
History of Mathematics 
Arthur Gittlemcm 



-.;.v. ■ -V,":v' 
. 

V.-A* . ■ . ■ 
v .* - .. ,.V- ;v- 

'./? . ; - V. 



f ' ' 

1 



/ 

7 





HISTORY of 
& 

Charles E. Merrill Publishing Company 
A Bell & Howell Company 

Columbus, Ohio 43216 



MATHEMATICS 

Arthur Gittleman 

California State University 

Long Beach 

WITHDRAWN FROU 

MARIAN LIBRARY 

daemen college 



Merrill Mathematics Series 

Erwin Kleinfeld, Editor 

Published by 

Charles E. Merrill Publishing Co. 

A Bell & Howell Co. 

Columbus, Ohio 43216 

Copyright © 1975 by Bell & Howell Company. All rights reserved. No 

part of this book may be reproduced in any form, electronic or mechani¬ 

cal, including photocopy, recording, or any information storage or 

retrieval system, without permission in writing from the publisher. 

International Standard Book Number: 0-675-08784-8 

Library of Congress Catalog Card Number: 74-80376 

1 2 3 4 5 6 7 8 — 82 81 80 79 78 77 76 75 

Printed in the United States of America 



To 

Kaye 



Digitized by the Internet Archive 
in 2018 with funding from 
Kahle/Austin Foundation 

https://archive.org/details/historyofmathemaOOOOgitt 



Preface 

Mathematics is appealing. I hope that the reader will find much enjoy¬ 

ment in learning some of the many fascinating mathematical discoveries 

of the past 5000 years. In addition, the history of mathematics has its 

own appeal. It not only answers the question of how mathematics was 

done, but why and by whom, when and where. 

Mathematics is seen as an aspect of human culture, developing in 

response both to its environment of social stresses and its heredity of 

previous mathematics. Anecdotes portray the genius of the great mathe¬ 

maticians and sometimes their eccentricities. 

In this book, the history of mathematics is presented chronologically, 

with specific mathematical examples placed in the context of the general 

trends of the period. Among the topics treated are: the use of other 

numeral systems; different methods of arithmetic; the origins of algebra, 

geometry, trigonometry, analytic geometry, and calculus; and the de¬ 

velopment of modern mathematics. 

I hope that the reader will not only find enjoyment, but also obtain a 

better appreciation of the usual subjects of high school mathematics and 

achieve an insight into modern mathematics. Mathematics students 

should gain a greater perspective of their subject, while teachers and 

prospective teachers should, in addition, find much that will be of value 

to them in the classroom. 

A background of high school mathematics is assumed. The portions of 

the latter third of the book which treat more advanced topics are largely 

self-contained, although a course in calculus would be a desirable 

prerequisite for these portions. 

Problems are found at the end of each chapter. Some will give practice 

using the methods explained in the book, while others provide supple¬ 

mentary material of interest. Answers to selected problems are given. 

Suggestions for intended projects are given in Appendix B. 

References are listed by author at the end of each chapter. Complete 

bibliographic information will be found in the Bibliography. Some sug¬ 

gestions for further reading are also appended (A), as is a guide to the 

pronunciation of names (C). 
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I Early 
Mathematics 

Introduction 

Mathematics was developed in response to needs of early societies. 

With growing numbers of people living, working, and even fighting 

together came the need to solve practical problems of their civilization — 

problems such as calculating the quantity of materials needed to build a 

storehouse or the amount of food needed to provision their army. In 

addition to the practical problems of mathematics were others motivated 

by religion, including geometric problems arising in the construction of 

altars and temples. Early mathematics was used in many ways, yet even 

the earliest mathematical records support the feeling that the solving of 

mathematical problems was enjoyed for its own sake, too. The three 

early civilizations whose mathematics we will study in this chapter are 

Egypt, Babylonia, and India. 

I Egypt 

Society developed in Egypt along the fertile Nile River. As long ago as 

2900 b.c. Egyptian civilization was advanced enough to be able to build 
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one of the wonders of the world, the Great Pyramid of Cheops. No 

records of any mathematics of that time have been preserved; the main 

mathematical documents in existence refer to the period of the Middle 

Kingdom which spanned the years from about 2100 b.c. to 1800 b.c. 

It is amazing that any documents at all remain from that period, and, 

in fact, there are very few extant Egyptian mathematical texts. The only 

writings which have been preserved are those which were either purposely 

placed in tombs or were by some accident kept insulated from the ele¬ 

ments for thousands of years. The Egyptians wrote on papyrus, a type of 

paper made from reeds that grew near the water. Being an organic sub¬ 

stance, it will soon deteriorate if left to the elements. You can imagine 

what will happen to the pages of this book in 5000 years, for example, if 

nothing is done to preserve them. Therefore, it is lucky that some pieces 

of papyrus have remained as evidence of the extent to which the Egyp¬ 

tians had developed their knowledge of mathematics. 

The earliest Egyptian writings, hieroglyphics, are made up of pictorial 

characters, a picture possibly being the most natural way of representing 

an object. A house, for instance, might have been represented by a picture 

of a house. Later the picture became simplified into a conventional sign 

which was easier to write but looked less like a house. The concept of 

numbers was also portrayed pictorially by hieroglyphics. The hiero¬ 

glyphic symbols for numbers are 

I - 1 
heel bone n = 10 

snare 9 = 100 

lotus flower & = 1000 

Symbols also existed for the numbers 100,000 and 1,000,000, but were 

infrequently used. Other numbers were written using groups of symbols. 

532= 99999nnmi 
47= nnnniiiini 

A main source of information on Egyptian mathematics is a papyrus 

bought by a Scottish Egyptologist, Rhind, in the nineteenth century, 

often referred to as the Rhind papyrus. It is also called the Ahmes 

(A’h-mose) papyrus in honor of the scribe who wrote it. The Ahmes 

papyrus was copied about 1650 b.c. from an older work of the Middle 

Kingdom and is a collection of solved problems probably used in a school 

for scribes. Very few people could write so being a scribe was a revered 

profession, and this prestige earned the scribe a position close to the 
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people in power. Scribes were afforded such respect that their profession 

was honored by a famous statue of a scribe dated about 2500 b.c. 

From the Ahmes papyrus, we learn how easy addition is in the Egyp¬ 

tian number system. For example, to add 57 and 24 

n n n n n i in 

nn mi) 24 
count 10 ones, convert them to a 10 (heel bone), and write the answer 

nnnn i 
nnnn 

One needs only to be able to count to 10 in order to add using the Egyp¬ 

tian number system. For example, ten ones are equal to one heel bone 

(0), ten heel bones are equal to one snare (9), and ten snares are equal 

to one lotus flower (*). 
The Egyptians developed a method of multiplication which is also 

reasonably easy, because it involves successive doubling which is, in 

essence, adding a number to itself. For example, to double 57 write 

i 111 
nnnnn in 

1111 
nnnnn in 

giving 

9 n mi 
or 114, which is obtained by replacing 10 heel bones, O , by a snare, 9 , 

and ten ones by a heel bone, C\ . 

Consider the example of 13 X 19. First write 19 

(1 X 19) 

n 
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then double it 

null 

i M 11 

niiii 
giving 38. 

,2X,,> non mi 

Double 38 

nnn i 111 

nnn i 111 
giving 76. 

Double 76 

(4 X 19) 
nnnnm 
non1' 111 

nnn in 
nnnn i i i 

nnn i i i 
nnnn i i i 

giving 152. 

(8 x 19) o) n n n n r\ i i 
There is no need to double further, because 16 X 19 is greater than 

13 X 19. The multiples of 19 needed to make 13 are 8, 4, and 1. Thus, add 
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8 X 19, 4 X 19, and 1 X 19 to find 13 X 19. 

(8 X 19) 9nnnnn i 

(4 X 19) 

c
 

c
 c 

c
c

 
c
c

 

(1 X 19) n 11111 M 11111 
giving 247. 

1111 
(13 x 19) 9 9 0 0 0 0 1111 

This procedure can be understood more readily by writing in our symbols 

as 

multiple of 19 product 

V • 19 

2 38 

V 4 76 

V 8 152 

Adding the products indicated, we find 152 + 76 + 19 = 247. 

Division in the Egyptian number system is much more difficult, and 

before trying division it is essential to understand the Egyptian notion of 

a fraction. The Egyptians had only the concept of a unit fraction such as 

1/3, 1/5, 1/27, 1/101. The fraction 1/4, for example, was called the 

fourth-part and written or in our symbols 4. Similarly, 1/10 would 

be n or 10. 

Think about fractions, and you can understand why it is plausible that 

only unit fractions should be conceived. As an example, cut a pie into 

fourths (fig. 1.1). 

Figure l.l 

Egypt 5 



There are four separate pieces, each a fourth-part. No one piece is equal 

to 3/4 of the pie; all we observe are three fourth-parts. The Egyptians 

had no separate name or symbol such as 3/4 for this group of three 

objects. 
The Egyptian concept of fractions, however natural it seems, made 

division very difficult, because it must be done by halving (multiplying 

by 1/2). To find 19 13, for example, we calculate with 13 to obtain 19. 

(Recall that unit fractions will be represented by a bar over the numeral, 

i.e., 1/2 = 2, 1/4 = 4, etc.) 

First, write 13. 

(13 X 1) 13 

Then halve 13. 

(13 X 2) 6 + 5 

Thirteen and 1/2 of 13 is greater than 19, so we must halve again, because 

we are looking for the multiples of 13 that will give us 19. 

(13X4) 3 + 4 

The sum of 13 and 13 X 4 is less than 19, so we need to add another 

value. We halve again. 

(13 X 8) 1+2 + 8 

Adding 13 X 1, 13 X 4, and 13 X 8, we have 13 + 3+ 4+1+2 + 8, 

or 17 + 2 + 4 + 8, obviously not the 19 we seek. 

It is easy to calculate with 13 to get 1; just take 1/13 of 13. 

(13 X 13) 1 

Adding to our previous sum, this gives 18 + 2 + 4 + 8. We need an¬ 

other eighth-part to make 19. (If we did not know this from observation, 

we could use an Egyptian method of_finding a common denominator, 

but this gets too complicated.) Since 13 of 13 gives 1, we see that suc¬ 

cessive halvings give 

(13 X 26) 2 

(13 X 52) 4 

(13 X 104) 8 
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We see if we add 13 X 1, 13 X 4, 13 X 8, 13 X 13, and 13 X 104, we 

get 19. That is, 

13 + 3 + 4 + 1 + 2 + 8 + 1 + 8 = 18 + 2 + 4 + 8 + 8 = 19 

Therefore, adding the multiples of 13 from the above products should 

give us the answer we seek. 

19-5- 13= 1+4 + 8 + 13+104 

This is far from being a simple procedure. However, the Egyptians, over 

the course of the hundreds of years of making these calculations, learned 

the most efficient approach for each problem, and were far better at their 

division than the author. 

Contrary to our previous statement, the Egyptians did have a symbol 

for a fraction which was not a unit fraction, 2/3. It was *ff, which meant 

1/1(1/2). We write it as 5. This symbol is used in another example of 

division, 2-^5. 

(5X1) 5 

(5X3) 1 + 3 

Nowjonly 3 is needed to make 2. If 5 X 1 gives 5, 5 X 5 gives 1, and 

5X15 gives 3. 

(5X5) 1 

(5 X 15) 3 

Adding (5 X 3) + (5 X 15) gives 2, so the result of 2 4- 5 is 3 + 15. 

Returning to the Ahmes papyrus, we find that four problems presented 

are to divide six, seven, eight, or nine loaves among 10 men. The answers 

are 2+10 each, 3 + 30 each, 3+10 + 30 each, and 3 + 5 + 30 each, 

respectively. Checks are also given. The first calculation, 6 ^ 10 (re¬ 

member we are calculating with 10 to obtain 6), would be 

1 10 

V 2 5 

y/ 10 1 Result: 2 + 10 

So each man gets a half loaf and a tenth loaf. (Notice that only the mul¬ 

tiples of 10 are listed in the middle column. It is unnecessary to repeat 

10 X each time.) 
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The Egyptian computation was applied to many problems such as 

determining the amounts of grain needed for making beer or bread and 

the finding of areas and volumes. For example, problem 51 of the Ahmes 

papyrus is to calculate the area of an isosceles triangle (fig. 1.2a). 
You already know that the method of finding the area of a triangle is to 

take one-half of the base times the altitude. The interesting aspect is the 

justification of the method by showing how the isosceles triangle can be 

divided by the altitude into two right triangles which can then be joined 

to form a rectangle of height equal to the altitude and base equal to one- 

half the base of the triangle (fig. 1.2b). It is a kind of visual justification 

which the Egyptians employed. 

Figure 1.2 

Problem 48 is to find the area of an octagon obtained from a square of 

side 9 by dividing each side into thirds and connecting the points (fig. 1.3). 

The method is to find the area of the square, (9)2 = 81, and to subtract 

from that area the area of the four triangles in the corners. The area of 

each triangle is l/2(3)(3), so the four triangles have area 4(9/2) = 18. 

Thus, the area of the octagon is 81 — 18 = 63. This octagon can be 

viewed as an approximation to a circle of diameter 9. Its area was lound 

to be 63 which is almost that of a square of side 8. In problem 50 of the 

Ahmes papyrus the area of a circle of diameter 9 is calculated as that of a 

square of side 8, a method which may have been based on problem 48. 

Figure 1.3 

Problems 48 and 50 are geometric in nature. There are also problems 

in the Ahmes papyrus which we would class as algebraic. Problem 24 

asks the value of a heap if a heap and one-seventh of a heap is 19. We 
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would write this as x + \/lx = 19, but the Egyptians used a method of 
solution later Called the rule of false position. It involves making an in¬ 
telligent guess for the heap, in this case 7, because it is easy to compute 
1/7 of 7. Now, if a heap is 7, a heap and 1/7 of a heap is 8. But we want 
19, so we multiply 7 by 19/8, arbitrarily putting the value we seek over 
the guessed value of the heap plus 1/7 of the heap. This procedure 
works since the problem is linear. The Egyptians divided 19 by 8 to get 
2 + 4 + 8 and then multiplied by 7 to get an answer of 16 + 2 + 8. 

There are other papyri of mathematical interest, but I will just mention 
one fragment which has a personal touch. The scribe who wrote it is 
teasing another scribe who came to him for help. 

You come to me to inquire concerning the rations for the sol¬ 
diers, and you say “reckon it out!” You are deserting your office, 
and the task of teaching you to perform it falls on my shoulders. 

... For see, you are the clever scribe who is at the head of the 
troops. A building is to be constructed with these dimensions 
[given]. The quantity of bricks needed for it is asked of the 
generals, and the scribes are all asked together without one of 
them knowing anything. They all put their trust in you and say, 
“You are the clever scribe, my friend! Decide for us quickly!” 
Behold your name is famous. Do not let it be said of you that 
there are things which even you do not know. Answer us how 
many bricks are needed for it?1 

The scribe who wrote the papyrus then proceeds to work out the 
problem. 

The Egyptians had a well-developed mathematical tradition and were 
capable of solving many useful mathematical problems. Their ideas and 
techniques influenced later generations of mathematicians. For example, 
unit fractions were used extensively, even as late as the Middle Ages. 
The doubling of a number, a basic step in the Egyptian method of mul¬ 
tiplication, was one of the fundamental operations in many medieval 
arithmetic texts, although these texts also included more significant 
techniques learned from other peoples. 

2 Babylonia 

Mesopotamia is the region between the Tigris and the Euphrates rivers 
which is now known as Iraq. Since Babylon was such an important city 

’Otto Neugebauer, The Exact Sciences in Antiquity, p. 79. 
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in that area, primarily from 2000 b.c. to 600 B.C., the name Babylonia 

is also often applied to the entire region. 
Babylonian writing, called cuneiform (meaning wedge-shaped), is one 

of the oldest forms of writing, being dated from 4000 b.c. A rod, or 

stylus, was pressed into clay producing the wedge shapes, and the clay 

was then dried. This material was much more durable than the papyrus 

which the Egyptians used. In fact, in the ruins of ancient Babylonian 

cities these clay tablets were naturally preserved by being buried. As a 

consequence, many thousands of tablets have been recovered, only to 

decompose when exposed to the air. Otto Neugebauer, the scholar who 

first deciphered Babylonian mathematics in the late 1920s, points out 

the problem of preventing the discovered writings from decaying before 

they can be deciphered. The adventure involved in making expeditions to 

foreign countries to search for tablets often provides more excitement 

than trying to decode the cuneiform which has already been unearthed. 

It is no small wonder, therefore, that unstudied texts waiting to be de¬ 

ciphered in libraries and private collections are possibly suffering th- 

destruction of decay.2 Most of the recovered tablets come from the Old 

Babylonian period around 1800 b.c., the time of the great leader Ham¬ 

murabi (ca. 2100 b.c.), or from the later Seleucid period (300 b.c.) 

named after one of Alexander the Great’s generals. 
In writing numbers, the Babylonians used, more or less, a sexagesimal 

system (base 60) but with only two symbols. The wedge in one position 

gives V = 1; turned sideways it gives < =10. Any number up to 60 is 

written in a straightforward manner. For example, 32 = ^ . A 

place value system is used for larger numbers. Recall that our numeration 

system is also based on place value. When we write 143 we mean 1-100 + 

4.10 + 3. The value of each digit is determined by the place it occupies. 

We base our system on the number 10, while the Babylonians based 

theirs on 60. They wrote 143 as 2-60 + 23, or 2,23; in their symbols 
. Just as 59 is the largest number that the Babylonians 

could write using only one place, the number 59•60 + 59, or 59,59 

(3599 in our system), was the largest they could write using only two 

places. To write 3600, they would write a one in the third place. This 

could be somewhat confusing, because the Babylonians did not use a 

zero sign until very late in their history. Whether ^ was 2 or 2-60, or 

perhaps 2-3600, had to be determined from the context. As a further 

example of a number expressed in their system, the number 61,802 which 

equals 17-602 + 10 -60 + 2, would be written as / \/ ^ / V 
^ V V 

This sexagesimal system was also used for fractions, and having studied 

Egyptian unit fractions we can appreciate how clever the Babylonians 

2Ibid., p. 61. 
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were. They wrote fractions in descending powers of 60, just as we write 

decimal fractions in descending powers of 10. Thus, while 3.24 means 

3 -f 2(1/10) + 4(1/100) to us, the number W/ / N/ N/, 
V V ^ V 

may have meant 6 + 12(1/60) + 3(1/3600) to the Babylonians. We can 

only guess, because the Babylonians never had the equivalent of a deci¬ 

mal point. In working with their system, we use a semicolon as a sexa¬ 

gesimal point, and commas between the other places for clarity, writing 

the above fraction as 6; 12,3. Another example is 1/10 = 0;6. 

The advantage of this notation is that computations with fractions are 

done in the same way as computations with whole numbers, which is 

the same advantage that decimals have. In fact, the system was so much 

better for computations than other available systems, that it was used by 

astronomers long after the Babylonian period to calculate the positions 

of the moon and planets. This usefulness accounts for even our present 

use of this system. Our hour of time is still divided into 60 minutes and 

the minute into 60 seconds. The degree is also divided into minutes and 

seconds based on 60 units. 

It is not known how the Babylonians came to develop their sexagesimal 

system, but several hypotheses have been put forth. Their system of 

measures was based on 60, so this may be one reason the method evolved. 

1 talent = 60 mana 

1 mana = 60 bushels 

Just as we say ‘Three forty-three” for three dollars and forty-three cents, 

they may have abbreviated 3 talents and 22 mana as 3,22. Also, there are 

tablets with two different stylus marks, a large '\/ — 60, = 10*60 

and a small v = i. < = 10. Perhaps the Babylonians eventually 
found it simpler to use one stylus and a positional system. 

To familiarize ourselves with this base 60 system we shall do a few 

computations in an unhistorical manner, using our symbols and format. 

Note that just as tens are carried in our base system, sixties are carried in 

the Babylonian base system. 

21,49; 17,42 3; 12 
+ 3,37; 15,50 4;7 

24,86;32,92 21 84 

= 25,26;33,32 12 48 

12;69,84 

= 12;70,24 

=13;10,24 
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Of course, doing the multiplication involved using our memorized multi¬ 

plication tables. The Babylonians also used multiplication tables, one of 

them being a nines table. 

(9X1) 9 
(9 X 2) 18 

(9 X 20) 3,0 

(9 X 50) 7,30 

Some unusual multipliers are occasionally found in the clay tablets; 

there is a 7,30 table and a 44,26,40 table. What need is there for a 450 

times table? This took scholars quite a while to solve, but they deter¬ 

mined that 7,30 has to be interpreted as 0;7,30 which is 1/8. Thus, the 

7,30 table is really a table for dividing by 8. The 44,26,40 table is for 

dividing by 81(1/81 = 0;0,44,26,40). 
The Babylonians were much more advanced in mathematics than the 

Egyptians, and many of their tablets give solutions to algebra problems 

which we would formulate as equations. These cuneiform writings are, 

in fact, the earliest traces of numerical algebra. No explanations, only 

solutions, are given in the tablets. The solutions do exemplify general 

methods, however, as we will illustrate with an example. The area plus 

two-thirds the side of a square is 0;35. Find the side of the square. This 

can be formulated in modern terms as x2 + 0;40x = 0;35 and a qua¬ 

dratic formula expression given for the solution. 

This is an example of the quadratic formula 

for the equation x2 + px — q. This formula does not appear in the 

tablet, but you can see it being computed step-by-step. It is calculated in 

the following manner, using the value 0;40 which is two-thirds of one. 

1. Half of 0;40 is 0;20. 

2. Multiply 0;20 by itself (square 0;20), and the product is 

0;6,40. 
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3. Add that product to 0;35, and the result is 0;41,40. 

4. Take the square root of 0;41,40 which is Q;50. 

5. 0;20, which was multiplied by itself, is subtracted from Q;50, 

and the result 0;3Q is the side of the square. 

If you follow each step you see that first the quantity under the square 

root sign is found, then the square root is taken, then the other term is 

subtracted from the square root, giving the final answer. 

How might the Babylonians have obtained this method? We can only 

guess that the most plausible explanation is that they found it by actually 

completing the square. This is how they might have proceeded. 

Method First the given problem was probably represented 

geometrically. The area of the square, x2, is repre¬ 

sented by a square of side x, and 0;40;t is represented 

by two rectangles, each of area 0;2Cbc (fig. 1.4a). 

0; 20 

0; 20 0; 20 0; 20 

x 0; 20 x 0; 20 

a. b. 

Figure 1.4 

The condition of the problem is that the area of the 

square and the area of the two rectangles is equal to 

0;35. Complete the square (fig. 1.4b) by adding an 

area of (0;20)2 to the area of 0;35 to give a large 

square of area 0;41,40. The side of this large square 

is ^0;41,40 = Q;50. To get x subtract the excess Q;20, 
with the result that * = 0;3Q. 

You can see that the steps involved in completing the square are exactly 
those given in the procedure we listed. 

The question of how the Babylonians computed the square root still 

remains to be answered, however. They used a method called the divide 

and average method which is now the one commonly taught in junior 

high schools. Their calculations involved sexagesimals, of course, but we 

will work in decimals. For example, to find ->J2 by the divide and average 
method, follow these steps: 
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1. Guess. 

2. Divide the guess into the number under the radical, 2. 

3. Average the two numbers resulting from the first two steps. 

4. Use the average as a new guess, return to step 1 and repeat. 

Suppose 1 was guessed in the first step. 

Guess 

ru 

Divide 

2 
T 

Average 

1 + 2 3 
2 

1.5 
= 1.33 

1.50 + 1.33 2.83 
= 1.415 

1.415 . . . 

Y'ou see that our approximations are becoming closer to ^2. This method 

of computing the square root has the advantage of being easy to remem¬ 

ber, but can also be rather time-consuming. It works, because if the guess 

is smaller than the square root, dividing the original number by the 

guessed number will give a larger quotient than the square root, and the 

average of the guess and the quotient will be closer to the square root. 

Each repetition of the process produces an answer nearer to the square 

root. The Babylonians approximated to several places when the answer 

was not even. 
Other problems presented in cuneiform tablets show that the Baby¬ 

lonians knew the formulas 

(a + b)2 = a2 + lab + b2 

and 

(<a + b)(a — b) = a2 — b2 

perhaps by means of geometric diagrams such as figure 1.5 which shows 

(a + b)2 composed of the four areas, a2, b2, ab, and ab. 

a a 

a 

Figure !.5 
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There are Babylonian tablets dealing with other geometrical problems, 

but I mention only one example — a tablet with a list of right triangles 

with integer sides. We know the easiest right triangle, the 3-4-5 (fig. 1.6), 

but few people will recall very many more. However, it is remarkably 

easy, using results available to the Babylonians, to obtain numbers a, b, 

and c, such that a2 + b1 = c2. As the Babylonians were aware, such 

numbers can represent the sides of a right triangle. To find such numbers, 

the relationship 

4xy + (x - y)2 = (x + y)2 

with which the Babylonians were certainly familiar, can be used. If 4xy 
were a square, then the above relationship would show the sum of two 

squares equal to a third square, as required. To make 4xy a square, let 

x = p2 and y = q2 where p and q can be any integers. Substituting, 

(2pq)2 + (p2 — q2)2 = (p2 + q2)2 

Thus, if a = 2pq, b = p2 — q2, and c = p2 4- q2, the numbers a, b, and 
c will represent the sides of a right triangle for any choice of p and q. 
For example, if p = 3, q — 2, then a = 12, b — 5, c = 13, and one can 
check that indeed 122 + 52 = 132. The Babylonian method was quite 
similar, but less general. 

Returning to Babylonian algebra, we see that problems which we 
would now calculate by a unified method or formula were treated by the 
Babylonians (and by later peoples) by separate methods. For example, 
with our use of symbolism and our concept of negative numbers, we give 
one quadratic formula to solve all equations of the type ax2 + bx + c = 
0 for any a, b, or c, negative or positive. The natural approach of the 
Babylonians was to consider different appearing problems as separate 
cases, for example: 

1. square = number x2 = 9 

2. multiple of side = number 5x = 8 
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3. square + multiple of side = number x2 + 3x = 5 

4. square = multiple of side + number x2 = 3x -T 5 

5. sum and product of two numbers given x + y = 5, 

xy = 3 

After all, square = number is not the same problem as multiple of side 

= number, is it? The above five problems all look different and were 

treated as such by the Babylonians. To see the five problems as special 

cases of one general problem required great advances in concept and 

notation. 
We have already seen the Babylonian step-by-step procedure for 

problems of the third type. Naturally, a different rule was used for each 

different type of problem; one of the fifth type would be handled in the 

following manner. 

Method The problem is to find x and y if x + y = a and 
xy = b. One way of satisfying the first equation is 

to let x = a/2 and y = a/2, but this choice may not 

satisfy the second equation. Iry to change x and y so 

they satisfy both equations. First, add a quantity z 

to a/2 to give x and subtract the same quantity from 

a/2 to give y. Then x = a/2 + z and y = a/2 - z. 

The first equation is satisfied since 

Now choose z so that the second equation, xy — 6, 

is satisfied. 

xy = b 

Thus 
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and 

Ihis is the theory that underlies the Babylonian method of solution, and 

from this theory a step-by-step procedure identical to that used by the 
Babylonians can be developed. 

1. Divide a by 2. 

2. Square the result of step 1. 

3. Subtract b from that square. 

4. Take the square root of the quantity obtained by subtracting b. 

5. Add the result obtained in step 4 to a/2 to get *. 

6. Subtract this same value from a/2 to get y. 

You might try this procedure on a numerical example to see how the 

Babylonian mathematicians followed these same steps in solving this 
type of problem. 

The Babylonians had some well-developed mathematical procedures. 

Their level of mathematical achievement was the highest of the early 

civilizations, and many later peoples followed their lead in the develop¬ 

ment of rules for solving equations — algebra was born in Babylonia. 

Their positional system of numeration has been used to perform large 

numbers of computations, as in astronomy. In fact, although we did not 

discuss their astronomy in this text, the Babylonians became quite pro¬ 

ficient at predicting the motion of the moon, including eclipses. The 

Greeks, whose mathematics we will study in chapter 2, learned much 
mathematics and astronomy from the Babylonians. 

3 India 

There was an early civilization in India, dating back to at least 3000 b.c. 

Written records from the early period are very scarce, however, because 

the Indians, unlike the Egyptians, did not build large tombs in which 

documents were preserved, and the writings were not protected by being 
buried, as was the case with the Babylonian tablets. 

Early mathematics in India was closely related to religious rituals.3 

A work called Sulvasutras (Rules of the Cord) which contained many 

mathematical ideas was written in about 800-500 b.c., but may include 

3See A. Seidenberg, The Ritual Origin of Geometry,” Archive for the History of 
the Exact Sciences, 1 (1961 /62): 488-527. 
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material originally developed much earlier. There are indications of 

these ideas in the Rig-Veda, a collection of hymns dating from about 

2000-1500 b.c. . . , , , u 
In the Sulvasutras one finds rules for constructing right-angled altars 

using a cord of length 8 and two pegs placed 4 units apart (fig. 1.7). 

The cord is marked at a point 3 units from one end. The ends of the 

cord are tied to the pegs, A and B, the cord is stretched, and a peg is 

driven in at the marked point C. The result is a right angle at B. In t e 

Sulvasutras constructions of straight lines and circles are done with pegs 

and cords. For example, a line can be constructed by stretching a 

cord between two pegs, or a circle can be constructed by using one 

stationary peg and a cord which is attached to the peg at one end, 

stretched, and rotated about the peg. 

We will encounter ideas similar to these later in Greek mathematics, 

because various construction problems with which the Indians were 

concerned may have been the sources for Greek mathematics. For ex¬ 

ample, there was the problem of increasing the size of an altar while 

maintaining its shape. An altar in the shape of a bird was constructed to 

have 1\ square units area (fig. 1.8).“ The next step was to construct an 

altar in the same shape but with an area of 8-( square units. A construe- 

Figure 1.8 

4Ibid. p. 491. See B. Datta, The Science of the Sulba. A Study in Early Hindu Geo¬ 

metry (Calcutta: University of Calcutta, 1932), 255 pp. for further details. 
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tion was developed which solves this problem, but we will not investigate 
it in this text. 

Another problem given in the Sulvasutras was to construct a circular 

altar which had the same area as a given square altar. This is a very 

difficult problem whose converse later became famous in mathematics. 

An approximate solution given in the Sulvasutras follows:5 

Solution Construct the diagonals of the given square (fig. 1.9), 

and construct a circle with the diagonal as diameter 

and center O where the diagonals intersect. Let A be 

the midpoint of the side of the square. Construct B, 

the point at which the extension OA intersects the 

circle, and construct C such that AC = 1/3AB. Then 

construct the circle with radius OC. This circle has 

area approximately equal to that of the given square. 

B E J f 

Figure i.SO 

Constructing a rectangle equal in area to a given square is another 

problem mentioned in the Sulvasutras.6 One side of the rectangle is 

given, but the solution is not expressed clearly in the Sulvasutras. A 

later commentator gives the following explanation in which the given 

side of the rectangle is assumed smaller than that of the square. 

Solution Given the square ABCD (fig. 1.10), lay off the shorter 

side HC of the rectangle. Complete the rectangle 

HGDC. Draw the diagonal CG and extend it until it 

meets the extension of AB at the point E. Complete 

the rectangle BEFC and extend HG to / where it in¬ 

tersects EF. The rectangle HJFC has the same area 
as the given square ABCD. 

5Seidenberg, “The Ritual Origin of Geometry,” p. 515. 
6Ibid., pp. 517-18. 
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The proof is obtained by subtracting congruent triangles from con¬ 

gruent triangles; 

Proof 

A EEC ^ A EFC 

but 

AEAG^ AEJG 

and 

Thus 

AGHC ~ A GDC 

area ABHG = area JGDF 

area ABHG + area HGDC = area JGDF 

-T area HGDC 

Hence 

area A BCD = area JHCF 

We have seen something of the mathematics of three early civiliza¬ 

tions, mathematics that developed from both practical and religious 

needs. Typically, the mathematics of these early civilizations appears as 

collections of problems and rules such as the Ahmes papyrus, the 

Babylonian clay tablets, and the Indian Sulvasutras. A significant feature 

of much of this early mathematics and an important legacy to future 

mathematicians was the use of numerical computation to solve varied 

types of problems. Even based on the incomplete records of the early 

mathematics that remain, we can conclude that it contained techniques 

and concepts of enduring usefulness. 
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Problems 

1. Add 287 and 464 using Egyptian symbols. 

2. Multiply the following numbers in the Egyptian manner, 

a. 9 X 15 b. 23 X 32 c. 18 X 27 

3. Divide the following numbers in the Egyptian manner, 

a. 9 - 16 b. 25 ^ 4 c. 14 4- 20 

4. If a heap plus an eighth of a heap gives 12, what is the value of a 

heap? Use the rule of false position. 

5. Use the Egyptian method to find the area (approximate) of a circle 

of diameter 12. 

6. Represent 2/7 as a sum of different unit fractions. 

7. Represent 2/9 as a sum of different unit fractions in two different 

ways. 

8. Using the Egyptian method, find how much each man would receive 

if 

a. seven loaves are divided among 10 men. 

b. eight loaves are divided among 10 men. 

c. nine loaves are divided among 10 men. 

9. Problem 62 of the Ahmes papyrus asks for the amount of each 

precious metal in a sack which contains equal weights of gold, silver, 

and lead. The sack is bought for 84 sha’ty. A deben of gold is worth 

12 sha’ty, a deben of silver worth six sha’ty, and a deben of lead 

worth three sha’ty. Solve the problem using the method of false 

position, first assuming that the sack contained one deben of each 

metal. 

10. Represent the following numbers using Babylonian symbols, 

a. 172 b. 987 

c. 2371 d. 4000 

11. Represent the following numbers using Babylonian symbols, 

a. 1/15 b. 5/12 

c. 7^0 d. 1/72 

12. Find 1/7 correct to two sexagesimal places. 

13. a. Which whole numbers n, from 2 to 10, give fractions l/n whose 

decimal expansions are terminating? (An expansion is said to be 
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terminating if it has zeros from some point on. Thus 1/2 - .50 

is terminating while 1/3 = .33 ... is repeating.) 
b. Which whole numbers n, from 2 to 10, give fractions \/n whose 

sexagesimal expansions are terminating? 
c. Can you determine a rule which specifies which fractions will have 

terminating decimals? Sexagesimals? 

14. Add 37,44;50,33 to 24,38; 12,42. 

15. Multiply 4; 17 by 14;8. 

16. Use the Babylonian method to find the following square roots. Con¬ 

tinue until successive approximations agree to two decimal places, 

a. 7 b. 12 c. 20 

17. The area of a square and 10 times its side are added, and the result is 

* 24. What is the length of the side? Present your answer in a step-by- 

step form as the Babylonians did. 

18. The area of a square and 0;30 times its side are added, and the result 

is 0;56,15. Find the side. Present your answer in a step-by-step form 

as the Babylonians did. 

19. The sum of two numbers is 20 and their product is 36. Find the 

numbers. Present your answer in a step-by-step form as the Baby¬ 

lonians did. 

20. Find four different right triangles (other than 3-4-5 and 5-12-13), 

each of which has as the lengths of its sides whole numbers with no 

factors in common with one another. 

21. Show that the formula (x -f y)2 = (* — y)2 + can be obtained 
from the formula a2 — b2 = (a + b)(a — b) by a suitable choice of 

a and b. 

22. Explain how figure 1.11 can be used to give a geometric representa¬ 

tion of the formula a2 — b2 = (a + b)(a — b). 

b < 

--y- 

a 

Figure I. I I 
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23. Given a square of side 5, compute the area of the circle which can be 

constructed by the Indian method to be approximately equal to the 
area of the given square. 

References 

Introduction 

National Council of Teachers of Mathematics 
Seidenberg (1,2) Wilder 

Egypt 

Boyer (1) 
Gillings 
Midonick 

Neugebauer (1) 
van der Waerden 

Babylonia 

Aaboe 
Bruins 
Gandz (1) 

Midonick 
Neugebauer (1) 
van der Waerden 

India 

Seidenberg (2,3) 

References 23 



Eureka 



Greek 
Mathematics 

Introduction 

Greek civilization gave rise to excellent mathematics, philosophy, litera¬ 

ture, and art. By 700 b.c. the Greek culture extended from mainland 

Greece to the islands in the Aegean Sea and to the west coast of what is 

now Turkey. Trade was expanding, and Miletus, a city on the coast of 

Turkey, was an important Greek trading center in the growing empire. 

Literature began to change as the civilization became more progressive. 

Earlier, Homer and Hesoid described the origin of the world in human 

terms; the sky was a man and the earth a woman, etc. Nature itself was 

personified, and this incarnation pervaded the religion of the times. By 

600 b.c., however, philosophers began to give natural explanations of 

creation. They suggested that everything was made of a combination of 

any or all of four basic elements — air, water, earth, and fire. It was 

thought that these basic substances, which symbolized states of matter, 

combined in different sequences and proportions to account for every 

detail in the universe. Our study will concern how mathematics was 

involved in this philosophical attempt to understand the world and how 
mathematics was connected with religion. 

Unfortunately, there are almost no mathematical writings preserved 

from the period before 300 b.c., and even works written after 300 b.c. 

exist only as copies in much later documents. The Greeks wrote on 

papyrus, but they did not seal it in tombs as the Egyptians did. The only 
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means of preservation was to copy writings repeatedly before the previous 

copy could disintegrate. 
The earliest extant Greek work (except for a few fragments) is Euclid’s 

Elements written about 300 b.c. Euclid’s work became so popular that 

other writings ceased to be copied. He is so thorough in his compilation 

of elementary Greek mathematics, however, that scholars have been able 

to learn much about the period from 600 b.c. to 300 b.c. from the 

Elements without benefit of earlier texts. There are also scattered refer¬ 

ences to mathematics and mathematicians in other works by poets, 

historians, and philosophers. Although the total amount of material is 

not overwhelming, it does give some idea of the mathematics of the 

period. A commentary by a writer of a.d. 500 who had a copy of a history 

of mathematics written in about 320 b.c. is also a commonly used source 

of information, since the history itself has been long lost. The document 

is rather short, but does tell about the early Greek mathematicians. 
The association of mathematics with philosophy led the Greeks to 

delve more deeply into the nature of mathematics than had earlier cul¬ 

tures. The Greeks wanted to know if a line could be measured exactly in 

terms of a given unit. They were not satisfied to obtain an approximate 

length, even though an estimation would have been sufficient for any 

practical use. The Greeks did approximate, particularly in the later 

period, but they always did so within the framework of a rich and well- 

described theory. Earlier cultures had general procedures but they never 

emphasized them. We are indebted to the Greeks for the development of 

explicit formal proof, and for the use of axioms. 

I The Beginning of Greek Mathematics 

THALES (600 B.C.) 

The first figure of importance in Greek mathematics is Thales of Miletus, 

but a few tales are all that is known about him. Plato relates that he fell 

into a well while looking at the stars, and that a pretty Thracian slave- 

girl laughed at him, saying: ‘he wanted to know what happens in the 

heavens, but he did not observe what was in front of his own feet! 

His eyes were not always in the heavens, however. Miletus was a trading 

center, as we have mentioned, and Thales was a trader with good business 

iB. L. van der Waerden, Science Awakening, p. 86. 
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sense. Aristotle tells of a good olive year in which Thales controlled all 
the oil presses and rented them at his own price. 

Thales was among people who were thinking about the nature of the 

world. Being a trader, he had contact in his travels with Babylonian 

scholars. He probably organized some of the known facts of geometry 

which he learned from them, but he was not content with mere facts. 

Thales was among the first to be concerned with reasoning (so it is said). 

Among the few propositions that Thales is credited with are the follow¬ 
ing: 

1. The angles at the base of an isosceles triangle are equal. 

2. Any circle is bisected by its diameter. 

What type of reasoning did Thales use? His notion of proof was 

probably that of intuitive “visualization,” reminiscent of the Egyptian 

proof of the area of an isosceles triangle by breaking it into two right 

triangles and recombining them into a rectangle to “show” the method 

(see fig. 1.2). To give you another example of how Thales might have 

reasoned, I refer to Plato s Dialogue Menon in which Socrates taught an 

uneducated slave how to double the area of a square having sides 2 feet 

long, while maintaining the square shape.2 (Socrates lived around 425 

b.c., so this example is from a later period but still reflects an approach 
of Thales’ time.) 

First the slave thought to double the side, but Socrates drew such a 

square and showed the slave he was wrong (fig. 2.1a). The new area was 

four times that of the given square. The slave said the side must obviously 

be longer than the side of the original square in order to give a larger 

area, so he tried 3 as the new length, but this gave nine unit squares, not 

the 8 required (fig. 2.1b). Socrates then showed the correct method by 

doubling the sides and drawing a square to connect the midpoints of 

sides (fig. 2.1c). This new square contained four triangles while the 

original square contained only two, so it was the correct double. This 

Figure 2.1 

2Arpad Szabo, “The Transformation of Mathematics into Deductive Science and the 
Beginning of its Foundation on Definitions and Axioms,” Scripta Mathematical p. 35. 
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early type of proof by visualization is also apparent in Theorem 1.4 of 

Euclid’s Elements which we will study later in this chapter. 

PYTHAGORAS (ca. 540 B.C.) 

Pythagoras of Samos was one of the most important figures in the history 

of science He not only influenced Plato, but also other philosophers and 

scientists up to the time of the Renaissance. In his own time he was 

thought of primarily as a philosopher and religious teacher. 
Pythagoras went to Egypt and Asia, learning about their cultures 

through his travels. He was aware of the many mystery rites, and he 

undoubtedly became familiar with religious rituals and their connection 

with number lore and geometrical rules. The cultures of these civiliza¬ 

tions obviously impressed Pythagoras, and he assimilated some of their 

beliefs into his own philosophies while rejecting others. 
He returned from his journeys with his newly acquired wisdom and 

founded a brotherhood of believers, the order of Pythagoreans, in 

Croton, a town on the east coast of Italy. In contrast to some Greek 

cults, which believed in ecstasy as a means of purification, the Pythag¬ 

oreans believed that the contemplation of geometric form and numerical 

relations gave spiritual release. Music had always been thought to be a 

means of giving release, of purging the soul, and the Pythagoreans found 

that numbers underlay the harmony of music. For example, when a 

string is shortened to half its length, the tone produced when it is plucked 

is an octave higher. Similarly, the ratios 3 : 2 and 4 : 3 correspond to the 

harmonic intervals of the fifth and the fourth (fig. 2.2). 

octave fifth fourth 

Figure 2.2 

The Pythagoreans felt that it was harmony which united the diverse 

aspect of segments into a whole. Harmony consists of numerical ratios. 

Thus, in a way, it is these numerical ratios of things which determine 

what they are and relate them to each other. That the Pythagoreans tried 

to understand the world through numbers is a very significant fact. Only 

in the Western world did modern science and mathematics develop, and 

the Pythagoreans initiated that development because of their beliefs 

concerning numbers. 
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Since Pythagoras was a famous man in his own time there were many 

stories told about him. His religious doctrines were ridiculed in some of 
the tales. When Pythagoras saw a dog being beaten he was supposed to 

have said, “Stop the beating, for in this dog lives the soul of my friend. I 

recognize him by his voice. Pythagoras’ belief in the transmigration of 
souls was being spoofed. This was a serious belief of the Pythagoreans, 

however, and because of it they were vegetarians. Other anecdotes about 

Pythagoras afforded him quite a reputation. He was supposed to have 

been seen in two places at the same time, the calf of one of his legs was 

said to be made of gold, and most impressive, when he crossed a stream 

it reportedly rose up and greeted him saying, “Hail, Pythagoras.”3 

The Pythagoreans believed in the eternalness of mathematics, but 

abiding fellowship with the divine could only come after years of study 
and dedication. 

After a testing period and after rigorous selection, the initiates 

of this order were allowed to hear the voice of the Master 

[Pythagoras] behind a curtain; but only after some years, when 

their souls had been further purified by music and by living in 

purity in accordance with the regulations, were they allowed to 

see him. This purification and the initiation into the mysteries of 

harmony and of numbers would enable the soul to approach 

[become] the Divine and thus escape the circular chain of re¬ 
births.4 

The school of Pythagoras was active for over 100 years after his death. 

His followers did not generally use their own names on their work, thus 

we attribute the development of mathematics of this time to the Pythag¬ 

oreans as a group, and we will refer to the concepts we shall discuss as 

Pythagorean. Their motto being “all is number,” the Pythagoreans 

studied the various types of numbers such as even and odd numbers and 

perfect numbers. A perfect number is one which is equal to the sum of 

ail its divisors except itself. There are not very many of these, the first 
two being 

6-l+2-f3 

and 

28 - 1+2 + 4 + 7+14 

The next perfect number is 496. 

3van der Waerden, Science Awakening, pp. 92-93. 
4Ibid., p. 93. 
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Some of the Pythagorean concepts have been preserved in Euclid s 

Elements. Theorems 21-34 and Theorem 36 of Book IX have been shown 

to be the oldest parts of the Elements and are Pythagorean in origin. 

Theorem IX.21 A sum of even numbers is even. 

Theorem IX.27 Odd less odd is even. 

These theorems culminate in Theorem IX.36. 

Theorem IX.36 If 2" - 1 is prime, then 2"-1(2” - 1) is perfect. 

n 2n — 1 2n~1(2” - 1) 

2 3 6 
3 7 28 

4 15 (not prime) 
5 31 496 

It is still not known if there are infinitely many perfect numbers or not. 

It is also not known if there are odd perfect numbers. No one has ever 

found any, but no one has been able to prove that they do not exist. 
Another source for Pythagorean ideas, especially number mysticism, 

is a book on numbers by a Neopythagorean, Nicomachus (a.d. 100). 

Numbers had symbolic significance, according to the Pythagoreans. 

For example, four is the number of justice or retribution, indicating the 

squaring of accounts. The Pythagoreans believed that all things could be 

explained by numbers; numbers were eternal while everything else was 

perishable. The philosophers before Pythagoras — Thales among them 

_emphasized the stuff from which the universe was made. The Pythag¬ 

oreans emphasized form, proportion, and pattern, and their theories 

were based on their ponderings of what they observed. In fact, the word 

theory itself comes from theoreo, meaning I contemplate, and thea, 

meaning spectacle. 
The Pythagoreans tried to express geometrical shapes as numbers. 

Believing that matter came in certain basic geometrical shapes and then 

combined to form things as we know them, they developed sequences in 

which a basic geometrical shape was represented by numbers, for ex¬ 

ample, the triangular numbers (fig. 2.3a) and the square numbers (fig. 

2.3b). In fact we still call square numbers square because of the shape by 

which the Pythagoreans represented them. The Pythagoreans attempt to 

explain geometry using numbers was not entirely successful, however, as 

we shall learn in the next section. 
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Figure 2.3b 

2 Crises and the Origin of Deductive Mathematics 

The Pythagoreans applied their theories of numbers to points, lines, and 

planes. They made an assumption which appears very plausible, namely, 

that given any two lines there is a unit (perhaps small) which goes evenly 

into both of them an integral number of times. Thus the ratio of the 

lengths of lines could be expressed by numbers (see fig. 2.4 in which the 

ratio is 11 : 7). It was thought that for any two lines such a unit could be 

found, and two lines with this property are called commensurable. 

Figure 2.4 

The Pythagoreans used the assumption of commensurability in their 

reasoning about geometry. In this way their philosophy that “all is 

number was maintained, so it proved to be a great crisis for their school 

when they found that this theory was not true in all cases. Given a square 

(see fig. 2.5), the side and diagonal are incommensurable. It is not known 

exactly when this discovery took place, but it is sometimes mentioned 

that Hippasus (ca. 500 b.c.) was the one to disclose the fact of incom¬ 

mensurability and was supposedly set adrift at sea for revealing it. 
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The Pythagoreans were trying to keep the secret that the theory of com¬ 

mensurable lines was not true, but it is highly doubtful that they could 

not prove it false themselves. The incommensurability of the side of a 

square and its diagonal can be proved using the theory of even and odd 

numbers, a favorite study of the Pythagoreans, so the proof seems well 

within their grasp. The following example is an illustration of such a 

proof. 

Proof Assume there is a unit which goes into the side of a 

square q times and the diagonal of the square p times. 

Figure 2.5 

Then, by the Pythagorean theorem for isosceles right 

triangles, 

Reduce p/q to lowest terms so p and q have no factors in 

common. Since 2q2 is even by definition, and 2q2 = p2, 

we know p2 is even. The Pythagoreans were familiar with 

the theorem that if p2 is even, then p is even and can be 

represented as two times some other number, say p\. 

Then p = 2px. Substitute, giving 

2q2 = (2pt)1 = 4pj 

92 = 2p] 

Now 2p] is even, so q2 is even, and therefore q is even. 

But this implies p and q are both even and that is im¬ 

possible because we reduced them to lowest terms. (If p 

and q are both even, they have a factor of 2 in common.) 

Thus, the hypothesis of commensurability leads to a 

contradiction. 
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The Pythagoreans had to reject many of their applications of numbers 

to geometry due to the proof of incommensurability. In particular, they 

had made much use of their theory of proportions, or ratios of numbers, 

which was probably much like what is found in Book VII of Euclid’s 

Elements, with theorems such as b : c = ab : ac and if a : b = c : d, then 

ad = be. For example, they might have used numerical proportions in 

their theory of similar triangles. Take similar triangles and assume there 

is a unit going evenly into all sides (fig. 2.6). Then the corresponding 
sides are proportional in a numerical sense q'/q = p’/p. 

Figure 2.6 

This theory of proportions of similar triangles may have been the 

original Pythagorean approach to the proof of the Pythagorean theorem, 

which states that in any right triangle the square on the hypotenuse is 

equal to the sum of the squares on the sides. The following example is a 
guess as to how that went.5 

Proof Let a right triangle ABC be given and let squares be con¬ 

structed on its sides and hypotenuse (fig. 2.7). Construct 

the perpendicular OF to BA. Find the greatest common 

measure of the four lines BC, CA, BO, and OA (assuming 

commensurability). In terms of this length as a unit, let 

the four lines be of length a, b, d, and c — d, respectively. 

Since angle COB and angle ACB are both right angles 

ZCOB = ZACB 

Also, 

ZCBO = ZCBA 

5See Sir Thomas L. Heath, trans., 3 vols., The Thirteen Books of Euclid's Elements 
(New Yoik. Dover Publications, 1956) 1: 352 -55, for a discussion of early proofs of this 
theorem. 
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Therefore, 
% 

A CBO ~ A ABC 

Using ratios of corresponding sides, 

c _ a 
a d 

a2 = cd 

Thus, the area of the square CBDH is equal to the area 
of rectangle BOFG. In a like manner, the area of square 
CAEJ is equal to the area of rectangle OAKF. Since 
BOFG + OAKF = BAKG, then a2 + b2 = c2 by sub¬ 
stitution. The theorem follows that the square on the 
hypotenuse equals the sum of the squares on the sides. 

Here you see use being made of the theory of numerical proportions 
based on the false assumption that any two lines are commensurable. 
Later we will see correct proofs of the Pythagorean theorem which are 

given in Euclid’s Elements. 
Although the Pythagoreans had to discard any proofs they made 

using the false assumption of commensurability, they undoubtedly de- 
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veloped many valid theorems of geometry. Unfortunately, very few 

references to their results have survived. Those that do indicate that 

their geometry, now considered as a separate subject not based on 

numbers, contained some of the theorems found in the first two books 
of Euclid’s Elements. 

The discovery of incommensurability caused quite a shock. Perhaps 

other results which appeared intuitive by visualization (such as corn- 

men su rabidly) were faulty. The mathematician learned to be more 

careful and to depend more on reasoning and logic than on diagrams 

and displays. We shall see that at several points in history crises such as 

the proof of incommensurability caused mathematicians to be more 
careful and rigorous in formulating their theories. 

ZENO (ca. 450 B.C.) 

Some scholars believe that Zeno had great influence on mathematics 

with his very ingenious arguments. Zeno was a disciple of Parmenides of 

Elea whose followers formed a school of philosophers, the Eleatics, 
who were critical of the Pythagoreans to some extent. Zeno gave brilliant 

arguments criticizing views of other philosophers, showing that the 

other person’s hypothesis led to two contradictory conclusions. Thus, the 
hypothesis itself was impossible. 

His paradoxes were quite amusing and have influenced thought to this 

day. Consider, for example, the race between Achilles and the tortoise. 

Achilles is faster so he starts at A\ while the tortoise has a head start and 

begins at T\ (fig. 2.8). When Achilles reaches the position where the 

tortoise started, the tortoise has moved on, not too far of course, but the 

tortoise is still ahead. When Achilles reaches this new position of the 

tortoise, T2, the tortoise has moved still further to J3. Thus, Achilles will 
never catch the tortoise. 

T1 

Start Finish 

Figure 2.$ 
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Zeno’s argument seems theoretically convincing, although the tortoise 

would never win in reality. Modern mathematicians have discussed this 

paradox, considering the time it took Achilles to make an infinite number 

of these steps. The points Zeno raises about the divisibility of space and 

time are quite complex and philosophical. Is there a smallest unit of 

space? Is there an instant — a smallest unit of time? 
I would like to explain one of Zeno’s points in a mathematical context. 

Suppose we choose two numbers, 3 and 6 (fig. 2.9). 

Figure 2.9 

It is clear, and no one argues otherwise, that the whole, 6, is greater than 

the part, 3. Now consider two line segments (fig. 2.10) and suppose they 

Figure 2.10 

are composed of points. A one-to-one correspondence can be set up 

between points of the first line and points of the second (fig. 2.11). 

O 

We connect the right endpoints and the left endpoints of lines L\ and 

Li and extend these two lines of connection until they intersect at O. 

Now, given any point P on L\, draw the straight line from O through P 
and extend it until it crosses L2 in Q. Therefore, we say Q corresponds to 

p. Similarly, given any point S on L2 we find the point R on L\ which 

corresponds to it. Thus, there are just as many points on L\, the part, as 

there are on L2, the whole, because each point on L\ is paired with a 

unique point on L2 by this process. Not only could the Pythagoreans 
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not prove that the whole line was greater than the part, but Zeno’s 

argument, similar to the one above, seemed to show that the whole is 

equal to the part. 

A new crisis had arisen for the Pythagoreans, because another one of 

their basic notions had apparently been proven false. They could not 

consider a line to be made up of points, because then they would have to 

respond to the argument that a shorter line having just as many points as 

a longer line was, in fact, equal to it. Rather than give up the study of 

geometry, the Pythagoreans refused to consider a line as made up of 

points, and they accepted the common idea that the whole is greater than 

the part. We find this statement later as a common notion, or axiom, in 

Book I of Euclid’s Elements. The other common notions also concern 

equality. It seems that the Eleatics’ arguments influenced the Pythag¬ 

oreans to adopt axioms rather than abandon their ideas. Therefore, 

a possible explanation for the development of propositions which were 

accepted as self-evident truths is that the Eleatics forced the Pythagoreans 

to adopt as axioms statements in which they believed despite the argu¬ 

ments of the Eleatics against them.6 

We have learned about Pythagorean ideas of numbers and philosophy 

and how the discovery of incommensurables made them discard some 

geometry based on numbers. By 450 B.c. criticism of the nature of points 

may have led to the use of axioms, certainly an important occurrence in 

the history of mathematics. Before continuing with an explanation of 

Greek geometry, however, it will be of benefit to study Greek numerals. 

3 Greek Number Systems 

There were two systems of Greek numerals, and both were developed at 

approximately the same time between 800-500 b.c. The Attic is the more 

primitive and is named for Attica, or Athens. The other system is Ionic, 

named for the region of Ionia on the coast of Asia Minor (Turkey). 

ATTIC GREEK 

In this system the first letter of the word for five was used as its symbol, 

just as if we were to use/as the symbol for the number five. Strokes were 

6See Szabo, “The Transformation of Mathematics,” pp. 27-48, 113-39, for the devel¬ 
opment of this argument. 
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used for 1, 2, 3, and 4 — |, | |, | | |, | | | |. Other numbers were symbolized 

in the following manner: 

n or r (an old form of tt) the letter pi, initial of IIENTE, five, 

is used as a numeral for 5. 

A the letter delta, initial of AEKA, ten, used as a numeral for 

10. 

H like our h, initial of HEKATON — 100. 

X chi, initial of XIMOI, chil’ioi — 1000. 

M mu, initial of MYPIOl, myrioi — 10,000. 

Position was not important in the Attic system. A relatively large 

number of symbols were required to write a number, for example 

473 = HHHH F AA | | | 

Here the P represented five 10’s, or 50, the r being 5 and the A being 10. 

IONIC GREEK 

The Ionic Greek was an alphabetical numeral system; the letters of the 

alphabet were used as symbols. There was an older form in which the 

24 Greek letters represented the numbers from 1 to 24 but this was not 

very convenient for computations or for writing numbers larger than 24. 

The Ionic system used 27 letters. The Greek alphabet, derived from the 

Phoenician, was augmented by three archaic letters. The alphabetical 

representations of the Ionic system are given in the following chart. (For 

ease of recognition the letters are written in lowercase, although the 

Greeks of that period used uppercase.) 

1 a 10 L 100 P 

2 0 20 K 200 a 

3 7 30 \ 300 T 

4 8 40 M 400 V 

5 £ 50 V 500 <t> 

6* < 60 a 600 X 

7 r 70 0 700 

8 V 80 7T 800 CO 

9 6 90* 9 900* X 

*The letters for 6, 90, and 900 were the archaic letters. 
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Position was not important in the Ionic system either, but the Ionic 

System was more economical than the Attic, because fewer symbols 

were required to represent a number. For example, 

573 = (poy 

Only two symbols are needed to write 570. 

570 = <po 

Bars were written over the numerals to distinguish them from words. 

The Greeks were able to extend the Ionic system to represent large 

numbers. The symbols for 1 to 9 were written with a left subscript to 

represent 1000 to 9000. 

>a >(3 /5 • • * 

1000 2000 3000 4000 

For numbers larger than 10,000 the symbol M for myriads was used. 
7 

Thus 30,000 could be written as 3 myriads or M. Another example is 

X/3 

M 'dairy — 321,283 

Addition and multiplication were difficult in the Ionic system, but the 

system was very convenient for writing numbers in order to keep records. 

A late nineteenth century historian, Tannery, said that he had practiced 

addition and multiplication in this system and found them quite reason¬ 

able. Even still, the average tradesman in the days of the Greeks probably 

used an abacus to add bills and keep accounts. 

4 Early Results and Problems of an 
Independent Mathematics 

Returning to Greek geometry, we recall that congruences, parallels, and 

triangles had been studied by the Pythagoreans and some basic theorems 

of geometry had been developed. These theorems will be described in the 

later form in which we find them in Euclid’s Elements. 
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THE THREE FAMOUS PROBLEMS 

By about 450 b.c. scholars were beginning to study more advanced 

problems. Recall that in India, peg and cord constructions were used to 

draw lines and circles. Perhaps this influenced Greek mathematicians to 

postulate the construction of lines and circles.7 In any case, three such 

basic rules of construction were specified and later found as Euclid’s 

first three postulates. They are the following: 

Postulate 1.1 To draw a straight line between two points. 

Postulate 1.2 To extend any line indefinitely. 

Postulate 1.3 To draw a circle with any center and radius. 

Many theorems are proved using these construction postulates, and 

all such constructions are possible using a straightedge and compass. The 

Greeks now were determined to actually construct (at least theoretically) 

the solution to a problem. They did not want to be proved wrong again, 

as with incommensurability. 

As an example of a construction which is possible using a straightedge 

and compass, consider the bisection of a line segment AB (fig. 2.12). 

P 

1. Draw a circle with center A and radius AB (postulate 3). 

2. Draw a circle with center B and radius AB (postulate 3). 

3. Connect the points where the circles intersect, PQ (postulate 

1). 
4. The segment PQ bisects AB, as is proved in Elements 1.10. 

Here Euclid assumed it was clear that the circles actually intersected in 

points P and Q. 

7See A. Seidenberg, “Peg and Cord in Ancient Greek Geometry,’’ Scripta Mathematica, 
pp. 107-22. 
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There were, however, three problems which became well known 

because no one could solve them with a straightedge and compass. These 

are sometimes called the three famous problems. They are: 

Problem 1 To trisect any angle (with straightedge and com¬ 

pass only). 

Problem 2 To construct a square with area equal to that of a 

given circle (called squaring the circle). 

Problem 3 To construct a cube with volume double that of a 

given cube (called duplication of the cube). 

It is possible to solve these problems using more than just a straightedge 

and compass. Later we will see an example of a trisection. It was not 

until the 1800s that these problems were shown to be impossible to solve 

using only a straightedge and compass, so all the efforts over 2200 years 

were to no avail. It is interesting to note that the methods of algebra 

were used to show the impossibility of these geometric problems. 

Perhaps these problems were of earlier origin than Euclid’s time.8 

Both the Egyptians and the Indians gave approximate solutions to prob¬ 

lem 2. Recall that in India altar construction led to mathematical 

problems, and there is a Greek legend about the origin of the duplication 

of the cube problem which relates it to altar construction. The story has 

it that Zeus announced to the people of Delos through an oracle that in 

order to be liberated from the plague they would have to make an altar 

twice as great as the existing one to Apollo. The architects were much 

embarrassed in trying to find out how one solid could be made twice as 

great as another one, so they asked the mathematicians. Thus, the prob¬ 

lem of the doubling of the cube was posed, but not solved. 

HIPPOCRATES (ca. 430 B.C.) 

One person who lived in this time and who worked on the three famous 

problems was Hippocrates of Chios (not the Hippocrates of the Hippo¬ 

cratic oath who was a doctor from Cos). In trying to square the circle, 

Hippocrates showed the area of the shaded lunules was equal to that of 

the shaded isosceles right triangle (fig. 2.13). He hoped to extend this 

result to find the area of a whole circle equal to a square, but, as we now 

know, that is impossible. 

8See Seidenberg, “The Ritual Origin of Geometry,” pp. 493-94. 
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Figure 2.13 

Hippocrates wrote the first known compilation of Elements of Geome¬ 

try. The text did not survive, but it probably contained elementary 

geometry of triangles and parallels as was known to the Pythagoreans 

and found in Book I of Euclid’s Elements, as well as Hippocrates’ own 

work on circles and polygons which can be found in Books III and IV of 

Euclid’s Elements. We will discuss some results on polygons which were 

known by the time of Hippocrates. 
An equilateral triangle, a square, and a regular pentagon can be in¬ 

scribed in a circle (fig. 2.14) with a straightedge and compass. If each 

side of the equilateral triangle is bisected and the corresponding points 

on the circle connected, then a regular hexagon inscribed in the circle is 

obtained. Similarly, by bisection a 12-sided polygon can be constructed 

from the hexagon (fig. 2.15). Thus, given that any one polygon is con- 

structible, a polygon with double the number of sides of the given poly¬ 

gon can be constructed. From these three polygons — the equilateral 
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triangle, the square, and a regular pentagon — we know that polygons 

of the following numbers of sides are constructible. 

3, 6, 12, 24, 48, ... . 

4, 8, 16, 32, 64, .... 

5, 10, 20, 40, 80,_ 

The Greeks of this time also could use a triangle and a pentagon together 

to construct a 15-sided polygon giving the constructible sequence 

15, 30, 60, 120, .... 

But there were regular polygons of 7, 9, 11, 13, 14, 17, and more sides 

that no one was able to construct with a straightedge and compass. In 

1796 the genius Gauss, then 19, proved that the 17-sided polygon was 

constructible. (Here, again, it is interesting to note that the proof was 

accomplished using algebra.) In fact, Gauss developed a rule (which we 

will study later) for finding other constructible polygons. The next new 

constructible polygon of a prime number of sides is 257 sided. The 17- 

sided polygon is fairly difficult to construct, but someone has figured out 

and carried through the construction of the 257-sided polygon which is 

immensely difficult, and someone even spent years constructing the next 

prime-sided polygon which has over 65,000 sides! 

We will investigate a particularly easy construction of a regular penta¬ 

gon attributed to Ptolemy, who lived around a.d. 150 (fig. 2.16). 

1. Construct a circle with perpendicular diameters. 

2. Bisect DC, giving E. 

3. Construct a circle with EB as radius and E as center which 

cuts AD at F. 

4. Connect BF. BE is the side of a regular pentagon. This can be 

shown by laying it off around the circle. A proof is outlined 

in problem 15. 

C 

Figure 2.16 

Early Results and Problems of an Independent Mathematics 43 



Pentagons had been very interesting to the Pythagoreans, and no 

doubt some of the results concerning constructibility of polygons were 

known to them. In fact, the pentagram (five-pointed star) (fig. 2.17) was 

a mystic symbol of the Pythagoreans. There is a story about a Pythag¬ 

orean in a foreign country who was taken care of until his death by a 

kind man. The Pythagorean was unable to pay the man, but from his 

death-bed, he instructed the man to paint a pentagram on the outside 

wall of his house, so that any Pythagorean who might pass by would 

come in and visit. A Pythagorean did come past many years later and 

rewarded the man for his kindness. 

Figure 2.17 

The pentagram is a rather interesting figure. Inside the star is a penta¬ 

gon. If the vertices of this pentagon are connected, another star is formed . 

Inside that star is another pentagon which contains another star which 

contains another pentagon, ad infinitum (fig. 2.18a). The pentagram is 

Figure 2.18 

also related to what was later known as the golden section, so called 

because it was thought to be a pleasing division of a line into two parts. 

The golden section, or golden mean, has the property that one side of the 

star, a, is divided by the other side into two parts, x and a — x (fig. 2.18b), 
such that 
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MATHEMATICS IN GREEK EDUCATION 

Greek schools were all private and open only to male students. Women 

were educated in the home, chiefly in the domestic arts. Arithmetic was 

taught to Greek students (along with reading, music, gymnastics, writing) 

until they reached age 14. Their mathematical activities included finding 

areas of boxes, playing counting games, and distributing apples, among 

other exercises. Geometry and astronomy were taught to ages 14-18 

during secondary education. 
Isocrates, who wrote on mathematics in Greek education, said that if 

it does no other good, the teaching of mathematics keeps the young out 

of mischief and the study of it helps to train one’s mind and sharpen 

one’s wits.9 So it seems, the justification of mathematics education was 

much the same as it is at present. 

5 New Methods and ideas 

We come now to a period 40 or 50 years after the time of Hippocrates 

when several problems which had been attacked unsuccessfully earlier 

were finally solved. Eudoxus showed how to work with ratios of magni¬ 

tudes correctly and also solved difficult area and volume problems, which 

we would now compute using calculus. These new Greek methods are 

more subtle than any we have previously encountered. 

Mathematics at this time was viewed very broadly. The word mathe¬ 

matics itself comes from the Greek word mathemata, meaning things 

learned or subjects of instruction. Around 390 b.c. those subjects were 

geometry, arithmetic, music, and astronomy. Other practical skills were 

probably learned in a less formal manner. 

Archytas of Taras (ca. 390 b.c.) was a Pythagorean and was probably 

the man who introduced Plato to mathematics. Recall that music was 

understood using ratios or proportions of numbers, the 2 : 1 ratio being 

an octave, etc. Archytas studied the theory of ratios and proportions in 

relation to his theory of music and wrote a book on music and harmony. 

Much of Book VIII of Euclid’s Elements on proportions may be attribut¬ 

able to Archytas.10 Archytas also developed an ingenious solution to the 

problem of the duplication of the cube, but it is extremely complicated. 

9Sir Thomas L. Heath, Greek Mathematics, pp. 7-8. 
10See van der Waerden, Science Awakening, p. 153. 
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PLATO (380 ETC.) 

Plato of Athens is one of the most famous Greek philosophers. He did 

not do any noteworthy work with mathematics, but he was affected by 

the Pythagorean number philosophy and, in turn, incorporated it into 

his work, influencing later generations. Most of Plato’s works have 

survived, and he is the first Greek philosopher to have more than a 

minute portion of his writings preserved. Plato wrote on almost every 

subject, so later generations have looked to him for an extensive view of 

Greek thought. He was also very influential in his own time and founded 

the Academy on the outskirts of Athens which was to continue for 900 

years until a.d. 529. Over the door was the motto, “Let he who is 

ignorant of geometry not enter here.” 
Plato believed that the essence of reality was the eternalness of geo¬ 

metric forms and numerical relations, in contrast to the transitoriness of 

material things. He wished to purify the soul by contemplating the 

eternal and developed a theory of ideal forms. The study of mathematics 

was recommended because it dealt with eternal geometric forms such as 

circles and triangles. The perfect circle of mathematics is an idea which 

is only imperfectly represented by inaccurate drawings in sand or on 

paper. The senses were imperfect, and some ideas such as incommensur¬ 

ability which could only be grasped by indirect reasoning were not 

apparent to the senses from a picture. The ideal forms were perfect and 

eternal, unlike the imperfect senses. This philosophy of mental contem¬ 

plation played an important role in the development of mathematical 

science. By contrast, other cultures depended more on sensual evidence. 
The Pythagorean ideas on regular polyhedra (solids formed by inter¬ 

secting planes) were adopted by Plato. There are only five regular poly¬ 

hedra — polyhedrons which have congruent faces and equal angles at 

every vertex. (With two-dimensional figures, however, there is a regular 

polygon of n sides for every integer n > 3.) The five regular polyhedra 

are the following: 

Polyhedron Number of faces Shape of faces 

tetrahedron 4 triangles 

cube 6 squares 

octahedron 8 triangles 

dodecahedron 12 pentagons 

icosohedron 20 triangles 

It is easy to understand why there are only five regular polyhedra. If 

you flatten any corner of any polyhedron the sum of the angles of the 

polygons joined at that point will be less than 360°. Consider the possi¬ 

bilities for joining regular polygons. Of course, we need at least three 
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Figure 2.19 

faces joined at each corner to make a solid. Each angle of an equilateral 

triangle contains 60°. We can join the following at each corner: 

Number of 

equilateral triangles Sum of the angles Polyhedron formed 

3 

o O
 

C
O

 tetrahedron 

4 240° octahedron 

5 300° icosahedron 

6 360° none possible 

A square has four angles of 90°, so we can 

corner: 

join the following at each 

Number of squares Sum of the angles Polyhedron formed 

3 270° cube 

4 360° none possible 

A pentagon has 360° + 180° = 540° for its five angles, so each angle is 

108°. Thus, joining three pentagons would produce a sum of 324° at 

each corner, and the polyhedron formed is a dodecahedron. A hexagon 

has 540° + 180° = 720° for its six angles, so each angle is 120°. Joining 

three hexagons, the sum of the angles would be 360°, so no polyhedron is 

possible with hexagonal faces. Similarly, no polyhedron is possible with 

faces of seven sides or more. 
In the Timaeus Plato states a theory whereby the basic geometrical 

forms, triangles, combine to make up the basic elements in the forms of 
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the regular polyhedra. Recall that the Greeks believed there were only 

four basic elements — fire, earth, air, and water. Plato related the ele¬ 

ments to four regular polyhedra in the following manner: 

fire = tetrahedron 

earth = cube 

air = octahedron 

water = icosahedron 

That is, fire was thought to be made up of particles of tetrahedral shape, 

and so on. To include the fifth regular solid, Plato made it a symbol of the 

world. 

world = dodecahedron 

We now have our modern atomic theory which does have some 

similarities to Plato’s theory in that we assign basic structures to mole¬ 

cules and crystals. Later we shall see that Plato’s ideas did, in fact, in¬ 

spire Kepler. 
Plato wrote a dialogue about Theaetetus of Athens (ca. 375 b.c.) in 

which he said Theaetetus proved that a line whose square N is not in one 

of the ratios 1 : 1,4: 1,9: 1, . . . with the unit square is incommensurable 
with the unit. Thus the side of the first square in figure 2.20 is incom¬ 

mensurable with the side of the second. In modern terms, is irra¬ 

tional if N is not a perfect square. 

To prove this proposition Theaetetus greatly developed the theory ol 

incommensurable line segments which is found in Book X, a very long 

volume of Euclid’s Elements. This theory was applied to study the nature 

of the sides of regular polyhedra. In writing Book XIII of the Elements 

which is about regular polyhedra, Euclid may have drawn on the work 

of Theaetetus. We can see where the irrational would enter as, in modern 

terms, 1/4^10 — 2^5 is the side of a regular pentagon inscribed in a 
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circle of diameter one. There is some question as to the contributions of 

Theaetetus to Euclid’s Elements. It is an interesting, if not impossible, 

problem to try to discover which persons are responsible for parts of 
Euclid’s Elements.1 11 

The period around 375 b.c. in which Theaetetus lived was marked by 

the constant advancement and sophistication of mathematics. Mathe¬ 

maticians continued to improve the work of their predecessors, as we will 
see with Eudoxus. 

EUDOXUS (ca. 370 B.C) 

Recall that with the discovery of incommensurability lines could no 

longer be assumed to have an integral ratio to one another. Given two 

lines A and B we may not be able to find two numbers, such as 10 and 13, 

A C 

B___ D_ 

Figure 2.21 

so that line A is to line B as 10 is to 13. Yet, clearly there is some length 

relationship between A and B. We can see, for example, that A is smaller 

than B. Given another pair of lines C and D, we can see that the ratio of 

line A to line B is greater (in this case) than the ratio of line C to line D 

(fig. 2.21). 

One achievement of Eudoxus of Cnidus was to show how to work with 

ratios of lines without using the false assumption of the commensurability 

of any two lines. Instead of dividing the lines into parts, he multiplied the 

lines. Thus, we find no theory of divisibility in geometry as we do in 

number theory. Eudoxus developed the theory of ratios of magnitudes. 

The result is found as Book V of Euclid’s Elements. Eudoxus did not 

comment on ratio itself; he simply presented it for observation (fig. 2.21). 

He did, however, give a definition of when two ratios are equal (definition 

V.5) and a definition of one ratio being greater than another. A para¬ 

phrase of his definition follows. 

Definition V.7 Given two ratios, A : B and C : D, the ratio 

A : B is greater than the ratio C : D if there are integers 

m and n such that mA > nB, but mC < nD. 

1 ‘In addition to research papers, the book Science Awakening by B. L. van der Waerden 
contains much of this type of analysis. 
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We will apply this definition to a simple example (fig. 2.22). 

A i-+-1 c >-1 

B \-1-1-1 D i-1-- 1 

Figure 2.22 

Example Choose, by trial and error, m = 2, n = 1. Then mA > 
nB, but mC = nD, so the definition of A : B > C : D is 

satisfied (fig. 2.23). 

mA |-1-1-1-1 I-1-1 

Figure 2.23 

Using the same multiples, m and n, we can get m.4 

greater than nB, but at the same time mC < nD. Thus, it 

seems reasonable that A is bigger relative to B than C 

is relative to D. 

As you can see, this is a difficult concept to understand, and it demon¬ 
strates the higher level of reasoning that the mathematics of Eudoxus 

required. 
Eudoxus also made great advances in finding areas and volumes. 

Mathematicians of the early civilizations of Egypt and Mesopotamia 

could find the areas of rectangles, triangles, and other figures bounded by 

straight lines. They could not, however, find the area of a region such as 

a circle which is bounded by a curved line. Eudoxus developed a very 

clever method for solving some of these harder problems. Elis method 

involved some kind of a limiting process and was similar in that respect 

to calculus. We will examine a couple of Eudoxus’ ideas, all of which are 

developed in Book XII of Euclid’s Elements. 
For example, Eudoxus proved that the areas of two circles (fig. 2.24) 

are in the ratio of the squares of their diameters, 

M = d\ 

Ai d\ 

It had been known for a long time that if similar polygons are inscribed 

in circles, their areas are in the same ratio as that of the squares of the 

diameters of the circles (fig. 2.25). If these polygons are constructed 

with more and more sides, they approach the circle. Since the theorem is 
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Figure 2.25 

true for the areas of these polygons, it seems as though it should be true 

for the circles themselves. This was the type of argument probably used 

by Hippocrates some 50 or 60 years earlier than Eudoxus, but it was not 

quite convincing. There was much paradoxical and confusing discussion 

about whether or not a circle could be thought of as a polygon of in¬ 

finitely many sides, and the question had never been answered. 

Eudoxus found a way to prove his theorem avoiding this discussion. 

His method, which was later applied to many other problems, became 

known as the method of exhaustion. His reasoning, a proof by contradic¬ 

tion, went like this. 

Proof Suppose the theorem is not true. Then either 

At d] 

Ai d\ 
or 

At di 

Ai d\ 

Suppose the first alternative holds. Then 

At df 
S d\ 

where S is an area < Ai (fig. 2.26). Inscribe similar 

polygons, say hexagons, in circles A\ and A2. Continue 

bisecting and forming new inscribed polygons until the 

polygon inscribed in A2 has area greater than S. Call 

these similar polygons P1 and P2 (fig. 2.27). It is known, 
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Figure 2.26 

5 

Figure 2.27 

by the theorem for polygons, that 

Px =d? 
Pi d\ 

which gives 

Ax = Pi 

5 P2 

But yti > Pi and S < P2, thus this is impossible. The 

other case is done similarly. 

To complete this proof Eudoxus did not require that the polygons 

actually increased in number of sides to infinity. In using a proof by con¬ 

tradiction, he only needed the polygons to increase their number of sides 

until P2 > S. Thus, Eudoxus avoided the logical problems of a circle 

being a polygon of infinitely many sides. 
Eudoxus applied his method of exhaustion to prove that a cone has a 

volume equal to one-third of the volume of the cylinder in which it is 

inscribed (fig. 2.28). He approximated each figure by polygonal prisms 

to arrive at his proof. (We will not outline the proof in this text.) 

Democritus, who lived at about the same time as Hippocrates, had 

tried this problem of determining the volume of a cylinder, but encoun¬ 

tered a similar paradox as did Hippocrates with his problem concerning 
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Figure 2.28 

the areas of circles. Democritus may have assumed the cone to be made 

up of thin infinitesimal slices (fig. 2.29a). But if two neighboring slices 

are equal, the figure would be a cylinder (fig. 2.29b). If they are unequal, 

the figure would have steps (fig. 2.29c). Fortunately, Eudoxus found a 

method to avoid dividing the cone into infinitely many slices. 

Figure 2.29 

Similar paradoxes arose in the 1600s when problems like these were 

again studied, and calculus was developed. Infinite sets proved to be a 

difficult concept for the early mathematicians. 

It was in the time of Eudoxus that the conic sections were first studied. 

These problems may have arisen from the shapes of shadows on a sun¬ 

dial, or from Indian peg and cord constructions which we studied earlier. 

Men a echinus (ca. 350 b.c.) defined the parabola as the curve obtained by 

slicing a right-angled cone by a plane perpendicular to a generator, the 

ellipse as the curve obtained by slicing an acute-angled cone by such a 

plane, and the hyperbola as the curve obtained from such a slice of an 

obtuse-angled cone (fig. 2.30). 

Aristotle (ca. 340 b.c.) was a pupil of Plato and a teacher of Alexander 

the Great. Many of his works survived, so we fortunately have accurate 

records of his philosophy. He organized logic, and until recently his work 

was the standard on the subject. His theories of mechanics were studied 

in the Middle Ages, when his work was especially influential, and discus¬ 

sion and criticism of his theories were important in the development 
of the modern science of mechanics. 
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parabola ellipse 

Figure 2.30 

hyperbola 

Aristotle was more empirical in his thinking than Plato, basing many 

of his theories on experience. For example, he made many observations 

in the field of biology. Aristotle also founded a school called the Lyceum. 

It was here that he earned his nickname “the Peripatetic, because he 

paced when he taught. 

6 The Elements —A Summary 

The School of Alexandria marked a new period in the history of mathe¬ 

matics. Alexander the Great had conquered much of the known world, 

and Greeks settled in these conquered territories. In Egypt, Alexander 

named a city after himself, Alexandria, and a school was founded in 

Alexandria which was perhaps the greatest of ancient times. The school 

existed for about 800 years, from 300 b.c. to a.d. 500. During this period 

Alexandria was the center of “Greek” mathematics. 

EUCLID (ca. 300 B.C.) 

Euclid, who lived in Alexandria, wrote the world’s most successful text¬ 

book. His Elements has dominated the study of geometry ever since it 

was written, over one thousand editions ago; it has been second only to 

the Bible in popularity. Euclid did what a textbook writer typically does 

— he organized the material already available using his own methods 

where appropriate. The Elements, as indicated by the title, covers funda¬ 

mental topics in mathematics from several areas. Euclid’s work is really 

the first Greek mathematics (except for a few fragments) to survive. Not 

all his writings survived, only five out of 10, but enough were preserved to 

give us some records of Greek mathematics. In this text, we will limit our 

consideration to the most important of Euclid s works, the Elements. 
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Since Euclid compiled the Elements from some already existing 

material, it is very hard to tell how many proofs are original with him 

and how many were left in the form in which he found them. Euclid 

himself was a competent mathematician, so he could very well have 

developed many of the concepts in the Elements. Later commentators on 

the work gave the names of those they believed to be originally re¬ 

sponsible for the material. In any case, from historical studies of the 

Elements we can obtain much information on the content of Greek mathe¬ 

matics from 550-300 b.c. Euclid’s original contributions can be studied 

from his other more advanced works. 

Euclid’s book has been one of the most popular of all history, yet 

virtually nothing is known about Euclid himself. For a long time he was 

confused with another Euclid who was a philosopher. Only two stories 

are known about him. One concerns someone who had begun to read 

geometry with Euclid. When he had learned the first theorem he asked 

his teacher, “But what shall I get by learning these things?” Euclid 

called his slave and said, “Give him three cents, since he must make gain 

from what he learns.” The only other anecdote about Euclid which has 

survived involves Euclid and the king. The king asked Euclid if there 

was not an easy way to learn geometry, and Euclid replied that “There is 
no royal road to geometry.” 

The Elements is divided into 13 books, similar to chapters. We will 

take a brief look at each book to get an idea of how the Elements was 
arranged. 

Five postulates and five common notions are given at the beginning of 

Book I. The common notions are about equality, such as the whole is 

greater than the part. Recall that a possible reason for their inclusion 

in Pythagorean geometry was given in connection with the discussion of 

Zeno. The five postulates are more directly related to geometry than the 

common notions are. The first three were already discussed; they gave 

the construction rules, allowing points to be joined, lines to be extended, 

and circles to be constructed. The following statements are the last two 
postulates. 

Postulate 1.4 All right angles are equal to one another. 

The fifth postulate is the famous parallel postulate. 

Postulate 1.5 If a straight line falling on two straight lines 

makes the interior angles on the same side less than two 

right angles, the two straight lines, if produced indefi¬ 

nitely, meet on that side on which the angles are less than 
the two right angles. 
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Figure 2.31 

L 2 

L\ 

B 

A 

Postulate 1.5 is easier to understand if reference is made to figure 2.31. 

The angles A and B are interior angles on the same side less than two 

right angles. Thus, Postulate 1.5 asserts that lines L\ and L2 intersect on 

that side. 
There is much history concerning the parallel postulate. It seemed 

that such a complicated statement should not be accepted without 

proof, so for 2200 years mathematicians tried to prove the fifth postulate. 

We will discuss the attempts to validate the parallel postulate in a later 

chapter. 
Book I of the Elements contains 48 theorems, over half of which are 

used in the chain of results leading to 1.47, the Pythagorean theorem. 

Thus, one goal of Book I may have been to give a proof of the Pythag¬ 

orean theorem not depending on the false assumption of the com- 

mensurability of any two lines. Euclid uses the concepts of congruent 

triangles (in place of similar triangles) and parallel lines to prove Theorem 

1.47. These are familiar concepts of high school geometry; certain books 

of the Elements have served as models for geometry courses ever since 

they were written. It is interesting to me that these concepts of congru¬ 

ence and parallels were not aimlessly thrown together at the beginning 

H 
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of geometry but are there because they are used in proving the Pythag¬ 
orean theorem. 

The following is an outline of the proof of 1.47 (fig. 2.32). 

Proof Triangle FBC is proved congruent to triangle ABD. It is 

known from a previous theorem that 

A ABD = ^ rectangle BOLD 

and 

A FBC = ^ square BFGA 

Therefore, 

square BFGA = rectangle BOLD 

Similarly, 

square AHKC = rectangle CELO 

so the square on the hypotenuse BC is equal to the sum 
of the squares on the sides. 

We see that this figure is more complicated than that of the Pythag¬ 

oreans (see fig. 2.7), but the proof using it does not require the lines to 
be commensurable. 

Book I contains many other theorems familiar from high school 
geometry, such as the following: 

Theorem 1.10 A line segment can be bisected. 

Theorem 1.15 If two straight lines cut one another, the vertical 
angles are equal. 

The topics of Book I were probably studied by the Pythagoreans, 

though not much evidence from that period remains. Theorem 1.4 is 

particularly interesting because it may reflect an older method of proof 
which was used long before Euclid’s time. 

Theorem 1.4 If two sides and the included angle of one triangle 

are respectively equal to two sides and the included angle 

of another triangle, then the two triangles are con¬ 
gruent. 
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Proof Let A ABC and A DEF be given with AB = DE, BC = 

EF and ZABC = ZDEF (fig. 2.33). Take triangle 

ABC and place it on top of triangle DEF. From the 

given, AB fits exactly on DE, and BC fits on EF. Suppose 

AC did not fit on DF(fig. 2.34). Then two lines, AC and 

DF, would enclose a space, which is impossible. 

Figure 2.33 

BE 

C 

F 

In this proof Euclid says to take one triangle and plunk it on another 

and look at the result. This resembles the older methods of reasoning 

in which visualization was important. 
Two other interesting theorems are 1.32 and 1.29. These theorems are 

evidence of qualities that have made Euclid so popular — clever ideas 

and clear and reasonably easy proofs. 

Theorem 1.32 In any triangle, if one side is produced, the ex¬ 

terior angle is equal to the two interior and opposite 

angles (fig. 2.35). 

D 
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To prove ZACD = ZB AC + ZABC 

[Note: This theorem implies that the sum of the angles 
of a triangle is equal to a straight angle. Since ZACD + 
ZACB is a straight angle, substituting we have ZABC + 
ZB AC + ZACB is a straight angle.] 

Proof Construct CE parallel to AB (fig. 2.36). (1.31) 
Then 

ZECD = ZABC 

and 

ZACE = ZB AC (1.29) 

Also, 

ZACD = ZACE ZECD 

so by substitution 

ZACD = ZBAC + ZABC Q.E.D. 

I find Euclid’s construction of the parallel CEa very appealing solution 
to the problem. In addition to Euclid’s proof given above, we have a 
report of an earlier proof of the same theorem. Rarely is such information 
available. Proclus (a.d. 500) wrote that Eudemus (320 b.c.) credited the 
Pythagoreans with proving that the sum of the angles of a triangle 
equals a straight angle by constructing a parallel to BC through the 
point A (fig. 2.37). 
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Figure 2.37 

Theorem 1.29 is also useful in the proof of 1.32, and it illustrates the 

application of the parallel postulate. We will prove only the first part 

of the theorem. 

Theorem 1.29 A straight line falling on parallel straight lines 

makes the alternate angles equal to one another. 

To prove ZAGH = ZGHD 

Proof Again, the proof is by contradiction. Suppose ZAGH Z 
ZGHD. Let ZAGH > ZGHD. Add ZBGH to each. 

Then, 

ZAGH + ZBGH > ZBGH + ZGHD 

But the angles AGH and BGH are equal to two right 

angles (Theorem 1.13), therefore, the angles BGH and 

GHD are less than two right angles. But straight lines 

produced indefinitely from angles less than two right 

angles meet (Postulate 1.5). Thus, AB and CD will meet 

if produced indefinitely. But they do not meet, because 

they are parallel by hypothesis. Hence, ZAGH is not 

greater than ZGHD. Similar reasoning shows that 

neither is it less. Therefore 

ZAGH = ZGHD Q.E.D. 
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Book II of the Elements is comprised of material originally attributable 

to the Pythagoreans. It contains geometric solutions to problems that 

the Babylonians solved by means of their rules equivalent to the quadratic 

formula. When applying these rules, the Babylonians might have had to 

approximate a square root, as we might approximate ^5 = 2.23. Thus, 

the answer to the problem would be only approximate, though quite 

sufficient in accuracy for practical purposes. Greek mathematics was 

much more speculative and closer to philosophy than the practically- 

oriented Babylonian mathematics. Therefore, the Greeks desired the 

exact solution. To obtain exact answers, they remained in the domain of 

geometry where they could construct the precise solution to the problem, 

even if it was a line incommensurable with the unit. As an example, 
consider the following theorem. 

Theorem 11.11 A straight line can be divided so that the rec¬ 

tangle contained by the whole and one of the segments 

is equal to the square on the remaining segment. 

That is, given a line AB we want to cut it at H so that 

the rectangle HBDK (here BD = AB, the whole) = the 
square AFGH (fig. 2.39). 

In equations, letting AB = a and AH = *, the unknown, we have the 

area of the rectangle a{a — x) equal to x2 the area of the square 

a(a — x) — x2 

Theorem II. 11 states and proves the following method for constructing 
the point //. 

F G 

A H 
B 

K D 

Figure 2.39 
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Method Construct a square ABDC on AB. 
Bisect AC; call the midpoint E. 
Connect EB. 
Extend AC. 
Lay off EE = EB on AC extended. 

Construct the square FGHA. 
// is the required point. 

The solution AH is constructed (fig. 2.40). Consider an algebraic example 

when a = 1. The equation is 

1(1 - x) = x2 

with solution 

-1 + V5 

Here in a numerical solution the square root would be approximated as 

2.23, for example, and an approximate value for x obtained. The Greeks 

avoided this approximation, but, as you can see, their geometric solution 

is rather cumbersome in comparison to the numerical rules of the 

Babylonians and not as useful for practical problems. 
You will notice that the negative root of the equation was not men¬ 

tioned in the previous calculation. Both the Babylonians and the Greeks 

gave only positive solutions to their problems. Actually, it took quite a 

long time before negative roots were accepted to equations. After all, if 

an answer represented a number of bricks in an area, what sense is there 

to —5 bricks? Even after negative numbers themselves were given as 

interpretation, negative roots were rejected as meaningless. 
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Book III contains theorems on circles, many of which are familiar 

from high school geometry courses. Presently, the theorems are the 

same, but the approach has been revised in keeping with modern de¬ 

velopments. As an example from Book III, consider the following very 
useful theorem. 

Theorem III.31 An angle in a semicircle is right. 

Figure 2.41 

Some of the material in an earlier form of Book III may have been 

included in the lost Elements of Hippocrates. One topic studied by earlier 

geometers, but little mentioned by Euclid, is the angle between curved 

lines such as circles (fig. 2.42a). Euclid does consider in Theorem III. 16 

the angle between a circle and a tangent (fig. 2.42b), but usually the 

angles are rectilineal, that is, between two straight lines (fig. 2.42c). 

a. b. 

Figure 2.42 

c. 

Book IV is concerned with polygons, a subject probably also con¬ 

sidered by Hippocrates. Regular polygons of three, four, five, six, and 15 

sides are inscribed in a circle, as was already described in connection 
with Hippocrates. 

Book V contains the theory of ratios of magnitudes originally formu¬ 

lated by Eudoxus. His definition of one ratio being greater than another 

has already been discussed. An example of another useful theorem about 

ratios found in Book V is the following: 

Theorem V.ll If a : b = c : d and c : d = e :/, then a : b — 
e :/. 
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The theory of ratios of magnitudes is applied to geometry in Book VI. 

Theorem VI.4 states the most useful property of similar triangles. 

Theorem VI.4 Triangles with equal angles have their corre¬ 

sponding sides proportional. 

AB AC 
To prove — = etc. 

Using this theorem Euclid can perform the old Pythagorean “proof’ of 

the Pythagorean theorem correctly (see fig. 2.7). It is given in a slightly 

generalized form in Theorem VI.31. 
The proof is the same as the old one, except that now the corresponding 

sides of similar triangles were proportional in the sense of Eudoxus’ 

theory of ratio of magnitudes. Euclid could not put this proof at the 

beginning of his Elements, because it required the more difficult concepts 

of the theory of ratios of magnitudes, even though it is easier to under¬ 

stand than the proof in 1.47 which relied only on the theory of Book I. 

Since the Pythagorean works are lost, one can only surmise that the 

proof in Book VI is a corrected version of the original Pythagorean 

proof.12 
Book VII was probably compiled from Pythagorean mathematics 

during the period 500-450 B.c. It concerns numbers and divisibility. 

Theorem VII.2, for example, shows how to find the greatest common 

divisor of two numbers (the largest number that divides both). This 

method is now called the Euclidean algorithm. As an illustration, con¬ 

sider the two numbers 145 and 30. The algorithm works in the following 

way: 

4 1 

30fl45 25|30 

120 25 

~25 ~5 

Divide 145 by 30. Divide the remainder, 25, into the smaller of the two 

numbers, 30. Repeat until a remainder of zero is reached. The last 

12Daniel Shanks, Solved and Unsolved Problems in Number Theory, p. 124. 
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nonzero remainder obtained is the greatest common divisor. In this case 

it is 5. Book VIII continues with the study of numbers, dealing with 
progressions, such as 

1, p, p2, . . . , pn 

This book is probably due to Archytas and related to his studies in 
music. 

Numbers again are the concern of Book IX. The final section, as was 

mentioned earlier, is the oldest part of the Elements and deals with even 

and odd numbers. Recall that Theorem XI.36 about perfect numbers is 

the culmination of the work with even and odd numbers. 

Book X is about incommensurable lines and classifies them. It is a 

long and difficult book, possibly derived from the work of Theaetetus. 

We will not discuss it in detail, due to the complexity of the topic. 

Solid geometry, a course that used to be studied in high school in 

Euclidean form, but is now studied analytically in college, is the subject 

of Book XI. This material probably originated with the Pythagoreans. 

Book XI contains theorems on lines and planes in three dimensions, thus 

the term solid rather than plane is applied to this particular form of 
geometry. 

Book XII contains the work of Eudoxus on ratios of areas and vol¬ 

umes, as mentioned earlier, and Book XIII describes the construction of 

the five regular polyhedra inside a sphere. Euclid may have drawn from 

the work of Theaetetus for his discussion of polyhedra. 

It is important to remember that, although Euclid’s Elements was 

written about 300 b.c., the earliest manuscripts containing the Greek 

text date from the tenth century a.d. Thus, even the oldest available texts 

are copies of copies of copies, etc. It is from these works that scholars try 

to establish what parts Euclid himself wrote and what parts were added 

by later commentators and copyists. J. L. Heiberg, the Danish classical 

scholar, based on his extensive study of the available manuscripts, pre¬ 

pared as accurate a Greek text as possible of the Elements published in 

several volumes during the period 1883-88. This work formed the basis 

for the English translation by Sir Thomas L. Heath in which he provides 

an excellent introduction and much valuable commentary. 

7 The Pinnacle of Greek Geometry 

Euclid had gathered in the Elements much of the Greek mathematics 

of the several hundred years prior to his time. Greek geometers, as their 
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techniques had become more sophisticated, tackled and solved problems 

of increasing difficulty. In the century following Euclid, Greek geometry 

culminates in several masterful works. 

ERATOSTHENES (230 B.C.) 

Eratosthenes excelled in geography, mathematics, and astronomy, among 

other fields. He developed a method for finding prime numbers, now 

called the sieve of Eratosthenes. His method consisted of writing the 

integers in a list beginning with 2. 

2, 3, /, 5, 0, 7, ft, X yS, 11. \4, 
13, 1/ 1/ 1/, 17, \jt,, 19, T/l, yt, 23, ?4, . . . . 

The first number on the list, 2, is prime (has no integral divisors other 

than one and itself), but ad multiples of 2 can be eliminated since they are 

divisible by 2. We cross out these multiples. The next number remaining 

on the list, 3, is prime. But, again, we can cross out all multiples of it, 

6, 9, 12, 15, .... In this case, all the remaining numbers on the list are 

prime since any number less than 25 must have, if not prime, one factor 

less than 5. Of course, this same process can be followed with a larger 

list of numbers. 
Eratosthenes also accurately calculated the circumference of the earth. 

The sun on the summer solstice was directly overhead at a city called 

Syene. At the same time in Alexandria the sun was inclined at an angle of 

7° 12' (fig. 2.44). The distance from Syene to Alexandria was found to be 

5000 stadia by someone who had walked it. Now 7° 12' = 1/50 of 360°. 

Substituting, 5000 stadia = 1/50 of the circumference of the earth. 

Therefore, the circumference is 250,000 stadia. Although we do not know 

the exact length of a Greek stadium, we do know that it was approxi¬ 

mately equal to 200 yards, so Eratosthenes' result was a good estimate of 

the earth’s circumference. 
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ARCHIMEDES (225 B.C.) 

Archimedes is considered to be one of the greatest mathematicians of all 

time. He was able to find volumes, areas, and lengths of figures which no 

one else could determine. Eudoxus’ method of exhaustion and his own 

clever ideas were used in his calculations. These original methods of Ar¬ 

chimedes involve finding limits of approximations by polygonal figures, 

analogous to what is now done in the calculus. Archimedes also founded 

the science of hydrostatics. 

There are several stories about Archimedes which demonstrate his 

genius and eccentricities. To rescue a ship stuck in the surf Archimedes 

designed an apparatus with pulleys and levers so that the king (Hiero) 

could free the ship single-handedly. Archimedes said, “Give me a spot 

where I can stand, and I shall move the earth.” 

Archimedes had incredible concentration, which is true of many great 

mathematicians (Newton, for example). He could work on a problem for 

hours without stopping for meals. In fact, Archimedes became so en¬ 

grossed in his mathematics that he would not bother with necessities such 

as bathing. When he was finally taken to bathe he occupied himself by 

drawing figures in the ashes of the fire used to heat the water. After the 

bath when his body was annointed with oil, he drew figures in the oil, 

never breaking his concentration. 

One famous story about Archimedes concerns his solving the problem 

of King Hiero’s crown while bathing. The king ordered a crown of gold 

but was afraid that the jeweler had mixed in some cheaper silver. He 

asked Archimedes to determine if the crown was of pure gold. While in 

the bath one day, Archimedes leapt out naked and ran down the streets 

shouting, “Eureka, eureka” (I have found it)! Apparently, he planned to 

immerse the crown in water, along with equal weights of gold and silver 

and measure the volumes of water displaced. Since gold is denser than 

silver, an amount of gold will displace less water than an equal weight of 

silver. If the crown is pure gold it should then displace the same amount 

of water as an equal weight of gold. 

Another possibility is that Archimedes planned to take the crown and 

an equal weight of gold and weigh each under water. According to the 

principle of buoyancy, which he probably discovered during that same 

bath, a solid heavier than water will, when weighed in water, be lighter 

than its true weight by the weight of the fluid displaced. If the crown was 

impure, it would displace more water, and hence would weigh less in the 

water than the pure gold. 

Archimedes lived in Syracuse which is on the island of Sicily, off the 

coast of Italy, at the time in history when the Romans were flexing their 

muscles, conquering new territories. When the Romans attacked Syracuse 

Archimedes repelled them with projectiles hurled from the walls — large 
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rocks, fire, claws — using mechanical devices. The story is told that if 

the Roman soldiers saw a rope or a piece of wood extending beyond the 

walls of Syracuse, they ran fearing another invention of Archimedes. 

Eventually, however, the Romans captured Syracuse in an attack from 

the rear. 
This information is contained in a history of the life of the Roman 

general who led the campaign to conquer Syracuse. The general sent a 

soldier to bring Archimedes to him, and the soldier found Archimedes 

solving a problem by tracing a diagram in the sand. Archimedes told the 

soldier not to bother him until he finished the problem, whereupon the 

soldier struck Archimedes with his sword and killed him. He was 75 at 

the time. 
A favorite problem of Archimedes involves the ratio of the volumes 

of three well known solids. If figure 2.45 is revolved around the dotted 

line, a cone inscribed in a hemisphere, which in turn is inscribed in a 

cylinder, is generated. Archimedes proved that the volumes of these 

three figures are in the ratio 1:2: 3. He was so proud of his proof that 

he wanted a sphere with its circumscribed cylinder and their ratio (2 : 3) 

engraved on his tombstone; he got his wish. 

The proof of this theorem is a very elegant one. It was often wondered 

how Archimedes arrived at his result, and mathematicians even accused 

him of deliberately hiding and disguising his methods of discovery. 

This was not the case, however. In 1906 a lost book, The Method, was 

recovered by J. L. Heiberg in the library of a monastery in Constanti¬ 

nople. The text was written on parchment in a tenth century hand and 

had been washed off to make the precious parchment available for a 

book of prayers and ritual in the thirteenth century. (Such a text is called 

a palimpsest from a Greek term meaning rescraping.) 
In The Method Archimedes guessed theorems by dividing solids into 

infinitesimally thin sections as Democritus also did. He did not believe 

this was rigorous enough, though, so once he discovered the theorems he 

found proofs for them by approximating by polygonal figures and using 

the method of exhaustion for the reasoning. These are problems that can 
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now be solved by calculus, but no one reached the level of Archimedes’ 
reasoning in these areas for over 1700 years. 

Archimedes, in his description of his discovery of the 1 : 2 : 3 ratio in 

The Method, uses a slightly different figure at. first (fig. 2.46) than figure 

2.45. Revolving this figure about FG, a cone, sphere, and cylinder are 

generated. The line AB is revolved into three discs. Thus, Archimedes is 

considering the sphere and the other figures to be made up of thin (in¬ 

finitesimal) discs. He then treats PFG as a lever with fulcrum at F. He 

showed that the small discs obtained from the cone and sphere, by slicing 

along the line AB, when placed at P just balanced the large disc of the 

cylinder at AB (fig. 2.47). From this and some further reasoning he was 
able to deduce the theorem.13 

B 

Archimedes gives what the author believes is the simplest and most 

elegant angle trisection method. Of course, he does not use merely the 

postulates of Euclid (straightedge and compass) — that has been proved 

13See Asger Aaboe, Episodes from the Early History of Mathematics, pp. 93—98. 
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to be impossible — but his only additional requirement is a marked 

straightedge. 

Method Let ASB be the angle to be trisected (fig. 2.48). 

Construct any circle with center S at the vertex and 

some radius r. 
Extend the line AS. 
Mark the straightedge with a length equal to the radius. 

Take this marked straightedge and draw a line from 

B to Q on the line AS extended so that the distance 

QP from Q to the circle is equal to the radius r. 

Then, ZBQA = 1/3 ZASB. 

Proof The angles at the base of an isosceles triangle are equal. 

Thus, the angles can be labelled as indicated in the figure. 

ZBPS is an exterior angle of A QPS. Thus, by Elements 

1.32, 

b = a + a 

Also, ZASB is an exterior angle of A QSB. Thus, 

c = b -E a 

Substituting, 

c = a + a + a 

and 

ZBQS = -jj ZASB 
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Archimedes also developed an interesting method for finding an ap¬ 

proximation for 7r, the ratio of the circumference of a circle to its diam¬ 

eter. He found that the ratio of the perimeter of an inscribed 96-sided 

polygon to the diameter of the circle is greater than 3yy, and the same 

ratio for a circumscribed 96-sided polygon to be less than 3-fJ. The ratio 
for the circle is in between the ratios of the polygons. Thus, 

,10 
3yy < 7T < 3 

10 
70 

This problem always causes trouble, because, as was shown in the 1800s, 

the ratio is not a whole number or fraction, but an irrational number. 

To obtain his approximation, Archimedes started with the side of a 

hexagon which he knew how to find. He then bisected the angle to get the 

side of a 12-gon and showed how to find the length of a 12-gon side. 

Archimedes used both inscribed (fig. 2.49a) and circumscribed (fig. 2.49b) 

polygons. He repeated the procedure, going from 12 to 24 to 48 to 96 

sides. One is only limited here by the effort it takes to do the computa¬ 

tion. Around the year 1600 several mathematicians carried this method 
much further. 

Archimedes also proved a number of theorems about spirals. A spiral 

is the curve traversed by a particle moving along a line with uniform 

speed, while the line rotates (fig. 2.50). (The Greeks were not familiar 

with very many curves. The ones they were familiar with were obtained 

by some simple means such as slicing a cone. It is only with algebra that 

it becomes easy to express millions of curves.) Archimedes proved, for 

example, that the area of the first turn of the spiral is one-third the area 

of the circle shown (fig. 2.51). His method for computing this is quite 

interesting, involving approximation by sectors of circles and sums like 
l2 + 22 +• • •+ 
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Figure 2.50 

/ \ 
/ \ 

/ \ 

Figure 2.5 i 

Archimedes also found the area of a segment of a parabola (fig. 2.52). 

He proved that the area of the segment is four-thirds ot the area of the 

inscribed triangle with the same base. He did this by inscribing a triangle 

in each of the two remaining areas and showing that these triangles each 

have area T/8 where T is the area of the original triangle. Then, in the 

four remaining areas he put four triangles each of area T/64, and so on. 

He thus approximated the area of the parabolic segment as a sum of 

triangles. 

segment 

area 

He then showed that this area must be 4/37", as we can see by summing 

a geometric series. 
A rather simple sounding problem which has an almost impossible 

solution is said to have originated with Archimedes. The numbers of 

white, black, yellow, and dappled cows and bulls were sought, given nine 

conditions, such as the number of white bulls equals (1/2 + 1/3) black 

bulls + yellow bulls. It turns out that the least solution is so large that 

the number of cattle would require a number of more than 206,500 

digits! Archimedes used to write of his discoveries to others without 

proof so that they could have the pleasure of discovering for themselves 

how to prove the problems. When some people started announcing 

= 1 triangle + 2 triangles + 4 triangles + . . 

= 7-b2(g ) + 4 Q+■ ■ 
T T 

= T + 4 + 42 + • 
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Archimedes discoveries as their own, he began adding a few false state¬ 

ments to embarrass the thieves. He also liked to challenge other mathe¬ 

maticians, the cattle problem is probably one of his intellectual challenges. 

We have surveyed just a sampling of the work of Archimedes. His 

reasoning is often complex and ingenious, and his work is typically more 

advanced than that of Euclid. The fact that he originated mathematical 

studies in the areas of levers, centers of gravity, and floating bodies is 
further evidence of his genius. 

APOLLONIUS (225 B.C.) 

Apollonius of Perga was known as “the great geometer.” His most im¬ 

portant work was Conics which was composed of eight books. Only 

seven have survived —four in Greek and three in the Arabic translation. 
All his other works except one have been lost. 

Menaechmus, over 100 years before, had been the first to study sec¬ 

tions of a cone which were among the few curves known to the Greeks. 

Apollonius defined a double cone — two similar cones lying in opposite 

directions and meeting in a fixed point (fig. 2.53c). He specified that if a 

straight line indefinite in length and passing always through a fixed point 

be made to move around the circumference of a circle which is not in the 

same plane with the point, the moving straight line will trace out the 

surface of a double cone. Apollonius showed that the conic sections could 

all be obtained from a double cone by varying the angle of the cutting 

plane, no longer requiring it to be perpendicular to the generating line 
(fig. 2.53a & b). 

a. 

ellipse 

b. 

parabola 

c. 

hyperbola 

Figure 2.53 
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Apollonius gave the conic sections their current names. These names are 

based on a relation which resembles our equation referring to axes with 

the origin at a vertex of the conic section. Refer to figure 2.54. Here the 

diameter d for the ellipse is the major axis, and for the hyperbola is the 

distance between the vertices of the two branches. The latus rectum, /, 

is the chord through the focus of the conic and perpendicular to the axis 

of the conic. (Apollonius defined the latus rectum somewhat differ¬ 

ently.14) Apollonius chose the word ellipse to represent the fact that in 

the equation, y2 is less than lx. Similarly, for the parabola y1 equals lx, 

and for the hyperbola, y2 exceeds lx. (Note the similar use of the words 

ellipsis and hyperbole in composition. An ellipsis indicates that words are 

left out, while hyperbole means an extravagant exaggeration of a state¬ 

ment.) 

(falling short) 

y = lx 

(placing beside) 

Figure 2.54 

hyperbola 

y = lx + 

(excess) 

Apollonius’ work on conics contains a variety of very advanced 

theorems on tangents and normals. His attitude toward his work in this 

area is interesting — he said of the results, “They are worthy of accep¬ 

tance for the sake of the demonstrations themselves, in the same way as 

we accept many other things in mathematics for this and for no other 

reason.”15 
This satisfied Apollonius as to the importance of conic sections, but 

1800 years later these curves proved to be of tremendous value in the 

new science of motion of projectiles and in new approaches to the motion 

of planets. It was discovered that planets move in elliptical orbits, and 

that a projectile follows the path of a parabola. Conic sections have 

14For Apollonius’ approach, including his derivation of the relations in figure 2.54, 
see T. L. Heath, ed., Treatise on Conic Sections (New York: Barnes and Noble, 1961), 

or Heath, Greek Mathematics, pp. 347-76. 
I5Heath, Treatise, p. lxxiv. 
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become even more practical in optics and in the analysis of maximum 

and minimum problems in engineering. Although the conics have become 

very useful, they were first studied extensively because of their beauty. 

The achievements of Archimedes and Apollonius mark the height of 

Greek advancement in geometry. In fact, they had obtained most of the 

results possible with the Greek techniques that were available to them. 

Further advances in these areas were not made until algebra had de¬ 

veloped substantially, at which time analytic geometry and calculus were 
created. 

8 The Late Period 

During the period from 200 b.c. to a.d. 500 the Greeks were under the 

rule of the great Roman Empire. Greek culture in Alexandria still 

survived, educated Greeks spoke and wrote in Greek, and the Greek 

schools continued to exist, but during this late period there were times 

of political turmoil which interrupted the continuity of learning. Alexan¬ 

dria, where mathematicians drew not only on the earlier Greek works of 

Euclid and Archimedes, but also on Babylonian mathematics, remained 
the most important center for Greek mathematics. 

Since geometry had already been studied so thoroughly, new fields rose 

to prominence. Mathematical astronomy, predicting the motion of the 

moon and planets, was advanced tremendously. To achieve this advance¬ 

ment it was necessary to study triangles numerically, showing how some 

parts of a triangle can be found if others are known. This study of tri¬ 
angles marks the advent of trigonometry. 

Hipparchus (140 b.c.) wrote on astronomy, having had access to Baby¬ 

lonian data. Though his work is lost, some of his achievements, such as 

the development of a table of chords, were noted by Ptolemy. Such a 

table, necessary to compute the orbits of the moon and planets, was the 

Greek equivalent of our sine table and could be used in much the same 

way. Refer to figure 2.55 to see how chord a relates to sin a/2. By taking 
half the angle 

a 1/2 chord a 

where R is the radius of the circle. Hipparchus’ method of construction of 

the chord table is unknown, but Ptolemy’s will be described later. 
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chord oc 

Figure 2.55 

During the next 200 years, there were no mathematicians of great im¬ 

portance. It might help you to place this time in history to know that 

Julius Caesar lived during this period (100-44 b.c.). 

NICOMACHUS AND HERON 

Nicomachus (ca. 100)16 was from Gerasa near Jerusalem, but he lived in 

Alexandria. Though he did not do anything original, Nicomachus is 

mentioned because he represents the state of mathematics at the time. 

He was a Neopythagorean (neo means new), one of a sect of philosophers 

then flourishing in Alexandria that was trying to revive the teachings of 

Pythagoras. 
Nicomachus wrote books on the theory of numbers and music, and 

these were used in the few remaining schools of philosophy. Their 

mathematical level was equal to that of the original Pythagoreans, in 

fact, Nicomachus’ book is a good source for determining what the 

original Pythagorean subjects ol study must have been like. It includes 

figurate numbers, perfect numbers, and number mysticism, all of which 

were mentioned in our earlier discussions of the Pythagoreans. 

Heron (ca. 75) invented various mechanical devices which he regarded 

as toys, but he was also interested in the practical problem of finding 

areas and volumes of figures. Heron lived in Alexandria where he was 

influenced by Greek mathematics to the extent that he took results from 

Archimedes and gave some proofs in the Greek manner, but he also gave 

approximate numerical rules and formulas in the manner of the Babylo¬ 

nians. For example, he mentioned a formula for the area of a triangle, 

which does not require knowledge of the altitude, 

A = Vs(s — tf)(s — b)(s — c) 

where a, b, c are the sides and 5 = 1/2 the perimeter. Heron gave a nice 

proof, but this formula may have been due originally to Archimedes. 

16All dates from this point on will refer to years a.d., unless otherwise specified. 
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Heron also gives formulas for areas of other polygons in terms of 
a side. For example, the area of a pentagon is given as 

Neither formula is exact because an approximation to ^5 is taken, but 

this was as good a numerical value as was needed for practical applica¬ 

tion. This, this example from Heron is similar to the numerical, ap¬ 

proximate if necessary, approach of the Babylonians. The problem of 

finding a square inscribed in a given triangle (fig. 2.56), which later 

appeared with exactly the same numbers in the work of an Arabic 

mathematician, Al-Khowarizmi, was also given by Heron. 

Figure 2.56 

PTOLEMY (150) 

Trigonometry and astronomy were thriving at this point in history. 

Ptolemy was the great name in this area, and his work was the basis for 

astronomical theory and calculations from his day to the 1600s. His 

book on astronomy is the Almagest which means the great work. The 

name was given to it by Arabic astronomers who thought so highly of it. 

Plato had felt that the perfect shapes were spheres and circles. Thus, 

he maintained that all motion of eternal things must be unchanging 

motion in perfect circles at uniform speed. When the planets are observed, 

however, their paths are most certainly not perfect circles traversed at 

uniform speed. They even appear to stop and move in the opposite di¬ 

rection during certain periods. Therefore, mathematicians who followed 

Plato, in the spirit of Greek thinking, tried to find hypotheses for the 

motion of the planets which would have them move in perfect circles at 

uniform speed and still “save the phenomena,” that is, account for the 
appearance of the planets’ motion. 

In the tradition of the Pythagoreans and Plato, the mathematical 

explanation, the ideal form, was the reality for Ptolemy. It was not felt to 

be necessary to seek physical causes for the motion or even to ensure 
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that the geometrical schemes were physically realizable. In a way, this 

mode of thinking is similar to current theoretical science which seeks to 

explain appearances. We do not take the observed planetary motion as it 

appears, but have a theory which explains our observations. Ptolemy 

also required that his theory fit his observational data. 
Eudoxus and Apollonius, among others, had worked on this problem 

of “saving the phenomena.” Ptolemy developed an epicyclic model (fig. 

2.57) to represent the motion of a planet. He had the planet move on a 

circle, the epicycle, which itself rotated about another circle, the deferent. 

By tracing the path of a particle as seen by an observer, one can get quite 

a few possibilities for the path, depending on the size of the circles. In 

this model the observer was a little off the center of the deferent. The 

epicycle moved uniformly with respect to the equant point which was 

also off the center of the deferent. Actually, this system worked quite well 

in accounting for the motion of the planets, even though Ptolemy con¬ 

sidered the earth fixed and the planets to be revolving about it. It is 

ironic that when his system was finally overthrown it was by a believer in 

circles and uniform motion, Copernicus, who was just trying to perfect 

the Ptolemaic system. 

Deferent 

Center of Deferent 

Ptolemy showed the influence of Greek mathematics strongly in his 

geometrical theory of epicycles. His detailed numerical computations 

show the influence of the Babylonians who had a purely numerical as¬ 

tronomy. This Babylonian influence is seen rather clearly in Ptolemy’s 

use of sexagesimal fractions. He used the Greek alphabetic numerals and 

mixed systems, just as we do, in writing 112° KT13/ . In a pure sexagesimal 

system this would be written 1,52^ 10,13. Of course, the base 60 system 

is only more convenient for writing fractions, and it is only for fractions 

that Ptolemy used it. Ptolemy’s theory was an early example of a precise 

mathematical science which blends a geometrical model with numerical 

computation. His combining of Greek geometry and Babylonian compu- 
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tation has been viewed as a major step along the path to modern 
Western mathematical science.17 

Ptolemy extended the trigonometry of his predecessors for use in his 

computations. He calculated a table of chords which was his equivalent 

to our table of sines. This table was much needed in astronomy and it, or 

one like it, served the field until modern times. It is interesting to see how 
he was able to construct such a table. 

Recall the chord function (fig. 2.55). Ptolemy used a circle of radius 60, 
so 

a 
sin ^ 

chord a 

2 
60 

chord a 

f20 

or 

chord a = 120 sin % 
2 

He constructed a table of chords in 1/2° steps from 1/2° to 180°; thus, 

he tabulated chord 1/2°, chord 1°, 4°, 2°, . . . 180°. Ptolemy used the 
following method to calculate the chords. 

Chord 72° was found by using his construction of a regular 
pentagon. 

Chord 60° was known to be the radius of the circle. 

Chord 12° was found by using the difference formula for chord 

(a — /?) applied to the known chords of 60° and 72°. 

Chord 6° was found by using the half-angle formula for chord 
(a/2) applied to 12°. 

Chord 3° was found by using the half-angle formula applied to 
6°. 

Chord 4° was found by using the half-angle formula applied to 
3°. 

Chord 3/4° was found by using the half-angle formula applied 
to 4°. 

Chord 1° was found by interpolating between the values of 

chord 3/4° and chord 4° and proving that the value obtained 
is correct.18 

Chord 1/2° was found by using the half-angle formula applied 
to 1°. 

,7See Derek Price, Science Since Babylon, chap. 1. 
l8Aaboe, Episodes, pp. 122-25. 
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Then the remaining chords were found by using the sum 

formula for chord (a + /3). 

We see that Ptolemy had the equivalent of our trigonometric formulas 

for sin (a - (3), sin (a + 0) and sin a/2. He calculated them by using the 

following theorem. 

Ptolemy’s Theorem Given any quadrilateral inscribed in a cir¬ 

cle, the product of the diagonals equals the sum of the 

products of the opposite sides (fig. 2.58). 

Let us see how Ptolemy used this theorem to obtain a difference 

formula. Suppose AC = chord a and AB = chord (3 are given numeri¬ 

cally, and we wish to find BC = chord (a - (3) (fig. 2.59a). [Note: The 

angles a and 0 are not shown because this would obscure the derivation.] 

Let AD go through the center (fig. 2.59b) so that, being a diameter, its 

length is known as 120 (recall that Ptolemy used a circle of radius 60). 

Since the angle ACD is inscribed in a semicircle, it is right. Since AC is 

given and AD is known, we can find CD by using the Pythagorean the¬ 

orem. Similarly, ABD is a right angle, and we can find BD. Thus, all five 

lines shown are known. If we draw in BC, we can find it by solving for 

BC in the equation of Ptolemy’s theorem in which everything but BC 

80 Greek Mathematics 



is now known. There are somewhat similar derivations for chord (a + /3) 
and chord (a/2).19 

Ptolemy needed to know the chord of 72° in order to begin the process. 

Recall his construction of the side of a regular pentagon (fig. 2.16). He 

needed to find BF. Since DB is a radius and DE is 1/2 a radius, he found 

BE by using the Pythagorean theorem. Since EF = EB, he found DF by 

subtraction, DF = EF — DE. Then he found BF by using the Pythag¬ 
orean theorem. Numerically, DB = 60, DE = 30, thus 

BE = V302 + 6Q2 = V4500 

= 67;4,55 (approximately) 

Now 

DF = EF - DE 

= 67;4,55 - 30 = 37;4,55 

and 

BF = VDFi + DB2 = V4975;4,15 

= 70;32,3 

= chord 72° 

Using this value and the formulas he had developed, Ptolemy completed 
his table. 

Ptolemy made long-lasting contributions in other areas, also. He 

wrote a very important work on geography from which maps were taken 

for approximately 1500 years. Astrology was becoming very popular in 

Hellenistic Alexandria at this time, and Ptolemy wrote the Tetrabiblos, a 

celebrated work in that field, which is apparently still used. He probably 

found his knowledge of astronomy helpful in the writing of this book. 

Ptolemy’s works were influential for centuries, some even are today, but 
unfortunately, almost nothing is known about his life. 

DIOPHANTUS (ca. 250) 

Diophantus of Alexandria influenced the development of algebra, 

particularly around 1600 when his work was rediscovered in Europe. It 

is not known exactly when Diophantus lived; indeed, many of the dates 

,9Ibid., pp. 117-20. 
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of this period are uncertain. We see in Diophantus work a mixture ol the 

Greek and the Babylonian traditions. He wrote a book, Arithmetic, in 

13 volumes of which all but six are lost. This book concerns the theory of 

calculation with numbers, and as such it represents a facet of Greek 

studies in numbers not found in any other extant Greek work. It con¬ 

trasts with other studies about the nature of the numbers themselves 

which consider even and odd and perfect numbers. Diophantus con¬ 

sidered not the nature of the numbers themselves, but ways in which to 

divide them into parts, for example. Diophantus was only concerned 

with integral or fractional solutions, a necessary limitation in the Greek 

approach to numbers. This limitation made his problems much more 

difficult than modern algebra problems which appear similar. Problems 

requiring integral solutions are now called Diophantine, in respect to the 

skillful mathematician. 
The Arithmetic contains about 150 problems, each solved by a special 

method. Diophantus’ methods are extremely clever, as illustrated by 

problem 9 of Book II. 

Problem II.9 Express a given number which is the sum of two 

squares as the sum of two other squares. 

Solution Let the given number be 13, the sum of the squares of 

2 and 3. Let the sides of the two other squares be 5 + 2 

(the 2 is chosen to match the given number 2), and 

2s - 3 (the 3 is chosen to match the given 3, while the 

2 is arbitrary). Thirteen is to be the sum of these two 

squares also, so 

13 = (s + 2)2 + (2s - 3)2 

13 = 5s2 — 85 -p 13 

5s2 = 8s 

8 

Notice how Diophantus cleverly chose the unknowns 

to obtain an easy equation to solve and to insure a 

rational solution. Substituting for s, the squares are 

(s + 2)2 = 
324 

25 

and 

(2, - 3)2 = 1 

Their sum is 13. 
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Diophantus illustrated his method of solution by giving a numerical 

example. There were many solutions to this problem, but Diophantus 

did not specifically mention this. Other answers can be obtained by 

making a different arbitrary choice for the coefficient of s in the second 

unknown, for example, choosing 4? - 3 instead of 2s - 3 as the side of 
a square. 

Some rules of algebra were known to Diophantus. He mentioned 

transposing and used it in the course of his solutions. In giving numerical 

problems and using rules his work was similar to the Babylonians. To 

find two numbers whose sum and product were given, his approach 

resembled that of the Babylonians, however, he required that the square 

of half the sum exceed the product by a square number so that the 
solutions would be rational numbers. 

Diophantus solved some amazing problems. For example, in problem 
III. 19 he found four numbers such that the square of their sum plus or 
minus any one singly gave a square. His solutions were 

17,136,600 12,675,000 15,615,600 8,517,600 

163,021,824’ 163,021,824’ 163,021,824’ 163,021,"824 

Diophantus developed a method for abbreviating frequently occurring 

terms. This method will be illustrated with English words rather than 

Greek. For the unknown number Diophantus would write NU, for the 

square of the unknown Sv, and for the cube Cu. He carried his method 

to the sixth power, abbreviating the fourth power as S^S, the fifth as SO, 

and the sixth as OC. For units he wrote U, and for less (minus) he used 

LE. With this system of abbreviations, to write x3 — 5x2 + Sx — I 
Diophantus would first have grouped the positive terms, giving x3 + 
8v — (5x2 1). He would have expressed this as 

O 1 NU 8 LE O 5 U 1 

MATHEMATICS TO THE SIXTH CENTURY 

Pappus (320) of Alexandria wrote commentaries on works of Euclid, 

Archimedes, and Apollonius, from which we today derive much in¬ 

formation that would otherwise have been lost. He explained the difficult 

points, supplemented the texts, and added many results of his own. His 
^§§cst contribution was in keeping the earlier works alive. 

Theon (365) was also a commentator on earlier works. He explained 

how Ptolemy found square roots, using the example ^4500 = 67;4,55. 

The following illustration uses decimals to show Ptolemy’s method for 
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finding the square root of two, and we will see that it gives a geometric 

explanation for a modern square root algorithm. 

1. 4 1 
a/2.00 00 00 

1 

24 T 00 
96 

281 4 00 
281 

1 19 ... . 

Refer to figure 2.60 for Theon’s explanation. 

y 

1.4 

1.4 y 

Figure 2.60 

Method Find the largest integral square < 2. This is a square 
of side 1 (fig. 2.60a). Extend this to a larger square by 
adding a length a. The exact area added is 1 • a + 

1. * q_ x2f or 2(1 )a + a2, which has to be less than the 

area of 1 needed to make a square of area 2. Thus 

2a + a2 < 1 

We do not want to solve this quadratic inequality, so 
neglect the a2 and get an approximation, 2a < 1. The 
value a = .5 is too large so we choose a = .4. Thus, 

the added area is 

a(2 + a) = .4(2.4) = .96 

and our new square has area 1.96. We have 1.4 as an 

X 

1 

1 X 

1.96 
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approximation to the side of a square of area 2. 

We can repeat this process as many times as we want 

in order to achieve greater accuracy. To begin the next 

iteration, extend the square of side 1.4 to a larger 

square of side 1.4 + y (fig. 2.60b). The added area is 

2(1.4)y + y2. It must be less than or equal to 2 — 

1.96 = .04. To get an approximation neglect the y2 

and set 2.8y < .04, obtaining y ~ .01 (to 1 significant 

figure). This gives an added area of .028 + .0001, or 

.0281. Thus, the new approximation of a square of 

side 1.4 -f- .01 = 1.41 is less than 2 in area by .0400 — 
.0281 = .0119. 

Notice the same numbers appearing in this explanation and in the 

usual square root algorithm. We could continue either method any 

number of steps further if we needed more accuracy. This algorithm is 

shorter than the divide and average method but much more difficult to 
remember. 

Hypatia (400) was the daughter of Theon. Unusually well educated 

for a woman of her time, she wrote commentaries on the work of Dio- 

phantus and Apollonius. She taught Platonic philosophy in Alexandria 

and was a person of some influence in that city. Unfortunately, she 

suffered a violent death, killed by a mob who disagreed with her religious 

beliefs. Bickering among religious groups caused people to move away 

from Alexandria, many to Syria and other Middle Eastern countries. 

This was one way in which Greek learning began influencing Indian and 
Arabic culture. 

Another Alexandrian, Proclus (450), went to head the Platonic 

Academy in Athens. As do other works written at that time, his com¬ 

mentary on the first book of Euclid’s Elements provides much informa¬ 

tion on early Greek geometry, Proclus having available to him sources 
which have since been lost. 

Boethius (500) wrote on each of the four areas of study composing 

what is known as the quadrivium — arithmetic, geometry, music, and 

astronomy — but his work was very elementary. For example, his 

arithmetic contained the Pythagorean ideas from Nicomachus, and his 

geometry contained some very elementary theorems from Euclid given 

without proof. The books of Boethius were widely used in the monastic 
schools in the early Middle Ages in Europe. 

In 529 the Emperor Justinian closed the school of Athens, ending 

Greek culture in the west. In the same year St. Benedict founded a 

monastery. Europe was in the process of changing from Roman ways to 

a culture of its own, as we will study later. For the next 500 years at 

least, other areas of the world are more important in mathematics. 
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Problems 

1. The first three perfect numbers given by the formula 2n '(2" - 1) 

are 6, 28, and 496. Find the fourth. 

2. The first three pentagonal numbers are 1, 5, and 12 (fig. 2.61). Find 

the next one and draw that pentagon. 

3. Write the following numbers in the Attic Greek system, 

a. 72 b. 488 c. 10,765 

4. Write the following numbers in the Ionic Greek system. 
a. 27 b. 540 c. 3469 d. 78,184 

5. Prove that the construction for the bisection of a line segment given 

in the text (fig. 2.12) does in fact bisect the line segment. 

6. Let a line of length 1 be divided into two parts according to the 

golden section. Compute the length of each part correct to two 

decimal places. 

7. Use the Euclidean algorithm to find the greatest common divisor of 

the following numbers. 
a. 350 and 135 b. 87 and 21 c. 317 and 249 

8. Using a straightedge and compass and the method of the Elements 

II. 11, construct the solution to 3(3 — x) = x2. 

9. Use the sieve of Eratosthenes to make a table of the primes from 2 to 

100. 

10. Use Heron’s formula to find the area of a triangle with sides 3, 6, 

and 7. 

11. Show that the point H obtained in the construction of Theorem 

II. 11 of the Elements divides the line AB according to the proportions 

of the golden section. 
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12. Compute the following square roots to two decimal places using the 

geometric explanation of Ptolemy’s method given by Theon. 

a. V6 b. \/7 c. V20 

13. Write the following expressions the way Diophantus would have, 
using the symbols given in the text. 
a. 9x2 _ 3*2 - 2x + 5 b. -9x2 + 3x + 2 

14. Let AB = x be the side of a regular decagon inscribed in a circle of 

radius 1 (fig. 2.62). Let AC be constructed equal to AB. 

Figure 2.62 

a. Show that BC = 1 — x. 

b. Show that A OAB is similar to A ABC. 

c. Show that x satisfies the equation x2 + x — 1 =0, which has the 

positive root (1/2)(V5 — 1). 

15. Consider Ptolemy’s construction of the regular pentagon given in 
figure 2.16. Assume that the radius is 1. 

a. Show that DF is equal to (1/2)(V5 - 1) and is, thus, the side 
of a regular decagon (see problem 14). 

b. Euclid’s Theorem XIII. 10 states that the sides of the regular 

pentagon, hexagon, and decagon inscribed in a given circle form 

a right triangle. Use this to show that BF is the side of a regular 
pentagon. 

16. The definition of two ratios being equal given in Book V of Euclid’s 

Elements states that R/S = V/W if, and only if, given any integers 
m and n, 

i. if mR > nS, then mV > nW. 

ii. if mR = nS, then mV = nW. 

iii. if mR < nS, then mV < nW. 

Use this definition to prove Theorem V.ll of the Elements. 
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17. Use the definition of equality of ratios stated in problem 16 and the 

definition of one ratio being greater than another to prove Theorem 

V.13 of the Elements which states that if a/b = c/d and c/d > e/f, 

then a/b > e/f. 

18. Prove that A\/A2> d\/d\ is impossible, thus completing the proof 

of Theorem XII.2 of the Elements. [Hint: Let Si be an area such 

that A\/Si = d\/d\. Use the fact that there is an area S, such that 

S2/Ai = A2/S. The proof is then similar to the case A\/A2 < d\/d\ 

treated in section 5.] 

19. Letting AB in figure 2.40 equal a, prove algebraically that the area 

of the square AFGH equals the area of the rectangle HBD, as The¬ 

orem 11.11 states. 

20. Prove Theorem III.31 of the Elements which states that an angle in a 

semicircle is right. [Hint: Letting E be the center of the circle, 

connect AE. Also extend BA to some point T(fig. 2.63).] 

F 

21. Explain how figure 2.1c can be used to give a proof of the Pythag¬ 

orean theorem for the case of an isosceles right triangle. 

22. Explain how a 15-sided regular polygon can be inscribed in a circle, 

given that it is already known how to inscribe both a 3-sided and a 

5-sided regular polygon. 

23. Let a triangle CO A be given and let DO bisect the angle CO A 

(fig. 2.64). Theorem VI.3 of the Elements states that CO/OA = 

CD/DA. Use this to prove that (CO + OA)/CA = OA/DA. [Hint: 

Work backwards, using the relation CA = CD -f DA.] 
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o 

Figure 2.64 

24. Suppose that angle CO A in figure 2.64 is 30°. Then CA is half the 

side of a circumscribed hexagon. Also, CA/OC = sin 30° = 1/2. 
a. Show that OA/AC = ^3. 

b. Given that ^3 > 265/153, compute an upper bound for the ratio 

of the perimeter of the circumscribed hexagon to the diameter. 
[Note: This also gives an upper bound for t.] 

25. Use the formula of problem 23 and the values for OA, CO and CA 

from problem 24 to compute the ratio DA/OA. From this ratio 

compute an upper bound for the ratio of the perimeter of the 12- 

sided circumscribed polygon to the diameter (which is, in turn, an 
upper bound for 7r). 

26. Explain how Archimedes, who used the method outlined in problems 

23-25, was able to find an upper bound for the ratio of the perimeter 

of a 24-sided circumscribed polygon to the diameter (also the ratio 

of a 48-sided and a 96-sided polygon). It was in this way that he 
finally obtained his upper bound of 3|J for tt. 

27. We can divide a circle of radius R and its enclosed spiral into n 

parts (fig. 2.65). Consider the circular sectors around each section 
of the spiral. 

set 

Figure 2.65 
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a. Use the definition of the spiral to explain why the radius of the 

first circular sector is equal to R/n, the second to 2R/n, the third 

to 2>R/n, and the nth to nR/n. 
b. Show that the sum of the areas of the n sectors is 

(l2 + 22 + 32 H-h n2)irR2 

n3 

c. Show that the ratio of the sum of the area of the sectors to the 

area of the boundary circle is 

n(n + 1)(2 n + 1) 

(6 rc3) 

[Hint: Use l2 + 22 + 32 H-h n2 = n{n + 1)(2n + l)/6.] 

d. Show that as n gets larger, the expression in part c approaches 

1 /3 in value. As n gets larger, the sectors become closer to the 

spiral. Thus, the value 1 /3 represents the ratio of the area of the 

spiral to its bounding circle. This, in essence, was the method of 

Archimedes. 

28. Given an isosceles triangle of base 12 and sides 10 each, find the 

length of the side of a square inscribed in it (see fig. 2.56). 

29. Use Ptolemy’s formula for the chord of the difference of two chords 

to find the chord of 12°. Use the decimal system. 

30. Ptolemy also used a model (fig. 2.66) in which the sun revolved on a 

circle whose center (F) was off the center of the earth (E). He used 

N 
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the fact that spring is the longest season, 94| days, and summer the 

second longest, 92^ days, to find the distance from the center of the 

earth to the center of the sun’s circle. Moving counterclockwise, 

let NPOD be the sun’s path, with HK the spring portion, KL the 

summer portion, etc. Since spring is 94^ days, HK = 93°9'. Since 
summer is 92^ days, KL = 91° 11'. 

a. Explain the following values. 

1) arc HKL = 184° 20' 2) arc NH + arc LO = 4° 20' 

3) arc HN = 2° 10' 4) arc HNU = 2 arc HN = 4°20' 
5) arc PK = 0°59' 6) arc KPX = 1°58' 

b. Using Ptolemy’s table of chords, it is found that HTU = chord 

HNU = 4;32 and KWX = chord KPX = 2;4. Find EQ and FQ. 
c. Use part b to show that the value of EF is between 2;29 and 2;30. 

(Since the radius of the sun’s path is 60, it is almost 24 times 

greater than the distance between its center F and the earth E. 
Ptolemy also goes on to find that the angle FEQ = 24°30'.) 

31. Derive Ptolemy s formula for the chord of the sum of two angles 

(fig. 2.67). Let AB and BC be given. The length AC is to be found. 

Figure 2.67 

a. The center of the circle is O. Explain how to find the lengths of 
each of the lines AD, BE, BD, CE, and DE. 

b. Explain how to find CD and AC, using the results of part a. 

32. Show that ^4500 = 67;4,55. Do the computation always using the 

sexagesimal system for fractions and use Ptolemy’s geometric 
method. 

33. For the regular pentagon (fig. 2.68) Heron proved that PO + ON = 

^5(0N). Use this to show that the area of the pentagon is approxi¬ 

mately (5/3)(P02. Use 9/4 as an approximation to ^5. 
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34. a. Show that there is a solution to Diophantus problem II.9 (page 

82) for each positive integer k, when the unknown numbers are 

taken as ks — 3 and s + 2. 
b. Compute the solution for k = 3 and for k = 4. 
c. Show that k = 2 is the smallest positive integer for which both 

unknowns are positive. 
d. Show that if Diophantus had chosen to let his unknowns be 

ks + 3 and 5 + 2, then he never would have obtained any posi¬ 

tive solutions. 
e. Show that had Diophantus chosen his unknowns as ks - 2 and 

5 + 3, then k = 4 would be the smallest positive integer which 

gives positive solutions. 

35. a. The number 20 can be written as 22 + 42. Use the method of 
Diophantus to write it as the sum of two other squares. Negative 

solutions at any stage are not allowed, 
b. Do the same as part a for 25 = 32 + 42. Obtain a solution other 

than 02 + 52. 

36. In Problem III.6 of his Arithmetic, Diophantus finds three numbers 

such that their sum is a square and the sum of any pair is a square. 

In effect, he finds numbers w, y, z, a, b, c, and d such that 

w + y + z — a2 

w + y = b2 

y z = c2 

w + z = d2 

a. Following Diophantus, let a = x + 1, b = x, and c = x — 1. 

Then show that w + z = 6x + 1. 
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b. Choose d to be any number, say 11. Then find x, and from it find 
w, y, and z. 

c. Find a solution different from that found in part b. 

37. a. List all divisors of 24(25 — 1), showing that each is either of the 
form 2k where 0 < k < 4 or of the form 2k(25 - 1) where 0 < 
k <4. 

b. Use part a to show that 496 is a perfect number. 

38. Assume 2n — 1 is a prime number. 

a. List all divisors of 2"-\2* - 1) of the form 2k where 0 < k < 
n — 1 or of the form 2^(2" — 1) where 0 < k < n — 2. 

b. Assuming that the divisors listed in part a represent all divisors of 
2n~l(2n — 1) except itself, show that 2n~l(2n — 1) is a perfect 
number. [Hint: Use the formula 1 + 2 + 22 + 23 + • • • + 
2s = 2s+l — 1 for any s.] 
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3 Mathematics 
in Asia 

The leading centers of mathematics in the period 500-1300 were in Asia. 
During that time, methods of computation with Hindu-Arabic numerals, 
as well as elementary techniques of algebra, were developed. Indian and 
Arabic writers built upon the foundation of Babylonian computational 
mathematics. In turn, their works were studied by European writers who 
learned arithmetic and algebra using translations of Arabic books. In 
addition, the Greek classics such as Euclid’s Elements and Ptolemy’s 
Almagest were first transmitted to European scholars in Arabic versions. 
Before beginning to survey the mathematics of China, India, and the 
Arabic world, we will study the abacus. 

The Abacus 

There are two very simple reasons for the use of the abacus: the various 
types of numerals in use in ancient times were not suited to computation, 
and cheap paper was not available. To do ordinary calculations on papy¬ 
rus or parchment made from sheepskins was too expensive. It was not 
until the 1300s that a rag paper was developed, and wood pulp paper 
did not come into use until the 1800s. Thus, when calculation was 
needed, the abacus was used. 
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The word abacus comes from a Greek word abax, meaning slab, which 
is related to the Hebrew word abhaq, meaning dust. The oldest type of 
abacus was a table covered with sand or fine dust, on which the figures 
were drawn with a stick and erased when necessary. Later forms of the 
abacus have permanent rows and counters on the rows to indicate 
numbers. Most often the counters increase in value by multiples of ten 
from one row to the next. We will consider five different types of abacuses. 

1. The Roman abacus was a metal plate with grooves. Counters 
were fixed in these grooves so that they could slide up and 

down. 

2. The line abacus, used in Roman times and in Europe until 
the 1600s and later in Germanic countries, was a table with 
lines scratched on it. Counters were placed on these lines, but 

were not attached to the table. 

3. The Chinese abacus (Suan-pan, fig. 3.1) was not used until 
about 1200. (Before this the Chinese used bamboo rods for 
calculations, a process which will be described later.) The 
Chinese abacus has rods which pass through the counters 
enabling the counters to slide along the rods. Every rod has 
two counters each representing five units and five counters 

each representing one unit. 
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Figure 3.1 

4. The Japanese abacus (Soroban, fig. 3.2) is similar to the 
Chinese, except for the counters. Each row of the Soroban 

c P c p c ) c ) c p 
c 
c 
c 
c 

) c 
) <3 
) C 
) c 

) c 
) c 
) c 
) c 

) ( 
) c 
) c 
) c 

) c 
) c 
) c 
) c 

) 
) 
) 
) 

Figure 3.2 
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has only one counter representing five units and four counters 
representing single units. 

5. The Russian abacus (Sch’oty) is also similar to the Chinese, 
but it has ten counters on each rod, each counter repre¬ 
senting one unit. The middle two counters may be a different 
color to aid in calculating. 

The abacus is still used in many parts of the world. A good abacist can 
calculate with the same efficiency, if not more, as a good adding machine 
operator. To be an expert with an abacus, one must learn to use it as a 
child and practice to develop skills. In Japan there are tests that are given 
to certify a level of competency on the abacus. One obvious advantage of 
the abacus is that it is certainly cheaper than an adding machine. 

In the course of a calculation on an abacus, if a row becomes full, say 
with ten counters, then these can be replaced by one counter in the next 
higher row (fig. 3.3), A counter is “carried” to the next column. This is 
the origin of our use of “to carry” in arithmetic. In Rome the name for 
the counters was calculi. Calculus means pebble and is derived from the 
root word calx, a piece of limestone, or chalk, which comes from the 
same root. From the same root also comes calculate. 

Addition on the abacus is easy. We merely enter each number in 
succession and read off the final answer. Multiplication can be done by 
successive addition, not requiring knowledge of multiplication tables. 
For example, 34 X 53 could be found by entering four 53s, one after 
another, using the first two columns, and then entering three 53s, one 
after another, using the second and third columns. Shifting the starting 
column from the first to the second is the equivalent of the familiar 
shifting of the products one place to the left in the usual written multipli¬ 
cation method. Although multiplication on the abacus can be done as 
was just suggested, it is actually done using a knowledge of multiplication 
tables. The process is similar to written multiplication, except that the 
intermediate results are entered on the abacus instead of being written 
down. For example, the same problem, 34 X 53, is done by entering 
4 X 3 in the first two columns, 4X5 and 3 X 3 in columns two and 
three, and 3 X 5 in columns three and four. 
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The abacus may have influenced the use of the decimal system. In 

recording calculations done on the abacus, numerals were used. Only 

numerals from 1 to 9 were needed, because one could express a result as 

6 hundreds, 5 tens, 3 units. This could have been abbreviated to 653, 

although this sort of abbreviation requires a zero to avoid confusion. 

For example, a result of 6 hundreds and 3 units must be written as 603, 

not 63. 
The line abacus was used extensively in the Middle Ages in Europe at 

the same time that Hindu numerals were being used for calculation on a 

dust board or paper. There was competition between the two systems. 

The use of the numerals eventually triumphed, although the line abacus 

was in common use until about 1600. The line abacus prevailed even 

longer in some regions. 

2 Chinese Mathematics 

The dates of mathematical writings in China are very uncertain, but we 

do know that one of the oldest topics was magic squares. It is reputed 

that the Emperor Yu (ca. 2200 b.c.) saw such a square (fig. 3.4) on the 

back of a turtle, of course in a somewhat different notation. A 3 X 3 

magic square contains the first nine integers arranged so that all rows 

add up to fifteen, as do all columns and the two diagonals. Fortune¬ 

tellers in the Orient still use magic squares, and they have been used as a 

charm in India. 

4 9 2 

3 5 7 

8 1 6 

Figure 3.4 

Fifteen is the only sum possible for any 3X3 magic square using the 

first nine integers. We can see this by summing all the numbers in the 
magic square which gives 1+2 + 34-4 + 5 + 6 + 7-1-8 + 9 = 45. 

These nine numbers are distributed in three rows in such a way that each 

row has the same sum. Thus, the sum for each row is 45/3 = 15. 
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We can, in a similar manner, figure out what the sum of any row, 
column, or diagonal must be for an n X n magic square. The first n2 

numbers are distributed among n rows giving a sum per row of 

1 + 2 -j- • • • + n2 _ n2(n2 + 1) 
n ~2h 

_ n(n2 + 1) 
j 

For n — 4 this sum is 34. 

THE NINE CHAPTERS 

Probably the most influential Chinese mathematics book, and one of the 
older works, is the Nine Chapters on the Mathematical Art written about 
250 b.c. This work is somewhat like Babylonian and Egyptian mathe¬ 
matics in that many numerical problems of a practical nature are solved. 
The results are sometimes exact and sometimes approximate. Rules are 
given for finding areas. 

One type of problem found in the Nine Chapters much earlier than 
anywhere else is simultaneous linear equations. The first problem of 
chapter VIII is an example of this type. 

Three sheafs of good crop, two sheafs of mediocre crop, and 
one sheaf of bad crop are sold for 39 dou. Two sheafs of good, 
three mediocre, and one bad are sold for 34 dou; and one good, 
two mediocre, and three bad are sold for 26 dou. 
What is the price received for a sheaf of each of good crop, 
mediocre, and bad crop? The answer is dou for the good, 
4i for the mediocre, and 2\ for the bad. 

We would express this problem in equations as 

3* + 2 y + z = 39 

2x + 3y + z = 34 

x -f 2y + 3z = 26 

In the Nine Chapters the conditions were given as columns in a matrix, 
reading from right to left. Then column operations were performed to 
simplify the matrix. 
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1 2 3 ~ 1 6 3 “ 

2 3 2 2 9 2 

3 1 1 3 3 l 

_ 26 34 39 _ _ 26 102 39 

r 1 
3 3 1 1 0 3 " 0 0 3 

and after 
2 7 2 2 5 2 0 5 2 

-> , several —> 
3 2 1 3 1 1 36 1 1 

steps 

_ 26 63 29 _ 26 24 39 _ _ 99 24 39 _ 

We can reformulate the final matrix as a set of easily solved equations 

3.x + 2y + z = 39 

5 y + z = 24 

36z = 99 

CHINESE NUMERALS 

Chinese numerals follow the pattern of using symbols for the numbers 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 1000, .... If we let 10 = a, 100 = b, and 

1000 - c, we can illustrate that 532 would be written in the following 

manner: 

5 

b 

3 

a 

2 

The actual Chinese symbols are 

1 —-” 6 /A 

2 7 -fcr 

3 *al^- 8 /\ 

4 © 9 fl 
5 Sl 
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10 + 
i°o 5 

iooo 

As was mentioned, the abacus was not used until about a.d. 1200 in 
China, What the Chinese used before that was a set of bamboo rods 
which were kept in a bag. Calculations were performed with these rods, 
very quickly, on a table or on the ground. Here again, a positional 
system was used. The following symbols represent the numerals 1-9. 

These two sets of symbols are used in alternate positions left to right. 
For example, 

532 mu e ii 
4,% mi i uni 

The Chinese used black rods for negative values and red for positive, 
so they understood the idea of a negative number as representing a loss. 

CHINESE CONTRIBUTIONS TO MATHEMATICS 

Chinese civilization was very advanced. Many inventions were used in 
China long before they were known in the West, such as printing and 
gunpowder (eighth century) and paper and the compass (eleventh 
century), but the Chinese never went on to develop science and tech¬ 
nology in the manner of the West. The high point in Chinese mathe¬ 
matics (until modern times) occurred in the thirteenth century. Several 
mathematicians are known to have written works in this period, and 
perhaps many other works are lost. 

Chinese Mathematics 103 



One type of problem which was known to these men and which was 
done in China best and earliest was the finding of numerical roots to 
equations. Chinese mathematicians had a very nice algorithm which was 
rediscovered by Horner in the 1800s, and is now called Homer's method. 

It is studied in the theory of equations. Horner’s method can be used to 
find higher roots, such as roots of x7 — 2 = 0, or approximate solutions 
of more complicated equations, such as x5 + 3x4 — 2x + 1 = 0. 

Another topic which occurs first in Chinese mathematics (from 1100) 
is the Pascal triangle (named after a Frenchman of the 1600s) which 
gives coefficients in binomial expansions. 

(x + v)° = l 

(x + y)1 = lx + 1 y 

(x + y)2 = lx2 -f 2xy + \y2 

(x + y)3 = lx2 + 3x2y -F 3xj>2 + y3 

(x + y)4 = lx4 + 4x3v -F 6x2^2 + 4xy3 + l^4 

The interesting feature of this triangle is that each row can be obtained 
from the preceding row by addition. For example, to get the coefficients 
of (x + y)5, first write the coefficient row of (x -F y)4 

14 6 4 1 

For the next row, Write a one on either side for the first and last coeffi¬ 
cients, and in the space between and under any two numbers write their 
sum. 

14 6 4 1 

\/\/\/\/ 
1 5 10 10 5 1 

Thus, the coefficients of (x + J;)5 are 1. 5, 10, 10, 5, 1. 

3 Indian Mathematics 

The development of mathematics in India dating from about a.d. 300 
shows definite Hellenistic influence. Books called the Siddhantas, or 
systems (of astronomy), were written, one of them being the Surya 
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Siddhanta, or System of the Sun. These works dealt with epicycles and 
calculations that were dependent upon trigonometry, which shows that 
there was probably some contact between the Indians and the Greeks of 
Alexandria through trade and immigration. One of the ways trigonome¬ 
try was changed in the Siddhantas from the Greek work was to use the 
half-chord, or sine, function instead of the chord. 

To make it easier to memorize, a sine table was given in the Surya 

Siddhanta in verse form, but since numbers have few rhymes, words were 
adopted for numbers. For example, in place of one the Indians wrote 
moon, because there is only one moon. For two they wrote eyes, arms, or 
wings. Thus, 5021 could have been represented in the following manner. 

moon-wings-hole-senses 

Note that the number was expressed with the units position first. This 
illustrates the use of a positional system, because the first five really 
represents 5000. We can be certain that by a.d. 500 the positional system 
was in use in India. 

INDIAN NUMERALS 

There were several sets of numerals used in India, the most interesting 
being the Brahmi which dated from around 300 b.c. The Brahmi is 
similar to the alphabetical Ionic Greek system, but it is not clear what 
the original derivation of the Brahmi symbols was or how much, if any, 
Greek influence there was on the development of the symbols. The 
Brahmi numerals are: 

-— -— — ¥ b b 7 ? 

l 2 3 4 5 6 7 8 9 

cc CP J X J H z <$> © 

10 20 30 40 50 60 70 80 90 

Some symbols for the hundreds, but not all, have been found recorded, 
but we will give none here. 

For some reason, by about 600 the Indians used the first nine symbols 
in a positional manner, as we do now, disregarding the other symbols. 
Perhaps the idea came from the abacus where only nine symbols are 
needed, or perhaps from Babylon or China where positional systems 
were already in use. There was contact among China, India, and the 
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West, but the amount of transfer of knowledge and in which direction is 
not really known. The zero, which is definitely needed with a positional 
system, was introduced a bit later, certainly by 876, as a small dot •. 
In India it was called sunya, or void, which became as-sifr in Arabic and 
zephirum in Latin (other similar Latin forms were used). These terms led 
to our words cipher and zero. 

BRAHMAGUPTA (628) AND BHASKARA (1150) 

Indian mathematics was very much in the Babylonian spirit with col¬ 
lections of various types of problems, some exact methods, and some 
approximate. Greek theoretical geometry had reached its limits, but 
India carried forward the Babylonian numerical approaches and ulti¬ 
mately greatly influenced the development of arithmetic and algebra in 
Europe in the Middle Ages. Later still, the calculus and other powerful 
new mathematics were created by a merging of the numerical algebra 
with the theoretical geometry. 

Two important Indian mathematicians who wrote works on numbers, 
algebra, and other topics are Brahmagupta and Bhaskara. To give a 
specific example from their work, consider numerical rules for the 
solution of quadratic equations. In Brahmagupta’s book the equation 

x2 - 10* = -9 

is solved. It was written there as 

ya v 1 ya 10 

ru 9 

Brahmagupta used the abbreviation ya for the unknown, ya v for the 
square of the unknown, and ru for the constant. The left-hand side of the 
equation was written on the top line and the right-hand side on the 
bottom line. A negative number was indicated by a dot placed above. 

The solution to the problem is given step-by-step following the plan 

.. _ V—9 1 +(—5)2 - (-5) _ 0 

1 

The solution reads, 

Here ... number (9) multiplied by (1) the coefficient of the 
square gives 9 and added to the square of half the coefficient of 
the middle term, namely 25, makes 16; of which the square 

106 Mathematics in Asia 



root 4, less half the coefficient of the unknown 5 is 9; and 
divided by the coefficient of the square, 1, yields the value of 
the unknown, 9.1 

Indian mathematicians computed with their nine or ten numerals on a 
dust board or on paper made of palm leaves. They developed several 
methods of computation which were later used by Arabic and European 
mathematicians. It is not clear when they were first developed, or by 
whom, but many are found in a book by Bhaskara. His book was called 
Lilavati after his daughter, and there is an interesting story that explains 
why Bhaskara gave her name to the book. 

Astrologers had predicted that Lilavati would never wed. Bhaskara, 
however, divined a lucky moment for her marriage. The ceremony was to 
take place at the end of an hour which was marked by an hour cup 
floating on a vessel of water. This cup had a small hole in the bottom of 
just the proper size so that the water would trickle In and sink it at the 
end of the hour. Lilavati, with natural curiosity, looked to see the water 
rising in the cup, and a pearl dropped from her clothes accidentally 
stopping the flow. The hour passed without the sinking of the cup, and 
Lilavati was thus fated never to marry. To console her Bhaskara wrote a 
book in her honor, promising her immortality in this way. 

In his book Bhaskara gave the complementary plan of subtraction. 
In this method the lower digit is always subtracted from 10, and the 
result is added to the upper digit. The advantage of this procedure is that 
only the differences from 10 need to be learned. Consider 

6273 
-1528 

Doing the complementary subtraction step-by-step, we say 

8 from 10 is 2, 2 and 3 is 5 
2 from 6 is 4 
5 from 10 is 5, 5 and 2 is 7 
1 from 5 is 4 

so the answer to the subtraction is 4745. 
Bhaskara gives five methods of multiplication in Lilavati. The most 

important was later named the grating method (gelosia in Italian) because 
it resembled the grating put across windows of private residences, so 
passers-by could not look in. In this method one avoids any “carries” 
until the final addition. It was used until printing was developed and then 
was gradually phased out in the 1600s, because the grating was hard to 

1 Henry Thomas Colebrooke, Esq., trans., Algebra ofBrahmegupta andBhascara, p. 347. 
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print. As an example of the grating method, consider 738 X 416. To 
find the solution, make a grating as shown in figure 3.5a. Enter 738 
along the top and 416 along the right side. Multiply 4 times 8 and enter 
the 32, as shown. Continue with 4X3= 12, and so on. When all the 
entries have been made, the numbers along the diagonal are added 
starting at the lower right, as shown by the arrows in figure 3.5b. Carrying 
is done where needed. The product is 307,008 (fig. 3.5b). 

4 

1 

6 

a. 

7 3 8 

Figure 3.5 

A Hindu method of division, very handy when work is done on a dust 
table but slightly confusing on paper, was later called the galley method 

because of the shape of the final result. In books, problems were deco¬ 
rated to look like galleys, as illustrated below. Again, the galley method 
lost favor with the advent of printing, but it was the most common 
method taught until 1600. Consider 55614 -r- 21 as an example. 

) 2648 6/21 

The first steps are as follows: 

55614 )2 The “guess quotient” of 55 -t- 21 is 
21 2. 
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1 

$5614 )2 

?1 

13 

$$614 )2 

21 

13 

$$614 )26 

2H 
2 

1 

n 
$$614 )26 

2J1 
2 

1 

120 
$$014 )26 

m 
2 

1 

J20 
$$014 )264 

2 in 
22 

Starting from left to right, multiply 
2 times 2, subtract that product from 
5, and write the difference above, 
crossing out the numbers used. 

Multiply 2 times 1, subtract that 
product from 5, and write the dif¬ 
ference above, crossing out the num¬ 
bers used. 

Now move the divisor over one 
place and estimate the quotient of 
136 -T- 21 as 6. 

Continuing as before, multiply 6 by 
2 and subtract from 13. 

Multiply 6 by 1 and subtract from 6. 

Move the divisor over one place and 
estimate the quotient of 101 4- 21 
as 4. Continue in the same manner 
until a solution is obtained. 

If this problem were done on the blackboard, then the numbers could be 
erased rather than scratched out, and the jumbled appearance could be 
avoided. It would look like the following: 
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55614 

21 

)2 

15614 

1 

)2 

13614 

21 

)26 

1614 

1 

)26 

1014 

21 

)264 

214 

1 

)264 

174 

21 

)2648 

14 )2648 

1 

6 

The 5 is erased and the difference, 1, 

written in its place. The 2 of the 

divisor is erased after it is used. 

Of course, when the intermediate steps are erased, the problem becomes 

impossible to check, but some simple checks were developed as aids, and 

the problem can always be done over again. 

As an aside, it is convenient to mention another culture in which a 

place-value system and zero were used. The Mayas of Yucatan, Mexico 

fundamentally used a base 20 system. Their symbols were the following: 

• = 1 

- = 5 

0=0 

Thus 
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Just as we write 352 for 3(100) + 5(10) + 2 the Mayas wrote (from top 
to bottom) 

for 17(20) + 12. It has recently been shown that the Olmecs, another 

group of Indians in Mexico, originally devised this system that was later 

used by the Mayas. The Olmecs appeared about 1200 b.c., while 31 b.c. 

is the oldest date that has been attached to writings containing these 
numerals. 

4 Arabic (Islamic) Mathematics 

Mohammed lived in Arabia in the early 600s. After his death Mo¬ 

hammedanism spread to Asia, Africa, and southern Europe. Bagdad, 

built in about 760 by the caliph al-Mansur, became the intellectual center 

of the Mohammedan world. The rulers of Bagdad encouraged learning, 

and many Greek works were translated into Arabic; indeed, in some 

cases only the Arabic version has survived. Astronomy was considered 

to be the most important subject of study, and the Arabic writers par¬ 

ticularly liked the Almagest and the Elements. Because of its usefulness in 

astronomy, trigonometry was of great interest to the Arabs. Significant 

for the development of mathematics were the Arabic works on numera¬ 

tion and algebra which introduced these subjects to Europe. 

AL-KHOWARIZMI ($25) 

A most influential person was al-Khowarizmi who wrote the first work 

to which the name algebra was applied. Our word algebra comes from 

the Arabic al-jabr which seems to mean transposing. Al-Khowarizmi 

also wrote on arithmetic. When his works were translated into Latin, his 

name became a/goritmi, from which our word algorithm is derived. 

Al-Khowarizmi’s algebra contained solutions to linear and quadratic 

equations. He was influenced extensively by the Babylonian and Hindu 
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traditions, and he systematized the Babylonian treatment of quadratics 

reducing all such problems to the following basic types. 

1. x2 = ax 2. x2 = a 3. ax = b 

4. x2 + ax = b 5. x2 = ax + b 6. x2 + b = ax 

Al-Khowarizmi solved a quadratic equation by a step-by-step rule, as did 

the Babylonians and Indians, but then he gave a geometric diagram as a 

proof. 
Although al-Khowarizmi was not greatly influenced by Greek mathe¬ 

matics, he may have derived from Euclid’s Elements the idea that geo¬ 

metric proof is desirable. However, al-Khowarizmi’s use of geometry 

was much different than that of the Greeks. He did not construct a 

“line” solution to his problem as was done, for example, in Book II of 

Euclid where the solution is synthesized from the given. Here is a favorite 

example from the Arabic work, 

x2 + lQx = 39 

Al-Khowarizmi solved this equation using a rule, then he gave a diagram, 

as illustrated in figure 3.6, and the following explanation. 

Method Let a square of side x be given (fig. 3.6a). On each side 

construct a rectangle of side 10/4 = 2\ (fig. 3.6b). 

2j 2 J 
X 

X 

2J 2j 

a. 

Figure 3.6 

b. 

This figure now represents 

x2 + 4(2i)x = *2 + IQ* 

the left-hand side of the equation. Now complete the 

square (fig. 3.7). Add to x2 + 10jc the four squares of 
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Figure 3.7 

area (5/2)2 = 25/4 each, for a total area of the large 
square of 

39 + 25 = 64 

Thus, the side of the large square is 8. Since .x -f- 2\ + 
2\ = 8, then x = 3. 

Here al-Khowarizmi did not construct x, but rather started with x. His 

figure was not drawn to scale; he was analyzing the problem, and his 

approach was basically algebraic, even in his use of the diagram. He 

carried on the Babylonian-Indian algebra, but with the Greek influence 
that proof, hopefully geometric, is needed. 

It is interesting that our word root is derived from an Arabic and 

Indian concept. Somehow the Arabic writers thought of a square root as 

analogous to a root of a plant. Thus, they used the same name for both 

square root and plant root. The Latin translation of root is radix, which 

is similar to radish and radical You might say these words all have the 
same root. 

Al-Khowarizmi also used a method of double false position for 
solution of a simple linear equation, ax + b = 0. The method may have 

been derived from Indian mathematics, and was widely used later in 
Europe. 

Method Let gi and g2 be two guesses as to values of x and let 

f\ and f2 be the failures, that is, the values of ag\ + b 

and ag2 + b (which would be equal to zero if the 

guesses were right). The solution is given as 

v _ figi - flgl 

fi ~/2 

It was often considered amazing that a correct answer could be obtained 

from two guesses, and it certainly is a hard way to do what is now with 
symbolism an easy problem. As an example, consider 

5x — 10 = 0 
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Guess g\ = 3 and g2 = 1. Then, by substitution,/! = 5 and f2 = -5. 

Therefore, 

5-1 - (-5) 3 _ 20 
5-(-5) 10 

ARABIC NUMERALS 

In addition to translating Greek, the Arabs made translations of Indian 

works, such as the Siddhantas. Arabic writers were influenced by India 

with respect to numerals and trigonometry. Two Arabic systems of 

numerals were derived from the original Brahmi numerals, an East 

Arabic form used by Arabs in the Middle East 

which is very similar to their present forms, and a West Arabic form used 

by Arabs in Spain 

from which our numerals developed. It is not known whether the Arabs 

brought the numerals with them from the Middle East to Spain, or 

whether they found them already in use when they reached Spain. The 

numerals may have been transmitted to Spain via Alexandria, since it is 

possible that the Hindu numerals were known in Alexandria at an early 

date. 
A theory by a Russian historian, Bubnov, asserts that the West Arabic 

numerals were derived from numerals used by Latin abacists to mark the 

counters used on the abacus.2 Further, this theory gives an original 

meaning for the numerals. Unfortunately, there is not enough informa¬ 

tion available to completely trace the origin of our numerals with any 

claim to certainty. 
I repeat this theory of the origin of the abacus numerals, because, even 

if not verifiable, it is an interesting explanation of the origin of the 

symbols. The Latin abacus symbols were 

The 2 is a cursive way of writing — . Similarly, 3 is =L written without 

removing the pen from the paper. The 4, , is said to come from 

2See Harriet P. Lattin, “The Origin of our Present System of Notation According to 
the Theories of Nicholas Bubnov,” Isis, pp. 181-94. 
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writing j in one motion. The 5, £_ , comes from * — . The numerals 

for 6 to 9 are diacritical signs. The 6, b , indicates one more than 5. The 

7, 7 , indicates two more than 5. The 8 is a closed 3 , and the 9 , being 
four more than 5, resembles a 4. 

In any case, Arabic writers used the previously mentioned West Arabic 

and East Arabic forms of numerals and gave methods of computation 

learned from India. The Arabs were familiar with both the Greek chord 

and the Indian sine approach to trigonometry, but they adopted the 

Indian approach. Europe learned Indian trigonometry from the Arabic 

writer al-Rattani (900). Abul-Wefa (970) gave a sine table, and used 

all six common trigonometric functions — sine, cosine, tangent, cotan¬ 

gent, secant, and cosecant. He also did some writing on algebra. 

A very interesting figure is the Persian Omar Khayyam (1100) who is 

quite famous as the poet who wrote the Rubaiyat. He wrote on algebra, 

not only solving the usual quadratics, but also giving geometric solutions 

of cubics via intersecting conics. He classified cubic equations according 
to the number of terms as simple 

r = x, r = x2, r = x3, ax = x2, ax = x3, ax2 = x3 

and compound 

a. x2 bx = c, x3 + bx2 — cx, etc. 

b. x3 + d — bx2 -f cx, etc. 

This classification seems natural since these all seem to be different 

problems. After all, a cube equal to a number is not the same as a cube 

equal to a multiple of a side, is it? Symbolism with literal coefficients and 

the possibility of the coefficients being zero was needed before classifica¬ 
tion by degree could be perceived. 

Several Arabic mathematicians made important contributions to 

mathematics. One area that has not been mentioned is geometry. For 

example, Omar Khayyam tried to prove Euclid’s fifth postulate about 

parallels. Others had tried this, of course, but he made a particularly 

good attempt. There were noteworthy Arabic mathematicians who lived 

after Omar Khayyam, but by 1450 Europe had become the leading 
center of mathematics. 
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Problems 

1. Using an abacus, perform the following operations. (If you do not 

have an abacus available, you might use checkers, buttons, or card¬ 

board markers.) 
a. 47 + 68 b. 695 + 527 c. 3 X 17 

d. 49 X 84 e. 37 X 105 f. 568 X 762 

2. Construct a 4 X 4 magic square by writing the numbers in order 

starting with the number 1 in the upper left corner. Then replace each 

number not on one of the two diagonals by its difference from 17. 

Check to see that each row, column, and diagonal has the same sum. 

3. Complete all steps of the solution of the 3 X 3 system of equations 

from the Nine Chapters on the Mathematical Art. 

4. Write the following numbers using the Chinese system, but using our 

numerals, with the additional symbols a = 10, b = 100, and c = 

1000. 
a. 35 b. 249 c. 307 

d. 80 e. 6342 f. 5004 

5. Expand (x + y)8 without multiplying. 

6. The Chinese rods were often used on ruled tables on which a zero 

could be clearly indicated by leaving a blank column. Sometimes 

numbers were written in the form of the rod numerals, so a written 

zero, 0, was developed. Express the following numbers using the 

rod numerals. 
a. 35 b. 249 c. 307 

d. 80 e. 2897 f. 4069 

7. Write the following equations using the symbolism of Brahmagupta, 

a. 3x2 — 5x = 7 b. 2x2 = 4x — 3 

8. State Brahmagupta’s method of solution for the equation 2x2 + 

3x = 2. 

9. Solve the following using the complementary plan of subtraction. 

Explain each step. 

a. 682 b. 4532 

-291 -2784 

10. Multiply the following numbers using the grating method. 

a. 32 X 64 b. 675 X 238 c. 942 X 926 d. 68 X 4317 



11. Perform the following divisions using the galley method of division, 

a. 638 -5- 27 b. 7942 38 c. 49,172 321 d. 671,411 ^ 19 

12. Write the following numbers using the Mayan symbols, 

a. 25 b. 194 c. 301 d. 58 

13. Give a geometric solution in the manner of al-Khowarizmi to the 
following equations. 

a. x2 + 6x = 16 b. x2 + 24x = 25 

14. Use the rule of double false position to solve the equation 

3x - 12 = 0. 

15. Prove that the value x = (f\gi — fig\)/{f\ — fi) obtained using the 

method of double false position to solve the equation ax + b = 0 is 
correct. 

16. The method of double false position can be used to find approximate 

solutions to equations of degree higher than one, such as x2 — 3 = 0. 

For the equation x2 — 3 = 0 the solutions approach the exact 
solution, -\J3. 

a. Let gi = 1 and g2 — 2 be the two guesses. Show that the failures 
are /i = — 2 and fi = 1, and find x. 

b. Repeat the rule of false position. This time use the x of part a as 

one guess. As the second guess use one of the guesses in part a, 

namely, the one whose failure has a sign opposite that of the 

failure of x. The new solution will be yet a better approximation 
to >/3. 

Some problems in the Indian books are quite fanciful. Problems 17-19 
are from the Vija-Ganita of Bhaskara. 

17. “[Arjuna,] the son of Pritha, exasperated in combat, shot a quiver of 

arrows to slay Carna. With half his arrows he parried those of his 

antagonist; with four times the square root of the quiver-full, he 

killed his horse; with six arrows he slew Salya; with three he de¬ 

molished the umbrella, standard and bow; and with one he cut off 

the head of the foe. How many were the arrows, which Arjuna let 

fly?”3 [Let x2 represent the total number of arrows.] 

18. ”The eighth part of a troop of monkeys, squared, was skipping in a 

grove and delighted with their sport. Twelve remaining [monkeys] 

were seen on the hill, amused with chattering to each other. How 
many were they in all?”4 

3Colebrooke, Algebra, p. 212. 
4lbid., pp. 215-16. 
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19. “The square root of half the number of a swarm of bees is gone to a 

shrub of jasmin; and so are eight-ninths of the whole swarm; a 

female is buzzing to one remaining male that is humming within a 

lotus, in which he is confined, having been allured to it by its fra¬ 

grance at night. Say, lovely woman, the number of bees.”5 [Let 2x2 

be the number of bees.] 
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4 European Mathematics 
Until 1630 

In the early medieval period there were few mathematical works available 

in Europe. By the 1100s more books were appearing, primarily in 

translations from the Arabic. Europeans learned arithmetic and algebra 

from these Arabic sources and developed those subjects further. At the 

same time, Greek works were slowly increasing in availability and in¬ 

fluence. At first they were translated from Arabic copies, but in the 

Renaissance more complete Greek versions were recovered. Finally, by 

about 1600, mathematicians were able to master the Greek works, and 

with the newly developed symbolic algebra, they continued the ad¬ 

vancement of mathematics to an even higher level. 

! Europe in the Middle Ages (529-1436) 

Rome had been a mighty power for hundreds of years, but by a.d. 500 

the central government found itself unable to maintain control of such a 

large empire. Communities became isolated to a degree, because the 

society was rural and agricultural, eventually evolving into feudalism. 

Vassals tilled the land of their feudal lord, working as tenant farmers. 

They pledged their fealty to the lord and served as his knights in return 

for their small parcels of land. Feudal societies were not conducive to 
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formal education, so the only important centers of learning in the early 

Middle Ages in western Europe were the monasteries. 

BEDE (700) 

One of the most important early mathematical figures, Bede, was an 

English monk. He was concerned with computing the correct date for the 

festival of Easter, one of the problems which faced the monks in the 

monasteries. Calculation was also an important practical need. 

Bede recorded information about finger reckoning, a system of cal¬ 

culation by sign language which was widely used before and after Bede’s 

time. Finger reckoning was a valuable skill, because people could com¬ 

municate purely by means of hand signs. There was no need to write or 

to be able to speak the same language as long as the finger reckoning 

symbols were understood. Finger reckoning could also be used to record 

figures temporarily while calculating on an abacus or dust table. The 

commonly used symbols are the following: 

Number Representation 

fold little finger of left hand 

fold ring and little fingers 

fold middle, ring, and little fingers 

fold middle and ring fingers 

fold middle finger 

fold ring finger 

fold little finger across palm 

fold ring and little fingers across palm 

fold middle, ring, and little fingers across palm 

2 

3 

4 

5 

6 

7 

8 

9 

The numbers 10, 20, 30, 40, 50, 60, 70, 80, and 90 are shown by using the 

thumb and index finger of the left hand. Thus, all numbers from 1 

through 99 can be represented on the left hand. Larger numbers can be 

represented on the right hand. Juvenal, a Roman poet, refers to this 

when he says, “Happy is he indeed who has postponed the hour of his 

death so long and finally numbers his years upon his right hand.”1 

There was little mathematical activity from the time of Bede to that 

of Gerbert (980). Gerbert, who later became Pope Sylvester II, wrote on 

computation using the abacus and on Hindu-Arabic numerals, which 

the may have learned during a trip to Spain. He made counters with 

these numerals inscribed on them and gave a method of division using 

JD. E. Smith, History of Mathematics, II, p. 197. 
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such counters on an abacus. The following example is a written form of 
his method. 

Example Consider 805 ~ 7. Write 7 as 10 - 3. Dividing 10 

into 805 gives 80. Multiplying, 80 X 10 = 800 and 

80 X 3 = 240. The division continues as illustrated. 

10 
80 + 20 + 10 + 3 + 1 + 1 = 115 

- 3 805 
800 /—- 105 14 

5 100 10 
+240 5 4 

245 + 30 + 3 
200 35 7 

45 30 
+ 60 5 

+ 9 

vJ 

the twelfth century 

The 1100s brought a new interest in learning to Europe. Trade was in- 

creasing and towns were developing around the trading centers. The 

economy was tending to be based on money, so the feudal landowners 

were longer the most powerful men. dhe power belonged to the 
wealthy men who could pay their armies with money, rather than land. 

Schools in the cathedrals were growing, and in the latter part of the 

twelfth century several such cathedral schools developed into some of the 

first universities Paris and Oxford, for example. University originally 

meant group as in a guild, because the students were united to prevent 

their exploitation by local landlords and shopkeepers who could charge 

outrageous prices, due to the large demand for goods and services from 
the students in the town, unless checked. 

Few books were available at this time in Latin, although there were 

poor versions of Boethius’ mathematics. The Moslems, who were the 

most learned men of the times, had been in Spain and Sicily for 300 or 

400 years, so scholars traveled to Spain, which was very cosmopolitan, 

to further their education. There were Christians, Moslems, and Jews,' 

all of whom were important in Spanish cities, particularly Moslems and 

Jews when the area was under Moslem control. Many Arabic and some 

Greek works existed in Spain, and scholars translated these works 

to Latin. For example, Euclid’s Elements was translated by Adelard of 

Bath in 1142, Ptolemy’s Almagest was translated by Gerard of Cremona 

in 1175, and al-Khowarizmi’s Algebra was translated by Robert of 
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Chester in 1145. In some cases an Arabic work was itself a translation 

from Greek, so it is understandable that much was lost in the subsequent 

translation. 
The algebra of al-Khowarizmi was particularly liked by Europeans. 

It introduced them to numerical algebraic solutions to quadratics and to 

computation with Hindu-Arabic numerals. We shall later see some of 

these early European methods of computation with numerals, many of 

which were learned from al-Khowarizmi and other Arab writers. 

FIBONACCI (1220) 

The Italian cities, particularly Venice, were the leaders in trade, and the 

son of an Italian trader became known as the best mathematician of the 

Middle Ages. Leonardo de Pisa, better known as Fibonacci (son of 

Bonaccio), traveled with his father to the Middle East and Africa learning 

various methods of computation with Hindu-Arabic numerals and 

possibly some Chinese mathematics. These methods were quite useful 

in trade, but officials familiar with the counter abacus and Roman 

numerals were skeptical and banned the use of Arabic numerals in Venice. 

One argument that the officials used was that Arabic numerals were 

easily altered. 
Fibonacci wrote a book called Liber abaci (book of the abacus) con¬ 

taining numerals and computation. It might be called the book of cal¬ 

culation. The following is an example of the borrowing and repaying plan 

of subtraction which Fibonacci probably learned from the Arabs. The 

number borrowed is added to the bottom digit in the next column. 

6354 8 from 14 is 6 

— 2978 8 from 15 is 7 

10 from 13 is 3 

3 from 6 is 3 

Fibonacci did not use the Hindu-Arabic numerals for fractions. He used 

unit fractions and common fractions for commercial problems, and he 

used sexagesimal fractions in theoretical problems. 
Fibonacci is most famous for the Fibonacci numbers which come from 

the following problem. 

How many pairs of rabbits will be produced in a year, begin¬ 

ning with a single pair, if in every month each pair bears a new 

pair which becomes productive from the second month on? 

We can find the rabbit population in each month by adding the number 

of pairs in the previous month to the number of new pairs born (equal to 
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the number of pairs two months before). Thus, un = un-i + w„_2, where 

un is the number of pairs in month n. Consider the following table. 

Month 12 3 4 5 6 7 8 9 • • • 

Pairs of rabbits 1. 1 2 3 5 8 13 21 34 • • • 

Fibonacci numbers are one of the most fascinating topics in mathe¬ 

matics. There is at present an entire journal called the Fibonacci Quar¬ 

terly devoted to these numbers and similar topics. There are some in¬ 

teresting facts about Fibonacci numbers which were discovered later in 

history. For example, a simple theorem about Fibonacci numbers is that 

every fifth number is divisible by 5. As we see from the table, u5 = 5 and 

wio = 55. Another interesting property concerns the ratios of successive 
Fibonacci numbers, 

112 3 5 

F 2’ 3’ 5’ 8’ ' ’ ' 

This sequence of ratios converges to the golden section number 

(^5 — l)/2. Recall that the golden section number x, satisfies the relation 

1 _ x 
x 1 — x 

l — x = x2 (fig. 4.1) 

l — x 

-Y- 
l 

Figure 4.1 

J 

To illustrate the relation between this value jc and the Fibonacci numbers, 

continued fractions are used. An example of a continued fraction is 

2 + 1 

4 + 1 
3 

which can be simplified to give 

3 

1 
2 + T.3 

3 

3 3 39 

? _3_ 29 “ 29 
+ 13 13 
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Consider the simplest infinite continued fraction 

1 + 

1 

I 

1 + 
1 

1 + 
1_ 

1 H- 

If you examine the fraction carefully, you can see that 

1 

1 “h x 

so that 

X + X2 = 1 

and x is, in fact, equal to the golden section number. Take successive 

approximations to the infinite continued fraction by chopping it off. 

1 
I 

X2 = 

*3 = 

1 

' + } 
1 

1 

2 

1 + 
1 

■ u 

and so on. Thus, the approximations to the continued fraction are just 

the ratios of successive Fibonacci numbers. Since this continued fraction 

equals the golden section number, the sequence 1/1, 1/2, 2/3, 3/5, . . . 

converges to the golden section number. 
The sequence of Fibonacci numbers occurs often in nature. For 

example, the whirls of the rings on a pineapple are given by Fibonacci 

numbers. The hexagonal regions are arranged in rows in various direc¬ 

tions — five parallel rows sloping gently up to the right, eight rows 

sloping more steeply to the left, and 13 rows sloping very steeply to the 

right. (All rows are started at the base of the pineapple.) Notice that the 

numbers of rows — 5, 8, and 13 — are from the Fibonacci sequence. A 

similar phenomenon occurs in the patterns of sunflower seeds and fir 

cones. 
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METHODS OF COMPUTATION 

Maximus Planudes (1300), a Greek monk from Constantinople, used a 

division method which is similar to our own, but still related to the 

galley method in that the divisor is multiplied digit-by-digit. Consider the 

problem 625 -f- 25. Divide 25 into 62, giving 2. Multiplying, 2X2 = 4. 

Subtract the 4 from the 6 and bring down the 2, giving 22. Now, 2 times 

5 is 10, and subtracting gives 12. Bring down the five, and divide 25 into 
125, giving 5. Multiply and subtract as before. 

25) 625 (25 

4 

22~ 

10 

125 

10_ 

25 

25 

John of Halifax (1250) was known as Sacrobosco, the Latin translation 

of Halifax, because he wrote in Latin. Sacrobosco was educated at 

Oxford, and he taught in Paris. The simple borrowing plan of subtraction 

that is familiar to us was found in a popular book on computation 
written by Sacrobosco. 

42 7 from 12 is 5 

— 27 2 from 3 is 1 

15 

Early methods for the basic operations of arithmetic tended to follow 

patterns suitable for use on a dust board (as the Indians used), even when 

done on paper. For example, the following is an addition from Sacro¬ 
bosco. 

826 829 909 1309 

483 48 4 

On a dust table or slate the figures would not be copied over as they are 

here, but rather be erased. It was not until the appearance of printed 

arithmetic books in the fifteenth century that addition assumed its 
modern form. 

An anonymous work, The Crafte of Nombrynge (1300), is the first 

arithmetic book to be written in English. The following computation 

taken from this book is an example of a multiplication. The calculation 

is really more suitable for writing on a dust board or slate than on 
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paper, so to make it clearer numbers which would be erased will have 

slashes through them. The approach is similar to that in the galley 

method of division. 

Example Compute 2465 X 432. 

Take the 2 of 2465 and multiply by the 4 in 432, writing 

the 8 above and crossing out the 4. Then 2 X 3 is 6 

(written above 3), and 2 X 2 is 4 (written above 2). 

Move the 432 over one place to the right, and repeat the 

process, multiplying 432 from left to right by 4. 

Continue in this way until each digit of 2465 has been 

used. To obtain the product, add the figures from left to 

right, carrying back to the left when necessary. The final 

result is shown at the left. 

Addition was done from left to right. When figures were scratched out, as 

was done here, it was called the scratch method. 

Since we are discussing methods of computation, it is convenient to 

mention an interesting method of multiplication related to the Egyptian 

method of doubling and halving. It is called the Russian peasant method 

and supposedly was used by Russian peasants even in the twentieth 

century.2 Consider 49 X 28. We halve 49, neglecting fractions, and 

double 28: 

2465 

432 

4 

862465 

m 
12 

1648 

86?#65 

mi 
0 

21 

10 

2411 

1285 

164820 

86 %m 
mm 
mi 
u 

mm 
1064 

49 24 12 6 3 1 

28 56 112 224 448 896 

2Ibid., p. 106. 
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We now add the figures in the bottom row under odd numbers in the top 
row, 

28 

448 

896 

1372 

We are, in effect, adding one 28 to sixteen 28s to thirty-two 28s. 

BRADWARDINE (1325) AND ORESME (1360) 

In the medieval universities there were several scholars who contributed 

to mathematics. Two of the most important writers were Thomas Brad- 
ward ine of Oxford who became Archbishop of Canterbury and Nicole 
Oresme of Paris who became Bishop of Lisieux. 

In their criticisms of the ideas of Aristotle on motion they extended the 

idea of proportions of Euclid to talk about y a xn or even a proportion 

anticipating the later development of logarithms. In the latter case one 

might have a sequence which varied geometrically, while a corresponding 

sequence varied arithmetically 

x 1 2 4 8 16 

y 12 3 4 5 

In the geometric approach these men used, these ideas are very compli¬ 

cated to express. What makes it easier for us is a good symbolism which 
they did not possess. 

The basic concepts of Aristotelian and medieval physics had been 

qualities. A body was hot or cold, heavy or light, red or black, etc. An 

object would behave in a certain way because of its properties; if an 

object was heavy, it would fall to the ground. By the late Middle Ages 

scholars began discussing variable qualities such as velocity or tempera¬ 

ture. In this study they made early attempts at graphs and struggled with 

the equivalent of infinite series. For example, Oresme drew a triangle 

representing a body moving with increasing velocity at a constant rate 

(fig. 4.2). The horizontal direction represents time, while the vertical 

represents velocity. He found the distance covered as the area of the 

triangle. 

There were various speculations on the infinite and infinitesimals, 

although we will not be concerned with them in this text. Several hundred 

years later men like Galileo, who created many concepts of quantitative 

physics, read these medieval works and were influenced by them. 
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Figure 4.2 

Oresme studied incommensurables extensively, because he wanted to 

show that the planets’ motions were given by irrational ratios, such as the 

ratio of the velocities of orbit of two planets, and thus were unknowable, 

to combat the influence of the astrologers on his king, Charles V. Charles 

was a firm believer in astrology, and Oresme was possibly afraid that the 

king would make unwise decisions based on the astrologers’ predictions. 

In the middle of the fourteenth century, the terrible black death swept 

over Europe, and nearly half of the population died. This plague greatly 

interrupted the continuity of mathematical learning. England and France 

were also at war for the next hundred years, a situation which further 

quelled mathematical activity for some time. 

2 The Renaissance 

Renaissance refers to the rebirth of interest in learning by the mid 

1400s, at which time Europe took the lead in the development of mathe¬ 

matics. There were several factors to account for Europe’s importance in 

mathematics. Printing was introduced in Europe and had a tremendous 

effect on learning. Books became more plentiful and, therefore, more 

accessible to more people. A rag paper process was developed at the same 

time. Previously, one had to write on papyrus or parchment. The rag 

paper added to the usefulness of printing, because more books could be 

printed. It was not until the 1800s that a cheap wood pulp paper process 

was developed. 

Trade grew considerably in the Renaissance. An improved rudder was 

put into use, enabling ships to travel even greater distances. Italy, the 

former leader in trade, was still very strong in the early Renaissance. 

German groups were important in trade in the northern European 

countries, and they formed the Hanseatic League, a group devoted to 

protecting German trading interests in foreign countries. Schools were 

established by the Hanseatic League and the rechenmeister (master of 

calculating) became a kind of town official. The Hanseatic schools can 
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be thought of as business schools for future traders. The teachers wrote 
many commercial arithmetics for use in the schools. 

Because trade was increasing, there was also a need for astronomical 

tables for navigation (to calculate longitude, for example) which, in turn, 

required trigonometric tables. Many people were interested in astrology 

and this influenced the demand lor astronomical tables, since the precise 

locations of the planets at any time were needed to make astrological 
predictions. 

The Renaissance fostered a renewed interest in classical authors. The 

literary scholars wanted to study original Latin and Greek works, in¬ 

cluding mathematics texts. Because of the search for the original books, 

many works not previously known were eventually made available, such 

as those of Apollonius, Diophantus, and parts of Archimedes. Yet in this 

period, especially the early years, these works were too advanced to be 

understood by many. The Arabic algebraic tradition was developed and 
studied more, because it was easier to understand. 

REGIOMONTANUS (1460) 

Regiomontanus is the name given to Johann Muller of Konigsberg, 

because Regiomontanus is the Latin translation of Konigsberg (king’s 

mountain). Probably the most capable mathematician of his time, 

Regiomontanus completed a new Latin version of Ptolemy’s Almagest. 

He traveled and searched for ancient mathematics books and found 

Diophantus’ Arithmetic in Greek, but never did translate or publish it. 

Regiomontanus’ main contribution to mathematics was a book on 

triangles. In it he showed the methods of finding one side of a triangle 

when other sides and angles are given, among many other problems. 

His book is amusing in some respects. For a simple problem, such as 

given A = 5C and B = 2C, the method of finding A — B is to subtract, 

5 — 2 = 3, and multiply by C. Regiomontanus goes through quite a long 

proof in the Euclidean style, but ultimately gives the method in a simple 

rule. It appears that he just wanted to use the rule, but felt he must give a 

proof, an approach similar to that of al-Khowarizmi. In the same text on 

triangles Regiomontanus expressed the lengths and sides of triangles by 

numbers, and if a side length turned out to be an irrational number, he 

merely took an approximation. Regiomontanus also developed some 

astronomical tables which were used by Columbus on his trip to America. 

SYMBOLISM AND NOTATION (1484-1545) 

Concerning the notation for equations, Diophantus used abbreviations 

for unknowns and powers, as did Brahmagupta, but al-Khowarizmi 
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wrote everything out in words, including numbers. During the Renais¬ 

sance several authors wrote algebra books introducing notation and 

symbols, and, gradually, abbreviations and symbols evolved in Europe, 

so that by the mid 1600s the form of equations was as we know it now. 

Nicolas Chuquet (1484) of France wrote Three Parts of the Science of 

Numbers. He used plus, meaning more, for addition and abbreviated it by 

p. Moins, meaning less, was applied to subtraction and abbreviated as m 

(Fibonacci had used minus). Chuquet represented 6x2 by ,62., and he 

wrote negative exponents such as 9x~2 as .92™. He was one of the first 

mathematicians to use the laws of exponents. 

Luca Pacioli (1494) of Italy wrote a popularly used book, Summa . . . , 

which covered arithmetic, algebra, geometry, and bookkeeping. He 

borrowed from other works, giving several methods of multiplication 

and division. Among them were old methods derived from the Arabs and 

Hindus, but also some methods that are basically what we presently use. 

It was perhaps in the seventeenth century that our present methods of 

multiplication and division became standardized. Printing ultimately 

rendered useless the methods unsuitable for paper and ink. 

Our method of multiplication was called the chessboard method by 

Pacioli, because of its appearance. For example, 

94 3 7 

28 

7 5 4 9 6 

1 8 8 7 4 

264236 

An older form of multiplication from a manuscript dated 1424 is illus¬ 

trated by the following example of 34 X 45. 

4 

5 

3 4 

2 0 

1 6 

l 5 

1 2 

15 30 

132 European Mathematics Until 1630 



Among the other methods given by Pacioli was that of cross multipli¬ 

cation. This system is really only useful for small problems, for example, 

Cross multiplication allows the problem to be calculated mentally with 

only the answer being written on paper. The thought process involved is 
illustrated by the following steps. 

5X4 = 20; put down 0 and carry the 2. 

Following the lines of the cross, 

5X3= 15, plus 2X4 = 8, is 23 + 2 (carried) = 25; put 

down the 5, carry 2. 

Then 3X2 = 6, plus 2 (carried) is 8. 

Thus, the answer is 850. 

The use of the cross in this method of multiplication probably led to its 
later use as a symbol for multiplication. 

Pacioli gave the name a danda, meaning by giving, to our division 

method, because at each step the next number is brought down and 

“given” to the remainder. This name has not survived, because we do not 

have to distinguish different methods of division as Pacioli did. 

Johann Widman (1490) of Germany was the first to use the signs + 

and — in a text. These symbols had been in use as warehouse marks to 

indicate excess (+) and deficiency (—). The + sign is a ligature for et, 

meaning and; it is somewhat similar to an ampersand, &. The — sign 

may be a simplification of m which was previously used to indicate minus 
in other writings. 

Another German, Adam Riese (1524), was responsible for a table of 

square roots. To find ^3 would be difficult without the use of decimals. 
An alternative notation would be 

ft _ V30,000 ^ V3,000,000 
^ 100 0r 1000 

Riese wrote the answer as 1732 with the understanding that it was to be 

divided by 1000. The idea of decimals was becoming clearer, but decimals 
were not yet in use as we know them. 

Christoph RudolfT (1525) was also a German mathematician. He con¬ 

tributed yet another step in the advancement of the concept of decimals; 

for example, he wrote 50T3o or 50|3 to symbolize 503 divided by 10. A 

Persian writer, al-Kashi (1400), also used decimals somewhat similarly. 
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Rudolff introduced the symbol *r for square root. It was a lowercase 
r, an abbreviation for radix. Sometimes a capital R was used in front of 
the number, as R3, to indicate a square root, but by using a small letter 
the number can be written underneath, as T 3, which later became -\[3. 

In the German books, algebra was known as the cossic art. Coss was a 
translation of the Latin res, meaning thing. We now call the thing the 
unknown. 

The symbol = for equivalence was introduced by an Englishman, 
Robert Recorde (1545), who wrote several mathematical books. He used 
parallel lines -- as a symbol for equality, because “no two things 
could be more equal.” 

The notations of algebra were becoming standardized in the late 1500s. 
An Englishman, Thomas Harriot (1600), wrote an algebra book in which 
he introduced the sign < for less than and the sign > for greater than. 
Harriot later went as a surveyor to the colony of Virginia. 

Related to the symbolism and notation being formulated were the 
terms taken from Latin arithmetic which we currently use. The following 
table lists some of the terms commonly used in mathematics. 

Term 

minuend 

subtrahend 

numerator 

denominator 

quotient 

fraction 

degree 

minute 

second 

per cent 

Meaning 

number to be diminished (numerus minuendus) 

number to be subtracted 

numberer 

namer 

how many? 

to break (frang ere) 
Fractions were called broken numbers or fractured 
numbers in English. 

steps (de + gradus) 

first small part (pars minuta prima) 

second small part (pars minute secunda) 
This refers to the division of the unit into sexagesimal 
parts. 

o 

per hundred (per cento) 
This was abbreviated as per c, 0/0, or %. The term was 
originally used to mean just per hundred, so one could 
say $5 per cent.3 

3Ibid., pp. 249-50. 
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I he derivation ol the word tally is an interesting one. Tally comes from 

the same root as tailor which means to cut. Originally, a tally was a piece 

of wood on which notches were cut to represent numbers. The tally was 

used to keep accounts by being split in such a way that the notches would 

appear on both halves, therefore producing two copies, or records, of a 

transaction. For example, when a person deposited money in the Bank of 

England the amount of the deposit was recorded on a tally, the tally was 

split, and the bank kept the leaf and the depositor kept the stock. The 
depositor thus became a stockholder in the bank!4 

MATHEMATICAL INFLUENCE ON ASTRONOMY AND ART 

Nicholas Copernicus (1530) lived in a copper-mining town in Poland. 

Copernicus is the Latin form of his Polish name, Koppernick. In his 

travels, Copernicus may have met some Neoplatonists in Italy who be¬ 

lieved that mathematics was fundamental to an understanding of the 

universe. Copernicus was interested in astronomy, and he applied his 

mathematical ideas to his study of the solar system and stars. He believed 

that circles were the pure, eternal forms and that uniform motion was 
proper for heavenly bodies. 

Copernicus’ goal was to improve the Ptolemaic system by considering 

the bodies to have uniform motion with respect to the center of the 

epicycle rather than the equant. To achieve this goal, he found it desirable 

to have the earth move around the sun. Some ancient Greeks had already 

proposed this hypothesis, but it had not been accepted. Copernicus 

actually made the epicycle theory more complicated, but in approxi¬ 

mately 50 years his theory gained support. Experimentally, there was no 

reason to change the hypothesis; in fact, there were arguments, such as 

the fact that no parallax had ever been observed, that suggested that the 
earth did not move. 

Mathematics had an influence on art in the Renaissance. Previously, 

paintings were flat and more symbolic than real in appearance. Then, 

some mathematically inclined artists such as Leon Battista Alberti (1435) 

and Piero della Francesca (1478) in Italy, and Albrecht Diirer (1525) in 

Germany, began investigating the geometry of perspective. Their goal 
was to represent depth on the canvas. 

The act of seeing is very involved, part of it being psychological; we see 

what we know we should see. An artist represents a scene on a flat 

canvas in such a manner that we perceive depth. Light travels in rays, so 

we can get an idea of a correct representation by seeing where the rays 

from our eye to an object intersect the canvas. For example, consider the 

4Tbid., p. 194. 
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representation of a flat table top (fig. 4.3). The line A C is the exact 

representation on the canvas of the table edge A C as perceived from the 

point shown. The figure A'B'D'C', though not rectangular, does convey 

the correct image of a three-dimensional table. It is as if the canvas were 

a transparent window between the eye and the object. The rays from the 

eye to the back corners of the table intersect the canvas in a shorter line 

than do the rays to the front corners. 

It has been said that Greek art is tactile in nature as compared to 

Renaissance art which is visual and that this comparison holds, in a 

sense, for their respective mathematics. In Greek art figures were distinct 

with little or no overlapping, while Greek theorems were distinct entities. 

In Renaissance art the visual scene was represented with much over¬ 

lapping, and in Renaissance mathematics there was more of an attempt to 

relate different theorems in general approaches.5 

SOLUTIONS OF CUBIC EQUATIONS 

In the early 1500s the Italian algebraists made a major advance. Methods 

for solving quadratic equations had been known for thousands of years, 

but no analogous rules had yet been developed for any higher degree 

equations. In 1515 Scipione del Ferro found an algebraic solution for one 

type of cubic equation. Such a method was quite valuable to a mathema¬ 

tician for he could challenge others to a contest in solving cubics with the 

expectation that he would win handily. With the prestige from such a 

victory, a mathematician might obtain a nice position. 
Antonio Maria Fiore learned of the solution of the cubic from his 

teacher, del Ferro, and in 1535 challenged another mathematician, 

Niccolo Tartaglia, to a contest of solving cubics. At the last minute, 

5See William Ivins, Art and Geometry, 113 pp. 
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Tartaglia figured out the solution to the cubic, but he said nothing. 

Apparently, Tartaglia wanted to keep his discovery a secret so he could 

use it in future encounters. However, his friend Girolamo Cardano 

persuaded him to divulge it, whereupon Cardano published the solution 

in 1545 in his book, The Great Art. Even though Cardano gave credit to 

Tartaglia for the solution, Tartaglia was quite upset that Cardano dis¬ 

closed it. In addition to Tartaglia’s solution of the cubic, Cardano solved 

12 other cases of cubic equations himself. Cardano also showed how to 

solve the quartic, using a procedure developed by his pupil Ferrari (1545). 

The following is an example of the method for solving cubics given in 

The Great Art (modern symbols are used, though Cardano wrote every¬ 
thing out). 

Example Solve x3 + 6* = 20 by letting x = u - v and substi¬ 
tuting in the equation, giving 

(u — r)3 4- 6(u — v) = 20 

Multiplying, 

w3 — 3 u2v + 3 uv2 — v2 + 6u — 6v = 20 

Choose the product uv to be 1/3 the coefficient of x, 

uv = ^(6) = 2 

This choice of uv makes several terms drop out. Sub¬ 
stituting, we obtain 

w3 — 6u + 6v — v3 -f- 6u — 6v = 20 

or 

w3 - V3 = 20 

Now, 

2 
v — - 

u 

so 

u3 
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or 

(«3)2 - 20w3 -8 = 0 

Using the quadratic formula, u3 can be found. By 

taking the cube root, u can be found. Then substitut¬ 

ing u = 2/i? in the equation «3 — v3 = 20 gives the 

quadratic equation (u3)2 + 20u3 — 8 = 0 which can 

be solved for u3. By taking a cube root v is obtained, 

and then x = u — v can be found. The answer 

obtained is 

x = + 10 - ^/\fm - io 

You can check that x = 2 satisfies this equation. In fact, the above 

expression is equal to 2; the method gives the answer in an unusual form. 

Even stranger real roots are sometimes given in terms of complex 

numbers. The practice of expressing roots in this way was very per¬ 

plexing to the Italian algebraists. Before this time square roots of nega¬ 

tive numbers could safely be ignored as meaningless. Mathematicians 

began to think that it would be to their advantage to make sense out of 

negative square roots since they often did appear. For example, given 

x3 = 15x + 4 

a root is 

jc = 4 

but the rule for this case gives, as was shown later, 

x = + - ^pfr\ 

If you have studied complex numbers, you can show that this is, in fact, 

four, but it certainly seems to be a strange representation. 
Cardano also encountered complex numbers in the problem of dividing 

10 into two parts such that their product is 40, i.e., x + y = 10, xy = 40. 

By applying the rules, one gets x = 5 + yj— 15, y = 5 — 15. For¬ 

mally, it checks, but Cardano said this solution was “as subtle as it is 

useless.” Cardano rejected negative roots as fictitious, probably taking 

for granted that the unknown represented a positive quantity. 

Cubics and quartics had been solved, but general solutions had not 

been determined for higher degree equations. It became a famous 

problem to try to find a general solution to the fifth degree equation. 

In the 1800s this problem was shown to be impossible. 
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ALGEBRAIC APPLICATIONS TO GEOMETRY 

Algebra was developing during the Renaissance, and, as in the older 

Babylonian-Egyptian tradition, the application of numbers and algebra 

to geometrical problems was growing also. For example, Bombelli (1560) 

wrote an algebra book in which he solved the problem of finding a 

square inscribed in a given triangle algebraically. (His book was never 

published.) These algebraic applications to geometry were soon to 
increase in number. 

Due to increased trade and exploration, there was a need for good 

maps. Gerard Mercator (1596), a German whose real name was Gerhard 

Kremer, developed a new means of projecting a sphere onto a plane, 

called the Mercator projection, which has proved quite useful to this day 

in mapmaking, particularly since a fixed compass course can be repre¬ 

sented by a straight line. Mercator developed his projection empirically, 

but the mathematical equations representing the projection were given 
about 30 years later. 

Francesco Maurolico and Federigo Commandino translated the works 

of Archimedes, Apollonius, and Pappus at about 1550-60, and they 

solved some problems on centers of gravity in the Archimedean manner. 

By the end of the Renaissance scholars were able to appreciate the 

ancient works, most of which were available by that time. 

3 Toward Modern Mathematics 

Most of the Greek works we have now were already recovered and 

translated by the early 1600s. There were capable men in the new al¬ 

gebraic tradition who understood these works and added to them. These 

men had in their possession the algebra based on Arabic sources which 

had been developing in Europe for many years. It was a combination of 

the developing algebra and the advanced Greek geometry which led to a 

very fruitful period of discovery and to new powerful mathematical 

techniques. The seventeenth century was quite an exciting period for 
mathematics. 

ALGEBRA AS AN ANALYTIC ART 

Francois Viete (1580) of France was a lawyer and a member of parlement. 

He used the method of Archimedes with inscribed polygons to approxi¬ 

mate tr, using polygons of 6 (216) = 393,216 sides to find ir to nine 
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decimal places. Soon after, Adriaen van Rooman in 1593 used polygons 

of 230 sides to calculate tt to 15 places. In 1596 Ludolph van Ceulen used 

polygons of 262 sides to compute tt to 35 places. He spent many years on 

this computation and had the result engraved on his tombstone. 

Viete was among the first mathematicians to express algebra as a 

symbolic activity. That is, the unknown * in an equation is merely a 

symbol. Algebra, or as Viete called it, the analytic art, is the art of 

manipulating symbols, such as changing 3*2 — 2x = 4x + 1 to 3x2 = 

6x + 1. He believed this art to be a very powerful method of finding 

truth. At the end of his book Viete writes as his motto, To leave no 

problem unsolved. 
One specific innovation of Viete’s was to use consonants for given 

fixed but unspecified quantities and to use vowels for unknown quantities. 

Thus, finally a general equation such as ax2 = bx -f- c could be written, 

although Viete’s symbolism did not produce an equation exactly like this. 

Before Viete, whenever a method was described, it was done using a 

given numerical example, such as 6x2 = 2x + 3. The distinction between 

a parameter b and an unknown * is generally a hard one for students to 

understand, so it is not surprising that parameters were developed rather 

late in history. 
Viete’s analytic art can be used to analyze various problems in algebra, 

in geometry, and in other fields. It was a significant development toward 

a more abstract mathematics. For example, he showed that the con¬ 

struction of a regular heptagon leads to an equation x3 = ax + a. Here 

x represents the side. This type of analysis, applied to geometry, soon led 

to the development of analytic geometry. 

AN ADVOCATE OF DECIMALS 

Simon Stevin (1585), a Flemish engineer, was a very novel thinker. 

Finally, after all the years that the Hindu-Arabic numerals had been used 

in Europe, Stevin recognized the best way to write fractions using these 

numerals. Stevin wrote a book. The Tenth, advocating the use of decimal 

fractions and showing how to compute with them. The great advantage 

of decimals is that multiplication and division are done in the same 

manner as for whole numbers, only the decimal point has to be placed 

correctly in the result. Considering any other scheme of fractions, we 

find decimals are by far the best. Stevin’s notation for a decimal fraction 

is illustrated by the following: 

2©706(2)3©8(4) = 2.7638 

(The decimal point notation was first used a few years later by Napier.) 

Stevin also advocated that units of weights and measures be changed to 
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decimal multiples, but this was not done in France until the Revolution 

in 1789, in England until relatively recently, and the gradual change is 

being made in the United States. 

Stevin made some center of gravity calculations in a manner somewhat 

similar to that of Archimedes. For example, he showed that the center of 

gravity of a triangle lies on its median (fig. 4.4). He drew parallelograms 

with sides parallel to the median. By symmetry, the center of gravity of 

each parallelogram is on the median. As the triangle is divided into more 

and more parallelograms, the parallelograms more closely approach the 

triangle. Since the figure defined by the parallelograms always has its 

center of gravity on the median, Stevin reasoned that the triangle must 

also have its center of gravity on the median. 

Stevin and other mathematicians of the time were developing methods 

for solving various problems which would now be solved by the general 

methods of calculus. In fact, it was the work of these men during the 

next 100 years which led to the creation of the calculus. 

THE DISCOVERY OF LOGARITHMS 

John Napier (1600), a Scot, made a set of multiplication tables on sticks, 

which were called Napier s rods (fig. 4.5). They were used for gelosia, or 

grating multiplication. Thus, one could use Napier’s rods to multiply 

without using the multiplication tables. To multiply 25 X 34 one would 

use the 2-stick and the 5-stick for 25 (fig. 4.5a). Using the third and fourth 

rows for 34 (fig. 4.5b) for the multiplication, one obtains the numbers 

needed without having to memorize multiplication tables. 

Napier was an eccentric so many anecdotes about him have survived. 

One story states that Napier became extremely irritated, because his 

neighbor’s birds continually flew over his land. Napier told his neighbor 
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4 
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to keep the birds away, but the neighbor refused to cooperate, saying that 

if Napier could catch the birds, he could keep them. Napier immediately 

set out some corn which had been soaked in whiskey. The birds ate the 

corn and wobbled about while Napier easily collected them in a sack. 

He was thought by some to have enchanted the birds. 

Another tale concerns a problem Napier had with a servant who was 

stealing from him. He devised an interesting way to determine which ser¬ 

vant it was — he claimed to have a psychic chicken. His servants were each 

told to touch the chicken so that it would tell him who was guilty. Napier 

had rubbed the chicken with coal so that when the servants touched it 

their hands would become black. He then ordered the servants to turn 

their hands over for examination. The servant with clean hands was 

shown to be the guilty party, since he did not touch the chicken for fear 

of being revealed. 

Napier lived for a time in an old house near a mill. The clack of the 

mill would disturb his work, so he would go out in his nightgown and 

cap to ask the miller to stop grinding. He probably appeared quite odd, 

and, in fact, he was considered to be a warlock by some local folk. The 

people believed that Napier had a compact with the devil and that the 

time he spent in study was spent in learning the black art.6 

Napier’s most important contribution to mathematics was to develop 

a table of logarithms. Logarithms helped to simplify calculations in 

astronomy which were very laborious, often involving multiplication and 

division of numbers to 10 or 15 decimal places. Using logarithms, multi¬ 

plication and division can be replaced by addition and subtraction. (A 

6Mark Napier, Memoirs of John Napier of Merchislon (Edinburgh: William Blackwood, 
1884), p. 215. 
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slide rule is nothing more than logarithms on a stick.) For example, 
suppose that in the relation x/A = B/C, the numbers A, B, and C are 
given, and we wish to find Rather than multiplying and dividing, we 
use a log table to find log A, log B, and log C. Then we have log x — 
log A = log B — log C, so we can find log x and then look up jc in the 
table. If we have a log table, we need only add and subtract to find x. 

Logarithms to the base 10 are most familiar to us, but Napier did not 
use the idea of a base. He started with a circle of radius 10,000,000. In 
trigonometry we now use a circle of radius 1, but before decimals it was 
customary to use a large radius, such as 107, so that sines would come 
out to be integers, rather than fractions. Even though Napier was familiar 
with decimals, he continued the custom of using the large value for the 
radius. 

Napier wanted to get a reasonable number of points along the radius at 
which he could find the logarithms. Consider in base 10 the points with 
logarithms which are easy to find — IQ1, !02, 103, 104, 105, . 10«, 
which have logarithms of 1, 2, 3, 4, 5, . . . , n, respectively. These points 
are in a geometric progression increasing by 10 times at each step. Napier 
chose his method because it allowed him to find points reasonably close 
together which were in geometric progression. The logarithms of these 
points were then easy to determine. The following is Napier’s definition 
of a logarithm. 

Definition Let a line segment TS (a radius of length 10,000,000) 
and a half line, or ray, BI be given (fig. 4.6). Let a point 
P start from T and move along TS with variable speed 
decreasing in proportion to its distance from 5; at the 
same time let a point Q start from B and move along BI 
with uniform speed equal to the rate with which P began 
its motion. The variable distance BQ is the logarithm of 
the distance PS. 

s 
■9—--—- 

P 

I 
- -—#——  ---—   _ 

Q 

Figure 4.6 

It is perhaps difficult to see that Napier’s concept bears any relation to 
logarithms as we know them. In his system log 10,000,000 = 0, since at 
the start P is at T, and Q is at B. Thus, PS = 10,000,000, and BQ = 
log PS = 0. Also, Napier’s logarithm, BQ, increases as the number, PS, 
decreases, in contrast to the base 10 system in which the logarithm in- 

T 

B 
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creases as the number increases. Nevertheless, despite these differences, 

it is true in Napier’s system that if x/A = B/C, then log x - log A = 

log B — log C, so that x may be found using Napier’s tables. 
We will illustrate that the above property is true by means of an ex¬ 

ample. 

Example Consider the numbers (in millions) x = 8, A = 4, 

B = 2, and C = 1 (fig. 4.7). It is true that 8/4 = 2/1. 

T S 
(millions) I-t-r-—r—I—-r-T-1 I r H 

10 8 4 2 1 

Figure 4.7 

Since the speed of P at any point is proportional to its 

distance from S, the speed of P at 8 is 8/10 of its speed 

at the start T, and the speed of P at 2 is 2/10 of its speed 

at the start T. Thus, the speed of P at 8 is four times the 

speed of P at 2. Also, P travels four times as far to get 

from 8 to 4 as it does to get from 2 to 1 on the line. Since 

P is going four times as fast from 8 to 4 and four times as 

far, it takes exactly the same time to go from 8 to 4 as it 

does to go from 2 to 1. 
Now, consider the point Q on the logarithm ray BI 

(fig. 4.8). The point Q is moving at constant speed. 

log 10 log 8 log 4 log 2 log 1 

Figure 4.8 

When P is at 8 on the line PS, Q is at log 8 on the ray BI. 

When P is at 4, Q is at log 4. Thus, in the time it takes P 

to get from 8 to 4, Q moves from log 8 to log 4. Similarly, 

in the time it takes P to get from 2 to 1, Q moves from 

log 2 to log 1. Since it takes P the same time to get from 

8 to 4 as it does from 2 to 1, it takes Q the same time to 

get from log 8 to log 4 as it does to get from log 2 to 

log 1. Since Q is moving at constant speed, it covers the 

same distance from log 8 to log 4 as it does from log 2 to 

log 1. Thus, 

log 8 — log 4 = log 2 — log 1 
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Analogous reasoning can be used to show, in general, 
that if x/A = B/C, then 

log x — log A = log B — log C 

Of course, in order to make use of this general formula to simplify 

calculations, Napier needed a table of logarithms. The following illus¬ 

trates how Napier made his table. He first found upper and lower bounds 

for log 9,999,999. To find the lower bound, consider the point P to have 

moved one unit along TS to point R, so that RS = 9,999,999 (fig. 4.9). 

T R s 
•-1-— --——• 

B W I 

Figure 4.9 

In the same time, the point Q will move more than one unit since it is 

moving at a constant speed, while the speed of P is decreasing. Thus, 

TR < BW. By definition, BW is the log of 9,999,999, so that 

1 < log 9,999,999 

To obtain an upper bound for log 9,999,999, Napier had the clever 

idea of letting the point P start moving even before it gets to T. He 

defined a new point O such that P takes the same time to get from O to 

T as it did to get from T to R (fig. 4.10). Since the speed of P is pro¬ 

portioned to its distance from S, in the same time it will cover the same 
fraction of its length, no matter where it starts. Thus 

OS _ TS 

OT ~ TR 

O T R s 

Figure 4.10 

and by algebra, 

OS - OT TS - TR 
Qj - JR 
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giving 

TS _ RS 
OT ” TR 

or 

OT 
TS-TR 

RS 

In this instance, TS = 10,000,000 while TR = 1 and RS = 9,999,999, so 

OT = 
10,000,000 
T,999,999 

1.0000001 

Napier defined the point O so that in the same time that P went from 

O to T, Q went from B to W. But P was always going faster than, or as 

fast as, Q since its final slowest speed at T equals the constant speed of 

Q at B and along its motion. Since P is going faster, it covers more 

distance in the same time and 

OT > BW 

or 

1.0000001 > log 9,999,999 

Napier took as his value for log 9,999,999 the average of the upper and 

lower bounds, so that 

log 9,999,999 = 1.00000005 

a figure accurate to seven places. He could have achieved greater ac¬ 

curacy by letting P move for a shorter time interval so that the upper 

and lower bounds, OT and TR, would be closer together. Similarly, if 

Napier had let P move to 9,999,000, he would have achieved less ac¬ 

curacy. 
It was now easy for Napier to obtain the logarithms of certain other 

numbers. He just let P move for the same time it took to get from T 
to R. In this time, P gets from R to Ri (fig. 4.11). Since TR is 1/107 of TS, 

T R Rx R2 S 

Figure 4.1 I 
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RRi is 1/107 of RS, or 

1^(9,999,999) = .9999999 

Thus, 

RiS = 9,999,999 - .9999999 = 9,999,998.0000001 

The point Q takes the same time to go from B to IT as it does to go from 

W to W\ (fig. 4.12), and since it is going at constant speed, WW{ = 
BW = 1.00000005. Thus, 

log RiS = log 9,999,998.0000001 = 2.00000010 

B W Wx W2 

•---T-1-—I--— 

Figure 4.12 

Napier repeated the process. The line RiR2 = 1/107 RXS = .9999998, 
giving 

RiS = 9,999,998.0000001 - .9999998 = 9,999,997.0000003 

Since W\W2 = WW\ = BW, 

log R2S = 3.00000015 

In a similar manner, using only subtraction and addition, Napier 

could compute the logarithms of as many numbers as he chose in this 

sequence. Of course, continuing in steps of such small size, he would 

never finish the calculations. In any case, he did not want a table with 

over 10,000,000 entries, so he continued for only 100 intervals, (little 

steps), at which point he found the logarithm of 9,999,900.0004950. He 

then used a method (which we will not describe) to interpolate and obtain 
the logarithm of 9,999,900.0000000. 

Napier defined a new time interval, namely, that time necessary for P 

to get from 10,000,000 to 9,999,900.0000000. He proceeded to find the 

logarithms of the sequence of distances that P would reach in 50 such 
successive time intervals. The first distance would be 

9,999,900.0000000 
99.9990000 

9,999,800.0010000 
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and its log would be twice the log of 9,999,900.0. The fiftieth such medium 

step got Napier to 9,995,001.224804. Again, the steps proved too small, 

so Napier found log 9,995,000.000000. 
Napier then let P move for 21 large time intervals, each equal to the 

time needed to get from 10,000,000 to 9,995,000. He was easily able to 

find the logarithms of those 21 lengths, the last length being 9,900,- 

473.57808. The steps still were too small, so Napier took 69 giant steps, 

each in the same time it took to get from 107 to 9,900,000. By means of 

these 69 giant steps P moved all the way to 5,048,858.8900, so that Napier 

was able to complete his table. The little steps and the medium steps were 

only necessary to obtain sufficient accuracy. His table actually consisted 

of the 69 giant steps with 21 large steps between each giant step. Thus, 

the table had 69 X 21 = 1449 entries. He used it to make a log sin table. 

Napier also gave a method for finding the logarithms of numbers between 

0 and 5,000,000, as well as a method for interpolating between table 

values. 
One of the advantages of base 10 logarithms is that they are well suited 

to the decimal system. Only a table of logs from 1 to 10 is needed to find 

all logarithms easily. For example, 

log 435.7819 = log (4.357819)( 10^) 

= log 4.357819 + 2 log 10 

In base 10, log 10 is 1, so we have 

log 435.7819 = log 4.357819 -f- 2 

The log 4.357819 is the mantissa and the 2 is the characteristic, and the 

log is found easily by using a table from 1 to 10. 
Napier discussed the advantages of base 10 with Henry Briggs (1615), 

and Briggs developed a base 10 logarithm table. There are various 

methods that were used to calculate base 10 logs, the following example 

being an interesting way of finding log 2. 

Method The log of any number can be estimated just by count¬ 

ing the number of its decimal digits. For example, 

4 < log 93647 < 5 

since 

104 < 93647 < 105 

Now, 21000 has 302 decimal places. Therefore, 

301 < log 210.00 < 302 

148 European Mathematics Until 1630 



and 

301 < 1000 log 2 < 302 

and 

.301 < log 2 < .302 

To obtain more accuracy, note that the number 
2100,000,000 has 30,103,000 decimal places, so 

.30102999 < log 2 < .30103000 

It is not necessary to multiply out 21000 or 2100'000*000 

and count the decimal places. Since all that is needed 

is the number of decimal places, the multiplication 

can be rather sloppy, just carrying along the first five 

figures. Note that the square of a number has either 

double the number of decimal places or has one less 

than double the number of decimal places. In the 

following table, only the first five figures of the number 

are retained, starting with 220.7 

Number of decimal 
n 2" places in 

1 2 1 

2 4 1 

4 16 2 

8 256 3 

10 1024 4 

20 10486 . . . 7 

40 10995 . . . 13 

80 12089 . . . 25 

100 12676 . . . 31 

200 16069 . . . 61 

400 25823 . . . 121 

800 66680 . . . 241 

1000 10715 . . . 302 

7For the complete table up to n = 100,000,000, see John Napier, The Construction of 
Logarithms, pp. 99-100. 
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ASTRONOMER-MATHEMATICIANS 

Johann Kepler (1610), a German, liked Copernicus’ theory of planetary 

motion because it gave the central place in the universe to the sun. 

Kepler, in fact, verged on being a sun-worshipper. He wrote, 

In the first place, lest perchance a blind man might deny it to 

you, of all the bodies in the universe the most excellent is the 

sun, whose whole essence is nothing else than the purest light, 

than which there is no greater star; which singly and alone is the 

producer, conserver, and warmer of all things; it is a fountain 

of light, rich in fruitful heat, . . . .s 

Kepler searched for mathematical harmonies in the motion of planets. 

He believed that there were six planets (the planets then known were 

Mercury, Venus, Earth, Mars, Jupiter, and Saturn) because 6 was a 

perfect number, and that God placed them at their distances because 

between the spherical orbit of one planet and the spherical orbit of the 

next could just be fit one of the five regular polyhedra. How nice! In the 

orbital sphere of Saturn Kepler inscribed a cube. In the cube he inscribed 

the orbital sphere of Jupiter, while in that sphere he inscribed a tetra¬ 

hedron, and so on. 
Kepler was associated with a great astronomer, Tycho Brahe, and 

inherited his extensive data. He spent years looking for harmonies 

representing the music of the spheres, and he found many which he 

expressed, some in musical notation. Kepler insisted that his harmonies 

and laws fit the available data. He was quite firm about this and also 

bold, in that he broke with tradition, giving up the circular uniform 

motion which had been assumed for centuries. The following are Kepler’s 

three famous laws of planetary motion which later so influenced Isaac 

Newton. 

1. Planets move in ellipses with the sun at one of the foci. 

2. The vector from the sun to the planet sweeps out equal areas 

in equal times (fig. 4.13). 

3. The squares of the periods of revolution are to each other as 

the cubes of the semimajor axes (fig. 4.14). 

Imagine the amount of computation Kepler must have done in order to 

discover the last law. He impatiently awaited the development of log¬ 

arithms and actually had begun to work on them himself. 

8E. A. Burtt, The Metaphysical Foundations of Modern Science, p. 59. 
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T = time to complete one revolution 

Figure 4.13 

T 2 *2 

Figure 4.14 

It is significant for the evolution of mathematical science that Kepler 

believed “perfect knowledge is always mathematical.” The founders of 

modern astronomy and physics believed in mathematics as truth. In the 

twentieth century we tend to think of mathematics more as a language 

and of science as providing only an analogy to the real world, yet we still 

carry forth the tendency of the Pythagoreans and Plato to value the 

abstract form over the concrete sense experience. For example, we pound 

on a hard solid table, but then claim that this table is really full of holes. 

We say it is made up of atoms with electrons and nuclei, between which 

there is mostly empty space. In the 1600s men of science believed in 

mathematics as truth. This inspired them to create physical laws from 

which our modern science and technology evolved. We now do not 

believe that science encompasses all reality, because it does relegate 
sense experience to secondary importance. 

Kepler also made contributions of a more strictly mathematical 

nature, rather than only contributions in the field of astronomy. He 

wanted to make sure that wine merchants were not cheating him, so he 

computed the volumes of various shapes of barrels. In doing this he 

divided figures into sums of lines (fig. 4.15), developing techniques for 

finding the volume which avoided Archimedean type proofs. Kepler felt 

that just as the eye is made to see color, the mind is made to understand 
quantity. 
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Galileo Galilei (1630), an Italian, had beliefs about mathematics 

similar to those of Kepler. He wrote, 

Philosophy is written in that great book which ever lies before 

our eyes — I mean the universe — but we cannot understand it 

if we do not first learn the language and grasp the symbols in 

which it is written. The book is written in mathematical lan¬ 

guage, and the symbols are triangles, circles, and other geo¬ 

metrical figures, without whose help it is impossible to 

comprehend a single word of itj without which one wanders in 

vain through a dark labyrinth.9 

Galileo was familiar with the medieval work of Oresme, and others, on 

motion. He developed the basic concepts of motion, studying motion on 

an inclined plane, free fall, showing how velocity changes, and discussing 

acceleration. He also discovered that the path of a projectile is a pa¬ 

rabola. Galileo’s studies of motion greatly influenced Newton’s study 

of gravitation. 
Galileo discussed the infinite, mentioning the paradox of the squares — 

1, 4, 9, 16, 25, . . . — corresponding in a one-to-one fashion to the 

integers — 1, 2, 3, 4, 5, ... . Thus, in this sense, there are just as many 

squares as integers, yet the squares are a proper subset of the integers. 

Infinite sets are peculiar compared to finite sets. 
Galileo also developed a sector compass and explained various uses 

for it, such as dividing a line segment into any number of parts, finding a 

fraction (such as 113/19) of a line, and increasing or decreasing the 

scale of a drawing. 
Bonaventura Cavalieri (1630), another Italian mathematician, was a 

student of Galileo. He followed Kepler and Galileo in regarding areas as 

being made up of indivisibles, or lines, and worked quite hard to find the 

area under y = xn, a problem we now calculate as Jo xn dx = (cinJr{) 

(n -j- l). Cavalieri started by considering a parallelogram divided into 

two triangles by its diagonal (fig. 4.16). He supposed that the parallelo¬ 

gram could be made up of lines parallel to its base. He then showed that 

9Ibid., p. 75. 
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the sum of the lines in one triangle equalled 1/2 the sum of the lines of 

the parallelogram, while the sum of the squares of the lines of the triangle 

equalled 1/3 the sum of the squares of the lines of the parallelogram. 

These results were obtained by involved reasoning using the binomial 

expansion. Based on the results, Cavalieri could find the sum of the lines 

under a graph such as y = x2, and thus find its area. With much more 

effort, he proceeded to solve the problem for higher powers of x. 

Cavalieri is one of several men of his time who were developing 

methods for finding areas or for finding tangents to curves. After studying 

their involved methods one can appreciate the power of the calculus 

which makes many of those same problems seem easy in comparison. 

Cavalieri’s approach, the dividing of figures into infinitely many thin 

lines, was eventually abandoned because it was difficult to understand the 

correct way to use it. Infinite sets had often been considered paradoxical; 

Eudoxus and Archimedes had avoided dividing figures into infinitely 

many indivisibles for this reason. Cavalieri also discussed such a paradox. 

Consider a nonisosceles triangle (fig. 4.17). The perpendicular from 

the venex divides the triangle into two right triangles. Each indivisible 

in the left triangle can be paired with an equal indivisible in the right 

triangle; therefore, the two triangles are equal in area! Obviously, some¬ 

thing is wrong in this approach. Cavalieri was careful not to use in¬ 
divisibles in this way. 

To obtain another paradox, consider concentric circles with the radius 

of the larger being twice the radius of the smaller (fig. 4.18). Regard 

each circle as made up of radii fanning out from the center. Each in¬ 

divisible of the larger circle is twice that of the corresponding indivisible 

of the smaller circle, so, therefore, the area of the larger circle is twice 

that of the smaller circle! Unfortunately, the area of the larger circle is 
in fact four times that of the smaller. 

In this last period from 1575 to 1630 the level of mathematical achieve¬ 

ment was rising, lighting the way for new breakthroughs in both mathe¬ 

matics and science. Viete’s algebra led to analytic geometry, while area, 

volume, and center of gravity calculations led to calculus. Newton’s 
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Figure 4.18 

great theory of motion owed much to the results of Galileo and Kepler. 

Generally in mathematics, when new ideas shine, they do so in the light 

of the past. 
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Problems 

1. In finger reckoning the number of tens was shown using the thumb 
and index finger of the left hand, as indicated in figure 4.19. The 
numbers 100-900 were made using the same positions as those for 
10-90, but with right hand, while the numbers 1000-9000 were made 
using the same positions as those for 1-9, but with the right hand. 
(Numbers from 10,000 to 1,000,000 were represented by placing the 
fingers in various positions on the body.) Form the following numbers 
on your fingers. 

a- 45 b. 72 c. 37 d. 850 e. 903 
f- 284 g- 519 h. 3728 i. 1461 j. 5376 

2. Finger reckoning was also used to avoid memorizing multiplication 
tables from 5 X 5 to 9 X 9. Consider 6X8, for example. On the 
left hand, bend over the number of fingers, one, by which 6 is in 
excess of 5. On the right hand, bend over three fingers, representing 
the excess of 8 over 5. 

a. Add the number of bent fingers to get the tens digit of the prod¬ 
uct, and multiply the number of upright fingers on the left hand 
by the number of upright fingers on the right hand to get the units 
digit of the product. 

b. Find 7 X 9 in the same manner. 

c. Find 6X6. [Note: You will have to carry as the units are more 
than ten.] 
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3. Products from 10 X 10 to 15 X 15 can also be found by a method 

similar to that of problem 2. 
a Find 12 X 14- Represent on the left hand the excess of 12 over 10, 

and on the right hand the excess of 14 over 10. The sum of the 

bent fingers represents the tens digit while the product of the bent 

fingers represents the units digit. Add 100 to obtain the final 

answer. 
b. Find 13 X 14 in the same manner. 

c. Find 13 X 13. 

4. Do the following using Gerbert’s method of division, 

a. 652 -T- 8 b. 437 -r- 6 

c. 5721 4- 38 (use 40 - 2) d. 7945 -t- 27 

5. Gerbert actually developed his method of division for use on a line 

' abacus. Instead of using seven counters to represent 7, he would use 

one counter with the numeral 7 marked on it, and so on for other 

numbers from 1 to 9. However, his division will work also on the 

traditional line abacus. 
a. Make a set of counters like Gerbert’s by cutting cardboard and 

marking the pieces with numerals from 1 to 9. You will need 

several of each. Solve problem 4 using these counters on a line 

6. 

abacus 
b. Using checkers or other markers as counters, solve problem 4 on a 

line abacus. (A table will serve as an abacus.) 

Use the borrowing and repaying 

each step in words, 

a. 3621 * 
-1748 

plan to find the following, writing 

. 7238 

-3875 

7. Find the first 25 Fibonacci numbers. 

8. Prove the following identity for Fibonacci numbers. 

un+m = u^xum + Unum+1 for all m > 1, n > 1 

[Hint: Use induction on m. Show that the identity is true for m = 1. 

Then assume it true for m = k and m = k + 1, and prove it true 

for m = k + 2.] 

9 Prove that if u„ and um are Fibonacci numbers and n is divisible by m, 

then un is divisible by um. [Hint: Let n = mml and prove by in¬ 

duction on mi. Use the identity in problem 8.] 

10. Use problem 9 to prove that 
a. if n is divisible by 5, then un is divisible by 5. 

b. if n is divisible by 8, then un is divisible by 7. 
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llo Perform the following divisions using the method of Planudes. 
a. 147 -f- 13 b. 900 -f- 25 

12. Add the following numbers using the method of Sacrobosco. 

a. 437 + 524 b. 6345 + 4731 c. 3801 + 589 

13. Perform the following multiplications using the method of The 

Crafte of Nombrynge. 

a. 37 X 682 b. 49 X 473 

c. 376 X 5812 d. 63 X 64821 

14. Perform the following multiplications using the Russian peasant 
method. 

a. 14 X 29 b. 23 X 34 

c. 36 X 48 d. 62 X 104 

15. Write the following expressions using the notation of Chuquet. 

a. 6x4 b. lx~5 c. 3x2 + 4x~3 

16. Solve the following using cross multiplication, 

a. 34 X 52 b. 46 X 28 

17. Explain how cross multiplication could be extended to solve prob¬ 
lems such as 28 X 367. 

18. Solve the following expressions for x using the method of Cardano, 

a. x3 + 3x = 10 b. x3 + 6x = 2 

19. Solve the following examples of a different type of cubic than in the 

previous problem. [Hint: Let x = u + v and follow Cardano’s 
method.] 

a. x3 = 6x + 40 b. x3 = 6x + 6 

20. Write the following decimals using the notation of Stevin. 

a. 3.683 b. 24.1049 c. 576.38842 

21. Use Napier’s method of finding bounds for log 9,999,999 to find 

lower and upper bounds for log 9,999,000. Compare the accuracy of 

the bounds with those Napier obtained for log 9,999,999. 

22. After taking 100 little steps, Napier obtained the logarithm of 

9,999,900.0004950. In order to start his medium steps he needed to 

find log 9,999,900.000000. He developed a procedure which he used 

for this and similar problems. Let TS be the radius, dS the greater of 

the two given numbers, and eS the lesser of the two given numbers 

(fig. 4.20). Let V be chosen so that ST/VT = eS/de, and C be chosen 
so that TS/TC = dS/de. 

a. Add 1 to both sides of TV/ST = de/eS to show that VS/ST = 

dS/eS. 
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V T C d e S 

Figure 4.20 

b. Subtract 1 from both sides of TS/TC = dS/de to show that 

CS/TC = eS/de. 
c. From part b, TC/CS = de/eS. Add 1 to both sides to show that 

TS/CS = dS/eS. 

d. Use part c to show that log CS = log eS — log dS. 

e. Show that TC < log CS < VT. [Hint: Use parts a and c to show 

VS/TS = TS/CS. Then follow similar reasoning to that used by 

Napier in finding bounds for log 9,999,999.] 
f. Use parts d, e, and the defining equations of V and C to show that 

a lower bound for log eS — log dS is TC = (TS - de)/dS and an 

upper bound is TV = (TS de)/eS. 
g. Apply part f to find upper and lower bounds for log 9,999,900.- 

0004950 - log 9,999,900.000000. Since Napier had already found 

that log 9,999,900.0004950 = 100.0000050, he could now find 

log 9,999,900. 

23. Following Briggs, find a 
a. one-place approximation to log 3 by finding the number of deci¬ 

mal places in 310. 
b. two-place approximation to log 3 from the number of places in 

3100. [Hint: Retain only two significant figures after each multi¬ 

plication, starting with 310 ~ 60,000]. 
c. three-place approximation to log 3 Irom the number of decimal 

places in 3'000. 

24. Another method Briggs used to find logarithms involved taking 

square roots. His method can be used in the following manner to 

find log 4. First, 

log \(l0(1) = log 3.162 = ^ 10 = 2 ^ = -^000 

Since 4 is between 3.162 and 10, find ^10(3.162) — 5.623. Then 

log 5.623 = log ^ 10(3.162) = ^ log 10(3.162) 

= ^log 10 + log 3.162) 

= hi + .5000) = .7500 
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Since 4 is between 3.162 and 5.623, continue by finding 
V(3.162X5.623) = 4.217 so that 

log 4.217 = log V(3.162X5.623) 

= 3.162 T- log 5.623) 

= /.5000 + .7500) = .6250 

Continue in this way until log 4.00 is obtained. To achieve greater 
accuracy, more decimal places would have to be retained at each step. 

2d. Following the method of Cavalieri, consider a parallelogram (fig. 
4.21) to be made up of infinitely many horizontal lines, one of which 
is CB. Let BO = x, CO = y9 DO = z, and SR = a. 

H F E 

a. Show that 2 q1 — X) (x + y)2 — 2 x2 + 2 ^ xy, where the 
summation is extended over all lines in the parallelogram. 

b. Show that ^ xy = 1/4 X>2 - 1/4 X>2. [Hint: Let * = 
a/2 — z and y = a/2 + z. Since AEGF is similar to AESR, each 
line in AEGF is 1/2 of a corresponding line in A ESR. But A EGF 
is cut by only half as many lines as A ESR, so 

and 

z2 
AEGF 

+ z2 
A SGI 

2 H Z2 
AEGF 
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c. Use parts a and b to show that X) *2 = !/3 2 a2> and>thus>that 
the sum of the squares of the lines in the triangle ESR is equal to 

1 /3 the sum of the squares of the lines in the parallelogram. 
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The Ori gin and Development of 
Analytic Geometry and the Calculus 

We have seen in Viete s work in algebra the first glimmerings of mathe¬ 

matics as a symbol-manipulating activity. The seventeenth century 

emerged as a period in which the real power of the algebra that had been 

developing was displayed in applications to the study of curves, area and 

tangent problems, and motion. Analytic geometry and calculus are 

important creations of that century’s mathematicians. Mathematical 
activity increased dramatically in the 1600s; number theory, probability, 

and projective geometry were developed. Yet the most significant ad¬ 

vances were those in analytic geometry and the calculus, because with 

the tools they provided, problems that were impossible before could be 

solved quickly. Also, these new techniques were a magnificent aid in the 

creation of the new physical science. That science has been implemented 

in the technology which has influenced our present society so greatly. 

I Seventeenth Century Origin 

RENE DESCARTES (1596-1650) 

A major philosopher, Descartes of France is responsible for the 

famous statement, “I think, therefore I am,” the first principle of his 
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philosophy. He cast aside beliefs based on authority and tradition, 

knowing that mistakes can be made in reasoning, and reasoned afresh 

his own conclusions. While considering established ideas to be false, 

Descartes realized that in the actual cognitive exercise of believing all to 

be false, he was aware of himself as a very real being. Thus, the basis of 

his philosophy was established. 
Descartes was quite impressed with the clarity and preciseness of 

mathematical reasoning and hoped to use the mathematical method in 

developing his philosophy. He spent some years studying and writing 

about his method for distinguishing between truth and falsehood derived 

from mathematics. In 1637 he published a major work, A Discourse on 

the Method of rightly conducting the Reason and seeking Truth in the 

Sciences. Further the Dioptric, Meteors, and Geometry, essays in this 

Method. Descartes’ main contribution to mathematics, The Geometry, 

was contained in his larger work as an example of how his method could 

be used to find new truths. The Geometry will be studied after a brief 

survey of Descartes’ life. 
Descartes discounted his formal education, reasoning that learning by 

experience was the more valuable process. As a result, he travelled out¬ 

side of France, and even served in the military, finally settling in Holland 

for some years. Descartes was purportedly inspired to create his philoso¬ 

phy and mathematics by several dreams he had in 1619. It was fortunate 

for him that his family was wealthy, because he was able to devote his 

time to intellectual pursuits without worry of how to support himself. 

In Holland Descartes tutored the exiled Bohemian Princess Elisabeth, 

but most of his time was dedicated to contemplation and writing. He 

was later summoned to Sweden in 1646 to become tutor to Queen 

Christine. After many years of living very leisurely, Descartes found it 

impossible to adjust to the harsh Swedish winter and the rigorous 

schedule which Queen Christine has arranged. His health failed, and he 

died in 1650. Seventeen years after his death, Descartes bones were 

returned to France, except those of his right hand which were kept 

as a souvenir by the official who arranged the transfer.1 
Descartes was very proud of his general method in geometry. He 

wrote that the ancient Greeks proved only those theorems that they 

happened on, that they had no systematic method. He, however, used 

the analytic method in a systematic manner. This idea of analysis, 
assuming the problem is solved and working backward to something 

known, was known to the Greeks, but used sparingly. What made it 

powerful was the algebraic technique that Descartes used. In fact, he 

essentially applied to geometry the method of analysis which had pre¬ 

viously been used in algebra. His work is a far-reaching development of 

•See E. T. Bell, Men of Mathematics, pp. 35-55, for a biography of Descartes. 
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the analytic art of Viete. Descartes’ analytic method of geometry is 

outlined in the four following steps, four steps that are the typical method 

of solving word problems in algebra. In the first two steps the word 

problem is translated into an equation. In step three the equation is 

solved, while step four is the check, or the synthesis, of the solution from 
the given information. 

1. Assuming the given problem has a solution, introduce 

letters to represent known and unknown quantities. 

2. Express the conditions of the problem as equations in the 
knowns and unknowns. 

3. Use algebra to simplify and solve the equations. (To aid in 

this step Descartes made several contributions to the theory 

of equations, such as Descartes' rule of signs which will be 

described in problem 9 at the end of this chapter.) 

4. Use the algebraic analysis to determine how to construct 

the solution. If the equation in part 3 was quadratic, then the 

solution could be constructed with a straightedge and com¬ 

pass. (Descartes also described an apparatus for constructing 

roots of higher degree equations, such as cubics, fourth 
powers, and so on.) 

The following example is a problem from Descartes’ book. 

Example Given the square ABDC and the line BN, prolong 

the side AC to E, so that EF, laid off from E on EB, 
shall be equal to BN (fig. 5.1). 

Solution Pappus had given a construction for the solution using 

the synthetic method of proceeding from the known to 

the unknown by construction. Descartes used the fol¬ 
lowing analysis. 
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1. Consider the completed solution (fig. 5.1). Let 

BD = a = CD and let NB = c, both of which are 

given. Let DF = x. 

2. According to the condition of the problem, the line 

EF equals NB, so EF = c. Since CD = a and Z)F - 

x, we have CF = a — x. Triangles CEF and FFF 

are similar since angles D and C are right angles and 

FFZ) and CFF are vertical angles. Thus, the cor¬ 

responding sides are proportional giving 

CF _ FD 

FE ~ BF 

or 

a — x _ x 

~c BF 

so 

BF 
cx 

a — x 

and by the Pythagorean theorem 

(BFy = (BD)2 + (FD)2 

so 

c-^y=»=+ 
Multiplying, we find that the unknown x satisfies 

the equation 

x4 - 2tfx3 + 2a2x2 - 2a3x + n4 = c2x2 

3. Descartes then used algebra to show that the root x, 

even though satisfying a quartic equation, could 

be expressed in terms of square roots only. The 

expression is 

x = 

^a2 + ^a^a2 -f c2 
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4. Based on the above expression for x, a construc¬ 

tion of x using a straightedge and compass could 

be carried out starting from the given lines a and c. 

In practice this was not done, but it was clear that 

it could be done, and Descartes felt that it was 

necessary to be able to construct the solution. Later 

it was considered to be sufficient to find the root 

algebraically, and step 4 has been deleted from the 
process. 

Descartes was interested in developing a systematic method of obtain¬ 

ing theorems of Euclidean geometry. The above problem had a unique 

solution, but the influence of Descartes’ method was not in solving this 

type of determinate problem. Descartes’ greatest influence was felt in 
the area of the study of curves. 

In The Geometry Descartes treated one problem extensively. This 

problem, called the three- and four-line locus, had been worked on by 

Euclid, Apollonius, and Pappus. Given four lines, the problem is to find 

the locus of points such that the product of the distances of the point to 

two of the lines (along specified directions) is equal to a constant times 

the product of the distances from the point to the other two lines (fig. 

5.2). In figure 5.2 the four given lines are AB, AD, EF, and GH. The 

problem is to find all points C such that CB- CF = kCD • CH, where the 

angles CBE, CFE, CD A, and CHG are given in advance. Descartes solved 

the problem using his analytic method and taking as an example the 

case when k = 1. He let A B = x and CB = y, and then expressed all 
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the other distances in terms of x and y. The condition of the problem 

gave him the equation 

where m, n, z, o, and p, are defined by equations too involved to present 

here. This equation enabled Descartes to show that the locus of points 

was a conic section. He determined under what conditions the solution 

was a circle, a hyperbola, an ellipse, or a parabola. (Although Cartesian 

coordinates are justly named after Descartes, it would be misleading to 

think that he used coordinates in exactly the same way we do. His 

approach is represented in figure 5.2. The concept of two perpendicular 

axes was not common until the eighteenth century.) 
Descartes did not stop with the three- and four-line locus problem. 

He went on to show that the solution to an analogous five- and six-line 

locus problem was a cubic curve. Thus, his method of analysis leads to 

the introduction and study of all types of new curves. This is an un¬ 

attainable feat using Greek mathematics. Descartes’ method was indeed 

powerful, because it made possible the algebraic deduction of properties 

of curves. 

PIERRE FERMAT (.1601-1665) 

Pierre Fermat, a Frenchman, was one of the greatest mathematicians ol 

the 1600s, a man who contributed to and initiated several fields of 

mathematics. Mathematics was actually only a hobby of Fermat’s, but 

he was able to spend a great deal of time on his hobby. Fermat was a 

judge, and as such he was expected to avoid society; if a judge remained 

aloof, he was not susceptible to bribery. Therefore, Fermat was able to 

devote most of his leisure time to mathematics. 
In calculus, Fermat found tangents to curves and maxima and minima 

by methods essentially the same as our present ones. He was also able to 

find the area under various curves, with a method similar to that of 

Archimedes’, but made much more powerful by the use of algebra. 

Fermat approximated the areas by finding the sum of the areas of rec¬ 

tangles under the curves (fig. 5.3). He found that the sum of the areas of 

the rectangles more closely approached the area under a curve as the 

number of rectangles increased, and using this approach, he was able to 

find the exact area under the curve. 
Fermat developed the principle of least time in optics, a concept which 

proved to be influential in the twentieth century development of quantum 

mechanics. This principle states that the path of light from point A to 
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Figure 5.3 

point B as it passes through various media is the path which makes the 

time from A to B an extremum. From his principle of least time, Fermat 
could deduce the laws ol reflection and refraction: 

angle of incidence = angle of reflection 

sine of angle of incidence = k sine of angle of refraction 

Fermat did his greatest work in the theory of numbers, the study of the 

properties of 1, 2, 3, 4, 5, ... . Consider the following sequence of 
numbers called Fermat numbers. 

22° +1 221 + 1 

3 5 

2 26 + 1 

4,294,967,297 

222 + 1 223 + 1 224 -F 1 

17 257 65,537 

226 + 1 

18,446,744,073,709,551,617 

The first five numbers are prime, but 641 divides 22& + 1, and 274,177 

divides 2 26 -f 1. Fermat believed that all the numbers were prime, but he 

did not claim to have proved that they were. No one has yet found any 

other Fermat numbers that are prime, but several numbers (including 

some very large ones) have been shown to be composite. It has not been 

proved, however, that no more Fermat primes exist. Fermat numbers are 

related to polygons constructible with a straightedge and compass, a 
fact which will be studied later. 

Fermat made another discovery which is called Fermat9s little theorem. 

Theorem If n is an integer, and p is prime, then p divides 
up — n. 

Example 3 divides l3 — 1 = 0, 23 — 2 = 6, 33 — 3 = 24, . . . . 

Another theorem developed by Fermat and related to the previous 
theorem concerns perfect numbers. 
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Theorem If a prime q divides 2^—1, then q — 2kp + 1, where 

k = 1, 2, 3, 4, . . . and p is an odd prime. 

This last theorem greatly reduces the work involved in computing 

perfect numbers. Recall that if 2^ — 1 is prime, then.2^1 (2p - 1) is 

perfect. For example, without Fermat’s theorem, to find if 229 — 1 is 

prime, we would have to divide by all primes less than its square root; 

thus, we divide by 3, by 5, by 7, by 11, ... , and so on. With Fermat s 

theorem, we need only try primes of the form 2k(29) + 1, for example, 

2(1)29 + 1 = 59 

2(2)29 | 1 ■ 117- not prime 

2(3)29 H—1 - 175— not prime 

2(4)29 + 1 = 233 

Thus, the improvement over the older method is great, because one needs 

to try fewer numbers. 
Fermat considered the odd primes to be of two classes — those which 

are one bigger than a multiple of 4, and those which are one smaller than 

a multiple of 4. 

4n + 1 primes 5, 13, 17, . . . 

4n — 1 primes 3, 7, 11,... 

He claimed to have proved that every prime of the form 4n + 1 is a sum 

of two squares and in only one way, apart from the order of the terms, 

and also that no number of the form 4/7 — 1 is a sum of two squares. 

Thus, 

5 = l2 + 22 13 = 32 + 22 17 = 42 + l2 

Fermat read Diophantus and solved some problems similar to the 

Greek’s. For example, he showed that y = 3, x = 5 is the only solution 

to y3 = x2 + 2, although he did not publish a proof. Fermat made 

notes in the margin as he read Diophantus. Next to the x2 y2 = a2 

problem he wrote, “On the contrary, it is impossible to separate a cube 

into two cubes, a fourth power into two fourth powers, etc. I have dis¬ 

covered a truly marvelous demonstration which this margin is too narrow 

to contain.” This conjecture is the so-called Fermat’s last theorem 

which no one yet has been able to prove. In 1908 a German professor 

donated 100,000 marks to be awarded to the first person giving a proof, 

but inflation reduced this prize to a fraction of a cent. 
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Fermat also made contributions in the fields of analytic geometry and 

probability. Working independently of Descartes, Fermat developed 

analytic geometry, giving equations for curves, and together with Blaise 

Pascal, Fermat initiated the theory of probability, although Cardano had 

made an earlier contribution. Though great advances were made in the 

1600s using analytic geometry, there was another interesting geometry 
being developed — the geometry of projections. 

GIRARD DESARGUES (1591-1661) 

Desargues was a French engineer who wrote on projections with the 

goal of aiding painters and architects. In his book Rough Draft of an 

Attempt to Deal with the Outcome of a Meeting of a Cone with a Plane he 

introduced much unusual terminology. As a consequence, the text was 

not very popular, and all printed copies disappeared. In 1847 a hand¬ 

written copy was found, but Desargues’ ideas had been rediscovered 

and published by others before that time. Another reason why his work 

was not popular is that analytic geometry and area problems were the 

celebrated innovations of the time. The new algebraic methods were 
powerful and popular; projective geometry was neglected. 

Desargues studied the properties of projections of figures. If you have 

a light at a point and shine it on a circle, the projection on another plane 

at an angle to first plane might be an ellipse. It might also be a parabola 

or hyperbola. We can see this by thinking of a circle drawn on a pane of 

glass (fig. 5.4). Shine a light on the glass and note the shadow of that 
circle on another plane at an angle to the pane of glass. 

The shape or length of a curve can be changed by projection. Lines, 

however, project into lines, and intersecting lines will project into 

intersecting lines or parallel lines. Many statements of projective ge¬ 

ometry would be shorter and simpler if it were not necessary to dis- 
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tinguish between intersecting lines and parallel lines. To achieve this 

simplification, parallel lines are by convention said to intersect in a point 

infinitely far away. Then, accepting this convention, we can say that 

every two lines intersect and that intersecting lines will always project 

into intersecting lines. The theorems that remain true under projection 

of a figure are the subject of projective geometry. The projective plane is 

the ordinary plane with points at infinity added. 
An important theorem of projective geometry was found by Desargues 

and is called, therefore, Desargues theorem. 

Theorem Consider a triangle ABC and its projection A'B'C' 

(fig. 5.5). If the corresponding extended sides AC and 

A'C meet in a point P, while the extended sides AB and 

A'B' meet in Q, and the extended sides BC and B'C' 

meet in R, then P, Q, and R lie on one straight line. 

When a line segment is projected into another line segment its length 

generally changes. Desargues found a number that is invariant when one 

line is projected to another, called the cross-ratio. Given any four points, 

on a line, the cross-ratio can be defined as 

CA/CB 

DA/DB 

The cross-ratio was known also to Pappus. Consider a line / and its 

projection /' (fig. 5.6). Take any four points on /, say A, P, C, and D, 
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and let them be projected to points A', B', C", and D\ respectively, on 

line /'. Although A'B' is generally unequal to AB, and so on, the cross¬ 

ratio computed on / is equal to the cross-ratio computed on /', 

CA/CB _ C'A’/C'B' 

DA/DB ~ D'A'/D'B' 

BLAISE PASCAL (1623-1662) 

Pascal, a Frenchman and a student of Desargues, is recognized for his 

literary and religious writings, such as Thoughts and Provincial Letters. 

His father gave him lessons, but avoided teaching Pascal mathematics, 

because he thought it would be too much of a strain on the boy who was 

in poor health. Pascal’s father was a mathematician himself and was 

pleased, therefore, when Pascal asked to learn about geometry at age 12. 

Pascal quickly demonstrated his mathematical skills when he proved by 

himself that the angles of a triangle add to 180°. His father was so happy 

at this accomplishment that he gave Pascal a copy of Euclid. At the age 

of 14 Pascal was admitted to the scientific discussions of Father Mersenne, 

who was a friend of Descartes and who also corresponded with the 

leading mathematicians of the time. 

When he was almost 16 years of age, Pascal proved a theorem now 

known as Pascal9s theorem. 

Theorem Consider any conic section, say an ellipse. Take any 

six points on the ellipse — A, B, C, D, E, F— and con¬ 

nect them by straight lines (fig. 5.7). The segments AB 

and DE are opposite sides, as are BC and EF, and CD 

and FA. The three points of intersection of the three 

pairs of opposite sides lie on one straight line. 
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Pascal’s theorem is an example of a theorem which remains true under 

projection. Pascal wrote a manuscript, Essay on Conics, containing 400 

theorems and including many results of Apollonius and others as 

corollaries to his theorem obtained by moving the six points to various 

positions. This manuscript was never published and was ultimately lost, 

although two copies of a summary have survived. 
While still quite young, Pascal made another notable contribution to 

mathematics. At the age of 18, he invented the adding machine, which 

has since evolved into very sophisticated calculators. With Pascal’s 

machine, the operations of addition and multiplication (set up as re¬ 

peated addition) could be performed. 
Pascal and Fermat founded the theory of probability through cor¬ 

respondence (though Cardano had earlier done important work). A 

gambler had posed to Pascal the problem of how to divide the stakes 

when a dice game is interrupted in progress. Pascal had to find the 

probability of winning for each player. To count the possible cases 

Pascal and Fermat developed some combinatorial analysis. In this 

connection Pascal made use of a triangle used much earlier in China 

and even in the West. 

1 

1 1 

l 2 1 

13 3 1 

14 6 4 1 
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As a simple illustration of a use of Pascal’s triangle, consider row 

four 1, 3, 3, 1. The sum of these numbers is eight. Suppose a coin is 

tossed three times (one less than the row number). The chances are one 

out of eight that three heads will occur, three out of eight that exactly 

two heads will occur, three out of eight that exactly one head will occur, 
and one out of eight that no heads will occur. 

The following example is a modernized version of the type of problem 
Pascal and Fermat solved. 

Example A coin is tossed three times. A and B each bet $ 1, and 

the first to win two of the three tosses wins the bet. 

Suppose A chooses heads and wins the first toss, but 

then has to leave. How should the bet be divided? 

Solution At the start of the game each person has an even 

chance of winning. Given that heads occurred on 

the first toss, there are four possibilities for the next 

two tosses. Of those four possibilities, only three are 

favorable to A, so his chances are 3/4 of winning if 
the game were to be continued. 

favorable to A 

T 

Thus, A should get 3/4 of the $2 wager, or $1.50. B 

should get 1/4, or $0.50. 

Probability theory has since developed into an immensely useful subject. 
It is utilized in all the sciences, business, and engineering. 

Pascal made some interesting discoveries concerning the cycloid, 

which was a popular curve for study during Pascal’s time. The cycloid 

is the path described by a point on a rolling circle (fig. 5.8). Oddly 

enough, Pascal probably would not have made his discoveries if he had 

Figure 5.8 
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not been suffering with a toothache; he worked on the cycloid to keep 

his mind off the pain. Pascal found the area of sections obtained by 

lines parallel to the base, and he found the center of gravity of each of 

these sections. These and other results were included in a book he wrote 

on the cycloid. 
Christiaan Huygens (1629-1695) proved that the upside down cycloid 

is the tautochrone. Imagine a curve with beads placed at various points 

on the curve. If each bead takes the same amount of time to slide to the 

lowest point of the curve, then that curve is a tautochrone. Huygens 

also wrote a book on timekeeping in which he showed how to make a 

pendulum oscillate in a cycloid, so that each beat will take the same 

amount of time, by hanging it from cycloidal jaws (fig. 5.9). For practical 

purposes, however, Huygens found that a pendulum sweeping out a 

circular arc was sufficiently accurate. 

There were also other writers in the early middle 1600s who were 

developing methods for area problems, finding centers of gravity, and 

so on. These are the men whose work laid the foundation for the calculus 

of Newton and Leibniz. In addition to the mathematicians already 

mentioned are Gilles Persone de Roberval (1602-1675), Evangelista 

Torricelli (1608-1647), Gregory of St. Vincent (1584-1667), John Wallis 

(1616-1703), James Gregory (1638-1675), and Isaac Barrow (1630-1677). 

COMPUTATION OF * 

James Gregory in 1673 found the series 

1 , , 1 5 , 
arctan x = x — ^x3 + ^x5 + *' * 

Substituting x = 1, then 

7T 

4 
! _I + I_I+I 

3^5 7 9 
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a very neat expression for tv. However, this series converges too slowly 

to be of use in computing tt. For example, the fiftieth term is 1 /99, which 
is greater than .01. 

In 1706 John Mach in used Gregory’s series for arctangent and the 
relation 

X 1 l 
4 = 4 arctan ^ - arctan ^ 

to compute tv to 100 decimal places. These series converge very rapidly. 
Consider, for example, 

, 1 1 
arctan - = - 

Here the second term is small and the third term is smaller still. Much 

greater accuracy can be obtained by using three terms of this series than 
by using 100 terms of the series for arctan 1. 

William Shanks used Machin’s expression to compute tv to 707 places, 

a task he completed in 1873 after 15 years of work. (Later, using com¬ 

puters, an error was found in the 528th place.) Shanks’ computation of 

tt has even been printed in Ripley’s Believe It or Not. The difficulty of 

this calculation is amazing, but with computers much better results have 

been obtained. The following table illustrates the progressively more 

accurate calculations of tv and the amount of time spent to make the 
calculations. 

Year No. of places of tv Time 

1949 2,037 70 hours 

1958 10,000 1 hr. 40 min. (The calculation of the first 
707 places took 40 seconds) 

1961 100,265 8 hr. 43 min. 

1967 500,000 28 hr. 10 min. (The check required 16 
hr. 35 min.) 

Lindemann in the 1880s proved that tv is transcendental, that is, tv is 

never the root of a polynomial equation. Knowing this fact, it can be 

shown that squaring the circle is impossible. Lindemann’s proof was 

based on the proof of Hermite which proved e transcendental. 
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ISAAC NEWTON (1642-1727) 

Isaac Newton of England made revolutionary advances in mathematics 

and physics, and he showed the potential of doing so at an early age. 

Being a frail child, Newton was more inclined to intellectual, rather than 

physical, exercise. He invented kites, mechanical toys, mills, and clocks 

while he was still a young boy. Because Newton showed such mental 

capacities, his uncle sent him to college. 
Newton became very interested in mathematics while he was in college. 

He later attributed this interest to the fact that he was unable to under¬ 

stand a book on astrology because of the geometry and trigonometry in 

the text. Consequently, he studied Euclid’s Elements and Descartes 

Geometry. His mathematical interest kindled, Newton concentrated on 

mathematics, reading the works of Oughtred, Kepler, Viete, and Wallis. 

Within a few years he was recognized as the best mathematician in the 

world. 
Legend has it that Newton was sitting under an apple tree eating his 

lunch when an apple fell on his head. Supposedly, at that very instant 

Newton formulated his law of universal gravitation which essentially 

states that any two bodies are attracted to one another. A friend of 

Newton later wrote that Newton himself repeated this story, but the 

legend, true or not, is incidental to the law. 
With his law of gravitation Newton unified the study of motion of 

heavenly bodies and earthly bodies. Recall that the stars were previously 

thought of as quite different from earthly bodies; heavenly motion was 

considered to be eternal and perfect while earthly motion was considered 

quite variable and imperfect. The telescope had been in use since 1609, 

however, and the moon and planets were shown to have properties in 

common with the earth. Newton demonstrated that one of these proper¬ 

ties was the theory of gravitation which applied to both heavenly and 

earthly motion. He said that any two bodies attract one another with a 

force (F) given by the formula 

F = 
em\mi 

where m\ and m2 are the masses of the bodies, r is the distance between 

them, and G is a constant. The fact that Newton’s calculations of the 

motions of the moon and of objects at the surface of the earth agreed 

with experimental results was instrumental in convincing him that his 

theory was valid. In these calculations the attraction of the sun on the 

moon, of secondary importance to that of the earth on the moon, was 

neglected. 
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Newton published his law of universal gravitation in 1687 in his great 

work, Mathematical Principles of Natural Philosophy, though he had 

discovered it over 20 years earlier. In this book, Newton also gave his 

three famous laws of motion which made mechanics a mathematical 

science and have influenced scientific thought ever since. Mathematicians 

of the 1700s noted sadly that there was only one system of the world and 

since Newton had discovered it, there was nothing left for them to do; 

such great progress had been made in science that continual progress 

came to be expected. Yet, in the twentieth century it has been shown that 

there is no one system of the world. Even Newton’s laws cannot account 
for all phenomena. 

Newton’s second law is a particularly important one for mathematics. 

It states that the change in motion of a body is proportional to the motive 

force impressed. This law is commonly expressed by the formula 

F ma 

where F is the force, m is the mass of the body, and a is the acceleration 

of the body. The acceleration is the rate of change in the velocity. It 

takes no force to maintain a body at constant velocity, but it does take a 

force to change its velocity. It is known from calculus that acceleration 

is the second derivative of position. Newton’s second law can, therefore, 
be written as a differential equation 

»-i d2r 
r = m-j-x 

dt2 

vvhere / gives the position of the body. Thus, Newton’s law has provided 

many mathematical problems for countless mathematicians who have 
applied it to many specific types of motion. 

Newton made great contributions to calculus. He invented what he 

called his method of fluxions from the idea of flowing, or variable, 

quantities and their rates of flow. Newton thought of a curve as generated 

by a moving point, and he talked about the rate of change of the y 

magnitude as the x magnitude changed. He gave general rules for finding 

derivatives, much like we use now and much like Fermat used before him. 

Consider the curve y = x2 (fig. 5.10) with two neighboring points, 

(x,p) and (x + h,y{). Since y = x2, the coordinates of these points can 

also be represented as (x,x2) and (x + h,(x + h)2), respectively. The ratio 

giving the change in y to the change in x from one point to the next is, 
therefore, 

(x -f h)2 — x2 = x2 + 2hx + h2 — x2 _ 2hx + h2 
x + h — x h 

— 2x -T h 
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Newton wrote that the ultimate ratio, obtained when h is put equal to 

zero, gives the instantaneous rate of change at the point x. Thus, he let 

h be zero and concluded that the fluxion of y = x2 is y — 2x. Newton 

used the dot to indicate the fluxion, so he wrote y for the fluxion, rate of 

change or derivative, of y. 

In order to find the rate of change of y at the point x, Newton first 

chose another point x + h and computed the average rate of change 

between x and x + h from the ratio of the change in y to the change in 

x over that interval. Then as the point x -j- h moved closer to x, the ratio 

approached more closely the rate of change at x. Finally, when h became 

zero, the rate of change at the point x itself was obtained. It certainly 

seems reasonable that if we compute the average rate of change of y over 

increasingly smaller intervals, it should approach the rate of change of 

y at the point x itself. 
This process of finding the rate of change also has a geometric inter¬ 

pretation. The ratio giving the rate of change between x and x + h 

represents the slope of the line through (x,x2) and (x + h,(x + h)2), 

and as the point x + h moves toward x, that line (slope) moves toward 

the tangent line. Thus, the rate of change of y with respect to x is given 

by the slope of the tangent to the graph at x. If y is changing rapidly, 

then the slope is steep. 
Newton’s method was quite successful and was applied to solve many 

important problems, yet his justification of the process was not clear to 

many people. If one tries to interpret this calculation by the rules of 

algebra, the calculation does not make sense. Bishop George Berkeley 

(1685-1753) made just such a criticism. He was upset when mathema¬ 

ticians criticized religious thinking, so he pointed out that mathe- 

180 The Origin and Deuelopment of Analytic Geometry and the Calculus 



maticians’ reasoning was the most nonsensical of all. For example, 
consider again the equation 

(x + h)2 — x1 

x + h — x 
= 2x + h 

Recall that Newton let h = 0 in the final expression, 2x + h, to obtain 

the ultimate ratio. Berkeley reasoned that h should not be set equal to 

zero on just the right side of the equation. As we know from algebra, 

both sides of an equation must be treated equally. Therefore, if h = 0 

on the right side of an equation, h must be equal to 0 on the left side, 
also. Then 

x2 — x2 _ 0 

x — x 0 

which is meaningless. 

The answer to Bishop Berkeley’s criticism is, very simply, that calculus 

is not algebra. It involves something more — the idea of one point 

approaching another. This idea of a limit was not clarified for over 100 

years alter the time of Newton. Newton’s intuitive approach was quite 

satisfactory for the curves to which he applied his calculus, but the 

material in modern calculus books consists of much theory which was 

developed later in response to more complicated problems. 

In the previous calculation (x + h)2 had to be expanded, a relatively 

simple procedure. For example, in computing the derivative of the curve 

y ~ xn we must expand (x + h)n. This is done using the binomial 
theorem, 

(a + b)n = an + 

Newton extended the use of the binomial theorem to cases where n was 

fractional and negative and used it in his derivative and integral calcu¬ 
lations. 

Finding the area of a region had traditionally been a difficult problem. 

The only method known was to use the method of Archimedes and 

approximate the region by simpler regions such as triangles or rec¬ 

tangles. Newton’s great contribution to the solution of area problems 

was to make use of the idea that the rate of change of the area under a 

graph is equal to its height (if only the right endpoint varies). As an 
illustration, consider the curve in figure 5.11. 
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Figure 5.1 I 

If we increase x by Ax the area increase is approximately y • Ax, as the 

added region is almost rectangular in shape, particularly when Ax is 

small. The rate of change in the area with respect to the change in x is, 

thus, approximately y- Ax/Ax which equals the height y. The approxima¬ 

tion becomes exact as the change, Ax, is reduced to zero. Newton ex¬ 

pressed this result that the rate of change of area equals the height in 

formula as 

A = y 

where A denotes the rate of change, or fluxion, of A. Using this formula, 

Newton could instantaneously solve what previously had been very 

difficult area problems. For example, given a curve y = f(x) Newton 

had to think of a function having y as its rate of change. Given y = 2x, 

Newton knew that x2 has rate of change 2x. Thus, the area function A 

which satisfies A = 2x is given by A — x2. 
Newton simplified many other problems, also. He solved arc length 

problems by finding a formula -^1 + y2 for the rate of change of arc 

length. Then the arc length itself was the function with that rate of 

change. 
Newton made his methods much more powerful by combining them 

with his techniques of expanding functions into infinite series. Using 

infinite series he could solve problems that had been entirely impossible 

to solve before. He could divide to obtain 

1 + xi 
= 1 — x2 -f X4 — x6 -f 

and then find the area under the graph of 1/(1 + x2), easily using the 

series. He could use the binomial theorem to find 

1 
-^1 — x2 = 1 — ^x2 I* 

8* 

1 
T6: 

<-6 _ . 

Newton’s mathematical contributions were not confined to calculus. 

One of the results of Descartes’ application of algebra to geometry was 
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to simplify representation and discovery of new curves. Newton wrote a 

book on the graphs of cubic equations, showing the various forms these 

graphs might take. They are more interesting than the well-studied conics 

which are graphs of quadratic equations. Some examples are given in 
figure 5.12. 

Figure 5.12 

Newton was a great scientist and was fortunate enough to be recog¬ 

nized as an influential man by his contemporaries. He was interested in 

all aspects of science, particularly as they related to theology, and he 

tried to harmonize the dates of the Old Testament with those of secular 

history. Newton was also a member of Parliament under William and 
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Mary and Master of the Mint in 1699. In 1705 Newton was knighted by 

Queen Anne. 
Great geniuses seem to have a reputation for complete concentration 

on a problem, and Newton is no exception. Many stories are told of his 
complete absorption in some deep problem. He was riding home from 
Grantham one day and dismounted to let his horse walk up a steep hill. 
At the top of the hill he turned to mount again, only to find that his 
horse had slipped away, leaving the empty bridle in Newton s hand. On 
another occasion, Dr. Stukeley, a friend of Newton, called on him. 
Newton was out, but the table was laid for dinner, so Dr. Stukeley took 
advantage of the situation and ate the meal. When Newton appeared 
later he greeted Stukeley and then prepared to eat. He lifted the covers of 
the dishes only to find that the food was gone. “Dear me,” said Newton, 
“I thought I had not dined, but I see I have.”2 Perhaps stories like these 
are responsible for the term absentminded being applied to certain 

intellectuals. 
Newton remained modest about his great contributions. He said, 

I have seen a little further than others it is because I have stood on the 
shoulders of giants.” His laws had their roots in the studies of Galileo 
and Kepler. His powerful methods of calculus were made possible by 
the algebra which had been developing since the Middle Ages and its 
applications to geometry by Descartes, Fermat, and others prior to his 

time. 

GOTTFRIED WILHELM LEIBNIZ (1646-1716) 

Gottfried Leibniz was a brilliant German who applied his genius to 
many fields — law, logic, philosophy, and mathematics. He was a 
lawyer by profession, and in his studies he became interested in natural 
philosophy. To understand natural philosophy he needed an under¬ 
standing of math, so he studied mathematics with Huygens. 

Leibniz made a project of reducing all exact reasoning to a symbolical 
technique. He wrote on the subject of symbolic logic, but its full develop¬ 
ment was not to take place until the nineteenth century. Leibniz also 
developed rules of differentiation and integration, noting that they are 
inverse processes. The notation which Leibniz used in his rules was very 
convenient — dy/dx symbolized the derivative, and an elongated S was 
the origin of the integral sign J. The S' represented sum. 

The notion of a function had been developing since the Middle Ages. 
In Descartes’ geometry, curves were expressed by equations. Leibniz 

2j A. Holden, “Newton and his Homeland — The Haunts of his Youth,’’ Isaac 
Newton 1642-1727, ed. W. J. Greenstreet (London: G. Bell and Sons, Ltd., for the 
Mathematical Association, 1927), pp. 142-43. 
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introduced the word function which referred to quantities such as tan¬ 

gents and normals that depend on a curve. A function was thought to be 

an algebraic relationship between the x and y variables, such as x2 -f- y2 = 

1 or y — 3x- -j- 2x, or y = 1 + x -f~ x2/2 -f- x2/6 + • • •. The rules of 

calculus work quite well for such functions, so there was little need for 

intricate definitions of limit and continuity, except perhaps to clarify the 

concepts. Later, around 1800, this narrow notion of function was no 

longer adequate when applied to new problems, so the concept of func¬ 
tion had to be extended. 

Soon after the creation of the calculus, there arose disputes between 

supporters of Newton and supporters of Leibniz as to who first invented 

the rules of calculus. Some accused Leibniz of plagiarism, and the 

arguments were so fierce that mathematicians on the continent would 

not lead English works and vice versa. This policy was detrimental to 

the English, because Leibniz's notation was easier to use than Newton’s. 

Continental mathematics took the lead, therefore, in making new dis¬ 

coveries in calculus. The mathematical clash between the Germans and 

the English had a rather ironic twist, because Leibniz was employed by 

the man who became King George I of England. Queen Anne died 

childless in 1714, and the royal successor to the throne of England was 
a great-grandson of James 1, George of Hanover. 

2 Eighteenth Century Development 

The late 1600s and the 1700s was the period when calculus began to 

flourish. Previous discoveries were combined with the inventions of 

many more basic techniques of calculus, and then this more sophisticated 

mathematics was applied to mechanics and other sciences. Newton’s 

laws were applied to many physical problems and the mathematical 
problems arising from the applications were studied. 

MATHEMATICIANS OF THE EARLY 1700s 

Among the mathematicians of the period are many names which the 

student of calculus will recognize. The following is a list of early eigh¬ 
teenth century mathematicians. 

James (also Jakob or Jacques) Bernoulli (1654-1705) 

John (also Johann or Jean) Bernoulli (1667-1748) 
G.F.A. de L’Hospital (1661-1704) 
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Abraham De Moivre (1667-1754) 

Colin Maclaurin (1698-1746) 

Gabriel Cramer (1704-1752) 

Michael Rolle (1652-1719) 

Jacopo Ricatti (1676-1754) 

Girolamo Saccheri (1667-1733) 

Brook Taylor (1685-1731) 

VHospital's rule, Maclaurin's series, Cramers rule, Rolle's theorem, 
and Taylor's series are familiar terms to calculus students. Actually, 

only one of these five mathematicians was the original discoverer of the 

result attributed to him, and that man was Rolle. The person who 

popularizes a result generally has his name attached to it, although later 

it may be learned that someone else had originally discovered the same 

result. For practical purposes names are not changed, but, even so, the 

mistakes seem to compensate for one another. Although Maclaurin was 

credited with a series which he did not discover, a rule which he did 

originate is now known as Cramer s rule. 
The Swiss Bernoulli brothers both contributed to the development of 

calculus. John posed, as a challenge to mathematicians, the problem of 

the brachistochrone (meaning least time). The problem was to find the 

curve between two given points, A and B, along which a particle will slide 

in the least time (fig. 5.13). A cycloid was the desired curve. Both brothers 

solved the problem, but by different methods. The Bernoulli brothers 

were competitors in mathematics. John’s son Daniel, also a mathema¬ 

tician, was viewed as a rival, too. John made Daniel move out of their 

house when he won a prize for which they were both competing. 

James Bernoulli wrote a book on probability, the Art of Conjecture, 
which contains some interesting results. Suppose a person invests $1 at 

100% interest per year. At the end of the year he has $2 instead of $1. 

If interest is compounded every six months, then at six months he has 

$(l -f 1/2), and at one year he has (1 + 1/2) + 1/2(1 + 1/2) = 
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$(1 + 1/2)2. Continuing in this manner, it follows that if the interest is 
compounded n times per year, then at the end of the year the total would 
be $(1 + 1 /«)». Does this amount increase without bounds as n -> °o? 
Can the person become rich by having his interest compounded every 
second? Bernoulli showed that 

2<(1+i)'<3 

Thus, no matter how often interest is compounded on the $1 he will 
never receive more than $3. In fact (1 + 1 /«)" approaches the’number 

e ~ * • • as n approaches infinity. Bernoulli proved the above in¬ 
equality by expanding (1 -f 1 /ri)n using the binomial theorem.3 

John Bernoulli was acquainted with the Marquis de L’Hospital. In 
fact, L Hospital was a rich man who agreed to support Bernoulli if 
Bernoulli would allow L’Hospital to publish Bernoulli’s discoveries in 
calculus. Thus, the famous UHospital's rule, which appeared in the first 
textbook on calculus written by L’Hospital in 1696, was actually derived 
by Bernoulli. L’Hospital was also a mathematician, but he was not as 
capable as Bernoulli. After L’Hospital died, Bernoulli claimed his own 
discoveries, but there was no evidence to support him. It was not until 
1V55 that letters between Bernoulli and L’Hospital detailing the arrange¬ 
ment were found, thus proving that Bernoulli was correct in his claim. 

LEONHARD EULER (1707-1783) 

Leonhard Euler of Switzerland was the most prolific writer of any 
mathematician; his collected works comprise almost 100 large volumes. 
He achieved this tremendous output, even though he was blind for the 
last 17 years of his life.4 

In the 1700s the royal academies, rather than the universities, were the 
main centers of research in Europe. Two such institutions, both of which 
were founded by Leibniz, were the Berlin academy supported by Fred¬ 
erick the Great of Prussia and the St. Petersburg academy supported by 
Catherine the Great of Russia. Mathematicians and other specialists 
were paid to do research, as much for the prestige gained by the ruler as 
for practical applications to benefit the state. Euler went to St. Petersburg 
in 1727 to take a position on the medical research staff of the academy 
since there were no openings in mathematics. Soon after, however, he 
was able to transfer to the mathematics staff. 

3See problem 21 of this chapter. 

4See Bell, Men of Mathematics, pp. 139-152 for a biography of Euler. 
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Euler had a great genius for manipulating formulas as evidenced in 

his many books. He wrote on mechanics and the calculus of variation , 

the latter a subject in which he derived the fundamental equations 

Euler’s analytic geometry was almost identical to mo ern ana y 1 

geometry, and his calculus books were widely studied. Euler contributed 

much to the notation of calculus by introducing and/or popularizing e 

symbols, e, tt, and i. He found a striking relationship, 

,xi — — | 

which was based on the formula 

eie = cos d 4- i sin 6 

In Euler’s books the function concept came into its own. His definition 

of a function of a variable quantity (based on John Bernoulli s) is any 

analytic expression whatsoever made up from that variable quantity and 

from numbers or constant quantities. Thus, 

y = x1 + 4.x3 + 3 

is a function, as is 

= l'+x + T + T + i4 + y 

Much work in infinite series is also contained in Euler’s writings. He 

found the sum of the reciprocals of the squares, a problem that Leibniz 

and James Bernoulli could not solve, to be 

^2_ 1 +±+± + l+.-- 
"6 " P + 22 + 32 42 ^ 

Euler also was interested in number theory, and he proved the con¬ 

verse of Euclid’s theorem about perfect numbers. Euclid had shown that 

if 2" - 1 is prime, then 2"->(2» - 1) is perfect. Euler proved that all even 

perfect numbers are of the form 2-"'(2" - D where 2" “ 1 1S pnme' U 
is not known to this day if there are any odd perfect numbers, or if there 

are infinitely many perfect numbers. In a letter to Euler, Christian Gold- 
bach (1690-1764) suggested that every even integer greater than or equa 

to 4 is the sum of two primes, for example, 12 = 5 + 7 and 32 - 19 + 

13 Again, this has been neither proved nor disproved. A similar problem 

concerns whether or not there are infinitely many pairs of twin primes 

(primes differing by two) such as 11 and 13, 17 and 19, or 29 an - • 

This is also unsolved. 
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An interesting problem which Euler solved by what he called the 
geometry of position is the problem of the seven bridges of Konigsberg. 

The town of Konigsberg had seven bridges because of the 
nature of the river which flowed through the town. The river 
forked, and there was an island in the river (fig. 5.14). Could 
someone follow a path so that he crosses each bridge once, 
but none more than once? 

C 

Figure 5.14 

Euler proved that the answer is no. In fact, he solved the problem in the 
general case, showing that the key quantity is the number of land masses 
which have an odd number of bridges. If there are no land masses with 
an odd number of bridges, then such a crossing is possible starting any¬ 
where. If there are two land masses with an odd number of bridges, 
however, a crossing is possible only by starting on one of these masses 
and ending on the other. If the number of land masses with an odd num¬ 
ber of bridges is one or is greater than or equal to three, then the re¬ 
quired crossing is impossible. In Konigsberg, each of the four masses had 
three bridges. Thus, crossing each bridge once and only once is impossible 
by Euler s criterion. However, if we remove bridge 6, then only masses 
B and C have an odd number of bridges, and a crossing is possible 
starting on either mass B or C and ending on mass C or B, respectively. 

JOSEPH-LOUIS LAGRANGE (I736H8S3) 

Lagrange, another outstanding mathematician of the 1700s, was a 
French-Italian. In 1770, Lagrange published an important paper on the 
solution of equations. Ever since 1545, formulas had been known for 
the general solution to third and fourth degree equations. Lagrange 
analyzed these solutions in the hope of finding general solutions to the 
quintic and higher degree equations. His methods were later used to 
prove that such general solutions are impossible. More importantly, his 
ideas led to the important concept of a group. Thus, his work is very 
valuable, in spite of the fact that he did not solve his original problem. 
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The general nth degree equation may be written as x" + aix" 1 + 

aiXn-2 q_ •••-(- a„ = 0 and has roots xi, xi, , x„. For simplicity, 

consider a cubic + ax? + bx + c = 0 with roots x,, x2) and x3. 

Lagrange used the six permutations of these roots: 

5f. Xl —> Xl, X2 —> X2, X3 —> X3 

52: x\ —» X2, X2 —^► Xl, xi —> X3 

53*. Xl —> X3, X2 —> Xl, X3 —> X2 

54'. Xl —> Xl, X2 —► X3, X3 —> X2 

55*. Xl —> X3, X2 —> X2, X3 —> X] 

56*. Xl X2,^X2 X3, X3 —> Xl 

Notice that the permutation 51, called the identity permutation, leaves 

each root unchanged, while 52 interchanges xi and X2, and so on. 
Lagrange applied these permutations to functions of the roots. For 

example, consider some functions of the roots, such as 

g[ (XJ,X2,X3) = Xl + X2 + X3 

g2 (X1,X2,X3) = X1X2X3 

/l (X1,X2,X3) = x\ + X2 + X3 

fl (Xl,X2,X3) = Xl + X2 + X3 

fl (Xl,X2,X3) = Xl + X2 + X2 

/-l + 
hi (X1,X2,X3) = Xl + ( -2-)Xl ' 

hi (X1,X2,X3) = Xl + l -2 )*2 ' 

1 - V-3 
X3 

-l + V-3 
JX3 

J (Xi,X2,X3) = (xi — X2)(xi — X3)(X2 X3) 

If we apply any permutation to gi(xi,X2,X3), the function remains 

unchanged. For example, applying 52, we interchange xi and X2 giving 

gl(X2,Xl,X3) = X2 + Xl + X3 

which equals xi + X2 X3. You can check that all permutations leave 

gi unchanged, also, but consider the effect of each of the six permutations 

on f. 
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S\f\ = fl(Xi,X2,X3) 

Slf\ =/l(X2,Xl,X3) 

S2f\ = fl(X3,Xi,X2) 

S4fl =fl(Xi,X3,X2) 

S5fl = fl(X3,X2,Xl) 

S6fl = f\(X2,X3,X\) 

— x\ + X2 + X3 = f\ 

= x\ X\ -\- X3 — f2 

= X3 + X{ + X2 — fz 

— x\ + X3 + x2 = f\ 

= x\ -fi x2 + xi = f2 

— x\ + X3 + -Xl = f2 

Two permutations, xi and S4, leave f\ unchanged. Lagrange called 

{■si, s4} the group of the function f\. This is the original meaning of the 

word group; the group of a function was that set of permutations of the 

roots which left the function unchanged. Thus, {si, S2, S3, S4, ss, S6} is the 

group of g\. The functions f2 and f3 are called conjugates of/i — the two 

permutations S2 and S6 change f\ into its conjugate f2, while S3 and S5 

change/1 into/j. You might check to see that the group of h\ is {si}, 

while the group of d is {si, S3, S6} - 

Some functions such as g\ are left invariant under every permutation 

while others such as h\ are left invariant only by the identity permutation, 

si. Functions such as g\ are called symmetric. Given an equation, sym¬ 

metric functions of the roots are easy to find. To find gi(x\,x2,X3), first 

write the general equation of a cubic, x3 + ax2 + bx + c = 0, as a 
product of linear factors, 

G + ax2 -f bx + c = (x — xi)(x — X2)(x — *3) 

Expanding the right-hand side of the equation gives 

x3 -f- ax2 + bx + c 

= X3 — (xi -f- -X2 + x2)x2 + (X1X2 + ^2^3 + XiX3)x — X1X2X3 

= 0 

In order for the left side to agree with the right side, the following rela¬ 
tionship must exist. 

gl(xl,X2,X3) = Oi + *2 + X3) = — a 

Thus, gi(x\,X2,X3) is known immediately at the beginning of the problem, 

because (xi + *2 + *3) is the negative of the coefficient of the x2-term. 

The function h 1, as noted above, is nonsymmetrical and is difficult to 

find, in contrast to g\ which is easy to find. Yet, knowing the values 

h\(x\,X2,X3) and h2(x\,X2,X3), we could then find the roots ;ti, x2, X3 of 
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the cubic equation. Suppose that hi(xi,x2,X3) — B and li2(x\,X2,xi) C 

Using the definitions of gi, hu and h2 we obtain the equations 

Xl -f- X2 4“ X3 — a 

« + (zL^El+ (^i-E3)„ - * 

- + + (=i±£5>. - c 
which can be solved for the three unknowns, xi, x2, and x3. Although 

solving these equations is cumbersome, the end results are general 

formulas for the three roots of the cubic equation, analogous to the 

quadratic formula, x = (—b =L -\]b2 — 4ac)/2a, for the two roots of 

the equation ax2 + bx + c = 0. Thus, the cubic equation can be solved 

provided the values of hi and hi can be determined. 
Lagrange’s method for finding functions such as h\ was based on the 

following theorem which he proved. 

Theorem Let z and vv be any two functions of the roots, and let 

G be the group of z, namely, the set of all permutations 

leaving z invariant. Suppose that the function w is not 

left invariant by all the permutations of G, but rather 

has r conjugates, including itself. If the value of z is 

known, then the value of w can be determined by solving 

an equation of degree r. 

One could apply this theorem to the functions gi and hi. The function 

gi is invariant under all six permutations of the roots, while the function 

h\ has six different conjugates, including itself, under the application of 

these same six permutations. Thus, the theorem states that h i can be 

determined by solving an equation of degree six, but such an equation 

represents a more difficult problem than the original which was to solve 

a cubic equation. 
Lagrange found it helpful to add an intermediate step. He first applied 

his theorem to the functions g\ and d. The function d has two values 

when the six permutations leaving gi invariant are applied to it, and, 

thus, can be found by solving a quadratic equation. Once d was known, 

Lagrange could then find h\. The three permutations leaving d invariant 

transform hi into three different functions, so that, according to the 

theorem, hi can be found by solving a cubic equation, which in this case 

happens to be of a simple form that can be solved easily by taking a 

cube root. Thus, by inserting another step, Lagrange was able to find 

the function hi, and in the same manner h2, and so solve the cubic. What 
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he had done was to thoroughly analyze Cardano’s solution to the cubic, 

in which the first step was to solve a quadratic equation and the second 
was to extract a cube root. 

Lagrange’s goal was to extend his use of his theorem so that he could 

solve fifth and higher degree equations. In order to solve the fifth degree 

equation, Lagrange looked for a sequence of functions, like g\ —» d —► h\ 

in the cubic case, so that he could reduce the solution to a sequence of 

easy steps. Unfortunately, he could not find such a sequence of functions 

for the fifth degree equation. It was later proved, using Lagrange’s 

ideas, that a solution by roots to the fifth degree equation is, in general, 
impossible. 

The theory of equations is a topic of pure mathematics, yet Lagrange 

also made significant contributions to applied mathematics. Typically, 

the most brilliant mathematicians have excelled in several areas of mathe¬ 

matics. Lagrange, at age 19, wrote a book Analytical Mechanics which 

he was proud to say contained no diagrams. This work was not published 

until 1788 when he was 52. Lagrange derived some basic results in the 

calculus of variations which he used to obtain his equations of mechanics. 

You may have heard his name in connection with the Lagrange multi¬ 

pliers used in solving certain maximum and minimum problems. La¬ 

grange became the first mathematics professor in the new Ecole Poly- 

technique, founded in 1797 to train engineers for Napoleon. 

PIERRE-SIMON DE LAPLACE (1749-1827) 
AND GASPARD MONGE (S746-1S! 8) 

Laplace, a Frenchman, concentrated on the application of the law of 

gravitation to the entire solar system. He wanted to determine if the 

solar system was stable, and he showed that it was, if it conformed to his 

mathematical model. Laplace’s major work, Celestial Mechanics, con¬ 

tains his ideas concerning the solar system. Laplace was an applied 

mathematician — he was primarily concerned with explaining phenom¬ 

ena and not with mathematical theory itself. A pure mathematician is 
more interested in the mathematical theory. 

Laplace’s name is associated with several important topics in mathe¬ 

matical physics. The Laplacian equation is perhaps the most important 
partial differential equation 

d2u(x,y,z) d2u(x,y,z) d2u(x,y,z) _ 

dx2 dy2 dz2 

This equation describes gravitational potential and many other quantities. 

Many problems of mathematical physics can be formulated as partial 
differential equations. 
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Monge, also a Frenchman, invented descriptive geometry, a method 

of representing a three-dimensional object on a two-dimensional surface. 

While in engineering school Monge used descriptive geometry to solve 

a problem of a fort design. He arrived at the solution so quickly that the 

teacher did not believe that he had found the answer. When the teacher 

was persuaded to check the solution, however, he found Monge was 

correct. Consequently, Monge was made a teacher of descriptive geome¬ 

try. He was sworn not to divulge his method in order that he alone 

might teach it, so for fifteen years descriptive geometry was a military 

secret.5 This subject now is a part of drafting. 
Monge was a relatively important official in the French Revolutionary 

government under Napoleon. When Napoleon journeyed to Egypt, 

Monge accompanied him on the expedition as a member of a Legion of 

Culture which was to improve the minds of the Egyptians. The mission 

did not fare too well, however, so the men returned to France. 
Western mathematics and science were by 1800 well along on the 

journey begun almost two hundred years previously with the develop¬ 

ment of analytic geometry and, shortly after, of the calculus. Just as the 

knowledge from physical explorations altered people’s conceptions of 

their world, so did these mental explorations change people’s ideas of the 

universe and of their place in it. 

5Ibid., p. 185. 
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Problems 

1. Descartes showed how to perform arithmetic operations geometri¬ 

cally. Suppose the product of BC and BD is required (fig. 5.15). Let 

AB be the unit length segment. Connect AC. Construct DE parallel 
to AC. 

E 

a. Show that the length of BE is the product of the lengths of BC 
and BD, 

b. Use the above method to construct the product of 2 and 3. Check 
to see that it is approximately 6. 

2. Descartes also performed division geometrically. 

a. Referring to figure 5.15, show that if BE and BD are given, if 

AB = 1, and if AC is constructed parallel to DE, then BC = 
BE/BD. 

b. Use the method in part a to construct the quotient of 8 divided by 
4. 

3. Descartes constructed the positive solutions to quadratic equations. 

Given the equation z2 = az + b2 he constructed a right triangle 

NLM, with LM equal to b, the square root of the constant term, 

and LN equal to 1/2a, half the coefficient of z. Construct the circle 

with center N and radius NL, and extend MN to O (fig. 5.16). 

a. Show that z = OM is the positive solution to the equation. [Hint: 

Use the quadratic formula to solve for z. Compare the result 
with OM.} 

b. Construct the positive solution to z2 = 4z + 9. 
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4. a. Given the equation >'2 = -ay + h2 and figure 5.16, show that 

y = MP is the positive solution to the equation, 

b. Construct the positive solution to y2 = — 3y + 16. 

5. To solve the equation z2 = az — b2, Descartes constructed a right 

angle NLM with NL equal to 1/2a and LM equal to b. He then 

constructed a circle with center N and radius NL and constructed 

a line through M parallel to NL. (See fig. 5.17.) 

a. Show that the lengths MQ and MR represent the two positive 

solutions to the given equation. [Note: Here NL is assumed 

greater than LM, so that the circle and line do, in fact, intersect.] 

b. Construct the two solutions to the equation z2 = 6z — 4. 

c. If NL is less than LM, then the circle and the line do not intersect, 

and no solutions are obtained by this method. Explain this 

phenomenon. [Hint: You may wish to refer to a specific equa¬ 

tion, such as z2 = z — 4.] 

6. As an example of a three-line locus problem, let the lines x = 1, 

x = -1, and y = 0 be given (fig. 5.18). Find the equation of and 

sketch the locus of points P = (x,y), such that PQ PR = PS. 
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R (-1 ,y) = (h>9 P = (x,y) 

~T 

-i--- 
S = (x, 0) 

Figure 5.18 

7. Let the four lines a — 1, a — — 1, y = 1, y = —1 be given (fig. 

5.19). Find the equation of and sketch the locus of points P = (x,y), 
such that PQPR = PS-PT. 

R 
y 

Q P = (x, y) 

-"T 
i 

Is 
1 

-—----i-—. 
i 
! 
1 
1 
1 

-1 0 hj -i - 

1 
l 
1 
1 

-1 T 

Figure 5.19 

8. Let the four lines a = 0, a = 1, a = -1, and y = 0 be given 

(fig. 5.20). Find the equation of and sketch the locus of points P = 
such that PQ PS = PR PT. 

9. Descartes used a rule of signs, which has since been named after him, 

to find bounds for the numbers of positive and negative roots of an 

equation. The rule states that an equation can have as many positive 

roots as it contains changes of sign from positive to negative or 

from negative to positive and as many negative roots as the number 

of times that two positive signs or two negative signs are found in 
succession. For example, the equation 

X-5 - 3A4 + 2a3 + 3a2 - A - \ = 0 
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can have, at most, 3 positive roots and 2 negative roots, as its se¬ 

quence of signs is • Find the maximum numbers 

of positive and negative roots for the following equations, 

a. 3x2 — 2x — 1 = 0 

b. x4 + X3 + x2 — 2x + 1 0 
c. -X5 - 3x4 + x3 - a'2 + 3a + 5 = 0 

10. According to Fermat’s theorem, what is the smallest prime which 

could possibly divide 2n — 1? Does it? 

11. a. Use Fermat’s theorem to show that if 213 - 1 is not divisible by 

53 or 79, then it is prime. [Hint: Recall that if N = ab, either 
a < or b < yjN, so that if a number N has no divisors less 

than or equal to -y[N, then N is prime.] 
b. Show that 213 — 1 is prime, and that 212(213 — 1) is, therefore, a 

perfect number. 

12. Let an odd prime p be the sum ol two squares, p — s h t . 

a. Show that both 5 and t cannot be even. 

b. Show that both s and t cannot be odd. 
c. From parts a and b, either 5 or t is even. Suppose s is even and t 

is odd. Show that p is always one greater than a multiple of four. 

Thus, any prime p which is one less than a multiple of four cannot 

be written as a sum of two squares. [Hint: Let 5 = 2m and 
t __ 2n + 1 and show that p is one greater than a multiple of 

four.] 

13. Prove Desargues’ theorem for the case in which the triangles are not 

located in the same plane. [Hint: Consider the intersection of the 

planes containing each triangle.] 
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14. Show that the cross-ratio of the points A, B, C, and D is equal to the 
cross-ratio of the points A', B', C', and D' in figure 5.21. 

15. Roberval found the area under an arch of the cycloid in an interesting 

way, as illustrated in figure 5.22. Let ECI be half an arch of a cycloid. 

Roberval defined a curve EDHI called the companion to the cycloid 
on which a point D has the property that CD = AB. 

K a i 

a. Show that the area between the cycloid half and its companion 
is equal to the area of the semicircle. 

b. It can be shown that the companion bisects the rectangle EJIK. 

Show that the area of the rectangle EJIK is twice the area of the 
circle. 

c. Show that the area under the cycloid half is 3/2 the area of the 

circle, and, thus, that the area of the cycloid is three times the 
area of the circle. 

16. Suppose A and B each bet $1 on the outcome of five coin tosses. 

Gambler A bet that heads would occur three or more times, while 

B bet that tails would. After two tosses, both resulting in heads, the 

game was stopped. How should the stakes have been divided between 
A and B, so that each would receive his fair share? 
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17. Use the formula arctan * + arctan y = arctan (x + y)/( 1 xy) to 

show that 
a. 2 arctan 1/5 = arctan 5/12 

b. 3 arctan 1/5 = arctan 37/55 

c. 4 arctan 1/5 = arctan 120/119 
d. 4 arctan 1/5 = arctan 1/239 + arctan 1, or 

tt/4 = 4 arctan 1/5 - arctan 1/239 

18. Use the formula in problem 17d to compute an approximation to 

7T. [Hint: To compute arctan 1/5, use the first three terms of its 

infinite series, and use the first term of the series for arctan 1/239 to 

compute it] Compare your answer with the value tt = 3.141592 

correct to six places. 

19. Divide 1 by 1 + x2 using ordinary polynomial long division to 

obtain an infinite series equal to 1/(1 + x2). 

20. Using the same method, divide 1 by 1 — x to obtain an infinite 

series equal to 1/(1 — *)• 

21. Show that 2 < [1 +(1/«)]"< 3. [Hint: Using the binomial 

theorem, show that 

1 1 1 
< 1 + 1 + ~ ^ + 2 2.3 2.3- • -n 

< 1 + 1 + ^ + H- 

22. Refer to figure 5.23 and determine if a person can walk across each 

bridge once and only once. 

n 
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23. In the Konigsberg bridge problem (fig. 5.14), a walk can be described 

by specifying the land masses traversed in order. Thus, A CD A repre¬ 

sents a walk from mass A to C to D and back to A in which three 

bridges are crossed. Suppose all seven bridges could be crossed 
exactly once. 

a. How many letters long must a description of such a walk be? 

b. Five bridges go to land mass A. If each bridge is crossed exactly 

once during the walk, how many times must the letter A occur in 
the description of the walk? 

c. Three bridges go to each of masses B, C, and D. If each of these 

bridges is crossed exactly once during the walk, how many times 

must each of the letters B, C, and D occur in the description of 
the walk? 

d. Comparing the number of occurrences of the letters A, B, C, 

and D required in parts b and c with the total number allowed in 

part a, what can you conclude about the possibility of such a 
walk? 

24. Suppose that N bridges connect a certain group of land masses, and 

that each mass has an even number of bridges. Suppose trips are 

described, as in problem 23, by giving the sequence of land masses 
traversed. Let each bridge be crossed exactly once. 

a. If the trip does not start on a certain land mass X, how many 

times must the letter X occur in the description of the walk? 

b. If the trip does start at a certain land mass T, how many times 

must the letter Y occur in the description of the walk? 

c. Use parts b and c to show that the number of letters in the 

description of the trip is TV -j- 1, exactly the number required for 

any trip crossing each of N bridges exactly once. Thus, such a 

trip is possible. (Recall that since each bridge has two ends, N 
bridges have 2N ends.) 

25. The equation x2 + 2x — 3 = 0 with roots —3 and 1 can be factored 

as (x + 3)(;t — 1) = 0. Euler assumed this property held for poly¬ 
nomials of infinite degree to prove his formula 

- = - + + 
6 l2 ^ 22 ^ 32 ^ 

Euler knew that 

sin z = z — 4- ___ j- 
3! ^5! 71 ^ 

and that the roots of sin z = 0 are z = 0, ±T, ±2*-, ±3tt, ±4r,. 
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a. Show that all roots of sin z = 0, except z - 0, satisfy the equation 

0 

b. Assuming that sin z with its infinite number of roots can be 

factored like a polynomial, show that 

c. Assuming that the infinite product in part b can be multiplied out 

in the same way as a finite product, find the coefficient of z- in 

that product and show that by setting it equal to the coefficient 

of z2 in the sum in part a, Euler's formula is obtained. 

26. Verify Goldbach’s conjecture for every even integer between 4 and 

50. 

27. For each of the following functions, find the group of permutations 

which leave it invariant. 

a. f(x 1,*2,A'3) = X\X2 + *3 

b. d(x\,X2,Xl) = (*1 — *2)(Xf ““ _ 
c. hi(xi,X2,Xi) = XI + [(-1 + \/-3)/2]x2 + [(-1- V_?)/21X3 

28. Show that if n is composite (n = rs, where r > 1 and .? > 1), then 

2n — 1 is composite. {Hint: Factor (2r)? ~■ F] 

29. Use problem 28 and Euler’s theorem about perfect numbers to show 

that if n is composite, then 2"-1(2" — 1) is not perfect. 

30. Let N be an even perfect number, so that N = 2n */?. Let S be the 

sum of the positive divisors of b. 

a. Show that N = (1 + 2 + 22 + • • • -b 2" ')S — N. 

b. Show that 2nb = (2- - 1 )S. [Hint: For any n, l-f2 + 22 + 

••• + 2-, = (2m - l)/(2 - 1)] 
c. Show that S = b + b/(2n 1) and, therefore, that b/(2 1) 

is an integer and a divisor of b. 

d. Show that b = 2" — 1. [Hint: The number 1 is a divisor of b.\ 

e. Show that b is prime. Thus, Euler’s theorem which states that if 

N is an even perfect number, then N = 2n '(2n — 1) where 2" —- 1 

is prime, is proved. 
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Mathematics 
as Free Creation 

Men of the 1600s, such as Kepler and Galileo, believed that mathematics 

was the key to truth; nature was assumed to operate according to mathe¬ 

matical laws. Since the early 1800s, however, the spirit of modern 

thought has prevailed, the continuing realization that mathematical 

theories are independent of physical phenomena. Just because all physical 

triangles seem to have 180° as the sum of their angles, does not mean that 

this is true of every triangle in geometry. If geometry is analogous to the 

real world, then we say it provides a model of the world, just as a wooden 

ship in someone’s den provides a model of an actual ship on the ocean. 

Suppose one decides, in a moment of inspiration, to build a model of a 

ship which does not exist, in fact, a model so different that the corre¬ 

sponding “real” ship would not float. A critic’s first reaction might be 

that this is a waste of time since the model does not correspond to reality. 

Some genius may discover that the ‘‘unreal” ship, while not feasible as a 

ship, does, in fact, provide an excellent undersea habitation. On the 

other hand, he may discover an ocean, perhaps on a distant planet, on 

which the '‘unreal” ship would be quite suitable as a floating vessel. 

When mathematics became independent of the physical world, it 

became free. This freedom allowed mathematics to develop in unforeseen 

ways. New theories were created with new models and many new ap¬ 

plications. No longer could one limit the definition of mathematics to 

the study of number and magnitude. We shall see this freedom in geome¬ 

try and algebra. In calculus also, intuitive notions were found to be un¬ 

reliable, and a more formal logical basis for calculus was sought. 
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1 A Forerunner— Carl Friedrich Gauss (1777-1855) 

Carl Friedrich Gauss, a German, was one of the greatest mathematicians 

of all time and certainly the greatest of his time. He anticipated many of 

the advances of the nineteenth century. 
Gauss was an extremely bright child. He taught himself to read and to 

make mathematical calculations, and before the age of three, he corrected 

his father’s addition of the payroll for his workers. When Gauss was 10 

years old, he developed the formula n(n + 1)/2 for the sum of the first n 

integers. Gauss’ elementary school teacher asked the students in Gauss’ 

class to find the sum of the numbers from 1 to 100, expecting to keep 

them busy for a long time. But Gauss realized that the numbers could be 

grouped as 1 -fi 100, 2 + 99, 3 + 98, and so on up to 50 + 51. Each of 

these sums equals 101, and there are 50 sums, so the sum of the first 100 

integers is equal to 101 X 50, a simple product which Gauss calculated 

immediately. The assistant teacher recognized Gauss’ extraordinary 

ability and gave him extra help and encouragement. He persuaded the 

wealthiest man in town, the Duke of Brunswick, to support Gauss 

education. 
At age 18, Gauss invented the method of least squares for finding the 

best value of a sequence of measurements of the same quantity. Another 

use of the method of least squares involves finding the best straight line 

fit to a set of data. To find the best line, one minimizes the sum of the 

squares of the differences of the data from the line (fig. 6.1). If we just 

added the differences above and below the line, there would be cancella¬ 

tion of the plus and minus terms. When the differences are squared, all 

terms are positive, so no cancellation can occur. 

Figure 6.1 

Gauss later used his method of least squares in fitting orbits of planets 

to data measurements, a procedure which was publisned in 1809 in his 

Theory of motion of the heavenly bodies. In connection with the error of 
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observations, he developed the standard normal curve. Gauss derived 

the normal curve by assuming that if a sequence of measurements of the 

same quantity are given, the most probable correct value of that quantity 

is the average of all the measurements. Thus, figure 6.2 shows that the 

probability is greatest for the average of all the measurements and de¬ 

creases for measurements either larger or smaller than the average, since 

such measurements, as they get further from the average, are less likely 

to be the true value of the measured quantity. The probability distribu¬ 

tion which the curve represents is called the Gaussian distribution, the 

most useful distribution in probability theory and statistics. 

probability 

measurement 
values 

Just before 1800, complex numbers were given a geometric interpreta¬ 

tion which made mathematicians feel more comfortable using them. 

Gauss graphed complex numbers in the plane, as did Jean Argand (1769- 

1822), a Frenchman, and Caspar Wessel (1745-1818), a Norwegian 

surveyor. Wessel was the first to publish his discovery in 1797. He repre¬ 

sented a complex number such as 2 + 3sj— 1 by an arrow from the origin 

to a point 2 units in the positive ^-direction (real axis) and up 3 units in 

the ^-direction (imaginary axis) (fig. 6.3). Each complex number repre¬ 

sented a rotation and a “stretching.” For example, the number 1 + 
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is a/2 units long at a 45° angle with the positive real axis. When another 

complex number is multiplied by 1 4- V—^ *s rotate<^ anc^ 
multiplied in length by yjl. Let V"! be multiplied by 1 + V“L The 
number has length one and is at a 90° angle with the positive real 

axis. The product (1 + V^W"1 should, therefore, have a length of 

^2(1) = y/2 and be at an angle of 90° + 45° = 135°. The product is 

_ i yfCC\9 and it is of length -y/2 at an angle of 135° (fig. 6.4). Thus, 

complex numbers were understood by giving them a new interpretation, 

just as negatives were first understood as a deficit or loss. A negative 

number of apples does not make any sense. Neither does a square whose 

area is negative. But given a new interpretation, both negatives and 

square roots of negatives seem reasonable. 

Gauss used the geometrical representation of complex numbers in 

proving a surprising result about regular polygons. The triangle and the 

pentagon were the only regular polygons with a prime number of sides 

which Euclid knew to be constructible with a straightedge and compass. 

No one since had added any others. Gauss proved that if p = 2^ + 1 is 

prime, then the p-sided polygon is constructible. Since 17 = 2- + 1 is 

prime, the 17-sided polygon is constructible using a straightedge and 

compass. The only known primes of the form V-n + 1 are 3, 5, 17, 257 

and 65, 537. The 257-sided polygon has been constructed, and someone 

spent years in trying to construct the 65,537-sided polygon, but he did 

not succeed. Many of the numbers 22 + 1 have been found to be com¬ 

posite, for example, in 1958, 22 + 1 was found to be divisible by 

5 X 21947 + 1. If written out in numerals of a length of one centimeter 

each, this number would be many times the circumference of the known 

universe. 
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Urauss used algebra to find the new constructible regular polygons. 
Since the square root of any quantity can be constructed with a straight™ 
edge and compass, any expression containing only square roots and 
numbers can be constructed with a straightedge and compass. For 

example, to construct^-y/34 + 2^17, start with a line of length 17, then 
construct the line ^17, then the line 2-^17, then the line 34 + 2^17, 

then the line *^34 + 2^17. (See problems 1 and 2 of chapter 5 and 
problem 3 of this chapter for some construction methods.) 

Consider the unit circle with an inscribed 17™sided polygon. The 
angle 6 (fig. 6.5) subtended by its side is (360/17)°. The cosine of 
(360/17) is the line OT in figure 6.5. If OT is constructible, then by 
constructing a perpendicular at the point T the point P can be found, 
and the side of the 17-sided regular polygon can be obtained by joining 
PS. Gauss was able to show that 

) “ ~T^ + !^17 + lW34-2Vl7 

+ |V17 + 3yn - V34 - 2yi7 - 2^34 + 2VT7 

and since this is an expression containing only square roots and numbers, 
it is constructible with a straightedge and compass. 

Figure 6.5 

The actual construction of the 17-sided polygon is, understandably, 
somewhat more difficult than that of the triangle or pentagon. In fact, 
the method of construction was only discovered after a thorough al¬ 
gebraic analysis of the problem. Consider the unit circle to be drawn in 
the complex plane. Then the vertices of the /2-sided polygon are nth 
roots of unity. For example, consider the 4-sided polygon, the square 
(fig. 6.6). The four vertices are 1, 1, -1, and All four of 
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Figure 6.6 

these are fourth roots of 1; they all satisfy the equation z4 1, or z 

1 = 0. Similarly, the vertices of the 17-sided polygon all satisfy z17 — 

1 = 0 which factors into 

(z - 1 )(z16 + z15 + z14 +-b z3 + z2 + ^ + 0 = 0 

Gauss showed that the solution of this equation can be expressed by 

square roots and is, thus, constructible. He did the same for the equation 

zn — 1 = 0 = (z — 1 )(zn~] + zM~2 + • • • + z + 1) 

for the tt-sided regular polygon, where n = 22* + 1 is prime. 

The converse, that no other polygons are constructible, was proved by 

a French bridge and highway engineer, Pierre Louis Wantzel, in 1837. 

He showed that a constructible number is the root of an irreducible 

algebraic equation of degree 2m for m equal to any nonnegative integer, 

and that any number which is the root of an irreducible equation not of 

degree 2m is not constructible. Wantzel’s result can be applied to prove 

that the “three famous problems” are impossible: 

1. The side of a doubled cube satisfies x3 = 2 if the volume of the 

given cube is one. This equation is of degree three and cannot be 

factored over the rational numbers, thus the side of a doubled 

cube cannot be constructed with ruler and compass. 

2. An angle of 60° cannot be trisected with a straightedge and com¬ 

pass. If it could be trisected, that would mean that a 20° angle 

could be constructed which, in turn, would require that cos 20° 
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and 2 cos 20° both be constructible (see fig. 6.7). However, 

x = 2 cos 20° cannot be constructed. To see this, note that 

~ = cos 60° 

= cos 40° cos 20° - sin 40° sin 20° 

= (2 cos^ 20° - 1) cos 20° - (2 sin 20° cos 20°) sin 20° 

= 2 cos3 20° - cos 20° - 2(1 - cos2 20°) cos 20° 

= 4 cos3 20° - 3 cos 20° 

so that 

1 = 8 cos3 20° -3-2 cos 20° 

or 

1 = *3 — 3x where x = 2 cos 20° 

The equation x3 — 3x — 1 = 0 is irreducible over the rationals 

and is of degree three. Therefore, 2 cos 20° is not constructible 

with a straightedge and compass, and, consequently, the 60° 
angle cannot be so trisected. 

3. It was later shown by Lindemann that tt satisfies no algebraic 

equation and is, therefore, not constructible. Thus, the squaring 
of the circle is impossible. 

The same day that Gauss discovered his result about polygons, he 

began writing his famous journal. This diary was circulated only in 

1898, 43 years alter Gauss died. It contained 19 pages with 146 brief 

statements of discoveries, the last entry being made on July 9, 1814. 
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Many ideas were noted in his journal which were only discovered by 

others many years later, such as non-Euclidean geometry and noncom- 

mutative algebra. Since Gauss did not publish often, other mathema¬ 

ticians had no way of knowing that he had orig.nated ideas which they 

believed they were the first to discover, it is no wonder that Gauss re¬ 

ceived their ideas coolly. Gauss, a perfectionist, did not publish his ideas 

because he wanted to polish and develop them first. His seal was a tree 

with but few fruits and bore the motto, “Few, but ripe.” 

At the age of 21, Gauss completed a great work on the theory ot 

numbers, Arithmetical Research, which he had been working on for 

several years. In this book he introduced the very useful congruence 

algebra (residue classes, or modular arithmetic). He wrote b = c (mod 

m) if m divides b - c. The statement b = c is read, “b is congruent to c. 

For example, 16 = 2 (mod 7), and 39 = 7 (4). 
There are several uses of this congruence concept. We may not care 

about the quotient in a division, for example, but only about the re¬ 

mainder. Normally, when we do a division we find both the quotient and 

the remainder, but the algebra of congruences provides a nice method 

for finding the remainder only. It is much easier than doing the complete 

division. The method is based on the fact that if m divides b giving quo¬ 

tient q and remainder r, then b = r (mod m), and conversely. For ex¬ 

ample, we know that if 229 - 1 is prime, then 228(229 - 1) is a perfect 

number. By Fermat’s theorem, to determine if 229 - 1 is prime, we need 

only test prime divisors of the form 2fc(29) + 1 = 58fc + 1. For k - , 

this gives 59. It is easy to determine if 59 divides 229 - 1 by using Gauss 

congruence algebra. We need only find the positive number, r, less than 

59 which satisfies the congruence 229 - 1 = r (mod 59). If r - 0, t en 

59 divides V-9 - 1, while if r * 0, then 59 does not divide V-9 - 1. 

The steps in the solution are chosen to simplify the calculations. 

First choose the power of 2 nearest the modulus 59, giving 2C — 5 (mo 

59). Square both sides to get 2'2 = 25(mod 59). Multiply by 2, obtaining 

2'3 = 50(mod 59). Since 50 = -9(mod 59), then 213 = -9(mod 59). 

(The only reason for this step is that -9 is an easier number to compute 

with than 50.) Square both sides again, giving 226 = 81 = 22 (mod 59). 

Multiplying by 4, 228 = 88 = 29(mod 59). Multiply by 2 to show that 

229 = 58(mod 59). Subtracting 1, 229 — 1 = 57(mod 59), so that 2-9 — 1 

is not divisible by 59. This result was found without the troublesome cal¬ 

culation of 229. Other possible divisors should be tested to determine 

whether or not 229 - 1 is prime. 
Gauss may have been led to the idea of congruences by his study ot 

the periods of decimals.1 He computed these periods for fractions 1/m 

'Shanks, Soloed and Unsolved Problems in Number Theory, pp. 203 4. This book con 
tains an interesting treatment of number theory from a historical point of view. 
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for m up to 1000. A few fractions and their periods are listed in the 
following table. 

_1 m m — 1 period length p{m) 

1/7 = 7T42857../ 

1/3 = 3... 

1/13 = .076923 

1/37 = 1517 

1/9 = .7 

The bar indicates that the sequence is repeated over and over again. 

Thus, 1/7 = .142857142857 .... The fractions with denominators with 

a 2 or 5 in them were left out, because they do not produce fractions 

whose repeating parts begin with the first digit (1/6 = .16, 1/5 = .26). 

Notice in the table that the period p(m) is always less than or equal to 

m — 1. If m is prime, it can be proved that p(m) divides m - 1. It is not 

known for which primes m the period p(m) equals m — 1. 

The period of a pure repeater (a fraction whose repeating part begins 

with the first digit) is the smallest integer p(m) such that 

10p(m) == 1 (mod m) 

We can see this from the example of 1/37, 

6 6 

2 1 

12 6 

36 3 

8 1 

.027 

37 1.00000 

0 

1 00 
74 

260 

259 

1 

The number 10 does not have remainder 1 when divided by 37 nor does 

100 when divided by 37, but 1000 divided by 37 does have remainder 1. 

Once a remainder of 1 is obtained, the division is exactly as it was at the 

start of the problem, 37 into a 1 followed by a string of zeros. Thus, the 

first three digits of the quotient will repeat again and again. 103 = 

1 (mod 37), while 102 ^ 1 (mod 37) and 10 ^ 1 (mod 37). 

Gauss’ Arithmetical Research was a difficult book to read, yet Sophie 

Germain (1776—1831), a Frenchwoman, found it fascinating and sent 
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Gauss some of her own results on the subject, writing under the pseud¬ 

onym of M. le Blanc, because she felt that a woman mathematician would 

not be taken seriously.2 Her true identity was disclosed when she tried 

to help Gauss. The French were fighting near Gauss’ home, and Sophie, 

knowing the general in command of those troops, wrote the general 

asking him to insure Gauss’ safety. An emissary from the general con¬ 

veyed to Gauss Sophie Germain’s regard for his safety. Of course 

Gauss disclaimed any knowledge of such a person and was quite surprised 

to learn, as he soon did, that M. le Blanc was, in fact, Sophie Germain. 

He admired her for having the perseverance, in spite of the prejudices 

and customs against a woman mathematician, to pursue her mathemat¬ 

ical studies and to achieve good results in a very difficult field, the 

theory of numbers. One of her results was a partial solution to Fermat s 

famous last theorem. She proved that for any odd prime p less than one 

hundred, there are no solutions to x? + y = zp in integers x, y, and z 

not divisible by p. , 
Sophie Germain became interested in mathematics after reading the 

story of Archimedes’ death, feeling that a subject of such captivating 

interest to Archimedes must be worth pursuing. However, in order to 

study mathematics, she had to overcome strong objections from her 

family. Since women were not accepted as students at the Ecole Poly¬ 

technique, Sophie instead managed to obtain the lecture notes of some 

professors, including Lagrange. Fortunately, Lagrange, and later Gauss, 

encouraged her. 
Gauss was very interested in mathematical physics and made many 

contributions to the field. The unit of magnetism is called the gauss in 

his honor. In 1800 a minor planet (asteroid), Ceres, was discovered, but 

it was so small that it was soon lost. Gauss computed its orbit from the 

few observations that had been made, and he showed the observers 

where to look in the sky for the lost planet. Ceres was found to be where 

Gauss had predicted, and he became famous. Gauss was named director 

of the Gottingen Observatory, a position he held until the end of his life. 

During the period 1821-1848, Gauss was the scientific advisor to the 

Hanoverian and Danish governments in a geodetic survey. He was 

faced, therefore, with the problems of making measurements on a 

curved surface, the earth. In his study he developed the idea of coordi¬ 

nates intrinsic to the curved surface. For example, on a sphere one can 

use latitude and longitude, rather than considering the sphere as part of 

a three-dimensional space and using the awkward (x,y,z) coordinates. 

Intrinsic coordinates are also essential for the study of more complicated 

surfaces which may not be embeddable in ordinary three-dimensional 

2See Lynn M. Osen, Women in Mathematics, pp. 83-93 for biographies of Sophie 

Germain and other women mathematicians. 
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space. Gauss showed how to express important quantities such as the 

length of a curve and the curvature at any point on the curve in terms of 

these intrinsic coordinates. The theory of surfaces is the subject of dif¬ 

ferential geometry, a study which was later applied to the general theory 
of relativity by Einstein. 

One of the men most responsible for the development of projective 

geometry is Jean-Victor Poncelet (1788-1867), a Frenchman. Poncelet 

was with the French army in Moscow and was taken prisoner. He created 

projective geometry while in prison in 1813-14, and his book Treatise 

on the Projective Properties of Figures was published in 1822. 

Poncelet discovered the important principle of duality. The principle of 

duality states that every proposition of projective geometry remains true 

when the words point and line are interchanged. Thus, we get two theo¬ 

rems, rather than only one. For example, it is true that two lines determine 

a point, if we accept the convention that parallel lines determine a point 

at infinity. Interchanging point and line, we obtain the dual statement, 

two points determine a line. An interesting statement results from forming 

the dual of Pascal’s theorem. The statement was first found by Brianchon. 

You will be asked to investigate the dual of Pascal’s theorem in problem 
19 of this chapter. 

Another interesting concept in geometry, the one-sided surface, was 

discovered by A. F. Mobius (1790-1860). The simple one-sided surface 

pictured in figure 6.8 is now called the Mobius strip. You can make a 

Mobius strip by taking a strip of paper, twisting it once and joining the 

ends together. If you place a pencil on the “top” and move it along the 

surface of the strip, you reach the “bottom.” Continuing, you reach the 

“top” again without ever lifting the pencil. 

2 Advanced Calculus 

In the mid 1700s more complicated problems of applied mathematics 

began to be studied. However, Bernoulli’s and Euler’s notions of func¬ 

tion were not adequate for an understanding of these new problems. In 
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the early 1800s Fourier developed new mathematical methods based on 

a new concept of function. The joint desires to solve new problems and 

to clarify the concepts of calculus led mathematicians such as Cauchy, 

Bolzano, Abel, and Dirichlet to develop and extend the notions of 

function, integral, continuity, limit, and convergence. 

JOSEPH FOURIER (1768-1830) 

Fourier, a Frenchman, wrote The Mathematical Theory of Heat which 

was published in 1822. His work was not immediately accepted because 

it was so different from the established ideas. Fourier solved problems 

in heat conduction, as illustrated by the following example. 

Suppose a rectangular plate BAC of infinite length (fig. 6.9) is 

to be heated at its base A, while preserving at all points of the 

base a constant temperature 1, and each of the two infinite sides 

B and C, perpendicular to the base A, is kept at a constant 

temperature 0 at every point. What is the temperature at anv 

point of the plate? (The solution will not be given in this text.) 

B 

A 

C 

Figure 6.9 

To solve problems such as this Fourier used infinite series of sines and 

cosines, such as 

ao + a\ cos + ai cos 2x + cos 3x + • * * 

where the coefficients a0, ai, . . . , are any given numbers. Fourier’s 

claims about such series, now called Fourier series, were controversial. 

To understand the controversy, it is necessary to know the discoveries 

prior to Fourier’s. 
An important problem in mathematical physics, the vibrating string 

problem, was studied extensively about 1750. 
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Suppose a string is fastened at A and B (fig. 6.10). At time 

zero the string is plucked, and it vibrates. What will be the 

height y{x,t) of the string at point x and at time /? 

length = / 

Figure 6.10 

The equation formulating the law of such motion is a partial differential 

equation, as is the equation for the heat conduction problem. 

Jean Le Rond D’Alembert (1717-1783) and Euler gave a general form 

of the solution to the vibrating string problem while Daniel Bernoulli 

(1700-1782), the son of John Bernoulli, gave the solution as a series of 

sines and cosines. In Bernoulli’s solution the initial position of the string 
at time t = 0 is represented as 

X-X'iO) — b\ sin ——F £2 sin ~—b bi sin —~ + • • • 

where / is the length of the string, is any point between A and B, and 

the bs are constants. Bernoulli was primarily a physicist, and his argu¬ 

ments for such a representation were based on physical grounds. When 

a guitar string is plucked, for example, you first hear the main note, but 

as the tone fades you hear the overtones, such as the sound an octave 

higher. Bernoulli’s sine functions are ideally suited to represent such a 
situation. 

The function sin irx/l is zero at x = 0 and x = /. The function 

sin2irx/I is zero at x = 0, x = 1/2 and x = 1. Their graphs are compared 

in figure 6.11. The function sin irx/l represents the main tone, while the 
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function sin 2ir*//, being fixed in the middle of the string, represents a 

tone an octave higher (as we know from the Pythagorean studies). 

Similarly, sin 3irx/l is fixed at two points in between and represents an 

even higher tone. The tone that we hear is analyzed into its pure tone 

components by the ear. 
Bernoulli claimed that any solution to the vibrating string problem 

could be represented by his trigonometric series, but Euler disagreed 

with him. To understand Euler’s thought we must keep in mind some 

properties of familiar functions as Euler knew them. Functions such as 

y = *5 + 3x2 + i or y = 1 + x + *2/2 + *76 +■' • have two im- 

portant properties, among others. 

I. They are very smooth (fig. 6.12). No graph of such a function has 

corners. To represent a graph with a corner using these functions, 

two of them must be pieced together, such as 

f(x) = — x if x < 0 

and 

f(x) = x if x > 0 

which represents the graph with corner in figure 6.13. 
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2. If two such functions agree on an interval, they agree every¬ 

where. Thus, it is impossible to have two such functions with 

the following graphs (fig. 6.14). If we are more specific, a stronger 

statement can be made. For example, if we know only three 

points, we can say that there is only one circle going through 
those three points. 

Returning to Euler’s argument, note that the sine function is periodic. 

The function sin tx/1 repeats itself in every interval of length /, just as 

sm x repeats itself in any interval of length 2tt (fig. 6.15). Euler argued 
that since 

L I L. ' 27TX . ^TrX 
bi sin — + bi sin ——f- &3 sin ——(- 

/ / / 

is periodic, it could not possibly represent the shape of a string which 

is given by a nonperiodic function. For example, consider a parabola 

and let the shape of the string be given by the top part of the parabola 

(fig. 6.16). A periodic function could not possibly have the same graph as 

such a string, because by property 2 above, if it agreed with the parabola 

on the interval A to B, it would have to agree with it everywhere. But the 

parabola is clearly not periodic, thus such agreement is impossible. 

Fourier in his solution of heat conduction problems used trigonometric 

series. He also claimed that all solutions could be represented by such 

series. His point, not understood by the more traditional mathema- 
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Figure 6.16 

ticians, was that these series are not familiar functions. They are much 

more complicated than polynomials or power series like y = 1 + x + 

x2/2 + x3/6 d-. Trigonometric series have corners; they may even 

have jumps, such as in fig. 6.17. A trigonometric series can represent the 

top of the parabola, because it has corners (see fig. 6.18). 

Because of Fourier’s work, the entire notion of function had to be 

extended. A graph such as figure 6.13, which formerly was given by two 

functions, could now be given by one function of the new type. With the 

extension of the function concept, more questions arose. When is a func¬ 

tion continuous? How can you tell from its equation whether or not it has 

jumps? When does a Fourier series converge? These new problems of 
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mathematical physics required a deeper analysis of the ideas of function 

and limit and continuity. What we know as advanced calculus was de¬ 

veloped in the 1800s to deal with these questions. 

ProWems in the theory of integration also arose from Fourier series. 
If a function/(x) is to be represented as a series 

f(x) = bo + b\ sin x b2 sin 2x -p b3 sin 3x -p • • • 

how can the bs be found? To find b2, for example, multiply the equation 
by sin 2x and integrate. 

2t 

f(x) sin 2x 

- jo (b0 sin lx + b, sin x sin lx + b2 sin lx sin lx 4-) 

If term-by-term integration is valid, we get 

2* 
f(x) sin 2x 

2ir 

= b0 sin 2x -f b\ 
2t 2t 

sin x sin 2x -(- b2 I sin 2x sin 2x 4- • • 
o / o 

and you can check that the entire right-hand side of the equation reduces 
to 2irb2, so that 

1 f2* 
bl = Jo Sin 

Thus, to find the coefficients by this method, one must evaluate an in¬ 
tegral. 

Newton made the finding of areas much easier by using antidiffer¬ 

entiation. Antidifferentiation works very well for functions such as 

y = 1 + *2 + *5, but Fourier was studying functions with corners and 

jumps. How can the integral be defined for such functions? Cauchy, and 

later Riemann, defined the integral in terms of rectangle approximations. 

It was then asked, which functions are integrable? Thus, Fourier series 

influenced the development of the theory of integration also. 

CAUCHY, BOLZANO, ABEL, AND DIRICHLET 

Augustin-Louis Cauchy (1789-1857), a Frenchman, published very 

extensively. He developed concepts in calculus and the theory of func¬ 

tions such as limit, continuity, and integral. He also proved many 
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results about groups of substitutions, groups being a concept first created 

Bernard Bolzano (1781-1848), a Czech, gave arithmetical definitions 

of limit, continuity, and magnitude to avoid the dependence on geometric 

intuition which can be misleading. This approach was not really ap¬ 

preciated until Weierstrass made it known some 30 to 40 years later. 

Niels Henrik Abel (1802-1829), a Norwegian, was eighteen when his 

father died, and Abel had to support his mother and six brothers an 

sisters. He was never in very good health, and at the age of only 26 e 

died from tuberculosis. Even so, he was able to make valuable contribu¬ 

tions to mathematics. 
Abel studied the developments of Newton, Euler, and Lagrange, 

especially the work of Newton and Euler on infinite series. Generally, in 

the 1600s and 1700s series were manipulated formally, just as poly¬ 

nomials were, and, occasionally, some strange results were obtained. 

For example, substituting x — 2 into 

1 
i + x + *2 + *3 + ‘ ‘' = \ ~zrz 

gives 

1 + 2 + 4 + 8+*•• = -1 

Abel, in the early 1800s, used and developed convergence criteria for 

series. Mathematicians were learning that one had to be more careful 

with infinite series than with polynomials. 
Since the time of Cardano and Ferrari in 1545, general formulas for 

the solution of cubic and quartic equations had been known, but no one 

had been able to find a general solution by roots to the quintic equation. 

We have seen how Lagrange tried by developing the method of using 

groups of permutations. Abel, in 1823, used these ideas to prove that a 

solution by roots to the general fifth degree equation is impossible. 

(Paolo Ruffini, an Italian, had given a partial solution in about 1800.) 

Abel wrote to Gauss about his proof, but Gauss, probably thinking it 

was another worthless paper, did not read it. This is understandable, 

because mathematicians get many letters from unknowns who claim to 

have trisected any angle, or who claim to have proved Fermat s last 

“theorem.” One does not expect these claims to be valid. 

Abel was sent to Berlin and Paris by his government to meet the top 

mathematicians. Some of the established men received him coolly, but 

in Berlin he met August Crelle (1780-1856) an amateur mathematician 

who in 1826 started one of the first journals devoted exclusively to mathe¬ 

matical research. It is written primarily in German and continues to this 
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day, known informally as Crelle’s Journal. Crelle published much of 

Abel’s research, making his work known. While in Paris, Abel gave an 

excellent paper on functions to Cauchy to present to the Paris academy, 

but Cauchy mislaid it and ultimately forgot about it. 

Connected with the development of the concept of function arising 

from studies of Fourier series during the early 1800s is another important 

mathematician, Peter Gustav Lejeune Dirichlet (1805-1859). Dirichlet 

said that y is a function of x if for any value of x there is a rule which 

gives a value of y corresponding to it. This idea is nearly the same as 

that underlying current definitions of function. Dirichlet’s definition 

got away from the idea that a function must be given by one formula 

He gave as an example the function which is zero at every rational 

number and one at every irrational number (fig. 6.19). 

3 Variety in Geometry 

New types of geometry were created in the early nineteenth century. 

Even though Euclid’s geometry seemed to give a correct representation 

of geometry in the “real” world, mathematicians showed that it was 

possible to create other geometries which did not fit the pattern of reality. 

Mathematics was becoming free to define its own type of truth. 

NIKOLAI IVANOVSTCH LOBACHEVSKY (1792-1856) 

Lobachevsky, a Russian, was a bright student who became a full pro¬ 

fessor at the University of Kazan at age 23. He made his first announce¬ 

ment of non-Euchdean geometry there in 1826 to a mathematics society. 

Recall that Euclid’s fifth postulate states that if two lines are cut by a 
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transversal, and if the interior angles on the same side are less than 

two right angles, then the two lines intersect on that side (fig. 6.20). 

An equivalent form of the parallel postulate is that given a line and a 

point not on the line, there is one and only one line through the point and 

parallel to the given line (fig. 6.21). 

Figure 6.21 

It was often argued that, even though the fifth postulate seems to be 

true, such a complicated statement ought to be proved and not just 

assumed as a postulate. Many unsuccessful attempts were made to prove 

the fifth postulate using the other postulates. A notable attempt was by 

Saccheri, who assumed the opposite of the fifth postulate and tried to 

deduce from it a contradiction. Lobachevsky made a breakthrough 

when he decided that it was impossible to prove Euclid’s fifth postulate. 

He saw that other forms of the parallel postulate were possible and 

created a geometry based on the following postulate. 

Postulate Given any line and a point not on the line, there is at 

least one line through the point parallel to the given line 

(fig. 6.22). 

Lobachevsky’s postulate appears to be false. I really do not believe 

that there are two parallels to a given line, through the same point not 

on the line. But my belief is based on a picture that I draw. This picture 
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is a “model” for geometry. In this model I would have to say that 

Euclid s postulate seems true and Lobachevsky’s false. However, there 

may be other models based on different pictures of lines in which Lo¬ 

bachevsky’s postulate seems true and Euclid’s false, while Euclid’s 

other lour postulates still seem true. To illustrate this, it is easier to 
consider still another geometry. 

Riemann (he will be discussed later) developed a non-Euclidean 

geometry based on the postulate that given any line, and a point not on it, 

there is no line through the point and parallel to the given line. To develop 

this geometry, Riemann had to give a strict interpretation to Euclid’s 

second postulate which states that any line can be extended indefinitely. 

It was usually assumed that every line is infinite. Even a closed line, such 

as a circle, can be extended indefinitely. In Riemann’s geometry everv 
line is finite. 

A sphere can be considered as an adequate model of Riemann’s 

geometry for our purposes. In the sphere model the word line is inter¬ 

preted as a great circle on the sphere. A great circle is a circle whose 

diameter is a diameter of the sphere. In this model every two lines 

intersect (fig. 6.23); thus, there are no parallel lines. (The reason that 

the sphere is not a perfect model is that every two lines intersect in two 

points. This problem can be corrected, but we will ignore it.) Even though 

the lines on a sphere are different than on a plane, it is still true that 

the shortest distance between two points is along one of the lines. 

Some theorems of Riemann’s geometry which are different from 
Euclid’s are: 

Theorem 1 All perpendiculars to a line meet in one point. 

Theorem 2 The sum of the angles of a triangle is always greater 

than 180°, and the sum decreases to 180° as the triangle 
gets smaller in area. 
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Theorem 3 Two similar triangles are congruent. 

These theorems can be illustrated in the sphere model (fig. 6.23). 

Consider some theorems of Lobachevsky’s geometry. Any theorem of 

Euclidean geometry proved without using the idea of parallels in any 

way will still be true. Thus, the base angles of an isosceles triangle are 

still equal. A theorem different in Lobachevsky’s geometry is that the sum 

of the angles of a triangle is always less than 180°. A model of Loba¬ 

chevsky’s geometry, adequate for our purposes, is pictured in figure 

6.24. In this model the lines are not familiar curves such as the straight 

lines of the plane or the great circles of the sphere, but it is still true that 

the shortest distance between two points is along one of these lines, and 

this property can be used to sketch the lines. In figure 6.24 the lines are 

indicated between the three points A, £, and C. Note that the sum of 

the angles of the triangle ABC appears to be less than 180°. 

Figure 6.24 

We have seen models of Riemann’s geometry and of Lobachevsky s 

geometry in figures 6.23 and 6.24, respectively. We may have intended 

to study only geometry of the blackboard, in which Euclid’s postulate 

is true. Even though Euclid’s fifth postulate would then always seem 

true, it could not be proved from his first four postulates, because there 

are other models in which the first four postulates are true but the fifth 

is false. Thus, the truth of the first four postulates does not imply the 

truth of the fifth; Euclid’s fifth postulate is independent of his first four. 

Either Euclid’s, Lobachevsky’s, or Riemann’s postulates can be used to 

obtain a consistent geometry. 
The discovery of non-Euclidean geometry helped to give mathemat¬ 

ics great freedom. Many different mathematical systems may be con¬ 

sistent, and if so, their theory can be developed. The astounding fact is 

that when a new system is developed, someone will find a useful inter¬ 

pretation of the system. Ironically, the seemingly useless non-Euclidean 

geometry was used by Einstein as the basis for his general theory of 

relativity. “Real” space may be curved in the new systems and not 

flat after all. In this respect, appearances can be deceiving, because we 

cannot limit the real to what is easily observable from our vantage 
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point on earth. A person who has never traveled more than 10 miles 

from his home may have no reason not to believe that the earth is flat, 

yet a longer trip would convince him of its roundness. Similarly, man 

may have believed the universe to be flat, only because he had ex¬ 
perienced only a part of it. 

4 Variety in Algebra 

he creation of non-EucIidean geometry was soon followed by similar 

events m algebra. In the early and mid 1800s several systems of algebra 

were created which, like non-Euclidean geometry, used assumptions 

which seemed to contradict obvious truths. The first to create such a 
system in aigebra was an Irishman, William Hamilton 

WILLIAM ROWAN HAMILTON (1805-1865) 

Hamilton was raised by his uncle who was an amateur linguist and who 

taught him many languages. Over a span of 10 years, beginning at age 

3, Hamilton learned 13 languages, including Persian, Malay, and Bengali. 

In college Hamilton wrote a paper on optics and earned a high reputa¬ 

tion In his work on optics he formulated convenient forms of the 

fundamental equations of mechanics, called Hamilton’s equations. 

At 22, while still an undergraduate, he was chosen to be a professor of 

astronomy, though he had not even applied for the position. 

Hamilton made a significant contribution to algebra, but to discuss 

this we should be familiar with the development of algebra in the 1800s 

m England. England in the early 1800s had taken the lead in abstract 

algebra. Recall that English mathematics had lagged behind in the 

1700s due to the hostility between English and Continental mathema¬ 

ticians over the Newton-Leibniz dispute. Later in the century the 

younger English mathematicians decided to forget the dispute and to 

strive for superior mathematics. Among their main interests was the 

abstraction of the “laws” of arithmetic and algebra. Emulating the 

axiomatic approach to geometry, they listed postulates, or laws, of 

arithmetic, such as the commutative laws of addition and multiplica¬ 

tion. The following examples are laws of arithmetic. 
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(a b) — (b T- a) 

ab = ba 

(a + b) + c = a + (b + c) 

(iab)c = a(bc) 

a(b + c) = ab + ac 

commutative law of addition 

commutative law of multiplication 

associative law of addition 

associative law of multiplication 

distributive law 

George Peacock (1791-1858) in 1830 published Treatise on Algebra in 

which he applied the commutative and associative properties of numbers 

to symbolic algebra. He and Augustus De Morgan (1806-1871) noted 

that the above laws apply to numbers, to algebra, and to geometrical 

magnitudes. 
In 1833 Hamilton showed how to consider a complex number a + 

biflI as a pair of real magnitudes, (a,b). He showed that one could 

work with the pair (a,b), never mentioning V"7!- and stlU obtam the 
same results as if T had been used. Hamilton performed addition 

and multiplication of two complex numbers a + bsj^l and c + dyj — l. 

For example, 

(,a + bsj^l) + (c + dsf-l) = (a + c) + (b + d)yj- 1 

and 

(a + 6V-TXc + = ac + 1 + bcyj-1 - bd 

= (ac — bd) + (ad -{- bc)^ — 1 

He noted that he did not really need t0 exPress these calculations. 

They could be written 

(a,b) 4- (c,d) = (a + c,b + d) (1) 

(a,b)(c,d) = (ac — bd,ad + be) (2) 

with the understanding that the second component always is multiplied 

by ^TTj; and added to the first. 

Hamilton also had the insight to reverse the process. He defined a 

complex number as a pair of real numbers (a,b) where addition and 

multiplication was performed according to the definitions in equations 

(1) and (2). Based on these definitions, he was able to prove that the 

familiar laws such as the associative, commutative, and distributive laws 

were true for complex numbers. Thus, Hamilton reduced the mysterious 

complex numbers to pairs of real magnitudes for which addition and 

multiplication satisfied the associative, commutative, and distributive 

laws. 
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Hamilton was quite interested in physics, and because of his interest 

he found Wessel s representation of complex numbers as rotations 

useful. He wanted to develop a similar algebra of triples (a,b,c) to obtain 

an algebra of rotations in three dimensions, but he never could find a 

way to define the multiplication (a,b,c) (d,e,f), though he spent many 

years trying. Finally, in 1843 he developed an algebra of four quantities 

(a,b,c,d) that he called quaternion algebra. However, this algebra did 

not satisfy ail the laws. Hamilton had to break the commutative law of 

multiplication which was quite a radical step as all the previous studies 

of the laws of integers, geometric magnitudes, and algebra led alge¬ 

braists to the conclusion that the laws always held. 

In creating non-Euclidean geometry, Lobachevsky denied Euclid’s 

parallel postulate which seemed true; in creating quaternion algebra, 

Hamilton denied the commutative law which seemed true. The point is 

that Euclid’s postulate may very well be true in the usual model of geom¬ 

etry, but there are other models of geometry for which it is false. Even 

though all the systems of arithmetic and algebra studied up until 1843 

satisfied the commutative law, Hamilton found a system which did not. 

Hamilton showed that in algebra, too, one was free to develop any 
logically sound system. 

Hamilton was quite impressed with his quaternions and spent the 

rest of his life developing their properties. He tried to relate three com¬ 

ponents of (a,b,c,d) to rotations in three dimensions. Later, in 1881, an 

American, J. W. Gibbs (1839-1903), developed vector algebra based on 
Hamilton’s work. 

ARTHUR CAYLEY (1821-1895) 

Cayley was a top English mathematician who wrote extensively in 

algebra and other fields of mathematics, including transformations 

of variables. Cayley developed another type of algebra, the algebra 

of matrices. You may recall that it is useful sometimes to change coor¬ 

dinates, for example to simplify the equation of an ellipse. We are given 

x and y axes and wish to change these to x' and y' axes (fig. 6.25), If 

the transformation is linear, we may express it as 

x' = ax -f- by 

y = ex -j- dy 

Suppose we make another change from x' and y' axes to x" and y" 
axes with equations 

x" = ex' + jy 
y" = gx' + hy' 
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Figure 6.25 

To find the equations of the change from x and y axes to x" and /' 

axes we substitute, giving 

x" = e(ax + by) + f(cx + dy) 

y" = g(ax + by) + h(cx + dy) 

or 

x" = (ea + fc)x + (eb + fd)y 

y" - (ga + hc)x + (gb + hd)y 

Cayley realized that the variables themselves were not important to 

the calculation, only the coefficients, so he wrote the coefficients as a 

a b 
matrix. The matrix of the first change is 

c d 
and that of the 

second is 
* / Cayley defined the product of these two matrices 

g h J 
to be the result of successive transformations. Thus, the product matrix 

would give the transformation from the x and y axes to the x and y 

axes, and 

Definition 

e f a b ea -h fc eb + fd 

_ g h _ c d ga + he gb + hd 

The complicated definition of matrix multiplication that one learns was 

chosen because it represents a naturally-occuring and useful situation, 

that of a transformation of variables. 

230 Mathematics as Free Creation 



The commutative law does not hold in matrix multiplication. Thus, 

here again, an algebra was defined which does not obey all the laws of the 

arithmetic of fractions. As an example, 

2 3" 1 0 " -1 6 “ 

-1 0 _ -1 2 _ -1 0 _ 

while 

'—
i 

1 0 2 3 2 3 " 

- 1 2 _ i—
 

1 o
 

i_
 

! 

I 1 u
j 

1_
 

EVARISTE GALOIS (1811-1832) 

Evariste Galois, a Frenchman, was a most unlucky man. He had prob¬ 

lems in school, because he was so bright that his teachers could not 

understand him. The technical school examiners could not understand 

his calculations on his entrance examination, either. They failed him 

twice, because he used his own method of computation, rather than 

following the method suggested by the examiners. Galois’ bad luck 

continued as he grew older. He submitted a paper containing his original 

work in algebra to the French Academy of Sciences, but the secretary, 

Fourier, passed away before he could review it. Fourier’s successor 

could not understand oalois paper, so he returned it to the luckless 

mathematician. To compound his misfortunes, Galois was jailed for 

his political activities. Soon after his release, he became involved in a 

duel. After spending the previous night writing his discoveries, Galois 
died in the duel at the age of 21. 

Galois’ mathematical discoveries were brilliant. We have seen how 

Lagrange used groups of permutations in trying to solve equations, 

and that Abel proved that no solution by roots exists for the general 

fifth degree equation. This does not mean that all fifth degree equations 

cannot be solved by roots, but that there is no general formula for the 

solution analogous to the quadratic formula. For example, a solution 

of x5 = 2 is 2. Lagrange took the roots xu x2, x3, x4, x5 of the general 

quintic and looked at the group of their 120 permutations. By contrast, 

Galois defined a special group for each equation. He then gave properties 

of this group which were equivalent to the solvability of the equation by 

roots. Thus, an equation like *5 + 4x2 + 1 = 0 would have its own 

Galois group, and the properties of this group would determine whether 

or not this equation has a solution by roots. After Galois’ death other 

mathematicians worked out the implications of his theory. 
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GEORGE BOOLE (1815-1864) 

Boole, an Englishman, spent four years teaching elementary school, 

then at age 20 he opened a school of his own. As part of the instruction, 

Boole taught his students mathematics. He became very interested in 

the subject as a result and studied some very advanced works. Soon 

Boole became an accomplished mathematician in his own right. 

Recall that the English mathematicians had taken the lead in expressing 

the “laws” of algebra. Boole, in Mathematical Analysis of Logic in 1847 

and Investigation of the Laws of Thought in 1854, clearly stated the view 

that mathematics involves symbols and their rules of combination 

subject only to inner consistency. Boole developed an algebra of classes 

which can be applied to derive laws of correct reasoning and is now 

the subject of symbolic logic. His algebra of classes, or sets, is called 

Boolean algebra, and applications of Boolean algebra recently have 

been made to the logical design of circuits in computers. 

The operations of interest for sets are union and intersection. The 

union of two sets a and b, a U b, is defined as the set containing ail 

elements which are either in set a or in set b or in both. The intersection 

of sets a and 6, a 0 b, is the set containing all elements which are in 

both sets a and b. Some of the rules for Boolean algebra are analogous 

to those for arithmetic, such as a D b = b U a and a D b = b fl a, 

which compare with a -\~ b = b T* and ab = ba, respectively, the 

commutative laws. A rule which is different is a U {b fl c) = (a U b) fl 

(,a U c). The arithmetic analogue would be a + be = (a + b)(a + c) 

which is false. Also in Boolean algebra, a a = a and a f) a = a, 

while in arithmetic it is not a law that a + a = a or a-a = a. Thus, 

Boole created an algebra of classes which has its own system of laws. 

De Morgan also wrote on symbolic algebra. A student of his posed a 

problem which has since become a famous one. What is the least number 

of colors needed in order to be able to color any map? Each region is to 

be colored in such a way that no two bordering regions, unless the regions 

meet at isolated points, have the same color. Any map can be colored 

with five colors. Some maps require four colors and cannot be colored 

with any less than four colors. No one has ever found a map that needs 

five, rather than four, colors, but, at the same time, no one has yet been 

b. c. 

Figure 6.26 
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able to prove that four colors are sufficient to color any map. (Figure 

6.26 contains three examples that you might color to get a feeling for 
the problem.) 

5 The Arithmetization of Analysis 

In the early 1800s, based on the research of Fourier, the concepts of 

calculus had become more complex. Visual intuition could no longer be 

trusted to give correct results; mathematicians sought a more secure 

foundation for the calculus. In this effort to build a solid base, the modern 
concepts of limit and real number were created. 

KARL WEiERSTRASS (1815-1897) 

Weierstrass, a German, was sent to law school by his father, but he was 

more interested in fencing and drinking beer than in law. He came home 

disgraced, without a degree. Weierstrass did pass the state examination 

for teachers, however, and he taught school for 15 years, doing research 

in mathematics at night. He was particularly interested in Abel’s work. 

In 1854 Weierstrass had a paper printed in Crelle's Journal, and he 

became famous. Even though he was teaching in a small town of which 

few mathematicians in Berlin had ever heard, he was doing work com¬ 

parable to that of any mathematician and was, therefore, invited to 

teach at Berlin. Because of all the excitement of his quick rise to fame, 

Weierstrass suffered a nervous breakdown. From that time on he ex¬ 

perienced dizzy spells when standing, so he remained seated while 

teaching and had his students write formulas on the board.3. 

Weierstrass was a very clear thinker, and he noticed fine points in 

reasoning which had escaped previous mathematicians. Perhaps the 

most familiar contribution of Weierstrass would be the e-8 definition 

of limit encountered in calculus courses. The basic concepts of calculus 

were none too clear in the exposition of Newton and Leibniz. There¬ 

after, there was much discussion of limit concepts, and several defini¬ 

tions were given. The earlier writers were able, nevertheless, to apply 
calculus to polynomial and power series functions. 

3See Bell, Men of Mathematics, pp. 406-32, for a biography of Weierstrass. 

The Arithmetization of Analysis 233 



As was mentioned in connection with Fourier, new ideas about 
functions (functions with corners, discontinuous functions) were needed 
in order to solve partial differential equations (fig. 6.27). In the mid 
1800s it was considered geometrically obvious that a continuous function 
could have a finite number of corners, or even infinitely many corners, 
but that between these corners it was smooth and had a well-defined 
tangent or derivative. It seemed obvious, and was so stated, that a 
continuous function has a derivative at almost all its points, even though 
it may have many corners (fig. 6.28). 

There was a certain amount of uneasiness among mathematicians 
about basing results on geometric intuition. Weierstrass justified this 
feeling by showing that the above “geometricaliy-obvious” statement 
that a continuous function has a derivative at nearly every point is 
wrong. He gave an example of a function which is continuous but no¬ 
where differentiable. It has corners everywhere! Such a function is im¬ 
possible to sketch, yet it can be proved to exist. 

By the later nineteenth century some mathematical concepts were so 
complex that they could not be understood from a diagram. In fact, a 
picture might give a misleading impression, for example, that a con¬ 
tinuous function seems to be smooth at most points. Mathematicians 
felt that they must avoid making geometrically-obvious statements, and 
base their reasoning on sound principles of arithmetic. This program is 
sometimes called the arithmetization of analysis. 

Bolzano, in 1830, was the first to give an example of a continuous 
nowhere differentiable function, but the impact of this discovery was 
only felt in 1861 with the example given by Weierstrass. In his lectures 
Weierstrass presented the function 

oo 

/(•*) = 23 bn cos(anXT) 
n = o 
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where a is an odd integer greater than one, and b is a positive constant 

less than one. He proved that this function is continuous and nowhere 

differentiable. We will study the arithmetization of analysis again in 
connection with Dedekind. 

BERNHARD RIEMANN (1826-1866) 

Riemann, another German mathematician, was a man of great insight. 

He formulated ideas which have required generations of mathematicians 

to develop. While still in high school, Riemann mastered a long and 

advanced work in number theory in six days, an accomplishment which 

probably inspired his later work in prime number theory. The prime 

numbers 2, 3, 5, 7, 11, 13, 17, . . . — have a very irregular distribution. 

Many cases have been found of primes which differ by only two, such 

as 11 and 13, but there are also arbitrarily large intervals between primes. 

Although no formula has been found to give the exact number of primes 

less than a given number *, approximate results can be found. For large 

numbers x, the number of primes, tt(x), less than x is approximately 

*/log -x. Riemann was unable to prove this result completely. In his 
study of the distribution of primes he used the Riemann zeta function 

1+j; + ji + 5 + ^+--- 

where 5 is any complex number u + iv. 

One of the most famous unsolved problems in mathematics is con¬ 

cerned with the location of the zeros of the zeta function. The Riemann 

hypothesis is that all zeros of {(s) with u between 0 and 1 are of the form 

1/2 + iv. This conjecture has neither been proved nor disproved. 

The prime number theorem, stating that the number of primes, w(x), 
less than x is approximately x/log x, or more precisely, 

lim 
X—* 00 x/\og X 

= 1 

was finally proved in 1896 by C. J. de la Vallee-Poussin and Jacques 

Hadamard who arrived at their conclusions independently. When I 

was in college, my number theory teacher told me of a conjecture that 

anyone who proved the prime number theorem was immortal. At that 

time both de la Vallee-Poussin and Hadamard were very old. However, 

neither man proved to be immortal as de la Vallee-Poussin died at age 
95 and Hadamard at age 97. 
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In his study of Fourier series, Riemann added to Cauchy’s work and 

developed the definition of what is now called the Riemann integral, 

the type of integral studied in calculus. Riemann returned to the idea of 

rectangle approximations to integrate the complicated functions arising 

from Fourier series, because not all integrations could be reduced to 

antidifferentiation using rules such as J xn = xn+l/(n + 1). 
In his study of functions of a complex variable such as sjz, Riemann 

gave impetus to the subject of the topology of surfaces, and he created 

what are now known as Riemann surfaces. (Much of Riemann s work in 

this area is so advanced that it is only studied by graduate students and 

professional mathematicians.) The function s[z is two-valued; every 

complex number has two square roots, for example, ^4 = d=2. We 

can also find the two square roots of sj— 1. Recall that if aJ— 1 = (b)(b), 

then the angle of b must be 45° or 225°, and its length must be 1. Thus, 

b = 2/2 + (sj2/2)yj^l (fig. 6.29). The function aJz can be thought 

of as a mapping from one complex plane to another, under which 

mapping every point in the first plane is mapped to two points in the 

second (fig. 6.30). 

Riemann had the clever idea of avoiding this two-valuedness by dou¬ 

bling the domain. Instead of considering as a mapping from one plane 
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to another plane, he defined ^zas a mapping from a Riemann surface 

to another plane. The Riemann surface is basically two planes joined 

together in such a way as to form one surface (fig. 6.31). On the upper 

plane (shown in cross section) the square root of a number is positive; 

on the lower it is negative. Thus, the square-root function is single¬ 

valued if it is defined on the Riemann surface. The surface is constructed 

in such a way that it is impossible to make a complete loop around the 

origin and stay entirely on the top plane or entirely on the bottom plane. 

If one starts at 4 on the top plane and circles counterclockwise reaching 

- 4, as he continues to circle, he will go down the “ramp” and reach 

the point 4 again on the lower plane. If another complete circle is made, 

he will reach 4 again, but this time on the upper plane. Riemann had 

quite an imagination — this is only the simplest Riemann surface. 

Figure 6.31 

To obtain the right to lecture at the University of Gdttingen without 

salary while waiting for a salaried position, Riemann had to present a 

lecture to the faculty which included Riemann’s former teacher, Gauss. 

Riemann submitted three topics from which the faculty could choose. 

Gauss chose the third on which Riemann was least prepared, but which 

most interested Gauss. Riemann spoke “On the hypotheses which lie 

at the foundations of geometry.” He considered a very general case 

where the geometry of “space” could change from point to point. The 

geometry might be Euclidean near one point, but Lobachevskian near 

another, and so on. He could also represent the geometry of a surface 

which was flat in parts, spherical in other parts, and so on. This is the 

subject of differential geometry which is, as you might guess, much 

more complicated than high-school geometry. Here again, mathema¬ 

ticians were kept busy developing the consequences of Riemann’s in¬ 

sights. Einstein used these general geometries in his theory of relativity. 

RICHARD DEDEKSND (1831-1916) 

As mentioned before, there developed among mathematicians an aver¬ 

sion to reliance on geometric intuition. Another example of the reliance 

on geometric intuition was the statement of the intermediate value 
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theorem — a continuous function on the interval [a,b] which is positive 

at a and negative at b must be zero for some point x between a and b. 

This theorem seems obvious, but are we deceived, as in the case of a 

nowhere differentiable continuous function? Can the graph somehow 

be continuous and still jump across the x-axis (fig. 6.32)? 

Until the mid 1800s, the x and y variables were thought of as con¬ 

tinuous magnitudes. It was understood that the laws of arithmetic 

applied to magnitudes, thus, xi + X2 = X2 + *i, and so on. However, 

the continuity property of the line of magnitudes was never analyzed 

clearly until Richard Dedekind, a German mathematician and the last 

student of Gauss, did so. Dedekind published his work Continuity and 

Irrational Numbers in 1872, though it had been written in 1858. In it he 

says, 

As professor in the Polytechnic School in Zurich I found my¬ 

self for the first time obliged to lecture upon the elements of 

the differential calculus and felt more keenly than ever before 

the lack of a really scientific foundation for arithmetic .... For 

myself this feeling of dissatisfaction was so overpowering that 

I made the fixed resolve to keep meditating on the question till 

I should find a purely arithmetic and perfectly rigorous founda¬ 

tion for the principles of infinitesimal analysis. The statement 

is so frequently made that the differential calculus deals with 

continuous magnitude, and yet an explanation of this continuity 

is nowhere given . . . .4 

In analyzing the continuity of the line, Dedekind compared the 

rational numbers with the points on the line. He gave three properties 

of the rationals and three analogous properties of the points on a line. 

4Richard Dedekind, Theory of Numbers, pp. 1-2. 
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Rationals (fractions) Points 

1. Given three rationals a, b, 

c, if a > b, and b > c, then 
a > c. 

2. Given rationals a and c, 

there are an infinite num¬ 

ber of rationals between 
them. 

3. A number a divides the 

rationals into two classes 

— the class A\ of rationals, 

such that if a\ is in A\, 

a\ < a; and the class A2 of 

rationals, such that if a2 is 

in A2, then a2 > a. The 

number a can be put in 
either A\ or A2. 

1. Given three points, if a is 

to the right of b, and b is 

to the right of c, then a is 
to the right of c. 

2. Given points a and c, there 

are an infinite number of 

points between them. 

3. A point p divides the 

points on the line into two 

classes — the class Pi of 

points to the left of p, and 

the class P2 of points to 
the right of P. 

Dedekind continued, The analogy becomes a correspondence when 
we pick an origin and a unit length on the line_Of greatest impor¬ 

tance, however, is the fact that in the straight line there are infinitely 

many points which correspond to no rational number [fig. 6.33].”5 
There is a point on the line whose distance from the origin is just the 

length ox the diagonal of a square of side one, ^J2. But we know that 

V2 is not a rational number. Thus, points such as a/2 and tt on the line 
have no corresponding rational number. 

L- » 

-1 

-•-• • —---•-• »—e--— 

0 ~j 1 y/2 2 3 n 

R • • • o • 

Figure 6.33 

9 o # 

If now> as is our desire, we try to follow up arithmetically all phenom¬ 

ena in the straight line, the domain of rational numbers is insufficient 

and it becomes absolutely necessary that the instrument R constructed 

by the creation of the rational numbers be essentially improved by the 

creation of new numbers such that the domain of numbers shall gain 

5Ibid., pp. 7-8. 
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the same completeness, or as we may say at once the same continuity, 

as the straight line. ... In what does this continuity consist? ... The 

majority may find its substance commonplace.”6 
Dedekind concluded that the essence of the continuity of the line is 

the converse of property 3 above concerning points. “If all points of the 

straight line fall into two classes such that every point of the first class 

lies to the left of every point of the second class, then there exists one 

and only one point which produces this division of all points into two 

classes . . . .”7 Thus, if a line is cut into two parts, there is exactly one 

point that is cut through. In contrast, it is possible to cut the rational 

numbers into two classes without cutting a rational number. For ex¬ 

ample, we can divide the rationals into all a/b such that (o/b^ 2, 

and all a/b such that (a/b)2 > 2. In figure 6.34a the cut goes through 

the point -\J2. In the corresponding cut in the rationals (fig. 6.34b) there 

is only a space where '\/2 is on the line, so the rationals can be divided 

into two classes without there being a number between the classes. 

•-•-f——• 
1 1 Ta/2 2 
2 

a. 

R • • • • 
-1 0 _L 1 

2 

b. 

Figure 6.34 

Dedekind’s achievement was to explicitly state this continuity property 

of the line which may be taken as an axiom about the line. Then all 

other statements such as the intermediate value theorem may be proved 

using it and the other already designated properties of the line. Dedekind 

also saw that he could dispense with the line entirely, since the set of all 

cuts in the rationals has the same properties as the line, including con¬ 

tinuity. Dedekind, therefore, achieved his goal of finding an arithmetic 

foundation for analysis. 
Mathematics has long held the fascination of people not involved in 

the sciences, as well as that of professional mathematicians. President 

James A. Garfield (1831-1881) developed an original proof for the 

Pythagorean theorem. C. L. Dodgson (1832-1898), better known as 

Lewis Carroll, was a mathematician by profession, although he earned 

his fame as the author of Alice in Wonderland. Among his mathematical 

writings is a collection of mathematical recreations. 

6Ibid., pp. 9, 11. 
7Ibid., p. 11. 

2 
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GEORG CANTOR (I $45-S 918) 

When the concept of infinity had arisen in mathematics it had generally 

been rejected as paradoxical. Eudoxus and Archimedes used the method 

of exhaustion which avoided breaking figures into infinitely many 

indivisibles. The limit method, the founding concept of calculus, tri¬ 

umphed while methods using indivisibles were abandoned. Cantor, a 

German mathematician of the late nineteenth century, was well ac¬ 

quainted with medieval views on the infinite, and he accepted infinity as 
a valuable concept. 

Cantor encountered infinite sets in his early studies of trigonometric 

series when he was seeking conditions which would insure that a function 

had only one trigonometric series representation. He found that the 

series did not have to converge to the function at every point of the 

interval under consideration for his theorem to be true; he could exclude 

any finite set and some infinite sets. Cantor found that he was studying 

more and more complicated types of infinite sets. Some paradoxical 

properties of infinite sets were expressed by Cantor, but rather than 
rejecting infinite sets, he pressed on with his study. 

Cantor showed that a small segment of a line has just as many points, 

in a sense, as an infinite line. Consider a semicircle, and a straight line 

under it (fig. 6.35). To every point on the circle one point on the line 

can be made to correspond, and vice versa. This one-to-one correspon¬ 

dence can be set up by drawing lines from the center of the semicircle 

through the points on the semicircle. Such lines intersect both the 

semicircle and the infinite line at corresponding points. The whole line 

is not greater than the part, at least in the number of points that each 

contains. This is a characteristic property of infinite sets. The whole 

can have a one-to-one correspondence with a proper part. A simpler 

example was given by Galileo, who corresponded the integers to their 
squares 

1 2 3 4 5 6 

1 4 9 16 25 36 
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This principle of infinite sets has some amusing applications. Suppose 

you have a hotel with an infinite number of rooms which are all full, and 

a new guest requests a room. You can easily accommodate him by mov¬ 

ing the person in room 1 to room 2, the person in room 2 to room 3, 

and so on, and then giving the new guest room 1 which is now empty. 

Cantor gave an example of a set, the Cantor set, which illustrates the 

difficulties of set theory. This set is difficult to visualize, and it has many 

properties which at first seem strange. To construct the Cantor set, 

start with the interval [0, 1], Remove the middle third, namely (1/3,2/3). 

Then from each of the two remaining pieces, remove the middle third 

(fig. 6.36). From each of the four remaining pieces remove the middle 

third. Continue on in this manner. The pieces remaining get continu¬ 

ally smaller in length with each removal, but each time there are twice 

as many of them. After repeating this process an infinite number of 

times, there are some points still not removed. These remaining points 

form’the Cantor set. The points 1/3 and 2/3 are in the Cantor set, 

among others. It can be shown by summing a geometric series that the 

intervals removed from [0, 1] have total length 1. Thus, the Cantor set 

has total length zero. Yet it can also be shown that there are just as 

many points in the Cantor set as there are in the whole interval [0, 1]! 

It is no wonder that Cantor became ill and died in a mental hospital 

after a nervous breakdown. 

0 

Figure 6.36 

You might begin to believe that any one infinite set has as many 

points as any other. But Cantor showed this was not true by proving 

that points on a line cannot be in one-to-one correspondence with the 

integers. There are also sets with more elements than the set of points 

on the line. 
In addition to comparing the sizes, or cardinalities, of sets, Cantor 

also considered the order types of sets. Consider the set {1/2, 2/3, 3/4, 

4/5, 5/6, ... , 3/2, 5/3, 7/4}. If we were counting the elements in this 

set in order from smallest to largest, we would say 1, 2, 3, 4, . . . , co + 1, 

w _|_ 2, co + 3. We count up to infinity and then continue further with co 

representing the first infinity. The set 

is of order type co + co. One can also define sets which have even higher 

order types. 
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It is not surprising that some mathematicians rejected Cantor’s work 

on sets, even though many of them tried to understand his perplexing 

sets. His work differed so greatly from the then conventional mathemat¬ 

ics that some mathematicians were not convinced of its validity. Most 

mathematicians now realize the usefulness and validity of Cantor’s 
ideas, however, there remain some who are not convinced. The mathe¬ 

maticians of the time are the people who determine what is or is not 

valid mathematics. Many new ideas arose in the course of the history of 

mathematics that were not accepted immediately, but eventually proved 

useful. Others were accepted and then later discarded in favor of yet 

different ideas. Mathematics is a continually evolving science. Cantor 

called mathematics a free creation. This description expressed a view of 

mathematics that was coming to the forefront at the onset of the 
twentieth century. 

6 The Generality of Mathematics in the Twentieth 
Century 

A great variety of mathematical systems were created in the 1800s. By 

the turn of the century, this experience with specific axiomatic theories 

was being used in discussions of the nature of axiomatic systems. Mathe¬ 

maticians were beginning to understand that one axiomatic system 

could apply to many different models. Such more abstract axiomatic 

systems have been studied extensively in the twentieth century. An 

economy of effort is effected in this way, as one general theory may 

eliminate the need for many special theories which the more general 

one encompasses. Often a familiar subject and an unfamiliar one are 

seen to be special cases of the same general theory. By means of this 

analogy, the familiar subject can be used profitably to study the un- 
familiar subject. 

DAVID HILBERT (1862-1943) 

Hilbert was a German mathematician who did fundamental work in 

number theory, algebra, logic, calculus of variations, mathematical 

physics, and the foundations of geometry. He was a methodical thinker, 

and when he studied a subject he penetrated to its roots. In 1899 Hilbert 

published Foundations of Geometry in which he gave a clear, axiomatic 
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system for geometry. The words line, point, and plane had no meaning 

except as expressed in the axioms, but they could be given any inter¬ 

pretation which made the axioms true. This formal axiomatic approach 

crystallized the developments of the nineteenth century and served as a 

guide to twentieth century mathematicians. Appropriately, it appeared 

just at the turn of the century. 
In his axioms Hilbert expressed properties of concepts such as be¬ 

tweenness which, apparently, Euclid had taken for granted as intuitively 

obvious. The notion of betweenness refers to points on a line. For 

example, given three distinct points on a line, there is exactly one point 

which is between the other two. Hilbert’s axioms (for geometry of three 

dimensions) were expressed in five groups. 

I. Axioms of Connection 
These seven axioms establish a connection between points, 

lines, and planes. For example, two distinct points A and B 

always determine a line. 

II. Axioms of Order 
The five axioms of order define the idea expressed by the 

word between. 

III. Axiom of Parallels 

IV. Six Axioms of Congruence 

V. Axiom of Continuity 

By giving up fixed interpretations of such concepts as point and line, 

mathematics may seem to be renouncing its substance. Yet this approach 

allows mathematics the freedom to be about anything. Thus, one theory 

may apply to many diverse subjects in which a similar structure is 

encountered, rather than apply to only one subject. We will investigate 

several examples of such general structures which were developed 

extensively in the twentieth century and which have many diverse 

applications. Numerous other examples also exist. 

METRIC SPACE AND THE RING STRUCTURE 

Many different geometries, and other subjects, can be unified under the 

general concept of a metric space. This concept was developed in the 

early 1900s by Maurice Frechet (1878-1973) and Felix Hausdorff (1868- 

1942). A metric space is a set of things (of no specific nature), together 

with a distance function giving the distance between any two things a and 

b. The distance function must satisfy the following properties which hold 

for ordinary distance between two points. 
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d{a,b) > 0 The distance is always greater than or 
equal to zero. 

d(a,a) = 0 The distance from a thing to itself is 
zero. 

d(a,b) = d(b;a) The distance from a to b equals the 

distance from b to a. 

d(ei,b) + d(b,c) > d(a,c) The direct distance from a to c is less 

than the indirect distance via b. 

Of course, this distance applies to ordinary plane geometry in which the 

distance between two points, a - (aua2) and b = {bub2\ may be repre- 
sented by the formula 

d{a,b) = - bi)2 + (a2 - b2)2 

It is very useful to consider higher dimensional geometry, but it is 

impossible to visualize such a thing as five-dimensional space. Yet if we 

consider five-tuples of real numbers, (alta2,a3,aA,as), as our set of things 
and give distance by the formula 

d(a,b) 

V(Qi - b\)2 -f (a2 — hi)- + (o3 — bj)2 -f (a4 — bi)2 + (as — b$)2 

we get another example of a metric space. Many concepts from two- 

dimensional space carry over by analogy to five-dimensional space, 

rive-dimensional geometry is more useful when applied to the study of 

systems of linear equations, however, than as a course of study in itself, 

he concept of a metric space can be applied to functions. If we let the 

se of things be the continuous functions on the interval [0, 1], we can 
define a distance function by 

d(fg) = fl | f(x) - g(x) | dx 

Since this distance function satisfies the same properties as ordinary 

istance in the plane, any theorem based on the distance axioms will have 

a true interpretation in both systems. We can better understand a 

theorem about the abstract class of continuous functions by considering 

its analogue in the plane of points. Finding a common metric space 

structure in diverse systems allows us to understand an abstract un¬ 

intuitive system — functions — by means of our knowledge of an 
analogous, more concrete system — points. 

Consider an abstract structure of algebra, the ring. A ring is a set 
with two operations, o and *, such that 
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1 {a ° b) ° c = a ° (b ° c) 

2. a o b — b ° a 

3. There is a w such that u°a = a°u = a 

4. For all a, there is an a-1 such that a ° tf-1 = a~[ ° a = u 

5. (a * b) * c = a * (b * c) 

6. a * (b ° c) = (a * b) ° (a * c) 

Note that property 3 asserts the existence of an element u which behaves 
like 0, when ° is ordinary addition and the elements are numbers. We 

know that 0 + # = <3 + 0 = tf. 
The concept of a ring was developed by Ernst Kummer (1810-1893) 

and Dedekind. Many theorems about such structures have been proved 
in the twentieth century. In particular, Emmy Noether (1882-1935) 

incorporated earlier results into the abstract theory while developing it 
much further. The ring structure is common to many diverse systems, 
and all ring theorems can be applied and interpreted in each system. 
This common use of the theorems gives rise to a great economy, in that 
once a theorem is proved for the general ring structure, it need not be 
proved in each separate system. One of the goals of the “New Math is 
to show that mathematics deals with structures such as the ring. 

The following examples are a few illustrations of systems to which the 

ring structure applies. 

Example 1 The set of integers 0, ±1, ±2, ±3, . . . where ° is 

addition and * is multiplication. 

Example 2 The set 0, 1, 2, 3 where addition and multiplication 
are performed by reducing to remainders obtained on 
division by 4. Thus, 2 + 3 = 5 = 1, and 2 -3 = 6 = 2. 
Using the ° and * notation, we would write 2 ° 3 = 1 

and 2*3 = 2. 

Example 3 Matrix algebra where the set of things is the set of 

2X2 matrices such as or 
3 
4 

-2 
1 

.The 1 2 
^ 0 -1 

operation ° is matrix addition, and * is matrix multipli¬ 

cation. 

Example 4 The set of things is the set of real-valued functions 
f g, h, . . . of a real number. Here f° g is the function 

given by 

(f°g)(x) = /(•*) + 
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and f* g is the function given by 

(/* g)(x) = f(x)g(x) 

An influential continuing publication on “structure,” Elements of 

Mathematics, is a series of books which was started in 1939 by a group 
of young French mathematicians writing under the pseudonym of N. 

Bourbaki. (Charles Bourbaki was a French general who lived from 1816 
to 1897, and there is a statue of him in the city of Nancy where many of 
these mathematicians lived.) The initial N denotes the arbitrary number 
n of mathematicians composing the group. The series of books is still 
being written, with volumes published only after extensive discussion. 
Members must retire from the group at age 50 and thereafter publish 
under their own names. The pseudonym N. Bourbaki was exposed as 
such in an article by an American mathematician, R. P. Boas. Bourbaki 
countered with an article claiming that R. P. Boas did not exist. 

JOHN VON NEUMANN (1903-1957) 

One of the most dramatic advances in the twentieth century has been the 
development of computers. The digital computer was developed during 
World War II when mathematicians served the government in the war 
effort. Perhaps the greatest mathematician of the second quarter of the 
twentieth century was John von Neumann, a Hungarian. Von Neumann 
was responsible for the concept of a stored program digital computer. 
He, along with many other European scientists and mathematicians, 
emigrated to America in the 1930’s. 

Von Neumann wrote on set theory logic and the mathematical founda¬ 
tions of quantum mechanics. He also founded the subjects of mathemati¬ 
cal economics and game theory, among his many other contributions. 
Von Neumann became interested in how the human brain functions, 
and tried to find patterns of connection for neurons which would be able 
to store and transmit information. His studies of the brain and of logic 
proved useful in his research leading to the development of the computer. 

Studying the structure of the brain seems to be a natural step for 
mathematicians; a step on a trail which von Neumann blazed. After all, 
what is the number 2? We do not see it anywhere; it is a concept of the 
mind. How does our brain represent concepts? It has been shown by the 
Austrian mathematician Kurt Godel (1906— ), also an emigrant to 
America, that formal axiomatic systems cannot in themselves describe 
number completely. Yet all of us clearly understand this concept. How- 
does the brain function? Or better, what is its structure? 
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Mathematics is concerned with various abstract structures. In a way, 
all that we know about the external world is its structure. Impressions 
are not transmitted exactly to the brain, but rather the structure of these 
impressions is. The air vibrating in a violin produces a sound. The 
structure of this music is represented in our brain by electrical impulses 
traveling across neurons, a different medium, yet the structure is pre¬ 
served. Perhaps this is an area in which mathematics will develop in the 

future. 
In reviewing the history of mathematics, we can appreciate some ot the 

great achievements. The decimal system is superb for computation, 
especially in comparison to other number systems. We take the simple 
rules of algebra for granted, yet it took thousands of years for the sym¬ 
bolism ax2 + bx + c = 0 to evolve. This algebra was used to advance 
many studies which were almost impossibly difficult without it, such as 
calculus. The rules of calculus represent a great achievement. The rise of 
abstract mathematics concerned with general structures has given 
mathematics great freedom and provided unforeseen applications. Many 
areas of study, in particular all social and natural sciences, are finding 
mathematical models quite useful, as are business and many other fields. 
We have seen that some men solved mathematical problems for pure 
pleasure, while others were primarily interested in understanding the 
world and the ways of its Creator. Probably both impulses are present 

to some extent in all the great mathematicians. 
The great mathematicians, such as Pythagoras, Euclid, Archimedes, 

Descartes, Newton, Gauss, Riemann, etc., have had a great effect on 
society. Our conceptions of ourselves, of what it is to be human, of the 
nature of the world, have been shaped in part by these brilliant men. The 
fact that there were men who believed that knowledge of the world was 
possible gave a direction to Western culture that other cultures did not 
have; not every culture believes seeking truth is a reasonable endeavor. 

I hope that this survey of the history of mathematics has given you an 
awareness that mathematics is not an eternal unchanging system, but is 
constantly changing and developing, subject to internal and external 
forces. I have presented events and topics of special interest to me I 

like the story, and I hope you do, too. 
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Problems 

1. Graph the following complex numbers. 
a. 2 + 4^/—1 b. —3-\j— 1 
c. — 3 + 2^/ — 1 d. —5 — 3 \/^T 

2. Find the product of each of the pairs of complex numbers below. 
Verify that the angle of the product is the sum of the angles of the 
factors and the length of the product is the product of the lengths of 
the factors. 

a- 1 + V-i> _2 + 2V-1 b. i + 
c. 3-\j — 1, — 1 + \/—1 

3. The length ^ can be constructed with a straightedge and compass 
(fig. 6.37). Let AB = a and BC = 1. Bisect AC at O. Construct a 
circle with center O and radius OC. Construct BD perpendicular to 
AC. Prove algebraically that BD = -\[a. 

Figure 6.37 

4. Gauss developed an ingenious method for solving the equations 
zp — 1=0 where p = 2(2"} + 1 is prime. Let n = 1, so that p = 5. 
Let a regular pentagon be inscribed in a circle of radius 1 in the 
complex number plane (fig. 6.38). 

249 



a. Use the properties of complex number multiplication to show 

that if r is the vertex at an angle of 72°, then r2 is the vertex at 

144°, r3 the one at 216°, and r4 the one at 288°. Also show that 

all five vertices — 1, r2, r3, and r4 — are roots of the equation 

z5 - 1 = 0. 
b. Gauss, starting with r, arranged the vertices, except the vertex 1, 

in a sequence in which each is the square of the preceding, i.e. — 

r r2, r4, rs = r5r3 = r3. He then formed two sums each consisting 

of alternate terms of the sequence, i.e. — A = r + r4 and B = 

r2 _j_ show that A + B = - 1 and AB = — 1. [Hint: Factor 

z5 — 1 = 0.] 
c. Solve the equations in part b to show that A = (— 1 + ^5)/2. 

Since r = x + y^— 1, and r4 = x — y\j — 1, then A = 2x, and 
x = (—1 -f ^5)/4. Because this expression for x contains only 

square roots, the length x can be constructed with a straightedge 

and compass. The vertex of a regular pentagon is obtained by 

constructing a perpendicular from x to the circle. 

5. Gauss used an analogous procedure to that in problem 4 to show that 

the 17-sided polygon could be constructed with a straightedge and 

compass. 
a. Use the properties of complex number multiplication to show 

that if r is the vertex at an angle of 360/17°, then the other 

vertices are given by r2, r3, r4, . . . , r]5, r]6, and r]1 = 1. Also show 

that all 17 vertices — /*, r2, r3, , r16, and 1 are roots of 

z17 — 1 = 0. 

b. Show that if you arrange the vertices, starting with r, in a sequence 

in which each is the square of the preceding, then the sequence 

starts to repeat itself after only eight vertices have been obtained. 

[Note: Remember to use the fact that rxl = 1 to simplify.] 

- c. Show that if the vertices are arranged, starting with r, in a sequence 

in which each is the cube of the preceding, then all sixteen vertices 

unequal to 1 are obtained in the order r, r3, r9, r]0, r13, r\ r]\ 
^■11 y 14^ ^8^ yl ^ ^ y 12^ y2 ^ y6. 

d. Take alternate terms of the sequence in part c to obtain 

A i = f + r9 + r] 3 + rx 5 ~b T~ ~b ^4 “b f'2 

and 

A2 = r3 + r10 + r5 + r11 + r14 + r1 + A2 + r6 

Show that A\ + A2 — ~~ 1 and A\A2 — —4, so A\ and A2 are the 

roots of z2 ~b z — 4 = 0. It can be shown that A\ is the^ositive 

root 1/2(VT7 - 1), and A2 the negative root l/2(— V17 “ 1)- 
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e. Let An = r + r13 + rX6 + r4 and A12 = r9 -f rxs + r8 + r2. 

Show that An + -<412 = Ai and A11A12 = —1, so An and A12 

are roots of the equation z2 — A\z — 1 =0. It can be shown 

that An is the positive root, (l/2)^4i + -\/l + (1/4)A2. 

f. Let A21 = r3 -f r5 + r14 + rX2 and A22 = r10 + rxx + r1 + r6. 

Show that A21 + A22 = A2 and ^21^22 = —1, so A2\ and ^22 

are roots of the equation z2 — A2Z — 1 = 0. It can be shown that 

A21 is the positive root, (\/2)A2 + V1 + (1/4)>4|. 
g. Let A111 = r + rx6 and Am = rn + r4. Show that Am + 

^112 = An and ^111^112 = A21, so that Am and ^112 are roots 
of the equation z2 — Anz + A21 = 0. It can be shown that Am 

is larger than ^112. A method for construction of the 17-sided 

polygon based on the analysis in this problem is given in problem 
7. 

6. Let a circle be constructed with diameter given by the line segment 

between the points (0,1) and (a,b) (fig. 6.39). 

a. Show that the center of the circle is (a/2,(b + l)/2). 

b. Show that the equation of the circle is 

‘4i)! - ♦ (^)! 
c. Show that the points of intersection, R and S, of the circle with 

the line y = 0 satisfy the equation x2 — ax + b = 0. Thus, the 

construction in this problem provides the solutions with a straight¬ 

edge and compass of the equation jc2 — ax + b = 0. 

7. A construction with a straightedge and compass of the 17-sided 

polygon can be devised based on the analysis of problem 5. Con¬ 

struct a circle of radius 1 with perpendicular diameters AB and DC 

(fig. 6.40). Construct the tangents to the circle at D and A, which 

intersect at S. Construct EA = (1 /4)AS by bisecting AS twice. With 
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B 

Q 

T 

F S E A H' F H 

Figure 6.40 

E as center and EO as radius construct a circle, and let F and F' be 

the points of intersection of the circle and AS. Let the circle with F 

as center and radius FO cut AS at H, and let the circle with center 

F' and radius F'O cut AS at H'. Construct HTQ parallel to AB, 

where T is its point of intersection with OC (extended). Let TQ = 

AH'. Construct the circle with diameter BQ, and call M and N its 

points of intersection with OC, where OM is greater than ON. Bisect 

OM at L. Construct a perpendicular to L, intersecting the circle at P. 

The segment PC is the side of a regular 17-sided polygon. 

In parts a, b, and c, A1, A2, A\\, A21, A\\\, and A\ 12 are defined as 

in problem 5. 

a. Show that 

AF' = -jA2 

b. Show that AH = Aw and AH' = A21. 

c. Use problem 6 to show that ON and OM are the roots of the 

equation 

z2 — Awz + A21 = 0 

Thus, by problem 5g, the larger root OM equals A111, so that 

OM = r + r16. If r = x + y^j— 1, then r16 = x — y^Jz-A, so 
OM = 2x. Thus, x = OM/2 which equals OF, so that P is, in fact, 

a vertex of the 17-sided polygon. 
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8. Show that a 90° angle can be trisected with a straightedge and com¬ 
pass. 

9. If a3 - 2 could be factored into the product of two polynomials with 
rational number coefficients, then one factor would have to be of 
degree one, say bx — a. Then the equation jc3 — 2 = 0 would have 
the root * = a/b. Show that a/b is not a root of x3 - 2 = 0, thus 
also proving that x3 — 2 is irreducible. [Hint: Suppose (a/by — 

2 = 0 and obtain a contradiction, as in the proof of the impossibilitv 
of (a/by = 2.] J 

10. Show that x3 - 3x - 1 = 0 has no rational root x = a/b, thus 
a3 — 3jc — 1 is irreducible. [Hint: Assume a/b is a root and’show 
that a3/b — 3ab — b2 = 0. From that show that since a and b are 
assumed to have no factors except unity in common, b = ±1. Then 
show that if a is an integer, then a = ±1. Thus, .x must equal ±1, 
but neither value gives a solution.] 

11. Prove that if a = b (mod m) and c = d (mod m), then a + c = 
b d (mod m). [Hint: By the definition of congruence, a — b = 
mn\.] 

12. a. Use Fermat’s theorem to show that 47 is the first prime which can 
possibly divide 223 — 1. 

b. Use congruences to show that 47 does divide 223 - 1, so that 
222(223 — 1) is not a perfect number. 

13. a. Use Fermat’s theorem to show that 103, 137, 239, and 307 are the 
only primes smaller than — 1 which could possibly divide 
2i7 _ p 

b. Use congruences to show that none of the primes in part a divide 
2 1. Thus, 217 1 is prime, and 2I6(217 — 1) is a perfect 
number. 

14. a. Use Fermat’s theorem to show that 191, 229, 419, 457, 571, and 
647 are the only primes smaller than ^219 - 1 which could 
possibly divide 219 — 1. 

b. Use congruences to show that none of the primes in part a divide 

219 ~ Thus> 219 1 is prime, and 218(219 - 1) is a perfect 
number. 

(This result and that in problem 13 were first found by Pietro 
Cataldi in 1607. Of course, he did not use congruences. The next 
perfect number, 230(231 — 1), was found by Euler, who showed 
that 231 - 1 = 2,147,483,647 is prime. After that, the next perfect 
number is 260(261 — 1). The number 261 — 1 = 2,305,843,009,- 
213,693,951 was shown to be prime toward the end of the nine¬ 
teenth century. Using computers, numbers such as 219-937 — 1, 
which has 6002 digits, have been shown to be prime.) 
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15. a. Use Fermat’s theorem to show that 59 and 233 are the smallest two 

primes which could possibly divide 229 — 1. 
b. Use congruences to show that 229 — 1 is divisible by 233, so that 

229 — 1 is not prime. 

16. Compute the periods of the decimals for the following fractions, 

verifying each time that the period length of the fraction 1/m 

divides m — 1. 
a. 1/11 b. 1/17 c. 1/23 

17. Using congruences, obtain the periods for the fractions in problem 16 

by finding the smallest positive divisor p of m - 1, such that 10* = 1 

(mod m). 

18. Let any triangle be inscribed in a conic section. Let each side be 

extended to intersect the tangent to the conic at the opposite vertex. 

Prove that these three points of intersection lie in a straight line. 

[Hint: This is a special case of Pascal’s theorem. As the points B 

and C of the hexagon get closer together, the segment BC approaches 

a line tangent to the conic. Let the points B and C, D and E, and E 

and F approach one another, and the hexagon becomes a triangle, 

and the three segments become tangents.] 

19. In projective geometry the dual of the statement, “a point lies on a 

conic,” is the statement, “a line lies on a conic,” meaning that the 

line is tangent to the conic. By interchanging point and line to 

form the dual of Pascal’s theorem, the six vertices becomes six 

tangents. The lines connecting the vertices become the points of 

intersection of the tangents. In this process what do the points of 

intersection of the opposite sides become? State the dual of Pascal’s 

theorem. 

20. The Fourier series for the function shown in figure 6.41 is 

, sin 3jc . sin 5* sin lx 
/(*) = sin x + —3— + —5— + -J- + ’ 

fix) 

n 

4 

A-- -«-- ----i 

71 

>- 
71 In X 

Figure 6.41 
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a. As a crude first approximation to the graph, sketch the curve 
y = sin jc. 

b. As a slightly better approximation, sketch the graph of y = 

sin x + (sin 3x)/3. [Hint: First sketch y = sin x, then on the 

same graph sketch y = (sin 3x)/3 and add the two graphs to¬ 
gether.] 

c. As an even closer approximation, sketch the graph of y = sin x + 

(sin 3x)/3 + (sin 5x)/5. [Note: Each of these approximations is 

continuous, in contrast to the infinite series/(x) which has a jump 
at x = 7r.] 

21. Compute the following products of complex numbers using Hamil¬ 
ton’s definition. 

a. (3,2)(0,2) b. (— 3,4)( — 3, — 4) 

c. (0, — 3)(0, — 3) d. (3,2)(4,3) 

22. Quaternions can be defined using three quantities — i, j, k — which 
satisfy the relations 

jk — i kj = —i ki = j ik = — j 

ij = k ji = -k /2 = j2 = = 

Multiply the following quaternions using these relations. 
a. (2 + 3/ + 4j + 3/c)(l -j- / + 2j + 3k) 

b. (3 - 2/ -j + k)(3 - / + 2k) c. (2i - 3j + k)(l - 2k) 

23. Find the following matrix products. 

" 3 4 " -1 2 ~ 4 -1 3 2 ‘ 
a. 

. 2 7 _ 3 -2 _ 
b. 

-2 0 _ _ 0 6 _ 

Jt 

' 3 4 -1 4 6 3 “ 

c. 0 2 0 2 0 3 

_ 3 1 0 _ _ -1 0 -1 

[Hint: Use a rule anal¬ 

ogous to that for 2 X 2 
matrices.] 

24. Let the sets A, B, and C be represented by circles (fig. 6.42). 

a. Shade in the area in figure 6.42 which represents B H C. Then 

shade in A. The total shaded region represents A U (B fl C). 

b. On another diagram like figure 6.42, shade in (A U B) H (A U C) 

confirming that it is equal to the set in part a. 
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B 

Figure 6.42 

25. a. Show that the total length of the intervals removed in constructing 

the Cantor set is 

+ • •* 

b. Use the formula 1 + r + r2 + r1* -+■•••= 1/(1 ~~ r) t0 sh°w 
that the sum of the series in part a is 1, so that the Cantor set, 

which is what is left after the removal of these intervals, has 

length zero. 

26. In our decimal system, numbers are represented using powers of ten. 

Thus, 364 = 3 X 100 + 6 X 10 + 4. In the binary system, numbers 

are represented using powers of 2. Thus, 13 in the decimal system 
would be (1 X 8) + (1 X 4) + (0 X 2) + (1 X 1), or 1101, in the 

binary system. Write the following decimal numbers in the binary 

system. 
a 7 b. 9 c. 15 d. 35 

e’ 64 f. 43 g- 108 

27. The operations of addition, subtraction, multiplication, and division 

* can be carried out in the binary system. Since all numbers are written 

using only 0s and Is (see problem 26) these operations are very easy. 

For example, 

1010 no n 

+ 1101 x u li 1001 

loin 110 11 

no 11 

10010 11 

Perform the following calculations in the binary system, 

a. 11011 + 11011 b. 1010 X 101 

c. 111101 -T- 101 d. 1101101 - 1001 
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28. In the decimal system fractions can be expressed using descending 

powers of 10. Thus, 1/3 = 3/10 + 3/100 + 3/1000 H-, or 

.33333 .... In the binary system fractions can be expressed using 

descending powers of 2. These expressions can be found by long 

division, just as 1/3 = .333 ... is found by dividing 311.000 ] 

Express the following fractions using descending power of 2. 
2 . . —_ 'l 

a. - [Hint: Find 11110.000 ... in binary.] b. - 
J 5 

29. Not only fractions (see problem 28), but any real number, can be 

expressed in the binary system. For example, any point b on the 

line between 0 and 1 has an expansion b = .bibib^bf • • =b\/2 + 

^2/4 + 63/8 + 64/I6 + • • •. For the b shown in figure 6.43, 

b 

4 8 2 

Figure 6.43 

^i=0 since b is in the left half when the segment [0, 1] is divided 
in half. 

b2 = 1 since b is in the right half when the segment [0, 1/2] is 
divided in half. 

b2 — 0 since b is in the left half when [1/4, 1/2] is divided in half. 

Use the fact that every point in the line segment [0, 1] has a binary 

expansion to show that there are more such points than there are 

positive integers. [Hint: Suppose there are just as many points as 

integers. Then the sets could be corresponded in some way, say, 

Integers Points 

1 .101110... 
2 .010110... 
3 .0010011... 

Show that any such correspondence is impossible by specifying a 

way of determining for any given list a point not on that list.] 
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30. a. Show that every real number of the form 

where each an = 0 or 2 is not in one of the intervals removed in 

constructing the Cantor set, and is, therefore, in the Cantor set. 

b. Show that there are at least as many points in the Cantor set as 

there are in the whole interval [0, 1]. [Hint: As in problem 29, 

every real number in [0, 1] can be written in the form b\/2 + 

b2/l2 + 63/23 H-where each b is either 0 or 1. Correspond 

to each such number an element of the Cantor set by letting an = 

2bn. Note that some numbers have two binary representations, 

just as 1/10 = .10000 . . . = .099999 ... in the decimal system. 

For example, 1/2 = .10000 ... = .01111 .... To represent each 

number uniquely in binary, exclude one or the other of the two 

possibilities, say those which have all ones beyond some point.] 

31. Give examples of sets with the following order types. 
a. co + 2 b. 2 + co c. co + co + co 

32. Show that 2 + co = co, but a> + 2 X co. 

33. Construct three maps, each of which requires four colors to draw. 

34. Let S' be any nonempty set. Show that the function d given by 

d(a,b) = 0 if a = h 

and 

d(a,b) =1 if a^b 

satisfies the four properties required of a metric space. This is a 

trivial example in which the distance between any two unequal 

objects is one. 

35. Find 

where f(x) = x and g(x) = x2. 

36. Show that the first four properties of a ring are satisfied by the set of 

2X2 matrices in example 3 on page 246. [Hint: Assume that the 

corresponding properties are satisfied for the set of numbers.] 

258 Mathematics as Free Creation 



References 

A Forerunner — Carl Friedrich Gauss (1777-1855) 

Bell Kazarinoff 
Dickson Lanczos 
Dunnington Shanks 
Gauss (1,2,3) Smith (2) 
Hall Struik (3) 

Advanced Calculus 

Bell Manheim 
Fourier Ore 
Grattan-Guinness Struik (3) 

Variety in Geometry 

Bell Kline (2) 
Bonola Lanczos 
Coolidge Lobachevsky 
DeLong Smith (2) 

Variety in Algebra 

Bell Hamilton 
Boole Kramer 
Boyer (1) Smith (2) 
Dehn 

Arithmetization of Analysis 

Beil Hawkins 
Cantor Kramer 
Dedekind Manheim 
Eves (1) Smith (2) 
Grattan-Guinness 

Generality of Mathematics in the Twentieth Century 

Bochner 
Kramer 
Hilbert 
Manheim 

Reid 
Rosenblueth 
von Neumann 

References 259 





Appendices 





A Suggestions For Further Reading 

Works in this section are listed by author; refer to the Bibliography for 
titles and publishers. Note that references to specific periods and topics 
are listed at the end of each chapter in the text. 

1. History of topics taught in the schools 
a. National Council of Teachers of Mathematics’ Historical Topics 

for the Mathematics Classroom contains suggestions for the use 
of history in the classroom. Other chapters treat numerals, com¬ 
putation, algebra, geometry, trigonometry, and calculus. 

b. Smith (1), Vol. II contains a topic-by-topic discussion of school 
mathematics. 

c. Read provides a bibliography of articles on various topics in the 
history of mathematics. The Cumulative Index: The Mathematics 
Teacher contains a listing of articles on the history of mathematics 
which have appeared in the Mathematics Teacher. 

2. Biographies 
a. Bell has written lively biographies of mathematicians from the 

period 1600-1900. 
b. The Dictionary of Scientific Biography contains articles on the life 

and work of mathematicians and scientists. 
c. Dunnington, Hall, Ore, and Reid have all written biographies of 

mathematicians. 
d. The bibliographies in topics 1c and 5 have many references to 

biographical articles. 

3. History of Mathematical Developments 
a. Aaboe has excellent chapters on several areas of Greek and Baby¬ 

lonian mathematics. 
b. Van der Waerden writes a thorough discussion of the development 

of Greek mathematics, along with chapters on the Egyptians and 
the Babylonians. 

c. Kline (1) is an advanced work which extensively treats mathematics 
from 1700 to the present. 

d. Kramer presents an introductory treatment of topics in modern 
mathematics with much historical background. 
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4. Primary Sources 
a. Euclid is the most accessible and is quite fascinating. There is no 

better way to understand the history of mathematics than to read 

the original works. A number of other complete works are available 

and require varying degrees of mathematical background. 

b. Smith (2), Struik (3), Midonick, Thomas, and Wolff provide col¬ 

lections of excerpts from original works. Wolff includes commen¬ 

taries on each selection and could be read in conjunction with this 

book. 

5. General Bibliography 

May provides a complete bibliography for the history of mathematics. 

His purpose is to assist mathematicians, users of mathematics, and 

historians in finding and communicating information required for 

research, applications, teaching, and exposition. 
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B Suggestions For Projects 

The following list contains suggestions for extended projects. Some 

suggested projects refer to a specific historical period, while others deal 

with one topic over an extended time. The list is by no means exhaustive. 

1. Referring to Euclid’s Elements, explain how he constructed the var¬ 
ious regular polygons. 

2. Give the history of some computing devices, such as the abacus, 

slide rule, adding machines, computers, etc. 

3. Give the history of the three famous problems of Greek geometry and 
of various solutions to them. 

4. Give the history of quadratic equations and their solutions. 

5. Report on the history of the number t, including the approximate 
values for t used by various peoples. 

6. Give a history of the calendar. 

7. Describe Egyptian results in geometry. 

8. Describe Babylonian results in geometry. 

9. Explore early Greek philosophy and its relationship to mathe¬ 
matical concepts. 

10. Report on the life of a mathematician, such as Gauss, Abel, Cardano, 
Newton, Descartes, Hilbert, etc. 

11. Give a history of the notation and symbols of algebra. 

12. Give a history of perfect numbers. 

13. Explore the development of non-Euclidean geometry. 

14. Give a history of the different types of number systems that have 
been used throughout history. 

15. Give examples of how the history of mathematics might be used in 
the classroom. 

16. Compare the development of mathematics with that of art. (See 
Ivins.) 

17. Give a history of perspective painting. 

18. Make models of important mathematical objects. For example, if a 

track is made in the shape of a cycloid, the tautochrone property 

265 



could be demonstrated by letting two ball bearings roll from different 

heights on either side of the track. Both balls will reach the bottom at 

the same time. 

19. Report on a portion of one of the works in topic 3 or 4 of the Sug¬ 

gestions for Further Reading. 

20. Report on several articles chosen using the bibliographies named in 

topic lc of the Suggestions for Further Reading. 

21. Compute the complete table of chords using Ptolemy’s methods. If 

you use a circle of radius one and the decimal system, then you can 

check your results by referring to a table of sines. Use a computer, 

unless you truly like calculating. 

22. Learn how the Fibonacci numbers were used by Lucas in his meth¬ 

od for finding if large numbers are prime. (See Shanks.) 
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C Guide to the Pronunciation of Names 

Explanations of the symbols used can be found in Webster's Biographi¬ 

cal Dictionary, Webster's New International Dictionary, or Webster's 
New Collegiate Dictionary. 

Greek 

Apollonius 
/ w t — 7 w V 

ap o-lo m* us Eleron her' on 
c 

Archimedes ar' ki*me' dez Elipparchus hi*par' kus 
Archytas ar*ki' tas Hippocrates hI*pok' ra*tez 
Aristotle ar' is-tot' ’1 Hypatia hi*pa' shi*a 
Boethius bo*e' thi-ws Nicomachus nT*kom' a-kus 
Democritus de*mok' ri*t«s Plato pla' t5 
Diophantus di' o-fan' tus Proclus pro' klws 
Eratosthenes er' a*tos' the*nez Ptolemy tol' e* mi 
Euclid u' klid Pythagoras pi*thag' o • ras 
Eudemus u*de' mus Thales tha' lez 
Eudoxus u*dok' sirs Zeno ze' no 

Middle Eastern and Indian 

Abu’l Wefa a •book we* fa' Aryabhata ar' ya- but' a 
Ahmes a' mes Bhaskara bas' ka'xa 
Al-Battani al' bat-ta' ne Brahmagupta bru' ma-gdop' 
Al-Khowarizmi al • Kob • wa' t a 

riz* me Omar Khayyam o' mar kl*(y)am 

European 

Abel a' bel Cavalieri ka' va*lya' re 
Adelard ad' c-lard Ceulen ku' len 
Argand ar' gaw' Chuquet shii' ke' 
Bede bed Copernicus ko-pur' ni* kus 
Bernoulli ber* nool' e Crelle krel' e 
Bolzano bol-tsa' no D’Alembert da' laNbar' 
Bradwardine brad' wer*den Dedekind da' de-kint 
Brianchon bre' aw' shoN' De Moivre de • mwa' vr' 
Cardano kar-da' no Desargues da' zarg' 
Cauchy ko' she' Descartes da* kart' 
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Diirer dii' rer 

Euler oi' ler 

Fermat fer' ma' 

Fibonacci fe' bo-nat' che 

Fiore fyo' ra 

Fourier fob' rya' 

Francesca fran*chas' ka 

Galileo ga' le-la' 6 
Galois ga' lwa' 

Gauss gous 

Gerard jer-ard' 

Gerbert zher' bar' 

Hadamard a' da' mar' 

Hermite er' met' 

Huygens hoi' gens 

Kummer kobm' er 

Lagrange la' graNzh' 

Laplace la' plas' 

Leibniz lip' nits 

L’Hospital 16' pe'tal' 

Lindemann lm' de- man 

Lobachevsky lo'bd*chef' ski 

Mercator mur-ka' ter 

Mobius mu' be • 60s 

Monge moNzh 

Napier na' pi-er 

Oresme 6' ram' 

Oughtred 6' tred 

Pacioli pa-cho' le 

Pascal pas' kal' 

Planudes pl^*nu' dez 

Poncelet poNs' le' 

Recorde rek' ord 

Regiomontanus re' ji‘6-mon*ta 

nus 

Riemann re' man 

Riese re' ze 

Roberval ro' ber 'val' 

Sacrobosco sak' ro-bos' ko 

Stevin ste* vin' 

Tartaglia tar-ta' lya 

Torricelli tor' re*chel' le 

Viete vyet 

Von Neumann fon noi' man 

Weierstrass vl' er*shtras' 

Wessel ves el 

Widman vit' man 
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D Answers to Selected Problems 

Chapter 1 

i. 9999 nnn, 
999 nn1 

2. a. \/l 15 
2 30 
4 60 

V8 120 
15-1-20 = 135 

3. a. 2 + T6; b. 6 + c. 2 + S' + 16 + HD Other answers are possible. 

4. 10+J 5. (32/3)2 6. 4+28 7. 6 + TE; g + + 36 + 72 Other 

solutions are possible. The only other with two terms is 5 + 45. 8.a. J + 30; 

b. 3 + TT5 + 30;c. 3 + 5 + 3D 9. 4 
10 a X <<#<v r /// wvvv ///w 

V (( V L* \/V Vf V SsS V 

11. a. ^ (0;4) c. VvV 

12. 0;8,34 13.a. 1/2, 1/4, 1/5, 1/8; h. 1/2, 1/3, 1/4, 1/5, 1/6,1/8, 1/9 
14. 1,2,23;3,15 15. 1,0;32,16 16.a. 2.65; b. 3.46; c. 4.47 17. 2 
18. 0;45 19. 18 and 2 20. 7-24-25, 11-60-61, 9-40-41, 13-84-85 Many 
others are possible. 23. tt[(2 + -^2)/6pJ2, or approx. 1.02 j2 

Chapter 2 

1. 8128 2. 22 

3. a. f^AAII b. HHHHP'AAAPIII c. MF’HHP’AP 
The (h1 represents 500. 

_ _ _ T _ 
4. a. X*; b. </>m; c. '7u£0; d. M'rjpird 6. .62 and .38 7. a. 5; b. 3; c. 1 

9. 2, 3, 5, 7, 11, 13^ 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 

89, 97 10. ^80 12. a. 2.44; b. 2.64; c. 4.47 13. a. 09 (75 LE 
Sq3 M/2; b. M/3 U2 LE S?9 24. b. 6/y/3 = 918/265 25. 12/(2 + ^/3) = 

1836/571 28. 4| 29. approx. 12.54 30. b. £0 = 2;16andF(2 = 1;2 

34. b. k = 3 gives 6/5 and 17/5; A: = 4 gives 29/17 and 54/17 35. There are 

many solutions, for example a. 4/5 and 22/5; b. 7/5 and 24/5 36. b. x = 20, 

z = 41, w = 80, y = 320; c. There are many, for example if d = 7, then w = 32, 

y = 32, and z = 17. 37. a. 1 = 2°, 2 = 21, 4 = 22, 8 = 23, 16 = 24, 

31 = 2°(25 - 1), 62 = 2'(25 - 1), 124 = 22(25 - 1), 248 = 23(25 - 1), 496 = 
24(25 - 1) 
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Chapter 3 

2. 1 15 14 4 

12 6 7 9 

8 10 11 5 

13 3 2 16 

Each sum is 34. 

3. Here is a sequence of steps. Others are possible. 

1 

2 

3 

0 

5 

1 

3 

2 

1 

26 24 39 

3 

6 

9 

0 

5 

1 

3 

2 

1 

78 24 39 

0 

4 

8 

0 

5 

1 

3 

2 

1 

39 24 39 

a 

5 

b 

4 

a 

9 

b 

7 

0 0 3 0 0 3 " 

20> 20 2 0 20 2 

40 4 1 36 4 1 

195 96 39 _ _ 99 96 39 _ 

8; e. 6; f. 5 

a c c 

0 0 3 

20 5 2 

40 1 1 

195 24 39 

'003 

0 5 2 

36 1 1 

99 24 39 

3 

b 

4 

a 

2 

5. x8 -f- + 28x6y2 + 56x5>’3 + 70xAyA -f- 56x3>’5 + 28x2.y6 + 8xy7 + y8 

6. a. Ilfs b. ||= jjjj c. HloTT _ 

d- Tilo e- II = HU 4: f- 1111° 1 ^ 
7. a. ya v 3 ya 5 b. ya v 2 

ru 1 ya 4 ru 3 

9. a. 1 from 2 is 1; 9 from 10 is 1, 1 and 8 is 9; 2 from 5 is 3 

10. a. 3 2 

6 

4 

»«»• • 
b. EE* 

11a. 1 

/ 

m 

tfi 
t 

) 23 r.17 

12. a. __ b. c. 

16. a. a- = 5/3; b. The new solution is 19/11. 17. 100 

19. 72 

• • 

• « • d. ^ 

18. Either 16 or 48. 
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Chapter 4 

4. a. _60 +10 + 9 + 2 = 81 r.4 

10 - 2\652 

600 

~52 

+ 120 

172 

100 

~72 

+20 

92 

90 

~2 

+ 18 

20 
20 

~0 
+4 

c. 100 + 40 + 10 = 150 r.21 

40 - 2|5721 

4000 

vm 
+ 200 

192? 
1600 

~321 

+ 80 

40T 

400 

~T 
+ 20 

21 

6. a. 8 Irom 11 is 3; 5 from 12 is 7; 8 from 16 is 8; 2 from 3 is 1. Answer is 1873 

7. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 
6765, 10946, 17711, 28657, 46368, 75025 

11. a. 13) 147 (11 r.4 12. a. 437 441 461 961 

1_ 524 52 5 

4 

3_ 

17 

1 

3_ 

4 
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13. a. 51 14. a. 14 7 3 1 
246 29 58 11,6 232 
4264 232 + 116 + 58 = 406 

18$/ 
till 
n 

Hi 34 
252 

15. a. .6?; b. .75 "1; c. .3?/>.43'" 16. a. Units digit is 8. Since 5-4 + 3-2 = 26, 
the tens digit is 6. Then 3-5 = 15, and 15 + 2 = 17, so the answer is 1768. 

18. a. \/a]26+ 5 - b. -©4 - -©2 

19. a. -©20 + v'392 + -©20 - ^392 b. -©4 + -©2 

20a. 3©6®8©3®; b. 24@1(T)0©4©9@; 

c. 576 © 3 © 8 © 8 © 4 © 2 © 21. 1000 and 1000.10001 

22. g. .0004950 is both an upper and a lower bound for the difference of the 
logarithms. 23. a. .4 < log 3 < .5; b. .47 < log 3 < .48; c. .477 < log 3 < .478 
24. After four more steps, log 3.995 (approx, log 4.00) is found to be .6016. 
Continuing another three steps gives log 4.004 = .6035. The true value is between 

these two values. 

Chapter 5 

9. a. at most one positive and one negative; b. at most two positive and two 
negative; c. at most three positive and two negative 14. cross-ratio is 9/8 in 
both cases 16. A gets $1.75, B gets $.25 18. ir ~ 3.1416208, carrying 
the calculation out to seven places 19. 1 — x2 + x4 — x6 . . . 20.1 + 
x + *2 + x3 . . . 23. a. 8; b. 3; c. 2 26. 4 = 2 + 2, 6 = 3 + 3, 8 = 
5 + 3, 10 = 5 + 5, 12 = 7 + 5, 14 = 7 + 7, 16 = 11 + 5, etc. Various other 
solutions are possible. 27. a. |si,S2];ft. {si, S3, ; c. {51} 

Chapter 6 

2. b. 1 + -\/3-y/— 1 has angle 60° and length 2; ^3 + ^—1 has angle 30° and 
length 2. The product, 4\ — 1, has angle 90° and length 4. 13. b. For ex¬ 
ample, 217 — 1 = 55 (mod 103), so 103 does not divide 217 — 1. 16. a. 1/11 
= .09 ... The period, 2, divides 10; b. 1/17 = .0588235294117647 ... The 
period, 16, divides 16; c. 1/23 = .0434782608695652173913 ... The period, 22, 
divides 22. 21. a. (-4,6); b. (25,0); c. (-9,0); d. (6,17) 22. a. -18 + 
11/ + 2j + \\k\ b. 5 — 11/ + 8At; c. 2 + 8/ + j + k 

9 

_ 19 

-2 " 

-10 _ 
; b. 

12 

-6 

2 " 

-4 _ 
; c. 

” 21 

4 

18 

0 

22 ” 

6 

14 18 12 _ 

26. a. Ill; b. 1001;c. 1111; d. 100011;e. 1000000;f. 101011; g. 1101100 
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27. a. 110110; 
b. .1001 ... ; c. 

b^lOOlO; c. 1100 r.l; d. 1100100 28. a. .TO ... ; 
.010... ; d. .011100... 31. Some examples are a. 1/2, 

2 to 

2/3,3/4,4/5,..., 1,2; b. 
13 ll i2 71 

-*■ ^j 4) • • • > ^ 2 5 ^"3*) ^ 4 i • • 

35. 1/6 

-1,0,1/2, 2/3, 3/4, 4/5,. . . c. 1/2, 2/3, 3/4,.. ., 1|, 
. 33. The maps of figure 6.26 b and c, for example. 
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Noether, Emmy, 246 

Noncommutative algebra, 229-31 

Non-Euclidean geometry, 212, 223-27, 
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