
triadic Cantor set is a strictly self-similar fractal, the limit as r > 0 is superfluous; 
we can calculate D, with the value r = + for the generator. This gives 

1 log [2(1/2)*] e log 2 

ae log (1/3) log 3 

which is a value that is indeed independent of gq. 
If the generator consists of segments of different lengths r,, then, for D, =D to hold for all q, the probabilities p, must be proportional to 17". To show this, we use equation 14 from Chapter 9, the formula for self-similar fractals: 

d pir = 1 (9) 

where t = (I — q)D q° 
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With p; ~ 17" in equation 9, we get 

Drs =] 

which means, of course, that D, is independent of q. 
For example, for r, => and r,=+, D= log y/log (5) ¥ 0.694, where 

y = (/5 — 1)/2 is the golden mean. Thus, p, = (4)? = y and p, = @)? = y*. 
Probabilities p, = r?, except for r, = r, are, of course, rather artificial, and D, in 
general does depend on gq. For example, for r, = r? and p, = p, = 3, equation 9 
gives 

T log (a/b 12" — 1/2] 
DO qg #1 

3 log r, 

which ranges from D_«» = log 2/log (1/r;) down to D,, = log 2/log (1/r,). 
Note that, for r; > 7, D_ ,,, which measures the densest part of the fractal, 

exceeds 1. In general, for constant p,, D_ ,, is determined by the longest segment, 
and D,, by the shortest segment, r,,, (see Chapter 9). 

Tax 

The Determination of Fractal Dimensions 

from Time Series 

A large quantity of the data that humans take in comes in the form of a “time 

series,” that is, a temporal sequence of measured values, such as electroence- 

phalographic (EEG) potentials (see Figure 10). Is this just random noise, or is it 

deterministic chaos, generated by some underlying deterministic, albeit chaotic, 

process? 

In order to decide this often crucial question, one constructs d-dimensional 

data vectors from d measurements spaced equidistant in time and determines the 

correlation dimension D, of this d-dimensional point set. If the data were truly 

Acoustic cortex 

EEG voltage — 

Time. —— 

Figure 10 An electroencephalogram [Ros 86]. 
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Figure 11 Correlation dimension as a function of embedding dimension [LH 86]. 

random, then, as d is increased, the calculated D, would go up accordingly. But 
for a deterministic system, no matter how chaotic it appears to the “naked eye,” 
the calculated correlation dimension will not increase further, once the so-called 
embedding dimension d exceeds the correlation dimension D, of the data (see 
Figure 11). In this manner the author's student J. Roschke found that the seemingly 
noiselike EEGs recorded from the acoustic cortex of cats are in fact not noise at 
all, but deterministic chaos whose correlation dimension depends on the state 
of the cat’s wakefulness [Rds 86]. 

This “embedding” method of determining the fractal dimension of exper- 
imental data, and thereby distinguishing deterministic chaos from random noise, 
has been applied successfully to a wide variety of physical, meteorological, 
biological, and physiological observation [HP 83b]. 

Abstract Concrete 

Self-similarity is not only amenable to measurement: self-similarity can also be 
employed profitably in the design of fractal structures and materials with increased 
durability or lower cost (or both). A case in point is the construction of field 
walls on many New England farms; see Figure 12, a snapshot taken by the author 
during a biking tour through Connecticut. There are large stones whose gaps 
are filled by smaller stones, whose interstices, in turn, are filled by still smaller 
stones. As a result of this roughly self-similar composition, the wall keeps standing 
upright without the customary edifying intervention of expensive cement to fill 
and fixate the cracks. If the number of stones as a function of their size is selected 
according to a power law, what would be a good exponent? 
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Figure 12 The hierarchical construction of a New England field wall. 

In acolumn in Nature entitled “Abstract Concrete,” David Jones argues that 

by employing ever finer particles, from the coarsest gravel to the finest dust, 

the volume to be filled by expensive binder can be made arbitrarily small, thereby 

cutting cost— or allowing more expensive, high-tenacity binding materials like 

epoxy or even polyimide to be used [Jon 88]. Likewise, many other composite 

materials, such as fiberglass, could probably be improved by a self-similar 

composition. 

Fractal Interfaces Enforce Fractional 

Frequency Exponents 

Finite electrical circuits constructed of passive “lumped elements,” like resistors 

and capacitors, have input impedances that are rational functions of frequency. 

For example, a capacitor, with capacitance C, has an impedance Z = (i@C)~*, 

where i = a (—1) and @ is the radian frequency (27 times the frequency). Thus, 

1 which is a rational function of @. 

d out a long time ago that a finite electrical circuit, 
ents, always has an 

for a capacitor, Z ~~ @ — 
Electrical engineers foun 

constructed in any way from a finite number of lumped elem 
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impedance that is a rational function of frequency. This is a consequence of the 
fact that rational functions form a group under composition—that is, if R(x) and 
S(x) are rational functions, so is S(R(x)). 

This rationality is unfortunate in a way, because the characteristic impedance 
Z, of a transmission line (such as a TV cable), which is needed for a “matching” 
echo-free connection, is not a rational function of frequency. Instead, Z, typically 
involves square roots like w~ “”. Thus, no finite network can match such a 
characteristic impedance exactly; matching networks are always approximations 
(and the standards of approximation, alas, vary from country to country). 

However, infinite networks can produce an irrational frequency dependence. 
For example, the infinite ladder network shown in Figure 13 has an input imped- 
ance Z, that is best written as a continued fraction: 

A closed form for the value of Z, can be obtained by exploiting the periodicity 
of this continued fraction, which permits us to write 

I 
D Csek ie fe ee ee 

G + (1/Z,) 

This is a quadratic equation for Z,. The physically meaningful solution (the one 
with positive real part) is 

I 
Zi 5 (R + ./(R’ + 4R/G) (10) 

For R = 1/G = 1 ohm (Q) and a finite number of elements, Z, equals a rational 
number, namely, the ratio of two successive Fibonacci numbers: 1/1, 2/1, 3/2, 
5/3, ... But for an infinite number of elements, as equation 10 shows, Z, is no 
longer rational. In fact, it equals the reciprocal golden mean (,/5 + 1)/ 
2 = 1.618..., an irrational number. 

Figure 13 Electrical ladder network composed of resistances R and conductances G. 
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In order to realize an irrational frequency dependence, we can make G a 
capacitor, with reciprocal impedance G = iC. For small frequencies, @ « 1/RC, 
Z, then depends on @ in simple power-law manner w *, with the fractional 
exponent B = 3: 

Pye 
LZ) = R(: 2) (11) 

QO, 

where @, = 1/RC is the upper “cutoff frequency” of this approximation. 
However, the real world of electrical conduction goes beyond simple half- 

integer exponents like 8 = z. This is noteworthy because uniform networks are 
described by periodic continued fractions, which lead invariably to square roots 
and half-integer exponents. Hence, the observation in a physical system of a 
nonstandard frequency dependence with a fractional value of 2/ implies some 
kind of nonuniform structure. 

In fact, such nonstandard frequency behavior is frequently observed in 
electrical conduction across rough surfaces, such as between an electrode and the 
electrolyte of a car battery. Indeed, simple models of the current-carrying interface 
as fractals have established a unique relationship between the fractal geometry 
of the interface and the frequency exponent 7. 

Figure 14A shows a highly schematized, two-dimensional model of an 
interface between an electrode (white) in contact with an electrolyte (black) 

[Liu 85]. The model is based on a Cantor set whose generator consists of two 

segments of equal length r. In Figure 14A, r equals 0.3. To model the roughness 

of the interface, the “grooves” in the electrode have increasing depth, becoming 

deeper by a constant amount with each generation of constructing the fractal, 

as shown in Figure 14A. 
Figure 14B, shows the treelike electrical circuit representing current con- 

duction through this interface. Note that the resistances increase by a factor 

1/r > 2 with each generation, reflecting the fact that the grooves filled by the 

electrolyte become narrower and narrower. This network is in fact a self-similar 

Cayley tree, that is, a tree with a constant branching ratio (here equal to 2) and 

a scale factor for the resistances equal to 1/r, representing the resistance increases 

in the progressively narrower grooves. 

The input impedance of this tree is given by the continued fraction 

2 i 2 I —"s (12) 

ioC + R/r + iaC + R/r + 
Z(@) = R+ 

Here the 2s in the numerators stem from the 2:1 branching ratio of the tree. 

This continued fraction, too, would be periodic if it were not for the fact 

that the scaling factor r is different from 5. It can be written in the following 

closed form: 
il is het 3 

ioC + Z(a/r) a Z(@) = R+ 
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Figure 14 (A) Middle-third-erasing model of interface between electrode (white) and 
electrolyte (black) in a car battery. (B) Treelike electrical circuit representing current flow 
through the fractal interface shown in part A [Liu 85] 
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Note that Z(00) = R, as one would expect from the circuit diagram in Figure 
14B. For finite frequencies, Z(o)| SK 

For 

zy 
R <K |Z@)| <«K eS 

Di @McC 

which implies @ « 1/RC, equation 13 simplifies to the scaling law 

li 
Tay 2(2) (14) 

2r r 

which is solved by the power law 

Z(@) ~ w* 

with the exponent given by 

log 2 
={[— ae) £5 

i log (1/r) a 

Here D is the Hausdorff dimension of the Cantor set used in the model (Figure 
14A). Because 0 < D < 1, the exponent f too lies between 0 and 1; it is not 
necessarily restricted to B = 3. 

The Hausdorff dimension of the one-dimensional electrode-electrolyte in- 
terface in two dimensions equals D + 1 = 2 — f. Fora two-dimensional interface 
with isotropic roughness, the relations for 6 and D are unchanged. The corre- 

sponding tree model would employ a branching ratio of 4 instead of 2, and a 

resistance scale factor equal to 1/r’ instead of 1/r. However, the Hausdorff 

dimension of the interface becomes 2D + 1 = 3 — 2f. These, then, are the 

anticipated relations between conductor geometry and frequency exponent. Note 

that the rougher the interface (large D), the smaller the frequency exponent . 

Intuitively, the reason for the increase in impedance as the frequency is 

lowered is that the current reaches deeper and deeper into narrower and narrower 

crevices of the interface before being shunted away by the capacitances. For the 

treelike fractal interface, the penetration depths scale with an exponent B which 

can assume a range of values depending on the roughness of the interface. 

If it were not for the exponential growth in the number of needed com- 

ponents, treelike networks, like the one shown in Figure 14B, would also be 

useful for generating noises or filtering signals with a fractional-exponent fre- 

quency dependence. However, the 1/f noises observed in many electronic ma- 

terials may in some cases be generated by a fractal composition that is amenable 

to the modeling discussed here. 
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The Fractal Dimensions of Fracture Surfaces 

God made the bulk; 
surfaces were invented 
by the devil. 
—WOLFGANG PAULI 

Of course, fractal surfaces are not limited to rough electrodes. Fracture is another 
omnipresent source of two-dimensional fractals. In a classic study, Mandelbrot, 
Passoja, and Paullay investigated the structure of fractured samples of a low- 
carbon steel which they found to be self-affine [MPP 84]. By plating the fracture 
surface with a thick layer of nickel and subsequent planing, they could create 
little islands of steel that grew in size as the planing parallel to the surface 
progressed. Figure 15 shows the areas A of these steel islands versus their 
perimeters L in a double logarithmic plot. The data are well fitted over four 
orders of magnitude by the power law A ~ L***, implying that the perimeters 
of the steel islands are self-similar. The value of the exponent, 1.56, is quite 
distinct from the Euclidean law A ~ L’. The exponent 1.56 also means that the 
Hausdorff dimension D of the perimeter equals 2/1.56 = 1.28. This value is close 
to that of the coast of Britain (D ~ 1.3), but considerably greater than that of 
the “fractal hexagon” (D = log 9/log 7 © 1.13) that we encountered in Chapter 
1, pages 13-15. For the fractal hexagon, too, the reader may recall, the perimeter 
had to be raised to the power 2/D ~ 1.77 (not 2) to properly predict the 
“hexagon’s” area from its perimeter. 

The value D = 1.28 for the steel islands, incidentally, implies that the self- 
affine fracture surface itself has a fractal dimension of D + 1 = 2.28, a value 
typical for rough mountains. A vertical cut through such a fracture mountainscape 
would produce a profile with a fractal dimension 2.28 — 1 = D, Mandelbrot and 
his collaborators confirmed this result by measuring the spatial frequency spectrum 
P(f) of such fracture profiles. They found P(f) ~ f~*°. From the frequency ex- 

§ 
= 
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Figure 15 Areas of steel “islands” plotted against their perimeters in fractured low-carbon 
steel [MPP 84]. 
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ponent 8 = 4.5, the fractal dimension is obtained by the formula D = 
3 — (B — 1)/2 = 1.25 (see page 137 in Chapter 5), in good agreement with their 
independent “island” measurements. Thus, metal fracture is free from an inherent 
scale over several orders of magnitude. 

Interestingly, the fractal dimension and the impact energy required for 
fracture were found to be related to the temperature used in tempering the steel. 
The precise metallurgical basis of this dependence of fracture energy and to- 
pography on heat treatment remains to be rendered intelligible, though. 

The Fractal Shapes of Clouds and Rain Areas 

Heavy rains interfere with microwave transmission—the medium of choice, for 

the last half-century, of long-distance telephone transmission. A patch of dense 
rain between two microwave towers, ubiquitous in the United States and other 
countries, necessitates the rerouting of communications links. Small wonder, then, 

that telephone engineers have shown great interest in the temporal distributions 
of precipitation and the geometric shapes of rain areas. Rain comes, of course, 
from clouds (although there seem to be people, quite erudite by the way, who 
confessed surprise when first told so). 

Thus, nothing seems more natural than to study the statistics of rain and 

clouds together, as Lovejoy among others has done [Lov 82]. Figure 16 shows 

10° 
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Figure 16 Areas of rain patches (filled circles) and clouds (open circles) plotted against 

their perimeters [Lov 82]. 
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the area A of rain patches (filled dots) and clouds (open circles) versus the perimeter 
L. On a double logarithmic plot, like Figure 16, the data hew close to a straight 
line over a combined range of six orders of magnitude, from 1 km’ to 1 million 
km! The slope is just under 1.5, implying a fractal dimension D of the perimeters 
equal to 2/1.5 = 1.35. Again, as in fracture and so many other natural phenomena, 
there seems to be no natural length scale. 

The numerical value of the exponent is in good agreement with a ther- 
modynamic model by Hentschel and Procaccia [HP 84]. Lovejoy and Mandelbrot 
proposed a mathematical model in which rain areas are assumed to be generated 
by the superposition of individual rain patches with hyperbolic size distribution 
[LM 85]. Their model is capable of generating eminently realistic images of clouds. 
Color Plate 5 shows a photograph, taken by the author, of a natural cloud that 
rivals the realism of computer-generated nebulosities. Color Plate 6A and B 
shows two other fractals observed in nature—one generated by natural decay, 
the other by natural growth. 

Cluster Agglomeration 

In diffusion-limited aggregation (DLA), aggregates of molecules grow by adding 
one molecule at a time. Another important growth process that leads to fractal 
structures is the agglomeration of aerosols and colloids. Figure 17 shows an 
electron microscope image of a gold colloid grown by cluster aggregation by 
Weitz and Oliveria [WO 84]. The fractal structure of this colloid is so sparse 
that, even in the two-dimensional projection shown here, the cluster is transparent. 

The agglomeration of clusters is illustrated in Figure 18. Initially, individual 
particles are distributed roughly uniformly within a finite volume (Figure 18A). 
They are then allowed to migrate randomly as in Brownian motion. When two 
particles touch each other, they stick together and from then on move together 
as a little “cluster.” When these little clusters run into each other, they stick 
together and form larger clusters as observed by Meakin [Mea 83]. In such 
agglomeration processes, larger and larger clusters are formed as shown in Figure 
18B and C. The large clusters are in fact statistically self-similar fractals. In two- 
dimensional computer simulations, Hausdorff dimensions D near 1.4 are found. 
In three dimensions, Kolb, Botet, and Jullien found D & 1.8 [KBJ 83]. 

Experimentally, the fractal dimension can be determined by scattering of 
light, x rays, or neutrons from the fractal. For spatial frequencies (reciprocal 
wavelengths) f in the range 1/R « f « 1/r, where R is the size of the entire 
fractal and r that of the individual particle, one expects the scattered intensity 
K(f) to follow a simple power law: I(f) ~ f~° (see the next section). The fractal 
dimension D determined in this manner by Schaefer and-his collaborators for 
silica particles is about 2.1; see Figure 19 [SMWC 84]. This value, being consid- 
erably higher than the computer simulation results, points to a different mechanism 
for the agglomeration of silica. Simulations in which clusters form only slowly 
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Figure 17 Gold colloid grown by cluster aggregation [WO 84]. 

after multiple collisions give D ~ 2.0, in better agreement with the results ob- 

tained by scattering [FL 84, SO 85]. 

Agglomeration plays a decisive role also in electrolytic deposition and 

catalytic reactions. Cluster formation is likewise prevalent in the spreading of 

epidemics, gossip, and opinions. Grassberger found that, in opinions surveys, 

fractal structures can lead to strongly biased and therefore false results [Gra 85]. 

Diffraction from Fractals 

- For incoherent diffraction from a fractal that consists of independent particles, 

such as a colloid, the scattered intensity (f) as a function of spatial frequency f 

is proportional to the total “mass” M contained in a volume of radius p = 1/f. 

With M ~ p”, one obtains 

ee (16) 
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(B) (C) 

Figure 18 Agglomeration of clusters: (A) uniform random distribution; (B) formation of 
small clusters following random motion; (C) formation of larger clusters [Mea 83] 

For surface fractals, I(f) ~ S, where S is the surface area. But I( f) can also 
be written as M?F(fp), where F is some universal function [MH 87]. With 
S ~ p>and M ~ p?, this implies F(fp) ~ (fp)s-*4 and 

Rap (17) 
where D, is the fractal dimension for the scattering surface and d is the Euclidean 
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embedding dimension. For d = 3, we thus have 

If) ~ f?° (18) 

For a smooth surface, D, equals 2 and I(f) is proportional to f~*, a well-known 
classical result for the scattering regime considered here. As already noted, 
equation 18 permits the determination of D, of a fractal surface by wave diffraction. 

Figure 19 shows that scattered intensity of x rays, scattered from the colloidal 
aggregate of silica that we mentioned before, as a function of spatial frequency 
in reciprocal angstroms (10 “°m). The measurements are restricted to small 

scattering angles, because at large angles the x rays would resolve the molecular 
structure, as opposed to the cluster structure that is of interest here. For f < 1/ 
r, where r = 27 A is the radius of the nonfractal monomers that form the fractal 
colloid, the scattered intensities fall on a straight line with a slope of —2.1 in 
a double logarithmic plot, which is thus the Hausdorff dimension of the fractal 
colloid. 

For f > 1/r, there is another linear regime of the scattered intensities with 
a slope of —4. This slope is the one that is theoretically expected for the 
nonfractal monomers that form the fractal. The experimental result is therefore 
an indication that the monomers remain intact in the aggregate. 

Here then we have a quintessential application of wave diffraction to the 
analysis of a fractal structure, that of colloids. Understanding the processes that 
govern colloidal aggregation has been a long-standing aim in several branches 

Scattered intensity I(f) 

10-4 10-3 10-2 10-2 

Spatial frequency (1/A) 

j ini i i ili icles. Intensity of x rays scattered Figure 19 Determining the fractal dimension of silica particles 

from a colloidal aggregate of silica. SAXS = small-angle x-ray scattering [SMWC 84]. 
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of physics and chemistry, and for a wide variety of commercial applications. 
Wave diffraction, always the tool of choice for structure analysis, is now being 
successfully extended from homogeneous bodies to fractal substance. 

Another fractal structure that has been elucidated by small-angle x-ray and 
neutron scattering is lignite, or “brown coal.” Lignite is pervaded by microscopic 
pores with a fractal inner surface. These pores and their surfaces are, of course, 
what makes “active” coal active and interesting for air filters and other purifying 
applications. Theory predicts that the scattering intensity I(f) should be pro- 
portional to f-* for smooth pores. For rough pores, with a fractal surface, I(f) 
according to equation 18 should be proportional to f°~°, where D is the fractal 
dimension of the inner surfaces of the pores. This law should hold for spatial 
frequencies corresponding to the reciprocal surface roughness of the pores. 

Experimental results by Bale and Schmidt gave an exponent of — 3.44 with 
an error smaller than 1 percent over an intensity range exceeding seven orders 
of magnitude [BS 84]. Thus, the pore surfaces are fractal, and their fractal dimension 

equals 6 — 3.44 = 2.56. 
Interestingly, the same power law, I(f) ~ f° °, would also obtain for smooth 

pores with a self-similar size distribution. Specifically, if the number of pores N(r) 
with a radius larger than r is proportional to r~ ”, then, according to Pfeifer and 
Avnir, the scattered intensities would follow the law I(f) ~ f°~° [PA 83]. How- 
ever, the spatial frequency range would be different: it would be given by the pore 
sizes, not by their roughness. This is another example of how relatively simple 
things can become if scaling similarity prevails and if one properly exploits it. 

Several years ago, the author proposed various number-theoretic concepts 
(quadratic residues, primitive polynomials and primitive roots in finite number 
fields, and Zech logarithms) as design principles for reflection phase gratings 
with very broad scattering of the incident energy over wide frequency bands 
[Schr 90]. The frequency bands efficiently scattered by such gratings can be further 
widened by recruiting self-similarity for their design, resulting in fractal diffraction 
gratings [D’An 90]. 

D—-6 
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What good your beautiful proof on [the 
transcendence of] ™: Why investigate such 

problems, given that irrational numbers do 
not even exist? 

—LEOPOLD KRONECKER 

to Ferdinand Lindemann 

Apart from power laws, iteration is one of the prime sources of self-similiarity. 
Iteration here means the repeated application of some rule or operation—doing 
the same thing over and over again. (As the cartoon, Figure 1, illustrates, some- 
times even a single repetition can lead to self-similarity.) In this chapter we 
continue to explore some of the strangely attractive consequences of iteration— 
one of our recurring themes. 

A concept closely related to iteration is recursion. In an age of increasing 
automation and computation, many processes and calculations are recursive, and 

if a recursive algorithm is in fact repetitious, self-similarity is waiting in the wings. 

Think of the recursive calculation of the golden mean (/5 — 1)/2 = 

0.618 ..., obtained by the rule “add 1 and take the reciprocal.” Beginning with 

1, we obtain 1, +, +, =, =, az, and so on, a sequence of fractions that converges 

to the golden mean. (These fractions, in fact, approach the golden mean with 

an error that decreases geometrically, forming an asymptotically self-similar error 

’ sequence with a similarity factor equal to the golden mean squared.) Recursion 

is also one of the main themes of Hofstadter’s Godel, Escher, Bach [Hof 80]. 

A very early example of an iterative algorithm is Euclid’s method for 

determining the greatest common divider (GCD) of two natural numbers: divide 

the larger number by the smaller, take the reciprocal of the remainder, and iterate 
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Figure 1 Iteration leads to cartoon “self-similarity.” (Drawing by Sempée; © 1985 The 
New Yorker Magazine, Inc.) 

until the remainder is zero. The denominator of the last quotient is the GCD. 
For example, for 182 and 78, = = 2 + +S and += 3 + 0. Thus, 26 is revealed 
as the GCD of 182 and 78. (The principle behind Euclid’s method is the simple 
fact that the integers in the remainder fraction, (26 and 78), have the same GCD 
as the original integers, (182 and 78.) 

Another ancient problem that is solved by a recursive algorithm is the 
“tower of Hanoi,” in which a stack of disks of different sizes has to be transferred 
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from one peg to another peg in such a manner that no larger disk ever comes 
to rest on a smaller one in the restacking process. A third peg is used as a 
“parking lot” for disks; otherwise the task would, of course, be impossible. For 
a large number of disks, trial and error would lead nowhere, but a simple recursive 
recipe gives the optimum solution without any guesswork. 

We shall see how a simple iterative scheme, invented by Newton, for finding 
the zeros of a function produces basins of attraction of these zeros that are 
intimately intertwined self-similar multifractals. On a more mundane level, 
Newton's iteration is applied to calculate reciprocals and roots in high-precision 
arithmetic, using only multiplication. Thus 1/z is given by the recursion 
%y+1= 2x,—zx,, and z “*, for example, is calculated by iterating 
%,41 = x,(3 — zx;)/2. (Initial values x, have to be chosen aptly, of course, to make 
the recursion converge to the desired result.) 

The efficacy of iteration is also at the basis of the efficient algorithms for 
the fast Fourier transform (the famous FFT) and the less well-known Hadamard 

transform [HS 79]. The important point is that the matrices describing these 
transforms can be factored into the direct product of smaller matrices [Schr 90]. 

Specifically, a Fourier or Hadamard matrix with 2" rows and 2" columns can be 
iteratively factored into n 2 X 2 matrices, and it is precisely this iterative 
decomposition that results in the substantial computational savings by a factor 
2n/2". Not surprisingly, Hadamard matrices generated in this manner by iteration 
show self-similarity when represented as graphic images or optical masks. 

The iterated baker's transformation is revealed as playing musical chairs with 
binary digits while simulating nonlinear transformations in two-dimensional 
spaces. Arnol’d’s cat map leads to another chaos-producing recursion for modeling 
area-preserving transformations. (The logistic parabola, the paradigm of nonlinear 
mapping, and its two-dimensional generalization, the Hénon map, are analyzed 

in Chapter 12.) 
But recursion, properly controlled, engenders beauty, too, be it in the form 

of handsome designs for needlework or shapely trees and flowers. And in math- 

ematics proper, recursion weaves some veritable wonders—such as the com- 

putation of a billion digits of 7 in just 15 steps, a computational coup that is 

based on the work of Srinivasa Ramanujan (1887-1920), the great Indian math- 

ematician whose awesome intuition remains beyond human comprehension. 

Looking for Zeros and Encountering Chaos 

Some 300 years ago, Isaac Newton (1642-1727) suggested finding the zeros of 

a function f(z) by an iteration, based on drawing tangents. Given an approximate 

value of z, to the solution of f(z) = 0, Newton finds the next approximation by 

calculating 

fZ,) 
(1) 

fe 
Copet eae Fae 
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where f’(z,) is the derivative of f’(z) at z = z,. For equation 1 to be applicable, 

the slope f’(z,) of the tangent must be different from zero. 
For f(z) = z’ — 1, equation 1 reads 

I 1 
ning (+2) (2) 

2 Zp 

Not surprisingly, for an initial value z, with a positive real part, z, converges 
toward the positive root of z* — 1 = 0, namely, z = 1. Similarly, for a negative 
real part of z,, the solution converges to the negative root, z = —1. 

But what happens for purely imaginary z, = iro, where r, 4 0 is real? 
Interestingly, it does not converge at all; the iteration in equation 2 cannot make 
up its mind, so to speak, and hops all over the imaginary axis, according to the 
mapping 

iL I 
Vn+1 =3(:-2) (3) 

For example, the golden mean 0.618... maps iteratively into —0.5, 0.75. 
—0.2916, 1.56845 ... and so on. But some r, behave quite differently, such as 
ro = 1 + ./2, which maps into 1, 0, and 00, a kind of fixed point, if rather distant. 

How can we inject order into this chaotic mapping? A trigonometric sub- 
stitution will do the trick: 

r= —cot (1a) (4) 

which turns equation 3 into the exceedingly simple iteration 

Cif; = 20, moa t (5) 

where “mod 1” means subtracting the integer part and keeping only the fractional 
part, which lies in the half-open interval [0, 1). For example, 2.618 mod 1 equals 
0.618. 

In terms of the new variable «, the chaotic mapping of r becomes totally 
transparent. If we express «,, as a binary fraction, then the digits of «, , , will be 
simply the same as those of «, shifted one. place to the left. A 1 that moves to 
the left of the binary point is dropped. Thus, a periodic binary number «, will 
lead to periodic orbits (ie, periodic sequences of iterates). For example, 
@) = 3 = 0.01 will map into 0.10 = 2, which will map right back into «, = 
0.01 = a. (Indeed, r, = —cot (2/3) = SS i5) 3 is mapped by equation 3 into 
f= PAIS: which maps back to r, = ~T)/./3 Meet 

Similarly, preperiodic binary fractions, which begin aperiodically and end in 
a periodic tail, such as a = ~ = 0.110, lead to preperiodic orbits: 

To =/3, r= 
t I 
a r= eee rz =1,, ete. 
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Terminating binary fractions are but a special kind of preperiodic binary 
fraction, the periodic tail being 0. Where will they end up? Continued left-shifting 
and taking fractional parts (remainders modulo 1) will, sooner or later, produce 
a = 0, which corresponds to r = 00. For example, %) = 3 = 0.111 will map into 
0.11 = 7 and, then 0.1 = , which maps into 0. In fact, the corresponding 
f) = —cot (72/8) =1+ 2 maps into 1, 0, and 00, as we already noted. 

We also see by this analysis that any irrational «, will lead to an aperiodic 
“orbit” along the imaginary axis in the z plane. Thus, the simple mapping given 
by Newton’s iteration for the function z” — 1 = O has rather strange consequences 
for initial values on the imaginary axis: in terms of the corresponding values of 
a, numbers are classified into three categories: 

1 Periodic binary rational numbers 

2. Preperiodic binary rational numbers 

3 Irrational numbers 

Periodic and preperiodic binary rational numbers «, converge on a fixed point 
or lead to periodic orbits. By contrast, irrational numbers &,, an uncountable set, 

give aperiodic orbits: the same value never occurs twice, nor is &, ever rational. 
Surprisingly, the simple map in equation 5 even makes a subtle distinction between 
different kinds of irrational numbers—not the usual number-theoretic distinction 
between algebraic (such as ei 2) and transcendental irrational numbers (for example, 

7), but between normal and nonnormal numbers, including “Liouville” numbers. 

A normal number (in a given number system) is defined as a number in 

which every possible block of digits is equally likely to occur. For example, on 

the evidence of its first 100 million digits, 2 appears to be normal in the decimal 

system [Wag 85]. This means, for example, that somewhere in the decimal ex- 

pansion of 7: a string of eight 7s will occur—in fact, there is a good probability 

that this will occur in the first 10° digits of a (or any other normal decimal 

number). For up-to-date evidence, see the book by Klee and Wagon [KW 89]. 

Iteration of normal numbers under the rule of equation 5 gives rise to chaotic 

orbits. 
How awesome an object a normal number is can perhaps best be appreciated 

by the following reflection. The entire contents of the Encyclopaedia Britannica 

can be coded into a single decimal number (about 10”° digits long). And some- 

where in the expansion of a normal number this block of digits will occur. In 

fact, the contents of the encyclopedia will occur infinitely often! (But don’t ask 

where!) 

Are there any nonnormal irrational numbers? In fact there are uncount- 

ably many in any number system! For example, the Cantor numbers (see Chap- 

ter 7) are nonnormal in the ternary system, because they eschew the digit 1. In 

subsequent chapters we shall get to know the Morse-Thue  con- 

stant = 0.01101001... and the rabbit constant = 0.10110101... neither of 

which can boast a triple 1 in its binary expansion. Thus, they cannot be normal 

binary numbers. 
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But there are even stranger nonnormal numbers, suth as the binary 

co 

L = ¥ 27" = 0.110001000000000000000001000.. . . 
k=1 

and other Liouville numbers’ that are irrational yet very close to rational numbers. 
In general, a Liouville number f is defined as an irrational number for which 

rational numbers p and q exist such that 

n 
| f z ep (6) 

q q 

for any n. In fact, to satisfy inequality 6 for the Liouville number L, one sets 
q = 2". The resulting approximation error is then 27> "*® + 27"*2 4... 
which (for n > 1) is smaller than 27 "" = gq ". (For n = 1, one sets g = 4 and 
notes that |L _ 3 <j.) The fact that for algebraic irrational numbers of degree 
n the absolute difference in inequality 6 exeeds 1/q"** demonstrates the existence 
of numbers, such as L, that “transcend” the algebraic numbers, namely, the 
transcendental numbers. 

The iterates according to equation 5 of normal binary numbers a, will, by 
their definition, fill the unit interval densely and with equal probabilities for any 
subintervals of equal lengths. Thus their stationary distribution under the iteration, 
called the invariant distribution, is in fact flat. By contrast, nonnormal numbers 
will do nothing of the kind. For example, iterates of L will accumulate at 0 and 
all negative powers of 2 (ie., +, =, ¢, and so on.) 

Thus, we have to face the curious fact that the tiniest distinctions—the 
differences between rational and irrational numbers and, among the irrational 
numbers, between normal and nonnormal numbers—make a decisive difference 
in the final fate of a numerical iteration. Ordinarily, one should think that physics, 
and certainly the tangible world at large, would be untouched by the purely 
mathematical dichotomies between rational and irrational numbers or normal and 
nonnormal numbers. But in reality this is just not so. While, true enough, every- 
thing in the real world can be adequately described by rational numbers, it so 
happens that a mathematical model that distinguishes between different kinds of 

Seid es A LI a 
1. Named after Joseph Liouville (1809-1882), who exhibited the first transcendental number of which L is a prototype. The proofs that ¢ and 7 are transcendental came later from Charles Hermite (1822-1901) and Ferdinand Lindemann (1852-1939), respectively. 

Another (existence) proof of transcendental numbers was furnished by Cantor, who showed that algebraic numbers (ie., the solutions of polynomial equations with rational coefficients) form a countable set. Since the continuum, by contrast, is an uncountable set, there must be numbers (in fact, uncountably many) that “transcend” the algebraic irrational numbers, namely, the so-called transcendental numbers. 
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numbers is not only extremely useful but catches the true, possibly hidden, spirit 
of the problem. 

More specifically, two different initial conditions of a physical system that 
are completely indistinguishable by any finite measurement precision will sooner 
or later lead to a total divergence as the system evolves in time or space. The 
essential condition for this to happen is that the corresponding iteration, called 
Poincaré mapping (see chapter 14), be sufficiently nonmonotonic, such as equation 
5, which has a sawtooth nonmonotonicity. The rate of divergence is measured 
by the so-called Lyapunov exponent A := log (a, ,/c,) for n > 00. In our bare- 
bones example based on the iteration in equation 5, 1 = log 2 & 0.693 (if we 
take the natural logarithm). 

Although the iteration in equation 5 may look unrealistically simple, it 
captures the essence of innumerable nonlinear problems which show period- 
doubling bifurcations and thus follow one of the two outstanding routes to chaos 
(see Chapter 12). (The other route is by quasi periodicity modeled by the so- 
called circle map, discussed in Chapter 14.) 

The Strange Sets of Julia 

Newton's method (equation 1) applied to the cubic equation f(z) = z* — 1 gives 
the iteration 

2z7 +1 

322 n 
2yt+1 — (7) 

which we already encountered in pages 38—40 in Chapter 1. 
Now the mapping is even crazier. For one thing, the naive conjecture that 

all z, will converge toward the closest of the three roots is false. For example, 

Z) = —1 will converge on 1, the root most distant from it. 
Color Plate 3 shows the intimately intertwined basins of attraction of the 

three roots—a real, or rather imaginary, crazy quilt. In fact, it can be shown that 

for the mapping in equation 7 two basins (colors) can never meet if the third is 
not present also. This may sound impossible, and in fact it would be—f it were 
not for the fractal nature of the boundaries as intimated in Color Plate 3, which 
also shows the attractive self-similarity resulting from Newton's iteration. 

Why are the three basins of attraction not simply shaped like three pieces 

of pie or sectors, each 120° wide? After all, Newton’s iteration for z” = 1 leads 

to two basins that are half planes. That this cannot be so for z’ = 1 becomes 

clear when one looks at the point z = —2~ “”, which is mapped to the origin, 
z = 0, by equation 7. The neighborhood of the point z = 0 contains points from 

all three basins of attraction (because of the 120° rotational symmetry of the 

problem). Thus, because the inverse map of equation 7 is continuous, the point 
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z= —2~ “must also be surrounded by points from all thiee basins of attraction. 
In fact, its infinitesimal neighborhood must be a scaled-down version of the 
“cloverleaf” at the origin. As a consequence, there are points below the neg- 
ative real line that belong to the basin of attraction for the attractor z; = @ := 
exp (i2/3), which lies above the real line. Similarly, there are points above the 
negative real line that will converge on z, = w’, which lies below the real line. 
Thus, the basins cannot be simple sectors; the basins “nibble” at each other's 
pies. 

In fact, quite generally for z" = 1, Newton's method will produce at the 
origin basins that form a cloverleaf with n leaves. A preimage of the origin that 
falls on the boundary between two attractors will therefore intermingle all basins 
at that point, and for n > 2, this intermingling must result in a fractal boundary, 
because in two dimensions only two attractors can meet in a smooth boundary. 
Furthermore, since all boundary points are preimages of the origin, they are 
boundary points of all n basins. Such strange sets of boundary points are cus- 
tomarily called Julia sets. By definition, the Julia set J of a rational function R(z) 
is the set of points z for which R(z) is not normal. (Normal points are those for 
which R(z) is equicontinuous in a neighborhood of z.) 

The Julia set of a rational function has the following astounding property. 
If z, is a periodic attractor and A, its basin of attraction, then J = GA, for all k. 
Here 0A, is the boundary of the basin A,, that is, all those points in whose 
neighborhood, no matter how small, one finds points both in A, and outside A,. 
Hence, if we have a point z that lies on the boundary of A,, say, we know that 
it also lies on the boundaries of A,, A;,... 

Another important property of a Julia set J is that periodic repellors of R(z) 
are dense in J. In fact, if z,is a periodic repellor, then J is the closure of the set 
of all the preimages of z,. As a result, the dynamics on a Julia set are chaotic, 
that is, sensitive to initial conditions, as we already saw in pages 239-241 for 
the Julia set of R(z) = (z + 1/z)/2. A Julia set always contains an uncountable 
number of points, but it is not necessarily fractal. 

Julia sets, consisting of repellors, are difficult to plot because of the chaotic 
sensitivity, which requires unrealistic numerical precision. However, another prop- 
erty of J comes to the plotter’s aid: for any z in J, the inverse orbit R~"(z), n = 1 
2, 3,...,is dense in J. For points in J, R~"(z) is attractive and so there are no 
problems with numerical divergence. However, R~ ‘(z) is in general multivalued, 
so that clever algorithms are needed to cover the entire Julia set uniformly. Such 
algorithms are described by Peitgen and Saupe in The Science of Fractal Images 
[PS 88]. Figure 2 shows the dustlike Julia set for the mapping of equation 7 
generated by such an algorithm. 

The simple example of a rational mapping with three attractors and its Julia 
set discussed here is not devoid of physical implications. Consider, for example, 
a pendulum consisting of an iron bob at the end of a string. Below the pendulum 
are three magnets to which the iron bob is attracted. After some oscillations, 
the pendulum will come to rest with the bob directly above one of the three 
magnets. But will the bob always go the attractor nearest to its initial position? 
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Figure 2 Julia dust for Newton iteration [PS 88]. 

It will not. Try it! The iron will, for many initial conditions, follow a rather 
tortuous route, and the end position will seem totally unpredictable—and it 
often not only will seem unpredictable but will be unpredictable, unless the initial 
position can be given with a totally unrealistic precision. In other words, the 
basins of attraction of the three magnets are bounded by fractal sets—just as 
the Julia set in our Newton iteration. 

A Multifractal Julia Set 

As we have seen in the preceding section, Julia sets of rational functions with 
more than two attractors are fractals—in fact, they are multifractals. Such sets 

have been traditionally analyzed by generating individual points of the set by 

numerical backward iteration. However, for some Julia sets, analytical methods, 

which offer much higher accuracy and require less computing, are feasible. A 

prime example is the recent analysis by Nauenberg and Schellnhuber of the 

multifractal properties of the Julia set associated with the Newtonian map (equa- 
tion 7) for the solution of z*> — 1 = 0 [NS 89]. 

The first order of business is to construct the support of the fractal set. For the 

original Cantor set the support is the unit interval: all members of the set “live” 

on the straight unit interval. For our Newtonian Julia set, by contrast, the support 

is already a highly complicated manifold, an infinitely nested “cobweb.” To 

construct this spidery support, Nauenberg and Schellnhuber note that one of the 

three preimages of the negative real line is the interval —c0o <z< — 2773, 

called M, in Figure 3A. The two other preimages are obtained from M, by 

rotations of + 120°. 
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Im(z) 

(A) (B) 

Figure 3 (A) Constructing the Julia flower: the first-generation preimages. (B) Support of 
the Julia-flower set at fourth. stage of construction. (C) Julia petal: the first three steps of 
construction [NS 89]. 
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The two preimages M,. and M_ of M, that do not fall on the negative 
real line are given by 

Mie = i(@/2 — 1/2) OQ=f=2-47 (8) 

The other four arclike second-order preimages are obtained by + 120° rotations. 

The six arcs together form the central “flower” shown in Figure 3A. The six 
arcs and the three straight-line spikes at the end of the petals together form the 
first generation of the support of the fractal. The second generation consists of 
3 - 9 = 27 parts, and so on. Figure 3B shows the support at the fourth stage of 
construction, made up of the first four generations obtained by backward iteration 
from the central flower. The nested character of this Julia fractal is already clearly 
evident. 

The higher-order preimages x, of z = 0 falling on the negative real line are 
given by the recursion 

x, 

2 

1 
pee + x, cosh |: cosh” * (1 — 2x, »| (9) 

where x, = —2 ‘?. The asymptotic scaling factor of the x, is 7, as can be 
deduced from the derivative of the forward iteration, dN/dz — } for large z. 

The preimages ¢, = €, + in, of the x,on M, are given by 

E,41 = —2, sinh’ E sinh” * (-10"| (10) 

and 4,4, = +(&2, — &, ,) according to equation 8. The arc lengths |,,on M,. 

between €, and €,, , scale asymptotically as |, ~ (3)"”. The longest arc has length 

1, = 0.3834. 
For the calculation of the fractal dimensions D,, we focus on one of the 

three petals of the central flower (see Figure 3C). In the first generation the petal 
consists of just two large arcs. As the next step, we consider the infinite succession 
of smaller arcs whose vertices, lying on these arcs, are given by the first-order 

preimages of the points x, on the negative real line. Note that each arc generates 
a succession of double arcs. The bottom of Figure 3C shows the result of the 

third step, in which each smaller arc has sprouted an infinite succession of even 
smaller double arcs. 

The Julia set that we are interested in, namely, the common boundary points 

of three basins of attraction, consists of the branch points of this support. (This 

is analogous to the original Cantor set, which is given by the end points of the 

surviving intervals.) The fractal dimensions D, of this Julia set are given by the 

expression 

2) p= 1 t=(1— 9D, (11) 



248 CHAPTER ELEVEN 

(see Chapter 9) where the summation is over successive generations of the 
support-generating process and the factor 2 reflects the fact that each mother 
arc gives birth to twin daughter arcs. If we choose the three preimages with 
equal weight, then p,, = (3)”. The J,, are the arc lengths computed with equations 
8 to 10. 

Of all the dimensions, D,, is the easiest to compute, because for g > 00, 
T — — 00, leaving only the largest /,, in equation 11 to make a contribution. 
The largest /,, is 1, + 0.3834. Hence, with p, = 3, 

3 log p 

~ log |, 
= 1.146... oO 

For q = +00, the factor 2 in equation 11 is irrelevant. The other extremal 
dimension, D_,,, is also easy to calculate. Here the smallest I,, in equation 11 
dominate the sum, that is, |,, for m — 00. With |, ~ (3)"” for large m and 
Pn = GS)”, equation 11 yields 

log 3 
Bho Ui ee ee age 1 Sy, 

m>o 7 108 7 

Note that D_ ,,, unlike the Hausdorff dimension D,, has no simple geometric 
meaning. Its value, being larger than 2 (the Euclidean dimension of the space 
embedding the Julia fractal), is therefore no contradiction. 

Interestingly, in the present approach, the numerical value of D_.,, is given 
by a simple analytical fact: namely, that the J, are proportional to "?, By 
contrast, numerical methods are not even feasible for g = — 00, because the 
computer would have to run forever to explore the sparsest regions of the Julia 
set that are characterized by D_.,. Thus, one is compelled to estimate py. 
from D, for large q. But this access is hampered by a frustratingly slow numerical 
convergence. The other dimensions, including the Hausdorff dimension D,, are 
likewise obtained by elementary calculations. For good approximations, only a 
few of the I, in equation 11 need to be calculated explicitly; for the remaining 
terms, the approximation |,, = 0.1986(5)"/ suffices. The result for the Hausdorff 
dimension is D, = 1.429 ..., a considerably more accurate result than the one 
obtained by number-crunching methods on the basis of 1 million points of the 
Julia set. Note that D, < 2, as behooves a two-dimensional “dust.” For the 
important information dimension (see Chapter 9), 

Y Pm log pn 

ee Y Pm log I, 

just two rough values of I,,, 1, © 0.38 and |, © 0.18, suffice for a good estimate, 
reeled: 

D 
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The Beauty of Broken Linear Relationships 

Figure 4 shows the result of applying the piecewise linear “sawtooth” map b = 8b 
mod 1 to the local brightness 0 < b < 1 of the photograph of a human face 
and quantizing the result b to 0 if b > b and to 1 for b < b [Schr 69]. Figure 5 
shows the beautiful pattern that results from the iteration of another simple 
piecewise linear function [PR 84]. 

Such maps are useful mathematical models of deterministic diffusion [Schu 84]. 

While traditional (thermodynamic) diffusion is a typical random process, piecewise 

linear maps, such as that shown in Figure 6, cause a particle to drift in a seemingly 
random manner, although the drifting is a strictly deterministic process. This 
drifting is another example of a chaotic motion which depends strongly on the 
precise (and not exactly knowable) initial coordinate value. As in traditional 

diffusion, the spatial correlation between two initially close particles decays to 
zero as time evolves [Gro 82]. As a consequence, the mean squared drift x’ 
increases linearly with time, as in ordinary diffusion: 

x = 2Dt fort >1 

Figure 4 Sawtooth map of “Karen,” an early computer graphic by the author [Schr 69]. 
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Embroidery by broken-linear relationship [PR 84]. Figure 5 

Broken-linear map for modeling deterministic diffusion [Gro 82]. 
Figure 6 
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with a diffusion constant D that is proportional to the width 5 over which the 
iterated function “sticks out” from the unit square. 

The Baker’s Transformation and Digital 
Musical Chairs 

Bakers mix their dough by rolling it out, folding it over, and rolling it out again, 
in a seemingly endless iteration—roll-fold-roll-fold . ..—until they are satisfied 
that they have achieved a sufficiently uniform mixture of the dough’s ingredients. 

A mathematically sanitized version of the dough rolling and folding, called 
the baker's transformation, is illustrated in Figure 7. It is a useful model of all kinds 
of mixing processes, including the chaotic mixing of fluids. Arithmetically, a 
point (x, y) in the unit square is transformed to a point (2x, y/2) by rolling out 
and to ({2x),, y/2 + |2x]|/2) by subsequently cutting the rolled-out dough in 
half and putting the right half on top of the left half. (This operation is math- 
ematically simpler than the folding over.) Here, as before, the pointed brackets 

0 
0 1 

Figure 7 Baker's map, a recipe for chaotic mixing. The unit square is first “rolled out” 

to a rectangle. The right half is then cut off and stacked on top of the left half. 
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mean “take the fractional part” and the open-top brackets “round down to the 
nearest integer.” 

If we express x and y in binary notation, then the baker’s transformation 
becomes particularly simple: the digits of x are left-shifted by one place, the 
digits of y are right-shifted by one place, and the leftmost digit of x becomes 
the leftmost digit of y. In fact, the binary digits of x and y play “musical chairs.” 
For example, the coordinate pair 

x, = 0.10110001... 
y; = 0.01110100... 

is mapped into 

x, = 0.0110001... 
y, = 0.101110100... 

which goes into 

x; = 0.110001... 
y3 = 0.0101110100... 

and so on. Thus, any terminating fraction for x will asymptotically approach the 
origin (0, 0), which is therefore an attractor for such x values. 

Periodic binary x values will converge on periodic orbits. For example, 
x=3 = 0.01, y =} =0.10 will lead toa periodic orbit of period length 2. By 
contrast, normal binary numbers will follow chaotic orbits, in which even initially 
close points are soon separate and follow independent orbits; see Figure 8. Both 
chaotic and nonchaotic flows are discussed in Ottino’s “The Mixing of Fluids” 
[Ott 89]. 

x 

Figure 8 A chaotic orbit for the baker's map starting near the period-2 point x, = 3, 
Yonae 



Iteration, Strange Mappings, and a Billion Digits form 253 

Figure 9 Smale’s horseshoe map. A space is stretched in one direction, squeezed in another, 
and then folded. When the process is repeated several times, a pair of points that end up 
together may have begun far apart. 

Sometimes the baker throws away some dough during every iteration, in 
which case the remaining dough turns into a Cantor dust in one direction. This 
generalized baker's transformation is a simple model of the phase spaces of 
nonlinear dynamic systems that contract in some directions and thus sport strange 
attractors, such as the Julia sets discussed in pages 243-248. 

Related transformations are Smale’s horseshoe map [Sma 67] (see Figure 9) 

and Hénon’s map [Hen 76] (see Figure 10), which are characteristic of dissipative 

physical systems with strange attractors. 
Where is the self-similarity in Hénon’s map? Take another look at Figure 

10D and the Hénon attractor after 10* iteractions shown in Figure 11. While 

strange attractors may be strange in many ways, they do maintain self-similar 

order in their chaotic orbits. 

Arnol’d’s Cat Map 

Another important two-dimensional map, for the description of Hamiltonian 

nonlinear systems, is Arnol’d’s area-preserving cat map, 

O47 x, ty, mod (12) 

Ynt1 = %n ay 2y mod I 

illustrated in Figure 12A and B. The notation “mod 1” means, as before, that 

only fractions in the half-open unit interval [0, 1) are considered. The distortion 

engendered by this transformation is reminiscent of a maladjusted, out-of-sync 
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(D) 

Figure 10 Hénon’s map. (A) Initial ellipse. (B) Area-preserving bending: x’ = x, 
y’ = I — ax’ + y. (©) Contraction in the x direction: x” = bx’, y” = y’. (D) Rotation by 90°: 
"= y", yl” = —x" [Schu 84]. 
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(A) (B) 

Figure 11 Self-similarity of the Hénon attractor. (A) The entire attractor. (B) Enlargement 

of portion shown by small square in part A. (C) The result of another enlargement. Note the 

similarity of the streak patterns between parts B and C, attesting to the ultimate self-similarity 

of the Hénon attractor [Far 82]. 

2.6, 

(A) 

Figure 12 (A) Arnol’d’s cat map; (B) iterated cat map. 
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television set. The cat map’s two eigenvalues, 2, and A,, are the squared reciprocal 
of the golden mean y and its inverse: A, =(3 + /5)/2>1 and 
A, = Az," = (3 — 4/5)/2 < 1. Because one eigenvalue is larger than 1 and the 
other is smaller than 1, its fixed points are all hyperbolic, meaning that the map 
is expanding in one direction (corresponding to the eigenvalue /,) and contracting 
in the orthogonal direction (corresponding to /,). Hyperbolic fixed points are 
therefore neither repellors nor attractors; they are both, depending on the direction 
of approach. In geometric representations, hyperbolic fixed points are saddle 
points: a ball rolls down the mountain toward a saddle point (mountain pass), 
but then it will move away from the saddle point toward the valley. The mountain 
pass first attracts and then repels water running down the mountain in its direction. 

Maps with hyperbolic fixed points are the hallmark of chaotic motion in 
energy-conserving physical assemblies, called Hamiltonian systems [Arn 89]. For 
example, (x, y) = (0.4, 0.2) is a fixed point of the once-iterated cat map; that is, 
it belongs to an orbit with period length 2. It is transformed into (0.6, 0.8), which 
is mapped back into (0.4, 0.2). A perturbation of the initial point (0.4, 0.2) 
in the direction corresponding to the eigenvalue 1,, Ax/Ay = —(/5 + 1/2 = 
—1/y, is contractive. Indeed, the initial even-numbered iterates i OF i= 
0.4 + 1/100y, yy = 0.2 — 1/100 are, beginning with x,, approximately 0.402, 
0.4003, 0.40005, 0.400007, 0.400001, 0.4000002. Thus, the point (0.4, 0.2) acts 
like an attractor when approached from the direction that corresponds to /,. But 
following this convergence, using a 12-digit calculator, which introduces a small 
perturbation in the A, -direction, numerical inaccuracies cause eventual divergence, 
as evidenced by subsequent iterates: 0.4000005, 0.400003, 0.40002, 0.4002, 0.401, 
0.407, 0.45, 0.75, and so on to chaos. The point is that, because of this attractive- 
repelling nature, any numerical calculation, or any physical system modeled by 
the cat map, will sooner or later show chaotic motion, except for rare initial 
conditions with measure zero. Such initial conditions, of course, cannot be phys- 
ically realized; they correspond to unstable equilibria—such as a pencil standing 
on its tip. 

One of the advantages of the cat map is that its iterates are easy to analyze. In matrix form, the cat map (equation 12) is given by the matrix 

eal 
fi 

Igoe 

which transforms the column vector (x,, Y,) into the column vector (x 
where all x and y are taken modulo 1. 

Given the recursion for the Fibonacci numbers P= fo a 
F, = F, = 1, it is easy to show by induction that the nth iterate of the cat map 
1S 

iis tee by ) , 

Fo, Pract 

ae ile 
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which inherits its area preservation from that of T. (Indeed, the determinant of 

T", Foy —1Fon 41 — Fons equals 1.) Since T” is a symmetric matrix, it has only real 
eigenvalues, namely, A" = A? > 1 and AY” = 43 <1. 

Fixed points of T" correspond to orbits of period length n and any divisors 
of n. For n = 2, for example, 

meee 
37 5 

To find the fixed points of period length 2, one has to solve the equations 

2x + 3y =xmod 1 

3x + 5y=ymod 1 

Apart from the solution x = y = 0 (which has period length 1), eliminating y 

results in 5x = 0 mod 1, that is, x = k/5, where k is an integer. The only allowed 

values for 0 < x < 1 are k = 1, 2, 3, 4, each of which, in fact, yields a solution. 

The corresponding values of y are y = k’/5, with k’ = —2k mod 5. These four 

periodic points of period length 2 form two orbits, namely, (5, 2) + (2, 3), which 

we already encountered, and G2 96, 2). 

We leave the highly instructive analysis of the complete orbit structure of 

the cat map to the interested reader. 

A Billion Digits for 7 

Iteration is one of the most powerful mathematical tools. To calculate the value 

of = by means of the Gregory-Leibniz series 

Tl itt pie 
eyes 

4 SOs ol 

to an accuracy of just three decimal places, one needs to sum 500 terms. By 

contrast, a recursion involving the arithmetic-geometric mean doubles the number 

of correct digits with every iteration [BB 87, KW 89]. And there are iterative 

algorithms, based on Ramanujan’s work, that multiply the number of decimal 

digits for each iteration by 4 or even 5 [BBB 89]. Thirteen iterations of such an 

algorithm have yielded more than 134 million digits of 2, and just two more 

iterations would give 7 to an accuracy exceeding two billion digits. This is a 

relative error of 10° *° (not just 10’), an awesome accuracy. 
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Of course, nobody needs x that accurately. Among the most accurate 
measurements in physics are those exploiting the Mdéssbauer effect, with a 
precision of, say, 14 decimal digits, corresponding to an error of 1 second in 3 
million years. And 39 digits for 7 suffice to calculate the circumference of the 
known universe from its radius to within the diameter of the hydrogen atom. 
However, computations of the digits of m have become benchmark tests for 
supercomputers and superfast algorithms. Needless to say, these calculations do 
not run on pocket calculators; for these do not have enough memory and their 
displays are too limited for the purpose at hand. 

One of Ramanujan’s astonishing results is the following formula: 

1 V8 & (4n)[1103 + 26390n] 
n 9801 (n!)*(396'") (13) 

whose very first term gives 2 with a relative accuracy better than 3 - 10 *. Each 
additional term adds about eight more decimal digits (ie., multiplies the accuracy 
by 100 million). 

Very rapid approximations to 7 are based on a seminal paper by Ramanujan 
which established a close connection with the transformation theory for elliptic 
integrals [Ram 14]. One of the recursive algorithms resulting from this connection 
is the following. Let «, = 6 — 4,/2 and 

I — (1 — ys)" 
UR ts ans ia Yo =J2-1 

I+ (1 — ys)" 
Then 

n+4 a (1 + Veta) Oy eae pe AE + Yat = “es ) 

approaches 1/7 with an error smaller than 16: 4"*! exp (— 27: 4"*"). The first approximation, &,, has already an accuracy of 9 digits, and «, has 40 correct digits. The number of correct digits of «, is greater than 2 - 4”. asymptotically it quadruples with each iteration and exceeds 1 billion after 15 steps. 
There is even a quintic algorithm which multiplies the number of correct digits by a factor of 5 with each step [BBB 89]. 
How random are the first billion digits of 72 Gregory and David Chudnovsky of Columbia University found that the digits of m are more random than the strings of digits produced by standard pseudorandom number generators, which, as finite-state algorithms, are, of course, ultimately periodic. Specifically, when used to generate Brownian motions, the digits of m generate random walks that seem to satisfy the iterated-logarithm law (in contrast to the usual pseudorandom number generators). “ 
Even so, there is no mathematical proof that 7 is a normal number, in which all groups of digits occur with the same asymptotic probability. In fact, given 
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that 7 is determined by such compact and rapidly converging fomulas as equation 
13, experts suspect the 7 is nof normal in some appropriate base. 

Bushes and Flowers from Iterations 

Iteration of simple rules is one of the more potent prescriptions for generating 
not only mathematical fractals but interesting biological shapes too [Pru 87]. A 
preferred paradigm for these applications is the so-called turtle algorithm for 
producing line drawings: 

A state of the “painting turtle” is defined as a triplet (x, y, «), where the 
Cartesian coordinates (x, y) represent the turtle’s position and the angle «, called 
the turtle’s heading, is interpreted as the direction in which the turtle is facing. 

oO 

oO 
oO 

Oo 
o0 

Oo 
oO 

o oO jon o oD 
Oo oO 

oO 

oO 
d=2 §=90° Oo o 

P-F-P-F 02 colo 
ree Dio oD 

oOo © 
FoF-f+FF-F-FF-FEFF+EFF+F+FF+FI+FFF 

Figure 13 Nested “Islands and Lakes” drawn by the turtle algorithm [Man 83]. 
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Given the step size d and the angle increment 6, the turtle can respond to commands 
represented by the following symbols: 

F Move forward a step of length d. This motion changes the state of the 
turtle to (x’, y’, «) where x’ = x + d cosa and y = y +d sina. The turtle 
also leaves a trail, drawing a line segment between points (x, y) and (z’, y’). 

f Move forward a step of length d without drawing a line. 

+ Tum right (clockwise) by angle 6. The next state of the turtle is (x, y, 
a + 6). 

— Turn left by angle 6. The next state of the turtle is (x, y, %— 0). 

Let v be a string of commands, (x5, yo, a) the initial state of the turtle, and d 
and 6 fixed parameters. The picture (set of lines) drawn by the turtle responding 
to the string v is called the turtle interpretation of v. Figure 13 shows as an example 

UY d=4 §=22.5° 

Yo PoFP+(+F-F-F]-[-FLF+F] 

Figure 14 “Breezy Bush” (watch its self-similarity) [Pru 87]. 
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the drawing of the fractal “Islands and Lakes,” starting with the unit square, 
given by the command string F — F — F — F. According to these rules, the turtle 
interprets a character string as a sequence of line segments, connected “head to 
tail.” 

In a further elaboration, Lindenmayer introduced a notation for representing 
graph-theoretic trees using strings with brackets [Lin 68]. The motivation was to 
formally describe branching structures found in many plants, from algae to trees. 
An extension of the turtle interpretations to bracketed strings uses two additional 
symbols interpreted by the turtle: 

[ Remember the current turtle state (x, y, «) for later retrieval. 

] Recall the turtle state at the corresponding “open” bracket ([) and continue 

executing the instructions to the right of the “closed” bracket (]). Note that 
brackets can be nested. 

An example of a bracketed string and its turtle interpretation of a bush in a 

breeze is shown in Figure 14. 
Color Plate 7A through F shows six plantlike structures generated by 

Prusinkiewicz in this manner [Pru 87]. By adding color to the constructions, 

Prusinkiewicz has obtained breathtakingly beautiful and realistic-looking flowers 

and bushes, as evidenced in the color plates, which are reproduced here with his 

kind permission. 
In another approach to image coding, called iterated function systems, Barnsley 

has created sunflowers, ferns, and forests from an astonishingly small set of 

parameters (see pages 28—30 in Chapter 1). 
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Ct BE ek ne oN 

Self-Similar Sequence, the Logistic 

Parabola, and Symbolic Dynamics 

I work in statistical mechanics, but I am 

not interested in getting to the moon. 
—MARSTON MORSE 

In this chapter we shall delve deeper into the self-similarities engendered by 

iteration. We shall focus our attention on the so-called logistic parabola, a simple 

quadratic equation that models the waxing and waning of warring species and 

restrained growth processes—restrained by a lack of “logistical” resources and 

supplies. This simple law has found widespread application in many fields. Its 

iteration gives rise to numerous universal features and self-similarities. We shall 

attempt to illuminate such signal attributes of the logistic parabola as stable and 

unstable orbits, deterministic chaos, tangent bifurcations, intermittency, the hierarchy 

of orbits, the bifurcation of chaos bands, and invariant distributions. We shall also 

touch upon some of the mathematical tools that exploit the self-similarity inherent 

in the quadratic map and explore some noteworthy transformations that shed a 

lot of light on this and other iterations. 

One of the predictions of the logistic parabola, borne out by observation 

of many natural phenomena, is the occurrence of periodic cycles, especially those 

of period lengths 2, 4, 8, 16, 32, and so on. This is the famous period-doubling 

“scenario,” which is born of self-similarity and begets, in the end, total chaos, 

albeit deterministic chaos. We shall attempt to bridge the seemingly impossible 

gulf between the self-similarity of the binary integers and period doubling in 

the logistic parabola, forging a strong bond, dubbed symbolic dynamics, between 

these two fundamental phenomena. But, as we shall also see, deterministic chaos 

is intimately linked to a simple operation on the digits of (binary) numbers: an 

‘ncessant left shift until their totally unpredictable tails are exposed to full view. 
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After having reveled long enough in the real world’of the logistic parabola, 
we shall follow Mandelbrot in an imaginative leap in the imaginary direction 
into the complex plane, where much becomes plain that was obscure on the real 
line. In other words, we shall complexify to simplify. In the process, we will 
discover the Mandelbrot set and its intricate self-similar designs as an added 
reward. 

We begin our excursion into complexity with a recursive exercise in the 
discrete world of the real integers. 

Self-Similarity from the Integers 

The self-similar properties that can be squeezed from the integers are far from 
exhausted by the Fibonacci numbers and Pascal’s triangle (see Chapter 17, on 
cellular automata). Consider the sequence of the nonnegative integers 0, 1, 2, 3, 
4,5, 6, 7,...in binary notation: 

Orne SEO) SEE. 004 “TMD eI hie 

and take the “digital root” (i.e., the sum of the digits modulo 2) of each binary 
number. This yields the sequence 

On spcecliac Ot7 cl; “OleOle 85:22: 

which is called the Morse-Thue (MT) sequence, in honor of the Norwegian math- 
ematician Axel Thue (1863-1922), who introduced it in 1906 as an example of 
an aperiodic, recursively computable string of symbols, and after Marston Morse 
of Princeton (1892—1977), who discovered its significance in the symbolic dy- 
namics in the phase-space description of certain nonlinear physical systems [Thu 
06, Mor 21]. 

Interestingly, the MT sequence can also be generated by iterating the 
mapping 0 — 01 and 1 — 10, that is, the mapping in which each term is followed 
by its complement. Starting with a single 0, we get the following successive 
“generations”: 

0 

0 

Ot 

Tr HO Ss SS eS 

0 

Obst Ol O ast 

and so on. A sequence generated in this manner is called a self-generating sequence 
[Slo 73]. 
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Alternatively, each generation is obtained from the preceding one by ap- 
pending its complement: 

i 

aoe O 

0 

0 

0 

OORT Sais Oe 0 On, al 

and so on. This is simply a consequence of the fact that the mapping 0 > 01 

and 1 — 10 immediately gives rise to the mapping 01 > 0110 and 10 > 1001, 

and so on, where each higher-order map mimics the original generating rule 

“copy and append the complement.” In other words, the original mapping rule 

is inherited by all successive generations. This kind of inheritance is an important 

consequence of iterated mappings and often leads to self-similar structures. Such 

generating processes are also called inflation, a term which (in its noneconomic 

and noncosmological sense) is associated with Penrose tilings and their fascinating 

scaling properties [GS 87]. 
The infinite sequence obtained from the iterated map 0 > 01 and 1 > 10 

is invariant under this mapping; inflation leaves it untouched. The MT sequence 

is in fact self-similar: retaining only every other term of the infinite sequence 

(indicated by underlining), beginning with the first term, reproduces the sequence: 

Oe hoe 1 0 Oo la 

Similarly, retaining every other pair also reproduces the sequence: 

OT Wink w10 SO Giien. 

as does the “renaming” of each pair, quadruplet, octet, and so on, by its left 

most digit (i.e., regenerating it from its “amputated” first digit). This “skipping” 

process is equivalent to what has been called deflation in tiling or block renaming 

in renormalization theories. These schemes follow simply from the inverse, 

01 > 0 and 10 — 1, of the original mapping 0 > 10 and 1 — 10. Naturally, 

if inflation reproduces a given infinite sequence, so does the corresponding 

deflation. The fact that proper subsets can be equivalent to the entire set is, of 

course, a well-known property of infinite sets. 

The self-similarity of the MT sequence is very easy to understand. Retaining 

only every other term of the infinite sequence is equivalent to multiplying the 

original numbers in the underlying integer sequence by 2. Since, in the binary 

representation, this means a left shift of the digits, the digital roots are not 

changed—by definition this is the MT sequence. (If we retain every other term 

beginning with the second term, the MT sequence, for similar reasons, turns into 

its own complement.) 
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Of course, there is nothing magic about the number 2 and the binary number 
system. The successive integers written in ternary notation: 

Oy °B. Spe West MAO 28 are 

have digital roots (sums of digits modulo 3) that form a self-similar sequence 
with a similarity factor of 3: 

Per OL dy. EAvey OMe, ee 

Indeed, p,, equals p, because the ternary representation of 3k is the same as that 
of k except for a left shift. What iteration generates the p2 (And what are the 
self-similarities of the sequences {Ps.+1} and {pse4 2}?) 

Another interesting property of the MT sequence is its aperiodicity. We 
leave the proof, which is not too difficult, to the reader. Although aperiodic, the 
sequence is anything but random; it in fact has strong short-range and long- 
range structures. For example, there can never be more than two adjacent terms 
that are identical. And of course, any terms whose indices (beginning with the 
index 0 for the initial 0 in the sequence) differ by a factor of 2” are identical. 

This strong internal structure is reflected in the Fourier spectrum of the 
sequence (see Figure 1), which shows pronounced peaks, in spite of the fact that 
the sequence is aperiodic. The reader may want to show that the two strongest 
peaks occur at the frequencies one-third and two-thirds of the “sampling fre- 
quency.” 

A particularly convenient starting point for deriving the Fourier transform 
of the MT sequence in the +1 alphabet (my = 1/1, =F 1) 14, & .) is its 
generating function 

oO 

He)= ye mz* 
k=0 

The invariance of the MT sequence m, under the substitution I > 1, —1 and 
—1-— —1, 1 implies the functional equation 

H() = (1 — 2H) 
which in turn yields the generating function 

H(z) = (1 — 2)(1 — 2’\(1 — za — 24) --- 

Except for replacing z by z~‘, the generating function is‘identical with the “z transform,” which is commonly used by electrical engineers to describe the transfer functions of digital filters. 
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86 128 170 256 

Harmonic number 

Figure 1 Fourier amplitude spectrum of the Morse-Thue sequence (first 256 terms repeated 

periodically) [Schr 90]. 

By setting z = exp (iw), where @ is the radian frequency, the generating 

function yields the Fourier transform 

Mw) = [| [1 — exp (i@2")] 
k=0 

which obeys the scaling law M(w) = [1 — exp (i@)|M(2@). This scaling law, 

together with the symmetries M—@) = M*() and Mw + 22) = M(@), de- 

termines the self-similar structure of the spectrum. 

In physics, the MT sequence occurred originally in the symbolic dynamics 

for certain nonlinear dynamic systems. Marston Morse proved that the tra
jectories 

of dynamic systems whose phase spaces have a negative curvature everywhere 

_can be completely characterized by a discrete sequence of Os and Is—a stunning 

discovery. This means that some complicated curve in R", which, after all, rep- 

resents an uncountably infinite set in a high-dimensional space, can be mapped 

into a discrete binary sequence! With the help of the MT sequence, Morse also 

_ proved the existence (under certain rules) of infinitely long chess games. 
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In the following section we shall study a particularly simple and instructive 
case of symbolic dynamics and its relation to the Morse-Thue sequence. 

The Logistic Parabola and Period Doubling 

Suppose in an ecological, economic, or other growth process the measure x,,+ 
of the next generation (the number of animals, for example) is a linear function 
of the present measure +,: 

Xn+1 = 1X, 

where r > 0 is the growth parameter. If unchecked, the growth will follow a 
geometric (“exponential”) law: 

XL, = 1X 

which for r > 1 will tend to infinity. 
But growth is often limited by limited resources. In other words, the larger 

x,, the smaller the growth factor r. The simplest way to model the decline in 
the growth factor is to replace r by r(1 — x,), so that, as x, approaches some 
limit (1, in our case), the growth factor goes to 0. Thus, we get the growth law 

Xn+1 = f(x,) = r(1 — x,)x, (1) 

which is called the quadratic map or, because of its use in logistics and its parabolic 
shape, the logistic parabola (see Figure 2). 

f(@) 

0 
0 Da al Be 

Figure 2 Quadratic map, also known as the logistic parabola. Note fixed point at x = x*, 
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The logistic equation was introduced in 1845 by the Belgian sociologist 
and mathematician Pierre-Francois Verhulst (1804-1849) to model the growth 
of populations limited by finite resources [Ver 1845]. (The designation logistic, 
however, did not come into general use until 1875. It is derived from the French 
logistique, referring to the lodgment of troops.) 

In its original form, the logistic equation was written as x(t) = 

K/[1 + exp (a — bt)|, where x is the population whose growth pattern is being 

studied as a function of time f. The constants a and b set the origin and the scale 
of the time variable. Depending on these constants, the initial growth of x is 
approximately exponential, the growth rate reaching a maximum for ¢ = a/b and 
then tapering off to zero. The constant K determines the asymptotic value of x. 

In another form, the Verhulst equation for the growth rate is dx/dt = 
rx(K — x)/K, which for x « K leads to an exponential growth of x. But as x 

approaches K, the growth rate drops down to zero. Equation 1 is a recursive 
form of this equation in which time f has been replaced by the discrete variable 
n. The most important attribute of the Verhulst equation and its corollaries is 
their nonlinearity, which allows the modeling of nonlinearities and their conse- 
quences, such as chaotic dynamics, in many fields. 

The quadratic map (equation 1) has two fixed points: x = 0 and, for r > 1, 
x = x* = 1 — 1/r (look again at Figure 2). The derivative of this map is 

Foret 20) 

which equals r for x = 0 and 2 — r for the other fixed point, x* = 1 — 1/r. Fixed 

points are stable as long as |f’| < 1. Thus the fixed point x = 0 is stable for 

r <1. The fixed point x = 1 — 1/r exists and is stable in the range 1 < r < 3, 

because |f'(x = 1 — 1/r)| < 1 there. 
In fact, for r = 2, f(x) = 0 at the fixed point x* = 1 — I/r= 5. Such fixed 

points are said to be superstable, because convergence to the fixed point is very 

rapid, as can be observed on any pocket calculator. In general, superstable orbits 

occur whenever x = 4, for which f’(x) = 0, is a member of the orbit. (Orbit is 

the technical term for a succession of iterates x,.) The parameter values for the 

superstable orbits of period length 2* are called Ry; r = Ry gives the superstable 

fixed point (period length 1). : 

For r = 3, the slope of equation 1 is —1 at the fixed point x = 5. This 

fixed point is “indifferent,” meaning that nearby values are neither attracted nor 

repelled. What happens for r > 3? The fixed point becomes unstable, splitting 

or bifurcating into an orbit of period length 2: xo, x1, X, = % (see Figure 3). For 

example for r = R, = 3.2360679775, there is a stable (in fact, superstable) orbit 

~ of period length 2: 0.5 > 0.8090169943 ... > 0.5, and so on (see Figure 4). 

The value of R, is obtained from setting f(f(0.5)) = 0.5 as the solution of 

the cubic equation R} = 4R; — 8, which happens to have a quadratic irrational 

solution related to the golden mean y = 0.618... : R, = 2/) = ay Dade: Ie 
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Figure 3 Fixed point turned unstable, leading to orbit of period length 2. 

An orbit having a period length of 2, or a 2-orbit, for short, means, of 
course, that f(f(x))—abbreviated f'°(x)—has a fixed point (and because f””(x) = 0, 
the orbit is superstable). This is indeed the case (see Figure 4B). In fact, f(x) 
has two fixed points, both superstable, at x, = 0.5 and x, = 0.809.... 

If r is increased further, then these two fixed points of f(x) will in turn 
become unstable. Indeed, they will become unstable at precisely the same value 
of r. Is this a coincidence? No, because, according to the chain rule of differentiating. 

= FFD)... : f(x) 
L=X 

d 
aa f(F(a)) 

I=Xy 

or, with f(x.) = x, 

d 

dx fF (Xp) = 7) : f' (Xo) he 

Hence: 

Pe) aren 

As a consequence of this equality, if x, becomes unstable because fe) >> i 
so does x, at precisely the same value of the parameter r. This means that both 
fixed points of f(x) will bifurcate at the same r value, leading to an orbit of 
period 4. In other words, now f fC) = fx) = f(F(F(FQ)))) will have a fixed 
point—in fact, four fixed points. For r = R, = 3.498561699 ..., the four fixed 
points of f(x) are x =0.500, x,=0.874..., x, = 0.383..., and 
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f(z) 

(B) 

Figure 4 (A) The quadratic map for an orbit of period length 2. (B) The once-iterated 
map f(x) has two stable fixed points, x, and x. 

x; = 0.827.... These also form a superstable orbit of period length 4 of 
f(x): Xp) > xy 4 LX,  X3 > Xp, and so on. 

Again, because of the chain rule of differentiation, the four derivatives are 

the same at all four points of the orbit. Thus if, for a given value of 1, the 
magnitude of one of the derivatives exceeds 1, then the magnitude of all four 

derivatives will. Hence, all four iterates will bifurcate at the same value of r, 

leading to an orbit of period 8. This bifurcation scenario will repeat again and 

again as the growth parameter r is increased, yielding orbits of period length 

16, 32, 64, and so on ad infinitum, ending up in a “chaotic” orbit of infinite period 

length for r= r,, = 3.5699.... 
These period-doubling bifurcations are also called pitchfork bifurcations, be- 

cause of the resemblance to a pitchfork when the values of the iterates are plotted 

as a function of the parameter (see Figure 5). Two prongs of the fork are the 

new iterates after bifurcation, and the central prong (shown as a dashed line in 

‘Figure 5) is the old (now unstable) iterate, which has turned from attractor to 

repellor. 
Period doubling is a very common phenomenon, encountered in a wide 

variety of physical, ecological, and economic systems. Think of predators and 
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\ 

r— 

Figure 5 Pitchfork bifurcation: outer “prongs” are the new iterates after bifurcation, and 
dashed “prong” is the old iterate, now unstable. 

their prey, such as foxes and rabbits. For sufficiently low fox reproduction rates, 
corresponding to r < 3 in equation 1, there may be enough rabbits to satiate 
the foxes’ appetites, enabling a stable equilibrium between the number of foxes 
and rabbits to ensue. But if the fox reproduction rate is increased above a certain 
limit, corresponding to r > 3, the foxes will devour so many rabbits that, in the 
next season, there will not be enough rabbits to go around, so that the fox 
population will decrease. This will give the rabbits a chance to recover and 
become more plentiful again, allowing the number of foxes to increase too, giving 
rise to a two-season cycle. 

At which values r, of the growth parameter r do these bifurcations, from 
period length 2”” ‘ to 2”, take place? And for which values R,, do we get superstable 
orbits of equation 1 with period length 2"? What happens to the iterates xp, 
Xy,...,X,»—, aS n goes to infinity? To answer these questions we have to exploit 
the self-similarities that must be hiding somewhere in the iterated quadratic map. 

Self-Similarity in the Logistic Parabola 

Let us consider the superstable orbits of equation 1 with period lengths P = 1, 
2, 4, 8, and so on. The parameter values r = R,, that give superstable orbits of 
period length 2” are much better defined, both experimentally and theoretically, 
than the points of bifurcation, r = r,. The fast convergence to the final orbit 
gives better numerical estimates, and one always knows one member of the orbit 
a priori: X = 0.5. By contrast, numerical determination of r,, a bifurcation value, 
is somewhat trickier. 

The period-doubling process is characterized by self-similarities that facilitate 
its analysis. To demonstrate one of these self-similarities, compare f(x) for the 
parameter value r = R, for the superstable orbit with period length P = 2 (see 
Figure 6A) with the function f(x) for r = R, for the superstable orbit with P = 4 
(Figure 6B). The resemblance between the dashed square and its contents in 
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es eS S = 5 5 

0 wo = zy = 1 x 

0.5 0.809 ... 

(A) (B) 

Figure 6 (A) The quadratic map f(x) for the superstable orbit of period length 2. (B) The 
once-iterated map f(x) for period length 4. Note the similarity between the contents of the 
small dashed square and part A. This self-similarity is characteristic for period doubling and 
facilitates its analysis [Schu 84]. 

Figure 6B and the large square and ifs contents in Figure 6A is striking. The 
discrepancy between the parabola in Figure 6A and the fourth-order curve inside 
the dashed square in Figure 6B is in fact quite small, as can be seen in Figure 7, 

which shows both the parabola (the solid curve) and the rescaled and inverted 

fourth-order curve (dashed curve). 

/

\

 

/ \ 0 1 D 

Figure 7 The difference between the quadratic map (solid curve) and the rescaled iterated 

quadratic map (dashed curve). 
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The rescaling factor for this transition from period length 2 to period length 
4 is easily calculated to equal —(2 + 2/R,) = —(2 + y) = —2.618 ..., where 
y is the golden mean. (The minus signs account for the fact that period doubling 
engenders an upside-down orientation.) In going from the superstable orbit of 
period length P = 4 (r = R,) to that for P = 8 (r= R,), almost precisely the 

same “scenario” is repeated for f(x) and f(x) as that shown for f(x) and fx) 
in Figure 6, only the scaling factor is slightly different from — 2.618. In fact, the 
same scenario (a popular buzzword in this context) is repeated every time the 
parameter value is changed from r= R, to r=R,+4,. As n — ©0, the scaling 
factor quickly converges on its asymptotic value of —2.5029..., which is not 
very far from its initial value of — 2.618... . In the limit, the initial parabola of 
the quadratic map becomes a transcendental function, given by an infinite power 
series g(x) originally derived by Mitchell Feigenbaum: 

g(x) & 1 — 1.52763x* + 0.104815x* — 0.0267057x° + --- 

Here the x coordinate has been shifted so that the maximum of g(x) is at x = 0, 

instead of x = 0.5, and has a value of 1. The function g(x) is the fixed-point function 
of the period-doubling transformation for quadratic maps. It obeys the scaling 
law g(x) = ag(g(x/a)), which also determines a = 1/g(1). The derivation of g(x) 
as a universal function for all maps with a quadratic maximum by Feigenbaum, 
via a renormalization theory, is instructive but not exactly easy [Fei 79]. 

Numerically, the scaling parameter « can be obtained from any of the 
numerous self-similarities of the iterates x“? generated by the quadratic map. A 
particularly attractive method is to calculate the value of the iterate x7, at the 
half period for a superstable orbit of period length P = 2”, starting with x, = 0.5. 
For the parameter value r = R,,_ ,, Xp.” = Xp; but for r= R,, xp; Misses x, by 

a small amount, the difference |x}, — x9| scaling asymptotically with « as n is 

increased to n + 1. More precisely, 

(n) 
eh Et Pia to = — >a forn>o 

Xpj2 — Xo 

With a programmable calculator, one first determines R,, and R,,, (by adjusting 
R until xp = x) = 0.5, for P = 2” and P = 2"*’) and then reads out the value of 
Xp/2- In this manner one quickly obtains «, ~ — 2.502905, with a relative deviation 
from « of about 10°. 

The Scaling of the Growth Parameter 

We have just learned that period doubling is asymptotically self-similar, with a 
scaling factor for the variable x equal to —2.5029.... How do the parameter 
values r—say, those for the superstable orbits R,—scale? Numerical evidence 
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suggests that the differences R,,,, — R, become smaller and smaller according 
to the following geometric law: 

K ae Rook 

6 
R41 — R, © for n > 0 

where 6 is a universal constant, the famous (and probably transcendental) 
Feigenbaum constant (originally found by S. Grossmann and S. Thomae [GT 

77]). This magic number has earned the epithet “universal” because it applies, as 
Feigenbaum has shown, to many different nonlinear maps, independent of the 
details of the mapping, as long as the absolute maximum of the mapping is 
quadratic. The convergence of 6, := (R, — R,,_ ,)/(R,+1 — R,) to 6 is very rapid: 
0, © 4.7, 0, © 4.68,..., 06, © 4.66918. The asymptotic value is 

0 = 4.6692016091029... 

and the accumulation point of the growth parameter for the period doublings 
is 

R,, = 3.5699456... 

With these two values and another constant, one has R, + R,, — 1.5426". 
The two scaling parameters a and 6 are related to each other. A simplified 

theory yields 6 y « +a+ 1 4.76 [Fei 79]. 
At the critical value of the growth parameter r = R,, the period has become 

infinite. In other words, the orbit is now aperiodic, comprising a point set of 

infinitely many values of x that never repeat. However, other x values are attracted 

to this point set, which is in fact a Cantor set (see Figure 8). Note the approximate 

0.0 0.25 0.5 0.75 1.0 
ito pf 

r=Rh, pf + —__f 

Figure 8 Self-similar Cantor set of iterates for period doubling. The iterates in the small 

box for r = R; are a scaled-down version of all the iterates for r = R;. 
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self-similarity of this point set: the left half of the bottom fine is the mirror image 
of the line above it compressed by a factor of about 2.5, and the right half of 
the bottom line is the line above it compressed by a factor of 2.5*. The Hausdorff 
dimension D = 0.538 ... of this set was derived analytically and numerically 
by P. Grassberger [Gra 81]. This and similar attractors in higher dimensions have 
been called strange, although once one knows about Cantor sets they are really 
not so strange after all. 

Assuming that the limit set is strictly self-similar, we can use the well- 
known formula (see Appendix A) for the Hausdorff dimension D of a self-similar 
Cantor set with two different remainders, s, and s,, 

D D 
ss +s, =1 

to calculate a good approximation to the Hausdorff dimension of the strange 
attractor of the logistic parabola at the period-doubling accumulation point. With 
S$; = 1/2.5 = 0.4 and s, = si, and setting z = 0.4”, we obtain from 

z+27=1 

z=) & 0.618 and D & log y/log 0.4 © 0.525, a surprisingly good approxi- 
mation to the more precise value 0.538 .... As so often, self-similarity may be 
only approximate, but ignoring the lack of exact scaling still gives good results 
that can be bettered only by more involved computation. 

The Fourier spectrum of the periodic sequence x,,, too, shows pronounced 
self-similarity (see Figure 9). Let a be the Fourier coefficients of the x fora 
period length P = 2". In going from an orbit of period length P = 2” by a period- 
doubling bifurcation to an orbit of length 2"* 7, the new Fourier coefficients with 

Iterates tm 

Power spectrum 

Frequency k 

(A) (B) 

Figure 9 (A) Iterates x,, for the quadratic map at period length 16. (B) Fourier power 
spectrum (on a logarithmic scale) of the iterates Xm [Schu 84]. 
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an even index a};'* are approximately equal to the old Fourier coefficients: 
ay & a, (because x, 4p © x,). The odd-index coefficients a’j',',, which describe 
the subharmonics that appear in the spectrum as a result of the period doubling, 
are determined by the difference x, 4» — x,. A detailed analysis shows that the 
squared magnitudes of the Fourier coefficients, |a};,',|", are roughly equal to an 
adjacent component from the previous orbit scaled down by a factor of 
8a*/(1 + a’) & 40, corresponding to 16 decibels (dB) in logarithmic units [Fei 
79). (The number of decibels is, by definition, 20 log,, of a magnitude ratio or 
10 log,. of a squared magnitude ratio, such as a spectral power ratio.) 

An early confirmation of period-doubling bifurcations occurred in a hydro- 
dynamic (“Rayleigh-Bénard”) experiment by Libchaber and Maurer in which the 
Reynolds number played the role of the growth parameter r [LM 80]. In studying 
the forced nonlinear oscillations of bubbles in water, Lauterborn and Cramer 
found a similar behavior: the appearance of more and more subharmonics until 
the onset of chaos, called cavitation noise in this context [LC 81]. As a result of 

such experiments, the destructive mechanism of cavitation, a much dreaded source 
of failure in ship propellers, is now well understood. 

Self-Similar Symbolic Dynamics 

Instead of listing the sequence of iterates x, themselves, it often suffices to state 

whether they fall to the left (L) or the right (R) or on the maximum or center 

(C) of the map. The sequence of symbols L, R, C is then called the symbolic 

dynamics for a given orbit. Thus, the superstable orbit of period 2 has the symbolic 

dynamics or “kneading sequence” CRCRCR ... . Restricting the notation to a 

single period, we write simply CR. 
It is not too difficult to show that the next superstable orbit, the one with 

period length 4, is obtained as follows. First one writes two periods of the orbit 

with period 2, CRCR, and then changes the second C to L if the number of R’s 

to the left of it is odd. Otherwise the second C is changed to R. Thus, the 

superstable orbits have the following symbolic dynamics: 

Period 1: C 

Period 1 — Period 2: CC’ .CR 

Period 2 — Period 4: CRCR — CRLR 

Period 4 — Period 8: CRLRCRLR — CRLRRRLR 

and so on. The orbit of period 8 is often more conveniently written as CREB LR, 

In the same vein the superstable orbit of period 16 is written as CRLR°LRLRLR°LR. 

f 
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This algorithm of counting the number of previous R’s and checking whether 
it is even or odd is directly related to the fact that the slope of the quadratic 
map is negative for the right half of the map. Thus, each time the iterate x, falls 
into the right half (x, > 0.5), there is a sign change in how small differences in 
x, are propagated, and an odd number of sign changes is a sign change (while 
an even number is not). This is one of the most important properties not only 
of the quadratic map but of all unimodal (“one-hump”) maps. As a result these 
maps have a “universal” ordering of their symbolic dynamics as the growth 
parameter is changed. 

More specifically, for r = R,, that is, period length P = 2”, the iterate x”? 
equals x, by definition. In changing the growth parameter r from R,, to R,4,, 
x — x, will be positive (negative) if x” — x, was positive an even (odd) number 
of times for m = 1, 2,..., P — 1. This is the reason for the aforementioned rule 
C > R (or L) for an odd (even) number of preceding R’s. 

These sequences are self-similar in the following sense. Retaining only every 
other symbol (starting with C) reproduces the sequence for the superstable orbit 
with half the period, except that L and R are interchanged. Thus, “pruning” the 
symbolic dynamics we derived for the orbit with period 16 results in CLRL°RL, 
which is the complement of CRLR*LR that describes the orbit of period 8. 

As in the Morse-Thue sequence, retaining every other term produces a 
similar, albeit complemented, sequence. Is there a closer connection between the 
Morse-Thue sequence and the symbolic dynamics of the superstable orbits? There 
is indeed. To see this, let us replace R by I and C and L by 0. With this notation, 
the superstable orbits of periods 1, 2, 4, and 8 are 

0 

0 

0 

0 Be eR Re 

Oy s1 

A eS ee eee" Oy 

which unfortunately does not look like the beginning of the Morse-Thue sequence. 
However, the running partial sums modulo 2 of these orbits (beginning at the 
left) do reproduce the Morse-Thue sequence: 

I 

Devel tec) 

Le ele oe Or Olah o> O77 BOr © 

and so on. Computing running partial sums modulo 2 is, of course, equivalent 
to keeping track of the number of preceding R’s. 
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Conversely, the kneading sequences for unimodal maps in the binary no- 
tation, O1011101..., are obtained from the Morse-Thue sequence by taking 
sums (or differences) modulo 2 of adjacent elements. 

This connection allows us to write down directly (without iteration) the 
kneading sequence of period 2” for any m. The rule—I encourage readers to 
derive it for themselves—is simply this: the kth term in every such symbolic 
sequence is obtained by writing k = 27: j, where j is odd. Then the parity of q 
determines the choice between L and R: for odd q the symbol is L; for even g 
it is R (and of course for k = 0 the symbol is C by definition). Thus, for example, 
the ninety-sixth symbol in the kneading sequence is L, because 96 = 3° 2°, and 
5 is odd. 

One general result of this rule is that all terms with an odd k are R (including 
the last term of each periodic orbit with P = 2”). All terms whose k is a power 
of 2 (k = 2°) alternate between L and R. 

The irrational number constructed with the help of the Morse-Thue sequence 
interpreted as a binary fraction, 0.0110100110010110... = 0.4124..., which 
may be called the Morse-Thue constant, is intimately related to the period-doubling 
bifurcation scenario and the Mandelbrot set (see pages 295-299). 

Periodic Windows Embedded in Chaos 

Eyesight should learn from reason. 
—JOHANNES KEPLER 

Figure 10A shows the “behavior” of the iterated logistic parabola, that is, the 
values of its iterates x, as the parameter r is increased from 3 to 4. There is a 

cascade of period-doubling bifurcations followed by chaos (the dense bands) 

interleaved with periodic “windows.” In fact, the r values for periodic windows 
are dense, but one sees only a few in the treelike plot (Figure 10A), sometimes 

called a “Feigenbaum” (“figtree”) plot. Most prominent is the period-3 window 

starting at r= /8 + 1 (see Figure 10A). Once the period length 3 has been 

observed, we know from the work of Li and Yorke that all possible periods 

appear [LY 75]. 
Note that in the period-3 window the period doubling occurs again, leading 

to orbits of period length 6, 12, 24, and so on, and renewed chaos in which 

another period-3 window is embedded, and so forth ad infinitum in another self- 

similar cascade (see Figure 10B). 

Interestingly, the chaos bands also show bifurcation, called reverse bifurcation, 

as we decrease r from its highest value r = 4. For r somewhat below 3.68, the 

single chaos band splits into two (see Figure 11), and for r near 3.6 the two 

chaos bands split into four, and so forth, mimicking the period-doubling bifur- 

cations observed for increasing r. In fact, each chaos band is torn asunder by 

the surviving “ghost” of the corresponding period-doubling bifurcation. 
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Figure 10 (A) Iterates of the quadratic map plotted against the growth parameters. The 
period-doubling bifurcation cascade is on the left, followed by chaos bands, on the right, in 
which the iterates are chaotic. The chaos bands are interspersed with “period windows” in 
which the iterates are periodic again. Most prominent is the window for period length 3 
starting at r © 3.83. (B) An enlargement of the central portion of the period-3 window reveals 
another period-doubling cascade, followed by a second period-3 window, in which the period 
length is 9. 

The reason for the bifurcation of chaos bands as the parameter r is decreased 
is easy enough to see and analogous to the bifurcation of periodic orbits. Consider 
the r value 7,, for which the third iterate x, of x, = 0.5 falls on the unstable fixed 
point x* = 1 — 1/f,. This yields the equation 7(4 — 7,) = 16 for 7,, which yields 
7, = 3.678573510 ... . For r values slightly smaller than 7,, x, will fall just below 
x* and x, slightly above, creating a gap around x* into which no iterates can 
fall. 

Similarly, for r values just below 7, = 3.5925721841 .. ., for which iterates 
of x, = 0.5 fall on the unstable period-2 orbit, bifurcation of the two chaos bands 
into four bands takes place. In fact, the dark sinusoidal contours visible in the 
Feigenbaum diagram (Figure 11), including upper and lower edges of chaos bands, 
are images of the stationary point x = 0.5. Chaos bands merge where these 
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r 

Figure 11 Reverse bifurcation of chaos bands as the growth parameter is decreased below 

3.68 [JM 85]. 

contours cross each other, and periodic windows open where contours touch 

upper and lower edges [Lor 80, JM 85]. 
Interestingly, the parameter values 7,, at which 2"~* chaos bands join 2” 

chaos bands form a descending, asymptotically geometric progression with the 

same accumulation point, r = 3.5699 ...., as that of the period-doubling bifur- 

cations. And the scaling factor, too, is the same, namely, the Feigenbaum constant 

0 = 46692... . 

The 7, also correspond to the parameter values for the accumulation points 

of successive rows of the “Sharkovskii ordering” of orbits (see page 285), because 

the symbolic dynamics are the same. For example, the symbolic dynamics of the 

two chaos bands (starting with x) = 0.5), CRLR*(RL)®, are the same as those 

for the accumulation point of the orbits of period length 4 3,4°5,4°9,... (see 

pages 287-288). 

The ordering with which the iterates x, fall into the 2” different chaos bands 

is also the same as the ordering of the iterates in a stable orbit of period length 

P = 2”. For example, for both the period-4 orbit and the four chaos bands, the 

iterates, starting with the largest iterate x,, are ordered as follows: 
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x, > xX; > x, > x,. This ordering is obtained from the ordering x, > x, for P = 2 
by splitting each iterate x; into the two iterates of x, and x; and inverting the 
order of every other pair of iterates. In this manner, the ordering for P = 8, 

x, >4,;>x,>%,>%4,>%,>%,> 4%, is easily derived from the ordering 
Ay > X, > Mee a Or 4. 

The ordering of the iterates x, according to their values can also be obtained 
from a Gray code (which in turn is related to the Hilbert space-filling curve; see 
pages 10—13 in Chapter 1). For example, to deduce the correct order of the 
eight iterates x,,n = 1, 2,..., 8, interpret the three-digit Gray code (in which 
one digit at each step is changed, starting from the left) as ordinary binary 
numbers and add 1 to obtain the index n of x;; 

0 = 000 = x, 

1 = 100 = x, 

2=110=72, 

3 = 010 = x, 

4=011=x, 

5=I111=x, 

6= 101 =<, 

7 = 001 = x, 

The close correspondence between period-doubling bifurcations and the 
reverse bifurcations of the chaos bands that we have glimpsed here is one of 
the many fascinating features of the quadratic map. 

The Parenting of New Orbits 

The algorithm described in pages 277-278 for constructing the symbolic dy- 
namics of period-doubled superstable orbits can be considerably generalized. 
Thus the rule “append the string CR... to itself and change the second C to 
L (R) if the number of R’s in the original string is odd (even)’ applies not only 
to fundamental periods of length P = 2" but to any orbital length. In this manner 
the superstable orbit of length 3 with symbolic dynamics CRL is doubled via 
CRLCRL to CRLLRL, which in turn is doubled to CRL?RLR?L?RL and so on to 
an infinite cascade of orbits of lengths 3 - 2”. NS 

More generally, one can derive orbits of lengths k- m" from an orbit P of 
length k and an orbit Q of length m. For the orbit of length k- m, one copies 
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the symbolic dynamics of P m times and replaces each of the (m — 1) C’s (except 
the first C) by one after another of the (m — 1) symbols of Q, interchanging L 
and R of Q if the number of R’s in P is odd. (The initial C in Q is ignored.) For 
example, the 2-orbit CR is tripled by means of the 3-orbit CRL by first copying 
the 2-orbit three times—CRCRCR—and then replacing the second and third 
C’s by the complement of the second and third symbols of CRL. This yields the 
orbit CRLRRR of period 6, distinct from the previously derived orbit CRL’RL 
(The period-doubling algorithm described in the preceding paragraph is but a 
special case of this composition law with Q = CR.) 

Which of the two orbits of period 6 just described “dominates” the other? 
By definition, this depends on the first symbol in which they differ. If the number 
of R’s in the initial, equal portion of the strings is odd (even), then the orbit 
with L or C (R) as the first distinct symbol dominates the other. Thus, the orbit 

CRL’RL dominates the orbit CRLR’. The superstable r values of an orbit that 
dominates another orbit is the larger of the two superstable r values. Indeed, 
the approximate r values corresponding to CRL’RL and CRLR’ are 3.8445688 
and 3.6275575, respectively. 

A particularly attractive equivalent algorithm for “multiplying” two orbits 
of period lengths p, and p, to yield an orbit of length p,p, proceeds as follows. 
Write the symbolic dynamics of the orbit as a sequence of plus or minus signs, 

+ corresponding to either of the letters L or C and — to the letter R. (This 

reflects the fact that the slope of unimodal maps is negative to the right of the 

maximum.) Thus, the superstable p, = 3 orbit CRL is written as + — +. Next 

form the running product of these signs starting from the left. This transforms 

+— + into + ——, which we shall call the o sequence of the orbit. Similarly, 

the o sequence of the superstable orbit CR with period length p, = 2 is + —. 

Using these o sequences, period multiplication becomes a simple appending 

process. For example, period doubling of any orbit is realized by appending its 

o sequence to itself with the opposite signs, corresponding to the period-doubling 

“operator” + —, that is, the o sequence of the period-2 orbit. Using this rule, 

the period-doubling cascade now looks as follows. Starting with the fixed point 

C, which has period length p = 1 and thus corresponds to a o sequence consisting 

of a single sign, 0) = +, we have 

ae Ree CRLR 
p=4 +-—-+—-++— CRIRIR 

and so on. This iterative construction of the o sequence of orbits with period 

lengths 2” (“append the complement”) leads, of course, to the previously discussed 

self-similar Morse-Thue sequence, which is generated by the same rule. 
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To recover the symbolic dynamics, one writes C followed by R’s and L’s, 
depending on whether the corresponding sign in the o sequence is different from 
or the same as the preceding sign, as was just shown for p = 2, 3, and 4. 

To triple the period length of an orbit, one appends its @ sequence two 
times to itself with opposite signs, corresponding to the @ sequence + — — of 
the period-3 orbit. The period-tripling cascade thus has the following o sequences, 
starting with o, = +: 

p=1lo+ c 

Bi Sue CRL 

pe Ol ck = erat hig Ee 

and so on. The resulting infinite self-similar o sequence with o,, =, is a 
generalization of the Morse-Thue sequence. 

The kth symbol s,, k > 0, in the period-tripled symbolic dynamics is given 
by writing the index k = 3”- gq, where g = 1 or 2 modulo 3: s, = L if m and 
<4>3:= q modulo 3 are both even or both odd. If the parities of m and <q; 
are different, then s, = R. Writing —1 for R and +1 for L, we have s, = 
(—1)"*<s, Thus, with 405 = 3'- 5, s, equals (—1)*** = 1=L. 

The “second harmonic” of the period-3 orbit CRL, with the o sequence 
+ ——, has the o sequence + — — — + +, which corresponds to a period-6 
orbit with the symbolic dynamics CRL’RL. It is obtained by appending + — — 
to itself with the opposite sign. Similarly, the o sequence for the tripled period- 
2 orbit CR, the o sequence + —, is obtained by appending + — twice to itself 
with opposite signs, corresponding to the period-tripling operator + — —. This 
gives + — — + — +, which corresponds to CRLR’, as we derived before by a 
less elegant rule. 

We shall encounter the o sequence again in the next section, where it is 
used to calculate the growth parameter of a linearized logistic map, the so-called 
tent map. 

Another algorithm interpolates a new orbit between two known orbits P 
and Q by taking the intersection of harmonic H(P) of P and an antiharmonic A(Q) 
of Q [MSS 73]. The harmonic of an orbit P is formed, as before, by appending 
P to itself and changing the second C to L (or R) if the number of R’s in P is 
odd (even). The antiharmonic of an orbit Q, which in general is not a possible 
periodic orbit, is defined just like the harmonic except that R and L are interchanged 
in the replacement of the second C. The sequence of an antiharmonic is obtained 
by appending the original o sequence to itself without sign change. (The reader 
may wish to derive the rules that distinguish possible orbits from impossible 
strings.) 

For example, the harmonic of P = CR is the orbit H(P) = CRLR, and the 
antiharmonic of Q = CRL® is the string A(Q) = CRL®RRL®. The intersection 
of these two strings, meaning the string in which the initial symbols of the two 
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strings H(P) and A(Q) agree, is the “daughter” orbit CRL of period length 3. 
With this rule, the parameter value r for the daughter orbit always lies between 
those of the two parent orbits; hence the designation orbit interpolation. By repeated 
forming of harmonics and interpolation, all orbits of the map can be constructed 
from the “first” orbit (C) and the “last” orbit (CRL®). 

The different period lengths p of stable periodic orbits of unimodal maps 
appear in a universal order. If r, is the value of the growth parameter r at which 
a stable period of length p first appears as r is increased, then r, > r, if p >q 
(read p precedes q) in the following “Sharkovskii order”: 

3>5>7>9>°° 
2°3>2:5>2°7>-°: 

De Be a: 

ie 4 ell 

Thus, for example, the minimal r value for an orbit with p = 10 = 2° 5 is larger 
than the minimal r value for p = 12 = 4° 3 because 10 > 12 in this witchcraft 
algebra. 

Some of the consequences of this ordering are the following: 

¢ The existence of period length p = 3 guarantees the existence of any other 

period length g for some r, < r,. 

e If only a finite number of period lengths occur, their lengths must be powers 

ob2— that is, pf = 2°72" 50.5 4,\2; 1 for some k. 

° If a period length p exists that is not a power of 2, then there are infinitely 

many different periods. 

The superstable orbits for the smallest parameter value r, have the symbolic 

dynamics CRLR’*? for odd period lengths p > 3. The “last” superstable orbit 

of period length p, that is, the orbit with the largest value of r,, has the symbolic 

dynamics CRL’~* [CE 80]. For example, the last period-6 superstable orbit is 

CRL* and has r © 3.9975831. 
These results are a consequence of Sharkovskii’s theorem, which concerns 

the existence and ordering of orbits according to Sharkovskii’s dominance def- 

inition given previously for a fixed value of r [Sha 64]. However, most of these 

orbits are unstable. (They are the remaining “ghosts” of orbits that were stable 

for smaller r values. The fixed point x* = 1 — 1/r, for example, persists even 

for values of r exceeding 3, where it becomes unstable.) In fact, one-hump maps 
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f(x) with a “Schwartzian derivative” . 

£Ox, “2XF@ 

that is negative were shown by D. Singer to have at most one stable periodic 
orbit [Sin 78]. (Here f(x) is assumed to be three times continuously differentiable 
and to map the unit interval into itself.) 

For example, for r = 3.83187405529 and x) = 0.5 we obtain the superstable 
orbit CRL of period length 3. But by choosing x, = 1 — 1/r = 0.73903108882, 
the unstable orbit of period length 1 is initiated. And for x, = 0.89208905218, 
the unstable orbit of period length 2 is obtained. Other initial values lead to an 
unstable period-4 orbit that is descended from the orbit CRLR. However, the 
period-4 orbit based on CRLL cannot be realized for r = 3.83 ..., because CRLL 
dominates CRL. The reader may want to find initial values for other period 
lengths, all of which are possible according to Sharkovskii’s theorem for 
r = 3.83 .. . because the period length 3 is possible. 

The Calculation of the Growth Parameters 

for Different Orbits 

Given a superstable orbit with the symbolic dynamics Q = CRL..., what is 
the corresponding value of the growth parameter 1? One method is to adjust r 
in f(x) = rx(1 — x) iteratively until f(0.5) = 0.5, where p is the period length 
of the orbit and f(z) is the pth iteration of f(x). However, this method is likely 
to fail in regions where the r values for “similar” orbits are crowded. Similar here 
refers to orbits with equal parity (number of R’s) and period lengths that divide 
the given period p. Also, of course, there must be a good initial guess of r. 

The confusion with other orbits can be eliminated if the symbolic dynamics 
are actually used in the calculation of r—not just its parity and period length. 
For such a method it is advantageous to transform the variable x linearly to yield 
another, often-used form of the quadratic map: (x) = 1 — pix’, in which the 
growth parameter ps is related to r by the equation pf = r(r — 2)/4 or 
r=1+ (1 + 4u). For this form of the quadratic map, the maximum occurs 
for x = 0. Hence superstable orbits contain the value x = 0. 

Let us take as an example the period-5 orbit with the smallest 7 value, 
which has symbolic dynamics CRLR?, Set X = X; = O; then, because 9(0) = I, 
SR SR(81(2R(1)))) = O. In this equation the subscripts (R or L) remind us which 
branch of 9(x) comes into play at each iteration; we need to know this in order to be able to invert the equation. Inverting yields 

1 = ge (gr (ge (ee \(0))) (2) 
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where 

% Ls gee) = +, |— 
Lu 

and 

a, i 
SQ) Ss = 

Ll 

Multiplying equation 2 by p gives 

w=JutVu-—Vu-Vy) (3) 

from which pz may be determined by iteration, as suggested by H. Kaplan. 
Starting with = 2, one obtains quickly and without ambiguity the correct 
parameter value for the orbit CRLR’: p = 1.625413725 ..., which corresponds 
to r © 3.738914913. 

For an arbitrary allowed orbit CRL ..., the plus or minus signs appearing 
in equation 3 are determined by the symbolic dynamics with the letter R cor- 

responding to a minus sign and L to a plus sign. The first sign under the square 

root (+) corresponds to the first letter (L) after the initial -CR.ain, CRE 

Equation 3 is particularly useful for the calculation of the parameter values 

for accumulation points of certain orbits. For example, looking at the Sharkovskii 

order, we may want to know at which p value the orbits with odd period lengths 

p = 3,5,7,9, .. .accumulate. These orbits have the symbolic dynamics CRLR’*, 

as already noted. For p > 00, equation 3 therefore becomes 

Heer eee Gy en Gy GE) 

with an infinite sequence of minus signs. Setting # — sh (uw —/(u-** )) =x, we 

have x = pt — 4/z. Eliminating x leads to the cubic equation for [, namely, 

yw — 2p’ + 2u — 2 = 0, with the solution “= 1.543689012..., which cor- 

responds to 7, = 3.67857351... (=p’). This is also the parameter value at which 

the last two chaos bands merge, because they have the same symbolic dynamics 

(see pages 279-280). 

Because the orbits of even period length of the form p = 2° 3, 2°5,2°7, 

_. .have the same symbolic dynamics, CRLR’ 3 as the odd orbits, they accumulate 

at the same parameter value. But they approach it from below. 

Similarly, one determines the parameter value 7, of the accumulation point 

of the orbits with period lengths p = 4°3,4°5,4°7,4°9%.. . with the symbolic 

dynamics CRLR*(LR)’”~ *. This gives 7, = 3.5925721841..., which is also the 

point at which the four chaos bands merge into two bands. 
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The orbits CL". n> oo, lead to p= ee Vu 7» \) thatetis? 
p= a (4 + p), for the accumulation point, with the solution = 2 (correspond- 
ing to r = 4). 

Another “one-hump” map, the piecewise linear “tent” map 

fa)=Ad—|r-1)) O<x<2 (4) 

is much easier to analyze than the quadratic map [DGP 78]. Yet the tent map in 
equation 4 shares many properties with the quadratic map, such as the ordering 
of orbits, and their symbolic dynamics as the parameter A is increased from I 
to 2. (However, some orbits of the quadratic map are missing in the tent map, 
such as those that have resulted from period doubling. Also, because f(x)| Sug 
for A > 1, there are no stable orbits.) 

The determination of the parameter value 2 for a given orbit CRL... is 
particularly simple. The value of A is given as the solution of the equation 

P 
Oj; 
a O (5) XE 

For purposes of iteration, starting with A = 1.5, say, the following form is more 
convenient (it also uses the fact that o, = 1 and 0, = —1): 

Se A=1= se EM ey ew (6) =a A 

Here the o, equal +1 (or —1), depending on whether the number of R’s in the orbit CRL ... to the left of and including the kth symbol is even (or odd). For example, for the orbit CRL of period length P = 3, equation 6 reads 2 = 1 + 1/4, which has the solution 1 = (Set 1)/2 = 1.618... . For the “lowest” of the three orbits of period length 5, CRLRR, equation 6 yields 2 = 1+ 1/A — 1/2? + 1/A? & 1.5128763968. (Note that 0, always equals —1. In fact, there are no solutions to equation 6 for 1 < J <2 otherwise.) 
The o;, are the same as the “o sequence” that we introduced on page 283 to facilitate the generating of new orbits from known orbits. In a sense, the o sequences are the most useful form of the quantized orbital dynamics of unimodal maps. 
The common accumulation point for orbits with odd period lengths p and orbits with period lengths p of the form 2: 3,2°5,2°7,...is particularly easy to find with equation 6. As noted before, the common symbolic dynam- ics of these orbits are CRLR’~>. The corresponding @ sequences are +--+—+—=—+—-*:,. that is, @,.=(=1) for k Sis hor p — 00, we therefore have A = 1 + 1/(A + 1), with the solution 4 = ,/2. 



A Self-Similar Sequence, the Logistic Parabola, and Symbolic Dynamics 289 

For finite p, the solution is given by 

(1 
Vv=2 Ve 

or, asymptotically, 

(1): Aw val el 
2h 

Thus, the differences between the / values for successive odd (or even) orbits 

and their accumulation point A = ./2 form an asymptotically geometric pro- 
gression with a factor of 3 as the period length is increased by 2. This compares 
with the factor 1/4.669 . . . for the period-doubling sequence of the quadratic map. 
And while the period-doubled orbits have adjacent parameter intervals, many 
other orbits intervene between the parameter values for period lengths 3 and 5 
or those of other adjacent odd period lengths. 

Another helpful property of the o sequence is that equation 5 can be factored 
for orbits generated by parent orbits, yielding interesting relationships between 

the A values of parents and offspring. For example, for the period-6 orbit with 

@ sequence + — — + — + (the tripled period-2 orbit), A = A;’”. Here A, is the 
parameter for the period-3 orbit + ——. 

Tangent Bifurcations, Intermittency, and 1/f Noise 

Something strange happens for r = 1 + ./8: a so-called tangent bifurcation. For 

r just below 1 + 4/8 (see Figure 12), the iterates become “trapped” for a long 

time between the logistic parabola and the straight line x,,, = x,. Figure 13 

shows intermittent period-3 pulses for r = 1 + ./8 — 10° *. The power spectrum 

of this process decreases as the reciprocal of frequency f. This phenomenon, 

called intermittency, is one of the main mechanisms of 1/f noise in nature. 

For r slightly above 1 + ./8, the thrice-iterated quadratic map f(x) (see 

Figure 14) acquires six additional fixed points: three with an absolute slope larger 

than 1, which belong to an unstable orbit of period length 3, and three with a 

slope less than 1, which are the three points belonging to the stable orbit with 

period length 3. This is the famous period-3 orbit, which guarantees that all 

other period lengths exist, albeit as unstable orbits, at the same parameter value. 

This coexistence of an infinite number of unstable orbits has been called chaotic 

by Li and Yorke. The fact that “yeriod three implies chaos,” the title of their 

paper, was enunciated by these authors in 1975 [LY 75\. 

As r is decreased below 1 + nal Gs all these orbits become stable at small 

but finite intervals of the growth parameter. All orbital periods except p = 2 
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F(2) 
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x 

Figure 12 Trapped iterates near a tangent bifurcation for r= 1 + | ae ee 

and 3 are stable at more than one r interval. For p an odd prime, the number 
of such intervals with different orbits equals (2? ‘ — 1)/p. Together with the period-doubling pitchfork bifurcation, the tangent bifurcation is the main source 
of new orbits. 

The r intervals for stable orbits are dense; that is, the parameter values for which no stable periodic orbits exist form no intervals. Nevertheless, they have 

Period 3 Chaos Period 3 — Chaos _ 

0.8 

OB Ferccreeseseeeeeett ST anenaannnnnnnnnant 
& 8 

0.2 seeeeseseecsaseee® Scales |, Mui etce cose Con 

1 

Figure 13 Intermittency for growth parameter just below tangent bifurcation: period-3 pulses alternate with random pulses, 
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Figure 14 The thrice-iterated quadratic map for the growth parameter slightly above 
1 + ,/8. This iterated map has acquired six additional fixed points by “tangent bifurcation.” 
Three of these six fixed points are stable (absolute slope smaller than 1) and are members of 
the stable period-3 orbit visible in Figures 10 and 11. 

positive Lebesgue measure. This means that a random choice of the growth 
parameter has a nonvanishing probability of leading to an aperiodic orbit. This 
behavior is reminiscent of the irrational numbers, which, too, have positive 
Lebesgue measure although they form no intervals. Of course, with a finite-state 

automaton such as a digital computer—not to mention analog machines—an 
aperiodic orbit can never be proved as such. 

Apart from the period-doubling bifurcations starting with the stable fixed 

point and ending at r = 3.5699... , the range of r values for the period length 

3 is larger than that for any other period length. The period-3 “window” in the 

Feigenbaum diagram (see Figure 10A) is thus the most prominent among all the 

periodic windows and one of the few that are actually visible without a “mag- 

nifying glass” (i.e, a computer program that enlarges a small interval of the 

growth parameter for better visibility). At sufficient magnification one can see 

period-doubling bifurcations, as in Figure 10B, in each of these periodic windows, 

each governed by the same Feigenbaum constant 0 = 4.6692.... 

A Case of Complete Chaos 

A particularly interesting value of the growth parameter for the quadratic map 

is r = 4. The transformation 

Lae 
a ey Oy <1 (7) 

Tl 
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Ynt1 

Yn 

Figure 15 A chaotic tent map: y,,, = 1— |2y, _ 1]. 

turns the quadratic map into another tent map: 

p= 1 |2y,, aa 1| 

which consists of two straight-line segments with slopes +2 and —2, and a 
maximum at y, = 0.5 (see Figure 15). 

By “flipping” the right half of the tent map (y,+; > 1— y,+, fory, > 0.5), we obtain the exceedingly simple binary-shift map: 

Yn+1 = 2y, mod 1 (8) 

If we express y, as a binary fraction, then this map is nothing but a left shift of the digits, with any Is protruding to the left of the binary point dropped. As a consequence, a value of y that has a terminating binary fraction is mapped eventually into 0. In general, rational values of y, which have periodic binary fractions, lead to periodic orbits, By contrast, irrational y—that is, almost all y in the interval (0, 1)—give rise to nonperiodic orbits. 
Although for r = 4 almost all initial values y in (0, 1) entail aperiodic orbits, such aperiodic values of y form no intervals. In fact, the initial values for periodic orbits are dense in (0, 1). To see this we truncate a given value of y after an arbitrarily large number of binary places and repeat the remaining bits periodically. Thus, for example, within less than 2~° of y = 0.10110001 . .. we find an initial value with period length 5, namely, Yo = 0.10110 (or any longer period length). Excepting “nonnormal’” binary numbers (see pages 241—243 in Chapter 11) as starting values y,, the iterates of irrational Yo fill the unit interval with a uniform density. Such a distribution is called the invariant distribution of the mapping, 
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because a random variable starting out with it stays with it. As a consequence 
of the uniform distribution of y, the invariant distribution p(x), which is related 

to y by equation 7, is the U-shaped distribution well known from the arcsine 
law of random walk theory: 

meas At Ae) fron na = || = 2 oc x)] O0<x<I1 

See Figure 16, which, after proper scaling and shifting, also approximates the 
invariant distributions in the chaos bands for other parameter values. 

The map in equation 8 also illustrates very nicely what is meant by deter- 
ministic chaos. Suppose the initial condition of a physical dynamic system is 
represented by a value of y, with some finite precision. For example, for an eight- 
place binary precision, we would have 

000 
Yo = 0.10110101.__--: 

111 

where the double entries reflect the fact that we do not know whether those 

digits beyond the eighth are 0 or 1. Because of this unavoidable lack of perfect 

precision, the ninth and all higher iterates of y, are 

000 © 
20, 

Yi 111 

that is, they assume any possible values in the unit interval in a completely 

e 
x 

0 0.5 a 

x 

Figure 16 Invariant distribution of quadratic iterates for r = 4. Most iterates cluster near 

x = 0 and x = 1 [CE 80]. 
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unpredictable succession. It is in this manner that a deterministic law, including 
the simple equation 8, produces chaotic results, called, appropriately, deterministic 
chaos. Even for completely deterministic dynamic laws, initial conditions with 
finite precision will—under proper magnifying circumstances—eventually pro- 
duce totally unpredictable results. 

For this to happen, the iteration law must be nonlinear and, in fact, not 
uniquely invertible. Maps that meet this requirement include those with a max- 
imum (quadratic or otherwise) or with a remainder (mod) operation, as in equation 
8. In addition, the nonlinearity must be strong enough that any initial uncertainty 
will grow exponentially. For example, for the binary-shift map (equation 8), the 
uncertainty grows by a factor of 2 with each iteration. 

By contrast, for the logistic parabola with r = 2, for example, any initial 
value (other than 0 or 1) will lead to the fixed point x* = 0.5 and the differences 
é, between successive iterates x, and x* will decrease (asymptotically) by a factor 
of — 2; with each iteration. This is often referred to as quadratic convergence. 
For instance, starting with x, = 0.45 (¢ = — 0.05), successive differences will be 
approximately — 0.0005, — 0.00005, —0.000000005, and so on. In other words, 
the “error” becomes rapidly smaller and smaller; the distance of the 5 from the 
decimal point is doubled with every iteration—as opposed to the one-digit shift 
per iteration for the map in equation 8. 

The convergence is not as rapid for values of r that do not correspond to 
superstable orbits (as r = 2 does, because the orbit includes the “flat top” of the 
parabola at x = 0.5). For example, for r = 2.5, the fixed point is x* = 1 — 1/ 
2.5 = 0.6, which differs from 0.5 and is therefore not superstable. Differentiation 
at the fixed point will show us how the iteration will converge. For r = 2.5, we 
obtain 

f(e*)=2—r=—-—o5 

Thus, the differences between x, and x* will decrease (asymptotically) by a factor 
of —0.5. For example, x) = 0.61 will lead to the successive differences 
x, — x* = 0.01000, —0.00525, 0.00256, —0.00129, 0.00064, and so on. For 
this nonsuperstable orbit the convergence is much slower and is described as 
linear. In the example, it corresponds to an asymptotic left shift of |x, — x*| by 
(an average) log,, 2 = 0.3 decimal places—as opposed to the doubling of the 
left shift with each iteration for a superstable orbit. 

Thus, superstable orbits have two major advantages: 

1 They converge much faster and are more stable in the presence of small perturbations—hence the name superstable—and are therefore more easily meas- 
ured experimentally. 

2 They have simpler theoretical descriptions, such as the symbolic dynamics 
discussed in this chapter. : 
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Many of the properties of the quadratic map are paradigmatic not only for other 

unimodal maps but for different nonlinear mappings as well. These laws in turn 

model a broad range of contemporary problems in which nonlinearities play an 

essential role. 

The Mandelbrot Set 

The shortest path between two truths in 
the real domain passes through the 
complex domain. 
—JACQUES HADAMARD 

As we saw in the preceding section, the quadratic map for r = 4 can be trans- 

formed into a simple tent map, which can be further simplified to the binary- 

shift map y,+; = 2y, mod 1. From this map the orbit of any initial point y, can 

be directly inferred by writing yo as a binary fraction: periodic binary fractions 

lead to periodic orbits, but irrational y, with normal aperiodic fractions lead to 

chaotic orbits. 
Unfortunately, this simple mapping is not applicable for other values of the 

growth parameter of the real quadratic map that we have studied so far. However, 

if we “complexify” both the growth parameter and the variable, the quadratic 

map becomes considerably more transparent and amenable to analysis. As in 

many other branches of mathematics (number theory, for example) the intro- 

duction of complex variables makes many proofs and relations much simpler (as, 

for example, the proof of the prime number theorem, which dictates the distri- 

bution of primes). Hence the paradoxical mathematical motto “complexify to 

simplify.” 
In its complexified version, the quadratic map is often rendered in the form 

7, ne Ze ic (9) 

where both the variable z and the growth parameter c are allowed to assume 

complex values,: graphically represented by points in the complex z plane and 

the complex c plane. For real c, the relation with the previously used parameters 

isc = —w= —1r — 2)/4. 

One of the first questions that comes to mind when looking at equation 9 

is, For what values of the parameter c do the z, stay bounded as the iteration 

~ is continued indefinitely? Obviously, for c = 0 and z, in the unit disk Iz <1; 

z, stays within the unit disk for n > 00. However, even for c = 0, the initial 

value z, = 2, for example, gives z, = 2?’ > 10°°; that is, the seventh iteration 

already exceeds the diameter of the universe measured in atomic units. 
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What about c # 0? For c = —2, for example, and z, = 0, equation 9 gives 
Z, = —2,2Z, = 2, z,; = 2, and so on. Thus, c = —2 leads to a preperiodic orbit, 
with period length 1—in other words, a fixed point, z = 2. 

In general, the set of all points c for which the iteration z, , 1=2z +6, with 
2) = 0, stays bounded as n — 0 is called the Mandelbrot set, or M set for short, 
after Benoit Mandelbrot, who discovered it and analyzed many of its intricate 
details [Man 80]. The M set, shown in black in Color Plate 8A, consists of a large 
heart-shaped (“cardioid”) area to which smaller disks are attached, to which even 
smaller disks are attached and so forth ad infinitum in a roughly self-similar 
progression. The same cardioid shape festooned with a proliferation of disks, 
also called Apfelmannchen, can be discovered in many other regions of the complex 
parameter plane if it is sufficiently magnified (see Color Plate 8B and C). But 
other characteristic shapes, too, are revealed by the computer “microscope”: 
dendrites, whorls, and “sea horse’ tails; see the color plates. In these illustrations, 
black areas belong to the M set, and the different colors signify different rates 
of escape to infinity of z, for values of c outside the M set. (The individual colors 
were selected from a digital “palette” for distinctiveness and aesthetic appeal.) 

Although the M set is not self-similar as a whole, it possesses many 
approximately self-similar substructures, such as cardioids and disks, and sea horse 
tails and whorls within whorls within whorls with infinitely fine filigree. To think 
that a resplendent structure such as the M set and its surround results from a 
simple quadratic equation is indeed astonishing; its mathematical gossamer con- 
tinues to inspire awe even in the hardened professional. The complexity of the 
M set is also a vivid reminder that the complexity that we observe in many 
naturai phenomena, including Life Itself (the title of a well-known book by Crick), 
can result from relatively simple laws [Cri 81]. Clearly, complex behavior does 
not necessitate complex laws. 

Although parts of the M set look rather like isolated spots (in fact they 
are known to have been obliterated by some overzealous art editors), the set is actually a connected set, as proved by Douady and Hubbard [DH 82, 85]. How- ever, it is not known whether the M set is everywhere locally connected. (A circle from which a single point has been removed is still connected, but is no longer everywhere locally connected: points on different sides of the gap, no matter how close, are connected only through a long circular arc.) 

The large cardioid area of the M set and each circular disk correspond to a particular periodic orbit: the cardioid to period 1, the largest disk to period 2, and the other horizontally attached disks to periods 2, 4, 8,..., terminating in the Feigenbaum accumulation point of period-doubling bifurcations. The largest remaining cardioid on the real axis corresponds to orbits with period 3. Each of the infinitely many disks sprouting on the cardioids in the complex plane cor- responds to a periodic orbit with a particular period related to that of its cardioid, and each of these disks has infinitely many smaller disks attached to it that all look similar to each other. In fact, the only deviation from self-similarity apparent to the naked eye in this succession of disks is the cleavage in the “rear” of the mother cardioid. 
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The Julia Sets of the Complex Quadratic Map 

The fact that a given parameter value lies in the M set may, of course, not be 
all we want to know. We are eager to discern how the iterates z, behave for 

different z,. For which values of z, are the z, bounded? For a given parameter 

c, the set of initial values z, for which the z, are bounded form the so-called 

filled-in Julia set J.. (The Julia set proper consists of the boundary points of J..) 

sees 

(B) 

Figure 1 7 (A) Filled-in Julia set, defined as the set of all z, for which the iteration 

Z,41 = Z + cis bounded. (B) Another, barely connected Julia set, illustrating the great variety 

of shapes obtained when the parameter ¢ is changed [Man 83]. 
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Computer experiments have shown that different values of c can lead toa stunning 
variety of Julia sets, minute changes in c often causing enormous metamorphoses 
in J, (see Figure 17A and B). 

Some Julia sets are connected; others are just “floating-dust” Cantor sets, 
Interestingly, those values of the parameter c for which J, is connected are precisely 
all the members of the M set, so that the latter can also be defined as the set 
of all c values for which J, is a connected set. This equivalence is a consequence 
of a theorem proved independently in 1918 by Gaston Julia and Pierre Fatou, 
a fact that was rediscovered jointly by Douady and Hubbard, who added many 
more insights to our store of—still sporadic—knowledge of the deceptively 
simple iteration z > z’ + c [DH 82]. 

One of the most consequential discoveries of Douady and Hubbard is that 
the boundary of the Mandelbrot set can be mapped conformally to the unit circle 
and that the iteration z,,, = 22 +c corresponds simply to doubling the angle 
on the unit circle. Thus, measuring angles « in multiples of 27, the complex 
quadratic map corresponds to @, ,, = 2a, mod I. If the “external angle,” as it is 
called, is expressed by a binary fraction, then the iteration is a left shift of the binary digits modulo 1. A ec value with an external angle of == 10. 11001 for example, will lead to a periodic orbit of period length 5. The individual digits tell us which of the iterates z, will fall into the upper (0) 
or lower (1) half plane. 

vie aio DY ain 

Figure 18 External angles for the Mandelbrot set. The fractions determine the period lengths of the iterates z, for a given choice of the parameter c. The point “F’” marks the accumulation point of the period-doubling cascade [Dou 86]. 
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Figure 18 shows the M set and some rational external angles. The accu- 

mulation point of period-doubling bifurcations c= — 1.4011... (marked “F,” 

for Feigenbaum) has as _ its external angle the Morse-Thue constant 

0.0110100110010110.... = 0.412... ., whose binary digits are the Morse-Thue 

sequence. 
The conformal mapping from the boundary of the M set to the unit circle 

may be visualized physically as a problem in electrostatics as follows. Consider 

an infinitely long conducting bar whose cross section is the M set, surround it 

with a distant electrode in the shape of a circular cylinder, and apply a voltage 

difference between bar and cylinder. Then the electric field lines from a point 

on the circle at an angle « with the real axis end on a point c on the boundary 

of the M set with external angle «. This is so because electric field lines obey 

the laws of conformal mapping. And the equipotential lines, which are orthogonal 

to the field lines, correspond to c values with equal rates of divergence to infinity 

for z, with z, = 0. (Remember that values of c outside the M set lead to unbounded 

iterates z,,.) 

The interested reader will find more fascinating details in H.-O. Peitgen 

and P. H. Richter’s The Beauty of Fractals, which also includes an illuminating 

essay by Douady [PR 86a]. 
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Forbidden Symmetry, Fibonacci’s 

Rabbits, and a New State of Matter 

The above proposition [1 + 1 = 2] is 
occasionally useful. 

—A.N. WHITEHEAD and B. RUSSELL, 
in Principia Mathematica 

Modern theoretical physics is a luxuriant 

_.. world of ideas and a mathematician 

can find in it everything to satiate himself 

except the order to which he is accustomed. 
—YURI MANIN 

In this chapter we shall taste some of the forbidden fruits that self-similarity 

breeds: a new solid state of matter, namely, a “quasicrystal” with a fivefold axis 

of rotational symmetry (like that of a five-legged starfish and many flowers). 

Curiously, the new matter is related to a simple iterated map that was itself bred 

by multiplying rabbits—rather rare rabbits, that is, of the famous Fibonacci family. 

Said simple iterated map is in turn intimately entangled with the continued 

fraction for the golden mean, easily abased to the “silver means,” which predict 

more forbidden symmetries—some of which have since been seen in actual 

quasicrystals. 

The Forbidden Fivefold Symmetry 

From snowflakes to gemstones, people have forever prized crystals, formations 

in which the individual atoms are arranged in orderly periodic lattices. But we 

are also familiar with disordered substances, such as most liquids, in which the 
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atoms are randomly distributed. Likewise, most solid substances encountered in 
nature are disordered, or amorphous, just like a liquid, except that they are solidified. 
Glasses are transparent examples of amorphous solids. In fact, among physicists 
the designation glass has become the generic term for disordered systems. Thus, 
a metallic glass does not mean a pewter cup, nor does it have much else to do 
with glass: it is simply a metal in which the individual atoms are arranged in 
disorderly fashion. And a spin glass is not spun glass, nor is there much spinning 
going on. Rather, a spin glass is a disordered arrangement of magnetic spins or, 
by extension, the values of any other physical variable that has two! preferred 
states, such as on-off neurons in a neural network. 

And then there are some showy states of matter, such as liquid crystals, 
which are now ubiquitous as alphanumeric displays (LCDs) in watches and 
calculators. In a liquid crystal, the molecules are randomly located but their 
orientations are well ordered, under the control of an external voltage, which 
permits the displayed information to be changed. 

Until recently, few if any people suspected that there could be another state 
of matter sharing important aspects with both crystalline and amorphous sub- 
stances. Yet, this is precisely what D. Shechtman and his collaborators discovered 
when they recorded electron diffraction patterns (see Figure 1) of a rapidly cooled 
aluminum-manganese alloy (Al,Mn), now called a quasicrystal [SBGC 84]. The 
diffraction pattern (essentially a two-dimensional Fourier transform) of their quas- 
icrystals showed sharp peaks, implying long-range order, just as for periodic 
crystal lattices. But the pattern also showed a fivefold symmetry that is forbidden 
for periodic crystals; see Figure 2 for a simple proof. Fivefold symmetry means 
that the lattice can be brought into coincidence with itself by a rotation through 
360°/5 = 72°. But the only allowed symmetry axes are two-, three-, four-, and 
sixfold; all other rotational symmetries conflict with the translational symmetry 
of a periodic crystal. 

What then is going on in these new substances? Several other quasicrystals 
with other forbidden symmetries have been identified since the original discovery. 
Thus, quasicrystals are not an isolated quirk; they represent a new solid state of 
matter—Linus Pauling’s tenacious doubts notwithstanding [Pau 85]. And as we 
shall shortly see, the explanation of their existence is rooted in self-similarity. 

1. There is a strong link between the physicists’ spin and the number 2 (also known as the “oddest prime” because it is the only even prime). Because elementary spin is a two-valued variable (“up” or “down’), two electrons are allowed in the same atomic orbit, thereby explaining (together with Pauli’s exclusion principle) the periodic table of elements. Einstein, in the only experiment he ever performed himself (with W. J. de Haas), on the gyromagnetic ratio of the electron, gota result that was off by a factor of 2 (an error of 100 percent!). However, this did not bother the great theorist in the least—close enough, he is said to have remarked. Subsequently, in turned out that his result was quite accurate and the factor of 2 had to do with the-spin of the electron. Later on, many occasions arose in physics and chemistry where one had to “multiply by 2 because of the spin.” (However, the fact that the proof figure on a liquor bottle is the alcohol percentage multiplied by 2 is probably unrelated to the spin induced in some imbibers by the liquid potion.) 
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Figure 1 Electron diffraction pattern of crystal with forbidden fivefold symmetry 

[SBGC 84]. 

Figure 2 Simple proof that fivefold symmetry is impossible in a periodic crystal. In a 

~ periodic crystal there is a smallest distance between two atoms. Let the segment AB be one 

of these shortest distances. If the crystal has fivefold symmetry, then, in addition to the points 

A and B, the points C and D (obtained by 360°/5 = 72° rotations) should also be occupied 

by atoms. But the distance between_C and D is smaller (by a factor _of 0.382..., equal 

to the golden mean squared) than AB—contradicting the claim that AB was the smallest 

distance. 
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Long-Range Order from Neighborly Interactions 

As we know from the number-theoretic Morse-Thue sequence (see Chapter 12), 
sharp spectral peaks and aperiodicity are no contradiction, as long as long-range 
order prevails. In fact, the simplest example of aperiodicity and long-range order 
leading to sharp spectral peaks is furnished by the superposition of two sine 
waves with incommensurate frequencies, for example, 

s(t) = sin (Wot) + sin (Wot) 

where the frequency ratio « is an irrational number. There is no nonzero value | 
T for which s(f) = s(f + T) for all f. Yet Fourier-analyzing s(f) (properly windowed 

to make the Fourier transform converge) will, of course, show sharp peaks at 
the incommensurate radian frequencies W = W, and w = ap. 

Periodicity in crystals is easy to explain. For example, in a crystal of table 
salt (sodium chloride, chemically speaking), sodium atoms (Na) prefer chlorine 

atoms (Cl) as neighbors and vice versa: chlorine atoms like to surround themselves 
with sodium atoms. Thus, going along one of the crystal axes, sodium and 
chlorine alternate: Na-Cl-Na-Cl-Na-Cl-, and so on. The result is perfect periodicity 
and long-range order. 

But how can we explain long-range order in an aperiodic quasicrystal? That 
is not so easy. If there is no simple mutual attraction between different kinds of 
atoms or molecules (or if high temperature overcomes this), the usual result is 
no long-range order: a random structure, as in liquids (or “frozen” liquids, such 
as window glass). 

Perhaps the only way to produce long-range order from the short-range 
interactions that dominate solid structures without resulting in a periodic lattice 
(as in our table salt example) is to rely on iterated maps. Iterated maps are models 
of short-range interactions. For example, a 0 attracts a 1, which engenders the 
mapping O — 01; and a 1 attracts a 0, or 1 > 10. Yet, as we know from the 
Morse-Thue sequence, iterated maps can also produce aperiodic long-range order. 
Since iterated maps often lead to self-similarities, an explanation of quasicrystals 
by this approach means that the crystals (and their diffraction patterns) must 
exhibit scaling invariances. This is indeed the case, as a closer inspection of the 
diffraction pattern in Figure 1 shows. The most prominent scaling factor in Figure 
1 tus out to be the golden mean y = (/5 — 1)/2 = 0.618. ... (Note: Some 
authors—including the present one, in another book—call the reciprocal of the 
golden mean, 1/y = 1.618..., the golden section or golden mean.) 

Thus, there is an odds-on chance that quasicrystals might be modeled by 
an iterative map related to the golden mean. To find such a map, we have to 
turn the clock back a bit. : 

Around the year 1200, Leonardo da Pisa (ca. 1175—1250)—better known 
as “Fibonacci,” that is, son of Bonacci—was considering the problem of how 
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Figure 3 Multiplying rabbits, as Fibonacci saw them. Small, “white” rabbit symbols: 

immature pairs; large, “filled” symbols: mature pairs. 

rabbits multiply, something rabbits were obviously very good at even then [Fib 

1202]. In best modern style he postulated a highly simplified model of the 

procreation process: each season every adult pair of rabbits begets a young pair, 

which will be mature one generation later. Starting with one immature pair of 

rabbits and assuming that rabbits go on living forever, the rabbit population 

grows rapidly, as shown in Figure 3. 

More formally, Fibonacci was considering the iterated map 0 > 1 and 

1 > 10, where 0 stands for an immature rabbit pair and 1 for a mature pair. 

Thus, the first six generations are represented by the binary sequences 

0 

I 

10 

101 (1) 

10110 

10110101 
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which, like the Morse-Thue-sequence, is a self-genérating sequence. The nth 
generation has precisely F,, pairs of rabbits, where F, is the nth Fibonacci number 
defined by F, = F, = 1 and the recursion F,,, = F,,, + F,. This yields the well- 
known Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, .... A simple formula for generating 
the F, for n > 0 is obtained by rounding the value of yf. 5 to the nearest 
integer, where y = 0.618 . . . is the aforementioned golden mean. Thus, the ratio 
of two successive Fibonacci numbers asymptotically approaches the golden mean, 
as does the ratio of Os to Is in each line of pattern 1. In fact, the numbers of 
Os and Is in the nth line are precisely F,_, and F,,_ ,, respectively. (Note that, 
by backward recursion, F, = 0 and F_, = 1.) 

Another law for constructing the infinite sequence whose beginning is shown — 
in pattern 1, and which I have called the rabbit sequence, is quite apparent: after 
the first two rows, simply append to each row the previous row to form the 
next one. This property is a direct consequence of iterating the mapping. The 
first iteration of the map 0 — 1, I > 10 gives 0 — 10, 1 — 101, and iterating 
the iterated map results in 0 + 101 10, 1 > 101 10 101, and so on. Thus, the 
fifth line (101 10) in pattern 1 can be considered to have been generated from 
the third line (10) by using the once iterated map 1 > 101 and appending to 
it the result of 0 > 10. But 101 is, of course, the fourth line, and the appended 
10 is in fact the third line. Thus, each sequence in pattern 1 can be obtained by 
appending to the predecessor sequence the prepredecessor, an “inflation” rule 
which mirrors the original map 0 > I and 1 — 10. It is this kind of structure 
that causes long-range order to occur in the rabbit sequence although it was 
defined on the basis of only a short-range law (0 > 1, 1 > 10) involving only 
next neighbor symbols. 

As we saw in Chapter 11, iterated maps often lead to self-similarity, and 
the rabbit sequence is no exception: it abounds with self-similarities. One self- 
similarity of the rabbit sequence can be demonstrated by retaining the first two 
out of every three symbols for every 1 in the sequence and retaining the first 
one out of every two symbols for every 0. This decimation indeed reproduces 
the infinite rabbit sequence, as indicated in the following by underlining: 

IOIIOIOIIOI1... 

This property reflects the fact that the rabbit sequence reproduces itself upon 
reverse mapping (also called block renaming or “deflation” in renormalization 
theories in physics) according to the law 10 > 1, 1 > 0. (Note that the non- 
underlined bits also mimic the Is and Os of the rabbit sequence—there is no 
escaping from those foxy rabbits.) 

Let us try to get some useful work out of our rabbits. Consider the following 
“synchronization” problem (with potential applications to keeping digital trans- 
mission channels in step, as in picture transmission from distant space vehicles). 
How many steps do we have to move to the right in the rabbit sequence 

IO1101011011010110101... 
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to find a given subsequence (e.g., 10) again? We find the answer by inspection. 
First we have to move 3 places, then 2, then 3 again, and so forth: 3, 2, 3, 3, 
2, 3, 2,...,a sequence (of Fibonacci numbers, incidentally) that mimics the rabbit 

sequence, which is in fact reproduced by the substitution 2 > 0 (F,; > F,) and 
3 — 1(F, > F,). To cope with large synchronization errors, one has to focus 
on long subsequences. In general, a subsequence of length F, — 1 does not 

reoccur before F,_ , steps. It will, however, reoccur after at most F,,,, steps. 

There is a simple formula (first encountered on pages 53-54) for cal- 

culating the indices k for which the rabbit sequence symbol r, equals 1: 

k= |*| n= 2, 304 
vy 

while the indices for which r, = 0 are given by 

r= (5 hte Shaan 
Y 

where the “floor function” |x| means the largest integer not exceeding x. 

These two equations can be interpreted as formulas for generation of Is 

and Os by two incommensurate frequencies: y and y’, respectively. Note that 

y + y° = 1, which is the frequency of occurrence of either 1 or 0, also called the 

“sampling” frequency by engineers. If y is replaced by any positive irrational 

number w < 1 andy’ by 1 — w, then the resulting two sequences, which together 

cover all the positive integers, are called a pair of Beatty sequences. Because of 

this covering property, Beatty sequences are useful as index sequences [Slo 73]. 

With the rabbit sequence being generated by the frequencies y © 0.618 

and y? & 0.382, it is small wonder that the spectrum (ie., the magnitude of the 

Fourier transform) should show pronounced peaks at these two frequencies; see 

Figure 4, which was obtained by truncating the rabbit sequence after 144 terms 

and taking the Fourier transform [Schr 90]. The two main peaks are located at 

the harmonic numbers 55 and 89 corresponding to the frequencies sa © y and 

+5 ~ y?. The spectrum also reflects the self-similarity of the rabbit sequence. In 

fact, the peaks occur at frequencies that scale with the golden mean y (actually, 

the ratio of successive Fibonacci numbers for the truncated sequence), and the 

amplitudes scale approximately as yy. 

Generation of the Rabbit Sequence from the 

Fibonacci Number System 

For most purposes we do not need the index sequences for the 1s or Os of the 

rabbit sequence but we need the sequence itself and a direct formula to generate 

it. Here is a first stab: 
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0 21 34 55 89 110 123 144 

Harmonic number 

Figure 4 Fourier amplitude spectrum of binary rabbit sequence (the first 144 terms repeated 
periodically) [Schr 90]. 

Consider 

r, =m, + I mod 2 

where m, is the index of the least significant term in the representation of k in 
the Fibonacci number system [Schr 90]. In this sytem, n is represented as the 
unique sum of Fibonacci numbers with descending indices, starting with the 
largest-index Fibonacci number not exceeding n: 

n= Fy + Fa, + *°* + Fy 

where m, >m,>-+-:>m,. For example, 12Z=8+3+1=F,4+F,+F.. 
Thus, since the index (2) of the last term (F,) is even, 1, = 1. (Note that in this 
representation no two adjacent indices can appear; i.e., m,,, > 2 + m,. Also, by 
convention, 1 = F,, so that r, = 1.) However, while this approach does address 
itself to the r, themselves, the calculation via the Fibonacci number system can 
hardly be called direct. 

The Self-Similar Spectrum of the Rabbit Sequence 

A more direct representation of the rabbit sequence r, is the following: 

: = if <(k+ Dy), <y es 
0 otherwise 
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where, as before, <x), is the fractional part of x. This formula for r, has an 
attractive geometric representation; see Figure 5. 

Two direct formulas for generating the rabbit sequence, which also put its 
long-range order and aperiodicity into direct evidence, are given by 

re = Uk + Dy] — lky! 

and, rewriting equation 2, 

co 
fia ta ans SBE ly —<k + Dy? (3) 

where sgn [x] is the algebraic sign of x (+1 or —1) for x # O (sgn [0] is defined 

as 0). 

Interpreted in engineering terms, equation 3, with k considered a continuous 

variable (“time”), says that r, is a square wave (jumping between the values 1 

,and 0) with a fundamental frequency » (and a “duty cycle” of y). However, k is 

not a continuous variable; it is discrete, increasing in steps of 1. This means that 

the square wave is sampled with a sampling frequency of I. Since the frequencies 

y and J are incommensurate, the resulting sequence of samples is aperiodic, while 

retaining a perfectly rigid long-range order. For example, setting k = 144, we 

find that r,,, = 1, which is quickly confirmed by noting that 144 = F,, and by 

applying the general rule r;, = (1 + (—1)")/2. (Note: For F,, = 1, one has to take 

fot.) 

Figure 5 The rabbit sequence, generated geometrically. The sequence term r; equals 1 if 

the angle <(k + 1)y)1* 360° falls within the heavy circular arc. Otherwise r, equals 0. 
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Since the period y is an irrational number, the sanaples r, taken at sampling 
intervals are aperiodic. As a result, the spectrum of r, shows strong peaks at 
certain preferred frequencies, namely, the sampling frequency multiplied by 7, 
y’, y“, y°, and so on, and the corresponding mirror frequencies (1 — y? = y, 
ge ee 
ie mathematical expression of the spectrum of r, is obtained by Fourier- 

transforming r, as given by equation 3. This yields 

R,, = sinc my for frequencies f,,,, =n + my 

where the “sinc function” sinc x is defined as (sin 1x)/nx. 

Self-Similarity in the Rabbit Sequence 

Where do these spectral self-similarities come from? Obviously, they must be 
hiding already in the sequence itself. Indeed, if we look at the index sequence 
[n/y| for the Is, we see that scaling n by a factor of y, that is, by substituting 
n/y for n, will give the index sequence |n/y*| for the Os. Thus, the magnitude of 
the Fourier transform of 1, will remain unchanged under this rescaling, except 
for the constant scaling factor. 

We can also observe the self-similarity in r, itself. Since the self-similarity 
factor is 1/y, we have to “hop along” 1.618 . .. places on average to effect the 
scaling by 1/y. Since the asymptotic ratio of Is to Os is precisely y, we might 
try\to skip two terms in r, if we encounter a I and skip only one term every 
time we encounter a 0 in the original sequence. This indeed reproduces the series: 

Le Od. 1 30. 00 et Ot 4 0 oe ng ee 

as the reader may be tempted to show. This decimation process is the complement 
of the “deflation” or block renaming that we mentioned before. Here we have 
renamed each 101 block 1 and each 10 block 0. The block renaming is the inverse 
of the generating map (0 > 1, 1 > 10) iterated once, that is, 0 > 10, 1 > 101. 

A One-Dimensional Quasiperiodic Lattice 

How do we convert our discoveries about self-similar sequences producing 
aperiodic long-range order into something more physical, such as a one- 
dimensional (1D) lattice, say, as a precursor to a full-blown 3D quasicrystal? A 
simple method is illustrated in Figure 6. We place atoms on a straight line 
according to the following rule. For each 1 in the rabbit sequence r, we take an 
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1 0 1 1 0 
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4 4 1 ¥ Compressed lattice 

iby AUP a 0 

Figure 6 One-dimensional quasiperiodic “crystal,” obtained from the rabbit sequence. The 

self-similarity factor is the golden mean y. 

interatomic distance of 1/) = 1.618 . . . units (say, Angstrém units), and for each 

0 we take a distance of 1 unit. The lower part of Figure 6 shows the same 1D 

lattice compressed by a factor of 1.618 . . ., which demonstrates that every atom 

in the original lattice coincides precisely with an atom in the compressed lattice. 

(The compressed lattice, having a higher atomic density, will of course have 

some extra atoms with no partners in the original lattice.) Thus, the 1D lattice, 

so constructed, has self-similarity. (The reader may want to generalize this result 

to self-similar 1D lattices based on suitable irrational numbers other than the 

golden section /.) 
If every atom in the “rabbit lattice” is represented by a Dirac delta function, 

we obtain the Fourier transform [ZD 85]: 

n 
S.. = sinc (4 + m) at frequencies fim = i —m 

5 Vs 

Self-Similarity from Projections 

An alternative method of constructing the 1D rabbit lattice is illustrated in Figure 

7 [de B 81]. It shows the square 2D integer lattice, called Z’, and a straight line 

with a slope (the tangent of the angle between it and the abscissa) equal to 

1/y. For each unit square that this straight line enters, the upper left corner of 

the square is projected normally onto the line. And lo and behold, the footprints 

of these projections generate the previously defined 1D rabbit lattice. The rabbit 

" sequence is recovered by designating the larger intervals by 1s and the shorter 

intervals by Os. This geometric construction is a direct consequence of the 

arithmetic description of the rabbit sequence (equation 2), as the reader may 

want to show. 
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tan a= 1/7 = 1.618... 

Figure 7 The one-dimensional crystal of Figure 6, obtained by projections from a square 
lattice [deB 81]. 

The projection method, being based on a perfectly periodic square lattice, 
also demonstrates again both the long-range order in the 1D rabbit lattice and 
its aperiodicity (because of the irrational slope of the straight line). But most 
important, the projection method can easily be generalized to generate quasi- 
periodic lattices in two and three dimensions that mimic real quasicrystals [Mac 
82, DK 85, Els 85, Jan 89]. 
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Figure 8 Two-dimensional quasicrystal, obtained by projections from a five-dimensional 

hypercubic lattice. 

To construct a 2D quasiperiodic lattice, one needs four rationally independent 

vectors; see Levin and Steinhardt [LS 84]. It is more convenient, however, to 

project a region of the five-dimensional “cubic” lattice onto an appropriately 

inclined plain. See Figure 8—which was, of course, generated by a computer, 

since five-dimensional lattices are still out of reach in the tangible world. It is 

interesting to note that the points in this image correspond to the vertices of 

an aperiodic tiling of the plane by two different tiles, the famous Penrose tiling 

(see Figure 9)—a feat that had long been considered impossible [Pen 74, Mac 

82]. (For an aperiodic tiling with just one tile, see Figure 10 [Gar 77).) 

When a photographic slide with the point pattern of Figure 8 is placed into 

a laser beam, the diffraction pattern of Figure 11A results, which shows the 

puzzling fivefold symmetry (which looks like a tenfold symmetry because we 

cannot see the signs of the scattered amplitudes in the intensities recorded pho- 

tographically). In fact, Figure 11A resembles the diffraction pattern from an actual 

quasicrystal. Note particularly the self-similarities with the scaling factor y in 
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many of the details of the pattern such as the numerous regular pentagons of 

different sizes. 
The experiment just described is amenable to a “live” demonstration before 

sizable audiences using large television monitors for the display and a lensless 

TV camera for capturing the diffraction pattern.” By increasing the brightness of 

the diffraction pattern (by turning up the laser intensity), more and more diffraction 

spots can be made visible until the entire monitor screen is filled. Parts A, B, 

and C of Figure 11 show the diffraction pattern at three progressively higher 

intensities. In this manner, one of the crucial differences between quasicrystal 

diffraction patterns and those of periodic crystals can be demonstrated most 

convincingly: diffraction patterns of quasicrystals, while consisting of delta func- 

tions just like those of periodic crystals, consist of a (countably) infinite collection 

of delta functions that are everywhere dense—in contrast to the isolated dif- 

fraction spots of periodic crystals! The original quasicrystal patterns looked like 

those of periodic crystals only because they were obtained with a relative low 

incident intensity. 
To generate a three-dimensional quasi-periodic lattice, one projects a six- 

dimensional cubic lattice onto three dimensions [KD 86]. 

More Forbidden Symmetries 

Having tasted a first forbidden fruit of fivefold symmetry, we might ask whether 

there are quasicrystals with other outlawed symmetry axes that can be distilled 

from self-similar iterated maps. There are indeed. 

The mapping 0 > 1, 1 — 10, which generates the rabbit sequence, is inti- 

mately related to the continued fraction for the golden mean jy: 

Meee eh 
which is customarily written as [1, 1, 1,...] or, since the continued fraction is 

periodic, simply as [1]. Note that the period length equals 1. The continued 

fraction expansion for 7 follows immediately from its definition as the positive 

root of the quadratic equation x? + x = 1, which can also be written as x = 1/ 

(1 + x). Using this form of the defining equation for ) recursively results in the 

foregoing continued fraction expansion for y. (Note that, because lJ0+y>1 

the recursion converges.) 

ayes ie aN 2S 
2. Iam grateful to Hans Werner Strube for the computer-generated “quasicrystal” and to Heinrich 

Henze for the brilliant laser diffraction patterns. 
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(A) 

Figure 11 (A) Laser diffraction pattern with fivefold symmetry of quasicrystal shown in 
Figure 8. (B) Laser diffraction pattern at higher laser intensity showing an increased number 
of diffraction spots. (C) Diffraction pattern at still higher intensity showing a nearly dense 
pattern of diffracted energy. 

Could it be that iterated mappings related to the lesser “silver means,” 
ty, can be pressed into service to generate self-similar lattices? The silver means 
ty are defined by the equation 1/t% =N+t#; that is, they are all those 
quadratic irrational numbers that can be expressed by periodic continued frac- 
tions with period length 1 and +1 as the numerator.’ It can be shown that 

3. The noble means, another generalization of the golden mean, are defined as all those numbers 
whose continued fraction expansions end in infinitely many Is. They distinguish themselves both 
in the present case and in the quasiperiodic route to chaos of nonlinear dynamic systems. In this 
nomenclature the golden mean is but the noblest of the noble means. 

Cassini’s divisions in the rings of Saturn are a manifestation of what happens when, instead of 
noble numbers, simple rational numbers reign: rocks and ice particles constituting the rings, whose orbital periods are in simple rational relation with the periods of the moons of Saturn, are simply swept out of their paths by the resonance effects between commensurate orbital periods. In fact, 
the very stability of the solar system depends on the nobility of the orbital period ratios. 
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Gis [oe ah a 2 — 1 generates a quasicrystal with the crystallographi- 
cally forbidden eightfold symmetry, while t; = 2 — fo underlies a likewise 
forbidden twelvefold symmetry axis. Both eight- and twelvefold symmetry have 
recently been observed experimentally [INF 85, INF 88, CLK 88]. 

In addition to the golden mean y = 1,", all t77, where N is the nth Lucas 
number and the sign superscript in t% equals (— 1)", generate quasicrystals with 
a fivefold symmetry [Schr 90]. The Lucas numbers L, obey the same recursion 
as the Fibonacci numbers, but start with L, = 1 and L, = 3. The Lucas numbers 
1, 3, 4, 7, 11, 18,..., too, are related to the golden mean y. In fact, for n > 2, 
L, is given by y " rounded to the nearest integer. 



14 
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eriodic and Quasiperiodic Structures in 

Space—The Route to Spatial Chaos 

A great truth is a truth whose opposite is 

also a great truth. 
—NIELS BOHR 

In the preceding chapter we saw that, in addition to crystals with perfectly 

periodic lattices, there are quasicrystals whose spatial structure is quasiperiodic. 

In one-dimensional models, this quasiperiodicity can be described by two incom- 

mensurate frequencies involving the golden mean or other quadratic irrational 

numbers whose continued fraction expansions have a short period length.’ And, 

of course amorphous substances with no discernible periodic structure have always 

been known. 
At the time of their discovery in 1984, quasicrystals came as a real surprise: 

only a very sparse sampling of scientists had foreseen the possibility of a spatial 

structure—other than liquid crystals—intermediate between amorphous glasses 

and regular crystals. Yet, the surprises are not over. There is still another spatial 

structure lurking between quasiperiodicity and amorphous disorder: spatial chaos. 

The existence of spatial chaos should not really come as a surprise to anyone 

familiar with temporal chaos, considering that space and time are mere components 

of a unified space-time. Whatever can happen in time could also happen in space 

ee 
1. Periodic continued fractions with long periods involving large integers would give rise to 

unrealistic quasicrystals with molecular interactions much too complicated to be believable. 

2. “It’s not over until the fat lady sings,” as P. W. Anderson remarked on St. Patrick’s Day in 

1987 in New York City at the “Woodstock” meeting of the American Physical Society on the 

new high-T, (“room temperature in Alaska”) superconductors. 
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(and vice versa). In the time domain, we have long been acquainted with periodic, 
quasiperiodic, and random phenomena: 

¢ The motion of a swing is periodic. 

° The phases of the moon at midnight every Sunday, say, are quasiperiodic; 
they are governed by two (as yet) incommensurate frequencies: the moon’s orbit 
around the earth and the earth’s elliptic orbit around the sun. 

¢ The hiss of air escaping from a punctured bicycle tire can be considered a 
random noise. Thermal motion is another example of a random process.’ 

Yet, more recently, physicists have come to appreciate a fourth kind of temporal 
behavior: deterministic chaos, which is aperiodic, just like random noise, but distinct 
from the latter because it is the result of deterministic equations. In dynamic 
systems such chaos is often characterized by small fractal dimensions because a 
chaotic process in phase space typically fills only a small part of the entire, 
energetically available space. 

Taking a cue from chaos in the time domain, we should expect to find 
chaos entrenched also in the space domain. In fact, turbulence is now considered 
a case of spatial chaos, albeit a very complicated one. In this chapter we first 
focus on a particularly simple case of spatial quasiperiodicity and chaos, with 
important analogies in the time domain: a one-dimensional Ising spin model of 
magnetism. 

Periodicity and Quasiperiodicity in Space 

Imagine a one-dimensional system of electron spins s, = +1 or s, = —1 posi- 
tioned at equal intervals along a single spatial dimension, as considered by Bak 
and Bruinsma [BB 82]. In the presence of an external magnetic field H, the energy 
E of the system is given by 

Emi ino, i SS; (1) 
i iFj 

where J, is an antiferromagnetic interaction ( J;; > 0) between spins s, and s, that 

3. If our ears were a bit more sensitive and if there were no distracting sounds, we would hear the thermal motion of the air molecules: a constant hissing, the perception of which would offer no added survival value to ourselves or the-species. In fact, such a super-ear.would be an evolutionary liability, considering the extra expense to the species to develop, protect, and maintain it. 
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decays with increasing spatial distance |i — j| according to the power law 

j= li-i* (2) 

with a = 2, for example. 
The fact that J, is positive means that adjacent spins would like to have 

opposite sign (to minimize the energy E). This is why an interaction like that in 

equation 2 is said to be antiferromagnetic. (In a “ferromagnet,” adjacent spins 

prefer to align themselves in the same direction, creating a strong external magnetic 

field, such as that of a horseshoe magnet.) 

With adjacent spins having opposite signs, spins at alternating locations, 

of course, have the same value, giving a positive, though smaller, contribution 

to the energy E (for % > 0). Thus, without an external field H, the minimum 

energy is obtained by a fraction w = 5 of spins pointing up. Setting s, = +1 

as an initial condition, we have 

Pee age and Seto ee (3) 

which is a perfectly periodic antiferromagnetic arrangement. 

The Devil’s Staircase for Ising Spins 

For nonzero values of the external magnetic field H, w = = may no longer give 

the minimum energy E. In fact, for H > © all spins would turn up, so that w, 

the fraction of up-spins, would go to 1. But how? 

For small changes of H (and zero temperature), no spins will flip; they are 

locked into their given configuration. In fact, for each rational w = p/q there is 

a range of H values, AH(p/q), for which w remains fixed. As a result, the plot of 

w versus H looks like a devil's staircase; see Figure 1 [BB 82, BB 83]. Indeed, 

the staircase is “complete,” like the one we shall encounter later in this chapter 

in connection with the mode locking of two oscillators. Complete means that the 

rational plateaus in Figure 1 add up to the entire H interval. Irrational values of 

w occur at values of H that form a thin Cantor set, whose fractal dimension D 

can be determined analytically for power-law interactions of the form 

Ji om | — j|"*: 

D= (4) 

The plateau for w = = (see Figure 1) has a relative length of 0.44, and the two 

intervals for w + + are equal: r, = r, = 0.28. If the devil's staircase for the one- 
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Figure 1 Fraction of up-spins as a fraction of magnetic field for an Ising spin glass [BB 82]. 

dimensional Ising “antiferromagnet” were exactly self-similar, the Hausdorff di- 
mension would equal 

log N log 2 = = 
log (1/r) log (1/0.28) 

Since, according to equation 4, D = 0.6 for a = 2, the staircase cannot be exactly 
self-similar. However, the plateau at w = } (and the one at w = 5), with fix O4F and r, = 0.18, implies a fractal dimension D = 0.59, which is obtained from the 
formula for unequal remainders, Fi Tes 

D D 
t ity = J 

Thus, it is not unreasonable to expect the devil’s staircase of Figure I to be asymptotically self-similar or self-affine. This is also suggested by the 10-times magnified portion of staircase shown in the insert in Figure 1. The largest plateau in the insert corresponds to w = =. 

Quasiperiodic Spatial Distributions 

The devil's staircase for Ising spins, not being precisely self-similar, is at best asymptotically self-similar. How do we approach such a staircase to test its self- similarity? Figure 1 suggests that the larger the denominator g in w = p/q, the smaller the locked plateau. 
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The physical situation would lead to the same conclusion. After all, q is 

the period length of the spin configuration, and intuition tells us that the larger 

the period length, the more tenuous the configuration, and hence the smaller the 

plateau. 
How are the spins arranged for w # 3? The answer is about the simplest 

formula imaginable to satisfy basic symmetries. Suppose w = p/q, where p and 

q are coprime integers (i.e., their largest common divisor equals 1)." Then p of 

every q spins should point up. More precisely, p of every q consecutive spins 

should be up. Thus, the spin pattern must be periodic with period length q. 

Within each period, precisely p spins are up and q — p spins are down—but 

which are up and which are down? Obviously, for w = >, for example, having 

three adjacent spins point up and the next four down is not a minimum-energy 

solution. For a lower energy, the up and down spins must be better intermingled. 

But how? Detailed theoretical analysis shows that, with the initial condition 

So = +1, the locations u, of the up spins are given by the simple formula 

k 
w=|- Peer ee Ot 2A fo) eee (5) 

Ww 

where the floor function |a] is the largest integer not exceeding a. 

With w = 3, equation 5 tells us that the position of the kth up spin is 2k, 

in agreement with equation 3. 

The corresponding locations d, of the down spins are given by the set of 

integers complementary to the set u,: 

1.=| X Nee (6) 

where the ceiling (“gallows”) function [a] means the smallest integer not smaller 

than a. 
For w = p/q = 7, for example, equation 5 tells us that the up spins are at 

location 

See rE 13}.0) 2eahTz Medi 3 (7) 

while the down spins, according to equation 6, are to be found at locations 

dixie BAN = Dele I; Ty 3 ISWOMBNLOS 2 ave: (8) 

As can be seen, both sets 4, and d, are periodic with period q = 7, in the sense 

ee ee 

4. In number theory, this frequent condition is rendered as (p, q) = 1. In general, (p, q) = m 

means that m is the largest common divisor of p and gq. 
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that if u, = n for some k, then, for some other k’ (=k + 3), wu, = u, + 7. Similarly, 

for kk =k+ 4, dy =d,+ 7. The locations u, and d, together cover all the 
integers, each integer exactly once. (A simple proof for irrational w is given in 
my book on number theory [Schr 90].) 

Equations 5 and 6 distribute the up- and down-spins as uniformly as possible 
under the given constraints—something we already guessed for a minimum- 
energy “antiferromagnet.” In fact, equation 7 shows that for w = >, the three 
spacings per period between the up-spins are 2, 2, 3. The spacing pattern for 
the four down-spins per period for w = 7 is—according to equation 8—2, 2, 
2, 1. In general, it can be shown that, since the spacings have to be integers and 
add up to the period length q for both up- and down-spins, the spacings generated 
by equations 5 and 6 have in fact the least variance. 

There is a close connection between these stable spin patterns and the 
motion in phase space of simple conservative dynamic systems with two degrees 
of freedom, such as two coupled oscillators. Depending on the nonlinear coupling 
strength, the motion will be periodic, quasiperiodic, or chaotic. If the two oscillator 
frequencies are commensurate, that is, if they are locked into a rational frequency 
ratio p/q, then the phase space trajectory of the system on the surface of a torus 
(an “inner tube”) will be periodic with period q. The trajectory will close after 
p cycles around the torus’s second dimension. Thus, a plane cut (called a Poincaré 
section) normal to the first dimension of the torus will be pierced by gq distinct 
points with angles 0,, 0,,..., 6,. 

To simplify the description even further, we can replace the angles 6, by 
their signs: a plus sign if O < 0, < w2z, say, anda minus sign for w2x < 0, < 21. 
Setting ,=0, the successive five angles (modulo 2z) are 0,/2n = 0, 
=, =, +, =. The corresponding sign sequence, also called the symbolic dynamics, is 
+ — + — +. This is precisely the spin pattern of our antiferromagnetic Ising 
spin system locked in an up-spin ratio of w = 3, Indeed, equation 5 gives the 
locations for the up-spins for k = 1, 2, 3 at u, = 1, 3, and 5. Thus, the spin 
pattern is + — + — +. Because of the close analogy between toroidal trajectories 
winding around a torus in phase space and (quasi) periodic or chaotic spatial 
patterns (spins and quasicrystals, for example), people often refer to the ratio w 
as a winding number. 

For irrational w, the spin pattern will be quasiperiodic rather than periodic. 
For example, for w = w 5 — 1)/2, the golden mean, the up-spins, according to 
equation 5, will be at locations 

u, = I, 3, 4, 6, 8... for bi 23 

and the down spins, according to equation 6, will be at 

dp == 12) 5p FAO AB ce 

Note that the differences d, — u, = k. Each pair (u,, d,) forms a so-called Beatty 
pair, a winning combination in a game of Fibonacci nim (see page 53). 
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Beatty Sequence Spins 

If the energetically favorable proportion of up-spins equals w, which in general 

will be different from 4, the locations u, of the individual up-spins are given by 

the Beatty sequence (equation 5). The locations of the down-spins are given by 

the complementary Beatty sequence (equation 6). 

Instead of the Beatty sequences for the locations of the up- and down-spins, 

we can give a simple formula for the spin values themselves. For irrational w 

we have 

Sm = sen [w — <(m + 1)w))] (9) 

where sgn is the algebraic sign function and ¢ >, stands for the fractional part. 

For the golden mean, w = (,/5 — 1)/2, the sequence of spin signs is 

+—4+4+—4+—4+4+-—4++4+--:--, which can also be obtained from the 

iterated “rabbit” map (see Chapter 13) 

—- > + 

+>4+- 
(10) 

Starting with a single minus sign yields the following successive generations and 

their lengths L;: 

— Ly=A 

+ L,=1 

— L,=2 

ee La=2 

+—-++—-— 1L,=5 

and so on. An equivalent tule to generate generation n is to append generation 

n — 2. to generation n — 1. Note that, as a consequence, the length L, of the 

nth generation obeys tie recursion L, = L,<;-+ L,-» With Li = E, ==, this 

results in the Fibonacci numbers L, = 1, 1, 2, 3, S813, 4 20 

The relative number of up-spins in generation n equals L,_,/L,, which 

approaches the golden mean (/5 — 1)/2 = 0.618. .., as it should. 

The Beatty sequence for w = if 5 — 1)/2 leads to a one-dimensional an- 

alogue of a quasicrystal with a fivefold rotational symmetry (see Chapter 13). 

_ Such a symmetry is forbidden for periodic crystals, but was observed in 1984 

when the first quasicrystal was discovered 
. 

The mapping in equation 10 is closely related to the continued fraction 

(CF) expansion of the golden mean (/5 acti \/2 Seafdpnt, 1)... A= te For 

another simple continued fraction with period length equal to 1, that of w= 

nid 4/=[2) the corresponding mapping that generates the spins according to 
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equation. 9, namely,.— b= => ——-- + eee aie 

—- > —+ 

si ot oe (11) 

which, starting with a single minus sign, gives the following successive gener- 
ations: 

vs lL, =F 

PEL L,=2 

SE ea L,=5 

Sea epee L,= 12 

and so on. The alternate rule for generating generation n is to repeat generation 
n — I twice and append generation n — 2. Beginning with — and — +, this 
yields the generations just shown, which grow in length L, according to the 
recursion L,,, = 2L, + L,_,. With L, = 1 and L, = 2, this gives the successive 
lengths 1, 2, 5, 12, 29, 70, 169. Note that L,_,/L, approaches the value of 
w = 2 — 1. Also, the relative number of up-spins approaches, as it should, 
i= “yl 2 — 1. In fact, of the L, spins in generation n, precisely L,_, are up and 
L, —L,-;=L,-; +L,—, are down. The ratio L,_,/L, approaches w as quickly 
as possible (for given bounds on the denominators). Note that, according to 
these lengths, the ratio 70/(29 + 70) = 70/99 = 0.70707..., for example, 
should be a good approximation to 1/,/2 = 0.70710... ., as it is indeed. 

When w = ./2 — 1is used in equation 9, it will generate the same sequence 
as the iterated mapping in equation 11. Equations 5 and 6, with w = ite 
will generate the corresponding locations of the up- and down-spins. 

In the context of quasicrystals, the quadratic irrational number J2-1= 
[2] leads to a one-dimensional model of a quasicrystal with a “forbidden” eightfold 
rotational symmetry, first described by Wang, Chen, and Kuo [WCK 87]. 

Similarly, the spin sequence for w = [3] = (,/13 — 3)/2 in equation 9, 

—-+4+—--+4+-—-4+-... 

can also be generated by the iterated mapping 

(12) 
rows 

Equivalently, starting with the two initial generations — and — — +, gen- 
eration n > 2 is generated by repeating generation n — 1 three times and ap- 
pending generation n — 2. It follows directly that the length L, of the nth 
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generation obeys the recursion L, = 3L,-,; + L,—-, = 1, 3, 10, 33, 109, 360,... 

and L,,_,/L, approaches w = [3]. 
Does the mapping in equation 12 tell us that the number of up-spins in 

generation n, m,', divided by the total number of spins, L, = m, +m, , ap- 

proaches the desired ratio w = [3]? It does indeed. First we observe from mapping 

12 that each spin (either up or down) in generation n — 1 generates precisely 

one up-spin in generation n. Therefore m,* = L,_4. Thus, the relative number 

of up-spins equals L,_ ,/L,, which, as we already saw, approaches 

= 1 ae) pee? = 013027756 =>. 

The convergence is quite rapid, too. For example, 

10 \O | = 0.3027777... 
| oO cea Ww OQ o 

In general, the spin pattern for w equal to a periodic CF with period length 

1, w = [nl is given by the iteration 

ae —+(—)' i+ 

= 
(13) 

es 

where (—)" * means a sequence of n — 1 minus signs. 

For w = [/i], we have the relation 

1 
—-=nt+w 
w 

The positive solution of this quadratic equation yields 

a Jn +4—n 
t= 

2 

which is called a silver mean because 17, like the golden mean, has a periodic 

continued fraction with period length equal to 1. For the special case of n = 1, 

silver turns into gold and we get the golden mean w = T, =) = (5 —"1)/2. 

If we relax the condition that the terms of the continued fraction have to 

. be positive, then we get a second family of silver means, defined by 

Tires yl si Ho ore 

Un 
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with the unique root in the interval [0, 1] 

and the continued fraction expansion 

T, =([n—,n—,n—,...] 

Spin patterns for these silver means, too, can be generated by simple iterated 
mappings. For example, for n = 4, we have t, = 2 — af 3 = 0.268 .... With 
this t, in equation 5, we find the up-spins at u, = 3, 7, 11, 14, 18,.... Thus, 
the pattern of spins for t; is 

Ss Sle ie Se ea i Se 

To find the spin-mapping law, we have to compute the approximants of the 
continued fraction: =, 1/(4 — 4) = +, & and so on, where the denominators 
(4, 15, 56,.. .) are the period lengths. The length of the nth generation L, (n > 1) 
is given by 4L,_, — L,_., starting with L, = 0 and L, = 1. Marking off sub- 
sequences of these lengths by commas (see spin pattern 14) reveals the iteration 
law 

a tees 

+> —-—-+ 

which, starting with a single minus sign, produces the following successive 
generations: 

- L,=1 
——+- L,=4 
SS Spe) eas 

and so on, in uncanny agreement with spin pattern 14. 
The silver meant; = 2 — ./3 is the basis for generating quasicrystals with 

a forbidden twelvefold symmetry, which were discovered in 1988 [CLK 88]. 
All silver means ty (ty), where N equals an even- (odd-) index Lucas 

number, belong to the irrational number field OQ(/ 5) and lead to fivefold sym- 
metric quasicrystals. The Lucas numbers, L, = 2, 1, 3, 4, 7, 11, 18,... , are de- 
fined by the same recursion as the Fibonacci numbers: L,, = L,_, + L,—,, but 
with the initial condition L, = 2, L, = 1. For n> 1, L, can be obtained by rounding y " to the nearest integer. 
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It is a fair guess that the general mapping law for t, is given by 

— > (=) ?+- 
Sea) ee ww 

where (—)" * stands for a sequence of n — 2 minuses. The reader may wish to 

prove this and the following equivalent law: beginning with the first two gen- 

erations — and (—)" *+ —, generation k is obtained by repeating the previous 

generation (n — 1) times and appending generation k — 1, from whose beginning 

generation k — 2 has been eliminated. 

The Scaling Laws for Quasiperiodic Spins 

Equation 9 allows us to calculate the sign of any spin directly without recursion. 

For example, for w = (/13 — 3)/2, the 1000th spin is +. On the other hand, 

the very fact that, for w equal to a periodic continued fraction of the form [mi], 

our antiferromagnetic Ising spins can be calculated recursively by an iterated 

mapping suggests that these spin patterns must have some scaling invariance. 

And indeed they have—in fact, they enjoy numerous self-similarities. 

Let us focus on the spin pattern for the winding number w equal to the 

golden mean. In {0, 1} notation this is the “rabbit” sequence: 

teeOmetos Op ok Oc tO Sa (16) 

The infinite rabbit sequence reproduces itself if, for every 1 we encounter (be- 

ginning on the left), we hop ahead two places and strike out the third bit. For 

every 0, we hop only one place and eliminate the second bit. The digits retained 

by this mad hopping and striking-out scheme are underlined in sequence 16, and 

the decimated sequence does reproduce the original rabbit sequence. The pattern 

of long and short underscores also corresponds to the rabbit sequence, albeit by 

construction. And, maddeningly, the struck-out (nonunderlined) digits also repro- 

duce the original rabbit sequence. Can the reader show why? 

What the hopping scheme really does is to map 101 — 10 and 10 > I, 

as can be seen from sequence 16. This “block-renaming” scheme, which we have 

encountered before, is in effect the reverse of the mapping 1 > 10 > 101, which 

is the next iteration of the original mapping (0 > 1 > 10). 

The block renaming 101 > 10 and 10 — 1 corresponds to a simple scaling 

of the index k by a factor w. Specifically, in the formula for the up-spins (equation 

5), k is replaced by k’ = k/w and the spin pattern is laterally transposed by one 

“unit: 

k 
a Ugg ao Si aA ark 

w 
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However, according to equation 6, |k/w*| = |k/(1 — w)| = [k/(1 — w)] — 1 are 
the locations of the original down-spins d,. Thus, we see that in the scaled spin 
pattern, obtained by the block-renaming renormalization, the retained up-spins 
are one site to the left of the original down-spins. Indeed, as we can see from 
expression 16, the surviving up-spins are precisely those that have a 0 as a right 
neighbor. All other up-spins “die” in the construction. 

We leave it to the reader to show that the surviving down-spins are to be 
found one site to the left of the original up-spin doublets 11 (whose density, 
like that of the surviving down-spins, is w* = \/5 — 2 = 0.236...). 

Self-Similar Winding Numbers 

The scaling law for the antiferromagnetic Ising spins can also be derived from 
the formula (equation 9) that generates the spins in the +1 notation: 

Sm = sgn [w — ((m + I)w),] 

Obviously, there is no change in the spin s,, if we add any integer—for example, 
n(m + 1)—to the contents of the fractional-part brackets < ).: 

Sm = sgn lw — <(m + 1)(w +n), ] (17) 

For w equal to the golden mean,we have w + 1 = 1/w. Hence, with n = 1, 

se= sen] 0 (one 02) | 
W/; 

which tells us that the index m + 1 can be formally scaled by the factor 1/w? 
without changing the spin pattern. 

What other winding numbers show this kind of self-similarity? Equation 
(17) shows that for all w for which (w + n) = 1/w we can scale m+ 1 by a 
factor of 1/w*. Here n can be a positive or negative integer. (Note that <a>, := 
a&—|a] lies in the interval [0, 1), so that for «= —4.7, for example, 
<a&>, = (—4.7), = 0.3.) For positive n, these winding numbers are precisely 
those whose continued fraction expansion is periodic and has period length 1: 

w=, := [nl] n>0O 

In fact, this equation can be written as 

I 

n+ w 
jo (18) 

which is the relationship we need for the scaling invariance of equation 17. 
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The solution of the quadratic equation 18 for positive w is 

"i Jn + 4—n 
Cierny Feinig: all n>0 

as already stated. 
For negative n, the two roots of this equation are outside the “legal” interval 

(0, 1) for w. However, we can still get a self-similar solution, namely, for 

p= (n—| n<—I 

The solution of this equation that lies in (0, 1) is 

= Nt en 

a 
w=T, = n< —2 (19) 

The numbers t,' and t, are the silver means, another generalization of the 

golden mean that we have previously encountered. 

How does the scaling law for the spin-generating formula in equation 5 

translate into a scaling law for the up-spins? In other words, what change in 

equation 5 is necessary so that it gives the locations of the up-spins surviving 

the block-decimation process for n > 1? 

Circle Maps and Arnold Tongues 

Next to the quadratic map, discussed in Chapter 12, another nonlinear law plays 

an important role for modeling a great many natural phenomena, the famous 

circle map: 

K 
Gp Ot Ba sin (270,,) (20) 

Here K is a “coupling constant,” which regulates the degree of nonlinearity; in 

fact, for K = 0, equation 20 is linear. The variable 0, represents an angle, usually 

in the phase space of a dynamic system. The average increment per iteration of 

0, is called the dressed winding number, defined as 

‘ 6, rs 0, 

w:= lim 
pee wert Hy 

(21) 

The parameter Q in equation 20 is called the bare winding number. This curious 

nomenclature stems from the fact that the phase space in question is often a 
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torus around which the trajectory winds its way. In a typical application, the bare 
winding number represents a frequency ratio, such as the resonant frequency of 
an oscillator, a swing, say, divided by the frequency of a periodic force acting 
on the resonator. The dressed winding number w represents the frequency ratio, 
usually a rational number w = P/Q, into which the system has been “locked” 
by some nonlinear coupling. Of course, for K = 0, w = Q and there is no mode 
locking to rational winding numbers w. But for K = 1, yielding the critical circle 
map, the mode-locked regions cover the entire Q interval (see Figure 7 in Chapter 
7), leaving only a Cantor set of Q values unlocked. The locked regions are called 
Arnold tongues after their discoverer, the Russian mathematician V. I. Arnol'd. 

The critical circle map has a cubic inflection point for 0, = 0 and can be 
approximated by 

» 2 

O41 = 24+ 8 (22) 

for |0,,) < 1. Most of the results obtained for the critical circle map are in fact 
universally valid for all maps with a zero-slope cubic nonlinearity. This universality 
corresponds to the universality of the results for unimodal maps with a quadratic 
maximum. Together the quadratic map and the cubic map model many nonlinear 
phenomena, characterized by either a symmetric (even) nonlinearity or an anti- 
symmetric (odd) nonlinearity. 

For K > 1, the circle map is nonmonotonic and the Arnold tongues overlap 
each other, giving rise to chaotic motion. Just as the transition to chaos in the 
quadratic map can be studied by period-doubling bifurcations, the route to chaos 
in the critical circle map too is analyzed in terms of orbits with increasing period 
lengths. But here the preferred period lengths are equal to the Fibonacci numbers 
F, and the dressed winding numbers w (or 1 — w) are ratios of adjacent Fibonacci 
numbers. With n going to infinity, these winding numbers approach the golden 
mean. 

Even the most important symbolic dynamics of these two prototypical 
nonlinearities are similar to each other, as we shall see later in this chapter. 

Figure 6 in Chapter 7 shows the dressed winding number w = P/Q as a 
function of the bare winding number Q for the critical circle map. It is a devil’s 
staircase with horizontal plateaus at all rational values of w (as opposed to the 
devil's staircase based on the original Cantor set, which has plateaus only for 
w = P/Q with Q = 2”). Although not exactly self-affine, like the Cantor staircase, 
the mode-locking staircase shows an approximate self-affinity, as seen in the 
inset. 

The widths of the plateaus obviously have a tendency to decrease with 
increasing value of Q, which is the period length of the frequency-locked motion. 
This is intuitively clear, because modes lock preferentially into frequency ratios 
involving small integers, such as the ratio of planet Mercury’s orbital frequency 
around the sun to its spin frequency around itself, which equals 3. 
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P/Q 

Figure 2 Width of frequency-locked intervals as a function of frequency ratio. Note self- 

similarity revealed by successive magnifications ratio [JBB 84]. 

Figure 2 shows the width of the plateaus AQ as a function of P/Q, calculated 

by Jensen, Bak, and Bohr [JBB 84]. Again there is a great deal of self-similarity, 

as shown in the insets. The scaling of AQ with Q found by these authors has 

an exponent log (AQ)/log Q + —2.292. 

The fractal defined by those values of Q for which no mode locking takes 

place is in fact a multifractal, with D, ranging from D_,, © 0.924 down to 

D,, = 0.5. As explained in Chapter 9, D- « corresponds to the thinnest region 

of the fractal, which here is located around Q equal to the golden mean , the 

most difficult frequency ratio to mode-lock. Shenker found the lengths 1, to scale 

asymptotically as Fo? ~ y”, with 6 = 2.1644..., for Q, = Fo fE, no, 

called the golden-mean route to chaos [She 82]. With the probabilities given by 

pP, ~ y" and r, ~ y"®, one finds 

| 2 
Dp. = nm ee 0r7A 

re Oe Tt. 

The most concentrated region of the mode-locking fractal lies just to the 

right of the locked interval for the frequency ratio 0 (near Q = 1/27) as it is 

approached by the frequency ratios 1/Q, with Q > oo. This is the so-called 

‘harmonic series, which is comparatively easy to mode-lock. For the harmonic 

series, changes in dressed winding numbers are asymptotically proportional to 

the square root of the changes in the bare winding number—that is, p, ~ ie, 

_ Thus, D,, = 0.5 exactly. 
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The entire multifractal spectrum f(a) was calculated from 1024 mode-locked 

intervals by Cvitanovié, Jensen, Kadanoff, and Procaccia [CJKP 85]. The maximum 
of f(x) equals approximately 0.868 and corresponds to the Hausdorff dimension 
D, of the multifractal underlying the mode-locking staircase. 

Mediants, Farey Sequences, and the Farey Tree 

In order to calculate the dimensions D, of the mode-locking fractal and its 
multifractal spectrum f(a), some order has to be imposed on the rational numbers 
P/Q representing different frequency ratios. One such ordering is used in the — 
standard proof that the rational numbers (as opposed to the irrational numbers) 
form a countable set. Here we need a different ordering, one that better reflects 
the physics of mode locking. 

Suppose the parameter Q in equation 20, the bare winding number, is such 
that the dressed winding number falls somewhere between > and + without 
actually locking into either one. What is the most likely locked-in frequency ratio 
for a nonlinear coupling strength just below the value that would cause mode 
locking at + or 3? It séems reasonable that it should be a frequency ratio P/Q 
in the interval (>, 3) with Q as small as possible. 

Indeed, this is precisely what happens in dynamic systems modeled by the 
circle map. Adjust the nonlinear coupling strength K and the bare winding number 
(2 to a point just below the crossing of the two Amold tongues for the locked 
frequency ratios ; and >. The dressed winding number w for this point in the 
Q)-K plane must be rational because K > 1. In fact, the rational value P/Q that 
w assumes is given by 3 < P/Q < } with Q as small as possible. 

This raises an interesting mathematical question with a curious but simple 
answer: What is the ratio following > and = with the smallest denominator? If 
you ask a kindergartner to add = and 3, he or she may well add numerators and 
denominators separately and write 

i 2 3 
SaaS 

2 3 5 

and in so doing will have discovered the looked-for “locked-in” fraction with 
the smallest denominator.’ 

eS et Set nae Seay caer a oe 
5. This is somewhat reminiscent of S. N. Bose (1894-1974), the celebrated Indian physicist, who, in deriving photon statistics, “forgot” to take account of the photon’s (nonexistent) distinguishability. When Nature (not nature) turned his paper down, Bose wrote to Einstein, who saw the light and recognized Bose’s “mistake” as the long-sought-after answer in the statistical physics of light. Bose’s name has become enshrined ever since in the Bose-Einstein distribution, bosons (integer-spin particles, such as the photon) and Bose condensation, which gives us superconductivity and other macroscopic marvels of the microscopic quantum world. 
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What can such a strange strategy for forming inte-mediate fractions possibly 
mean? Physically, the frequency ratio 1/2 of two oscillators can be represented 
by a pulse (1) followed by a “nonpulse” (0) of the faster oscillator during every 
period of the slower oscillator. Thus, the frequency ratio 1/2 is represented by 
the sequence 101010... or simply 10. Similarly, the frequency ratio 2/3 is 
represented by two Is repeated with a period of three: 110. 

Now, to form an intermediate frequency ratio, we simply alternate between 

the frequency ratios 1/2 (ie., 10) and 2/3 (ie, 110), yielding 10110, which 
represents the frequency ratio 3/5 (3 pulses during 5 clock times). So, in averaging 
frequency ratios, taking mediants, as this operation is called, is not such a strange 
thing after all. 

In general, given two reduced fractions P/Q and P’/Q’, the desired inter- 
mediate fraction is given by 

Be a pee P’ 

OF Q ae Q’ 

and is called the mediant by number theorists. In a penetrating analysis of 
Diophantine equations, John Horton Conway showed that numerators and de- 

nominators can be interpreted as the components of a two-dimensional vector 
and that the intermediate fraction with the lowest denominator is obtained by 
componentwise vector addition [unpublished, personal communication, 1989]. 

Thus, for example, the mediant of > and } equals 7s (the revolutionary frequency 

ratio that Jupiter and Pallas selected for their gravitationally coupled orbits around 

the sun). (As it happens, there is not a single fraction between +s and = with a 

denominator smaller than 18.) For this to be true, the two parent fractions must 

be sufficiently close. More precisely, they must be unimodular. The modularity of 

two reduced fractions P/Q and P’/Q’, which measures their closeness for our 

purposes, is defined as the absolute difference |QP’ — PQ’|, and unimodular 

fractions are those for which |QP’ - PQ'| equals 1. 

The mediant of two fractions has the same modularity with its two parents 

as the parents have between them: modularity is another hereditary trait. In- 

heritance is a pivotal property, in self-similarity, including the self-similarities 

found in mode locking. 
Mediants occur naturally in Farey sequences. A Farey sequence is defined as 

the sequence of fractions between 0 and 1 of a given largest denominator (called 

the order of the sequence). Thus, the Farey fractions of order 5 are (in increasing 

magnitude): 

2 On bles ae eee 

5 5h Saag ey ak ae | oO NI wR Wl eR 

ek 

5 4 

Notice that each fraction is the mediant of its two neighbors. The modularity 

between all adjacent fractions equals 1, but they are not uniformly spaced. 
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However, Riemann’s famous hypothesis, concerning the.zeros of his zeta function, 
guarantees that the spacings between adjacent fractions are relatively uniform 
[Schr 90]. 

While Farey sequences have many useful applications and nice properties, 
such as classifying the rational numbers according to the magnitudes of their 
denominators (in fact, there are entire books listing nothing but Farey fractions), 

they suffer from a great irregularity: the number of additional fractions in going 
from Farey sequences of order n — 1 to those of order n equals the highly 
fluctuating Euler's function @(n), defined as the number of positive integers smaller 
than and coprime with n. For example, #(5) = 4, (6) = 2, and (7) = 6. 
A much more regular order is infused into the rational numbers by Farey trees, 
in which the number of fractions added with each generation is simply a power 
of 2. 

Starting with two fractions, we can construct a Farey tree by repeatedly 
taking the mediants of all numerically adjacent fractions. For the interval [0, 1], 
we start with ¢ and ; as the initial fractions, or “seeds”. The first five generations 
of the Farey tree then look as follows: 

0 

I Ble 

wlRA 

NIA 

Qo 

ml BR aN | GW 

I 

2 

5 5 

8 > a) 

3 3 

8 7 NB 

4 

D 

Each rational number between 0 and 1 occurs exactly once somewhere in the 
infinite Farey tree. The tree’s construction reflects precisely the interpolation of 
locked frequency intervals in the circle map by means of mediants. The Farey 
tree is therefore a kind of mathematical skeleton of the Arnold tongues. 

The location of each fraction within the tree can be specified by a binary 
address, in which 0 stands for moving to the left in going from level n to level 
pee and 1 stands for moving to the right. Thus, starting at 4, the rational 
number 7 has the binary address 011. The complement of > with respect to 1 
(i.e, 7) has the complementary binary address: 100. This binary code for the 
rational numbers is useful in describing coupled oscillators. 



Periodic and Quasiperiodic Structures in Space—The Route to Spatial Chaos 337 

Note that any two numerically adjacent fractions of the tree are unimodular. . 

For example, for = and $, we get 2 4 1 Fe 

Some properties of the Farey tree are particularly easy to comprehend in 

terms of continued fractions, which for numbers w in the interval [0, 1] look as 

follows: 

1 
WwW ane 

I 
Our 

a 
a, + pa sema 6 

3 

but are more conveniently written as w = [a,, a, a3, . . .], where the a, are positive 

integers. Irrational w have nonterminating continued fractions. For quadratic 

irrational numbers the a, will (eventually) repeat periodically. For example, 

1//3 = [1, 1, 2,1, 2,1,2,...]=[1, 1, 2] is preperiodic and has a period of 

length 2; 1/,/17 = [8] has period length 1 and 1/,/61 has period length 11. (It 

is tantalizing that no simple rule is known that predicts period lengths in general.) 

Interestingly, for any fraction on level n of the Farey tree, the sum over 

all its a, equals n: 

ay =n i Oars 
k 

We leave it to the reader to prove this equation (by a simple combinatorial 

argument, for example). 
There is also a direct way of calculating, from each fraction on level n — 1, 

its two neighbors or direct descendants on level n. First write the original 

fraction as a continued fraction in two different ways, which is always possible 

by splitting off a 1 from the final a,. Thus, for example, + = [2, 2] = [2, 1, I]. 

Then add 1 to the last term of each continued fraction; this yields [2, 3] = ; 

and [2, 1, 2] = 3, which are indeed the two descendants of =. 

Conversely, the close parent of any fraction (the one on the adjacent level) 

is found by subtracting 1 from its last term (in the form where the last term 

exceeds 1, because a, = 0 is an illegal entry in a continued fraction). The other 

(distant) parent is found by simply omitting the last term. Thus, the two parents 

of + = [2, 3] are the close parent [2, 2] = 2 and the distant parent [2] = 5. (But 

which parent is greater, in general—the close or the distant one? And how are 

mediants calculated using only continued fractions?) 

Interestingly, if we zigzag down the Farey tree from its upper right 

¢ + +3} } > F, and so on), we land on fractions whose numerators and 

denominators are given by the Fibonacci numbers F,, defined by 

Ey etF 2, +£,-5 Fo = 0, Fy = 1 In fact, on the nth zig or zag, starting at 2 

we reach the fraction F,+,/F,+2, which approaches the golden mean 

y= (/5 — 1)/2 = 0.618....asn > © [Schr 90]. (Starting with + we land on 
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the fractions F,/F,,, which converge on y? = 1 — y.) The binary address of 
in the Farey tree is 101010.... 

The continued fraction expansions of these ratios F,/F,,, , have a particularly 
simple form. For example, 

2 
F = a be iy I] 

eae 

and in general 

c= Ae ee (with n Is) 
Fee 

Obviously, continued fractions with small a, converge relatively slowly to their 
final values, and continued fractions with only 1s are the slowest converging of 
all. Since 

Tiwi tet el y = lim 
noo fy+] 

where the bar over the 1 indicates infinitely many Is, the golden mean y has 
the most slowly converging continued fraction expansion of all irrational numbers. 
The golden mean y is therefore sometimes called (by physicists and their ilk) 
“the most irrational of all irrational numbers’”— a property of » with momentous 
consequences in a wide selection of problems in nonlinear physics, from the 
double swing to the three-body problem. 

Roughly speaking, if the frequency ratio of two coupled oscillators is a 
rational number P/Q, then the coupling between the driving force and the “slaved” 
oscillator is particularly effective because of a kind of a resonance: every Q cycles 
of the driver, the same physical situation prevails so that energy transfer effects 
have a chance to build up in resonancelike manner. This resonance effect is strong, 
of course, particularly if Q is a small integer. This is precisely what happened 
with our moon: resonant energy transfer between the moon and the earth by 
tidal forces slowed the moon’s spinning motion until the spin period around its 
own axis locked into the 28-day cycle of its revolution around the earth. As a 
consequence the moon always shows us the same face, although it wiggles 
(“librates”) a little. 

Similarly, the frequency of Mercury's spin has locked into its orbital fre- 
quency at the rational number >. As a consequence, one day on Mercury lasts 
two Mercury years. (And one day—in the distant future, one hopes—something 
strange like that may happen to Mother Earth!) 

The rings of Saturn, or rather the gaps between them, are another conse- 
quence of this resonance mechanism. The orbital periods of any material (flocks 
of ice and rocks) in these gaps would be in a rational resonance with some 
periodic force (such as the gravitational pull from one of Saturn’s “shepherding” 
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moons). As a consequence, even relatively weak forces have a cumulatively 
significant effect over long time intervals, accelerating any material out of the 
gaps. 

For rational frequency ratios with large denominators Q, such a resonance 
effect would, of course, be relatively weak, and for irrational frequency ratios, 
resonance would be weaker still or absent. 

For strong enough coupling, however, even irrational frequency ratios might 

be affected. But there is always one irrational frequency ratio that would be least 

disturbed: the golden mean, because, in a rational approximation to within a 

certain accuracy, it requires the largest denominators Q. This property is also 

reflected in the Farey tree: on each level n the two fractions with the largest 

denominators are the ones that equal F,_ ,/F,,,, and F,/F, 4, which for n > 00 

approach y" = 0.382... and y = 0.618 ..., respectively. (Conversely, the frac- 

tions with the smallest Q on a given level of the Farey tree are from the harmonic 

series 1/Q and 1 — 1/Q) 
Another way to demonstrate the unique position of the golden mean among 

all the irrational numbers is based on the theory of rational approximation, an 

important part of number theory. For a good rational approximation, one expands 

an irrational number w into a continued fraction and terminates it after n terms 

to yield a rational number [a,, a,,..., 4,] = P»/Gn This rational approximation 

to w is in fact the best for a given maximum denominator q,. For example, for 

w = 1/n = (3, 7, 15, 1, 293,...] and n = 2, we get p,/9, = 7/22, and there is 

no closer approximation to 1/z with a denominator smaller than 22. 

Now, even with such an optimal approximation as afforded by continued 

fractions, the differences for the golden mean ) 

Pr 
In 

b- 

exceed c/q? (where c is a constant that is smaller than but arbitrarily close to 

Lif 5) for all values of n above some ny. And this is true only for the golden 

mean y and the “noble numbers” (defined as irrational numbers whose continued 

fractions end in all 1s). Thus, in this precise sense, the golden mean (and the 

noble numbers) keep a greater distance from the rational numbers than does any 

other irrational number. Small wonder that the golden mean plays such an 

important role in synchronization problems. 

The golden mean is also visible in visual perception (see Figure 3). For a 

computer-generated image of a “sunflower” using the golden angle Ap = 

360° y © 222.5° as the angular increment in the placement (r,, ,,) of successive 

. seeds, where 

Car p,) =(c-r,-» Pn—1 a A®) 

we get a realistic image of the sun flower's seed pattern, which uses the golden 
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Figure 3 The golden angle in visual perception. (Courtesy T. Gramss, after [RS 87]) 

angle in its construction (the left part of Figure 3) [RS 87]. But for angular 
increments A@ that differ by just 0.04 percent from the golden angle (222.4°), 
the human eye perceives pronounced spirals (the right part of Figure 3)—a 
psychovisual mode-locking phenomenon! 

The Golden-Mean Route to Chaos 

For the critical circle map 

6 area ss (276,) (23) — — -—— Tt 
n+1 n 2n sin n 

the sequence of the locked-in frequency ratios P/Q equal to the ratio of successive 
Fibonacci numbers F,_ ,/F, = [1, 1,..., 1isin many respects the most interesting 
route to aperiodic behavior and deterministic chaos of the variable 6,,. In the 
transition to chaotic motion, these frequency ratios and equivalent ones, such as 
F,—2/F, = [2, 1, 1,..., 1], are usually the last to remain unaffected as the degree 
of nonlinear coupling is increased. Chaotic means, as always, that initially close 
values of 0 will diverge exponentially so that all predictability is lost as the 
system evolves in time. . 

In the Farey-tree organization of the rational numbers, introduced in the 
previous section, the ratios F,_,/F, or F,_,/F, lie on a zigzag path approaching 
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the golden mean y or its square, 1 — y = y”, respectively. Each fraction is the 
mediant of its two predecessors. For example, the sequence F, _ ,/F,,, beginning 
with * and 4, equals +, 2, +, 3, 5,.... The corresponding continued fractions, 

beginning with 3, keep adding Is: [2], [2, 1], [2, 1, 1], [2, 1, 1, 1], [2, 1, 1, 1, I], 

and so on to [2, I] = y’. 
The parameter value Q,, that gives a dressed winding number equal to the 

frequency ratio F,_,/F, has to be determined numerically. A simple calculator 
program that adjusts Q so that, for 6, =0, 0;,=F,-, yields the following 

approximate parameter values: 

QD = 0.5 
QU) & 0.3516697 

Q(2) ~ 0.4074762 
Qi) & 0.3882635 
Qs) © 0.3951174 
QUuz) & 0.3927092 
Qi) & 0.3935608 

and so on, converging to Q,, % 0.3933377. 

These parameter values give rise to superstable orbits because the iterates 

0, include the value 0, = 0 for which the derivative of the critical circle map 

vanishes. These Q values therefore correspond to the superstable values R,, of 

the quadratic map, and Q,, corresponds to R.. 

Is there a universal constant, corresponding to the Feigenbaum constant, 

which describes the rate of convergence of the parameter values Q, := 

QUE, _,/F,) to Q,, as n goes to infinity? Numerical evidence suggests that there 

is, and that the differences between successive values of Q,, scale with an asymp- 

totic factor: 

Oo ae Q, Rep ele ES 
Q, am OQ + 1 

with 6 = —2.8336..., which thus corresponds to the Feigenbaum constant 

4.6692 ....(The minus sign signifies that successive differences alternate in sign.) 

Other self-similar scaling behaviors can be observed in the iterates of the 

variable 0,. For example, for Q = Q(F,_,/F,) the differences 0; , — F,,-3 con- 

verge to O in an asymptotically geometric progression: 

0, n=1 —F,_,2a" 

with o& = —1.288575..., which corresponds to the scaling parameter 

— 2.5029... for the iterated variable of the quadratic map. 
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Both a and 6 are universal for maps with a zero-slope cubic inflection point. 
This result follows from a renormalization theory for the golden-mean transition 
to chaos of such maps. The functional equation of the fixed-point function for 
the renormalized cubic map is 

f(x) = af (ceflx/ax’)) 

(The corresponding functional equation for the period-doubling transition of the 
quadratic map looks rather similar: g(x) = ag(9(x/x)); see page 274). 

Another similarity between these two prototypical transitions to chaos is 
in their symbolic dynamics. For Q = Q(F,_,/F,) and K = 0, 

F, 6-= 0 ee Yi ot ne 
n 

We consider @,, mod 1 in the interval (—0.5, 0.5] and write L for 6, <0, C for 
0, =0, and R for 0, > 0. For 0, = 0, we then get the following symbolic 
dynamics as n > oo: 

CRLRRLRLRRLRRL... 

Following the initial C, this sequence is, of course, none other than the familiar 
rabbit sequence in which 1 has been replaced by R and 0 by L. For K = 1, the 
actual iterates are different from those for K = 0, but the symbolic dynamics are 
given by the same sequence. 

As we know from the discussion of quasicrystals in Chapter 13, this sequence 
can be constructed from the iteration 0 > I, 1 > 10 or, in our present alphabet, 
L +R, R>RL. Again there is a great similarity with the period-doubling 
transition for which the symbolic dynamics are generated from the iteration 
L + RR, R~ LR. In fact, these two transitions were treated by a unified 
renormalization theory by Procaccia, Thomae, and Tressor [PTT 87]. 

For finite n, the symbolic dynamics can be obtained from the formula for 
Ising spin positions (see pages 323—324). Thus, for the dressed winding number 
P/Q = 3/8, the positions of the L’s are given by equation 6 for the down-spins 
with 1 — w = 3/8, namely, 2, 5, 7. Thus, the superstable orbit with frequency 
ratio 3/8 is CRLRRLRL, which is the initial eight-term segment of the infinite 
sequence. 

For the winding number P/Q = 2/5, the dynamics computed in this manner 
are CRLRL, which differs in the last letter from the corresponding letter in the 
infinite sequence. In general, for Q = F,,+,, the last letter is L and not R, as in 
the infinite sequence. However, this minor blemish is self-inflicted. It is easily 
removed by considering 8, mod 1 not in the interval (—0.5, 0.5) but in the 
slightly shifted interval (—x, 1 — x), where x © 0.4461583 is the solution of the 
transcendental equation x = Q,, + (sin 2mx)/27. 
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Figure 4 Multifractal spectrum of the critical circle map at the golden-mean winding 

number [JKLPS 85]. 

The aperiodic iterates 0, of the critical circle map, for the dressed winding 

number equal to the golden mean y, form a multifractal with a spectrum of 

singularities f(x) shown in Figure 4. The same spectrum obtains for all equivalent 

numbers, that is, all those irrational numbers whose continued fraction ends in 

all 1s, the so-called noble numbers (see Appendix B). This spectrum was computed 

from the periodic orbit with period length Q = 2584 = F,.. The distances 

1, = 9, 4r,, — 9, mod 1 were taken as the length scales of the multifractal, and 

p, was set equal to 1/2854. The dimension D_ ,, for the most rarefied region 

was already obtained by Shenker from the abovementioned scaling exponent 

@ = —1.288575 ;.. as 

log y 
= ——_~— _ & 1.898 

log (— 1/a) D_« 

The most concentrated region of the multifractal scales as a’, giving the smallest 

dimension D,, as D_ ,,/3 © 0.6327 [She 82]. 

A selection of the applications related to spatial or temporal mode locking 

and chaos are listed in the references. These relate to acoustics [LP 88], solar 

system dynamics [Las 89, WPM 83, AS 81], physical chemistry [BB 79], astro- 

physics [HLSTLW 86], solid-state electronics [MM 86, BBJ 84, GW 87, CMP 

87], cardiology [CJ 87], turbulence [JKLPS 85, FHG 85], and nonlinear mechanical 

oscillators [AL 85, Moo 84]. 
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ercolation: From Forest Fires to Epidemics 

Observation always involves theory. 
—EDWIN HUBBLE 

The function of an expert is not to be 

more right than other people, but to be 
wrong for more sophisticated reasons. 

—DAVID BUTLER 

Percolation permeates nature and man-made devices in many modes. In a coffee 

percolator, water seeps, or percolates, through the ground beans to emerge as 

drinkable coffee at the output spout. 
To remain at the breakfast table, when you boil an egg long enough, its 

protein bonds will link up, and before too long the bonds will percolate through 

the entire egg to solidify it—so that you can eat it safely with a spoon and 

without spillage. 
By contrast—and happily—an epidemic does not always percolate through 

an entire population. There is a percolation threshold below which the epidemic 

has died out before most of the people have. And an undercooked egg, too, is 

below the percolation threshold. 

On a grander scale, percolation theory, eloquently expounded by Dietrich 

Stauffer [Sta 85], has something to offer for a better understanding of the formation 

of galaxies and clusters of galaxies. And at the other extreme, percolation has 

infiltrated even one of the tiniest scales: atomic nuclei. Their fragmentation is 

now being analyzed as a percolation process [Cam 86]. 

Another famous and preferred paradigm for percolation is a forest fire. If 

we ignite a few trees, will the whole forest burn down, or will most trees still 

be standing by the time the fire has stopped? 
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At the percolation threshold (clearly exceeded in. the 1988 conflagrations 
in Yellowstone National Park), statistical self-similarities abound, and it is these 
self-similarities that make the mathematical treatment tractable and lead to simple 
scaling laws at or near the threshold. 

Percolation theory is also a good preparation for the study of more com- 
plicated physical phenomena, such as phase transitions in magnetic materials and 
in thermodynamics in general. For example, the correlation length of the spin 
directions in a dilute “ferromagnet” becomes infinite at the percolation threshold, 
called the critical or Curie point in physics. This means that clusters of magnetic 
domains as large as the sample appear. In fact, clusters of all sizes, or length 
scales, arise, and these clusters are self-similar. In the entire range, from atomic 
distances to the size of the sample, clusters look similar and become stochastically 
indistinguishable when scaled to the same size. 

Below the percolation threshold (above the Curie point for magnets), clusters 
of only finite size exist: the coffee does not drip through, and the chunk of iron 
is only “paramagnetic.” But above the percolation threshold (below the Curie 
point), infinite clusters are common, with well-known consequences, depending 
on the application: a forest fire will spread to the other end of the forest, epidemics 
become pandemics, and iron (ironically?) becomes a ferromagnet. And near the 
percolation threshold, self-similarity reigns supreme! 

Let us take a closer look at one of the hotter paradigms in percolation 
theory: forest fires, often fought but still ablaze. 

Critical Conflagration on a Square Lattice 

Assume, for simplicity, that a forest can be modeled as a square point lattice in 
which the lattice points are independently occupied by trees with probability 
p < 1 (see Figure 1). Now ignite the lowest row of trees and watch how the 
fire spreads as a digital clock ticks along in discrete time. 

We assume that a burning tree will ignite all nearest-neighbor trees after 
one unit of time. After one more time unit of burning, a tree is burned out. 

Elaborate computer simulations [Sta 85] have confirmed the obvious: below 
a critical tree density, p,, the fire dies out before reaching the other edge of the 
forest, the uppermost rows in Figure 1. By contrast, for p > p,, the fire will reach 
the far edge (and would threaten more trees if the forest were longer). 

While p « p, would be a very safe forest and p & I a natural powder keg, 
eee interesting things happen near the percolation threshold, that is, for p © P- 
or for 

pee er 

P 
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It turns out that for € « 1, the crucial variables obey simple scaling laws reflecting 
the self-similarity of percolation near the threshold, or critical point (to borrow 
a term from the physics of phase transitions). 

Let us call the number of trees in the nth row of the lattice that have burned 
down at time t, divided by the average number of trees per row, Z(n, t, &). Here 

n and ¢ are assumed to be large compared to 1. Numerous numerical analyses 
[Sta 85] have suggested that near the threshold (i.e., ¢ « 1), the order parameter 
Z is a (generalized) homogeneous function of its arguments: 

Z(A*n, A*t, 2%) 
Z(n, t, €) = 2 foal td KL (1) 

That is, Z is some universal function that scales as shown, with three scaling 

exponents: a,, a,, and a, [Gri 89]. What else can we say about this important 

function? If we wait long enough (i.e., as f + 00) and go far enough away (as 

n — ©), equation 1 becomes 

Z(00, 00, A”) 
LLG, CG, 6).= 7 (2) 

Postulating a power-law dependence of Z(00, 00, &) on &: 

Z(c0, 00, &) = const « é? (3) 

we obtain, from equation 2, 6’ = (Ae)*/A, or a, = 1/B. The exponent f is called 

a critical exponent, and we have just succeeded in relating it to one of the scaling 

exponents, 4,. 

Next, we introduce two more parameters: a characteristic length (e.g., the 

correlation length) €, and a characteristic time 9. Both € and @ are known to 

diverge to infinity as € goes to 0 according to simple power laws: 

G==rconst-6 | 7 (4) 

and 

0 =const-e ° (5) 

We subsume the dependence of Z(n, £, €) on & into the characteristic quantities 

and write, tentatively, 

ek 
Pee at BY ot = (6) Z(n, t, €) ral 5 ;) 

where the function g depends only on two variables. The exponent x must equal 

— B/v for the original scaling law (equation 1) to hold. 
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Figure 1 (A) Square lattice randomly occupied by trees at percolation threshold. Lowest 
row of trees has been ignited. (B) A little later: nearby trees have caught fire. (C) The 
conflagration has reached the upper edge of the forest. (D) The fire has died out, and so have 
most of the trees. (Courtesy of H. Behme). 
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We have now related all three scaling exponents in equation 1 to three 
critical exponents: f, v, 6, which describe how Z and the length and time 
parameters, € and 0, scale with € near the critical point (¢ « 1). 

Defining a characteristic number of burned-down trees, 

G aay el” 

Z(n, t, &) feck = F5 (7) C a(; a) 
which is the most symmetric and useful way of expressing the power-law de- 
pendence of Z on n and f and, with equations 3 to 5, on €. These equations tell 
us, for example, that as we change p, that is, €, the new values of Z(n, f, €) can 
be obtained from the same “universal” function g by multiplication with n~*’” 
and scaling n and ¢ with ¢-’ and ¢~°, respectively. 

we can write equation (6) as 

Universality 

For quite a while I have set for myself the 
rule if a theoretician says ‘universal’ it 
just means pure nonsense. 

—WOLFGANG PAULI 

The “critical exponents” v and 6 must be determined analytically, or by computer 
simulation, and the critical reader is invited to try this on his or her home 
computer. The surprising result is that, for a wide variety of problems in physics, 
chemistry, biology, and many other disciplines, the critical exponents do not 
depend upon the details of the situation but, typically, only on the dimensionality 
of the embedding space (e.g., two dimensions for a square lattice) and the “degrees 
of freedom’ of the variable considered—for example, 2 in the case of a spin (or 
tree) system where spins (trees) are either up or (burned) down. 

This kind of universality is one of the liveliest themes in contemporary 
physics, giving rise to many burning questions, such as, How does a specified 
random walk diverge on a fractal lattice, like the Sierpinski gasket, for example, 
near the critical point (percolation threshold)? How is electricity conducted on 
fractal networks? or, How does the speed of a forest fire depend on the density 
p of the trees? 
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According to equations 4, 5, and 7, Z/€ has a fixed value if n changes with 
time f as 

n = const : ”/ 

Thus, the mean propagation speed of the fire defined, for example, by observing 
the progress in time of the fire's front scales as f’/?~ *. By counting newly ignited 
trees in a computer simulation (to conserve forests and oxygen), the ratio of 

two of the critical exponents, v/d, can easily be determined [ASS 86]. 

Figure 2A shows one of the results of a simulation by Albinet and coworkers 
in which the mean position of the fire’s cutting edge is plotted versus time in 

log-log coordinates. In this simulation, the lattice had a size of 200 times 200 

points and the density of trees was at the critical value for a square lattice, 
p. © 0.593. Thus, there were a total of 23,720 trees to bum or not to burn. 

Log (mean front position) 

Log (time) 
= 

Log (number of burned trees) 

Log (time) 
(B) 

i iti ire’ i ‘function of burning time. Straight 
Figure 2 (A) Mean position of a fire’s cutting edge as a 

tine based on power-law postulate, has slope 0.87. (B) Number of burned trees as a function 

of time. Slope is 0.79 [ASS 86]. 
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The straight line conforms to the power-law postulate, and its slope, v/6, 
equals 0.87. Thus, not surprisingly, the fire spreads faster than a diffusion process 
(slope 0.5), but slower than on a fuse cord (slope 1.0). 

The deviations from the straight line for very short times are residual effects 
of how the fires were laid, and those for very long times are size effects due to 
“saturation” (where all trees have burned down). 

The total number of burned trees, 

Nit, €) = const - )° Z(n, t, €) 

scales as {”~”, Thus simple unrestrained counting gives the ratio of (v — B)/6, 
or B/6 once v/6 has already been determined. Figure 2B shows the result of a 
computer experiment. Again, after initial effects have died out, the number of 
burned-down trees as a function of time is a straight line in a log-log plot with 
a slope of (v — B)/d = 0.79. 

The third critical exponent, B, is determined by exploiting equation 3, that 
is, counting the dead trees after the fire has stopped. The simulation results 
turned (burned?) out to be rather prone to sampling error: B = 0.12 + 0.03; 
the theoretical value [Sta 85] is B = 4 ~ 0.139. 

The exponent f is rather small, as would be expected if the fraction of 
trees that eventually burn down does not depend on ¢ as strongly as the speed 
of the fire does. 

Another exponent that can be calculated analytically is v, which governs 
the correlation length (equation 4); it equals + exactly. With v = +and v/d = 0.87, 
the critical time exponent 5 equals 1.533, close to the value found by Peter 
Grassberger [Gra 85]. Thus, as € goes to zero, characteristic times diverge more 
rapidly than the correlation lengths. This makes sense, because for p smaller than 
but near p,, that is, € « 1, there may be a long period of time in which the fire 
keeps burning after its outer perimeter has stopped advancing much further. As 
firefighters know all too well, fires spread backward as well as forward. 

It is interesting to note that all critical exponents, v, 8, and B, were found 
to be independent of the size of the interacting neighborhood; their values are 
indistinguishable for the following cases: 4 nearest neighbors on the square lattice, 
8 nearest and next-nearest neighbors, and 24 neighbors in a 5 Xx 5 square. 

This invariance illustrates what is meant by universality; the critical exponents 
depend only on the embedding dimension (d = 2) and the degrees of freedom 
(also 2) for all three coordination numbers studied. 

However, the critical densities p, do differ. Experimental values are 
P. = 0.592745, 0.407355, and 0.168, respectively, for these three different co- 
ordination numbers. This is not surprising, because if a fire can jump not just to 
the nearest trees, but also to the second-, third-, fourth-, and fifth-nearest neigh- 
bors, wider gaps can exist in the forest without stopping the fire. 
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The Critical Density 

In Figure 3, the average termination times of the fire t,, are plotted against the 
tree density p for a 300 by 300 square lattice. The divergence near p = p, © 0.593 
is quite pronounced and follows the theoretical expectation t,, = const - ||~* 
with Tt © 1.5 [Sta 85]. 

Similar behavior, with the same value for T, is found for triangular lattices, 
except that p, * 0.5, in accordance with the exact theoretical prediction for the 
critical density, p, = 0.5. 

The triangular lattice is one of the lattices for which an analytical value is 
available. The Bethe lattice (see Chapter 16), called a Cayley tree in graph theory, 

is another instance: for z nearest neighbors, the percolation threshold p, equals 

precisely 1/(z — 1). It is clear from Figure 3 that computer experiments with 

varying p are a good way to determine p,: at the critical point p = p,, many 

parameters show a sharp peak. In physics such peaks (of specific heat or magnetic 

susceptibility, for example) as a function of temperature signal second-order phase 

transitions. Indeed, percolation is a phase transition, albeit much cleaner and 

clearer than the “average” thermodynamic phase transition, which can be very 

“mean” to treat indeed. 

The Fractal Perimeters of Percolation 

Does the forest fire advance in a straight front like a Greek phalanx, or is its 

cutting edge more fingerlike? The front is in fact fractal, complete with a Hausdorff 

200 

150 

100 
Time 

50 

0.4 0.5 0.6 0.7 

P 

Figure 3 Average termination time of fires as a function of tree density. Note divergence 

near critical density P + 0.593. [Sta 85]. 
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dimension D that lies between 1 and 2. A seemingly related phenomenon is 
invasion percolation, also known as “fingering” in oil exploration, where it has 
been much touted, especially when oil became “temporarily” scarce in the 1970s 
(see Chapter 9). However, fingering results from an instability at the interface 
of two liquids. By contrast, the fractal fire front stems from a connectivity 
paradigm: the adjacency of trees. 

Finite-Size Scaling 

What does computer simulation of forest fires teach us about the fractal dimension 
f of the perimeter? If we define the perimeter as the number F of burned sites 
which border an unburned site and plot this number as a function of the size of 
the lattice L, we find a simple power law, called finite-size scaling [Sta 85]: 

F = const - L/ 

with f = 1.75 for all three neighborhoods—a value uncomfortably close to 2 
for a perimeter, which, topologically, has only one dimension. (Note, though, that 
our definition of perimeter includes the boundaries of internal pockets of unburned 
trees.) 

Another fractal dimension, d, describes the total number M of burned trees. 
If all trees burned down, or even if just a fixed fraction of trees burned down, 
M would be proportional to the total number of trees or the area of the lattice: 
M = const - L*. But that is not what happens near the percolation threshold. In 
fact, we find another power law describing the finite-size scaling: 

M = const « L’ (8) 

with d © 1.9, somewhat less than 2 because pockets of unburned trees persist. 
After the fire has stopped, the burned-down trees form a kind of two-dimensional 
sponge (or Swiss cheese) with many holes on many scales. 

Stauffer [Sta 85] also cites an interesting relationship for the difference 
between the fractal dimension d and the embedding dimension d, and the critical 
exponents f and v: 

Meee (9) v 

For d = 2, B = =, andv = +, this relation gives d = 2+ in excellent agreement 
with the experimental data; see Figure 4. 
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Figure 4 Size of largest cluster at the percolation threshold of the triangular lattice plotted 

against lattice size. The slope of the straight line corresponds to the theoretical fractal dimension 

2% [Sta 85]. 

Of course, far from the critical point there is little dependence of the number 

of burned-down trees on ¢. Thus, the exponent f (see equation 3) would tend 

to zero so that, with equation 9, d > d, as expected, because forest fires are 

fractal only near the critical point é « 1. 

In fact, far from the critical point, the correlation length is much, much 

smaller than the forest (or the magnet). Thus, M does not vary as I*, as in 

equation 8, with a fractal exponent d, but in a completely “Euclidean” manner: 

M = const - L4, where d is the Euclidean dimension of the embedding space. In 

short: Percolation is a fractal phenomenon only near the critical point; above or 

below, it shows classical Euclidean behavior. 

Still another fractal dimension, d, can be defined by the penetration time 

t., as a function of forest size L; 

to = const ° L? 
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Numerical evidence confirms this power law and gives d.~ 1.16, in close agree- 
ment with the expectation that characteristic times scale as lengths raised to the 
power v/d = 1.159. 

While we have focused our attention on forest fires, much the same laws 
govern the spread of epidemics, the formation of galaxies, nuclear fragmentation, 
and countless other phenomena [Kes 87]. 

Percolation is a widespread paradigm. Percolation theory can therefore 
illuminate a great many seemingly diverse situations. Because of its basically 
geometric character, it facilitates the analysis of intricate patterns and textures 
without needless physical complications. And the self-similarity that prevails at 
critical points permits profitably mining the connection with scaling and fractals. 
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hase Transitions and Renormalization 

Is nature trying to tell us something by 
using only renormalizable interactions? 

—HEINZ PAGELS 

The concepts of renormalization and self-similarity are closely related. In fact, 
renormalization is one of the most fruitful applications of self-similarity. In physics, 
renormalization theories have shed light on nonlinear dynamics and the mysteries 
of phase transitions in areas ranging from freezing to ferromagnetism, spin glasses, 
and self-organization [Hak 78]. 

Where do the puzzling fractional exponents, describing behavior near critical 
points, come from, and why are they so often identical in widely different 
situations? And what is the reason behind the small integers in these exponents? 
All this has been greatly clarified in the last two decades by Leo Kadanoff, 

Michael Fisher, and others, and especially by Kenneth Wilson, who has won the 
Nobel Prize in physics for his work. One of the more spectacular phase transitions 

that are now completely transparent is critical opalescence, in which a translucent 

medium, at the critical point, becomes optically opaque as a result of a “soft 

mode” that scatters light much as thick smoke does in a smoke-filled foyer. 

Here we shall touch only very lightly on the subject, but hope, nevertheless, 

to convey some of the spirit by the sprinklings that follow. 

A First-Order Markov Process 

A Markov process is a stochastic process in which present events depend on the 

past only through some finite number of generations. In a first-order Markov 

process, the influential past is limited to a single earlier generation: the present 

can be fully accounted for by the immediate past. 
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Such processes are often represented by state diagrams, such as that shown 

in Figure 1, with various transition probabilities. Thus, in the simple first-order 

Markov source depicted in Figure 1, if +1 was the last symbol generated by 

the source, we are in the left state, labeled +, and p is the probability of generating 

another +. This is indicated by the curved arrow that starts and ends at the 

left state. 
With probability 1 — p the source will emit the symbol — 1 and thus jump 

to the right state, labeled —. In this state, the source will emit another —1 with 
probability q and thus remain in the right state. With probability 1 — q, the 
source will emit a +1 and jump back to the left state. 

For p = q, the entropy Hy, of such a Markov source is 

Hy = —p log,p — (1 — p) log, (1 — p) bits per output symbol 

which happens to be the same as the entropy H(p) of a memoryless binary source 
with probabilities p and 1 — p for the two possible outputs. This agreement is 
easily verified by modeling the first-order Markov source with p = gq as a zero- 
order (memoryless) source “kicking” a polarity reversal switch (ie., chang- 
ing + to — or — to +) with probability 1 — p and not kicking the switch with 
probability p. The outputs from these two sources can be reversibly transformed 
into each other (except for an overall sign change) and therefore must have the 
same entropy. 

Self-Similar and Non-Self-Similar Markov Processes 

For p = q, the Markov source depicted in Figure 1, emits + 1 or —1 with equal 
probability. For p = 7, successive outputs are independent: the machine has turned 
into a memoryless honest-coin flipper.’ The output sequence is an example of a 
statistically self-similar process: strike out every other symbol, and the decimated 
sequence is statistically indistinguishable from the original sequence, because we 
again have independent + 1s and —Is, each occurring with probability 3. 

For p # 3, however, self-similarity no longer holds. Adjacent samples are 
correlated, and when we skip symbols the remaining symbols will have an 
absolutely smaller correlation. 

In fact, another look at Figure 1 reveals that, for p = q > 5, a like symbol 
is more likely than an unlike one to follow a given symbol. For p = q < 4, the 
situation is reversed: symbols prefer to alternate. 

1. Not to be confused with the forgetful but honest coin-flipper. 
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Py- S47 P 

p-+=1-4q 

Figure 1 First-order Markov source with two states (+ and —) and four transition 

probabilities. 

The correlation C,, between two symbols s, and s,4,, from the source in 

Figure 1 with p = q is given by 

1 N 

C= ho im Bs er (1) 
=4 No n 

Since our Markov source is stationary and ergodic for 0 # p # 1, we can 

replace the “time” average in equation I by an ensemble expectation value, 

symbolized by angular brackets: 

Gy = 545 + ” 

For C, we obtain, by averaging over the four distinct possibilities 

a Wes aie con vy, ren alae rm 
—), 

C,=tp-—-d-p—U—-pt+pl=2p-1 

For p = + C, = 0, as expected. Note that C, < 0 for p < s 

Here is a typical “random” sequence, generated by this inveterate stochastic 

generator while writing this (without mechanical or electronic assistance): 

Se ae ee te tice chem ch thinned iam 

By coincidence, this sequence has equal numbers of + and —. The sample corre- 

lation is —+s, giving an estimate for the probability parameter p = is PROD: 

Considering that my intent was to generate a sequence with p = 7, I fell about 

16 percent short— a typical human failing. Most human random number gen- 

erators can be characterized as Markov sources with p < z when they are trying 

to generate independent binary events. People have the greatest trouble being 

really random; they almost always alternate too much (a common shortcoming 
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that was judiciously exploited in Claude Shannon’s*“outguessing machine” 
[Sha 53], described in pages 149-150). 

The Scaling of Markov Outputs 

Since, in a first-order Markov process, the present is fully accounted for by the 
immediately preceding past, one obtains for the correlation coefficients 

or, introducing a new parameter PB defined by 

e b= 2p —1 for Mea (2) 

we have 

Cus age 

Let us delete every other output symbol from our Markov source. The 
result can be viewed as the output of another Markov source with a different 
parameter p (for p #3). The correlation, C®), of the decimated process is the 
square of that of the original process: 

Cl Gee Chaka 

Thus, we see that our parameter B has doubled, which means (see equation 2) 
that the new transition probability has changed from p to p” given by 
2p” — 1 = (2p — 1), or 

p? = 2p? — 2p + I 

The aforementioned value p = + ~ 0.42 then changes to p” ~ 0.51. If we again take every other sample (every fourth term of the original sequence), we get Cr = Cy, = C1 and p® = 0.5003 for p = 0.42. As we leave out more and more intermediate samples, p*”, for n + oo, approaches 3, the value for independent samples, from above. 
Thus, while the output of our Markov source is not self-similar (except for p = 0.5 or I for nonnegative C,), scaling the index of the output sequence s, by an integer r, to yield the decimated sequence s,,, is equivalent to taking the output of another Markov source with a rescaled parameter B”, where B” = rf. Thus, the parameter B scales exactly as the index. 
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The physical significance of 1/f' is a correlation length, which goes to zero 
as r becomes larger and larger, reflecting again the fact that “skipping” samples 

makes the correlation smaller. In other contexts, the parameter f can also be 
identified with a temperature (as we will see shortly). 

Together with periodic symmetries, as manifest in spatial rotations and other 

periodic phenomena, the scaling symmetry we just encountered is now one of 

the most important symmetries in physics and other fields. In fact, the ingenious 

Maurits Escher (1898-1972) has combined these two fundamental symmetries 

in several of his graphical representations. 
In physics, rescaling has led to the by now ubiquitous renormalization theories. 

In a typical application, one might want to derive, from fundamental principles, 

the critical exponent « of the specific heat c(T), say, near a critical temperature T.. 

Measurements may suggest a simple power law like 

a c(T) — (T) » |T — T, 

In such problems it has been found again and again that the exponent does 

not depend on the specific situation, but may be the same for very different 

physical systems like water, helium, xenon, or any other fluid near its liquid-gas 

critical point.’ These are then said to fall into the same universality class, which 

typically depends on only a few pure numbers: the dimensionality of the space 

in which the phenomenon takes place and the number of degrees of freedom of 

the order parameter. 
Of course, most physical systems are so complicated that one has to rely 

on simple models of reality. For example, for spin systems, an easy model is the 

one named after the German-born physicist Ising (originally, and appropriately 

it may seem, pronounced “easing”). In the Ising model, spins have only two 

possible values (“up” or “down’), and usually only adjacent spins are assumed 

to interact (“nearest-neighbor coupling”). 

The first-order Markov source that we studied in this chapter corresponds 

to the one-dimensional Ising model. This Ising model has two “critical temper- 

atures”: T, = 0, in which all spins are aligned (corresponding to the fully correlated 

case in the Markov model with B = 0), and T, = 00, in which the spins are 

totally disordered (corresponding to the case B = 00). 

For the three-dimensional (3D) Ising model, computer simulations give, for 

the average spontaneous magnetization, 

Whim AT — Ty 4 fox ie 18 

SS SSS ””~COC~S 
“ge . 

2. Under carefully controlled conditions, one can also push liquids beyond the critical point, 

resulting in “supercritical” liquids, which have numerous useful applications. Supercritical water, 

for example, can be used to extract caffeine from coffee beans without altering the taste, unlike 

chemical solvents. 
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with B = 0.325, the same exponent found for all otHer 3D systems with only 
one degree of freedom of the order parameter (spin up or down, in the Ising 
model). 

Renormalization and Hierarchical Lattices 

For renormalization to be applicable to an atomic lattice, the lattice must scale 
in the sense that the Koch flake and other fractals scale. To construct lattices 
having this property, one begins with an initiator—for example, just two spin 
sites (k = 1)—and a generator (k = 2); see Figure 2A. The next iteration yields 
the “lattice” shown for k = 3. Such self-similar lattices are described as hierarchical 
in this context [DDI 83, PR 86a, b]. 

For an antiferromagnetic lattice, one has to distinguish the two spins at the 
endpoints of the initiator (open and filled circles in Figure 2B). The generator 

(A) 

Ka Ka Coats 

(B) 

Figure 2 (A) Initiator, generator, and next generation of hierarchical lattice for ferro- magnetic spin interactions. (B) Initiator, generator, and next generation of hierarchical lattice for antiferromagnetic interactions [PR 86a]. 
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for the antiferromagnetic hierarchical lattice (a hexagon) is necessarily more 
complicated than the generator for the ferromagnetic lattice (a rhombus). 

The fact that such hierarchical lattices do not exist in nature has not prevented 
physicists from playing endless computer games with them; they are great fun! 

And while the playing continues, everybody is waiting for even faster super- 

computers and parallel processors to be able to study more realistic models. (In 

their spare time, these number crunchers can then factor giant integers, like the 

100-digit monster that was reported on the front page of the New York Times 

on October 12, 1988, to have been cracked to yield its two prime factors, 41 

and 60 digits long.) 
Given that hierarchical lattices are defined recursively and exhibit self- 

similarity, it is not surprising that they can be characterized by a fractal dimension. 

However, the hoped-for universality has not materialized: hierarchical lattices 

with identical connectivities and fractal dimensions have been constructed whose 

phase transitions have different critical exponents [Hu 85]. 

In 1952, in one of the more daring attacks on phase transitions, Yang and 

Lee introduced complex numbers to represent such physical variables as tem- 

perature and magnetic field strength [YL 52]. Later it was found that the Julia 

sets of the renormalization transformation of hierarchical models are identical 

with the sets of complex zeros that Yang and Lee had worked with [PPR 85]. 

Similar Julia sets were obtained for the zeros of the partition function of Ising 

models on self-similar fractal lattices [SK 87]. These fractal Julia sets, like those 

of the quadratic map (Chapter 12), exhibit visually appealing self-similarities, 

which are engendered by the recursive construction of the underlying lattices. 

They are celebrated in Peitgen and Richter’s The Beauty of Fractals [PR 86a]. 

The Percolation Threshold of the Bethe Lattice 

Another type of hierarchical lattice is the Bethe lattice (see Figure 3), known in 

graph theory as a Cayley tree. In a Cayley tree each node has the same number 

z of branches or bonds. Thus, the size of the neighborhood grows exponentially 

with “diameter,” as opposed to a power-law growth for physical lattices—fractal 

or nonfractal. It is therefore not surprising that in some respects the Bethe lattice 

behaves as if its number of dimensions were infinite. But the infinite Bethe lattice, 

being hierarchical, permits calculating both the percolation threshold and the 

probability P that a given lattice site is connected to infinity, by a beautifully 

simple similarity argument. 

Starting at an arbitrary site and proceeding to one of its z neighbors, we 

~ find z — 1 new bonds or branches emanating from the neighbor (see Figure 4). 

Each of these z — 1 branches leads to a neighbor, which is occupied with prob- 

ability p. Thus, on average there are (z — 1)p new occupied neighbors to which 

the path can be continued. If this number is smaller than 1, the probability of 
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Figure 3 Caley tree, called Bethe lattice by physicists. Here each node has exactly three 
bonds [Sta 85]. 

finding a connected path of a given length decreases exponentially with length. 
On the other hand, if (z — I)p exceeds I, there is a positive probability that an 
infinite path exists. Thus, the percolation threshold p. (for either sites or bonds) 
is given by 

Pie (3) 

Subbranch 

Branch 

Figure 4 Hierarchical neighborhoods: branches and subbranches in a Bethe lattice [Sta 85]. 
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which for z = 3 equals 3, as for site percolation on a triangular lattice or bond 
percolation on a square lattice [Sta 85]. 

However, the probability P that a given lattice site is connected to infinity 
does not equal 1. After all, there is a finite probability (1 — p)*that its z neighbors 
are unoccupied. What is the probability P that a given site does belong to an 
infinite cluster for p > p? (For p < p,, P is obviously equal to zero.) 

Let Q be the probability that a given site is not connected to infinity through 
one fixed branch originating from this site. The probability that all z — 1 sub- 
branches from a neighbor site are not connected to infinity equals Q*~ ", (Because 

of the statistical independence of the occupation probabilities, the probabilities 
Q are simply multiplied.) Thus, pQ* * is the probability that the neighbor is 

occupied but not connected to infinity. With probability 1 — p the neighbor is 

not even occupied, in which case it provides no link to infinity even if it is well 

connected. Thus, we find the fundamental relation 

Q=1—p+ pe” (4) 

which for z = 3 has two solutions: 

aes t and ON ee 

The probability p — P that a given site is occupied but not connected to 

infinity equals pQ*. Thus, 

P= pI — Q’) (5) 

1—p ) 
yl 1 | Bene a) 

At the percolation threshold p = p. = + this relation gives P = 0, demonstrating 

that although an infinite cluster exists, it is infinitely dilute. 

The ratio P/p is plotted as the solid line in Figure 5, together with P/p for 

the triangular lattice (dashed line). Note the steep rate of increase of Pip for the 

triangular lattice. For example, for p = 0.6, the probability P that a given Bethe 

lattice site is a member of an infinite cluster equals 0.422, while for the triangular 

lattice the probability P that an occupied site is a member of an infinite cluster is 

’ practically 1. 
The solution Q = 1 of equation 4, which, with equation 5, gives P=0, 

obviously corresponds to p < p.. Indeed, for z = 2, for which equation 3 gives 

p. = 1, the only solution of equation 4 for p< 1is Q=1, that is, P= 0. 

or for z = 3, 
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P/p 

Figure 5 Strength P of the infinite network plotted against concentration p in the Bethe 
lattice (solid line), and in the triangular lattice (dashed line) [Sta 85]. 

For P near but above p, = 3, P increases with p according to the relation 

P= O—p — p,) p> Pp. (6) 

Thus, the critical exponent f of P equals 1. 
Below the percolation threshold, the mean cluster size S can be calculated in 

a similar manner, giving 

TEP 

Li 2p 
S=p 

[Sta 85], or, for p near but below p, = 3, 

3 —1 
SS sar pap: (7) 

Hence, the critical exponent for the cluster size is equal to —1. 
Equations 6 and 7 reflect the behavior, for the Bethe lattice with z = 3, of 

two important “order parameters,” P and S, near a critical point, the percolation 
threshold p = p,. This behavior is characterized by two simple power laws with 
exponents I and —1, respectively. Such behavior is now often described as 
“algebraic,” as opposed to logarithmic, exponential, or other transcendental be- 
havior. 

Another, early instance in which the Bethe lattice has resulted in an exactly 
solvable model is Anderson localization, an important phenomenon in disordered 
systems [And 58]. For its discovery, Philip Anderson was awarded the 1977 
Nobel Prize in physics. Disordered systems are now a central theme and the 
subject of intense study in several fields of physics, such as spin glasses and 
neural networks. 
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Figure 6 Random resistor network with one conducting path (arrows) between two copper 
bars [Sta 85]. 

There are other lattices for which different exponents may be found although 

the behavior is still algebraic. For example, on the square lattice, P varies as 

(p — p)? with a critical exponent B = 35. The very value of this exponent is an 

indication that its theoretical derivation is anything but trivial. 
An important application of percolation theory [Sta 85, Kes 87, Gri 89] is 

the conductance © of random resistor networks (see Figure 6). Of course, for 

p <p,, the conductance is zero. But even for p > p,it grows rather slowly with 

p, compared with the growth of the probability P that a given site is a member 

of an infinite cluster. The reason is that most sites in an infinite cluster near the 

percolation threshold belong not to the “backbone” but to dangling dead ends 

that do not contribute to the conductance. 

A Simple Renormalization 

The fundamental requirement for renormalization to work is self-similarity. Since 

many critical phenomena in physics show self-similar behavior near the critical 

point (the percolation threshold, or the Curie temperature, for instance), these 

phenomena are therefore amenable to a renormalization-theoretic treatment, yield- 

ing the critical exponents for the correlation length € and other important 

parameters. 

Following Stauffer [Sta 85], we shall illustrate the renormalization method 

for a case for which an exact answer is known: the triangular lattice (see Figure 

7). For this lattice, the bond percolation threshold p, equals precisely 7 and the 

correlation length exponent v is believed to be +. Let us see whether we can 

derive p,and v by a space renormalization of the lattice. 

For this purpose, we replace three adjacent lattice sites in the triangular 

lattice by a “supersite” (the open circles in Figure 7). Suppose the occupation 

probability of the original sites is p. What is the corresponding probability, p’, 

of a supersite? We consider a supersite occupied if its original sites form a 



368 CHAPTER SIXTEEN 

Oo Oo Oo 

Oo Oo © 

Oo Oo 

Oo Oo Oo 

Oo Oo Oo 

Oo Oo 

oO oO oO 

Figure 7 Space renormalization of the triangular lattice.Supersites” (open circles) each 
replace three adjacent sites and again form a triangular lattice [Sta 85]. 

“spanning cluster,” that is, if at least two out of its three sites are occupied. The 
probability that all three sites are occupied is p’, and the probability that exactly 
two out of three sites are occupied equals (2) p°(1 — p). Thus, 

p =p + 3p(1 — p) (8) 

At a critical point p = p., we should have p’ = p. Hence, with equation 8, we 
find three critical points p, = 0, 3, and 1, of which only p, = 3 is nontrivial. This 
renormalization result corresponds precisely to the known site percolation thresh- 
old for the triangular lattice. Renormalization seems to work! But will we be as 
lucky with the correlation-length exponent v? 

The correlation length € near a critical point is given by 

E=clp —p|-” (9) 

where c is a constant. In the renormalized lattice we have 

&' = belp' — p|-” (10) 

where b is the length scaling factor between lattice and superlattice. If we set 
¢ = ¢’, equations (9) and (10) give 

log b 

Tog le’ — pale — Pal 
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Expanding equation 8 about the fixed point p = p, = 7 gives 

3 
ies or ead 

or 

p eee 

ps fe 2 

With b = 3"? (see Figure 7), equation (11) yields, to first order in (p — p,), 

which is reassuringly close to the exact value v = = 

Another powerful approach to renormalization is conformal mapping [Car 85]. 

Like self-similar scaling, conformal mapping preserves angles. Its usefulness results 

from the conformal invariance—real or assumed—of the system under study. 

Mirroring a given space at a fixed sphere is a well-known example of a conformal 

mapping. In the plane, any analytic function defines a local conformal mapping 

at points where its derivative does not vanish. As an instance of conformal 

invariance in physics, we might mention Maxwell's famous equations, which 

were revealed as such in 1909—several decades after their conception. 

Here we reluctantly leave renormalization theories and phase transitions to 

transit to the self-similarities engendered by cellular automata. 
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ellular Automata 

Truth is much too complicated to allow 
anything but approximations. 

—JOHN VON NEUMANN 

Cellular automata were originally conceived by Konrad Zuse and Stanislaw Ulam 

and put into practice by John von Neumann to mimic the behavior of complex, 

spatially extended structures [TM 87]. As early as the early 1940s, Zuse thought 

of “computing spaces,” as he suggestively called them, as discrete models of 

physical systems. Ulam’s proposal came in the late 1940s, shortly after his 

invention, with Nicholas Metropolis, of the Monte Carlo method. (The aston- 

ishingly broad scope of Ulam’s mind can be sampled in the selection from his 

works titled Sets, Numbers, and Universes [Ula 74].) An anthology surveying the 

present state of cellular automata was edited by Stephen Wolfram [Wol 86]. 

A one-dimensional cellular automaton consists of a row of cells, each cell 

containing some initial numbers, and a set of rules specifying how these numbers 

are to be changed at every clock time. Suppose in the initial state of the automaton 

all cells are filled with Os, except a single cell which is occupied by a 1: 

... 01000000... 

And suppose the rule states that the number in each cell is to be replaced by 

the sum of itself and its left neighbor. Thus, after one clock time, the state of 

- the automaton will be as follows: 

. mOLLOON00 es: 
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Another clock time later the state will be . 

ee OLN CONOR 

followed by 

HOSS LOOO ran. 

... 01464100... 

and so on. Such cellular automata are in fact computers, and cellular computers 
are being put to increasing use in calculating intricate functions because they 
are naturally amenable to fast parallel processing. In the example just given, 
the cellular computer calculates the binomial coefficients that appear in the 
expansion of the powers of binomials such as (a+ b)*, which equals 
a® + 4a°b + 6a°b’ + dab’ + b*. 

Cellular automata come in one, two, or many dimensions. To calculate a 
two-dimensional fluid flow, one uses cellular automata that are two-dimensional 
arrays of cells, each cell filled with a number (representing fluid density, for 
example) that changes at clock times in accordance with fixed rules acting on a 
neighborhood of cells. These rules embody local interactions between neighboring 
cells, reflecting the dynamics of the system under study. 

Instead of forming a square lattice, the cells can form a hexagonal pattern, 
for example; and the “numbers” in each cell can in fact be vectors, representing 
the velocity of a fluid or gas at each lattice point (see Figure 1). Such cellular 

i 

(A) (B) (C) 

Figure 1 Hydrodynamic flow modeled by a cellular automaton (“lattice gas”). Parts A, B, and C show successive stages in the history of the gas. The arrows show the directions 
of the particle velocities. 
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Figure 2 Flow behind a moving cylinder simulated by a lattice gas [SW 86]. 

automata, called lattice gas models by physicists, have been used to great advantage 

to simulate otherwise intractable flow problems [SW 86, MBVB 89]. Figure 2 

shows the flow behind a cylinder moving from right to left through a viscous 

gas, exhibiting the well-known vortex shedding behind the obstacle. Such fluid- 

flow phenomena are still studied by physical experiments in wind tunnels and 

ship-model basins. But they are now increasingly being analyzed by computer 

simulations based on cellular automata. 

Since typical cellular automata employ repetitive application of fixed rules, 

we should expect to find self-similarities—as we did with so many other iterative 

procedures. And indeed, many cellular automata do produce self-similar patterns, 

often of considerable visual appeal. 

The Game of Life 

The best-known cellular automaton is probably John Horton Conway’s game of 

“Life” [Gar 70]. “Life” describes the growth and decline of a population of cells 

according to rather simple rules—rules that nevertheless lead to a rich zoo of 

creatures with truly astounding behavior [BCG 82]. 

In “Life” as conceived by Conway, each cell is either dead (0) or alive (1) 

and changes its state according to the states in its immediate neighborhood 

~ including its own state. Specifically, at each clock time (“tick”), a cell that is alive 

will stay alive when it is surrounded by precisely two or three live cells among 

its eight neighbors on a square lattice. If more than three neighbors are alive, 

the cell will feel overcrowded and “suffocate” to death. If fewer than two neighbors 
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Figure 3 Conway’s “Life”: the fates of five triplets [Gar 83]. 

are alive, the cell will die from loneliness. On the other hand, a dead cell will 
come to life when surrounded by exactly three live neighbors (two parents and 
a midwife, so to speak). Figure 3 illustrates the fates of five different triplets. 
The plethora of patterns generated by these simple rules is beyond belief. Figures 
4 to 8 show a sparse sampling of stationary, periodic, disappearing, and surviving 
“organisms.” 

Conway's set of rules, or aw, is but one of many imaginable. For binary- 
valued cells and a neighborhood of eight cells acting on a center cell, there are 
2” = 10° different “life’-like laws, of which, it seems, only one, the one decreed 
by Conway, really comes to life. 

Ce Lie Co : CCH ele COCO et Pee PEPE eer etc fel rant PEEL CE Rie eo) poi 
SOUeEPHe 
PTT TT TTT Shillelagh TTT 

Saaa85 pea}: Tet 

: 
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Figure 4 Six still “Life” forms [Gar 83]. 
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Figure 5 Four periodic patterns of “Life” [Gar 83]. 

Cellular Growth and Decay 

Consider a two-dimensional cellular automaton in which a cell again has two 
possible states, 0 and 1, as in the game of “Life,” but has only four neighbors, 
East, West, South, and North, acting on it. The present state of a cell C and its 
neighborhood EWSN is given by a 5-bit string, for example, EWSNC = 11000. 
The next state of C, say C = 1, is given by the prevailing rule 11000 > 11001 
(see Figure 9). A complete set of rules, called a law, is given by a table of the 

32 possible states and the subsequent values of the center cell C (see Figure 10). 
For binary-valued cells and four acting neighbors there are 2°” = 4 billion possible 
different laws. 

Figure 11 illustrates the variety of patterns obtained from the fixed law of 
Figure 10 called HGLASS for different initial conditions [TM 87]. 
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Figure 6 The Cheshire cat (0) leaves a grin (6) that turns into a permanent paw print 

[Gar 83]. 
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Figure 7 Initial pattern (solid dots) and final state (open circles) of 7 x 5 bits [Gar 83]. 

A particularly simple law assigns to C the sum modulo 2, that is, the parity, 
of the five cells of the neighborhood. Starting with a small square of Is, floating 
in a sea of Os, the patterns that have evolved after some 50 and 100 steps are 
shown in Figure 12. Are there any self-similarities? Indeed there are. In fact it 
can be shown that any initial pattern on a uniform background reproduces itself 
and surrounds itself with four identical copies after a certain number of steps. 
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Figure 8 Killing “Life”: a single “virus” in the position shown (open circle) destroys the 

entire pattern. In other positions, the virus is eliminated and the pattern repairs itself and 

survives intact [Gar 83]. 

Figure 9 The center cell is turned on (switches from 0 to 1) by the rule (East, West, 

South, North, Center) = 11000 — 11001. 

TEWSNC | Crew | EWSNC | Crew | EWSNC | Crew | EWSNC | 
Pabe ito | 0 
Om mation | 

-ro010 | 0 | 11010 [_0_| 
ety 01 
ao ao | om 
a ri ooi00 | 0 | 01100 | 0 | 10100 

oor fo | 011 [0 | 0101 | 1 i 
a110 [0 [010 | 0 | 10110 [0 | io | 3 | 
Poon fo | ene fo an | a | 
Figure 10 Table of rules HGLASS, one of 4 billion possible sets of rules. 



378 CHAPTER SEVENTEEN 

Maule tia! easy 7 
wi ihe BY 
thy Rey? 

Fa aot 

cD 2 

ena 9 ee 

“= MESSE 

S 

{ \ 

a. 
4 

(A) (B) 

Figure 11 (A) An HGLASS pattern evolving from random seed. (B) HGLASS pattern 
resulting from a simple seed [TM 87]. 

(A) (B) 

Figure 12 (A) Pattern produced by parity rules from a 32 x 32 square pattern after 50 
steps. (B) Parity pattern after 100 steps [TM 87]. 
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And after the same number of steps there will be 25 copies of the original, and 
so forth ad infinitum. Because summation modulo 2 is a linear operation, different 
patterns can penetrate each other without affecting the future growth. Specifically, 
any pattern can be obtained by the summation modulo 2 of patterns generated 
by a single, isolated point. 

Another simple law turns a cell on (1) if exactly one of its eight neighbors 
is alive (1); otherwise it remains unchanged. The resulting growth is a self-similar 
fractal (Figure 13), whose Hausdorff dimension the reader may wish to calculate. 

In still another law, each cell adjusts to the majority in its neighborhood: if 
four or fewer of the neighborhood of nine (including itself) are off, then the 
center cell will also turn (or stay) off. Otherwise it will turn or stay on. The 
resulting patterns resemble Ising spin systems at low temperature and are rem- 
iniscent of percolation; see Figure 14A for a pattern emerging from an initial 
configuration of random Is occupying half the cells. 

How sensitive the patterns are to slight amendments in the law is illustrated 
in Figure 14B, in which either five or fewer than four neighbors in the off state 

will turn the center cell off. This law, drafted by G. Vichniac, simulates annealing, 

as evidenced by the consolidation of domains [Vic 86]. These patterns are spatially 
homogeneous but not self-similar. 

To obtain self-similar spin domains, the initial random configuration has to 

have a critical “energy” [Vic 84]. The energy pattern has a broken symmetry with 

magnetic domains on all size scales; see Figure 15. 

While all laws passed so far have been of a “strictly enforced” nature, that 

is deterministic, many cellular automata are subjected to random rules to emulate 

Figure 13 Self-similar fractal produced by the one-out-of-eight rule [TM 87]. 
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(A) (B) 

Figure 14 (A) Pattern evolving from 50 percent random Is by “majority-voting” rule of 
neighbors. (B) Result of “annealed-majority” rule [Vic 86]. 

Figure 15 Equilibrium configuration of Ising spins at the critical temperature shows mag- 
netic domains on all size scales [Vic 84]. 
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Figure 16 Exploding disk obtained from “copy random neighbor” rule [TM 87]. 

diffusion and other stochastic processes. For example, a lenient law may simply 

say, “Copy from a random neighbor.” With one of four neighbors chosen with 

equal probability, an initial disk will explode as shown in the right half of Figure 

16. Diffusion with drift can be simulated by “particles” (1s) that move with 

probability = either east or south and with probability = west or north (Figure 17). 

Figure 17 Diffusion with and without drift: a pretty programming error [Schr 69]. 
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Figure 18 Odd-parity covers for a 4 x 4 and a5 x 5 chessboard [Sut 89]. 

Such cellular automata can be bred into plausible models of genetic drift. 
Color Plate 9 shows the spatial intermingling for sixteen competing species of 
genes [TM 87]. 

A classical problem that can be phrased in the language of cellular automata 
is the “all-Is” problem [Sut 89]. Each square (cell) of an n X n chessboard is 
equipped with a light bulb and a switch that turns the bulbs in a given neigh- 
borhood on (or off, for those that are already on). Starting with a completely 
dark chessboard, which switches must be activated to light up all bulbs? It is 
clear that the number of activated buttons in the neighborhood of each square 
must be odd. This is called an odd-parity cover. If the neighborhood of a square 
consists of the square itself and its four edge-adjacent neighbors, odd-parity 
covers for a 4 x 4 and a5 x 5 board are as shown in Figure 18. 

What is the solution for an 8 x 8 board? Can the reader design the rules 
for a cellular automaton that will converge on the proper set of switches, that 
is, an odd-parity cover for a given neighborhood? Of course, if the odd-parity 
cover is a “Garden of Eden,” it can never be reached. (A Garden-of-Eden pattern 
is defined as one that has no predecessor; once lost, it can never be regained.) 

Biological Pattern Formation 

Another field where cellular automata have proved their mettle for modeling is 
pattern formation in plants and animals. The formation of stripes in zebras and 
numerous other patterns in countless forms of life has been modeled with cellular 
automata by H. Meinhardt, A. Gierer, and others using combinations of local 
and long-range autocatalytic and inhibitory interactions [Mei 82]. 
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A simple cellular automaton imitates the design on the shell of the snail 
Olivia porphyria (see Figure 19), characterized by diagonal lines that annihilate 

each other when they touch. Another mechanism causes a single line to bifurcate 

to keep the average pigmentation near a given level [MK 87]. 

Numerous other biological structures, including the formation of arms and 

legs, have been modeled by cellular automata employing simple self-reinforcing 

and antagonistic reactions. The variety of shapes thus engendered is truly as- 

tonishing. 

Self-Similarity from a Cellular Automaton 

Self-similarity arises in many fields in many forms. A set of Russian dolls, all 

looking alike but each a little smaller than its parent, is perhaps the most widely 

known example of discrete, if limited, self-similarity. Self-similarity can even be 

distilled from such a discrete and artless entity as the integers 0, 1, 2, 3, 4, 5, 

6, 7,.... Let us write successive integers, starting with 0, in the binary number 

system (apparently invented by Leibniz while waiting to see the Pope in the 

Vatican with a proposal to reunify the Christian churches):’ 

O10; 752100101, 110/110). 

The sums of the digits for each number form the sequence 

BY S21 1, 2, Lee 3) eae P= 0; Lb BAce: 

which can also be obtained iteratively as follows. To obtain the subsequence of 

length 2"*" from the subsequence of length 2”, repeat the latter with 1 added 

to each term. Thus, the initial subsequence of length 2° = 1 (ie., 0) generates 

the subsequence of length 2° = 2 (ie., 01) by appending to the initial 0 the 

number 0 + 1 = 1. In this manner, successive generations of subsequences of 

length 2” are generated: 

0 

O1 

0112 

01121223 

0112122312232334 

ppeeemernyeeere eer ee 

1. The fact that this system uses only two digits, 0 and 1, is, of course, the reason why computers 

are so fond of it: a digit is simply and unambiguously represented by the two states of a switch, 

open or closed—nothing in between. 
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Figure 19 (A) Detail of the shell of the snail Olivia porphyria. (B) Wavelike design generated by a cellular automaton with local and long-range autocatalytic interactions [MK 87]. 
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This generative rule is, of course, a direct consequence of how binary numbers 
are defined: for k < 2” the two integers k and k + 2” differ by precisely a single 
1 in their binary notations. 

It is interesting and important to note that our iterative rule for generating 
subsequences is a fast algorithm: each iteration doubles the length of the subse- 
quences. Their lengths therefore grow exponentially with the number of iterations. 
(By contrast, a linear recursion, such as that for the sequence of Fibonacci numbers, 
F,+.= F,4,+ F,, adds only one additional term with each iteration.) 

The infinite sequence B(f) obtained in this manner is self-similar in the 

following sense: it reproduces itself when only even-indexed terms are retained, 
as indicated in the following by underlining: 

BA =0L,12412,2,3,1,2,2,3,2,3,3,4,... 

Thus, B(2t) = B(E). 

This self-similarity is a near-trivial consequence of the fact that, in the binary 

system, multiplication by 2 results in a mere left shift of the digits, which, of 

course, does not change the sum of the digits. 

The sequence B(t) can be converted into a sequence that is self-similar also 

in the magnitude of its terms. In fact, the sequence 

Ci) = 2? '= 1,2,2,4 2/448, .:. 

has the same similarity factor of 2 not only in its index t but also in its magnitude. 

The second half of each subsequence of length 2"** equals twice the first half: 

C(t + 2”) = 2C(#) Os <2. (1) 

Figure 20 illustrates the sequence C(p) and its self-similarity. Alternatively, C(E) 

can be obtained from the product (1 + b,)(1 + b,)(1 + b;).--, where the b, are 

the bits of the binary expansion of t. ! 

Interestingly, C(f) can also be generated by a cellular automaton, and this 

is important for what follows. Let us ask how many of the binomial coefficients 

(!) for a given ¢ are odd as n runs from 0 to f. The answer (I leave the simple 

inductive proof to the reader) is 1, 2, 2, 4, 2,4, 4,8... = C(t). And the binomial 

coefficients themselves are generated by one of the simplest cellular automata. 

(See the introduction to this chapter.) 

Note that C(f) summed to t = 2” — 1 is equal to 3”. This follows directly 

from C(O) = 1 and equation 1. 



386 CHAPTER SEVENTEEN 

200 

} ull a dl | 4 

( 

A Catalytic Converter as a Cellular Automaton 

Sequences resembling C(t), where ¢ is interpreted as discrete time, have been 
observed in certain chemical reactions—for example, in catalytic oxidation pro- 
cesses (see Figure 21). Now what on earth could the relation be between a 
chemical reaction and the sequence C(t), that is, 2 raised to the sums of digits 
in the binary representations of successive integers? A simple explanation was 
found by Andreas Dress, who modeled such catalytic processes by one-dimen- 
sional cellular automata [DGJPS 85]. 

In a one-dimensional cellular automaton, each time epoch is characterized by a sequence of symbols or numbers. And as we learned in the introduction to this chapter, the sequence at time f, ¢,(n), is generated by some law from the 
sequence at time f — 1. For example, 

&(n) = gy ,(n) + gies 1) 

which, with the initial generation 80) = 1 and g,(n) = 0 elsewhere, generates the binomial coefficients (+) as arranged in Pascal's triangle. In Pascal's triangle 
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Figure 21 Chemical reaction rate as a function of time in a catalytic oxidation process 

[DGJPS 85]. 

each number is the sum of the two numbers directly above it. Now let us take 

Pascal's triangle modulo 2. That is, if the binomial coefficient (7) is odd, then the 

number is replaced by 1; if it is even, it is replaced by 0. The resulting Pascal’s 

triangle modulo 2 is illustrated in Figure 22. Black cells correspond to 1s and 

white cells to Os. 
In terms of the chemical reaction modeled by Pascal's triangle modulo 2, 

Dress assumed that a “molecule,” represented by a cell at position n, becomes 

“infected” (e.g., oxidized) at time t if precisely one of its neighbors at positions 

n and n — 1 was infected (black) at time f — 1. 

But by construction, the number of black squares (Is) at time f equals C(f). 

Thus, C(t) describes the chemical reaction rate in the specified catalytic converter, 

a fact originally suggested by the approximate self-similarity of the reaction as 

seen in Figure 21. 

Pascal’s Triangle Modulo N 

The recursive generation of Pascal's triangle of binomial coefficients (;,) from a 

single 1 is a paradigm of a cellular automaton. While the numbers (;) themselves 

become larger and larger with increasing ¢ and 0 <n <t, their divisibility prop- 

erties form self-similar patterns. In fact, the even coefficients occupy triangles 

much like the holes in a Sierpinski gasket (see pages 17—18). The appearance of 

these triangles follows easily from the fact that the (!) for # = 2” are all even 
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Figure 22 Pascal’s triangle modulo 2: a discrete version of the Sierpinski gasket. 

for 0 <n <t#. The two Is for n = 0 and n = t then progressively “eat up” the 
even coefficients as f is increased, until for f = 2"*' — 1 all coefficients are odd. 

Similar mechanisms produce self-similar patterns from Pascal's triangle if 
the binomial coefficients are taken modulo any other prime [Wol 84]. The PC- 
equipped reader is invited to generate, in cellular-automaton fashion, Pascal's 
triangle modulo arbitrary prime numbers, powers of primes, and general composite 
numbers and to observe the resulting self-similarities in one or many colors. 
What are the Hausdorff dimensions D of the limiting patterns? The value of D 
for Pascal's triangle modulo 2, D = log 3/log 2, can be inferred from the fact 
that the total number of odd coefficients goes up by a factor of 3 every time 
the number of lines is doubled, beginning with the first line consisting of a single 
1—just as the covered area of the infinite Sierpinski gasket triples for every 
doubling of the linear dimensions of the cover. 
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Bak’s Self-Organized Critical Sandpiles 

As we have seen in several chapters of this book, many natural phenomena— 
from flicker noise to the flow of the river Nile—have self-similar power spectra 
with an f° frequency dependence. Such processes are called 1/f noise (even if 
the spectral exponent f is not exactly equal to 1). Such power-law spectra signal 
the absence of characteristic time scales; there are no such typical times as the 
half-life in radioactive decay, for example. 

The absence of characteristic scales is also evident in the spatial aspects of 
numerous natural events; no characteristic lengths prevail, in contrast to nuclear 

forces or the mean free path of molecules in a gas. 
To account for the ubiquity of such self-similar structures, Per Bak, Chao 

Tang, and Kurt Wiesenfeld have recently introduced the concept of self-organized 

criticality [BTW 87]. In their paper of that title and subsequent publications [TB 

88, BTW 88], Bak and his collaborators argue persuasively that spatially extended 

dynamic systems evolve spontaneously into barely stable structures of critical 

states and that this self-organized criticality is the common underlying mechanism 

for many self-similar and fractal phenomena. 
To make their proposal concrete, Bak and his coworkers have constructed 

several models, including a simple two-dimensional cellular automaton mimicking 

the flow of sand in a sandpile. If the slope becomes too large at some point 

(x, y) in the pile, sand flows to reduce the gravitational force z at the expense 

of the forces on the four neighboring points (x + 1, y) and (x, y + 1). Thus, if 

the (integer) variable z exceeds a critical value z,, it is updated (synchronously) 

as follows: 

zx, y) — z(x,y) —4 

ax+1y>2axt1Ly+i1 

Aye A) 20-9 1) + I 

The automaton is started with random initial conditions z >> z,; the boundary 

conditions are z = 0. Once all z are smaller than z,, the evolution of the system 

stops; it has reached a minimal stable state—minimal, because the addition of a 

single grain of sand may set off an avalanche. In fact, backing Bak, the reader 

equipped with a personal computer may discover that sand avalanches on all 

length scales can be triggered by small local perturbations, that is, random 

additions of sand to a single site. The clusters of sites reached by this physical 

“domino effect” have power-law size distributions: 

Ds)~s * 

with t & 1 for cluster sizes s ranging up to 500 for a 50 x 50 array and t © 1.35 

for a three-dimensional 20 x 20 x 20 array [BTW 87]. 
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The life-times of these avalanches, too, follow power laws with exponents 
a& © 0.43 in two dimensions and a ® 0.9 in three, corresponding to power- 
spectrum exponents 2 — a equal to 1.57 and 1.1, respectively. 

Tang and Bak also found a power-law behavior of the flow, the correlation 
length, the largest cluster size, and other parameters if the average value of z is 
kept away from its critical value by an “external field” [TB 88]. While the critical 

exponents they found for these quantities may depend on the details of the 
system under consideration, they expect the power-law scaling as such to be 
more universal. 

If so, self-organized criticality may lend itself as a generic model for a great 
variety of scale-invariant phenomena, from glassy systems, magnetic domains, 
water flow, and turbulence to traffic jams, economic interactions, and earthquakes 
[BW 90]. 

And do not the political upheavals in eastern Europe in 1989 also flow 
from long maintained minimally stable states? 



The Hausdorff Dimension for Unequal Remainders 

The following proof was suggested by H. W. Strube. 
Let I, < [0, 1] be the intervals of the generator of a Cantor set F and s, = 11, 

their lengths. (In the original “ternary” Cantor set I, = [0, +] 1, =, I, and 

5, = s, =>.) Define those parts of F that lie in I, as F,: 

Be EO (1) 

Let N(r) and N,(r) be the smallest numbers of intervals of radius r that cover 

F and F,, respectively. Further, let L be the length of the smallest gap between 

the I,. For 2r < L, we then have 

Ni) = » NA) (2) 

or 

Nir) cay 

2, orn 2 

Since F, is simply a scaled version of F, with the scaling factor s,, we have 

N,{s,r) = N(r), or 

Ni) = n(Z) (4) 
5k 

Thus, for r > 0, since the Hausdorff dimension D is also a similarity dimension 

(that is, N(r) ~ r~”), 

nies 6) 
N(r) 

holds. Introducing this relation into equation 3, one obtains the generalized result 

vis = 1 (6) 
T 

for the Hausdorff dimension D of a Cantor set whose generator consists of 

intervals of arbitrary lengths s;. 
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Noble and Near Noble Numbers . 

Noble numbers v are defined as irrational numbers whose continued fractions 

end in all Is. For 0 < v < I, we have 

Vie [Bg Becce st Oy Ll (1) 

where the bar over the 1 indicates an infinite sequence of Is. 
With the help of the golden mean 

y:= [1] = 0618... (2) 

the noble numbers can be written as “equivalent numbers” [HW 84]: 

y= Ay a YAn-1 (3) 

B, ee yB,,- I 

where A, and B, are the numerator and denominator, respectively, of the kth 
approximating fraction (“convergent”) of [a,, a,,..., a,J. 

For example, a simple noble number, as defined in equation 1, for n = 2, 
with a, = 1 and a, = 2, is v = [1, 2, I] = 0.7236.... Since the approxima- 
ting fractions of the nonperiodic “leader” [1, 2] are equal to A,/B; = 1/1 and 
A,/B, = 2/3, v, according to equation 3, can also be written as 

ae eal 
3 Ly 

Vv (4) 

In general, because y = (,/5 — 1)/2, the noble numbers form a subset of the 
field Q(/5). 

I have defined near noble numbers as all those real numbers ¥, 0 < 7 < 1, 
whose continued fraction expansion is periodic, with period length P, the period 
comprising (P — 1) 1s followed by an integer n > 1: 

Veit coe ta period length P (5) 

where the ae bar indicates periodic repetition. A simple near noble number 
isi[1p 2) 4/2 

To see which ¥ have the continued fraction expansion represented in equa- 
tion 5, we express its periodicity in the following form: 

~ I . 
fa[aa.. tnd] (6) 

v 
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where the last term on the right, 1/¥, although not an integer, is treated like any 
other term in a continued fraction expansion. For example, 

yeta=|325|-— ea 
: ee ol 12 8) ”) 

This is a quadratic equation for ¥ with the positive solution ¥ = /3 = 1: 
Calculating the value of ¥ from equation 6, we obtain 

i ea te tips n 1/¥ 

Peet 7 bees eon YA Ep (NE) At Foo. Verses 

Reed) 34 cbs te nFp> +Fp-, (nFp +F,_)¥' F 

where the F, are the Fibonacci numbers [Schr 90]. From this, we obtain the 

following quadratic equation for V: 

s (8) 
nFp + Fp_, + VFp 

T= 

which has the solution 

/ FS r= / ptt her ;) (9) 
2 n Fp 

For the special case n = 2, one obtains 

a [Fp+ 2Fp—1+ Fe-2 i) 

Fp 

Applying the  recursions Pare) Say Ppa, typos = Fp, and 

Fp + Fr+1 = Fp+2, the final result is 

[Fe+2 
— —I1 (11) v F 

For P = 3, for example, equation 11 yields ¥ = J — 1, which indeed has 

a continued fraction expansion of period length 3, the period terminating in a 

2: J¢-1= (02. 
Asymptotically, for P + any fixed n, our nearest noble numbers will 

approach the golden mean y = (V5 — 1), ~ 0.61803. For example, for n=2 
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and P = 10, ¥ © 0.61808. According to equation 10 or 11, successive values of 
V for P = 1, 2, 3, .. . constitute, in fact, an approach to the golden mean y through 
(quadratic) irrational numbers. 

A possible sequence for cubic irrational numbers is 

E 1/k 

ye . : (12) 
nt+k 

with k = 3, and k > 3 for quartic and higher-degree irrational numbers. 
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