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Preface 

Platonic solids have been studied since antiquity and in a multiplicity of artistic and 

scientific contexts. More generally, “polyhedral” maps are ubiquitous in chemistry 

and crystallography. Their properties have been studied since Kepler. In the present 

book we are going to study classes of maps on the sphere or the torus and make a cat¬ 

alog of properties that would be helpful and useful to mathematicians and researchers 

in natural sciences. 

In particular, we are studying here two new classes of maps, interesting for appli¬ 

cations, especially in chemistry and crystallography (on the sphere or the torus) 

generalizing Platonic polyhedra. Polycycles are 2-connected plane graphs having 

prescribed combinatorial type of interior faces and the same degree q for interior 

vertices, while at the most q for boundary vertices. Two-faced maps are the maps 

having at most two types of faces and the same degree of vertices. Many exam¬ 

ples and various generalizations are given throughout the text. Pictures are given for 

many of the obtained graphs, especially when a full classification is possible. A lot 

of the presentation is necessarily compact but we hope to have made it as explicit as 

possible. 

We are interested mainly in enumeration, symmetry, extremal properties, face- 

regularity, metric embedding and related algorithmic problems. The graphs in this 

book come from broad areas of geometry, graph theory, chemistry, and crystallogra¬ 

phy. Many new interesting spheres and tori are presented. 

The book is organized as follows. Chapters 1 and 2 give the main notions. After 

reading them, other chapters can be read almost independently. 

Chapters 4-8 present the theory of polycycles. In Chapter 4, we explain the 

general notion of the (r, g)-polycycle, present the cases where classification is 

possible and the cell-homomorphism into the regular tiling {r, q). In Chapter 5, 

the problem of how the boundary of an (r, <?)-polycycle determines it, or not, is 

addressed. In Chapter 6, we consider the possible symmetries of (r, <?)-polycycles 

and how we can classify these with a symmetry group transitive on faces and/or 

vertices. 

IX 
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Chapter 7 presents a way to decompose a generalized polycycle into elementary 

components. This powerful technique is used in Chapters 8, 12, 13, 14, and 18. 

The second main subject - &-valent two-faced maps - is treated in Chapter 3 and 

Chapters 9-19. Chapter 3 deals with our main example, fullerenes, while Chapter 

9 classifies strictly face-regular maps on sphere or torus. In Chapters 10-18, we 

consider a weaker notion of face-regularity. Chapter 19 treats 3-valent two-faced 

maps with icosahedral symmetry. 

Many simple questions (some, possibly, easy) are raised; we hope that this book 

will be instrumental in their solutions. Much of the results have been obtained (and 

could only have been obtained) though computer enumeration; the corresponding 

programs are available from [Du07], 

We are grateful to many people for their help with this book, especially, to 

Jacques Beigbeder, Gunnar Brinkmann, Olaf Delgado Friedrichs, Maja Dutour 

Sikiric, Patrick Fowler, Jack Graver, Marie Grindel, Viatcheslav Grishukhin, Gil 

Kalai, Stanislav Jendrol, and Mikhail Shtogrin. 

We thank also Ecole Normale Superieure of Paris, Hebrew University of 

Jerusalem, Rudjer Boskovic Institute of Zagreb, Institute of Statistical Mathematics 

of Tokyo, and Nagoya University for continued support. 

Michel Deza and Mathieu Dutour Sikiric 
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Introduction 

In this chapter we introduce some basic definitions for graphs, maps, and polyhedra. 

We present here the basic notions. Further definitions will be introduced later when 

needed. The reader can consult the following books for more detailed information: 

[Gru67], [Cox73], [Mun71], [Cro97], 

1.1 Graphs 

A graph G consists of a set V of vertices and a set E of edges such that each edge is 

assigned two vertices at its ends. Two vertices are adjacent if there is an edge between 

them. The degree of a vertex v e V is the number of edges to which it is incident. 

A graph is said to be simple if no two edges have identical end-vertices, i.e. if it has 

no loops and multiple edges. In the special case of simple graphs, automorphisms 

are permutations of the vertices preserving adjacencies. For non-simple graphs (for 

example, when 2-gons occur) an automorphism of a graph is a permutation of the 

vertices and a permutation of the edges, preserving incidence between vertices and 

edges. By Aut(G) is denoted the group of automorphisms of the graph G; a synonym 

is symmetry group. 

For U c V, let Ev c E be the set of edges of a graph G = (V, E) having end- 

vertices in U. Then the graph Gu = (U, Ey) is called the induced subgraph (by U) 

of G. 

A graph G is said to be connected if, for any two of its vertices u, v, there is a path 

in G joining u and v. Given an integer k > 2, a graph is said to be k-connected, if it 

is connected and, after removal of any set of k — 1 vertices, it remains connected. 

Let Gi = (Vj, E\) and G2 = (V2, £2) be two graphs. Their Cartesian product 

G\ x G2 is the graph G = (Vj x V2, E) with vertex-set: 

Vj x V2 = {(ifi, v2) : V] 6 Vj and v2 £ Vj} 

1 
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and whose edges are the pairs ((«i, u2), (fj, v2)), where u\,v\ e Vi and u2,v2 6 V2, 

such that either (u,\, iq) 6 E\, or (u2, v2) e E2. 

A subset E' of edges of a graph is called a matching if no two edges of E' have a 

common end-vertex. A perfect matching is a matching such that every vertex belongs 

to exactly one edge of the matching. 

The following graphs will be frequently used: 

• The complete graph Kn is the graph on n vertices v\,..vn with v, adjacent to Vj 

for all i 7^ j. 

• The path Pn = PVuV2.Vn is the graph with n vertices V\, ..., vn and n — 1 edges 

(Vi, for 1 < i < n — 1. 

• The circuit Cn = CUljl)2i...>Vn (or n-gon) is the path PVuV2i...<Vn with additional edge 

(ui, v„). 

A plane graph is a connected graph, together with an embedding on the plane such 

that every edge corresponds to a curve and no two curves intersect, except at their 

end points. A graph is planar if it admits at least one such embedding. It is known 

that any planar graph admits a plane embedding with the edges being straight lines 

(see [Wa36, Fa48, Tut63]). A face of a plane graph is a part of the plane delimited 

by a circuit of edges. A plane graph defines a partition of the plane into faces. If a is 

a vertex, edge, or face and b is a edge, face, or vertex, then a is said to be incident 

to b if a is included in b or b is included in a. Two vertices, respectively, faces are 

called adjacent if they share an edge. We will call gonality or covalence of a face 

the number of its vertices. A face is exterior if it is non-bounded. Bounded faces 

are called interior. Any finite plane graph has exactly one exterior face. An infinite 

plane graph can have any number, from zero to infinity, of exterior faces. A planar 

3-connected graph admits exactly one plane embedding on the sphere, i.e. the set of 

faces is determined by the edge-set. 

The v-vectoi v(G) = (..., ty ,...) of a graph G enumerates the numbers v,• of 

vertices of degree i. A plane graph is k-valent if u, = 0 for i ^ k. The p-vector 

p(G) = Pi,...) of a plane graph G counts the numbers pt of faces of gonality i. 

For a connected plane graph G, denote its plane dual graph by G* and define it on 

the set of faces of G with two faces being adjacent if they share an edge. Clearly, 

v(G*) = p(G) and p(G*) = v(G). 

1.2 Topological notions 

We present in this section the topological notions for the surfaces which will be used. 

Topology is concerned with continuous structures and invariants under continuous 
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deformations. Since we are working with vertices, edges, and faces, the classical 

definitions will be adapted to our context. 

No proofs are given but we hope to compensate for this by giving some geometri¬ 

cal examples. More thorough explanations are available in basic algebraic topology 

textbooks, for example, [HatOl] and [God71]. 

1.2.1 Maps 

A map M is a family of vertices, edges, and faces such that every edge is con¬ 

tained in at least one and at most two faces. An edge, contained in exactly one 

face, is called a boundary edge; all such edges form the boundary. A map is called 

closed if it has no boundary. A map is called finite if it has a finite number of ver¬ 

tices, edges, and faces. See below plane graphs related to Prising (see Section 1.5) 

with same vertex- and edge-sets but different face-sets; their boundary edges are 

boldfaced: 

A closed map, cell-complex of a 
polyhedron. It is a 4Ri 
plane graph (see Chapter 9) 

A map with boundary edges. 
It is a ({4, 5), 3)-polycycle 

(see Chapter 7) 

A map with boundary edges; 
not simply connected. It is a 

(4. 3)ge„-polycycle (see Section 4.5) 

Not a map because two edges 
are not contained in a face. 

It is not considered 

If M is a closed map, then we can define its dual map M* by interchanging faces 

and vertices. See Section 4.1 for some related duality notions for non-closed maps. 

A map is called a cell-complex if the intersection of any two faces, edges, or vertices 
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is a face, edge, vertex, or 0. Maps with 2-gons are not cell-complexes; they are CW- 

complexes (see, for example, [Rot88]). 

Denote by §2 the 2-dimensional sphere defined by {x = (xj, X2, X3) 6 M3 : x2 + 

xj+xj = 1}. For a point A of §2, let A! be its opposite and the plane TL\ be the 

plane orthogonal to A A' passing through A'. In the following, take A = (0, 0, — 1); 

then Ha is the set of all x € M3 with X3 = 1. If B e §2 — {A}, then the intersection 

of the line AB with the plane Ha defines a point f a(B). This establishes a bijection, 

called a Riemann map, between S2 — {A} and the plane Ha', we can extend /a to A 

by defining fA(A) to be the “point at infinity” of the plane Ha- 

Let G be a finite plane graph on M2 ~ Ha and let ff](G) denote its image in §2. 

The vertices of G correspond to points of the sphere §2, the edges of G correspond 

to non-intersecting curvilinear lines on §2 and the faces of G correspond to domains 

of §2 delimited by circuit of those lines. The exterior face of G corresponds to a 

domain of §2 containing A. Reciprocally, if we have a map M on the sphere, then 

we can find a point A, which does not belong to M and the corresponding plane Ha, 

the image of M on Ha is a finite plane graph. So, by abuse of language, we will use 

the term “sphere” not only for the surface §2 but also for any combinatorial map on 

it, i.e. a finite plane graph. 

A reader who is interested only in plane graphs, our main subject, can move now 

directly to Section 1.4. But, for full understanding of the toroidal case, we need maps 

in all their generality. For reference on Map Theory; see, for example, [BoLi95] and 

[MoThOl], 

We will also work with maps having an infinite number of vertices, edges, 

and faces. The vertex-degrees will always be bounded by some constant; how¬ 

ever, faces could have an infinity of edges. Amongst plane drawing of those 

maps, we will allow only locally finite ones, i.e. those admitting an embed¬ 

ding such that any bounded domain contains a finite number of vertices. Con¬ 

sider, for example, the map Z- obtained as the quotient map of square tiling 

Z2 by the translation operation (x, y) (x + 10, y). The map Z2 is an infi- 

nite cylinder made of consecutive rings of ten 4-gons. We can draw those rings 

concentrically on the plane, but the resulting plane graph will not be locally 
finite. 

1.2.2 Orientability and classification of surfaces 

A flag °fa maP is a triple (v, e, /), where v is a vertex contained in the edge e and e 

is contained in the face /. Given a flag F = (v, e, /), the flags differing from F only 

in v, e or / are denoted by cr0(F), oq(F) and <t2(F), respectively. <70(F) and oq(F) 

are always defined over the flag-set T(M) of M but cr2(F) is not always defined if 
M is not closed. 
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The map M is called oriented if there exist a bipartition T\, Ti of TfiM) such 

that, for any (v, e, f) e T\, the flag cr;(u, e, /), if it exists, belongs to T%. We will 

be almost exclusively concerned with oriented maps. 

The notion of orientation is easy to define algebraically but difficult to visualize, 

because closed non-orientable maps cannot be represented by a picture. Fortunately, 

this is easier for maps with boundaries; see Figure 1.1 for a non-orientable map, 

called Mobius strip. The non-orientability can be seen in the following way: mov¬ 

ing along one side of the strip and doing a full circuit, we arrives at the other 

side of the strip. All boundary edges of a Mobius strip belong to a unique cycle; 

after adding a face to this cycle, we obtain the projective plane P2. The projec¬ 

tive plane can also be obtained by taking a map on the sphere (like Dodecahedron) 

and identifying the opposite vertices, edges, or faces, i.e. taking the antipodal 

quotient. 

Figure 1.1 A Mobius strip 

Given a surface S, we can add to it a handle: 

or a cross-cap.1 The handle and cross-cap can be seen as a cylinder and a Mobius 

strip, respectively. 

Consider now the classification of finite maps: 

Theorem 1.2.1 Any finite closed map is one of the following: 

1 the sphere §2 (orientable), 

2 the sphere §2 with g handles (orientable), 

3 the sphere §2 with g cross-caps (non-orientable). 

1 See, for example, http://mathworld.wolfram.com/Cross-Cap.html for pictures of cross-caps. 
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Theorem 1.2.1 is proved, for example, in [Mun71], The number g above is called the 

genus of the map. All finite closed maps, that occur below, are: 

1 the sphere §2 with g = 0 (orientable), 

2 the torus T2 with g = 1 (orientable), 

3 the projective plane P2 with g = 1 (non-orientable), 

4 the Klein bottle K2 with g = 2 (non-orientable); one way to obtain the Klein 

bottle is to take the quotient of a torus P2/Z2 by the fixed-point-free automorphism 

/(*, y) = O + 5, -y). 

If M is a finite non-closed map, then we can add some faces along the boundary 

edges and obtain a closed map. So, finite non-closed maps are obtained by removing 

some faces of closed ones. 

1.2.3 Fundamental groups, coverings, and quotient maps 

Fix an orientation on every edge of a given map M and define the free group G(M) 

with generators ge indexed by the edge-set of M (see, for example, [Hum96] for 

relevant definitions in Group Theory). An oriented path OP = (iq, vf), ..., vm is 

a sequence of vertices with vt adjacent to v,+]. For an edge <?,■ = (iq, vi+l), denote 

by g(vj, vi+i) the group element ge. if e, is oriented from iq to iq+1, and g“J oth¬ 

erwise. Associate to the oriented path the product g{OP) = g(iq, V2)g(v~>, u3) 
g(Vm— 11 Wm). 

Denote by ZV(M) the set of all g(OP) with OP being the set of oriented 

closed paths starting and finishing at a given base vertex v. It is a group; revers¬ 

ing orientation corresponds to taking the inverse and product to concatenating 

closed paths. Given a face F of M, bounded by a circuit of vertices (iq, U|/r|), 

and an oriented path OP from the vertex v to the vertex iq, consider a group 

element g(0P)g(iq, v2,..., V\F\, vx)g(OP)~\ Denote by BV(M) the subgroup of 

G{M) generated by all such elements. The fundamental group nfM) is the quo¬ 

tient group of the group ZV{M) by the normal subgroup BV(M). Two oriented 

closed paths having a common vertex v are called homotopic if they correspond 

to the same element in the group nfM). The group BV{M) is the group of all 

elements homotopic to the null path, i.e. the path from v to u with^O edges. If 

we replace the base vertex v by another base vertex w, then, for any oriented 

path OP_from v to uq we have ZV(M) = gZwg~1 and BV(M) = gBwg~l 

with g — g(OP). So, the fundamental group depends on the base vertex but 

only up to conjugacy. A map is called simply connected if tti(M) is trivial’ i e 

every path is homotopic to the null path. This is equivalent to saying that every 

two paths with the same beginning and end can be continuously deformed one to 
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See below three homotopic paths in the same map: 

See below again three plane maps and a closed path represented in it: 

M\ is simply connected Mi is simply connected Mi is not simply connected 

In M\ and M2, the closed path is homotopic to a null path. In M\, this cycle is 

the boundary of a face, while in A/2, the closed path is the boundary of all faces 

put together. More generally, a plane graph and a finite plane graph minus a face 

are simply connected. But the closed path in M3 is not homotopic to a null path. 

Actually, this closed path is a generator of the fundamental group ixfMf) ~ Z. 

Given two maps M and M', a cell-homomorphism of maps cf> : M —> M' is a 

function that maps vertices, edges, and faces of M to the ones of M', while preserving 

the incidence relations. An isomorphism is a cell-homomorphism that is bijective. If 

M = M', it is called an automorphism; the set of all automorphism of a map M is 

called the symmetry group of M. An automorphism / of a map M is called fixed- 

point-free if / is the identity or, for every vertex, edge, face of M, its image in / 

is different from it. If G is a group of fixed-point-free automorphisms of a map M, 

then M/G is the quotient map of M by G. Its vertices, edges, and faces are formed 

by orbits of vertices, edges, and faces of M (by G) with the incidence relations being 

induced by the ones of M. 

The quotient of a map can be a map with loops and multiple edges. Consider, 

for example, the 4-valent plane tiling {4, 4} (see Section 1.5) formed by 4-gons and 

the group Z2 acting by translations on it. There is one orbit of vertices, two orbits of 

edges, and one orbit of faces under Z2; so the quotient {4, 4}/^2 js a torus represented 

by a single vertex and two loops. 

For a vertex v (or edge e, or face /), the standard neighborhood N(v) is the set 

of all vertices, edges, and faces incident to v. A local isomorphism is a continuous 



8 Chemical Graphs, Polycycles, and Two-faced Maps 

mapping 0: M -> M' such that, for any vertex v E M (or edge, or face), the mapping 

from N{v) to N(f(v)) is bijective. A covering is a local isomorphism such that for 

every vertex v' E M' (or edge, or face) and w' E N(v ), if 4> 1 (v ) = (u,)/6/, we have 

an element wt E N(v,) such that # wj if i j and = (W/)/e/• 

If OP1 = (v[,, v’m) is an oriented path in M', 0 is a covering and iq is a vertex 

in M with 0(m) = v[, then there exists a unique oriented path OP — (iq, ... vm) 

in M such that 0(0 P) = OP'. A deck automorphism is an automorphism u of M 

such that 0 o u = 0, u is necessarily fixed-point-free. If v' E M', then, for any two 

V\,V2 E 0-1(v'), there exists a deck automorphism u such that u(vi) = v2. 

Given a map M, its universal cover is a simply connected map M (unique up to 

isomorphism) with a covering 0 : M -»• M. The map M is finite if and only if M and 

7t\{M) are finite. The fundamental group nfM) is isomorphic to the group of deck 

automorphisms of 0. If H is a subgroup of a group G, then its normalizer, denoted 

by Ng(H), is defined as: 

NC(H) = {x EG : xhx~x e H for all h E H}. 

The group Aut(M) of automorphisms of M is identified with the quotient group: 

(M). 

The simplest and most frequently used case is when M is a closed finite map on 

the sphere. In this case 7T[ is trivial and we can represent the map nicely on the plane 

with a face chosen to be exterior. An infinite locally finite closed simply connected 

map can be represented on the plane. In this case, there is no exterior face and the 

map fills completely the plane. 

A closed torus M can be represented as a 3-dimensional figure projected on to the 

plane, but this is not very practical. We represent its universal cover M as a plane 

having two periodicity directions, i.e. a 2 -periodic plane graph. The group nfM) is 

isomorphic to Z2 and it is represented on M as a group of translation symmetries. 

By choosing a finite index subgroup H of the group G (i.e. such that there exist 

£i> • • • > 8m e G with G = Uig,H) of deck transformations and taking the quo¬ 

tient, we can obtain a bigger torus; such tori have a translation subgroup, which is 

isomorphic to the quotient G///. 

On the other hand, given a torus with non-trivial translation group, there exists a 

unique minimal torus with the same universal cover and trivial translation subgroup. 

Those minimal tori correspond, in a one-to-one way, to periodic tilings of the plane. 

1.2.4 Homology and Euler-Poincare characteristic 

Given a map M, assign an orientation on each of its edges and form a Z-module 

Ci(M) using this set of oriented edges as basis. The Z-module ZX(M) is the sub- 

module of C\(M) generated by the set of closed oriented cycles of M. Given any 
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face of M, associate to it the set of incident edges in clockwise orientation; the gen¬ 

erated Z-module is denoted by BfM). It is easy to see that B\(M) is a submodule of 

Zi(M). 

The homology group H\(M) is the quotient of Z\(M) by its subgroup BfM). 

Again, we refer to Algebraic Topology textbooks for details. If M is a torus, then 

H\(M) is isomorphic to tt\(M). 

If M is an orientable finite closed map, then HfM) is isomorphic to Z2g, where 

g is the genus of M. The Euler-Poincare characteristic of a finite map M is defined 

as X(M) — v — e + / with v the number of vertices, e the number of edges, and / 

the number of faces. 

Theorem 1.2.2 For a finite closed map M of genus g it holds: 

(i) if M is orientable, then X(M) = 2 — 2g, 

(ii) if M is non-orientable, then X(M) = 2 — g. 

This theorem is the main reason why we are able to use topology in dimension two 

to derive non-trivial combinatorial results. 

Theorem 1.2.3 Let G be a k-valent closed map on a surface M; then: 

(i) the following Euler formula is valid: 

J2PjCk-j(k-2)) = 2kX(M), (1.1) 

where pi is the number of i-gonal faces. 

(ii) IfG has no 2-gonal faces, then k < 5 if M is a sphere and k < 6 if M is a torus. 

Proof, (i) The relation 2e = kv allows us to rewrite the Euler-Poincare characteristic 

as: 

Using that 2e = Yli>i in the above equation, yields the result. 

If j > 3, then 2k -j(k - 2) < 0 for k > 6 and 2k - j(k - 2) < 0 for k > 7. Assertion 

(ii) is deduced by noticing that / = 2, 0 for sphere, and torus, respectively. □ 

1.3 Representation of maps 

A polytope P is the convex hull of a finite set of points in Mn; its dimension is 

the dimension of the smallest affine space containing it. We assume it to be full¬ 

dimensional. A linear inequality f(x) > 0 is called valid if it holds for all x 6 P. 

A face of P is a set of the form {x e P : f(x) = 0} with / > 0 being a valid 

inequality. 
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We will consider only 3-dimensional polytopes; they are called polyhedra. Their 

0-dimensional faces are called vertices and the 2-dimensional faces are called 

just faces. Two vertices are called adjacent if there exist an edge, i.e. a 1-dimensional 

face containing both of them. The skeleton of a polyhedron is the graph formed by 

all its vertices with two vertices being adjacent if they share an edge. This graph is 

3-connected and admits a plane embedding. 

Given a polyhedron P, its skeleton skel(P) is a planar graph. Furthermore, for 

any face F of P, we can draw skel(P) on the plane so that F is the exterior face 

of the plane graph. Those drawings are called Schlegel diagrams (see, for example, 

[Zie95]). Steinitz proved that a finite graph is the skeleton of a polyhedron (and 

so, an infinity of polyhedra with the same skeleton) if and only if it is planar and 

3-connected (see [Ste22], [Zie95, Chapter 4] and [Grii03] for a clarification of the 

history of this theorem). 

A Riemann surface is a 2-dimensional compact differentiable surface, together 

with an infinitesimal element of length (see textbooks on differential and Riemannian 

geometry, for example, [Nak90]). The curvature K{x) at a point .r is the coefficient 

a in the expansion: 

Vol(D(x, r)) = nr1 2 — ar4 + o(r4) 

with D(x, r) being the disc consisting of elements at distance at most r from x. The 

curvature of a Riemann surface S satisfies the Gauss-Bonnet formula: 

J K{x)dx = 2tc(\ — g). 

All Riemann surfaces, considered in this section, will be of constant curvature. If 

a surface has constant curvature, then, for any two points jc and y of it, there exist 

two neighborhoods Nx and Ny and a local isometry 0 mapping x to y and Nx to 

Ny. Hence, Riemann surfaces of constant curvature do not have local invariants and 

the only invariants they have are global (see, for example, [Jos06]). For genus zero, 

the curvature has positive integral. Up to rescaling, we can assume that this curva¬ 

ture is 1. There is only one such Riemann surface: the sphere §2. For genus 1, the 

cutvatute has integral 0 and so it is 0. The Teichmiiller space T\ has dimension 2, 

which means that Riemann surfaces of genus 1 are parametrized by two real param¬ 

eters. Geometrically, they are very easy to depict: take K2 and quotient it by a group 

uiZ + u2Z. For higher genus, the situation is much more complicated. 

Given a map M, its circle-packing representation (see [Moh97]) is a set of disks 

on a Riemann surface E of constant curvature, one disk D(v,rv) for each vertex v 

of M, such that the following conditions are fulfilled: 

1 the interior of disks are pairwise disjoint, 

2 the disk D(u, ru), D(v, rv) touch if and only if uv is an edge of M. 
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Simultaneous circle-packing representations of a map M and its dual M* are 

called primal-dual circle representation of M if it holds: 

1 If e = (w, v) is an edge of M and u*, v* are the corresponding vertices in M*, 

then the disks D{u, ru), D(v, rv) corresponding to e touch at the same point as the 

disks D(u*, r„.), D{v*, rv*). 

2 The disks Z)(n, ru), D{u*, r„«) cross at that point perpendicularly. 

See Figure 1.2 for an illustration of this feature and an example of a primal-dual 

circle representation. 

The local picture of a primal-dual circle 
representation 

The edges, vertex circles and face circles of 
a primal-dual representation 

Figure 1.2 Illustration of primal-dual circle representations 

A map M is called reduced (see [Moh97, Section 3]) if its universal cover is 

3-connected and is a cell-complex. It is shown in [Moh97, Corollary 5.4] that reduced 

maps admit unique primal-dual circle packing representations on a Riemann surface 

of the same genus; moreover, a polynomial time algorithm allows one to find the 

coordinates of those points relatively easily. This means that the combinatorics of 

the map determines the structure of the Riemann surface. 

The primal-dual representations allow us to demonstrate the uniqueness of the rep¬ 

resentation of a given map. But, actually, for finite plane graphs, i .e. spheres, we use the 

program CaGe ([BDDH97]), which does not apply primal-dual representations. CaGe 

draws a Schlegel diagram of finite plane graphs on the plane, which we consider (see, 

Subsection 1.2.1); sometimes, in order to show the symmetry, it is a good idea to have 

one vertex or edge of the graph at infinity (see, for example, Figure 2.1, Section 9.1, 

Chapter 10). 

For tori, we take their universal covers on the plane and use the primal-dual rep¬ 

resentation obtained from the program TorusDraw ([Dut04b]). For the projective 

plane P2, we take its universal cover, which is the sphere, and draw a circular frame, 



12 Chemical Graphs, Polycycles, and Two-faced Maps 

where antipodal boundary points are to be identified (see Figure 3.1). For the Klein 

bottle K2, we draw a rectangle with boundary identifications (see Figure 3.1). 

1.4 Symmetry groups of maps 

For finite closed maps on the sphere, there is a complete classification of possible 

symmetry groups. For finite closed maps on the torus, we can describe the possible 

symmetry groups of their universal covers. 

We remind that an automorphism of a simple graph is a permutation of the vertices 

preserving adjacencies between vertices. For plane graphs, we require also that faces 

are sent to faces but for 3-connected graphs this condition is redundant. Recall that 

Aut(G) denotes the group of automorphisms of G. 

The automorphism group Aut{P) of a polyhedron P is the group of isometries 

preserving P. This group of isometries Aut(P) of a polyhedron P is a subgroup 

of the group of symmetries Aut(G) of the plane graph (the skeleton) of P. Mani 

[Man71] proved that any 3-connected plane graph G is the skeleton of at least one 

polyhedron P with Aut(G) — Aut(P). So, we can identify the polyhedron and its 

skeleton, as well as the algebraic (permutation) symmetry group and the geometric 

(isometry) point group. For closed maps on surfaces of genus g > 0, we can use the 

primal-dual representation of the preceding section to prove that the symmetry group 

of the map can be realized as the isometry group of the surface. 

A point group is a finite subgroup of the group 0(3) of isometries of the space 

R3, fixing the origin. Those groups have been classified a long time ago. They are 

described, for example, in [FoMa95], [Dut04a] using the Schoenflies notation, which 

is used here (for the Hermann-Maugin notation, see [OKHy96, Chapter 3], [Dut]). 

Every symmetry group of a finite plane graph is identified with a point group. 

The list of point groups is split into two classes: seven infinite families and 

seven sporadic cases. Every point group contains a normal subgroup formed by its 
rotations. 

We now list the infinite series of point groups: 

1 The group Cm is the cyclic group of rotations by angle with 0 < k < m — 1 
around a fixed axis A. 

2 The group Cmh is generated by Cm and a reflection of plane P with P being 
orthogonal to A. 

3 The group Cmv is generated by Cm and a reflection of plane P with P contain¬ 
ing A. 

4 The gioup Dm is generated by Cm and a rotation by angle tt, whose axis is 
orthogonal to A. 

5 The group Dmh is generated by Cmv and a rotation by angle n, whose axis is 

orthogonal to A and contained in a reflection plane. 
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6 The group Dmd is generated by Cmv and a rotation by angle n, whose axis is 

orthogonal to A and going between two reflection planes. 

7 For any even positive integer m, the group Sm is the cyclic group generated by the 

composition of a rotation by angle ^ with axis A and a reflection of plane P with 

P being orthogonal to A. 

The particular cases C\, Cs = C\h = Ci„ and C,- = S2 correspond to the trivial group, 

the plane symmetry group, and the central symmetry inversion group, respectively. 

The point groups Td, Oh, and Ih are the respective symmetry group of Tetrahedron, 

Cube, and Icosahedron; the point groups T, O, and I are their respective normal 

subgroup of rotations. The point group 7), is generated by T and the central symmetry 

inversion of the centre of the Isobarycenter of the Tetrahedron. 

We now list the strip groups (also called frieze groups)', this part follows 

[Cla, Dut]. In their representation given below, the lines correspond to line reflec¬ 

tions, while the dashed lines correspond to glide reflection, i.e. reflection followed 

by translation. For n > 3 the center of rotations of order n is represented by a regular 

n-gon, while centers of rotation of order 2 are represented by small parallelogram. 

Furthermore, we indicate a translation vector to give the translational symmetries of 

the group. There are seven strip groups, since every such group corresponds to one of 

the infinite series of symmetry groups of plane graphs (imagine a graph of symmetry 

Cm, Sm and let m go to infinity, the figure becoming a strip). 

1 pill (=C0o); it has only translational symmetry: 

2 pirn 1 (=Coo/,); it has a horizontal mirror symmetry: 

► 

3 pm 11 (=Coov); it has vertical mirror symmetries: 
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4 pi 12 (=Da0); it has only 2-fold rotations, spaced at half the translation distance: 

5 pmm2 (=£>00/1); it has vertical mirror symmetries, horizontal mirror symmetry, 

and 2-fold rotations where the mirror intersect: 

► 

6 pma2 (=Dooa); it has a glide reflections, with alternating vertical mirror and 

2-fold rotations: 

7 p\a \ (—S00); it has glide reflections, half the length of the translation distance: 

Foi 2-periodic plane maps, there are 17 possible symmetry groups, called 

wallpaper groups {ox plane crystallographic groups)-, this part follows [OKHy96, 

Chapter 1]. In the representation given below, we give the fundamental domain as a 

parallelogram (or rectangle, or square), which tiles the plane under translation. We 

also give the rotation axis, reflection, and glide reflections with the same conventions 
as for strip groups: 
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1 Wallpaper groups without rotations: 

cm 

2 Wallpaper groups with rotations of order 2: 

plgg c2mm 

3 Wallpaper groups with rotations of order 3: 
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5 Wallpaper groups with rotations of order 6: 

Consider now 2-dimensional Coxeter groups (see, for example, [Cox73, Hum90]). 

By T*(I, m,n) is denoted a Coxeter triangle group. It is defined abstractly as the 

group with generators a, b, c and relations: 

a1 2 3 4 = b2 = c2 = 1 and (ab)' = (ac)m = (bc)n = 1. 

Denote by ail, m, n) the number \ + — + - — 1. 

The group T*(l,m,n) can be realized as a group of isometries of a simply 

connected surface X of constant curvature, where: 

• X = §2, i.e. the 2-dimensional sphere, if a(l,m,n) > 0, 

• X = R2, i.e. the Euclidean plane, if a(l, m,n) = 0, 

• X = HI2, i.e. the hyperbolic plane, if a(l, m, n) < 0 (see [Cox98]). 

For a group G acting on a surface X, a fundamental domain is a closed set T>, the 

orbit of which under G tiles X, i.e. every point belongs to at least one image of V 

under G and the intersection of any two domains in the orbit have empty interior. 

For the group T*(l, m, n) acting on X, we can find a fundamental domain, which is 

a triangle ABC, so that a, b, and c are reflections along the sides BC, AC, AB. The 

angles at A, B, and C are, respectively, and j. 

The integral of the curvature over the triangle ABC is nct(l, m, n). If X = §2 of 

curvature 1, then the area of the triangle is ira(l, m, n). If X = H2 of curvature -1, 

then the area of the triangle is —nail, m, n). If X = R2 of curvature 0, then the area 

of the triangle is not determined by a(l, m, n). 

If a{l,m, n) > 0 (elliptic case), then T*(l, m, n) is a finite group acting on the 

sphere §r; the only possibilities for (/, m, n) are: 

1 (2, 2, n) for 7? > 2 with T*(2, 2, n) ~ Dnh being the automorphism group of the 
regular n-gon, 

2 (2, 3, 3) with T*(2, 3, 3) ~ Td being the automorphism group of the Tetrahedron, 

3 (2, 3, 4) with T*(2, 3, 4) ~ Oh being the automoiphism group of the Octahedron, 

4 (2, 3, 5) with T*{2, 3, 5) ~ Ih being the automorphism group of the Icosahedron. 
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If cy(/, m, n) — 0 {parabolic case), then T*(l, m, n) is a wallpaper group acting on 

the plane R2; the only possibilities for (/, m, n) are: 

1 (2, 4, 4) with T*(2, 4, 4) ~ pAmm being the automorphism group of the square 

tiling Z2 of R2, 

2 (2, 3, 6) with T*{2, 3, 6) ~ p6mm being the automorphism group of the triangular 

tiling of R2. 

If a(l,m,n) < 0 {hyperbolic case), then there is an infinity of possibilities for 

(l,m, n). 

By T(/, m, n) is denoted the normal subgroup of index two of T*{1, m, n) formed 

by rotations of X (i.e. orientation-preserving elements of T*{1, m, n)); see, for 

example, [Mag74]. 

There are the following relations with strip groups: 

T*{2, 2, oo) = pmml and T{2, 2, oo) = pi 12 ^ pm 11 ~ pma2. 

Remark that plml also has index two in T*{2, 2, oo), but it is not isomorphic to 

T{2, 2, oo). Recall also that T{2, 3, oo) ~ PSL{2, Z) (the modular group) and 

T*{2, 3, oo) ~ SL{2, Z). The groups T{1, m, n) contain a large number of non¬ 

isomorphic subgroups of finite index, which renders futile any hope of classification 

of possible symmetry groups of maps on orientable surfaces of genus g > 2. 

However, in many cases considered here, the groups T{1, m, n) and T*{1, m, n) are 

sufficient for our purposes. 

Remark 1.4.1 In Chapters 2, 4, and 7, a pair {r, q) will be called elliptic, parabolic, 

or hyperbolic if rq < 2(r + q), rq = 2{r + q), rq > 2(r + q), respectively. 

This is equivalent to a(2, r, q) > 0, a(2, r, q) — 0, a{2, r, q) < 0, respectively. 

In Chapter 4, the link will be made direct, since every {r, q)-polycycle has a cell- 

homomorphism into the tiling {r,q} (see Section 1.5), whose symmetry group is 

T*(2, r, q). 

In Chapter 7, there will be no such link; however, the pair (r, q) such that there is 

a countable number of elementary (r, q) poly cycles are exactly the elliptic ones; see 

Theorem 7.2.1, 7.4.1, 7.5.1, 7.6.1. But we have no general explanation of this fact. 

A k-valent sphere, whose faces have gonality a or b, is called a {{a, b}, k)-sphere 

(see Chapter 2). We call the parameters ({a, b}, k) elliptic, parabolic, hyperbolic, 

according to the sign ofa{ 2, b, k). This sign has a consequence for the finiteness and 

growth of the number of graphs in the class of {{a, b], k)-spheres. Here, the link is 

provided by the Euler formula (1.1). 
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1.5 Types of regularity of maps 

We list here some classification results for maps on the sphere or on the plane. 

A map is regular if its automorphism group act transitively on flags, i.e. if, for any 

two flags / and /', there is an automorphism 0 with </>(/) = /'. 

We are now in position to define formally the regular tiling [r, q). 

Definition 1.5.1 The triangle group T*(2, r, q) act on X (with X = §2, K2, HI2) if 

a(2,r,q) > 0, =0 < 0, respectively. The fundamental domain V (triangle ABC) 

has angles ~, and - at A, B, C, respectively. 

To every point B' in the orbit of B under T*(2, r, q), associate an r-gon formed 

by all 2 r triangles containing B'. The tiling [r, q) is the set of all those r-gons; it 

satisfies: 

• {r,q} is a q-valent tiling of X by r-gons. 

• The group T*(2,r,q) act regularly on {r,q}, i.e. any two flags of {r,q) are 

equivalent under T*(2, r, q). 

• The curvature of those r-gons is 2ra(2, r, q). 

See below the Platonic (regular) polyhedra P with their groups Aut(P): 

Icosahedron Dodecahedron 
(3.5},//, {5,3},/,, 

One has the duality Cube = (Octahedron)* and Icosahedron = (Dodecahedron)*, 
while Tetrahedron is self-dual. 

Denote by Bundlem, m > 2, the plane graph with two vertices and m edges 

between them (so, m 2-gonal faces). The plane graph Bundlem, which is dual to 

m-gon, has the symmetry group Dmh = r*(2, 2, m) and it is a regular map, which is 
not a cell-complex. 
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Three regular tilings of the plane R2 are: 

Triangular tiling 
{3, 6}, p6mm 

Square tiling 
(4, 4), p4mm 

Hexagonal tiling 
(6, 3}, p6mm 

The triangular and hexagonal tilings are dual to each other, while the square tiling 

is self-dual. For other parameters (r, q), the tiling {r, q} lives in hyperbolic space HI2 

(see many pictures in [EpsOO]) but we will not need it. 

Given two circuits U = (u\,..., um) and V = (iq,..., vm), an Prismm (m-sided 

prism), for 2 < m < oo, is a 3-valent plane graph, where each w, is joined to vt by 

an edge. Its symmetry group is Dmh i f m ^ 4 and O/, if m = 4. 

• • 

Pi isitIqq i D^h — pmm2 

An APrismm (m-sided antiprism), for 2 < m < oo, is a 4-valent plane graph formed 

by adding to two circuits U and V the cycle (u\, V2, v3, • • •, vm> um, ^i, u\). Its 

symmetry group is Dmd if m ^ 3 and Oh if m = 3. 

APrismoo, D^d = pma2 
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For 2 < m < oo, denote by snub Prismm a 3-valent plane graph with two m-gonal 

faces separated by two m-rings of 5-gons. Its symmetry group is Dmd if m # 5 and 

Ih if m = 5. 

snub Prisms = Dodecahedron, //, 

Snub Prisms, is also called Diirer octahedron (see it on the painting Melencolia I by 

Diirer, 1514, depicting the muse of mathematics at work) and it can be obtained by 

truncating Cube on two opposite vertices. 

For 2 < m < oo, denote by snub APrismm a 5-valent plane graph with two 

m-gonal faces separated by 6m 3-gonal faces as in examples below (see [DGS04, 

page 119], for formal definition). Its symmetry group is Dmd if m # 3 and Ih 

if m = 3. 

snub APrisms, 

D5d 

snub APrism4, 

D^d 

snub APrism= pma2 
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Snub APrism4 is one of 92 regular-faced2 polyhedra called snub square antiprism 

(see [Joh66] and [Zal69]). 

A map is called Archimedean if its symmetry group acts transitively on vertices 

but the map itself is not regular. Any Archimedean polyhedron belongs either to 13 

sporadic examples, or to one of two infinite series Prismm and APrismm for m > 3. 

Like the Platonic polyhedra, they are known since the antiquity and were rediscov¬ 

ered during the Renaissance; Kepler ([Kepl619]) gave them their modern names. 

Their duals are called Catalan polyhedra. The Archimedean tilings of the plane are 

also classified. There are eight such maps; their duals are called Laves tilings. 

All 92 regular-faced polyhedra were found by the work of many people, especially 

of Johnson and Zalgaller (see, for example, [Joh66, Zal69]). The eight (namely, 

Tetrahedron, Octahedron, Icosahedron and duals of Prism3 and four ({4, 5}, 3)- 

spheres from Figure 2.1) whose faces are regular triangles, are called deltahedra. 

A mosaic is a tiling of the Euclidean plane by regular polygons. All (165) mosaics 

are classified in [Cha89]. 

I06 Operations on maps 

A decorated {r, q} is a map obtained by adding some vertices and edges to the regular 

tiling {r,q}\ see in Tables 9.1 and 9.3 many such decorations. 

We list here some operations transforming a map M into another map M'. 

Truncation and capping: The truncation of M at a vertex v of degree m consists 

of replacing the vertex r by a m-gonal face. The capping is, in a sense, dual to 

truncation, it consists of adding a new vertex v to a face F of M such that v is 

adjacent to all vertices of F, i.e. putting a pyramid on F. 

Capping of a face F 

2 http://mathworld.wolfram.com/JohnsonSolid.html 
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The truncation of M, respectively, capping of M consist of performing truncation, 

respectively, capping of all vertices, respectively, faces of M. The t-capping of M is 

obtained by the capping of t distinct faces of M. The b-cap of M is the map obtained 

by capping all Z?-gonal faces of M. 

Elongation: Let C be a simple circuit of adjacent vertices in M. An elongation of M 

along C consists of replacing C by a ring of 4-gons (see a related notion of central 

circuit in Chapter 2). The elongation of M along a circuit C, bounding a face F, 

means adding a prism on F. 

/n-halving: Given an even number m, a m-halving of M is obtained by putting a new 

edge, connecting the mid-points of opposite edges, on each w-gon. 

4-triakon: The 4-triakon of a 3-gonal face F of M is obtained by partitioning F into 

three 4-gons according to the scheme below: 

4-triakon of a 3-gonaI face F 

The 4-triakon of M consists of performing 4-triakon of all 3-gons of M. 

Pentacon: The pentacon of a 5-gonal face F of M consists of partitioning F into six 

5-gons according to the scheme below: 

Pentacon of a 5-gonal face F 

If S is a set of 5 gons of M such that no two 5-gons in S are adjacent, then denote by 

ps(M) the pentacon of M on S, i.e. the pentacon of all 5-gons in S. 

5-triakon: The 5-triakon of a 3-gonal face F of M consists of partitioning F into 
nine 5-gons according to the scheme below: 

5-triakon of a 3-gonal face F 
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Actually, the 3-gons to which we will apply this construction come from the trun¬ 

cation of a set of vertices S of a map M. The result of this operation (truncation 

followed by 5-triakon of new 3-gonal faces) is denoted by TS{M) and is called 

5 -triakon of M on S. 

Note that last two operations amount to replacing a face by (5, 3)-polycycles A5, 

A3 (see Chapter 7 and Figure 7.2), respectively. 



2 

Two-faced maps 

Call a two-faced map and, specifically, ({a, b), k)-map any ^-valent map with only 

a- and b-gonal faces, for given integers 2 < a < b. We will also use terms {{a, b}, k)- 

sphere (moreover, {{a, b}, k)-polyhedron if it is 3-connected) or ({a, b), k)-torus 

for maps on sphere S2 or torus R2, respectively. Call ({a, b}, k)-plane any infinite 

/c-valent plane graph with a- and b-gonal faces and without exterior faces. More 

generally, for R C N — (1), call (R,k)-map a k-valent map whose faces have 

gonalities i e R. 

When presenting a ({a, b], &)-sphere in a drawing, we will indicate its number 

of vertices and its Schoenflies symmetry group (see Section 1.4). The notation 

(v, pa, pf) under picture of a minimal ({a, b], £)-torus indicate its number of ver¬ 

tices, its number of a- and b-gonal faces; we also indicate its wallpaper symmetry 

group (see Section 1.4). 

Call corona (of a face) the cyclic sequence of gonalities of all its consecutive 

neighbors. The corona of a vertex is the sequence of gonalities of all consecutive 

faces containing it. Recall that v, e, and / denote the number of vertices, edges, and 

faces, respectively, of a given finite map. Denote by p, the number of its i -gonal 

faces and by ea~b, ea-a the number of (a-b)-edges, (a-a)-edges, i.e. edges separat¬ 

ing a- and £>-gonal faces or, respectively, n-gonal faces. Euler Formulas (1.1) for 

{{a, b}, &)-sphere and ({a, b}, &)-torus are: 

pa(2k — a(k 2)) T Pb(2.k — (k — 2)b)=4k, 

Pa(2k - a(k - 2)) + pb(2k - (k - 2)b)=0. 

We can interpret the quantity 2k — b(k — 2) as the curvature of the faces of gonality 

b\ Euler formula is the condition that the total curvature is a constant, equal to 4k, 

for ^-valent plane graphs. This curvature has an interpretation and applications in 

Computational Group Theory, see [Par06] and [LySc77, Chapter 9]. 

A pair (R, k) is called elliptic, parabolic, hyperbolic if- + |>f —2 <1 

where r = maxieR i, respectively. 

24 
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The ({5,6}, 3)-spheres are called fullerenes in Organic Chemistry, where 

fullerenes and other two-faced maps are prominent molecular models. The ({5, 7}, 

3)-spheres are called, in chemical context, azulenoids (see Figure 7.1 for azulene and 

[BCC96]). 

The ({a, b), &)-spheres with elliptic ({a, b}, k), i.e. with b(k - 2) < 2k, are listed 

in Figure 2.1. 

We will mainly consider in this chapter ({a, b], &)-spheres with parabolic 

({a, b}, k), i.e. with 2k = b(k — 2); for those the number pa of a-gonal faces remains 

fixed: 

4k 

Pa ~ 2k-a(k-2Y 

In other words, every a-gonal face of G has positive curvature and every fi-gonal 

face has zero curvature. 

Figure 2.1 All ([a, b}, /c)-spheres with elliptic ({a, b], k) and pb > 1 
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Is is easy to see that the only (seven) solutions are ({a,b},k) = ({2, 6}, 3), 

({3, 6}, 3), ({4, 6}, 3), ({5, 6}, 3), ({2, 4}, 4), ({3, 4}, 4), and ({2, 3}, 6). 1 

If the number of vertices becomes large, then those plane graphs are formed by 

a few faces of gonality a in a sea of faces of gonality b. But there is a unique way 

to have fc-valent tiling of the plane with faces of gonality b: the regular 2-periodic 

tiling {b, k} of M2. The case ({5, 6), 3) of fullerenes alone created an entire industry 

(see [FoMa95]), the first reference is [Gol35] and even Rev. Kirkman, who studied 

in 1882 40-vertex fullerenes, was cited in [Gol35]. 

For the hyperbolic classes ({a, b}, k), i.e. those with 2k < b(k — 2) (see [BCC96]), 

things are much more complicated. It is likely that the number of such graphs grows 

more than exponentially with the increasing number v of vertices (the growth rate 

for them is unknown, as for many other things) and the combinatorics is so rich 

that it becomes intractable by the methods exposed here. But Malkevitch ([Mal70]) 

proved that 3-valent polyhedra, i.e. ({a, b}, 3)-polyhedra with b > 7, exist, with finite 

number of exceptions, if and only if (6 — a)pa — (b — 6)pb = 12, i.e. Euler formula 

(1.1) holds. Moreover, he found: 

(i) b e {7, 8, 9, 10}, if <7 = 3, 

(ii) pb is even, if 2a divide b and a — 4, 5. 

If pb = 0, then the above seven possible classes of ({a,b},k)-spheres with 

parabolic ({a,b},k) give Bundle3, Tetrahedron, Cube, Dodecahedron, Bundle4, 

Octahedron, and Bundle6, respectively (see definition of Bundlem in Section 1.5). 

If pb = 1, then such spheres do not exist. 

Theorem 2.2.1 below gives that ({2, 6}, 3)-sphere with v vertices exists if and only 

if v = 2(k2 +kl + I2) for some integers 0 < k < l. 

Theorem 2 of [GrMo63] gives that a ({3, 6}, 3)-polyhedron with v vertices exists 

only for any v > 4 with v = 0 (mod 4), except v = 8. For v = 8, a ({3, 6}, 3)-sphere 

exists but it is only a 2-connected sphere 7); see Proposition 2.0.2. 

The ({4, 6}, 3)-spheres were considered in a chemical setting in [GaHe93], Theo¬ 

rem 1 of [GrMo63] gives that a ({4, 6}, 3)-sphere with v vertices exists only for any 
even v > 8, except v = 10. 

Theorem 1 of [GrMo63] gives also that a ({5, 6}, 3)-sphere with v vertices exists 

only for any even v > 20, except v = 22. 

A ({2, 4}, 4)-sphere with v vertices exists for any even v >2 (see [DeSt03]). 

The existence of ({3, 4}, 4)-spheres with v vertices only for any v > 6, except 

v = 7,is established in [Gru67, page 282], 

A ({2, 3}, 6)-sphere with v vertices exists for any v > 2 and the proof (in the same 

spirit as for other parabolic classes) is given below: 

before to those seven classes the following names and notation, respectively: 2V, 34 
5V (in [DeDu05]), 4-hedrites, octahedrites (in [DeSt03. DDS03, DHL02]), (2, 3)„ (in [DeGrOl]). 
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Theorem 2.0.1 For any v > 2, there exists a ({2, 3}, 6)-sphere with v vertices. 

Proof. Consider the regular tiling {3, 6} and take the doubly infinite path I of vertices 

lying on a a straight line in {3, 6}. If we take another parallel line V at distance t, then 

l and l' bound a domain D, in {3, 6}. 

If we take the group G generated by a translation of three edges along /, then the 

quotient D, of D, by G is formed of t rings, each of six 3-gons. The domain D, has 

two faces bounded by vertices of degree 4. There are two possible caps to close those 

structures: 

Incomplete structure Cap Nr. 1 Cap Nr. 2 

Denote by 231(/) the ({2, 3}, 6)-sphere with 3? + 3 vertices, which is formed by 

closing domain D, by two caps Nr. 1. Denote by 232{t) the ({2, 3}, 6)-sphere with 

3t + 4 vertices, which is formed by closing domain D, by one cap Nr. 1 and one cap 

Nr. 2. Denote by 232(t) the ({2, 3}, 6)-sphere with 3t + 5 vertices, which is formed 

by closing domain D, by two caps Nr. 2. See below the first two members of those 

series: 

3, D3h (231(0)) 4, Td (232(0)) 

We conclude by noting that Bundle6 has two vertices. □ 

Denote by (T„)n>i the infinite series of 4(n + l)-vertex ({3, 6}, 3)-spheres, whose 

first three members are shown below: 

T\, D211 

The symmetry group of Tn is D2d or D2h if n is even or odd, respectively. 
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Theorem 2.0.2 ([DeDuOS]) For a 3-valent plane graph G with faces of gonality 

between 3 and 6, it holds: 

(i) G is 2-connected. 

(ii) If G is not 3-connected, then it belongs to the infinite series Tn of ({3, 6}, 3)- 

spheres. 

There is a similar theorem in [DDS03J for 4-valent plane graphs with faces of size 

2, 3, or 4. From this it follows that ({3, 4}, 4)-, ({4, 6}, 3)- and ({5, 6}, 3)-spheres are 

polyhedra. 

2.1 The Goldberg-Coxeter construction 

The Goldberg-Coxeter construction takes a 3- or 4-valent plane graph Go, two inte¬ 

gers k and /, and returns another 3- or 4-valent plane graph denoted by GCkj(Go). 

This construction occurs in many contexts, whose (non-exhaustive) list (for the main 

case of Go being Dodecahedron) is given below: 

1 Every fullerene ({5,6}, 3) of symmetry / or //, is of the form GCkj 

(Dodecahedron) for some k and /, i.e. is parametrized by a pair of integers 

k,l > 0. This result was proved by Goldberg in [Gol37]; see some other proofs in 

[Cox71] and Theorem 2.2.2. 

2 The famous fullerene C^ilf) (called buckminsterfidlerene or soccer ball) has the 

skeleton of GC\\{Dodecahedron). GCkjiDodecahedron) constitute a particu¬ 

larly studied class of fullerenes (see [FoMa95, Diu03]). 

3 A certain class of virus capsides (protein shells of virions) have a spherical 

structure, that is modeled on dual GCkjiDodecahedron) (see [CaK162, Cox71, 

DDG98]). 

4 Geodesic domes, designed with the method of Buckminster Fuller, are based again 

on those two parameters k and / (see [Cox71]). 

5 In Numerical Analysis on the sphere, we need systems of points that look roughly 

uniform. The vertices of dual GCkjiDodecahedron) provide such a point-set (see 
[ScSw95]). 

6 Some conjectural solutions of many extremal problem on the sphere (Thomson, 

Tammes, Skyrme problems, etc.) have (solving exactly the problem is almost 

impossible) the combinatorial structure of GCk /(Dodecahedron) or its dual (see 
[HaS196]). 

In Virology, the number t(k, /) = k2 + kl + /2 (used for icosahedral fullerenes) 

is called triangulation number. In terms of Buckminster Fuller, the number k + l is 

called frequency, the case / = 0 is called Alternate, and the case l = k is called 
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Triacon. He also called the Goldberg-Coxeter construction Breakdown of the initial 

plane graph Go. 

The root lattice A2 is defined by A2 = [x e I? : x0 + x\ + x2 = 0}. The square 

lattice is denoted by Z2. 

The ring Z[co\, where co = e~l = 2(1 + ij3), of Eisenstein integers consists of 

the complex numbers z = k + lea with k, l e Z. The norm of such z is denoted by 

N(z) = zz = k2 + kl + l2 and we will use the notation t(k, l) = k2 + kl + l2. If we 

identify x = {x\, x2, xf) e A2 with the Eisenstein integer z = x\ +x2co, then it holds 

that 2N(z) ~ IMI2. 

The ring Z2 = Z[/] consists of the complex numbers z = k + li with k, l e Z. 

The norm of such z is denoted by N(z) — zz — k2 + l2 and we will use the notation 

t(k,l) = k2 + l2. 

The Goldberg-Coxeter construction for 3- or 4-valent plane graphs can be seen, in 

algebraic terms, as the scalar multiplication by Eisenstein or Gaussian integers in the 

parameter space. More precisely, GC^j corresponds to multiplication by complex 

number k + leo or k + li in the 3- or 4-valent case, respectively. 

Let us now build the graph GQ- /(Go). First consider the 3-valent case. By duality, 

every 3-valent plane graph Go can be transformed into a triangulation, i.e. into a 

plane graph whose faces are triangles only. The Goldberg-Coxeter construction with 

parameters k and l consists of subdividing every triangle of this triangulation into 

another set of faces, called master polygon, according to Figure 2.2, which is defined 

by two integer parameters k, l. The obtained faces, if they are not triangles, can be 

glued with other non-triangle faces (coming from the subdivision of neighboring 

triangles), in order to form triangles. So, we end up with a new triangulation (see 

Figure 2.3). 

Figure 2.2 The master polygon in 3- or 4-valent case 
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Gluing of master polygons for 
GC2,](Cube) 

Gluing of master polygons for 
GCi'jiOctahedron) 

Figure 2.3 Two examples of gluing of master polygons 

The triangle of Figure 2.2 has area A(k2 + kl + l2) if A is the area of a small 

triangle. By transforming every triangle of the initial triangulation in such a way 

and gluing them, we obtain another triangulation, which we identify with a (dual) 

3- valent plane graph and denote by GCkj(Go). The number of vertices of GQ./(G0) 

(if the initial graph Go has v vertices) is vt(k, l) with t(k, /) = k2 + kl + I2. 

For a 4-valent plane graph Go, the duality operation transforms it into a quad- 

rangulation and this initial quadrangulation is subdivided according to Figure 2.2, 

which is also defined by two integer parameters k, I. After merging, the obtained 

non-square faces, we get another quadrangulation and the duality operation yields 

the 4-valent plane graph GCkj(Go) having nt{k, l) vertices with t(k, l) = k2 + /2 

(see Figure 2.3). 

The faces of G0 correspond to some faces of GCjy(G0). If t(k, l) > 1, then those 

faces are not adjacent; they are isolated amongst 6-gons or 4-gons. 

Theorem 2.1.1 ([DuDe03]) Let Go be a 3- or 4-valent plane graph and denote the 

graph GCkj(Go) also by GCZ(G0), where z — k + loo or z — k + // in the 3- or 

4- valent case, respectively. Then the following holds: 

(i) GCZ(GQ(G0)) = GCZZ-(G0). 

(ii) If z! = zo/“ with a = to or i, Go is 3- or 4-valent and u eZ, then GC-(Go) = 

GQ(G0). 

(Hi) GCt(Go) = GCZ(G0), where Go denotes the plane graph, which differs from 

Go only by a plane symmetry. 

Note that if G0 is a plane graph with only rotational symmetries, then GCZ(G0) 

is not isomorphic to GCZ(G0). For a map G, denote by Med(G) its medial 

map. The vertices of Med(G) are the edges of G, two of them being adjacent 

it the corresponding edges share a vertex and belong to the same face of G. So, 

Med(G) = Med(G*) and we can check that Med(G) = GCU(G)■ We have 
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Med(Tetrahedron) = Octahedron and Med(Cube) = Cuboctahedron. The 

skeleton of Med(G) is the line graph of the skeleton of G if G is a 3-valent map. 

For any 3-valent map G, the leapfrog leap(G) of G is the truncation of G* (see 

[FoMa95]). We have leap(G) = GCU(G). 

If / = 0, then GCkj(Go) is called k-inflation of Go- For k = 2, l = 0, it is called 

chamfering of Go, because Goldberg called the result of his construction for (k, 1) = 

(2, 0) on Dodecahedron, chamfered Dodecahedron. All symmetries of G occur in 

GCkj(G) if l = 0 or / = k, while only rotational symmetries are preserved if 0 < 

l < k. The Goldberg-Coxeter construction can be also defined, similarly, for maps on 

orientable surfaces. While the notions of medial, leapfrog, and k-inflation go over for 

non-orientable surfaces, the Goldberg-Coxeter construction is not defined on a non- 

orientable surface. Some examples of Goldberg-Coxeter construction can be found 

in Chapter 9. It is interesting to study graph parameters of GCkj(G) for a fixed G; 

one example of such study concerns zigzags and central circuits in [DuDe03]. 

Simple zigzag in a 88-vertex 
({5, 6}, 3)-sphere, T 

Simple central circuit in a 30-vertex 
({3, 4}, 4)-sphere, O 

Figure 2.4 Examples of simple zigzag and central circuit; one orbit of such 12 zigzags 

and one orbit of six such circuits 

2.2 Description of the classes 

Here are presented some known theoretical and computer tools for generating 

({a, b], k)-spheres. We first give the cases for which the description of the Goldberg- 

Coxeter construction suffices. Then, for ({3, 6}, 3)- and ({2, 4}, 4)-spheres simple 

combinatorial constructions give a full description of those classes. Foi the remain¬ 

ing classes, we have less possibilities and the number of graphs grows more sharply 

with the increasing number of vertices. 

Theorem 2.2.1 Every ({2, 6}, 3)-plane graph comes as GCkj(Bundlef); its symme¬ 

try group is if l e {0, k} and Dj, otherwise. 

Proof. The description of those spheres is given in [GrZa74] and it is, actually, a 

Goldberg-Coxeter construction. a 
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Theorem 2.2.2 (i) Any ({3.6}, 3)-sphere with symmetry T or Td is GCk.i 

(Tetrahedron), 

(ii) any ({4, 6}, 3)-sphere with symmetry O or Oh is GC^jiCube), 

(iii) any ({4, 6}, 3)-sphere with symmetry D& or Dg/, is GC^.d Prising), 

(iv) any ({5, 6}, 3)-sphere with symmetry / or f is GCkj(Dodecahedron), 

(v) any ({2, 4}, 4)-sphere with symmetry D4 or D4/, is GCkj(Bundlef), 

(vi) any ({3, 4}, 4 )-sphere of symmetry O or Oh is GCkj(Octahedron). 

(vii) Let QPm (for m f 2, 4) denote the class of3-va!ent plane graphs with two 

m-gonal faces, m 4-gons, and p(, 6-gonaI faces. Every such graph, having a m-fold 

axis, comes as GCkj{Prism,n) and has symmetry group Dm or Dmh. 

(viii) Let QFm (for m f 2, 3) denote the class of 4-valent plane graphs 

with two m-gonal faces, m 2-gons, and p\ 4-gonal faces. Every such graph, 

having a m-fold axis, comes as GCkj(Foilm) and has symmetry group Dm 

or Dmh. 

The above results are proved in [Gol37, Cox71, DuDe03]. We will prove only (ii), 

the other cases being very similar: Take a ({4, 6}, 3)-sphere of symmetry O or Oh. 

One 4-fold symmetry axis goes through a 4-gon, say, Fx. After adding p rings of 

6-gons around F\, we find a 4-gon and so, by symmetry, four 4-gons, say, F[, Ff 

^3’ ^4- The position of the square F[ relatively to F\ defines an Eisenstein integer 

z = k + l(o. The graph can be completed in a unique way and this proves that it is 

GCkj(Cube). Looking back at the proof we can see that we used only the existence 

of a 4-fold rotation axis to get the result. Therefore, the symmetry groups C4, D4, 

and so on are not possible for ({4, 6}, 3)-spheres, i.e. such symmetry implies some 
higher symmetries. 

We are now giving the general construction of all ({3, 6}, 3)-spheres following 

[GrMo63] (see also [DeDu05]). A zigzag in a plane graph is a circuit of edges, such 

that any two, but no three, consecutive edges belong to the same face. A zigzag is 

called simple if it has no self-intersection (see, for example, Figure 2.6). A closed 

railroad in a 3-valent plane graph is a circuit of 6-gonal faces, such that any 6-gon 

Figure 2.5 A railroad and a closed railroad in a ({3, 6}, 3)-sphere 
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60, D3, z = (1810) 60, Ih, z = (1810) 76, D2d,z = (224,207) 

140, 7,z = (2815) 

Figure 2.6 All known tight ({5, 6}, 3)-spheres with simple zigzags; z is the list of lengths 

of the zigzags 

is adjacent to its neighbors on opposite edges. A 3-valent plane graph is called tight 

if it has no closed railroads. A railroad between two non 6-gonal faces F and F 

is a sequence of 6-gons, say, F\, Fi, such that putting T0 = F and Fi+\ — F 

we have that any Fu 1 < / < /, is adjacent to F,_, and Fi+l on opposite edges. 

It is proved in [GrMo63] that closed railroads and railroads of a ({3, 6}, 3)-sphere 

do not self-intersect, i.e. a given 6-gon occur only once. Take a ({3, 6}, 3)-sphete 

G, a railroad between two triangles 7j, T2 and denote by 5 the number of 6-gons 

of this railroad. Around this structure, we adds ring of 6-gons, which happen to be 

closed railroads. After adding m such rings, we add a triangle 7j. The structure is 
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then completely determined and we obtain a railroad between T3 and T4, which is 

isomorphic to the one between T\ and T2 (see Figure 2.5 for illustration). We get, by 

direct computation, the equality p^ = 2(sm +5 + m) and v = 4(5 + 1 )(m + 1), where 

P(, is the number of 6-gons and v the number of vertices. 

Following [DeSt03], we now explain how to describe all ({2, 4}, 4)-spheres. In an 

Eulerian map (i.e. ones with vertices of even degrees), a central circuit is a circuit 

of edges such that any two consecutive edges are not contained in a common face 

(see Figure 2.4). A central circuit is called simple if it has no self-intersection. A 

central circuit is determined by a single edge, so the edge-set is partitioned by the 

central circuit. A railroad is a, possibly self-intersecting, circuit of 4-gons bounded 

by two central circuits. A 4-valent graph is called tight if it has no railroad. Non-tight 

4-valent graphs are obtained from tight ones by duplicating some of their central 

circuits. It is proved that all central circuits of ({2, 4}, 4)-sphere do not self-intersect. 

Let us describe the tight ({2, 4), 4)-spheres. They have exactly two central circuits. 

Below we indicate the starting point of the construction for v = 5: 

From the scheme drawn above, it is clear that there is only one way of completing 

the structure so as to obtain a ({2, 4}, 4)-sphere, which we denote by Ivi. Also Iv , is 

a tight ({2, 4}, 4)-sphere if and only if gcd(v, i) = 1. All tight ({2, 4}, 4)-spheres are 

obtained in this way. The non-tight ({2, 4}, 4)-spheres are obtained by replacing the 

central circuits by railroads, which do not self-intersect. The description given here 

of ({3, 6}, 3)-spheres and ({2, 4}, 4)-spheres is not the only one possible. We can see 

them as dual agglomerations of triangles and 4-gons (see, for example, [FoCr97]). 

Another possibility is to take the quotient of a (6, 3)-torus by an involution fixing 

four 6-gonal faces; see [DGMS07], where this is used to determine the eigenvalues 
of ({3, 6}, 3)-spheres. 

Remark 2.2.3 The number of zigzags in a tight ({a, 6}, 3 fsphere is < 3, 3 for a = 2, 

and, conjecturally < 8, < 15 for a = 4, 5 (see [DeDu05]). The number of central 

arenas in a tight ({a, 4}, 4)-sphere is 2, < 6fora = 2, 3 (see [DeSt03]). The number 

of ig it ({a, 6}, 3(-spheres with only simple zigzags is 0, oo, 2 for a = 2, 3, 4 and 

TJTrfy\ 9fora = 5 (see FiSure 2.6 and [DeDu05]). The number of tight 
({a, 4} 4(-spheres with only simple central circuits is 00, 8 for a = 2, 3 (including 

the right one on Figure 2.4. See [DeSt03, DDS03] for details) 
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The polyhedra, which are dual to the 3-valent polyhedra without £>-gonal faces, 

b > 6, are studied in [Thu98]; they are called there non-negatively curved trian- 

gulations. Thurston developed there a global theory of parameter space for sphere 

triangulations with degree of vertices at most 6. The main Theorem 0.1 there 

describes them as the elements of L+/q, where L is a lattice in complex Lorenz 

space C(1,9), G is a group of automorphisms and L+ is the set of lattice points of 

positive square-norm. Clearly, our ({a, 6}, 3)-spheres with a = 3, 4, 5 are covered by 

Thurston’s considerations. Let 5 denote the number of vertices of degree less than 6; 

such vertices reflect the positive curvature of the triangulation of the sphere §2. 

Thurston has built a parameter space with 5 — 2 degrees of freedom (complex num¬ 

bers). Using this. Theorem 3.4 in [Sah94] (which is an application of a preliminary 

version of [Thu98]) implied that the number of ({3, 6}, 3)-, ({4, 6}, 3)-, ({5, 6}, 3)- 

spheres with v vertices grows as O(v), 0(v3), 0(v9). We believe that the hypothesis 

on degree of vertices (in dual terms, that the graph has no £-gonal faces with b > 6) 

in [Thu98] is unnecessary to his theory of parameter space. Also, his theory can be 

extended, perhaps, to the case of quadrangulations instead of triangulations. 

The graphs, that can be described in terms of Goldberg-Coxeter construction, can 

be thought of as those expressed in terms of one complex parameter. Considering 

intermediate symmetry groups (for example, ({5, 6}, 3)-polyhedra of symmetry D5), 

we can use a small number of complex parameters to describe them and this is, 

actually, done in [Dut02] or in [FCS88] for generating them up to a large number of 

vertices. See also [Gra05] for some classification results, based on those methods. 

For general classes of graphs with no hypothesis on symmetry, the best is, probably, 

to use CPF ([BDDH97]) or ENU ([Hei98]), which generates all 3- or 4-valent graphs 

with the number of faces of size i being given in advance. 

Remark 2.2.4 The possible symmetries of ({2, 3}, G)-spheres have not been deter¬ 

mined yet. Also, the Goldberg-Coxeter construction has not been defined for 6-valent 

spheres, although we do not see an obstruction to it. Also it could be interesting to 

extend remark 2.2.3 on those spheres. 

For the ({2, 3}, 6 )-spheres, a useful transformation for computer enumeration and 

for theoretical purposes is the following. Take the dual, which is a plane graph with 

6-gonal faces and vertices of degree 2 or 3; then remove the 2-valent vertices. The 

resulting sphere is a 3-valent one with faces of gonality at most 6. We can thus gen¬ 

erate many ({2, 3}, 6)-spheres: just take a 3-valent plane graph with faces of size at 

most 6, put adequately some vertices on some edges, and then take the dual. 

We now list the known results on symmetry of those spheres: 

Theorem 2.2.5 The symmetry groups are as follows: 

(i) ([GrZa74]) For ({2, 6}, 3))-spheres, it is one of D3 or D3h. 

(ii) ([FoCr97]) For ({3, 6}, 3)-spheres, it is one of D2, Dlh, D2d, T, Td. 
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(Hi) ([DeDu05]) For ({4, 6}, 3)-spheres, it is one of 16 groups: C\, Cs, C2, C/, C2v, 

C2h> D2, D3, D2d, D2h, Did, D2h, D(„ Dm, O, Oh- 

(iv) ([FoMa95]) For ({5, 6}, 3)-spheres, it is one of 28 groups: C\, C2, C,, Cs, C3, 

D2, S4, C2v, C2h, D3, St5, C2v, C2h, D2h, D2d, D5, Dg, D3h, Did, T, D5/,, D$d, 

Deh, D(,d, Tj, Th, /, //,. 

(v) ([DDS03]) For ({2, 4}, 4)-spheres, it is one of D\h, D4, D2h, D2d, D2. 

(vi) ([DDS03]) For ({3, 4), 4)-spheres, it is one of 18 groups: C\, Cs, C2, C2v, C;, 

C2h, S4, D2, D2d, D2]u D3, D3d, D3h, D4, D4d, D411, O, Oh- 

In [Kar07] a general method for determining the symmetry groups of ({5, b}, 3)- 

spheres is given. It is proved in [Kar07J that if a group occurs as a symmetry group 

of a ({5, b}, 3)-sphere, then it occurs as a symmetry group of an infinity of ({5, b}, 3)- 

spheres. It is also proved in [Kar07] that a group G occurs as a symmetry group of 

({5, b}, 3)-spheres for any b > 7 if and only if G is a subgroup of Ih. 

Another interesting class of spheres, which could be considered, consists of the 

self-dual ones, whose vertices are of degree 3 or 4 and faces have gonality 3 or 4. The 

medials (defined in Section 2.1) of such spheres are ({3, 4}, 4)-spheres. In particular, 

pi + Vi = 8, which implies p2 = u3 = 4. Furthermore, the self-duality becomes an 

ordinary symmetry of the ({3, 4}, 4)-sphere. (See [ArRi92, SeSe94, SeSe95, SeSe96] 

for some other constructions of self-dual maps on the sphere.) 

2.3 Computer generation of the classes 

We now present the general ideas on computer generation of those classes of plane 

graphs. The main technique in combinatorial construction is the exhaustive search: 

we build a plane graph, face by face, until it is completed. The main problem 

is that the number of possibilities to be considered is, usually, very large. Some¬ 

times, we can prove that a group of faces cannot be completed to the desired graph 

and this yields speedup. But in practice, the benefit, while tremendous, does not 

change the nature of the problem. Typical examples of this scheme of combinatorial 
enumeration are presented in Chapters 5 and 10. 

The mam and fundamental objection is that we need, sometimes, to make huge 

computations lasting months for finding only a few graphs. Fortunately, for the above 

classes, there are some other ways to diminish the magnitude of the problem A 

simple zigzag or central circuit (see Figure 2.4 for some examples) splits the sphere 

into two parts, which are much easier to enumerate. Of course, all is not so easy in 

practice since a zigzag or central circuit is self-intersecting most of the time. But the 

basic idea remains (see [BHH03]) and is used in the following programs: 

I The program CPF ([BDDH97]) generates 3-valent plane graphs with specified 
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2 The program ENU ([BHH03] and [Hei98]) does the same for 4-valent plane graphs. 

3 The program CGF ([Har]) generates 3-valent orientable maps with specified genus 

and p-vector. 

If we consider a larger class, like the plane triangulations, then another strategy 

is possible. It is known (see [Ebel891]) that every plane triangulation arises from 

Tetrahedron by a sequence of the three following operations Opt: 

Of course, there is a very large number of triangulations. But the running time of 

the algorithm is approximately proportional to the number of triangulations to be 

found and it scales with almost 100% efficiency on parallel computers. Note also 

that the above algorithm is not limited by memory: for a given plane triangulations 

T, there are many ways of using the operations Opt to obtain T from Tetrahedron. 

But the canonical augmentation scheme (see [McK98]) provides a unique path to get 

T from the Tetrahedron by applying the operations Opt, thereby avoiding memory 

problems. 

The enumeration of triangulations, triangulations of minimum degree 4 or 5, 

Eulerian triangulations, quadrangulations, 3-connected plane graphs, plane graphs, 

3-connected plane graphs of minimum degree at least 4 or 5 are done in the pro¬ 

gram plantri (see [BrMK], [BrMK06], and [BGGMTW05]) using such kinds of 

elementary operations. There is no reasonable hope of applying this kind of algo¬ 

rithm to the enumeration of ({a, b}, k)-spheres because there is no simple operation 

such as the Opi that would preserve the property of being a ({a, b), k)-sphere and 

generate them all. 

All computations used the GAP computer algebra system [GAP02] and the package 

PlanGraph ([Dut02]) by the second author; the programs are available from [Du07]. 

The program CaGe ([BDDH97]) was used for most of the graph drawings. 
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Fullerenes as tilings of surfaces 

The discovery of the fullerene molecules and related forms of carbon, such as nan¬ 

otubes, has generated an explosion of activity in chemistry, physics, and materials 

science, which is amply documented, for example, in [DDE96] and [FoMa95j. In 

chemistry, the classical definition is that a fullerene is an all-carbon molecule in 

which the atoms are arranged as a map on a sphere made up entirely of 5-gons 

and 6-gons, which, therefore, necessarily includes exactly 12 5-gonal faces. We are 

concerned here with the following generalization: what fullerenes are possible if 

a fullerene is a finite 3-valent map with only 5- and 6-gonal faces embedded in 

any surface? This seemingly much larger concept leads only to three extensions 

to the class of spherical fullerenes. Embedding in only four surfaces is possible: 

the sphere, torus, Klein bottle, and projective plane. In [DFRROO], the spectral 

properties of those fullerenes are examined. The usual spherical fullerenes have 

12 5-gons, projective fullerenes 6, and toroidal and Klein bottle fullerenes none. 

Klein bottle and projective fullerenes are the antipodal quotients of centrally sym¬ 

metric toroidal and spherical fullerenes, respectively. Extensions to infinite graphs 

(plane fullerenes, cylindrical fullerenes) are indicated. Detailed treatment of the con¬ 

cept of the extended fullerenes and their further generalization to higher dimensional 
manifolds are given in [DeSt99b], 

J.l Classification of finite fullerenes 

Define a 3-fullerene as a 3-valent map embedded on a surface and consisting of only 

-gonal and 6-gonal faces. Each such object has, say, v vertices, c edges, and / faces 
of which p5 are 5-gons and p6 are 6-gons. 

From Theorem 1.2.3, we know that the Euler characteristic x satisfies to: 

P5 = 6*. 

38 



Fullerenes as tilings of surfaces 39 

For a surface, in which a finite 3-fullerene can be embedded, the number x is, there¬ 

fore, a non-negative integer. Let us use the topological classification of finite closed 

maps in Theorem 1.2.1 and recall the expression of x in Theorem 1.2.2: 

X = 2(1 — g) (for an orientable surface) 

= 2 — g (for a non-orientable surface). 

The cases compatible with non-negative integral solutions for x are thus exactly 

four in number. The only surfaces admitting finite 3-fullerene maps are therefore: 

§2 (the sphere, orientable with g = 0), T2 (the torus, orientable with g = 1), P2 

(the projective plane, non-orientable with g = 1), and K2 (the Klein bottle, non- 

orientable with g = 2). All embeddings are 2-cell-embeddings, i.e. each face is 

homeomorphic to an open disk. An immediate consequence of Euler formula is that 

fullerenes on §2, T2, K2, and P2 have exactly 12, 0, 0, and 6 5-gons, respectively. 

Toroidal and Klein bottle fullerenes may also be called toroidal and Klein bottle 

polyhexes ([FY095, Kir94, Kir97, KlZh97]) as they include no 5-gons. 

Figure 3.1 shows the smallest fullerenes from the four classes, drawn as the graph, 

the map, and its dual triangulation on the appropriate surface. Note that the Petersen 

and Heawood graphs, which appear naturally here, are, actually, the 5- and 6-cages 

(a k-cage is a 3-valent graph of smallest cycle size k with the largest possible number 

of edges); their duals in P2 and T2, K& and Kj, realize the chromatic number (i.e. the 

minimal number of colors a map on the surface can be colored with, so that no two 

faces of the same color are adjacent; see, for example, [GrTu87, Chapter 5]) of the 

corresponding surfaces. 

Spherical and toroidal fullerenes have an extensive chemical literature, and Klein 

bottle polyhexes have been considered, for example, in [Kir97, KlZh97]. 

Note that at least one spherical fullerene with v vertices exists for all even v with 

v > 20, except for the case v = 22 ([GrMo63]). 

3.2 Toroidal and Klein bottle fullerenes 

The (6, 3)-tori and (6, 3)-Klein bottles are related to {6, 3} in a straightforward way. 

The underlying surfaces are quotients of the Euclidean plane E2 under groups of 

isometries generated by two translations (for T2) or one translation and one glide 

reflection (for K2). Each point of T2 and K2 corresponds to an orbit of the generating 

group. Note that the groups generated by a single translation or a single reflection, 

respectively, give, as quotients, the cylinder and the twisted cylinder (the Mobius 

strip, see Figure 1.1). Construction and enumeration of polyhexes can therefore be 

envisaged as a process of cutting parallelograms out of the “graphite plane” {6, 3} 

and gluing their edges according to the rules implied in Figure 3.1. 
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Figure 3.1 Smallest spherical, toroidal, Klein bottle and projective fullerenes. The first 
column lists the graphs drawn in the plane, the second the map on the appropriate surface 

and the third the dual on the same surface. The examples are: (a) Dodecahedron (dual 

Icosahedron), (b) the Heawood graph (dual Kn), (c) a smallest Klein bottle polyhex (dual 
^3,3.3), and (d) the Petersen graph (dual K6). 
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Some confusion exists in the mathematical and chemical literature on toroidal 

polyhexes. Negami ([Neg85]), Altschuler ([Alt73]), and other topological graph the¬ 

orists define regular 3-valent maps on the torus to mean 2-cell embeddings with all 

faces 6-gonal, without further qualification. Coxeter and others, working in a group 

theoretical tradition, use the same term in a more restricted sense of polyhexes with 

automorphism groups Aut(G) of the maximal possible order, in other words, those 

that realize the equality in the bound \Aut{G)\ < 4e{G) (= 6p^ for a polyhex). All 

such regular maps are: (on §2) the five Platonic polyhedra, (on P2) six graphs that 

include the Petersen graph and its dual, (on K2) no graphs at all ([Nak96]), and (on 

T2) the polyhexes that arise by the Goldberg-Coxeter construction from the 6-gon 

(see Section 2.1). 

In Negami’s construction ([Neg85]), a three-parameter code represents any 

toroidal polyhex (or, equivalently, any 6-regular triangulation of T2) as a tiling of 

{6, 3}. Each graph of this type is denoted T(p, q, r), with integer parameters p, q, 

and r, where p is the length of a geodesic cycle of edge-sharing 6-gons, r is the 

number of such cycles, and q is an offset. 

At least one toroidal polyhex that is cell-complex exists for all numbers of vertices 

v > 14. The unique cell-complex toroidal fullerene at v = 14 is a realization of the 

Heawood graph. It is GC2.\(hexagon) in terms of Goldberg-Coxeter construction 

and is the dual of K-j, which itself realizes the 7-color map on the torus. This map 

and its dual are shown in Figure 3.1. 

A description of Klein bottle polyhexes can be developed along similar lines 

([Nak96]). Each toroidal graph T(p, 0, r) can be used to obtain two Klein bottle 

6-regular triangulations (and, hence, by taking dual, 3-fullerenes), the handle, and 

cross-cap types Kh(p, r) and Kc(p, r), respectively. The torus is cut along a geodesic 

of length p. Then the handle construction amounts to identification of opposite sides 

of the resulting parallelogram with reversed direction. In the cross-cap construction, 

the opposite sides are each converted to cross-caps, with slightly different rules for 

odd and even p. The unique smallest cell-complex Klein bottle polyhex has 18 ver¬ 

tices (9 6-gonal faces) and is the dual of the tripartite K3,3<3; the graph and the map 

and its dual are shown in Figure 3.1. 

3.3 Projective fullerenes 

The projective plane arises as a quotient space of the sphere, the required group 

being Q. It is obtained by identifying antipodal points of the spherical surface; in 

other words, it is the antipodal quotient of the sphere (see Section 1.2.2). P is the 

simplest compact non-orientable surface in the sense that it can be obtained from the 

sphere by adding just one cross-cap. 
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Clearly, this construction can be carried over to maps: the antipodal quotient of 

a centrosymmetric map on the sphere has vertices, edges, and faces obtained by 

identifying antipodal vertices, edges, and faces, thereby halving the number of each 

type of structural component. For example, the antipodal quotient of Icosahedron is 

K6, and that of Dodecahedron is the Petersen graph, famous as a counterexample to 

many conjectures (see, for example, [HoSh93]). The Petersen graph is not a planar 

graph, but it is called projective-planar in the sense that it can be embedded without 

edge crossings in the projective plane. 

In this terminology, our definition of projective fullerenes amounts to selection 

of cell-complex projective-planar 3-va.lent maps with only 5- and 6-gonal faces. As 

noted above, p5 = 6 for these maps. Thus, the Petersen graph is the smallest projec¬ 

tive fullerene. In general, the projective fullerenes are exactly the antipodal quotients 

of the centrally symmetric spherical fullerenes. 

Thus, the problem of enumeration and construction of projective fullerenes 

reduces simply to that for centrally symmetric conventional spherical fullerenes. The 

point symmetry groups that contain the inversion operation are C; , Cmh, (m even), 

Dmh (m even), Dmd (m odd), 7*, Oh, and Ih. A spherical fullerene may belong to 

one of 28 point groups ([FoMa95]) of which eight appear in the previous list: C,, 

C211, Djh, D6h, D?,d, D5d, Th, and Ih. Clearly, a fullerene with v vertices can be 

centrally symmetric only if v is divisible by four as p6 must be even. After the min¬ 

imal case v = 20, the first centrally symmetric fullerenes are at v — 32 (D^d) and 

v = 36 (D(,/,). 

3.4 Plane 3-fullerenes 

An example of infinite 3-fullerene is given by plane fullerenes, i.e. 3-valent partitions 

of the plane into (combinatorial) 6-gons and p$ 5-gons. Such partitions have p5 < 6 

(see [DeSt02b] for a reduction of proof to Alexandrov theory in [Ale50] and [Ale48, 

Chapter VIII]). For p5 = 0, 1 such 3-fullerene is unique; for any 2 < p5 < 6 there 
is an infinity of them. 
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Polycycles 

4.1 (r, <7)-polycycles 

A (r, q)-polycycle is a simple plane 2-connected locally finite graph with degree at 

most q, such that: 

(i) all interior vertices are of degree q, 

(ii) all interior faces are (combinatorial) r-gons. 

We recall that any finite plane graph has a unique exterior face; an infinite plane 

graph can have any number of exterior faces, including zero and infinity. Denote 

by pr the number of interior faces; for example, Dodecahedron on the plane has 

Ps = 11- 

See in Figure 4.1 some examples of connected simple plane graphs that are not 

(r, g)-polycycles. 

We will prove later (in Theorem 4.3.2) that all vertices, edges, and interior faces 

of an (r, g)-polycycle form a cell-complex (see Section 1.2.1). 

The skeleton of a polycycle is the edge-vertex graph defined by it, i.e. we forget 

the faces. By Theorem 4.3.6, except for five Platonic ones, the skeleton has a unique 

polycyclic realization, i.e. a polycycle for which it is the skeleton. 

The parameters (r, q) are called elliptic if rq < 2(r + q), parabolic if rq = 

2(r +q), and hyperbolic if rq > 2(r + q)\ see Remark 1.4.1. Call a polycycle outer- 

planar if it has no interior vertices. For parabolic or hyperbolic (r, q), the tiling {r, q] 

is a (r, <7)-polycycle. For elliptic (r, q), the tiling {r, q) with a face deleted is an (r, q)- 

polycycle. Different, but all isomorphic, polycyclic realizations for those five excep¬ 

tions to the unicity, come from different choices of such deleted (exterior) faces. 

The (r, <?)-polycycles {r, q} with parabolic and hyperbolic parameters (r, q) do not 

have a boundary. 
Recall that an isomorphism between two plane graphs, G \ and G2, is a func¬ 

tion <p mapping vertices, edges, and faces of G\ to the ones of G2 and preserving 

incidence: relations. Two (r, <?)-polycycles, P\ and P2, are isomorphic if there is an 
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Figure 4.1 Some plane graphs that are not (r, g)-polycycles 

isomorphism 0 of their skeletons preserving the set of interior faces. Recall also that 

the automorphism group Aut(G) of a plane graph G is the group of all its auto¬ 

morphisms, i.e. isomorphisms of G to G. The automorphism group Aut(P) of a 

polycycle P consists of all automorphisms of plane graph G preserving the set of 

interior faces. 

The notion of duality of plane graphs applies as well for (r, g)-polycycles, but it 

ignores the exterior faces, which we want to keep unchanged. We will introduce two 

notions of duality for (r, r/)-polycycles and call them inner dual (see [BCH02] for 

some applications in enumeration) and outer dual. They are always defined, but the 

resulting plane graph is not necessarily a (q, r)-polycycle. 

The inner dual Inn*(P) of an (r, gj-polycycle P is the graph obtained by taking 

the interior faces as vertices and having, as edges, the edges between two adjacent 

interior faces. The inner dual Inn*(P) is not necessarily 2-connected. See the two 

examples below: 

A (5, 3)-polycycle and its inner dual A (3, 5)-polycycle and its inner dual 

The outer dual Out*(P) of an (r, g)-polycycle P is the graph obtained by taking, 

as vertex-set, the interior faces and some exterior vertices. Such exterior vertices are 

taken around every boundary vertex of P, so as to make sure that they correspond 

to <?-gonal faces of Out*{P). The degree of boundary vertices may be higher than r. 

Another possible obstruction to Out*(P) being a (q, /')-polycycle is not having any 

exterior face, as can happen for the tiling {r, q} - f with elliptic (r, q). See the two 
examples below: 

A (5, 3)-polycycle and its outer dual A (3, 5)-polycycle and its outer dual 

We have the equality P = Inn*{Out*{P)) and P = Out*(Inn*(P)) for an (r, q)- 

polycycle P, provided that all the maps appearing in those equations are (r, q)- or 
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{q, r)-polycycles. If all operations are defined correctly and P is an (r, g)-polycycle, 

then Inn*(Inn*(P)) is the (r, g)-polycycle P with all r-gons having boundary edges 

removed, while Out*(Out*(P)) is the (r, g)-polycycle P with a ring of r-gons 

being added on its outermost layer, so that all boundary vertices become interior 

vertices. 

Call a polycycle proper if it is a partial subgraph of {r, q) and a helicene, otherwise 

(this term will be justified later by Theorem 4.3.1). Call a proper (r, g)-polycycle 

induced (moreover, isometric) if this subgraph is, in addition, an induced (moreover, 

isometric) subgraph of {r, q}. Another interesting possible property of a proper (r, q)- 

polycycle is being convex in [r, q] (see Section 4.4). 

For (r, q) = (3, 3), (4, 3), (3, 4), any induced (r, <?)-polycycle is isometric but, for 

example, the path of three 5-gons is an induced non-isometric (5, 3)-polycycle. 

Consider now the notion of reciprocity, defined for some proper polycycles. Let 

P be a proper bounded (r, g)-polycycle. Consider the union of all r-gonal faces of 

[r, q] outside of P. Easy to see that this union will be an (r, g)-polycycle; call it then 

a reciprocal polycycle to P if either P is elliptic or P is infinite and has a connected 

boundary. Call a polycycle self-reciprocal if it admits the reciprocal polycycle and is 

isomorphic to it. 

All self-reciprocal (r, g)-polycycles with (r, q) = (3, 3), (4, 3), (3, 4), (5, 3) are: 

{3, 3} - e, {4, 3} -v,P2x P4, {3, 4} - v, {3, 4} - C3, 7>4 and 9 (out of 11) (5, 3)- 

polycycles with p5 = 6, including 6 chiral ones. An example of self-reciprocal 

(3, <?)-polycycle, for any q > 3, is a (3, g)-polycycle on one of two shores of zigzag 

(see definition in Section 2.2), cutting {3, q) in two isomorphic halves; it includes 

{3, 3} — e, {3, 4} — C3 and is infinite for q > 6. 

A general theory of polycycles is considered in [DeSt98, DeSt99a, DeSt02c, 

DeStOOa, DeStOOb, DeStOOc, DeStOl, DeSt02b, Sht99, ShtOO], 

4.2 Examples 

Call an (r, gf-polycycle elliptic, parabolic, or hyperbolic, if rq < 2(r + q), rq = 

2(r 4- q), or rq > 2(r + q). This corresponds to {r, q] being the regular tiling of §2, 

M2, or H2, respectively. 

There is a literature (see, for example, [GrSh87a, Section 9.4], [BGOR99], 

[BCH02], and [BCH03]) about proper parabolic polycycles {polyhexes, polyamonds, 

polyominoes for {6, 3], {3, 6)}, {4, 4], respectively); the terms come from familiar 

terms hexagon, diamond, domino, where the last two correspond to the case p3, 

P4 = 2. 
Polyominoes were considered first by Conway, Penrose, Golomb as tiles (of R~ 

etc.; see, for example, [CoLa90]) and in Game Theory; later, they were used foi 

enumeration in physics and statistical mechanics. 
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Polyhexes are used widely (see, for example, [Dia88, Bal95]) in organic chem¬ 

istry: they represent completely condensed PAH (polycyclic aromatic hydrocarbons) 

C„Hm with n vertices (atoms of the carbon C), including m vertices of degree two, 

where atoms of the hydrogen H are adjoined (see Figure 7.1). 

All 39 proper (5, 3)-polycycles were found in [CCBBZGT93] in chemical context, 

but were already given in [Har90] all 3, 6, 9, 39, 263 proper elliptic (r, g)-polycycles 

for (r, q) = (3, 3), (4, 3), (3, 4), (5, 3), (3, 5), respectively. 

Now, we list all (3, 3)-, (4, 3)-, (3, 4)-polycycles. Clearly, all (3, 3)-polycycles are: 

Recall that P„ denotes a path with n vertices; denote by Pi infinite paths in 

one or both directions. All (4, 3)-polycycles are: 

(4, 3) — e 14,3) - v (4,3)-/ 

the infinite series P2 x P„ (for any n > 2; see below examples with n = 2, 3, 4): 

O CD CD 
Pi X Pi P2 x P3 p2 x P 

and two infinite ones: 

2 x A*1 p2 x Pi = Prisms 

Only {4, 3}, {4, 3} — v, P2 x P2, P2 x P$, P2 x P4, {4, 3} — e are proper; amongst 
them only the last two are not induced. 

The number of (3, 4)-polycycles is also countable, including two infinite ones (9 of 

(3, 4)-polycycles are proper and 5 of proper ones are induced). 
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Namely, all (3, 4)-polycycles are: 

{3, 4} — e {3, 4} — v 

{3, 4} - C3 

{3,4}-/ 

the infinite series Trn (for any n > 1; see below examples with n = 1, 2, 3, 4): 

and two infinite ones: 

TrN Tri= APrismoc 

For all other parameters (r, q), there is a continuum of (r, g)-polycycles and the 

number of finite ones amongst them is countable. 

The vertex-split Octahedron and the vertex-split Icosahedron are polycycles 

obtained from Octahedron and Icosahedron, respectively, by splitting a vertex into 

two vertices and the edges, incident to it, into two parts, accordingly. The vertex-split 

Octahedron is drawn on Figure 4.2,1 and both of them are given on Figure 8.3; they 

are the only, besides five Platonic {r, q] - /, non-extensible finite (r, <?)-polycycles. 

(4, 3)-helicene 

Pi x Pi 

(5, 3)-helicene 
from Dodecahedron 

(3, 4)-helicene 
vertex-split Octahedron 

Figure 4.2 Some small helicenes 

1 It is the Hexagon, HSBC logo from 1983; it was developed from bank’s nineteenth-century house flag: 
a white rectangle divided diagonally to produce a red hourglass shape. This flag was derived from the 
Scottish flag- saltire or crux decussata (heraldic symbol in the form of diagonal cross); Saint Andrew 
was crucified upon such a cross and thirteenth-century tradition states that the cross was X-shaped at his 

own request, out of respect for Jesus. 
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4.3 Cell-homomorphism and structure of (r, #)-polycycles 

Given two maps X and X\ recall that a cell-homomorphism is a function 0 : X —* 

X' that transforms vertices, edges, and faces of X into vertices, edges, and faces 

of X', while preserving the incidence relations. Recall also that a flag h of a map 

X is a sequence h — (v, e, /) with v, e, f being a vertex, edge, and face of X 

and v e e C f. For a flag h = (u, e, /) of a polycycle P, f is necessarily an 

interior face. 

Theorem 4.3.1 ([DeSt98, GHZ02, Gra03]) Any (r, q)-polycycle P admits a cell-ho¬ 

momorphism into {r, q} and such homomorphism is defined uniquely by a flag and 

its image. 

Proof. Given a flag h = (v,e, f) of P, recall that a0(h), ctfih), and cr2(h) (see 

Section 1.2.2) are unique flags, if they exist, differing from h on v, e, and /, respec¬ 

tively. Given a vertex v and an edge e with v e e, there exists at least one face / of 

P such that (v, e, f) is a flag. 

Given a vertex v, consider the set Tv of flags (v, e, /). If v is an interior vertex, 

then, clearly, any two flags h, h' e Tv are related by a sequence of operations oq 

and oq. If v belongs to the boundary, then, since v cannot disconnect the graph, the 

vertex corona of v contains only one exterior face. This means that, again, any two 

flags h, h in J-v are related by operations oq and oq. Since the graph, underlying the 

polycycle, is connected, any two flags are related by a sequence of operations oq, oq, 
and oq. 

Given a cell-homomorphism 0, the operations on flags should satisfy to 

0(ct/(/z)) = a;(0(/r)) for any i = 0, 1, 2. Consider a flag h0 in P and k0 in {r, qj. Any 

other flag h in P is related to ho by a sequence of operations <7/. Hence, if 0(/io) = ko, 

then 0(/z) is completely determined. This proves the uniqueness of 0. But this also 

gives a way to prove the existence of an homomorphism 0 with 0(/?o) = h'Q. In fact, 

define 0(7?) = oix ... ah(k0) with h = oix ... rxflho) and 0 < ij < 2. Since tiling 

{r, <7} has no boundary, all faces are interior and the operations 07 are always defined 
in {r,q}. 

But, in order for this construction to work, we should prove that 0(/r) is indepen¬ 

dent of the expression 07, ... oit chosen to express h in terms of h0. Consider two 
expressions of h: 

h = (Jj] . . . Oifho) = <7/; ... 077 (/i0). 

Associate to it the flag paths: 

P" = ^0, h\, ..., ht —h) with hj = ctifihj^j), 

P' = (,h'0 = h0, h[,..., tit = h) with hj — o'i'(/i^_]). 
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Those sequences correspond to vertex sequences, i.e. a path in the (r, g)-polycycle 

P. Locally, there is no obstruction to the coherence of the definition of <p(h). Around 

a boundary vertex there is no problem, and around an interior vertex, the condition 

of having degree q provides coherence. Also, if we consider flags around a face /, 

we do not encounter coherence problems. The simple connectedness of P allows us 

to modify the path P" into the path P' by changing around faces and vertices. So, no 

ambiguity will appear. D 

All properties, defining (r, g)-polycycles, were used in the proof of Theorem 4.3.1. 

In particular, (r, g)-polycycles have to be simply connected; see some examples on 

Figure 4.4. 
Clearly, the above cell-homomorphism is an isomorphism if and only if P is a 

proper polycycle, i.e. there is no pair of vertices or edges having the same image. In 

view of Theorem 4.3.1, any improper (r, g)-polycycle is called (r, q)-helicene (see 

Figure 4.2). It is easy to check that an (r, <?)-helicene exists if and only if (r, q) ^ 

(3, 3) and pr > (q - 2)(r - 1) + 1 with equality only for the helicene being a ring of 

r-gons, going around an r-gon. 
A natural parameter to measure an (r, g)-helicene, will be the degree of the cor¬ 

responding homomorphism into {r, q] (on vertices, edges, and faces). For q > 4, 

helicenes appear with vertices, but not edges, having same homomorphic image. The 

vertex-split Octahedron is a unique such maximal helicene for (r, q) = (3, 4) (two 

2-valent vertices are such; see Figure 4.2). There is a finite number of such helicenes 

for (r, q) = (3, 5); one of them is the vertex-split Icosahedron. 

Theorem 4.3.2 ([DeSt05]) The vertices, edges, and interior faces of any (r,q)- 

polycycle form a cell-complex. 

Proof. To prove that it is a cell-complex, we shall prove that the intersection of any 

two cells (i.e. vertices, edges, or interior faces) of an (r, ^)-polycycle P is again a 

cell of P or 0. For the intersection of vertices with edges or faces this is trivial. For 

the intersection of edges or faces, we will use the cell-homomorphism f from P to 

{r,q}- 
If two interior faces F and F' of P intersect in several cells (for example, two 

edges or two vertices), then their images in {r, q} also intersect in several cells. It is 

easy to see that this cannot occur in {r, q). So, F and F' intersect in an edge, vertex, 

or 0. The same proof works for other intersections of cells. □ 

Theorem 4.3.3 If a finite (r, q)-polycycle has a boundary vertex whose degree is 

less than q, then the total number of these vertices is at least two. 

Proof. Take a flag / in this (r, g)-polycycle P and a flag /' in {r, q}. Let us now 

use the cell-homomorphism 0 as in Theorem 4.3.1. The boundary B of P consists 

of vertices vu ..., vk. The image of this boundary in {r, q) is also a cycle fi(B). 
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Whenever B has a vertex ly of degree q, the edges e, = and ei+\ — VjVi+1 

belong to a common face F. Assume now, in order to reach a contradiction, that we 

have only one vertex of degree different from q. This implies that all e, are incident 

to the same face F. In particular, the length of the boundary is a multiple of r. But if 

we turn around to face F, it must always be in the same direction, i.e. rightmost turn 

or leftmost turn. So, a vertex of degree different from q is impossible. □ 

The girth of a graph is the length of a minimal edge circuit in it. 

Theorem 4.3.4 It holds that for the skeleton of{r, q): 

(i) its girth is r, 

(ii) its minimal edge circuits are the boundaries of faces of [r, q). 

Proof. This statement can be easily verified for elliptic (r, q). Two edges of Tetra¬ 

hedron always belong to the same triangle. Two adjacent edges of the same face of 

Octahedron (or Icosahedron) enter the boundary triangle of the face, while if they do 

not belong to the same face, then they enter an edge circuit of length at least four. 

Three successive edges of Cube (or Dodecahedron), belonging to the same face, enter 

the boundary quadrangle (pentagon) of the face, while if they do not belong to the 

same face, then they enter an edge circuit of length at least six. 

The verification in the parabolic or hyperbolic case proceeds as follows. Take a 

simple edge circuit in the tiling {r, q). By the Jordan theorem, this circuit bounds a 

finite domain in the plane; this domain contains at least one 2-dimensional r-gon of 

{r, q). Draw the rays from the center of this circuit though its vertices. These rays 

divide the central angle into r sectors, each sector based on its own side of the r- 

gon. Any line connecting two external points of the boundary rays of a sector, is 

longer than the side of the r-gon. Therefore, the number of edges in any edge circuit 

containing the r-gon and not coinciding with it is greater than r. Hence, the girth of 

the skeleton of the tiling is r. Assertion (ii) follows in the same way. □ 

Corollary 4.3.5 It hold that for any (r, q)-polycycle P: 

(i) P has girth r, and the length of its boundaries is at least r. 

(a) If a boundary of P has length r, then either P is an r-gon, or (r, q) is elliptic 
and P is [r,q] - /. 

Proof. The assertion (i) is trivial using Theorem 4.3.4 and 4.3.1. Let us now prove 

(ii). If the length of a boundary of P is r, then P has only one boundary of finite 

length and so, P is a finite polycycle. Let us consider the mapping 0 from P to 

A q}. The image of the boundary of P is a face of {r, q). If the image lies inside of 

this r-gon, then P is an r-gon. Otherwise, all boundary vertices of P have degree q 
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Since all vertices of the image of P in {r, q} have degree q in {r, q}, we obtain 

that 0(P) covers completely [r, q) except for one face. So, the parameters (r, q) are 

elliptic and P = {r, q] — f. □ 

Theorem 4.3.6 Given a graph G that is the skeleton of an (r, q)-polycycle different 

from (one of 5) elliptic {r, q), then the polycyclic realization is completely determined 

by G. 

Proof. From Corollary 4.3.5, we know that the boundary has length greater than r. 

Every face of a polycyclic realization of G yields a cycle of length r in G. Take a 

polycyclic realization P of G and consider the homomorphism 0 from P to {r, q). 

Every cycle of length r in G determines, under the mapping 0, a face F in {r, q}. 

Since any boundary has length greater than r, the face F corresponds to an interior 

face in P. Therefore, we have a one-to-one correspondence between interior faces of 

a polycyclic realization of G and cycles of length r in G. So, the graph G determines 

completely the polycyclic realization. Q 

Theorem 4.3.6 is an analog of the Steinitz theorem for 3-connected planar graphs. 

4.4 Angles and curvature 

Recall that the regular tiling {r, q] lives on X = §2, M2, or H2 according to whether 

parameters (r, q) are elliptic, parabolic, or hyperbolic. The r-gons are regular in X 

and their curvature is 2ra(2, r, q). 

A set D in X is called convex if, for any two points x,y e D, the geodesic, i.e. 

shortest path, joining x to y is contained in D. (Note that there are othei definitions 

of convexity in hyperbolic space; see, for example, [GaSoOl].) An (r, g)-polycycle 

is called convex if its image in {r, q] is convex. See Figure 4.3 for a convex (r, q)- 

polycycle that is not proper. The only convex (r, 3)-polycycles are r-gon and {r, 3}. 

This is because, if a vertex v <E {r, 3} is contained in two r-gons F\ and F2, then we 

can find two vertices i>\ 6 F\ and v2 £ F2 such that the geodesic between i>i and v2 

pass by the third r-gon. 

Figure 4.3 A convex non-proper (3, 6)-polycycle and its image in {3, 6} 
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Theorem 4.4.1 Let P be an outerplanar (r, q)-polycycle. Then P, seen as an 

(r, 2q — 2)-polycycle, is convex and proper. 

Proof. Consider a face F in P. Starting with Dec(P)o = F, the finite (r,q)- 

polycycle Dec{P)n+\ is formed by Dec{P)n and all faces of P sharing an edge 

with Dec{P)n. Dec(P)n and P are outerplanar (r, <?)-polycycles; denote by 0 the 

cell-homomorphism of P into {r, 2^ — 2}. 

Every vertex of Dec(P)n is contained in at most q — 1 r-gons; hence, the inte¬ 

rior angle in the image <fi(Dec(P)n) is at most n. This is a necessary and sufficient 

condition for the image f{Dec{P)n) to be convex (see, for example, [GaSoOl, 

Lemma 3.1]). Therefore, the image of the boundary of Dec(P)n in {r, 2q — 2} is 

not a self-intersecting curve and Dec{P)n, considered as a (r, 2q - 2)-polycycle, is 

proper. 

If x and y are two points in 0(P), then there exists an integer n0 such that x, y e 

4>(Dec(P)no). The geodesic d between x and y is included in </>(Dec(P)ng) and, 

therefore, just as well in <p(P). If P is not proper, then there exist two distinct vertices 

v, v' (or edges, faces) of P, whose images in {r, q) coincide. There exists an integer 

no such that v, v' e Dec(P)no. But Dec(P)no is proper; so their images in {r, q} do 
not coincide. □ 

In the proof of the above theorem, we need to use finite polycycles because infinite 

polycycles can have an infinity of boundaries. 

Theorem 4.4.2 Let P be an outerplanar (3, q)-polycycle; then P is a proper (3, q + 
2 )-polycycle. 

Proof. By the proof of Theorem 4.4.1, we can assume, without loss of generality, 

that P is finite. Denote by 0 the cell-homomorphism in (3, q +2} and assume further 

that P is not a proper (3, q + 2)-polycycle. Then we can find two vertices v, v' on 

the boundary of P with 0(t>) = 0(i/) and the image of the boundary path V = 

(v0 = v,vu..., Vp-1, vp = v') by 0 being not self-intersecting. The Image <f>(V) 

defines a finite (3, q + 2)-polycycle, denoted by P'. Since P was originally a (3, q)- 

polycycle, the boundary vertices of P’ are of degree at least 4, except, possibly, the 

vertex 0(u) = 0(u'). Denote by v, the number of boundary vertices of P' of degree 

i different from 0(u) and by vint the number of interior vertices. Denote by p3 the 
number of 3-gons of P'. 

The number e of edges satisfies to: 

^ q+2 
2e = 1 + / . vi + 3p3 = {deg 0(u)) + ^2 i Vi + (q + 

1=4 
'^fVjnt, 

1=4 
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which implies 3pi — (q + 2)vint = (deg<p(v)) — 1 + Xw=4 O' ~ Ow Then Euler 

formula v — e + / = 2 with v = 1 + vint + vi ar*d / = 1 + P3 gives: 

P 3 

g+2 

QVint T ^ ^ 
i=4 

Vi + 
degcpjv) 

2 

Eliminating /?3, we get: 

q-\-2 

i= 4 

0 = (29-2)„i„+£(i-2)«i + EliV)+l>l, 

which is impossible. □ 

Note, that for p3 = 7, there are outerplanar (3, 4)- and (3, 5)-polycycles, which 

remain helicenes in {3, 5} and {3, 6}, respectively. A fan of (q — 1) r-gons with 

q-valent common (boundary) vertex, is an example of outerplanar (r, <?)-polycycle, 

which is a proper non-convex (r, 2q - 3)-polycycle. 

We now consider another geometric viewpoint on (r, g)-polycycles. In the above 

consideration, the curvature was uniform and the triangles were viewed as embed¬ 

ded into a surface of constant curvature. Consider now the curvature to be constant, 

equal to zero, in the triangle itself, and to be concentrated on the vertices, where 

r-gons meet. 
The r-gons are now regular r-gons and the angle at its vertices is ■ Consider 

a point A where q r-gons meet. The curvature of A is the difference between 2tt 

and the sum of the angles of the r-gons, i.e. 2tt - q . The total curvature of the 

(r, r/)-polycycle is then: 

/ r — 2 \ tc 
vint ( 2jv — q—-—n I = vint — (2(r + q) — rq). 

It is different from the curvature defined earlier in this section, since boundary ver¬ 

tices contribute differently to it. If (r, q) is elliptic, parabolic, and hyperbolic, then 

the curvature of interior vertices is positive, zero, and negative, respectively. 

We will use this curvature only for non-extensible polycycles in Section 8.2, and it 

will be only a counting, i.e. combinatorial, argument. However, the above curvature, 

concentrated on points, can be made geometric. This is the subject of Alexandrov 

theory (see, for example, [Ale50]). 

4.5 Polycycles on surfaces 

We now present an extension of the notion of a (r, g)-polycycle that concerns maps 

on surfaces. Given integers r, q > 3, an (r, q)gen-polycycle is a 2-dimensional suiface 
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pasted together out of r-gons, so that the degrees of interior vertices are equal to q 

and the degrees of boundary vertices are within [2, q\. 

A formal definition is the following: an (r, q)gen-polycycle is a non-empty 2- 

connected map on surface S with faces partitioned in two non-empty sets F\ and 

Fo, so that it holds that: 

(i) all elements of F\ (called proper faces) are combinatorial r-gons; 

(ii) all elements of F2 (called holes) are pairwisely disjoint, i.e. have no common 

vertices; 

(iii) all vertices have degree within {2,..., q] and all interior (i.e. not on the 

boundary of a hole) vertices are g-valent. 

Condition (ii) is here to forbid a vertex or an edge to belong to more than one hole. 

This condition is not necessary for (r, <?)-polycycle, since the simple connectedness 

and the 2-connectedness imply it. An example of a map that does not satisfy this 
condition is shown below: 

An (r, q)gen-polycycle, which is simply connected, is, in fact, an (r, <7)-polycycle, 

i.e. it can be drawn on the plane and the holes become exterior in this drawing. Some 

(r, <?)gP„-polycycles can be drawn on the plane, for example, half of those in Theorem 

4.5.1. The theory of coverings, presented in Section 1.2, applies to this setting. The 

universal cover of an (r, <7)gf7?-polycycle is, by definition, simply connected and so it 
is an (r, <7)-polycycle. 

Theorem 4.5.1 For r, q < 4. the list of (r, q)gen-poly cycles that are not (r, q) 

polycycles, consists of the following infinite series: 

1 Prismm, m >2 (on §1 2, with two m-gons seen as holes) and their non-orientable 

quotients, for m > 2 even (on projective plane, with one hole), 

2 APnsrnm, m > 2 (on S2, with two m-gons seen as holes) and their non-orientable 

quotients, for m > 2 odd (on projective plane, with one hole). 

P oo . The universal cover of such a polycycle is an (r, ?)-polycycle with a non- 

™ l f°Uj flxed-P°'nt-free automorphisms. The list of (r, 9)-polycycles for 

cv les p“ 0“ i0" 4 * * * * *'2>' "’SPeCt'°n 0flhiS 'isI °"'y >he “fini'e poly- 
ycles P„sm„ -P2xPz and APrimm = Tn. Their orientable quotients are the 

infinite series of prisms Prism > iwu ■ „ 4 me 

m _ 2), the infinite series of antiprisms APrismm 
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No homomorphism Homomorphism 

Isomorphism 

Figure 4.4 Some (6, 3)ge„-polycycles and their homomorphisms to {6, 3} when they exist 

(m > 2), and the non-orientable quotients (with respect to central symmetry) of 

Prismm, for m even, and of APrismm, for m odd. □ 

The two dualities, inner and outer, extend to this setting. For example, we have 

equalities: 

Inn*{snub Prismm) = APrismm and 7nn*(snub APrismm) = snub Prismm. 

In general, an (r, q)gen-polycycle does not admit homomorphism to {r, q}, since 

(r, q)gen-polycycles are not simply connected. But, sometimes, such a homomor¬ 

phism exists, see Figure 4.4. An (r, q)-map is a particular case of (r, q)gen-polycycle, 

such that every vertex has degree q. 

Finally, we mention two other relatives of finite (r, g)-polycycles. See [ArPe90] 

and references there (mainly authored by Perkel) for the study of strict polygonal 

graphs, i.e. graphs of girth r > 3 and vertex-degree q, such that any path P3 (with two 

edges) belongs to a unique r-circuit of the graph. See [BrWi93, pages 546-547] for 

information on equivelar polyhedra, i.e. polyhedral embeddings with convex faces, 

of (r, q)-map into M3. So, in both these cases graphs are -valent, have girth r, Euler- 

Poincare characteristic v - e + / = and coincide with Platonic polyhedra in 

the case of genus 0. Recall that, for an (r, g)-polycycle P, any non-boundary path 

belongs to a unique r-circuit. 



5 
Polycycles with given boundary 

The (r, q)-boundary sequence of a finite (r, g)-polycycle P is the sequence b(P) 

of numbers enumerating, up to a cyclic shift or reversal, the consecutive degrees 

of vertices incident to the exterior face. For earlier applications of this (and other) 

codes, see [HeBr87, BCC92, HLZ96, DeGr99, CaHa98, DFG01]. 

Given an (r, g)-boundary sequence b, a plane graph P is called a (r, q)-filling of b 

if P is an (r, ^)-polycycle such that b = b{P). 

In this chapter we consider the unicity of those (r, g)-fillings and algorithms used 

for their computations. 

5.1 The problem of uniqueness of (r, ^)-fillings 

By inspecting the list of (r, r?)-polycycles for (r, q) = (3, 3), (3, 4), or (4, 3) in Sec¬ 

tion 4.2, we find that the (r, <?)-boundary sequence of an (r, <?)-polycycle determines 

it uniquely. We expect that for any other pair (r, q) this is not so. 

We show that the value r = 3, 4 are the only ones, such that the (r, 3)-boundary 

sequence always defines its (r, 3)-filling uniquely. Note that an (r, <?)-polycycle, 

which is not an unique filling of its boundary, is, necessarily, a helicene. Some 

examples of non-uniqueness of (r, 3)-fillings are cases of boundaries b, admitting an 

(r, 3)-filling P with the symmetry group of b being larger than the symmetry group 

of P, implying the existence of several different (r, 3)-fillings. However, as the length 

ol the boundary increases, the number of possibilities grows, see [DeSt06], 

Theorem 5.1.1 For any r > 5, there is an (r, 3)-boundary sequence b, such that 

there exist (r, 3)-fillings P and P' with P # P' andb(P) = b(P') = b. For instance: 

(i) Ifr = 5, then such an example is given by b5 = u3u34u3u34 with u = 3232323 
of length 38 (see Figure 5.1). 

(ii) Ifr>6, then such an example is given by: 

br = u3r~lu2r~6u3r~1 u2r~6 with u = (32r~4)r~l3 

56 
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Figure 5.1 Two different (but isomorphic as maps) (5, 3)-fillings of the same (5,3)- 

boundary 

of length 4 r2 — 12r + 2. Amongst the vertices of this boundary, 6r — 2 vertices 

are of degree 3 and the remaining ones are of degree 2 (see Figure 5.2). 

The (r, 3)-boundary sequence br can be filled by 4r r-gons in Wo ways 

obtained one from the other by reflection. 

Proof. For any of the boundary sequences indicated in the theorem, the symmetry 

group is C2y of size 4. Furthermore, the fillings on Figures 5.1 and 5.2, for p = 

5, 6, 7, have symmetry C2, which is a group of order 2. This is, in fact, true for 

any br with r > 5. So, the (r, 3)-boundary br has at least two fillings, which are 

isomorphic as maps but different. It proves that the (r, 3)-boundary sequence br does 

not define uniquely its (r, 3)-filling. D 

The main difficulty of above theorem consists in finding the (r, 3)-boundary 

sequence br. It seems likely that our examples are minimal with respect to the number 

of r-gons of their corresponding fillings. 

Remark 5.1.2 The (3, 5)-boundary sequence (43445544345)2 admits two different 

(3, 5 yfillings (by 36 3 -gons and 30 vertices) shown on Figure 5.3. Those fillings are 

isomorphic and have only symmetry C2, while the boundary has symmetry C2v, as in 

Theorem 5.1.1. 

The (3, 5fboundary sequence (34345)252(34345)252 admits two different (3, 5)- 

fillings (by 34 3-gons and 30 vertices) shown on Figure 5.4. Those fillings are 

non-isomorphic and have the same symmetry as the boundary, i.e. C2. This (3, 5)- 

boundary sequence might be minimal for the number of3-gons. 
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Figure 5.2 Two different (but isomorphic as maps) (6, 3)-fillings of the same (6, 3)- 

boundary; the left one and the lower one are the first cases r = 6, 7 of a series of 

(r, 3)-fillings, which are not defined by their boundaries 

In the case of (5, 3)-polycycles, for every given number we have an example of a 

(5, 3)-boundary sequence, which admits exactly that number of fillings. The state¬ 

ment and the proof of this theorem used the elementary polycycles presented in 

Chapter 7 (especially, EUCU and C3 from Figure 7.2). 

Theorem 5.1.3 The (5, 3)-boundary b{n) = 2235'!+12235"+32235'?+12235',+3 admits 

exactly n+1 different (5, 3)-fillings. Each such filling corresponds to a number k, 0 < 

k < n, where the kth filling is obtained by taking two elementary (5, 3)-polycycles 

gluing them and adding to them four open edges of Ex+Eh respectively, chains 

of k, n — k, k, and n — k elementary poly cycles C\. 
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Figure 5.3 Two different (but isomorphic as maps) (3, 5)-fillings of the same boundary 

Figure 5.4 Two different non-isomorphic (3, 5)-fillings (with symmetry C2) of the same 

boundary with symmetry C2 

Proof. We need to prove only that there are no more than these n + 1 fillings. First, 

since all runs of two are 22, the only possible elementary (5, 3)-polycycles are E\, 

Ci, or C3. Secondly, since the (5, 3)-boundary has exactly 4 runs of 2, the total 

number of (5, 3)-polycycles E\ and C3 is 2. 

The addition of the (5, 3)-polycycle C] to an existing (5, 3)-polycycle, adds the 

symbol 3 5 at two emplacements of the (5, 3)-boundary sequence. The three possible 

cases Ex + Ex, E\ + C3, and C3 + C3 correspond, respectively, to (5, 3)-boundary 

sequences 2231223322312233, 22322234223]2234, and 2232223522322235. So, the 
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only possibility, that agrees to modulo 5, is E\ + E\. It is easy to see that there is 

no polycycle C\ between two polycycles £j and that the number of polycycles C\, 

inserted on every part of the four open edges (i.e. with 2-valent end vertices), is k, 

n — k, k, and n — k. D 

Conjecture 5.1.4 

(i) If the number of r-gons of(r, 3)-polycycle is strictly less than 4 r, then the (r, 3)- 

boundary sequence defines it uniquely. It holds for r — 6 ([GHZ02]) and for 

r = 5 ([DeSt06]). 

(ii) Let b, be the boundary for the example defined in Theorem 5.1.1; we expect that 

it does not admit either (r', 3)-filling with r' > r, or (r. q)-filling with q > 3. 

Call an (r, g)-boundary sequence ambiguous if it admits at least two different (r. q)- 

fillings. Call it irreducible if its (r, g)-filling does not contain, as induced polycycle, 

the (r, g)-fillings of other ambiguous (r, g)-boundary sequences. 

The number of irreducible ambiguous (5, 3)-boundary sequences is 0, 1,3, 17, 

for ps < 20, 20, 21, 22, respectively (see [DeSt06], where such (5, 3)-polycycles are 

called equi-boundary poly pentagons). 

The ambiguous (5, 3)-boundary sequence for p5 = 20, is (232323352323233:)2. 

The irreducible ambiguous (5, 3)-boundary sequences with p5 = 21 are: 

b \b\ Aut{b) Nr. of 

fillings 

Isomorphic 

fillings 

3223232362323423236232323 35 Cs 2 yes 

32232323623222342323236232323 39 Ci 2 no 

3a232323722322332323236232323 39 C, 2 no 

Heie \b\ is the length of the sequence, Aut(b) is its automorphism group, and we 

indicate if the obtained fillings are isomorphic. In Figure 5.5, a (6, 3)-polycycle 

is presented, whose (6, 3)-boundary sequence admits eight different (6, 3)-fillings. 

More generally, by aggregating the examples, found in Theorem 5.1.1, we can 

obtain an (r, 3)-boundary, admitting an arbitrary large number of fillings. Further¬ 

more, by adding one r-gon to an example, found in Theorem 5.1.1, we can obtain 

(r, 3)-boundaries, admitting two non-isomorphic (r, 3)-fillings. 

Note that it two (r, <?)-polycycles have the same (r, g)-boundary, then their image 

under the cell-homomorphism in {r, q) is the same. Moreover, in [Gra03] it is proved 

that if the image of a (6, 3)-polycycle does not triply cover some point, then the 

(6, 3)-boundary sequence determines this (6, 3)-polycycle uniquely. 
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Figure 5.5 Several non-isomorphic (6, 3)-fillings of the same (6, 3)-boundary are 

obtained by different (6, 3)-fillings of above 3 components 

5.2 (r, 3)-filling algorithms 

The algorithmic problem treated here is: given an (r, 3)-boundary, find all possible 

(/-, 3)-fillings of it. 

Theorem 5.2.1 Let P be an (r, 3 )-polycycle. Denote by x the number of interior ver¬ 

tices of P and by pr the number of r-gonal faces in P. Denote by V2, v3 the number 

of vertices of degree 2, 3, respectively, on the (r, 3f boundary; then it holds that. 

j pr-f = l + f 

Irpr — 3x = V2 + 2v3 

Moreover, it holds that: 

.r , s .1 2(V7—r)—(r—4)v3 „   v2-V3+5 
(1) tfr^f 6, then x = - r_g-and pr — r_6 ■ 

(ii) ifr — 6, then 1)2 = v3 + 6. 

(5.1) 
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Proof. The number of edges e satisfies to 2e = Vj + u3 + rPr — ^-v2 + 3u3 + 3x, 

which implies rpr - 3x = v2 + 2u3. Then the Euler formula v - e + / = 2 with 

v = V2 + V3+X and / = 1 + pr implies pr — | = 1 + y. 

The linear system (5.1) has a unique solution if and only if r 7^ 6, thereby proving 

(i). (ii) is obvious. □ 

Actually, for r = 6 also the (r, 3)-boundary determines the number of r-gons (see 

[GHZ02, BDvN06]). 

The basic idea of the (r, 3)-filling algorithm is the following. Given an (r, 3)- 

boundary b and two consecutive vertices x and y of degree 3 on it, consider all 

possible ways to add an r-gonal face to this pair of vertices. When adding an r-gonal 

face, there are several possibilities (illustrated in Figure 5.6): 

• either the new r-gon does not split the (r, 3)-boundary into different components, 

• or it splits the (r, 3)-boundary into two, or more, components. 

Given one pair of vertices x and y, all cases should be considered. Then, the 

algorithm should be reapplied to the remaining boundaries, until we obtain an 

(r, 3)-polycycle. 

The order in which cases are considered affects the speed of computation. We 

choose the pair x, y with the smallest number of possibilities of extension. 

In particular, if the (r, 3)-boundary sequence contains the pattern 2r~i or 2r~2, then 

there is a unique way of adding an edge; so we obtains a unique smaller problem (see 
Figure 5.7). 

Figure 5.6 Some examples of possible ways to add a 6-gon between two vertices x and v 
of valency 3 on the (6, 3)-boundary 



Polycycles with given boundary 63 

Figure 5.7 The unique completion cases for r = 4 

Another speedup consists in showing that an (r, 3)-boundary b does not admit any 

(r, 3)-fillings. Two criteria are possible: 

• Use Theorem 5.2.1 to compute the number of interior vertices and faces. If they 

are negative or non-integer, then the (r, 3)-boundary is non-extensible. This is a 

global criterion. 

• If a pair of consecutive vertices of valency 3 on the (r, 3)-boundary does not admit 

any extension by an r-gon, i.e. its distance is lower than r — 1, then the (r, 3)- 

boundary is non-extensible. This is a local criterion. 

By using these methods, we can find all (r, 3)-fillings of a given (r, 3)-boundary. 

The running time is, most likely, non-polynomial; if the length of the (r, 3)-boundary 

increases, the number of cases to consider becomes very large and the efficiency 

of the above criteria is limited. Nevertheless, if r 7^ 6, the algorithm is guaran¬ 

teed to terminate, since then we know how many r-gons will occur. If we want to 

check whether an (r, <?)-boundary corresponds to a proper (r, <?)-polycycle, then this 

is easier. The (r, <?)-boundary sequence specifies a path in {r, q}\ this path has to be 

closed and this is an easily checked condition. The second and sufficient condition 

is that the path has to be non- self-intersecting. Both conditions can be checked in 

polynomial time. 



6 
Symmetries of polycycles 

Recall that the automorphism group Aut(P) of an (r, <?)-polycycle P is the group 

of automorphisms of the plane graph preserving the set of interior faces (see Sec¬ 

tion 4.1). Call a polycycle P isotoxal, isogonal, or isohedral if Aut(P) is transitive 

on edges, vertices, or interior faces, respectively. In this chapter we first consider 

the possible automorphism groups of an (r, <?)-polycycle, then we list all isogonal 

or isohedral polycycles for elliptic (r, q) and present a general algorithm for their 

enumeration. We also present the problem of determining all isogonal and isohedral 

(r, q)gen-polycycles. 

6.1 Automorphism group of (r, #)-polycycles 

If an (r, #)-polycycle P is finite, then it has a single boundary and Aut{P) is a dihe¬ 

dral group consisting only of rotations and mirrors around this boundary. So its order 

divides 2r, 4, or 2q, depending on what Aut(P) fixes: the center of an r-gon, the 
center of an edge, or a vertex. 

None of (3, 3)-, (3, 4)-, (4, 3)-polycycles has, but almost all (r, <?)-polycycles for 
any other (r, q) have, trivial Aut(P). 

The number of chiral (i.e. with Aut(P) containing only rotations and translations) 

proper (5, 3)-, (3, 5)-polycycles is 12, 208 (amongst, respectively, all 39, 263.) 

Given an (r, q )-polycycle P, consider the cell-homomorphism 0, presented in Sec¬ 

tion 4.3, from P to {r, q}. It maps the group Aut(P) into Aut{{r, q}) = T*(l, m, n). 

The image <P(Aut(P)) consists of automorphisms of 0(P). If p is a proper poly¬ 

cycle, then Aut(P) coincides with Aut^P)). Otherwise, Aut(P) is an extension 
of Aut(cp(P)) by the kernel of this homomorphism. 

Only /-gons and non-Platonic plane tilings {r, q) are isotoxal; their respective 

automorphism groups are Cru and T\2,r,q). The group Aut({r, q} - f) is Crv 

in hve Platonic cases; none is isotoxal, isogonal, or isohedral polycycle, except of 
isohedral {3, 3} - / = (3, 3)-star. 

We call the set of q r-gons with a common vertex, the (r, q)-star ofq-gons. 

64 
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6.2 Isohedral and isogonal (r, gj-polycycles 

Theorem 6.2.1 Let P be an isohedral (r, q)-polycycle; then it holds that: 

(i) Every r-gon has the same number t of non-boundary edges. 

(ii) For t = 0, r or 1, the polycycle P is, respectively, r-gon, non-elliptic {r, q}, or 

a pair of adjacent r-gons (with Aut(P) = C2v)- 

(iii) Ift = 2, then P is either an (r, q)-star, or an infinite outerplanar poly cycle. 

(iv) Ift > 3, then P is infinite. 

Theorem 6.2.2 (i) For a given pair (r, q), the number of isohedral (r, q)-polycycles 

is finite. Moreover, it is bounded by a function depending only on r. 

(ii) If P is an isogonal (r, q fpolycycle, then either it is r-gon, or non-elliptic 

{r, q), or an infinite outerplanar polycycle and its outer dual Out*(P) (considering 

P as an (r, q + \)-poly cycle) is an isohedral infinite (q + 1 ,r)-polycycle. 

Proof. Consider an isohedral (r, g)-polycycle P and fix a face F in it. The automor¬ 

phism group of an r-gon is the dihedral group Crv\ the stabilizer Stab(F) of F in 

p is a subgroup of Crv. Since Crv is finite, we have a finite number of possibilities 

for Stab(F). The face F is adjacent in P to t r-gonal faces Fu ..., Ft. By iso- 

hedrality, we have, for every i, a transformation 0, of P that maps F to F,. This 

transformation is defined up to an element of Stab(F). Clearly, there are at most 2; 

possible transformations 0;. One way to see it is that 0, is defined by the image of a 

flag (v, e, F) into a flag (v\ e', Ffi and that there are 2r such flags. So, the finiteness 

is established. Moreover, the number of choices for Stab(F) depends only on r; so, 

the total number of choices is bounded by a function depending only on r. 

If P is an isogonal (r, g)-polycycle, then either no vertex belongs to the boundary 

and we have no boundary, or every vertex belongs to the boundary and P is outer¬ 

planar. If P is outerplanar, then we can consider it as an (r, q + l)-polycycle and so 

the outer dual is well defined and isohedral. ^ 

Given a pair (r, q), the above theorem gives that the set of isohedral (r, q)- 

polycycles is finite but not precisely how we can describe this set. Given an > -gon 

F of P, we specify a transformation that maps F to adjacent r-gons to F. Aftei 

this transformation is prescribed we check if the coherency is satisfied on F. Simple 

connectedness assures us that those local conditions are actually global (see [Dre87], 

for the proofs). The actual enumeration is then done by computer, using exhaustive 

enumeration schemes (see [Du07]). 

Theorem 6.2.3 For any r, there exists isohedral (r, A)-polycycle with exactly one 

boundary edge on each r-gon. 
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Proof. Take an r-gon F and select r — 1 edges. On every one of those edges define 

the line symmetry that maps the r-gon to its mirror along the edge; see below, for 

r = 4, the line symmetries along edges 1, 2, and 3; 

1 3 
2 

The r-gon has r - 2 interior vertices. All those transformations fit together around 

those vertices. So, they yield an isohedral (r, 4)-polycycle. □ 

For non-elliptic (r, cj), the practical representation of an isohedral (r, g)-polycycle 

is difficult, since the number of vertices at distance r from a given vertex grows very 

last and we are led to draw smaller and smaller faces. The compressed presentation 

(see Theorems 6.2.5 and 6.2.6 below) will mimic the computer presentation of such 

polycycles: it presents one r-gon F and its adjacent r-gons Ft. Boundary edges and 

boundary vertices are boldfaced. The edges of F are marked by a number and the 

edges of the adjacent r-gons F, have those numbers under a symmetry transformation 

(generally, non-unique) mapping F to Fh The stabilizer Stab(F) of F is a point 

group, whose type is indicated under picture. See below a representation of an infinite 
(3, 5)-polycycle and its corresponding code: 

A similar lepresentation can be done for isogonal (r, c/)-polycycles. 

Another way to get a representation, is to take a quotient P of an (r, ^j-polycycle 

P by a subgroup of Aut(P). P might be easier to represent and P is then obtained 

by taking the universal cover of the (r, q)gen-polycycle P (see Figure 6.3 for two 
examples). 

Using the algorithm of Theorem 6.2.2, in [DeStOOb], all elliptic isohedral polycy¬ 

cles were found (see Figure 6.1): 11 finite ones, 7 infinite ones with strip groups, and 
a (5, 3)-polycycle with Aut(P) = T*{2, 3, oo). 

The enumeration of elliptic isogonal (r, <?)-polycycles yields nine polycycles: all 

■ 66 r ^ ^VC P0^168)’ Prisms APrism^ (as two polycycles), and the 
isogonal (3, 5)-polycycle represented in Figure 6.3. 

We now list some existence and classification results for isohedral <r qY 

polycycles obtained by using the previous formalism. 

Remark 6.2.4 If an (r, q)-polycyck is proper, then we can realize its group of com- 

btnatorial transformations as a group of isometries of its image in (r, q). If the 
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Figure 6.1 All 19 isohedral elliptic (r, <?)-polycycles; only r-gons and Prism 

APrismoo are isogonal (the remaining 9th elliptic isogonal polycycle is given on the 

right-hand side of Figure 6.3) 

(r, qfpolycycle is a helicene, then this is not possible; see, for example, the infi¬ 

nite elliptic isohedral (r, qfpolycycles in Figure 6.1. Unfortunately, we do not know 

any practical method for checking if a given infinite (r, qfpoly cycle is proper or not. 

Theorem 6.2.5 All isohedral (3, qfpoly cycles with q > 3 are: 

(i) 3 -gon (isogonal), {3, q) (isogonal), pair of adjacent 3-gons, (3, qfstar. 

(ii) For q > 4, APrism00 (isogonal) and, for q > 5, the infinite not isogonal (3, 5)- 

polycycle from Figure 6.1. 
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4,3 4+2a,3 4+a,4 5+a,3 3+a,4 3+a,5 4+o+6,3 4+a+6,3 4+a+6,3 
a > 0 a > 0 a > 0 a > 0 a > 0 a > b > 0 a > b > 0 a > b > 0 

pmm2 pmm2 pmm2 pma2 pma2 pma2 pma2 pma2 pml 1 

Figure 6.2 Conjecturally complete list of eight families of isohedral (r, g)-polycycles 

with a strip group of symmetry presented as decorated Prism00 (only 1st and 5th, for 
a = 0, are isogonal) 

An isohedral (5, 3)-polycycle of symmetry T*(2, 3, oo) 

An isogonal (3, 5)-polycycle of symmetry T(2, 3, oo) 

Figure 6.3 Two examples of infinite (r, ^j-polycycles with, for each of them, a quo- 

tent (r,q) - polycycle (strictly face-regular Nr. 58 and Icosahedron with boldfaced six 
respectively, four holes) 

Theorem 6.2.6 All isohedral (4. qfpolycycles with q > 3 are: 

(i) 4-son (isogonal), (4, q) (isogonal), pair of adjacent 4 -gone, (4. q)-star. 

q - ,3' resP^‘y. q > 4, the following outerplanar (4, 3j-polycycle. 
respectively, (4, T)-polycycle: 
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Civ, isogonal Cs 

(iii) For q > 4, respectively, q > 5, /7?e following (4, q)-polycycles: 

3 ' 

4 2 
1 

4 ' 

1 3 
2 

2 

3 1 
4 

1 

2 4 

Ci 

3 

4 2 
1 

4 
1 3 

2 

4 ' 

3 1 
2 

1 

2 4 

—3- 
Cl 

(7v) //V/ >4 even, respectively, q > 6 even, the following (4, q)-poly cycles: 

3 1 
2 

1 3 
2 

3 1 
2 

2 

1 3 
4 

Cs 

4 
3 1 

,, 2 

4 

1 3 
2 

2 

3 1 
4 „ 

2 

1 3 
4 

Cl 

fvj For q > 5, the following three outerplanar (4, 5 )-polycycles: 

(vi) For q > 7, the following two outerplanar (4, l)-polycycles: 

° 2 ' 

3 1 
4 

4 

1 3 
2 

4 

3 1 
2 

' 2 

3 1 
4 

Ci 

lv, 
4 

1 3 
, 2 

3 

2 4 
1 

3 

2 4 
1 

Ci 
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Table 6.1 Triples (x, y, z) of numbers x of isohedral, y of isogonal, z of isohedral, and 
isogonal (r. qfpolycycles, different from r-gon and [r, q),for r,q < 8 

r 4 q ->• 3 4 5 6 7 8 

3 2, 0,0 3, 1, 1 4,2, 1 4,3, 1 4, 6, 1 4, 11, 1 
4 3, I, 1 6,3, 1 9,8,3 11,21,3 11,53,3 13,137,3 
5 7,0,0 17, 0,0 24, 0, 0 38,5,5 37, 13,5 51, 19,5 
6 12,1,1 45, 4, 3 67, 11, 3 130, 24,3 123,87,20 196,234,20 
7 28,0,0 157,0,0 257,0,0 518,0,0 452, 0, 0 896, 60, 60 
8 58, 1, 1 486, 3, 1 894, 11,6 2095,35,6 1781, 119,6 3823, 367,6 

Proof. The proof is a case-by-case analysis. It is exactly the same as running the 

program; so, we refer to the program itself. □ 

Clearly, y and z, introduced in Table 6.1, are non-decreasing functions of q and 

z < minO, y). From Theorem 6.2.5, it follows that if r = 3 and q > 4, then z = 1 

and it is realized by APrism00, seen as a (3, <?)-polycycle. 

Conjecture 6.2.7 

(i) If r is odd, then y = z = 0 for 3 < q < r, y = z > 0 for q = r + 1 and 

y > z > 0, otherwise. 

(ii) lfr is even, then y > z > Oforq > 4 and y = z= \,forq = 3; it is realized 

by (r, 3)-cactus (infinite (r, T)-poly cycle obtained by growing from an r-gon, i.e. 

adding r-gon on \ disjoint edges, see two decorations of the (6, 3)-cactus on 
Figure 6.3). 

The computation of isohedral (r, <?)-polycycles, presented in Table 6.1, shows that 

a full classification of them is hopeless. Note that the algorithm gives the list of 

isohedral (r, ^-polycycles but not their groups. It is possible to generate by com¬ 

puter a presentation of the group by generators and relations. But the groups, defined 

by generators and relations, are notorious in group theory for even the simplest 

questions to be undecidable (i.e. no algorithm can answer those questions in full 

generality; see, for example, [Coo04] for an introduction to this subject). It makes 

t e identification with known groups somewhat of an art. See on Figure 6 4 an iso¬ 

hedral (6 3)-polycycle (obtained in [DeStOl] with many other examples), whose 

automorphism group Z3 x T\oo, oo, oo) is not a Coxeter group 

We can consider k-isotoxal, k-isohedral, and k-isogonal (r, *)-polycycles, i.e. 

i, q po ycyc es with k orbits of edges, faces, and vertices, respectively. The finite- 

umbt J1 TT thC enUmerati°n WOUW SdU be P0S^le by computer, but the 

is unknown ^ mUCh 'arger and ‘he comPlexity of'the computation 
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An isogonal isohedral (6, 4)-polycycle An isohedral (6, 3)-polycycle 
with non-Coxeter symmetry group 

Figure 6.4 Two isohedral (r, g)-polycycles 

Eight families of isohedral (r, <?)-polycycles with Aut(P) being a strip group are 

given in Figure 6.2; all have q — 3,4. The points on edges indicate vertices of 

degree two of depicted polycycles producing those families. We think there is no 

other isohedral (r, g)-polycycles with a strip group. 

For any r > 5 there exists a continuum of gnasz-isohedral polycycles, i.e. not 

isohedral ones, but with all r-gons having the same corona, i.e. circuit of adjacent 

faces. In fact, let T be an infinite, in both directions, path of regular r-gons, such 

that for any of them the edges of adjacency to their neighbors are at distance L^J 

and the sequence of (one of two possible) choices of joining each new r-gon, is 

aperiodic and different from its reversal. There is a continuum of such paths T for 

any r > 5. Any T is quasi-isohedral and its group of automorphisms is trivial. It is 

an (r, 3)-helicene if r = 5,6 and isometric proper polycycle if r > 7. 

6.3 Isohedral and isogonal (r, q)gen-polycycles 

The hypothesis of simple connectedness of (r, q )-polycycle radically simplifies the 

enumeration of the isohedral and isogonal ones. 

Given an (r, q)gen-polycycle, which is isohedral, isogonal, then its universal cover 

is also isohedral, isogonal, respectively. This gives, in principle, a method for enu¬ 

merating the isohedral, respectively, isogonal (r, q)gen-polycycles: enumerate such 

simple connected ones, i.e. such (r, g)-polycycles, then take their quotients by 

adequate groups. 

As an illustration, consider the enumeration of isogonal (3, 5)ge„-polycycles. 

There are three isogonal (3, 5)-polycycles: 3-gon, A Prism^ and the isogonal 

(3, 5)-polycycle depicted on Figure 6.3, which we denote by P3,5- The 3-gon has 

no possible quotients, the quotients of APrism^ are enumerated in Section 4.5. 
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Figure 6.5 Twisted {b, 3} for b = 3, 4, 5, 6 

The automorphism group Aut{P^, f) of P3 5 is isomorphic to the modular group 

PSL(2, Z) ~ T(2, 3, 00) and the stabilizer of any vertex is trivial. 

Let G be a group of fixed-point-free automorphisms of P3.5 such that the quotient 

map P3,s/G is isogonal. Since the group of automorphisms of P3.5/G is isomorphic 

to the quotient NAut(Pi5){G)/Q, it holds that NAutiP}s)(G) = Aut(Pi_5), since the 

stabilizer of any vertex is trivial. So, G has to be a normal subgroup of Aut(P3 5), 

in order, for the quotient to be isogonal. There is a large variety of normal fixed- 

point-free subgroups of PSL(2, Z) (see [New72]) and so a large variety of isogonal 

(3, 5)ge„-polycycles. 

One class of them, snub {b, 3}, is obtained from the regular tiling {b, 3} by replac¬ 

ing every vertex by a 3-gon and every edge by two 3-gons. The snub {b, 3} is a 

({3, b}, 5)-map (see Chapter 2). See snub {b, 3} for 3 < b < 6 on Figure 6.5, 

i.e. some (3, 5)gen-polycycles with holes being 7>-gons. The corona of their vertices 

is 3 .b; so, their skeletons are Icosahedron, Snub Cube, Snub Dodecahedron, and 

Archimedean plane tiling (34.6), respectively. 

In practice, if we want normal subgroups of a specific finite index, then we use the 

computer algebra software MAGMA ([Mag07]), which uses the algorithms explained 

in [CoDo05]. This method has been used in [CoDo02], [C0D0OI] to determine small 

symmetric trivalent maps and small regular maps on oriented surfaces. 
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Elementary polycycles 

We have seen in Section 4.5 a full classification of (3, 3)gen-, (3, 4)gen-, and (4, 3)gen- 

polycycles. We have also seen that, for all other (r, q), there is a continuum of 

(r, g)-polycycles. The purpose of this chapter is to introduce a decomposition of 

polycycles into elementary components in an analogous way to decompose the 

molecules into atoms. This method will prove to be very effective but only in the 

elliptic case, since, for all other cases, we will show that there is a continuum of such 

elementary components (see Theorem 7.2.1). The first occurrence of the method is 

in [DeSt02b], followed by [DDS05b] and [DDS05c], 

7.1 Decomposition of poly cycles 

Given an integer q > 3 and a set R C N - {1} (so, 2-gons will be permitted in this 

chapter), a (R, q)gen-polycycle is a non-empty 2-connected map on a surface S with 

faces partitioned in two non-empty sets F\ and F2, so it holds that: 

(i) all elements of F\ (called proper faces) are combinatorial z'-gons with i e R; 

(ii) all elements of F2 (called holes, the exterior face(s) are amongst them) are 

pairwisely disjoint, i.e. have no common vertices; 

(iii) all vertices have degree within {2, ..., q) and all interior (i.e. not on the 

boundary of a hole) vertices are q-valent. 

The map can be finite or infinite and some holes can be z'-gons with i e R. If R = 

{r}, then the above definition corresponds to (r, g)g(,„-polycycles. If an (R,q)gen- 

polycycle is simply connected, then we call it an (R, ^)-polycycle; those polycycles 

can be drawn on the plane with the holes being exterior faces. (R, <?)-polycycles with 

R — [r} are exactly the (r, g)-polycycles considered in Chapters 4—6. One motivation 

for allowing several possible sizes for the interior faces is that polycyclic hydrocar¬ 

bons in Chemistry have a molecular formula, which can modeled on such polycycles, 

see Figure 7.1. The definition of (R, g)-polycycles given here is combinatorial; we 

no longer have the cell-homomorphism into {r, q). We will define later on elliptic, 
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parabolic, hyperbolic (R, <7)-polycycles, but this will no longer have a direct relation 

to the sign of the curvature of {r, q). 

A boundary of an (R, 4)ge„-polycycle P is the boundary of any of its holes. 

A bridge of an (R, q)gen-polycycle is an edge, which is not on a boundary and 

goes from a hole to a hole (possibly, the same). An [R, q)gen-po\ycyc\t is called 

elementaiy if it has no bridges. See below illustrations of these notions: 

benzene 

C6H6 

naphthalene 

CioHg 

azulene 

CioHs 

pentalene 

c8h6 

indacene biphenylene fluoranthene 

Ci2H8 Cl2H8 C16H10 

Figure 7.1 Some small polycyclic hydrocarbon molecules; here C„H„, means n ver¬ 

tices (carbon atoms) including m 2-valent ones, where a hydrogen atom can be attached 

(double bonds are omitted for simplicity): 

A non-elementary ({4, 5}, 3)-polycycle with its 
bridges An elementary (5, 3)-polycycle 

An open edge of an (R, g)^-polycycle is an edge on a boundary, such that each 

of its end-vertices have degree less than q. See below the open edges of some {R,q)- 

polycycles: 

Theorem 7.1.1 Every (R,q) 

of elementary (R,q) 

uniquely cut, along the 

agglomeration 

or, in other words, it can be 

gen-polycycles. 

gen-poly cycle is uniquely formed by the 

gen-polycycles along open edges 

bridges, into elementary (R, q) 
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See below for an example of such decomposition of a (5, 3)gt,„-polycycle on 

the plane: 

03 8^ 

A (5, 3)gen-polycycle with its bridges being The e]ement components of this polycycle 
boldfaced 

Theorem 7.1.1, together with the determination of elliptic elementary (r,q)gen- 

polycycles, is used in Chapters 5, 8, 12, 13, 14, and 18 for classification purposes. 

Theorem 7.1.1 gives a simple way to describe an (r, g)-polycycle: give the names 

of its elementary components and use the symbol +. But, in many cases, this is 

ambiguous, i.e. the same elementary component can be used to form an (r, q)- 

polycycle in different ways, in the same way as the formula of a molecule, giving 

its number of atoms, does not define it in general. For example, with D denoting 

the (5, 3)-polycycle formed by a 5-gon, D + D + D refers unambiguously to the 

following (5, 3)-polycycle: 

There is another (5, 3)-polycyc!e with three 5-gons sharing a vertex; it is elementary 

and named Ex according to Figure 7.2. But D + D + D + Dis ambiguous, since 

there are two (5, 3)-polycycles having four elementary components D. 

Given an (R,q)gen-polycycle P, we can define another (R, -polycycle P' 

by removing a face / from F\, i.e. by considering it as a hole. If / has no common 

vertices with other faces from F\, then removing it leaves unchanged the plane graph 

G and only changes the pair (Fj, F2). If / has some edges in common with a hole, 

then we remove them. If / has a vertex v in common with a hole and if v does not 

belong to a common edge, then we split v into two vertices. See below two examples 

of this operation: 

Removal of a 2-gon having 
a boundary vertex 

Removal of a 5-gon having 
a boundary edge 
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The reverse operation is the addition of a face. An (R. cj)gen-polycycle P is called 

extensible if there exists another (R, q)gen-polycycle P', such that the removal of a 

face of P' yields P, i.e. if it is possible to add a face to it. 

In all pictures below, we put under an (R, <7)-polycycle P, its symmetry group 

Aut(P) and mark nonext. for non-extensible P (see Section 8.2 for details on this 

notion). Also, we put in parenthesis the group Aut(G) of the plane graph G of P if 

Aut( P) f Aut(G) and no other polycycle with the same plane graph exists. Our set¬ 

ting here is more general than in Chapter 4; the plane graph no longer determines the 

polycyclic realization. In fact, the same plane graph G can admit several realizations 

as a (R, g)-polycycle; see examples in Appendices 1 and 2. 

A natural question to ask is if it is possible to further enlarge the class of 

polycycles. 

There will be only some technical difficulties if we try to obtain the catalog of 

elementary (R, Q)-polycycles, i.e. the generalization of (R, g)-polycycles allowing 

the set Q for values of degree of interior vertices. Such polycycle is called elliptic, 

parabolic, or hyperbolic if ~ ~ (where r = maxieR i, q = max,-6g i) is positive, 

zero, or negative, respectively. The decomposition and other main notions could be 

applied directly. 

We required 2-connectedness and that any two holes do not share a vertex. If we 

remove those two hypothesis, then many other graphs do appear. 

The omitted cases (R,q) = (2, q) are not interesting. In fact, consider infinite 

series of (2, 6)-polycycles, tripled m-gons, m > 2 (i.e. m-gon with each edge being 

tripled). The central edge is a bridge for those polycycles, for both 2-gons of the 

triple of edges. But if we remove those two 2-gons, then the resulting plane graph 

has two holes sharing a face, i.e. it violates the crucial point (ii) of the definition 

of (R, <?)-polycycle. For even m, each even edge (for some order 1.m of them) 

can be duplicated t times (for fixed t, 1 < t < 5), and each odd edge duplicated 

6 - t times, so the degrees of all vertices will still be 6. On the other hand, two holes 

{m- gons inside and outside of the tripled m- gon) have common vertices, so again it 

is not our polycycle. 

7.2 Parabolic and hyperbolic elementary (R, ? )ge„-polycycles 

The interesting question is to enumerate, if possible, those elementary (R,q)gen- 

polycycles. Call an {R, q)gen-polycycle elliptic, parabolic, or hyperbolic if the 

number - + - - i (where r = maxieR i) is positive, zero, or negative, respec¬ 

tively. In Theorem 7.2.1, we will see that the number of elementary (r, g)-polycycles 

is uncountable for any parabolic or hyperbolic pairs (r, q). But in [DeStOl] and 

[DeSt02b], all elliptic elementary (r, <?)-polycycles were determined. See Figures 7.2 

and 7.3 for the list ot elementary (5, 3)- and (3, 5)-polycycles, which will be needed 
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£n |N|, |N| 

D 1,0 Ei 3, 1 E2 4,2 

£3 5, 3 £4 6, 4 

Figure 7.2 Elementary (5, 3)-polycycles and their kernels 

£5 7,5 
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eN 3N. N 

d 1,0 

ei 5’ 1 e2 8, 2 «3 11,3 

e4 14- 4 «?5 17> 5 

Figure 7.3 Elementary (3, 5)-polycycles and their kernels 

e6 20, 6 
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later. For (3, 3)-, (3, 4)-, and (4, 3)-polycycles, we have full classification of them 

in Chapter 4. In fact, we will consider the case R = {i : 2 < i < r] covering all 

elliptic possibilities: ({2, 3, 4, 5}, 3)-, ({2, 3}, 4)-, and ({2, 3}, 5)-polycycles in Sec¬ 

tions 7.4, 7.5, and 7.6, respectively. Call the kernel of a polycycle, the cell-complex 

of its vertices, edges, and faces, which are not incident with its boundary. 

Theorem 7.2.1 For parabolic and hyperbolic parameters (r, q), there exists a 

continuum of non-isomorphic elementary (r, q)-polycycles. 

Proof. Consider a semi-infinite (to the right) chain of 4-gons that fill a strip between 

two parallel rays. Inside two horizontal sides of each 4-gon of the chain, we put 

r — 5 and one new vertice to obtain an r-gon instead of a 4-gon. There are two 

alternatives: either r — 5 new vertices are placed on the upper side and one on the 

lower side or, vice versa, one new vertex is placed on the upper side and r — 5 on 

the lower. Such a choice is made independently on each 4-gon when we move to the 

right along this chain. Therefore, there is a continuum of various (non-isomorphic) 

chains of this kind. All of them are chains in the tiling {r, q} for r > 7 and q > 3, 

as well as for r = 5 and q > 4. It is also clear that this (r, g)-polycycle is the kernel 

of an elementary (r, <?)-polycycle consisting of this polycycle supplemented with all 

r-gons that are incident to it in the tiling {r, q). 

Now, consider the case of parabolic parameters (r, q), i.e. (r, q) = (6, 3), (4, 4), 

and (3,6). In the square lattice, i.e. in the regular tiling {4,4} of the Euclidean 

plane M2, we construct a chain of 4-gons semi-infinite in the upper right direction. On 

each step of this construction, there are two alternatives for choosing the next 4-gon: 

we can choose an adjacent 4-gon, either on the right on the same level, or one level 

higher. It is clear that there is a continuum of various (non-isomoiphic) chains of this 

kind in the tiling {4, 4} and each of these chains is the kernel of a certain elementary 

(4, 4)-polycycle. Infinite chains of hexagons in the tiling {6, 3} are constructed anal¬ 

ogously. As for the tiling {3, 6}, combining two adjacent 3-gons in it into a rhomb 

and transforming the entire tiling {3, 6} into a rhombic lattice combinatoiially equiv¬ 

alent to the tiling {4, 4}, we can apply the same line of reasoning as in the case of the 

square lattice. The kernels of those parabolic polycycles are outerplanar. They can 

be interpreted as the kernels of hyperbolic polycycles (by increasing the value of the 

parameter q). ^ 

7.3 Kernel-elementary polycycles 

Call an (r, g)-polycycle kernel-elementary if it is an r-gon or if it has a non-empty 

connected kernel, such that the deletion of any face from the kernel will diminish it 

(i.e. any face of the polycycle is incident to its kernel). 
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Theorem 7.3.1 (i) If an (r, qfpolycycle is kernel-elementary, then it is elementary. 

(ii) If (r,q) is elliptic, then any elementary (r, q)-polycycle is also kernel- 

elementary. 

Proof, (i) Take a kernel-elementary (r, g)-polycycle P\ we can assume it to be dif¬ 

ferent from an r-gon. Let P\,... ,Pr be the elementary components of this polycycle. 

The connectedness condition on the kernel gives that all Pj but one are r-gons. But 

removing the P, that are r-gons does not change the kernel; so, r = 1 and P is 

elementary. 

(ii) Consider any two vertices of an r-gon of an elliptic (r, gf-polycycle that 

belongs to the kernel of this polycycle. The shortest edge path between these vertices 

lies inside the union of two stars of r-gons with the centers at these two vertices; 

this result can easily be verified in each particular case for any elliptic parameters 

(h?) = (3, 3), (3, 4), (3, 5), (4, 3), and (5, 3). Hence, any r-gon of an elliptic (r, q)- 

polycycle is only incident with one simply connected component of its kernel. All 

r-gons that are incident with the same non-empty connected component of the kernel 

constitute a non-trivial elementary summand. Since the polycycle is elementary, this 

is its totality and the kernel is connected. □ 

In [DeSt02b] the notion of kernel-elementary was called elementary. See below 

for an example of a (6, 3)-polycycle, which is elementary but not kernel-elementary 
(since its kernel is not connected); 

The decomposition Theorem 7.1.1 (of (r, g)-polycycles into elementary polycycles) 

is the mam reason why we prefer the property to be elementary to kernel-elementary. 

Another reason is that if an (r, <?)g£,„-polycycle is elementary, then its universal cover 

is also elementary. However, the notion of kernel elementariness will be useful in the 

classification of infinite elementary ({3, 4, 5}, 3)- and ({2, 3}, 5)-polycycles. 

In Figures 7.2 and 7.3, each elementary polycycle is denoted by a certain letter 

with a subscript; two numbers indicate the values of the parameters pr (the number 

of interior faces) and vint (the number of interior vertices). The infinite series Es, 

respectively es have (pr, vint) = (s+2, 5), respectively (3s+2, s) and are represented 
for s < 5, respectively s < 6. 
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Theorem 7.3.2 The list of elementary (5, 3 fpolycycles (see Figure 7.2) consists of: 

(i) 11 sporadic finite (5, 3)-polycycles, 

(ii) an infinite series En, n > 1, 

(Hi) two infinite polycycles E^ and Ez (snub Prismoo). 

Proof. Take an elementary (5, 3)-polycycle P, which, by Theorem 7.3.1, is kernel¬ 

elementary. If its kernel is empty, then P is simply D. If the kernel is reduced to a 

vertex, then P is simply E\. If each 5-gon of an elementary (5, 3)-polycycle has 

at most three vertices from the kernel, that are arranged in succession along the 

perimeter of the 5-gon, then the kernel does not contain 5-gons and has the form 

of a geodesic (see the elementary (5, 3)-polycycles £,, i > 1, E®, and Ez) or a 

propeller (see the elementary (5, 3)-polycycle C3). If at least one 5-gon of the ele¬ 

mentary (5, 3)-polycycle contains three vertices of the kernel that are arranged along 

the perimeter not in succession, then the whole 5-gon belongs to the kernel. Only in 

the case of one or two 5-gons, the kernel can additionally contain one or two pendant 

edges (see (5, 3)-polycycles A5, fl3, C2 and A4, B2, C1). If the kernel contains more 

than two 5-gons, then the total number of these 5-gons can only be 3, 4, or 6 (see A3, 

A2, and Ai). n 

Theorem 7.3.3 The list of elementary (3, 5 fpolycycles (see Figure 7.3) consists of: 

(i) 13 sporadic finite (3, 5 fpolycycles, 

(ii) an infinite series en, n > 1, 

(iii) two infinite polycycles epj ond e% (snub APrism^). 

Proof. Take an elementary (3, 5)-polycycle P which, by Proposition 7.3.1, is kernel¬ 

elementary. If its kernel is empty, then P is simply d. If the kernel is reduced to a 

vertex, then P is simply e\. If there are at most two vertices from a kernel in each 

3-gon, then the kernel does not contain 3-gons and has the form of a geodesic (see 

d, i > 1, as well as epj and ez). If there is one 3-gon in a kernel, the lattei may 

additionally have one pendant edge (see C4 and bf). If there are two 3-gons in a 

kernel, the latter may additionally have one or two pendant edges (see c3, b2, and b2). 

If there are more than two 3-gons in a kernel, then their total number may only be 3, 

4, 5, 6, 8, or 10 (see a\, a2, <33, a4, <25, c\, and C2). ^ 

Remark that the kernels of (5, 3)-polycycles A/,1 < i < 5, of Figure 7.2 are 

all non-trivial isometric subgraphs (5, 3)-polycycles; they are also all circumscribed 

(5, 3)-polycycles, i.e. r-gons can be added around the perimeter, so that they will 

form a simple circuit. (They were found in [CCBBZGT93]; such (5, 3)-polycycles 

are useful in Organic Chemistry.) All circumscribed (3, 5)-polycycles are the kernels 

of polycycles at, 1 < i < 5, and «, 1 < i < 4 of Figure 7.3. It turns out that all 

polycycles P in either Figure 7.2 or 7.3, admitting the inner dual polycycle Inn\P) 

in another one, are as follows: 
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Inn*(A\) = <35 

Inn*(A5) = <?| 

Inn* (a A = C3 

Inn*(cf) = E2 

Inn*(A2) = c3 

Inn* (Ei) = d 

Inn* (as) = A 5 

Inn*(cf) = £1 

Inn* (At,) = C4 

Inn*(a\) = A3 

lnn*(c\) = £4 

Inn*(e\) = D 

Inn*(A\) = £2 

Inn*(a2) = A4 

Inn*(c2) = £3 

£z = snub Prism^ occurs also in Figure 6.1; its inner dual is infinite (3, 4)-polycycle 

APrisnioo. 

Theorem 7.3.4 A// elementary (5,3)gen-poly cycles that are not (5,3)-polycycles, 

are: 

(i) the plane graphs snub Prism,n with two holes (both m-gonalfaces removed), for 

any m > 2, 

(ii) the (non-orientable, on Mobius surface) quotient of snub Prismm, for any odd 

m, with respect to central symmetry. 

Proof. Take such a polycycle. Its universal cover is an elementary (5, 3)-polycycle, 

whose automorphism group contains some fixed-point-free transformation. Inspec¬ 

tion of the fist of elementary (5, 3)-polycycles in Figure 7.2 yields only £z = snub 

Prismoo as a possibility. Snub Prismm is obtained from the group of translations by 

m faces and the non-orientable quotients if the group contains also some translation 
followed by reflection. □ 

Theorem 7.3.5 All elementary (3,5)gen-polycycles that are not (3, 5)-polycycles, 
are: 

(i) the plane graphs snub APrismm with two holes (both m-gonal faces removed) 

for any m > 2, 

(u) the (non-orientable, on Mobius surface) quotient of snub APrisrnm for any odd 

m, with respect to central symmetry. 

Proof. Take such a polycycle. Its universal cover is an elementary (3, 5)-polycycle, 

whose automorphism group contains some fixed-point-free transformations. Inspec¬ 

tion of the list of elementary (3, 5)-polycycles in Figure 7.3 yields only ez = snub 

APrism00 as a possibility. The arguments follow as before. n 

We can now classify all kernel-elementary elliptic (r, q)gen-polycycles obtained in 

f DS05b], Such a polycycle is either elementary or it is obtained by self-gluing of 

an elementary (r, <?)-polycycle. Hence, the list is as follows: 

1 All kernel-elementary (5,3) 

(5, 3)-polycycles, are E*or, 
polycycles, obtained by self-gluing of elementary 

The 

gen 

E* C* 
n.nor’ ^l.or 

.'-t* 

^ I .nor' ^2,or’ ^2 .nor’ 
/-i* 
'-'3, or’ c* . A,nor 
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symbol * refers to the self-gluing and subscripts or, nor are used if the self-gluing 

is orientable or not, respectively. See below E*3 or and E*4 or: 

2 All kernel-elementary (5, 3)gen-polycycles, obtained by self-gluing of elementary 

(5, 3)-polycycles are e* or, e* nor, b* or, b*2 nor. The symbols *, or, nor are used as 

above. See below e*5 or and e*6 or: 

1A Classification of elementary ({2, 3, 4, 5}, 3)gen-polycycles 

Theorem 7.4.1 The list of elementary ({2, 3, 4, 5), 3) gen-poly cycles consists of: 

(i) 204 sporadic ({2, 3, 4, 5}, 3)-polycycles given in Appendix 1. 

(ii) Six ({3, 4, 5}, 3)-polycycles, infinite in one direction: 

y: Ci, nonext. tL: Ci> nonext. 

(iii) 21 = (6 o ') infinite series obtained by taking two endings of the infinite poly cy¬ 

cles of(ii) above and concatenating them. 

For example, merging of ol with itself produces trie infinite series of elementary 

(5, 3 )-polycycles, denoted on Figure 7.2 by En. See Figure 7.4 for the first three 

members (starting with 6 faces) of two such series, oux and fis. 

(iv) The infinite series of snub Prismm, 2 <m< oo, and its non-orientable quotient 

for m odd. 
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Infinite series aa of elementary ({2, 3, 4, 5), 3)-poIycycles {E^-E^y. 

Infinite series fie of elementary ({2, 3, 4, 5}, 3)-polycycles: 

Figure 7.4 The first 3 members (starting with 6 faces) of two infinite series, amongst 

21 series of ({2, 3, 4, 5}. 3)-polycycles in Theorem 7.4.1 (v) 

Proof. The first step is to determine all elementary ({2, 3, 4, 5}, 3)-polycycles, which 

contain a 2-gon. This is done in Lemma 7.4.2. So, in the following, we consider only 

elementary ({3, 4, 5}, 3)-polycycles. 

An (R, 3)-polycycle is called totally elementary if it is elementary and if, after 

removing any face adjacent to a hole, we obtain a non-elementary (/?, 3)-polycycle. 

So, an elementary (R, 3)-polycycle is totally elementary if and only if it is not 

the result of an extension of some elementary (R, 3)-polycycle. See below for an 
illustration of this notion: 

'w''' .. i 

A totally elementary ({4, 5), 3)-polycycle A non-totally elementary (5, 3)-polycycle 

All totally elementary ({3, 4, 5}, 3)-polycycles are enumerated in Lemma 7.4.3. 

We will now classify all finite elementary ({3, 4, 5}, 3)-polycycles with one hole. 

Such a polycycle with N interior faces is either totally elementary, or it is obtained 

from another such polycycle with N - 1 interior faces by addition of a face 
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There is no elementary ({3, 4, 5}, 3)-polycycles with 2 interior faces; so, all ele¬ 

mentary ({3, 4, 5}, 3)-polycycles with 3 interior faces are totally elementary and, 

by Lemma 7.4.3, we know them. Also, by Lemma 7.4.3, there are no finite totally 

elementary ({3, 4, 5}, 3)-polycycles with more than 3 interior faces. We iterate the 

following procedure starting at N = 3: 

1 Take the list of finite elementary ({3, 4, 5}, 3)-polycycles with N interior faces and 

add a face in all possible ways, while preserving the property to be an elementary 

({3, 4, 5}, 3)-polycycle. 

2 Reduce by isomorphism and obtain the list of elementary ({3, 4, 5}, 3)-polycycles 

with N + 1 interior faces. 

So, for any fixed N, we obtain the list of elementary ({3, 4, 5}, 3)-polycycles with N 

interior faces. The enumeration is done in the following way: run the computation up 

to N = 13 and obtain the sporadic elementary ({3, 4, 5}, 3)-polycycles and the mem¬ 

bers of the infinite series. Then undertake, by hand, the operation of addition of a face 

and reduction by isomorphism; we obtain only the 21 infinite series for all N > 13. 

This completes the enumeration of finite elementary ({3, 4, 5}, 3)-polycycles. 

Take now an elementary infinite ({3, 4, 5}, 3)-polycycle P. Remove all 3- or 4- 

gonal faces. The resulting graph P' is not necessarily connected, but its connected 

components are (5, 3)gen-polycycles, though not necessarily elementaiy ones. We 

will now use the classification of elementary (5, 3)gen-polycycles (possibly, infi¬ 

nite) in Theorem 7.3.2. If the infinite (5, 3)-polycycle snub PrismQ0 appears in the 

decomposition, then, clearly, P is reduced to it. If the infinite polycycle a = 

appears in the decomposition, then there are two possibilities for extending it, as 

indicated below: 

If a 3- or 4-gonal face is adjacent on the dotted line, then there should be another 

face on the boldfaced edges. So, in any case, there is a face, adjacent on the bold¬ 

faced edges, and we can assume that it is a 3- or 4-gonal face. Then, consideration of 

all possibilities to extend it yields /3, ..., /x. Suppose now, that P does not contain 

any infinite (5, 3)gen-polycycles. Then we can find an infinite path /o, • • •, ft, ■ • • of 

distinct faces of P in F\, the set of proper faces, such that /,■ is adjacent to //+i and 

/,_! is not adjacent to fi+]. The condition on P implies that an infinite number of 

faces are 3- or 4-gons, but the condition of non-adjacency of /*_i with fi+\ forbids 

3-gons. Take now a 4-gon /, and assume that /)_i and fi+\ are 5-gons. The consid¬ 

eration of all possibilities of extension around that face, leads us to an impossibility. 

If some of fi-1 or fi+\ are 4-gons, then we have a path of 4-gons and the case is 

even simpler. 
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Let us now determine all elementary ({2, 3, 4, 5}, 3)gen-polycycles. The universal 

cover P of such a polycycle P is an elementary ({2, 3, 4, 5}, 3)-polycycle, which has 

a non-trivial fixed-point-free automorphism group in Aut(P). Consideration of the 

above list of polycycles yields snub Prism00 as the only possibility. The polycycles 

snub Prismm and its non-orientable quotients arise in this process. □ 

Lemma 7.4.2 All elementary ({2, 3, 4, 5}, 3)-polycycles, containing a 2-gon, are the 

following eight ones: 

Cjv (Dll,) 

Cs (C2v) Cjv, nonext. (Did) 

Proof. Let P be such a polycycle. Clearly, the 2-gon is the only possibility if the 

number of proper | F\ | is 1. If | F\ \ = 2, then it is not elementary. If | F\ | > 3, then the 

2-gon should be inside of the structure. So, P contains, as a subgraph, one of three 
following graphs: 

Therefore, the only possibilities for P are those given in above lemma. 

Lemma 7.4.3 The list of totally elementary ({3, 4, 5}, 3 fpolycycles consists of: 

(i) Three isolated i-gons, i e {3, 4, 5}; 

Csv 
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(ii) Ten triples ofi-gons, i e {3, 4, 5}: 

(Hi) snub Prismc 

Proof. Take a totally elementary ({2, 3, 4, 5}, 3)-polycycle P. If \F\ | = 1, then P is, 

clearly, totally elementary; so, let us assume that |Fi| > 2. If |Fi| =2, then it is, 

clearly, not elementary; so, assume |Fi | > 3. Of course, P has at least one interior 

vertex; let v be such a vertex. Furthermore, we can assume that v is adjacent to a 

vertex v', which is incident to a hole. 

The vertex v is incident to three faces fu f2, h- Let us denote by vtj unique vertex 

incident to ft, fj, and adjacent to v. Without loss of generality, we can suppose that 

v' is incident to the faces f\ and f2, i.e. that v' = V\2‘ 

hole 
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The removal of the face f\ yields a non-elementary polycycle, so there is at least 

one bridge separating P - f\ into two parts. Such a bridge should have an end- 

vertex incident to f\. The same holds for f2. The proof consists of a number of 

cases. 

Ist case: If = {u, U23} and e2 = {u, uL3} are bridges for P - f\, P - f2, respec¬ 

tively, then from the constraint that faces f are p-gons with p < 5, we see that 

each face f is adjacent in P to at most one other face. Furthermore, if f is adja¬ 

cent to another face, then this adjacency is along a bridge, which is forbidden. 

Hence, F\ = {/j, f2, /3}. 

2nd case: Let us assume now that e\ — {u, U23} is a bridge for P — /j, but 

e2 — {u, U13} is not a bridge for P — f2. Then, since f2 is a p-gon with 

p < 5, it is adjacent to at most one other face and, if so, then along a bridge, 

which is impossible. So, f2 is adjacent to only /j and /3 and, since e2 is not a 

bridge for P — f2, we obtain that P — f2 is elementary, which contradicts the 

hypothesis. 

3rd case: Let us assume that neither e\, nor e2 are bridges for P — f\ and P — 

f2. From the consideration of previous two cases, we have that every vertex v, 

adjacent to a vertex on the boundary, is in this 3rd case. 

The first subcase, which can happen only if f\ is 5-gon, happens when the 

boldfaced edge e', in the drawing below, is a bridge: 

The face g is adjacent to the faces h and f\ and, possibly, to another face g'. But if g 

is adjacent to such a face g , it is along a bridge of P\ hence, g is adjacent only to h 

and /]. So P — g is elementary, which is impossible. 

So, the edge e' is not a bridge and this forces the face h to be 5-gonal. Hence, 

the vertex u13 is in the same situation as the vertex v, described in the diagram 
below: 
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So, we can repeat the construction. If, at some point, e\ is a bridge, then 

the construction stops; otherwise, we continue indefinitely and obtain snub 

Prismoo. □ 

7.5 Classification of elementary ({2, 3}, 4)gen-polycycles 

Theorem 7.5.1 Any elementary ({2, 3}, 4 )gen-polycycle is one of the following eight: 

Proof. The list of elementary (3, 4)-polycycles is determined by inspecting the list in 

Section 4.2 and consists of the first four graphs of this theorem. Let P be a ({2, 3}, 4)- 

polycycle, containing a 2-gon. If |Fj | = 1, then it is the 2-gon. Clearly, the case, in 

which two 2-gons share one edge, is impossible. Assume that P contains two 2-gons, 

which share a vertex. Then we should add 3-gons on both sides and so, obtain the 
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eighth above polycycle. If there is a 2-gon, which does not share a vertex with a 

2-gon, then P contains the following pattern: 

So, clearly, P is the fifth or sixth possibility above. □ 

Note that seventh and fourth polycycles in Theorem 7.5.1 are, respectively, 

APrismi and APrism3; here the exterior face is the unique hole. 

7.6 Classification of elementary ({2, 3}, 5)gen-polycycles 

Let us consider an elementary ({2, 3}, 5)-polycycle P. Assume that P is not an i-gon 

and has a 2-gonal face /. If / is adjacent to a hole, then the polycycle is not elemen¬ 

tary. So, holes are adjacent only to 3-gons. If we remove such a 3-gon t, then the third 

vertex v of t, which is necessarily interior in P, becomes non-interior in P — t. The 

polycycle P — t is not necessarily elementary. Let us denote by e\.e5 the edges 

incident to v and assume that e\, ei are edges of t. The boundary is adjacent only to 

3-gons. The potential bridges in P — t are e$, £4, and e5. Let us check all five cases: 

• If no edge is a bridge, then P — t is elementary. 

• If only <?4 is a bridge, then it splits P into two components. This means that P is 

formed by the merging of two elementary ({2, 3), 5)-polycycles. 

• If e3 or e5 is a bridge, then P - t is formed by the agglomeration of an elementary 

({2, 3), 5)-polycycle and a i-gon with i = 2 or 3. 

• If e\ is a bridge and e3 or e$ is a bridge, then P — t is formed by the agglomeration 

of an elementary ({2, 3}, 5)-polycycle and two z'-gons with i = 2 or 3. 

• If all e* are bridges, then P has only one interior vertex. 

Given a hole of an (R, <?)-polycycle, its boundary sequence is the sequence of 

degrees of all consecutive vertices of the boundary of this hole. It is a slight general¬ 

ization of Chapter 5, where the considered polycycles have only one exterior face. 

Theorem 7.6.1 The list of elementary ({2, 3}, 5 )gen-polycycles consists of: 

(i) 57 sporadic ({2, 3}, 5)-polycycles given in Appendix 2, 

(ii) three following infinite ({2, 3}, 5) -polycycles: 
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y: C\, nonext. 

(iii) Six infinite series of ({2. 3}, 5)-polycycles with one hole (they are obtained by 

concatenating endings of a pair of polycycles, given in (ii); see Figure 7.5 for 

the first graphs), 

(iv) the infinite series of snub APrismm, for 2 < m < oo, and its non-orientable 

quotients for m odd. 

Proof. Let us take an elementary ({2, 3}, 5)-polycycle, which is finite. Then, by 

removing a 3-gon, which is adjacent to a boundary, we are led to the situ¬ 

ation described above. Hence, the algorithm for enumerating finite elementary 

({2, 3}, 5)-polycycles is the following: 

1 Begin with isolated i-gons with i = 2 or 3. 

2 For every vertex v of an elementary polycycle with n interior vertices, consider all 

possibilities of adding 2- and 3-gons incident to v, such that the obtained polycycle 

is elementary and v has become an interior vertex. 

3 Reduce by isomorphism. 

The above algorithm first finds some sporadic elementary ({2, 3}, 5)-polycycles and 

the first elements of the infinite series and then find only the elements of the infi¬ 

nite series. In order to prove that this is the complete list of all finite elementary 

({2, 3}, 5)-polycycles, we need to consider the case, in which only e4 is a bridge 

going from a hole to the same hole. So, we need to consider all possibilities where 

the addition of two elementary ({2, 3}, 5)-polycycles and one 3-gon makes a larger 

elementary ({2, 3}, 5)-polycycle. Given a sequence a\,... ,an, say that a sequence 
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Infinite series aa of elementary ({2, 3), 5)-polycycles (e\-e(,): 

Infinite series a/S of elementary ({2, 3}, 5)-polycycles: 

Cs Cs C i Ci Ci 

Infinite series ay of elementary ({2, 3), 5)-polycycles: 

Ci C, Ci Ci 

Infinite series /S/S of elementary ({2, 3), 5)-polycycles: 

Civ Cs C2 Cs 

Infinite series fiy of elementary ({2, 3), 5)-polycycles: 

Figure 7.5 The first 5 members of the six infinite series of ({2, 3), 5)-polycycles 

bu ...,bp with p < n is a pattern of that sequence if, for some n0, we have 

ano+j-i = bj or ano+\-j = bj with the addition being modulo n. The ({2, 3}, 5)- 

polycycles, used in that construction, should have the pattern 3, 3, jc with * < 4 in 

theii boundary sequence. Only the polycycles, which belong to the six infinite series, 
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satisfy this and it is easy to see that the result of the operation is still one of the six 

infinite series. So, the list of finite elementary ({2, 3}, 5)-polycycles is given in the 

theorem. 

Consider now an elementary infinite ({2, 3}, 5)-polycycle P. Eliminate all 2-gonal 

faces of P and obtain another (3, 5)-polycycle P\ which is not necessarily elemen¬ 

tary. We do a decomposition of P' along its elementary components, which are 

enumerated in Section 7.3. If snub APrism^, is one of the components, then we 

are finished and P = P' is snub APrism0Q. If a is one of the components, then 

we have two edges along which we can extend the polycycle; they are depicted 

below: 

Clearly, if we extend the polycycle along only one of those edges, then the result is 

not an elementary polycycle. The consideration of all possibilities yields /I and y. 

Suppose now that P' has no infinite components. Then P has at least one infinite 

path f0,fi, such that ft is adjacent to fi+\, but /)_i is not adjacent to fi+\. 

The considerations, analogous to the 3-valent case, yield the result for ({2, 3}, 5)- 

polycycles. 

If P is an elementary ({2, 3}, 5)gen-polycycle, which is not a ({2, 3}, 5)-polycycle, 

then its universal cover P is an elementary ({2, 3), 5)-polycycle, which has a fixed- 

point-free automorphism group included in Aut(P). Clearly, only snub APrisnioo 

is such and it yields the infinite series of snub APrismm and its non-orientable 

quotients. D 

7.7 Appendix 1: 204 sporadic elementary 

({2, 3, 4, 5}, 3)-polycycles 

Below (11 cases), when several elementary sporadic ({2, 3, 4, 5}, 3)-polycycles 

correspond to the same plane graph, we always add the sign x with 1 < x < 11. 

List of 4 sporadic elementary ({2, 3, 4, 5}, 3)-polycycles with 1 proper face: 
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List of 13 sporadic elementary ({2, 3, 4, 5}, 3)-polycycles with 3 proper laces: 

C3V, nonext. (7j) 

Civ 

C 3y 

List of 26 sporadic elementary ({2, 3, 4, 5}, 3)-polycycles with 4 proper faces: 
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C2v C2v, nonext. 3 

Cjv: nonext. 3 C 3v 

List of 36 sporadic elementary ({2, 3, 4, 5}, 3)-polycycles with 5 proper faces: 



96 Chemical Graphs, Polycycles, and Two-faced Maps 

Cs, nonext. (C2v) C2„ 

Cs, nonext. 4 

Cs, nonext. 5 

C4 V 

Cs 

Cs, nonext. 4 

C4v, nonext. (Oh) 
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List of 34 sporadic elementary ({2, 3, 4, 5}, 3)-polycycles with 6 proper faces: 

Ci Cl 

Ci,nonext. Cs 

Cs cs 

Cs, nonext. 6 

Cs, nonext. 

Cs, nonext. 6 

C, Ci, nonext. 

Cs 

Cs 

Cs 

Cs 

C3„, nonext. 6 

Cs 

Cs 

Cs 

Cs 

Cs, nonext. 

Cs, nonext. {Civ) Civ 
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C2d, nonext. 7 

List of 36 sporadic elementary ({2, 3, 4, 5}, 3)-polycycles with 7 proper faces: 
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List of 29 sporadic elementary ({2, 3, 4, 5}, 3)-polycycles with 8 proper faces: 
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List of 16 sporadic elementary ({2, 3, 4, 5}, 3)-polycycles with 9 proper faces: 



Elementary polycycles 101 

List of 9 sporadic elementary ({2, 3, 4, 5}, 3)-polycycles with 10 proper faces: 

Unique sporadic elementary ({2, 3, 4, 5}, 3)-polycycle with at least 11 proper faces. 

C5v, nonext. (4) 
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7.8 Appendix 2: 57 sporadic elementary ({2, 3}, 5)-polycycles 

Below (three cases) when several elementary sporadic ({2, 3}, 5)-polycycles corre 

spond to the same plane graph, we always add the sign A, B, or C. 

List of 2 sporadic elementary ({2, 3}, 5)-polycycles without interior vertices: 

c3v (£*3h) Cjv (Dih) 

List of 3 sporadic elementary ({2, 3}, 5)-polycycles with 1 interior vertex: 

List of 6 sporadic elementary ({2, 3}, 5)-polycycles with 2 interior vertices: 

C2V, nonext. 

Ci (Cs) 

Cs, nonext. A 
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List of 10 sporadic elementary ({2, 3}, 5)-polycycles with 3 interior vertices: 

List of 14 sporadic elementary ({2, 3}, 5)-polycycles with 4 interior vertices: 
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List of 10 sporadic elementary ({2, 3}, 5)-polycycles with 5 interior vertices: 
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List of 9 sporadic elementary ({2, 3}, 5)-polycycles with 6 interior vertices: 

Unique sporadic elementary ({2, 3}, 5)-polycycle with 7 interior vertices: 
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Unique sporadic elementary ({2, 3), 5)-polycycle with 8 interior vertices: 

Civ 

Unique sporadic elementary ({2, 3}, 5)-polycycle with at least 9 interior vertices: 

Cjv, nonext. (//,) 



8 
Applications of elementary decompositions to 

(r, g)-polycycles 

We present here applications of elementary polycycle decomposition (in particular, 

of lists in Figures 7.2 and 7.3) to three problems: 

1 The determination of (r, <?)-polycycles having the maximal number of interior ver¬ 

tices for a fixed number of interior faces. Complete solution for the elliptic case is 

presented. 
2 The determination of all non-extensible (r, ^)-polycycles, i.e. ones that cannot 

be extended by adding an r-gon. In particular, besides 5 platonic cases and 2 

exceptional elliptic polycycles, they are infinite. 

3 The determination of all 2-embeddable (r, g)-polycycles, i.e. ones whose skeleton 

can be embedded into a hypercube with scale 1 or 2. All parabolic and hyperbolic 

{r, g)-polycycles are 2-embeddable and a characterization, by induced subgraphs, 

of such elliptic (r, <?)-polycycles is presented. 

None of those applications is considered for other classes of polycycles, such as 

(R, )-polycycles and (r, <7)i?e«*polycycles. A fourth main application, to face-regular 

maps, will be considered in Chapters 12, 13, 14, and 18. 

Given an (r, q)gen-polycycle P, its major skeleton Maj(P) is the plane graph 

formed by its elementary components with two components being adjacent if they 

share an open edge. A tree is a connected graph with no cycles. 

Theorem 8.0,1 An (r, q)gen-polycycle P is simply connected, i.e. is an (r, q)- 

polycycle, if and only if it holds: 

(i) its elementary components are simply connected and 

(ii) its major skeleton Maj(P) is a tree. 

Proof. Assume (i) and (ii) hold, and take a closed cycle cmP. The set of elemen¬ 

tary polycycles, passed by c, is a finite connected subgraph Majc(P) of Maj(P), 

so also a tree. If c pass though only one elementary component, then, by (i). 

107 
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we are done. Suppose that c pass thought more than one elementary component, 

then one vertex of Majc(P) is of degree 1. Denote by e the open edge connect¬ 

ing the elementary component to the rest of Majc(P). By (i), we can continuously 

transform c into a path c' that passes only through e, i.e. eliminate one vertex of 

Majc(P). Iterating, we are led to Majc(P) being a single vertex and we conclude 

again by (i). 

Condition (i) is, clearly, necessary. If (ii) is not satisfied, then Maj(P) contains 

a cycle. This cycle corresponds to a cycle in P, which, clearly, is not homotopic 

toO. □ 

8.1 Extremal polycycles 

Denote by pr(P), vint{P) (or, simply, pr, vint) the number of interior faces and inte¬ 

rior vertices of given finite (r, ^-polycycle P. Denote by dens(P) and call density 

of a finite (r, r/)-polycycle P the quotient dens(P) = yfpj. Denote by Nnq(x) the 

maximum of Vjnt(P) over all (r, gl-polycycles P with pr{P) = x\ call extremal any 

(r> <?)-polycycle P with vmt(P) = Nrq(x) and pr(P) = x. So, extremal polycycles 

represent the opposite case to outerplanar ones, in the class of all (r, g)-polycycles 
with the same pr. 

Remark 8.1.1 Amongst all (r, qfpolycycles with the same pr, the following state¬ 

ments are equivalent: 

1 Vjnt is maximal, 

2 Cint (the number of non-boundary edges) is maximal, 

3 the perimeter P er (the number of boundary edges) is minimal, 

4 the number v of vertices is minimal, 

5 the number e of edges is minimal. 

This follows easily from Euler formula (vint + Per) - (eint + Per) + (pr + 1) — 2 
and equality rpr = 2eint + Per. 

For (5, 3)-polycycles with x < 11, N53(x) was found in [CCBBZGT93]; all such 

extremal (5, 3)-polycycles turn out to be proper and unique. Moreover, the (5, 3)- 

polycycles, which are reciprocal (see Section 4.1) to any such extremal ones turn 

out to be also extremal. [CCBBZGT93] asked about N53(x) for * > 12; this section 

answers this question for any x and for all elliptic (p, q). 

In spite of the negative result of Theorem 7.2.1, we can easily obtain the following 
general density estimate. 
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Theorem 8.1.2 (i) For any finite (r, q)-polycycle P, it holds that: 

r 
dens(P) < —. 

q 

(ii) For parabolic (r, q), there exists a sequence of finite (r, qfpolycycles Pr with: 

r 
lim dens(PR) = — . 

R—»oo q 

Proof, (i) Take an arbitrary (r, g)-polycycle P. We tile each r-gon into 4-gons by 

connecting its center with the midpoints of the sides. Then the number of 4-gons in 

each r-gon is equal to r and the number of 4-gons, incident to any internal vertex, 

is equal to q. Then the number of 4-gons, incident only to internal vertices of the 

polycycle P, is equal to vintq, while the total number of 4-gons is equal to rpr. 

Hence, vintq < rpr. 

(ii) On the Euclidean plane {r, q}, take a disk C(0, R) with center 0 and radius R. 

Define the (r, <?)-polycycle PR to be formed by all r-gons contained in C(0, R). It is 

easy to see that lim^oo dens(PR) = ^ 

All (3,3)-, (4,3)-, and (3,4)-polycycles were obtained in [Har90] (proper) 

and [DeSt98] (improper ones). In the case of (r, q) = (3, 3), the pairs (pr, Vint) 

are (1,0), (2, 0), and (3, 1); in the case of (r, q) = (4, 3), the pairs (pr, vint) are 

(m, 0) for any m > 1, (|N|, 0) and1 (|Z|, 0), (3, 1), (4, 2), and (5, 4); in the case of 

(r, q) = (3, 4), the pairs (pr, vint) are (m, 0) for any m > 1, (|N|, 0) and (|Z|, 0), 

(4, 1), (5, 1), (6, 1), (6, 2), and (7, 3). Amongst these pairs, those with vint > 1, 

except for the pair (pr, vint) = (6, 1), are realized only by proper polycycles; all 

improper polycycles, except for the case (pr, Vjnt) = (6, 1), have Vint = 0, i.e. they 

are outerplanar. 

Theorem 8.1.3 If an (r, qfpolycycle P is decomposed into elementary (;r,q)- 

polycycles (EPi)iei appearing xl times, then we have: 

\ vinti.P)=Yl,iel xivint(E Pi) 

1 Pr(P)=HielXiPr(EPi)- 

If we solve the linear programming problem: 

maximize Y^iei xivint(EPi) 

subject to X = Y.itIXiPr(EPi) and ^ G N 

1 Here we distinguish two cases that are formally denoted by (|N|, 0) and (|Z|, 0), depending on whether 
a polycycle, considered as a chain, is infinite only in one direction or in two opposite directions. 
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and if (x,);e/, realizing the maximum, can be realized as an (r, ^)-polycycle, then 

Nr<q(x) is equal to the value of the objective function. 

If this is not the case, then we have more possibilities to consider. 

8.1.1 Extremal (5, 3)-polycycles 

Theorem 8.1.4 (i) If x < 12, then N33(x) is as given in Figure 8.1 with all the 

extremal (5, 3)-polycycles realizing the extremum. 

(ii) For any x > 12, we have: 

A^jlx) = x if x = 0, 8, 9 (mod 10) with the maximum realized by the following 

unique extremal (5, 3)-poly cycle: 

• If x = 0 (mod 10), it is 

• If x = 9 (mod 10), it is + B2: 

• If x = 8 (mod 10), it is B2 + ^Cj + B2: 

A^Cv) — x 1 if x = 6, 7 (mod 10) with the maximum realized by the following 

(non-unique) extremal (5, 3)-polycycle: 

• Ifx = 7 (mod 10), it is + B3: 

• Ifx = 6 (mod 10), it is B2 + + B3: 

5,3(x) x 2 if x 1,2, 3,4, 5 (mod 10) and the extremum is realized by 
(non-unique) Ex+2. 
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Figure 8.1 Extremal (5, 3)-polycycles with at most 12 faces 
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(Hi) All possible densities of finite (5, 3 )-polycycles, except for three cases p5 = 

9, 10, 11 are all rational numbers of the segment fO, 1], All possible densities of 

polycycles, any of whose faces contain an internal vertex, are all rational numbers 

of the segment [|, 1]. 

Proof. The proof of (i) and (ii) uses decomposition of (5, 3)-polycycles into ele¬ 

mentary ones and the classification of elementary (5, 3)-polycycles. For example, 

for p5 = 0 (mod 10), an extremal polycycle is obtained by gluing only the copies 

of the polycycle Cu while, for p5 = 9 (mod 10) or p5 = 8 (mod 10), we should 

glue together the copies of the polycycle C\ and one or two copies of the poly¬ 

cycle Bi (always at a deadlock). An elementary polycycle Ex_2 is extremal for 

n(x) = x - 2 > 10; however, even for x = 12, there are three other extremal 

(5, 3)-polycycles. 

The (5, 3)-polycycles E\, C\ have densities |, 1, respectively. Furthermore, if P 

is a (5, 3)-polycycle of the form mE\ + nCu then its density is: 

dens(P) ■ 
m + 10/i 

3 m + 10/z 

It is easy to see that we can find n, m e N realizing all rational densities in [|, 1], If 

every 5-gons is incident to an interior vertex, then E] does not occur as an elementary 

component of P. If p5 > 12, then A, cannot occur as an elementary component. All 

remaining elementary components have densities between I and 1, thereby proving 

that for p5 $ {9, 10, 11) the densities belong to [}, 1], If we allow for the polycycle 

D to occur, then all rational densities in [0, 1] can be realized. Q 

As x grows, the number of extremal polycycles in the non-unique case grows. 

Foi example, for x — 13, 14, and 15, the polycycles C\ + E\, C\ + E2, and 

C] + are also exTemal. It would be interesting to extend the notion of densi¬ 

ties to infinite (r, ^-polycycles, but it is sometimes impossible to define densities 

for infinite settings (see [FeKuKu98, FeKu93] for a possible methodology in the 
hyperbolic case). 

8.1.2 Extremal (3, 5)-polycycles 

Theorem 8.1.5 (i) If x < 19, then NX5(x) is as given in Figure 8.2 with all the 

extremal (5, 3)-polycycles realizing the extremum. 
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Figure 8.2 Extremal (3, 5)-polycycles with less than 20 faces 
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(ii) For any x > 20, we have: 

x = a (mod 18) N3, s(x) example of extremal polycycle unicity 

o
 II X 

3 no 

a — 1 x—1 
3 d + no 

o
 II x-l 

3 + b4 

+ 2 d) + c4 

no 

a = 12 X 

3 b'i + ' j g0 bi + b2 

+ 2d) + C3 

no 

a = 13 x-\ 

3 b4 + x-=^b2 yes 

a = 14 x+\ 
3 + 2 d) + c2 no 

a = 15 X 

3 h + x-fi^b2 yes 

a = 16 x+2 
3 (ci + 2d) + C] yes 

r*- II <3 x+l 
3 ^-jj2(ci + 2d) + C\ + d yes 

and, if x is not listed above, then the following applies: 

x = a (mod 3) W3,5(X) example of extremal polycycle unicity 

a = 2 x-l 

eNX5M 3 no 

a = 0 x—3 
3 d + eV3.5« no 

a = 1 x-4 
3 2d + eN}sM no 

(Hi) All possible densities offinite (3, 5)-polycycles, except for x e {14.19} 
are all rational numbers of the segment [0, ±], 

Proof. To prove Theorem 8.1.5, we apply the same strategy as for Theorem 8.1.4 

except that now the number of cases to consider is larger (see Figure 7.3 of 
elementary (3, 5)-polycycles and their kernels). 

For x < 19, the enumeration was done by hand since it contains some spo¬ 

radic cases. For other values of x, we first remark that the a, and bx cannot be 

elementary components of extremal polycycles. Afterward, we undertake exhaustive 
enumeration of all possibilities. D 
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8.1.3 Parabolic and hyperbolic extremal (r, </)-poly cycles 

The results presented here are very partial, but we do not expect to have fundamental 

difficulty in obtaining general results. 

For parabolic or hyperbolic parameters (r, q), the spiral Spnq(n) is defined as the 

proper (r, g)-polycycle with n r-gons obtained by taking an r-gon and adding r-gons 

in sequence, always rotating in the same direction. A formal definition is difficult to 

write (see [HaHa76, GreOl]), so we show some examples below: 

Sp6,3(10) 5/74.4(11) 

It is proved in [HaHa76] that, for parabolic (r, q), the Sp,^q{n) (called there extremal 

animal) is an (r, g)-polycycle with the shortest perimeter amongst all proper (r, q)- 

polycycles. It is proved in [BBG03, GreOl] that, moreover, Sp^,3(n) has the shortest 

perimeter amongst all (6, 3)-polycycles. We recall, that minimizing the perimeter, 

when the number of r-gons is fixed, is equivalent to maximizing the number of 

interior vertices (see previous section). 

It is conjectured that, for any parabolic or hyperbolic (r, q) and any n > 1, 

Spr,q(n) is an extremal (r, g)-polycycle. A related conjecture is that all extremal 

polycycles are proper in the non-elliptic case. Moreover, for hyperbolic (r, q), it 

is likely that we have Nr^x- < CKiq for some constant Crq < r-\ see Theorem 

8.1.2 for the parabolic case. The reason would be that in the hyperbolic space, the 

boundary is not negligible compared to the faces, which do not contain boundary 

edges; this point is well illustrated in [Mor97], Also, the phenomenon, occurring in 

cases (r, q) = (5, 3) or (3, 5), of having small (r, <?)-polycycle with higher den¬ 

sity than any other (r, g)-polycycle (for example, Ny^9-l > WA2 for any 

x > 12) will not occur for parabolic or hyperbolic (r, q). The reason is that, for 

parabolic or hyperbolic (r, q ), any two (r, g)-polycycles can be joined to form a 

bigger (r, gj-polycycle. 

Furthermore, the above extends to some (/?, (7)-polycycles. For example, one such 

problem is to determine the ({3, 4, 5, 6], 3)-polycycles (see Chapter 7) with the short¬ 

est perimeter for a fixed p-vector. If 3p3 + 2pA +p5 < 6, then the solution is shown in 

[Egg05] to be a kind of generalized spiral; previous work of Greinus [BBG03, GreOl ] 

solved the ({5, 6}, 3)-polycycle case. 
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8.2 Non-extensible polycycles 

Now we consider another natural notion of maximality for polycycles. An (r, q)- 

polycycle is called non-extensible if it is not a partial subgraph of any other 

(r, <?)-polycycle, i.e. if an addition of any new r-gon removes it from the class of 

(r, <7)-polycycles. It is clear that any tiling {r, q} ({r, q) — f in elliptic case) is non- 

extensible, while all other non-extensible polycycles are helicenes. It is also clear 

that any 3-connected (r, 3)-polycycle is non-extensible. 

Four exceptional non-extensible polycycles, depicted on Figure 8.3 are: vertex- 

split Octahedron, vertex-split Icosahedron, and two infinite ones: P2 x Pi = Prism^ 

and 7>z = APrismoo (see Section 4.2). 

(r, q) = (3, 4) 

Figure 8.3 Exceptional non-extensible elliptic (r. g)-polycycles 

Theorem 8.2.1 ([DeSt02b]) All non-extensible (r, q)-polycycles are: 

• regular tilings {r, q\, (\r,q) - f in elliptic case), 

• 4 exceptional elliptic polycycles from Figure 8.3, 

• a continuum of infinite ones for any (r, q) ^ (3, 3), (3, 4), (4, 3) 

Proof. The case (r, q) _ (3, 3), (3, 4), (4, 3) follows immediately from the list of 

these polycycles given in Chapter 4. It is clear that doubly infinite and non-periodic 

(at least in one direction) sequences of glued copies of the elementary polycycles 

b2 and e6 (from Figure 7.3) yield a continuum of infinite non-extensible (3. 5)- 

polycycles. By gluing the elementary (5, 3)-polycycles C2 (from Figure 7.2) and C' 

(obtained from C2 by rotation through n), we obtain infinite non-extensible (5, 3)- 

po ycycles. Clearly, there is a continuum of such. In Lemma 8.2.4, we will construct 

a continuum of non-extensible (r, ^-polycycles for non-elliptic (r q) 

For the parameters (r, q) = (3, 5), (5. 3), in Lemma 8.2.3. we will prove that the 

veitex-spht Icosahedron is such a unique finite polycycle. □ 

Lemma 8.2.2 Any finite non-extensible (r, q)-polycycle is elliptic. 

vertex* ^ ^ baSed °" curva,ure “titrates. In fact, it is the counting of 

v'ewno^ tsmC‘f',CeS P Z US,ng 'he EU'er f°rmUla' WC Ch°°Se ,0 Use the P t (see Section 4.4) since it express nicely ellipticity. 
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Since the angle of a regular r-gon is equal to '—~n and the number of regular r- 

gons that meet at an internal vertex of the polycycle P is equal to q, the curvature of 

any internal vertex of the polycycle P is equal to: 

r — 2 
co = 2n-qn. 

r 

Hence, the total curvature of the polycycle P is equal to: 

^ .. 2 (r + q)-rq_ 
S2 — Vint • 

If vint = 0, i.e. an (r, g)-polycycle P is outerplanar, then the curvature £2 is equal 

to zero for any parameters (r, q). If Vjnt > 0, then the curvature £2 is positive, zero, 

or negative, depending on whether the parameters (r, q) are elliptic, parabolic, or 

hyperbolic, respectively. 

Any internal edge of a polycycle P belongs to exactly two r-gons, while any 

boundary edge belongs to only one r-gon. Therefore, the following equality holds: 

rpr — 2eint T k, 

where, again, eint is the number of non-boundary edges of the polycycle P, and k 

is the number of boundary edges. On the other hand, since the number of boundary 

vertices and the number of boundary edges of P are equal to the same number k (the 

perimeter of the polycycle), these two numbers in the Euler formula cancel out, and 

a condensed version of this formula reads as: 

Vint Vjnt T Pr !• 

From the last two formulas, we obtain: 

(.r - 2)pr = 2vint +(k- 2). 

Now, let us calculate the sum of plane angles of the polycycle P. We do this in 

two different ways: (i) we first calculate the sum of angles in separate r-gons and 

then sum up over all r-gons and (ii) we first calculate the sum of angles at separate 

vertices and then sum up over all vertices, both boundary and internal. As a result, 

we obtain the equality: 

,(r — 2)n = ^ (fi + 
-2 

’int qn, 

i—l 

where <pi denotes the total angle at the /th boundary vertex 

formula with the preceding one yields: 

of P. Combining this 

Vint 

r — 2 

r 

k 

<Pi ~(k- 2)tr. 

i = 1 

(8.1) 
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This formula is called Gauss-Bonnet formula (see [Ale50]). Expressed differently, 

Euler formula v — e + f = 2 is for plane graphs with no boundaries, but it can be 

extended to plane graphs with boundaries. 

Let kj be the number of vertices of degree j (where j = 2, 3, ..., q — 1, q) on the 

boundary of P, and k be the total number of vertices of the boundary circuit of P, 

i.e. its perimeter. Then it holds that: 

k — kj + &3 kq-1 + kq. (8.2) 

Let us calculate the sum Yl\= i —(k — 2)7T on the right-hand side of equality (8.1) 

for a finite polycycle P considered as a geodesic k-gon. Since it holds that: 

k r _ 2 
(pi = (1&2 + 2&3 + ... + (# — 2)kq-\ + iq — 1 )kq)-71, 

1=1 

by formula (8.2), we obtain the equality: 

Eti <Pi ~(k- 2)n= ((1^ - 1 )k2 + (2r-~ - 1)*3 + ... 
+ ((<? - 2)’-~ - !) kq-1 + ({q - 1 Y-f1 - 1) kq)n + 27r. 

(8.3) 

Consider a particular case of a finite polycycle P in which each vertex has 

degree q. In this case, 2e — qn, where n is the total number of vertices and e is 

the total number of edges of P\ in view of the equality 2e = rpr + k, we can rewrite 

the Euler formula n — e + pr = 1 as follows: 

n 
2{q +r)-qr 

2 r 

Hence, 2{q + r) - qr > 0, i.e. the parameters (r, q) are elliptic. For any of the five 

elliptic pairs (r, q) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3), we directly verify that the 

equality k = r holds and that P is, in fact, the surface of a Platonic body without 

one face. 

Assume now that there exists a vertex of degree different from q. By Theo¬ 

rem 4.3.3, there are at least two such vertices. 

Suppose that the parameters (r, q) are parabolic or hyperbolic, i.e. the inequality 

qr - 2(q + r) > 0 holds. Then, the following estimate is valid for the coefficient 

of kq in Equation (8.3): 

(q - 1)- 1 = 

qr 2(q + r) 2 > 2 

r r~r 

By Corollary 4.3.5, the total number of vertices on the boundary must be greater than 

r Any two vertices of degree less than q should be separated by at least r - 1 vertices 

of degree q\ otherwise, the polycycle P would be extensible. 
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From the aforesaid and condition r > 3, it follows that: 

kq >(r- 1) >2^kj. 

j=2 7=2 

Therefore, by (3), the quantity £*=1 <p(- — (k — 2)n, calculated for the polycycle P, 
follows the bound: 

Ef=iW -(k-2)n> ((1^ - 1 +2^)A:2 +(2^ - 1+2^3 + ... 
+ ((<?-2)^2-l+22)Vt>r+27r. ( } 

The coefficient of kj on the right-hand side of Inequality (8.4) increases as the index 

j increases. Since the least coefficient (that of k2) is positive, all the other coefficients 

of kj are also positive. The values of kj themselves are non-negative (and there even 

exists one positive kj, because there are vertices on the boundary of P, whose degree 

is less than q). Hence, it holds: 

k 

^ — (k — 2)n > In. 

i=1 

The positivity of the right-hand side of Inequality (8.4) implies the positivity of the 

left-hand side. Thus, in view of Equation (8.1), the curvature Q of the geodesic &-gon 

is positive. The resulting inequality 2(r + q) — qr > 0 contradicts the assumption 

made. Hence, a finite non-extensible polycycle cannot have parabolic or hyperbolic 

parameters (r, q)\ these parameters are elliptic. □ 

Lemma 8.2.3 ([DSS06]) All finite elliptic non-extensible (r, q)-polycycles are two 

vertex-splittings (of Octahedron and Icosahedron; see first two in Figure 8.3) and 

five Platonic {r, q) (with a face deleted). 

Proof. The case of (3, 3)-, (3, 4)-, and (4, 3)-polycycles is resolved by using the clas¬ 

sification of such polycycles in Section 4.2. Consider now an (r, q )-polycycle P with 

(r, q) = (3, 5) or (5, 3). Then we can use the classification of the elementary (r, q)- 

polycycles given in Figure 7.2 and 7.3. Consider now its elementary components and 

the major skeleton Maj(P) formed by them with two components being adjacent if 

and only if they are adjacent on an open edge. Clearly, Maj(P) is a plane graph. 

But, by Theorem 8.0.1, it is also a tree. So, either Maj(P) is reduced to a point, or 

Maj(P) has a vertex of degree 1. 
Consider now the case (r, q) = (5, 3). It is easy to see that the only finite elemen¬ 

tary (5, 3)-polycycle, which is non-extensible, is A\ = {5, 3) - f. Assume now that 

Maj(P) has a vertex of degree 1. Then, the elementary polycycle corresponding to 

this vertex is different from A,-. It is easy to see that for all other finite elementary 

(5, 3)-polycycles, we can extend, i.e. add one more face. 
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Consider now the case (r, q) = (3, 5) and take a non-extensible (3, 5) polycycle 

P. The only finite elementary non-extensible (3, 5)-polycycle is a\ = {3, 5} — /. 

Assume now that P is different from ax, then it has more than one elementary 

component. So, the major skeleton Maj(P) has vertices of degree 1. 

It is easy to see that all et, bt, and ct cannot be a vertex of degree 1 in Maj(P) 

since otherwise there will be an open edge on which we can add at least a 3-gon. So, 

cl and a3 are the only possibilities for vertices of degree 1 in Maj(P). If a3 occurs, 

then P is reduced to d + a3 as expected. So, let us assume that d occurs as vertices 

of degree 1. If d is adjacent to the elementary polycycle Pei, then the open edge to 

which d is incident, should have both vertices of degree 4 since, otherwise, we can 

add another 3-gon to d. The only elementary (3, 5)-polycycles having two vertices 

of degree 4 in succession are aj, C2, and C3. If <33 occurs, then we are done. The 

following diagram shows, up to symmetry, why C2 is impossible: 

V 

It is conceivable that we can add a polycycle on the open edge e\ to forbid the exten¬ 

sion by an edge (v, i>i). But it is not possible to add a polycycle on so, we are 

always able to add the edge (u, i>2) and P is extensible. 

If c3 occurs, then we have the following diagram: 

Since the polycycle P is non-extensible, there are some polycycles incident to the 

edges <?] and e2. So, we have two paths starting from cl. Since Maj(P) is a finite tree, 

those two paths will eventually terminate on a vertex of degree 1, which, by the above 

analysis, has to be another d. Furthermore, the elementary (3, 5)-polycycle preceding 

it has to be c3. So, again we have two paths, one of them new. This argument does 

not terminate. We do not find a cycle in Maj(P) since it is a tree and so we proved 

that P is infinite. This is impossible by the hypothesis and so the only possibility is 
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Lemma 8.2.4 For non-elliptic (r, q), there is a continuum of non-extensible (r. q)- 

polycycles. 

Proof. We consider infinite non-extensible polycycles obtained from {r, q} by delet¬ 

ing certain non-adjacent r-gons followed by taking the universal cover. If we delete 

a countable number of r-gons using non-periodic sequences of deleted r-gons, then 

(due to an ambiguous choice of the deleted r-gons at each step) we obtain a con¬ 

tinuum of different polycycles. Consider two non-congruent sequences S\ and S2 of 

r-gons in {r, q), the (r, q)gen-polycycles Px = {r, q] - S\ and P2 = {r, q) - S2 are 

not isomorphic, their universal covers P{ and P2 are non-extensible (r, g)-polycycles, 

whose image in {r, q) by the cell-homomoiphism (see Theorem 4.3.1) is P\ and P2. 

Therefore, Pi and P2 are not isomorphic. □ 

Finally, consider (r, gj-polycycles, such that any interior point of any interior face 

has degree 1 by the cell-homomorphism onto {r, q). The number of such polycycles, 

which are not extensible without losing this property, is equal to 0 for (p,q) = 

(3, 3), (3, 4) and equal to 1 for (p,q) = (4, 3) (it is P2 x P5). This number is finite 

for (p, q) = (5, 3), (3, 5) and infinite, otherwise. The finiteness of this number for 

the parameters (r, q) = (5, 3) and (3, 5) follows from the fact that the number of 

5-gons and 3-gons must be no greater than 12 and 20, respectively. 

8.3 2-embeddable polycycles 

We will shortly present 2-embedding of polycycles just as an application of 

elementary polycycles. 2-embedding of graphs is the main subject of the book 

[DGS04], Let us only mention recent enumeration of 2-embeddable ({a, 6), 3)- 

spheres (a = 3, 4, 5). There are 1, 5, 5, respectively, such graphs for a = 3, 4, 5 

(see [DDS05, MaSh07]). 

Given a set S, the Hamming distance on |5|-hypercube {0, lp1 is defined by 

d(x, y) = |{/ e 5 : Xj f y,}|. Given two vertices w, v of a graph G, the path-distance 

do(u, v) is the minimal number of edges needed to connect u to v. 

A graph G is said to be 2-embeddable if there exist a set S and a function: 

t : V(G) —> {0, l}'5' 

V f(v) 

such that for all vertices v, v' of G, we have d(f(v), = 2 dG(v, v') with dG 

being the path-distance on G. In fact, a graph is 2-embeddable if and only if it is an 

isometric subgraph of an half-cube. 

For more information on this subject, see [DeLa97, DGS04] and references 

therein. For finite graphs, an efficient polynomial time algorithm for recognizing 

2-embeddable plane graphs is given in [DeSh96] (see an implementation in [Dut03]). 
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Given a plane graph G, an alternating zone is a sequence (e,) of edges such that 

*>,. and belong to the same face F,. If F, has an even number of vertices, then we 

require <?, and ei+\ to be on opposite side in F( . If F, has an odd number of faces, 

then <?, and ei+\ are again in opposition but then we have two choices denoted, up to 

rotation of the plane, + and —. We require that the choices + and — are alternating. 

The final edges of the zone (incident to exterior faces) are called the ends of the zone. 

If the zone is not self-intersecting, then, after removal of the edges of the zone, we 

obtain two graphs G\ and Go- If each shortest path in G between two vertices of 

G, for a fixed i = 1,2 consists only of edges in this subgraph G, , then we say that 

the zone realizes a convex cut of the given (r, ^)-polycycle. If every alternating zone 

realizes a convex cut, then the graph is 2-embeddable (see [CDG97] for a proof). 

A (r, q)-graph is a plane graph such that all interior faces have at least r edges 

and all interior vertices have degree at least q. In [PSC90] it is proved that (4, di¬ 

graphs are 2-embeddable and it is proved in [CDV06] that (6, 3)- and (3, 6)-graphs 

are 2-embeddable. This implies that all (r, g)-polycycles with parabolic or hyperbolic 

(r, q) are 2-embeddable. 

This and a check for elliptic (r, q) in Section 4.2 gives the following: 

Theorem 8.3.1 For (r, q) Y (5, 3), (3, 5), only three finite (r, q)-polycycles are not 

2-embeddable: 

So, it remains to solve the 2-embedding problem only for (r, q) = (3, 5) and (5, 3). 

If an elementary polycycle P appears in the decomposition of a polycycle P', then 

P is an isometric subgraph of P'. 

Theorem 8.3.2 ([DeStOOb]) A (5, 3)-polycycle different from Dodecahedron {5,3} 

is 2-embeddable if and only if it does not contain any of (5, 3)-polycycles E4 and 

D + E2 + D (see Figure 8.4) as an induced subgraph. 

Figure 8.4 Forbidden subgraphs of non-embeddable (5, 3)- and (3, 5)-polycycles 

Proof. The (5, 3)-polycycles F4 and D + E2 + D are non-2-embeddable. So, some 
of their alternating zones do not define convex cuts: 
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The (5, 3)-polycycle A\ is 2-embeddable. The elementary (5, 3)-polycycles A2, A3, 

A4, A5, Ex, E®, B2, B^, C\, C2 contain E4 as an induced subgraph and so they are 

not 2-embeddable. 

Consider now a (5, 3)-polycycle, different from A\, which does not contain E4 

and D + E2 + D as partial subgraph. From the above we know that its possible ele¬ 

mentary components are D, E2, £3, C3. Take an alternating zone Z passing through 

the elementary components -We know that if E2 appears in this list, 

then it is the end of the sequence, since D + E2 -)- D is forbidden. Now, looking at 

the zone itself, we see that £3 and C3 also have to be at the end. Therefore, we have 

only D in the middle of the sequence ££; . But D can be glued to only two other 

elementary (r, g)-polycycles. Then we check that the alternating zones are convex 

(this is long and cumbersome). □ 

Theorem 8.3.3 ([DeSt02a]) A (3, 5)-polycycle different from Icosahedron {3,5} and 

{3, 5} — v (Icosahedron with one vertex removed) is 2-embeddable if and only if it 

does not contain, as an induced subgraph, any of{3, 5)-polycycIes c3 and d + e2 + d 

shown in Figure 8.4. 

Proof. The (3, 5)-polycycles c3 and d + e2 + d are not 2-embeddable. So, some of 

their alternating zones do not define convex cuts: 

The edge of induced graphs G, defined at the beginning of this section are boldfaced. 

Between the vertices in white there are the two shortest paths, one outside of the sub¬ 

graph. The two polycycles a\ = {3, 5} - / and a5 = {3, 5} - v are 2-embeddable. 

The two polycycles as + d and d + as + d, containing d + e2 + d, are, on the other 

hand, not 2-embeddable. There are no other (3, 5)-polycycles containing as as an 

elementary summand. The polycycles a2, aj, a4, b2, £3, c 1, c2, c3 have at least one 

non-2-embeddable polycycle C3 amongst their isometric sub-polycycles. The poly¬ 

cycles <?/, i > 4, b\ and ab contain an isometric non-2-embeddable sub-polycycle 
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d + e2 + d. By virtue of this, any (3, 5)-polycycle containing any of these polycycles 

as an elementary summand is not 2-embeddable. 

It remains to investigate the (3, 5)-polycycles with elementary summands C4, d, 

eu e2, e3. We assume that c3 and d + e2 + d do not appear as sub-polycycles and we 

will prove that their alternating zones define convex cuts. 

Let us take an alternating zone. The lateral sides of a 3-gon lie interior to the zone; 

only the extreme left and extreme right of them are the end of the zone; the base of 

a 3-gon lies on the boundary of the zone. Suppose that the base of a 3-gon belongs 

to the kernel. Then a polycycle e2, that has this base as the kernel, is a sub-polycycle 

of the given (3, 5)-polycycle. There is only one edge of e2, both ends of which have 

degree 3, to which a 3-gon d can be added (the polycycle d + e2 + d is forbidden); 

another such edge of e2 is always an end of the zone. If the boundary of the zone does 

not contain two bases in succession belonging to the kernel, then another such base 

can only occur on the boundary of the zone at its other end. Of all the vertices on 

the boundaries of the zone not belonging to these bases in the kernel, at least every 

other one lies on the boundary of the surrounding (3, 5)-polycycle. By this, the zone 

defines a convex cut. But if two bases in succession on the boundary of the zone 

belong to the kernel, then the zone has 8 edges in all; both its ends are edges of an 

elementary polycycle <?3 with ends of degree 3. They define convex cuts. □ 

What we considered above was 2-embedding into {0, 1 }|S|. If the graph G is finite, 

then S is finite. If G is infinite, we can consider 2-embedding of G into Z'51 with the 

distance d(x, y) = \x-t — y, |. Any 2-embedding into Z'51 gives a 2-embedding 

into {0, l}|r for some T. But we might be able to embed into Z'51 with finite 5 even 

when G is infinite. This actually happens for the parabolic tilings {4, 4} = Z2, {3, 6}, 

{6, 3} (both are 2-embeddable into Z3) and for infinite (4, 4)-, (3, 6)-, (6, 3)-graphs, 

but not for the hyperbolic tilings. Also there are infinite parabolic (r, g)-polycycles, 

which are 2-embeddable into Z|S| only for infinite S. 
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Strictly face-regular spheres and tori 

We say that a ({a, b}, /:)-map is aRj if every a-gonal face is adjacent exactly i times 

to a-gonal faces. It is said to be bRj if every £>-gonal face is adjacent j times to 

Zt-gonal faces. If the map is a cell-complex, then above i and j are just the numbers 

of a- and £>-gonal neighbors. 

An ({a, b}, &)-map is said to be strictly face-regular map if it is aRj and bRj for 

some i and j. It is weakly face-regular if it is aRj and/or bRj. In this chapter we will 

enumerate all strictly face-regular maps on sphere or plane. The classification on 

surfaces of higher genus is very difficult because there is an infinity of possibilities. 

Denote by pa, pb the number of a-, b-gonal faces of a face-regular map having 

a finite number v of vertices. Denote by ea_b the number of a — b edges, i.e. those 

separating a - and b-gons. If the map is A:-valent and orientable, then the Euler formula 

v — e + f = 2(1— g) with g being the genus can be rewritten (see Theorem 1.2.3) as: 

pa(2k - a{k - 2)) + pb(2k — b(k - 2)) = 4k(l - g). 

But we have, clearly, ea-b = (« - i)pa = (b - j)pb■ Therefore, it follows: 

'2k — a(k — 2) 2k - b(k - 2) 
ea-b 1 -:-+-;-:- ) = 4*(1 - g). 

Write a(k, a, b, i, j) 

a — i b — j 

2k - a(k - 2) 2k- b(k - 2) 

(9.1) 

+ 
a — i b- j 

and find: 

1 If a{k, a, b, i, j) > 0, then g = 0, the map exists only on the sphere and the 

number of vertices depends only on a(k, a, b, i, j). 

2 If a{k, a, b, i, j) = 0, then g = 1, the map exists only on the torus. 

3 If a(k, a, b, i, j) < 0, then g > 1, the map exists only on surfaces of higher genus 

g and the number of vertices is determined by the genus and a{k, a, b, i, j). 

We classify only the strictly face-regular spheres and strictly face-regular normal 

balanced planes. The plane case contains the torus case as a subcase. For the plane, 

the Euler formula does not hold, but the condition of normality, discussed thereafter. 

125 
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allows us to use a version of it and obtain meaningful results. Again, the absence ol a 

classification in the case of g > 1 is understandable, e.g. we cannot classify regular 

tilings of Riemann surfaces of genus g > 1. 

Our classification is analogous to the following classification problems: 

1 Classify maps, whose group acts transitively on vertices, i.e. Archimedean maps. 

The answer is known for the sphere and the plane. 

2 Classify maps, whose symmetry group has two orbits on faces. Again, the answer 

is known for the sphere and the plane only. 

3 Classify the tilings by regular r-gons. This is done for the sphere by Johnson (see 

[Joh66, Zal69]) and for the plane in [Cha89]. 

4 Classify maps with two types of edges (see [Jen90, GrSh87b]). 

The list of all strictly face-regular two-faced polyhedra (completing the list in 

[BrDe99]) was found in [Dez02], The list of all strictly face-regular planes (com¬ 

pleting the list in [Dez02|) is given here and compared with the list of all 39 

2-homeohedral types of such tilings of ([GLST85]); there are 33 realizable sets of 

parameters and a continuum of face-regular tilings for 21 of them. The results are 

presented in the form of Table 9.1 (illustrated by drawings of polyhedra) for 71 

polyhedra and, for plane tilings, Table 9.3. 

9.1 Strictly face-regular spheres 

All strictly face-regular two-taced polyhedra are organized in 68 sporadic ones and 

3 infinite families: prisms Prismb (b > 5), antiprisms APrismb (b > 4), and snub 
Prismb (b > 6). 

A sphere is called 2-isohedral if its symmetry group has two orbits of faces. All 

41 2-isohedral two-faced polyhedra (so, amongst those 71) are identified. They are 

given with symmetry groups and constructions. 

The three infinite families are represented as Nrs. 15, 44, and 61 in Table 9.1, by 

theii smallest members. Nrs. 2, 18 of Table 9.1 can be seen as snub Prism3, snub 

PnsmA. Now, PrismAPrism3, snub Prism5 are Platonic polyhedra. Prism3 is given 

separately under Nr. 1 and not as a case in Nr. 15 of Prismb, because it has a ^ 4. 

Theorem 9.1.1 The list of strictly face-regular 3-connected ({a, b}, k)-spheres aRit 
bRj is the one of Table 9.1. 

Proof. We have the relation: 

{2k - a(k - 2)){b - j) + (2k - b(k - 2))(a - i) > 0. (9.2) 

All elliptic ({a, b}, k)-spheres, i.e. those with 2k > b(k - 2) are listed in Chapter 2, 

we can just pick them here. All five there, having no 2-gons, are strictly face-regular’ 
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Table 9.1 All strictly face-regular {{a, b], kfpolyhedra ctRi and bRj 

Nr. k a, b V ij Aut 2-isohedral Description 

1 3 3,4 6 0,2 Du, + Prisnii 
2 3 3,5 12 0,4 Did + snub Prisnii 
3 3 3,6 12 0,3 Td + Truncated Tetrahedron = GC\,\(Tetrahedron) 
4 3 3,6 16 0,4 Td + 4—truncated Cube = GCjoiTetrahedron) 
5 3 3,6 16 0,4 Dih — twisted Nr. 4 
6 3 3,6 28 0,5 T + 4-truncated Dodec. = G2,\(Tetrahedron) 
7 3 3,7 20 0,4 + 6-truncated Cube 
8 3 3,7 36 0,5 Th + 8-truncated Dodecahedron 
9 3 3,7 36 0,5 Di — twisted Nr. 8 
10 3 3,8 24 0,4 oh + Truncated Cube 
11 3 3,8 44 0,5 Th — 12-truncated Dodecahedron 
12 3 3,8 44 0.5 Di — twisted Nr. 11 
13 3 3,9 52 0,5 T — 16-truncated Dodecahedron 
14 3 3,10 60 0,5 h + Truncated Dodecahedron 

15 3 4,b 2b 2,0 Dbd + series Prising, b > 5 
16 3 4,5 12 1,2 Did + decorated Cube 
17 3 4,5 14 0,3 Dih + (b-cap Prismi)* 
18 3 4,5 16 0,4 D\d + (b-cap APrismP)* = snub Prising 
19 3 4,6 14 2,2 Dih + 4-triakon Nr. 1 
20 3 4,6 20 2,4 Did + 4-triakon Nr. 2 
21 3 4,6 20 1,3 Di + 4-halved Nr. 17 
22 3 4,6 24 0,3 oh + Truncated Octahedron = GC\ \(Cube) 

23 3 4,6 26 1,4 Du, — decorated Nr. 17 

24 3 4,6 32 0,4 oh + GC2,o(Cube) 

25 3 4,6 32 0,4 Dih — twisted GCi.oiCube) 

26 3 4,6 56 0,5 O + GC2,\(Cube) 

27 3 4,7 44 1,4 Th + 4-halved Nr. 24 

28 3 4,7 44 1,4 Di — 4-halved Nr. 25 

29 3 4,7 44 2,5 T + 4-triakon Nr. 6 

30 3 4,7 80 0,4 Oh — (b-cap Rhombicuboctahedron)* 

31 3 4,7 80 0,4 Ddd — (6-cap tw.Rhombicuboctahedron)* 

32 3 4,8 32 2,4 Td + 4-triakon Nr. 4 

33 3 4,8 32 2,4 Djh — 4-triakon Nr. 5 

34 3 4,8 80 1,4 Di — decorated Nr. 20 

35 3 4,9 28 2,3 Td + 4-triakon Nr. 3 

36 3 4,9 68 2,5 Th — 4-triakon Nr. 8 

37 3 4,9 68 2,5 Di — 4-triakon Nr. 9 

38 3 4,10 44 2,4 Did — 4-triakon Nr. 7 

39 3 4,11 92 2,5 Th — 4-triakon Nr. 11 

40 3 4,11 92 2,5 Di — 4-triakon Nr. 12 

41 3 4,12 56 2,4 oh + 4-triakon Nr. 10 

42 3 4,13 116 2,5 T — 4-triakon Nr. 13 

43 3 4,15 140 2,5 h — 4-triakon Nr. 14 
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Table 9.1 (cont.) 

Nr. k a, b V i, j Aut 2-isohedral Description 

44 3 5,b 4b 4,0 D\u! + series snub Prismb, b > 6 

45 3 5,6 28 3,0 Td + (b-cap truncated Tetrahedron)* 

46 3 5,6 32 3,2 Dy, — decorated Nr. 23 

47 3 5,6 38 2,2 Civ — decorated snub Prismb 

48 3 5,6 44 2,3 T + decorated Nr. 45 

49 3 5,6 52 1,3 T — decorated Nr. 48 

50 3 5,6 56 2,4 Td — decorated Nr. 22 
51 3 5,6 60 0,3 h + Truncated Icosahedron = GC\ {{Dodecahedron) 

52 3 5,6 68 1,4 Td — decorated Nr. 50 
53 3 5,6 80 0,4 h + (b-cap Icosidodecahedron)* 
54 3 5,6 80 0.4 T>5 h - GC2,o(Dodecahedron) 

55 3 5,6 140 0,5 I + GCiji Dodecahed ron) 

56 3 5,7 44 3,1 Dih — 6-halved Nr. 46 
57 3 5,7 92 2,2 Civ — decorated Nr. 47 
58 3 5,8 56 3,0 0h + decorated Nr. 22 
59 3 5,8 92 3,2 Td — decorated Truncated Octahedron 
60 3 5,10 140 3,0 h + (b-cap Truncated Dodecahedron)* 

61 4 3,b 2b 2,0 Dbd + series APrismb, b > 4 
62 4 3,4 10 2,2 k>4h + capp. 1-Trunc. Octahedron 
63 4 3,4 12 0,0 0h + Cuboctahedron 
64 4 3,4 14 1,2 Ddh + decorated (Cuboctahedron)* 
65 4 3,4 14 1,2 Did — decorated (cuboct.)* 
66 4 3,4 14 2,3 D\h + capp. 2-Trunc. Octahedron 
67 4 3,4 22 1,3 Did — decorated trunc. Tetrahedron 
68 4 3,4 30 0,3 O + GC2,{(Octahedron) 
69 4 3,5 22 2,3 Ddh + 4-cap 4-Trunc. Octahedron 
70 4 3,5 30 0,0 h + Icosidodecahedron 
71 4 3,6 30 2,3 Oh + 4-cap Trunc. Octahedron 

All parabolic ({a,b},k)-spheres, i.e. those with 2k = b(k - 2) that are bRj, are 

listed in Chapter 10; so, assume in the following ({a, b), k) to be hyperbolic, i.e. 
2k < b(k — 2). 

Consider first the case k = 3. If a = 3, then i = 0. If we change those 

3-gons into vertices, then we obtain a (;, 3)-sphere G, which has to be Bundle3 

(3-connectedness is not necessarily preserved), Tetrahedron, Cube, or Dodecahe¬ 

dron. Those 3-gons determine a set of vertices Y of G such that every face of G 

is incident to b-j vertices in Y. If G is Bundle3, then Y consists of two vertices 

and G is Prism3. If G is Tetrahedron, then Y consists of four vertices and G is Trun¬ 

cated Tetrahedron. For G being a Cube, Y has 2, 4, 6, and 8 elements, respectively. 

The ^corresponding spheres are listed in Table 9.1. For G a Dodecahedron, Y has 4, 

8 12, 16, or 20 elements, and the corresponding spheres are listed in Table 9.1. In 
the following, assume a = 4 or 5. 



Strictly face-regular spheres and tori 129 

If i = 0, then b-gons can be adjacent only to at most f a-gons and so we 

have 2(b — j) < b. The only case of (aR^,bRj) satisfying those relations is 

(4i?o, 7/?4). There are two such spheres (Nrs. 30 and 31 were found by computer 

enumeration). 

Now assume i = 1. Every fr-gon is adjacent to b — j o-gons. For every £-gon 

F, denote by n\{F) the number of times the pattern bab occurs and by U2(F) the 

number of times baab occurs. We have: 

nfF) + 2 n2{F) = b — j and 2n\(F) + 3n2(F) < b. 

If a = 4, then summing over all 6-gons gives (F) = Jfn2(F) implying 

the inequality < b, i.e. 2b < 5j. The only cases of (4R\,bRj) satisfy¬ 

ing those relations are (4/?i,7/?3), (4/?i,7/?4), (4Ri,1R5), (4/?i, 8/?4), (4/?i,9R4). 

The formula (9.1) rules out (4R\,1R2), since the number of vertices of such a 

map would be non-integral. The cases (4/?i, 1 Rs), (4R\, 9Rf), and (4/?j, 8R4) are 

ruled out by computer. If a — 5, then summing over all b-gons gives Jfn\(F) = 

2 (F) implying the inequality 7^=2. < b, i.e. 3b < 1 j and this leaves no case 

to consider. 

If i —2 and a = 4, then either 4-gons are organized in a ring and we have Prismb, 

or they are organized in triples. If they are in triples, then we can reduce them to 

3-gons and obtain strictly face-regular ({3, b'}, 3)-spheres; this establishes a one-to- 

one correspondence, which is apparent in Table 9.1. If i = 2 and a = 5, then the 

possible cases are b = 7 with 0 < j < 3 and b = 8 with j = 0 or 1. The case 

b — 7 is dealt with in Chapter 15 and we found only one sphere. If b = 8, then we 

have either a 8-gon, or two adjacent 8-gons. Those 8-gons contain 55 in their corona. 

Denote by F the unique other 8-gon adjacent to those two 5-gons; we see that F is 

adjacent to at least two other 8-gons, which is impossible. 

If i = 3, then a — 5. The possibilities are 7 < b < 11 with 12 — j — b > 0. Com¬ 

puter enumeration determines what is possible (see also Lemma 12.5.5, Theorem 

12.5.11, Theorem 12.5.12, and Lemma 12.5.4). 

If k = 4, then a = 3 and recall that we already treated the ({3, 4}, 4)-spheres. 

If i = 0, then b = 5 and j = 0 or 1. Recall that the vertex corona of a vertex 

is the sequence of gonalities of faces to which the vertex belongs. We see easily 

that the vertex corona can only be 3535, which implies j — 0 and the sphere is 

Icosidodecahedron (Nr. 70). 

If i = 1, then a vertex contained in the common edge of two 3-gons has vertex 

corona 33bb. This implies that j = 0 is impossible. Combined with 8 - j - b > 0, 

this yields (b, j) = (5, 1), (5, 2) or (6, 1). If j = L then the vertices of 3-gons that 

are not contained in an edge between two 3-gons have vertex corona 3b3b. We see 

that the Z?-gons around those vertices are adjacent to at least two other 6-gons and we 

reach a contradiction. If (b, j) = (5, 2), then the 5-gons are organized in rings that 
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are non-intersecting in the sphere. At least one of those rings contains only 3-gons 

on one of its sides. We then obtain the following structure: 

the boldfaced edges cannot be extended by adding an 3-gon without breaking the 

property 2>R\. This proves that this case does not occur. 

If i = 2, then either 3-gons are organized in a cycle and we obtain APrismt,, or 

they are in quadruples. If they are in quadruples, then we can reduce them to simple 

vertices and obtain a (b', 4)-sphere G. The only possibility is G being Octahedron. 

The quadruples correspond to a set of vertices Y of G. The possible sets Y are easy 

to obtain and there are two spheres (Nr. 67 and 69). 

lfk = 5, then a — 3. Equation (9.2) reads (b - j) + (10 - 36)(3 - i) > 0. Using 

the condition b > 4, we see that i = 0 and i = 1 are impossible. If i = 2, then b — 4 

and j = 0 or 1. The coronas of a 4-gon, respectively, pair of 4-gons are: 

and so, we are forced to add a ring of 4-gons, which is impossible. □ 
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Nr. 16 Nr. 17 Nr. 18 
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Nr. 40 Nr. 41 Nr. 42 
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Nr. 52 Nr. 53 Nr. 54 
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Nr. 70 Nr. 71 

9.2 Non-polyhedral strictly face-regular ({a, b}, &)-spheres 

We list now the ({a, b), k)-spheres that are 2-connected but are not polyhedra. 

Looking back at the proof of Theorem 9.1.1, we can notice that the hypothesis of 

3-connectedness is used only for excluding a = 2 and, for k = 3, the case a = 3, 

/ = 1. We consider those cases here, which, in particular, implies that the vertex 
degree k can be higher than 5. 

Call single ring the map formed by a single edge, two faces and zero vertices (just 
a circle). 

Theorem 9.2.1 All ({a,b}, 3)-spheres that are aR, and bRj and are not polyhedra, 
are obtained in the following way: 

• Let G be an (a, 3)-sphere or a single ring; fix an integer C. 

• To every edge e of G, associate an integer parameter xe, so that, for any face F of 
G, we have: 

YlXe = C- (9.3) 
eeF 

• By putting xe 2-gons on edges e, we obtain a ({2, a + 2C}, A)-sphere that is 2R() 
and (a + 2C)Ra+c. 

• By putting xe (3, 2)-poly cycles {3, 3}-e on each edge e, instead of 2-gons, we 

obtain a ({3, a + 3C}, 3)-sphere that is 3RX and (a + 3C)/?a+c. 
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Proof. From the above discussion, a strictly face-regular ({a, b}, 3)-sphere that is 

2- but not 3-connected, has (a, i) = (2, 0) or (3, 1). If G' is a ({3, b}, 3)-sphere 

that is 3R\ and bRj, then we replace each pair of 3-gons by a 2-gon and obtain a 

({2, b\ = ^±2.}, 3)-sphere 2R0 and b\Rj. 

Furthermore, by removal of each 2-gon (and both its vertices), we obtain the reg¬ 

ular tiling {a, 3} with a = b\ — (b — j) = and a < 5 or the simple ring. 

Reversing those operations means to put x f 2-gons or (3, 3)-polycycles {3, 3} - e on 

every edge f of {a, 3}. □ 

For example, the single ring yields the sphere formed by C 2-gons and two 

2C-gons and the sphere formed by 2C 3-gons and two 3C-gons. Many other such 

spheres arise from Bundle3, Tetrahedron, Cube, Dodecahedron by enumerating the 

integer solutions of equation (9.3). There is an extensive theory on this kind of 

problems; see, for example, [BeSi07], 

Theorem 9.2.2 All ({a, b}, A)-spheres that are not polyhedra, are the following: 

(i) The doubled b-gons (2Rq and bRo), i.e. those with edges split in two. 

(ii) The ({2, b}, A)-sphere 2Rq and bRi, obtained by putting b — 2 2-gons on the 

boldfaced edges of the diagram below: 

b-2 

(Hi) For any integer 0 < h < b — 3, the ({2, £>}, 4)-sphere 2Rq and blG, obtained by 

putting h, b — 3 or b — 3 — h 2-gons on the boldfaced edges of the diagram 

below: 

(iv) If b is even, all half-tripled b-gons (2R\ and bRh), i.e. those with half edges 

tripled. 
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(v) Ifb is even, all spheres obtained by putting h Bundle3 on one half of the edges 

and ~ - h edges on the other half in the following way: 

for some 0 < h < . 

(vi) Ifb = 3 (mod 2), all spheres obtained by putting xe Bundle3 on every edge e 

of Octahedron, so that, for any face F of Octahedron, we have: 

Proof. From the discussion at the beginning of this section, we can assume a = 2. If 

G is a ({2, b}, 4)-sphere that is 2Ro and bRj, then we collapse every 2-gon of G to a 

vertex and obtain a 4-valent sphere G', whose faces are j-gons. 

If j = 0, then G1 is a single point and G is the sphere obtained from a 6-gon by 

doubling every edge. If j = 2, then G' is Bundle4 and, up to isomorphism, we have 

two ways to add the 2-gons on the boldfaced edges: 

Only the second one is possible and we should have n = p. If j = 3, then G' 

is Octahedron. At every vertex of Octahedron, we have two ways to put 2-gons. 

Those possibilities are indexed by a pair of 3-gons sharing only an edge. Since we 

have 6 veitices, this makes 64 possibilities and, up to isomorphism, 7 possibilities. 

Clearly, every 3-gon should belong to at least one pair. This restricts us to three 

possibilities. The first possibility is shown below with the number associated to each 
vertex: 
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Denote by 77, the number of 2-gons put on the vertex i. After putting those 2-gons, 
the gonalities of the faces are: 

face gonality face gonality face gonality face gonality 

123 3 + n 1 +772 234 3 + 773 245 3 + 772 + 774 125 3 + 775 

456 3 + 775 156 3 + 7?! + 776 346 3 + 774 + 776 136 3 + 773 

All faces should have gonality b\ so, n4 = nu n6 = n2, n3 = n5 = n\ + n2. The 

second and third configurations are shown below: 

We can check that the second configuration has n \ = n4 = 0 and reduce to the first 

one, while the third configuration has n, = 0. 

If G is a ({2, 3}, 4)-sphere that is 2R\ and bRj, then we can collapse the 2-gon and 

obtain a 4-valent sphere G' with faces of gonality j. The proof is then similar to the 

one of Theorem 9.2.1. □ 

Theorem 9.2.3 The list of 2-connected non-polyhedral strictly face-regular 

({a, b}. k)-spheres with k > 5 is the one given on Table 9.2 and Figures 9.1 and 9.2. 

Proof. The non-polyhedrality implies a = 2. If i = 0,1, then we get from 

Formula 9.2, k < 12, k < 18, respectively. 

If k = 5 and i = 1, then we collapse the pair of adjacent 2-gons to a point and get a 

vertex of degree 4. Doing this for all vertices, we obtain a sphere G', whose vertices 

are 4- or 5-valent and whose faces are y'-gons, i.e. the dual of a ({4, 5}, y)-sphere. 

Using Euler Formula (1.1), it is easy to see that j = 2 or 3 are the only possibilities. 

If j = 2, then G' is a 4-gon and we get sphere 1 in Figure 9.1. If j = 3, then we 

take the dual of the list of ({4, 5}, 3)-spheres from Chapter 2 and Figure 2.1. After 

considering all possibilities, we get only sphere 4 in Figure 9.1. 

All the remaining enumeration is done with Formula 9.2 and exhaustive analysis 

of local configurations. ^ 
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Table 9.2 All strictly face-regular ({a, b], k)-spheres aR, and b R, with k > 5 that are not 

polyhedra 

Nr. k a, b V i, j Aut 2-isohedral Description 

1 5 2,3 4 1,1 Did + decorated 
Tetrahedron 

2 5 2,3 4 0,1 Did + decorated 
Tetrahedron 

3 5 2,4 12 0,2 Dsd + decorated 
(APrisms)* 

4 5 2,4 12 1,3 d5 + decorated 
(APrisms)* 

5 5 2,5 32 0,2 Dsd — decorated 
(snub APrism5)* 

6 6 2,3 4 0,0 Td + doubled 
Tetrahedron 

7 6 2,3 5 0,1 Dih + decorated 
(Prisms)* 

8 6 2,3 8 0,2 D(,i, + decorated 
(Prism6)* 

9 6 2,4 8 0,0 oh + doubled Cube 
10 6 2,5 20 0,0 h + doubled 

Dodecahedron 
11 6 2,b b 1,0 D\,h + tripled b-gon 
12 7 2,3 4 1,1 Did + decorated 

Tetrahedron 
13 7 2,3 16 0,2 Did — decorated 

(snub Prismi)* 
14 7 2,4 16 1,2 Did + decorated 

(APrisrn-,)* 
15 7 2,5 44 1,2 Did — decorated 

(snub APrismi)* 
16 8 2,3 6 0,0 oh + doubled 

Octahedron 
17 8 2,3 10 1,2 D$h + decorated 

(Prism8)* 
18 9 2,3 4 1,0 Td + tripled 

Tetrahedron 
19 9 2,3 20 1,2 Dm — decorated 

(snub Prism<))* 
20 9 2,4 8 1,0 oh + tripled Cube 
21 9 2,5 20 1,0 h + tripled 

Dodecahedron 
22 10 2,3 12 0,0 h + doubled 

Icosahedron 
23 12 2,3 6 1,0 oh + tripled Octahedron 
24 12 2,3 14 1,1 Oh + decorated 

25 15 2,3 12 1,0 Ih + 
(Truncated Octahedron)* 
tripled 
Icosahedron 
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4, Dld (1) 

i, D6h (8) 

Figure 9.1 All strictly face-regular ({a, b}, ^-spheres that are not polyhedra, from 

Theorem 9.2.3 (first part) 
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Figure 9.2 All strictly face 

Theorem 9.2.3 (second part) 

14, Oh (24) 12, 4 (25) 

-regular {{ci,b},k)-spheres that are not polyhedra, from 
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9.3 Strictly face-regular ({a, b}, fc)-planes 

We are now considering the classification of strictly face-regular ({a, b), &)-planes. 

Following [GLST85, GrSh87a], call a tiling 2-homeohedral if the faces form 

two transitivity orbits under the group of combinatorial self-transformations of the 

Euclidean plane, that maps the tiling onto itself. It the plane is 2-periodic, then it is 

the universal cover of a torus and we can represent symmetries as isometries of the 

plane using primal-dual circle representations (see Section 1.3). However, for gen¬ 

eral planes, we do not have those tools and it may happen that some combinatorial 

symmetries cannot be represented as isometries. 

The list of all 39 2-homeohedral types of ^-valent tilings is given in [GLST85, 

pages 135-136] and in [GrSh87a, Figure 4.6.3]; see also the pioneering thesis 

[Loc68]. (The tilings with two orbits of edges were considered in [GrSh83]; they 

have at most three orbits of tiles and vertices each.) Every 2-homeohedral type of 

/c-valent plane yields a strictly face-regular ({a, b}, &)-plane. Therefore, we will find 

those 39 types in this section. 

Amongst strictly face-regular two-faced tilings, only Nrs. 6, 14, 30, 32, 33 (see 

the last picture of this section), i.e. Archimedean plane tilings with vertex coronas 

(3.122), (4.82), (3.6.3.6), (32.4.3.4), (33.42) (with symmetry p6m, p4m, p6m, p4g, 

cmm, respectively; unique remaining two-faced Archimedean tiling (34.6) is 6Rq but 

not 3Rj) are mosaics, i.e. tilings of plane M2 by regular polygons. 

We will give in Table 9.3 all 33 parameter set for face-regular ({a,b}, £)-plane: 21 

continua and 12 sporadic cases (when the tiling is unique). The use of continua to 

describe discrete structures is not new: 

1 Kelvin’s intermediate structures between cubic closed packings and hexagonal 

closed packings. 

2 3-dimensional sphere packings of the highest density are also described by a layer 

structure (see, for example, |OKHy96]). 

3 In [DeStOOc], four cases of the continuum paradigm in three dimensions are 

described (partitions 31 to 34 of Table 4). One such example is the tiling of M3 

by regular Tetrahedra and Octahedra. 

In chemistry, face-regular spheres and tori are potentially interesting as putative 

molecular structures, see Figure 9.3. 

The consideration of three-faced ({a, b, c}, &)-polyhedra and tori that are strictly 

face-regular is also interesting; see on Figure 9.4 an example occurring in chemistry. 

For such a structure we need a matrix that specifies the number of y-gonal faces 

adjacent to a /'-gonal face. The first instance of such computations was in [BrDe99]. 

We already mentioned that classification of face-regular maps on a surface of 

genus greater than 1 is very difficult. However, such surfaces are of interest in 
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Table 9.3 All strictly face-regular ({a, b}.k)-plane aR, and bRj 

Nr. k a, b i, i Nr. of all Nr. of 2-homeohedral Description 

1 3 3,7 0,6 oo 1 2-truncated (6, 3} 

2 3 3,8 0,6 oo 1 |-truncated {6. 3} 

3 3 3,9 0,6 oo 3 2-truncated (6, 3} 

4 3 3,10 0,6 oo 0 ^-truncated {6, 3} 

5 3 3,11 0,6 oo 0 |-truncated {6, 3} 

6 3 3,12 0,6 1 1 trunc.{6, 3} = (3.122) 

7 3 4,8 2,6 oo 1 4-triakon of Nr. 1 
8 3 4,10 2,6 oo 1 4-triakon of Nr.2 
9 3 4,12 2,6 oo 1 4-triakon of Nr.3 
10 3 4,14 2,6 oo 0 4-triakon of Nr.4 
11 3 4,16 2,6 oo 0 4-triakon of Nr.5 
12 3 4,18 2,6 1 1 4-triakon of Nr.6 
13 3 4,7 0,5 oo 2 8-halved (4.82) 
14 3 4,8 0,4 1 1 trunc.{4, 4} = (4.82) 
15 3 4,8 1,5 oo 3 4-halved Nr. 13 
16 3 4,10 1,4 oo 2 4-halved (4.82) 

17 3 5,7 1,3 oo 2 a 6-halved {6, 3} 
18 3 5,7 2.4 oo + 1 2 decorated {6, 3} 
19 3 5,8 2,2 oo -j- 2 2 a 6-halved (6, 3} 
20 3 5,8 3,4 1 0 decorated {6, 3} 
21 3 5,10 3,2 1 0 decorated (6. 3} 
22 3 5,11 3,1 1 0 decorated (6. 3} 
23 3 5,12 3,0 1 1 decorated (6, 3} 

24 4 3,5 2,4 oo 2 decorated {4, 4} 
25 4 3,6 2,4 oo 2 decorated {4, 4} 
26 4 3,7 2,4 oo 0 decorated {4, 4} 
27 4 3,8 2,4 1 1 4-capped (4.82) 
28 4 3,5 0,2 1 1 decorated {4, 4} 
29 4 3,5 1,3 oo 3 decorated {4, 4}, (4.82) 
30 4 3,6 0,0 1 1 Archimedean (3.6.3.6) 
31 4 3,6 1,2 1 1 decorated {4, 4} 

32 5 3,4 1,0 1 1 Archimedean (32.4.3.4) 
33 5 3,4 2,2 00 + 2 2 decorated (4, 4} 

physics. A minimal surface (of mean curvature 0) is a surface that minimizes sur¬ 

face tension (see [Oss69], for definitions and the relation with soap structures). 

Infinite 3-periodic minimal surfaces in R3 are of interest in Crystallography (see, 
for example, [KoFi87, KoFi96]). 

Their quotient surface, under the translation group, is a surface of genus greater 

or equal to three. Schwarzits, i.e. ({6, 7, 8}, 3)-maps on surface of genus three, have 

been used to model 3-periodic minimal surfaces (see [KiOO]). 
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Figure 9.3 Two chemical azulenoid nets ([OKHy96]): the boron net YCrB4 (left) and 
ThMoB4 (right); they are strictly face-regular (5, 7)-planes 5R\, IRj (case 17) 

(24, 4, 4, 4), p2gg 

Figure 9.4 The net Y2ReB6 ([OKHy96]) is three-faced strictly face-regular (with t5j = 

0, 2, 3, t(,j = 2, 1,3, tjj = 3, 3, 1 for j = 5, 6, 7) structure with a delimited fundamental 

domain 

9.3.1 Case determination 

We follow here [GLST85] in presenting the notions of normality and balancedness. 

A normal tiling T is a tiling by a set of plane tiles T = {T\, T2, ...} with the 

following properties: 

1 Each tile is a closed topological disk. 

2 The tiles cover the plane. 

3 The intersection of any two tiles 7)- D 7) is a connected set of measure 0. 

4 The tiles are uniformly bounded, i.e. there exist two parameters u and U such 

that every tile 7) contains, as a subset, a closed circular disk of radius u, and is 

contained in a closed circular disk of radius U. 

The crucial hypothesis is the fourth one. It excludes hyperbolic tilings of the plane, 

like those which we can see in some of Escher art (planar ones but we cannot diaw 

them with given metric constraints). 
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Let D(p, P) represent a circular disk in the plane with center P and radius p. Let 

A(p, P) denote the patch of tiles that is the set of all those tiles of T, whose inter¬ 

section with D{p, P) is non-empty, together with the minimum number of additional 

tiles needed to make the union of the tiles of A(p, P) a topological disk (i.e. simply 

connected). Write pip, P), eip, P) and v(p, P) for the number of tiles, edges, and 

vertices in Alp, P). It is proved in [GrSh87a, §3.2] that, for any fixed number cr, we 

have the limit: 
pip + a, P) - pip, P) 

lim - 
0 pip, P) 

= 0. (9.4) 

This expresses the fact that Alp, P) is very near to a ball. If, in addition, the limits: 

r e^p' a lim - and 
p^oo pip, P) 

lim 
p-»oo 

v(p, P) 

pip, P) 
(9.5) 

exist and are finite, then the tiling T is called balanced. If the values of the limits 

in (9.5) are denoted by e(T) and u(T), respectively, then Euler formula for tilings 

holds ([GrSh87a, §3.1 ]), that is: 

v(T) - e(T) +1=0. 

Theorem 9.3,1 A normal balanced ({a, b}, kfplane aRj and bR, satisfies the 

equation: 

(2k - a(k - 2))(b - j) + ilk - b(k - 2))(fl - i) = 0. (9.6) 

Proof. For x = a, b, denote by px{p, P) the number of x-gonal faces in Alp, P). 

Of course, we have pa{p, P) + pb(p, P) = p(p, P). We would like to have pa(p, P) 

(a — / ) = pbip, P)(b — j) but this relation is not true in general, since the domain 

Alp, P) is not closed, i.e. some of the edges are boundary edges. What we have is 
only: 

\Paip, P)ia - i) - phip, P){b - j)I < {eip + U,P)~ eip - U, P)}, 

i.e. all the edges of the difference of the above terms are included in the difference 

between two disks Alp, P). From Limits 9.4 and 9.5, we know that: 

which yields: 

e(p + U,P) elp-U,P) 
im -;-t,— = hm - = e(T) 

°° PiP< P) P~+°° pip, P) 

p~*°° Pip, P) PiP, P) 

Combining with the exact equation = , we obtain Iha,. 
PiP> P) PiP, P) 

Hm and lim 
00 PiP, P) P~+°° PiP, P) 
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exist and are equal to pa(T) = -±-±~ and pb(T) = — respectively. 

Using the same technique, we prove the equations kv(T) = 2e(T) and 2e(T) = 

aPa(T) + bpb(T) (which, like the preceding, are only approximately valid in the 
patch A{p, P)) and finally: 

0 = (2k- aik - 2))pa(T) + (2k - b(k - 2))pb(T), 

which yields the required relation. □ 

We now proceed to the determination of all possible parameters. Before that, a 

few remarks are in order. Equation (9.6) is useful only for the relations between k, 

a, b, i, and j. The difficulty is that an equation, say, pa(T) = 0 does not imply 

Pa(p, P) = 0, since a function can be strictly positive and have a zero limit. The 

global equation (9.6) does not give local information. For local reasoning, our only 

possibility is to use corona arguments, i.e. those based on possible corona of faces. 

Theorem 9.3,2 The list of all possible cases (k, a, b, i, j) of 3-connected normal 

balanced ({a, b), k)-planes aR, and bRj is the one given in Table 9.3. 

Proof. We will consider the cases successively. 

If k = 3, then we have the relation (6 — a)(b — j) + (6 — b)(a — i) = 0. 

If a = 3, then i = 0 (otherwise, the plane is not 3-connected) and the relation 

simplifies to j = 6. Since the pattern b33b is forbidden in the corona, every b-gon is 

adjacent to at most six 3-gons and so, 7 < b < 12. 

If a — 4, then 0 < i < 2. If i = 0, then the relation simplifies to 12 = b + j, 

whose solutions are (b, j) = (7, 5) and (8, 4). Those two solutions are realizable. 

If / = 1, then the relation is 18 = b + 2j, whose solutions are (b, j) = (18, 0), 

(16, 1), (14, 2), (12, 3), (10, 4), (8, 5). The fi-gons contain patterns b44b and b4b 

in their corona, which implies j > b — 2j and leaves only (realizable) solutions 

(b, j) = (10, 4) and (8, 5). If i = 2, then the 4-gons are necessarily organized in 

triples and come by 4-triakon of ({3, b'}, 3)-plane 3R0, b'R6. 

If a = 5, then 0 < i < 3. If i = 0, then 30 = j + 4b, whose only solution 

is (b, j) = (7, 2). This solution is not valid since a 5-gon would have corona 75 

and those 7-gons have corona 7575555, i.e. 5-gons are not isolated. If i = 1, then 

24 = j + 3b, whose solution are (b, j) = (7, 3) and (8, 0). Solution (8, 0) is not valid 

since 8-gons would have corona 58 and so the 5-gons would be adjacent to at least 

two 5-gons. If i = 2, then the equation is 18 = j + 2b whose solutions are (7, 4), 

(8, 2), (9, 0). The solution (9, 0) is not valid since a 9-gon would have corona 59 and 

those 5-gons would have corona 59599, i.e. a 9-gon would be adjacent to a 9-gon. If 

i — 3, then 12 = b + j, whose solutions are (b, j) = (7, 5), (8, 4), (9, 3), (10, 2), 

(11, 1), (12, 0). The solution (7, 5) is excluded by looking at three possible coronas 

in Lemma 12.5.5 and seeing that none of them has five 7-gons in it. The solution 

(9, 3) requires a more detailed analysis. The condition 5R^ implies that the 5-gons of 
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the plane are in (5, 3)-polycycles £j and E2. We can then see that the boundary of 

the 9-gon is necessarily of the form: 

Then we see that the sequence of E\ and E2 propagate and we obtain a cycle 

(Ei, E2)9. Those are bounded by nine 9-gons and at the center of the structure, there 

is a 9-gon, which is adjacent to nine 9-gons and not three as requested. We get a 

contradiction. All other solutions are realizable. 

If k = 4, the relation takes the form (4 — a)(b — j) + (4 — b)(a — i) = 0. The 

number a is necessarily equal to 3. If i = 0, the relation simplifies to 12 = 2b + j, 

whose solutions are (b, j) = (5, 2) and (6, 0), which are both realizable. If i = 1, 

then 8 = b + j, whose solutions are (b, j) — (5, 3), (6, 2), (7, 1), and (8, 0). If 

cases (7, 1) and (8, 0) occur, then a b-gon having the pattern 33 occurs in its corona. 

The 3-gon T, central to this pattern, is adjacent to another 3-gon T. Regardless of 

the choice made, T' will be adjacent to at least two 3-gons, which is impossible. If 

i = 2, then j = 4. The 3-gons are organized in quadruples and the corona of 3-gons 

does not contain the pattern b33b. So, b-gons are adjacent to at most four 3-gons and 
5 < b < 8. 

If ^ then (10 — 3 a)(b — j) + (10 — 3 b)(a — i) = 0 and a is necessarily equal 

to 3. If i = 0, the equation takes the form 30 = j + 8/7, which has no solution for 

b > 4. If i — 1, the equation is 20 = j + 5b and its unique (realizable) solution 

is (b, j) — (4, 0). If i = 2, then the equation is 10 = j -f 2b, whose solutions are 

(b, j) = (4, 2) and (5, 0). In the case (5, 0), all 5-gons have the corona: 

All the edges in the boldfaced boundary must be incident to 5-gons, which is, clearly, 
impossible. " A 
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Case 6, (6, 2, 1), p6mm 

(2-homeohedral) Archimedean 
(3.122) 

Case 12, (14, 6, 1), p6mm 

(2-homeohedral) 

Case 14, (4, 1, 1), pAmm 

(2-homeohedral) Archimedean 
(4.82) 

Case 23, (14, 6, 1), p6mm 

(2-homeohedral) 

Figure 9.5 All sporadic cases of 3-valent strictly face-regular planes 

Note that in the next section we do the enumeration of planes for every case, 

without assumption of balancedness and normality. It turns out that, for every case, 

except possibly Case 29, all obtained planes are balanced and normal, but this was 

not guaranteed a priori. If we did not restrict ourselves to normal and balanced planes, 

we would have obtained hyperbolic plane tilings, which, as is well known, cannot be 

classified easily. 
Planes 6, 12, 14, 20-23 (3-valent ones) and 27, 28, 30-32 are unique; those 12 

sporadic cases are represented on Figures 9.5 and 9.12, respectively. The notation 

(C Pa, Pb) (under picture of plane) denotes the number of vertices, the number of 

a-gons and the number of Z?-gons in a minimal torus obtained from the plane. 

9.3.2 Proof and description of 33 parameter sets 

Cases 1-6, take a ({3, b}, 3)-plane 3R0, bR6. The 3-gons are isolated; therefore, we 

can shrink each of them into a single vertex. The obtained plane is {6, 3}, i.e. 3-valent 
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(8, 1,3), p3\m (2-homeohedral) (16, 2, 6), plmg (24, 3, 9), cm 

Figure 9.6 Some ({3, 7), 3)-planes that are 3Rb and 1 Rf, (Case 1) 

(10,2,3), p3\m 

(2-homeohedral) 

Figure 9.7 Some ({3, 8}, 3)-planes that are 3R0 and 8R6 (Case 2) 

plane tiling by 6-gons. So, ({3, b}, 3)-planes 3Rq, bR6 are obtained by taking a set 

Yb (for 7 < b < 12) of vertices in {6, 3} such that every face is incident to exactly 

b — 6 vertices in Yb. By doing the truncation over such set Yb, we obtain a ({3, b}, 3)- 

plane that is 3Rq and bR6. Of course, by complementing the set Yb, we obtain a set 

Y 18-fo, thus establishing a one-to-one mapping between the classes 1 and 5, as well 

as between the classes 2 and 4. Also, since T6 is unique, ({3, 12}, 3)-plane 3R0, 12R6 

is unique, but there is an infinity of sets Yb for 7 < b < 11. See Figures 9.6, 9.7, and 

9.8 for some ({3, b}, 3)-planes 3/?q, bRb with b — 7, 8, 9, respectively. 

Cases 7-12, i.e. ({4, b], 3)-planes 4Rj, bR(, are obtained from cases 1-6, respec¬ 

tively by 4-triakon, i.e. replacing each 3-gon by triple of adjacent 4-gons. The 

2-homeohedral ones are shown on Figure 9.9. 

Case 13, i.e. ({4, 7}, 3)-plane 4/?0, 7R$. Given a ({4, 8}, 3)-plane G that is 4R\ and 

87?5, the removal of the central edge, separating the pair of adjacent 4-gons, yields a 

({4, 7}, 3)-plane that is 4R0 and 7R5. Clearly, the flipping (defined below in the proof 

for Case 15) of G does not change the obtained ({4, 7}, 3)-plane. 

Take a ({4, 7}, 3)-plane G that is 4/?0 and 7R5, and call an edge isolated if its 

four adjacent edges are not included into 4-gonal faces. By a corona argument, i.e. 

scanning the possible sequences of gonalities of faces, we see easily that every 7-gon 

contains at most 2 isolated edges. Hence, the possible structures for those isolated 

edges are triples of isolated edges (with a vertex contained in three such edges), 

paths, and circuits (with vertices contained in at most 2 edges). 
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(8, 2, 2), p2mg (2-homeohedral) 

(16, 4, 4), p2gg 

(2-homeohedral) 

Figure 9.8 Some ({3, 9), 3)-planes that are 3Ro and 9R(, (Case 3) 

(12, 3, 3), p3\m (18, 6, 3), p31m (8, 3, 1), p3ml (2-homeohedral) 

(2-homeohedral) (2-homeohedral) 

Figure 9.9 2-homeohedral ({4, b), 3)-planes 4^2 and bR(, with b = 8, 10, 12 (cases 

7, 8,9) 

If G contains a circuit of isolated edges, then this set of isolated edges form a 

zigzag, i.e. every two, but not three, consecutive edges are contained in a face. By 

using local (i.e. corona) arguments, we see easily that the structure can be completed 

in a unique way. So, the corresponding ({4, 7}, 3)-plane is: 

(6, 1,2), c2mm (2-homeohedral) 

which we denote by ({4, 7}, 3)spec- 
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Given a torus G, its squaring is another torus with 4 times as many edges and 

vertices, which is obtained by replacing a fundamental domain V on the plane by a 

domain 2T>, i.e. by all 2x with x e V. If the fundamental group is generated by V\ 

and u2; another possibility for the fundamental domain is V U (iq + V) U (v2 + V) U 

(t>i + v2 + T>), for the group generated by 2v\ and 2v2. 

Theorem 9.3.3 (i) Takea({ 4, 7}, 3 )-plane G that is ARo andl R$; then G is obtained 

by the removal of central edges of a ({4, 8}, 3 )-plane G that is AR\ and 8/?s. 

(ii) Take a ({4, 7}, 3)-torus G that is ARq and 1R5; then G or its squaring is 

obtained by removing central edges of a ({4, 8}, 3)-torus G' that is AR\ and &R5. 

(Hi) If G is a ({4, 7), 3)-pIane or torus whose universal cover is different from 

({4, 7}, 3)spec, then G is obtained by removing edges of exactly two ({4, 8}, 3 )-planes 

ARh 8R5. 

Proof. Let us prove (i); we can assume that G is distinct from ({4, 7}, 3)spec. The 

first step consists of associating to G another 4-valent plane skel(G), whose vertex- 

set consists of all 4-gons. Every 7-gonal face is adjacent to two 4-gons; hence, it 

defines an edge of skel(G) and skel(G) is 4-regular. See below some representations 

of the local structure of G (in straight lines) and skel(G) (in dashed lines): 

Clearly, the faces of skel(G) can be triples of edges, paths of isolated edges, or 

2-gonal faces enclosing a single edge. Also, since G is different from ({4, 7}, 3)spec, 

skel(G) is connected. 

An examination of all possibilities for faces of skel(G) shows that, for every face, 

we can find two sets of lines cutting the 4-gons realizing the ({4, 8}, 3)-plane (one of 
them is shown on the pictures above). 

Now we indicate how we can find a coherent cutting set for G, i.e. a cutting leav¬ 

ing a ({4, 8}, 3)-plane. If a path v0,..., vm of adjacent vertices in skel(G) and the 

cutting line of v0 are chosen, then this defines uniquely the choice of cutting lines 

of Vi. Assume that a coherent cutting does not exist. Then there exists a closed path 

v0,...,vm = vq, such that the choice of a cutting line on v0 led us in the end to a 
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different cutting line on vm = uq. If such a path exists, then we can assume that it 

does not self-intersect, i.e. it makes a closed circle, say, C. 

Consider the set of interior faces of this circle. We can find an ordering F0,_Fq, 

such that, for any 0 < i < q, the graphs determined by Fq, ..., F;, are enclosed by 

a path Pj, without self-intersections. The face F, admits a coherent cutting of its 4- 

gons. Hence, by removing the face F,, we obtain a path P,_j, which does not admit 

a coherent cutting. But, in the end, we reach a contradiction since P0 is a single face 

of skel(G) and such faces admit coherent cutting sets. 

Let us now prove (ii) for G being a ({4, 7}, 3)-torus 4R0,1R5. The above argument 

can be easily generalized to the following result: if P and P' are two closed paths 

of skel(G), which are homologous, then P admits a coherent cutting set if and only 

if P' admits a coherent cutting set. The homology group H\(G) is isomorphic to 

I?, i.e. there are two closed paths Pi and P2, such that any other closed path P is 

homologous to n\ P\ + n2 Pi. 

Suppose now that P\ and Pi admit a coherent cutting set. Then G admits a cutting 

set. Assume that Pi or P2 do not admit a coherent cutting set. If P\ is of the form 

Vo,, vm, then the path P[, that correspond to P\ in the squaring G' of G, is of the 

form vq, ... ,vm,..., V2m- Now, u2m = vo and Vo f vm. Since there are only two 

possibilities for the cutting of uo, the cutting of u2m is coherent with the cutting of 

Vq. The same argument applies to P2 and so the squaring G' does admit a coherent 

cutting set. Assertion (iii) is a consequence of the connectedness of skel(G) for G 

different from ({4, 7}, 3)^ec-torus. □ 

See on Figure 9.10 some examples of ({4, 7}, 3)-planes that are 4P0 and 7P5. 

Case 14, i.e. ({4, 8}, 3)-plane 4R0, 8F4. Necessarily, the corona of 8-gons is of the 

form (48)1 2 * 4, so we have only one sporadic plane. 

Case 15, i.e. ({4, 8}, 3)-plane 4Pj, 8F5. A special perfect matching SVM in 

{3, 6} is a set of edges, such that it holds: 

1 every vertex is contained in exactly one edge of SVM. and 

2 every vertex is contained in exactly one 3-gon whose edge, opposite to the vertex, 

belongs to SVM. 

The flip of a (3, 6)-plane with a special perfect matching SVM consists of changing 

the edges of SVM to their opposite according to the diagram below: 
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(6, 1,2), c2mm (2-homeohedral) (12, 2, 4), pAgm 

(2-homeohedral) 

Figure 9.10 Some ({4, 7), 3)-planes that are 4/?0 and 7/?5 (Case 13) 

We obtain again {3, 6} but with another special perfect matching. 

Given a ({4, 8}, 3)-torus G that is 4R\ and 8R5, consider the plane skel(G), whose 

vertex-set is the set of 8-gonal faces and whose edge-set is made of two classes. The 

first class of edges comes from the edge separating adjacent 8-gons, while the second 

class comes from the central edge of the (4, 3)-polycycles P2 x P3 of G. 

Theorem 9.3.4 (i) Given a ({4, 8}, 3)-plane G that is 4R{ and 8R5, then skel(G) is 

{3, 6} with a special perfect matching. 

(ii) Given a special perfect matching of {3, 6}. we can define a ({4, 8}, 3)-plane 

that is 4R\ and 8R5. 

(Hi) The flipping of a (3, 6)-plane with a special perfect matching corresponds to 

the following transformation: 
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Proof, (i) Given a ({4, 8}, 3)-plane that is 4/?i, it is clear from the definition of 

skel(G), that it is 6-valent and that it has a perfect matching. Clearly, the corona 

of a 8-gon is of the form 84484888 or 84488488. The pattern 848 means that the 

vertex corresponding to this 8-gonal face is contained in a 3-gon, whose opposite 

edge belongs to the perfect matching. Hence, the perfect matching is special. 

(ii) If G is {3, 6} with a special perfect matching, then take the dual of it and 

transform every edge, arising from the perfect matching, according to the following 

scheme: 

Clearly, we get a ({4, 8}, 3)-plane 4R\ and 8F5. 

(iii) This assertion is obvious. □ 

See on Figure 9.11 some examples of such planes. 

Case 16, i.e. ({4, 10},3)-plane 4R\, 10F4. The 4-gons are organized by pairs. 

Therefore, the corona of a 10-gon is either cj = 44b44b4b4b, C2 = 44b4b44b4b, 

or c3 = 44b44b44bb with b = 10. Corona C3 implies a vertex contained in three 

10-gons F\, F2, F3. But considering all possibilities of putting the 4-gons around this 

vertex, we see that we cannot arrange them so that the F, are adjacent to six 4-gons. 

(16, 4, 4), p2gg (16, 4, 4), plgg 

(2-homeohedral) (2-homeohedral) 

Figure 9.11 Some ({4, 8), 3)-planes that are 4R} and 8Rs (Case 15) 
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Therefore, this does not happen and two possibilities for corona are c\ and c2. Sup¬ 

pose that every 10-gon is of type c2. Then the plane is completely determined. 

Suppose now that one 10-gon is of type C\. Then we have the following infinite 

string: 

Then we conclude easily that every such plane is described by an infinite word 

... a,-... with a, being u or v, with u: 

and v 

See below for the first two examples: 

(6, 2, 1), c2mm (2-homeohedral): (12, 4, 2), p2mg (2-homeohedral): 

word u°° or v00 word (uv)°° 

Case 17, i.e. ({5, 7}, 3)-planes 5Ru 7/?3. This case is described in [DFSVOO], 

where also all possible symmetries are listed. This case is of particular interest in 

Organic Chemistry; see [CBCL96], where the search for putative metallic carbon 

nets in the form of ({5, 7}, 3)-planes (obtained as decorated graphite plane {6, 3}) is 
warranted. 
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The possible coronas of a given 7-gon are 5575757 and 5577557. The following 

drawing shows why the second configuration is not possible: 

The 7-gon F should have 5-gons on its three remaining edges. This would imply that 

a 5-gon is adjacent to at least two 5-gons, which is forbidden. The same proof shows 

that no vertex is contained in three 7-gons. 

So, 7-gons have the corona 5575757 and we have only the following three possi¬ 

bilities for those 7-gons and the pair of 5-gons attached to them, up to rotation of the 

plane: 

We can thus represent the plane as a decoration of {6, 3}, i.e. the addition of edges to 

this plane. 

Now consider how the individual motifs A and B may pack to cover the plane. It 

is clear, that choosing a given 7-gon as the center of a B motif forces two of its three 

7-gonal neighbors to adopt a B' configuration. Therefore, a linear chain of B centers 

propagates to infinity in both directions. Motifs of type A also have this propagation 

property: 

We now introduce the symbols u: 

• • 
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and v: 

• • • • 

and see that ({5,7}, 3)-tori 5R\, 7R?, correspond to words of the form . . . cr, . . . with 

a; being equal to u or v. See below for the first two examples: 

(8, 2, 2), c2mm (2-homeohedral): 

word u°° or u°° 

(16, 4, 4), p2gg (2-homeohedral): 

word (mu)00 

Case 18, i.e. ({5, 7}, 3)-plane 5R2, 7/?4. Suppose that one 7-gon has the corona 

5557777. Then, by looking at the corona, we find that those three 5-gons are part of 

an infinite string and so; we have the following unique plane: 

(8, 2, 2), p2mg (2-homeohedral) 

Assume now that 5-gons are organized in triples. Suppose that one 7-gon has the 

corona 5757577, then one of the adjacent 7-gons is itself adjacent to at least four 

5-gons, which is impossible. Therefore, every 7-gon has the pattern 7557 and 757 

in its corona. So, if we replace a triple of 5-gons by a 6-gon, we obtain {6, 3}. This 

means that those planes are obtained by putting triples of 5-gons in {6, 3}. Simple 

arguments yield that they are described by infinite words ...a, ... with a, being u 
or v; here u denotes: 



Strictly face-regular spheres and tori 159 

and v denotes: 

• • 

See below for the first two examples: 

Case 19, i.e. ({5, 8}, 3)-plane 5R2, 8R2. Such a plane will have its 5- and 8-gons 

organized in infinite strings, or we will have one triple of 5-gons or 8-gons. If we 

have one such triple, then the plane is completely determined: around this triple one 

have concentric circles of 5- and 8-gons and they are uniquely defined. Assume now 

that 5- and 8-gons are organized in lines and so, necessarily, in infinite strings. 

Given a 5-gon, its corona is of the form 58588. Up to orientation of the infinite 

string of 5-gons, this makes two possible choices, which we write as u or v: 

Hence, we can write the infinite word representing the plane in the form of a 5-word 

(/j-words are infinite words describing the orientation of the /?-gon in one of the infi¬ 

nite string of p-gons) ... a, ... with a,- being u or v. Another viewpoint is possible 
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by considering the infinite string of 8-gons. Up to orientation of the infinite strings 

of 8-gons, this makes three possible choices, which we write as L, S or R: 

Hence, we can write the infinite word representing the plane in the form of a 8-word 

... fa ... with being L, S or R. 

Theorem 9.3.5 (i) A 5-word is realizable as the sequence of a ({5, 8}, 3 )-plane 5/?o 

and SR2 with p-gons organized in infinite strings if and only if it is of the form (Yi)ieZ 

with yi being uv or vu. 

(ii) A 8-word is realizable as the sequence of a ({5, 8}, 3 )-plane 5 R2 and 8 R2 with 

p-gons in infinite strings if and only if it is of the form (o;,)i€z with or,- = LSm' RSn‘ 

for some mt, n, > 0. The corresponding 5-word is (y,-),-ez with y, = (vu)mi (uv)n‘. 

Proof. Let us first prove (ii). It suffices to show that no two L or R can appear in 

a sequence, even with 5 between them. Suppose that the pattern LSmL appear in 

a sequence. The corresponding infinite string of 8-gons has two adjacent infinite 

strings of 8-gons. It is easy to see that one contains the pattern LSm~lL and the 

other contains the pattern LS"'+1 L. By iterating this construction, we find an infinite 

string that contains LL. But this is excluded since it corresponds to having a triple 
of 5-gons. 

It is easy to see that the 5-word corresponding to the above 8-word is 

...(vu) fuv) 1 .... Clearly, any 5-word of the form (y();6z with y, being uv or 
vu, can be realized in this form. n 

Note that there is still another description of those planes. Consider a step to be 

two 5-gons being put together; then put the steps together to form an infinite stairway 

(the infinite string of 5-gons), which can go up or down. The infinite word ... Yi... 

with Yi being uv or vu corresponds to the stairway, for example by assigning uv to 
up and vu to “down” directions. 
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See below for the first two examples: 

(12, 4, 2), p2mg (2-homeohedral): 

5-word (uuvv)°° or 8-word (LR)°° 

(6, 2, 1), c2mm (2-homeohedral): 

5-word (md)00 or 8-word S°° 

Cases 20-23, i.e. ({5, Z?}, 3)-planes 5Rt, and bR\2-b for b = 8, 10, 11, and 

12. Those cases are solved in Theorems 12.5.7, 12.5.13 and Lemmas 12.5.4(ii), 

12.5.3(ii). 

Cases 24-27, i.e. ({3, b), 4)-plane 3R2 bR4 with 5 < b < 8. Suppose that some 

3- gons are not organized in quadruples but instead in sequences like the one that 

appears in APrismm for some m > 4. Then, clearly, there are no pending edges left 

and the plane is reduced to it, which is impossible. 

So, all 3-gons are organized in quadruples. Every b-gon is adjacent to b—4 quadru¬ 

ples. If we collapse the quadruples to single points, then the obtained plane is still 

4- valent and the £>-gons have been reduced to 4-gons. Therefore, we have the quadri¬ 

lateral {4, 4}-plane. Combinatorially, such planes correspond to selecting a set S of 

vertices in {4, 4} such that every 4-gons is incident to b—4 elements in S. Clearly, if 

we take the complement of S in the vertex-set of {4, 4}, we obtain a bijection between 

case 24 and case 26. Note, however, that case 24 admits two 2-homeohedral planes, 

while case 26 admits none. 

Let us consider Case 24: every 4-gon should be incident to one vertex in S. All 

4-gons, incident to a fixed vertex, form a block of four 4-gons. Clearly, such blocks 

are organized in infinite strings. Two consecutive infinite strings are in front of each 

other or not and we denote this by u or v: 

I I 

Therefore, the planes, in case 24, correspond to infinite words composed of u 

and v. 
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See below for the first two examples: 

\ s \ 
—X 7 \ \ 7 

/ \ / \ A \ 
X 7 \ ? s / 

A \ A s z \ 
7 \ N / 

(8, 4, 4), p4mm (2-homeohedral): u°° 
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\ 
\ 9 

z \ 
\ ? 

7 s 
\ 7 

s \ 
X ? 

/ \ 
S; ? 

A s 
s A 

s 
N z 

A \ 
x x Z 

(8, 4, 4), clmm (2-homeohedral): v°° 

Let us consider case 25: every 4-gon should be incident to two vertices in S. 

For a given 4-gon, either those vertices are on opposite sides of a diagonal or 

they are on one of the edges. We will prove that one has a structure of infinite 

strings, in which the choices are uniform. Denote by u, v the edge, diagonal cases, 

respectively: 

If every 4-gon has its vertices in S on a diagonal, then, clearly, it corresponds to the 

infinite word v°°. Suppose that one 4-gon has two vertices in S along an edge, then 

this edge defines an infinite string in which only the edge choice is taken. Then this 

plane belongs to the ones described by an infinite word. 

See below for the first two examples: 
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(6, 4, 2). p2mm (2-homeohedral): 
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(6, 4, 2), pAmm (2-homeohedral): 

Case 26 is obtained by taking the complement of the set S in Case 24. 
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See below for the first two examples: 

7, / \ 7 7 7 7 7 7 7 7 7\ 
A 7 7 

7 

7 7 

7 

7 7 

7 

7 7 

7 

7 7 

7 

7 77 

7 

7 

7 

7 7 

7 

7 / 

7 

7 7 

7 

7 7 

7 

x 7 

7 

7 77 
7 7 

7 

7 7 

7 

7 7 

7 

7 7 

7 / 

7 7/ 

7 

7 

7 

7 7 

7 

\ 7 

7 

7 / 

7 

7 7 

7 

7 7 

7 

7 77 
\ 7 7 

7 

7 7 

7 

7 7 

7 

7 7 

7 

7 7 

7 

7 77 

7 

7 

7 

7 7 

7 

7 7 

7 

7 7 

7 

7 7 

7 

7 7 

7 

7_77 
7 7 7 7 7 7 7 7 7 7 7 77 

(16, 12, 4), p4mm: u°° 
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(16, 12, 4), c2mm: v°° 

Case 27 is easy: every 4-gon should be incident to four vertices in S; so, every 

vertex of {4, 4} is in S. See Figure 9.12 for a representation. 
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Case 27, (5, 4, 1), p4mm 

(2-homeohedral) 

Case 28, (4, 2, 2), p2mg 

(2-homeohedral) 

Case 30, (3, 2, 1), p6mm 

(2-homeohedral) Archimedean 
(3.6.3.6) 

Case 31, (3, 2, 1), p2mm 

(2-homeohedral) 

Case 32, (4, 4, 2), p4gni 

(2-homeohedral) Archimedean 
(32.4.3.4) 

Figure 9.12 All sporadic cases of strictly face-regular 4- or 5-valent planes 

Case 28, i.e. ({3, 5}, 4)-planes 3R0 and 5R2. Since 3-gons are adjacent only to 

5-gons, we have the following possibilities for the vertex corona. 5555, 5553, and 

5353. Let us prove that 5555 does not occur. If it were the case, then we would have 

a quadruple of 5-gons around a vertex v. Any of four vertices adjacent to v should 

have also corona 5533, which is impossible by property 3R0. Take a 5-gon P\; since it 
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is adjacent to a 5-gon, we have a vertex with corona 5553. This extends to a sequence 

of 5-gons as below with all vertices 5553 being black circles: 

Since we have a plane, this extends to an infinite string of 5-gons. We can, therefore, 

add 3-gons and see that the structure extends uniquely and is shown on Figure 9.12. 

Case 29, i.e. ({3, 5}, 4)-planes 3R\ and 5R3. This case is the only one that is not 

completely solved, but we present two different continua in it. The first continuum 

comes as infinite words ... cq ... with a,- being r or s\ where r is as follows: 

and ^ is: 

The first two cases of such planes are shown below: 

(4, 2, 2), c2mm: r°° (2-homeohedral) 

Another class comes by continuum ... a, 
follows: 

(8. 4, 4), p2gg\ (rs)°° (2-homeohedral) 

.. with oti being u or v, where u is as 
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and v is: 

Two such planes are shown below (the plane corresponding to (uv)°° is the same 

as the one corresponding to (rs)00): 

Case 30, i.e. ({3, 6}, 4)-plane 3R0 and 6R0. The condition 3R0, 6R0 implies that 

every vertex has corona 3636. It is easy to see that there is a unique plane tiling, 

called the Kagome tiling, shown on Figure 9.12. 

Case 31, i.e. ({3, 6}, 4)-plane 3RX and 6R2. Clearly, vertices have coronas a = 

3636, b = 3366 or c = 6666. Every 3-gon is adjacent to another 3-gon. The vertices 

of the common edge have corona b, while the vertices that are not on a common edge 

have corona a. Every 6-gon is adjacent to four 3-gons. Easy considerations yield the 

following local structure around every 6-gon: 

It is then easy to see that there is a unique way to extend this structure (shown on 

Figure 9.12). 
Case 32, i.e. ({3, 4}, 5)-planes 3RX and 4R0. Take a 4-gon Q. Since it is adja¬ 

cent to only 3-gons, there are four 3-gons around them. The vertex corona cannot 
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contains 333, since it would imply that a 3-gon is adjacent to at least two 3-gons. 

Therefore, the corona of a vertex incident to Q is, up to rotation and change of rota¬ 

tion order, 33434. Since a 3-gon is adjacent to a unique 3-gon, we can find only two 

possible cases: 

When we make a choice, it is easy to see that it extends uniquely. Therefore, we have 

a unique ({3, 4}, 5)-plane 37?i, 4/?0 shown on Figure 9.12. 

Case 33, i.e. ({3, 4}, 5)-planes 3R2 and 4R2. Suppose that we have a vertex inci¬ 

dent only to 3-gons or only to 4-gons. Then the structure can be extended uniquely 

and it is normal; see below a birds eye view of them. 

Assume in the following that no vertex is contained in only 3-gons or 4-gons. It is 

impossible that a vertex has the corona 34444, since this 3-gon would be adjacent 

only to one 3-gon. The 4-gons are organized in sequence (Ff) of adjacent 4-gons. 

Orient the sequence and then we have a choice: either the sequence turns left L, 

right R, or straight S. From the forbidding of 34444, we know that patterns LL and 

RR cannot occur. Assume that the pattern LS'" L appears in the sequence. Then by 

taking two bounding sequences of 3-gons and two bounding sequences of 4-gons, 

we obtain the pattern LSm+2L and LSm~2L in them. So, we can decrease the num¬ 

ber of patterns S between two consecutive L. In the end, we are left with a single 

vertex contained in five 3- or 4-gons. We excluded that possibility; so, the patterns 

LS L and RSmR do not occur in the sequence. Therefore, the sequence is of the 

form (yi)«ez with Yi being of the form LSm'RSn'. We must now prove that the 

sequence is not a circuit. If this were the case, then the neighboring circuits, obtained 

as above by adding a layer of 3-gons and a layer of 4-gons, would have the same 

sequence. So, both sides of the circuit would contain an infinity of faces. This is 

impossible since a closed circuit in the plane contains a finite number of faces in its 
interior. 
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So, we have a sequence (y,) and see that such planes are obtained by adding edges 

to {4,4}. 

See below for the first two examples: 

(2, 2, 1), c2mm (2-homeohedral): S°° 

Archimedean (33.42) 



10 
Parabolic weakly face-regular spheres 

In this chapter and the next, Nr. x means the xth polyhedron described in Table 9.1. 

We consider here ({a, b}, k)-spheres that are bRj or aR, and satisfy to 2k = b{k — 2), 

see Chapter 2 for introduction. 

10.1 Face-regular ({2, 6}, 3)-spheres 

See on Figure 10.1 the first examples of GCk<I{Bundle3) (the Goldberg - Coxeter 

operation GCkJ(G) is defined in Section 2.1). By Theorem 2.2.1, any ({2, 6}, 3)- 

sphere comes as GCk i(Bundies) for some integers 0 < l < k. 

Any ({2, 6), 3)-sphere, which is not a Bundle3, is 2R0. Bundle3 is 6R, for any j. 

If a ({2, 6}, 3)-sphere distinct from Bundle3 is 6Rj, then (6 - j)p6 = lp2 = 6. 

So, the cases j = 0, 1,2 are impossible. For j = 3, 4, 5, the unique solution 

is GC\j(Bundle2), GC2,o{BundleT,), GCjjiBundle^), respectively, with 3, 4, 5 
6-gons neighboring any 6-gon. 

e 
2, .D3/1 

Bundle 3= 

O 
6, £>3A 

'$> 
8, D3h 14, O3 

GC\o{B undies) GCii(Bundlei) GC2,o(Bundlej) GC2,i(BundleT,) 

Figure 10.1 First examples of ({2, 6), 3)-spheres 

168 
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10.2 Face-regular ({3, 6), 3)-spheres 

By Theorem 2.0.2, a ({3, 6}, 3)-sphere that is not 3-connected, is one of Tn for some 

n > 1. Hence, a ({3, 6}, 3)-sphere that is not Tetrahedron, is either 3RX and belongs 

to this infinite series, or is 3Rq. 

A ({3,6}, 3)-sphere that is 6Rj and distinct from Tetrahedron, satisfies to 

(6 -})p6 < 3^3 = 12. Therefore, we have an upper bound on the number of vertices, 

which allow us to find the complete list of such spheres: 

1 the first member T\ of the infinite series (of 2-connected spheres, see Theorem 

2.0.2) that is 3RX and 6R2, 

2 the second member T2 of this infinite series that is 3R\ and 6R4, 

3 Nr. 3, i.e. GC\ \(Tetrahedron) that is 3Rq and 6R3, 

4 Nr. 4, i.e. GC2_o(Tetrahedron) and Nr. 5 (twist of Nr. 4) that are 3Rq and 6R4, 

5 Nr. 6, i.e. GCi.fTetrahedron) that is 3Rq and 6R$. 

10.3 Face-regular ({4, 6}, 3)-spheres 

There is an infinity of ({4, 6}, 3)-spheres that are 4/?0; in fact, as the number of ver¬ 

tices goes to infinity, the proportion of such spheres amongst all ({4, 6}, 3)-spheres 

tends to 1. 

Take a ({4, 6}, 3)-sphere that is ARX. Insert on every edge, separating two 4-gons, a 

2-gon. The resulting map is a ({2, 6}, 3)-sphere with at most one 2-gon being adjacent 

to each 6-gon. Such spheres are described by GCk,i(Bundle3). Hence, there exists a 

({4, 6}, 3)-sphere ARX with v vertices if and only if v = 2(k2 +kl + I2) — 6 > 18, and 

it has symmetry D3 or D3h. In fact, there is a bijection between ({4, 6}, 3)-spheres 

ARX and all but the five smallest ({2, 6}, 3)-spheres (i.e. four on Figure 10.1 and 

one with (k, l) = (3, 0)). So, the smallest ({4, 6}, 3)-sphere ARX has 18 vertices and 

corresponds to (k, /) = (2, 2). 

Theorem 10.3.1 The only ({4, 6}, 3)-spheres that are A R2, are either Prisms orthe 

series of ({A, 6}, 3 fspheres with 8 + 6/ vertices, t > 1, called /-hex-elongated cubes 

(see Figure 10.2 for the first three spheres of this infinite series). 

Proof. Recall that p4 = 6. Let F0 be a 4-gon of a ({4, 6}, 3)-sphere that is AR2. 

Then F0 is adjacent to two 4-gons F\ and F2. These 4-gons are adjacent to other 

4-gons. There are two cases: either Fx and F2 are adjacent or not. In the first case, we 

obtain a configuration of three 4-gons surrounded by three 6-gons. This configuration 

generates the infinite family. In the second case, we obtain a ring of six 4-gons that 

uniquely gives Prism6. ^ 

There is no ({4, 6}, 3)-sphere that is AR3. 
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20, Dm 

Figure 10.2 ({4, 6), 3)-spheres of the infinite series of f-hex elongated cubes, for t = 1, 

2 and 3 

A ({4, 6}, 3)-sphere that is 6Rj and distinct from Cube, satisfies to (6 — j)p(, < 

4/?4 = 24. Hence, it has at most 56 vertices. For j — 0, there is only Prism6. There 

is no such sphere for j = 1. 

1 For j — 2, there is Nr. 19 and the following sphere: 

2 For j = 3, there are Nrs. 21, 22. 

3 For j = 4, there are Nrs. 20, 23, 24, 25. 

4 For j = 5, there is Nr. 26. 

10.4 Face-regular ({5, 6}, 3)-spheres (fullerenes) 

If p is a ({5, 6}, 3)-sphere that is 6Rh then we have, clearly, (6 - j)p6 <5p5 = 

60. For j = 0, 1,2, 3, 4. 5, this yields an upper bound (on the number of vertices 

v = 20 + 2pf) of 30, 32, 50, 60, 80, 140. The complete enumeration was done by 

computer for j < 4 and the results are presented on Figures 10.3, 10.4, 10.5, 10.6, 

and 10.7. For j = 5, such spheres are also 5/?o by Lemma 11.1.3 and so unique such 
sphere is Nr. 55. 

There is an infinity of ({5, 6), 3)-spheres that are 5 R0; in fact, as the number of ver¬ 

tices goes to infinity, the proportion of such spheres amongst all ({5, 6}, 3)-spheres 

tends to 1. Such fullerenes are said to satisfy the isolated pentagon rule in Chemistry 
([FoMa95]). 

The number of ({5, 6}, 3)-spheres 5ft, is also infinite and also there is no simple 

description ot them (all 130 of such 5R i fullerenes with i> <72 are listed in [Fow93]; 

the two smallest ones have (u, Aut) = (50, D3) and (52, T).) 
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Figure 10.3 All ({5, 6}, 3)-spheres that are 6Rq (all classical dual Frank - Kasper 

spheres), besides Dodecahedron 

Figure 10.4 All ({5, 6), 3)-spheres that are 6R\, besides Dodecahedron 

The ({5, 6}, 3)-spheres that are 5R2, are enumerated in Theorem 10.4.3 below. 

The only ({5, 6}, 3)-spheres that are 5R3, are Nrs. 45 and 46; see Theorem 12.5.6. 

Snub Prisms, i.e. the smallest Nr. 44, is a unique ({5, 6}, 3)-sphere that is 5R4. 

Lemma 10.4.1 All ({5, 6}, 3(-spheres with 5-gons organized in a ring are four 

spheres (all but the second one) drawn on Figure 10.8. 

Proof. First, such a ring ought to have 12 5-gons. The ring splits the 6-gons into 

two regions, which are (6, 3)-polycycles P and P'. Let us consider the polycycle P, 

its boundary sequence is of the form b\ ... bm, with bj = 2 or 3. Denote by u, the 

number of boundary vertices of degree i for i = 2 or 3. There are no two consecutive 

vertices of degree 3 in the sequence, since it would imply a vertex contained in three 

5-gons. Denote by pj the number of 5-gons of the ring adjacent to P on j edges for 

j = 1,2. We have, clearly, p2 = v3 and px + p2 = v2. If we consider the polycycle 

P', then we have, as previously, p'2 = v3 and p\ + p2 = v2 with the relations p, = p2 

and p'2 = P\■ Combining with the relation v2 = 6+v3,v2 — 6+v3 of Theorem 5.2.1, 

we obtain v2 = v2 = 12 and v3 = v'3 = 6. Therefore, the number of edges of P and 

P' is 18. 



172 Chemical Graphs, Polycycles, and Two-faced Maps 

(also 5R2, Nr. 46) 36. D2d (also iRi, Nr. 47) 

40, D2 40, D5h 

Figure 10.5 All ({5, 6), 3)-spheres that are 6R2, besides Dodecahedron 

It is proved in [HaHa76] (see also [BBG03, GreOl]) that for a given number h of 

6-gons, the minimal perimeter of a (6, 3)-polycycle is 2[y/l2h - 3], Therefore, the 

maximal number h of 6-gons of a (6, 3)-polycycle with perimeter 18 is 7. So, the 

maximal number of 6-gons of a ({5, 6}, 3)-sphere with a ring of 5-gons is 14 and 

the maximal number of vertices ot this ({5, 6}, 3)-sphere is 48. The result follows by 

computer enumeration. n 
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36, D2 44, T (also 5R2, Nr. 48) 48, D3 

52, T 60, Ih 

(also 5R i. Nr. 49) (also 5 Rq, Nr. 51) 

Figure 10.6 All ({5, 6}, 3)-spheres that are 6R2, besides Dodecahedron 

Lemma 10.4.2 The possible graphs G5 of 12 5-gons of a ({5, 6}, 3)-sphere that is 

5R2, belong to following five cases: 

G5 = 4C3,Gs = 2C3 + C(,,G5 = C3 + Cg,Gs - 2C6,G5 = Ci2- 

Proof. If G is a ({5, 6}, 3)-sphere 5R2, then its graph G5 is an union of cycles and 

we must determine the possible lengths. Suppose that a ring of 5-gons is not reduced 

to a triple of 5-gons incident to a vertex, then the ring encloses a (6, 3)-polycycle P. 

Denote by v2, v3 the number of boundary vertices of P of degree 2, 3. By Theorem 

5.2.1, we have v2 = 6 + v3 and the number of 5-gons adjacent to P is equal to v2 

and is, therefore, greater or equal to 6. If the length of the cycle is 6, then v3 = 0 and 

P is reduced to a 6-gon. 

It is easy to see that cycles of length 2 and 3, not enclosing a vertex, do not exist, 

since, otherwise, we would get only a 1-connected graph, while ({5,6}, 3)-spheres 

are 3-connected (see Theorem 2.0.2). 

If G has a single cycle, then G5 is equal to Ci2- If G has at least two cycles, then 

it is easy to see that there exist at least two cycles enclosing a vertex or a (6, 3)- 

polycycle. If both those cycles are C3, then either we have a C6, or we have two C3 

for the remaining 5-gons. If only one of those cycles is C3, then either one has a Cg 

and another C3, or one has, simply, a C9. If none of those cycles is C3, then both 

have length at least 6, so both have length 6. D 
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Figure 10.7 All ({5, 6), 3)-spheres that are 6R4, besides Dodecahedron 

Theorem 10.4.3 ([DGr02]) All ({5, 6}. 3)-spheres that are 5R2, are: 

(i) The sporadic ones on Figure 10.8. 

(ii) An infinite series of(\2t + 24)-vertex (for any t > 0, and of symmetry D6d, ift 

is even, D6h ift is odd) fullerenes with 5-gons organized into two 6-cycles. They are 

obtained from snub Prism6 by inserting t more 6-cycles of6-gons. 

(Hi) An infinite series of (symmetry D2, [fid, D?.h, T orTd) v-vertex (for any v = 0 

(mod 4) with v > 40) fullerenes with 5-gons organized into four 3-cycles. They 
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36, D2d 38, C3v 

(also 6R2, Nr. 47) 

44, Dm 44, D2 

48, D6d 

Figure 10.8 All sporadic ({5, 6), 3)-spheres that are 5R2 

are obtained, by collapsing to four points all four 3-gons, from any ({3, 6}, 3)- 

sphere, such that no 6-gon is adjacent to more than one 3-gon (see Section 2.2 for a 

description of({3,6}, 3)-spheres). 

Proof. Let G be a ({5, 6}, 3)-sphere 5R2. We will consider all possible graphs G5 

of 5-gons listed in the above lemma, one by one. The case G5 = C\2 is settled in 

Lemma 10.4.1. 

Let us consider the case G5 = C9 + C3. The (6, 3)-polycycle P, bounded by 

Cg, has V2, V3 vertices on its boundary. Denote again, by p 1, p2 the number of 

5-gons in the 9-cycle bounding P, sharing one, respectively, 2 edges with P. We 

have V2 = 6 + v3 (see Theorem 5.2.1) and the equalities: 

P\ + P2 = 9, P2 = v3, pi + p2 = v2. 

which yields v2 = 9, v3 = 3 and P having 12 edges. (6, 3)-polycycles with h 6-gons 

have at least 2\J\2h - 3] boundary edges; so, P has at most three 6-gons (see 

[BBG03, GreOl]). All (6, 3)-polycycles with at most three 6-gons are drawn below: 

The third possibility is the only one that fits. We add the 9-cycle of 5-gons around it 

and then a cycle of 6-gons: 
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We can then either add a ring of 5-gons or a ring of 6-gons. If we add a ring of 

6-gons, then we have a 3-gon, which is excluded. So, we need to add a cycle of 

5-gons. 

Let us now prove that the case G5 = 2C3 + C& does not occur. The 6-cycle of 

5- gons can be considered as a cycle with six tails, i.e. edges connecting the vertices 

of the cycle with other vertices. Similarly, the boundary of each 3-cycle of 5-gons is 

a circuit of nine vertices, six of which are endpoints of six tails. We have to connect 

the six tails of the 6-cycle with 12 tails of two 3-cycles in order to obtain a net of 

6- gons. 

The 6-cycle C6 has two domains: outer and inner. There are two cases: either two 

3-cycles lie in distinct domains, or both lie in the same, say, outer domain. In the first 

case, by symmetry, we can consider only the outer domain. The Euler formula shows 

that the boundary circuit of the cycle of 5-gons should have three tails. It is easy to 

verify that it is not possible to form a net of 6-gons using three tails of the 6-cycle 

and six tails of the 3-cycle. 

In the second case, by the Euler formula, we have the 6-cycle with six tails and two 

3-cycles Cf and Cf each with six tails. Suppose there is a fullerene containing this 

configuration. Then, in this fullerene, there are chains of 6-gons connecting a 5-gon 

of the 6-cycle and a 5-gon of a 3-cycle. Consider such a chain of minimal, say, q, 

length. In this case, the 6-cycle is surrounded by q rings each containing six 6-gons. 

If we dissect the q\h ring of 6-gons into two 6-cycles each with six tails, we obtain a 

6-cycle surrounded by q — 1 rings. The boundary of the (q — l)th ring contains six 

tails. 

Let the chain of q 6-gons connect the 6-cycle with C$. At least two tails of the 

(q — l)th ring correspond (are connected) to tails of C^. Since the boundary of the 

(q ~~ 1 )th ring with six tails is similar to the boundary of the 6-cycle with six tails, our 

pioblem is reduced to the case when two tails of the 6-cycle are connected to two tails 

of C3 . There are two cases: either endpoints of two tails of C£ are separated on the 

boundary of C£ by a vertex, or not. We obtain two configurations, each consisting of 

a circuit with vertices that have or do not have tails. Both these configurations have 

the unique extension by 6-gons, which cannot be glued with the cycle Cf having six 
tails. 

If G5 = 4C3, then G comes by collapsing into a point of all four 3-gons of a 

({3, 6}, 3)-sphere vertices, such that no 6-gon has more than one 3-gonal neighbor. 
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If G5 = 2Ce, then G has two 6-cycles of 5-gons. Both of those cycles are encir¬ 

cling (6, 3)-polycycles, which are reduced to a single 6-gon. It is easy to see that one 

has t 6-rings of 6-gons separating two 6-cycles of 5-gons. So, we are in case (ii) of 

the theorem. □ 

10.5 Face-regular ({3, 4}, 4)-spheres 

All ({3, 4}, 4)-spheres that are 4Rj, satisfy 63-4 = (4 — j)p\. But, clearly, <?3_4 < 

3P2 = 24; so, we get v = 6 + p4 < 6 + ^L, which yields, for j = 0, 1, 2, 3, the 

upper bounds 12, 14, 18, 30 on the number v of vertices. Direct computation, using 

ENU, of the ({3, 4}, 4)-spheres yields the list presented on Figures 10.9, 10.10, 10.11, 

and 10.12. 

It looks too hard to describe all ({3, 4}, 4)-spheres that are 3Ro\ for example, the 

medial graph of any ({3, 4}, 4)-sphere with v vertices is a ({3, 4}, 4)-sphere with 

2v vertices that are 3Rq. Actually, as the number of vertices goes to infinity, the 

proportion of ({3, 4}, 4)-spheres that are 3Rq goes to 1. There are “much less” (still, 

an infinity) ({3, 4}, 4)-spheres 3R\, but a classification seems difficult also. 

8, D4d 

(also 3R2, Nr. 61) 

9, D3h 12, Oh 

(also 3/?o. Nr. 63) 

Figure 10.9 All ({3, 4). 4)-spheres that are 4R0, besides Octahedron 

10, D2 12, D3h 

Figure 10.10 All ({3, 4), 4)-spheres that are 47?,, besides Octahedron 
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12, D3d 

14, DAh 

(also 3/?i, Nr. 65) 

Figure 10.11 All ({3, 4), 4)-spheres that are 

14, Dld 

(also 3R\, Nr. 64) 

4R2, besides Octahedron 

(also 3R2, Nr. 66) 

22, Dld 

(also 3R\, Nr. 67) 

30, O = GC2j(Octahedron) 

(also 3R0, Nr. 68) 

Figure 10.12 All ({3, 4), 4)-spheres that are 4R2, besides Octahedron 
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But the case of 3R2 is much simpler; we have the following: 

Theorem 10.5.1 The only ({3, 4}, 4)-spheres that are 3R2 are either APrism4, or 

the infinite family of t-elongated octahedra (first spheres on Figures 10.11, 10.12 

correspond to cases t = 1,2). 

Proof. Let Fq be a 3-gon of a ({3, 4}, 4)-sphere with 3R2. Then Fq is adjacent to 

two 3-gons F\ and F2. These 3-gons are adjacent to other 3-gons. There are two 

cases: either F\ and F2 have, or have not, a common second adjacent 3-gon. In the 

first case, we obtain a configuration of four 3-gons surrounded by four 4-gons. This 

configuration generates the family of /-elongated octahedra, / > 1. In the second 

case, one obtains uniquely APrism4. □ 

10.6 Face-regular ({2, 3}, 6)-spheres 

A ({2, 3}, 6)-sphere that is 3Rj has <?2-3 = (3 - j)pi, so we get v = 2 + \p2 < 

2 4- 33-, which yields, for j =0, 1,2, the respective upper bounds 4, 5, 8 on v. We 

obtain the list presented in Figures 10.13, 10.14, and 10.15. 

If a ({2, 3}, 6)-sphere G is 2R\, then its dual G* is a sphere with vertices of degree 

two or three and faces of gonality 6. The vertices of degree two of G* are organized 

in pairs. We replace the edge between them by a 2-gon and obtain a ({2, 6},3)- 

sphere. This establishes a bijection between u-vertex ({2, 3}, 6)-spheres 2R\ and 

3, Dy, (also 2R\) 4, Td (also 2/?o) 

Figure 10.13 All ({2, 3}, 6)-spheres that are 3R0, besides Bundle6 

4, D2 5, D3;, (also 2Rq) 

Figure 10.14 All ({2, 3), 6)-spheres that are 3/?i, besides Bundle6 
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4, Did 8, Dbh (also 2/?0) 

Figure 10.15 All ({2, 3), 6)-spheres that are 3Ri, besides Bundle(, 

(2v + 2)-vertex ({2, 6}, 3)-spheres different from Bundle3 and GCxMBundlef), 

here v = k2 + kl +12 for some 0 < l < k. For example, a unique 3-vertex 

({2, 3}, 6)-sphere is 2R\ and it corresponds to the 8-vertex ({2, 6}, 3)-sphere. 

If we take a ({5, 6}, 3)-sphere G that is 5R\, then its dual G* is a sphere with 

vertices of degree 5 or 6 and faces of gonality three. The vertices of degree 5 of G* 

are in pairs and so, after we replace the edge between them by a 2-gon, we obtain 

a ({2, 3}, 6)-sphere 2/?o- It shows that there is no reasonable hope of obtaining a 

description of ({2, 3}, 6)-spheres 2R0. 
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General properties of 3-valent face-regular maps 

In this chapter we address the following problem: characterize all weakly face-regular 

({a, b}, 3)-maps on sphere or torus (see Chapter 9 for strictly face-regular ones). 

We used computer methods (by the consideration of all possibilities), when 

this approach worked, and theoretical, otherwise. The computer approach cannot 

work in the torus case, since, given a ({a, b}, 3)-torus that is bRj or aRi, we can 

obtain a ({a, b}, 3)-torus with the same property and arbitrary large number v of 

vertices. 

However, for many subcases, the torus case is simpler, since the Euler formula 

takes the form v — e + / = 0, instead of more complicated v — e + / = 2. To 

illustrate this point, a ({5, 7}, 3)-sphere that is 7R2, satisfies to x0 + x3 -f p7 = 20 

(see Theorem 15.1.1), which allows us to have an upper bound on v and enumerate 

such spheres, while a ({5, 7}, 3)-torus that is 7R2 satisfies to xo + x3 + pi = 0 and, 

hence, does not exist at all. 

The shape of the results is also interesting. If the bRj ({a, b}, 3)-tori admit classifi¬ 

cation, then, usually, there is more freedom for the bRj {{a, b], 3)-spheres (compare, 

for example, Theorems 13.2.2 and 13.2.3). However, if the aR, ({a, b}, 3)-tori admit 

classification, then, usually, the possibilities for aRi ({a, b), 3)-sphere are more 

restricted (see, for example, Theorem 12.5.2). 

Here is a summary of the results and conjectures on finiteness of the number of 

({4, b}, 3)-spheres: 

• The number of ({4, b}, 3)-spheres bRj is 0 for j >b- 2 > 6 (Theorem 18.2.2); it 

is finite for j < 3 (all such spheres are given in Theorem 14.1.2 for j <2 and in 

Theorem 16.1.l(ii) for j = 3); it is infinite for j = 4 (all such spheres with b = 8 

are conjecturally listed in 17.1.3 and infiniteness is conjectured for b > 9). 

• The number of ({4, b), 3)-spheres 4R0 is infinite for b = 6 and 7 only (see 

Theorems 12.0.1 (i), 12.1.2, and 12.0.1). 

• The number of ({4, b), 3)-spheres 4R\ is infinite for b = 6, 7, 8, and 9 (see 

Theorems 12.2.2, 12.2.3, 12.2.4, and 12.0.1). 
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• The number of ({4, b}, 3)-spheres 4R2 (different from Prismb) is infinite for 

6 < b < 13 and b = 15 and such spheres do not exist for other values of b 

(see Theorems 12.3.1 (ii), 12.3.2. 12.3.3, 12.3.4, 12.3.5, 12.3.7, 12.3.9, 12.3.6, and 

12.3.8). 

Here is a summary of results and conjectures on the existence of ({4, b}, 3)-tori: 

• A ({4, b}, 3)-torus bRj does not exist if j < 3 (Theorems 14.1.2 and 16.1.1 (i)). 

For j = 4, it exists if and only if b > 8; moreover, it is 4/?0 for b = 8 (Theo¬ 

rem 17.1.2 (i), (ii)) and characterized (Theorem 17.1.2 (iii), (iv)) for b = 9. For 

j = 5, it exists if and only if b > 7; moreover, it is ARq for b = 7 (Theo¬ 

rem 18.1.1). For j = 6 and if the ({4, b}, 3)-torus is 3-connected, it is also 4R2 

(Theorem 18.2.1). 

• A ({4, b}, 3)-torus 4/?, can exist only for O', b) = (0,7), (1,7), (1,8), (1,9), 

(2,7 < b < 16), (2, 18) (Theorems 12.0.1 (ii) and 12.3.l(i)). See Figure 12.4 

for an example with (i, b) = (1,9). 

Here is the summary of results and conjectures on the finiteness of the number of 

({5, b], 3)-spheres: 

• The number of ({5, b), 3)-spheres bR0 is finite (and equal 4, 2, 3, 3, 5, and 4) if 

and only if 6 < b < 11 (Theorem 13.2.3 lists them for b < 12 and proves it for 

b = 12; we conjecture it for b > 12). 

• The number of ({5, b}, 3)-spheres bRi is finite (and equal 3, 4, 7, and 22) for 

6 < b < 9 (Figures 10.4, 14.1, 14.2, 14.3, and 14.4 lists them for 6 < b < 9; we 

conjecture infiniteness for b > 9). 

• The number of ({5, b), 3)-spheres bR2 is finite (and equal 9 and 27) if and only if 

6 < b < 7 (Theorem 15.1.3 proves it for b > 8; for b = 6 and b = 7 all are listed 

in Figures 10.5, 15.6, and 15.7). 

• The number of ({5, b}, 3)-spheres bR3 is finite (and equal 6) if and only if b = 6 

(it is Conjecture 16.2.3; Theorem 16.2.4 proves it for b = 9, 10, 12). 

• The number of ({5, b), 3)-spheres bR4 is finite (and equal 8) if and only if b = 6 

(see Figure 10.7, Theorems 17.2.1, 17.2.2, 17.2.4 prove it for b = 7, 8, 10, 13, 16). 

• The number of ({5, b}, 3)-spheres bR5 is finite (and equal 2) if and only if b = 6 

(Theorems 18.1.6, 18.1.7 prove it for b < 21, except for undecided cases b = 

7, 10, 13, 16, 19, we conjectuie it for all b and Figures 19.2, 18.1 give examples 
for b = 7,8, 9, respectively). 

• By Theorem 12.0.1, if b > 7, then a ({5, b), 3)-sphere 5R, can exist only for i = 2 

(see [DGr02]) or i = 3. A ({5, b}, 3)-sphere 5R3 exists if and only if 6 < b < 10 

(Theorem 12.5.2 lists them for b = 7 and proves it for b < 10, Theorem 12.5.9 

gives an infinite series and seven examples for b = 8, Theorem 12.5.11 gives a 

unique case for b = 9, Theorem 12.5.12 gives three examples for b = 10). 
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Here is a summary of the results and conjectures on the existence of ({5, b}, 3)-tori: 

• ({5, b), 3)-torus bR0 exists if and only if b > 12; for b = 12 it is bR0 if and only 

if it is 5/?3 (Theorems 13.2.2 and 12.5.2(ii)). 

• ({5. £>}, 3)-torus bR\ exists if and only if b > 10; for b = 10 it corre¬ 

sponds to a special perfect matching of a 6-valent tiling of the torus by 3-gons 

(Theorems 14.2.2(ii), 14.2.5, and 14.2.3). 

• ({5, b), 3)-torus bR2 exists if and only if b > 8; for b = 8 it is bR2 if and only if 

it is 5R2 (Theorems 15.2.1 and 15.2.2). 

• ({5, b}, 3)-torus bR2 exists if and only if b > 7; for b = 7 it is bR2 if and only if 

it is 5R\ (Theorems 16.2.2 and 16.2.1). 

• ({5, b}, 3)-torus bR^ exists if and only if b > 7 (Theorem 17.2.3). 

• By Theorem 12.0.1, a ({5, b}, 3)-torus 5R, can exist only for i = 2 and i = 3. 

A ({5, b}, 3)-torus 5R2 exists if and only if b = 7 or 8 (see Theorem 12.4.1). 

A ({5, b), 3)-torus 5R2 exists if and only if b — 8, 10, 11, 12; moreover, it is 

bR\2-b f°r b = 10, 11, 12 (Theorems 12.5.2, 12.5.1 l(ii). Lemma 12.5.5(h), and 

Conjecture 12.5.14 for b = 10). 

In view of above summaries for spheres and tori, we conjecture: 

Conjecture 11.0.1 The number of ({a, b}, 3)-spheres bRj is infinite if and only if a 

({a, b}, 3)-torus bRj exists. 

But the similar conjecture for a/?, does not hold, for example for (a, b\ i) = (5, 11; 3) 

(Lemma 12.5.4) or (5, 12; 3) (Lemma 12.5.3). 

We present some pictures of ({a, b}, 3)-maps, especially when full classification 

was undertaken. However, space constraints prevent us from showing all that we 

would have liked and we refer to [DuDe06] for more information. 

Face-regular maps are of interest for chemistry and physics, because many of them 

already appear there. For example, many of known polyhedral (energy ) minimizers 

in the Thomson problem (for given number of particles on sphere) or Tammes prob¬ 

lem of minimal distance between n points on the spheie or Skyime problem (for 

given integer barionic number) are face-regular ({5, 6}, 3)-polyhedra. Face-regular 

({5, 7}, 3)-planes are related to a putative “metallic carbon” deformation of the 

graphite lattice (see [DFSV00]). Also, for example, all known polyhedra P, such 

that their skeleton is an isometric subgraph of a hypercube or a half-hypercube, have 

either P, or its dual P* face-regular. 

Theorem 11.0.2 If the set of 5-gonal faces of a ({5, b}, 3)-sphere bRj contains at 

least two (5, 3)-polycycles A2 or at least two (5, 3)-polycycles A3, then theie exists 

an infinity of ({5, b}, 3)-spheres that are bRj. 
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Proof. The polycycle A2 (see Figure 7.2) has a central edge; by removing it, 

we obtain a (5, 3)ge„-polycycle (see Section 4.5) that is the union of two (5, 3)- 

polycycles E2 (see Figure 7.2). This (5, 3)gen-polycycle has two boundaries, which 

have the same boundary sequence (233)2. Hence, both sides can be filled by the same 

structure, which again has at least two (5, 3)-polycycles A2 and is again bRj. This 

construction can, obviously, be repeated and we obtain an infinite series. 

Take an elementary (5, 3)-polycycle A3 (see Figure 7.2) and remove its central 

vertex. The result is a (5, 3)ge„-polycycle with two boundary sequences. It turns out 

that those boundary sequences are identical, namely, (322)3. Hence, we can fill both 

those boundaries by the same structure, which is again bRj. So, we obtain a larger 

({5, 8}, 3)-sphere, which is bRj. This operation can, obviously, be repeated and we 

obtain larger ({5, b}, 3)-spheres, which are bRj. By creating a chain of such spheres, 

we get an infinity of them. □ 

The following theorem, which is a slight generalization of Theorem 5.2.1, is very 

helpful in deriving classification results. 

Theorem 11.0.3 Let P be a finite (a, 3)gen-polycycle with t boundaries. Denote by 

in and i>3 the number of vertices of degree 2, 3 on the boundary. Let x and pa be the 

number of interior vertices and a-gonal interior faces. Then, we have: 

apa — 3x = v2 + 2u3 

Pa ~ § = (2 — 0 + • 

If a / 6, then the system of equations has the solution: 

Pa = ^{^2 - v3 - 6(2 - t)} 

x = ^{2v2 - (a - 4)u3 - 2a(2 - 01- 

Proof. Consider this set of 5-gonal faces as a plane graph with 5-gons and t other 

faces. 

By counting in two different ways the number e of edges, we obtain 2e = apa + 

v2 + i>3 = 2v2 4- 3u3 + 3x, which implies apa — 3jc = v2 + 2u3. 

On the other hand, Euler formula v — e + f = 2 implies, by writing v = v2 +1>3 + x 

and f = t + pa, the relation pa — | = (2 — t) + y. The solution comes by solving 

the linear system. □ 

11.1 General ({a, b}, 3)-maps 

Definition 11.1.1 Given an ({a, b}, 3)-map G (on sphere or torus) that is bRj, asso¬ 

ciate to it a map b(G) (on sphere or torus, respectively) formed by the b-gonal faces 

of G and their adjacencies. It is an induced map of the dual map ofG. 
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Note that the map b(G) can be non-connected. All ({5, b}, 3)-maps that are bR0 

or bR\ are such. By the classification of (4, 3)-polycycles in Section 4.2 the only 

({4, b), 3)-map that is bRj and with b(G) non-connected is Prismb- 

Corollary 11.1.2 

(i) If a ({a, b}, 3)-polyhedron G is bRj, then j < 5. 

(ii) If a 3-connected ({a, b}, 3 )-torus G is bRj, then j < 6. 

Proof, (i) The sphere b(G) does not contain any 2-gon, since, otherwise, it would 

imply that G is not 3-connected. Hence, we can apply Theorem 1.2.3(h) and obtain 

j < 5- 

(ii) In the toroidal case, the 3-connectedness implies that the gonalities of faces of 

b(G) is at most 3. From Theorem 1.2.3(h), we get j < 6. □ 

If we remove the hypothesis of 3-connectedness, then there is no upper bound 

on j. For example, by Theorem 13.2.4, there exists a ({5, 5 j], 3)-sphere that is 5 jRj, 

for any j > 2. 

Lemma 11.1.3 If an ({a, b}, k)-map is bRj for j = b — \, then it is oRq. 

Proof. It suffice to see that any a — a adjacency implies j < b — 1. □ 

Theorem 11.1.4 Let M be a ({a, b}, 3 fsphere or torus that is bRj. 

(i) If a — 3, then: 

• If M is a torus, then j > 6. If j = 6, then M is 3Ro. 

• If M is a sphere, then j < 6 implies pb < If j = 6, then e3-3 = 6. 

(ii) If a = 4, then: 

• If M is a torus, then j > 12 — b. If j = 12 — b, then M is 4i?o- 

• If M is a sphere, then j < 12 — b implies pb < \2-t-j • ^2 = ' 2 — Z?, then 

^4_4 =12. 

(Hi) If a — 5, then: 

• If M is a torus, then j > 30 — 4b. If j = 30 — 4b, then M is 5Ro. 

• If M is a sphere, then j < 30 — 4b implies pb < 30 • If j = 30 — 

then ^5-5 = 30. 

Proof. Euler formula (1.1) is written as: 

pb(b - 6) = pa(6 -a)-6x 

with x = 2 for the sphere and 0 for the torus. We have furthermore the following 

equality: 

Ca-b = Pb(b — j) — aPa — 2ea~a 
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If we eliminate the term pa from those equations then we obtain the following 

equations for a = 3, 4, 5: 

PbU - 6) = 2e3_3 - 6x; PbU + b - 12) = 2e4-4 - 12x; 

Pb(4b + j - 30) = 2e5-5 - 30x 

Let us consider the case a — 4, the others being similar. For tori the equation is 

ph{b + j - 12) > 0, which implies j > 12 - b. If j = 12 - b, then we have 

e4_4 = 0. For spheres, if j < 12 — b, then pb = ~\2-b-j — n-t-j" w^e if 

j — 12 — b, the equation simplifies to e4_4 =12. □ 

The ({4, b}, 3)-spheres bRj are listed in Theorem 16.1.1, the ({4, b}. 3)-spheres 

bR2 are listed in Theorem 15.1.4, there is no ({4, b}, 3)-spheres bR\ by Theorem 

14.1.2 and the only ({4, b], 3)-sphere bRo is Prismb. The ({4, 7}, 3)-spheres 7R4 

are listed in Figure 17.1, A conjectural list of ({4, 8}, 3)-spheres 8R4 is given in 

Conjecture 17.1.3; there is an infinity of them. Three examples of ({4, 7}, 3)-spheres 

that are 7Rs are known (see Figure 18.3), but finiteness or not is undecided for them. 

By Theorem 12.0.1 we know that there is no ({5, 7}, 3)-spheres 5Ri for i < 1. 

All ({5, 7}, 3)-spheres that are 77?2 are enumerated in Chapter 15 (see Figures 15.6 

and 15.7). 

11.2 Remaining questions 

We list here some remaining interesting problems for 3-valent face-regular two-faced 

maps: 

1 Decide finiteness or not for ({4, 7), 3)-spheres 7R5 and ({5, 7}, 3)-spheres 1R5. 

2 Decide finiteness or not for ({5, 7}, 3)-spheres 7R3 and ({5, 10}, 3)-spheres 5R3. 

3 Decide existence of ({5, b}, 3)-tori bR$ 

One of the most interesting questions that arise in this research is to check 

our conjecture that an infinity of ({a, b}, 3)-spheres bRj exists if and only if an 

({a, b}, 3)-torus bRj exists. 

For every pair aR,, bRj and fixed genus g > 2, the number of strictly face-regular 

possibilities is, clearly, finite. But it is, certainly, extremely large. An interesting 

question would be to decide, what type of strict face-regularity can appear on 

surfaces of genus g > 2. Another direction is to study all weakly face-regular 

({«, b), k)-maps with k > 4. 

We can also permit a = b, i.e. we can distinguish two classes of a-gons in the 

main problem. This is similar to (R, g)-polycycles considered before, where faces 

were partitioned into holes and proper ones. 
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Spheres and tori that are aRj 

We start with the following general result. 

Theorem 12.0.1 Let G be a 3-connected ({a, b}. 3)-sphere or torus that is aR{ with 

b >7. Then the following hold: 

(i) aRj is in one of following cases: 3Ro, 4Ro. 4R\, ARi, 5R\, 5f?2> 5i?3, 5R^. 

(ii) If it is 5R4, then it is snub Prismb. 

(Hi) If it is 5R\, then b = 7 it is Case 17 of strictly face-regular planes in Table 9.3. 

Proof. We have a = 3, 4, or 5. If a ({3, b], 3)-map is 3-connected, then it is 3Rq, 

which excludes 3R\ and 3Ri. 

Property aRa-\ implies bR0 (see Theorem 11.1.3). There is no ({4, b}, 3)-maps 

4R3 and bR0 and the only ({5, b). 3)-map that is 5R4 and bR0 is snub Prismb (see 

Table 9.1). 

Take a ({5, b], 3)-sphere or torus that is 5R\. Euler formula reads 12/ = Ps - (b— 

6)ph. There are nP = y pairs of 5-gons. Every such pair defines 4nP patterns b5b and 

2nP patterns b55b in the boundary sequences of b-gons. A packing argument yields: 

2(4nP) + 3(2nP) = 1 p5 < bph. 

Since G is on sphere or torus, we have x > 0, i.e. p5 > (b — 6)pb. There¬ 

fore, b = 7, ps = pi and x = 0; so, G is a torus. Since p5 = pi, the boundary 

sequence of 7-gons is of the form aq ... am with a, = 57 or 557. It is easy to see that 

the only possibility is two terms of the form 57 and one term of the form 557. So, 

G is IR-i. D 

12.1 Mapsa/?o 

Theorem 12.1.1 Let G be a ({a. b], 3)-sphere or torus a R0 with b > 6; then it holds: 

(i) If a = 3, then b < 12. 

187 
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1 Ifb = 12, then G is Case 6 of strictly face-regular torus. 

2 Ifb =11, then G is Case 5 of strictly face-regular torus. 

3 ifb = 7, 8, 9, 10 and G is a sphere, then G has at least 20, 24, 52, 60 vertices, 

respectively. 

(ii) If a — 4, then b < 8. 

1 Ifb = 8, then G is Case 14 of strictly face-regular torus. 

2 Ifb = 1, and G is a sphere, then G has at least 80 vertices. 

The case a = 5 does not occur. 

Proof, a = 3, 4 or 5 by Euler formula for ({a, b}, 3)-maps: 

Pa( 6 -a) - pb(b - 6) = 6x 

with x — 2 or 0 for sphere or torus. By the property oRq, the number ea~b of a-b 

edges satisfies to: 

ea-b = apa < pb [b/2], 

because the corona of any fi-gon cannot have a-gons on 2 neighboring edges. So, we 

obtain: 

6x = (6 - a)pa - ph(b - 6) < pb4>a(b) with 4>a(b) = -—- |fi/2J - (b - 6). 
a 

If <Ua(b) < 0, then it excludes the existence of both the sphere and torus. If *1*a(b) = 

0, then x = 0, i.e. G is a torus and it is bRj for some j. If > 0, then both the 

torus and sphere cases are possible. Furthermore, if G is a torus, we have pb > 

thereby yielding the lower bound on v. 

The result follows by considering a = 3, 4, 5 in the above relation. □ 

Theorem 12.1.2 There exist two infinite series of ({4, 7}, 3^-spheres that are 4R0. 

They have 140 + 84/ vertices (see two examples on Figure 12.1). For i even, they 

are distinct, one is of symmetry Dlh, the other of symmetry Dld. For i odd, they are 

isomorphic and of symmetry D-/. 

Proof. From the drawing on Figure 12.1, it is clear that such spheres exist. Now we 

will show the existence of an infinity of them. 

We have the following band structure of 4- and 7-gons: 

The left and right hand sides of this band can be closed, in order to obtain a structure 
with 14 4-gons. 
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140, Dld 140, Dlh 

Figure 12.1 First examples of two infinite series of ({4, 7), 3)-spheres that are 4Ro (see 

Theorem 12.1.2) 

This structure can be inserted along one of the cutting lines, indicated below, and 

we gets ({4, 7}, 3)-sphere that is again 4R0 and has 84 more vertices. 

Obviously, the above operation can be repeated, again and again. 

12.2 Maps 4Ri 

Theorem 12.2.1 Let G be a ({4, b), 3)-sphere or torus that is 4R\. Then itholdsthat: 

(i) b < 10. 

(U) ifb = 7,8,9 and G is a sphere, then it has at least 32, 48, 108 vertices. 

(Hi) Ifb = 10, then G is a torus and it is also 10 R4 (i.e. Case 16 of Table 9.3) 

Proof, (i) ({4, b}, 3)-maps 4R\ satisfy to Euler formula 6x = 2p4 - (b - 6)ph with 

X being equal to 2 for spheres and 0 for tori. 

We have p^ = 3x + Pb■ 
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Every pair of adjacent 4-gons creates pair of adjacent 4-gons, which corresponds 

to subsequence b44b in the corona sequence of b-gons, and pair of isolated 4-gons, 

which corresponds to the subsequence b4b in corona sequence of b-gons. So, there 

are p4 patterns b44b and p4 patterns b4b in the set of corona sequences of b-gonal 

faces of the considered map. A packing argument yields the inequality: 

2/74 + 3/74 < bpb, 

which simplifies to 30/ < (30 — 3b)pb- x > 0; so, b < 10. 

(ii) If G is a sphere, then x = 2 and, for b = 7, 8, 9, and the above 

inequality yields pb > y, 10, 20, respectively. Parity arguments yield ph > 

8, 10, 20 and the corresponding lower bounds 32, 48, 108 on the number of 

vertices. 

(iii) For ({4, 10}, 3)-torus 4R\, the inequality reads 30x < 0, which yields 

X = 0, i.e. G is a torus and 2/?4 + 3/74 = 10/710. But this means that in the 

corona of 10-gons, the pattern 102 does not occur. So, their corona is of the form 

oc\ ...a,- with au being 10.4 or 10.42. Denote by y2 and y3 the number of a, 

being equal to 10.4, 10.42, respectively, for a given 10-gonal face F. We have, 

clearly, 2y2 + 3y3 = 10, whose solutions are (y2, y3) = (5, 0) or (2, 2). So, for 

all solutions we get y3 < y2. But, on average over all 10-gonal faces, we have 

y3 = y2, this is possible only if y2 — y3 for every 10-gonal face. So, the toms 

is 10/?4. □ 

The lower bound on the number of vertices of ({4, b), 3)-spheres is met only for 

b = 8 (see Figures 12.2, 12.3, 12.5 and Theorem 12.2.4). 

44, D2 
44, Dm 

Figure 12.2 Two smallest ({4, 7}, 3)-spheres that are 4/?i 

Theorem 12.2.2 There exist an infinity of ({4,1}, 3)-spheres that are 4R\. 
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Proof. The proof consists of building the following initial example with 140 vertices 

and symmetry D^: 

Figure 12.3 Two ({4, 8), 3)-spheres that are 4R\ 

We will cut along the over-lined path and insert the following structure, which 

consists of 7 units: 

Obviously, the obtained map is again a ({4, 7}, 3)-sphere that is 4/?i, and the 

construction can be repeated. ^ 

Theorem 12.2.3 There is an infinity of({4, 8}, 3)-spheres that are AR{. 

Proof. We construct the following example of a ({4, 8), 3)-sphere that is AR\: 
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Figure 12.4 A ({4, 9), 3)-torus that is 4/?| 

224, D} 

The idea is to cut along the line, depicted in above drawing, and insert inside the 

following band structure: 

Obviously, the above operation can be repeated. □ 

There exist ({4, 9}, 3)-tori that are AR\, see an example on Figure 12.4, with 

(v,p4,p9) = (20,6,4). 

Take a ({4, 9}, 3)-sphere G that is 4/?j, and map every pair of adjacent 4-gons to 

a single edge. The obtained reduced sphere, denoted by Red(G), is still 3-valent. 

The set of pairs of adjacent 4-gons of G yields an edge-set £S(G) in Red(G), which 

satisfies the following properties: 

1 It is a matching, i.e. no vertex belong to two edges of £S(G). 

2 For every face F of G, denote by h(F) the number of edges in ES{G) that are 

incident to a vertex of F (those edges contain either an edge, or just a vertex 
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of G). We have the equation h(F) + 1(F) — 9 with 1(F) being the gonality 

of F. 

If a set of faces of a plane graph satisfies the above conditions, then we call it a 

special ({4, 9}, 3)-matching. 

Theorem 12.2.4 (i) If G is a v-vertex ({4, 9}, 3)-sphere that is 4R\, and G' = 

Red(G) is its associated graph, then v = |i/ + 18. 

(ii) The smallest ({4, 9}, 3)-sphere that is 4R\ is the one with 128 vertices depicted 

on Figure 12.5. 

(iii) There is an infinity of({4, 9}, 3)-spheres that are 4R\. 

128, D3 148, D2 

Figure 12.5 Some ({4, 9), 3)-spheres that are 47?i 

Proof, (i) Take a ({4, 9}, 3)-sphere that is 4R\ and has v vertices. We have the equa¬ 

tions 3u = 4p4 + 9p9 and 2/?4 — 3/?9 = 12. The number of pairs of 4-gons is f. 

The sphere Red(G) has v' = v - 2p4 vertices. We obtain easily v' = 2p9 - 4 and 

v — 8 + 5p9 from which the result follows. 

(ii) Take a ({4, 9}, 3)-sphere that is 4Rh and consider its reduced sphere Red(G) 

that is a ({5, 6, 7, 8, 9}, 3)-sphere. We enumerate ({5, 6, 7, 8, 9}, 3)-spheres up to 44 

vertices and, for every one of them, we search for special ({4, 9}, 3)-matchings. We 

found one graph with 44 vertices that is a ({5, 6}, 3)-sphere and has a unique special 

({4, 9}, 3)-matching. It defines a ({4, 9}, 3)-sphere that is 4R\, and part (i) above 

proves that it is the smallest one. 

(iii) Consider the following ({5, 6}, 3)-sphere with its special ({4, 9}, 3)-matching. 
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The special ({4, 9), 3)-matching The cutting lines 

This sphere is cut along the cutting lines and in place is inserted the following 

structure: 

It is easy to see that the obtained structure is still a ({5, 6}, 3)-sphere with a special 

({4, 9}, 3)-matching. Furthermore, the operation can be repeated indefinitely. □ 

Although the above proof is very easy to check, the way to obtain the example is 

interesting. First, restrict to fullerenes. Second, restrict the search to cylindrical struc¬ 

tures, since almost all infinite series, so far, were of that form. Then search amongst 

those of symmetry D3, since it is the maximal possible symmetry. The requirement 

of special symmetry allow us to restrict ourselves to equivariant special ({4, 9}, 3)- 

matchings, i.e. special ({4, 9}, 3)-matchings, which have the same symmetry group 

as the fullerene, so as to prune the search tree. We obtained the fullerene with the 

special ({4, 9}, 3)-matching drawn above, set a cutting line, and considered the prob¬ 

lem of finding a possible structure to insert as a torus problem. We found 14 different 

possibilities and selected the one of maximal symmetry. 

If we search for special ({4, 9}, 3)-matchings in fullerenes, then this leads to 
({4, 9}, 3)-spheres with special ({4, 9}, 3)-matchings: 
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1 one with 128 vertices of symmetry D3, 

2 two with 148 vertices ((1, D2) and (1, T)), 

3 10 with 168 vertices ((5, C2) and (5, D3)), 

4 23 with 188 vertices ((9, Ci), (10, C2), (3, D2), and (1, D3)), 

5 66 with 208 vertices ((44, C\), (19, C2), (2, C3), and (1, C*)). 

12.3 Maps 4R2 

Theorem 12.3.1 below gives the necessary conditions for existence of ({4, b}, 3)- 

spheres or tori that are 4R2. The existence part of an infinity of ({4, b), 3)-spheres 

4R2forb = 6— 13, 15 is proved in Theorems 10.3.1, 12.3.2, 12.3.3, 12.3.4, 12.3.5, 

12.3.6, 12.3.7, 12.3.8, and 12.3.9. The existence of ({4,fc}, 3)-tori4/?2 bR6 for b = 8, 

10, 12, 14, 16, and 18 proves, a fortiori, the existence of ({4, b}, 3)-tori 4R2 for those 

values (see Table 9.3). For b = 7, 9, 11, 13, 15 the existence of ({4, b}, 3)-tori 4R2 is 

proved in Theorems 12.3.2, 12.3.4, 12.3.6, 12.3.8, and 12.3.9. 

Theorem 12.3.1 (i)A({4, b}, 3)-torus4R2 exist only for b = 7- 16, 18. For b = 14, 

16, 18 such tori are strictly face-regular. 

(ii) A ({4, b}, 3)-sphere 4 R2, which is not Prismb, exist only for b = 6 - 13, 15. 

The number of vertices of such spheres should be at least 20 (for b = 7), 32 (for 

b = 8), 28 (for b = 9), 44 (for b = 10), 92 (for b = 11), 56 (for b = 12), 116 (for 

p = \2)t 140 (for b = 15). If it has this minimal number of vertices, then it is strictly 

face-regular. 

Proof. A cycle of 4-gons cannot exist either in case (i) or in case (ii), due to the 

exclusion of Prismb. So, all 4-gons are part of triples of 4-gons {4, 3} - v. Denote 

by n, the number of such triples. We have the relations p4 = 3nt. Furthermore, by a 

packing argument, we obtain the inequality: 

b 
6n, - <4-b < Pfc2|_-J- 

The Euler formula (1.1) is 6/ =2p4 - (b - 6)ph with x being 2 for the sphere and 

0 for the torus. So, we obtain: 

6x = 2/?4 -(b- 6)pb < Pb4>(b) with 4>(b) = 2L^J - (b - 6). 

The function satisfies to: 

• 4>(b) > 0 for b e {6,..., 13, 15}; 

• <p(b) — 0 for b = 14, 16, 18; 

• 4>(b) < 0 for b = 17 or b > 19. 
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If 4>(b) < 0, then it excludes the existence of a sphere or a torus. If 4>(b) = 0, then 

X = 0. Also, all b-gonal faces should be adjacent to exactly 2J 4-gons, i.e. the 

torus is strictly face-regular. 

If <lf(b) > 0, then we have the condition pb > which gives announced lower 

bounds. □ 

The ({4, 3 }-v)-replacement of a map G by a set S of vertices consists of replacing 

every vertex in 5 by a (4, 3)-polycycle {4, 3} — v. 

Theorem 12.3.2 (i) Every ({4,7},3)-map is obtained from a ({5,1}, 3)-map by 

selecting a set S, such that every 5-gon is incident to exactly one vertex of S, and 

doing ({4, 3} — v)-replacement of all vertices in S. 

(ii) There exists a ({4, 7}, 3)-torus 4R2. 

(Hi) Given a v-vertex ({4, 7}, 3)-sphere 4R2, we obtain a (v + 36)-vertices 

({4, 7}, 3 )-sphere 4 R2, by replacing the central vertex of this triple by the following 

structure: 

(iv) There is an infinity of ({4, 7}, 3)-spheres that are 4R2. 

Proof, (i) Take a ({4, 7}, 3)-map and replace every (4, 3)-polycycle {4, 3} —1>, appear¬ 

ing in it, by a vertex. We get a map with 3-, 5-, and 7-gons. We need to prove that 

3-gons cannot occur. II there is a 3-gon, then, in the original map, a 7-gonal face was 

incident to two (4, 3)-polycycles {4, 3} — v. So, one of adjacent 7-gons is also inci¬ 

dent to those two {4, 3} — v. This implies that those two 7-gons are adjacent to two 

common 7-gonal faces, say, F\ and F2. Those two faces are incident to one (4, 3)- 

Polycyde {4, 3} - v. We get the contradiction by seeing that those faces, fj and F2, 

are adjacent to a 2-gonal face. 

(ii) There exists a ({5, 7}, 3)-torus 7R4 with 5-gons organized in triples (see 

Section 9.3, Case 18). So, we can apply the operation, given in (i), and get the torus. 

(iii) This result is obvious and (iv) follows by repeated applications of (iii). □ 

Theorem 12.3.3 There is an infinity of({4, 8}, 3)-spheres 4R2. 

Proof. Take a (4, 3)-polycycle {4, 3} - v and add It rings of three 6-gons around it. 

Then make three vertices of degree 2 adjacent to one other vertex (this forms another 



Spheres and tori that are aRj 197 

(4, 3)-polycycle {4, 3} — v). We obtain a 3-valent plane graph G, which contains two 

triples of 4-gons. In order to obtain a ({4, 8}, 3)-sphere 4/G, we should find a subset 

S of the vertex-set such that: 

• every 4-gon is incident to two vertices of S and 

• every 6-gon is incident to one vertex of S. 

For the elements of S, we take first the vertices of G that are incident to just one 

4-gon of G. Then we need to find vertices that are incident to three 6-gons and cover 

the remaining 6-gons. It is easy to see that this is, indeed, possible. 

56, Did 80, C2h 

See above first examples of the infinite series. 

Theorem 12.3.4 (i) There is an infinity of{{4, 9}, 3)-spheres 4R2. 

(ii) There exists a ({4, 9}, 3)-torus 4R2. 

Proof, (i) Take the following graph: 

cut it along the boldfaced edges and insert the following structure. 
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with the circled vertices being ({4, 3} — u)-replaced. The operation can, clearly, be 

repeated and we get an infinite series. 

(ii) The above drawing in (i) is, clearly, a part of a plane tiling by such structures. 

Its quotient is the required torus. □ 

Theorem 12.3.5 There is an infinity of({ 4, 10}, 3 fspheres that are 4 R2. 

Proof. Take the following ({4, 10}, 3)-sphere that is 4R2: 

and insert, along the boldfaced edges, the following structure: 

with the circled vertices being {4, 3} — u-replaced. The operation can be repeated and 

we obtain an infinite sequence of required spheres. □ 

Theorem 12.3.6 (i) There exist an infinity of({4, 11}, 3)-spheres that are 4R2. 

(ii) There exist a ({4, 11), 3)-torus that is 4R2. 

Proof, (i) The proof consists of using the infinite families of ({5, 7}. 3)-spheres 

that are 7R4, constructed in Theorem 17.2.2. The 5-gons of those polycycles are 

organized into two polycycles A3 and bands (of length 6) of 5-gons. Define a 
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({4,3} — ^-replacement set S by assigning the ({4,3} — u)-vertices in the 

following way: 

So, every 5-, 7-gon is incident to three, two, respectively, vertices in S. This means 

that, by doing the ({4, 3} — u)-replacement, we obtain a ({4, 11}, 3)-sphere 4R2. Since 

the series of Theorem 17.2.2 is infinite, we have an infinite series. 

Figure 12.6 A ({4, 11}, 3)-sphere that is 4R2 

(ii) The figure below gives a ({5, 7}, 3)-torus. 

By doing ({4, 3) - ^-replacement of the circled vertices, we get a ({4, 11}, 3)-torus 

4 R2. D 
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Theorem 12.3.7 (i) There is an infinity of{{4, 12}, 3)-spheres that are 4R2. 

(ii) There is a ({4, 12}, 3 fsphere 4 R2 of symmetry O. 

Proof, (i) Take the following ({4, 12}, 3)-sphere that is 4R2, 

and insert along the boldfaced edges the following structure: 

with the circled vertices being {4, 3} — u-replaced. The operation can be repeated and 

we obtain an infinite series of required spheres. 

(ii) Take GC2p(Cube), i.e. Nr. 26 and triple it along the set of vertices, which are 

incident to a 4-gon or to a 3-fold axis of symmetry. □ 

Theorem 12.3.8 (i) There exist an infinity of ({4, 13}, 3)-spheres that are 4R2. 

(ii) There exist a ({4, 11}, 3)-torus that is 4R2. 

Proof, (i) The proof consists of using the infinite families of ({5, 7}, 3)-spheres that 

are 7R4 constructed in Theorem 17.2.2. As in Theorem 12.3.6, we will define a set 

S, which defines the ({4, 3} - u)-replacement. Every 5-gonal face should be incident 

to four elements of S and every 7-gonal face should be incident to three elements of 

S. Hence, it is easier to use the complement S = {1,..., u} - S with v being the 

number of vertices of the plane graph. 

The 5-gons of those graphs are organized into two polycycles A3 and bands, of 

length 6, of 5-gons. The 7-gons are organized in a series of two parallel rings of 

length 3. There exists a simple zigzag that separates those two rings. Assign all those 

vertices to S. For the 5-gons, assign vertices in the following way: 
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So, every 5-, 7-gon is incident to one, four, respectively, vertices in S. This means 

that by doing the ({4, 3} — u)-replacement on S, we obtain a ({4, 13}, 3)-sphere 4R2. 

Since the series of Theorem 17.2.2 is infinite, we have an infinite series. 

(ii) The figure below gives a ({5, 7}, 3)-torus. 

By doing ({4, 3) - ^-replacement of the non-circled vertices, we get a ({4, 13}, Si- 

torus 4R2. ^ 

Theorem 12.3.9 (i) Given a ({5,l},3)-map that is 7R4 and such that 1-gons 

have the corona 7453, we can obtain a ({4, 15}, 3)-map that is 4R2, by ({4, 3} - 

v)-replacement of the set of vertices incident to 5-gonal faces. 

(ii) There exists a ({4, 15}, 3)-torus that is 4R2. 

(iii) There exists an infinity of({4, 15}, 3fispheres that are 4R2. 

Proof, (i) This result is obtained by considering the local structure. 

(ii) Take the unique ({5, 7}, 3)-torus that is 5R2 and 7R\, and use (i). 

(iii) The ({5, 7}, 3)-spheres, constructed in Theorem 17.2.2, give, using (i), an infi¬ 

nite series. 
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Theorem 12.3.10 (i) If G is a ({4, 11}, 3)-sphere that is 4R2 and different from 

Prism ii, then it is obtained by the ({4, 3} - v)-replacement of a set S in a 3-valent 

plane graph G'. G' has -4+\2x vertices, G has 8 + 42x vertices, and S has 2 4- 5* 

vertices, for some x > 1. 

(ii) If G is a ({4, 13}, 3 )-sphere that is 4 R2 and different from Prism i3, then it is 

obtained by the ({4, 3} - i^-replacement in a set S of a 3-valent plane graph G'. G' 

has —4 + \2x vertices, G has 8 + 54* vertices, and S has 2 +lx vertices, for some 

x > 1. 

Proof. We prove only (i), since the proof of (ii) is very similar. Denote by n\ the 

number of vertices of G', which are not ({4, 3} — u)-replaced, and by n2 the number 

of vertices of G', which are ({4, 3} — u)-replaced. Then we have p$ = 3n2 and 

—5/?i i +2^4 = 12. Denote by v the number of vertices of G. We have v = n\ 4-1 n2 

and 3v = Wp\\ + 4p\. Eliminating the unknown pu, v and p+, we obtain the 

relation n\ = 7”2~44. So, we can write n2 in the form 2 + 5* with reZ. This yields 

n i = lx — 6, v = 8 + 42*, and ti\ + n2 = —4 +12*. □ 

The above theorem gives the following strategy for finding some ({4, 11}, 3)- 

spheres that are 4R2: 

1 Take a 3-valent graph with faces of gonality 5, 7, 8, 9, and 11. 

2 Do an exhaustive search for ({4, 3} - ^-replacement sets S such that every 5-, 7-, 

9-, and 11-gonal face is incident to 3, 2, 1, and 0 vertices in S respectively. 

If we consider all 3-valent graphs G' up to 12m — 4 vertices, and manage to do 

an exhaustive search, then we can get the complete list of ({4, 11}, 3)-spheres up to 

42m + 8 vertices. 

The same applies for ({5, 13}, 3)-spheres. But, in this case, more than half of 

the vertices are in the ({4, 3} - u)-replacement set S. Hence, it is better, from the 

computational viewpoint, to do an exhaustive enumeration of their complements. 

The ({5, 7, 9, 11}, 3)-spheres can be enumerated up to 56 vertices. By applying an 

exhaustive enumeration procedure, we obtained 87 spheres. This means that the enu¬ 

meration of ({4, 11}, 3)-spheres 4R2 has been completed up to 218 vertices. Besides 

two strictly face-regular ones, the remaining spheres have 176 vertices (Figure 12.6). 

The repartition by symmetry is the following: (38, CO, (31, C2), (4, C2h), (1, C3), 

(10, C/), (2, Cs), and (1, D\\f). If we limit ourselves to ({5, 7}, 3)-spheres, then we 

can extend the enumeration up to 68 vertices. Using the exhaustive enumeration 

technique, we found 27276 graphs, whose repartition by symmetry is the follow¬ 

ing: (26299, CO, (895, C2), (3, C2h), (1, C2v), (9, C3), (16, CO, (28, CO, (16, DO, 
(8, D3), and (1, S4). 
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The ({5, 7, 9, 11, 13}, 3)-spheres can, again, be enumerated up to 56 vertices. By 

applying the exhaustive enumeration procedure, we obtain 12 spheres. This means 

that the enumeration of ({4, 13}, 3)-spheres 4/?2 has been completed up to 278 ver¬ 

tices. Besides two strictly face-regular ones, the remaining spheres have 224 vertices. 

The repartition by symmetry is the following: (3, Ci), (4, C2), (2, C,), (2, D3), and 

(1, Sg). If we limit ourselves to ({5, 7}, 3)-spheres, then we can extend the enumer¬ 

ation up to 68 vertices. Using the exhaustive enumeration technique, we found 805 

graphs, whose repartition by symmetry is the following: (707, Ci), (86, C2), (4, C3), 

(1,C5), (3, Di), and (4, D3). 

12.4 Maps 5R2 

Theorem 12.4.1 (i) A ({5, b}, 3)-sphere that is 5R2 has b — 1. 

(ii) A ({5, b), 3)-torus that is 5Rj has b = 7orS. 

Proof. Euler formula in Theorem 13.1.1 (iii) implies the relation: 

(6 - b)(x0 + x3) + (8 - b)p5 = 4bx 

with x being 2 and 0 for the sphere and torus, respectively. 

If b > 8, we get an impossibility. If b = 8, then — 2(xo + x3) = 2/, which implies 

X = 0 (i.e. a torus) and xq = x3 = 0. D 

Figure 12.7 Some ({5, 7}, 3)-tori that are 5R2 

(48, 12, 12), p3lm 
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Note that an infinity of ({5, 7}, 3)-spheres 5R2 is constructed in [HaSo07], It is 

proved in Theorem 15.2.1 that a ({5, 8}, 3)-torus is 5R2 if and only it is 8R2. 

See on Figures 12.7, 17.15 some ({5, 7}, 3)-tori that are 5R2, respectively, 7/?4. 

12.5 Maps 5R3 

The following simple theorem is key to this section. 

Theorem 12.5.1 The set of 5-gonal faces of a ({5, b}, 3)-map that is 5i?3, is 

partitioned into polycycles E \ and Ei- 

Proof. Take a ({5, b}, 3)-map 5/? 3 and a 5-gon F of this map. F is adjacent to 5-gons 

on either three consecutive edges, or two consecutive edges and one isolated edge. 

The first case gives E2, while the second case gives E\ or □ 

In this section n\ and «2 are the number of (5, 3)-polycycles E\ and Ei. 

Theorem 12.5.2 Let G be a ({5, b}, 3)-torus that is 5R?,; then it holds: 

(i) b < 12. 

(ii) Ifb = 12, then it is also \2Rq. 

(Hi) Ifb =11, then it is also 11 R\. 

Let G be a ({5, b}, 3)-sphere that is 5/?3,- then it holds: 

(i) b < 10. 

(ii) Ifb = l, then there are exactly two such spheres, shown on Figure 12.8. 

Proof. The proof is a combination of the three lemmas below: □ 

Lemma 12.5.3 

(i) There is no ({5, b}, 3)-torus that is 5/?3, for b > 12; for b = 12 such a torus is 

also \2Rq. 

(ii) There is a unique ({5, 12}, 3)-plane 5/T,, 12Rq represented on Figure 9.5 in 

Case 23. 

(iii) There is no ({5, b}, 3 fsphere that is 5R3,for b > 12. 

Proof. We will first treat the simpler toroidal case (i). First, we have the relation 

p5 =3n\ + 4n2. By the Euler formula, we also have p5 = (b - 6)pb, which implies 
the relation: 

By direct counting, we have: 
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We then obtain the relation: 

^b—b 

b — 5 
3-—-(3ni + 4n2) - 

b — 6 
n i + 6/7 — (6ni + 8«2) 

/9(fr-5) 

V fc-6 

18 - \b 
—-T~n 1 + 

»1 + if) 
b-6 ; 

«2 

24 -2fc 12 — A [3 

T^',2=fc^|2"l+2n2 
If b > 12, then = n2 = «i =0, which is impossible. If & = 12, then ei2-i2 = 0, 

i.e. the torus is 12/?o- 

In order to prove assertion (ii) take a ({5, 12}, 3)-plane 5/?3, 127?o- The (5, 3)- 

polycycle £2 cannot occur in the decomposition of the 5-gons, since it will imply 

that two 12-gons are adjacent. Therefore, every 12-gon is bounded by six (5, 3)- 

polycycles E\ and the major skeleton, formed by (5, 3)-polycycles £j, is 3-valent 

and has faces of gonality six; it is {6, 3}. So, G is the sporadic plane represented on 

Figure 9.5. 

In order to prove assertion (iii), enumeration of ({5, b}, 3)-spheres is essentially a 

remake, with some additional constants, of (i). We obtain first ps = 12 + (b — 6)pb 

and then it holds that: 

g = 3^10 + (fc-5)^~^ and v = 2 ^10 + (b - 5)^ ~ ^ 

and, finally: 

/ b-5\ 12-6/3 „ \ 

= (3° " 366) + 1^6 IT1 + 2ni) ■ 
If b > 12, then eb-b becomes negative, which is impossible. 

Lemma 12.5.4 

(i) A ({5, 11}, 3)-torus that is 5R?, is also ll/?j. 

(ii) There is a unique ({5, 11}, 3)-plane 5£3, UR\ represented on Figure 9.5 in 

Case 22. 

(iii) There is no ({5, 11}, 3)-sphere that is 5Ri. 

Proof. Any corona of an 11-gon, in a ({5, 11}, 3)-map 5£3, is one of the following 

six types: 

Type 1 £1£2(ll-gon)£2£i£i Type 4 £2(ll-gon)£2£2(l 1-gon)2 £2 

Type 2 £i£2(1 1-gon)3 £2£i Type 5 £2(ll-gon)7£2 

Type 3 £x£2(1 l-gon)5£2 Type 6 (1l-gon)n 

Denote by pn,(: , with 1 < i < 6, the number of 11-gonal faces of type i. 
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In torus case (i), consider the number x;- of vertices, which are contained in exactly 

i £>-gonal faces. We have, clearly: 

xq = n\ + 2n2, x\ = 6«i + 6ni and X2 — 2/72- 

Let us consider first the toroidal case. The number of vertices of our torus is equal to 

2fzf (3«i + 4/i2). From this we get: 

x3 = 2 —(3/? i + 4n2) - (n\ + 2n2) - (6/71 + 6/72) — 2n2 

By direct counting, we get also: 

3^3 =2/711,2 + 4pn 3 + Pl 1,4 + 6/711,5 + 1 lpu,6, 

- 3/71 = 3/711,1 + 2/711,2 + /hi,3, 

4/72 = 2^11,1+2^11,2 + 2^11,3+4^11,4 + 2^11,5. 

Using the previous equations, we obtain: 

2 4 1 11 
+3 — 2^11-2 + 3 Pi 1,3 + ^Pll,4 + 2/7)15 + — P\ 1,6, 

12 1 2 2 1 
-/7i - -n2 — - — /7,1,2 - J^Pll,3 - - Pi 1,4 - - Pi 1,5. 

which, clearly, implies pn,2 = pn,3 = Pn,4 = Pi 1,5 = Pi 1.6 = 0. Hence, assertion 
(i) is true. 

In order to prove (ii), take a ({5, 11}, 3)-plane G that is 5P3 and 11 Rx. Clearly, 

only type 1 can occur for the 5-gons. Consider now the 3-valent plane G defined by 

the (5, 3)-polycycles E\ of G with two polycycles E\ being adjacent if they share 

an edge or are linked by an (5, 3)-polycycle E2. G is a 3-valent plane with faces of 

gonality 6, i.e. it is (6, 3}. Every pair of adjacent 11-gons is adjacent to six (5, 3)- 

polycycles £j and two (5, 3)-polycycles E2. Those two E2 define opposite edges in 

the 6-gons of {6, 3}. The set of those edges form a set of parallel edges of {6, 3}; 

the tiling {6, 3} has three such sets of parallel edges but they are all isomorphic. 

Therefore, the ({5, 11}, 3)-plane G is unique and it is the one depicted in Figure 9.5. 

For spheres in assertion (iii), we have: 

. , ^5 - 12\ -22 1 2 
x3 — - ^10 + 6 - I — x0 — Xi — X2 = —--f- -77i — -n2. 

Using the same expression of x3, /71, and n2 in terms of p\u, we obtain the equality: 

22 1 2 2 1 
*3 _ 5 ~ - y^Ph.3 - ~Pn,4 --pn,5, 

i.e. x3 is negative, an impossibility. □ 
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Figure 12.8 All ({5, 7}, 3)-spheres that are 5£3 

Lemma 12.5.5 

(i) A ({5, 7}, 3)-sphere that is 5R2 is one of two spheres shown on Figure 12.8. 

(ii) There is no ({5, 7}, 3)-torus that is 5R2. 

Proof. By analogy with the previous lemma, we can split the set of 7-gonal faces 

into the following types: 

Type 1 £,£2(7-gon)£2 

Type 2 £2(7-gon)3£2 

Type 3 (7-gon)7 

Suppose that a sphere contains a face of type 1, then this face is necessarily adja¬ 

cent to another face of type 1. Those two faces are bordered by four (5, 3)-polycycles: 

two Ex and two E2. Each of two (5, 3)-polycycles £, has two vertices of degree 2. 

Since the polycycle E\ is adjacent only to 7-gons of type 1, we have only one way ol 

filling the structure: by adding faces of type 1. Hence, the obtained sphere is strictly 

face-regular. 
Assume now that there is no faces of type 1; then n\ =0. Hence, the only 

appearing (5, 3)-polycycles are E2. Those polycycles are adjacent by pairs, so they 

make cycles in the sphere. Since this is a ({5, 7}, 3)-sphere, there exist at least one 

(7, 3)-polycycle, say Pf bordered by a ring of (5, 3)-polycycles E2. 

From the structure of the (5, 3)-polycycle E2, we know that P1 has boundary 

sequence (323)^ for some h. If we remove the 7-gons on the boundary, then we 

obtain the boundary sequence 2/;, i.e. a simple h-gon. Hence, h = 7. On the othei 

side of the structure, we do the same analysis and obtain the second ({5, 7}, 3)-spheie 

that is 5R3. 
In addition, the above proof shows that there is no ({5, 7}, 3)-toius that is 5R2. □ 
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Theorem 12.5.6 All ({5, 6}, 3 fspheres that are 5 /?3 are Nrs. 45 and 46. 

Proof. Take a ({5, 6}, 3)-sphere, i.e. a fullerene G that is 5R2. A given 6-gon can 

be adjacent to two (5, 3)-polycycles E2 or three (5, 3)-polycycles E\, or no (5, 3)- 

polycycles at all. The sphere G has at least one 6-gon adjacent to 5-gons. If this 

6-gon is adjacent to two (5, 3)-polycycles E2, then it is Nr. 46. If it is adjacent to 

three (5, 3)-polycycles E\, then it is Nr. 45. □ 

Consider now, for b = 8, 9, 10, ({5, b), 3)-maps that are 5R2. The set of 5-gonal 

faces of such maps admits a partition into (5, 3)-polycycles £j and E2. The polycy¬ 

cle E\ has two open edges and E2 has three open edges. If we consider the graph 

formed by all those polycycles, then it has 2- and 3-valent vertices. This graph is not 

necessarily connected. The connected components of this graph (i.e. the (b, 3)gen- 

polycycles formed by the 6-gonal faces) are bounded by 5-gons on one or several 

boundaries. We will obtain some classification results of those (b, 3)gen-polycycles 

only when they are (b, 3)-polycycles. This will allow us to obtain some examples 

of ({5, 8}, 3)-maps 5/?3 and ({5, 10}, 3)-maps 5R3. Also, we will completely classify 

the ({5, 9}, 3)-spheres or tori that are 5R3. 

It is known (see [DDS05a] and Chapter 5) that the (b, 3)-boundary sequence of a 

finite (b, 3)-polycycle does not characterize it, in general; however, this phenomenon 

will not occur for the polycycles considered in this section and we will use the (b, 3)- 

boundary sequence to denote the (b, 3)-polycycles used. 

Take such a (b, 3)-polycycle, it is bounded by elementary (5, 3)-polycycles E\ 

and E2, which we represent, in a symbolic way, by E\E'{' ... ExEn2\ This symbolic 

sequence of E\ and E2 corresponds to the boundary sequence: 

b(m,...,nu) = 22(2232)"* ... 22(2232)"“. 

Theorem 12.5.7 There is a unique ({5, 8}, 3)-plane 5R3, 8R4, represented on Figure 

9.5 in Case 20. 

Proof. A 8-gon of such a plane should be adjacent to four 5-gons and so to two 

(5, 3)-polycycles E\ and E2. If £j occurs, then this 8-gon is adjacent to at least three 

(5, 3)-polycycles E\ and E2. So, E2 does not occur and the neighborhood of the 
8-gons are of the form: 

The plane is, therefore, uniquely defined and is the one on Figure 9.5. □ 
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Lemma 12.5.8 (the (8, 3)-case) 

(i) Consider the symbolic sequence (n\,, nu). 

• If m =0, 1 or 2 for some i, then the boundary sequence b(n\,..., nu) is 

(8, 3 )-fillable if and only if («i,..., nu) is equal to (0, 0, 0, 0), (1, 1, 1), or 

(2, 2, 2), respectively. 

• Ifni 2 3 for all i, then the boundary sequence b(n ..., nu) is (8, 3 )-fillable 

if and only if the boundary sequence: 

22(23)*' ... 22(23)*“ with x,- = n,- — 3 

is (8, 3)-fillable. 

(ii) For any given u, there is a finite number of symbolic sequences (n i,..., nu), 

such that the boundary sequence b(n\, ..., nu) is (8, 3)-fillable. Up to isomor¬ 

phism, the list consists, for t < 11, of: 

u symbolic sequences P& 

3 (1, 1, 1) and (2, 2, 2) 3 and 6 

4 (0. 0, 0, 0) and (3, 3, 3, 3) 1 and 13 

6 (3, 4, 3, 4, 3, 4) 24 

8 (3, 4, 3, 5, 3, 4, 3, 5) 35 

9 (3, 4, 4, 3, 4, 4, 3, 4, 4) 39 

10 (3, 4, 3, 5, 3, 5, 3, 4, 3, 6) 46 

11 (3, 4, 3, 5, 4, 3, 4, 4, 3. 4, 5) 50 

(iii) The boundary sequence b(n\, ..., nu) is (8,3)-fillable if and only if the 

boundary sequence b(3, 4'1', ..., 3, 4'!") is (8, 3)-fillable. 

(iv) There is an infinity of boundary sequences of the form b(n\, ...,nu) that are 

(8, 3yfillable. 

Proof, (i) Clearly, if some n, = 0, then the only way to close the structure is by 

obtaining an isolated 8-gon and its symbolic sequence is (0, 0, 0, 0). 

So, assume m > 1. If m = 1 for some i, then there is a unique way of closing 

the structure and we obtain a triple of 8-gons associated to the symbolic sequence 

(1,1, 1). Hence, assume n,- > 2. If n, = 2 for some i, then there is a unique way of 

closing the structure and we obtain six 8-gons associated to the symbolic sequence 

(2, 2, 2). Hence, assume n,- > 3. Clearly, the set of edges of the boundary, which 

are incident to an 8-gonal face of a possible (8, 3)-filling, is a path or the empty set, 

i.e. the face cannot be incident to two different segments of the boundary. So, the 

boundary sequence b(nx, ..., nu) admits an (8, 3)-filling if and only if the bound¬ 

ary sequence, which is obtained by filling all faces incident to the boundary, i.e. 

22(23)*' 22(23)^ ... 22(23)*" with x; =nt - 3 also admits a (8, 3)-filling. 
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(ii) Using Theorem 11.0.3, we can see that the numbers p$ and x (of 8-gonal faces 

and, respectively, of interior vertices of an possible (8, 3)-filling) are: 

J Pi — u 3, 

{ x = 2w 8 £“=] X{. 

Therefore, for a fixed u, we have x,• < 2n — 8 and there is a finite number of 

possible boundary sequences and so, a finite number of possible (8, 3)-fillings. The 

enumeration is then done by computer. 

(iii) Taking the initial boundary sequence b(3, 4”1,3, 4”2, ..., 3, 4,!“) and apply¬ 

ing the transformation of the second item of (i), we obtain the boundary sequence 

b{ni, ..., nu). 

(iv) Using the transformation in (iii), we can, from a given boundary seq¬ 

uence b{n ], ..., nu), obtain another one. So, we get an infinity of such boundary 

sequences. □ 

From the above analysis, it seems likely that, for any u > 4, there exists at least 

one boundary sequence b(ni, ..., nu) that is (8, 3)-fillable, 

Theorem 12.5.9 (i) There exists a ({5, 8}, 3)-torus that is 5/?3 and not 8R4. 

(ii) There exists a sequence (F(),>0 of ({5, 8}, 3fspheres 5/?3 with 1640 + 1152/ 

vertices. Their symmetry is Oh ifi =0 and D4h, otherwise. 

(iii) There exist ({5, 8}, 3)-spheres 5R3 with the following (u, Aut(G)): (56, Oh), 

(92, Td), (164, Td), (488, Oh), (3944, C2v), (4196, Td), (6248, D4h). 

Proof, (i) The ({5, 8), 3)-torus 5/?3 is obtained by taking the (8, 3)-polycycles, whose 

symbolic sequence is (3, 3, 3, 3) and (3, 4, 3, 5, 3, 4, 3, 5), and gluing them together 

according to the drawing below: 

Value 3 assigned to boldfaced edges, 

other non-notated edges are assigned the value 4 

Clearly, we get the needed torus from this structure. 

(it) An infinity of ({5, 8}, 3)-spheres 5/?3 is obtained by a variation of (i). 

This time we take the symbolic sequences (3, 3, 3, 3), (3, 4, 3, 4, 3, 4), and 

(3, 4, 3, 5, 3, 4, 3, 5). For / = 0, we form a truncated Octahedron of symmetry O/,. 

For t 1 j 2, we form the structure according to the following drawings: 
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Values 3 or 4 are assigned (for boldfaced or not) non-notated edges 

For i > 3, we have an obvious generalization. 

(iii) The relative wealth of above examples of (8, 3)-polycycles allow us to build 

a variety of examples of ({5, 8}, 3)-spheres that are 5R3. They are described by the 

assignment of values to the edges of a 3-valent plane graph such that every circuit 

nt) appearing on a face is (8, 3)-fillable. Namely, we can do the following: 

1 Take Cube and put (0, 0, 0, 0) on each face. It will be Nr. 58. 

2 Take Tetrahedron and put (1, 1, 1) on each face. It will be Nr. 59. 

3 Take Tetrahedron and put (2, 2, 2) on each face. It will be a ({5, 8}. 3)-sphere 5/?3 

of symmetry Tj with 164 vertices. 

4 Take Cube and put (3, 3, 3, 3) on each face. It will be a ({5, 8}, 3)-sphere 5R3 of 

symmetry Oh with 488 vertices. 

5 Take three graphs on Figure 12.9 and assign values to their edges accordingly. We 

get three ({5, 8}, 3)-spheres with 3944, 4196, and 6248 vertices. 

Figure 12.9 Some 3-valent spheres, which we used as skeletons of ({5, 8), 3)-spheres 

5/?3; the boldfaced edges are assigned the value 3, while non-notated edges are assigned 

the value 4 
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See on Figure 17.16 some examples of ({5, 8}, 3)-tori that are 8/?4 but not 5/?3. 

Lemma 12.5.10 (the (9, 3)-case) 

(i) Consider the symbolic sequence (n, nu). 

• if m = 0 for some i, then the boundary sequence b(n\, ..., nu) is (9, 3)- 

fillable if and only if(n\,...,nu) — (f), 1,0, 1). 

• If^i > 1 for all i, then the boundary sequence b(n\, ..., nu) is (9, 3)-fillable 

if and only if the boundary sequence: 

2(233)Xl ... 2(233)*“ with x,- = n, - 3 

is (9, 3)-filIable. 

(ii) For any given u, there is a finite number of symbolic sequences (n\, , nu), 

such that the boundary sequence b(n\, ..., nu) is (9, 3)-fillable. Up to isomor¬ 

phism, the list consists, for u < 30, of two following sequences: 

u symbolic sequences P9 

4 (0. 1.0. 1) 2 
9 (1, 1, 1, 1, 1, 1, 1, 1, l) 10 

Proof, (i) If Hi = 0, then the boundary sequence contains at least seven consecutive 

2. In order to be fillable, it should contain exactly seven consecutive 2. The only 

possibility is, clearly, (nx,..., nu) = (0, 1,0, 1). 

If Hi > 1, then, as in the case of (8, 3)-polycycles, a face, which is incident to the 

boundary, is incident on only one segment of edges. Hence, there is a unique way of 

adding 9-gons on the boundary, so as to form a ring. The boundary sequence of this 

filling is: 

2(233)*'2(233)*2... 2(233)*" with xt =nt-\. 

(ii) By using Euler formula (see 11.0.3), we get that the numbers p9 and x (of 

9-gonal faces and interior vertices of an possible (9, 3)-filling) are: 

x 
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486, D9h 

Figure 12.10 The only ({5. 9), 3)-sphere that is 5R3 

So, for a fixed u, we have x,• < ^ and there is a finite number of possible boundary 

sequences, i.e. a finite number of possible (9, 3)-fillings. The enumeration is then 

done by computer. □ 

It seems likely that the only symbolic sequences (n 1,..., nu), such that b(nx, ..., 

nu) is (9, 3)-fillable, are: (0, 1, 0, 1) and (1, 1, 1, 1, 1, 1, 1, 1, 1). 

Theorem 12.5.11 (i) The only ({5, 9}, 3)-sphere that is 5R3, is the one with 486 

vertices and symmetry Dg/7; it is obtained by taking Prismg and assigning the values 

1 to the edges, which are incident to the 9-gons, and 0, otherwise (see Figure 12.10). 

(ii) There is no ({5, 9}, 3)-torus that is 5R2. 

Proof. If the (9, 3)-polycycle with boundary sequence b(0, 1,0, 1) appears in the 

decomposition of the set of 9-gonal faces, then we are done. This is so, since an edge 

of value 0 can belong only to a (9, 3)-polycycle with boundary sequence b(0, 1,0, 1). 

Hence, a path of such faces appear. By considering the adjacent 9-gons, we see that 

the structure should close and obtain the announced graph. 

(i) Take such a sphere G and consider the graph EX(G), whose vertex-set consists ot 

the (5, 3)-polycycles Ex of G with two vertices being adjacent if they are linked 

by a sequence of (5, 3)-polycycles E2. The graph EX(G) can be considered as 

a sphere, except that it is not necessarily connected, i.e. some faces of E\(G) 

are, possibly, bounded by several cycles. Denote by Cx, ..., Ct the connected 

components of EX(G) that are plane graphs in the original sense, and by Fx,..., 

F, the faces of EX(G) that have several cycles. Denote by Conn(G) the graph, 

whose vertex-set consists of both, C, and Fj, and whose edge, connecting Cf and 

Fj, corresponds to a cycle of C, belonging to Fr Since G is a sphere, Conn(G) 

is a tree. Hence, it has at least one vertex of degree at most 1. 
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If the vertex has degree 0, this means that E\(G) is connected. Denote by 

Pi the number of faces of gonality i of E\{G). By Lemma 12.5.10 and Euler 

formula, only p4, p9, or pt with i > 30 can be non-zero. So, Euler formula (1.1): 

2p4 - 3p9 - Yfi - 6)pi = 12 

i >30 

implies p\ > 0 and the conclusion. 

Assume that a vertex, say C,, has degree 1. The connected component C, is 

incident to the face Fj along a cycle of length h. Consider now the plane graph 

formed by C, only. So, its faces are only 4-, 9- and i-gons with i > 30 and the 

h-gon. The Euler formula then reads: 

(6 — h) + 2p4 — 3p9 — Yfi — 6) pi = 12. 

i >30 

This implies p4 > 0 and the conclusion. 

(ii) The proof for the torus uses the same principle, as for spheres, but with addi¬ 

tional complications. First, we cannot exclude from the beginning that several 

boundary sequences can be filled by some (9, 3)gen -polycycles, as shown below. 

But, if this happens, then we have two cycles that are not homologous to 0. 

Then we consider the graph Conn(G), whose vertex-set consists of connected 

components C\,..., Ct of E\(G) and of “faces” F\,Fs having several cycles. 

The graph Conn(G) has to be a tree, since a cycle would imply that the dimen¬ 

sion of HfG) is greater than 2. So, the proof for spheres works just as well, and 
it cannot be a torus. 

Suppose now, that one of the maps £j(G) is a torus. Then the graph Conn(G) 

is a tree and the proof for the spheres applies. So, this is impossible. 

From now on, all connected components of the map £j(G) are plane graphs 

and the set of 9-gons is partitioned into (9, 3)gen-polycycles with one or more 

boundaries. The graph Conn(G) is no longer a tree and the fact that it is a torus 

is encapsulated in the cycles of Conn(G). 

Denote by DE(G) the set of directed edges of Conn(G). Denote by V(G) the 

vector space with canonical basis (ed)deDE(G)- For every cycle c of Conn{G), 

choose an orientation of it and denote by /(c) its representation in V(G). Denote 
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by H(G) the vector space of V(G), generated by all cycles c of Conn(G). It is 

easy to see that the dimension of the homology group H\(G) of our map G is 

equal to 2dim(H(G)). Since our map is a torus, it holds dim(H(G)) = 1. So, 

there is a single cycle in Conn(G). 

Suppose that Conn(G) contains a vertex of degree 3 (either a component C, , 

or a face Fj), then there is a vertex of degree 1, which should be a component CV 

and so we reach a contradiction by the same method as in the proof for spheres. 

So, vertices of Conn(G) are of degree 2. This means that Conn(G) is of the 

form: 

... - Ci - Fl - C2 - ... - Ct - Ft - Cj - ... 

for some t. 

Every connected component C, is incident to two faces F, and Fi+] (mod r) 

along cycles of length /, and ki, which are the numbers of (5, 3)-polycycles E\ 

in those cycles. The Euler formula for the plane graph C, reads: 

(6 - U) + (6 - hi) + 2p4 - 3p9 - y^(i - 6)p, = 12, 
i >30 

or, in other terms: 

2p4 = lj + ki + 3/?9 + y '(i — 6)p,. 

i> 30 

If p4 > 0, then we have the pattern (0, 1,0, 1) and a contradiction is reached. 

So, p4 = 0. This implies /, = kt = 0 and also p, = 0. It means that C, are just 

rings of (5, 3)-polycycles £2- 

Now consider the (9, 3)gen -polycycles £,■ with two boundary sequences of 

the form (2223)*' and (2223)g‘ . As for the case of (9, 3)-polycycles, there is 

a unique way of filling the faces on the boundaries. But the presence of two 

boundaries creates several complications, which were not present in the case of 

(9, 3)-polycycles. 
We use the same strategy, as for (9, 3)-polycycles, whose boundary is of the 

form b(...): we fill all faces, which are adjacent to 5-gons. The first case is 

when the added 9-gonal faces do not share an edge in common. In that case, the 

(9, 3)gen-polycycle, obtained by filling previous boundaries, has two boundaries 

of the form (323)*' and (323)*'. Denote by p9 the number of interior 9-gons and 

by x the number of interior vertices. Application of Theorem 11.0.3 yields. 

v2 - V3 hi + ki 

■^
5

 
S

O
 II 

U>
 II 

3 ’ 

2v2 - 5v3 
X = --- 

g 
= —-(hi + ki), 

3 3 

which are both strictly negative, an impossibility. 
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The other case is when the added 9-gons share some edges in common. The 

possibilities are, locally, the following: 

Let p be the number of appearances of such common sequence of edges. This 

means that the problem of filling the (9, 3)gen-polycycles with two boundaries 

is reduced to the problem of filling p (9, 3)-polycycles given by their boundary 

sequences. 

Those boundary sequences are of the form (323)hi a(323)ki f with a,f being 

equal to 223, 322, or 32223. By applying again Theorem 11.0.3, we obtain: 

Those formulas give: 

V2-V3 
p9 = ^--2, 

2u2 - 5d3 
x =-6. 

x — —-(hi + ki) + ua + up — 6 

with ua, up being equal to — | or — |, according to the value of a or f>. In either 

case, x < 0 and this is impossible. So, there is no ({5, 9}, 3)-torus that is 5Ry. □ 

In the case b = 10, the only known symbolic sequences (n\,, nt), such that the 

boundary sequence b(n\, ..., n,) is (10, 3)-fillable, are, up to isomorphism: 

t symbolic sequences Pio 

5 (0, 0, 0, 0, 0) 1 
6 (0, 1,0, 1,0, 1) 3 
9 (0, 1, 1,0, 1, 1,0, 1, 1) 6 

Note that the unique sphere ({5, 10}, 3)-sphere that is 10Rj and 5R3 is Nr. 60. 

Theorem 12.5.12 At least two ({5,10}, 3)-spheres 5R3 exist: 

1 A sphere with 740 vertices and symmetry //,. 

2 A sphere with 7940 vertices and symmetry //,. 
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Proof. The first example is constructed using the truncated Icosahedron (the smallest 

({5, 6}, 3)-sphere with isolated 5-gons): its set of edges is partitioned into (5 — 61- 

edges and (6 — 6)-edges. After assigning value 0 to the first kind of edges and 

value 1 to the second one, all 5-gons have symbolic sequence (05) and all 6-gons 

have symbolic sequence (0. 1,0, 1,0, 1). So, we obtain a 740-vertex sphere of 

symmetry //,. 

The second example is obtained by taking the following ({5, 6}, 3)-polycycle 

Boldfaced edges are assigned value 0, while other edges are assigned value 1 (this 

graph is an isometric subgraph of truncated Icosahedron). If we take the Icosahedron 

and substitute every 5-valent vertex with the above ({5, 6), 3)-polycycle and glue 

along the open edges of value 0, then we obtain a sphere with 5-, 6- and 9-gonal 

faces. The symbolic sequence of the 9-gonal faces is (1,0, l)3. So, the structure can 

be filled. D 

Theorem 12.5.13 There is a unique ({5, 10}, 3)-plane 5/?3, \0Rj represented on 

Figure 9.5 in Case 21. 

Proof. Any 10-gon of such a plane is adjacent to eight 5-gons and so to four (5, 3)- 

polycycles E\ and £2. Clearly, we have the following 2-possibilities for coronas of 

10-gons: 

Type 1 EiCO-goniEiEiCO-goxpEn 

Type 2 £1 £2( 10-gon)'£2 £1 

If type 2 occurs, then E\ occurs and we have an E\ - E2 adjacency. The “edge” 

E\ — £2 is incident to two 10-gons, necessarily of type 2. So, we have a sequence of 

three (5, 3)-polycycles Eu which cannot occur either in type 1 or in type 2. So, type 

2 does not occur. Hence, the 10-gons are in type 1 and occui in infinite sequence or in 

cycles. Every such chain is bounded by two identical chains. So, a cycle of 10-gons 

cannot occur, since, otherwise, its presence would imply that a bounded region ot the 

plane contains an infinity of faces. So, 10-gons are organized in infinite sequences 

and they are represented on Figure 9.5. ^ 

Conjecture 12.5.14 A ({5, 10}, 3)-torus that is 5 £3 is also 10/?2- 
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Frank-Kasper spheres and tori 

We call the Frank-Kasper ({5, b}, 3)-map any ({5, b), 3)-map that is bRo (in chem¬ 

istry and crystallography Frank-Kasper polyhedra are just four polyhedra, dual to all 

four ({5, 6}, 3)-polyhedra that are 6Rq). Note that the only oriented ({a, b}, 3)-maps 

with a < 4 that is bRo are Prismb, Cube, Tetrahedron, and Bundle3. 

13.1 Euler formula for ({«, b}, 3)-maps bRo 

Recall that pb is the number of b-gonal faces of a map and denote by x, with i = 

0, 1,2, 3 the number of vertices contained exactly in i a-gonal faces. 

Theorem 13.1.1 Let P be a ({a, b), 3)-sphere or torus that is bRo. It holds that: 

(6 — a)x3 + (2(a — b) + (6 — a)b)pb = 4a on sphere, 

(6 — a)x-i + (2(a — b) + (6 — a)b)pb = 0 on torus. 

Proof. Clearly, v = x0 + x\ + x2 + x3. 

By counting the number e of edges in two different ways, we get: 

2e = 3v — bph + apa. 

The Euler formula for an oriented map of genus g is 2 — 2g = v — e + pa + pb\ it 

can be rewritten as: 

2 — 2 g = —-+ Pa + Pb- 

Eliminating pa in the above two equations, we obtain: 

(6 — a)v — 2(2 — 2 g)a = 2{b — a)pb. 

We have xq = x\ =0 and X2 = bpb. Elence, the above relation takes the form 

(6 - a)x3 - 2(2 - 2g)a — (2(b - a) - (6 - a)b)pb. □ 

The above formula yield finiteness of the number of ({5, b), 3)-polycycles for b < 

9 but we will see in the next section that more general finiteness results hold. 

218 
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13.2 The major skeleton, elementary polycycles, and 

classification results 

A (5, 3)-polycycle is called 0-elementary if it is elementary and if its boundary 

sequence is of the form 223q' ... 223qm. By inspection of the list of finite elementary 

(5, 3)-polycycles (see Figure 7.2), we obtain that there are exactly three O-elementary 

polycycles: E\,C\, and C3. 

The classification of all Frank-Kasper ({5, b], 3)-spheres can be done using 

the elementary polycycles decomposition exposed in Chapter 7. If G is a 

Frank-Kasper ({5, b}, 3)-sphere, then we remove all its b-gonal faces and obtain 

a (5, 3)gen-polycycle. This (5, 3)gen -polycycle is decomposed into elementary 

(5, 3)gen-polycycles along bridges (see Chapter 7 for definition of those notions). 

In this chapter a bridge is an edge, where the two vertices are contained in different 

£>-gonal faces. 

Lemma 13.2.1 Take a Frank-Kasper ({5, b}, 3)-map that is not snub Prism/,. Then 

the set of all bridges, together with edges incident to b-gonal faces, establish a 

partition of the set of 5-gonal faces into O-elementary (5, 3 )-polycycles. 

Proof. Suppose that a b-gonal face is not incident to any bridge. It means that this 

£>-gonal face is bounded by two concentric rings of 5-gonal faces, i.e. that the map is 

snub Prism/,. So the (5, 3)gg„-polycycles, appearing from the partition by bridges, 

are (5, 3)-polycycles. Those (5, 3)-polycycles are necessarily O-elementary. □ 
Now, given a Frank-Kasper map, consider the map, defined by taking, as vertices, 

all O-elementary (5, 3)-polycycles forming it. The b-gonal faces and bridges of the 

Frank-Kasper map correspond to faces, and, respectively, edges, of this map. Then 

we remove vertices of degree 2 and obtain a 3-valent map, which will be called major 

skeleton. 

Theorem 13.2.2 (i) There exist ({5, b), 3 )-tori that are bR0, if and only ifb > 12. 

(ii) ({5, 12}, 3)-tori that are \2Rq are also 5/?3. 

Proof, (i) In order to prove the existence of ({5, b}, 3)-tori that are IjRq, for b > 12, 

it suffices to give an example of a periodic ({5, b}, 3)-planes that is bRo- 

Our basic example is the graphite lattice sheet, i.e. the 3-valent tiling {6, 3} 

of the plane by 6-gons. At every vertex of this tiling, we can substitute a 0- 

elementary (5, 3)-polycycles, either Ex or C3. If we substitute only E\, we obtain 

a ({5, 12}, 3)-plane that is 12R0. In order to obtain a ({5, 13}, 3)-plane, we need 

to substitute a part of the Ex, by some C3, such that every 6-gon is incident 
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to exactly one C3. It is easy to see that this is, indeed, possible; see below an example 

of such a choice. 

Furthermore, we can partition the set of vertices of the graphite lattice {6, 3} into 

6 sets O-,, such that every 6-gon contains exactly one vertex in the set O,. So, by 

putting C3 into vertices of sets 0\,_<9,, we obtain a ({5, 12 + /}, 3)-plane that is 

(12 + i)R0. 

If we insert the (5, 3)-polycycle C\ into edges of the graphite lattice according to 

the drawing below: 

then from a ({5, b}, 3)-plane obtained by the above procedure we obtain a ({5, b + 

5}, 3)-plane, which is still (b + 5)Ro. This procedure can, obviously, be repeated, so 

we get the existence result for b > 12. 

Assume b < 11. Given a ({5, b}, 3)-plane, the gonality of a face in the major 

skeleton is equal to the number of (5, 3)-polycycles £j and C3 to which it is 

incident. Clearly, there are at most five such incidences for each face. Since 

the major skeleton is 3-valent, we reach a contradiction by Euler formula (1.1) 

and (i) holds. 

(ii) If M is a ({5, 12}, 3)-plane that is 12/?o> and if F is a 12-gonal face, then 

F is incident to 0-elementary (5, 3)-polycycles. Clearly, the gonality of F in the 

major skeleton is equal to the number of 0-elementary (5, 3)-polycycles Ex and C3, 

in which it is contained. So this gonality is at most 6. But a 3-valent torus, whose 

faces have gonality at most 6, is possible only if all faces have gonality 6, i.e. if all 

12-gonal faces are adjacent only to polycycles E\. Such a structure is unique and it 

is 5/?3. □ 
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Theorem 13.2.3 (i) For h < 11, the number of Frank-Kasper ({5, b), 3)-polyhedra 

is finite; they are (besides Dodecahedron): 

• for b = 6, three classical ones, 

• for b = 7, snub Prism7, 

• /or b = 8, snub Prism8 and strictly face-regular Nr. 58, 

• for b = 9, 10, am/ 11, snub Prisms and the ones indicated on Figures 13.1, 

13.2, and 13.3, respectively. 

(ii) For b = 12 (besides Dodecahedron and snub Prism12), f/iroo sporadic spheres 

and one infinite series (F Ki)i>0 w/r/z 104 + 56/ vertices (the symmetry is Oh if 

i = 0, D±d ifi is odd, and D^h otherwise) indicated on Figure 13.4. 

Proof. Take a ({5, b), 3)-sphere G for b < 11. Then every face of the major skeleton 

is incident to at most five vertices corresponding to E\ or C3. So, the major skeleton 

is a 3-valent sphere with faces of gonality at most 5. There is a finite number of 

possibilities, which can be dealt with by computer and, hence, we have (i). 

If b = 12, then, by the same reasoning, the gonality of faces of the major skeleton 

is at most 6. Since it is a plane graph, there exists a face of gonality at most 5. Such 

a face is incident to a vertex v, corresponding to a (5, 3)-polycycle C3 or C\. So, the 

original ({5, 12}, 3)-sphere contains the pattern below: 

52, Td 68, Du 

Figure 13.1 All face-regular ((5, 9), 3)-spheres that are 9J?0. besides Dodecahedron and 

snub Prismg 
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Figure 13.2 All face-regular ({5, 10}, 3)-spheres that are 10R0. besides Dodecahedron 

and snub Prismio 

Figure 13.3 All face-regular ({5, 11}, 3)-spheres that are 11 Rq, besides Dodecahedron 
and snub Prism n 
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216, D2d 

104, Oh (FKq) 160, D4(/ (FK\) 

216, D4i, (FK2) 272’ (F^3) 

Figure 13.4 All face-regular ({5, 12}, 3)-spheres that are 12/?0, besides Dodecahedron 

and snub Prismn: 3 sporadic cases and the series F/f,, illustrated here for 0 < / < 3 
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We then run the enumeration procedure by taking the above ({5, 12}, 3)-polycycle 

as the starting point. This enumeration procedure, after creating three spheres, indi¬ 

cated above, goes into a infinite loop, which creates the infinite sequence of maps; 

hence, (ii) follows. D 

Theorem 13.2.4 All ({5, b), 3)-spheres with pb = 2 have 4b vertices. 

Besides snub Prismb, all such spheres have b = 0 (mod 5); they are: 

(i) A sphere formed by splitting | Dodecahedra with one edge split into two edges 

and gluing them together; it is bRq and has symmetry Db_h. 

(ii) A sphere formed by splitting | Dodecahedra with one edge split into two half- 

edges and gluing them; it is bRt and has symmetry D tb■ 

Conjecture 13.2.5 There is an infinity of ({5, b}, 3)-spheres bRofor any b > 12. 
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Spheres and tori that are bR\ 

We consider here ({5, b}, 3)-spheres that are bR\. By Theorem 14.1.2, there are no 

({4, b}, 3)-maps bR\. 

Finiteness of the number of ({5, b}, 3)-spheres bR\ is proved for b < 9 in Theo¬ 

rem 14.2.2 with the complete list of such maps shown on Figures 10.4, 14.1, 14.2, 

14.3, and 14.4. Infiniteness is expected for b > 10. 

14.1 Euler formula for ({a, b}, 3)-maps bR\ 

Recall that pb is the number of b-gonal faces of a ({<7, b}, 3)-map and denote by xt 

with i = 0, 1, 2, 3 the number of vertices contained exactly in i a-gonal faces. 

Theorem 14.1.1 Let P be a ({a, b}, 3)-sphere or toms that is bRh i.e. b-gons are 

organized into isolated pairs, then pb is even and it holds that: 

f (6 - a)x3 + (2(a - b) + (6 - a)(b - 1 ))pb = 4a on sphere, 

|(6 - a)jc3 + (2{a - b) + (6 - a)(b - 1 ))pb = 0 on torus. 

Proof. Clearly, v = xq + x\ + x3 + X3. 

By counting the number e of edges in two different ways, we get. 

2e — 3v = bpb + apa. 

The Euler formula for an oriented map of genus g is 2 - 2g = v - e + pb + pa\ it 

can be rewritten as: y 

2 - 2g = -- + Pb + Pa- 

Eliminating pa in above two equations, we obtain. 

(6 - a)v - 2(2 - 2g)a = 2(b - a)pb. 

We have xo = 0, X\ = pb and *2 = (b — 2)pb. So we get. 

(6 - a)x3 - 2(2 - 2g)a = (2(b - a) - (6 - a)(b - \))pb, 

i.e. the desired relation. 

225 
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36, d2 44, D3 44, £>3/, 
(also 5Rt,, Nr. 56) 

52, D2d 

Figure 14.1 All face-regular ({5, 7}, 3)-spheres 7Ru besides Dodecahedron 

Figure 14.2 All face-regular ({5, 8}, 3)-spheres that are 8/?,, besides Dodecahedron 
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Figure 14.3 All face-regular ({5, 9}, 3)-spheres that are 9R], besides Dodecahedron (first 

part) 
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Figure 14.4 All face-regular ({5, 9}, 3)-spheres that are 9Ru besides Dodecahedron 
(second part) 

The above formula yields finiteness of ({5, b), 3)-spheres for b < 8 but we will 

see in the next section that we can obtain finiteness for b = 9 also. 

Theorem 14.1.2 There is no ({4, b), 3)-sphere or torus that is bRx. 

Proof. Take a ({4, b}, 3)-sphere that is bR\, and two Z?-gonal faces that are adjacent 

along an edge. Those two b-gons are encircled by a circuit F\, ..., Fm of 4-gons. 



Spheres and tori that are bR\ 229 

Assume F, is adjacent to both b-gons, then F,_i and Fi+1 are adjacent and this 

implies that F,-_i and Fi+1 are both adjacent to another 4-gon; this 4-gon is adja¬ 

cent to both 7>-gons, which is an impossibility since those b-gons can share only one 

edge. 

Actually, the above analysis does not use the fact that the map is a sphere; 

so it holds for any map. Another, more direct proof can be obtained by using 

Theorem 14.1.1. □ 

14.2 Elementary polycycles 

If G is a ({5, b}, 3)-map that is bR\, then we remove all its b-gonal faces and 

obtain a (5, 3)gen-polycycle. This (5, 3)gen-polycycle is decomposed into elementary 

(5, 3)ge„-polycycles along bridges (see Chapter 7 for definition of those notions). In 

this chapter a bridge is an edge, which is not contained in any 6-gonal face but whose 

two vertices are contained into different £>-gonal faces. 

A (5, 3)-polycycle is called 1-elementary if it is elementary and its boundary 

sequence is of the form 2n'3m' ... T‘3m‘, where each nt is 1 or 2 and, moreover, 

if ni = 1, then n,-_i = ni+1 = 2. So, every O-elementary (5, 3)-polycycle is also 

1-elementary. We obtain that the list of 1-elementary (5, 3)-polycycles, which are 

not O-elementary, consists of C2, F>, and any Ejn with n > 1. 

Theorem 14.2.1 Given a ({5, b), 3)-map that is bR\, then the set of all bridges, 

together with edges, incident to b-gonal faces, establish a partition of the set of 

5-gonalfaces into \-elementary (5, 3)-polycycles. 

Proof. Clearly, snub Prism# with b' > 2 cannot occur as component in the decom¬ 

position into (5, 3)gen-polycycles of the 5-gonal faces of the map. Hence, the set of 

5-gonal faces is decomposed into elementary (5, 3)-polycycles. 

In order to prove that the elementary (5, 3)-polycycles, which can appear, aie only 

the 1-elementary ones, we will examine the list (see Figure 7.2) of elementary (5, 3)- 

polycycles. 
An admissible (5,3)-polycycle should have the pattern 22 in its boundary 

sequence, since, otherwise, it would be bounded by a ring of 7>-gons that are adjacent 

to at least two b-gons. This eliminate A,-, 1 < i < 5. 

A pattern 2h'23hl23hi with hj > 1 corresponds to a b-gon with b = 2 + h2\ we 

will prove that this is not possible. Clearly, the pattern 3/ll23/l223/!323/'4 with ht > 1 

cannot appear, since it would imply that one of the b-gons of the pair has a vertex of 

degree 2, which cannot be matched by a polycycle. This eliminates B3. 

The (5, 3)-polycycle B3 is not possible, since the closure of two vertices of degree 

two in 32323 would yield a <b-gon with b = 3 and such structures do not exist. 
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Now consider the case of (5, 3)-polycycles E2n-i', the closure of two isolated 

vertices of degree two would yield a (n + l)-gon. But the opposite side of the (5, 3)- 

polycycle E2n-1 has the boundary 23"2; so after uniting with other (5, 3)-polycycle 

it would yield a b-gon with b > n + 1, which is impossible. The only remaining 

admissible (5, 3)-polycycles are the 1-elementary ones. □ 

All 1-elementary (5, 3)-polycycles appear in decompositions of ({5, b}, 3)-maps 

that are bR\. See below an example of such a decomposition: 

E i 

biidges of the 1-elementary (5, 3)-polycycles of the 
decomposition decomposition 

Theorem 14.2.2 (i) ({5, b], 3)-spheres That are bR\ have at most 32, 52, 92, 212 

vertices for b = 6,1, 8, 9, respectively. 

(ii) There are no ({5, b}, 3)-tori that are bR\,for b < 9. 

Proof. By Theorem 14.1.1, we obtain x3 + (9 - b)ph = 20, where x3 is the num¬ 

ber of vertices contained in 3 5-gons. Since the gonality of faces is at most 9, the 

1 -elementary (5, 3)-polycycles, forming its decomposition, are D, Cu C2, C3, Eu 

E2, E4, E(,, E%, E10, £12. Denote by po, pEl, , the number of those polycycles. 

By counting the number of interior vertices, we obtain: 

6 

x3 = 10pC| + 1 pc, + 4pC} + pE] + ^ 2ipE2i. 

i = i 

On the other hand, we have the equations: 

(14.1) 

eb-b - \pb-\_PD E \pc2 + E,6=i Pe2, , 

e5-b = (b- 1 )pb = 3 pD + 10 pCx + 10pC2 + 9 pCi + 6 pE] + ^?=1(6 + 2 i)pEv, 

Ps = Pd + 10pc, + 8 pCl + 6 pC} + 3 pEl + E?=](2 / + 2 )pE2i. 

(14.2) 
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We then consider the linear programming problem (see, for example, [Chv83]): 

maximize ph 

subject to Equations (14.1), (14.2) and jc3 + (9 - b)pb = 20 

Pb > 0, p5 > 0, x3 > 0, pD > 0, ... 

For b = 6, 7, 8, 9, the maximal value of pb is 6, 8, 12, 24 giving the above upper 

bounds on the number of vertices, thereby proving (i). 

Actually, for b = 9, we can get a more simple proof. Combining the first two 

equations of (14.2), we get: 

6 

<?5_9 - 6e9_g = 5pg = lpcx + 10pc2 + 9pC} + 6pEx + YlipE2i. (14.3) 
i= 1 

It is clear, that the linear programming problem: 

maximize JT axXi 

subject to Yli bixi = b, 

Xi > 0 with a,, bi > 0 

has the solution £>max, |L. Using equation (14.3) for p9, equation (14.1) for jc3 and 

the relation jc3 = 20, we get pg < 201 = 24. 

Let us consider (ii). First, we obtain, by Theorem 14.1.1, v3 = 0, then pcx = 

pCl = pE] = pE2. = 0. Subsequently, we obtain the relations: 

<?9_9 = ^P9 = \pd, and e5_9 = 8p9 = 3pD\ 

so, pg — pD = 0. Flence, there are no ({5, 9), 3)-tori that are 9R\. If b < 8, then the 

proof comes directly from application of Theorem 14.1.1 (ii). □ 

The enumeration of ({5, b), 3)-spheres bR\ for b < 9 was done by computer using 

an exhaustive search scheme. The result are presented on Figures 10.4, 14.1, 14.2, 

14.3, and 14.4. It turns out that the upper bound in Theorem 14.2.2 is always attained. 

The ({5, b}, 3)-spheres, realizing the upper bound, have their 5-gons organized into 

elementary (5, 3)-polycycles D and E\. The program, enumerating the ({5, b), 3)- 

spheres, terminates for b < 9, which is another proof that there is a finite number ot 

({5, b], 3)-spheres bR\ for b <9. 

Recall that a special perfect matching of a 6-valent tiling by 3-gons is a perfect 

matching such that every vertex is contained in exactly one vertex, and every vertex 

is contained in exactly one 3-gon whose face opposite to it belongs to the perfect 

matching. 
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Theorem 14.2.3 (i) The elementary (5, 3)-polycycles, appearing in the decomposi¬ 

tion of a ({5, 10}, 3 )-torus that is 10/?i, are D and E\. 

(ii) Every ({5, 10}, 3)-torus that is 10/?i, corresponds, in a following way, to a 

6-valent tiling of the torus by 3-gons, together with a special perfect matching: 

• \0-gonal faces correspond to vertices, 

• (5, 3 )-polycycles D and E\ correspond to triangular faces, 

• bridges between (5, 3)-polycycles make the first part of the edge-set, while edges 

between two 10-gons make the second part. This second part of the edge-set 

form a special perfect matching. 

Proof. A priori, the (5, 3)-polycycles, appearing in the decomposition of such a 

({5, 10},3)-torus are D, C\, C2, C3, E\, and E2i, with 1 < i < 7. We use the 

same notation as in the preceding theorem. By Theorem 14.1.1, we have *3 = pio; 

so in the same way as in the above theorem we obtain: 

P10 = *3 = 10pC] + 7pCl + 4pc, + pEx + £/= 1 2ipEli, 

• <?10-10 = \p\Q = \pd + \pc2 + YJi = 1 PEn» 

es-io = 9p]0 = 3pD + 10pc, + 10 Pc2 +9pC} +6 pEl + Yli = \ (6 + 2/)/?£2.. 

Subtracting those equations, we obtain successively: 

65-10 - 6610-10 = 6/?io = 10/?Ci + 7pc2 + 9pC} + 6pEx + J2i = 1 2iPE2i, 

165—10 -6610-10 -6x3 = 0 = -50pCl - 35pCl - 15pc2 - 5Z,7=i 10/pe2i■ 

The second equation implies pCx = pCl = pCz = pEli = 0; hence, (i) follows. 

The above equalities yield p\Q = x3 = pEx = pD. We say that a (5, 3)-polycycle is 

incident to a 10-gonal face if it shares a sequence of edges with it. A (5, 3)-polycycle 

D or Ex is incident to exactly three 10-gonal faces. Hence, every 10-gonal face is 

incident to exactly three polycycles D and three polycycles E\. Consider now the 

torus, whose vertices are 10-gonal faces and faces are (5, 3)-polycycles D or Ex. Its 

edges are bridges, which are common to two adjacent elementary (5, 3)-polycycles, 

or the edges linking two polycycles D and separating two 10-gonal faces. 

Clearly, this torus is 6-valent and the set of edges between two adjacent 10-gons 

define a special perfect matching. From this special perfect matching, we can get 

the position of polycycles D and Ex and get the original ({5, 10}, 3)-torus. So, (ii) 
follows. □ 

Remark 14.2.4 There is a large number of possibilities for special perfect match¬ 

ings. See on picture below two such possibilities. 
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Note also that Theorem 14.2.3 combined with Theorem 9.3.4 implies that there exist 

a one-to-one correspondence between ({5, 10}, 3)-torus 10/?i and ({4, 8}, 3)-torus 

4R\ and 8/?5. 

Theorem 14.2.5 For any b > 10, there exist a ({5, b}, 3)-torus that is bR\. 

Proof. Such tori can be obtained as quotients of a ({5, b}, 3)-plane. We will get again 

such a plane from the graphite lattice {6, 3} with added structure on it. On any vertex 

of the structure below, which is incident to an boldfaced edge, we put a (5, 3)- 

polycycle D, while on other vertices we put a (5, 3)-polycycle E\. The obtained 

({5, b], 3)-plane is bR\. 

Note that the (5, 3)-polycycles D are adjacent between themselves by pairs; every 

pair of (5, 3)-polycycles D can be substituted by a (5, 3)-polycycle E2n with n > 1. 

It is easy to see that the structure is a ({5, 10 + n), 3)-plane that is (10 + ri)R\. □ 

Note also that there are many other possibilities for creating ({5, b), 3)-torus bR\ 

(for example, substituting E\ by C3 or inserting (5, 3)-polycycles C\). 

Conjecture 14.2.6 For any b > 10, there exist an infinity of ({5, b}, 3)-spheres that 

are bR\. 
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Spheres and tori that are bRj 

We consider here ({«, b}, 3)-spheres and tori that are b/?2 (i.e. b-gons are organized 

into disjoint simple cycles). After some general results, the toroidal case is treated. 

Then, in Section 15.3, we consider the special case of ({«, b}, 3)-spheres with a cycle 

of b-gons. In this chapter, we follow [DGr02, DDS05a, DuDe06], 

15.1 ({«, b}, 3)-maps bR2 

Recall that pa and pb denote, respectively, the number of a- and b-gons in a 

({a, b}, 3)-map b/?2. 

Theorem 15.1.1 Let G be a ({a, b), 3)-sphere or torus that is bf?2. Then it 

holds that: 

|(6 — a)x + (4 — (4 - a)(4 — b))pb = 4a on sphere, 

{(6 — a)x + (4 — (4 — a)(4 — b))pb = 0 on torus, 

where x is the number of vertices contained either in three a-gonal faces, or in three 

b-gonal faces. 

Proof. Let xq, x\, X2, x3 be the number of vertices contained in exactly zero, one, 

two or three a-gonal faces. So, x = jc0 + x3. 

There are x0 cycles of length 3 of b-gonal faces, which correspond to 3jco b-gonal 

faces. 

We have x\ = (b — 4)(ph - 3x0) + (b - 3)3x0 and x2 = 2(pb - 3x0) 4- 3x0. By 

counting the number e of edges in two different ways, we get: 

2e — 3(x0 + X] + x2 + *3) = apa + bpb . 

Euler formula 2 — 2g — (xo + x\ + x2 + x3) — e + pa + pb, where g is the genus of 

the oriented map, can be rewritten as: 

2 — 2g — — -(xo + X\ + X2 + X3) + pa + Pb- 

234 
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Eliminating pa in above two equations, we obtain: 

(6 — a)(xo + x\ + x2 + x3) — 4(1 — g)a = 2 (b — p)pb, 

which, after substitution of x\ and x2, yields the formula of the theorem. □ 

Corollary 15.1.2 For (a, b) = (3, b), (4, b), (5, 6), (5, 7), the number of ({a, b}, 3)- 
spheres bR2 is finite. 

Proof. For those cases, Equation (15.1) takes the form bph+3x = \2,4pb+2x = 16, 

2/?6 + x = 20, pi + x = 20. Hence, pb is bounded by some constant, which implies 

that pa (and so, the number v of vertices) is bounded as well. □ 

Euler formula implies also, that the number ea-a of edges of adjacency of two 

n-gons in any ({a, b}. 3)-sphere bR2 is: 

6 a + pb((a — 3 )(b — 4) — 6) 

6 — a 

So, this number is a constant 24, 30 for (a, b) = (4, 10), (5, 7), respectively, and the 

number of such spheres is finite for (a, b) = (4, b < 10), (5, b < 7). 

Theorem 15.1.3 For any b > 8, there exist an infinity of {{5, b], 2>)-spheres that 

are bR2. 

Proof. Take two Dodecahedra and remove one vertex from each of them. By merging 

three pending edges, we obtain a ({5, 8}, 3)-sphere 8R2 with three 8-gonal faces and 

18 5-gonal faces partitioned into two (5, 3)-polycycles A3. Conclusion follows from 

Theorem 11.0.2. 
In order to prove the result for b > 8, we need to find an initial graph that is 

bR2. For any n > 0, take three (5, 3)-polycycles Eln (where E0 is the gluing of two 

(5, 3)-polycycles D, while, for n > 1, En can be seen on Figure 7.2) and glue them 

along their open edges. The resulting graph has two boundary sequences of the toim 

(232+")3; each could be filled by three (6 + n)-gons by adding one vertex. Those 

two vertices can be truncated and replaced by (5, 3)-polycycle A3. The resulting 

({5, 9 + «}, 3)-sphere is (9 + n)R2 and we can apply Theorem 11.0.2, in order to get 

infiniteness. ^ 

Theorem 15.1.4 All ({a, b), 3)-spheres that are bR2, with a = 3, 4 are (besides 

Tetrahedron and Cube): 

1 The ({4, b}, 3)-spheres with a 4-cycle ofb-gons with pA = 2(b - 3) and pb = 4, 

shown, for first values b = 5, 6, 7, 8, on Eigute 15.1. 

2 Prism2 and the following spheres: 
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Figure 15.1 Cases b = 5, 6, 7, 8 of the infinite series of ({4, b}, 3)-spheres with a 4-cycle 

of &-gons 

Proof. Equation (15.1) of Theorem 15.1.1 for ({4, b], 3)-spheres bR2 is 4pb + 2x — 

16. Its possible solutions are (pb, x) = (4, 0), (3, 2), (2, 4), (1, 6), and (0, 8). The 

solution (0, 8) corresponds to Cube, while (1, 6) is, clearly, impossible. 

On the other hand, all (4, 3)-polycycles have been classified. Let G be a ({4, b}. 3)- 

sphere bR2 with at least one b-gon. Then G contains a (4, 3)-polycycle P bounded 

by fi-gonal faces. 

If P is P2 x Pk with k > 2, then it is adjacent to four fi-gonal faces. Hence, pb > 4. 

By the above reasoning, this implies pb = 4, and so there is just one cycle and no 

interior vertices for the other (4, 3)-polycycle. So, this other polycycle is of the form 

P2 x Pk>. Only possibility is that b = k + 3 and k' = k. 

If P is {4, 3} — v, then pb > 3, and x > 1. The only possibility is pb = 3 and 

x = 2. Hence, there is just one cycle and the other polycycle contains exactly one 

interior vertex. So, the sphere is the unique ({4, 6}, 3)-sphere 6R2. 

If P is {4, 3} — e, then pb > 2 and x > 2. If pb = 3, we would get a cycle of length 

one, which is impossible; hence, pb = 2, x = 4. The only possibility for filling with 

4-gons is b = 8 and we obtain a ({4, 8}, 3)-sphere with a 2-cycle (i.e. two 2-gons 

adjacent on disjoint edge) of 8-gons. 

For ({3, b}, 3)-spheres bR2, Equation (15.1) can be rewritten as bpb + 3* = 12. 

On the other hand, there exist only two (3, 3)-polycycles, that can be part of such a 

sphere: the 3-gon and a pair of adjacent 3-gons. 

If this polycycle is a 3-gon, then we obtain pb > 3. 12 > bpb > 3b, which implies 

b < 4. The only possibility is b = 4 and the sphere is Prism3. 
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If this polycycle is a pair of adjacent 3-gons, then pb > 2, 12 > hpb > 2b, 

which implies b < 6. Values lower than 6, are not possible; hence, we obtain a 

({3, 6}, 3)-sphere with a 2-cycle of 6-gons. □ 

15.2 ({5, b}, 3)-tori bR2 

Theorem 15.2.1 A ({5, 8}, 3 )-torus is 8 R2 if and only if it is 5 R2. 

Proof. Take a ({5, 8}, 3)-torus and assume that it is SR2. We obtain, by Theo¬ 

rem 15.1.1, the relation xo 4- x3 = 0, i.e. x0 = x3 = 0. 

Also, by Euler formula (1.1), we obtain p3 = 2p%. The total number e of edges is 

equal to: 
1 
~(5p5 + 8p%) = 9p8 . 

Moreover, the property SR2 implies e8_8 = /?8, e5_8 = 6p$ and = 2 p&. 

Denote by p5j the number of 5-gonal faces, which are adjacent to exactly i 5-gonal 

faces. By direct counting, it follows: 

P5 = PV and 2P8 = g5-5 ip5J ■ 
;> 0 <> 0 

Subtracting those two equations, we obtain 0 = 0(j — 1 )P5,i• Suppose that 

p5 i 0 for i > 2. 

Then at least one vertex is contained in exactly three 5-gonal faces, which is 

impossible. So, the equation reduces to: 

1 
0 = -P5.0 “ ^P5,l ■ 

This implies p5J = 0 for i < 2. So, our ({5, 8}, 3)-torus is strictly face-regular 5/?, 

with i = 2. 

If the map is 5R2, then, again, Theorem 15.1.1 implies x0 + x3 = 0, i.e. 

x0 = x3 = 0. 
Also, by the same computation, we get e8_8 = ps, ^5-8 = 6p%, and e5_5 = 2Ps- 

Take an 8-gonal face F\ since x0 = x3 = 0, the corona sequence of F does not 

contain the pattern 88. Assume that F contains the pattern 858; by the propeity 5R2, 

the 5-gonal faces should have the corona 88855. This implies that xo + x3 > 0. 

So the corona 858 is impossible and this implies that 8-gonal faces are adjacent 

to at most two 8-gonal faces. Since, on average, 8-gonal faces are adjacent to two 

8-gonal faces, this implies property 8R2. 

Theorem 15.2.2 A ({5, b}, 3 ftorus bR2 exists if and only ifb > 8. 
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Proof. Consider the graphite lattice {6, 3} and put a 5-gon in every vertex of it. The 

obtained structure is, clearly, a ({5, 8}, 3)-plane, which is 8/C- In order to obtain 

({5, b}, 3)-planes with b > 8, we need to modify the structure. The 5-gons can be 

organized into pairs of adjacent ones. Every such pair, which is highlighted in the 

diagram below, can be changed into a (5, 3)-polycycle E2n with n > 1. 

We obtain a ({5, 8 + «}, 3)-plane that is (8 + n)R2. All above planes are peri¬ 

odic; hence, by taking the quotient (by a translation subgroup of their automorphism 

group), we obtain ({5, b), 3)-tori that are bR2. 

In order to prove the non-existence of ({5, b}, 3)-torus with b < 7, it is sufficient 

to use Theorem 15.1.1; it yields pb = 0, which is impossible. □ 

See on Figures 15.2, 15.3 some ({5, b), 3)-tori that are bR2 for b = 9, 10. 

Figure 15.2 Some ((5, 9), 3)-tori that are 9/C 

Figure 15.3 Some ({5, 10}, 3)-tori that are 10/?2 
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15.3 ({a, b}, 3)-spheres with a cycle of Zt-gons 

Consider ({a, b}, 3)-spheres with all £>-gons organized in a single cycle of length, 

say, n. They form an interesting subset of the ({a, b}, 3)-spheres bR2. In this section 

we drop condition a < b supposing instead only a, b > 3. In fact, we suppose b > 3 

since there is no ({a, 3}, 3)-sphere 3R2. 

Theorem 15.3.1 For b > 4, a > 5, a ({a, bj, 3)-sphere with a n-cycle ofb-gons may 

exist only for the following values of the parameters n, a, and b. 

(i) Ifb = 4, then n = a and the unique possibility is Prisma. 

(ii) Ifb > 5, then a <7, and if a > 6, then b = 5. Besides, it holds: 

1 if a = 7, then n — (x + x') = 28; n > 28. There is a unique ({5, 7}, 3 )-sphere with 

a 2%-cycle of 5-gons; 

2 if a = 6, then there are four ({5, 6), 3)-spheres with a 12-cycle of 5-gons (see 

Figure 10.8); 

3 if a = 5, then it holds: 

(a) ifb = 6, then n < 10, and all existing spheres are presented on Figure 10.5; 

(b) ifb — 7, then n < 20 and all existing spheres are presented on Figure 15.6. 

Proof. In case (i), the only way the 4-gons can arrange themselves into a cycle is 

by forming Prism„ with n = a (see, for example, the classification of (4, 3)- and 

(4, 3)gen-polycycles in Chapter 4). 

Denote by /„, On (a, 3)-polycycles inside and outside of the n-cycle of b-gons. 

Denote by x,x' the number of interior vertices of polycycles /„, On, respectively. 

Formula (15.1) can be rewritten as follows: 

(a - 6)(x + x') = (4 - (a - 4)(b - 4))n - 4a. 

Consider the case (ii) and assume, at first, a >7. Since a — 6 > 0 and x + x > 0, 

we have 4 - (a - 4)(b - 4) > 0. For a > 7, this inequality holds only if b = 5 and 

a = 7. For these values a and b, Equation (15.1) takes the form: 

jt + x = n — 28 . 

So, no ({5, 7}, 3)-sphere with cycles of 5-gons exists for n < 28. For n = 28, 

x + x' - 0 and the unique sphere is presented on Figure 15.5. 

Now consider the case a = 6. In this case, Equation (15.1) takes the form: 

(12 - 2b)n = 24 . 

Hence, 12-2b > 0, i.e. b < 6. Since b > 5, we have b = 5 and n = 12. There 

exist four ({5, 6}, 3)-spheres with a cycle of 5-gons: see Figure 10.8 and the proof of 

Lemma 10.4.1. 
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The case a = 5 is the most interesting one. Now Equation (15.1) takes the form: 

x 4- x = 20 — (8 — b)n . (15.2) 

For b < 8, this equality restricts n, since x + x' > 0. □ 

Remark 15.3.2 

(i) All ({5, 7}, 3)-spheres with a n-cycle of5-gons are enumerated in [HaSo07] for 

n < 50; furthermore they also constructed an infinite sequence of such spheres. 

(ii) Some infinite sequences of {{5, b], 3)-spheres with a cycle of b-gons are con¬ 

structed in [MaSo07] for b = 10 and b = 2, 3 (mod 5), b > 13. They 

showed the existence of{{ 5. b). 3 )-spheres with a cycle of b-gons for b = 0, 1,4 

(mod 5), b > 5, b 9, for b = 1,4 (mod 5), b > 5 and for b = 0 (mod 10), 

b > 20. 

We now give two infinite series from [DGr02]: 

1 If t > 1, define a ({5, 51 + 3}, 3)-sphere D2d with a 4-cycle of (51 + 3)-gons by 

taking two identical (5, 3)-polycycles tC\ as caps. 

2 If t > 1, define a ({5,51 + 2}, 3)-sphere D2ci by taking two identical 

(5,3)-polycycles P as caps. If t = 1, then P = A\ and. if r > 2, 

then P = B2 + (t — 2)Cj + B2. 

The first examples of those infinite series are shown below: 

44, D2d 36, D^d 

We conjecture that there exist an infinity of ({5, b), 3)-spheres with a cycle of 

b-gons for every b > 8. 

The existence of a ({a, b}, 3)-sphere with a cycle of b-gons is equivalent to that 

both, some boundary sequence c = 23C‘23C2 ... 23Cm and its b-complement (i.e. c' = 

23Cl23C2... 23Cm with c- = b — 4 — Ci), can be filled by a-gons. So, unicity of such 

sphere means that only one such c exists and it admits unique filling by a-gons. For 

b-self-complementary c (i.e. its ^-complement coincides with c, up to cyclic shift or 

reversal), the unicity of such a sphere is equivalent to unicity of filling of c. 

See below the ({a, b}, 3)-spheres with a 2-cycle of b-gons: 
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({3, 6}, 3)-sphere D2h with a 
2-cycle of 6-gons 

({4, 8), 3)-sphere D2h with a 
2-cycle of 8-gons 

({5, 10}, 3)-sphere Dy, with a 
2-cycle of 10-gons 

See below the ({a, b}, 3)-spheres with a 3-cycle of £>-gons: 

({3, 4}, 3)-sphere Dy, with a 
3-cycle of 4-gons 

({4, 6}, 3)-sphere Dy, with a 
3-cycle of 6-gons 

({5, 8}, 3)-sphere Dy, with a 
3-cycle of 8-gons 

Theorem 15.3.3 (i) Given two ({5, 10}, 3)-spheres that are 10/?2 and have a pair 

of adjacent 5-gons, adjacent only to 5-gons, then we can merge them into a new 

({5, 10}, 3fsphere that is 10/?2, not 3-connected and has a 2-cycle of 10-gons 

adjacent on two opposite edges. 

(ii) Any ({5, 10}, 3)-sphere, having a 2-cycle of 10-gons adjacent on opposite 

edges, is obtained by the above procedure of merging of two ({5, 10], 3)-spheres 

that are 10/?2- 

Proof, (i) First, split the common edge of two 5-gons of those spheres. Then merge 

the cut spheres along those half-edges and obtain the requested new ({5, 10}, 3)- 

sphere. 
(ii) In the case of ({5, 10}, 3)-sphere having a 2-cycle on opposite edges, the 

process can, obviously, be reversed by cutting the edges of the cycle. Cl 

It turns out, that every known ({5, 10}, 3)-sphere 10R2, has exactly two such pairs 

of 5-gons. Hence, we can, for example, “inscribe a Dodecahedron” in them and 

obtain not 3-connected ({5, 10}, 3)-spheres that we 10/?2- 

Theorem 15.3.4 For any t > 0, there exists a ({5, 8}, 3)-sphere with t 3-cycles of 

8-gons, which is 3-connected. This sequence corresponds to the ({5, 8}, 3fspheres 

8R2, containing a triple of mutually adjacent 5-gons, which are not adjacent to 

8-gonal faces. 
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Proof. Take two Dodecahedra and remove a vertex in each of them. Glue the edges 

belonging to different Dodecahedra together. We obtain the unique ({5, 8}, 3)-sphere 

with a 3-cycle of 8-gons. This construction can be generalized by taking t + 1 

Dodecahedra, removing one vertex of two Dodecahedra and two opposite vertices 

of t — 1 remaining Dodecahedra. The construction can be glued, in order to form a 

({5, 8}, 3)-sphere with t 3-cycles of 8-gons (see Figure 15.4). 

({5, 10), 3)-sphere with two ({5, 8), 3)-sphere with two 
2-cycles of 10-gons. 3-cycles of 8-gons. 

Figure 15.4 Examples of spheres with two cycles from Theorems 15.3.3 and 15.3.4 

Take a ({5, 8}, 3)-sphere 8R2 with such a triple of 5-gons. By hypothesis, we can 

add a cycle of 5-gons around this triple. The obtained (5, 3)-polycycle has exactly 

three vertices of degree 2. It is easy to see that, if we add another 5-gon to it, then 

we close the structure and obtain a Dodecahedron. If not, then add a 3-cycle of 8- 

gons. Hence, we should add around the structure a cycle of 5-gons. Then again, 

we can choose to add a 5-gon, and so three 5-gons, in order to obtain a ({5, 8}, 3)- 

sphere with a 3-cycle of 8-gons, or we can continue to add three 8-gons and the 

argument can be repeated. Hence, since the graph is finite, eventually, we will obtain 

a ({5, 8}, 3)-sphere with t 3-cycles of 8-gons. □ 

Remark 15.3.5 The following two methods were used to enumerate ({5, 7}. 3)- 

spheres with a n-cycle ofl-gons (see Figure 15.6 for the drawings): 

(i) Harmuth ([HarOO]) used CPF (see [Har]) to enumerate all such spheres with n < 

16. More precisely, he enumerated, using a modification of CPF, all ({5, 7}, 3)- 

spheres that are 7 R2, with at most 84 vertices. 

(77) Another method is possible. Any ({5, 7}, 3)-sphere with a n-cycle ofl-gons cor¬ 

responds to two (5, 3)-poly cycles V and V. Denote by x and x' the number of 

interior vertices of those polycycles, by p$ and p'5 the number of 5-gons of those 

polycycles, and by u3, t>' the number of3-valent vertices on the boundary’. From 

Theorem 5.2.1, we get p$ = 6 +1)3 — n and x < 10 -p u3 — 2n and a similar relation 

holds for p'5 and x'. But we have u3 + u3 = 3n; therefore, one of the numbers u3, 
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v2> say> v3 satisfies to < |n and so we have: 

_ n n 
P5 < 6 + - and x < 10-. 

2 2 

Since n < 20, this implies that we need to enumerate all (5, 3)-polycycles with 

Ps — 16 and less than 16 — p5 interior vertices. The result are as follows: 

P5 Xmax Nr. of (5,3)-polycycles 

6 10 18 12 4 3147 
7 9 35 13 3 6850 
8 8 87 14 2 12803 
9 7 204 15 1 13448 
10 6 518 16 0 4160 
11 5 1287 

To every such (5, 3 )-polycycle, we add, if possible, a cycle ofl-gons and then test 

if we can fill with 5-gons the obtained (5, 3)-boundary (see Section 5.2 for the 

relevant algorithms). When the fillings is possible, we get ({5, 7}, 3)-spheres with 

a cycle ofl-gons. 

84, D2 92’ D3 

Figure 15.5 ({5, 7}, 3)-spheres with a /?-cycle of all 5-gons, for n < 31 

The same strategy, as the one used for ({5, 7}, 3)-spheres with n-cycle of 7-gons, 

can be used for ({5, b}, 3)-spheres with n-cycles of fi-gons with b > 8. It yields many 

({5, b}, 3)-spheres for b = 8, 9, and 10, which are presented in [DDS05a], 

A ({5, 7}, 3)-sphere with a 77-cycle of 5-gons and n < 31 has at most 19 7-gons. 

Hence, one of its (7, 3)-polycycles has less than nine 7-gons. We enumerated all 

(7, 3)-polycycles up to nine 7-gons, and found only two spheres depicted on Fig¬ 

ure 15.5. The first sphere was in [DGr02], while the second coincides with the one 

found in [HaSo07]. 
The enumeration of ({5, 7}, 3)-spheres with more than one cycle of 7-gons was 

done in the following way. We can assume that the sphere G has at least 88 vertices, 

because such spheres with at most 84 vertices were found in [HarOO]. By the relation 

Pl + x = 20, this implies that * < 3. Hence, we will restrict our enumeration 



244 Chemical Graphs, Polycycles, and Two-faced Maps 

to spheres having at most 3 vertices contained only in 5- or only in 7-gonal faces. 

Moreover, if the sphere G has at least one cycle of 7-gons, then it contains at least 

two (5, 3)-polycycles bounded by cycle of 7-gons. It is easy to see that those (5, 3)- 

polycycles belong to the list described in Remark 15.3.5.H. Hence, our method is the 

following. Take one (5, 3)-polycycle from this list, add to it a cycle of 7-gons. Then 

add 5- and 7-gon in every possible way, while making sure that x is never larger than 

3 and that every 7-gon is adjacent to exactly two 7-gons. 

The above method gave two new ({5, 7}, 3)-spheres 1 Ri. So, we have the 

following theorem: 

Theorem 15.3.6 The list of ({5, 7}, 3)-spheres 7 R2 consists (besides of Dodecahe¬ 

dron) 10 spheres with a single cycle of 7-gons (see Figure 15.6) and 16 spheres with 

more than one cycle of 7-gons (see Figure 15.7). 

84, D2 84, D2 100, D2 

100, C2 

Figure 15.6 All ({5, 7), 3)-spheres with a cycle of all 7-gons 
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44, C2h 44, Z>3 60, D5d 60. Dih 

68, Dm 

68, D2 

68, D2 

76, C2h 

Figure 15.7 All ({5, 7}, 3)-spheres with 7-gons organized into t > 2 cycles 
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Spheres and tori that are bR \ 

In this chapter, we obtain full classification of ({4, b), 3)-maps that are bR3. For 

({5, b}, 3)-maps we have only existence results. 

16.1 Classification of ({4, b}, 3)-maps bRj, 

The (4, 3)-polycycles used in theorem below are defined in Section 4.2. 

Theorem 16.1.1 (i) There is no ({4, b}, 3)-torus that is bR^, for any b > 5. 

(ii) The list of ({4, b}, 3)-spheres that are bR3, consists of: 

• Following ({4, 9}, 3)-sphere and 2-connected ({4, 12}, 3)-sphere: 

28, Td (also 4R2, Nr. 35) 24, D3h 

• Unique sphere Fb, having two (4, 3fpoly cycles {4, 3} - e and two (4, 3)- 

polycycles P2 x Ph_6, if b > 8. It is of symmetry Dih if b = 8 and D-> if 

b> 8. 

• Unique sphere Gh, having two (4, 3fpolycycles {4, 3} - v and three (4, 3)- 

polycycles P2 x Ph_5, if b >7. It is of symmetry DVl if b = 1 and If if 

b >1. 

246 
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• Unique sphere Hh, having two points incident to three b-gons and three (4, 3)- 

polycycles P2 x Pb_3, if b > 5. It is of symmetry D2h if b = 5 and D2 if 
b > 5. 

• A /am//y of spheres Khyh, for 1 < h < b - 5, wif/i two (4, 3 fpolycycles 

Pi x Pb—4> two polycycles Pi x P/)+i rzm/ two polycycles Pi x Pj,^-h- If 

h = 1, f/ze symmetry is Oh if b = 6 W F>4, otherwise. Ifh > 1, r/zen //ze 

symmetry is D2d if h = ~ and D2, otherwise. 

Proof, (i) Take G a ({4, b), 3)-map bR2. The set of 4-gonal faces of G is split into 

(4, 3)-polycycles: {4, 3} - v, {4, 3} - e and P2 x Pk for 2 < k < 7. Consider the 

sphere b(G) formed by the Zz-gons of G with two b-gons adjacent if they share an 

edge. Since G is bR2, b{G) is 3-valent. 

Every vertex, which is incident to three Zz-gonal faces, corresponds to a 3-gonal 

face of b(G). Every (4, 3)-polycycle {4, 3} — v also corresponds to a 3-gonal face. 

Every (4, 3)-polycycle {4, 3} — e corresponds to a 2-gonal face. On the other hand, 

all P2 x Pk correspond to 4-gonal faces. A 3-valent map, whose faces have gonality 

at most four, does not exist on the torus and, clearly, has at most 8 vertices on the 

sphere by Euler Formula 1.1. 

(ii) Take G a ({4, b}. 3)-sphere bR2, consider its associated map G' = b(G). G' has 

at most 8 vertices and so G has at most 32, 40, 48, and 56 for, respectively, 

b = 7, 8, 9, 10. The enumeration of ({4, b), 3)-spheres cover those values and so 

the result is proved for b < 10. Assume now b > 11. 

G' is a 3-valent sphere with faces of gonality at most four. There are exactly 

five such maps: Tetrahedron, Bundle3, Prism2, Prism3, and Cube. 

If G' is Tetrahedron, then all its faces are 3-gonal; hence, they all correspond 

to (4, 3)-polycycles {4, 3} - v or to vertices. Clearly, in order for a face to be 

Zz-gonal, they should be all {4, 3} - v or all vertices. This corresponds to strictly 

face-regular Nr. 35 or to a Tetrahedron. 

If G’ is Bundle3, then, clearly, the sphere is the 2-connected one, indicated 

above in the statement of the Theorem. 

If G’ is Prismi, then its face-set consists of two 2-gons and two 4-gons. 

Hence, the map G is formed of two (4, 3)-polycycles {4, 3} — e, one (4, 3)- 

polycycle P2 x Pk, and one (4, 3)-polycycle P2 x Pk> with a priori k f k'. Given 

a polycycle P2 x Pk, which is adjacent to the fr-gonal faces Fu F2, F3, and F4, 

the sequence of k - 1 4-gons can be adjacent either to F\ and F3, or to F2 and 

F4. Hence, we need to fix the orientations of the (4, 3)-polycycles P2 x Pk. 

On every 4-gon, there are two possibilities for orienting the polycycles P2 x 

Pk. So, we have a total of four possibilities and, after reducing by isomorphism, 

two possibilities. One possibility corresponds to a Z?-gonal face having corona 
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4t>4b444b, which is impossible. So, the orientation of 4-gonal faces should be 

done in such a way, that their coronas are of the form Ah~7 bAbAAAb', hence, 

k = k' and we obtain the sphere Fb. 

If G' is Prism3, then two 3-gonal faces of G' correspond, in the sphere G, 

to {4, 3} — v or vertices, incident only to 6-gonal faces. Three 4-gonal faces 

correspond to the (4, 3)-polycycles Pi x Pki with 1 < i < 3. We must find the 

values of kt and the orientations of those polycycles. 

Denote by (Pj)i<j<3 and (Fj)\<i<3, two cycles of faces of length 3. Let us 

consider the faces F,. Their boundary sequences are of the form either babAbA, 

or babAki~lbA, or babAki~lbAki'~l. Here a is void, if the faces F, are incident to 

a common vertex, and a = 44, if the faces F, are adjacent to a common (4, 3)- 

polycycle {4, 3} — v. Clearly, the first pattern, i.e. babAbA, is impossible, since it 

implies gonality 5 or 7. So, the pattern babAk:~l bAki'~l is also impossible and the 

faces F, have their boundary of the form babAki~lbA. This implies k\ = k2 = k2. 

For faces F/, we obtain, by the same argument, that their boundary is of the 

form barbAki~xbA with a’ being void for a vertex and equal to 44 for a polycycle 

{4, 3} — v. So, we have a = a', i.e. either two vertices, or two (4, 3)-polycycles 

{4, 3} — v. We obtain the series Gb and Hb. 

Assume now that G’ is Cube. By the previous analysis, all 4-gonal faces 

are organized in (4, 3)-polycycles P2 x Pk. We need to fix the orientation on 

every 4-gonal face. Since there are two choices for every one of six faces, this 

makes a total of 64 choices. Every £>-gonal face should be incident to at least one 

sequence of 4-gons. This reduces to 22 cases. Under symmetry, this reduces to 

just three cases (a very similar analysis is done in Theorem 9.2.2). The first case 

is depicted below: 

\ 

The letters correspond to the length of the (4, 3)-polycycles in the following 

way: m corresponds to P2 x F,i|+1. Every vertex is incident to three 4-gonal 
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faces. So, three dotted paths appear. If two of those paths are incident to the 

vertex, i.e. if the corresponding (4, 3)-polycycle is incident to an isolated 4-gon 

to the £>-gonal face, then the length of the last dotted path is set. It gives m = 

ns = n6 = n3 = b — 4. Consider now the case of vertex being incident to just 

one dotted path. By previous assignment, we get the length nx = n4 = 1. This 
map is Kb x. 

The second case is depicted below: 

\ 

By the same argument, we get n \ = n4 = b — 5. This reasoning for other 

vertices yields the equations: 

^3+^5 = n3 + ^2 = «2 + — ^5 + n6 — b — 4. 

It yields n5 = n6, n3 = n6 and n3 —b- 4- n2. The corresponding map is Kb<h. 

The third case is depicted below: 



250 Chemical Graphs, Polycycles, and Two-faced Maps 

We obtain nx = n2 = n3 = n4 = n5 = n6 = b - 5. Two remaining vertices, 

which are not incident to any dotted path, yield the equation 3(b - 5) = b - 3, 

i.e. b = 6, which is already covered. □ 

See on Figures 16.1, 16.2, 16.3, and 16.4 the lists of weakly face-regular 

({4, b}, 3)-spheres that are bR3 for b = 7, 8, 9, and 10, respectively. 

Figure 16.1 All face-regular ({4, 7), 3)-spheres that are 1R?,, besides Cube 

24, Dlh (f8) 32, D3 (G8) 32, D3 (ff8) 

Figure 16.2 All face-regular ({4, 8), 3)-spheres that are 8R3, besides Cube 
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28, D2 (F9) 
28, Td 

(also 4R2, Nr. 35) 38, D3 (G9) 

Figure 16.3 All face-regular ({4, 9}, 3)-spheres that are 9R2, besides Cube 
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16.2 ({5, b), 3)-maps bR^ 

Theorem 16.2.1 (i) A ({5, 7}, 3)-torus is 7 R2 if and only if it is 5R\. 

Moreover, the corresponding ({5, 7}, 3)-plane that is 5R\ belongs to Case 17 from 

Table 9.3. 

(ii) A ({5, 7}, 3)-sphere that is 1 Rt, satisfies to xo + x3 — 20, where x,- denotes the 

number of vertices incident to i 5-gonal faces. 

Proof. Assume first that the torus is 7 R^. We have the standard relations: 

p5 = p-j and e = 6/77. 

Furthermore, the property 7Rt, yields: 

3 , 1 
£7-7 — -pi, £5-7 = 4pi and £5-5 = -p7. 

Then, by expressing above numbers in terms of x,-, we obtain: 

2£7_7 = 3xq + x\, £5-7 = x\ + X2 and 2£5_5 = X2 + 3x3. 

By combining above equalities, we get the equality: 

0 — 3 Pi + Pi — A Pi — 2£7_7 — £5-7 + 2£5_5 = 3xo + 3x3, 

which yields xo = X3 = 0 and so, x\ = 3pi, X2 = pi. Denote by p^k the number of 

5-gonal faces, which are adjacent to exactly k 5-gons. Again, by easy counting, we 

obtain: 

x\ — 5/75,0 + 3/75,1 + P5,2 and 2x2 = 2/75,1 + 4/75,2. 

Since X2 = pi = ps = /75,i + p5^, we get p5>2 = 0, which implies /75,0 = 0 and so 

our torus is 5R\. 

On the other hand, if the torus is 5RU then it holds, by the same computation, that 

xo = x3 = 0, X] =3pi and X2 = pi. 

Now, denoting by p1%k the number of 7-gonal faces, which are adjacent to exactly 

k 7-gonal faces, we obtain: 

x2 — 2/77,0 + 5/77,i + 3/>7,2 + pu and 2xi = 2pu -)- 4pi 2 + 6pi 3. 
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Hence, we get: 

0 = 6p7 — 2x\ 

= 6(p7,0 + Pi A + Pl,2 + PI,3) - (IpiA + 4/?7,2 + 6/77 3) 

= 6/27,0 + 4/?7 i + 2/77,2- 

Therefore, /77j0 = /77,i = /?7,2 = 0 and the torus is IR^. 

In the case of spheres, the proof is very similar; we only indicate the different 

formula: 

P5 = 12 + pi, and e = 30 + 6p7, 

which yields 3x0 + 3x3 = 2e7_7 - c5_7 + 2e5_5 = 60. □ 

Theorem 16.2.2 For any b >7, /7?ere exist a ({5, £>}, 3)-torus that is bR7. 

Proof. Take the following picture of a ({5, 7}, 3)-torus that is 5R\ and 7/?3 (Case 17) 

and replace every pair of adjacent 5-gons by an elementary (5, 3)-polycycle E2n. 

The obtained ({5, 7 + n}, 3)-torus is (7 + n)/?3. See below the result for b = 8, 9 

and 10. O 

Conjecture 16.2.3 For any b >7, there exist an infinity of ({5, b), 3)-spheres that 

are bR3. 

Theorem 16.2.4 There exist an infinity of ({5,(7}, 3)-spheres that are bR?,, for b = 9, 

10 and 12. 
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Proof. The following ({5, 9}, 3)-, ({5, 10}, 3)-spheres: 

68, C2 80, Cs 

are 9R3, IO.K3 and contains two (5, 3)-polycycles Ap, so. Theorem 11.0.2 solves the 

cases b = 9 and 10. By truncating two opposite vertices of the 3-fold axis of the 

following ({5, 9}, 3)-sphere 9Ry. 

and filling those truncations by (5, 3)-polycycles A3, we obtain a ({5, 12}, 3)-sphere 

12R3, which, by Theorem 11.0.2, solves the case b = 12. □ 

See on Figures 16.5, 16.6, and 16.7 some ({5, b}, 3)-tori that are bR3, for b = 8, 

9, and 10, respectively. 

Figure 16.5 Some ({5, 8}, 3)-tori that are 8R} 
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Figure 16.7 Some ({5, 10}, 3)-tori that are 10/? 3 
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Spheres and tori that are bR4 

In this chapter we present a conjectural classification of all ((4, b}. 3)-spheres bR4 for 

b < 8. We also obtain a necessary and sufficient condition for existence of ({4, b}, 3)- 

tori bR4. 

The (4, 3)-polycycles used in this chapter are defined in Section 4.2. 

17.1 ({4, b), 3)-maps bR4 

Lemma 17.1.1 Let G be a ({4, b), 3)-sphere or torus that is bR4, and let x, denote 

the number of vertices, which are contained into i 4-gonal faces. Then we have: 

xo + X3 = 8 on sphere, 

xo + X3 = 0 on torus. 

Proof. Denote by G' = b(G) the map formed by £>-gonal faces and their adjacencies; 

so, it is a 4-valent map. The set of 4-gonal faces of G is partitioned into (4, 3)- 

polycycles {4, 3} - v, {4, 3} - e and P2 x Pk with k > 2. Denote by /?{4 3... the 

corresponding number of such polycycles. 

Those polycycles correspond, respectively, to 3-, 2- and 4-gonal faces of the map 

G1. The other faces of G' are 3-gonal ones, corresponding to vertices of G, which 

are incident to three b-gonal faces. 

Hence, the map G' is a 4-valent one, whose faces are 2-, 3-, or 4-gonal. Euler 

formula (1.1) for those maps is 4x = 2p2 + p3 with p,• being the number of i-gonal 

faces and x = 2 for spheres and 0 for tori. We have p2 = p{4,3}_e and p3 = /?{4 3}_v-|- 

xo- So, it holds that: 

4X = 2/?{ 4,3)-e + P{ 4,3}-u + ■*()• 

It turns out that x3 = 2p[4i3]_e + p[A,3)_v. □ 

256 
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The above theorem also admits a more standard proof, which does not make 

use ot the classification of (4, 3)-polycycles. It is very useful for classifying the 

corresponding maps. 

Theorem 17.1.2 (i) ({4, b), 3 )-tori that are bR4> exist if and only ifb > 8. 

(ii) A ({4, 8}, 3 )-torus is 8 R4 if and only if it is 4 R0. 

(iii) Any ({4, b), 3)-torus that is bR4, has no (4,3)-polycycles {4,3} - v and 

{4,3} - e and has no vertices incident only to b-gons. Such a torus is described 

by orienting the (4, 3)-polycycles P2 x Pk in a 4-valent tiling of the torus. 

Proof, (i) By standard arguments (double counting and Euler formula), we obtain: 

b — 6 b — 8 
Pa = —g—Pb and e4_4 = —g~pb- 

This implies that a ({4, b), 3)-torus that is bR4, exists if and only if b > 8. On the 

other hand, there exists a unique ({4, 8}, 3)-plane that is 8R4 (Case 14 in Table 9.1, 

see Figure 9.5); we need to modify it so as to obtain a ({4, b}, 3)-plane. In order to 

do this, we use the following drawing: 

and transform every 4-gon with two boldfaced edges into a (4, 3) polycycle 

Pi X Pb-6- 

(ii) If b = 8, then e4_4 = 0, i.e. all 4-gons are isolated. On the other hand, if a 

({4, 8}, 3)-torus is 4R0, then each 8-gon is adjacent to at most four 4-gons and we 

conclude easily. 
(iii) For any ({4, b}, 3)-torus that is bR4, we obtain, by Lemma 17.1.1, the equality 

x0 + *3 = 0. Therefore, x0 = *3 = °>then il ho,ds PAA-e = P{4,3}-u = So’ a11 
(4, 3)-polycycles are of the form P2 x Pk. On the other hand, the map b(G) is, clearly, 

a 4-valent tiling of the torus. Each vertex corresponds to a 6-gonal face and each 4- 

gon corresponds to a (4, 3)-polycycle P2 x Pk. We just need to fix the orientation of 

this polycycle and the value of k in order to define the torus. LH 
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Theorem 11.1.4 implies the finiteness of the number of ({4, 7}, 3)-spheres 7R4. 

They are shown on Figure 17.1. 

Figure 17.1 All face-regular ({4, 7), 3)-spheres that are 7/?4, besides Cube and strictly 

face-regular ones Nrs. 27, 28, 30 and 31 

Conjecture 17.1.3 All ({4, 8), 3)-spheres that are 8P4, belong to the following list 

of v-vertex spheres: 

1 Two infinite series, with v = 32 + 8t (t > Oj, of spheres containing exactly one 

(4, 3 )-polycycle (4, 3} — e. If t is odd, they are isomorphic and of symmetry C2', if 

t is even positive, they are not isomorphic and one is of symmetry C2h, the other of 

symmetry Civ- For t = 0, the sphere of symmetry' C2h gains higher symmetry D2h 

(see Figure 17.9). 

2 Two infinite series, with v = 32 + 16/ (t > Oj, of spheres containing exactly four 

(4, 3)-poly cycles {4, 3} - v. Their symmetry is D2d, D2h■ If t — 0, the sphere of 

symmetry D2d gains the higher symmetry Td (see Figure 17.10). First members of 

those series are Nrs. 33 and 32. 

3 Four infinite series, with v = 80 + 24/ (t > Qj, of spheres containing two (4, 3)- 

polycycles {4, 3} — t; and six (4, 3)-polycycle P2 x P3. Two series are of symmetry 

C2, one of symmetry C2v, and one of symmetry C2h (see Figure 17.11). 

4 Two infinite series, with v = 144+16/ (7 > Oj of symmetry D2, of spheres 

containing twelve (4, 3)-polycycles P2 x P3 (see Figure 17.12). 

5 Three infinite series, with v = 128 + 32/ (/ > Oj of symmetry D2, D2d, and D2h, 

respectively, containing twelve (4, 3)-polycycles P2 x P3 (see Figure 17.13). 

6 A list of sporadic examples, given on Figures 17.2-17.8 (including Nr. 34). 

We indicate below why this list is likely to be complete. The enumeration was done 

by computer, using following two relations (see Theorems 11.1.4 and 17.1.1): 

e4-4 =12, x0 + x3 = 8, 
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Figure 17.2 Sporadic ({4, 8}, 3)-spheres that are 8R4 (first part) 
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80, Cu 80, D2 80, D2 

Figure 17.3 Sporadic ({4, 8}, 3)-spheres that are 8R4 (second part) 

96, C2 
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Figure 17.4 Sporadic ({4, 8), 3)-spheres that are 8R4 (third part) 
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104, Dm 

112, D2 112, D4 

Figure 17.5 Sporadic ({4, 8), 3)-spheres that are 8R4 (fourth part) 
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Figure 17.6 Sporadic ({4, 8}, 3)-spheres that are 8R4 (fifth part) 



264 Chemical Graphs, Polycycles, and Two-faced Maps 

128, D3 128, £>3 128, T 

Figure 17.7 Sporadic ({4, 8), 3)-spheres that are 8/?4 (sixth part) 

176, D4 
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Figure 17.8 Sporadic ({4, 8}, 3)-spheres that are 8R4 (seventh part) 

Figure 17.9 First members of infinite series of ({4, 8), 3)-spheres that are 8 R4 and contain 

two (4, 3)-polycycles {4, 3} - e 
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32, D2h 
(also 4R2, Nr. 33) 

32, Td 
(also 4R2, Nr. 32) 

48, D2d 

48, Dlh 64, Djd 64, Djh 

80, D2h 

Figure 17.10 First members of infinite series of ({4, 8), 3)-spheres that are 8R4 and 

contain four (4, 3)-polycycles (4, 3) - v 

i.e. if, in the enumeration, we found some partial map with e4_4 > 12 or xo + aa > 8, 

then it can be discarded. 

The set of 4-gonal faces is partitioned into (4, 3)-polycycles. Clearly, the only 

possible polycycles are {4, 3} - v, {4, 3} -e,P2x P2, P2 x P2, P2 x P4 and P2x P5. 

The enumeration consisted of the following progressive steps: 
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Figure 17.11 First members of infinite series of ({4, 8}, 3)-spheres that are 8R4 and 

contain two (4, 3)-polycycles {4, 3} - v 
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144, D2 144, D2 160, D2 

160, D2 

192, D2 

208, D2 

176, Di 

192, D2 

224, D2 

176, D2 

208. D2 

224, D2 

Figure 17.12 First members of infinite series of ({4, 8}, 3)-spheres that are 8R4, contain 

twelve (4, 3)-polycycles P2 x P3 and have symmetry D2 
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1 Take as initial ({4, 8}, 3)-polycycle with the (4, 3)-polycycle P2 x P$, circum¬ 

scribed by four 8-gons. In the next steps we can assume that P2 x P$ does not 

occur. 

2 Take as initial ({4, 8}, 3)-polycycle with the (4, 3)-polycycle {4, 3} — e, circum¬ 

scribed by two 8-gons. In the next steps, we can assume that the sphere does not 

contain {4, 3} — e. 

3 Take as initial ({4, 8}, 3)-polycycle with the (4, 3)-polycycle {4, 3} — v, circum¬ 

scribed by three 8-gons. In the next steps, we can assume that the sphere has 

X2 = 0. 

4 Take as initial ({4, 8}, 3)-polycycle with the (4, 3)-polycycle P2 x P4, circum¬ 

scribed by four 8-gons. In the next steps, we can assume that P2 x P4 does not 

occur. 

5 Take as initial ({4, 8), 3)-polycycle with the (4, 3)-polycycle P2 x P3, circum¬ 

scribed by four 8-gons. 

None of the programs, corresponding to such enumeration, terminates. More pre¬ 

cisely, the programs generate some sporadic maps and then the maps of the infinite 

series of our conjecture. So, our conjecture is true up to 400 vertices. But to prove 

it would require a deeper analysis of the behavior of those programs, and the 

technicalities, in terms of programming, would be tremendous. 

17.2 ({5, b], 3)-maps bR4 

Theorem 17.2.1 There exists an infinite series of{{5, 8}, 3)-spheres that are 8R4. 

Proof. Take an edge of Dodecahedron and add a 4-gon in the middle of the edge. 

Inside of this 4-gon it is possible to put another Dodecahedron, by cutting an edge of 

it in the middle and gluing it inside the 4-gon. This construction can be generalized, 

by cutting opposite edge of Dodecahedra. See the first two examples below. □ 
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In above procedure, cutting opposite edges of Dodecahedra is just one of several 

possibilities. In fact, given one edge of Dodecahedron, there are five other edges, 

which can be cut, in order to obtain ({5, 8}, 3)-spheres SR4. 

Theorem 17.2.2 A ({5, 7}, 3)-sphere that is 7R4 and contains, in its set of 5-gonal 

faces, a (5, 3)-polycycIe with boundary sequence containing at most three 2, belongs 

to an infinite series of such spheres, having v = 20 + 24? vertices with t > 1 and 

symmetry Did (Figure 17.14). 

Figure 17.14 Both ({5, 7}, 3)-spheres that are 7R4 and have at most 76 vertices; they are 

the cases ? = 1,2 of an infinite series of those having 20 + 24? vertices 

Proof. Denoting by 1)3, V2 the number of vertices of degree 3, 2 on the boundary, we 

obtain U3 < 2i>2 and V2 < 3. 

The formula p5 = 6 — V2 + U3, expressing the number of 5-gonal faces in a (5, 3)- 

polycycle (see Theorem 5.2.1), yields p5 < 9. An exhaustive enumeration amongst 

all (5, 3)-polycycles with nine 5-gons yields the elementary (5, 3)-polycycle A3 as 

the only possibility. 

So, now we extend this polycycle by adding a ring of 7-gons around it. Since every 

7-gon is adjacent to four 7-gons, we need to add another ring of 7-gons around them. 

Every 7-gonal face in those rings is adjacent to four 7-gonal faces. So, we are forced 

to add another ring of 5-gons. If we add another 5-gon, then there is only one possi¬ 

bility for filling the structure and one adds two more 5-gons and obtains a sphere. 

If not, then we add a ring of 7-gons and the argument can be repeated. Since the 

graph is finite, eventually, we will obtain a sphere belonging to the infinite series. D 

({5, 7}, 3)-spheres that are 7R4 and which are not obtained by the above Theo¬ 

rem 17.2.2, probably, exist since there is a lot of ({5, 7}, 3)-tori that are 7R4. 

Theorem 17.2.3 For any b >7, there exists a ({5, b}, 3)-torus that is bR4. 
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Proof. The proof consists of taking the following initial ({5, 7}, 3)-plane 7R4 that is 

also 5R2 (the sporadic subcase of Case 18 of Table 9.3): 

In order to obtain a ({5, b}, 3)-torus that is bR4, we need to modify the structure of 

the 5-gons. The 5-gons can be paired to form the polycycle Eq in the following way: 

Every one of those pairs of 5-gons can be replaced by an E2n with n > 1. We obtain 

a periodic ({5, 7 + 72}, 3)-plane that is (7 + n)R4. Then needed torus is obtained as its 

quotient. □ 
Theorem 17.2.4 There is an infinity of ({5, b), 3)-spheres that are bR4, for b — 7, 

10, 13, 16. 

Proof. If we take Cube, truncate some of its vertices and replace them by polycy¬ 

cles A3, so that every 4-gon is incident to exactly t truncated vertices, then it is 

easy to see that the obtained graph is a ({5, 4 + 3r}, 3)-sphere that is (4 + 3t)R4. 

Clearly, for any 1 < t < 4, such sets of vertices exist. The conclusion follows from 

Theorem 11.0.2. □ 

See on Figures 17.15, 17.16, 17.17, and 17.18 some examples of ({5, b}, 3)-tori 

that are bR4, for b = 7, 8, 9, and 10. 

(24, 6, 6), c2mm (32, 8, 8), p2 (40, 10. 10), p2mg 

Figure 17.15 Some ({5, 7), 3)-tori that are 7R4 
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Figure 17.16 Some ({5, 8}, 3)-tori that are 8R4 

Figure 17.17 A ({5, 9}, 3)-torus that is 9R4 

Figure 17.18 Some ({5, 10), 3)-tori that are 10/?4 
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Spheres and tori that are bRj for j>5 

In this chapter we present the classification of all ({a, b}, 3)-spheres bRj for j > 5. 

We also obtain the minimal such spheres for several cases. 

18.1 Maps bRs 

Theorem 18.1.1 (i) A ({4, bj, 3)-torus that is bR5, exists if and only ifb > 7. 

(ii) Any ({4, 7}, 3)-torus that is 7R5, is also 4R0. 

Proof. In order to prove (i), we take the following strictly face-regular ({4, 7}, 3)- 

plane 7R5 (belonging to Case 13 of Table 9.3): 

Replacing the isolated 4-gons by (4, 3)-polycycles P2 x P2+n, we obtain ({4, 7 + 

n), 3)-torus that is (7 -f n)R5. So, (i) holds. 

For ({4, 7}, 3)-tori that are 7R$, we get, by direct counting, the equality — 0; 

hence, the conclusion. □ 

Note that there exist a ({4, 7}, 3)-torus that is 4R0 but which is not 1R5. 

Lemma 18.1.2 Take a map G, such that its set J7 of faces is partitioned into two 

classes, and T2, so that any face F in T\ is 6-gonal and adjacent to exactly five 

other faces of T\. Then it holds that: 

274 
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(i) A face F ef2 is adjacent only to faces in T\. 

(ii) There exists a 3-valent map G', such that G = GC2,i(G') or G = GC, 2(G') (see 

Section 2.1). 

Proof, (i) follows from direct analysis of possible corona of faces. Given a face F e 

Tt, denote by N(F) the neighborhood of F in T\ (i.e. the set of all faces from T\, 

which are adjacent to F). Clearly, the set Tx is partitioned into N(FX), N(Fk). 

Suppose that two sets /V(F,) and N(Fj) have an adjacency. Then the following two 

cases are possible: 

Both of those cases correspond to the local configuration arising in the Goldberg- 

Coxeter construction (see Chapter 2). Moreover, the choice of a local configuration 

determines the whole structure completely, i.e. there is only one choice globally. 

Now, define the map G' with faces corresponding to the set (F2, edges correspond¬ 

ing to pairs N(Fi), N(Fj), having some adjacencies, and vertices corresponding to 

triples N(F{), N(Fj), N(Fk), having pairwise adjacencies. G' is a 3-valent plane 

graph and GC2,i(Gj or GCi>2(G') is isomorphic to G. □ 

Lemma 18.1.3 The set of (5, 3)-polycycles, having boundary sequence (23h)8, 

consists of: 

• elementary (5, 3)-polycycle A2 with h = 3, g = 2, 

• elementary (5, 3)-polycycle At, with h = 2, g = 3, 

• elementary (5, 3)-polycycle A5 with h = 1, g = 5, 

• elementary (5, 3)-polycycle D with h = 0, g = 5. 

Proof. Take a (5, 3)-polycycle P with boundary sequence (23/;)s and assume that it 

consists of several elementary (5, 3)-polycycles put together. 

The major skeleton Maj(P) formed by the elementary components of P is a tree 

(see Theorem 8.0.1). This tree has at least one vertex of degree 1. Such a vertex 

corresponds to an elementary (5, 3)-polycycle, say Pei. 

If Pei has at least twice the pattern 22 in its boundary sequence, then h — 0 and we 

are done. Hence, we can assume that it has the pattern 22 only once in its boundary 
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sequence; so, it is Bi or Bt, (see Figure 7.2). But those do not fit. Hence, the only 

possible cases are the elementary (5, 3)-polycycles indicated above. □ 

Theorem 18.1.4 Take a ({5, b}, 3)-map that is bR5, such that the corona of each 

b-gon is b55b~5 and whose graph b(G) is connected. 

Then it is one of the following: 

• GC2,\{Dodecahedron), i.e. the strictly face-regular Nr. 55, 

• the unique ({5, 7}, 3)-sphere 7 R5 with 260 vertices, depicted in Figure 18.2, 

• the unique ({5, 8}, 3)-sphere 8R$ with 92 vertices, depicted in Figure 18.1, 

• the unique ({5, 9}, 3)-sphere 9/+ with 68 vertices, depicted in Figure 18.1. 

Figure 18.1 The smallest ({5, b}, 3)-sphere that is bR5 for b = 8 and 9 

Proof. The connectedness of b(G) implies that the set of 5-gonal faces is partitioned 

into (5, 3)-polycycles. The corona condition implies that the boundary sequence is 

of the form (23b~6)g. Lemma 18.1.3 gives that the number g depends only on b. 

After replacing those (5, 3)-polycycles by Z?-gons, we get a map G with 6- and g- 

gons only and with g < 5. Hence, this map is on the sphere; it satisfies the condition 

of Lemma 18.1.2 and we get the result. □ 

Theorem 18.1.5 The smallest ({5, 8}, 3)-sphere that is 8R5, is depicted on Fig¬ 

ure 18.1. 

Proof. Euler formula (1.1) for a ({5, 8}, 3)-sphere gives 12 = p5 - 2/?8; hence, 

e = 30 + 9/?g and v = 20 + 6p8. Since the example, given above, has 92 vertices, 

we can assume in the following that p8 < 12. Further enumeration yields: 

£5-5 = 3p8, e8_g = 5p% and <?5-5 = 30 + 

The set of 5-gonal faces is partitioned into elementary (5, 3)-polycycles by bridges. 
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Since the sphere is 8R5, every 8-gon is adjacent to exactly three 5-gons; hence, the 

only elementary (5, 3)-polycycles, which can appear in the decomposition, are A3, 

A4, A5, D, £3, C3, E\, £2, £3, £4. Denote by pAl, ..., their numbers and by t the 

number of adjacencies of elementary (5, 3)-polycycles along their open edges. 

By direct counting, we get the equalities: 

e5-&=9pA} + 10 pA4 + 10 pAs +5 pD + 11 pBi-\- 12 pc, 

+9pe1 + 10Pe2 + 11 Pe3 + 12pe4 - 21 

^5-5 = 18pA3 + 15 pAa + 10 pAs + 12 pb3 + 6 Pc2 + 3 pEx 

+5pe2 + 7/?£'3 + 9pe4 + t. 

Furthermore, the number t of adjacencies between (5, 3)-polycycles satisfies the 

inequality: 

< 2pD + 3pe) + 2pE2. 

By combining above equalities and inequalities we get: 

2<?5_8 — es-5=\p& — 30 = §(jC>8 — 12) < 0 

2^5-8 — £5—5=5 pAli + l0pAs + 10 po + 10 ps3 + I8/+3 

+ 15 Pe{ + 15 pe2 + 15 pEi + 15 Pe4 — 51 

>5 pA4 + 10 pAs + 5 pD + 10 pB, + 18pC3 + +££, 

+ 10 pe2 + 15 pE, + 15 pe4 

>0. 

This implies 2^5_g — £5-5 = 0; hence, p% — 12 and pAx = pA5 = pD = pB3 = 

pC} = pE. = 0. So, the only polycycle, appearing in the decomposition, is A3. So, 

by Theorem 18.1.4, the sphere is obtained by GC2,{(Tetrahedron) and replacing 

all 3-gons by the polycycles A3. □ 

Theorem 18.1.6 There is an infinity of ({5, b}, 3)-spheres that are bR$, for b — 8, 

11, 14, 17, 20. 

Proof. The example for b = 8, which is given in Theorem 18.1.5, has lour (5, 3)- 

polycycles A3. The conclusion follows by Theorem 11.0.2. 

In order to get a proof for other values of b, we need an initial example. The graph 

GC2,\(Tetrahedron) can be interpreted in the following way. The triangular faces 

can be shrunken to just one point. The obtained graph is Dodecahedron with a set S 

of four special vertices, corresponding to those faces. For any 1 < t < 5, there exist 

a set S, of At vertices of Dodecahedron, such that every face is incident to t vertices 

of this set: 

1 For t = 0 or 5 (Dodecahedron or strictly face-regular Nr. 14), there is one possible 

set and it has symmetry Ih. 
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2 For t = 1 or 4 (strictly face-regular Nrs. 6 or 13), there is one possible set and it 

has symmetry T. 

3 For t = 2 or 3 (strictly face-regular Nrs. 8, 9 or 11, 12), there are two possibilities, 

one of symmetry D3, the other of symmetry 7),. 

By doing 5-triakon of Dodecahedron on those sets S, (i.e. truncate the vertices 

and replace the obtained 3-gons by (5, 3)-polycycle A3), we get a ({5, 5 + 3r}, 3)- 

sphere that is (5 + 3t)R^. The proof of infiniteness is then identical to the 

case b = 8. □ 

In the above construction, we got a ({5, 8}, 3)-sphere by putting the spheres 

together in a path. If we create cycle, then we obtain higher genus surfaces that 

are 8R5. So, for every g > 0, there is an infinity of oriented ({5, 8}, 3)-maps of genus 

g that are 8^5. 

Also, above operation of removing a vertex leave us with six 5-gons in a circuit; 

hence, 5R2 holds. Clearly, if we manage to eliminate all (5, 3)-polycycles A3, so as 

to obtain a cycle, then we get an oriented ({5, 8}, 3)-map of genus g that is 8R5 and 

5R2. Such a structure can be obtained for any g, g > 2. But for g = 1 it does not 

exist. 

Theorem 18.1.7 There is an infinity of({ 5, b}, 3 fspheres that are bR5, for b = 9, 

12, 15, 18, 21. 

Proof. The sphere, shown on Figure 18.1, is such a sphere. It can be obtained by 

taking GC2p(Bundle2) (see Section 10.1) and replacing every 2-gon by a (5,3)- 

polycycle A2. The conclusion for b = 9 follows from Theorem 11.0.2. 

On the other hand, if we take the graph GC2,\(Bundle3) and remove all 2-gons, 

then the obtained graph is Cube. For every 0 < t < 4, there exist sets S, of It 

vertices, such that every face of Cube is incident to exactly t vertices of St. More 
precisely: 

1 For t = 0 or 4 (Cube and strictly face-regular Nr. 10), there is one such set and it 

has symmetry (9/,. 

2 For t = 1 or 3 (strictly face-regular Nrs. 2, 7), there is one such set and it is of 
symmetry D2d. 

3 For t = 2 (strictly face-regular Nrs. 4, 5), there are two such sets, one of symmetry 

Td and the other of symmetry D2h. 

So, take Cube, truncate vertices belonging to the set St and fill them by (5, 3)- 

polycycles A3. Also, insert three 2-gons on the edges corresponding to the 

2-gons of the original ({5,9), 3)-sphere that is 9R5. We get infiniteness by 
Theorem 11.0.2. n 
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Theorem 18.1.8 If G is a ({5, b}, 3)-sphere that is bRh_2, then it holds: 

(i) The graph b(G) is connected. 

(ii) The set of 5-gonal faces belongs to the following set {D, D + D,EX, E2, A5} of 

(5, 3)-polycycles: 

(Hi) b <7. 

(iv) If b = 6, then such spheres are enumerated in [DeGrOl] and presented on 

Figure 10.7. 

(v) If b = 7, then such sphere has at least 260 vertices. If it has 260 vertices, then 

it is unique and has symmetry I (see Figure 18.2); otherwise, it has at least 280 

vertices. 

Proof. Suppose that the graph b(G) is not connected. This means that there exists a 

set of 5-gonal faces, on which at least two (say, /) connected components of b(G) 

meet. 

Since every £>-gon is adjacent to exactly two 5-gons, in the (5, 3)-polycycle, the 

runs of 3 (i.e. sequence of 3 bounded by 2) of the boundary sequence have length at 

most one, i.e. every 3-valent vertex is bounded by two 2-valent vertices. This implies 

U3 < v2 and so, p5 < 0, by Theorem 11.0.3. Hence, (i) holds. 

Now, the connectedness of b(G) implies that the set of 5-gonal faces form (5, 3)- 

polycycles, i.e. they have t = 1 and p$ = 6+W3 — v2 < 6. The set of (5, 3)-polycycles, 

satisfying the condition that every run of 3 is of length at most one, is the presented 

one. 

The set of faces of b(G) comes from vertices of G, which are incident to three 

7>-gonal faces (so, they are of gonality 3) and the (5, 3)-polycycles (so, they are of 

gonality 5 or 6). Hence, by Theorem 1.2.3(h), b(G) has a vertex of degree at most 5; 

so, b — 2 < 5 and (iii) holds. 

The following formulas are easy: 

p5=\l + p1, e = 30 + 6p7, 

e7_7 = |/?7, e$-7 — 2p7 and £5-5 = 30 + \p7. 

Denote by nD, nD+D, nE], nEl, nM the respective number of such (5, 3)-polycycles, 

depicted in (ii). 
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260,1 

Figure 18.2 The only ({5, 7), 3)-sphere that is IR5, besides Dodecahedron and has less 

than 280 vertices 

By direct counting, we obtain: 

12 + pi = P5 =nD + 2 nD+D + 3 nEl + 4 nEl + 6/7 

30 + 2 Pi = e5—5 — nD+D + 3nEt + 5/7e2 + 10/7^5. 

By eliminating na5, we obtain also: 

60 - p1 — 10/7D - \4iid+d ~ 12nE] - l0nEl, 

which implies pt > 60, i.e. that a ({5, 7}, 3)-sphere that is 7/?5, has at least 260 ver¬ 

tices. Furthermore, such a sphere with exactly 260 vertices has only the elementary 

(5, 3)-polycycle A5 and we conclude by Theorem 18.1.4. If it has more than 260 

vertices, then nt >0 for some 1 < i < 4, which implies 60 — p1 < —10 and, hence, 

the needed result. □ 

See below the only known ({4, 8}, 3)-torus that is 8R5 and not 4Rp. 

(24, 6, 6), p2 
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See below two examples of ({5, 10}, 3)-tori that are 10/?5: 
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18.2 Maps bRf, 

Theorem 18.2.1 (i) Any ({4, b), 3)-torus that is bR(, and 3-connected, is also 4/C- 

(ii) All ({4, 8}, 3)-tori that are 8/?6, are also ARj. 

Proof, (i) The hypothesis of 3-connectedness of such a map G excludes the existence 

of (4, 3)-polycycle {4, 3} — e in the set of 4-gons of this torus. 

This means that, if we consider the corresponding 6-valent map b(G), then all 

its faces are 3-gonal (vertices or (4, 3)-polycycles {4, 3} — v) or 4-gonal ((4, 3)- 

polycycles P2 x Pf). Clearly, by Euler formula, 4-gons are excluded, i.e. only 

{4, 3} — v exist and the map is 4/?2- 

(ii) In a ({4, 8), 3)-torus, no 4-gon can be adjacent only to 4-gons, since it would 

imply the structure of Cube. If a ({4, 8}, 3)-torus contains a 4-gon, adjacent to three 

4-gons, then it contains a 8-gon, adjacent to at least three 4-gons and, hence, to at 

most five 8-gons. So, in a ({4, 8}, 3)-torus, the 4-gons are adjacent to at most two 

other 4-gons. The result then follows by usual double counting and positivity. □ 

Theorem 18.2.2 There are no ({4, b}, 3)-spheres that are bRb-2,far b > 8. 

Proof. Every fi-gonal face of such a sphere G would be adjacent to exactly two 

4-gons. This means that the (4, 3)-polycycle {4, 3} - e cannot appear in the decom¬ 

position of the set of 4-gonal faces. Hence, all faces of the sphere b(G) are 3- or 

4-gonal. So, we can conclude using Theorem 1.2.3(ii). D 

Theorem 18.2.3 There are no ({5, 8), 3)-tori that are 8R6. 
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44, T 
(also 4R2, Nr. 29) 

116, Td 188, Td 

332, Did 

Figure 18.3 All known ({4, 7), 3)-spheres that are 7R$, besides Cube 

Proof. By re-doing computations of Theorem 18.1.8 for b = 8, we would get that a 

({5, 8}, 3)-torus G that is 8/?6, has connected 8(G) and the set of its 5-gonal faces is 

partitioned into the (5, 3)-polycycles, depicted in Theorem 18.1.8(ii). 

Hence, the torus 8(G) is 6-valent and its faces are 3-gons (intersection of three 

8-gons), 5-gons and 6-gons. 

Euler formula (1.1) for 6-valent torus is £f(3 - i)p,- = 0. Hence, there are no 5- 

and 6-gonal faces in 8(G). So, G has no 5-gons, which is impossible. □ 

Theorem 18.2.4 If a ({5, b}, 3)-sphere is bRj with j > 6 and b(G) is connected, 

then j < b — 4. 

Proof. By Theorem 1.2.3(h), the map b(G) of such a sphere G contains at least one 

2-gon. It is easy to see that the only (5, 3)-polycycle with two vertices of degree 2 on 
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the boundary is A2. So, the b-gonal faces, which are adjacent to this (5, 3)-polycycle 
A2, are adjacent to at least four 5-gonal faces. □ 

Note that we can construct some ({5, 10}, 3)-spheres that are 10R6. Take Dodeca¬ 

hedron and select a set S of its edges, such that every 5-gon is incident to exactly one 

edge ot this set. Replacing those edges by the (5, 3)-polycycles A2, we obtains such 

spheres. Up to isomorphism, there exist five such sets in Dodecahedron and they 

yield five ({5, 10}, 3)-spheres lORg with 140 vertices and symmetry groups D2(i, C2, 

D2, D2, Th. 



19 
Icosahedral fulleroids 

In this chapter, which is an adaptation of [DeDeOO], are considered icosahedral 

fulleroids (or I-fulleroids, or, more precisely, 1(5, b)-fulleroids, i.e. ({5, b}, 3)- 

spheres of symmetry / or If). For some values of b, the smallest such fulleroids 

are indicated and their unicity is proved. Also, several infinite series of them are 

presented. 

The case b = 6 is the classical fullerene case. Theorem 2.2.2 gives that 

all 1(5, 6)-fulleroids, i.e. fullerenes of icosahedral symmetry, are of the form 

GCkj(Dodecahedron). See on Figure 19.1 the first three of the following smallest 

icosahedral fullerenes besides Dodecahedron: 

• C(&(Ih), buckminsterfullerene, 

• C&o(Ih), chamfered Dodecahedron, 

• Ci4o(/), smallest chiral one, 

• Cibo(4)- 

Here CV(G) stands for a ({5, 6}, 3)-sphere with v vertices and symmetry group G. 

Although this notation is not generally unique, it will suffice for our purpose. 

Both smallest 7(5,7)-fulleroids are described in [DrBr96]; see them on 

Figure 19.2. 

All /-fulleroids known so far and simple ways to describe them are given in 

Section 19.1; based on that some infinite series are introduced. In Section 19.2, a 

necessary condition for the p-vectors, which implies that five of the new /-fulleroids 

are minimal for their respective values of v, is derived. 

Table 19.1 shows the smallest possible p-vectors for 7 < b < 20, accordingly see 

Lemma 19.2.3 below. The first four columns of the table show the quantities b, p5, 

Pb (the number of 5-, 6-gons) and the number of vertices v. The invariants m5, mb, 

k2, k2, and k5 are described in Section 19.2. In the 5th column, the /-fulleroids are 

indexed by their construction, while in the last column their names are given. These 

names are of the form F5_b(G), where G is the symmetry group, or Fb(\), using the 

notation given in Theorem 19.1.1. See on Figure 19.3 six F(5, b)(Ih) with b > 8. 

Note that for b = 12, the smallest p-vector, which fulfills the condition of Lemma 

19.2.3, is not realizable. 

284 
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(a) C60(4) = 
GC 1,1 (Dodecahedron) 

(c) Ci4o(/) = 
GC2,1 (Dodecahedron) 

Figure 19.1 The smallest /(5, 6)-fuIleroids apart from Dodecahedron 

Fsj(I)a = F55(Ci4o(/)); v = 260 
(also 7) 

Figure 19.2 Both smallest 7(5, 7)-fulleroids 

F5J(I)b; v = 260 
(also 7£3) 

19.1 Construction of /-fulleroids and infinite series 

Eight /-fulleroids, shown in Figures 19.2 and 19.3, have been found by a system¬ 

atic investigation of all possible ways to assemble 5-gons and, say, 8-gons into a 

structure with the desired properties. This will be explained in more detail in Sec¬ 

tion 19.3. However, it turns out that all eight structures can be conveniently described 

as the results of decorating small icosahedral fullerenes with (5, 3)-polycycles. The 

pentacon operation P (see Section 1.6), is applied to the set S5 of twelve 5-gons with 

5-fold axis of rotation. The 5-triakon (see Section 1.6) is applied to the set S3 of 20 

vertices belonging to 3-fold axis of rotation. 

The E\ - and C^-replacement of a 6-gonal face F of a map M consist of replacing 

a 6-gon by (5, 3)-polycycles Ex or C3, according to the following schemes: 

£1-replacement of a 6-gonal face F C3-replacement ot a 6-gonal face F 
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FsMh) = PsfC60(Ihyy, v = 180 
(also 9P3) 

4s,io(4); v = 140 
(also 5R3, IORq) 

Fs.siO = 4s5(Cgo(4)); v — 200 
(also 8R4) 

45,15(4); V = 260 
(also 15Pq) 

45,12(4) = 45,(00(4)); V = 440 4s5(7s,(C80(4)) = 4S3(PS5(C80(4)) 
(also 12/?4> = 45,14(4); v = 560 (also MP4) 

Figure 19.3 Smallest 1(5, ZO-fulleroids for b = 8, 9, 10. 12, 14. 15; each is unique for its 

number v of vertices 

For every 6-gonal face, we have two ways of doing E\ - and C3-replacement on it. 

Since, we specify the orientation of the 6-gonal faces, the symmetry of the original 

map is not necessarily preserved. 

The pentacon operation PSi applied to GCkJ(Dodecahedron) yields a polyhedron 

with 5-, 6- and 7-gonal faces, except for three cases appearing in Figure 19.1, which 

are two-faced. 
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Table 19.1 Potential p-vectors and invariants for certain 1(5, b)-fulle raids 

b P5 Pb V Constr. m5 mb k2 k3 k5 Nr. Name 

7 72 60 260 A7 \ 1 1 3 2 1 2 F5,7(I)a 
Fs 7(I)b 

8 72 30 200 Am 1 1 4 2 1 1 Fs,8dh) 
9 72 20 180 A9.1 1 0 3 3 1 1 F5,9(Ih) 
10 60 12 140 Bio.i 1 0 3 2 2 1 Fs.iodh) 
11 312 60 740 An,5 5 1 3 2 1 >1 Fn(l) 

12 132 20 300 Al2,2 2 0 3 4 1 

12 192 30 440 Al2,3 3 0 6 3 1 1 Fs.ndh) 

13 432 60 980 Aj3,7 7 1 3 2 1 >1 Fi3(1) 
14 252 30 560 A14.4 4 0 7 2 1 1 F5,14 (Ih ) 
15 120 12 260 Bl5.2 2 0 3 2 3 1 Fs.isdh) 
16 312 30 680 A 16.5 5 0 8 2 1 ? 

17 672 60 1460 Al7.ll 11 1 3 2 1 >1 Fi7(1) 
18 252 20 540 A]8,4 4 0 3 6 1 7 

19 792 60 1700 Al9,13 13 1 3 2 1 >1 Fi9(1) 
20 180 12 380 B20,3 3 0 3 2 4 7 

An infinite series of 7(5, 7)-fulleroids (Hn)n>0 of symmetry 7 is obtained from 

the series (GC2n+\,o(Dodecahedron))n>o by doing £j-replacement, in a regular 

pattern, to one fourth of all 6-gons (instead of just to those 6-gons, which con¬ 

tain a 3-fold rotational axis). The pattern is shown in Figure 19.4, together with 

fundamental domains for the first four of these 7(5, 7)-fulleroids. The fundamen¬ 

tal domains are kite-shaped pieces of different sizes from the decorated {6, 3}. 

The axes of the 5- and the 3-fold rotations will go through the leftmost and 

rightmost vertex, respectively, of the kite. Note that the first 7(5, 7)-fulleroid of 

this series, 77], is just F^j(I)b. To prove that this method works, it suffices to 

notice that if one does a 5-fold or 3-fold rotation around the leftmost and right¬ 

most vertices, then the local coherency is preserved and so the global one as well 

(see [Dre87]). 
A similar series (On)n>o of 7(5, 8)-fulleroids of symmetry 7 is obtained fiom the 

series (GC2n+i,o(Dodecahedron))n>0 by replacing 6-gons by (5, 3)-polycycles C3 in 

the same pattern as shown in Figure 19.4. 

The following general result was proved in [JeTrOl]: 

Theorem 19.1.1 Let b > 8 and m > 1 be integers. Then there exists an 7(5, b)- 

fulleroid F(m) having pb = 60in (so, with v = 20 + 120m(b — 5) vertices). 
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Clearly, this theorem, together with Theorem 19.2.2 below, implies, in the special 

case when b is not divisible by 2, 3, or 5, that F( 1) has the smallest possible, for an 

/(5, 6)-fulleroid, number of vertices. This number, 20(66 — 29), appeared, for cases 

6 = 7, 11,13, 17, 19 in Table 19.1. 

Fundamental domains for the The 1(5, 7)-fulleroid Hn drawn 
1(5, 7)-fulleroids H„,n = 1,..., 4. around three 5-gons for n = 1 and 2. 

Figure 19.4 Partial drawing of the 1(5, 7)-fulleroids Hn 

19.2 Restrictions on the p-vectors 

Recall first the Euler formula for the p-vector of a 3-valent plane graph (see 

Theorem 1.2.3): 

0 = 12 + ^(i — 6 )p,. 

For tilings with specified symmetries, much stronger conditions on the poten¬ 

tial p-vectors are obtained by applying some elementary group theory. Let T be 

some tiling of the sphere §2 and let G be a subgroup of its symmetry group 

Aut(G). The image of an arbitrary face of T by an arbitrary element of G is 

again a face of T. Therefore, G can be interpreted as acting by permutations on 

the set of faces. By the same argument, G also acts on the set of edges and on 

the set of vertices. Recall that the stabilizer of some element x (face, edge or ver¬ 

tex) is the set of elements in G, which map it onto itself. The stabilizer of x is 

a subgroup of G and is denoted by StabG(x). The orbit Gx of an element x is 

the set of images of x under all the operations in G. Obviously, the set of orbits 

forms a partition of the set of elements, thus, for example, the set of all face 

orbits under G forms a partition of the set of faces, and so on. The following 

elementary statement from group theory tells us how many elements these orbits 
can have. 

Lemma 19.2.1 If G is a finite group acting on a finite set S and x is an arbitrary 

element of S, then |(Gx)| = 
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Now, consider a tiling T with symmetry group /. All the elements of / are rota¬ 

tions. If some rotation maps a face / onto itself, then all the powers of this rotation do 

so too. Moreover, no two rotations of different orders can fix the same face. Thus, the 

possible face stabilizers are exactly the groups generated by the rotations of orders 
2, 3, and 5. 

Another elementary fact is that the stabilizers of two elements in the same orbit are 

conjugate to each other, and that, moreover, if some subgroup H of G is conjugate to 

a stabilizer Stabc(x), then H is the stabilizer of some element in the same orbit as 

x. Now, since in the icosahedral group /, any two subgroups generated by a rotation 

of the same order are conjugate, the following statement holds. 

Theorem 19.2.2 In an I-fulleroid, there is at most one orbit of faces with rotational 

symmetries of orders 2, 3, and 5 respectively. These orbits, if existing, contain exactly 

30, 20, and 12 faces, respectively. All the other orbits have trivial stabilizers and 

contain exactly 60 faces each. 

Table 19.2 gives an overview of the possible combinations of face orbits. 

Table 19.2 The possible face orbits of an I-fulleroid 

orbit size 60 30 20 12 

number of orbits any <1 <1 1 

face gonality any 2t 3t 5t 

Now, a rotation of order 2 can never fix a face of odd gonality or a vertex of 

odd degree. So, in this case, it has to fix either an edge, or a face of even gonality. 

Similarly, a rotation of order 3 must fix either a vertex of degree divisible by 3 or a 

face of gonality divisible by 3. On the other hand, a rotation of order 5 must fix a 

face, since there is no other element it could fix. We can distinguish two broad classes 

of 7(5, 6)-fulleroids depending on whether or not the 5-fold rotations fix 5-gons or 

larger faces. In the first case, the p-vector will be of the form: 

/ 60k \ 
Ab,k- (P5, Pb) = ( 12 + 60£, —-J, 

where k > 1, b > 7. In the second case, it will be of the form: 

/ 5k - 1 \ 
Bh,k- (P5, Pb) = ^60*, 12 b _6 

where k > 1, b > 10, 5 divides b. In the following, we will give a finer 

parametrization of potential ^-vectors. 
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For a given integer i, let m, denotes the number of orbits of faces of gonality i that 

are not mapped onto themselves by any symmetry but the identity. The total number 

of such faces is then 60m, by the above. For j = 2, 3, 5, set kj = k, if a kj-gon 

exists which is fixed by a rotation of order j. If no such face exists for any k, then 

we set k: = -. 
1 j 

Lemma 19.2.3 For each I -fulleroid, the equality: 

Y^mi(i - 6) + E kJ=6 
i j =2,3,5 

holds. 

Proof. Each face orbit has either a trivial stabilizer or is fixed by a rotation of order 

2, 3, or 5. If some face / of gonality m has a stabilizer of order j = 2, 3, 5. then 

we have m = kjj, and the orbit of / contains exactly — faces. Together with Euler 

formula (1.1), this implies: 

0 = ]T 60m fi - 6) + ^2 ~r(kj j ~ 6) + \2. 
i j = 2,3,5 ^ 

Note that this equation remains true if, for some j, there is no face fixed by a 

rotation of order j, because in that case we have kj = -, thus kjj - 6 = 0. 

Divide both sides by 60 and simplify the second sum, to obtain: 

0 = 2>i(«-6)+ J2 kJ- E 7 + T 
' j = 2,3,5 j = 2,3,5 J D 

= E] mi(i - 6) + 
i 

= E mi(i - 6) + 

E 
j = 2,3,5 

6 6 6 1 

2 _ 3 _ 5 + 5 

E 6- 
j = 2,3.5 

□ 

Now we give formulas to calculate the p-vector and the number of vertices v from 

the invariants m, and kj. Since the invariants are insensitive to p6, the followins 

equations hold if and only if the /-fulleroid in question does not contain 6-gons. For 
the p-vector, we have: 
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The number of vertices is: 

” = ^£'> = 20E(im'-+ E 7) =2oE(i»<+E*;'t 
1 1 V J*r=i J i \ jk}=i ) 

thus: 

v = 20 \J2imi + kJ ) 
\ ‘ jkj+ 6 J 

19.3 From the /^-vectors to the structures 

In the following, we will present a general method for the classification of /- 

fulleroids with given parameters m,- and kj. Remaining proofs can be found in 

[DeDeOO]. 

Theorem 19.3.1 The I-fulleroid F^ \o(4) is the only I-fulleroid with p-vector 

(ps, p 10) — (60, 12) and the smallest 1(5, 10)-fulleroid. 

Proof. First note that 12 is the smallest possible non-zero value of p\o, corresponding 

to the parameter values m\o = 0 and k$ = 2. This means that there is exactly one 

orbit of 10-gons, each of which is fixed by a rotation of order 5, and one orbit of 

5-gons, which have trivial stabilizers. So, all the rotation axes of order 2 meet edges 

and all the axes of order 3 meet vertices. Let vo be such a vertex and let F be a face 

adjacent to it. 

Assume F is a 10-gon. Because of the 5-fold rotation mapping of F onto itself, 

every second vertex of F must meet a 3-fold axis. The three faces containing such a 

vertex must then all be 10-gons, because they are rotated onto each other. This means 

that F is completely surrounded by 10-gons, each of them in the same orbit as F. By 

induction, all the faces in the connected component, which contain F, are 10-gons. 

There is only one connected component; so, there are only 10-gons, a contradiction. 

We conclude that Vo must be incident only to 5-gons. Let v\ be a vertex incident 

to any two of these faces. The third face, incident to V\, cannot be a 5-gon, since this 

5-gon would be in the same orbit as F and thus would contain a symmetric image i>2 

of vo, i.e. a vertex meeting a 3-fold rotation axis. There are three essentially different 

possible positions for ib- In each case, by applying all symmetries we find that the 

resulting structure must be Dodecahedron. 

Consequently, the third face incident to V2 is a 10-gon, thus the sought 7-fulleioid 

must contain the substructure depicted in Figure 19.5, where the 3- and the 5-fold 

rotation centers are indicated by a small triangle and a 5-gon, respectively. By 

applying these rotations in a systematic way, we obtain the structure shown in 

Figure 19.3. ^ 
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Figure 19.5 A forced substructure for an /-fulleroid with p-vector (/?5, pw) = (60, 12) 

Obviously, the argumentation in the above proof is straightforward but rather 

tedious. It is much more convenient to work in the orbit space of the group I. The 

orbit space of some group G is defined as the image of a continuous function, which 

maps two vertices p and q of the sphere onto the same image vertex if and only if 

there is some element of G which maps ptoq. The orbit space of / is, topologically, 

just a sphere with three special vertices, namely the images of the three types of rota¬ 

tional centers of order 2, 3, and 5. A simple way to obtain the orbit space is to take 

a fundamental domain and glue together the boundary vertices, which are mapped 

onto each other by some group element. 

The gonality of the image of a face in the orbit space depends on the stabilizer 

of that face. In general, an ij-gon with a rotation center of order j is mapped to 

one /-gon. Likewise, vertices with non-trivial stabilizers are mapped to vertices of, 

accordingly, smaller degree. Therefore, in the orbit space, we have to consider special 

features such as 1-gons and vertices of degree 1. Still more strangely, the image of 

an edge with 2-fold stabilizer is a half-edge with only one end-vertex. A loop edge, 

one which has two identical end-vertices, must be count twice when determining 

the vertex degree. Likewise, an edge adjacent to the same face on both sides has 

to be counted twice when determining the face gonality. In both cases, however, a 
half-edge is counted only once. 

Despite these difficulties, we can simplify proofs considerably by working in the 

orbit space. We will call the image of a tiling in the orbit space its orbit tiling. 

Theorem 19,3.2 The I -fulleroid Ps.Hifh) is the only l -fulleroid with p-vector 

(P5, pf) = (72, 30) and the smallest 1(5, 8 ffulleroid. 

Proof. Again, p8 = 30 is the smallest possible value of p8, since 2 is the largest 

rotational order occurring in I which divides 8. The p-vector (p5, p8) = (72, 30) 

corresponds to the parameter values: 

(m5, m8, k2, k3, k5) = (1,0, 4, 2, 1). 
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Figure 19.6 Forced substructures for the smallest 7(5, 8)-fulleroid 

Figure 19.7 The orbit space of 7^,9(7/,) 

The orbit tiling consists of a 1-gon (the image of a 5-gon with a 5-fold symmetry 

axis), a 5-gon (the image of an asymmetric 5-gon), and a 4-gon (the image of a 2-fold 

symmetric 8-gon). Exactly one degree 1 vertex and no half-edge occurs, because 

there are 2-fold symmetric, but no 3-fold symmetric, faces. 

The l-gon gives rise to the subgraph depicted in Figure 19.6(a), because of 

the degree 3 at its vertex. The edge e is adjacent to the same face at both sides. 

Thus, if that face is a 4-gon, then the configuration of Figure 19.6(b) occurs. 

Now, both vertices have degree 3; so, there is no possible continuation. We con¬ 

clude that the 1-gon must be adjacent to the 5-gon, leading to the configuration of 

Figure 19.6(c). 
Now, the outer face is a 4-gon and there is exactly one vertex of degree 1, as 

required. The configuration is unique, as shown, and corresponds to the 7-fulleroid 

FsM). D 

Theorem 19.3.3 The I-fulleroid F5<9(Ih) is the only I-fulleroid with p-vector 

(p5, p9) = (72, 20) and the smallest 7(5, 9)-fulleroid. 

Proof. As above, p9 = 20 is smallest possible and the parameter values follow 

uniquely from the p-vector. The orbit tiling consists of a 1-gon and a 5-gon as above 

and a 3-gon corresponding to an orbit of 3-fold symmetric 9-gons. One has no ver¬ 

tex of degree 1, but a half-edge. As above, the 1-gon must be adjacent to the 5-gon, 

which in turn must be adjacent to the 3-gon. The only possible configuration is shown 

in Figure 19.7, where the half-edge is shown as a “T-shape”; note that a half-edge 

counts only once and so the outer face is indeed a 3-gon. 0 
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Theorem 19.3.4 (i) The 1-fulleroid F5 ]2(Ih) is the only l-fulleroid with p-vector 

(ps, pn) = (192, 30) and the smallest I(5, 12)-fulleroid. 

(ii) The I-fulleroid is(//,) is the only I-fulleroid with p-vector (ps. pis) = 

(120, 12) and the smallest 1(5, \5)-fulleroid. 

(Hi) The I-fulleroid F$_u(h) is the only I-fulleroid with p-vector (p5, pi4) — 

(252, 30) and the smallest 1(5, \4)-fu1leroid. 

Proof. See [DeDeOO] for the case-by-case proof based on the theory of Delaney 

symbols, which is explained in [Del80, Dre84, DrBr96]. □ 
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