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From the Introduction to the 
Russian Edition

This book was written as a popular introduction to the 
theory of binary relations. The binary relations studied 
previously from the point of view of mathematical logic’s 
special needs turned out to be a very simple and convenient 
apparatus for quite a variety of problems. The language of 
binary (and more general relations) is very convenient and 
natural for mathematical linguistics, mathematical biology 

*and a great many other applied (for mathematics) fields. 
This is very easy to explain if we say that the geometric 
aspect of the theory of binary relations is simply the theory 
of graphs. But if geometric graph theory is well-known and 
widely represented in the most varied kinds of literature— 
from popular to monographic, the algebraic aspects of the 
theory of relations have received almost no systematic 
treatment.

But in spite of this, the algebra of relations can be pre­
sented so comprehensibly that it could be grasped by high 
school students attending mathematical study circles, 
linguists dealing with mathematical models of a language 
in the course of their work, students of the humanities re­
quiring a specific mathematical education, scientific workers 
dealing with any aspects whatsoever of cybernetics, etc.

This book was written so that it could be used by readers 
who are not professional mathematicians. In any case, the 
basic material of the first five chapters are designed for 
such a reader. The sixth chapter requires some experience 
in reading mathematical literature. The seventh chapter is 
written especially for linguists and mathematicians dealing 
with mathematical linguistics. It is only a particular exam­
ple for the more general reader.

Formally, the only prerequisites for reading this book are 
the knowledge of high school mathematics and a familiarity 
with certain elements of set theory (obtainable, for example,
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from Appendix 2). However, it would be helpful for the 
reader to possess] an acquaintance with the elements of 
mathematics.

An additional difficulty in writing a book about mathe­
matics for non-mathematicians is that such a book should, to 
a definite degree, give the reader an idea of what mathema­
tics is. The professional mathematician obtains his concep­
tion of the science from the entire learning process; the non­
professional reader forms his conception of mathematics from 
sources which he can comprehend. Popular ideas about 
mathematics are very often false, although a great many 
people are now making use of mathematics. Some of them 
expect it to give them finished recipes for solving one or 
another applied problem—such a conception is sometimes 
formed as a result of studying mathematics in schools and 
engineering colleges. Writing complicated formulas tis very 
often simply a mystical ritual, called upon to “sanctify” and 
lend certainty to rather precarious conclusions—this is a pe­
culiar symptom of the common belief in the reliability of 
a truth so far as it is expressed scientifically.

I should like to show in this little book how the transition 
is carried out from familiar intuitive concepts, such as 
identity, resemblance* or order, to precisely defined mathe­
matical concepts, on which we can perform logically 
rigorous reasoning. Moreover, I should like to caution the 
reader against a careless transfer of conclusions, arrived at 
for a given specific more precise definition (or, as is customa­
ry to say, explication) ôf a given concept, to the general 
case, where these concepts are only intuitive in nature. The 
study of such explications shows, in particular, that one 
and the same general concept permits different explications 
with various properties. This forces us to be especially 
careful with non-rigorous inferences or the transfer of rigor­
ous inferences to situations whose concepts are not rigorously 
defined. In essence, a certain principle of the commensurabil-

* It should be noted that the concepl of a tolerance relation, 
making more exact the concept of resemblance (and the related con­
cept of indistinguishability), was only very recently introduced by 
E. Zeeman. Cf., for example, E. Zeeman and 0. Buneman, “Tolerance 
Spaces and the Brain” in the collection Towards a Theoretical Biology, 
Mir Publishers, Moscow, 1970.
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ity of an inference’s rigour with the precision of the assertion* 
being inferred comes into play here.

Using the simplest material, I tried to show in this book 
how the transfer is effected from an abstract, axiomatic 
definition of an object to its explicit description. The idea 
that we can often “list” all objects possessing certain given 
properties (or, in other words, gain an understanding^how  
objects with given properties are built) is a very important 
one for mathematics.

Binary relations give us, aside from everything else, 
a good supply of interesting examples for such important 
general algebraic concepts as semi-group, homomorphism, 

4etc. In this lies the value of studying the algebra of binary 
relations for those who plan to study mathematics more 
deeply later.

The author would like to express his gratitude to the many 
individuals who have helped improve this book in a variety 
of ways, above all to my colleagues at work, M.V. Arapov, 
V.B. Borshchev and E.N. Efimova, to the book’s reviewer 
and the co-author of Appendix 4, N.Ya. Vilenkin, to the 
author of § 4 of Chapter II, T.D. Wentzel, to the editor, 
Yu.A. Shikhanovich and to the illustrator, O.N. Razdo- 
bud’ko.

Yu. Schreider



Preface

In this edition, Appendix 4, based on a paper written 
jointly with N.Ya. Vilenkin, which was published in the 
journal “Questions of Philosophy”, No. 2, 1974, as well as 
the theorem on the obtainability of each ordered set# with 
a greatest element from a tree by pasting some of its vertices 
together and, possibly, deleting the root, have been added 
to the Russian original. I should like to take the opportunity 
of expressing my profound gratitude to the translator, 
M. Greendlinger, who succeeded in noticing and correcting 
a number of errors.

Ju. Schreider
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Introduction

We shall continually be dealing with the simple categories 
which we use daily in naming one or another situation.

The basic difficulty (in our case—entirely surmountable) 
is to translate these perfectly ordinary categories into pre­
cise mathematical concepts. A similar translation is quite 
typical for mathematics. It even has a special name. When 
we pass from a vague and customary concept to a precisely 
formulated one, then the latter is called an explication of 
the former.

Thus, for example, the mathematical concept of an “algo­
rithm” is an explication of such an ordinary concept as 
a “problem solving method”.

Let us take another example, requiring greater mathemati­
cal erudition: the concept of a “derivative”, lying in the 
foundations of differential calculus, is nothing but an expli­
cation of the intuitively clear concept of the “rate of change 
of a given quantity”.

It is rather obvious that since the original concept is 
always sufficiently vague, it admits of more than one expli­
cation.

This book is essentially devoted to the explication of one 
significant concept, namely, that of a “relation”, and its 
main variants. What a relation is can be most easily ex­
plained by means of examples. The following propositions 
actually express relations between certain objects:

“Ivan is Peter’s brother”,
“Ivan is Peter’s neighbour”,
“Iron is heavier than water”,
“Kiev is south of Moscow”,

“Evening and morning have the same number of letters”.
These five sentences express relations of different types. 

However, it is possible to observe a similarity in the nature 
of the relations predicated by the first, second and fifth
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sentences. They all say that two definite objects belong to 
a common class: the sons of the same parents, inhabitants of 
one house or village, words with a fixed number of letters. 
What the third and fourth relations have in common is that 
they express the relative order of objects in a system. When 
we say that iron is heavier than water, we do not assume 
that matter is divided into the categories of light and heavy. 
Neither are we asserting that iron is heavy and water is 
light. Lead is even heavier than iron, while hydrogen is 
much lighter than water. In exactly the same manner, 
a division of cities into southern and northern is by no means 
necessary for the fourth sentence to be true. Moscow is 
a very, very southern city, with black nights and ripening 
fruits from the point of view of Murmansk’s inhabitants 
but for Tbilisians, Kiev has every reason to be regarded 
as northern. Even if we were to suggest a conditional divi­
sion of cities into southern and northern, it would again be 
possible to find more southern and more northern representa­
tives in each group.

It is important to pay attention to the following circum­
stance. Names of objects and names of relations stand out 
clearly in all five examples. If the name of an object in 
a sentence is replaced by the name of another object, then 
the following situations are possible:

(1) the relation will again hold;
(2) the relation will no longer hold;
(3) the relation will lose its meaning.
Thus, if we substitute the word “copper” for the word 

“iron” in the third sentence, our proposition will remain 
true. If the word “Moscow” were replaced by “Tashkent” in 
the fourth sentence, it would cease to be true. But if “iron” 
were in place of “Moscow” in the fourth sentence, our pro­
position would turn into nonsense. Analogously, substitut­
ing the objects from the fourth proposition into the first, 
we obtain the sentence “Kiev is Moscow’s brother”. This 
can, of course, be understood figuratively, but it is clear 
that the word “brother” will then no longer mean “son of the 
same parents”. (Cf. the expression “Kiev is the mother of 
Russian cities”.)

It would seem, curiously, that any objects could be sub­
stituted into the fifth sentence, since it makes sense to
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speak of the number of letters in any word. This is explained 
by the fact that the words “evening” and “morning” are used 
in this sentence, not as names of appropriate phenomena, 
but as names of themselves. More precisely, this sentence 
should have sounded as follows:

“The word ‘evening’ and the word ‘morning’ have the 
same number of letters”.

It is now clear that the very form of our proposition limits 
the class of objects—here only words themselves can be 
objects of the relation.

Thus, we see that it is only possible to speak about a rela­
tion when we are able to single out the set of objects, in 
which this relation is defined. Hence, before trying to for­
malize the concept of a relation, it is necessary to learn 
how to speak formally about sets and their properties. The 
difficulty is that the concept of a set is “primary” in mathe­
matics: it is usually not considered necessary to define it in 
terms of other concepts. Moreover, there are paradoxes in 
a complete theory of sets.

We shall not present a theory of sets here. The author in 
effect hopes that the reader is already acquainted with the 
elementary concepts of set theory. However, in order not to 
frighten away the reader unacquainted with these concepts, 
we shall present those facts about sets, which will be used 
in what follows, in Appendix 2.



Chapter

I
RELATIONS

§ 1. How a Relation is Given

Giving a relation means indicating between which objects 
it holds. For example, the relation “to be a brother of” 
is completely determined by listing all pairs of people, such 
that the first of them is a brother of the second.

Note our prior choice of the set of objects between which 
the relation is defined. Namely, the relation “to be a brother 
of” is assumed to be given on the set of people. Let us con­
sider some simple examples. Suppose that Tatyana, Alexan­
der and Michael are children of the same parents, listed in 
order of birth. Then, on this set of three people, the relation 
“to be a brother of” holds for the following pairs : 

“Alexander (is a brother of) Tatyana”,
“Alexander (is a brother of) Michael”,
“Michael (is a brother of) Tatyana”,
“Michael (is a brother of) Alexander”.

The objects in the first and third statements cannot change 
places. This means that the relation “to be a brother of” is 
not, generally speaking, symmetric. If “x is a brother of y”, 
then “y is a brother of x” only if y is a male. It is instructive 
to observe that the relation “Alexander is a brother of 
Alexander” does not hold, i.e., as is customarily said, the 
relation under consideration is not reflexive. This brings to 
mind the following old riddle: “My father’s son, but not 
my brother. Who is he?” The answer is now clear: “I, myself”.

The relation “to be older than” holds on the same set for 
the following pairs:

“Tatyana (is older than) Alexander”,
“Tatyana (is older than) Michael”,
“Alexander (is older than) Michael”.
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The following example shows that it is also possible to 
establish relations between object of different sets. Con­
sider the set M x of pupils of a certain school and the set M 2 
of teachers of the same school. Then we have the natural 
relation ux is a pupil of y”, where x is one of the pupils (an 
element of the set Mx) and y is one of the teachers (an ele­
ment of the set M 2). It is clear that for one and the same 
pupil x , this relation may hold for different teachers. Con­
versely, one and the same teacher has different pupils.

A relation may be defined not only for pairs of objects 
(ibinary relations), but also for triples, quadruples, etc. 
For example, the relation “to form a football team” holds 
for certain groups of 11 people. It may be given by the 
rosters of first-string football players participating in 
various games. This relation should not be confused with the 
binary relation “to be football team-mates”. In fact, two 
team-mates do not form a team. Only a complete set of 11 
players can form a team.

Algebraic operations furnish good examples of three- 
placed (or, as mathematicians are wont to say, ternary) rela­
tions. For example, the relation “to be sum of” makes sense 
for triples of numbers (x, y, z) and holds whenever

x +  y =  z.

Proportionality of numbers x, y , z, u:
x   z
y u

is a relation, holding for certain quadruples of numbers 
(x, y , z, u).

We shall mainly study binary relations, i.e. relations 
which hold (or fail to hold) between two objects. We turn 
to a precise definition of this concept.

Let a set M  be given. Consider the set of all pairs of the 
form (x, y),  where x and y are the elements of M. We shall 
regard these pairs [as ordered, i.e., we shall distinguish be­
tween the pair (x, y)  and the pair(y, x)*. It is customaryTo 
denote the set of all such ordered pairs by M  X M .

* Unless, of course, x and y coincide.
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A subset A of the set M X M  will be called the relation 
A in the set M .

Informally, this definition simply means that by choosing 
a subset A of the set M X My we determine which pairs are 
related by the relation A. This circumstance is emphasized 
by the following notational convention: if the pair (x, y)  
belongs to A , i.e. (x, y)  6 A,  then we write

xAy ,
which is read, “x is related by A to y”. We shall also call 
the expression xAy a relation.

It should be emphasized that a relation is not simply a set 
of appropriate pairs, but a subset of the set of pairs M X M  
for a fixed set M.  In more formal terms, an ordered pair 
(A9 M)y where A <=: M X M y is called a relation. Thus, 
a relation is a pair (A, M ) f where M  is the set in which the 
relation is defined, and A is the set of pairs for which the 
relation holds. We shall call the set M  the support of the 
relation A.

In Ju.A. Shikhanovich’s book, “Introduction to Modern 
Mathematics”, the set of pairs A is called the graph of the 
relation (A, M) .  When considering relations in one and the 
same set Af, we can permit ourselves the luxury of not 
indicating the support explicitly. In this case, it is possible 
to mentally identify a relation with the set of pairs for which 
it holds (the graph of the relation). In particular, we assume 
that it is entirely permissible to denote a relation and its 
graph by one and the same letter.

However, there are situations when relations with different 
supports are considered. It then becomes necessary to revert 
to the more cumbersome notation for relations, in the form 
of pairs (A, M) .

Here is one of the typical situations of this sort. We 
shall call the relation (Ay M)  the restriction of the relation 
(Ax, M x) to the set Af, if M  s  M x and A =  A 1 f| (M X M).  
The latter means that for elements of M , the relation xAy 
holds if any only if the relation xAxy holds. If it is clear 
from the context that A is a restriction of A l9 we shall per­
mit both of these relations to be denoted by one and the 
same letter. The restriction of (AXJ M x) to M  will sometimes 
be simply called the relation A 1 in the set M.
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We cite some examples of relations. Let M  be the set of 
people. Let A be the set of pairs (x , y ), such that “x is 
acquainted with y”. An abbreviation for what the quotation 
marks enclose is “xAy”.

Another example is the relation “to be a typical represen- 
tati^e of”. There exists a popular test where a person is 
asked to write down on a sheet of paper, without thinking, 
the name of a fruit, the name of a domestic fowl and a num­
ber. Most people give the standard answer: “Apple, chick­
en, 7”, which shows what they consider to be typical rep­
resentatives (standards). Fig. 1.1 depicts three groups of 
heraldic animals, in each of which a representative typical 
of its group’s members is chosen: the eagle is a standard for 
all heraldic eagles, including two-headed ones; the horse is 
a standard for Pegasus, the centaur and the unicorn; the 
goat surely served as the prototype for Capricorn.

Now let M  be the set of participants in a chess tournament. 
We shall say that “x is a vanquisher of y” if x beat y in 
this tournament. (It is assumed that the tournament consis­
ted of one round.) Instead of writing down all pairs (x, y)  
for which the relation “to be a vanquisher of” holds, we can 
simply change the one-halves to zeros in the box-score of the 
tournament. The fact is that if participants x and y played 
a draw, neither of them is a vanquisher of the other. In 
this case, neither the relation “x is a vanquisher of y” nor 
the relation “y is a vanquisher of x holds. We have made the 
indicated changes in the box-score for the 1968 Lasker Memo­
rial, and the result is given below. Note that it is possible 
to obtain complete information about the outcome of every 
game from our distorted box-score. Besides, if the relation 
“x is a vanquisher of y” holds, this does not at all mean that 
“x played better in the tournament than y”. The latter is 
an entirely different relation. Thus, “Bartsai is a vanquisher 
of Uhlman”, although Uhlman is higher up than Bartsai in 
the box-score.

In reality, we have obtained a general method of present­
ing a binary relation in a finite set, called the matrix method, 
which can be described as follows. Let M  be an ^-element set 
in which A is a relation. Number the elements of M  with 
integers from 1 to n. Now construct an n X n square array, 
whose i-th row corresponds to the i-th element of M  and



Fig. 1.1. The relation “to be a standard for”. The horse, the eagle and 
the goat are standards in their groups
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Participants 1 2 3 4 5 6 7 8 9  10 11:12 13 14 15 16 p PI

1 B r o n ste in 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1
10 T

I-I I

2 U h lm a n  . . 1 0 1 0 0 0 0 0 1 0 1 1 1 1 1
10 T

I-I I

3 S u e t in  . . . 0 0  0 1 1 0 0 1 0 1 0 0 0 1 1 4 III

4 V a sy u k o v 0 0 0  0 1 1 0 0 0 1 1 0 0 1 1 9 IV -V
5 B a rtsa i . . 0 1 0 1  0 0 0 0 0 0 0 1 1 0 1 9 IV -V

6 Z a itse v  . . 0 0 0 0 0  0 0 1 0 1 1 0 1 0 1 4 V I-V II

7 F u c h s  . . . 0 1 1 0 1 0  0 1 0 0 0 1 0 0 0 4 V I-V II

8 M a lic h  . . 0 0 0 0 0 0 0  0 1 0 0 0 0 0 1 8 V I I I - I X
9 C zom  . . . 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 8 V I I I - I X

10 M in ic h  . . 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 4 X

11 H e n in g s  . . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 6 X I -X II
12 Z in n  . . . 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 6 X I -X II

13 R a d o v ic h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 X III

14 S ch en eb erg 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 5 X IV -X V
15 E sp ig  . . . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 5 X IV -X V

16 O rtega . . 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 4 X V I

whose /-th column corresponds to the /-th element of M. 
Place a one in the intersection of the i-th row and /-th 
column if the relation xtAxj holds, and a zero otherwise. 
Denote the element in the i~th row and /-th column by atj. 
The general rule for obtaining the matrix of a relation can 
be formulated as follows:

{1, if XiAxj holds,
0, if XiAxj does not hold.

It is customary to denote the matrix consisting of elements 
au by || atj ||. It is obvious that this matrix contains com-
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plete information about what pairs of elements from M 
are related by A.

Thus, a relation A in the finite set M  can be given by 
a matrix || atj ||. The only arbitrariness lies in the choice of 
a numeration for M . It is easy to surmise that one can choose 
n\ different numerations and, correspondingly, n\ matrices 
describing a given relation. If an n X n matrix consisting of 
zeros and ones is given, and a numeration is chosen for the 
set M , then by the same token, a certain relation A in M  
is presented.

A matrix for which atj =  0 (i.e. atj =  0 for all i and /) 
presents the empty relation 0 ,  which does not hold for 
a single pair.

A matrix for which a^ =  1 presents the universal relation 
M  X M, holding for all pairs.

A special role is also played by the matrix || 8*;- ||, where

x _ /  1 if i =  ; ’
11 1 0 if £=£/.

(The symbol 8 is called the Kronecker delta, in honour of 
the mathematician who first used it.) This matrix corres­
ponds to the so-called diagonal relation E y or the equality 
relation: xEy if x and y are one and the same element of M .

The matrix || 8^ || has the form
1 0 0 0 . . . . . . .  0
0 1 0 0 . . . . . . .  0
0 0 1 0 . . . . . . .  0
0 0 0 1 . . . . . . . .  0

* o

o
 . . o

0 . . . . . . .  1
It also pays to introduce the anti-diagonal relation by 

means of the condition:
&ij  ~  1

A curious property is valid for the empty, universal, 
diagonal and anti-diagonal relations—their matrices are 
independent of our choice of a numeration for the elements 
of the set M. The reader can convince himself that this is 
a characteristic property of these four relations. In other
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words, if A is a relation such that every choice of a numera­
tion for M  yields the same matrix || ||, then A is either
empty, universal, diagonal or anti-diagonal.

There exists yet another important method for presenting 
binary relations in finite sets. Represent the elements of 
the finite set M  by points in the plane. If the relation xtAxj 
holds, draw an arrow from xt to Xj. If xtAxiy draw a loop 
leaving and entering the point xt. Such a configuration is 
called an oriented graph, or simply a graph, and its points 
are called the vertices of the graph. A graph with neither 
arrows nor loops corresponds to the empty relation 0 .T h e  
diagonal relation is represented by a graph with loops only 
(Fig. 1.2).

The universal relation is represented by the so-called 
complete graph, where all pairs of vertices are connected 
(see Fig. 1.3).

The chess tournament box-score reproduced above can be 
depicted in the form of a graph without loops. For the sake 
of greater lucidity, this is done in Fig. 1.4 for only the 
first eight participants, each of whose numbers marks the 
corresponding vertex. The eighth vertex of this graph is 
isolated, since Malich drew with each of the first seven 
participants.

The graphs we have just introduced are geometric repre­
sentations of relations, analogous to the way the graphs in­
troduced in school were geometric representations of func­
tions. The geometric language is helpful when the graph is 
sufficiently simple. On the contrary, it is more convenient 
to study and describe complicated graphs with large numbers 
of vertices in terms of relations.

One often has to consider the more general case of rela­
tions between elements of different sets M  and L*. Such a re­
lation is defined as a subset A of the set M  X L. Here M  X L 
denotes the set of pairs of the form (x, y ) where x £ M  and 
y £ L\ Such a relation is formally defined as a triple of the 
form (A , M, L), where A M  X L.

Ternary and, in general, n-ary relations are also considered 
in mathematics. An n-ary relation is defined as a subset A 
of M x X M 2 X . . .  X M nj i.e. the set of ^-tuples of the 
form (xu x2, . . ., xn) where 6 In particular, all 
may coincide.
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lag. 1.2. Diagonal relation

Pig. 1.4. Lasker Memorial graph
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§ 2. Functions as Relations

It is possible to regard functions as a special case of rela­
tions. Let the relation A in the set M  be such that for every 
x £ M, there exists exactly one element y 6 M  for which the 
relation xAy holds. Thus a certain element y 6 M, deter­
mined by this condition, is associated to each element x £M.  
Such a relation is called a function or a mapping (or a unique 
correspondence), and the element y 6 M  corresponding to 
the element x 6 M  is called the value of the function A in the 
element x. This dependence between x and y is expressed by 
the notation

y =  A (x).

The set A of those pairs (x, y)  for which the relation holds, 
is called the graph of the function.

For example, if M  is the real axis and A is the equality 
relation y =  x, then the graph consists of all points of the 
form (x, x), and bisects the coordinate angle, i.e., coincides 
with the ordinary graph of the function y =  x. If the rela­
tion A holds for those pairs for which z/=sin x (it is clear 
that for each x there exists a unique number y with this 
property), then the graph of A is the ordinary sinusoid.

Thus, our definition of a graph is a generalization of the 
ordinary definition for numerical functions.

Here it is very interesting to consider relations consisting 
of pairs Or, y ) where x belongs to a set M  and y belongs to 
another set L. We shall also call a relation a of this type 
a function, or a mapping, if for each x 6 M  there exists 
a unique y £ L for which xay holds. We shall write such 
a function symbolically as a : M  -> L\ here M  is called the 
domain of departure of the function a, and L its domain of 
arrival. The mapping a: M L is also called a mapping of 
the set M into the set L* . The element of L which corresponds to

* Unfortunately, the author likes to call different objects: pairs 
04, M )  and triples 04, M, L ) —by the same name, i.e., relations. 
However, some authors do use distinct terms for such objects: pairs 
(A , M ), such that A M X M, are called relations, while triples 
04, M, L), such that A c= M X L, are called correspondences. See, 
however, § 2, especially p. 29. {Ed. note.)
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the element x of M  is denoted by a (x), and is called the 
image of x. The element x is called the pre-image of the ele­
ment a (x). It is clear from the definition of a mapping 
a: M  — L that each element x £ M  has exactly one image. 
However, not every element y £ L is obliged to have a 
pre-image. If such a pre-image exists, it may fail to be 
unique.

Example 1. Let M  be the set of people, and L the set of 
natural numbers. Let a: M  — L be the mapping which as­
signs to each person, his height, expressed in centimetres 
(rounded off, as is customary, to the nearest integer). It 
is clear that a definite height corresponds to each person, 
but a height of 400 cm does not correspond to any person. 
On the other hand, there are a great many people whose 
height is 172 cm.

Example 2. Let M  be the set of currently living people, L 
the set of all people, and a: M L the mapping which 
assigns to each person, his father. It is clear that each x £ M 
has a unique image. However, not every y £ L has a pre-ima­
ge, since by no means every person has been someone’s 
father. For example, if y is a woman. In addition, several 
people may have the same father.

The mapping a: M L is called surjective if each element 
y from L has a pre-image. In this case, it is also said that M  
is mapped onto L .

For example, let M  be the set of all English words, L the 
set of parts of speech of the English language, and a : M L
the mapping which assigns to each word, the part of speech 
to which it belongs. It is clear that every part of speech 
corresponds to at least one word—to an example for that 
part of speech. (We are assuming here that grammatical 
homonyms have already been distinguished in some way, 
i.e. it is known whether the word “roast” is a verb, a noun 
or an adjective.)

The mapping a: M  — L is called injective if each element 
y 6 L has at most one pre-image.

For example, let M  be the set of people forming a certain 
queue, L the set of natural numbers, and a: M  ->■ L the map­
ping which assigns to everyone in the queue, his ordinal 
number. It is clear that each number can be awarded to 
only one person. On the other hand? this mapping is not
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surjective, since there are numbers which are not awarded 
to anyone.

If the mapping a: M L is simultaneously surjective 
and injective, it is called bijective. Sets M  and L, for which 
there exists a bijective mapping a: M  -»■ L, are called 
equipollent. It is easy to convince ourselves that if M  is 
finite and M  and L are equipollent, then M  contains the 
same number of elements as L. For this it is sufficient to 
enumerate all the elements of M, if the number n (x) is 
assigned to the element x G M, then the same number should 
be assigned to its image a (x). Since our mapping is surjecti­
ve, all elements of L receive numbers. Since our mapping is 
injective, every element of L receives a unique number. It 
thus requires exactly as many numbers for the enumeration 
of the elements of L as for the enumeration of the elements 
of M. It is easy to figure out that the number of ele­
ments in these sets does not depend on how we enumerate 
them.

It is natural to take equipollence of infinite sets to be 
a generalization of the concept “having the same number of 
elements”.

The introduction of the following concepts is also helpful.
Let a: M  -> L, and let M t be a subset of M. We shall 

call the set of all images {a (#)}, where x £ M lt the image 
of the set M l (denoted by a (A/i)). In particular, a (M ) is 
the image of the entire set M. It is easy to see that a: M  —>■

a (.M) is a surjective mapping.
Analogously, if Lx ^  L, then the union of the pre-images 

of all elements in Lx is called the complete pre-image of the 
set Lx (denoted by a"1 (Li)),

Let us now define the so-called identity mapping of the 
set M:

eM:

which assigns each element x £ M  to itself. (It is easy to see 
that the identity mapping e is the same as the diagonal 
relation E .) Let a : M L ;  the mapping P : L ^ M  is 
called the inverse" of a, if aP =  em and Pa =  eL, i.e. if P 
maps each image a (x) onto x , and a maps each image 
PXz/) onto y. In this case, we shall write: p = #a “1. The read­
er can easily convince himself that for the existence of an
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inverse of the mapping a it is necessary and sufficient that 
a be bijective.

It is sometimes convenient to consider functions a : M  
-*■ L, which are defined not everywhere on M, but only on 
one of its subsets M ly which is then called the domain of 
definition of the functions. It then becomes convenient to 
add an element =[}=, not occurring in the set L, to L, obtaining 
thereby the new set L# =  L {J {=ft=}. The element =4= plays 
the role of a so-called empty element. In such cases, we as­
sume a: M  — L# (but again, by definition) assigns the empty 
element 44 to each element of M \ M 1. It is often convenient 
to reason as though the empty element were already con­
tained in an arbitrary set beforehand. It is then unnecessary 
to distinguish between L and L#.

Example 1. Let M  be a certain set of people at a given 
moment, and L the set of their head-gear. Let the function 
a: M  -> L assign to each person the head-gear he is wear­
ing. It is clear that a is defined only on the subset of M, 
consisting of those people who have something on their 
heads. The rest, those who are bareheaded, are assigned 
the empty head-gear.

Example 2. Let M  be the set of Russian word-forms, and 
L the set of Russian endings*. Let the function a assign to 
each word-form, its ending: 

bezhat’ — at’ 
okno — o 
stolom — om

The zero (empty) endings correspond to the word-forms 
ustol”, “pal’to”, “vmeste”**. (The letter “o” in the word “pal’to” 
is sometimes taken to be a nominative case ending for the 
neuter gender by illiterate persons, who then attempt to 
decline this word. However, this isn’t a Russian ending at 
all, but part of the French base “paletot”.)

Even when (A, M , L)  is an arbitrary relation, it may 
be convenient to speak of the elements y, for which xAy ,

* Because of the extreme rarity of English endings, an English 
example of this type wouldn’t be instructive. (Trans, note.)

** The term “zero ending” (zero morpheme) is accepted in scientific 
grammar. In the old orthography, a declinable noun’s empty ending 
\vas conveniently denoted by the hard sign: stol”, snop”, etc.
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as elements assigned, or corresponding to the element x. 
In such cases, the relation (A, M, L), which acquires, so to 
speak, a functional nature, will be called a correspondence. 
Thus, a correspondence is a “multiple-valued” function. 
When we denote an arbitrary relation ~ (A, M, L) by

M  L,
this will simply mean that the relation is being regarded 
as a correspondence.

It is clear that we could consider, instead of the corres­
pondence \|r. M L, the function

a : M  2L,
which to each element x 6 M,  assigns the set Lx g= L of all 
those y for which (x, y ) 6 A (Lx may, in particular, be 
empty); however, the language of correspondences ( ^ “multi­
ple-valued functions”) is often more convenient.

As in the case of “single-valued” functions, we can intro­
duce the concepts of an everywhere defined correspondence 
(the set Lx is non-empty for every x 6 M ), an injective cor­
respondence (Lx P| Ly =  0  whenever x =̂= y) and a surjec­
tive correspondence (given any y £ L, there exists an x £ M 
for which y 6 Lx).

§ 3. Operations on Relations
Beginning with operations on sets, we can define a series 

of useful operations on relations. We shall assume that all 
relations considered in this section are given in one and the 
same set M.

Thus, let us take two relations A and B . To each of them 
there corresponds a certain set of pairs (the subsets A ^  M X 
X M  and B ^  M  X M).

The relation determined by the intersection of the sets A 
and B will be called the intersection A f| B of the relations 
A and B. It is clear that the relation xA f| By holds if and 
only if xAy and xBy hold simultaneously.

Example. Let M be the set of real numbers, A the rela­
tion “to be not less than” and B the relation “to be unequal to”. 
Then A f| B is the relation “to be strictly greater than”. In 
fact, xAy is equivalent to x ^  y; xBy is equivalent to x =̂= y.
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But these inequalities hold simultaneously if and only if 
x > y .

Analogously, the union A U B of relations will mean the 
relation determined by the union of the corresponding sets. 
The relation xA (J By holds if and only if at least one of the 
relations xAyy xBy holds.

For example, if A is the relation “exceeds”, defined in 
a set of numbers, and B is the relation “equals”, then A [} B 
is the relation

It is possible to define the concept of inclusion for rela­
tions. We shall write A ̂  B if the set of pairs for which the 
first relation holds is contained in the set of pairs for which 
the second relation holds. Similarly, we shall write A a B  
if the set of pairs A is a subset of B y but A B.

For example, the following inclusion holds:

< c = < .

In fact, if x <  yy then we automatically have x ^  y. How­
ever, there exist pairs for which x ^  yy but the relation 
x <C y is false. This will be the case whenever x =  y.

It is very important to note the following (completely 
trivial) property of inclusion: if A ^  B y then xAy implies 
xBy. Conversely, if xAy implies xByy then A ^  B.

From this it is evident that for any relation A , we have

- 0 < = A < = U

where 0  is the empty, and U the universal, relation.
We shall now introduce certain operations which are not 

directly reducible to set-theoretic ones.
The simplest of these is the passage to the inverse rela­

tion. If A is a relation in a set M, then the inverse relation 
A~l is defined by the condition: xA~xy is equivalent to yAx.

For example, if A is the relation > ,  then A -1 is the rela­
tion <C In fact, the notation x <  y is equivalent to the 
notation y > # .  Another example: if A denotes “to be the 
husband of”, then A~x means “to be the wife of”.

A very important role is played by the operation denoted 
by A B —the product of two relations. This operation is de­
fined as follows: the relation xABy is equivalent to the exi­
stence of a z 6 M y for which the relations xAz and zBy hold.



$ .  Operations on Relations 31

Let A be the relation “to be the wife of”, and B , “to be the 
father of”. What does the relation xABy mean in this case? 
According to our definition, there exists a z, such that “x is 
the wife of z” and “z is the father of y”. In other words, “x is 
the wife of y's father”, i.e. “x is the mother or step-mother 
of y \

Let A be the relation “to be a brother of”, and B , the rela­
tion “to be a parent of”. Then the product AB is the relation 
“to be the brother of one of the parents of”, i.e. “to be an 
uncle of”.

A distinction was previously made in Russian (as is still 
done in Polish) between an uncle—a brother of the father 
(stryi) and an uncle—a brother of the mother (wui). This 
distinction is very easily formulated in terms of products of 
relations. Let A be the relation “to be a brother of”, B —“to 
be the father of” and C—“to be the mother of”. Then the 
relation AB is “to be a stryi of”, and the relation AC means 
“to be a wui of”.

We now take the well-known relations “less than” (denote 
it by A) and “greater than” (denote it by B) in the set of 
integers. The relation xABy holds if there exists a z, such 
that i < z  and z >  y. It is clear that such a z always exists— 
we can take, say, z =  x +  y +  1. Thus, in this case, AB 
is the universal relation.

In the next section, we shall convince ourselves that the 
product of relations possesses a series of nice algebraic pro­
perties, giving it a resemblance to ordinary numerical mul­
tiplication. Meanwhile, try to determine what the relation 
AA will be. What is this relation when A (the relation 
“less than”) is given on the set of all real numbers? And what 
relations are denoted by AB and BA when A and B are the 
same inequality relations, < a n d > , in the set M consisting 
only of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9?

Let us define yet another important operation, called the 
transitive closure of a relation A, which will be denoted 
by A. The meaning of this name will be clarified by Theo­
rem 1.5 (§ 5).

If A is some relation in a set M, its transitive closure is 
defined in the following way. The relation xAy is considered 
to hold if there exists a sequence of elements of M : z0 =
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=  x, zlf . . zn — y, such that the relation A holds for all 
neighbours, i.e.,

ZqAz ĵ z^Azz, • • •* zn-1 Azn.
In particular, this sequence may consist of only two ele­

ments (n =  1): z0 =  x and zx =  z/. Hence, if xAz/ holds, 
i.e. ZqAz^ then the relation xAy also holds. This fact can 
be written in the form of a relation:

A ^ A .  (1.1)
If the sequence consists of three elements (n =  2), we have 
xAz and zAy. In other words, xAAy. If the sequence consists 
of four elements, then xAAAy.  Continuing this reasoning, we 
conclude that xAy if and only if at least one relation of the 
form xAA . . . Ay (or xAny , for short) holds. Using the union 
operation, this fact may be written in the form of an equa­
lity:

A =  A\J A2 [j A3 [} . . .  []An[J ••• • (1.2)
Thus, we have proven that the transitive closure of a rela­

tion is the union of all powers of that relation.
Let us now find out how the operations we have introduced 

can be expressed in terms of operations on matrices and 
graphs. Since the matrices we need consist entirely of zeros 
and ones, it will be helpful to introduce a special (the so- 
called Boolean) arithmetic in the set composed of zero and 
one. This arithmetic is given by the following addition and 
multiplication tables:

0 +  0 =  0 0-0 =  0 
0 +  1 =  1 0 -1 = 0  
1 +  0 = 1  1-0 =  0 
1 +  1 =  1 (!) 1-1 = 1.

As we see, this arithmetic differs from the usual only in that 
the sum of two ones is equal to one. On the other hand, 
performing our new operations on the numbers 0 and 1 does 
not lead us beyond the set consisting of these numbers. It is 
easy to convince oneself that the customary transformations 
can be carried out in this arithmetic, but only without
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iimking use of subtraction: 1 —1 could be equal to zero and 
lo one.

We can now define operations on matrices and graphs, cor­
responding to our operations on relations.

Further, let us stipulate that a numeration for the set M 
has already been chosen, and that the matrices correspond­
ing (under the given numeration) to the relations A and B 
are denoted by || aih || and || bih ||.

It is obvious that
cih — ttikbik (1«3)

is equal to one if and only if both of the relations, x%Ax̂  
and XiBxkl hold, i.e. the relation xtA f) Bxh holds. Hence, 
the matrix \\cih || defined by (1.3) presents the relation 
C =  A H B. This fact can be given a somewhat different 
expression. Let us call the matrix || Cik ||, obtained by means 
of term-wise multiplication of || aik || and || bik || (according 
to (1.3)), the intersection || || f| || bik || of these matrices.
The intersection of relations is then presented by the inter­
section of their matrices.

For example, let A and B be presented by the 4 x 4  mat­
rices (M  contains four elements):

0 1 0  1 0 0 1 1
1 0  1 1 1 1 1 1
0 0 1 1 - H. M = 1 1 0  0
1 0 1 |1 1 1 0  1

dh =

B is presented by the matrix

0 0 0 1
1 0 1 1
0 0 0 0 •
1 0 0 1

In terms of graphs, intersections are defined as follows. 
Draw a set M  of vertices, represent the relation A by dotted 
arrows, and the relation B by dashed arrows. Now join those 
and only those vertices, which are connected by both types
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of arrows, by solid arrows. It is obvious that this graph 
represents the intersection A fl B of the relations A and B 
(Fig. 1.5).

1 2
..................... y l

/  i
4 3

A
Fig. 1.5. Intersection of relations

The union A U B of the relations presented by the matrices 
|| atk || and || btk || can be similarly expressed with the aid 
of the operation of matrix union (addition). Namely, denote 
the matrix whose elements are defined by the condition

Cih =  &ik "i" bih (1.4)
by II cik || =  || aih || +  || bih ||. In formula (1.4), addition is 
understood in the sense of Boolean arithmetic. Having looked 
at the addition table for this arithmetic, we are easily con­
vinced that Cik =  1 if and only if at least one of the sum­
mands, ath or bihl equals one. Hence, cih =  1 is equivalent 
to xiA U Bxk.

The union of the two relations presented above by 4 X 4 
matrices is presented by the matrix

0 1 1 1  
1 1 1 1  
1 1 1 1 *
1 1 1 1

The graph of a union is constructed by drawing an arrow 
between all vertices which are joined by at least one kind 
of arrow. Taking graphs A and B from Fig. 1.5, we obtain 
the graph of their union, as depicted in Fig. 1.6.

II C*k || —



S. Operations on Relations 35

The product AB of relations is presented by the so-called 
matrix product. This operation on matrices, which plays an 
important role in algebra, is defined by the following rule:

Cik =  CLiibik +  O ' i ^ k  - f  • • • +  Uinbnky  

or, using the customary abbreviated notation for a sum,
n

C i h —  2  ^ i j b j k • (1*5)
i = i

Here the number n denotes the order of the matrices—the 
number of elements in the set M. In spite of the simplicity 
of the asserted connection between the products of relations 
and matrices, let us carry out the necessary proof.

/ 2

AUB

Fig. 1.6. Union of relations

Let the relation xiABxh hold. We shall show that the 
number calculated in accordance with (1.5), is equal to 
one. In fact, by the definition of the product of two rela­
tions, there exists an element xj 6 Af, such that xtAxj and 
X j B x k . This means that atj =  bjk =  1. Hence aijbjk =  1. 
But according to the rules of Boolean arithmetic, if one of 
the summands is equal to one, then their sum (1.5) is auto­
matically equal to one, i.e. cik =  1. Conversely, let cik =  1. 
Then at least one of the summands in (1.5) is equal to one. 
Let atjbjk be such a summand. But the product equals one 
only if atj =  bjh =  1. Now this means that xtAxj and 
XjBxk, i.e. XiABxk.

Thus, we have proven that the product of two relations 
corresponds to the product of their matrices.
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The graphical interpretation of the product is as follows. 
Let the relation A again be represented by means of dotted, 
and B , by dashed, arrows. Join the vertices xt and xk with 
a solid arrow if it is possible to pass from xi to xh in the fol­
lowing way: first go from xf along a dotted arrow to some xj, 
and then from xj along a dashed arrow to xk (Fig. 1.7). These 
new arrows represent the product AB.

It is obvious from Fig. 1.7 that our method for construct­
ing the graph of the product of relations resembles the

Fig. 1.7. Product of relations

parallelogram method for adding velocities or forces. This 
resemblance is not accidental. Let M  be a set of points in 
the plane, and let the relation xAy (respectively: xBy) mean 
that moving with speed a (respectively: 6), one can get from 
point x to point y in a unit of time. Then xABy means that 
moving with speed a +  b, one can get from x to y in 
a unit of time.

The operation A~l is expressed quite[simply in matrix form. 
If A is presented by the matrix || aih || then A~l is presented 
by the matrix || atk ||, in which rows and columns have 
changed places: a ik =  aft*. In other words, the matrix for 
A~l can be obtained from the original matrix by means of 
a reflection in the main diagonal. In fact, if aik =  1, then 
XiAxk and xhA~xXi, i.e. a ki =  1. But if aik =  0, then a k(=0.

Example.
0 1 1 1 0 1 0  0
1 1 0  0 1 1 1 1
0 1 1 0

t1

1 0  1 0
0 1 0  0 1 0  0 0
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In order to obtain the graph representing A~x from the 
graph representing the relation A, we must change the di­
rection of each arrow and leave all loops as are.

The operation A of transitive closure can be expressed in 
matrix form by the union of the powers of A fs matrix, accord­
ing to Formula (1.2). It is more intuitive to pass from the 
graph representing the relation A to the graph representing^.

Fig. 1.8. Transitive closure of a relation

Indeed, it follows from the definition of the transitive clo­
sure that the vertices Xi and xk are joined by an arrow in the 
new graph if there is a path in the original graph leading 
from xt to xh in the same direction as the arrows. The graph 
of the relation A is depicted in Fig. 1.8. It is obvious that 
from each of its vertices, there exists a path leading to an 
arbitrary, perhaps the same, vertex. Thus, in the case under 
consideration, the relation A corresponds to the complete 
graph.

§ 4. Algebraic Properties of Operations

Since1 the operations of intersection and union of rela­
tions arose from the set-theoretic operations of intersection 
and union, all properties of the former operations are exactly 
the same as those of the latter.

Let us now examine algebraic properties of the remaining 
operations.
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The inversion operation has an important property. It 
is expressed by the equality

( A ^ y ^ A .  (1.6)
In fact, x {A~l)~ly is equivalent to yA~lx, But the latter 
is equivalent to xAy.

The multiplication operation, unlike multiplication of 
ordinary numbers, is not commutative: in general, AB =£ 
=£ BA . This can be seen by working out a simple example, 
when the relations have the following matrix presentations:

A

1 1 0  0 
1 1 0  0 
0 0 1 1  
0 0 1 1

B

1 0  0 0 
0 1 1 0  
0 1 1 0  
0 0 0 1

In this case, we have

AB

1 1 1 0
1 1 1 0
0 1 1 1
0 1 1 1

BA

1 1 0 0
1 1 1 1
1 1 1 1
0 0 1 1

We leave the computations to the reader, who can easily 
obtain them from the graphical representations (see Fig. 1.9,

Fig. 1.9. Example of non-comrautativity of the product

where A is depicted by dots, and B, by dashes. It is assumed 
that there are also two loops at each vertex—one dotted and 
the other dashed.
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When the product of two relations does not depend on 
their order: AB  =  BA , we say that A and B commute.

It is easy to verify that the diagonal relation E plays the 
role of an identity:

AE =  EA =  A (1.7)
for any relation A.

Analogously, for the empty relation we have
A 0  =  0 A  =  0 .  (1.8)

In fact, x 0 A y  cannot hold for even a single pair, since 
x 0 z  never holds. The equality (1.8) means that with res­
pect to the multiplication of relations, the empty relation 0  
behaves in the same way as zero does in ordinary numerical 
multiplication.

The associative law turns out to be valid for the multi­
plication of relations:

(AB) C =  A (BC) (1.9)

For if x (AB) Cy, then there exists az, such that xABz and 
zCy. xABz implies the existence of a w, such that xAw and 
wBz. It follows from wBz and zCy that wBCy. We obtain 
xA (BC) y from xAw and ’ wBCy. Similarly, it is easy to 
derive x (AB) Cy from xA (BC) y. Thus (1.9) is proven.

The associative law enalVes us to do without parentheses 
in products/and to simply write: ABC, ABCD, etc. Instead 
of products of the form AAA, A AAA,  we shall write the 
powers A 3, A4, . . .*.

Let us now consider properties connecting the various 
operations.

The simplest of these is the rule for inverting products: 
(AB)"1 =  (1.10)

In fact, x (AB)~ly means' that yABx, i.e. there exists 
a z, for which yAz and zBx. But this means that xB~xz and 
zA~ly, i.e. xB~xA~xy.

* Associativity of the multiplication of relations and the notation 
An was already used in § 3 (see (1.2)).
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Another property connecting the inversion and product 
operations consists of the following: if for each x there exists 
a z, such that xAz, then

A A - ' ^ E .  (1.11)

In fact, xAz implies zA~lx, i.e. xAA~xx. But xEy means that 
x =  y. Hence, it follows from xEy that xAA~ly.

Analogously, if for each x there exists a z, such that zAx, 
then

A - ' A ^ E .  (1.12)

The properties we have proven mean that for relations which 
do not hold too rarely (each element x is related by A to 
at least something or other), the inversion operation resem­
bles the numerical operation of passing from a to a"1: the 
inclusions (1.11) and (1.12) are close to the numerical equa­
lity a~xa — 1, since E , as we have already stated, plays the 
role of an identity.

The next two properties connect the product operation 
with the intersection and union. They resemble the distri­
butive law of multiplication over addition. The first of these 
“distributive laws” has the form

(A U B)C =  (AC) U (BC) (1.13)

It can be proven in the following way. We first assume that 
the relation x {A U B) Cy holds. This implies the existence 
of a z, such that at least one of the relations xAz, xBz holds 
and the relation zCy holds. Then xACy or xBCy holds. 
Hence the relation x (AC) [j (BC)y holds. Conversely, let 
x (AC) U (BC)y hold. This means that xACy or xBCy, i.e. 
there exists a zx, for which xAz1 and zxCy, or there exists 
a z2, for which xBz2 and z2Cy. But since A ^  A [] B and 
B s  A IJ B, in the first case we have x (A [j B) zx and 
zxCy, i.e. x (A [] B) Cy. In the second case: x (A [] B) z2 
and z2Cy, i.e. once again x (A [j B) Cy. Thus, the validity 
of the left side of (1.13) follows from that of the right side, 
and conversely. By the same token, the equality (1.13) is 
proven.
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The second “distributive law” has the weaker form of an 
inclusion:

(a  n b ) c ^ ( a c ) n (b c ). (i.i4>
Suppose that the relation x (A f] B) Cy holds. This means 
that there exists a z , such that the relations xAz, xBz and 
zCy hold simultaneously. Hence, the following pairs of 
relations hold simultaneously: xAz, zCy and xBz, zCy. In 
other words, xACy and xBCy, i.e. x (AC) f| (BC) y. Q.E.D.

However, the inclusion in (1.14) cannot be changed to 
equality. We show this by defining A, B, C in the four- 
element set M =  {x!, x2, x3, xA} by requiring that the 
following relations, and no others, hold (Fig. 1.10): xxAx2, 
xxBx3, x2Cx^ x3Cxa. It is clear that A f| B =  0 .  So accord­
ing to (1.8), we have (̂ 4 f| B)C =  0 . On the other hand, 
xxACx^ and xxBCx4. Consequently, x1 (AC) f| (BC) #4, i.e. 
(AC) f) (BC) =̂= 0 .  In this case, we have the strict inclusion

(A n B)C a  (AC) fl (BC),
which demonstrates the impossibility of replacing inclusion 
by equality in (1.14).

Verification of the following simple properties of rela­
tions will be left for the reader:

(A\)B)-' =  A~1\JB~\ (1.15)
(A(\B)-' =  A-'(\B~K (1.16)

The following important property is valid for the transi­
tive closure operation:

if A ^ B ,  then i g f i , (1.17)
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We leave the proof for the reader. Analogously, a similar 
“monotonicity” is valid for other operations, namely:

(1) if A ^ B ,  then A'1 s  fl"1; (1.18)
(2) if A ^ B ,  then A C ^ B C  and CA<=CB. (1.19)

Finally, the following property is obvious:

i  =  i  (1.20)
We have apparently exhausted the main properties of 

operations, which are valid for arbitrary relations. We 
shall study algebraic ^properties of these operations for 
certain special classes of relations in future chapters.

As preparation for this, we define certain new operations 
in terms of the original ones:

(1) the symmetrized product—
A o B =  AB U BA;

(2) the transitive closure of the union—
^  / X

A \jB  =  A[}B;
(3) the transitive closure of the symmetrized product—

^  / X
A o B == A o B .

It is clear from the definition that these three operations 
are commutative.

However, the associative law does not always hold for 
the symmetrized product. In fact, using the distributive 
law proven above, we compute two triple products:

(AoB)oC =  (AB U BA) C U C(AB U BA
=  ABC[jBAC[}CAB[}CBA, and (1.21) 

Ao(BoC) =  A{BC[) CB) U (BC U CB) A 
=  ABC U ACB U BCA U CBA.

If A and C commute, then

BAC U CAB =  BCA U ACB.

(1.22)
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Comparing this equality with (1.21) and (1.22), we obtain 
that when AC =  CA,

{A o B) o C =  A o {B o C).

In particular, the associative law is true when all three rela­
tions 7commute. Then (A o B) © C =  A © (B © C) =  ABC.

It will be an instructive exercise for the reader to actually 
construct three relations for which the associative law fails 
to hold.

§ 5. Properties of Relations
In this section, we shall deal with some important pro­

perties of relations which, later on, will permit us to single 
out significant classes of relations.

Definition 1.1. The relation A is called reflexive if E s  A. 
In other words, a reflexive relation always holds between an 
object and itself: xAx.

Informal examples of reflexive relations: “to resemble”, “to 
have some feature in common with” (if every object has at 
least one feature), “to be not older than”. On the other hand, 
such relations as “to be a brother of”, “to be older than” are 
clearly not reflexive.

A reflexive relation can always be represented by a matrix, 
all of whose principal diagonal entries are equal to 1. In 
a graph representing a reflexive relation, every vertex has 
a loop. Because of this fact, we shall omit suclTloops from 
diagrams of relations known to be reflexive.

Definition 1.2. The relation A is called antireflexive if 
xAy implies x =̂= y, i.e., in algebraic notation, A f| E =  0 .  
In other words, A ^  =̂ =, i.e. A can only'hold for distinct 
objects.

The relations mentioned above as examples of non-reflexi­
ve relations are antireflexive. The relation “to be a standard 
for” will, in general, be neither reflexive nor antireflexive.

All principal diagonal entries of a matrix representing 
an antireflexive relation are equal to 0, and the correspond­
ing graph cannot have any loops.

Difinition 1.3. The relation A is called symmetric if 
A ^  A~l . In other words, if xAy holds, then yAx also holds.
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Informal examples of such relations are “to resemble”, “to 
be the same as”, “to be a relative of”.

In a matrix representing a symmetric relation, entries 
symmetrically situated with respect to the principal diago­
nal are equal to each other:

O'ih— O'hi •
In the corresponding graph, along with each arrow going 

from vertex Xi to vertex xk, there exists an arrow with the 
opposite orientation. Therefore, we can omit all arrows from 
such a graph, and confine ourselves to drawing loops and 
line segments connecting distinct vertices. In other words, 
a symmetric relation is naturally represented by an unori­
ented graph. This is how we shall henceforth represent the 
graph of a relation known to be symmetric.

Theorem 1.1. The relation A is symmetric if and only if
A =  A-K

Proof. By definition we have A ^  A~l, which, by virtue 
of (1.18), yields

A~l s= (A '1) -1.

Hence, according to (1.6), we obtain
A"1 ^  A.

Comparing this inclusion with the original one, we arrive 
at the conclusion that A =  A ~1. The converse is obvious.

Definition 1.4. The relation A is called asymmetric if 
A n A - 1 =  0 .  This means that at least one of the two 
conditions xAy and yAx fails to hold.

This leads to the following equality for matrix entries:
aihahi =  0. (1*23)

In the corresponding graph, there can be no arrows joining 
two vertices in opposite directions, i.e. it is always essential 
to indicate the direction of an arrow.

Theorem 1.2. If the relation A is asymmetric, then it is 
antireflexive.

Proof. Let us suppose that xAx holds for some x. Then xA~lx 
would also be true, i.e. xA f| A~xx. But then the relation 
A f| would not be empty.
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We could also have derived this fact from our equality for 
matrix entries: setting i — k in (1.23), we obtain a\h =  0, 
i.e. ahh =  0.

It follows from Theorem 1.2 that the graph of an asymmet­
ric relation can have no loops.

Difinition 1.5. The relation A is called antisymmetric if 
A f) A ' 1 ^  E. This means that xAy and yAx can hold simul­
taneously only in case x y.

This leads to the following assertion for matrix entries:
aikCtki =  0 if i=^=k.

Definition 1.6. The relation A is called transitive if 
A 2^ A .  Developing this algebraic condition, we arrive at 
the following: if xAz and zAy, then xAy also holds. Hence, 
by induction, we obtain: if xAzly z1Az27 . . ., zn-i A y , then 
xAy.

This property can be readily interpreted in terms of the 
graph representing A. Namely, if x is connected to y by 
a path moving in the direction of the arrows, then there 
exists an arrow going directly from the vertex x to the 
vertex y.

Remark. It is not difficult to show that for a reflexive rela­
tion A,  transitivity is equivalent to A 2 =  A.

Theorem 1.3.1/ A is transitive, then A =  A . In other words, 
a transitive relation coincides with its own transitive closure.

Proof. We shall first prove the following inclusion for 
a transitive relation A:

A n c=A.  (1.24)
Indeed, for n =  2, this is the definition of a transitive rela­
tion. Assume that (1.24) has already been proven for 
some n. Then An+1 =  AnA by associativity; taking into ac­
count our inductive assumption (1.24) and (1.19), we have

An+1 =  AnA s  AA s  A.
Thus, we have successfully carried out the induction step. 
We now turn to Formula (1.2), defining the transitive closure 
of A t and replace every term of the union by a larger one, 
according to (1.24). We obtain

A =  A U ^2U^3U . . . U ^ nU . - - ^ ^ U ^ U . . - U ^ U . . . - ^ .
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Thus, i  g i .  But, on the other hand, according to (1.1), 
we always have A ^  A . Hence A =  A. The theorem is prov­
en.

It is easy to see that the converse also holds.
Theorem 1.4. If A =  A, then A is transitive.
Proof. It follows from (1.2) that A2<=A. Since A =  A,  

we have A 2^ A .

Theorem 1.5. For any relation A , the transitive closure A is 
equal to the intersection f] B of all transitive relations B con­
taining A .

Proof. Since A =  A, it follows from Theorem 1.4 that A 
is always transitive. Besides, A ^ A .  Hence, A is one of the 
B's figuring in the theorem. Consequently, A ^  f) B. 
In order to prove the reverse inclusion, suppose that B is an 
arbitrary transitive relation containing A. Thus, A <=: B. 
By (1.17) A ^  B. But, by Theorem 1.3, B =  B . There­
fore, A <=: B. The theorem is proven.

If the relation 04, M)  is a restriction of the relation 
04u M x), all the above properties which hold for the latter 
are automatically true for the former. Thus, the reflexivity 
of 04lf M ±) implies that of its restriction (A, M).  In 
fact, if xAxx is true for all x 6 M ±, then xAx will also hold 
for all x 6 M. The symmetry of (Al9 M x) implies that of 
its restriction, since for all x 6 M  and y £ M, yAx follows 
from xAy. The truth of our assertion for the remaining pro­
perties is left for the reader to verify.

§ 6. Invariance of Properties of Relations

In this section, we shall study cases where one or another 
property of the result of operating on relations is determined 
by similar properties of the operands *.

* It is worth-while noting that the author uses the term “lemma” 
in a somewhat non-standard manner. He calls not only auxiliary 
assertions, but also theorems which are simply less significant, lemmas. 
(Ed. note.)
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Lemma 1.1. If the relations A and B are reflexive, then so 
are the following relations:

A[}B, A{] B, A-1, AB, A.

The proof immediately follows from the appropriate defini­
tions. For example, it follows from xAx and xBx that the 
relation xA f| Bx, and a fortiori xA U Bx , holds.

The situation is somewhat more complicated when dealing 
with antireflexivity. In this case we have

Lemma 1.2. If the relations A and B are antireflexive, then 
so are the following relations: A U B, A f) B,A~X.

The proof of these assertions can be carried out just as 
easily as for the preceding lemma.

As for the product AB and the transitive closure A of anti­
reflexive relations, they can very well fail to be antireflex­
ive*. The relation A , defined in a two-element set M  by the 
matrix presentation

can serve as an example. It is easy to see that the square of 
this matrix presents a reflexive relation,

A2

and the transitive closure of A,

as a universal relation, is also reflexive. The reader would 
be well-advised to draw the corresponding graphs.

Let us now examine the behaviour of relational symmetry 
under various operations.

Lemma 1.3 . I f  the relations A and B are symmetric, then so 
are the following relations: A U Z?, A f| By A -1.

*It is easy to see that the product AB  of antireflexive relations 
A and B  is antireflexive if and only if A f t B - 1 = 0 .  (Ed. note.)
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Proof. By virtue of (1.6) and Theorem 1.1, we have {A _1)~1 — 
=  A =  A~lt i.e. the relation A~l is also symmetric. From 
the equality (1.15) we obtain

( A U B F ^ A ^ U B - ' ^ A U B ,
i.e. the union A (J B is symmetric. From the equality 
(1.16) we obtain

and the symmetry of the intersection is therefore proven.
As for the symmetry of the product, a complete answer is 

given by
Lemma 1.4. In order that the product AB of symmetric 

relations A and B be symmetric, it is necessary and sufficient 
that A and B commute.

Proof. Let AB =  BA. Then, according to (1.10), we have

(.ABy1 =  {BA)-1 =  A~xB“l =  AB,
i.e. the product AB is symmetric. Conversely, if AB is sym­
metric, then by Theorem 1.1 AB =  (AB) -1. But then by (1.10) 
we obtain AB =  (AB)~l =  B~lA ~l =  BA , i.e. AB =  BA. 
The lemma is proven.

Readers familiar with linear algebra must have certainly 
guessed already that this theorem is simply a variant of the 
well-known theorem to the effect that the product of symmet­
ric matrices is symmetric if and only if these matrices com­
mute.

Corollary. The transitive closure A of a symmetric relation 
A is a symmetric relation.

For it is easy to derive from Lemma 1.4 and (1.9) that the 
relations A2, A 3, . . ., A71, . . . are symmetric. But then, by
(1.2) and a natural generalization of Lemma 1.3, the transi­
tive closure

A = A [ ) A 2{JA*{) . . .
is also symmetric.

The reader would be well-advised to prove this assertion 
directly from the definition of the transitive closure, without 
making use of Lemma 1.4.

As for the property of asymmetry, we have
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Lemma 1.5. (1) If the relation A is asymmetric, then the 
intersection A f| B is asymmetric for any B. (2) If the relation 
A is asymmetric, then so is A~x.

Proof. (1) According to definition 1.4, A f| A~* =  0  
Thus, by (1.16) we have
{A[\B){\(A[\B)~' =  A[\B[\A~'[\B~' =  A[\A~'[\B[\B~' =

=  0 f ] Bf )  B - ' = 0 ,
i.e. A fl B is asymmetric.

(2) Similarly, taking (1.6) into account, we obtain
A-* n 04- t  1= a *  n a = a  n ^ = 0 ,

which means that inversion preserves asymmetry.
The union of asymmetric relations can very well fail to 

be asymmetric*. Neither are the product and transitive clo­
sure of asymmetric relations necessarily asymmetric.

Lemma 1.6. If the relation A is antisymmetric, then so are 
the following relations: A f| B, A~x.

Proof. We can practically reproduce our previous reason­
ing for the inverse relation. For the intersection, our proof 
nearly coincides with that of Lemma 1.5:
(A(]B)(]{A{] B y 1 =  (A fl A~') fl (B fl S"1) <=E[\(B() B-*) =E.

Antisymmetry can fail to be preserved under the union **, 
product and transitive closure of relations.

As for transitivity, we can assert the following:
Lemma 1.7. If the relation A and B are transitive, then 

so are the following relations:
A(\B,  A'1, A.

Proof. Let the relations xA f] By and yA f| Bz be valid. 
Then so are xAy, yAz, xBy and yBz. Hence, by virtue of the 
transitivity of A and B, we have xA fl Bz, i.e. A f| B 
is transitive. If xA~xy and yA~xz hold, then by the definition 
of the inverse relation, we have zAy and yAx, i.e. zAx and 
xA~xz. This means that A is transitive. Finally, the tran­
sitivity of A follows from (1.20) and Theorem 1.4.

* The union A U B of asymmetric relations A and B is asymmetric 
if and only if A fj B - 1 = 0 . (Ed. note.)

** The union A (J B of antisymmetric relations A and B is an ti­
symmetric if and only if A f| B ' 1 £  E. (Ed. note.)



Chapter

II
IDENTITY AND 
EQUIVALENCE

§ 1. From Identity to Equivalence

In ordinary discourse, we often speak of the identity 
(equality) of certain objects (things, sets, abstract categories), 
without concerning ourselves with the exact meaning 
to be properly conveyed by the word “identical”. Let us try 
to grasp this meaning by analysing various situations, where 
we confidently regard certain objects as identical.

Take a standard set of chess-pieces. All of its white pawns 
are identical from the point of view of a chess-player. When 
setting them up on a chess-board, a chess-player will take 
them out of a box in an arbitrary order. They will all be in 
the second rank when the game begins, without the chess­
player having thought of where it would be best for him to 
place a randomly chosen pawn. When the pieces are being set 
up before a game, either of the black rooks can, in just the 
same way, wind up equally well on the king’s or queen’s 
side. These rooks are identical.

But imagine a different situation: this same chess-set is 
given to a child who is playing soldiers. In his game, distinct 
pawns can acquire individuality, names and markings. 
However, as soon as this same child starts using the chess- 
pieces properly, pawns of the same colour become identical 
once more.

Take another situation: chess pieces in the course of a 
game. Suppose the chess-player is faced with the following 
choice: should he sacrifice a pawn which has already advanced 
to the seventh rank and is about to be queened, or a pawn 
which is peacefully standing in opening position? It is
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clear that (everything else being equal) the first pawn is far 
more valuable, and the chess-player no longer regards these 
two pawns as identical. True, the objects in this situation 
aren’t the wooden pieces in themselves, but “pawns in given 
positions”. Since each pawn plays its own individual role at 
each point of the game, they are, of course, not identical 
for a good chess-player.

Here we see the same kind of difference as between a word 
in the English language and a word in a given context. For 
example, the words “pawn” and “pawn”, although printed 
in different scripts, are identical as English words. But in 
the contexts “The grandmaster sacrificed his pawn brilliant­
ly” and “He was only used as a pawn”, this word has diffe­
rent meanings. To put it another way, the words are identi­
cal, but the meanings differ.

Analogously, we may speak of the identity of people in 
different senses. From the professional point of view of 
a retail clothes sales clerk, people of one and the same sex, 
height and size are indistinguishable. However, a good sales 
clerk distinguishes customers according to their tastes, and 
a good tailor understands that there are, in addition to 
height and size, individual peculiarities of the figure. But 
for a stock clerk distributing uniforms (snow suits, say, for 
mountain climbers), only size has any significance. It is of 
little significance to an anatomy professor whose corpse he 
uses for demonstrating the structure of human organs to his 
students. But there can be no identical patients for a psy­
chiatry professor.

From the point of view of a personnel director, people 
with the same vitae are identical. But there are no identi­
cal, interchangeable scientists for a laboratory head.

When we invite guests, it makes a world of difference to 
us who comes and whom they bring with them. From the 
point of view of mutual relations of individual persons, no two 
people are equal. When speaking of the universal equality 
of human beings, we have in mind equal rights before the 
law, the equal value of individuals, but not the equality of 
individualities.

Consider the set of animals depicted in Fig. 2.1. We have 
divided them into the following six groups: (1) terrestrial 
mammals, (2) marine dwellers, (3) insects, (4) birds, (5)



Fig. 2.1. Equivalence classes
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mythologicalTbeings and (6) reptiles. We shall consider the 
animals occurring in a single group to be identical by defini­
tion. It is possible to imagine a situation where animals iden­
tical in this sense are interchangeable. For example, when 
a biology teacher has to show his pupils representatives of 
different types.

If we carefully analyse what is common to the uses of the 
word “identity” in all of the above examples (and also in 
the examples which the reader can now make up by himself), 
then we see the following. First, identity is always understood 
as a binary relation in a certain set of objects. Second, the 
content of this relation depends on the situation in which 
we are considering these objects, or on the observer, who 
passes judgement on the identity of objects from his chosen 
point of view. Third, the word “identity” turns out to be 
synonymous with the word “interchangeability” (of objects 
in a given situation).

In fact, the identity of white pawns, or of other pieces 
having the same name and colour, consists in our ability to 
replace any of them by another. Whatever be the script used 
for printing a word in a dictionary, it remains the very same 
word. It seems exceedingly natural to assume that objects 
are interchangeable in a given situation if and only if they 
possess one and the same collection of formal features, signi­
ficant in that situation. We shall convince ourselves in the 
next section that this assumption is correct and can be 
given a precise meaning, if we formulate the concept of 
identity, or interchangeability, precisely.

Now let M be a set of objects, some of which are interchange­
able. Denote the set of all objects interchangeable with the 
object x by M x. It is obvious that x £ M x, and so the union 
of all M x (for all possible x in M) coincides with the entire 
set M:

M =  U Mx (2.1)
x£M

Suppose that M x f| M y =̂= 0 .  This means that there exists 
some element z, which belongs to M x and M y simultaneous­
ly. Hence, x is interchangeable with z and z is interchangeab­
le with y . Consequently, x is interchangeable with y, and so 
also with any element in M y. Thus, M x ^  M y. A symmetri-
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cal argument shows that M y ^  M x. Thus, the sets M x 
occurring in the union (2.1) either coincide completely, or 
else are disjoint.

The reasoning carried out above suggests how one can 
rigorously define the concept of identity, or interchangeabi­
lity. In connection with this, it is worth-while noting how 
words are used in mathematics. Until now, we have been 
dealing with the words “identity” and “interchangeability” 
(in a given situation). These words have in no way been 
defined, but have been used as we are accustomed to employ 
them in ordinary discourse. But now, when we want to give 
a precise definition (explication), we choose a new name. 
Namely, we now define the relation of equivalence, which is 
the explication of the concept of identity. The above dis­
cussion should be regarded as motivation for precisely such 
an explication.

Definition 2.1. We shall call a system* {Mly M 2j . . .} 
of non-empty subsets of a set M  a partition of that set, if

(1) M  =  M 1 U M 2 U • . . 
and

(2) Mi f) Mj =  0  for i /.
The sets M x, M 2, . . . are called the classes of the given 
partition.

Definition 2.2. A relation A in a set M  is called an equi­
valence (or an equivalence relation), if there exists a partition 
{Mx, M 2, . . .} of the set M, such that the relation xAy 
holds if and only if x and y belong to some common class M t 
of that partition.

Let {A/j, Af2, . . .} be a partition of a set M . Beginning 
with this partition, let us define a relation A in M: xAy if 
and only if x and y belong to some common class M t of 
the given partition. It is obvious that the relation A is 
an equivalence. We shall call A the equivalence relation 
corresponding to our initial partition.

For example, a partition of a certain set of animals into 
six subsets is depicted in Fig. 2.1. The corresponding equi­
valence relation is the identity relation defined above.

* It is completely immaterial to us whether this system is finite 
or infinite.
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Another example: the partition consists of subsets of 
a set M, containing exactly one element each. The corres­
ponding equivalence relation is the equality relation E. 
Finally, if the partition of a set M  consists of a single sub­
set, coinciding with M  itself, then the corresponding equi­
valence relation is the universal relation: any two elements 
are equivalent.

The reader can easily convince himself that the empty rela­
tion (in a non-empty set!) is not an equivalence.

We arrived at equivalence through the concept of inter­
changeability. But what is meant by the assertion that two 
objects, x and y, are interchangeable in a given situation? 
This can always be understood to mean that each of them 
contains all information about the other, which isn’t imma­
terial in the given situation. This assertion isn’t so very 
profound; it only means that the interchangeability of 
objects is the coincidence of the features which are signi­
ficant in a given situation.

For example, let us regard cars of one and the same model, 
produced in one and the same factory, as identical. Then, 
having taken apart one “Volga”, we can draft a complete 
set of patterns, which can be used for producing “Volgas” 
of the same type. However, having studied one “Volga”, 
we can’t guess what colour another car of the same model 
is painted, or what kind of dents there are on its bum­
pers.

When we choose one piece from a chess-set, we know where 
it can be placed in starting position and how the pieces 
interchangeable with it, i.e. of the same name and colour, 
move. In the example with the animals of Fig. 2.1, if we 
choose the winged horse—Pegasus, then by the same token 
we already know that all animals equivalent to it are of 
mythological origin. And this is precisely all the information 
that is significant in the given classification.

Everything is very primitive in the case under considera­
tion—an object contains within it complete information 
about each of the objects equivalent to it, and carries no 
information about any other object. But for other types of 
relations (cf. Chap. Ill), this idea of evaluating the infor­
mation, contained in a given object about another object, 
can be somewhat more deeply developed,
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Now let there be given a partition {Mly M 2, . . .} of a 
set M. In each set M t, choose some element xt contained in it. 
We shall call this element a standard for each element y 
occurring in the same set M t. We shall assume—by defini­
tion—that the relation XiAy holds. We shall call the relation 
A,  defined in this way, a relation “to be a standard for”.

It is easy to see that the equivalence C4), corresponding 
to an initial partition, can be defined as follows: y (A) z 
if y and z have a common standard: XiAy and x%Az.

It is clear that any equivalence relation can be so defined 
in terms of a relation “to be a standard for”, and converse­
ly, any relation “to be a standard for” defines some equiva­
lence.

Let A be an equivalence relation, and let StA be a relation 
“to be a standard for”, such that xAy holds if and only if 
x and y have a common standard z.

In other words, xAy is equivalent to the existence of a z , 
such that zStAx and zStAz/. Since zStAx =  x (StA)-1z, this 
means that

A — (StA) 1 StA.
In other words, equivalence can be expressed algebraically 

in terms of a simpler relation, “to be a standard for”. The 
fact that “to be a standard for” is simpler is evident from 
the following considerations. The relation StA in a set of n 
elements can be represented by a graph having exactly n-m 
arrows, where m is the number of equivalence classes: 
each element is connected to its unique standard*. The 
graph depicting the equivalence relation consists of m com­
plete subgraphs, each containing nt vertices (nx +  +  • • •
. . . +  nm =  n). Thus, the total number of edges in this 
graph is equal to

m
S *i (»i—i)

2
i=l

Example. Partition the set M  of all non-negative integers into the 
set M 0 of even numbers and the set Mx of odd number. The correspon­
ding equivalence relation is denoted as follows:

n == m (mod 2)
* It isn’t necessary to connect a standard to itself.
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which is read: n is congruent to m modulo 2. Here it is natural to choose 
0 as the standard for even numbers, and 1 for odd numbers. Analogous­
ly, partitioning the same set M  into k subsets Af0, Afx, . . M h-ly 
where M j  consists of all numbers leaving the remainder ; on division 
by k , we arrive at the equivalence relation:

n =  m (mod k),

which holds if n and m leave the same remainder on division by k. 
As the standard for each Mj, it is natural to choose the corresponding 
remainder j.

§ 2. Formal Properties of Equivalence

We have defined equivalence relations above with the aid 
of partitions, i.e. actually given them by means of a certain 
construction. We could have defined equivalences differently: 
by formulating properties (axioms), which distinguish equi­
valence relations from other binary relations. Instead of 
Definition 2.2, we can introduce the following

Definition 2.3. The relation A in a set M  is called an 
equivalence (or an equivalence relation), if it is reflexive, 
symmetric and transitive.

We have now violated mathematical etiquette, in that 
we have given two independent definitions for one and the 
same concept. We have done this in order to demonstrate 
and compare two different methods for introducing mathe­
matical concepts: constructive and axiomatic. But now we 
should convince ourselves that nothing else except eti­
quette has been violated, i.e. that our two definitions are 
equivalent. The necessary justification will be found in

Theorem 2.1. If the relation A in a set M is reflexive, sym­
metric and transitive, then there exists a partition {M 1, Af2, ...} 
of M, such that xAy holds if and only if x and y belong to 
a common class of the partition.

Conversely: if the partition {M Af2, . . .} of a set M is 
given, and the binary relation A is defined as “belong to a com­
mon class of the partition”, then A is reflexive, symmetric and 
transitive.

Proof of the first part. Consider the reflexive, symmetric 
and transitive relation A in M. For any x 6 M } let the set M$ 
consist of all elements zt for which xA%.
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Lemma. For any x and y, either M x =  M v or M x f| M v =  0 .
Proof of the lemma. Suppose that the intersection M x f) 

fl M v is not empty. We shall show that M x =  M jr Let 
z £ M x fl M y; then xAz and yAz hold by the definition of the 
sets M x and M lf. By symmetry we have zAy, and by transi­
tivity, xAy follows from xAz and zAy. Now take an arbitra­
ry element w £ M y. By definition yAw. But xAy and yAw 
imply xAw, i.e. w £ M x. Thus, M y ^  M x.

Take an arbitrary element v £ M x; xAv holds for it. By 
the symmetry of the relation A , we have yAx. But yAv 
follows from yAx and xAv. Hence, v £ M v. By the same 
token, we have shown that M x M u. Summing up, we can 
conclude that M x =  Mv. The lemma is proven.

It follows from the lemma and the reflexivity of A that 
the sets of the form M x constitute a partition of M. (It is 
natural to call this partition the partition corresponding 
to the original relation.) Now let the relation xAy hold. 
This means that y £ M x. But x £ M x in view of xAx. 
Consequently, both of the elements x and y occur in M x. 
Thus, if xAy, then x and y occur in a common class of the 
partition. Conversely, let u £ M x and v £ M x. We shall 
show that uAv holds. In fact, we have xAu and xAv. Hence, 
by symmetry, we have uAx. By transitivity, uAv follows 
from uAx and xAv. The first part of the theorem is proven.

Proof of the second part. Suppose the partition {M\, 
Af2, • • .} of a set M  is given. Since the union of all the clas­
ses of the partition coincides with M, each x £ M  occurs in 
some class M t. From this it follows that xAx, i.e. the rela­
tion A is reflexive. If x and y occur in the class M h then y 
and x occur in the same class. This means that xAy implies 
yAx, i.e. the relation A is symmetric. Now suppose that 
xAy and yAz hold. This means that x and y occur in the 
class M t, and y and z in the class M j. Since M t and M 7- 
have a common element y, they coincide. Hence, x and z 
occur in M t, i.e. xAz holds. Thus, the relation A is transi­
tive, which completes the proof of Theorem 2.1.

Note that nowhere have we used any assumption about the 
finiteness of the set M  or of its partition.

From the theorem we have just proved, we easily obtain
Theorem 2.2. If M is a finite set and A is an equivalence 

relation in it, then there exist an n and an m, such that one
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can assign to each element x £ M a string (ordered collection) 
of n +  m dyadic features (zeros or ones):

% (5l»  • • • * ?n+i» • • • i

y ■“*" ('Hi? ^2* • • • > |̂ni ‘Hn+l* • • •» 1̂n+m) 
etc.,

in such a way that (1) distinct strings of features correspond to 
distinct elements and (2) in order that xAy, it is necessary and 
sufficient that the first n features of these elements coincide:
1̂ ’Hit 2̂ ^2’ •••> \n l̂n*

Proof. Take the partition {Mx, M 2, . . .} of the set M, 
corresponding to the relation A. In view of the finiteness of 
M y this partition is finite and each of its classes is finite. 
Number the elements of each class. Then we can assign a pair 
of integers to each element x: x — (p, q), where p is the 
number of the class Mp in which x lies, and q is the number 
of x within its class. It is clear that if x ->• (p1? qx ), y — 
-> <p2* ?2> and Xz£  y, then (p1? qx) ^  (p2 » 2̂>* In fact, 
either x and y lie in different classes—then their first numbers 
are distinct: px p 2; or else their numbers within their
class are different—then q± q2. Now write down the dya­
dic expansions for the numbers p and q. Let n be the greatest 
number of digits obtained for the p’s, and m, the greatest 
number of digits obtained for the q's. If there are less than n 
digits for some p, then add zeros on the left. Treat the 
second numbers similarly. Thus, a string of n +  m dyadic 
features will be assigned to each element.

In order to complete the proof, it is sufficient to note that, 
the equivalence of two elements means their occurrence 
in a common class, i.e. the coincidence of their first n num­
bers (features).

This theorem justifies our previous assertion that any 
equivalence (true, in a finite set) can be given as the coin­
cidence of a certain collection of common features.

Thus, our two definitions of an equivalence relation are 
equivalent. But now the question arises as to whether some 
of our axioms for an equivalence might be redundant. For 
example, perhaps the transitivity of a relation follows from 
its reflexivity and symmetry? Reflexive and symmetric 
relations are just what we shall be studying in the next 
chapter, and there we shall see that transitivity is not
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at all obligatory for them. In the fourth chapter/ we shall 
be dealing with reflexive, transitive relations, and shall 
show that they are by no means bound to be symmetric. 
Finally, let us try to prove the following

Assertion. If the relation A is symmetric and transitive, 
then it is reflexive.

We shall argue as follows. Take an arbitrary x , and let y 
be an element for which the relation xAy holds. Then, by 
virtue of symmetry, the relation yAx is also true. Writing 
down these two relations side by side, we see that transiti­
vity implies xAx, i.e. A is reflexive. We invite the reader 
to think about whether we have really proven our assertion.

Example. Let M  be a collection of some sets. In § 2 of Chapter I, 
we defined which sets are called equipollent. By the same token, the 
binary relation “to be equipollent” is given in M.  We shall denote the 
equipollence of the pair of sets V and W by V ~  W. By definition, 
V ~  W means that there exists a bijective mapping cp: V W. It 
is clear that V ~  V, since the identity mapping e v \ V V is bijec­
tive. If there exists a bijective mapping <p: V W, then the inverse 
mapping cp-1: W V is also bijective, i.e. V ~  W implies W ~  V. 
Finally, let the relations V ~  W and W ~  U  hold. Then there exist 
bijective mappings cp: V ->■ W and op: W -*■ U. It is easy to see that 
their product q)\p =  0 is a bijective mapping 0: V -> £/, and so V ~  U. 
Thus, we have shown that “equipollence” is a reflexive, symmetric 
and transitive relation in the class M. By the same token, an arbitrary 
collection can be partitioned into classes of mutually equipollent sets. 
For example, if our collection of sets AT consists of all subsets of the 
real axis (i.e. sets of real numbers), then it is partitioned into subclas­
ses of the empty set, one-element sets, two-element sets, etc. There 
are at least two classes of infinite sets—the denumerable sets and the 
sets equipollent to the entire axis (the sets of the power of the con­
tinuum). The question of the existence of other classes of infinite sets 
is the so-called continuum problem. We do not pressume to discuss here 
the nature of the remarkable result recently obtained by Cohen, in 
a certain sense solving this problem.

Let us return to our discussion of the relation A: ux is 
a standard for y”. We have already given a constructive 
definition of this relation at the end of the preceding section. 
One can easily obtain from it the following properties of 
the relation A (to be a standard):

(1) for each y , there exists a standard x: xAy.
(2) if xAy, then xAx, i.e. any standard is a standard for 

itself.
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(3) A standard is unique, i.e. it follows from xAy and 
zAy that x =  z.

It is possible to declare these three properties the axioms 
for the relation “to be a standard”. Let us show that they 
imply our definition of a standard in terms of a partition. 
In order to do this, we first use A to construct a new rela­
tion (A ), defined by the rule: x (A ) y if x and y have a com­
mon standard, or in other words, if there exists a z, such that 
zAx and zAy. We show that {A ) is an equivalence relation. 
In fact, according to Property (1), every x has a standard, 
and so x(A )x. Hence, (A ) is reflexive. The symmetry of the 
relation (A ) is obvious. If x(A ) y and y( A)  zf then this 
means that x and y have a common standard, but y cannot 
have a standard, distinct from the standard for z. Hence, 
x(A ) z.

Thus, we have proven that (A) is an equivalence relation. 
But then by Theorem 2.1, there exists a partition {MV M 21 ...} 
of the set M  into classes of mutually equivalent elements— 
the so-called equivalence classes.

It is obvious that each equivalence class M t consists of 
all elements having the common standard xt. According to 
Property (2), xtAxh and so xt 6 Af*. Thus, the relation A> 
defined axiomatically by Properties (l)-(3), can always be 
given by a partition with representatives (standards) chosen 
in each class.

Let cp: M  -> S be a surjective mapping of a set M  onto 
some set S. Consider the relation “to have a comm'on image” 
in the set M, and denote it by A <p. In other words, xA^y if 
and only if cp (x) =  cp (;r). By M % we denote the set of all 
elements x £ M, having a given image £ £ 5, i.e. such that 
cp (#) =  It is clear that U M* =  M, since any element

of M  has an image. Further, f| =  0  for distinct £ 
and r), since otherwise the element lying in the intersection 
would have two different images: £ and p. Since cp is surjec­
tive, M  ̂=7̂  0  for any £ £ S. Thus, the sets form a parti­
tion of the set M , and the relation A v is the equivalence 
corresponding to this partition. The latter conclusion follows 
from the fact that xA^y if and only if x and y belong to 
a common set M^.

It is customary to denote the set of equivalence classes
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with respect to the relation A by Ml A (is read: the factor set 
of M by A). Our arguments show that for each surjective 
mapping cp: M S, there exists an equivalence relation A 
in the set M, such that Ml A and S can be put in one-to- 
one correspondence.

Conversely, if we have an arbitrary equivalence relation 
A in M , we can use it to construct a mapping cp: M S> 
where S =  MIA and <p (x) is the equivalence class contai­
ning x. It is easy to verify that cp is surjective, and that 
the equivalence relation Ay  constructed from it is the 
original relation A.

Consider the special case where cp: M  -> S and S ^  M.  
Suppose, further, that cp has the property that cp (x) =  x 
for x £ S, or as is said in such cases, the subset S is element­
wise fixed under the mapping cp. One can see from this that cp 
is surjective. In fact, every x 6 S is the image of at least x 
itself: x =  cp (x). Thus, a certain element is uniquely assigned 
to each y £ M.  Moreover, if x is assigned to some element, 
then this same x is assigned to itself.

Comparing this with the corresponding properties defining 
the relation “to be a standard”, we see that the mapping cp: 
M S of M  onto its element-wise fixed subset S gives us 
a relation “to be a standard” in M,  so that xAy if and only 
if q> (y) =  x.

Now consider what happens when we relinquish the condi­
tion that cp be defined on all of M.  Let us consider a func­
tion cp: M  -> S, which assigns to certain elements x of M  
a unique image cp (x) in S. We can once again use our map­
ping cp to construct a relation Ay, according to the rule: 
xA^y if and only if cp (x) =  cp (y). It is easy to verify that 
Ay will be symmetric and transitive. Take the subset M 0 ^  
^  M,  consisting of those elements for which the mapping cp 
is defined. Thus, if either x or y does not belong to M 0l then 
xAyy automatically fails to hold. Hence, if x does not occur 
in M 0, then xAyX also fails to hold. Consequently, the rela­
tion Ay is not necessarily reflexive.

The reader who has gotten this far has no doubt already 
found the error in ourJ‘proof” that the reflexivity of a relation 
follows from its symmetry and transitivity. It consists in 
the fact that we unlawfully presupposed that for an arbitra­
ry x 6 M,  there exists a y, such that xAy.  For the relation
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Ay defined above, it is obvious that precisely for those x 
which do not occur in M 0 (the domain of definition of the 
mapping cp), xA^y does not hold for a single y .

One can immediately see from this how to construct a con­
crete example of ji symmetric, transitive, but non-reflexive 
relation. Let M  be the set of people, and let the relation A 
mean “to be natives of one city”. It is easy to see that A 
is symmetric and transitive, but if x wasn’t born in a 
city, but ina a village or at sea, then xAx doesn’t hold. 
In this example, S is the set of cities, and the mapping <p: 
M S assigns to each person, the city in which he was 
born.

It is also clear from what we have said that the reflexivity 
condition in the definition of an equivalence can be replaced 
by a weaker one. It is sufficient to require that for each x1 
there exists an element y, such that xAy or yAx holds. 
Then from this property, and also symmetry and transiti­
vity, we can obtain the reflexivity of the relation A.

A graph representing an equivalence relation looks as 
follows. Let M  be the set of its vertices. ThenAf =  U M if

i
where the M t are the equivalence classes. It is clear that all 
the vertices in each subset M t are connected to each other. 
But none of them is connected to any vertex outside M *. Thus, 
the graph representing an equivalence relation consists of 
separate, mutually disconnected, complete subgraphs.

The graph of the equivalence relation in the set M  =  
=  {1 ,2 , 3, 4, 5, 6, 7, 8, 9, 10} with the equivalence classes 
M x =  {1, 2}, M 2 =  {3}, M 3 =  {4, 5, 6, 7}, M 4 =  {8, 9, 10} 
is depicted in Fig. 2.2. According to what was said in § 5 
of Chapter I, neither loops nor arrows need be depicted in 
the graph of an equivalence relation. We have therefore 
omitted them here.

Suppose that we have at hand two sets: M 1 and Af2, in 
each of which is given an equivalence relation {A1 and 4̂2, 
respectively). The question is: in what way can they be 
used in building a single set with an equivalence relation 
defined in it?

Recall that a relation is, strictly speaking, a pair (A , M),  
where M  is the set of elements entering into the relation, and 
A is the set of pairs for which the given relation holds.
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One of the simplest types of compositions of relations 
is given by the following. >

Definition 2.4. The relation (At U A 2, M*  U M 2) is 
called the direct sum of the relations (A±, M x) and (A 2, M 2).

9

4 5

Fig. 2.2. Graph of an equivalence

We shall denote the direct sum of the relations (Alt M t ), 
<A2, M 2) by (Aly © (A2, M 2). Thus,

(u4i, Mi)  ®  (A2i M 2) =  (̂ 4̂  U A 2, Mi  U M 2).
Therefore, if 01 x, M x) © (A 2, M 2) =  04, Af), then M  =  
=  Mi U AT2 and 4̂ =  ^  U A 2. Consequently, the relation 
xAy holds in the following cases: (1) x 6 M i, y 6 and 
xAxy\ (2) a: 6 Af2, y 6 Af2 and xA2y.

Two relations: (Alf M ±) and (A2, M 2)—and their direct 
sum—are depicted in Fig. 2.3. It is evident from this draw­
ing that even when A x and A 2 are equivalences, their di­
rect sum A isn’t obliged to be an equivalence. However, 
we have

Theorem 2.3. If M x f) M 2 =  0  and Ai,  A 2 are equiva­
lences, then their direct sum (A , M)  =  04 x, M x) © {A2, M 2) 
is also an equivalence.

Proof. Reflexivity is easily verified: if x 6 M t, then xAtx 
holds, and so xAx. Symmetry is also obvious: if xAy holds, 
then either x and y occur in M x and xAxy, and so yAxx, 
i.e. yAx,  or else x and y occur in M 2 and xA2y, hence yA2x
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and yAx.  Let us prove the transitivity of the relation A . 
Assume that the relations xAy and yAz hold. Consider the 
case where x £ Mx, y 6 M x and xAxy. Since M x f| M 2 =  0 ,  
y does not occur in M 2. But then the relation yAz can only

hold if z 6 M x and yAxz. However, xAxz and xAz follows 
from xAxy and yAxz. The case where x and y belong to M2 
can be treated similarly. The theorem is proven.

Remark. It is clear from this proof that the emptiness of 
the intersection was only used for verifying transitivity. 
Hence, we have the truth of

Theorem 2.4. If the relations (Ax, M x) and (A2, M 2) are 
reflexive and symmetric (in particular, if they are equiva­
lences), then their direct sum (A±, Mx) © (A2, M 2) is also 
reflexive and symmetric.

A complete study of conditions under which a direct sum 
of equivalences is an equivalence can be carried out with 
the aid of Theorem 2.6 (§ 3).

Remark. If (A, M ) =  (Al9 M x) © (A2j M 2), then each 
of the relations (Au M x) and (A2j M 2) is the restriction of 
the relation (A , M)  to its domain of definition.

§ 3. Operations on Equivalences
Let us see which operations on equivalence relations, 

under what conditions, result in equivalences.
Our first such result was obtained in § 5 of Chapter I. 

There we established that the transitive closure of a transi-

2 4

Fig. 2.3. Direct sum



tive relation coincides with that relation. Hence, the transi­
tive closure A of an equivalence relation A is an equivalence 
relation.

In the same section, we established that the inverse of 
a symmetric relation A coincides with that relation: A -1 =  A.  
Hence, a relation inverse to an equivalence is an equivalence.

It follows from lemmas 1.1, 1.3 and 1.7 that if A and B 
are equivalences, then their intersection is also an equiva­
lence relation.

Now let {Aff, Aff, . . .} be the partition of a set Af into 
equivalence classes, corresponding to the relation A , and let

1 2 1 2 1 2
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A b AUB

Fig. 2.4. Union of equivalences

{Aff, Aff, . . .} be the analogous partition for the relation B . 
Let x 6 Aff and x 6 Aff simultaneously. The elements with 
which x is in the relation A B fill up the set Aff f| Aff. 
Therefore, the equivalence classes with respect to A f| B 
are the intersections of those with respect to A and to B . 
It is easy to see that the collection of intersections Aff f| Aff 
is the partition of the set Af, corresponding to the rela­
tion a  n B-

The situation is more complicated for unions of equiva­
lence relations. Generally speaking, the union of equiva­
lences isn’t bound to be an equivalence.

This is evident from the example in Fig. 2.4. In fact, 
the relation A induces a partition into the two classes {1, 2} 
and {3, 4}, the relation corresponds to the partition {{1, 4},
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{2, 3}}, but the relation A [} B gives us an incomplete,, 
connected graph.

Now let us try to find out when the union of equivalences 
results in an equivalence. We first note the following trivial 
case. If A £  B t then it follows from properties of set- 
theoretic operations that

A U B =  B,
i.e. A (J B is an equivalence. In exactly the same way, we 
can show that if B £  A,  then A (J B is an equivalence.

Consider the more general case where the set M  can be 
split up into two disjoint subsets M x and M 2 (one of which 
may be empty), such that

f U ,  M )  =  (Al9 M x) © U 2, M 2),
i  (2.2)
I {B, M )  =  (Blt M x) © (Bit M t ),

where
A x s  Bx and B 2 £  A 2. (2.3)

In this case, we shall call the relations A and B coherent.
It is easy to see that if A £  B or B £  A,  then the 

relations A and B are coherent (set M ± =  M  and M 2 =  0 ) .  
Therefore, comparability with respect to the “order” 
determined by inclusion (see Chapter IV) is a special case 
of coherence.

It follows from (2.3) that for coherent equivalence 
relations A and B :

U i  U Bl9 M x) =  (B±, M x)
and

(A2 U b 2, M 2) =  u 2f M 2 ).

Using the definitions of a direct sum and (2.2), we 
obtain

(A U B, M)  =  (Bly M x) © U 2, M 2).

Here (Blf M x), (A2> M 2) are equivalences (as restric­
tions of the equivalences (B , M),  (A, M))  and M l9 M 2 
are disjoint. Hence, it follows from Theorem 2.3 that 
A (J B is an equivalence relation.



68 Ch. 11. Identity and Equivalence

It turns out that the coherence of the relations A, B 
is not only a sufficient, but also a necessary, condition 
for the union A (J B of the equivalences A, B to be an 
equivalence.

Theorem 2.5. In order for the union A [} B of the equiva­
lences A and B to be an equivalence relation, it is necessary 
and sufficient that A and B be coherent.

We shall need some simple properties of partitions into 
equivalence classes, which we formulate as independent 
lemmas. In what follows, we shall use certain verbal abbre­
viations. If A is an equivalence and xAy, we shall say that x 
and y are A-equivalent. We shall call the partition, correspon­
ding to an equivalence A, an A-partition\ its classes will be 
called A-classes, etc.

Lemma 2.1. In order that A ^  B, it is necessary and suffi­
cient that each A-class be contained in some B-class.

For if A <=: B, then it follows from xAy that xBy. Hence, 
the set of all y , ^-equivalent to the element xy is contained 
in the set of all y y ^-equivalent to that x. The proof of the 
converse is equally obvious.

Lemma 2.2. In order that B ^  A, it is necessary and suffi­
cient that each A-class M\ entirely contain any B-class M f, 
having a non-empty intersection with M f.

To prove the necessity, we choose an arbitrary element 
x 6 M f  f| M f. According to the preceding lemma, M f  
is entirely contained in some class M f. But if M f  were 
distinct from M f, then x would simultaneously lie in two 
classes of an A-partition, which is impossible. Hence, 
M f  ^  M\ • To prove the sufficiency, we need only recall 
that here M f  f| M f  ¥= 0  implies M f  s  M f , and apply 
Lemma 2.1.

Lemma 2.3. In order for the equivalences A and B to be 
coherent, it is necessary and sufficient that each A-class M f  
either be contained in some B-class M f , or entirely contain 
any B-class M f , having a non-empty intersection with Mf*.

* An obvious rephrasing of this lemma is: the equivalences A , B 
are coherent if and only if for any pair of equivalence classes Mfy ^ f y 
either they are disjoint, or else one of them contains the other.
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Proof. If A and B are coherent, then M =  U M 2, 
M1 f| M 2 =  0 ,  A ^  5  in Mx and 4̂ 2 5  in M2. Then by 
Lemma 2.1, for each class M f, contained in M1? there exists 
a class M f ^  Mx, such that M f ^  M f. By Lemma 2.2, 
each class M f, contained in M 2, entirely contains any 
class M f, having a non-empty intersection with M f. 
Since and M 2 are disjoint, it follows from (2.2) that every 
equivalence class is contained either in M x or in M2; hence, 
our reasoning covers all classes.

Let us turn the proof around. Suppose that each class M f 
has the property formulated in the lemma. Denote the union 
of all those classes M f , for which there exists an M f, 
such that by M ly and the union of the remaining
classes M f, by M2. It is clear that M x f| M 2 ~  0 ,  M 1 U 
U M 2 =  M  and

C4, M ) =  U lf M x) © (A2, M 2),
{B, M)  =  (Blf Mx) 0  (B2j M 2>,

where A t and B t are the restrictions of the relations A and 
B to M t. Finally, it is obvious that A 1 ^  Bx and A 2^  B 2, 
i.e. A and B are coherent.

We have now prepared all that is necessary for the proof 
of Theorem 2.5. We shall prove it by contradiction, i.e.

assume that A and B are not coherent. Then by Lemma 2.3, 
there exists a class M t  and a class M f, such that M f (] 
f] M f =£ 0 ,  but neither of them is contained in the other. 
Hence, there exists an M f \  M f, there exists an 
y 6 M f f) M f  and there exists a z 6 M f \  M f (Fig. 2.5). 
We have the following relations: xAy and yBz, whence
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xA U By and yA (J Bz. By transitivity, we should also 
have xA U Bz. However, both the relations xAz and xBz 
fail to hold, since x and z lie neither in a common ^4-class 
nor in a common 5-class. Hence, the relation xA |J Bz 
does not hold. The contradiction we have obtained proves 
the theorem.

Remark. The concept of coherence makes sense for any 
two relations A and B. But if A and B are equivalences, 
their coherence is easily formulated in terms of equivalence 
classes (Lemma 2.3).

Lemma 2.5. If A and B are reflexive, then

A U B g; AB. (2.4)
Proof. If xAy,  then in view of yBy,  the relation xABy 

also holds, i.e. A ^  AB. We can obtain B s  AB  analo­
gously. These two inclusions imply (2.4).

Theorem 2.6. In order for the union A (J B of the equiva­
lences A and B to be an equivalence relation, it is necessary 
and sufficient that

A B = A  U B. (2.5)

Proof. Let A (J B be an equivalence. According to Lemma 
2.4, A U B ^  AB.  For the proof of (2.5), it remains to 
show that

AB c=A  U 5 . (2.6)

Let xABy.  Then we have xAz and zBy for some z. Conse­
quently, x(A |J B) z and z (A (J B) y. Hence, x {A (J B) y 
and (2.6) is proven. Now suppose that (2.5) holds. According 
to Lemma 1.3, the relation A |J B is symmetric. Then by
(2.5), the relation AB  is also symmetric. According to 
Lemma 1.4, AB =  BA.  By Theorem 2.7 (see below), we 
obtain that AB is an equivalence. It follows from (2.5) that 
A U B is also an equivalence. The theorem is proven.

A condition under which the product AB  of two equiva­
lence relations A and B is itself an equivalence was obtained 
by the Czech mathematician Sik in 1954. Let us first of all 
note that when we gave an example in § 4 of Chapter I 
of non-commuting relations A and 5 , they were equivalence 
relations, but their product was not (and wasn’t even sym-
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metric). This connection between the product and commu- 
tability is by no means accidental, as is shown by Sik’s

Theorem 2.7. In order for the product AB of the equivalence 
relations A and B to be an equivalence, it is necessary and suf­
ficient that A and B commute.

Proof. Suppose first that
AB =  BA. (2.7)

AB is reflexive by Lemma 1.1. According to Lemma 1.4, 
AB is symmetric. The transitivity of the product is proven 
as follows:

(AB) (AB) =  A (BA) B =  A (AB) B =  (AA) (BB)=AB.
Here we have used the associative law for products of rela­
tions. Condition (2.7) and also the transitivity and reflex- 
ivity of A and B (see the remark on p. 45). Thus,

(AB) (AB) =  AB ,
but this simply means that AB is transitive, since it is 
reflexivity. Now suppose that AB is an equivalence. Then 
AB =  BA by Lemma 1.4.

We introduced the operations A Q B and A © B in the 
first chapter. It is easy to verify that if A and B are equiva­
lences, then A Q B and A o B will also be equivalences.

Let us verify this for the former operation. (As we shall 
see later, there will be no need of verification for the latter.) 
The reflexivity of the relation A (J B follows from Lemma 1.1. 
Symmetry follows from Lemma 1.3 and the corollary to 
Lemma 1.4. Transitivity follows from the fact that any 
relation of the form C is transitive (Theorem 1.4 and (1.20)).

Thus the operation A Q 5 , when performed on equivalence 
relations, does not lead us outside this class of relations.

It turns out that this operation (one sometimes calls it 
the union of equivalences, having in mind the fact that the 
ordinary union of equivalences can fail to be an equivalence) 
is associative, i.e. is a “good” algebraic operation.

Theorem 2.8. The associative law:
(A[}B)[)C =  A{j (Bl)C)  

is valid for any three transitive relations A , B and C<
(2.8)
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We first prove two lemmas.
Lemma 2.5. For any relations P, Q> we have

P ^ P ( ] Q ,  (2.9)

Q ^ P [ ) Q  (2.10)
(2.9) follows from P ^  P U Q and (1.1). (2.10) can be proven 
similarly.

Lemma 2.6. Given any transitive relations P , Q, R, it 
follows from P ^  R and Q s  R that P jj Q s  R- 

P ^  R and Q ^  R yield P (J Q S  /?. We obtain P |J 
from (1.17) and Theorem 1.3.

Proof of Theorem 2.8. From Lemma 2.5, we have

(2.11)
B[jC ^ A \ j ( B ( j C ) . (2.12)

From (2.11) and (2.12), we obtain
B<=A[)(B(jC). (2.13)

Lemma 2.5 yields

A =  A\ j (B\}C). (2.14)
It follows from (2.13), (2.14) and the fact that any relation 
of the form C is transitive that

A\)B<=A\}(B\ }C) . (2.15)
The proof of

C s  A 0 (B Q C) (2.16)

is similar to that of (2.13). The derivation of

(A Q B) 0 C s  A 0 (B (J C) (2.17)

from (2.15) and (2.16) is similar to that of (2.15) from (2.13) 
and (2.14). (2.8) follows from (2.17) and the analogously 
proven “opposite” inclusion. The theorem is proven.

It is not difficult to convince ourselves that for any equi­
valence A ,

II

<13 (2.18)
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where E is the diagonal relation. This follows from the 
fact that E <=: A (by virtue of 4̂’s reflexivity); hence, 
A U E =  A and A ij E =  A =  A.

Let us now show that the operation A o B doesn’t give 
us anything new:

Theorem 2.9. If A and B are equivalences, then
A[)B =  AoB.  (2.19)

Proof. We first note that, taking Lemma 2.4 into account,
A \] B <=: AB ^  AB U BA =  A o B.

Applying the transitive closure to both sides, and recalling 
its monotonicity, we obtain

A\}B<=iAoB.  (2.20)

Further, applying the distributive law (1.13), we obtain 
(A U B)2 =  A 2 U AB U BA U B2 =  A U AB U BA U B 

=  AB U BA =  Ao B .  (2.21)
Here we have used the remark on p. 45 and the fact that 
B ^  BA,  and^hence BA (J B =  BA,  for a reflexive A. We 
now write out the expression (1.2) for the transitive closure, 
using (2.21):

(A\]B) =  (A\JB)(](A\J B)2 U (A U B)3 U (A U B)4 . . .
=  (A[)B)[}(AoB)[)(A[)B)*{)(AoB)*{)  . . .  .

It is clear from this that
A 0 B ^  (A o B) U (A o B)2 u . . . ,

i.e.
A \ ] B ^ A Z b . (2 .22)

Comparing the inclusions (2.20) and (2.22), we obtain the 
desired relation (2.19).

This yields the following results, also belonging to Sik: 
Theorem 2.10. If A and B are equivalences and AB =  BA, 

then
AB =  A[ )B . (2.23)
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In fact, the product AB is an equivalence by Theorem 2.7, 
and so the relation AB =  AB (J BA =  A o B coincides 
with its transitive closure: AB =  A © B. But then Theo­
rem 2.9 yields AB =  A Q B.

With this we conclude our study of properties of opera­
tions on equivalences.

The results we have obtained about operations on relations 
admit an algebraic interpretation. The set 9DI of all rela­
tions in M  has the structure of a monoid with respect to 
the operation of multiplying relations*. Let the set $ft3 ^  3JI 
consist of all equivalence relations. Any subset of 9ft3, closed 
with respect to the product operation AB, is a commutative 
monoid (Theorem 2.7). 9K3 itself does not form a monoid 
with respect to the product of relations, since there exist 
non-commuting equivalences in any set M,  containing not 
less than three elements. However, 9}t3 has the structure 
of a commutative monoid with respect to the operation 
A U B (Theorem 2.8) or, which is the same thing, Ao B  
(Theorem 2.9). On submonoids of 5ft3 (with respect to AB),  
the operation A [}B coincides with the product operation 
AB  (Theorem 2.10).

§ 4. Equivalence Relations on the Real Axis

Let there be given a relation A in a set M.  In case M  
is the real axis, A is identified with a certain subset of the 
real plane, i.e. the direct product M  X M.  In this section, 
geometric properties of a set A in the plane will be conside­
red, in the case where the relation A is an equivalence.

According to Definition 2.3, the relation A is called an 
equivalence if it is reflexive, symmetric and transitive. Each 
of these properties gives rise to a certain geometric property 
of the set A. We shall denote the coordinates of a point in 
the plane by (x, y ).

1. Reflexivity. It follows from xAx for all x that the 
set A contains the main diagonal (Property R).

♦ If an associative operation is defined in a certain set SO? and if 
there exists an element E, behaving as an identity under this operation, 
then it is said that the structure of a monoid is given in the set 3D?.
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2. Symmetry. Symmetry means that if (x , y) d A , then 
(y, x) 6 -4, i.e., that the set 4̂ is symmetric with respect 
to the main diagonal (Property S).

3. Transitivity. Transitivity means that if (x, y) 6 A 
and (y, z) £ A , then (x , z) £ A . The point (x, z) is the 
fourth vertex of the rectangle with three vertices at the 
points (x, y), (y, z) and (y, y). Note that the vertex (y, y) 
lies on the bisector of the coordinate angle—the main dia-

Fig. 2.6. Geometric meaning of transitivity

gonal of the coordinate plane. Therefore, the geometric 
property of transitivity may be formulated in the following 
way:

A set A in the plane determines a transitive relation if and 
only if, for any rectangle, whose sides are parallel to the axes, 
one of whose vertices a lies on the main diagonal, and whose 
two vertices adjacent to a belong to A , the vertex a' opposite a 
also belongs to A (Property 7\; see Fig. 2.6).

Remark. If the relation A is symmetric the geometric 
formulation of transitivity may be somewhat simplified. 
Namely:

A set A in the plane, symmetric with respect to the main 
diagonal, determines a transitive relation if and only if, for 
any rectangle, whose sides are parallel to the axes, one of whose 
vertices lies on the main diagonal, and two of whose other 
vertices belong to A , the fourth vertex also belongs to A {Pro­
perty T2).

This differs from the previous assertion in that the vertices 
belonging to A are not obliged to be adjacent to the vertex
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lying on the diagonal. Let us show that Property Tx implies 
Property T2 for symmetric A.  Suppose, for example, that 
the vertex lying on the diagonal has coordinates (y, y), 
(x, z) £ A and (y, z) 6 A; we shall show that (x, y)  6 A.  
In fact, by virtue of symmetry, we have (z, y ) 6 A along with 
(y, z) 6 A.  If we now take {z, z) as the vertex on the diago­
nal, and (x, z), (z, y)  as the adjacent vertices belonging 
to A,  then, in view of Property Tlf we obtain (x, y)  £ A.

Note that the equivalence class containing the point x0 
is the projection on the ordinate of the intersection of the 
set A and the line x =  x0.

We shall now give some examples of sets in the plane, 
determining equivalence relations.

Example 1. (trivial). The set A is the entire plane. Pro­
perties R, S 9 Tx obviously hold. All points of the initial 
line M  are identified, i.e. occur in a single equivalence class.

Remark. Given any e > 0 ,  if a set A,  determining an 
equivalence relation, contains the strip \ x — y | <  e, then 
it coincides with the entire plane. In fact, it is clear from 
Fig. 2.7 that, along with any point (y, y), the set A con­

tains all interior points of the square with vertices 
(y — e, y), (y, y), (y, y +  e> and (y — e, y +  e>, i.e. the 
strip | x — y | <  2e. It is clear that in this way the pro­
perty “to belong to A ” extends to all points in the plane.

Example 2. (periodicity). Take some fixed number c. 
Let the set A consist of the lines x — y =  kc, where k is

e i/-£ y  x
Fig. 2.7 Fig. 2.8
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an arbitrary integer. It is obvious that the properties R 
and S hold, and if x — y =  Ay, y — z =  k2c, then 
x — z =  (kx +  k2) c.

Example 3. “All constants distinct from zero are equal to 
one.” (This was asserted by I.M. Gel’fand during one of his 
lectures.)

The set A in this example is the whole plane with the axes 
removed and the origin added. In other words, (x, y)  6 A 
unless x =  0, y =̂= 0 or vice versa. If the points (x, y), 
(y, z) belong to A , then either x =  0, and so y =  0, z =  0, 
or else x 0, and so y =̂= 0 and 2 ^ 0 .  In both cases, we 
have (x, z) £ A (Fig. 2.8).
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The verification of properties R, S, Tx will be left for the 
reader in the rest of our examples.

Example 4. (All integers are equal to each other, Fig. 2.9.) 
The set A consists of the main diagonal and all points with 
integral coordinates.

We obviously may consider finite variants of this equiva­
lence: ax =  a2 =  . . . an (Fig. 2.10 and 2.11).

Example 5. (All numbers of absolute value at most one 
are equal to each other.) The set A consists of the diagonal

and the closed unit square (Fig. 2.12). It is obvious that 
the set consisting of the diagonal and the open (or half- 
closed: —1 ^  x <  1, —1 ^  y <  1) unit square also deter­
mines an equivalence.

Another example of an equivalence is depicted in Fig. 2.13. 
(The arrows in the drawing signify that the boundaries of 
the squares, except for the points lying on the line y =  x, 
do not occur in the graph of the relation.) Note that if we 
take the analogous set with closed squares, it will not satisfy 
Property Tl9 and the smallest set containing it and having 
Property T1 is the entire plane.

Example 6. (All numbers from ax to a2 are equal to each 
other and all numbers from a3 to a4 are equal to each other, 
Fig. 2.14.)

Example 7. The relation: “All numbers from ax to a2 
and from a3 to a4 are equal to each other” is depicted in 
Fig. 2.15.

Fig. 2.12 Fig. 2.13
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Example 8. (Sierpinski’s carpets.) In conclusion, we 
present two examples with sets A , analogous to “Sierpiriski’s

carpet”. The set A is depicted in Fig. 2.16 for the following 
equivalence relation: take the perfect Cantor set and identify 
the points /of all the intervals deleted from the segment
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[0, 1] at the rc-th stage (n =  3 in our drawing). If all points 
in the complement of the perfect Cantor set are identified,

Fig. 2.17

the set A has the form depicted in Fig. 2.17. (The author asks 
forgiveness of those readers who don’t know what the Cantor 
set is.)



Chapter

III
RESEMBLANCE AND 
TOLERANCE

§ 1. From Resemblance to Tolerance

In the previous chapter, we discussed in detail the infor­
mal meaning of the relation of identity of objects. No less 
important is the situation where we have to establish a resem­
blance of objects. If the identity of objects signifies their 
complete interchangeability in a certain situation, then 
their resemblance means their partial interchangeability, 
i.e. the possibility of mutual replacement with certain 
(permissible in a given situation) losses, with an allowable 
risk.

For example, two new “Volgas” of the same model and 
colour are completely identical, and so interchangeable, 
from the point of view of a buyer. But two “Volgas” of 
different models (or a new and an old “Volga” of the same 
model) only resemble each other. One of them can replace 
the other if the buyer, faced with a lack of choice, is agree­
able to such a replacement.

Two twins can be so identical that there is no risk in their 
taking exams for each other. If two students only resemble 
each other, this sort of cheating, although feasible, is risky.

A drawing (Fig. 3.1) by the Dutch artist Escher suggests 
that an accumulation of insignificant differences in resembl­
ing objects may lead to completely dissimilar objects.

If we are given only resemblances for some objects, then 
we cannotxpartition them into clearly defined classes, so 
that the objects within a class resemble each other, but there 
is no resemplance between objects from different classes. 
In the case /of resemblance, a hazy situation with no clear 
boundaries/ arises.
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JV’Each of our elements carries some definite information 
about the elements resembling it, but not all such informa­
tion, as in the case of identical elements. Here we are no 
longer on the horns of the dilemma: “All or nothing” or

Fig. 3.1. Sky and water (engraving by M. K. Escher)

“Complete information or the absence of any information”. 
Different degrees of information contained in one element 
about another are possible here.

The superlative degree of resemblance is indistinguishabi- 
lity, and not, as might appear at first sight, identity. The 
latter is a qualitatively different property. The point is 
that indistinguishable objects (just as resembling objects)
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do not, generally speaking, form classes, such that the ele­
ments within each class cannot be distinguished, while 
those from different classes definitely can.

In fact, take a set of points in a plane. Let the magnitude d 
lie beneath the threshold of visual acuity, i.e. points located 
at a distance d from each other are visually indistinguishable 
(to an observer at a chosen distance from the plane). Now 
take n points lying on a straight line, each at a distance d 
from its neighbours. Every pair of neighbouring points is 
indistinguishable, but if n is sufficiently large, then the 
first and last points will be a meter distant from each other, 
and so will certainly be distinguishable. It is clear that 
identity is a special case of indistinguishability and resem­
blance.

The traditional approach to the study of resemblance or 
indistinguishability consists in first defining a measure of 
resemblance, and then investigating the relationship between 
similar objects. The English mathematician Zeeman, stu­
dying models of the visual apparatus, proposed an axioma­
tic definition of resemblance. By the same token, it became 
possible to study a property of resemblance independently 
of how it is specifically given in one or another situation: by 
a distance between objects, the coincidence of certain features 
or the subjective opinion of an observer.

Just as the transition from the vague concept “identity” 
to a precisely defined type of relation was accompanied by 
the introduction of the new term “equivalence”, so the 
mathematical relation corresponding to our intuitive idea 
of resemblance or indistinguishability was given the name 
“tolerance” by Zeeman. In other words, tolerance is the 
explication of the concept of resemblance or indistin­
guishability.
IWe introduce the following
Definition 3.1. The relation A in a set M  is called a tole­

rance (or a tolerance relation) if it is reflexive and symmetric.
The naturalness of this definition is evident from the 

fact that every object is trivially indistinguishable from 
itself and so, a fortiori, resembles itself (the reflexivity 
of the relation expresses this). It is also clear that two objects 
either do or do not resemble each other, independently of 
the order in which we consider them. This property is
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expressed by the symmetry of the tolerance relation. One 
can see from our example about visual indistinguishability 
that the transitivity of resemblance (tolerance) is by no 
means obligatory. It is also clear that equivalence should be 
a special case of tolerance, since identity is a special case 
of resemblance. Comparing the corresponding definitions, 
we are easily convinced that this is the case. Equivalence 
is the special case of tolerance for which, besides symmetry 
and reflexivity, transitivity also holds.

Let us now consider a series of examples in which a resem­
blance (tolerance) is given in various ways.

Example 1. The set M  consists of the five-letter English 
common nouns. We shall call two such words similar if 
they differ in at most one position. The well-known problem 
of “proving that white is black” can be formulated in precise 
terms as follows:

Find a sequence of common nouns, beginning with the 
word “white” and ending with the word “black”, in which 
each pair of neighbouring words are similar (in the sense 
of the definition just given).

This problem, an unusual sample of student folklore, 
admits the following solution:

White—while—whale—shale—shave—stave—sto v e -  
sto re—stork—stock—stack—slack—black.

The hardest part of this problem is changing the vowel “e” 
into the consonant “k”. The interested reader is invited 
to try his hand at finding a shorter sequence from “white” 
to “black”. Is it possible “to make a mountain out of a mole­
hill” in this way? The analogous Russian question has an 
affirmative answer.

Example 2. Heraldic animals and beings are depicted 
in Fig. 3.2. There exist various tests for resemblance between 
them. In particular, nothing prevents us from accepting the 
following definition of resemblance, which, in any case, is 
no worse than any other:

The snake, the hydra and the dragon are similar as reptiles. 
The hydra, the centaur and the wild boar figure in the myths 
about Heracles. The unicorn and the centaur resemble each 
other in an obvious way: they are both mythical variants 
of the horse. The unicorn and the two-headed eagle are 
mythical beings depicted on state seals. The eagle and Alkio-
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na (the bird-woman) belong to the class of birds; Alkiona 
and the dragon resemble each other in that they have 
wings.

Fig. 3.2. Resemblance of heraldic beings

This is precisely the resemblance relation expressed by 
the artist in Fig. 3.2: representations of similar beings are 
found on adjacent cubes.

Example 3.J Another group of heraldic beings is depicted 
in the same way in Fig. 3.3.
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The fish and the dolphin belong to the water kingdom.

Fig. 3.3. Resemblance of heraldic beings

The fish and the dolphin depicted in this drawing has an 
external resemblance to the ordinary horse*. The horse, 
Pegasus and the unicorn have a purely anatomical resem-

* Another justification for this resemblance can be found in the 
following fragment of V. Bryusov’s poetry:

“When lost within the misty deeps,
And longing for dry land once more,
Just see that your soul at its prayers keeps;
On a dolphin’s back you’ll get ashore”.
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blance to each other. The unicorn, Pegasus and the two- 
headed eagle form a group of mythical beings. The owl, the 
eagle, the two-headed eagle and Pegasus have wings, and in 
this lies their resemblance.

Our next group of examples is more academic.
Example 4. Let p be a natural number. Denote the col­

lection of all non-empty subsets of the set {1, 2, 3, . . p)  
by Sp. We declare two such subsets to be tolerant if they

have at least one element in common. The legitimacy of 
this definition is obvious: the refiexivity and symmetry 
of the given relation are easily verified.

The set Sp is called a (p — \)-dimensional simplex. This 
concept generalizes the concepts of segment, triangle and 
tetrahedron to the many-dimensional case. The numbers 
1, 2,  . . ., p are interpreted as the vertices of the simplex, 
the two-element subsets—as the edges, the three-element 
subsets—as the plane (two-dimensional) faces, the /c-ele- 
ment subsets—as the (k — 1 )-dimensional faces. The simplexes 
Sx, S t , S 3 and S 4 are depicted in Fig. 3.4. The tolerance 
of faces of the simplex Sp means their geometric incidence— 
the presence of common vertices.

3

1 3

2

Fig. 3.4. Resemblance of faces in a simplex
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The total number of elements in Sp is equal to 2P — 1. 
We can represent the elements of the set Sp by the vertices 

of a graph, and the holding of the relation under considera­
tion, as usual, by the edges. Such a representation is given

3

Fig. 3.5

for S 3 in Fig. 3.5. The reader is invited to construct an anal­
ogous representation for S A.

We shall find it convenient to use 
Definition 3.2. A set M  with a tolerance relation x given 

in it is called a tolerance space. Thus, a tolerance space is 
a pair (M, x).

Example 5. The tolerance spaces Sp admit an elegant gener­
alization to the infinite case. Let H be an arbitrary set. Denote 
the collection of all non-empty subsets of H by SH. The 
tolerance x in SH is given by the condition: X tY  if 
X  H Y  0 .  The symmetry and reflexivity of this relation 
are obvious. The tolerance spaces SH will play a special 
role in what follows—the role of “universal” tolerance spaces.

Example 6. Let p be a natural number. Denote the set of 
all dyadic strings of length p by Bp. Thus, any element 
x 6 Bp has the form x =  (h , . . ., gp>, where l p =  0
or 1. The tolerance x in Bp is [given by the rule: if 
X =  <ii, | 2, • • Ip) and y =  (%, r ,̂ . r\p) , then xry 
means that for at least one i: =  p*. It other words, the
tolerance of two elements, xxy, means that they have at 
least one component in common. The total number ofj'ele- 
ments in Bp is obviously equal to 2P, Given any element
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x =  ( | 1? • • • » £p), there is exactly one element
y — (1 — ii, 1 — 2̂, . . ., 1 — £p), all of whose compo­
nents differ from those of x, which is not tolerant to x.

For those who clearly understand that components of 
a string of length p are coordinates of a point in ^-dimension- 
al space, it will be obvious that Bp consists of all the verti­
ces of the p-dimensional unit cube (Fig. 3.6; in depicting

<0.1> <1.1>

Fig. 3.6

the space B3, we ommitted all diagonal connections from 
our graph: in order to depict all tolerances between ele­
ments, we would have to draw all the diagonals on the 
faces of the cube.)

Example 7. A simple generalization of the space Bv is 
the tolerance space B where the components £* take on 
arbitrary integral values from 0 to m — 1, and the tolerance 
is defined as the coincidence of at least one component. 
It is obvious that Bp =  Bp.

Example 8. Our next generalization consists in conside­
ring the tolerance space Bp , whose elements’ components 
take on arbitrary real values.

In particular, B 2 is the set of all pairs of the form 
x =  £2)* where and | 2 are arbitrary real numbers.
We can depict the elements of B 2 by points in the plane if 
we interpret ^  and £2 as Cartesian coordinates. The tolerance 
of two points means the coincidence of at least one of their 
coordinates. Therefore, two tolerant points are always
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located on a single vertical line or on a single horizontal 
line. The coordinate plane is represented in Fig. 3.7, with 
points xly x2 tolerant and points x2l x3 also tolerant. The 
points x1 and x3 are not tolerant.

For other values of p , the space Bp may be interpreted 
as the set of points in p-dimensional space.

'xi

Fig. 3.7

However, another interpretation of the space Bp is more 
interesting. Each string x =  ( | x, E2, . . ., Hp) 6 Bp may be 
regarded as a real-valued function defined in the set 
{ 1 , 2 , . . . ,  p}: the function x assigns the number ^  to the

Fig. 3.8 From p-dimensional vectors to functions

number / (1 ^  j ^  p). The tolerance of two functions x 
and y means that they take on the identical value at one or 
more points (Fig. 3.8).

Example 9. Now take an arbitrary set M  (for clarity, 
you may think of a line segment). The tolerance space Bm
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consists of all numerical functions defined in this set*. 
Two functions are declared to be tolerant if they assume 
the same value for at least one element of M  (if, in other 
words, the graphs of these functions intersect).

Since Bp can be regarded as the set of points in p-dimen- 
sional space, it is natural to regard Bm—the set of all func­
tions in a certain infinite set—as a typical infinite dimensio­
nal space. (This idea—regarding a set of functions as a gen­
eralization of a many-dimensional space—underlies an 
important branch of mathematics, known as functional 
analysis.)

There exists another important way of presenting tolerance 
relations. Consider a correspondence

cp: M L.
We denote the set of all images of the element x under the 
correspondence (p (i.e. the set of elements corresponding 
to the element x under the correspondence cp) by ® (x). 
The relation in the set M  is given by the condition: 
xA^y if the elements x and it have a common image, i.e. if

(v) ¥* 0.
Let us establish the basic properties of the relation A ^
Property 1. The relation A^ is always symmetric. This 

follows simply from thê  fact that ® (x) f) ® (y) =
= o  (y) fl (x).

Property 2. The relation A<p is reflexive if and only if the 
correspondence q> is defined on all of M.  In fact, in this, and 
only in this case, the set ® (z) f| ® (x) =  ® (z) is non­
empty for any x 6 M.

Property 3. If the relation ^  is not reflexive for the ele­
ment x (xAyX fails to hold or, equivalently ® (#) =  0 ) ,  
then the relation xA^y does not hold for any y , since
®Wf l ®( »)  = 0 f l ®  ( y )  = 0-

This property has a simple geometric meaning: if the 
vertex x in the graph representing ^  has no loops, then it is 
not joined to any other vertex. In other words, for relations 
of the type non-reflexivity can only be of the following 
kind: if A^ is not reflexive for x, then this element is not 
related to anything.

* That is, a function which assigns a number to each element of M.
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Property 4. If the correspondence cp: M L is a function, 
i.e. for any x £ M , (t> (x) consists of not more than one ele­
ment*, then the relation is transitive.

In fact, let xA^y and yA^z. This means that cp (x) — q) (y) 
and q) (y) =  cp (z). Consequently, cp (x) =  cp (z), i.e. xA^z.

It follows from these properties that an everywhere de­
fined correspondence cp: M L defines in M  a symmetric and 
reflexive relation A <p, i.e. a tolerance. We shallsee in § 3 that 
any tolerance relation can be defined as relation Ay  with 
respect to some correspondence cp (Theorem 3.4).

If, in addition, the correspondence cp is a function, then 
the relation dq, is an equivalence. We convinced ourselves 
in the previous chapter that any equivalence relation can 
be defined as an A <p, where cp is a mapping of a set M  into 
a certain set L**.

The rest of this section isn’t directly related to the concept 
of tolerance. However, the kinds of relations described 
below arise in many situations, and so deserve some consi­
deration. But their role isn’t great enough for us to devote 
a separate chapter or section to them.

Every transitive and symmetric relation A in a set M  can 
be presented as a relation of the type 4̂̂ . For the proof of 
this assertion, it is necessary to recall the following proper­
ties of relations which are simultaneously transitive and 
symmetric: if there exists an y for which xAy, then xAx 
holds {xAy implies yAx,  whence xAx by transitivity). Thus, 
elements for which A is not reflexive are not related to any­
thing by A. Now take the subset M 0 of M , consisting of all 
reflexive elements (those for which xAx holds). We then have 
an equivalence relation in M 0. Denote the set of equiva­
lence classes by L. Now define the function cp: M -> L by 
the condition: if x £ M 0, then cp (x) is the equivalence class 
containing x; if x does not occur in M 0, then cp (x) is not 
defined. The relation Ay, defined by this cp, coincides on M 0 
with the restriction of the relation A to M 0, and for 
a; £ M \  M0, O {x) =  0  and xA^y does not hold for any y.

When A is a transitive and symmetric relation its non- 
reflexivity can be only of the type described in Property 3.

* In this case, xA^y is equivalent to (D (x) =  0) (y) or <p (x) =  cp (y) 
(cf. definition of Ay in Chap. II, § 2).

** Cf. previous footnote.
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If A is only symmetric, then an element may be non­
reflexive, but related to other elements. Therefore, by far 
not all symmetric relations can be presented in the form A <p. 
It is easy to show that a symmetric relation is presentable 
in the form A <p if it possesses Property 3.

However, there is another way of presenting a relation 
by means of a correspondence cp. Let there be given a cor­
respondence cp: M — L, and let the relation By be given 
by the condition in M : xB^y if the sets of images O (x) and 
(D (y) have exactly one common element.

The intensional difference between Ay and B <p lies in the 
fact that A v is the relation “to have at least one feature in 
common”, while B ip is “to have exactly one feature in com­
mon”. It is not difficult to observe that B {p is necessarily 
symmetric. If the correspondence cp: M  — L is a function, 
then A y =  By. The meaning of the above definition is shown
by

Theorem 3.1. Let the relation B in the set M be symmetric 
and antireflexive. Then there exists a correspondence <p: M  -> L, 
such that B =  By.

Proof. Consider the graph representing the relation 5*. 
Let L be the set of all its vertices and edges. Let the cor­
respondence cp: M L be defined in the following way. If 
x 6 M  is an isolated vertex (x isn’t related to anything 
by B), then cp is not defined at x, i.e. nothing is assigned 
to the element x. If x is a non-isolated vertex, then O (x) 
consists of all edges containing x, and also the vertex x. 
It is clear that in this case O (x) contains more than one 
element (the vertex itself and at least one edge, since the 
vertex isn’t isolated). Therefore, xByX always fails to hold. 
Now suppose that the relation xB^y holds. This means that 
x =̂= y and the vertices x, y are joined in the graph by a (uni­
que) common edge. This edge is the unique common element 
of the sets ® (;r) and ® (y), i.e. xB^y also holds. On the 
other hand, xB(py means that x ^  y and the vertices x, 
y have an edge in common. Therefore, the relation xBy 
holds. The theorem is proven.

* Since B is symmetric, we shall, as we have already stipulated, 
join elements related by B by one edge instead of two arrows.
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Thus, a symmetric, antireflexive relation B in a set M  can 
always be described by defining a system of features in M, 
such that xBy holds if and only if x and y have exactly one 
feature in common.

An example of a symmetric and antireflexive relation is the 
relation “to rhyme’7 in the set of English words. It is obvious 
that if the word x rhymes with the word y , then y rhymes 
with x. According to the traditions of English versification, 
a word isn’t supposed to rhyme with itself*, i.e. it is natural 
to regard this relation as antireflexive. Note that it already 
follows from this that the relation “to rhyme” isn’t transi­
tive. In fact, it would follow from transitivity and symmetry 
that for every word x , rhyming with at least some y , “x 
rhymes with x” holds. Besides, in modern rhymes, it is easy 
to find a chain of words, in which all neighbouring words 
rhyme, but the first and last are completely dissonant: 
above—love—grave—grief—this.

§ 2. Operations on Tolerances
The algebraic properties of operations on tolerances are 

relatively simple. Many of them were actually obtained in 
Chapter I, § 6. Nevertheless, we shall systematize what 
information we have, making additions when necessary.

Lemma 3.1. If A is a tolerance, B an equivalence and A ^  B, 
then A ^  B.

The proof is obtained by applying the transitive closure 
to both sides of the inclusion A s  B.

The meaning of this lemma lies in the fact that the tran­
sitive closure i  of a tolerance relation A is the minimal 
equivalence containing that tolerance.

It follows from lemmas 1.1, 1.3 and the corollary to 
Lemma 1.4 that if A and B are tolerances, then so are the 
following relations: A [} B, A [\ B, A~x and A.

Lemmas 1.1 and 1.4 immediately yield 
^Theorem 3.2. In order for the product AB of two tolerance 

relations, A and B , to be a tolerance, it is necessary and suffi­
cient that A and B commute. In this case, AB  =  AoB.

* The reader will undoubtedly find counter examples.
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The symmetrized product A oB of tolerances A and B 
will always be a tolerance. In fact, refiexivity follows from 
Lemma 1.1. The symmetry of the symmetrized product 
A o B follows from the fact that

(A o B)-1 =  (AB U BA)-1 =  (AB)-1 U (BAY1
=  B-'A-1 U A-'B-1 =  BA[jAB=^AB[)BA =  AoB.

One can introduce the following variant of the symmetrized 
product: A * B  =  AB  f) BA. It is easy to show that A * B  
will be a tolerance if A and B are tolerances.

It is worth-while noting that for any reflexive relation A , 
the relations A (J A"1, A f| -4”1, A o A '1 will be tolerances.

§ 3. Tolerance Classes

Here we shall take up the study of the structure of tole­
rance spaces, and shall try in different ways to understand 
how arbitrary tolerance spaces are built. Informally, our 
general result is that any tolerance relation can be given by 
a collection of features, such that tolerant elements are 
those that have common features.

To characterize a certain collection of objects by features 
means, strictly speaking, the following. Take the set M  
of all these objects, and the set N  of all possible features. 
We now define the correspondence

cp : M - + N ,

assigning to each object from M  all those features which it 
possesses. Conversely, any correspondence (p: M  — N  can 
be informally interpreted as an awarding of certain features 
(elements of N) to certain objects (elements of M).

Thus, the rigorous concept of a “correspondence” permits 
us to attach precise meaning to the everyday expression “to 
possess features”. We have shown in § 1 that each correspon­
dence <p, everywhere defined in M, determines a tolerance 
relation A^ in M, defined as the coincidence of at least one 
feature (the presence of a common feature).

We shall show that any tolerance relation can be given in 
this way. Moreover, there exists a certain canonical collec­
tion of features, which can be constructed on the basis of the
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given tolerance relation, independently of the specific 
way in which it is presented.

A tolerance relation in a set M  can also be defined in 
the language of coverings. (A system of sets n  is called a cov­
ering of the set M if U A 3  M.) In fact, let cp: M  -> N  be 

At n
an everywhere defined correspondence. To each “feature” 
£ 6 N, we assign the set M  (£) of all elements from M, possess­
ing the feature £, i.e. the set cp-1 ({I}). The system of all 
the sets M  (£) form a covering of the set M : M  — U M(£),

1
since any element x 6 M  occurs in some M  (|). It is easy 
to see that xA^y if and only if there exists a feature £, 
such that x 6 M  (£) and y  ̂ M (H). Therefore, the tolerance 
Aq, can be given as follows: xA^y if x and y belong to some 
common class of the covering {M (£)}. In this section, we 
shall construct a canonical covering of a tolerance space.

The theorems of this section are good examples of classi­
fication theorems, where objects given by abstract axioms 
“materialize” in the form of concrete and visible constructions.

We now turn to the formal development. Let there be given 
a tolerance space (M, x).

Definition 3.3. A set L ^  M is called a preclass in (M, t )  
if any two of its elements, x and y , are tolerant, i.e. if the 
relation xxy holds for them.

Lemma 3.2. In order that the elements x and y be tolerant, 
it is necessary and sufficient that there exist a preclass L, 
containing both these elements.

Proof. If x and y lie in the preclass L, then by the defini­
tion of a preclass, the relation xxy holds. If xxy, then the set 
{x, y}  forms a preclass, since, aside from the original rela­
tion, xxx, yxy and yxx also hold.

Definition 3.4. A set K  ^  M  is called a tolerance class'* 
in (M, t> if K  is a maximal preclass there.

This means that no set R zd K  is a preclass. In other words, 
for each element z £ M, outside of K, there exists an ele­
ment x g K, which is not tolerant to z.

Lemma 3.3 (on the completion of preclasses). Every preclass 
is contained in at least one class K.

* Where there is no danger of misunderstanding, we shall speak 
simply of a class.
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Wo shall carry out the proof only for the case where the 
set M  is finite, since it is necessary to use the so-called trails- 
finite induction in proving the general case.

Thus, let L be a preclass. If L itself is a class, then the 
lemma is proven. If L is not a class, then there exists an 
element z in the set M \ L , which is tolerant to every ele­
ment in L . We add this element z to L, i.e. we consider the 
set Lx =  L U {z}. Then L1 >̂ L and Lx is also a preclass. 
Either Lx is a class, or else we can continue this process of 
extending a preclass towards a class. Since the set M  is 
finite, our construction of a class will come to an end in 
a finite number of steps. The lemma is proven.

Corollary. Every element x 6 M  is contained in some 
class, i.e. the system of tolerance classes forms a covering of the 
set M .

In fact, xxx by virtue of reflexivity, and so the set {x }, 
consisting of the single element x, forms a preclass.

Lemmas 3.2 and 3.3 immediately yield.
Lemma 3.4. In order that the elements x and y be tolerant, 

it is necessary and sufficient that there exists a class containing 
both these elements.

Everything is now prepared for the formulation and proof 
of our basic classification theorem. Let us recall once more 
our definition of the tolerance space SH. It consists of all 
non-empty subsets of the set H. Subsets are considered 
to be tolerant in SH if their intersection is non-empty.

Theorem 3.3. Let (M, x) be an arbitrary tolerance space, 
and let H be the set of all its tolerance classes. Then there 
exists a mapping

<P: S„, (3.1)
such that elements of M are tolerant if and only if their images 
are tolerant in SH.

Proof. For cp, we choose the mapping which assigns to 
each element x 6 M  the set II (x), consisting of all the class­
es containing it. The corollary to Lemma 3.3 shows that 
H (x) =̂= 0  for any x . According to Lemma 3.4, the relation 
xxy holds if and only if H (x) f| H (y) 0 ,  i.e. II (,x) and
H (y) contain a common class.

If M  is finite, it has a finite number of subsets, and so ths 
space SH is finite. Therefore, instead of the mapping (3.1),
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we may take the mapping cp: M Sp, where p is the number 
of tolerance classes in (M, t ) , which assigns to each element 
x the set of numbers of the classes containing it:

x - +  {nu n2J . . ., nh} (3.2)

(here ra* ^  p). The tolerance of elements x and y means that 
among the numbers assigned to them in accordance with
(3.2), there is at least one common number. In other words, 
x and y have at least one numerical feature in common.

Fig. 3.9. Grouping by tolerance classes

As an example, let us consider the set of heraldic beings 
in Fig. 3.9. We shall regard two such beings as tolerant if 
they have one of the following features in common: (1) to 
be a mammal; (2) to be a mythical being; (3) to be a bird. 
It is easy to see that all beings with one of these features are 
tolerant to each other, and so form a preclass. It is possible 
to verify that these preclasses are tolerance classes for the 
set of beings in Fig. 3.9. The lions and horses have only ^ e 
first feature in common, and the vertex K x of our three- 
dimensional simplex (or, simply speaking, triangle) corres­
ponds to them. The unicorn possesses the first and second 
features, and is therefore depicted along the edge
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Alkiona and the bird of paradise possess the second and 
third features*. The edge K 2K 3 corresponds to them. The 
swan is placed at the vertex K 3, since it possesses only the 
third feature.

Now consider the everywhere defined correspondence

q>: M - + H

which assigns to each x 6 M,  all classes in which it occurs. 
It follows from Lemma 3.4 that xxy is equivalent to x and y 
having a common image in H. By the same token, the theorem 
announced in § 1 is proven.

Theorem 3.4 (L. Kalmar-S. Yakubovich). An arbitrary 
tolerance relation r in a set M can be given as a relation A q,, 
with the aid of some everywhere defined correspondence

y: M - > H .

* * *

Let us now examine how tolerance classes look in the case 
of some specific tolerance spaces.

The space Sp. Recall that this tolerance space consists 
of sets of numbers of the form x =  {nx, n2, . . ., nh}y 
where all nt ^  p and the elements x , y are tolerant if they 
contain a common number.

Denote the set of all elements containing the number i 
by K t. For example, for p =  3 and i =  1, K x consists of the 
elements {1}, {1, 2}, {1, 3}, {1, 2, 3}. It is clear that if 
x d K t and y 6 K t, then they automatically have the number 
i common, and so xxy. Therefore, K t is a preclass. Now let 
z be an arbitrary element outside and let x =  {i} be 
that element of K t, which has the single number i. It is 
clear that xxz does not hold, since z does not contain the 
number i, while x contains only this number. Hence, the 
preclass K t cannot be enlarged, and so we have

Lemma 3.5. The set K t is a tolerance class
Since K t consists of all sets of the form {£, nly . . ., nh}, 

the number of elements in the set K t is equal to 2v~l—

* However, it is possible that Alkiona is simultaneously a bird 
and a mammal; Fig. 3.9 would then require a correction.
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the total number of subsets of the remaining set of p —1 
numbers. Geometrically, K t is the collection of all faces 
(of arbitrary dimensions) of the simplex, containing the 
i-th vertex.

The classes K t which we have in fact found are actually 
sufficient for giving the tolerance in Sp. The precise meaning 
of this assertion is that xxy holds if and only if there exists 
a class K i , containing x and y simultaneously. In fact, if 
xxy> then x and y contain some number i in common, and so 
belong to the class K t. The converse is just as obvious. Thus, 
Lemma 3.4 can be sharpened for the space Sp. In order to 
check tolerance, it'is sufficient tow%check occurrence in one 
of the classes K t. We cannot confine ourselves to a smaller 
supply of classes, since the tolerance of the elements {i} 
and {i, ;} is determined by their occurrence in precisely 
the class K t (see Lemma 3.6 below). However, besides 
the there are other tolerance classes in Sp—super­
fluous in the sense indicated above. Thus, the set {{1, 2}, 
{2, 3}, {3, 1}, {1, 2, 3}} forms a class in S 3. (This can be 
shown by a direct check.) It is clear that this class does not 
coincide with any K t, since it contains no elements of the 
form {i}. This fact that we have noted regarding the exist­
ence of “necessary” and “superfluous” classes leads to the 
concept of a basis.

Definition 3.5. A collection IIB =  {A1, A2, . . .} of 
classes in a tolerance space (M, x) is called a basis, if (1) 
for every tolerant pair x and y, there exists a class K x 6 H By 
containing both these elements: x 6 A1, y £ K 1', (2) the 
deletion of any class from Hn leads to the loss of this pro­
perty, i.e. for every K x 6 IIbi there exists a tolerant pair x, y , 
for which K x is the only common tolerance class in HB.

Remark. An arbitrary finite system of tolerance classes, 
possessing Property (1) of Definition 3.5, contains a basis. 
It can be obtained by successively deleting “superfluous” 
classes.

As our initial system, we may choose the set of all classes. 
The existence of a basis in any finite tolerance space follows 
from this.

Using the concept of a basis, we formulate the following 
assertion:

Theorem 3.3'. Let (M, x) be an arbitrary tolerance space,
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in which HD is a basis. Then there exists a mapping
<J>: M  -v S Hb,

such that elements of M are tolerant if and only if their images 
are tolerant in Shb-

This theorem can be proven by practically repeating word 
for word the proof of Theorem 3.3. Its meaning is that any 
tolerance space can be realized (up to identifications) as 
a system of sets of basis classes, with the natural tolerance 
of type SHb.

We showed above that in the tolerance space Sp, the 
collection of classes K x, K 2, ..., K v form a basis, not 
coinciding with the collection of all classes.

S.M. Yakubovich* described all tolerance classes in Sp. 
We shall not give this description here, but shall only estab­
lish one simple property of these classes.

Lemma 3.6. If K is a tolerance class in Spj containing the 
element {£}, then K  =  AT*.

In fact, all elements tolerant to {i} must contain the 
number i. Hence, K  ^  K t. But K  is a class, i.e. it cannot, by 
definition, be entirely contained in a different class. Hence, 
K  =  K t.

From this we immediately obtain
Lemma 3.7 (S. M. Yakubovich). There exists a unique 

basis; { K ly K 2, . . ., K p) in the space Sp.
Proof. Let H R be a basis in Sp. Then it must have a class 

containing the element {t}. According to the previous lemma, 
this class can only be K t. Therefore, the basis HB must 
contain all the classes K x, K 2, . . ., K p. But they themselves 
already form a basis, i.e. H B — {K^ K 2, . . ., K p}.

In view of the definition of a basis, the tolerance in Sp 
can be given (as was done, incidentally, above) by only p 
features, corresponding to the p basis classes K 2, . . .
. . ., K p. In addition, one need give no thought to the para­
sitic classes in which each element may also occur.

Thus, the remaining classes in Sp play a purely parasitic 
role, with no involvement in any basis. In general, there 
exist tolerance spaces whose bases are not unique. Such an 
example can be most easily constructed geometrically.

* STI, ser. 2, 1968, No. 10.
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Note that in a graph representing a set with a tolerance 
relation, a tolerance class forms a maximal complete sub­
graph, in the sense that all vertices occurring in one tole­
rance class are joined in the graph by edges (since a class 
is a preclass), but any other vertex is not joined by an edge 
to at least one vertex of the given class. It is easy to single 
out the groups of vertices in Fig. 3.5, forming maximal com­

plete subgraphs of S 3. These are {{1}, {1, 3}, {1, 2}, 
{1, 2, 3}}; {{2}, {2, 3}, {1, 2}, {1, 2, 3}}; {{3}, {1, 3}, 
{2, 3}, {1, 2, 3}}, corresponding to the basis classes K x, K2, 
K s, and the group {{1, 3}, {2, 3}, {1, 2}, {1, 2, 3}}, forming 
a parasitic class.

The graph in Fig. 3.10 represents an infinite tolerance 
space—a regular triangular lattice, in which neighbouring 
nodes are tolerant to each other. Here each triangle will be 
a class. All the lined triangles form one basis, Hb, while all 
the white triangles form another basis, Hb- In fact, each edge 
(i.e. each pair x, y of distinct, tolerant elements) belongs to 
two triangles—a light one and a dark one. Therefore, in 
order that the pair x , y be tolerant, it is necessary and suf­
ficient that it belong to a common dark (light) triangle.

The tolerance space in Fig. 3.11 is a finite section of the 
previous one. It has the obvious basis H b , consisting of all 
the lined triangles—10 classes in all, but in it can be discov­
ered a different basis, H%, consisting of all the triangles 
marked with pluses. This basis consists of 12 classes. Thus, 
the number of classes in a basis is not invariant with respect
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to the choice of a basis. The verification that the example 
in Fig. 3.11 has only the two indicated bases is left for the 
reader.

The space B™. The definition of this space was given in § 1. 
It consists of the integral strings x =  (^ , g2, . . ., £p> of 
length p , where 0 ^  ^ ^  m — 1. Denote by K\  the set of

Fig. 3.11. Two bases with a different number of classes

all elements for which = ;’ (£ =  1, 2, . . ., p\ ; =  0, 1, . . . 
. . ., m — 1). It is easy to verify that these sets are tol­
erance classes. Thus, the class K\ is a collection of strings 
with a fixed coordinate assuming a fixed value. It immedi­
ately follows from the definition of tolerance in that the 
classes K\ form a basis. The total number of these classes 
is equal to pm , and each of them contains mP~1 elements. 
The fact that there also exist other tolerance classes in B™ 
is less obvious*.

* * *
When a tolerance relation is transitive, i.e. turns out 

to be its special case—an equivalence relation, then the 
tolerance classes become, obviously, equivalence classes. 
Since equivalence classes do not intersect, we have

Lemma 3.8. A tolerance relation t  is an equivalence relation 
if and only if the tolerance classes do not intersect each other.

* See Ju.A. Schreider, Tolerance spaces, Cybernetics, 1970, No. 2.
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Let us now return to the study of the mapping 9 , con­
structed in the process of proving Theorem 3.3, and clarify 
which elements of M  have the same images under (p, i.e. 
what causes 9 to be non-injective.

Definition 3.6. Let (M, t ) be a tolerance space. A set L ^ M  
is called a kernel, if there exists a collection of classes, 
A1, A2, . . such that L is the set of all elements from M , 
each of which occurs in all these, and only these, classes.

Kernels are pre-images under the mapping 9 . In fact, 
the kernel H (A1, K2, . . .) consists of all those elements x , 
whose image 9 (#) is precisely this set of tolerance classes: 
{jRT1, K 2, . . .}. From this it is clear that the non-empty 
kernels form a partition of the set M , and by the same 
token, present an equivalence relation. We shall try to 
discover how this relation is connected to the original tole­
rance.

Let there be given a tolerance space (M, t ).  In what fol­
lows, we shall denote the set of all elements, tolerant to x, 
by Tx. We define the relation 0 in M  by the condition

xQy, if Tx =  Ty. (3.3)

In other words, xQy means that x and y are tolerant to the 
same elements.

Lemma 3.9. In order for the relation xOy to hold, it is neces­
sary and sufficient that x and y lie in one and the same kernel 
H [K \ K2, . . .).

Proof. Let x and y belong to the kernel H (Kl , K 2, . . .). 
According to Lemma 3.4, the set Tx consists of all elements 
occurring in at least one of the classes A1, K 2, . . .: Tx =  
~  K l U K2 U • • • . But this is also true for the set Tjn 
i.e. Tx = Tu or xOy. Conversely, suppose that xQy, and 
let x belong to some class K.  Then for any z 6 K , the relation 
xtz will hold. I11 view of (3.3), yxz also holds. Hence, y 6 K  
(since K  is a maximal preclass). Analogously, we can show 
that every class containing y, simultaneously contains x. 
Thus, x and y belong to one and the same collection of class­
es, and Whence, to a common kernel. The lemma is proven.

From^this follows the important
Corollary. The relation 0 is an equivalence, and the non­

empty kernels serve as eqivalence classes for 0.
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Note the obvious inclusion

H (K \ K \  . . .) S  K l n K* n ------  (3.4)
In the case of equivalence, classes do not intersect and each 
kernel coincides with its tolerance class:

H (K) -  K.
Furthermore, for any x 6 n (K),

Tx =  H (K).
It is curious to note that when the concept of equivalence 

is generalized (to that of tolerance), the concept of an equiv­
alence class splits into two distinct concepts—tolerance 
class and kernel. This is a rather frequently occurring situa­
tion in mathematics—the splitting up of concepts in the 
transition from a particular concept to a general one.

Definition 3.7. A tolerance space {M, t )  is called kernel- 
free, if each of its kernels consists of not more than one ele­
ment.

The space depicted in Fig. 3.10 can serve as an example 
of a kernel-free space. Every point belongs to exactly six 
triangles—tolerance classes. To each sextet of abutting 
triangles, there corresponds exactly one point—the kernel 
determined by these classes. The empty kernel corresponds 
to any other collection of triangles. For kernel-free tolerance 
spaces, the basic classification theorem (Theorem 3.3) can be 
sharpened as follows:

Theorem 3.3". Let (M, t ) be a kernel-free tolerance space, 
and II the set of all its tolerance classes. Then there exists an 
injective mapping

cp: M SH,
such that elements of M are tolerant if and only if their images 
are tolerant in Sn .

For finite spaces with non-trivial kernels, one can apply 
the same device which was already used for giving equiva­
lences by means of features. Namely, we choose a numeration 
in each kernel. To each element x of the finite space (M, t ) ,  
we assign the collection of numbers

x -> (n0; >h, n2, . . nb),
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where nly n2y . . ., nk are the same numbers as in (3.2), 
while n0 is the number of x in its kernel. It is clear that an 
element is uniquely determined by the integral features rc0; 
nly n2y . . ., nky while the tolerance of a pair is determined 
by the coincidence of at least one of the features nly n2y . . .
• • •»

Now let (M, t )  be an arbitrary tolerance space. Denote 
the set of all its kernels by M R, and define the tolerance of 
kernels flj. and f l2 by the condition: H1ThH2 if there exist 
representatives 6 flj and x2 6 H2, tolerant in (M, t) . 
Since elements of the same kernel are tolerant to the same 
elements, it follows from H1thH2 that for any x1 6 
and any x2 6 f l2, îT^2 holds. In other words, if x1xx2, 
x[Qxiy x 2Qx 2, then we also have x[xx2. We have obtained 
a new space, (M Ry t h ). It is possible to convince oneself 
that it will, at any rate, be kernel-free. It is also clear that 
xxy is equivalent to H (x) x^R (y), where H (x) and H (y) 
are the kernels containing these elements.

We now note that kernels could have been defined with 
the aid of only those classes, belonging to a certain basis HBy 
instead of with the aid of the complete supply of classes. Let 
{K\y K2y . . .} be some collection of classes from the basis 
Hb. We shall call the set of all elements from M y each of 
which occurs in all these classes and does not occur in any 
other class from the given basis HB, the kernel fl {K\, K2y ...) 
with respect to the basis HB (cf. Definition 3.6). We have the 
truth of the following

Lemma 3.10. The partition of the set M into kernels with 
respect to the basis HB coincides with the partition of M into 
ordinary kernels.

Proof. Repeating word for word the proof of Lemma 3.9, 
we see that the kernels, determined by the basis H By are 
the equivalence classes under 0. Therefore, they coincide 
with the original kernels.

Let us examine the space B™ once more. It is easy to see 
that Ki f] K \=  0  if j¥=k.  (One and the same collection 
(£i> . • ., £p) cannot have two different values for the
coordinate £*.) Each element x =  ( | x, S2, . . ., £p) occurs 
in exactly p classes: K\iy K\* , . . ., /v|p. Thus, here all 
non-empty basis kernels have the form R{K\i, K \2, . . ., K \v)y
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and consist of exactly one element: the space B™ is kernel- 
free. Note that in the case of the tolerance space i?™, the 
inclusion (3.4) turns into the equality

h k I\  . . .  4 P) = *5‘ n K f  n • • • 4 P-
In certain cases we can make use of

Theorem 3.5. If a tolerance space (M, t )  has a finite basis 
Hb, then the set of all tolerance classes in (Af, x) is finite.

Proof. By virtue of Lemma 3.10, the number of kernels is 
finite, i.e. the kernel space (AfH, Th ) is finite. Hence, 
(AfH, Tfl) has a finite number of tolerance classes. But since 
xxy is equivalent to H (x)xh fl (y), each tolerance class in 
(M , t ) is the union of kernels forming the corresponding 
tolerance class in (AfH, Th ).  Thus, the set of all tolerance 
classes in (Af, t ) is finite.

Note that neither in the formulation of the theorem, nor 
in its proof, do we assume that (Af, t ) is finite. It can, in 
fact, be infinite, at the expense of having infinite kernels.

§ 4. A Further Exploration of the Structure of 
Tolerances

Consider a set Af and its covering n. In what follows^ we 
shall call the pair (Af, H) a map.

An arbitrary map (Af, n )  permits us to introduce a tole­
rance relation x in Af, defined by the condition: xxy if there 
exists an A 6 II, such that x £ A and y 6 A simultaneously. 
We shall call a tolerance r, defined in this way, the tole­
rance generated by the map (AT, n ). It is obvious that every 
A £ n  is a preclass of the generated tolerance t .

If (Af, t ) is a tolerance space and H is the set of all class­
es in this space, then, by virtue of Lemma 3.4, the tol­
erance generated by the map (Af, H ) coincides with the 
initial tolerance t . The analogous assertion is also true for 
an arbitrary basis in (Af, r).

A map (Af, n )  is called canonical, if each element A of 
the covering n  is a tolerance class, generated by the initial 
map (Af, n ). It is easy to see that if the map (Af, n )  is 
canonical, then n  contains a basis H D of the generated 
tolerance: n  3  HB.
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At the left in Fig. 3.12 a certain map (Af, II) is depicted, 
while at the right is the system of classes of the generated 
tolerance (incidentally, this system consists of a single class 
in the given case). This example demonstrates, in particular, 
the existence of a non-canonical map.

Each map leads naturally to the everywhere defined cor­
respondence

(3.5)
which assigns to each element x 6 Af, all those A 6 IT, 
for which x £ A. Conversely, if an everywhere defined cor-

Fig. 3.12

respondence f : M - > L i s  given, it generates the covering II 
of the set Af, consisting of the pre-images of the elements 
from L, under the correspondence ij/. Thus, A 6 n  if and 
only if there exists a £ £ L, such that A is the set of elements 
from Af, to which the correspondence ij/ assigns £. In what 
follows, the pre-image of the element |  6 L, under the cor­
respondence 'll)', will be denoted by Af (£). Using the cor­
respondence (3.5), we can construct a mapping

q>: Af-> S n, (3.6)
which assigns to each element x 6 Af, the non-empty set 
of elements A £ II, for which x 6 A. In terms of the mapping
(3.6), the tolerance r, generated by the initial map (Af, II), 
may be defined by the condition: xxy if cp (x) f| cp (y) =̂ =0 . 
One can also introduce the relation 0n, defined by the condi­
tion: ^0n y if (p (,r) =(p (y). It is obvious that 0nis an equiv­
alence.

In accordance with the manner of speaking that we agreed 
to earlier, we shall say that the mapping (p assigns to the
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element x, the set cp {x) ^  II of its features. By the same 
token, the set II will be interpreted as the set of features, 
given for objects from the set M.  Those sets i  6 II, for 
which x 6 A,  are the features of the element x £ M.  Thus, 
any map (M, II) is a method of describing a system of fea­
tures, given for the objects from the set M . The statement 
“the element x possesses the feature A ” is equivalent to the

Fig. 3.13

inclusion x £ A.  The classes of the generated tolerance are 
called the canonical features. The canonical features are 
determined by the tolerance itself, and not by the way in 
which it is given.

It is interesting to see how the canonical features in our 
examples may be expressed in terms of the initial features 
of the maps.

In the example in Fig. 3.12, we have
K = A 1 \J A 2 {J A ,.

In the example in Fig. 3.13a, the correspondence ip': M-* L 
is depicted, where L =  {^ , £2, £3}, and M  =  {x, y, z, u}. 
The classes of the generated tolerance are depicted in 
Fig. 3.13b. It is easy to verify that

Z x =  M ( y  U M ( U ) ,  =

In Fig. 3.14, the initial map already  ̂ is canonical. But if 
we take the canonical map (M, H ), with the complete 
set of tolerance classes, then we obtain

= (a , n a 2) u (At n a 3) u (a , n a j .
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We now ask whether the canonical features can be always 
expressed in terms of the initial ones, and if so, then how. 
An answer to the question we have posed is given by 

Theorem 3.6. For an arbitrary map {M , II), any class of 
the generated tolerance K can always be expressed in terms of

Fig. 3.14

elements of the covering II, by means of the operations of in­
tersection and union.

Proof. Consider some tolerance class K. Let x £ K. By 
the definition of a class, xxy for every y £ K; by the defi­
nition of tolerance, there exists a feature A xy 6 II, such that 
x 6 A xy and y 6 Axy. We then have (1) x £ f| A xy and

V £ K
(2) f| A xy £  K.  For (1) follows from the fact that x 6 A xy

V Z K
for all features A xy, while (2) follows from the fact that 
every z, belonging to A xyy is tolerant to y. Since y is an 
arbitrary element of K, z 6 K  by the maximality of a class. 
This gives us

K =  U 0  Axyy (3.7)
x£KyeK

which proves the theorem.
We emphasize that canonical features are defined in terms 

of the initial ones without recourse to complements. Further 
information on the connection between initial and canoni­
cal features is given by.
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Theorem 3.7. There exists a basis of classes of the generated 
tolerance, such that each of the classes of this basis contains 
some set A 6 II.

Proof. According to the definition of tolerance in M , for 
every A £ II, any pair x £ A and y £ A are tolerant, i.e. 
xxy. Hence, A is a preclass. Then by Lemma 3.3, there 
exists a class KA ^  A.  For each A, we choose one of the 
classes KA. The set of classes so chosen obviously satisfies 
Condition (1) of Definition 3.5. Hence, it contains a ba­
sis H b.

Corollary. When M is finite, there exists a basis of tolerance 
classes, in which the number of classes does not exceed the 
number of initial features.

In fact, we assigned some class KA to each initial feature 
A ^  n. Therefore, the set of these classes, {KA} does not 
contain more elements than the number of features A.  
Choosing a basis from {KA }, we can only diminish the number 
of classes.

Consider an initial map (M, n ), and a canonical map 
(My H b ) obtained from it, where HB is a basis. As we have 
already noted, the tolerance relations, given in the set of 
objects M  by these two maps, coincide.

The situation is somewhat different with respect to the 
equivalence relation 0n, determined in M  by means of the 
definition given at the beginning of this section. Let 0n 
be the equivalence relation given by the initial set of 
features, H, and let 0 be the equivalence relation given by
(3.3). As the example in Fig. 3.12 shows, the relations 0n 
and 0 may fail to coincide. Namely, for this example, the 
relation 0n holds only for coinciding objects, since a dis­
tinct set of initial features corresponds to each object. The 
relation 0, on the contrary, holds for any pair of objects.

In the general case, we have
Theorem 3.8. If the relation xQuy holdsy then so does the 

relation xQy, i.e., 0n ^  0.
Proof. If xQny> then the sets of initial features, cp (x) and 

9 (y)> possessed by x and y , coincide. This means that for 
each element A of the covering, x and y simultaneously be­
long, or fail to belong, to A. It follows from Theorem 3.6 
(see, in particular, (3.7)) that for each tolerance class, x and 
y simultaneously belong, or fail to belong, to it. Therefore,
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x and y have the same collections of canonical features, i.e. 
xQy. The theorem is proven.

The following theorem, due to S.M. Yakubovich, gives 
conditions for a set A 6 11 to be a tolerance class, i.e. for 
a feature to be canonical.

Theorem 3.9. Let there be a map (M , 11). In order for an 
element A of the covering II to be a class of the generated tol­
erance t , it is necessary and sufficient that f or any subset II0 ^  
£  II, A £  U B imply f| B s  A.

-Bciio Berio
Proof. Let us first suppose that the set A 6 n  is not 

a tolerance class. Since A is a preclass, the only reason for 
its not being a class is the existence of a z, outside of A and 
tolerant to all elements x 6 A. Hence, for every x 6 A, there 
exists a set Bx £ n , containing x and z. Therefore, the sets 
Bx form a covering of the set A: A s  U Bx. But all the Bx

x£A
contain the element z, which does not belong to A. Conse­
quently, the intersection (1 Bx is not contained in A . Thus,

x£A
we have proven the sufficiency of the condition formulated 
in our theorem. Let us now prove its necessity. Assume that 
there exists a set H0 ^  II, such that A ^  U B, but f) B <3= A.

Beno Ben0
Hence, there exists an element z , occurring in every 
B £ II0, but not in A. This element is tolerant to all x 6 A. 
Hence, A is not a maximal preclass, i.e. is not a tolerance 
class. The theorem is proven.

Applications of Theorem 3.9 to the examples in Fig­
ures 3.12, 3.13, 3.14 are left for the reader.

We shall also consider the so-called conjugate and derived 
tolerance spaces.

Let (M, t )  be an arbitrary tolerance space, and let II0 
be a collection of tolerance classes. The set II0 is turned into 
a tolerance space (H 0, t* ) in a natural way, by means of 
the following definition: Kx* K ' if K  f| K r = £ 0 .

Definition 3.8. If coincides with the set H of all classes, 
then the space (H , t* ) is called conjugate to (M, t) , and is 
denoted by (M*, t * ) (thus, H =  Af*).

Let us consider some examples.
If t is the universal relation, then the conjugate space 

consists of a single element.
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In the space Spj the element x0 =  {1, 2, . . p}, con­
taining all numbers, is tolerant to all elements and, therefore, 
occurs in all tolerance classes. Hence, in the space ( S p , t *  ),  
t *  is the universal relation.

The linear graph with 7 vertices is depicted in Fig. 3.15. 
The “edges” are the tolerance classes, and classes correspon-

Ki K2 K3 K4 Ks  K6

Fig. 3.15. The conjugate of a linear space

ding to adjacent edges are tolerant. It is clear that for the 
linear graph with k  vertices, the conjugate is the linear 
graph with k  — 1 vertices.

A cyclic graph is depicted in Fig. 3.16. Its conjugate 
will be the cyclic graph with the same number of vertices (if

<m *, T*>

Fig. 3.16. The conjugate of a cyclic space

the number of vertices in the original graph was greater 
than three).

The tolerance space (M, t ),  consisting of two cycles, 
linked at a single point, is depicted in Fig. 3.17. The con­
jugate space (AT*, t*) consists of the same cycles with a more
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complicated linkage. But the conjugate of the latter 
space, (M**, t * * ) ,  actually coincides with the former space 
(Af, x). We leave the accurate verification of this fact to 

the reader.
Definition 3.9. Let HB be a basis. Then the space (HB, x*) 

is called conjugate to (Af, x ), with respect to the given basis H B.

IVI , I

(b )

Fig. 3.17. Two linked cycles and the conjugate space

Definition 3.10. The second conjugate space with respect 
to a basis HB in (Af, x) and a basis H% in (HD, x*) is 
called a derivative of the tolerance space (Af, x).

Thus, a derived space (AT, x' > of a tolerance is defined not 
uniquely, but up to a choice of bases. This arbitrariness van­
ishes when (M, x) and (Hb, t*) have unique bases. (For 
example, when all of H form a basis in (Af, x), and a basis 
in {Hn, x*) also contains all the appropriate classes.)

Let us consider some examples, which should be clear from 
our previous illustrations:

1. For the linear graph with k vertices (k ^  3), the de­
rived space is also a linear graph, but with k — 2 vertices 
(see Fig. 3.15).
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2. For the cyclic graph with k vertices (k ^  4), the de­
rived tolerance space “coincides” with the original one (see 
Fig. 3.16).

3. For the linked cyclic graphs (seeTig. 3.17), the derived 
space “coincides” with the original space.

4. For the space Sp, the derivative Sp consists of a single 
element.

5. If we choose the canonical basis {K\}  in the space Bpy 
then (BPY is “built” the same as Bp itself. The verification 
of this fact is left to the reader.

The examples given above lead us to believe that a de­
rived space (M'y t') is built like “part” of the original space 
(My t ) . As a matter of fact, this isn’t quite true.

An exact formulation of the corresponding fact is given by
Theorem 3.10. If (My t )  is an arbitrary tolerance space, in 

which Hb is an arbitrary basis, then there exists a basis IIB 
in the conjugate space (HBy t * ) and an injective mapping

6: H % - + M y

such that K% 6 H*By K% 6 H% and 8 (K \)%6 (K% imply 
K \ t** K t

Proof. Denote the set of classes of the basis HBy contain­
ing x , by Hb { x ) .  For any classes K 1 and K 2 from IIB (x), 
we have K x f| K 2 ^  0> Le. ^ iT* K 2. Thus, the sets HB (x) 
are preclasses in (II By t*). Hence, for each x £ M y there 
exists a class K% in (HB, t*), for which IIB (x) ^  K%. Choose 
a fixed class K% for each x, and denote the set of all these 
classes {K%} by We now have the surjective mapping

which to each x 6 M y assigns the class K% £ Let us show 
that £  contains a basis IIB. In fact, if K xt* K 2, then there 
exists an x £ M, belonging to K x and K 2. Thus K x and K 2 
belong to HB (^), and so K x 6 K% and K2 6 K%. Now for 
each K* 6 HBy we choose exactly one element x £ M, for 
which /  (x) =  K *. We denote the set of all such elements by 
M v It is clear that M x s  M  and the induced surjective 
mapping of M ± and H% is injective. Its inverse

t 1: H% M t
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is thus an injective mapping of H% onto the subset M x of M. 
We may therefore regard it as an injective (but no longer 
surjective in the general case) mapping

6:
Now let K i 6 H% and K% 6 where x =  8 (/££) and y =  
=  5 (Kl) and xxy. Then there exists a class K  containing 
x and y . Hence, HB (x) f) HB (y) =̂= 0 . But it follows from 
K* => Hb (x ) and K% 3  HB (y) that K* R K* ¥= 0 ,  i.e. 
K* T** ]£* The theorem is proven.

It follows from this that for finite sets M , stabilization 
must occur at a certain point, and the successive deriva­
tives will actually be indistinguishable.

S.M. Yakubovich proved that for any (M, x), there ex­
ists a “primitive”, (Af, x), such that (M', x ') “coincides” 
with (My x).



Chapter

IV
ORDERING

§ 1. What is Order?

In this chapter, we turn to the study of a new type of 
relation —not less important and not less prevalent than 
the previous ones. We are talking about situations where 
objects of a certain set are related to each other by seniority, 
importance, “priority”, etc. Such relations are, apparently, 
non-symmetric. We shall begin with a discussion of informal 
examples, in order to understand which properties of these 
relations are so essential and general that they ought to be 
included in an axiomatic definition of the kind of relations 
we are interested in.

The integers can serve as our simplest example. For any 
two distinct integers, we can determine which of them is 
greater than the other. This is a case where all objects are 
strictly arranged in order of magnitude.

Generally speaking, it is by far not always possible to 
compare all objects with each other. Consider the box-score 
for the Lasker Memorial (see Chapter I). We could have 
introduced the following definition: chess-player x is stron­
ger than chess-player y if x won his game with y. We would 
then be compelled to recognize the strength of players who 
drew with each other as being equal. But this very natural, 
it would seem, method of ordering the players is certainly 
unsuitable for determining the winner — the strongest 
player: a situation where x outplays y , y defeats z, while z, 
in turn, massacres x is completely realistic. Therefore, one’s 
place in a tournament is determined by one’s point total. 
But not even in this case is the winner always determined
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uniquely. Thus, in the Lasker Memorial, there turned out to 
be two winners—Bronstein and Uhlman. In addition, it 
sometimes happens that a chess-player in the middle of the 
box-score standings is able to massacre the tournament prize­
winners. Chess-players know about the so-called table of 
coefficients, by means of which it is possible to compare 
players with the same number of points. The idea behind 
this table consists in giving greater weight to wins over 
strong opponents whenever there is a tie in the total number 
of points.

However, in important tournaments, such as the U.S.S.R. 
championship, the leading places are often determined by 
a play-off.

The illustrations in Fig. 4.1 are heraldic symbols. We 
have ordered these illustrations in an attempt to discover 
how the conception of one or another mythological being 
might have been created.

For example, the conception of the centaur arises as a 
result of the merging of the images of a man and a horse. 
Pegasus has features of a bird and a horse. The image of the 
mermaid evidently arose as a result of adding fish-like feat­
ures to the human figure. A siren differs from a mermaid in 
that it has wings, too. It must be stipulated at once that 
this drawing does not in any way reflect the historical origin 
of the myths, but is only intended to illustrate our notion 
of ordering. One thing is clear: in this example, it makes 
sense to speak of relative seniority (“priority”) only for 
certain pairs. Pegasus and the mermaid, for example, aren’t 
related in any way in the given system.

Our next example is a set of persons for whom seniority is 
defined as direct descent. A father, grandfather, great­
grandfather, etc. is regarded as senior to his son, grandson, 
great-grandson, etc., respectively. But an uncle and his 
nephew are already incomparable. Such an ordering is 
depicted by genealogical (or family) trees. To the first edition 
of “Words about Igor’s regiment” is appendixed “A genera­
tion’s list of Russian grand dukes and princes who are men­
tioned in this song”. We cite that part of the list which is 
directly related to the song’s main hero:
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Fig. 4.1. Interrelations between mythical figures

It is evident from this list that the Kiev throne and prin­
cipalities were inherited not only by sons from their fath­
ers, but also by younger from older brothers (even when 
the latter had sons). Thus, the relation of succession to the 
throne does not coincide with the above relation of seniority. 
An" uncle sometimes turns out to be “senior” to his ne­
phews.

In France, a different law of succession to the throne was 
in force. A deceased king’s brother could succeed him only
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in the absence of direct heirs (sons, grandsons or great- 
grandsons of the deceased*).

Thus, in a dynastic genealogical tree, besides the relation 
of direct decent, there is an additional relation—the relation 
of order of succession. A fragment of a genealogical tree, 
with an indication of the two types of succession to the 
throne, considered above, is depicted in Fig. 4.2. (Chronologi­
cal seniority in a single family is shown from left to right. 
Dashed arrows present the relation of immediate heir.)

Fig. 4.2. Order of succession to the throne: (a) by direct descent; 
(b) from brother to brother

Let us now consider the set M  of all English words. We 
shall say that the word x is senior to the word y, if y can be 
obtained from x by deleting some of the letters at the begin­
ning and the end (or at only one side) of x. This relation 
(let us denote it by: y <  x) gives us a certain ordering in 
the set of English words. For example, “rest” <  “restaurant”, 
“quest” <  “conquest”. (Do you remember how the name of 
Captain Wrungel’s famous yacht was accidently changed?) 
But the words “clod” and “cloud” are incomparable— 
neither of them is senior to the other. A fragment of the 
graph depicting the seniority of English words is shown in 
Fig. 4.3.

* The French throne became hereditary, instead of elective, 
beginning with the reign of Philippe-August (1180-1223). Before 
this, the early Capetings (direct descendents of Hugo Capet (987-996), 
occupying the French throne until 1848) coronated their sons while 
still alive, in order to consolidate their dynasty’s claims. Philippe- 
August himself was anointed to rule in 1179, during the life of his 
father —Ludwig VII.
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An analogous seniority by occurrence relation can be de­
fined in the set of structural formulas of organic chemistry.

Let M  be a set, and let 2M be the set of all its subsets. 
Inclusion, M 1 ^  M 2, is a relation establishing an order in 2M.

An ordering in the set 5 P of all strings of length p, con­
sisting of integers from 0 to m — 1, can be defined in the 
following way. We shall say that the string (£1? l 2, . . ., l p )

is higher than the string (%, r]2, . .  ., r]p) if each of the former’s 
coordinates is not less than the corresponding coordinate of 
the latter: and at least one of them is actually great­
er than its namesake. For example, (1, 0, 3, 2) is higher 
than (1, 0, 2, 2), but incomparable with (1, 1, 0, 0), in B\.

Note that we have always had the possibility of a two­
fold introduction of ordering. It has been up to us to choose 
whether we are regarding each object as related to itself 
(as in the case of non-strict inequality ^  or non-strict in­
clusion ^ ) , or, on the contrary, are assuming that an object 
cannot be related to itself (as in the case of strict equality <  
<; or strict inclusion a ) .  Therefore, we shall have to in-
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troduce two axiomatic definitions — for strict and non- 
strict orderings. Incidentally, there is, as we shall see, 
a rather simple connection between strict and non-strict 
orderings.

We shall first analyze the case of a strict ordering. We 
shall base ourselves on the following

Definition 4.1. A relation A in a set M  is called a strict 
order relation (or a strict order) if it is antireflexive and tran­
sitive.

The relation <  for integers or real numbers, and the 
inclusion relation c= for sets, can evidently serve as exam­
ples of strict orders.

Theorem 4.1. If A is a strict order relation, then it is asym­
metric.

Proof. Assume that the contrary is true. Let A f| A~x 
be non-empty, i.e. there exists a pair of elements (x, y > in M , 
such that xAy and xA~xy simultaneously. In other words, 
xAy and yAx. By transitivity, it follows from this that 
xAxy which contradicts antireflexivity.

Thus, a strict order in a set M  possesses the following 
properties:

(1) xAx does not hold for any x 6 M\
(2) if xAy and yAz, then xAz holds;
(3) if xAy holds, then yAx is impossible. The first two 

properties constitute the definition of a strict order, while 
the third follows from them.

If A is a strict order relation, then the graph of A does not 
contain any circuits*. Conversely, suppose that we have 
a circuit-free graph. In the set M  of this graph’s vertices, 
we define the following relation A: xAy if there exists a path 
in the direction of the arrows, leading from x to y. In view 
of the absence of circuits, it is easy to see that A is a strict 
order relation.

It is natural to call a set M, together with a strict order 
relation A given in it, i.e. a pair (M, A ), an ordered set.

Definition 4.2. A strict order relation A is called a total 
strict order if for every pair, x and y, of distinct elements 
of My either xAy or yAx is true.

* A circuit (in an oriented graph) is a sequence of vertices, x0l xXJ 
x2y . . xn, such that xn =  x0 and there is an arrow going from xt to 
Xi+x- A loop (n =  1) is a special case of a circuit.
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In view of Theorem 4.1, the last two relations cannot 
hold simultaneously. Therefore, if a total strict order rela­
tion A is given in a set M, then a partition into three classes 
arises in the set M2: the class of pairs of the form (x, x), 
the class of pairs (x, y ), such that xAy, and the class of 
pairs {x, y), such that yAx.

For example, if M  is a straight line, in which the relation 
<  is defined, then M2 is the plane of pairs (x, y). The class

Fig. 4.4

of pairs of the form (x, x) is the diagonal line y =  x, the 
class of pairs (x, y), such that x <  y, consists of the points 
lying above the diagonal, while the class of pairs (x, y), such 
that y <  x, consists of the points below the diagonal 
(Fig. 4.4).

We shall now describe the structure of sets with a total 
strict order.

Theorem 4.2. Let a total strict order relation <  be given in 
a finite set M . Then it is possible to choose a numeration, 
M =  {#!, x2, . . xn), such that the relation xt <  Xj will 
hold if and only it i <  /.

As a preliminary, let us establish the truth of
Lemma 4.1. If a total strict order <  is given in a finite 

(non-empty) set M , then there exists a unique element x £ M , 
such that for every y 6 M , not coinciding with x, the rela­
tion x <  y holds.

(The element x , possessing the stated property, is called 
the least element in the ordered set (M , < ) . )

Proof of the lemma. Take an arbitrary element y0 6 M. 
If yQ is least, then the existence of the required element is
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proven. If not, then there exists, since <  is a total strict or­
der, an element yx ^  y0J such that y± <  y0. Once again, ei­
ther yx is least or else there exists a y 2¥ z */i> such that y2 <  
<  yv  Continue this process. Suppose that n +  1 elements 
have already been chosen, for which

yn ^  yn-ij Vn-1 Vn-2i • • • j Vi ^  y<}»
In view of transitivity, it is clear that y t <  yj when i > / •  
Hence, by virtue of antireflexivity, all chosen elements are 
pair-wise unequal. Therefore, in view of the finiteness of M, 
the process of choosing elements must break off in a finite 
number of steps. The element yn, chosen in the last step, will 
obviously be the one we are seeking. Thus, for any z yn, 
we have yn <  z. Let us show that this element is unique. 
Indeed, suppose there exists another element y'n, such that 
for every z ^ y n, yn <  z. Then yn <  yn and yn <  yn hold 
simultaneously, which is impossible in view of asymmetry. 
The lemma is^proven.

Note that if a total strict order is given in M, then in 
any non-empty subset Q of M, there naturally appears a to­
tal strict order, and so there exists a unique least element 
in Q (if it is finite).

We now turn to the proof of the theorem.
Let be the least element in M f chosen in accordance 

with Lemma 4.1. Denote the set M  \  {a^} by M v  Denote 
the least element of M x by x2. It is clear that xx <  x2. 
Delete x2 from M u and denote the remaining set by M 2. 
Its least element x3 satisfies the condition: x2 <  x3. Our 
numeration procedure is clear already: sorting out all the 
elements from M  by the indicated method, we line them up 
in a sequence:

<  x2 <  . . . <  xpj
where p is the number of elements in M . In view of transi­
tivity and asymmetry, it is clear that xt <  xj if and only 
if i < ; .  The theorem is proven.

This theorem in essence means that any total strict order 
in a finite set M  is equivalent to the ordinary order in some 
initial segment of natural numbers.

Consider a set M  of some rigid bodies (objects). We shall 
say that x <  y if the object x weighs less than the object y.



126 C h$ IV .I  Ordering

This is a rather typical example of how an order is defined. 
We now define the corresponding general method.

Let an injective function,
/: M-+  R,

taking on real numerical values (R is the set of real numbers), 
be defined in a set M. The relation <  is given in M  by the 
condition: x <  y if /  (x) <  /  (y). Such a relation is anti- 
reflexive, since we cannot have /  (x) < /  (x). The transitivity 
of <  is equally obvious. Finally, for any pair of distinct 
elements x , y from M, either /  {x) <  /  (y) or /  (y) <  
<  /  (x) is true, since /  is injective. Hence, the order <  is 
total. The function /  maps our set M  one-to-one onto a cer­
tain subset of the set R of real numbers, since for any two 
elements of M, the relation x << y is equivalent to the 
inequality /  (x) <  /  {y).

For example, when the function /  assigns to each object x 
its weight /  (,x), we obtain an order described above.

If an order in a finite set M  isn’t total, it is obviously 
impossible to enumerate the elements of this set, so that 
larger numbers correspond to higher elements.

Definition 4.3. Let a strict order relation <  be given in 
a set M. Then an element x £ M  is called minimal (maximal) 
in the ordered set (Af, < ) ,  if there does not exist any ele­
ment y, for which y < x  (y > x ) .

If, as usual, we draw an arrow from x to y in case x <  y, 
then a minimal element in the graph of a relation is one into 
which no arrows enter, while a maximal element is one out 
of which no arrows leave.

In the case of a total strict order, a minimal element x 
possesses the additional property of satisfying x <  y for 
every y x. By the same token, the concept of a minimal 
element coincides with that of a least element for the case 
of total orders. In the general case, it can happen that an 
element x is minimal, but doesn’t satisfy the relation x <  y 
for some elements y . Thus, the words “fun”, “me” and “a” 
in Fig. 4.3 are minimal elements, but they aren’t related 
to each other by the order relation under consideration 
(they are incomparable!). The elements x and y are called 
comparable in a given ordered set (Af, < ) ,  if x <  y or 
x =  y, or y <  x.

Definition 4.4. Let a strict order relation <C be given
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in a set M. A subset Q ^  M  is called maximal total if (1) the 
relation <  induces a total strict order in Q and (2) in any subset 
Rx of the set Af, such that Rx zd Q, the relation <  is no 
longer a total strict order.

Theorem 4.3. (Hausdorff). Let (M, < )  be an ordered set. 
Given any element y 6 M , there exists a maximal total subset 
Q of M, containing y.

Proof. We shall carry out the proof for a finite set M. 
However, with the aid of Zermelo’s axiom, this proof can 
be carried out for infinite sets too*. Let the set Qx consists 
of the initial element y. It is obvious that the relation <C is 
a total strict order in Qx (the graph of <  in Qx is empty).' 
If Q1 is already maximal total, our theorem is proven. 
Assume that we have constructed a set Qn in which the 
relation <  is a total strict order. If it is maximal, the 
theorem is proven. If not, then there exists an element in 
M \  Qn, comparable with all elements of Qn. Adding it to 
Qn, we obtain a set (?n+1 =3 Qn with a total strict order. Be­
cause of the finiteness of Af, this process will break off in 
a finite number of steps, and we shall obtain the desired 
set Q ^ y .

Theorem 4.4. If <  is a strict order relation in a finite set M , 
then for any element y 6 Af, there exists a minimal element 
x 6 M, such that x << y or x =  y.

Proof. If y is a minimal element, x =  y. In the opposite 
case, there exists an element z, such that z <  1/. If z is 
a minimal element, x =  z. In the opposite case, there exists 
an element u, such that u < iz ,  etc. Since M  is a finite set, 
our “descending chain”, y > z  . . ., will break off 
at the desired element in a finite number of steps. The theo­
rem is proven.

In this theorem, the finiteness of M  is now essential, since 
there is no minimal element in, for example, the set of all 
integers in their natural order. However, there exists a class 
of order relations in infinite sets, for which the theorem on 
the existence of minimal elements can also be proven.

The following paragraphs are written for the reader who 
is acquainted with elementary set-theoretic topology.

See A. G. Kurosh, Lectures on General Algebra, Ch. I, M., 1962.
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Lei a strict order relation <  and a topology be given in 
a set M. We shall assume that the order <  is continuous 
with respect to the given topology. This has the following 
meaning. Let Q ^  M. An element x (j M  is called a lower 
{upper) bound of the set Q, if for each element y 6 Q, either 
x <  y or x =  y (either y << x or y =  x). We shall denote the 
closure of the set Q by Q. The order <  is called continuous 
with respect to the given topology if every lower (respec­
tively: upper) bound of an arbitrary Q is a lower (res­
pectively: upper) bound of its closure Q.

Perhaps it might have been more natural to define the 
continuity of an order relation by requiring that the union 
of the relation’s graph with the diagonal be closed in M  X 
X M . It is easy to show that our definition follows from 
this one.

For example, the natural order in the real axis is continu­
ous with respect to this axis’ natural topology.

Lemma 4.2. If an order is continuous, then the set R x of all 
elements y 6 M, for which either y <C.x or x =  y, is closed.

In fact, x is an upper bound, by definition, for R x; in 
view of continuity, x is also an upper bound for R x. Take 
an arbitrary y £ R x- Then either y <  x or y =  x. In both 
cases, we have y £ R x• Hence, R x ^  R x. But R x 3  R x is 
always true. Consequently, R x =  R x.

Lemma 4.3. If an order is continuous, every maximal total­
ly ordered set Q is closed.

Proof. In view of the fact that the order is total in Q, 
given any x £ Q, the set Q can be split up into two parts, 
Q =  Q% U Qx* Here Qi is the set of those elements y (zQ, 
for which y <  x or y =  x, while Qx is the set of those ele­
ments y , for which x <  y or x =  y (the intersection Q% f| 
H Qx consists of the single element x). Since the closure of 
the union is equal to the union of the closures, we have

On the other hand, Qi £  R x and Q% s  R x. Therefore, 
Qi ^  R x by Lemma 4.2. Thus, any element y  (zQt either 
coincides with x or else satisfies the relation y <  x. Analo-
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gous reasoning shows that any element x 6 Qx either coin­
cides with x or else satisfies the relation x<C.z. Hence, any 
element in the closure Q is comparable with x. This assertion 
is true for any x 6 Q- Thus, any element w £ Q is comparable 
with any element x £ Q- Consequently, if there existed an 
element belonging to the set Q \  Q, then this element could 
be added to Q, preserving a total order. But it is impossible 
to do this, in view of the maximality of Q. Therefore, Q ^  
^  Q, and so Q =  Q. The lemma is proven.

It follows from these lemmas that the intersections Fx =  
=  Rx fl Q are closed sets. If xl9 x2, . . . are elements of Q', 
then the intersection of any finite group of these sets, 
Fx f| Fx2 f| • • • fl FXr, is non-empty. Since in fact {xly x2, . . .
. . ., xn} ^  Q, the order <  is total in {xx, x2, . . . xn}. As 
{xx, x2, . . ., xn} is a finite set, it has a least element. Let 
this least element be xv  Then it is clear that Fx f| Fx fl 
0 . . . n Fxn =  Fxt\ consequently, the intersection we are 
interested in is non-empty, since it contains the element x̂ . 
Thus, the system of sets {i^} {x 6 Q) is a centered system 
of closed sets.

Theorem 4.5. Let M be a compact topological space, in 
which <  is a continuous order. Then for any element y 6 M y 
there exists a minimal element xQ, such that x0 <i y or x0 =  y .

Proof. According to Theorem 4.3, there exists a maximal 
totally ordered set Q £  A/, containing y. By one of the 
definitions of a compact space, the intersection of the system 
of sets I /7*} (x 6 Q) is non-empty. Let x0 be an element of 
this intersection. Since x0 6 Q, %o is comparable with y . 
We shall show that x0 is the minimal element of the set Q. 
In fact, if there exists a z 6 Q, f°r which z <  x0, then Rz 
does not contain xQ, and so Fz does not contain x0, i.e. x0 
doesn’t occur in the intersection of all the Fx. Thus, x0 is 
the minimal element of Q. Hence, x0 <  y or x0 y. But if 
x0 were not a minimal element of the set M , there would be 
a w 6 M, such that w<C.x0. This element w could be added 
to Q without violating the totality of its order. By virtue of 
the maximality of Q, this is impossible. Thus, x0 is a mini­
mal element of M , where x0 <  Y  or x0 =  y. The theorem 
is proven.
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It is easy to obtain the following generalization of this 
theorem:

Theorem 4.5.' Let M be a topological space, in which <  is 
a continuous order. Assume that every set R x of all elements 
y £ M, for which y < C . x o r y = x , is compact. Then for any 
element y 6 M, there exists a minimal element x0, such that 
x0 < y  or x0 =  y.

We now turn to the study of non-strict orders, introducing 
the following

Definition 4.5. A relation A in a set M  is called a non- 
strict order relation {or a non-strict order) if it can be presented 
in the form

A =  A x U E,  (4.1)
where A x is a strict order in M, while E is the diagonal relation.

It follows from this that a non-strict order relation is 
reflexive. It is easy to verify that it is also transitive. Howe­
ver unlike a strict order, it is not asymmetric, but only 
antisymmetric. Moreover, A f| A ' 1 =  E. In fact, it fol­
lows from (4.1) and (1.15) that

A(\A~' =  {Ai \)E)[\{A-'\)E)
= {a , n a?) u {a, n e) u (A-1 n w E .

By virtue of the properties of a strict order*, all the terms 
in parentheses are empty sets.

Any non-strict order relation is reflexive, antisymmetric 
and transitive. It is easy to see that if A is reflexive, anti­
symmetric and transitive, then A is a non-strict order, since 
A =  {A \  E) U E, where A \  E =  A x is a strict order. 
Therefore, it would have been possible to introduce a non- 
strict order axiomatically, as a reflexive, transitive and 
antisymmetric relation. None of these properties follows 
from the others, as is easily verified by means of appropriate 
examples.

We shall call a non-strict order A total ifjior any pair x 
and y , either xAy or yAx is true. It follows from the antisym­
metry of a non-strict order that the simultaneous holding of 
xAy and yAx means the coincidence x — y. It is easy to 
verify the truth of

* In particular, by virtue of the fact that is a strict order.
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Lemma 4.4. / /  A is a total non-strict order, then A x =  
=  A \  Z? is a total strict order. Conversely, i/ Ax w a total 
strict order, then A =  A 1 [j E is a total non-strict order.

We introduce the following useful
Definition 4.6. A relation A in a set M is called a gimsi- 

order relation (or a quasi-order) if it is reflexive and transitive.
It is obvious that a quasi-order relation is a generalization 

of an equivalence relation and, at the same time, a generali­
zation of a non-strict order relation. Now suppose that the 
quasi-order A is simultaneously an equivalence and a non- 
strict order. Assume that xAy holds and x y. Then by the 
symmetry of an equivalence, yAx is true. On the other 
hand, in view of the anti-symmetry of a non-strict order, 
yAx does not hold. From this follows

Lemma 4.5. If a relation A is simultaneously an equiva­
lence and a non-strict order, then it is the equality relation.

Example. Let there be a mapping

where R is the set of all real numbers (the real axis). Intro­
duce a relation A in M  by the condition:

xAy if f (x )<  /  (y).

It is clear that A is reflexive, since f (x) ^  f (x). The transi­
tivity of A is evident from the following argument: if xAy 
and yAz, then /  (x) ^  /  (y) and /  (y) ^  /  (z), and so /  (x) ^  
^  /  (z), i.e. xAz. If x =̂= y and /  (x) =  f (y), then xAy and 
yAx. Therefore, if /  is not injective, A is not anti-symmet­
ric. It is obvious that for any pair x and y , we have either 
/  (z) ^  /  (y) or /  (y) /  Or), i.e. either xAy or yAx.

Let us now show that each quasi-order generates an order. 
For this we need

Theorem 4.6. If A is a quasi-order, then the relation 
B =  A {\ A ' 1 is an equivalence.

Proof. B's reflexivity follows from Lemma 1.1, and its 
transitivity, from Lemma 1.7. Let us prove that B is sym­
metric. Assume that xBy holds. This means that xAy and 
yAx hold simultaneously. But this is equivalent to yAx 
and y A '1.r, i.e. yA f| A~lx =  yBx. Hence, B is symmetric. 
The lemma is proven.
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Let A be a quasi-order in a set M. Denote the set of equi­
valence classes with respect to the relation B =  A f| A ' 1 
by SQL If X  and Y  are two classes from SR, in which represen­
tatives x 6 X  and y £ Y  can be chosen, such that xAy holds, 
then we shall say that X is related by A* to Y. We shall 
say that the relation A* is induced by the quasi-order A.

Theorem 4.7. The relation A* in the set of equivalence 
classes SQL induced by a quasi-order A, is a non-strict order.

Proof. A *’s refiexivity follows from the fact that for 
any class X  and any representative x £ X, xAx is true, and 
so XA*X  is valid. The verification of transitivity is a bit 
more complicated. Suppose that the class relations XA*Y  
and YA*Z are true. This means, first of all, that for some 
representatives, x £ X  and yx 6 Y, the relation xAyx holds 
and, secondly, that for some representatives, y2 G Y  and 
z 6 Z, the relation y2Az holds. Since yt £ Y  and y 2 £ Y, 
we have yiBy2 and, therefore, yiAy2. From xAyu y\Ay2 
and y2Azy we obtain xAz by the transitivity of the quasi­
order A. Hence, we have XA*Z. The proof of ^4*’s anti­
symmetry is the most non-trivial. Let XA*Y  hold. This 
means that for some representatives, x 6 X  and y £ Y ,  
we have

xAy. (4.2)
Assume that YA*X  is simultaneously true, i.e. there exist 
representatives, x' £ X  and y 6 Y, such that

y’Ax’. (4.3)
According to the definition of an equivalence class, yA f| 
fl A~ly . Then by transitivity, it follows from (4.2) and 
yAy that

xAy'. (4.4)
On the other hand, it follows from (4.3) and x'Ax that 

y'Ax =  xA~ly ' . (4.5)
Comparing (4.4) and (4.5), we obtain

x{A{\A-i) y \

i.e. x and y belong to the same class with respect to A fl A “L 
Hence, X fl Y  0  and, consequently, X  =  Y, which
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proves the anti-symmetry of A*. By the same token, our 
theorem is proven.

Thus, it is possible to construct a non-strict order on the 
basis of a quasi-order in a set Af, by “pasting together” cer­
tain objects from M.

For our previous example of a quasi-order A, given by 
a real-valued function /  on M , the sets where /  takes on 
a fixed value serve as elements of the set 9JL Such sets are 
usually called level domains. The order A* in the set 9Ji, 
induced by the quasi-order A , is defined by the condition: 

(E ^ E '  means, of course, EA*E') if for any x 6 E 
and for any x 6 E \  we have /  (x) ^  /  {x).

Suppose, in particular, that Af is a set of points on a topo­
graphical map, while the quasi-order is given by the con­
dition: x ^  y if the height /  {x) of the point x above sea 
level is not greater than the height f (y) of the point y above 
sea level. Then the contour lines are the elements of the 
set while the order A* coincides with the order of the 
“height markings” on these contour lines.

If the quasi-order A were total*, then the order A*, defined 
on classes, would also be total, as we can easily convince 
ourselves. Indeed, take two arbitrary classes: X  and Y  
and two arbitrary representatives in them: x 6 X  and 
y Since A is a total quasi-order, at least one of the fol­
lowing relations holds: xAy , uAx. Hence, either XA*Y  or 
YA*X  is true.

We conclude this section by considering an example. Let M  
be a set of situations, among which a choice must be made. 
For example, a set of job openings. (It is clear that tens of 
other examples of varying degrees of seriousness could be 
substituted here.) In operations research theory, there exist 
the following recommendations for making a well-grounded 
choice. Assign a collection of features to a job opening. For 
example, (1) distance from residence, (2) creative satisfac­
tion, (3) salary, (4) growth prospects, (5) interesting col­
leagues. We assign a weight to each factor, reflecting our idea 
of the given factor’s significance. Say, the weights 30, 10, 40, 
10, 10 mean that we are looking for a near-by, profitable job, 
while the weights 20, 30, 10, 10, 30 express our striving to

* That is, for any x and y , either xAy or yA x .
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find a job giving maximal satisfaction, not forgetting about 
a minimum of the comforts of life. We then describe each of 
the job offers, evaluating it with respect to all of the 
features, so that our maximal evaluation does not exceed the 
weight which we have already assigned to a given factor. 
A possible assignment of weights for five job offers is shown 
in the following table.

Feature Maximal
weight I II i l l IV V

(1) Distance from residence . . . 10 5 10 0 10 5
(2) Creative satisfaction............... 30 20 10 30 15 20
(3) Salary ........................................ 10 10 10 0 5 0
(4) Growth p ro sp e c ts .................. 20 20 15 20 10 15
(5) Interesting colleagues . . . . 30 10 15 15 5 10

Total evaluation . . . . 100 65 60 65 45 50

Thus, on a set M  of possible situations, we have given an 
evaluation function /, which determines a total quasi-order 
in M. According to Theorem 4.7, pasting together equiva­
lent situations (in our case, I and III), we obtain a total 
non-strict order. Therefore, we can find an optimal class of 
situations. Within this class, we can make a random 
choice—say, by tossing a coin. This is all very good, since it 
gives us confidence in the validity of our choice. But, on 
the other hand, this method forces us to use a total order 
where there really isn’t any. In our example, say, it is quite 
clear that jobs I and III, having collected identical weights 
and so formally equivalent, are by no means equivalent from 
the point of view of our choice. These jobs are essentially 
different (one of them is better in certain factors, the other— 
in others), and we must again ask ourselves what we really 
want. Here the mathematical model of the phenomenon 
created an illusion of simplicity in a situation where there 
really was none. Therefore, one should exercise care in 
dealing with numerical evaluations of real phenomena. This 
does not compromise the method of weighted evaluations
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itself—it is evident from it that there is a fortiori no point in 
considering job IV.

But one should only apply such evaluations when their 
limitations and imprecisions are well understood. There 
usually is no total order in situations where choices are 
actually made. When introducing such an order into our 
model, we must take into account the degree of arbitra­
riness that is being allowed.

§ 2. Operations on Order Relations
Let us again begin with the simplest operation, A"1. From 

lemmas 1.1, 1.2, 1.6 and 1.7 follows
Theorem 4.8. If A is strict order (non-strict order, quasi­

order), then A~l is a strict order (non-strict order, quasi-order).
It is also easy to verify that if A is a total strict order 

(total non-strict order, total quasi-order), then A~x is a total 
strict order (total non-strict order, total quasi-order).

From lemmas 1.1, 1.2, 1.6, and 1.7 follows
Theorem 4.9. If A and B are strict orders (non-strict orders, 

quasi-orders), then the intersection A f| B is also a strict order 
(non-strict order, quasi-order).

Remark. Let A be a strict order, and 5 , a non-strict order. 
Then B =  Bx (J E, where Bx is a strict order. Since

a n b = a[) (bx u e) = (a n B i) u (a n e) = a n b19
the intersection of a strict and a non-strict order is a strict 
order.

The property of “being a total order” is not necessarily 
preserved by intersections. This can be most simply seen 
from the following considerations. Let A be a total order 
(strict or non-strict); then A f| A "1 =  0  (or =  E). Hence, 
A n A -1 is not a total order in a set containing more than 
one element.

A union of orders is not, in general, an order. This is 
quite clear from the following example. Let A be a total 
non-strict order; then A "1 is a relation of the same type. 
However, the union A {J A -1 is the universal relation, and 
is therefore not an order. A condition for the union of orders 
to also be an order is given by
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Theorem 4.10. If A and B are strict orders, then the union 
A U B is a strict order if and only if

BA U AB  c= A U B. (4.6)
Proof. The anti-reflexivity of the union follows from 

Lemma 1.2. It is sufficient to convince oneself that Condition
(4.6) is equivalent to the transitivity of the union. Indeed, 
the transitivity of the relation A [] B means that (A U B) 
{A U B) g= A U B, or that (see (1.13)) A 2 U B2 (J BA U 
U AB  ^  A |J B. If the latter condition holds, then BA U 
U AB  gz A2 U B2\] BA U AB c= A U B. If (4.6) holds, 
then taking A 2 != A and B2 ^  B into account, we obtain
A 2 U B2 U BA U AB  ^  A |J B U BA U AB ^

c z A [ ) B [ } A [ ) B = A [ ) B .
The theorem is proven.

For non-strict orders, this condition looks somewhat diffe­
rent:

Theorem 4.11. In order that the union, A U B, of non- 
strict orders, A and B, be a non-strict order, it is necessary and 
sufficient that the following conditions hold:

r BA\]AB <=A\]B,
I A()B-t<=E. 4̂ '7)

Proof. First let conditions (4.7) hold. The reflexivity of 
union A [} B follows from that of the operands. We have, 
further, (̂ 4 U B)~l =  A -1 U B -1 by (1.15). Therefore,
(A U B)  n (A U B)~l =  (A U B) n (A U 5"1)

=(a n a-') u (B n 5-i) u (b n u (a n 5-*)
= 5 U 5 u (^ n 5 - ir 1u (^ n 5 - i)= 5 .

Hence, A  U B  is anti-symmetric. Further,
(A U B) (A U B)  =  A 2 U A B  U B A  U B 2 =  A  U B,  (4.8)

and so A  U B  is transitive. Suppose, on the other hand, 
that A  [J B  is a non-strict order. Then, in view of transiti­
vity, we have Condition (4.8), from which it follows that 
B A  (J A B  s  A  U B.  We can write out the anti-symmetry 
condition, (A U B)  f| (J B)"1 s  E,  in the following form:

(a n a-*) u (5 n B-i) u (5 n ^ -‘) u (a n b -1) =  e .
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It follows from this that A f| B '1 ^  E. The theorem is 
proven.

Remark. With the aid of Lemma 2.4, it is easily ver- 
fied that if A and B are reflexive relations, then Condi­
tion (4.6) is equivalent to the following condition:

AB U BA =  A U B.
The product, AB, of orders is also not necessarily an 

order. This is evident from at least the fact that for a total 
non-strict order A , the product

AA-1 3  A U A’1
is the universal relation. The discovery of a simple neces­
sary and sufficient condition for the product of two orders 
to be an order would be curious. A sufficient condition, 
for example, is the following: if A and B are strict orders 
and relations

j  AB =  BA,
I A{]B~l =  0 ,

then AB is a strict order*.
The proof of this assertion is left for the reader.
As for the transitive closure A ,note that it always coinci­

des with the original order A, by virtue of its transitivity.
We conclude this section by considering an operation 

which, for orders, is inverse, in a certain sense, to the 
transitive closure. The idea of this operation’s explicit 
definition, as well as its systematic application, belongs to 
S. Ya. Fitialov.

Definition 4.7. The relation A r, defined by the condition:
A r = A \ A 2, (4.9)

is called the reduction of the relation A. This means that 
xAry holds if and only if xAy holds, but there exists no 
“intermediate” z, such that xAz and zAy. The relation xAry 
denotes the “immediate subordination” of the element x to 
the element y.

* It is clear from this that one must exercise care in attempting to 
construct a hierarchical classification by means of combining various 
order relations: genus-species, part-whole, etc.
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Note that
A r <=A. (4.10)

It is also easy to verify that for any relation A,

(A)r ^ A .  (4.11)

In Figures 4.1-4.3, we have actually depicted graphs for 
the relation A r, and not A. The fact of the matter is that 
the relation Ar (for the case of order relations in finite sets) 
contains all necessary information about the relation A (see

Fig. 4.5

Theorem 4.12), but can be depicted by an essentially sim­
pler graph. Compare, for example, 4̂’s graph with the graph 
of its reduction A T in Fig. 4.5. It is customary to depict the 
graph of the relation A r instead of the graph of the order rela­
tion A, although this is by far not always stipulated. Theo­
rem 4.12 (see below) just serves as a basis for this. In order 
to pass in this case from Ar to A, we must single out all the 
paths in the graph A r, and close them up by means of 
arrows.

The fact that a relation A can be reestablished from its 
reduction is not so trivial. Thus, it is clear from (4.9) that 
for a reflexive relation A f A r =  0  and, therefore, the 
reduction A r does not permit us to reestablish the original 
relation A.
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Theorem 4.12. If A is a strict order in a finite set M, then 
the transitive closure of its reduction coincides with the original 
relation:

Ar =  A . (4.12)

Proof. It follows from (4.10), (1.17) and Theorem 1.3 
that A r ^  A =  A. Let us prove the opposite inclusion. 
Suppose that xAy. Note that if

xAzi, ztAz2, . .  ., Zk.iAzk, zhAy, (4.13)

then in view of the transitivity and anti-reflexivity of A , 
any two elements in the sequence x , zlt z2, . . . » zk, y are 
distinct. Consider all possible sequences of elements, zl9 
z2J . . ., zh (k ^  0), such that (4.13) holds. Since M  is a finite 
set, and in view of what we have just noted, there are a fini­
te number of such sequences. Hence, there exists a sequence 
of maximal length among them. Take it. (If there are seve­
ral sequences of maximal length, take any one of them.) 
It follows from (4.13) and the fact that the sequence 
zv  z2, . . ., zh has maximal length that

xArzu ZiArz2J . . . ,  zk. xArzk9 zhAry. (4.14)

Indeed, if, for example, z1A rz2 did not hold, then z1A2z2, 
i.e. there exists a u, such that zxAu and uAz2. But then the 
sequence zl7 u, z2l . . ., zk has greater length and possesses 
Property (4.13). It follows from (4.14) that xAry. Hence, 
A s  A r. We have obtained (4.12). The theorem is proven.

Unfortunately, Theorem 4.12 cannot be extended to 
infinite sets. For example, if A is the ordinaryorder <  in 
the set of real numbers, then Ar =  0 . Therefore, A r =  
=  0  and A r A.

Theorem 4.12 means that for strict orders in finite sets, 
the original relation A can be uniquely reestablished from 
the relation A r. Moreover, the reduction A r is the minimal 
relation allowing the reestablishment of A. The precise 
meaning of this assertion is revealed by

Theorem 4.13. If B is a relation for which B =  A, then 
Ar c= B.
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Proof. Assume that xAry holds. We obtain xAy from 
(4.10); then by hypothesis, there exists an n, such that xBny. 
However, in view of B <=: B, the inclusions B gi A and 
Bn ^  A n are valid. Hence, the relation xAny is true. Since 
xAry, we have n =  1. Hence, xBy. The theorem is proven.

It follows from Theorem 4.12 that if A is a strict order in 
a finite set, for which xAy holds, then there exists a minima] 
number n, such that x (Ar)ny. This n characterizes the 
length of a minimal path in the graph of the relation A r, 
which must be traversed in order to get from x to y.

Let us establish some properties of reductions of strict 
orders.

Definition 4.8. A relation B is called anti-transitive if 
for all n ^  2,

B n Bn =  0 . (4.15)

In other words, if the sequence of relations xBxu x1Bx2l 
. . ., xnBy hold, then xBy is impossible. In essence, this 
means that a direct connection between the vertices x 
and y in the graph of the relation B precludes their being 
connected by a roundabout path*.

Theorem 4.14. If A is a strict order, the relation A r is 
anti-transitive.

Proof. Assume that there exists a sequence, xlt x2, . . ., xn, 
such that

xArxx, xxA rx2, . . ., xnA Ty.
But then

xAxly xxAx2, . . . , xnAy.

In view of 4̂’s transitivity, we have xxAy. It follows from 
xAxx and xxAy that xA2y, and so xATy is false. The theorem 
is proven.

It is worth-while considering the relation depicted in 
Fig. 4.6: a cyclic graph, whose transitive closure is a com­
plete graph, since it is possible to get from any point to any 
point, including the same point, by moving in a cycle.

* Note that any anti-transitive relation is asymmetric and, there­
fore (Theorem 1.2), anti-reflexive.
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This relation is not anti-transkive, since An+1 =  A, where 
n is the number of vertices.

Lemma 4.6. If the relation B is anti-transitive, then

(B)r =  B. (4.16)

Proof. In view of (4.11), it is sufficient to prove the in­
clusion B<=, (B)r. Let the relation xBy hold for some pair 
x> y , where x (By y fails to hold. Since Br ^  B , xBy also

holds. Therefore, x (B)2y . But then there exists an n ^  2, 
for which xBny , and this, by (4.15), is not consistent with 
xBy. The contradiction we have obtained proves (4.16).

It is natural to compare (4.16) with (4.12).
If there is a circuit,

#1, • • •> *̂717 T̂>

in the graph of the relation 5 , then (Z?)r =̂= B , since x1Bx2y 
but (*)ra:2 fails to hold. (xxBx2 follows from xxBx2.
Since x2J . . xn, x1 is a circuit, x2Bx2. It follows from
XyBx2 and x2Bx2 that x^B^x^ It follows from x1Bx2 and 
x 1( B ) 2x 2 that x1(B)rx2 is false.) However, the absence of 
circuits in B's graph does not imply that (B)r =  B. For 
example, if B is the ordinary strict order in the set of real 
numbers, there are no circuits in B's graph, but B =  B, 
(B)r = B r =  0 = ^ B .

It is easy to see that whatever be the relation 5 , its tran­
sitive closure B is not anti-reflexive if and only if there is 
a circuit in B's graph. From this follows
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Lemma 4.7. Whatever be the relation B, its transitive clo­
sure B is a strict order if and only if there are no circuits in 
B's graph.

The converse to Theorem 4.14 can now be easily obtained.
Theorem 4.15. If the relation B is anti-transitive, it is the 

reduction of a strict order.
Proof. According to Lemma 4.6, B =  (B)r. By Lemma 4.7, 

it is sufficient to convince ourselves that there are no circuits 
in B's graph. Suppose that this graph had the circuit

^2> • • •» l̂*

We would then have xxBnJtXx^ i.e. B f| Bn+1 =̂= 0 ,  which 
would contradict B's anti-transitivity. The theorem is 
proven.

§ 3. Tree Orders
In this section we shall study an important special class 

of order relations—the so-called tree orders.
Suppose that there is a set M  with a strict order relation 

< .  An element x0 will be called greatest if for every ele­
ment y £ M, distinct from x0, the relation y <  x0 holds. It 
is easy to see that a greatest element (if it exists) is unique. 
It is also worth-while noting that for any strict order in 
which the greatest element exists, this is the unique maxi­
mal element*.

Definition 4.9. A strict order relation <  in a set M  is 
called a tree order relation (or a tree order) if

(1) it follows from x <  y and x <  z that y and z are 
comparable;

(2) there exists a greatest element in the set (M, < ) .
We shall call a set M  with a tree order given in it, i.e.

a pair (M, < ) ,  a tree, and its greatest element—the root 
of the tree.

Condition (1) means that for any element x 6 M, the 
original tree order is converted into a total order in the set 
of elements greater than x.

* If a strict order in a finite set has a unique maximal element, then 
this element is the greatest. {Ed. note.)
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It isn’t difficult to see that a total order, in which there 
exists a greatest element, is a special case of a tree order.

Let us establish some properties of tree orders.
Lemma 4.8. If A is a tree order in M , then in the set M  (;r), 

consisting of x itself and all elements y £ M , such that yAx , 
the relation A again gives us a tree order. (It is only natural 
to call the set M {x), ordered by A, a subtree of the tree 
(M, A >.)

Proof. The first condition is obviously fulfilled for any 
subset of M. It is also obvious that x itself is the greatest 
element in M (x).

Lemma 4.9. If A is a tree order in a finite set M , then for 
each x , distinct from the root ;r0, there exists exactly one y , 
for which xATy holds.

Proof. First assume that there exist an y and a z (y z)9 
such that xAry and xArz. According to the definition of 
a tree order, since xAy, xAz and y z, we have yAz or 
zAy. Set yAz for definiteness. Thus, it turns out that the 
two relations xAy, yAz hold. Consequently, xATz is impos­
sible. Thus, we have proven that there cannot be two dis­
tinct elements, “immediately higher” than a given one. Now 
assume that for an element x , there exists no y , such that 
xAry. It is then easy to see that since M  is a finite set, 
there exists no y, such that xAy (Theorem 4.12). Hence, x 
is the maximal element, i.e. x =  x0. The lemma is proven.

If M  is the set of non-positive real numbers with the 
relation < ,  then this tree order does not satisfy the conclu­
sion of Lemma 4.9.

Lemma 4.10. Let <Z be a tree order in a finite set M . Then 
for any incomparable elements, x 6 M and y £ M, there exists 
a unique element z 6 M 9 for which (1) x <  z; (2) y << z;
(3) if x <  w and y <  w, then z w.

Proof. Since x and y are incomparable, neither of them 
is the root of the tree. Denote the set of all elements z, 
for which x <  z, by M x, and the analogous set for y , by M y. 
By virtue of Condition (1) of Definition 4.9, the relation <  
in M x (and in M y) is a total strict order. Since M x and M y 
contain the root, M x f| M y 0 , and so the relation <  in 
M x p| M y is a total strict order. It is clear that the set 
M x f| M y consists of all elements w, for which x <  w
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and y < i v  simultaneously. Since this set is finite, it has 
a least element z (Lemma 4.1); for any w £ M x f| M y, we 
have z

The following example shows that the finiteness condition 
in this lemma is essential. Let M  be the union of the half­
line (—oo, 0) with the two elements x and y. The order in 
the half-line is the ordinary numerical relation < ,  while 
any point in the half-line is greater than x and y. The elements

Fig. 4.7 Tree order

x and y are not comparable to each other. The assertion of 
the lemma is not true for these two elements, although we 
have defined a tree order.

With the aid of the lemmas we have proven, we can con­
vince ourselves that the graph depicting the reduction A T of 
a tree order A in a finite set M  really has a tree-like structure. 
Gall the set of elements z , for which zAry holds, the neigh­
bourhood of the element y. We shall depict A r by tiers 
(Fig. 4.7). In the first tier, we place the tree’s root—its great­
est element x0. In the second tier, we place the elements 
occurring in the neighbourhood of x0. In the third tier, we 
place the elements occurring in neighbourhoods of ele­
ments in the second tier, etc. It is clear that the arrows in 
the graph can only go from one tier to the next. Furthermore, 
there is exactly one arrow going from each element to the 
tier above it, while there may be any number of arrows 
coming to it from the tier below it. Thus, we see that our 
graph has the structure of a tree. The total number of tiers 
is called the height of the tree. The maximal number of ele­
ments in a single neighbourhood (the maximal number of
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shoots sprouting from a single vertex) is called the width 
of the tree.

The height h, width d and total number of vertices n of 
a tree are connected by the following obvious inequality:

n < l  +  d +  rf2+  .. .+d'»~1=  .

This inequalitykbecomes an equality if and only if the neigh­
bourhood of each element (except, of course, the elements 
in the lowest tier) consists of d elements.

M. V. Arapov proposed the following characterization of 
a finite tree's complexity. Denote the number of elements 
in the neighbourhood of x by d (x). Define the complexity 
a (x) of the vertex x by means of the following recursion 
relation:

g  (x) =  d (x) +  g  (y), (4.17)
where y is the unique element, for which xAry. In other 
words, the complexity of the vertex x is the sum of the num­
ber of shoots sprouting down from this vertex and the com­
plexity of the vertex of the preceding tier, connected to x . 
We take g  (y) =  0 for x =  x0. The complexity g  (D) of 
a tree D is defined as the sum of the complexities of all its 
vertices:

o ( D ) = y ! a(x). (4.18)

From (4.17) it is easy to deduce that

a (x) =  d, (x) +  2  d (y)
x < y

(x <C y under the summation sign shows that the sum is tak­
en over all y’s, such that x <  y). Substituting this expres­
sion for g  (x) in (4.18), we obtain

°(D) =  2 d(y)k(y),  (4.19)
ŷ M

where k (y) denotes the number of times the quantity 
d (y) occurs in our expression for a (D). It is clear that k (y) 
is the number of z ’s, for which x ^  y. In other words, k (y) 
is equal to the number of vertices in the subtree whose root
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is y. For the trees, D 2 and D 3, depicted in Fig. 4.8, 
the complexities are equal, respectively, to:

a (DJ =  2-7 +  2.2*3 =  26, 
a (D2) =  3.7 +  3.4 =  33,
<r (D3) =  2*7 +  2*5 +  2-3 -  30.

Here we have purposely chosen trees with the same number 
of vertices, so that the dependence of complexity on tree 
structure would be noticeable.

Denote the minimal complexity of a tree with n vertices 
by 0r(n). One can obtain a recursion formula for calculating

Fig. 4.8. Trees of various complexities

cr(7l). Let Dn be a tree of minimal complexity with n verti­
ces. Let m =  d (x0) be the number of shoots sprouting from 
its root. Finally, let D 1y D 2, . . ., Dm be the subtrees of D n, 
beginning in the second tier. On the basis of (4.19), we 
then have

(T (Dn) — d (x0) • n +  S  d(x)k(x)- f  . . . +  2  d(x)k(x),
xG D1 x£Dm

or, equivalently,

a {.Dn) = m n  +  o (D1) +  . . . +  a (Dm). (4.20)
But for a tree of minimal complexity, the subtrees must 
also have minimal complexity. Otherwise, we would be 
able to diminish the sum in (4.20). Denote the number of 
vertices in D l by kt. The sum of the kt is equal to the total 
number of vertices in Dn, except the root. Thus,

m
a„ = win+2j ah,,i=l 1



3. Tree Orders 147

where kt +  k2 +  . . . km =  n — 1. In view of the mini­
mality of o (Dn), the structure of the subtrees must be such 
that this sum became minimal. Finally, we can therefore 
find Gn by means of the following recursion equation:

m

an =  min (mn +  '%] Gh.).
i= 1 1

In this equation, the minimum is taken over all possible m 
and sets (kx, k2, . . ., fcm), for which kx +  k2 +  . . . +  
+  km =  n — 1. Note that the idea involved^in obtaining 
this equation was actually taken from dynamic programming.

E. N. Efimova was able to obtain the following asymp­
totics:

on ~  n In n.
A good example of a tree may be obtained in the following 

way. Let (A, M )  be a strict order relation in a finite setM, 
possessing a greatest element x0. Let A T be this relation’s 
reduction. We shall call a sequence x0, xx, . . ., xn =  x, 
such that xiArx i+1 always holds, a path from x0 to x. Such 
a sequence exists for any xy since x0Ax and, in view of 
Theorem 4.12, A =  A r. We shall call x the end of the given 
path. Let L be the set of all paths from x0 to all possible ele­
ments x 6 M. We define a relation B in L by the following 
condition. Let £ and r] be two paths starting from x0. The 
relation I.Br\ means that r] is an initial fragment of £. It 
is easy to see that (B , L)  is a tree. Indeed, the path consis­
ting of the single element x0 is an initial fragment of any 
path, i.e. the greatest element in L. If £ and r) are two dis­
tinct paths for which £Bt, and r\BZ> hold, then both £ and rj 
are initial fragments of the path g. Hence one of them is an 
initial fragment of the other, i.e. either Brj or else r\B

Thus, we have shown that the set of paths in an ordered 
set with a greatest element is a tree. From this we easily 
obtain

Theorem 4.16. Every finite ordered set with a greatest ele­
ment is a homomorphic image of a tree.

Proof. Consider the mapping a: L M, which to each 
path in L, assigns its end. It is obvious that (p {I) Acp (r|) 
follows from ]. (If the path L is an initial fragment of 
the path r], then the end of £ is greater than the end of r|.)
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Remark 1. In view of Theorem 4.3, the theorem just 
proved can be generalized to the case of infinite sets. Instead 
of a path whose end is x, we must take the fragment of a ma­
ximal total subset, consisting of the elements greater than 
x and £, itself.

Remark 2. In terms of the notions of Chapter VI, the 
mapping we have constructed is an epimorphism, while the 
original relation A is the a-image of the tree order B. It can 
be shown that this tree order is uniquely defined up to 
a ^-isomorphism.

Remark 3. Any ordered set can be enlarged by formally 
joining a greatest element to it. Therefore, every ordered set 
is an image of a tree or a tree with a deleted root.

The meaning of this theorem is that any order can be ob­
tained from a canonical tree order by means of a suitable 
identification of vertices and, possibly, a deletion of the 
root. * * *

Not only for finite sets may tree orders be considered. Only 
lemmas 4.9, 4.10 and the possibility of utilizing a reduction 
(Theorem 4.12) depended on the finiteness of the set M.

A good example of an infinite tree can be obtained in the 
following way. Let M  be the set of all strings x =  (e0, 
Sj, . . ., en), where e0 =  0 and ex, e2, . . . assume the values 
0 or 1. The order A is given by the following condition. Let 
x =  (e0, 8i> • • •> O  and y =  (r)0, %, . . ., r)m>. We shall 
regard the relation xAy as true if m <  n and, for all i ^  m, 
ej =  T]f. Therefore, xAy means that the string y is “imbedded” 
in the string x. It isn’t difficult to see that if y and z are 
both “imbedded” in one and the same string x, then one of 
them is “imbedded” in the other. The string x0 =  (0) is 
obviously the greatest: since any string in M  begins with 
a zero, xAx0 holds for all x ^  xQ. The assertion of Lemma 4.9 
remains valid in this case. This order can be imagined as 
a tree of infinite height, in which each vertex is sprouting 
two shoots.

The concept of a tier was retained in its entirety in the 
preceding example. Namely, the ra-th tier consisted of all 
strings in M  of length n. Our next example is essentially 
a generalization of the preceding one to “strings of continual 
length”.
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Consider the set M  consisting of functions /, defined for 
0 ^  t <  +  oo, assuming the values 0 and 1 and satisfying 
the equation /  (0) =  0. We define the strict order relation <  
in M  by the condition: /  <  g if /  and g do not coincide and 
there exists an a >  0, such that g (t) — f (t) for 0 ^  t ^  a 
and g (t) =  0 for t >  a.

Let us verify that this is a tree order. Indeed, let f <  g 
and /  <  gv Then there exist an a and an aly such that g (t) =  
=  0 for t > a ,  gx (t) =  0 for t > a l9 f (t) =■- g (t) for 0 ^  
^  t ^  a and /  (t) =  gr (t) for 0 ^  t ^  av Assume that 
ax ^  a. It then follows from what we have just written that 
g (t) =  gi (0. for ° ^  t ^  a and g (t) =  0 for t >  a. This 
means that either g and gx coincide, or else gr <  g. Denote 
the function identically equal to zero by / 0. It is clear that 
whatever be the function /  £ M, distinct from / 0, /  <  / 0. 
Therefore, / 0 is the greatest element (root).

In this example, we have a situation which could be 
interpreted as continuous branching. Given any t0 > 0 ,  
the collection of all functions /, such that /  (£0) =  land 
/  (t) — 0 for t >  £0, can be regarded as if it formed a tier 
of rank t0.

Let us note one important circumstance. If, in the definition 
of a tree order, we drop the requirement that a greatest 
element exist, then instead of a tree, we obtain, for a finite 
set M, a union of a set of pairwise disjoint trees. Therefore, 
in the case of a finite M, Condition (2) of Definition 4.9 may 
be replaced by any condition guaranteeing the corresponding 
graph’s connectedness.

For example, it is possible to take either of the following 
conditions:

(2') if a maximal element exists, it is unique;
(2") given any incomparable elements, x and y, there 

exists an element z, such that x <  z and y <  z.
In the case of an infinite set M, the situation turns out to 

be different. Thus, for the set M of real numbers with the 
usual order, Condition (1) of Definition 4.9 holds, but Con­
dition (2) does not. There are no maximal elements in this 
ordering, i.e. Condition (2') holds. Condition (2") also 
holds here.

In conclusion, let us examine an example of an “almost- 
tree” order. The set M  consists of all pairs of the form
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(m , n ), where m and n are integers and m ^  0 (M forms 
an integral lattice in the right half-plane). We define a 
relation A in the set M. Fix an arbitrary integer n. By
definition, we set:

(0, n +  1) A (0, n ), 
<2, n +  I) A (1, n)y 
(4, n +  1 > A (2, n), 
(6, n +  1) A (3, 7i >, 

etc. In general:
(2k, n -f- 1) A (k, n ),

(1, n +  i )  A (0, rc),
(3, n +  1 > .4 (1, n),
(5, rc +  1 > A (2, n >,
(7, /I +  1 M  (3, * >,

(2/c +  1, 7i -f- 1) 4̂ <&, n ).

(We advise the reader to try drawing the graph of the rela­
tion A.) It is easy to see that 4̂’s graph has no circuits. The­
refore, the relation B =  A is a strict order (Lemma 4.7).

This strict order satisfies Condition (1) of Definition 4.9, 
but does not satisfy Condition (2) of the same definition. 
However, conditions (2') and (2") hold for this order. It is 
worth-while noting that the conclusions of lemmas 4.9 
and 4.10 hold for it. (The conclusion of Lemma 4.9 did 
not hold in the preceding example.) In contrast to the pre­
ceding example, here we have Br — B , since Br — A 
(see Lemma 4.6).

Given any pair (m, n), the set of all pairs (I, p), for 
which (I, p) B (m, n), forms a tree.

§ 4. Sets with Several Orders
In this section, we shall only consider finite sets (whose 

finiteness will be taken for granted, not stated explicitly) 
with several order relations connected by definite “compa­
tibility” conditions. Informal examples of such situations, 
playing an important role in mathematical linguistics, 
will be considered in the last chapter. Therefore, we shall 
carry out our presentation below on the formal level.

Let there be given a set M, a total strict order relation <  
in it and a strict order relation = .̂ We shall denote the 
reduction of the latter relation by We advise the reader 
to interpret the relation =̂> as ux is greater than y”. Therefore, 
in contrast to §§ 1-3, an arrow of the reduction will lead
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from the greater to the lesser element in the graph of the 
relation = .̂ We shall call a set M  with two such relations, 
(M, <C, =£), a doubly ordered set.

If either x <  z <  y or y <  z <  x holds, we shall say 
that z lies between x and y. We shall say that the doubly 
ordered set M  satisfies Condition n x if x =$ z follows from 
x — y and the fact that z lies between x and y.

Given an element x £ M , we denote the set consisting 
of x itself and all elements y, for which x =̂> yy by M (x).

Lemma 4.11. Let {M, < )  be a total strict order relation. 
If xly x2, . . ., xn are distinct elements of M y and w lies 
between xx and xn, then either w coincides with some x% 
(2 ^  i ^  n — 1) or else there exists an i (1 ^  i ^  n — 1), 
such that w lies between xt and xi+1.

Proof. Suppose, for definiteness, that xx <  w <  xn. As­
sume that w is distinct from x2y x3y . . ., xn-v  Then either 
x2 >  w or x2 <C w. If x2 >  wy then x1 <  w <  x2. If x2 <  w, 
consider x3. Either w <  x3 or x3 <Cw. If w <  x3, x2 <Cw <C 
<  x3. If #3 <  w, consider #4, etc. Since w < i x n and 
{#2, #3, . . ., xn_i} is a finite set, the required xi will be 
found in a finite number of steps.

Theorem 4.17. A doubly ordered set M  satisfies Condition 
Ili, if and only if it follows from y 6 M (x)y z £ M (x) and 
y <C w <  z that w 6 M {x).

Proof. First let M  satisfy Condition n x. If w coincides 
with x, then w £ M (x). Consider the case where w <C x. 
Since y <  w, x y. On account of x =$ y y there exists 
a sequence x =  xly x2y . . ., xn-ly xn =  y y such that xt 
-> xi+1 for all i. Since xn =  y <  w <C x =  xly by Lemma 4.11 
either w =  xt for some i or there exists an iy such that w 
lies between xi and xi+1. In the former case, x =̂> w and 
w 6 M {x). In the latter case, in view of Condition Uly we 
have Xi =$ w. Since x =£> xiy we have x =4> w and w £ M (x). 
We may reason in the same manner in the case where x <C wy 
noting that w now lies between x and z. The converse’s 
proof is left for the reader.

In view of Theorem 4.2, a doubly ordered set M  can be 
depicted by an initial segment, {1, 2, . . . ,  m)y of natural 
numbers, where the relation <C is understood as the ordinary 
numerical inequality. We shall call a set [iy /], consisting 
of all natural numbers Z, satisfying the inequalities i ^  I ^  /,



152 Ch. IV. Ordering

an interval. The preceding theorem means: Condition lit is 
equivalent to all the sets M (x) being intervals.

Example. Let M — {1, 2, 3, 4}, and let the relation — 
be defined by the conditions l - > 2, 1 3, 4 — 2, 4 -> 3 .
Then M  (1) =  {1, 2, 3}, M  (2) =  {2}, M  (3) =  {3} and 
M  (4) =  {2, 3, 4}. It isn’t difficult to verify that this

doubly ordered set satisfies Condition (Fig. 4.9). Note 
that M  (1) H M  (4) =7̂= 0 , but neither of these sets is con­
tained in the other.

Useful information about the relative location of the 
sets M (x) is given by

Theorem 4.18. If the relation (M, =$) is a tree order, 
then for any non-coinciding x and y , either M (x) f| M (y) =  
=  0  or M (x) c  M (y) or M (y) a  M (x).

Proof. Suppose that M (x) {] M (y) =̂= 0  and
w £ M  (x) f| M (y). If w =̂= xand w =£ y, then we have x =$ w 
and y =$ w. By virtue of the treeness of our order and the 
non-coincidence of x and y , we have either x =$ y or y =$ x. 
But if w =  x, then y =$ x, while w =  y implies x y. 
If x =$ y, then by transitivity we have x z for all z 6 M (y), 
i.e. M (x) zd M (y). But if y=$ x, we obtain the opposite 
inclusion.

Let us now agree to represent the set M  on a horizontal 
axis, and draw the arrows expressing the relation ->■ only 
above this axis. We shall say that a doubly ordered set M 
satisfies Condition II2, if it is possible to draw the arrows 
for — in such a way that they neither intersect each other 
nor cover any maximal elements*.

Theorem 4.19. Condition II2 implies Condition 
Proof. Let the doubly ordered set M  satisfy Condition 

n2. Draw the arrows expressing the relation —>- in an appro­
priate “good” manner. Assume that x - * y ,  while z lies

* That is, an element x , for which the relation y -> x does not 
hold for any //.

1 2  3 4
Fig. 4.9
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between x and y . z cannot be a maximal element, since it is 
covered by the arrow leading from x to y. Therefore, there 
exists a zv  for which zx ->- z. zx either lies between x and y 
or else coincides with x or with y, because the arrow z1 ->- z 
would otherwise intersect the arrow x -*■ y. By means of 
analogous reasoning, we can construct a sequence zn — 
-v zn_x ->- . . . — zx z, where either all the zt lie between 
x and y , or else zn coincides with x or with y. Since all 
the zt are distinct and the set M  is finite, for some n, the 
element zn will coincide with x or with y. But then we will 
have x =$ z. Therefore, the doubly ordered set M  satisfies 
Condition n .̂

The example in Fig. 4.9 shows that Condition n x may 
be satisfied when Condition n 2 is not. However, when =£> 
is a tree order, conditions n x and F[2 are equivalent. Namely, 
we have

Theorem 4.20. Let =$ be a tree order. If the doubly ordered 
set (M, < ,  =£) satisfies Condition n x, then it also satisfies 
Condition H2.

Proof. Let x0 be the tree’s root, and let xt <  x2 <C . . .
. . . <  xn be all the elements for which x0 —>- xt holds. 
It is clear that all arrows leaving x0 can be drawn without 
intersections. According to Theorem 4.16, the sets M  (x{), 
M  (;r2), . . ., M  (xn) are intervals. An inclusion M (xt) zd 
zd M (Xj) is impossible, since it would imply xt =̂> xy, con­
sequently, according to Theorem 4.17, these intervals cannot 
intersect. No arrows can pass between distinct sets M {xt) 
and M {xf)\ otherwise, xt =4> w would hold, where w 6 M {xf). 
If all the elements of M  {xt), except xt itself, lie between 
Xi_Y and xt, the arrows within M (xf) could be drawn in 
such a way that they did not intersect the arrows leaving 
the root. This will also be the case when M (xt) lies between 
xt and xi+l. Now let M (xt) =  M 1 {xf) (J {^} U (xi)y 
where M l (xt) lies between x^ y and xu while M 2 (xj) lies 
between x% and xi+1. We shall show that there is not a single 
arrow leading from M 1 (xf) to M 2 {xt) (or in the opposite 
direction). Indeed, the existence of such an arrow would 
mean that y z, where y £ M 1 {xf) and z G M 2 (xi). But 
since y <ix-t < iz ,  we would then, by Condition F ,̂ have 
y Xi, which is impossible. Thus, all the other arrows, 
not leaving x0, can be drawn without intersecting the arrows
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leaving x0. But each of the M {xt) is a doubly ordered set, 
satisfying Condition n x, and the restriction of =4> to M (xf)  
is a tree order. Therefore, the arrows within M {xt) can also 
be drawn without intersecting those leaving xt. Continuing 
this reasoning, we can easily convince ourselves that all 
the arrows can be drawn without any intersections. Since 
the root x0 does not occur in any of the sets M  (#*), and 
no M (xt) is located on both sides of x0, all the arrows can 
obviously be drawn in such a way that x0 isn’t covered. The 
theorem is proven.

Note that the fact that the M {xt) are either disjoint or 
else contained in each other played a decisive role in our 
proof. The formulation of our last theorem can therefore 
be somewhat sharpened.

There exists yet another useful formulation of the connec­
tion between the two order relations in a doubly ordered 
set. It makes sense only for the case where the relation => 
is a tree order. (True, it can be extended to those “non-tree” 
situations, for which we have succeeded in introducing the 
concept of a tier.)

Let us first represent the elements of M  by integral points 
from 1 to n on the abscissa in the coordinate plane. Then 
to each point x £ Af, we assign the point x' on the perpendi­
cular to the abscissa, erected at x, whose distance from x 
is one less than the number of the tier to which x belongs. 
If x -*■ y y then the points xr and yr are joined by a segment. 
The appropriate constructions are shown in Figures 4.10, 
4.11 and 4.12.

Condition n 3 is that (a) the segments that have been 
drawn do not intersect each other and (b) no continuation 
of a perpendicular above an x' will intersect any segment.

Condition n 3 is satisfied in Fig. 4.10, but not in Figu­
res 4.11 or 4.12.

Theorem 4.21. If the rela tions is a tree order, then 
Condition II3 is equivalent to Condition Hx.

Proof. Let us first show that II x follows from Il3. Suppose 
there exist x, y and z, for which x -+■ y, z lies between x 
and y and x =$ z fails to hold. Let z0 be a maximal element 
among all such z (for fixed x and y). It follows from Condi­
tion n 3 that z' cannot lie under a segment joining xf, y \  
It follows from this, in particular, that z0 cannot be the
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tree’s root. But in view of the order’s treeness, there exists 
a w, for which w — z0. By our assumptions, w neither lies 
between x and y nor coincides with x or y. We have the follow-

Fig. 4.12

ing possibilities for the arrangement of the above four ele­
ments:

x < z 0 < y  <  w; 
w <  x < . z 0 C y ;  
y < z 0 < .x  < w ;  
w <  y <  z0 <  z.
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Consider the first case. Since zQ lies above the segment x'y 
either the segment zQw' intersects the segment x'y', or else 
it lies above the point y'. Condition n 3 is violated in both 
cases. The remaining three possibilities may be similarly 
examined. Thus, we have proven that follows from n 3.

Let us now show that II3 follows from Ylv  Assume that 
n 3 is not satisfied. First consider the case where an extension 
of the perpendicular passing through the point x' intersects 
the segment y'z' above x'. This means that x' is located 
between y and z , y -> z (or z y), and at least one of the 
points y' or z' is higher than x '. The other point must then 
be not lower than x'. Consequently, y =$ x is impossible, 
which contradicts Condition Hv In the second and final 
case, two segments, x'y' and z'u', intersect. But this is 
possible only if the lower, respectively upper, end points 
of these segments lie on the same level. However, none of 
the relations x=$ z, x =̂> u, y z, y =$ u would then be 
possible. On the other hand, either z or u lies between x 
and y; so according to n i? one of these relations would have 
to hold. Thus, our theorem is proven.

Corollary. If is a tree order, TT3 is equivalent to n 2.
* * *

We now turn to the study of another type of sets with two 
order relations.

We shall call a set M , in which a tree order cz and a 
strict order relation <  are given, (i.e. the triple (M, 
cz, < ) )  an ordered tree if the following conditions are satis­
fied:

(1) if x c  y, z c u ,  y <  u, then x <  z;
(2) if x and y are incomparable with respect to cz, then 

they are comparable with respect to < \
In particular, the relation << defines a total order in the 

subset of end points of the tree (M, cz ). Denote the neigh­
bourhood of an element x by Q (x) (see p. 144). Then the 
relation <  also gives a total order in the set Q {x).

Since M is finite, any set Q (x) can be enumerated in such 
a way that the maximal (with respect to the relation <C) 
element gets the number 0, the next element gets the num­
ber 1, etc. Since every element y occurs in exactly one of 
the sets Q (x) (due to the treeness of the order cz), it turns
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out that each vertex y (except for the tree’s root) is assigned 
an integral weight m (y). A tree with weighted vertices, 
in which the order <  in each Q (x) has been expressed by 
distributing the vertices from left to right, is depicted in 
Fig. 4.13.

For a terminal vertex y , we define the quantity

y (y) =  Tifn(x),

equal to the sum of the weights of the vertices lying along 
the path from the tree’s root to the vertex y , including

the weight! of y itself. Thus, for the seven terminal vertices 
of the tree in Fig. 4.13, we obtain, going from left to right, 
the following values for y (y):

1, 3, 2, 1, 1, 1, 0.

Following V. H. Yngve, we shall call the quantity 

y =  max y (y)
the depth of the tree. Thus, the tree in Fig. 4.13 has depth 
7 = 3. It is worth-while noting that depth makes sense 
only for an ordered tree, and so it isn’t defined for a tree 
in general. A small value of the depth means, geometrically, 
that the branchings go mainly to the right, i.e. that the 
tree is built asymmetrically.
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* * Hi

In concluding this section, we study some properties 
of sets with three order relations. Let there be given three 
strict order relations: <C, cz and ==£, in a set M, for which 
the following conditions hold:

(1) the set M  with the relations c= and <  is an ordered 
tree;

(2) the relation is defined in the set M k cz M  of termi­
nal vertices of the above tree, and forms a tree order in M k\

(3) the set S (x) cz M h of terminal vertices */, for which 
y cz x, is a tree with respect to the relation =̂ >;

(4) if S (x) n S (xj =  0 , y 6 S (x), z 6 S (xx) and 
i/-> z, then y is the root of the tree S (x). (It is clear that 
in this case z is the root of the tree S (â ));

(5) if there exists a u, such that y <C u <  z, then there 
exist an x and an xu such that y 6 S (x), z 6 S (xj), and 
there exists no w, for which x <  w <  xv  (It is easy to 
verify that in this case S (x) f| S (â ) =  0 .)

Theorem 4.22. Under the conditions formulated above, the 
doubly ordered set (Mk, < ,  = )̂ satisfies Condition fli-

Proof. Assume that y -> z and u lies between y and z. 
We shall show that y =$ u. Consider the case where y <C 
<C u <C z. (The opposite case may be analysed in an analo­
gous way.) In accordance with Property (5), we choose 
S (x) and S (a )̂, for which y 6 S (x) and z 6 S (x±). In view 
of y z and Property (4), y and z are the roots of the trees 
S (x) and S (â ). We shall show that u occurs in either S (x) 
or S (^i).

In fact, suppose that u (£ S (x) and u $ S (xf). Then 
u is a fortiori incomparable with x and xv  since u a x  
and u czxx are negated by our presuppositions, while 
neither u zd x nor u zd xx is possible, because u 6 M h. 
The element u must then be comparable with x and xx 
with respect to the relation < • By virtue of Property (1) 
of an ordered tree and y <C. u z, we must have x <C u <  xx. 
But this contradicts our choice of x and xx (Condition 5). 
Hence, we certainly have u £ S (x) or u 6 S (â ). In the 
former case, x=$>u, while in the latter case, y =$ u, i.e. 
we once again have x =£> u. The theorem is proven.



Chapter

V
RELATIONS
IN SCHOOL MATHEMATICS

§ 1, Relations Between Geometric Objects

Many concepts, well known from school mathematics, 
are in essence names of binary relations, while the basic 
theorems dealing with them express properties of these 
relations.

Let M  be the set of all straight lines in the plane. The 
relation X  || Y  means that the straight lines X  and Y  are 
parallel*. We shall establish some properties of this rela­
tion.

1. The relation || is anti-reflexive. In fact, no straight 
line is parallel to itself.

2. The relation || is symmetric. This is evident from the 
fact that both straight lines play the same role in the defini­
tion of parallelism.

3. The relation || is almost transitive, namely: if X  || Y  
and Y  || Z, then either X  || Z or X  and Z coincide. Indeed, 
if this were not so, then the straight lines X  and Z would 
intersect**. But, as is known from geometry, if Z intersects 
one of a pair of parallel lines, it must also intersect the 
other, i.e. the relation Z || Y  would be impossible.

Therefore, the relation of parallelism does not yet possess 
the good properties. But what we have just said helps us 
to find a relation, similar to parallelism, which will be 
an equivalence relation. Namely, we define the relation

III = II U E,

* That is, have no points in common.
** That is, would have exactly one point in common.
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which holds for straight lines which either are parallel 
or coincide. By definition, X ||| X for any straight line X. 
The symmetry of the relation ||| is also obvious. Finally, 
if X | | l  Y  and Y  ||| Z, then X  ||| Z. In fact, if X  || Y  and 
Y  Z, then X || Z; if X -  Y  and Y  || Z, then X |[Z. 
Finally, if X || Y  and Y  || Z, then by what we said earlier, 
either X || Z or else X — Z. But in both cases, we have 
X HI Z.

The relation ||| in the set of straight lines looks very natu­
ral when expressed in algebraic form. If we introduce Carte­
sian coordinates, x and y , into the plane, then every straight 
line, not perpendicular to the axis Ox (not vertical), can 
be given by an equation of the form: y =  kx +  b. In other 
words, any (with the stated exception) straight line X is 
determined by a pair of numbers, (k, b ). Let the straight 
line X be given by the equation y =  kx +  b, and the straight 
line Y  by the equation y =  k'x +  b'. Then the relation 
X I Y  holds if and only if k k'. The relation X || Y  
means that k =  k' and at the same time b V , i.e. the 
lines are distinct. This is evident from the fact that k =  
=  tan a, where a is the angle of inclination of the line to 
the axis Ox. It is possible to set k  ̂ oo (a =  90°) for ver­
tical lines, and the condition k — k9 will mean X ||| Y, 
as before. However, this isn’t a very nice stipulation, since 
our second parameter, distinguishing parallel lines, isn’t 
defined for k =  oo. In analytic geometry, a more universal 
(the so-called normal) form of the equation of a straight 
line is given:

x  cos a  +  y sin a  — p =  0,

which can represent any kind of straight line. Here p is the 
length of the perpendicular dropped from the origin to the 
line (Fig. 5.1) and a  is the angle of inclination of this per­
pendicular to the abscissa. By the same token, a pair of 
numbers (a, p), where 0 ^  a <  2n and 0 ^  p <  +oo, 
is assigned to each straight line in a one-to-one manner. 
The relation X ||| Y  means that a =  a' or a =  a' +  n 
for the corresponding straight lines. To each straight line, 
there corresponds a point in the plane of parameters a, p, 
lying in the region indicated in Fig. 5.2. Pairs of vertical
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lines, a  =  const and a  +  n =  const ( 0  ^  a <  j t ) ,  are 
the equivalence classes for the relation j|| .

There exists another important relation in the set of 
straight lines in the plane: X ± Y  (X is perpendicular to Y). 
The relation of perpendicularity possesses the following 
important properties:

1. Anti-reflexivity. X  _L X is impossible.
2. Symmetry. If X l  Y, then Y  1  X.
3. If X  _L Y  and Y  ±  Z, then X ± Z  is impossible. It obvi­

ously follows from X  1  Y  and Y  ±  Z that X  ||| Z. Conver­

sely, if X  ||| Z, there exists a common perpendicular Y  to X 
and Z, i.e. an 7 , such that A 1  Y  and Y  ]_Z. The last two 
assertions mean that the square of the relation of perpendi­
cularity is the relation ||| of “strengthened parallelism”:

-L JL =  -L2 =  II|.

Let us introduce yet another relation, X Int Y, into 
signifying that the straight lines X and Y  have at least 
one point in common, i.e. intersect or coincide. It is clear 
that the relation Int is reflexive and symmetric (but not 
transitive) and is, therefore, a tolerance relation.

Choose a point p in the plane, and consider the set K p 
of all straight lines in the plane, passing through this point. 
It is easy to see that K p is a tolerance class. In fact, any 
two lines in Kp have a point in common, namely, the point p
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itself. On the other hand, any straight line X, not belonging 
to Kp, fails to intersect some line in K p, namely, the line 
passing through p which is parallel to X. We invite the 
reader to verify that the classes Kp form a basis.

There do exist other tolerance classes. For example, the 
set of all straight lines tangent to a semi-circle, one of whose 
end points has been deleted, forms a tolerance class. Indeed, 
no two of these lines are parallel to each other. But for 
any straight line outside the set under consideration, one 
can construct a straight line, tangent to the given semi­
circle and parallel to it.

Now let M  be the set of all triangles in the plane. The 
reader can easily convince himself (or herself) that congru­
ence and similarity of triangles are equivalence relations*.

Denote the set of circles in the plane by M h, and define 
the relation X  fz Y  by the condition that the circle X lies 
inside the circle Y. It is clear that this relation is anti­
reflexive and transitive, i.e. is a strict order. This order 
isn’t total, since there exist pairs of circles, neither of 
which lies inside the other.

Let us give the designation Mn to the set of all straight 
lines. We may then consider relations between straight 
lines and circles. An example of such a relation is X Tan Y — 
the straight line X  is tangent to the circle Y.

The product Tan (Tan)-1 is a relation in the set of straight 
lines, and X  Tan (Tan)-1 Y  is equivalent to the existence 
of a circle V, such that X  Tan V and Y  Tan V. Thus, X 
Tan (Tan)-1F  means that the lines X  and Y  have a tangent 
circle V in common. But such a circle exists for any two 
straight lines. Therefore, the relation Tan(Tan)-1 holds for 
any two straight lines, and so is the universal relation in M n.

The relation (Tan)-1Tan is defined in the set of circles M k, 
and X  (Tan)-1Tan Y  means that there exists a straight 
line W, for which W Tan X  and W Tan Y, i.e. it is possible 
to draw a common tangent to the circles X and Y.

* Note that the congruence of triangles in geometry by no means 
signifies their identity (coincidence). One of the triangles may be loca­
ted in Moscow, and the other in Vladivostok, as Nina Karlovna Bari 
was wont to say.
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§ 2. Relations Between Equations
Now let the set M  consist of equations of the form

/  (x) -  g  (x).  (? )
Each equation under consideration will be denoted by a 
Greek letter, ?, and a subscript, placed for that purpose 
in the same line as the equation.

A real number a, whose substitution for x  in both sides 
of an equation gives us equal numbers, is called a root of 
the equation. We shall denote the set of all roots of the 
equation ? by R

For example, the set R6l for the equation
*2 =  *3 (E i)

consists of the numbers 0 and 1. The set R%2 for the equa­
tion

cos x  =  sin x  (?2)
consists of all numbers of the form

x — —)- jin (n =  0, + 1, + 2, . . .),

and so is infinite. The set of roots R%3 for the equation
l + ^ 2 - ~ l  (Is)

is empty, since its left side is positive, while its right side
is negative, for any real value x .  On the other hand, the 
set of roots R^ for the equation

(x —  l ) 2 =  x 2 —  2 x  +  1 ( ? 4 )

is the set of all real numbers.
Let us now introduce a relation between equations: 
Definition 5.1. The equations ? and r| are called equi­

valent:
l  «  T]

if their sets of roots coincide: R% =  RT1.
From the fact that equality of two sets is an equivalence 

relation, it easily follows that «  also has this property. Trans­
formations taking an equation ? into an equivalent equa­
tion q are studied in high school algebra courses.
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Definition 5.2. The equation g is not stronger than the 
equation p: £=̂ >r], if R%^ R T1. It is also natural to say 
in this case that the equation r\ is not weaker than the equa­
tion |* .

It is easy to verify that the relation =$> is reflexive and 
transitive, i.e. is a quasi-order. It is also clear that the equi­
valence £ «  r| follows from £ =$ p and r\ £. Conversely, 
it follows from £ ^  p that |  =̂> rj and r) =£> |.  Therefore,
~  =  u (= )̂~1-

In a set of equations having at least one root, it is easy 
to introduce a natural tolerance relation—the presence 
of a common root: R% f| R  ̂ =  0 .

It is also possible to introduce the relation ~ , effective 
equivalence of equations. We shall call the equations £ 
and T} effectively equivalent, if each of them can be transfor- 
med into the other by means of a finite number of allowable 
steps from a fixed list (it is assumed, of course, that the 
transformations occurring in this list preserve equivalence).

In view of the transitivity of the relation ^ , any number 
of applications of such steps will preserve equivalence. 
Therefore, effectively equivalent equations are equivalent, 
which can be written as the inclusion of one of these relations 
in the other: s  ^  .
Thus, the equations

x — 1 
3* +  l 2 ( y

and
2x2 — £ +  3 = 0  (E6)

are effectively equivalent:

since £e can be obtained from £5 with the aid of a sequence of 
transformations, well-known from the high school algebra 
course, and conversely.

* One also calls q derivable from (or a consequence of) £ in this case. 
(Ed. note)
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On the other hand, the equations

* — 1 = 0  (£,)
and

2*  -  1 -  *  =  0 (Is)

are equivalent (both have the single root: x =  1), but not 
effectively equivalent, since £8 cannot be obtained from 
| 7 by means of algebraic transformations. Therefore, the 
following strict inclusion is valid:



Chapter

VI
MAPPINGS OF RELATIONS

§ 1. Homomorphisms and Correlations

We have already had to associate various sets and rela­
tions defined in them. For example, an arbitrary tolerance 
space and the set SH of non-empty subsets of its tolerance 
classes H (Theorem 3.3). Or a set in which a quasi-order is 
given and its factor set with the induced order. In this 
chapter, we shall introduce important general concepts, 
permitting us to talk about associations of different sets 
with relations. Let (A, M )  and (B , L)  be two relations. 
To associate these relations means to assign certain ele­
ments of the set L to elements of the set M, and to indicate 
what information about the relation B is contained in the 
fact that the relation A holds for certain elements of M . 
In what follows, the notation a: (A , M ) - +  (S, L)  will 
denote that a is a mapping of the set M  into the set L, 
and {A, M)  and (B , L)  are relations. The reader would 
be well-advised to recall the definitions of surjective, injec­
tive and bijective mappings (§ 2 of Chap. I).

Definition 6.1. A mapping a: M L is called a homo­
morphic mapping (or a homomorphism) of the relation 
(A , M )  into the relation (B , L), if it follows from xAx' 
that a (x) Ba (x').

In other words, from the fact that the relation A holds 
for pre-images, it follows that the relation B holds for their 
images. Two examples of homomorphisms of relations are 
shown in Fig. 6.1. In order to obviate superfluous arrows, 
the correspondence of vertices is indicated by their number­
ing. In particular, it is indicated that vertices 2 and 3 are
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mapped onto a single vertex in Fig. 6.1a. Symmetric rela­
tions are depicted in Fig. 6.1 (and also in Figures 6.2 and 
6.3), and so arrows are not drawn in the graphs.

1 2 1 1 2  1 2

4 3 4 4 3 4 3
(a) (b)

Fig. 6.1. Homomorphisms of relations

Definition 6.2. Ajmapping a: M  -> L is  called a corre­
lation of the relation (A , M )  into the relation (B, L), 
if it follows from a (x) Ba (x') that xAx'.

2

4 3 3 4
( b )

Fig. 6.2. Correlations of relations

In other words, the holding of B for a pair of images im­
plies the holding of A for any pair of their pre-images. (The 
term “correlation” was first used for such mappings by 
S. K. Shaumyan.) Two examples of correlations between 
relations are depicted in Fig. 6.2. It is instructive to analyse
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what edges in the mapped graph are necessary for the map­
ping to be a correlation. Only the edges (1, 6 } and (3, 4) 
are unnecessary (their deletion would not violate the corre­
lation) in Fig. 6.2a.

If a mapping, a: M L, is bijective, then it is a corre­
lation if and only if the inverse mapping, a -1: L -+  M  is 
a homomorphism. If the inverse mapping does not exist, 
the concept of a correlation does not reduce to that of a 
homomorphism.

The concept of a correlation turns out to be helpful in 
mathematical linguistic problems.

If the mapping a is surjective, we shall call the homomor­
phism a an epimorphism; if a is injective, the homomorphism 
a  is called a monomorphism; if, finally, a is bijective, the 
homomorphism a is called an isomorphism*. The homomor­
phism (respectively: epimorphism, monomorphism, isomor­
phism) a is called a k-homomorphism (respectively: k-epi- 
morphism, k-monomorphism, k-isomorphism) if it is simulta­
neously a correlation.

A good example of a /c-homomorphism may be extracted 
from the preceding chapter. Let M  be a set of equations, 
and L the set consisting of the sets of real numbers. Consider 
the mapping (p: M  — L, assigning to each equation £ £ M , 
the set /?£ 6 £  of its roots. It is clear that one and the same 
set of roots can correspond to different equations. But accord­
ing to Definition 5.1, the mapping cp is a ft-homomorphism 
of the relation ( « ,  M ),  into the relation ( =  , L), since 
identical sets of roots correspond to equivalent equations 
and, conversely, if two equations’ sets of roots coincide, 
they are equivalent.

Analogously, by Definition 5.2, the same mapping cp 
will also be a /c-homomorphism of the relation (= ,̂ M )  
into the relation (^ ,  L).

Theorem 3.3 means that for any tolerance space ( M ,  t ) ,  

there exists a ^-homomorphism of (M, t )  into {SH, r ) ,

* Thus, given any set M y the identity mapping e of M  into itself 
is an isomorphism of the empty relation ( 0 ,  M )  into the universal 
relation (M2, M ),  which is, of course, hardly compatible with what 
mathematicians ordinarily associate with the word “isomorphism”. 
The concept of a ^-isomorphism, introduced in the next sentence, is 
more reasonable. (Ed. note.)
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where SH is the set of non-empty subsets of H ; moreover, 
F1rF2 means that Fx f) F2 =̂= 0 .  In the special case where 
(M, t )  is kernel-free, there even exists a /c-monomorphism 
of (M, t )  into (*SH, t )  (Theorem 3.3").

The inter-relation between quasi-orders and orders, consi­
dered in Chapter IV, admits the following interpretation 
in our new terms. Let (A, M )  be a quasi-order. Then there 
exists a &-epimorphism

a: (A, M )  (B , L)
where B is a non-strict order and L =  M \ A  f| ^ _1- 

Let us now show that every homomorphism may be exten­
ded to a ^-homomorphism:

Lemma 6.1. Let a: M  ->■ L be a mapping, and (C, L) 
a relation. Then (1) there exists a unique relation (D , M ), 
such that a is a k-homomorphism of (D , M ) into (C, L)\ 
(2) given any relation (B, M ), for which a is a homomorphism 
of (B , M ) into (C, L), we have B ^  D.

Proof. (1) We define a relation D in the set M  by the 
condition:

xDxf, if a (x) Ca (x'). (6.1)
It is obvious that a is a /c-homomorphism of (D, M )  into 
(C, L). We shall now prove uniqueness. Suppose that a 
is also a /c-homomorphism of (A, M )  into {C, L ). First 
assume that xAx'. Since a is a homomorphism of (A, M )  
into {C, L), we have a (x) Ca (x).  It follows from (6.1) 
that xDx . Hence, A ^  D.  Now let xDxf. From (6.1) we get 
a (x) Ca (x).  Since a is a correlation of (A, M)  into 
(C, L),  xAx . Hence, D ^  A.  Thus, A =  D.

(2) The inclusion B ^  D can be proved in the same way 
as we proved the inclusion A ^  D in the first part of our 
proof.

Let e be the identical mapping of M  onto itself, and B, C 
relations in M.  It is easy to see that the mapping

e: (B , M) ~+ (C, M)
is a homomorphism if and only if B ^  C (see Fig. 6.16). 
On the other hand, in order that e be a correlation, it is 
necessary and sufficient that the opposite inclusion, B ^  C, 
hold (see Fig. 6.26, in particular). —-
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Let us now consider what properties of relations are pre­
served under various types of mappings.

Lemma 6.2. Let a: {A, M ) - >  (B , L)  be a homomor­
phism. Then (1) if a is surjective and A is reflexive, then B is 
reflexive; (2) if B is anti-reflexive, then A is anti-reflexive.

Proof. (1) In view of the surjectivity of a, given any 
y (z L, there exists a pre-image x: a {x) — y. Since xAx 
holds, it follows from the definition of an epimorphism 
that yBy holds. Therefore, the reflexivity of A implies that 
of B .

(2) Now let B be anti-reflexive. Assume that there exists 
an x 6 M, such that xAx. Then yBy would be true for the 
image y =  a (x), which contradicts the anti-reflexivity of B. 
The lemma is proven.

We have the following analogous
Lemma 6.3. Let a: {A , M)  —>■ <B , L) be a correlation. 

Then (1) the reflexivity of A follows from that of B\ (2) if a 
is surjective, then the anti-reflexivity of B follows from that 
of A.

Proof. In fact, if we always have a (x)Ba (x), then by 
the definition of a correlation, xAx is also true, i.e. A is 
reflexive. If a (x) Ba (x) held for at least one element of 
L, then A could not be anti-reflexive.

For the preservation of other properties of relations, it is 
necessary that the mapping a be simultaneously an epimor­
phism and a correlation.

Lemma 6.4. If a: {A , M)->- {B , L) is a k-epimorphism, 
B is symmetric if and only if A is symmetric.

Proof. Assume that A is symmetric. Then if yBy', y =  
=  a (x) and y' -- a (x),  we have (by the definition of a 
correlation) xAx . Hence x Ax and (by the definition of a 
homomorphism) y'By. Now suppose that B is symmetric, 
and let xAx \ then a (x) Ba (x) (by the definition of a 
homomorphism). Hence, a (x) Ba (x) and (by the defini­
tion of a correlation) x Ax. The lemma is proven.

From lemmas 6.2, 6.3 and 6.4 immediately follows
Theorem 6.1. If a: (A , M ) -+■ (B , L) is a k-epimorphism, 

B is a tolerance if and only if A is.
We also have
Lemma 6.5. If a: (A , M ) - +  (B , L) is a k-isomorphism, 

B is anti-symmetric if and only if A is.
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Lemma 6 .6 . If a: (A , M )  —v (B , L) is a k-epimorphism, 
5  /s transitive if and only if A is.

Proof. First assume that B is transitive. Let xAx and 
x Ax . Then a (x) Ba {x') and a (x') Ba {x)\  due to the 
transitivity of B, a (̂ ) Ba (x") is true. But then xAx . 
Now assume that A is transitive. Let yByf and yrBy . Then 
for any pre-images, we have xAx and xfAx .  Therefore, 
in view of A's assumed transitivity, xAx.  Hence, yBy”. 
From the lemmas we have proven follows

Theorem 6.2. If the mapping a: (A , M )->  (5, L) is a 
k-epimorphism, then the relation B is an equivalence {respecti­
vely: quasi-order) if and only if A is an equivalence (respecti­
vely: quasi-order).

Theorem 6.3. Let the mapping a of the set M onto the 
set L he a homomorphism {correlation) of the relation {A , M )  
into the relation {B , L) and a homomorphism {correlation) 
of the relation C4X, M ) into the relation (5 X, L). Then a 
is also a homomorphism {correlation) of the relations 
{A U An M), {A D -^i, M ) and (AAly M)  into the rela­
tions (B U Bn L). (B f| B\L) and (BBn L), respecti­
vely. We leave the proof for the reader.

§ 2. Minimal Image and Canonical Completion 
of a Relation

Let us begin by proving the necessary lemmas.
Lemma 6.7. Let a: M ^ L  he a surjective mapping, let 

(B , M ) be an arbitrary relation, and let {A , M ) he a rela­
tion, for which

xtAx2 is equivalent to a {x^ =  a {x2).
Then (1) if there exists a relation (C, L), such that a is 

a k-epimorphism of {B , M ) into (C, L), we have
ABA -  B; (6.2)

(2) if (6.2) holds, there exists a relation (C, L), such that a 
is a k-epimorphism of (5, M ) into (C, L).

Proof. Since A is reflexive, B ^  ABA. We shall prove 
that ABA ^  B. Let xABAx'. Then there exist an xx and 
an x2, such that

xAxx, xxBx2, x2Ax .
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It follows from x1Bx2 and the fact that a is a homomorphism 
that

a  (xx) Ca (x2).

From xAxx we obtain a (x) =  a (zj); from x2Ax' follows 
a (x2) =  a (x'). Hence,

a (x) Ca (x').

Since a is a correlation, xBx*. Consequently, ABA ^  B .
(2) Let y, y' £ L. Since a is a surjection, there exist 

x, x' 6 M , such that a (x) =  y and a  (,x') =  y . We define 
the relation C in L:

yCy\ if xBxr.

Our definition does not depend on the choice of pre-images, 
x and x . In fact, let xx and x[ be some other pre-images of 
y and y \  respectively. Thus, a (â ) =  y and a (x[) =  y’. 
We shall show that xBx if and only if xxBx\. Suppose that 
xBx'. Let us prove that xxBx\. Since a  OrJ =  a (x), xxAx. 
For analogous reasons, x Ax[. It follows from xxAx, xBx 
and x'Ax[ that We obtain xxBx[ from (6.2).
Analogously, we can derive xBx from xxBx\. It obviously 
follows from the definition of C that xBx if and only if 
a (x) Ca (x'). Hence, a is a fc-epimorphism. The lemma is 
proven.

It is easy to see that (6.2) is equivalent to A ^  B for 
arbitrary equivalences A, B. It is clear that (6.2) will always 
hold for A =  E, i.e. when a is a bijection.

It is interesting to determine when there exist non-injecti- 
ve /c-epimorphisms (i.e. /c-epimorphisms which are not 
fe-isomorphisms) for a relation (B , M). It follows from 
Lemma 6.7 that the relation (B , M )  admits a non­
in jective A;-epimorphism if and only if there exists an equiva­
lence relation A in the set M  (distinct from the equality 
relation), such that ABA =  B. In particular, no such A 
exists when B =  E.

Definition 6.3. Let B be a relation. We define the rela­
tion B+ by the following condition: xB+y if (1) xBz if and 
only if yBz; (2) zBx if and only if zBy. Thus, the relation 
xB+y means that the arrows in Bf s graph leave x and y



2. Minimal Image and Canonical Completion of Relation 173

for the same vertices, and enter x and y from the same ver­
tices. We call B+ the relation associated with B.

It is a trivial matter to convince oneself that B+ will be 
an equivalence for any initial relation B. The relation B+ 
coalesces all elements, having the same connections in 
B's graph, into a single class.

Note that in Chapter III we actually considered the transi­
tion from a relation B to a relation B+: if r is a tolerance 
relation and 0 is the relation defined by (3.3), then t + =  0.

Lemma 6 .8 . The identity
B+BB+ =  B (6.3)

holds.
Proof. It is clear that B s B +BB+. Let us prove the 

opposite inclusion: B 3  B +BB+. Assume that xB+BB+y 
holds. Then there exist a z and a w, such that xB+z , zBw 
and wB+y. From xB+z and zBw follows xBw. Analogously, 
xBy follows from wB+y and xBw. Hence, B +BB+ ^  B , 
and so (6.3) is proven.

Lemma 6.9. In order that ABA =  B hold for an equiva­
lence relation A and an arbitrary relation B , it is necessary 
and sufficient that

A < = B +. (6.4)

Proof. Let (6.4) hold. Then taking Lemma 6.8 into ac­
count, we have B ^ A B A  ^  B +BB+ =  B , i.e. ABA =  B. 
Now let ABA =  B hold. Suppose that xAy. We shall prove 
that xB+y. According to the definition of B +, we must prove 
that xBz if and only if yBz, and that zBx if and only if 
zBy. Let us prove that xBz implies yBz. Thus, let xBz. 
Since A is an equivalence, yAx follows from xAy. Further­
more, zAz. From yAx, xBz and zAz follows yABAz, and so 
yBz. We leave the rest of the proof for the reader. The lemma 
is proven.

From lemmas 6.9 and 6.7 follows
Theorem 6.4. In order that there exist a non-infective 

k-epimorphism of the relation (B , M ), it is necessary and 
sufficient that the relation B + differ from the equality relation.

(In proving the sufficiency, one must set L =  M/ B+ 
and let a map each element onto its equivalence class, so 
that Lemma 6.7 may be used.)
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The last assertion was obtained as a result of discussing 
these questions with S. Ya. Fitialov.

It is easy to verify that if B is an equivalence, then 
B + =  B. But if B is a tolerance, xB+y means that x and y 
belong to the same kernel (see Chap. III). This shows that a 
tolerance space admits no non-trivial fc-epimorphisms if 
and only if it is kernel-free.

Generally speaking, a relation B is incomparable with 
the relation B + associated with it. However, we have

Lemma 6.10. If B is reflexive, then B +^ B .
Proof. In view of (6.3) and the reflexivity of the relations 

B , B +, we have B+ ^  B +BB+ ----- B , i.e. the lemma is proven.
Now consider a mapping a : M L and a relation B 

in M. Let 2JIB (°0 be the set of all relations C in L, such 
that a: (B , M ) (C, L)  is a homomorphism. The set 

(a) is non-empty, since the universal relation always 
belongs to it.

Denote the intersection of all relations in 501̂  (a) by Ba. 
By Theorem 6.3 (more precisely—by one of its generaliza­
tions), the mapping

a: (5, M ) - +  <£a, L)  (6.5)
is a homomorphism. The relation Ba possesses the following 
minimality property: if a: (B , M ) - +  (C, L)  is a homo­
morphism, then Ba ^  C. It is easy to see that the converse 
is also true: if Ba s  C, then a: (B , TkO-> (C, L)  is a homo­
morphism.

y z i

Fig. 6.3. Equivalence turns into tolerance

Definition 6.4. The relation i?a is called the a-image 
of the relation B.

The example in Fig. 6.3 shows that the a-image of B is 
not necessarily an equivalence, even if B is an equivalence.
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(Loops, which are present at all points of both graphs, 
have been omitted.)

Lemma 6.11. If a is a surjective mapping and B is a tole­
rance, then Ba is a tolerance.

Proof. The reflexivity of Ba follows from Lemma 6.2. 
The symmetry of Ba is obtained as follows. We first prove 
that if, yBay ', then xBx for at least one pair of pre-images. 
Otherwise, we could take the relation C in L, such that 
yCy' does not hold, while for all other pairs, y-fiy^ if and 
only if y1Ba y2. It is obvious that C a  Ba and a: {B , M )  — 
-->■ {C, L) is a homomorphism. But this is impossible, in 
view of the minimality of the relation Ba. It now follows 
from xBx that x Bx and y'Bay.

It is evident from the example in Fig. 6.3 that if B is 
an equivalence, Ba may turn out to be merely a tolerance.

In view of Lemma 6.1, we may formulate
Definition 6.5. Let a: M  — L be a mapping, and let B 

be a relation in M. The relation Bai for which the mapping
a: (Ba, M ) - +  <5a, L)  (6.6)

is a /c-homomorphism, is called the a-completion of the 
relation B.

It follows from Lemma 6.1 that
B =  Ba. (G.7)

Theorem 6.5. Let A be an arbitrary equivalence in M, let 
a: M  — Ml A be the mapping which takes each element 
x £ M into its equivalence class with respect to A , and let B 
be a relation in M. Then

Ba =  ABA . (6.8)
Proof. We shall once again make use of the property 

of the a-image Ba, established in proving Lemma 6.11: 
yBa yr holds if and only if there exists a pair of pre-images, 
x and x' (a (x) =  y, a (x) =  z/'), such that xBx . Let xBax' . 
Since a is a homomorphism of (Ba, M )  into (Ba, L), we 
have a (x) Ba a {x).  Then in view of the above mentioned 
property of the a-image Ba, there exist z, z' 6 M , such 
that a (z) =  a (x), a (zf) =  a (x') and zBz'. It follows from 
a (z) =  a (x) that xAz. For analogous reasons, z'Ax'. It
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follows from xAz, zBz' and z'Ax that xABAx . The proof 
that xABAx' implies xBax' is similar. By the same token, 
(6.8) is proven.

It easily follows from (6.8) that the a-completion Ba 
satisfies (6.2). For

ABaA =  A (ABA) A =  A2BA2 =  ABA =  Ba.
Thus,

Ba =  ABaA . (6.9)
We shall now consider when an initial relation B and 

its a-completion Ba are of the same type. Thanks to (6.8), 
this question reduces to a purely algebraic problem: when 
does the product ABA, where A is an equivalence, belong 
to the same type as B?

Let us first examine the case where B is an equivalence 
relation. A simple algebraic criteria is given by

Theorem 6 .6 . If A and B are equivalences in a set M, 
then in order that the product ABA be an equivalence, it is 
necessary and sufficient that

ABA =  A[)B.  (6.10)

Proof. Since A Q B is an equivalence, (6.10) is sufficient. 
Now let ABA be an equivalence. It follows from the obvious 
inclusions A ^  ABA and B ^  ABA that A (J B ^ A B A .  
Taking the transitive closure of both sides and applying 
Theorem 1.3, we obtain

A\JB<=ABA.  (6.11)
On the other hand, in view of
ABA <= BAB U A BAB U ABA U BABA -  (AB U BA)2 
and (1.2), we have

A B A ^ A o B .  (6 . 12)

But by Theorem 2.9, A Q B =  A o B; comparing (6.11) 
and (6.12), we obtain (6.10). The theorem is proven.

A simpler sufficient condition is that AB =  BA.  Then 
ABA = AAB =  A B , but according to Sik’s Theorem (Theo­
rem 2.7), AB is an equivalence.
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V. B. Borshchev has constructed a curious example of two 
equivalence relations, A and B , for which AB ^  BA and 
ABA =̂= BAB , but ABA is an equivalence. This example 
consists of the following. The classes with respect to the 
relation B are {1}, {2, 3} and {4}, and with respect to the 
relation A — {1, 2} and {3, 4}. A simple calculation reveals 
that the relation ABA is universal. The products A B , BA 
and BAB are shown in Fig. 6.4.

It is possible to formulate necessary and sufficient condi­
tions in terms of the “almost-commutativity” of the rela­
tions A and B.  The corresponding result looks like this:

1 2 1 2 1 2

F ig /;  6 .4

Theorem 6.7. If A and B are equivalence relations, the 
product ABA will he an equivalence if and only if

BAB <= ABA. (6.13)
Proof. Let us first prove that if (6.13) holds, ABA is 

an equivalence. Since (ABA)-1 =  A~1B~1A'ml =  ABA> ABA 
is symmetric. Let us also prove the transitivity of ABA.  
It follows from (6.13) that

(ABA) (ABA)  =  A (BAAB) A =  A (BAB) A
s  A (ABA) A =  ABA.

Hence, ABA is transitive. Now let ABA be an equivalence. 
Since ABA is transitive, we have (ABA) (ABA) ^  ABA.  
But from this it follows that

BAB c= A (BAB) A =  (AB) A (BA)
=  (AB) (AA) (BA) =  (ABA) (ABA)  c= ABA.
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The theorem is proven.
A similar result can also be obtained for orders. It looks 

like this:
Theorem 6 .8 . Let A be an equivalence, and B a strict 

order. In order that the product ABA be a strict order, it is 
necessary and sufficient that the following conditions hold:

Proof. (1) Sufficiency. Let (6.14) hold. We shall first 
prove the anti-reflexivity of ABA . Suppose that xABAx 
holds for some x. There then exists a y and a z , such that 
xAy9 yBz and zAx simultaneously. From zAx and xAy 
follows zAy,  and then also yAz. Thus, yBz and yAz hold. 
But this is impossible, by virtue of A f) B =  0 .  In view 
of the contradiction we have obtained, the anti-reflexivity 
of ABA is proven. Its transitivity may be proven exactly 
as in the preceding theorem.

(2) Necessity. Let ABA be a strict order. Assume that 
A f] #  ¥= 0 ,  Le. that there exists a pair of elements x 
and y , such that xAy and xBy hold simultaneously. Then 
the following three relations hold: xAx, xBy and yAx, 
i.e. xABAx holds, and so ABA is not a strict order. 
From this' it follows that A f| B =  0 .  The inclu­
sion BAB s  ABA may be proven exactly as in the prece­
ding theorem.

The theorem is proven.
Arguing analogously, the reader will easily be able to 

prove that if B is a quasi-order and A is an equivalence, 
then ABA will be a quasi-order if and only if BAB ^  ABA.

Let us sum up what we have done. Suppose that there is 
a relation (B , M )  and a mapping a of the set M  into a 
set L:

Then the minimal image Ba of the relation B is uniquely 
defined in the set L. In other words, starting with the rela­
tion B and the mapping a , the relation Ba is constructed 
in L, so that the mapping

{BAB s  ABA, 
A n B =  0 .

(6.14)

a: M  -> L.

(B, M )  A  (B*, L)
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turns out to be a homomorphism possessing the following 
property: if D is a relation in L , then the mapping a:
M -+■ L will be a homomorphism of (B , M )  into (Z>, L) 
if and only if

D =  Ba.
The homomorphism a of a relation (B, M )  into its mini­

mal image (Ba, L)  is not, generally speaking, a correla­
tion. However, there exists a unique canonical completion, 
Ba 3  5 , for which the mapping

a: (Ba, M )  <£a, L)
is a Zc-homomorphism.

In other words, for each relation B in M , the mapping 
a: M L can be “imbedded” into the following diagram:

{B,M>-----------  ► <Ba,L>

Here e: M M  is the identity mapping, giving the homo­
morphism (B, M)  (Ba, M), the horizontal arrow is a 
homomorphism, and the diagonal arrow is a Zc-homomor- 
phism. The relations Ba and Ba ^  B are uniquely defined 
by the relation B and the mapping a. We emphasize the 
importance of Formula (6.8), giving an explicit expression 
for the canonical completion Ba of the relation B in terms 
of B.

The results obtained in this section have some significance 
for the mathematical theory of classification systems.

Each classification of elements of a set M  is based on a 
choice of a system of partitions of this set into classes. 
By the same token, a certain system of equivalence relations, 
S =  {Al9 A 2, . • arises in M . Any of the equivalence 
relations belonging to S,  say A lf generates a surjective 
mapping

a: M L,
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where L is the set of equivalence classes with respect to A ly 
and the mapping a assigns to each element of M  its equi­
valence class with respect to A v  Therefore, xAxy is equiva­
lent to a (x) =  a  (y). The relation A 2 6 S will then induce 
a relation A 2 in the set L. It is evident from Lemma 6.11 
and the example in Fig. 6.3 that the relation A 2, induced 
by the equivalence A 2 in the equivalence classes with res­
pect to a different relation, may turn out to be merely 
a tolerance. Therefore, in describing a sufficiently complica­
ted classification system, we cannot restrict ourselves to 
equivalence relations, but must consider more general 
tolerance relations. This is connected with the fact that in 
classification systems, one is always studying not only rela­
tions between the objects themselves, but also relations 
between classification headings, which are essentially 
equivalence classes with respect to one of the relations 
characterizing the classification system.



Chapter

VII
EXAMPLES FROM
MATHEMATICAL
LINGUISTICS

§ 1. Syntactical Structures

There exist various linguistic relations between the words 
forming a correct English sentence. To determine these 
relations in an explicit manner means to describe the syn­
tactical structure of the sentence.

To give a formal description of properties of such rela­
tions and of the methods used to single them out in a sen­
tence is one of the important tasks of mathematical linguis­
tics. Since we have no intensions of discussing here the 
connection between mathematical linguistics and general 
linguistics, we shall not go into an analysis of the linguistic 
nature of the relations to be introduced, but shall appeal 
to the knowledge of the English language and its grammar 
that any reader of this book undoubtedly has.
^ L et there be given an English sentence, and let M  be 
the set of occurrences of words in this sentence. We shall 
single out certain important grammatical relations in M , 
determining the role that a word’s given occurrence plays 
in this sentence.

In what follows, we shall speak of words’ occurrences, and 
not of words, since one and the same word may be repeated 
several times in a sentence; moreover, different occurrences 
of one and the same word may play different roles and have 
different connections.

For example, “Sky and clay, clay and sky, what else 
do you want? Squint quickly, as a near-sighted Shah over 
his turquoise ring, over the book^of sonorous clay, over the 
book-like earth, over the festering book, over the dear clay, 
with which we suffer, as with music and a word”.
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The words “as”, “over”, “book” and “clay” are repeated 
several times in this poem by Osip Mandelstam.*

Relations between words, not depending on their occur­
rences in texts (say, “belonging to the same gender” or 
“belonging to the same part of speech”), are also studied 
in mathematical linguistics. But these relations (the so- 
called paradigmatical relations) are relations in a different 
set—in the set of words in the English language**. In this 
section, we shall only study relations between occurrences 
of words in a certain sentence (the so-called syntagmatical 
relations).

Let us begin by listing the main relations between 
words in a sentence.

The simplest of all possible relations in M  is the successor 
relation: x is to the left of y. In what follows, we shall denote 
succession by an inequality sign. Thus, the notation x <  y 
means that y is situated to the right of x in a sentence. It is 
easy to see that the relation “to be to the left of” defines a 
total*** strict order in the set M.

We shall denote the reduction of the successor relation 
<< by the symbol A. The relation xAy means that y is the 
immediate right neighbour of the word x . It is easy to see 
that xAny" holds if and only if the word y is exactly n 
places to the right of x•

It would seem that such a purely geometric relation 
doesn’t have any special linguistic significance. It would 
be even more natural to think so if one’s native language 
were Russian, whose word order is comparatively free. 
(Incidentally, this is related to the fact that" the 
Russian language has a rich system of endings, sufficiently 
completely indicating the connections between words in 
sentences. Therefore, Russian can allow itself the luxury of 
being less concerned than English with word order). How-

* Osip Mandel’stam, Collected Works, volume one, poetry, “Inter- 
Language Literary Associates”, 1967.

*♦ Note that the term “set” is not entirely appropriate here, since 
there exists no generally accepted agreement on what should be con­
sidered words in the English language.

*** But, as in all linguistic formal models, exceptions^are possible 
here: footnotes violate the linearity, and by the same token, the 
totality, of a text’s word order.
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ever, even in the Russian language, word order is not entirely 
arbitrary, from the point of view of grammar and meaning. 
For example, the fragment “voz’mem takoe chetnoe chislo, 
chto...” may not be converted into the fragment “voz’mem 
chetnoe takoe chislo,1 chto...”. As our second example, we 
note that there exist Russian words (prepositions), which 
always precede the corresponding noun.

A second important type of relation is grammatical con­
trol. Control is a relation, generalizing such customary 
kinds of relations as“definiendum—definition”, “predicate— 
subject”, “predicate—object”, etc. For example, the well- 
known grammatical assertions “the verb ‘am’ requires the 
singular”, “the verb ‘am’ controls the first person”, etc. 
simply mean that one or another verb controls pronouns 
of certain numbers and persons. This is an example of so- 
called obligatory control—the verb “am” cannot “dangle” 
in a correct English sentence without a controlled pronoun. 
The sentence “am going to the movies” may be understood, 
considered meaningful, but not regarded as grammatically 
correct by any stretch of the imagination.

I. A. Mel’chuk* distinguishes 33 types of grammatical 
controls (or relations of immediate domination). But here 
we shall call the union of all these relations control. Con­
trol, to be denoted in what follows by the symbol — is 
an asymmetric relation. In order that the examples below 
be understood, we agree, in accordance with accumulated 
traditions, to regard control as going from a definiendum 
to a definition, from a predicate to a subject, from a pre­
position to a noun, from a verb to a direct object, from a 
verb to a preposition. On the basis of these conventions 
and their natural analogues, one can understand how con­
trols are arranged in concrete texts. (Let us confess that 
there are complicated situations, where different linguists 
arrange controls differently in one and the same sentence.) 
A sentence, together with a graphical representation of its 
control, is given below. First we cite the sentence itself, 
with its words enumerated, and then give its control graph

* I. A. Mel’chuk, Automatic Syntactical Analysis, Novosibirsk, 
Siberian Branch USSR Acad, Sci., 1964.
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in Fig. 7.1:

“And Satan, rising, with merriment on his visage, his 
1 2 3  4 5 6 7 8 9

kiss completely burns the lips, on the traitorous night 
10 11 12 13 14 15 16 17 18

kissing Christ”.
19 20

(A. S. Pushkin, Coll. Works, v. Ill)

The connective “and”, beginning the sentence, is one of 
the doubtful cases to which we had alluded. Here it may

i nnn
1 2  3 4 5 6

m m
7 8 9 10

f l V
12 13

Fig. 7.1

be regarded as merely a rhythmic insertion into the text. 
Note that the arrows in Fig. 7.1 do not intersect. As we 
shall see below, this circumstance is by no means accidental.

The transitive closure of the control relation is called 
direction, and is denoted by the symbol ~ .  Thus, the rela­
tion x12 =$> x7 holds in Fig. 7.1. By virtue of Lemma 4.7, 
if there are no circuits in a control graph, then its direction 
relation is a strict order. Direction is indirect control— 
control through intermediate stages.

Our third type of relation between occurrences of words 
in a sentence is concord. Generally speaking, by concord 
is understood the presence of explicitly expressed common 
grammatical features, uniting a given pair of words into 
a single collective. For example, the concord of a noun and 
a verb with respect to number. We shall denote the con­
cord relation by the symbol a. We have, for example, the 
relations x1(iax12 and xi2ax^0 in the preceding sentence, while 
control holds only in one direction: xl2 xV). Here we
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already see one distinction between concord and control. 
The former is symmetric: the definiendum and the definition 
have, generally speaking, concordant grammatical featu­
res. Control has direction; it is asymmetric. But concord 
is by no means merely a “symmetrization” of the control 
relation. Firstly, control is possible without any concord. 
For example, there is control from the verb to the adverb 
in the sentence “He leaves today”. Only the verb and the 
pronoun are concordant here (with respect to person and 
number), but not the adverb and the verb. Secondly, con­
cord may be unrelated to any kind of control.

This situation can be more easily illustrated with algebraic 
expressions* than with English texts. A left and a right 
parenthesis, corresponding to each other, are “concordant” in 
such an expression.

In English, the role of parentheses is played by construc­
tions of the following kind: “if..., then...”, “either ... or ...”, 
etc. Paired connectives corresponding to each other are 
related by concord, but neither of them controls the other.

Our fourth type of syntagmatical relations is the impor­
tant homogeneity relation (“to be homogeneous members of 
a sentence”). We shall denote this relation by the symbol v. 
A typical example of a sentence with homogeneous mem­
bers is:

“The Swede, the Russian—stabs, slashes, 
slaughters”.

(A. S. Pushkin).
Here there are two homogeneous subjects and three homo­

geneous predicates. Examples of homogeneous objects 
may be found in other fragments from A. S. Pushkin: “In­
law Ivan, when we drink, let us not forget to think a while 
about the three Maries, Luka and Pete and Paula, please” 
or “In my soul thou shalt reside, a memory sweeter yet 
than truth, that has replaced the strength, the pride, the 
hope, the courage of my youth”.

Our fifth type of relation bears a somewhat different cha­
racter than the previous ones. The fact is that every English 
sentence can be quite naturally divided up into constituents.

* They are quite naturally regarded as texts in an artificial lan­
guage.
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Small constituents may themselves occur in larger ones. 
Such a subdivision of a sentence into its collectives (or, as 
is customarily said in linguistics, constituents) enables us, 
in particular, to understand the sentence. Our linguistic 
intuition permits us to isolate the constituents in an English 
sentence more or less uniquely. The constituents in the follo­
wing example have been singled out by means oKparentheses:

1 2 3 4 5 6 7
“(All this) (greatly (shook (my (author’s confidence))))”.
In essence, the quotation marks also play the role of pa­

rentheses here, singling out the maximal phrase. We shall also

Fig. 7.2. Constituent tree

include the individual words among the constituents. Thus, 
the set M  of constituents consists of certain non-empty sets of 
occurrences of words in the given sentence. We shall denote 
the relation of occurrence in a constituent defined in the set M y 
by the ordinary inclusion sign ci. The notation y a  at will 
then mean: Xj  ̂ a t ii y =  Xj is a word in the sentence, and 
aj cz a t if y =  aj is a constituent distinct from a t in this sen­
tence. It follows from our definition that occurrence in a 
constituent is a strict order. In the example under considera­
tion, we have singled out the following constituents:

<*1 = F i . •^3* * 4 > ^ 5 * * 7 } .

a 2 = { * 1 . * 2}> a 3 =  \ •£5 * x 6

a 4 = { * 4 > •^7} 1

oc5 = {*£'>> , r 7 } ,» <*6

•£7}*
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The graph for this relation’s reduction is depicted in 
Fig. 7.2. Note that this graph is a non-symmetric tree, branch­
ing mostly to the right. This is a manifestation of a linguis­
tic rule, and not an accidental property of our example.

* * *

A system of relations between elements of a sentence 
(words and constituents) describes the sentence’s syntactical 
structure in a formal manner. Choosing various collections 
of informally defined relations and describing their formal 
properties, we obtain one or another formal model of the 
sentence’s syntactical structure. Before speaking any further 
about concrete relations and their properties, it would be 
helpful to specify what we may expect from a formal descrip­
tion of linguistic objects and relations between them. A typi­
cal situation in mathematical linguistics can be described 
in the following way. We start out with a certain class of 
linguistic objects of the same type (for example, with the 
set of English sentences). Each of these objects can usually 
be divided up into elements in a natural way, i.e. it may 
be regarded as a set of elements of a definite type. Thus, 
a sentence may be regarded as a set of occurrences of words 
(or of words and constituents). A word, in turn, may be regar­
ded as consisting of morphemes: roots, suffixes, prefixes, end­
ings. Using our knowledge of a language and its grammar, 
we are usually able not only to isolate the elements, con­
stituting a given linguistic object, but also to establish 
certain relat ons between these elements. For example, 
we can determine control in a sentence, single out concord, 
homogeneous members and phrases.

We can distinguish certain properties, invariant under 
replacements, of these relations, i.e. properties which rela­
tions of a given type possess for any object of a chosen class. 
For example, the successor relation is a total order for a 
certain rather extensive class of English sentences.

Thus, we are interested in relations which can be more or 
less uniquely defined for any of the linguistic objects belong­
ing to a certain class, and in those properties of these rela­
tions which ho d (generally speaking) for arbitrary objects 
from this class.
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In other words, when we use the phrase “Control Rela­
tion”, we have in mind a class of relations*, each of which 
is defined for certain English sentences'on the basis of the 
stipulations we have made. Moreover/given any English 
sentence, there exists a control relation which is defined 
for it. When we speak of the Control Relation’s properties, 
within the framework of mathematical linguistics, we have 
in mind those properties which hold (again, however, gene­
rally speaking!) for any control relation in any sentence. 
For example, the property “each word controls not more 
than one word” holds for the following sentence:

“Green noise comes and hums”.
However, this property fails to hold for many other senten­
ces, and so it is, in our opinion, not a property of the Con­
trol Relation, but only a property of the given sentence (or 
rather—of the control relation in the given sentence).

We shall only be interested in the invariant properties of 
Relations. However, even for invariant properties, the mat­
ter isn’t so simple. Some properties of Relations follow 
logically from their definitions. For example, the asymmetry 
of control simply means that we agreed to assume that con­
trol can go only from one word to another (from a predicate 
to a subject, but not vice versa). The “Constituent Occurrence” 
Relation’s property of being a strict order results from 
defining this Relation by means of set-theoretical inclusion. 
Properties of linguistic Relations cannot in principle be 
immutable, if only for the fact that a language’s vehicle— 
human beings—possess free will. Consequently, they are 
free to violate any formal rule, or to consciously follow it. 
When we try to establish a system of formal rules, describ­
ing the structure of a language, we often fall under the 
illusion that the further development and refinement of 
this system will sometimes in the bright hereafter give us 
a completely adequate description of the language. But 
even the most detailed system of general rules is continually 
violated by the language’s living development. Even such 
a simple rule as “a sentence cannot be too long” may be

* We have emphasized this circumstance by capitalizing “Control 
l\ elation”.
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violated. In the book “Brata Raju” by the contemporary 
Polish writer Jerzy Andrzejewsky, there are in all two 
sentences. The second of them is: “And they walked all 
night”. But it is clear that the first sentence can be very 
accurately divided up into constituents. In particular, 
when we describe properties of linguistic Relations and 
discover that these properties aren’tj as simple as they 
seemed, then two obvious paths open up before us. The first 
consists of acquiring a more precise understanding, and 
searching for a more complicated formulation of these 
properties*. The second path is to try to define these rela­
tions, themselves, in sentences in a different way**.

Let us try to express this same thought somewhat more 
rigorously. The transition from linguistics to mathematical 
linguistics consists of associating a list of Relations and 
their properties (axioms) with classes of linguistic (observ­
able or conceivable) objects. In accordance with prevalent 
mathematical terminology, we shall call this list a Theory. 
The Relations in this Theory are merely the names of classes 
of relations observed in linguistics. Properties of Relations 
must be formulated in such a way that they make sense 
for real relations.

A set in which relations A x, A 2j . . ., 4̂n̂ are given is 
called a model of the Theory, if a bijective correspondence 
between the list^of the Theory’s Relations and the set of 
relations {Aly A 2, . . A n} has been established in such 
a way that corresponding relations possess all properties 
specified by the given Theory.

A Theory is regarded as well-grounded for a class of lin­
guistic objects, if the vast majority of these objects, as 
sets of elements with appropriate relations, are models of 
this Theory. In our basic example, an observable linguistic 
object is an English sentence.

Our Theory contains the five Relations listed above (as 
variants, one may consider Theories containing only some 
of these Relations). Properties of this Theory’s Relations 
are postulated in such a way that they are satisfied by rela-

* This refers to searches for generalized definitions of projectivi- 
ty t the introduction of discontinuous constituents, etc.

** Thus, there exist various conventions as to the assignment of 
control in case of homogeneous members, subordinate clauses, etc.
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tions of the same name in the bulk of English sentences*. 
(It is also possible to construct a Theory with the aim of 
having it accommodate all the languages in the world; the 
axioms of such a Theory are linguistic universals.)

The first path leading to a revision of a Theory lies in 
a more complicated formulation of the Relations’ proper­
ties, so that they be satisfied by a greater number of sen­
tences. The second path is a revision of our conventions 
about the definition of relations in sentences.

Both these paths are more or less useful, but do not yield 
a real solution to our problem. There remains the third 
path—recognizing that all our formal Theories (formal 
models of a language) lack self-sufficiency, and only reflect 
depth, objective properties of a living language. These 
models reflect certain linguistic norms, hut a language 
may violate them for the sake of preserving what is more 
essential in a given situation. It is important for a language 
to stay within the bounds of a certain allowable level of 
complexity, beyond which speech ceases to be comprehen­
sible. Therefore, violations of formal laws in live speech 
arise essentially as a result of a language’s tendency to 
preserve its depth laws. In view of this tendency, observable 
properties of linguistic Relations acquire considerably more 
meaning. They cease being speculative or empirical schemes, 
and become the characteristic linguistic norms, reflecting 
a language’s depth properties. A law does not lose its objecti­
vity, but turns out to be deeper than expressed by its Theo­
ry. However, we shall never come to an understanding of 
linguistic laws outside of formal Theories. Furthermore, 
the clearer and more explicitly expressed our Theory, the 
easier it will be to elucidate its connection to depth laws. 
When we understand the true value of a formal Theory (a 
model of a language), we shall see more clearly that in spite 
of all the apparent violations of linguistic norms, the depth 
laws are extremely stable, and attempts to violate them 
lead to irreplaceable losses.

* Let us emphasize that a Theory is a model of a language (in the 
sense understood by linguists), while the linguistic objects modelled 
in a given Theory may serve as models (in the mathematical sense) 
of that Theoryl
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An analogy with the depth laws of ethics suggests itself 
here. In view of the obvious conditionality of any formal 
system of morals, it might seem that here there are, in gene­
ral, no a priori laws, but only conventions created by people. 
However, the compensative effect holds away in the sphere 
of ethical laws, which was expressed by VI. Solov’ev as 
follows: “A person may fail to carry out his moral obliga­
tions, but then he inevitably loses his moral dignity”.

* * *

After this brief general discourse, let us turn to the des­
cription of the formal properties of the classes of relations 
introduced above.

1. Succession. It is impossible to say anything else about 
this relation except that it is a total strict order. It is clear 
that footnotes to the middle of a sentence, marks over or 
under an individual word, etc., violate the totality (linea­
rity) of the order, but are, by the same token, exceptions 
which should be ignored in a formal model.

2. Control. The control relation normally possesses the 
following properties:

1. If the relations xx -> x2 . . . -> xn {n > 2 )  hold, 
then x1 xn is impossible (anti-transitivity).

2. There exists a unique element x , for which the rela­
tion y -> x does not hold for a single y.

3. Given any x , there exists at most one y , such that 
y~+x.

It follows from Property 1 that the control relation is 
asymmetric and its graph contains no circuits. Lemma 4.7 
then permits us to conclude that the control relation’s 
transitive closure (the direction relation) is a strict order. 
It is possible to deduce from conditions 2 and 3 that direc­
tion is a tree order.

Violations of Property 1 in actual sentences have not, 
apparently, been observed, i.e. direction is always a strict 
order. However, a violation of direction’s treeness may arise 
as a result of violations of properties 2 and 3. According 
to the existing conventions, only a predicate can be the 
top of a control graph, i.e. only a predicate can fail to be 
controlled by anything in a sentence. The other members of 
a sentence always have a senior (controller) there. But when
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there are two homogeneous predicates in a sentence, Condi­
tion 2 is automatically violated. Since, on the other hand, 
a subject is controlled by all such predicates, Condition 3 
will then also be violated. This may be seen in the following 
fragment from one of A. S. Pushkin’s poems:

“Most often now she comes upon my tongue to lie 
1 2 3 4 5  6 7  8 9  10

and with great force my fallen soul does fortify”.
11 12 13 14 15 16 17 18 19

The control graph for this sentence is shown in Fig. 7.3; 
its deviation from treeness is manifested in the fact that 
the subject “she” has two controlling words. (The control

^7 3*2 %3 X/, %6 X ? ^ 8  ^ 9 XfO X11 ^ 12 **t3 ^74 ^15 ^ 16 X17 vZ18 ^ 19

Fig. 7.3. Non-tree 'control structure

arrow 5 -> 11 is placed conditionally, in order to avoid 
isolated vertices.) The observable intersections of arrows 
(which we shall call below deviations from projectivity) 
are connected not only with the violation of tree control 
structure, but also with violations of natural word order 
for the sake of poetic rhythm. All intersections of arrows 
will disappear if we give the fragment its normal order: 
“She now comes most often to lie upon my tongue and does 
fortify my fallen soul with great force”. Let us note that a 
graph usually remains connected in spite of its deviation 
from treeness.

3. Concord. This relation is symmetric and anti-reflexive*. 
It is not, in general, transitive. A good example of concord’s 
non-transitivity is offered by the sentence: “Am I my bro­
thers’ keeper?” Here the pair “I”-“my” is concordant (in

* Since it doesn’t seem natural to the author to regard a word as
concordant with itself. Other conventions are possible, of course.
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person and number) and the pair “my”-“brothers’” is concor­
dant (in case), but the pair “I”-“brothers’” is not concordant.

4. Homogeneity. This relation is symmetric and transi­
tive. We shall assume that a word which does not belong to a 
group of homogeneous words is not homogeneous to itself, 
i.e. that homogeneity is a property of a group, not of an 
individual word. It is then possible to isolate groups of words 
in a sentence, each of which contains several homogeneous 
members, while the other words do not belong to any group.

5. Occurrence in a constituent. It already followed from our 
definition that an entire sentence is a (maximal) constituent. 
This gives us the following conditions:

1. Given any x £ M, there exists a y, such that either 
y cz x or x a  y*.

3. There exists a unique element which does not include 
to any constituent.

Our next informal linguistic assertion is that constituents 
cannot partially overlap. They either contain no elements 
in common, or else one of them contains the other. In formal 
terms, this means:

3. If x a y  and x c z ,  then either f czz  or z a y  or 
y =  z.

To these properties, we may add the following conse­
quences of the definition of a strict order:

4. Anti-reflexivity.
5. Transitivity.
These five conditions mean that the relation “to occur in 

a constituent” is a tree order. This linguistic fact—the possibi­
lity of representing any sentence in the form of a constituent 
tree—was the basis for the creation of a series of formal models 
(beginning with the most famous generating model, 
N. Chomsky’s) describing the process of “generating” a sen­
tence of a language by successively substituting its words 
and constituents for other constituents.

Let us emphasize an important circumstance, which is 
sometimes forgotten. The property of a text to split up into 
a constituent tree is a primary linguistic fact, obtained as a 
result of interpreting concrete linguistic observations, and 
not a consequence of an accepted generating model. On the

* If the sentence consists of more than one word. (Ed. note.)
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contrary, the creation of text-generating models has only 
become possible after the recognition that a text splits up 
naturally into constituents, and that this splitting possesses 
a tree order. After this, one can search for various formal 
interpretations of this fact and construct all kinds of gene­
rating models (besides N. Chomsky’s model, one can point 
to Irene Bellertowa’s relational grammars, S. Abraham’s 
matrix grammars, V. B. Borshchev and Ju. A. Schreider’s 
disposition grammars and E. D. Stotsky’s grammars with 
control). V. B. Borshchev called attention to the fact that 
a natural constituent structure arises even in formal grammars 
which do not describe a generating process (what he had 
in mind were his so-called neighbourhood grammars). 
We are emphasizing this circumstance precisely because 
studying mathematical linguistics often gives rise to the 
impression that the possibility of dividing a text into consti­
tuents is exclusively a property of languages described by 
generating substitution grammars. As a matter of fact, the 
situation is exactly the opposite—the possibility of describing 
a natural language by means of a generating grammar is a 
consequence of the existence of constituents in the language, 
together with certain hypotheses about constituents, which 
we cannot go into here.

* * *

Until now, we have only considered properties inherent 
in each of the relations separately, but properties relating 
different relations are more significant. We shall now enter 
upon the study of such properties.

Succession and Control

The succession and control relations are normally con­
nected in a sentence by the so-called projectivity condition. 
A sentence is called projective if the doubly ordered set 
(M, <C, =^) satisfies Condition n x (here M t is the set of 
occurrences of words in the sentence, <  is the succession 
relation and is the direction relation; see § 4 of Chap. IV).

Two examples of projective sentences are illustrated in 
Fig. 7.4.
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Let us agree to draw control graphs in such a way that the 
words in a sentence are arranged on a straight line in the 
natural order given by the succession relation, while all 
arrows representing control are drawn on one side of this 
line (above it). Under such an agreement, a different defi­
nition of projectivity is often used. A sentence is called 
projective if the doubly ordered set (M, < ,  =4>) satisfies

x  z y x  z y  ̂ ij z
Fig. 7.4. Projectivity property Fig. 7.5. Quasi-pro-

jective structure

Condition n2. Since, according to Theorem 4.18, Condi­
tion n 2 implies Condition IIx, a verification that the arrows 
do not intersect and the maximal elements are uncovered 
guarantees projectivity in both senses.

It follows from Theorem 4.19 that in cases where control 
forms a tree order, our two definitions of projectivity are 
equivalent. The non-tree structure depicted in Fig. 7.3 
is an example of a non-projcctive sentence (in both of the 
above senses).

A sentence is called quasi-projective if the control arrows 
can be drawn without any intersections.

A quasi-projective, but not projective, sentence is depicted 
in Fig. 7.5. The relations z -> x and x < . y  < i z  hold in 
this sentence, but z =$ y fails to hold.

A convenient formulation of the projectivity condition 
may also be obtained in the following way. Let us agree 
to draw an additional control arrow from the punctuation 
mark indicating the end of a sentence to the predicate. A sen­
tence* may be called projective if its control graph, supple­
mented in the above manner, can be drawn with no inter­
sections of arrows. In fact, this last condition is equivalent 
to the absence of intersections between the original control 
arrows, and the path to the tree’s root not being blocked 
by a covering arrow.

* (whose control relation is a tree.) (Ed. note.)
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There also exists a fourth variant of the projectivity defi­
nition. Let the control relation be a tree. A sentence may 
be called projective if Condition n 3 holds. It follows from 
Theorem 4.20 that under the assumption we have made, this 
definition of projectivity is equivalent to our original one.

The informal meaning of the word “projectivity” is evi­
dent in this variant: one should be able to project the marked 
points onto a horizontal line lying above all points, without 
meeting any obstructions, and this projection should not 
mix up the segments.

Unfortunately, this definition is given imprecisely in 
certain linguistic works. Thus, the condition on the noninter­
section of segments has been omitted in Ju. D. Apresyan’s 
book, “Ideas and Methods in Modern Structural Linguistics” 
(Moscow, “Education”, 1966, p. 248). But then, as the exam­
ple in Fig. 4.11 shows, a projective sentence might fail to 
be projective in the sense of our first two definitions. In 
particular, the sentence “Make me once happy again” has 
exactly the same control structure as given in Fig. 4.11. 
However, we would have to regard it as projective if we 
accepted Ju. D. Apresyan’s definition.

Let us cite another example of a non-projective structure, 
taken from A. Blok:

So:

i
I--------- =ZL

I \ 1 1 1 \ I I
ved only that same I poignant question.

It is clear that such a word order has arisen as a result of 
the poem’s internal rhythm. Everything will be completely 
projective in the normal prose word order and rhythm:

[ i \ i I
I solved only that same poignant question.

Fortunately for poets, the English language offers a wide 
range of possibilities for forming non-projective structures, 
but does not create them unless there is a particular neces­
sity for it. Incidentally, unheard of non-projective structures 
occur in modern English literary prose.
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Homogeneity, Succession and Control
It is possible to formulate several simple properties con­

necting a sentence’s word order, the control relation and 
the homogeneity relation. Assume that the relation xvy 
holds. Then the following assertions are, generally speaking, 
true:

(1) l i z ^ x ,  then z -*■ y andz is not situated between 
x and y.

(2) If x — z and y z, then z is not situated between 
x and y.

(3) If x <  y, x — z and y w, then z <C w, x <  w and 
2 <  y.

The first property means that homogeneous members are 
controlled by the same words, and the controller is situated 
on the same side of each of the controlled:

1 I i— 111
A large green pencil is lying on the table.

The second property means that the common controlled 
is situated on the same side of each of the homogeneous 
controllers:

1 I I I
Trained lions dance and sing.

The third property is that there is no entanglement between 
homogeneous words’ domains of control:

1 I I I i l l
A red poppy and a white lily are in the vase.

It can be shown that if the above homogeneity conditions 
hold, it is possible to introduce a reasonable parenthesis 
structure into the sentence*.

Constituents and Succession
The fundamental condition lying in the basis of all sub­

stitution grammars is the non-separability of each constituent. 
A constituent a is called non-separable if x 6 a, y 6 a and z 
lies between x and y imply that z £ a.

* K. I. Babitsky, On the distributive theory of sentences with 
composed parts, S T I , 1967, No. 6.



198 Ch. VII.  Examples from Mathematical Linguistics

A non-separable constituent occupies a complete segment 
in a sentence. The idea that all constituents are non-separable 
underlies the above-mentioned substitution generating gram­
mars. As a matter of’fact, separable phrases exist in the Eng­
lish language (and also in Russian, German, etc.). For exam­
ple, the future indefinite tense can easily lead to a separable 
phrase: “He will not lecture tomorrow”. Such a word order 
is possible in English, whereas in German, the ending of 
a sentence with an infinitive is a normal procedure. We may 
regard such cases as transformations of normal sentences, 
or select phrases differently, not requiring that the main 
verb and the auxiliary verb be included in a single 
constituent.

The hypothesis that all constituents are non-separable is 
equivalent to the following. Place each constituent in paren­
thesis. By virtue of the non-separability of constituents, one 
pair of parenthesis will be used for each* of them. In view of 
nonseparability and the constituent structure’s treeness, an 
arrangement of two pairs of parentheses may look like [( )]
or [ ] ( ), but notrlike ([ )]. A permissible arrangement^of 
parentheses is called a proper parenthesis structure.

Let M  be the set of a sentence’s constituents. The succession 
relation in the sentence induces a strict order, defined in 
the following way, in M. We shall set a t <  if x t <  Xj 
holds for any representatives x t 6 a* and Xj 6 A succes­
sion relation between words x t and constituents a,j is defined 
analogously: x t <  a j  if x t lies to the left of any representa­
tive from this constituent, and a j <  xt if allies to the right'of 
the phrase. It is clear that the succession relation is not a 
total order in M, since neither a t <  a 7* nor a ;- <  a t when 
a% a  a,j. Furthermore, the succession relation holds for 
those and only those pairs for which the inclusion relation 
fails to hold.

It isn’t difficult to see thaCthe set M with the relations 
c: and <  is an ordered tree (in the sense of Chap. IV, § 4). 
The depth of this tree is an important linguistic characteris­
tic of a sentence. The constituent tree for a simple sentence is 
given in Fig. 7.6. The depth of this tree or, as is often said 
in mathematical linguistics, the depth of this sentence equals 
one.
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This characteristic of sentences was first introduced by 
V. Yngve, who called attention to the fact that the senten­
ces of a natural language are limited in depth. He also 
formulated the hypothesis that this depth limitation is 
related to a human memory limitations, manifesting itself 
in the process of producing speech or perceiving it.

Fig. 7.6

A quantitative formulation of Yngve fs hypothesis is that 
for any sentence of a natural language, the depth y of its 
phrase tree is bounded as follows:

y <  9* (7.1)
This hypothesis is empirically justified. The average depth, 
calculated for sentences of the English language, turns out 
to be considerably less than 9.

Let us emphasize two important circumstances. The first 
of them is that Yngve’s hypothesis is in essence not directly 
related to any suppositions about the process of speech 
production. It deals only with the asymmetry of the phrase 
tree constructed for a sentence of the English, or of some 
other natural, language. Moreover, it is of no significance 
whether or not one or another formal generating model is 
applicable to the given language. The second circumstance

* Instead of (7.1), orthodox linguists use the inequality
Y <  7 =fc 2.
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is that it is not some mystical property of the number 7* 
which is essential in the bound of (7.1). This bound may be 
given by the following formulation: the depth of a sentence 
in a natural language cannot be greater than all the “average 
in the sense of A. N. Kolmogorov” numbers. Recall that 
a number n is called “average in the sense of Kolmogorov”** 
if a human being is actually capable of examining all sub­
sets of a set containing n elements.

Unlike the number 7***, this circumstance doesn’t seem 
to be either mystical or accidental.

But if we nevertheless consider a sentence-generating 
scheme in any substitution grammar whatsoever, it turns 
out that its depth yields a bound for the minimally necessary 
memory used in the generating process. Namely, if a is the 
minimal number of symbols which we must retain during 
each step of the generating procedure, then it can be proven 
that

V +  1 <  or, (7.2)

and for Chomsky’s context-free grammar, this inequality 
becomes an equality****.

The equality y +  1 =  a for Chomsky’s context-free 
grammars is due to Yngve.

Constituents and Control
The connection between constituent structure and control 

in a sentence may be expressed (in normal cases) by means 
of the following properties. Let S (a) be the set of all words 
occurring in the constituent a. Then

(1) Every S (a) is a tree with respect to the control 
relation.

(2) If a and a 1 are'constituents, the control relation can hold 
only for the roots of the trees S (a) and S (ax).

* See previous footnote.
** See A. N. Kolmogorov, Automata and life, collection Cybernet 

tics expected and cybernetics unexpected, Moscow, “Science”, 1968.
*** See footnote on previous page.
**** See Ju. A. Schreider, Complexity characteristics of a text’s 

structure, S T I % 1966, No. 7.



1. Syntactical Structures 201

In other words, control from one constituent to another can 
only be transmitted through the main elements of these con­
stituents. Under certain additional conditions, properties (1) 
and (2) guarantee the control’s projectivity. We shall say 
that a 1 and a 2 are neighbouring constituents, if a x <C a 2 (or 
a 2 <  a i) and there does not exist any element z, lying 
between them: a x <  z <  a 2 (a2 < z <  a x).

A system of constituents is called complete*, if for any two 
non-coinciding and non-neighbouring elements of a sentence 
(words), x and y, there exist neighbouring constituents, a x 
and a 2 such that x £ S (otj) and y 6 S (a2).

It turns out that if a system of constituents is complete and 
conditions (1), (2) hold, then the sentence is projective. 
This follows directly from Theorem 4.21.

Let us dwell once again upon the causes for violations in 
actual sentences of the syntactical properties described 
above.

The first of them: the speaker consciously violates the 
normal sentence structure in order to achieve the satisfac­
tion of some other property. We have already seen that 
non-projective structures are often used for the sake of pre­
serving poetic rhythm. Yngve has convincingly shown that 
non-projectivity may also arise when the word order insur­
ing projectivity leads to an undesirable growth of the sen­
tence’s depth.

Another important cause for the origin of deviations from 
the norm and, in particular, from projectivity is the pre­
sence of ellipses. Consider the following example of a non- 
projective sentence:

At the meeting there were important persons and not very.

* It is easy to convince oneself that the completeness of a system 
of constituents is equivalent to the constituent tree’s being binary, 
i.e. not more than two shoots leave any vertex.

* * *

i— 11
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It is clear that this sentence is an ellipsis of the following 
projective sentence:

At the meeting there were important persons and not 
very important persons.

Thus, we have an initial sentence with succession and 
control relations, and its homomorphisms into another 
sentence, in which these relations are induced as a-images 
(see § 2 of Chap. VI). But we have already seen that in 
passing to a-images, relations’ properties may be spoiled. 
The same thing is happening here. In a certain sense, an 
ellipsis may also be regarded as a kind of a compensation: 
there is a saving in the number of words in the sentence at 
the expense of a worsening in its syntactical structure.

The third cause is in essence dual to the previous one. 
The appearance of homogeneous members may be regarded 
as an “ungluing” of some initial sentence without homoge­
neities. In this case, we are dealing with correlations of the 
initial succession and control relations, under which their 
properties can also be spoiled.

An analysis of the syntactical structures of about 11,000 
English sentences (mostly compound) has shown that about 
500 of them are non-projective. The vast majority of these 
non-projectivities were related to ellipses and homogeneous 
members.

§ 2. The General Concept of a Text

As we have seen from the previous section, a sentence in 
a natural language is not simply a string of words, but a set 
with a system of relations.

On the other hand, one may conceive of a text as consisting 
of words, letters, syllables, word-groups, etc. Therefore, 
it proves to be convenient to formulate a general concept of 
a text, which would be suitable for widely diverse linguistic 
situations.

We shall try to present here a sufficiently general idea 
of the concept of a text, originating in the joint efforts 
of the) authors, M.V. Arapov and V.B. Borshchev to find 
a unified approach toward various linguistic objects. Intui­
tively, a text is the primary material of linguistic research.
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Therefore, it is only natural to require that a word, sen­
tence or sequence of sentences of the English language could 
be interpreted as a text from the formal point of view. How­
ever, it is no less natural to require that a table, a collection 
of descriptors (key words), a chemical or mathematical 
formula might also be regarded as a special case of the 
general concept of a text. Such a requirement is, in any 
case, justified by the grasping tendency of modern lingui­
stics.

Let us now imagine that a text has been subjected to a 
preliminary processing; should it now be regarded as not 
a text, but some other object of a higher (or lower) nature? 
We feel that a sentence, whose controls have been arranged 
(or which has been transformed in some other way), should 
be regarded as some kind of a text. Even a classical linguist 
rarely deals directly with speech. The very recording of 
speech by means .of formal" marks—letters—is already a 
certain processing of the original material. A philologist 
interested in Old English deals not so much with manuscripts 
as with their published editions, where words are partition­
ed, letters are standardized....

Let us try, at first—informally, to discover of what essen­
tial components a text is made up. Of course, a text is 
composed of marks. But even before the concrete marks 
are arranged, it is necessary to determine the positions 
(places), where the marks are allowed to be put, and the 
relations between these places. The next step consists in 
recognizing that the role of relations between places is of 
primary importance. Thus, the structure of an ordinary text 
is determined first of all by the fact that its mark positions 
form a linear sequence, i.e. a total order relation between 
places is defined. The structure of a table is determined by 
the fact that there exist two order relations between places 
in the table: “horizontal” and “vertical”.

It is therefore appropriate to regard “places” as elements 
of an abstract set M> in which a system of relations is defi­
ned. From these considerations there naturally arises

Definition 7.1. A set M  with relations A ly . . ., An 
given in it is called the syntactical scheme S =  { M\ A ly..., An).

This concept essentially coincides with A. Tarski’s con­
cept of a model. The importance of the mathematical theory
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of models for describing linguistic situations was apparently 
first formulated by V. B. Borshchev and M. V. Khomyakov*.

We shall call M  the carrier set.
Now let a certain set SI, which we shall call the alphabet, 

be fixed. Then a mapping cp: M  SI may be interpreted as 
an arrangement of the alphabet’s marks into the places: 
a certain mark (element of the alphabet SI) is assigned to 
each place (element of the set M).

We obtain
Definition 7.2. A syntactical scheme S with a given 

mapping cp of the carrier set M  into the alphabet SI is 
called a text, T =  (S , cp).

Although this definition may seem excessively abstract 
for such a simple and, it would appear, primary concept as 
a text, it in essence only expresses in precise terms all that 
we ordinarily subsume under the concept of a text: a choice 
of an initial alphabet, i.e. a collection of elementary sym­
bols, a choice of a syntactical scheme, a putting of symbols 
of the alphabet into the various places of the syntactical 
scheme, and relations between various occurrences of 
symbols, into the given syntactical scheme. The following 
series of examples show how general our definition of a text is.

Example 1. The alphabet SI is the list of English word- 
forms, S is a finite set M  with a single total strict order 
relation < .  Then a text is an initial segment of natural 
numbers, with a word-form assigned to each number. Speak­
ing less formally, a text is any linear sequence of English 
word-forms, perhaps with repetitions. In other words, such 
a text is simply a string of the form

where all the xt are English word-forms. In particular, any 
English sentence may be regarded as a text of this kind. 
It would have also been possible to extend the alphabet 21 
by adding all the punctuation marks and digits.

Example 2. The alphabet 21 is the same as before, but M  
is a finite set with four relations: succession, control, con­
cord and homogeneity—possessing the properties described

* In their paper “Neighbourhood grammars and models of a 
translation”, S T I , ser. 2, 1970, No. 3 and No. 4.
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in the previous section. Then a text is a sequence of English 
word-forms with the basic syntactical relations.

Example 3. Let 21 be the Cyrillic alphabet, and let a 
total strict order be given in M. Then a text is a finite se­
quence of Cyrillic letters. In particular, every Russian 
word may be regarded as a text of this kind, i.e. a sequence 
of letters of the ordinary Russian alphabet (one of the main 
modern variants of the Cyrillic alphabet).

It is convenient to consider syntactical schemes of the 
form S =  (M, R±, R 2, i?3), where M  is a finite set, each 
of the relations R x, R 2, R 3 is a reduction of a strict order 
relation and only one of them can hold between any two 
given elements of M. These relations admit the following 
informal interpretation: “to immediately follow”, i?2—
“to lie above, to be a superscript”, R 3—“to lie below, to be 
a subscript”. With the aid of such syntactical schemes, it 
is possible to introduce the classes of texts in the following 
two examples:

Example 4. Let 91 be the alphabet consisting of Latin 
and Greek letters, digits and algebraic symbols (parentheses 
and signs for operations). Then any algebraic formula may 
be regarded as a text with the syntactical scheme described 
above. For example, the formula ( x \  +  x § :  x \  has a syntac­
tical structure of the form

where the holding of relations R ly i?2, i?3 is indicated by 
means of arrows.

Example 5. Let 91 be the set of digits and symbols for 
chemical elements. Here the ordinary linear chemical formu­
las, such as H20, are the texts.

Example 6 . Now let the alphabet 91 consist of the texts 
of our previous example. The syntactical scheme has the 
form S =  (Mj R l7 /?2, . . .), where Rly R 2j . . .  are rela­
tions, interpreted as types of chemical bonds. Moreover, 
only one of the relations /?1? /?2, . . . can hold for any given
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pair of elements in M. For example, the representation of 
a benzol ring

is a syntactical scheme with two types of valence relations. 
By the same token, a class of texts having the form of struc­
tural formulas of organic chemistry is given.

Here we have encountered an important situation, where 
texts of one level form the alphabet for texts of the next 
level. Besides, we have already seen that word-forms of 
the Russian language are texts in the ordinary Russian 
(Cyrillic) alphabet. These same word-forms may themselves 
be regarded as elements of an alphabet in which Russian 
sentences are written. (Incidentally, the letters themselves 
may also be regarded as texts—written by means of the 
Morse code, in the alphabet consisting of a dot and a dash.)

Example 7. Let the alphabet SI consist of the set of des­
criptors for some branch of science or technology (descriptors 
are, roughly speaking, the basic terms of the given branch, 
with whose aid one may characterize the contents of certain 
documents—papers, reviews, etc.). The set M  does not have 
any relations. A text is then simply a collection of descriptors, 
without any relations whatsoever between them*. Such 
texts are used in so-called grammar-free information-search 
systems as indices (or search patterns) of documents, permitting 
an automatic search for the document needed by the user.

Let us consider Example 2 in greater detail, from the 
point of view of traditional linguistic terminology. Only 
one relation is explicitly given in an ordinary English 
text—the linear order of words in a sentence. Thus, the 
syntactical scheme for an ordinary text T is a finite set M  
with a total order. A text over this syntactical scheme is 
a string of English word-forms, i.e. a text in the usual sense. 
In the process of understanding a text, we establish, expli­
citly or implicitly, additional grammatical and semantical

* Texts with a trivial syntactical scheme—without any relations— 
are sometimes called bags.
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relations between words and, in particular, may insert new 
elements (constituent symbols, for example) into a text, liy 
the same token, in the process of understanding (or in the 
process of automatic analysis) a text, a new text T' is formed 
over a carrier set M r ^  M, with a given system of relations 
(control, concord, homogeneity, occurrence in a phrase and 
perhaps many others). Formally, the text T' is also a text 
in the sense of our definition. But the linguistic meaning 
of the text T  differs from that of the original text T. It 
would be natural for a linguist to confer a special name 
(analyzed text or ultratext, for example, or something pret­
tier) on the text T’. Here we shall not infringe upon the 
linguists’ privilege by introducing a new term. What is 
important for us is merely to note the formal resemblance 
between T and T* (each of them is a text over a certain set 
with relations), and their essential difference: the former is 
a text given by direct observation, while the latter is a cer­
tain construction describing (probably incompletely) a pro­
cess of understanding (and also, possibly, of generation). 
The syntactical scheme of the text T' determines a structure 
of syntactical relations for the original text T, which are 
not explicitly expressed there. Thus, a syntactical structure 
is a text, cleansed of concrete words, but with explicitly 
indicated contextual relations. What we have denoted by 
T ' is sometimes called a syntactical structure, but this isn’t 
natural. A syntactical structure is not a text T ', but what 
texts with the same syntactical arrangement have in common. 
For example, if we have two original texts, T =  “Masha 
is eating her cereal” and =  “Pete is reading his book”, 
then the analyzed texts, T' and T'v will be different, although 
the syntactical schemes are obviously identical here.

In reality, it is interesting to consider not individual 
texts, but classes of texts of the same type—texts with the 
same alphabet and analogous syntactical schemes. It is 
easy to understand what “the same alphabet” means, but 
the meaning of “analogous syntactical schemes” requires 
further clarification. Note that we were dealing precisely 
with classes of texts in each of the examples under conside­
ration.

Thus, any finite set with a total order was the syntactical 
scheme in Example 1. In this example, we were actually
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dealing with a certain system of marks, determined by our 
choice of an alphabet and by the condition that “places” 
in texts are ordered.

A class of texts was given in Example 2 by our condition 
that four relations with fixed properties must be defined 
in the carrier set.

Let us now attempt to define the concept of a system of 
marks somewhat more precisely. Recall that we agreed to 
call a list of symbols of relations and properties of these 
relations (“axioms”) a Theory in § 1. It is implied that the 
properties should be formulated in such a way that they 
acquire meaning if the symbols of relations are interpreted 
as relations in some non-empty set. For example, a Theory 
may consist of a single symbol, < ,  and the following “axioms”:

(1) x <  x is not possible for any x;
(2) if x <  y and y <  z, then x <  z;
(3) for any non-coinciding x and y , either x<C y or else y<i x.
These axioms are meaningless (but syntactically correct)

sentences, until we have an interpretation, i.e. a specific 
set with relations. But as soon as we start interpreting the 
variables x, y, z, . . . as elements of a certain set M, these 
axioms will turn into meaningful assertions, saying that 
the relation << is a total strict order in M.

The concept of a Theory is defined more precisely (with 
an exact definition of the concept of a syntactically correct 
sentence) in mathematical model theory.

Now let a Theory and an alphabet SI be chosen.
Definition 7.3. A system of signs is a set of texts T =  

=  (5, cp) with syntactical schemes S =  {M, A lt . . ., An), 
whose relations A ly A 2, . . ., An are in one-to-one corres­
pondence with the relational symbols of the given Theory, 
while cp is a mapping of the carrier set M  into the fixed 
alphabet SI.

Let us emphasize that only the alphabet and the Theory 
are fixed in a system of signs, while the set M  may vary.

For example, a system of signs may consist of all linear 
sequences of Russian word-forms. Here the alphabet (the 
set of Russian word-forms) and the Theory (it is stated that 
there is a single relation—a total strict order —in the syn­
tactical schemes) are fixed, but the carrier set, giving the 
length of a sequence, may be arbitrary.
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A set of texts in a fixed system of signs is usually called 
a language in mathematical linguistics. The set of those 
strings, composed of an alphabet’s symbols, which satisfy 
definite conditions or are generated by a certain procedure 
(i.e. are described by a certain “grammar”) may serve as an 
example of a language. If the class of syntactical schemes 
consists of finite sets with total orders, then the language 
is a certain set of finite strings composed of elements of an 
alphabet SI.

Within the framework of mathematical model theory, a 
system of signs is a set of models of a certain theory, for 
which mappings are given into a fixed alphabet.

One very important circumstance should be emphasized. 
When we consider a natural language’ssystem of signs, no 
matter how we choose our allowable class of syntactical 
schemes or, equivalently, our Theory, the set of actually 
occurring texts always represents a very small fraction 
of all the possible texts in the given system of signs.

We are apparently encountering here a fundamental dis­
tinction between linguistic structures and ordinary physical 
models. In physics, we are accustomed to having all phase 
spaces, i.e. sets of possible states of a physical system, form 
smooth manifolds in a Euclidean (or some other) space. The 
set of all meaningful texts of a natural language has a funda­
mentally different geometric structure, whose understand­
ing requires a mathematical intuition which we haven’t 
yet developed. Many essential difficulties in describing natu­
ral languages are apparently rooted in this fact. It is highly 
probable that this circumstance is a general obstacle to the 
mathematical simulation of biological systems.

Now consider a set M, in which the relations A ly A 2, . . .
. . ., A n are given. There arises the natural problem of 
describing these relations economically. We had already 
encountered such a problem in describing strict orders (in 
finite sets): it turned out that an order relation may be given 
with the aid of the relation’s reduction.

The following formulation of this problem is due to 
K. I. Babitsky*. Let the relations A ly A 2y . . ., An possess

* K. I. Babitsky, On syntactical synonyms of sentences in natural 
languages, S T I , 1965, No. 6.
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the following properties:
(1) Ai  n Aj =  0  for
(2) A ± I) A 2 U . . . { ]  A n is the universal relation.
These properties mean that for each pair (x, y), exactly

one of the relations xAty holds. The problem, in its simplest 
form, consists in defining relations Blf B 2, . . . ,  Bm in the 
set M,  in such a way that (1) each relation Bj  holds for 
exactly one pair of elements and (2) for any pair x, y , there 
is a uniquely determined product B =  Bit B\2 • • • Bik , 
such that xA (y is either equivalent to xBy or to yBx.

The simplest solution to this problem consists in somehow 
establishing a total order, and hence an indexing, in the 
set M : { # ! ,  x2l . . xp}. We then set XiBiXi+1.

A drawback of this solution lies in the fact that it is 
not determined by the Theory itself, i.e. by properties of 
the relations A t, but rather by a particular realization of 
the Theory in M.

It is clear that a more general solution can only be found 
under the assumption that the syntactical scheme possesses 
certain significant algebraic properties.

§ 3. Compatibility Models
In this section, we shall examine a comparatively special 

model, illustrating the value of considering tolerance rela­
tions in mathematical linguistics. Let us begin with a few 
remarks of a general nature.

The methods developed in mathematical linguistics have 
a clearly restricted sphere of applicability, to be explained, 
apparently, by the limitedness of the ideas on which they 
are based. In describing a language, as soon as we want to 
take into account the comparatively subtle individual 
properties of its units (words, morphemes, sentences), whose 
description requires a consideration of tens, and even hund­
reds, of features, we are forced to state the absence of an 
adequate mathematical apparatus. We lack the means for 
describing “eroded” models. Thus, for example, there exists 
a significant difference between a mathematical description 
of semantical and syntactical structures. In problems of 
syntax, the important notion of a marked (or, as is often 
said, distinguished) structure is always singled out. In view
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of this, the fundamental problems of syntax are reduced to 
finding a method for conveniently enumerating (generating, 
recognizing) texts with a distinguished structure from a 
given system of signs. Analogous problems may also arise 
when we turn to semantics: presenting sets of meaningful 
texts in a given language, presenting sets of sentences (texts) 
having the same meaning as a preassigned sentence, etc. 
Solving these problems by applying the ready device of 
generating grammars, we encounter the following fundamen­
tal difficulty: in solving syntactical problems, it is often 
possible, with no risk of error, to approximate the true 
situation by assuming that there exists a clear division of 
all texts into the set of distinguished ones and its complement, 
the set of undistinguished texts. However, in more subtle 
problems, such as in semantics, an “eroded” picture emer­
ges—along with the undoubtedly meaningful (semantically 
distinguished) texts, there are even more texts whose mean­
ingfulness is debatable. Moreover, by slightly diminishing 
the degree of meaningfulness from text to text, we may arrive 
at texts, in a finite number of steps, which are quite far 
from properly constituted. In exactly the same way, by 
allowing rephrasings with small deviations in meaning, 
we may arrive, in a series of steps, at a text having an essen­
tially different meaning.

Analogously, when establishing nearness in meaning 
between words or phrases, it isn’t so interesting to consider 
cases of complete identity (coincidence) in meaning (such 
situations are comparatively barren) as cases of resemblance 
in meaning or, equivalently, the presence of a sufficiently 
large set of common meanings.

Therefore, in turning to the study of semantics, the ques­
tion is not simply a new interpretation of syntactical models 
(for example, interpreting distinguished texts not as syntac­
tically proper, but as meaningful), but a new class of 
“eroded” mathematical models.

These models should present not simply a set of distin­
guished texts, but a “cloud” of such sets, so that in passing 
from set to set, distinguishedness is “almost” preserved.

The essence of the matter does not, of course, consist in 
passing from exact syntactical models to inexact ones. That 
would simply be a departure from the principles of mathe-
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matical linguistics. The question pertains to something 
more difficult: a transition to precisely presented models, 
describing the vagueness of semantical phenomena in exact 
terms, without attaching to the phenomena themselves, a 
superfluous definiteness and uniqueness not inherent in them.

For the clarification of this fundamental thesis, let us 
cite an analogy from physics. Motion in classical mechanics 
is characterized by precisely defineable coordinates and 
momenta. Experiments on microparticles have shown that 
their coordinates and momenta cannot be simultaneously 
fixed with arbitrary precision. Because of this, one might 
give up hope of applying a precise mathematical apparatus 
to the dynamics of microparticles. But quantum mechanics 
took a different path: an exact apparatus was created, per* 
mitting us to speak in a precise language about the arising 
indeterminateness. This apparatus is based on a fundamen­
tally new way of describing microcosmic states: in place of 
coordinates and momenta, so-called wave functions are 
introduced, describing a particle’s “smear” in phase space. 
Note that the apparatus of quantum physics is of itself no 
less precisely formulated than that of classical physics.

Let us now turn to a formal description of compatibility 
models. Consider two sets, M  and L, and a correspondence (p 
between them. We denote by the graph of the corres­
pondence (p, i.e. the set of pairs (x9 £), where x £ Af, 
£ £ L and x , £ correspond to each other.

We shall assume that a “similar meaning” relation, denoted 
by t, is given in the set of pairs 2JI. The notation

(x9 I ) r (yf T|)
is read: £ has a similar meaning with respect to x that ri 
has with respect to y . We shall assume that t is symmetric 
and reflexive, i.e. that it is a tolerance relation. We shall 
denote the corresponding tolerance space by (2JI, t ).

Consider the following example. The set M  consists of 
the stems of Russian nouns, and the set L, of the case end­
ings. We include the pair (x , £> in the correspondence’s 
graph if the stem x is compatible with the ending £, i.e. 
if there exists a word-form in the Russian language, obtain­
ed by adding the ending g to the stem x. Roughly speaking, 
the pair (x9 I)  is the word-form made up of the stem x
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with the aid of the ending g. The relation (x,  5 )  x (y , r[ > 
in the case under consideration means, by definition, that 
the word-forms (x,  I  > and (y , r ) ) can express one and the 
same case. For example,

ran-a x stol — 4^
and

stol — 4  ̂ x knig-u,
since the first pair of word-forms can express the nominative 
case, and the second—the accusative case.

However, the word-forms “ran-a” and “knig-u” cannot 
express the same case; therefore, the relation x isn’t transi­
tive in the case under consideration.

It is clear that one can develop such examples for other 
types of stems and for other interpretations of the rela­
tion x (coincidence of gender, number and case or of tense, 
person and number or of any other combinations of gramma­
tical features).

In any case, as our analysis of the above example has 
shown, the similar meaning relation r isn’t, generally speak­
ing, transitive.

The question as to which pairs are actually related by 
similar meaning lies outside the sphere of our mathematical 
model, and is resolved by means of agreements among in­
formed persons.

Our next example is based on the fact that pairs may be 
formed by attaching one of the adjectives from the set 
L =  {big, loud, strong, sharp, rough} to one of the nouns 
from the set M  =  {voice, wind, needle, stream}. The 
formation of such meaningful pairs as “rough stream”, 
“strong voice”, “sharp needle” and “big wind” are clearly 
permissible in the English language, but expressions like 
“rough needle”, “loud wind” are doubtful. Various points of 
view as to which of these pairs have similar (resembling) 
meanings are possible. One may regard all pairs as express­
ing the meaning of intensification, and so equivalent. One 
may regard “sharp needle” and “big needle” or “big stream” 
and “rough stream” as dissimilar in meaning.

We could have taken a different path from the very begin­
ning, singling out in advance certain features (pertaining
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to meaning) and declaring that those pairs in which these 
features can be found are similar in meaning. Then the 
relation x would have automatically turned out to be transi­
tive, since any relation, defineable as the coincidence of a 
certain fixed group of features (occurrence in a common 
class), is transitive.

We are taking the opposite point of view: similarity in 
meaning is first defined for specific pairs (within limits of 
precision accepted by informed persons), and only then

Fig. 7.7. Pre-family

is it determined whether pairs with similar meanings (“syno­
nyms”) may be classified into groups.

Definition 7.4. We shall call a pair of the form (cp, t ) ,  
where cp =  (9Ji, M, L)  is a correspondence and r is a tolerance 
relation in 9Ji, a pre-family.

The concept of a pre-family defines an important type of 
structure, which can be depicted graphically in the follow­
ing way. Associate vertices of a graph with the elements 
of the sets M  and L. Join the element x 6 M  to the element 
£ 6 L by an edge, if x and £ are in the correspondence cp, 
i.e. if (x, £} 6 The tolerance x is given in the set of 
edges of

For example, there is a set of clients, M, and a set of 
service workers, L. Certain workers serve certain clients. 
It is asserted that certain of these service pairs are similar. 
In particular, it may turn out that these servicings can 
be partitioned into disjoint similarity classes: shoe repair, 
dry cleaners, watch repair, etc. This corresponds to the case 
of a transitive t .

Tolerant edges are identically marked in Fig. 7.7. The 
relation x isn’t transitive in this example. In the transitive
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case, the edges of each type can be coloured with a special 
colour.

Definition 7.5. A pre-family (cp, r) is called connected if
(a) the correspondence cp is everywhere defined;
(b) the correspondence cp is surjectivejj
(c) the set M  is non-empty.
It is obvious that in the case of a connected pre-family, 

the set L is also non-empty and the corresponding graph 
has no isolated vertices.

In other words, every client in a connected pre-family is 
served by at least one worker and, conversely, each worker 
serves at least one client.

Definition 7.6. A connected pre-family (cp, t )  is called 
a family if

(a) given any x 6 M, y £ M  and £ £ L, such that (#, £) £ 
6 9ft, there exists an r\ £ L, such that (y, r)) £ 9ft and 
(x, 1) t  (y, r));

(b) for any £ 6 L, r] £ L and x 6 M , such that (#, £) £ 9ft, 
one can find an y £ Af, such that (y, r]) £ 30ft and (x,  ̂> r <
<  <y, ,n>.

Property (a) may be called completeness: if a certain mean­
ing can be expressed in a family with respect to the word x, 
then the same meaning can also be expressed with respect 
to any other word y .

Property (b) may be called homogeneity: if £ expresses 
a certain meaning with respect to the word x, then any other 
element r] £ L expresses the same meaning for some words.

In other words, all types of service, which one client has, 
is also had by all the others. And all types of service, which 
one worker performs, are also performed by any other, altho­
ugh possibly for other clients.

Definition 7.7. A family (cp, t ) is called primitive if 
t  is the universal relation.

It may be helpful to study situations where the descrip­
tion of a family reduces to the presentation of one or more 
primitive families. Such a reduction is possible for the 
case of a transitive t  (Theorem 7.3).

Theorem 7.1. If a relation % in a family (cp, x) is transi­
tive, and there exists an element £ 6 L, such that for any 
x 6 M and y 6 M, it follows from (x, £) £ 90d and (y, £) 6 9ft 
that (x, | ) t  (y, | ) ,  then the family (cp, t ) is primitive»
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Proof. We shall show that for any (x, r]) £ 511 and 
(y, £>6 9flfi, Or, t) ) x (y, £) holds. According to Defini­
tion 7.6, there exist a z £ M  and a u £ M, such that 
(x, T|> t  (z, I)  and (y, £) t  ( u , I). Since (z, £> x (a, 5> 
by hypothesis and the relation x is symmetric and transi­
tive, we obtain (x, r\) x (y, £).

This theorem admits the following intuitive interpreta­
tion: if there is an element £ £ L, expressing the same mean­
ing for all elements in M, and x is transitive, then all pairs 
express one and the same meaning.

The same conclusion is true if an operator of the above kind 
can be added to a family. For example, if we add formal 
expressions for operators of the MeFchuk-Zholkovsky* 
type to the tools of a natural language, and if this permits 
us to express the same meaning for any word, then (if, of 
course, the relation x was transitive) the original family 
automatically turns out to be primitive.

Theorem 7.2. If set L in a family (q>, x) consists of a 
single element, then the family (cp, x) is primitive.

Indeed, let L =  {£} and x £ M ,  y £ M .  According to 
Definition 7.5, (x, £) £9f t  and (y, £ ) 6  9fl. From
(x, | )  6 SDi follows, by Definition 7.6, the existence of an 
T] £ L,  such that (x, £} x (y, r]). Since £ =  T] by hypothe­
sis, we have (x, I) x (y, £) Q.E.D.

Here we have proved the primitiveness of the family 
(cp, x) without using the relation x’s transitivity.

For a transitive r, any family can be presented as a simple 
composition of primitive ones. We shall analyze this case in 
somewhat greater detail. In this case, the set of pairs (ed­
ges of the graph) splits up into disjoint equivalence classes.

Definition 7.8. A fa m ily 2 i=  (<Pi» x1) =  ((?0l1, M u Lx), xx) 
is called a simple restriction of the family 2  =  x) =  
<  9)1, M, L>, x), if M x ^  M y Lx ^  L, ^  9)1 and
T] ^  T.

Let the relation x be transitive in the family 2  =  (9 , x),
and let K  be an equivalence class for this relation. One may

* A. K. Zholkovsky and I. A. Mel’chuk, P r o b l e m s  of  C y b e r n e t i c s , 
v o l .  ID,
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then consider the simple restriction 2 k  =  ((K, M , L) , t k ) 
of the family 2  =  (( 90ft > M,  L),  t ) ,  obtained by retain­
ing only those pairs which occur in the class K.  It is easy 
to verify that 2 k  really is a family. Indeed, there exists 
at least one pair Or, | ) ,  belonging to K.  But then by 
the definition of a family, given any y £ M,  there 
exists an x\ £ L,  such that Or, £) r (y, x] ). Consequently, 
(y , T]) 6 K.  Analogously, given any x} £ L,  there exists an 
y £ M ,  such that Or, | )  t  (y, r|). Therefore, the restric­
tson 2 k is a family; moreover, it is obviously a primitive 
family. Taking all the equivalence classes, we arrive at 
a result which may be formulated as

Theorem 7.3. Let 2  be a family with a transitive rela­
tion t. Then there exists a set of primitive families, 2 k h
2 *2, • • •, such

(1) each family 2 Kt Is a simple restriction of the family 2 i
(2) for each pair (x, £) 6 9JI, there exists exactly one K it 

such that (x , | )  g Kp,
(3) if (x , I) x (y, r]), then the pairs (x , £) and (y , r\ > 

belong to the same K i .
Theorem 7.3 gives us in essence an enumeration of all 

possible families with a transitive relation r. Such families 
can be constructed geometrically as follows: sets M  and L 
are taken, and m graphs are constructed. In each of the 
graphs, each vertex from M  is joined to some vertex from L, 
and each vertex from L is joined to some vertex from M. 
Different edges of the same graph are assigned different 
colours. Finally, each pair (x, | )  is joined in only one of 
the graphs, i.e. an edge of only one colour can join a given 
pair. We now take the union of all the edges and set 
Or, | ) t  (y , I) if the corresponding edges have the same 
colour. This is the construction that yields the general form 
of a transitive family. Its singly coloured parts are the con­
stituent primitive families.

In the non-transitive case, the role of primitive families 
is played by indecomposable families. Namely, a family 
(cp, t )  is called indecomposable if the transitive closure 
t  of the relation t  is the universal relation. The exact ana­
logue of Theorem 7.3? with the term “primitive” replaced
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by “indecomposable”, holds for an arbitrary family. There­
fore, everything reduces to the algebraic problem of describ­
ing all indecomposable families.

§ 4. A Formal Problem in Decoding Theory
The attempts to decipher unknown written and oral 

languages (as well as to solve certain related linguistic 
problems) give rise in an explicit way to the problem of 
establishing isomorphic correspondences between sets with 
relations.

What is an isomorphism between two sets, in each of 
which a single relation is given, was defined in the previous 
chapter. Now assume that there are two sets, in each of which 
n relations are defined: (M1, A\, A\, . . ., An) and 
(M2, A\, A \ , . . ., An). We shall say that these two sets 
with relations are isomorphic if there exist a one-to-one 
correspondence between the sets M1, M 2 and a one-to-one 
correspondence 0  between the sets {A\, A\, . . ., Ah} 
and {A\, A\, . . ., Ah}, such that corresponding elements 
satisfy corresponding relations. Namely, if x1 and y1 belong 
to M 1 and x1A\yl holds, then x2A)y2 must hold for their 
images, x2 =  ( x 1 )  and y2 =  (y1), where A) =  0  (A\).
Conversely, x1A\y1 must follow from x2A)y2*.

Questions in decoding theory often give rise to the prob­
lem of seeking a correspondence (translation) between two 
sets (of words or other linguistic elements) and between 
relations in these sets, so that this correspondence estab­
lishes an isomorphism between the sets with relations. As 
an example, we cite an artificially devised problem which 
was given on the Second Traditional Olympics in Linguis­
tics and Mathematics at the philology faculty of the Mos­
cow State University.

We are given a list of the following ten Arabic words, 
written in Latin transcription (the symbol0 denotes a spe­
cific consonant of Arabic): miyzal, ma°bud, mahzan, ma°mil, 
mirgab, ma°bar, mayzul, macbad, micbar, ma°mal. We de­
note this set by MAt. The set AfEng of English words consists

* Thus, the isomorphism concept introduced here is an analogue, 
not of the isomorphism concept in § 1 of Chap. VI, but of the concept 
of a ^-isomorphism. (Cf. footnote on p. 168). (Ed. note.)
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of the translations of these ten Arabic words into English: 
idol, worker, (river) crossing, warehouse, yarn, ferry, fac­
tory, spindle, sanctuary (place of worship), telescope*. We 
are required to determine each Arabic word’s English trans­
lation. In other words, we are required (without consulting 
dictionaries or persons knowing both languages) to find the 
correct correspondence:

'll?: M At -> M Eng.
At first sight, it would seem that the problem cannot have 

a unique solution. Any of the one-to-one mappings MAv — 
->■ MEng should be an equally good formal answer. The to­

tal number of possible mappings is equal to the number of 
permutations of 10 elements, i.e. 10! =  3,628,800. It turns 
out that the simple fact that we have a set of meaningful 
words reduces our problem’s degree of indeterminacy by a 
factor of more than three and a half million, and allows us 
to obtain the problem’s unique solution with a high degree 
of reliability. The fact is that certain semantical relations 
can clearly be isolated in our set of English words. These 
are the relations i?x—“to pertain to the same semantical 
sphere” and i?2—“to express the same semantical class”. 
Both these relations are equivalences, and so determine 
partitions of the set AfEng into classes. The classes with 
respect to R1 are:

{spindle, yarn}, {telescope}, {ferry, crossing),
{idol, sanctuary}, {warehouse}, {factory, worker}.

The classes with respect to R 2 are: {spindle, telescope, fer­
ry}—the instrument with which the act is performed, {yarn, 
idol}—the object on which the act is performed, {crossing, 
sanctuary, warehouse, factory}—the place where the act is 
performed, {worker}—the subject who performs the act. 
But the same semantical relations hold between the corres­
ponding Arabic words. It is plausible to conjecture that these 
relations are in some way expressed by the words'external forms. 
Let us now consider what formal relations exist between 
the Arabic words in MAt. T wo relations in the set MAt are 
easily isolated: Qx—“to have the same consonant structure” 
and ()2—“to have the same vowel structure”. Both these

* Russian translations are given in the original. (Trans, note.)
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relations are equivalences*. We have the following classes 
with respect to Qt: {miyzal, mayzul}, {mirgab}, {micbar, 
macbar}, {macbud, macbad}, {mahzan}, {macmal, macmil}. 
With respect to the relation Q2j we obtain the classes 
{miyzal, mirgab, micbar}, {mayzul, macbud}, {macbar, 
macbad, mahzan, macmal}, {macmil}.

Comparing the number of elements in the classes of the 
partitions of the sets M At and we see that the relations
R x and Qv  as well as R 2 and Q2, ought to be identified. We 
must now establish a correspondence between Arabic and 
English words, such that words occurring in the same class 
with respect to Qx correspond to words occurring in the same 
class with respect to R t. Analogously, if Arabic words have 
the same vowel structure (are related by Q2), then their 
English translations should express the same semantical 
class (be related by R 2). Let us distribute the Arabic and 
English words within tables, whose columns and rows will 
correspond to each other in the sense of having the same 
number of elements in corresponding classes:

V ow els

C onso-
n a n ts

la au aa a i

myzl mryzal mayzul

mrgb mirgab (margab) (margib)

mcbr micbar macbar

mcbd macbud macbad (macbid)

mhzn mahzan

mcml macmal macmil

* Qf course, it will be easier to isolate these relations if we know
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C lass

S phere
in s tru m e n t object p lace s u b je c t

Spinning Spindle Yarn

Astronomy Telescope (Observatory) (Astronomer)

Ferriage Ferry Crossing

Cult Idol Sanctuary (Priest)

Storage Warehouse

Production Factory (Worker)

It is clear from these tables that an isomorphic corres­
pondence (a translation which preserves the designated rela­
tions) is only possible for the chosen correspondence of rows 
(classes with respect to R x and Q{) and columns (classes with 
respect to Z?2 and Q 2).

Furthermore, we have indicated in parentheses English 
and Arabic words, to which our table gives grounds for 
extrapolating the correspondence that we have obtained. 
This procedure calls to mind Mendeleev’s filling in blank 
spaces in the table of chemical elements that he discovered. 
Note that Mendeleev’s table may also be interpreted as the 
establishment of a correspondence between classes of ele­
ments with given chemical properties and classes of ele­
ments with given types of atomic weights and numbers.

The difficulty in actual decoding problems lies in the 
fact that we never have a total isomorphism, but must look

beforehand that sequences of consonants or vowels distinguish meanings 
in Semitic languages (Arabic, Hebrew, Ethiopian, Akkadian and many 
other living and dead languages of West Asian and North-east African 
peoples belong to this class of languages).
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for simple sets of words (syllables, letters) and correspon­
dences between them, for which an isomorphism holds. The 
reader can now turn to the literature on the decodingjof 
Persian cuneiform by Grotefend, the decoding of Creto- 
Mycenaean syllabic writing by Ventris, etc., in order to 
convince himself that the question was always a choice of 
an isomorphism between certain linguistic relations.

§ 5. On Distributions

The notion of a so-called distribution, or distributive rela­
tion, is widely used in structural linguistics. This notion is 
applicable to any elements forming texts: words, syllables, 
morphemes, letters, sounds, etc. Here we shall give the 
basic definitions related to this notion.

Let there be given a certain language fl, i.e. a certain set 
of texts belonging to a fixed system of marks. Thus, we now 
understand a language to be a supply of texts of a definite 
type.

We now define the substitution operation (x; a —̂ &)*. 
Let there be a text T  =  (S , cp), where S =  (M, A x, A 2, . . . 
. . ., A n ). We shall call the text T f =  (S , <p'), where 
cp' (y) =  CP (y) f°r elements y of the carrier set M, dis­
tinct from x, and

< P ( z ) ,  i f  9  (x)¥=a,  
6, if cp (x) =  a

the result of the substitution (x; a b). In case cp {x) ^  a, 
the resulting text T' coincides with the original one. We 
shall call the substitution fictitious in this case. In other 
words, the substitution (x; a b) consists in the text’s 
changing in the fixed place x: if the mark a was in this place 
of the text T , then b will be in this same place in T'.

For example, let the syntactical scheme be the set {1, 2, 
3, 4} with the total order, while the text T  is the string 
abca. Then the substitutions

* Here a and b are elements of an alphabet 21, while x is an ele­
ment of the carrier set M  for a text T .
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(1; a -+ b ), (2; a -> b), (3; a -> b), (4; a -> b) 
yield, respectively, the following strings: 

bbca, abca, afcca, abcb.

The text T', obtained from the text T as a result of the 
given substitution a -> b), is not, generally speaking, 
obliged to belong to the same language. Therefore, if an 
alphabet SI is given and a language is fixed, then the possi­
bility of carrying out a substitution of certain marks of the 
alphabet, without leaving the bounds of this language, de­
termines distributive relations in this language, i.e. relations 
related to properties of the distribution of Si’s marks wit­
hin a text. Let us introduce the appropriate definitions, 
assuming each time that the language H has already been 
fixed.

Definition 7.9. An element a majorizes an element 6, if 
for every text T 6 H, the result of a substitution of the form 
(x; a — b) for any x is a text T  belonging to the language fl.

We shall denote this relation by =£>. It is easy to verify 
that it is reflexive and transitive, i.e. it is a quasi-order. 
The relation

<=> =  =» O H )"1
is an equivalence relation (Theorem 4.6) and signifies inter­
changeability. Namely, a<=>b means that a text T and the 
result of any substitution (x; a b) simultaneously belong, 
or fail to belong, to the language fl. In fact, the relation 
a<=>6 means that a =$ b and b =$ a hold simultaneously. 
Therefore, if T 6 H, then T \  the result of the substitu­
tion (x; a -> b), belongs to fl. But if T' 6 H, then the result 
of the inverse substitution (xm, a fc), coinciding with our 
original text T, also belongs to fl.

For example, in the language consisting of the strings 
abb, bbb, aba and bba in the alphabet with the two letters a 
and 6, the relation a =$ b holds, but b =$ a does not; thus, 
the relation =) is a true order here.

Definition 7.10. Elements a and b are in the relation of 
common distribution, if there exist a text T =  (S, (p) £ fl 
and a substitution (x; a fc), such that the result T' of the 
substitution belongs to the language flj where cp (x) =  a.
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This last condition means that the substitution (x\ a — b) 
isn’t fictitious, for the element a, to be replaced by b, is 
really in the position x. The relation of common distribu­
tion is symmetric, since the existence of a non-fictitious 
substitution (x; a b) in a text T guarantees the existence 
of the non-fictitious substitution (x\ b a) in the resulting 
text T'. The common distribution relation is not, generally 
speaking, reflexive. For the reflexivity of this relation, it 
is necessary and sufficient that there be no “unemployed” ele­
ments in the alphabet, i.e. that for any given element a 6 St, 
there exist a text T =  (S, cp) £ H and a position x , for 
which cp (x) =  a. Then the substitution (x\ a -> a) would be 
possible in this text. Therefore, the common distribution 
relation is (under reasonable restrictions on the language) a 
tolerance.

We could have introduced a different variant of this rela­
tion, requiring that T not to coincide with Tr in Definition 
7.10. This would have automatically ensured the condition 
cp (#) =  a, but no element a could then be in the relation of 
common distribution with itself. Such a relation would be 
symmetric and anti-reflexive.

Finally, an important type of distributive relation is 
given by.

Definition 7.11. Elements a and b are in the relation of 
complemented distribution, if for every text T — (S, cp) £ fl, 
the result T  of any substitution (x\ a ->■ b) with <p (x) =  a 
fails to belong to the language H.

We shall denote the complemented distribution relation 
between elements a and b of an alphabet by a Com 6. The 
relation of complemented distribution is obviously anti­
reflexive*. We shall prove that the complemented distri­
bution relation is symmetric. Assume that a Com b holds, 
but b Com a is false. Then there exists a text T 6 H and a 
non-fictitious substitution (x\ b a), yielding a text Tf 6 H. 
We can then carry out the non-fictitious substitution (x; 
a^~b) in the text T \  i.e. the relation a Com b does not 
hold. The contradiction we have obtained proves the sym­
metry of the complemented distribution. According to

* If there are no “unemployed’5 elements in the alphabet 51. (Ed. 
note.)
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Theorem 3.1, it is possible to introduce a system of featu­
res for the alphabet 21, such that the relation a Com b will 
hold if and only if a and b have exactly one feature in com­
mon.

As an example, consider the language H, consisting of 
the strings abbc, bbbc, baba, abbb, abbd and bbbd. In this 
language, a and b are in the relation of common distribu­
tion, as are b and c, but a and c are related by complemen­
ted distribution. The elements c and d are interchangeable: 
c<=>d. The element d is in the same distributive relations 
with a and b as is the element c.

It isn’t difficult to prove the truth of the following
Lemma 7.1. If the elements a and b are interchangeable, 

and if the element c is in one of the two distributive relations 
with a, then it is in the same relation with b.

Since the interchangeability relation is an equivalence, 
one can introduce a partition of the alphabet 91 into equi­
valence classes with respect to this relation. These classes 
are called distributive classes.

As an example, take the set of syntactically correct Eng­
lish sentences. This set may be regarded as a language, Hr, 
over the alphabet 21, consisting of all English word-forms. 
This language cannot, generally speaking, be identified with 
the English language in its classical sense. Thus, we would 
have to include in Hr the following type of text:

“The flaming chair thoughtfully transformed the boots”.
On the other hand, Hr would probably not contain the 

sentence “To her I am—it doesn’t matter a bit”, although 
this example is taken from Lermontov’s “Princess Ligovs- 
kaya”.

The distributive classes in Hr consist of word-forms ha­
ving identical grammatical structures—coinciding collec­
tions of grammatical features. (We shall not specify the com­
plete list of features here: depending on what we take as 
the features exhausting our grammatical characterization of 
a word-form, we may obtain various languages Hr.) The 
distributive classes will consist of such sets of word-forms 
as {chair, table, pillar, cutter, ...} or {green, large, beau­
tiful, . . .}. These sets consist of grammatically identical 
forms of different words, since we may obtain a grammati­
cally correct sentence by replacing a word in a certain form
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by a different word in the same form. Thus, the example 
cited above has the following entirely meaningful prototype: 

“The flaming pillar slowly covered the houses.”
If we take two word-forms of pronouns in different cases, 

they will, generally speaking, be in complemented distri­
bution, since, changing the case of a pronoun in a correct 
English sentence, we ordinarily obtain an incorrect sentence.

Formally, there do exist examples of texts, where diffe­
rent cases of pronouns may be substituted for each other. For 
example, the sentences “John’s brother plays better than 
mine” and “John’s brother plays better than I” are equally 
possible. But here the interchangeability arises essentially 
from the fact that not all places have been filled in. In 
“complete” sentences, where “imaginary” members have 
been explicitly indicated, there will no longer be any inter­
changeability: “John’s brother plays better than I play” 
and ’’John’s brother plays better than mine plays”.*

Let us now imagine that a standard element has been cho­
sen in each distributive class of a certain language H. Then 
any element of the alphabet in any text of the language may 
be replaced by the standard element of the same class. In 
view of the interchangeability of any elements of a single 
class, we again obtain a text in the language H. The supply 
of such texts will be called standard. Conversely, any text 
of the language H may be obtained from a standard text by 
means of a series of substitutions of the form {x\ a b), 
where a and b lie in the same class. Thus, instead of listing 
the whole set of a language’s texts, it is sufficient to give a 
standard supply of texts and the substitution rules, i.e. the 
distributive classes. This will yield a more economical 
coding of information about the language. The study of a 
foreign language’s grammar proceeds in essence by presen­
ting standard texts and distributive classes (lists of the 
types of declensions and conjugations). Of course, only a 
language’s grammatical structure, and not its turns of 
phrase, semantical compatibility or shades of meaning, can 
be studied in this way.

M. V. Arapov observed that the so-called method of for-

* Nouns and adjectives, rather than pronouns, are discussed in the 
original. (Trans, note.)
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mulating questions, used by school children in learning their 
native language’s grammar, is essentially the study of 
substituting interrogative pronouns for word-forms. For 
example, the transition from the sentence “Mary is eating 
cereal” to the interogative sentence “Who is eating cereal?” 
is a transition to a standard pronoun, whose cases have been 
memorized in advance by the pupils.

Note that it is possible to study distributive relations in 
a fixed position of a text by taking a fixed value of x in the 
substitutions (x\ a b) of all previous definitions.

The following discussion is only valid for the case where 
the language H is a set of finite strings (the syntactical 
scheme is a finite set with a single relation—a total order).

In what follows, we shall use the inclusion symbol, i  g B ,  
in order to denote the fact that the string A is a connected 
part of the string B , i.e. that alphabetical marks in a series 
of successive positions of the string B , when taken in the 
same order, form the string A *.

For example, if B =» abcabb and A =  cabb, then 4 g 5 ,
Let A , B and A' be three strings, where A ^  B. The string 

Bf, obtained from B by deleting A and writing A ' in its 
place, is called a result of the substitution A~+ 4 '** . Such a 
substitution can change the length of a string.

Definition 7.12. Strings A and A' are called interchan­
geable, if for any substitution A — A' in any string B , such 
that A ^  B f a result of the substitution belongs to H if 
and only if B £ H, and conversely: for any substitution 
A' A in any string 5 , such that A' ^  B, a result of the 
substitution belongs to H if and only if B £ fl.

Lemma 7.2. The relation of interchangeability of strings 
is an equivalence.

The proof is left for the reader.
We shall denote the relation of interchangeability of 

strings by the same symbol, <=>, that we have used for the 
analogous relation between elements of an alphabet.

* A s  B denotes the existence of strings C, D , such that the 
string B is obtained by attaching first A,  then D , to the string C 
(B =  CAD). (Ed. note.)

** Since a string A may occur several times in a string 5 , a result 
of a substitution is not uniquely determined by the strings A , 5 , A '.  
(Ed. note.)



228 Ch. V ll .  Examples from Mathematical Linguistics

The set of all “unemployed” strings, i.e. strings which do 
not occur in a single string of the language H, form an equi­
valence class with respect to the interchangeability rela­
tion, which we shall denote by Kun.

Example 1. The language consists of all strings of the 
form ambn, i.e. aa . . .  a bb . . .  b (m ^  0, n ^  0,

m  times n times
m +  n > 0 ) .  In this case, we have the following four classes 
of interchangeable strings:
Kun, K a =  {a, aa, . . . } ,  K b =  {b, 66, . . Kab =  {ambn},
where m >  0 and n >  0.

Example 2. The language H consists of all strings of the 
form ambn. In this case, the number of classes turns out to 
be infinite: K un, K n — {avbq}, where q — p =  n (n =  0, 
± 1 , ± 2  . . .), and also the single-element classes Kja =  
=  {aj} and =  {61} (if / =  1, 2, 3, . . .)•

An accurate calculation of the classes in these examples is 
left for the reader.

Denote the set of all finite strings over the alphabet ?[ by 
It isn’t difficult to see that if ® is regarded as a language, 

it will have exactly one class of interchangeable strings. The 
set @ is a semi-group with respect to the operation of atta­
ching strings (so-called concatenation).

We shall denote the result of attaching B to the right of 
A by AB. For example, if A =  aba and B =  aab, then 
AB  =  abaaaby and BA =  aababa.

Lemma 7.3. Let A<=>A' and B<^>Br. Then AB<?>A'Bf.
The proof is left for the reader.
Thus, the result of the concatenation of different repre­

sentatives of classes always lies in one and the same class. 
This means that it is possible to define concatenation for 
the interchangeability classes themselves. Namely, let there 
be given two classes, K x and K 2. Choose a representative in 
each of them: A 6 K x and B 6 K 2. Then denote the class 
containing the string AB by K XK 2. In view of Lemma 7.3, 
our definition of the class K±K2 is independent of the choice 
of strings for K x and K 2*-

* Note that the class KtK 2 may be larger than the set of all strings 
AB,  where A 6 K l9 B 6 K 2.
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We have the following rules for “multiplying” classes in 
the first example:

K Un ^ a  ~  K u n K b  —  K u n ^ a b  =  ^ un ^ u n  ~  K aK un

—  K-bK-un =  KabKun =  K-un\
K aK b =  K a b ; K hKa =  Kun\ K hK h =  K h- K aKa =  K a ;

K abK b =  K aK ab “  ̂ ab\
K bK ab =  K abKa =  K abKab =  Kun•

The “multiplication table” in our second example has the 
form

K u n K n
rsm
K a K

K u n K un K un K u n K u n

K r K un Kun K un K r+m

K K un K n - j
isJ+m
xa K m - j

Kun K u n K un
K j + m

Denote the semi-group of classes, determined by a lan­
guage fl by It is obvious that the mapping

assigning to each string its class, is a homomorphism of the 
free semi-group @ onto the semi-group of interchange- 
ability classes with respect to the language fl.

It is known that the set of interchangeability classes is 
finite if and only if fl is a so-called automaton language. 
It would be interesting to find out what conditions on the 
semi-group follow from the condition that the language 
fl can be described by some kind of generating grammar. 
E. Pushchinsky determined the class of semi-groups which 
are isomorphic to for some language fl in his senior 
thesis.
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Finally, consider a homomorphism 'll):®-*-®! of a free 
semi-group @ into some semi-group ®v  We shall call this 
homomorphism normal with respect to the language fl if it 
follows from A 6 fl and \|) (B) =  oj) (̂ 4) that B 6 fl. In other 
words, if A and B have the same image, then they simul­
taneously belong or fail to belong to the language fl. It turns 
out that any normal homomorphism is extendible to a ho­
momorphism 0 into the semi-group of classes:

It isn’t difficult to see that, conversely, every homomor­
phism, for which the above diagram is commutative, is nor­
mal with respect to the language fl. What is interesting in 
this construction is how algebraic objects: a semi-group of 
classes and normal homomorphisms, are assigned to an arbi­
trary language fl. It would be interesting to investigate how 
the algebraic properties of these objects are related to the 
language’s properties. For example, what does the isomor­
phism of semi-groups @H signify?

6



APPENDIX

§ 1. Summary of the Main Types of Relations and 
Their Properties

We are listing the main types of relations and the proper­
ties defining them in the following table for purposes of 
comparison. A “+ ” signifies that the given property occurs 
in our definition of the given type of relation. A “(+ )” 
shows that the given property follows from the given rela­
tion’s defining properties.

T y p e  o f re la t io n R eflex i-
v i ty

S y m ­
m e try

T ra n s i­
t iv i ty

A n ti-re f le -
x iv i ty

A sy m ­
m e try

A n ti­
s y m m e try

Equivalence + + +

Tolerance + +

Strict order + + (+) (+)

Quasi-order + +

Non-strict order + + +

§ 2. Elementary Facts about Sets
Any real or conceptual object can be an element of a set. 

Certain objects are themselves sets. The terms “element” and 
“set” are primitive, and hence undefineable, concepts. Ne-
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vertheless, we regard the intuitive meaning of these concepts 
as known to everyone. In essence, it is defined for us by 
these words’ places in lists of quasi-synonyms:

set, aggregate, class, group, 
collective, collection, ensemble, series, ...

and
element, participant, representative, member,...

Singling out the first representatives in these lists, we 
declare, by the same token, that only they will participate 
in precise formulations.

We regard a set as given, if for each object, it is possible 
to judge whether or not it is an element of the set (whether 
or not it belongs to this set)*.

In order that our judgements about the belonging of an 
object to a given set might be sufficiently definite, we must 
understand an object to be something defined sufficiently 
clearly, [and present the method for describing a set in 
a sufficiently clear manner. For example, it doesn’t pay 
to consider the set of one’s remembrances, since it’s 
not too clear what a unit remembrance is, i.e. the 
objects in the case under consideration are rather hazily 
defined.

It would be difficult to consider the set of good writers, 
since we could hardly arrive at a reasonable agreement as 
to which writers ought to be regarded as good. On the other 
hand, there can be no doubt about the legitimacy of the 
notion “the set of members of the Writers’ Union”. In order 
to judge whether a given person is an object from this set, 
we need only look for his name in the appropriate member­
ship list.

It is possible to introduce precise restrictions on what 
judgements about an object’s belonging to a set should be
recognized as convincing. The important concept of a de-

* I have many objections to this sentence, but was unable to 
convince the author of their legitimacy. (Ed. note.)
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cidable set arose from this idea*. However, mathematicians 
were forced to allow the possibility of not always adhering to 
such strict restrictions, since they would otherwise have to 
waive their right to consider many customary sets.

The fact that the element x occurs in the set M  is written 
with the aid of a special symbol for belonging:

x 6 M.

(This is read as: ux occurs in M” or “x is an element of the 
set M” or ux belongs to the set M”.)

We may, for example, consider the following sets:
The set of all natural numbers (the number 5 occurs in 

this set, but the numbers Y 2 and 1 +  i obviously do not; 
neither does the book “War and Peace” occur in this set).

The set of all astronauts having flown in space up to the 
present day. This set is easily given by means of a list. 
It is known that the author of this book does not belong to 
it, but some of its readers may. Note that the definition of 
this set depends on when you read this book. On the day 
when these lines were being written, this set increased by 
3 elements. (The spaceships “Soyuz-4” and “Soyuz-5” went 
into orbit on that day.) The author’s pessimism, apparent 
in his assertion that this set is easily enumerated, doesn’t 
pertain to space flights, but rather to the fate of this book. 
It is most likely that by the time passengers start flying 
regularly in space, and we no longer interpret each space 
flight as an event, this book will have already been firmly 
forgotten.

Professor I. I. Zhegalkin liked to cite the following exam­
ple: the set consisting of the sun, reason and an orange.

Another example of a set is the set of all English words 
occurring in the text of this book. In it there automatically 
occur the words: “example”, “set”, “automatically”, “omlet”, 
but not the object denoted by the last of these words, nor 
the word “poddelka”. Note that the word “omlet” was used 
only twice in this book—in this and in the previous senten-

* A decidable set is a set for which there exists an effective method 
(an algorithm) for answering the question as to whether or not one or 
another object is an element of the given set. (Ed. note.)
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ces, but that’s enough to regard it as occurring in the book’s 
text*. Although the word “poddelka” occurs in this book’s 
text, it isn’t English.

Now the aggregate of all English words cannot actually 
be regarded as a set. Indeed, with regard to many words, 
we can automatically assert that they are words of the 
English language, and so occur in the aggregate under con­
sideration. But we do not have a precise definition, permit­
ting us to verify whether or not an arbitrary combination of 
Latin letters is a word of the English language. One might, 
for example, agree to regard as English words, those and 
only those words which occur in the latest edition of an 
explanatory dictionary. But it would then undoubtedly 
turn out that in such published editions in the English 
language, not only “English” words are used. Some of them 
haven’t yet found their way into the dictionary, but have 
a chance of doing so in the next edition. Some are too spe­
cialized to find their way into the dictionary. They are in 
essence dialectisms—territorial (Cockney, Oxford, etc.) or 
professional (scientific terms of special nature). It is possible 
to accept a different definition of an English word—to re­
gard all words, found in English publications, as belonging 
to the English language. But this will in no measure free 
us from analogous difficulties. Firstly, we shall be forced 
to include all possible transcriptions from other languages 
among the English words. Secondly, word-formations which 
are “potentially” English words, i.e. constructed in accor­
dance with our language’s possibilities, would still fail to 
be included among the English words. For example, it is 
quite possible that the word “ninety-per-center” has never 
occurred in English literature. Nevertheless, we can easily 
imagine a situation where this word might be used and ac­
cepted as a legitimate word of the English language. For

* Any assertion of the type “the word ‘bread’ doesn’t occur in 
this book’s text” is automatically false. Nevertheless, it is clear that 
not all words of the English language occur in the set under consi­
deration.

In order to indicate a specific English word, not occurring in the 
set of this book’s words, we must use a roundabout manoeuvre. Thus, 
this book’s text doesn’t contain the word to be found in a specific place 
of Roget’s dictionary. 'Analogously, no words denoting articles of 
toilet (or cosmetics) are contained in this book.



2. Elementary Facts about Sets 235

example, a movement of ninety-per-centers might arise. Or 
imagine a test, where correct answers to 90 % of the questions 
show that the testee has a superior intellect. Then “ninety- 
per-center” would become a praise word, like “A-student” or 
“shock worker”. True, the purists would hardly approve 
of such linguistic novelties.

And here is another situation. The word “horsenik”, for­
med by crossing an English stem with a Russian suffix, was 
used in an English newspaper. Strictly speaking, this is a 
word-forming imitation of the Russian word “konnik”. Is it 
a legitimate English word? Note that similarly formed terms, 
such as “beatnik” and “peacenik”, have found general favour 
in English literature.

In any case, the words of the English language form what 
is called an open aggregate, or class, but not a set, in the 
sense defined above. Mathematicians prefer to use the term 
“class”.

Let us return to real sets. Under what circumstances 
should it be said that sets M  and Mi coincide? It is natural 
to accept the following

Definition A .l. Sets M  and M 1 coincide, if any object x, 
which is an element of M, occurs in M x and, conversely, 
any element of Mx occurs in M .

Coinciding sets will be regarded as one and the same set in 
what follows.

In this definition (and in many of those to follow), we 
have implicitly used the theoretical possibility of reasoning 
about any object and verifying whether or not it occurs in a 
given set. As a matter of fact, we cannot verify whether two 
sets are identical, unless we verify whether each object 
occurs in each of the sets.

Generally speaking, definitions of specific sets are given 
in such a way, that the class of possible objects is restricted 
by the definition, itself. For example, when we speak of the 
set of all numbers divisible by three, it becomes clear that 
there is no need to verify whether elephants belong to it. 
It is convenient to introduce this agreement explicitly by 
assuming that the class of admissible objects is fixed in 
advance. When we then speak about several sets simulta­
neously, we understand that they contain only objects be­
longing to this class. It is customary to call this class the
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universe. Thus, sets whose objects are taken from the class 
of heraldic symbols were constructed in a series of this book's 
examples. Most of this class' objects which we needed are 
depicted in Fig. A .l.

However, not all difficulties are removed by the above 
restriction. Consider the set M, consisting of all integers 
greater than two. This set may be written as:

M =  {3, 4, 5.......... n, . . .}.
Now let the set M i consist of all natural numbers n, for 
which the equation xn +  yn =  zn has no positive integral 
solutions. The question is whether we have defined one and 
the same set or two different sets. The answer to this ques­
tion is completely equivalent to Fermat's famous problem 
(which is considered hopelessly difficult). In spite of the 
fact that we have sufficiently restricted the class of our 
sets’ possible elements, modern science has no procedure for 
checking the coincidence of these sets. Note that here the 
crux of the matter lies not so much in the difficulties related 
to the sets’ infinity, as in the fact that we defined these two 
sets by essentially different properties, about whose connec­
tions we know too little.

In order to better realize this, let us take another exam­
ple. Let M  be the set of all elephants that have lived up to 
the present. We may regard this set as being a fortiori 
finite, since a finite set of elephants existed on the Earth 
in any year, while there has been life on the Earth for only 
a finite length of time. (It is quite plausible to assume that 
there exist no elephants in other celestial worlds.) Let M x 
be the set of all mammals possessing tusks and trunks. 
We now know that M x does not coincide with M, since 
mammoths belong to M iy but not to M. However, this 
fact wasn’t so obvious prior to the discovery of the first 
fossil mammoth. Our argument becomes even clearer if 
we take the set of all elephants and all mammoths for the 
set M 2. The question is whether or not M 2 and M x coincide. 
This again reduces to the problem of whether there ever 
existed a mammal with tusks and a trunk, distinct from 
elephants and mammoths. But the nature of our knowledge 
is such that we can be certain of a biologicaljspecies' existen­
ce, but we can never be sure that a species did not exist.



Fig. A.l. Set of heraldic beings
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Here we have come up against the important circumstan­
ce that a set can be given by two different methods.

The first method (extensional) consists in somehow “point­
ing out” all elements of the universe, which belong to the 
given set. Then, in order to verify the coincidence of the 
sets M  and M t, we must “look over” all elements from M, 
and for each of them, convince ourselves of its belonging 
to and then for each element of Af1? we must convince 
ourselves that it belongs to M. This is precisely the kind 
of reasoning that lies in the foundations of set theory.

The second method (intensional) consists in presenting a 
set by means of a certain property, which singles out part 
of the universe’s elements. With such an approach, we must 
verify that each element of the universe, possessing the 
first property, also possesses the second, and conversely, 
that each element of the universe, possessing the second 
property, also possesses the first. Two properties are called 
intensionally equal (coinciding in intension), if, independent­
ly of the universe, each of them implies the other. It is clear 
from our previous example that the properties of “having 
a trunk and tusks” and “being an elephant” do not coincide 
in intension. But if we choose the class of all mammals, 
having lived in our epoch, as the universe, then these proper­
ties define one and the same set, i.e. will be extensionally 
equal (will have the same extension).

A distinction between the extensional and intensional 
approach is essential to a formal analysis of thought. Thus, 
R. Carnap observed that if we replace a property occurring 
in a statement by another, extensionally equal property, the 
meaning of the entire statement may be changed. For exam­
ple, take the sentence

“Elephants are animals with trunks and tusks” 
and replace its second property by the extensionally coin­
ciding one of “being an elephant”. We arrive at the statement 

“Elephants are elephants”.
Both statements are true, but the former expresses a mea­
ningful fact, while the latter is a tautology. Therefore, these 
two statements differ in meaning.

The situation is different for properties which coincide 
intensionally. Thus, the property of “being an elephant” 
coincides intensionally with that of “being the animal des-
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cribed in a certain place by Brehm”. If we replace the pro­
perty “being an elephant” by the above intension ally equal 
property in our first statement, we obtain a statement which 
is equivalent in meaning:

“Animals described in a certain place by Brehm 
are animals with trunks and tusks”.

Substitutional difficulties may arise with statements of 
the type: “x thinks that...”, “x supposes that...”, “x knows 
that...”, etc.

For example, the statement:
“The boy knows that elephants have trunks and tusks” 

may be true. But the statement:
“The boy knows that animals described in a certain place 

by Brehm have trunks and tusks” 
may be false, since the boy may not even know about the 
existence of Brehm's book.

Intensional relations between properties may be regarded 
as logical relations between ideas, or, from a somewhat 
different point of view, as relations between concepts in a 
certain system of knowledge. Thus, the properties of “being 
an integer greater than 2” and “being a positive integral 
power, for which the equation xn +  yn =  zn has no posi­
tive integral solutions” are distinct in our system of know­
ledge, since we do not know the solution to Fermat’s pro­
blem. In the system of knowledge of a person with an ave­
rage education, the concepts of an “elephant” and an “ani­
mal described in a certain place by Brehm” coincide inten- 
sionally. But these concepts are intensionally distinct in 
the system of knowledge of a boy who has neither read 
Brehm nor knows of his book’s existence.

Extensional relations are relations between the univer­
se’s objects. The fact, that intensional relations between con­
cepts are compatible with extensional relations between the 
objects they denote, is an important property of the world 
in which we live. But a more detailed discussion of this 
question would lead us to deep philosophical problems, di­
verting us from this book’s main subject.

We must now introduce certain basic concepts of set 
theory, actively used in the present book.

A set M  is contained in a set Mi if every element of M  is 
simultaneously an element of M ±. This situation is written
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symbolically as follows:
M  <=  M v

For example, the set M  of all animals in the Moscow Zoo is 
contained in the set Mi of all animals living on the Earth 
at the present time.

The following important principle, often used in proving 
things about sets, is a consequence of Definition A.l:

In order that the sets M and Mi coincide, it is necessary 
and sufficient that M  ^  M { and M x ^  M hold simultane­
ously.

If M <=: M x, it is also said that the set ¥  is a subset of 
the set M v

Thus, the set of words used on this page is a subset of the 
set of all words used in this book.

Just as it was necessary to introduce the concept of a zero 
into arithmetic in order to achieve an orderly presentation, 
so is it very helpful to introduce the concept of an empty set 
into set theory. The empty set is denoted by the special 
symbol 0 .

By definition, none of the universe’s objects occurs in 
the empty set 0 .  By the same token, every element of the 
empty set is contained in any set M. Hence, any set M  con­
tains the empty set as a subset:

0  ^  M.
Furthermore, it is obvious that every set M  contains itself 
as a subset:

M c =  M.

If M  is contained in, but does not coincide with M x, then 
we shall write:

M  c= M^
The difference between the symbols ^  and cz is analogous 
to the difference between the non-strict, and strict, < ,  
inequalities in ordinary algebra.

A subset of M, distinct from M  and 0 , is called a proper 
subset of the set M.

In Fig. A.2, we have depicted the proper subsets of the 
set M  of four heraldic animals: {a lamb, a lion, an owl,



Fig. A.2. Proper subsets of a four-element set
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a unicorn}. The total number of subsets of this set M  (inclu­
ding M, itself, and the empty set 0 ) equals, as is easily 
seen, 16, i.e. 24.

In the general case, if a set consists of n elements, then 
the number of its subsets is equal to 2n. This assertion is 
easily proven by induction.

The set consisting of a single element contains exactly 
two subsets: itself and the empty set. Since 2 =  21, our 
assertion is true for n =  1. Assume that this assertion is 
true for the set M n of n elements, {x{, x2, . . ., xn}. Join­
ing the element xn+1 to it, we obtain the set Mn+1 of n +  1 
elements. Any subset of M n+1 is either a subset of Mn, or 
else consists of a subset of M n and the additional element 
xn+1. Therefore, the total number of subsets of M n+1 is 
twice as large as the number, 2n, of M n' ssubsets. In other 
words, the number of subsets of M n+1 is equal to 2*2n =  
_  2n+i. Thus, we have proven that the number of subsets 
of a set of n elements equals 2n.

This same number may also be calculated in a different 
way. The total number of subsets of a set of n elements, 
each of which has m elements, is equal to the number of 
combinations C™. Therefore, the total number of all sub­
sets equals

1 +  Cn +  Cn +  • • • +  Cn»

where the first summand stands for the empty set. This sum is 
equal to 2n, as is proven in algebra courses on the basis of 
Newton’s Binomial Theorem, since

2n =  (1 +  l)n.
The set of all subsets of a set M  has a special designation: 

2M. Here 2M denotes not the numerical operation! of raising 
a number to a power, but the “operation” on a set M, which 
consists in going from M  to the set of all its subsets. This 
notation suggests the result, proven above for finite sets, 
that the number of elements in the set 2M equals two to 
the power, the number of elements in the set M.

Consider two sets M  and M v The set M 2 is called the 
union of M  and and is denoted by:

M 2 =  M  U Mi,



2. Elementary Facts about Sets 243

if it consists of all elements which are contained in at least 
one of the sets M,

For example, if M  is the set of even numbers, and M x is 
the set of odd numbers, then their union is the set of all 
integers.

Another example. Let M  be the set of all works, in the 
writing of which, I. Il‘f participated, and let M 1 be the set 
of all works, one of whose authors is E. Petrov. Then the 
union M 2 =  M\ JMi  forms the collected works of I. Il’f 
and E. Petrov. In this example, M 2 consists of elements 
occurring only in M  (works of I. IPf, himself), of elements 
belonging only to M x (works of E. Petrov or of E. Petrov 
together with other co-authors), and of their jointly written 
works. The set of these last works is denoted by:

M 3 =  M  f| M 1
and is called the intersection of the sets M  and M*. In gene­
ral, the intersection of two sets is the set which consists of 
the elements contained simultaneously in both sets.

Thus, if M  is the set of even numbers, and M 1 is the set 
of multiples of three, then M [ \ MX consists of the numbers 
which are simultaneously divisible by two and by three* 
i.e. the multiples of six.

The difference of the sets M  and M x:

M 2 =  M \  M,

denotes the set consisting of all elements of M , not con­
tained in M v

For example, if M  is the set of all mammals, and M x is 
the set of all sea and ocean dwellers, then M  \  M 1 consists 
of all mammals leading a terrestrial mode of life. The set 
M 1 \  M  consists of all fish, crustaceans, starfish, etc., but 
doesn’t contain whales, dolphins, etc.

The union, intersection and difference may be regarded 
as operations on sets*, just as addition, multiplication, 
subtraction and division are operations on numbers.

* Note that “union” denotes the operation, itself, as well as its 
result, while in algebra, it is customary to distinguish “addition” 
from “sum” and “multiplication” from “product”.
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Operations on sets possess a series of specific properties. 
We are listing those which are the most important for us, 
leaving the corresponding proofs for the reader:
(1) (M U N) U L =  M  U (N U L);
(2) ( M[ \ N) [ \ L =  M( \ (N( \ L) .
These two rules express the associative law for the union and 
intersection, giving us grounds for not writing parentheses 
in expressions of the form M {J W U L or M {\N  [\L.
(3) M  U N  =  N  U M;
(4) M ( ] N  =  N[ ] M.
These relations express the commutativity (permutability) 
of the operations of union and intersection.
(5) It M s  N, then M  U N  =  N;
(6) if M  s  N, then M {\ N  =  M.
These rules show that when one of the operands* is a subset 
of the other, the result of the union or intersection is equal 
to one of the operands.
(7) 0  U M  =  M;
(8) 0 f l  M =  0 ;
(9) M  \  0 = M;
(10) 0 \  M  =  0.
These rules express important properties of the empty set.

(11) (MU N)( ]L  =  (M()L)  U (W fU);
(12) (MflAO U L =  (MU £)D(ATU L).
Here we have written both distributive laws, valid for set- 
theoretic operations.
(13) (M \  N) D (M \  L) =  M \  (N U L)\
(14) (M \  N) U (M \  L) =  M \  (TVf) L).

* The word “operand” denotes a participant in an operation. For 
example, the operands in addition are the summands and the operands 
in multiplication are the cofactors.
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These laws express the duality principle of set-theoretic ope­
rations. It consists in the fact that when we pass from sets to 
their complements with respect to a certain set M, the union 
and intersection exchange roles.

(18) M  U N =  (M \  N) U (M fl N) U (N \  M).
The last property means that the union M \] N  consists of 
elements occurring only in M, elements occurring only in 
N, and elements contained in both operands.

§ 3. What is a Model?

The concept of a model, very important for mathematics, 
can be conveniently illustrated with material found in this 
book. We had already been on the verge of doing this in 
Definition 7.1 (p. 203) and in the discussion on pp. 187-190 
(also see pp. 207-209). We shall now give precise definitions 
for the concepts employed in these discussions*.

Definition A.2. If M  is a set in which R ^  . . ., R m  are 
relations (not necessarily binary), the string

is called a model.
Example 1. An ordered set is a model, (M, < ) ,  with a 

single (binary) order relation.
Example 2. A tolerance space is a model in which a single 

(binary) relation—a tolerance—is given.
Example 3. A doubly ordered set is a model, (M, < ,  =>), 

with two (binary) relations.
Example 4. An ordered tree is a model, {M, cz , < } ,  

with two (binary) relations.
A model with three (binary) relations was considered on 

p. 158.

* For greater detail about these concepts, see A.I. Mal’tsev’s 
book “Algebraic Systems”, M., “Science”, 1970.

(15)
(16) 
(17)

( M \  N) [ ) ( M[ \ N)  =  0 ;
M  \  N  s  M;

( M\ N)  n ( N\ M)  =  0 ;

m  =  (M; R lt . . R m>
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The expressions “rc-termed relation” and “n-ary relation” 
are used interchangeably in model theory. These expressions 
have a clear meaning for natural n. In particular, a one- 
termed relation in M  is a subset R of the set M. We say 
that this relation holds for any element of R , and does not 
hold for any element of M  \  R.

The reader is invited to formulate the general concept 
of an isomorphism (or, as was correctly observed in the edi­
tor’s footnote on p. 218, of a ^-isomorphism) of models 
(the corresponding definition for the case where all their 
relations are binary was given on p. 218).

Definition. A.3. A string of symbols, 2  =  ($R£ni\  . . . 
. . ., SR{£m)), marked with integers, is called a signature.

The symbols themselves, will be called names of
relations or (in accordance with the terminology of pp. 188- 
191) Relations (with a capital R!). We shall say that the 
model -JJi =  (M; R x, . . ., R m) has signature 2? if for each 
i, the number of terms of the relation Ri (its “arity”) is 
equal to nt, and if we agree to denote the relation Ri by the 
symbol SR̂71̂ .

With the aid of symbols occurring in some signature 2 ,  
and of operations from the algebra of relations, it is possible 
to compose various formulas, which may then be interpre­
ted as assertions about relations. To put it more precisely, 
so long as our formulas are written in terms of a signature’s 
symbols (names of relations), they can only be understood 
as purely formal expressions, composed in accordance with 
the rules of the algebra of relations. However, if all names 
of relations in these formulas are replaced by relations with 
the appropriate number of terms, given in one and the same 
set M, then the formulas are converted into assertions about 
relations.

For example, let 2  =  {9ft<2)}̂  i- e. 2j consists of a single 
name of a binary relation. Then the formula

9t(2)5R(2) c= 3l(2) (A.l)

means nothing in itself. However, if we replace the symbol 
8t<2> in it by any binary relation R , it will denote the tran-
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RR  c= R,
introduced by us in Definition 1.6 on p. 45. Therefore, it 
makes sense to say that formula (A.l), itself, expresses the 
transitivity condition. Only it expresses this condition 
symbolically for an entire class of relations, each of which 
may be named 9i (2).

Analogously, we may regard the condition
SR(2) =  (SR(2))-1 (A.2)

as expressing the symmetry condition (or axiom).
We now make the following stipulation. We shall take it 

for granted that the symbol 9Sq2) is always interpreted as 
the diagonal relation E (the equality relation). In other 
words, if the symbol 9{£2) occurs in a signature, the equality 
relation in the appropriate model is always assigned to it. 
We can simply stipulate that a signature is always written 
in the form of a string beginning with 9Jq2):

2  =  <3?o2\  9t(r \  . . . )-
while a model is always written in the form 

m  =  (M; E , Rx, . . .).
Then the formula

9t;2) g= SR;*’ (A.3)

denotes the reflexivity condition for 3tj2). More precisely, 
what we are saying is this. If a certain model 9)1 =  (M; 
E , R t, . . .) has the signature 2  =  (5Rq2), 9^2), . . .), then 
Formula (A.3) is the requirement of reflexivity on the rela­
tion R lm We have now actually arrived at a very important 
concept—the axiomatics of a theory.

Let some signature 2  be given. We shall call any set of 
formulas, composed of symbols occurring in this signature, 
an axiomatics (over this signature).

Definition A.4. A pair, consisting of a signature and some 
axiomatics over this signature, is called a formal theory,
$  =  <2 . a>-
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Example 5. The pair, composed of the signature 2  =  
=  (9?'2\  3f(i2>) and ^ e  axiomatics SI, consisting of for­
mulas (A.l), (A.2), (A.3), is a formal theory.

Definition A.5. A model, s)Jt =  (M\ E , Ri9 . . i?m), is
called a model of the theory X =  (2* St) if (1) this model 
has the signature 2  ai*d (2) replacing each symbol from 2  
in each formula in the axiomatics SI by the relation from 
SJt, corresponding to it, we obtain a true statement.

For example, the model SJt =  (M; E , i?A) is a model of 
the theory described in Example 5 if and only if R x is an 
equivalence relation.

If the theory X =  (2* 21) has the same signature as in 
Example 5, and if its axiomatics consists of (A.2) and (A.3), 
then its models will be arbitrary tolerance spaces, and only 
they.

If we retain the same signature 2* hut choose an axioma­
tics consisting of (A.l) and the axiom

SR!2) n ^ 2>= 0 ,  (A. 4)

then we obtain the class of ordered sets as our models.
Note that we have just permitted ourselves a lack of rigour: 

we should have stipulated that the symbol 0  occurs in the 
signature and is always interpreted as the empty relation.

Let us also consider the theory X =  (2* 21), where 2  =  
=  (9Jo2)> $R(i2\  $R£2>) and the axiomatics 21 contains axioms 
(A.l), (A.2) and (A.3), for each of the symbols 9UJ2), SR£2), 
and also the following axiom:

(A.5)

It isn’t difficult to verify that sets M  with a pair of equi­
valences, R t and i?2, such that distinct elements of M  do 
not belong to the same equivalence classes with respect to 
both Ri and R 2, serve as the models for this theory. Models 
of this type were considered in § 4 of Chapter VII.

It is worth-while noting that a system of rules of logical 
inference, permitting one to derive all possible theorems 
from a theory’s axioms, is also, in general, included in the 
concept of a formal theory. These theorems should be con­
vertible into true statements in any model of the given
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theory. We are not particularly concerning ourselves with 
the question of the rules of inference, since we aren’t en­
gaged in a comparative analysis of the various deduction 
systems studied in metamathematics. We are in effect tacitly 
assuming that identical modes of logical inference are al­
ready inside every person’s head*.

Thus, using customary methods of proof, the reader might 
easily convince himself that in our last example of a theory, 
the following theorem, which strengthens Axiom (A.5), is 
true:

ati2,r m 2)= K ' -
Let us now turn our attention to the fact that we can easily 
extend the concept of a theory by admitting a broader class 
of formulas. Otherwise, remaining within the bounds of 
the language of the algebra of relations, we couldn’t even 
formulate a theory, whose models are arbitrary trees. The 
language of the algebra of relations is too weak that we 
should define the concept of a tree. However, if we use the 
restricted predicate calculus as our initial language (we cannot 
give a rigorous description of this language here; a working 
knowledge of it can be obtained from Yu. A. Shikhanovich’s 
book, “Introduction to Modern Mathematics”), then an 
appropriate theory can be easily formulated.

In what follows, the symbols V , & and =#> denote dis­
junction, conjunction and implication, respectively, while 
the symbols (Va?) and (3#) are read as “for all x” and “there 
exists an x , such that”. Let 2  =  ($Ro2)> 9io2))> an(i let the 
axiomatics SK, consist of axioms (A.l), (A.4) and the follo­
wing axioms:
(V z) (V ») (V z) [ ( (* » * » )  & (x W ? z ) )  = »  m ;2)z)

v< «vw m  (3*) m
Comparing these axioms with Definition 4.9, we can easily 
convince ourselves that the theory we have constructed, 
X =  (2» U), characterizes precisely the class of trees.

Thus, a theory is a formal description, defining a certain 
class of sets with concrete relations, in which this theory is

* This assumption would be inadmissible in a book on metamathe­
matics.
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embodied. In particular, a formal theory may fail to have 
even a single embodiment, when it is internally contradi­
ctory. We have already seen how a theory can have pair­
wise non-isomorphic models: for example, all tolerance 
spaces. There are also theories, all of whose models are iso­
morphic to each other. Such a theory may be obtained, in 
particular, by taking an axiomatics for the Euclidean plane.

Now assume that we have a certain class of models (with 
a common signature), for which it is possible to construct 
a complete theory, i.e. a theory, such that a model belongs 
to the given class if and only if it is a model of this theory. 
Such a class is called an axiomatizable class of models. In es­
sence, this is a class of models which is definable by certain 
properties, precisely formulated in some language, and not 
a random collection of models. We have already said that 
texts in a natural language may be regarded as models. 
Mathematical linguistics would in a certain sense be ex­
hausted if it could be discovered that the texts in a natural 
language form an axiomatizable class of models, and if 
the corresponding theory were constructed. In such a form, 
this problem is probably unsolvable.

§ 4 . Real Objects and Set-Theoretical Concepts*

The idea that the development of science at the present 
time is characterized by the mathematization of almost all 
its branches and the penetration of mathematical methods 
into traditionally humane fields of knowledge (economics, 
linguistics, psychology, etc.) may now be regarded as gene­
rally accepted. This trend has lead to deep structural changes 
in mathematics, itself. If applications to mechanics, astro­
nomy, electricity and other branches of physics were linked 
to concepts of “classical mathematics” (number, function, 
derivative, integral, differential equation), for the huma­
nities (and, to some extent, biology), applications of mathe­
matics are characterized by “qualitative”, set-theoretical 
concepts (set, mapping, binary relation, algebraic opera­
tion) and also by closely related concepts of mathematical

* Written jointly with N.Ya. Vilenkin.
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logic. This has lead to the situation where along with the 
mathematization of science, there is taking place a satura­
tion of mathematics, itself, with set-theoretical concepts, 
which are also penetrating classical fields. Even the language 
of geometry, inherited in large measure from Euclid, is 
undergoing a set-theoretical renovation. Instead of “locus”, 
one has begun to say “set of points with a given property”; 
the former equal triangles have been renamed “congruent”, 
since two sets are equal only if they consist of the same 
elements. The role played by the concept of a set in modern 
mathematics and its applications is evident, if only from 
the fact that all pupils in the U.S.S.R. now begin their 
acquaintance with this concept in the fourth form, while 
all experimental text-books, beginning with those for the 
first form, contain this concept.

Mathematicians would now be quite astonished if it turned 
out that some mathematical object could not be inter­
preted as a set with a certain structure of relations defined 
in it. The idea of a group of French mathematicians, having 
taken the pen-name of N. Bourbaki, that any mathematical 
object is a set, provided with a certain structure (algebraic 
or topological), appears to be (and, to a certain extent, is) 
the highest achievement of mathematical consciousness.

Incidentally, specialists in mathematical logic would 
hardly agree with such a peremptory judgement. In mathe­
matical logic, the following are considered as objects of in­
vestigation: procedures (algorithms, recursive processes, 
etc.), properties (intensionally given predicates) and formal 
theories (considered independently of the models—sets 
with relations—which embody them). None of these objects 
are directly reducible to structures in the sense of N. Bour­
baki.

Nevertheless, the set-theoretical point of view has gained 
so many adherents, that it has in a certain sense become a 
universal scientific conception. The mathematization of one 
or another field of knowledge has become almost equivalent 
to the penetration of the concepts and methods of set theory 
into that field. But when any branch of science starts occu­
pying such an important position, it becomes absolutely 
necessary to clarify questions of the logical validity of the 
theory, itself, as well as questions of the adequacy of this
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theory for those real objects and processes which it is called 
upon to describe and explain.

Problems related to the logical validity of set theory arose 
when it was discovered that such concepts as “the set of all 
sets” or “the set of numbers describable by an English sen­
tence consisting of not more than one hundred words” cannot 
be defined, although it would appear at first sight that such 
sets are no worse than any others. Within the scope of naive 
set theory there later proved to be problems, admitting no 
solution (for example, the well-known continuum problem). 
The study of this group of questions, related to infinite sets, 
has led to significant successes in mathematical logic, to the 
construction of various axiomatic set theories. However, we 
have no intension of dealing with the problem of set theory’s 
logical justifiability here, or of criticizing its axiomatics. 
We wish to consider here the more “primary” problems, con­
nected with the relation of the concept of a set to various 
categories of reality*. These “primary” problems force us to 
re-evaluate such fundamental concepts for set theory as “an 
element of a set” and “the equality of sets”. Cantorian set 
theory begins with the following “quasi-definitions”: “A set 
is regarded as given if for each object, it is possible to draw 
a conclusion as to whether it is an element of the set”; “two 
sets are considered identical if they consist of the same ele­
ments, i.e. if each element of the first set is simultaneously 
an element of the second, while each element of the second 
is an element of the first”. Of course, we could replace these 
“quasi-definitions” by appropriate axioms, but this wouldn’t 
change the essence of the matter—in order to solve the ques­
tion of set theory’s applicability to other sciences, it is imma­
terial whether the stumbling-block lies within set theory or 
along its boundaries.

The “quasi-definitions” cited above are regarded as so 
self-understood and clear that they are not subjected to a 
critical analysis in any of the well-known books on set theo­
ry, with which we are acquainted. But they are not a simple 
tautology. The mere acceptance of these definitions, i.e., in 
essence, the set-theoretical treatment of one or another

* A. A. Lyubishchev, Philosophical aspects of taxonomy, Ann. 
Rev. of Entomology, vol. 14, 1969 pp. 19-38.
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branch of science, imposes serious restrictions on our ap­
proach to the phenomena under investigation and, in many 
cases, leads to significant distortions of these phenomena. 
The philosophical meaning of these “quasi-definitions” is 
that a set is understood as a “multiplicity which can be 
thought of as one”. We are presupposing our ability to make 
a single formation out of many objects.

It is assumed in the first of these “quasi-definitions” that 
we can mentally examine all objects and draw a conclusion 
about each of them, as to whether or not it belongs to the 
given set. The difficulty here is not only that there are too 
many objects. A more significant circumstance is the impos­
sibility in many cases of clearly understanding what an 
object is. In most cases, when considering objects as ele­
ments of one or another set, we must perform in advance the 
operation of identification within some vague class. Let us 
present some examples. The notion of a “pack of wolves” 
seems entirely clear at first sight—given any wolf, one can 
say whether or not it belongs to the given pack. However, 
each individual wolf is a certain aggregate of atoms, chan­
ging at each of its breaths. Hence, when we speak of a pack 
of wolves, we must assume beforehand that certain aggre­
gates of atoms have been identified, since they belong to one 
and the same wolf at different moments. In other words, 
the notion of a “given wolf’ is the result of identifying various 
aggregates of atoms, each of which belonged to this 
wolf at one or another instant. Moreover, we are ignoring 
changes in the atoms’ interval states. And if the problem of 
temporal identification admits a unique solution in the 
example with a wolf, we can cite examples where it isn’t 
quite so simple. For example, when we speak of the history 
of England, we are, by the same token, implicitly identi­
fying England at the time of the Roman conquest, England 
of the Anglo-Saxon tribes, England after the Battle of 
Hastings, the British Empire and modern England.

The necessity of identification also arises in considering, 
for example, English words. One and the same word is pro­
nounced differently in different places, and it should be 
assumed that all these variants in pronunciation are ines­
sential and present one and the same element of the set of 
English words. Even elements of “mathematical” sets are
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results of an analogous identification. For example, in the 
cardinal theory of natural numbers, the concept of a num­
ber is defined as the common property of all equivalent 
finite sets. In other words, the number 4 is what the sets of 
a square’s angles, a quarter’s members, a cat’s paws, etc., 
have in common. But this does not presuppose that we can 
survey all sets which are in one-to-one correspondence with 
the set of a cat’s paws. However, a 19-th century scientist 
did not know that the set of outer electrons of a beryllium 
atom belongs to this set. Neither could he speak of the sets 
consisting of 4 mesons, 4 Earth satellites, etc. Furthermore, 
here it is necessary to bear in mind not only sets consisting 
of real physical objects, but also sets consisting of mythical 
objects—a set of four centaurs, etc. Therefore, an unsurvey- 
able amount of equivalent sets arises in the above approach 
to the number 4, while the number 4, itself, becomes the 
result of identifying these sets, not only existing sets, but 
also future, and even imaginary, ones.

Along with the cardinal approach to natural numbers, 
there also exists the ordinal approach, in which natural 
numbers are regarded as elements of a certain set with a rela­
tion given in it. But the axioms for the natural numbers 
(Peano’s axioms) only define the set of natural numbers up 
to an isomorphism. Therefore, in this approach, the number 
4 proves to be the result of identifying elements of the va­
rious realizations of the set of natural numbers.

The examples we have cited show that when we speak of 
elements of one or another set, we perform a certain opera­
tion of identification beforehand, only intuitively feeling 
that this operation will not lead to a contradiction in the 
given case. In attempting to make the notion of an element 
of a given set precise, we were forced to consider a different 
set, from which the given one is obtained by means of the 
identification of certain elements. But, of course, our com­
plications do not end here: after this new set, we must con­
sider yet another, and the infinity of this process well cor­
responds to the inexhaustibility of the process of cognition.

Let us now turn to the question of the identity of two sets. 
At first sight, the quasi-definitior: of two sets’ identity, 
cited above, seems to be a complete triviality. However, 
even this definition is far from harmless. The fact is that
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sets can be given in two ways—by listing their elements 
(extensionally) and by indicating the characteristic proper­
ty, possessed by the elements of a set, and only by them 
(intensionally). Moreover, it may turn out that two setsr 
given by different characteristic properties (intensionally 
distinct), coincide extensionally. Now the essence of the 
above-mentioned quasi-definition is that we ignore inten- 
sional distinctions between two sets if they are extension- 
ally equal. But in many branches of science, the entire 
crux of the matter is to establish whether or not two sets 
consist of the same elements, whether or not two characte­
ristic properties are equivalent. For example, a theorem of 
elementary geometry asserts that the set of points in a plane, 
which are equidistant from the points A and B in that 
plane, coincides with the set of points on the perpendicular 
bisector of the segment AB.  And only after this theorem 
has been proven does it turn out that two completely 
different characteristic properties determine one and the 
same set of points in the plane.

This distinction was well understood by mathematicians 
of the pre-Cantorian epoch. The ancient Greeks introduced 
the term “locus”, understanding it to be a continuum on 
which points lie, but which is not reducible to the set of 
points belonging to it.

The tendency to identify intensionally distinct, but ex­
tensionally coinciding, sets also manifests itself in that 
the concept of a relation (i.e., strictly speaking, a property 
connecting a group of objects) is now treated in mathematics 
as a purely set-theoretical concept. It is now customary to 
call a subset A of a Cartesian product, M  X M  X . . .  
. . .  X M,  a relation (in the set M).  By the same token, 
instead of speaking about properties of rc-tuples of elements, 
one speaks of the set A of strings for which such a property 
holds. Thus, two intensionally distinct relations are recog­
nized as coinciding, if the corresponding subsets of the Car­
tesian product coincide.

Within the sphere of pure mathematics, such a replace­
ment of concepts is more or less harmless—the set-theoreti­
cal conception of mathematics has been satisfactory so far. 
The only questions are whether there might not be in prin­
ciple a restriction here on the mathematical apparatus, and
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whether it is permissible to transfer the set-theoretical 
approach to the real world. This same thought may be ex­
pressed differently. The experience of the development of 
mathematics has shown that a set is a good epistemological 
concept. But can we transfer this concept to ontology? Here 
there arise serious doubts, in particular, when we take into 
account the above-mentioned experience in mathematical 
logic.

In order to avoid the usual set-theoretical difficulties, 
we have to postulate the existence of a certain universum— 
the class of all admissible objects—and then consider only 
subsets of this set, sets of such subsets, etc.

Many logical difficulties are removed in this way, but the 
following fundamental ontological problem arises: is the 
real world a universum, i.e. a class of clearly delineatable 
objects?

The second of the quasi-definitions cited above presuppo­
ses an ability to distinguish elements of a set. In other words, 
each set is thought of together with the identity relation 
defined in it. Without the concept of identity, we couldn’t 
introduce the definition of reflexivity for a relation in a set, 
i.e. we could not introduce the fundamental concept of an 
equivalence. Without this concept, it would be impossible 
to define the notion of a total order. Therefore, every set 
under consideration already turns out to be not merely a set, 
but a relational system (a model, in the sense of Definition 
A.2 in Appendix 3).

Of course, we shouldn’t like to limit ourselves to stating 
these difficulties, but wish to suggest a certain means of 
overcoming them.

We shall begin by introducing our initial concepts, one 
of which is the concept of a property or, otherwise, a pre­
dicate. From the very beginning, we shall speak of rc-termed 
predicates, i.e. of properties characterizing ^-tuples of ob­
jects. We shouldn’t as yet care to make any assumptions 
about the nature of these objects. All that has significance 
for us is the possibility of constructing statements about the 
objects with the aid of the predicates. These objects, them­
selves, are represented only by their names, and the ques­
tion of a statement’s actual truth and the related question 
of interpreting properties in concrete object domains do not
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face us yet. However, we can at once introduce stipulations 
as to the logical truth of statements (for example, the law 
of the excluded middle).

The class of admissible statements is determined by the 
language we choose. We may, for example, confine ourselves 
to the restricted predicate calculus, which would allow us 
to construct a quite definite class of statements out of the 
initial predicates. The language of the restricted predicate 
calculus, supplemented with the equality sign (identity of 
object variables), is natural for many applications to mathe­
matics. However, here we shouldn’t like to immediately 
introduce identity as an initial concept.

Finally, it is possible to use a natural language for con­
structing statements about properties. Here we need only 
endeavour to avoid proper names—words having a fixed ob­
ject interpretation. Certain uses of the definite article in 
English, indicating a specific, situationally stipulated object, 
should be banned. The statement “The lion is the king of the 
beasts” is a statement about properties (to be a lion, a king, 
a beast). The statement “In the Moscow Zoo there lives a 
lion that is now three years old” is a statement implying a 
specific interpretation.

The sentence “The green square wife of Bachelor sleeps 
furiously” is a statement in the English language about diffe­
rently termed predicates with rather arbitrary interpre­
tations.

Along with the language in which we allow statements to 
be composed, it is necessary to introduce a statement logic, 
i.e. a system of rules of inference, permitting us to construct 
statements which are deducible from certain initial ones.

The concept of an individual, or “abstract”, object will 
serve as another of our initial concepts. An individual object 
is some single and integral formation, which is isolated in 
the real world by a certain criterion (in whose reliability wa 
may somehow be confident). The main thing is that when 
considering the object, we can confidently say: “This is it” 
or “This isn’t it”. There exists only one copy of each such 
object. It is impossible in principle to speak of identical 
objects. That would require that we leave the sphere of our 
pure object considerations, and speak of lists of properties, 
guaranteeing identity. Individual objects may be of various
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natures. They may be concrete material objects: “the volume 
ofjPushkin in my book-case”, or certain realities of a more 
abstract character: “Pushkin’s poem ‘Poltava’”, or genera­
lities of the type: “homo sapiens”, or specific fictional he­
roes. Generally speaking, the reality of an object can be 
interpreted in the sense of A.A. Lyubishchev (see footnote 
on p. 252), and its individuality—as our ability to recognize 
precisely this object, or as an individuality of creation.

We are assuming that it is legitimate, and does not in­
volve any essential difficulties, to speak of sets composed of a 
finite number of individual objects, or of all individual 
objects forming some individual object of a higher level. 
An example of the latter:

The set of all copies of the text of Pushkin’s poem “Pol­
tava”.

The distinguishing property of statements in a sufficiently 
distinct language is their individualization. Any sufficiently 
clear statement is individual, distinct from all others. There­
fore, one may speak of the set of statements. According 
to the principle of generativity (common creation), it is 
possible to speak of the set of statements derivable from a 
given initial set of statements. These preliminary conside­
rations permit us to regard the inclusion of the following con­
cept of a theory among our primitive notions as justified:

By a theory in a given language, we shall mean “a set of 
names of relations (the signature) +  a set of initial state­
ments (the axioms) +  a logic (the means of inference) +  a 
set of deducible statements (the theorems)”. In order to 
define (individualize) a theory, it is sufficient to give only 
its signature, axiomatics and logic.

Thus, a distinctive dualism arises. On the one hand, we 
are dealing with individual objects of various degrees of 
abstractness. These objects form a kind of primary reality.

On the other hand, we are studying predicates and theo­
ries, for which one or another degree of general applicabi­
lity and independence of specific objects are typical.

The relation between a theory and a class of objects is 
realized by means of an interpretation of the theory. The 
traditional logico-semantical point of view divorces the 
interpretation rules from the theory’s predicates. From this 
point of view, interpretation rules become especially arbi~
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trary. Nothing is of importance except that the axioms be 
mapped onto true statements about individual objects. This 
is a rather vulnerable point of view, and it doesn’t pay to 
absolutize it. In the natural sciences, one more often uses 
a different point of view: the correspondence principle, re­
lating a new theory to traditional interpretations. This re­
stricts the class of a theory’s allowable interpretations.

The dualism of a theory and its interpretation (model), 
which refers entirely to epistemology, should not be con­
fused with the ontological dualism of a phenominal-noume- 
nal world, with the dualism of Aristotle and Aquinas. 
Tomism teaches that an object’s reality is determined by the 
idea manifested in it. Here an analogy suggests itself with 
the fact that the scientific value and recognizability of an in­
dividual object is determined by the possibility of regard­
ing it as a manifestation (model) of a certain theory. But 
this is no more than an analogy. The theories we are talk­
ing about are theories constructed in the process of cogni­
tion, lying entirely within the sphere of epistemology. As 
for Tomism, it speaks about ideas which lie in the sphere of 
ontology, in the sphere of the absolute. An attempt to iden­
tify scientific-philosophical concepts formed by human be­
ings with absolute ideas can only lead to a retardation of 
the cognitive process. Pre-Newtonian physics operated (and 
quite successfully) with the concepts of absolute space and 
time. But had we continued, together with Kant, to regard 
these notions as a priori, and hence, absolute, we could have 
accepted neither the physics of Einstein and Bohr nor the 
modern notion of a physical vacuum. Newtonian space and 
time are physical, and not metaphysical, categories. They 
are only theories created by people, and not ideas manifested 
in the world. It is of no consequence in the given case whet­
her these ideas originate by abstraction from experiments 
and observations, or whether they are understandable for­
mulations of an intuitively felt absolute idea, which we have 
compared with our sense experience. What is important is 
that none of our theories can identify itself with an abso­
lute idea or lay claim to ontological reality.

Now we can introduce the concept of a class. A class con­
sists of objects for which it makes sense to say that a pre­
dicate, involved in a theory’s description, does or does not
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hold, and that a theory’s axiom holds (is true). A class is a 
much broader and less clearly defined concept than a set. 
Thus, we may speak about the class of electrons located 
within a certain actual volume, although we cannot iden­
tify these electrons and are in principle unable to distin­
guish actually and potentially existing particles. The objects 
constituting a class are not, generally speaking, individu- 
alizable, are not open (in any case, not all of them) to direct 
observation, and are not closed as an aggregate.

Unlike sets, it is impossible to speak of the coincidence 
of classes as the coincidence of the elements constituting 
them. Such an extensional definition is only suitable for 
sets. For classes, it only makes sense to speak of the coin­
cidence of the theories defining them, i.e. of an intensional 
definition.

The philosophical meaning of the category “class” is a 
“unity thought of as many”. In other words, a class is an 
idea thought of in many manifestations. The unity of a class 
guarantees the generality of the manifesting idea. The ele­
ments contained in a class are concrete manifestations of 
the idea. Therefore, the equality of classes cannot be veri­
fied through the coincidence of their manifestations, but 
only through the generality of their ideas (theories, predi­
cates).

The concept of a class works naturally in situations where 
the category of a set is inapplicable in view of logical con­
tradictions, by virtue of its inadequacy for the real situ­
ation.

We can easily operate with the concept of the “set of Eng­
lish words contained in a given dictionary”. A language is 
treated in mathematical linguistics as a set of finite strings 
composed of a fixed set of word-forms. But is the concept of 
the “set of English words” a legitimate one? Perhaps our 
inability to give a clear criterion for distinguishing an Eng­
lish word from a non-English word, or from a non-word, is 
of a principle nature? Perhaps the concept of a set of words 
or a set of sentences is only legitimate within the scope of 
one or another description of a language, but makes no sense 
for the language, itself?

We say in physics, within the scope of one or another 
model, that an atom consists of a nucleus and electrons,
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while a nucleus consists of protons and neutrons. But the 
development of physics is clearly leading to a loss of mean­
ing in the very concept of “consists of”. Instead of it, there 
remains the concept of “can be represented as consisting of”. 
In different aspects of the study of a physical system, diffe­
rent representations of the system work. However, the con­
cepts of a whole consisting of its elements is clearly meaning­
ful in epistemology and doubtful in ontology. Let us empha­
size that the question is not one of doubt in the real exist­
ence of real physical systems. The question is one of being 
cautious and distinguishing a specific representation from 
the system, itself.

It is also possible to define a system as a class of many- 
sided representations, instead of set-theoretical. Such 
an approach* merits attention, at least as a statement of 
the traditional descriptions’ unsatisfactoriness. The main 
thing here is the set-theoretical description’s transfer to the 
sphere of epistemology.

It would be very sad if our above analysis of the situation 
were interpreted as a call for the creation of a “new” mathe­
matics in place of the “old”. Any science proves its suita­
bility by means of historical experience, by the significance 
of the results it achieves. The position of mathematics among 
the other sciences is uncontestable, and needs no further 
assurances of its usefulness. The question was only whether 
existing mathematical conceptions are sufficient for a des­
cription of the real world, or whether we lack certain addi­
tional concepts, which pertain, perhaps, not to mathema­
tics, but to metaphysics (in the Aristotelian sense of the 
word). If Pythagoras was right and it is true that “numbers 
rule the world”, then it is permissible to ask: are those the 
numbers which we already know? Perhaps that mathematics 
in which we are successfully engaged is only a pale shadow 
of the one which is manifested in reality?

It is worth-while noting that modern algebra is success­
fully developing a branch which has consciously rejected 
the set-theoretical treatment of the objects it studies. This is 
category theory, which, in particular, describes properties

* See Ju.A. Schreider, On a definition of systems, ST I , ser. 2, 
No. 7, 1971.
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of mappings of objects purely algebraically (without using 
quantifiers over these objects’ elements). A more detailed 
analysis of this aspect of category theory would require that 
we deal with some of its specific concepts.

In order to more clearly express our point of view on the 
logical insufficiency of the set-theoretical approach for the 
natural sciences, we shall discuss in greater detail the fun­
damental difference between two possible ways of describing 
the real world’s objects. On the one hand, we are able to 
recognize certain individual objects: we distinguish our 
acquaintances, know poems or melodies, and master various 
systems of marks—where each mark is individual for us. 
In these situations, the identity problem is practically 
solved for us. Meeting an acquaintance several times, we 
are practically certain that this is one and the same per­
son, even though we haven’t seen each other for a long time. 
Even in situations where a person undergoes a radical 
change, internal or external, we are still quite sure about his 
self-identity. Saul and Paul are one and the same person, 
although it is difficult to find an historical example of a 
more radical change in personality. We confidently detect 
the letter “a” in any English text, and do not doubt that 
“solvable” and “soluble” are variants of the same word. 
Listening to different performances of one and the same sym­
phony, we confidently say that these are one and the same 
composition, perhaps in different renditions. We aren’t 
prepared to discuss here the principles on which the cogni­
tion effect is based* —the important thing is that this effect 
exists and permits us to perceive certain objects (things and 
symbols) as individuals.

On the other hand, we often define objects through their 
properties, i.e. we speak of the class of objects, determined 
by a certain collection of properties. These properties may 
be given more or less precisely; their verification may have 
various degrees of objectivity. What is important is that 
we are always dealing with a class, whose objects have been 
somehow described, and not with a list of individuals. One

* Cognition should not be confused with recognition, a very fashion­
able problem in cybernetics, concerned with determining whether a 
new object occurs in a class of objects, each of which resembles a fixed 
object. The question of identity is not posed in this case.
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can speak of properties characterizing the length, duration, 
colour and structure of objects, of physical characteristics, 
such as weight, charge, temperature, etc. One can speak of 
properties which do not admit such a definite verification: 
say, of the property “to be a person”, to belong to the species 
“homo sapiens”. In Vercor’s novel “People or Animals?”, a 
border-line case is constructed, where it is rather difficult to 
answer this question. Nevertheless, there can hardly be any 
doubt in the objective existence of this property. But it 
should be noted that this property defines a class, whose 
objects are not, generally speaking, individualized for us. 
In order to convince ourselves of this, let us perform a 
mental experiment. Let us imagine that we wish to count 
the number of employees in some not too small establish­
ment; so standing by the entrance, we are checking off eve­
ryone who enters. We shall undoubtedly fail to note how 
many people passed through the door several times.

Knowing a specific symphony may be contrasted with the 
following situation. When we are listening, say, to Chinese 
music, we are usually incapable of knowing whether it is 
the same piece which we have just finished hearing.

Set theory ignores these distinctions in its method of 
giving the elements of a set. From this theory’s point of 
view, the difference between the “set of my acquaintances” 
and the “set of fish in the Atlantic Ocean” is inessential. 
In any case, this distinction does not enter into the classi­
cal arguments of set theory. We shall emphasize this dis­
tinction by using the term set in the present discussion only 
for aggregates formed of individualized objects, reserving 
the name “class” for aggregates defined by properties. (Later 
we shall consider how far the concept of a set might be 
extended.)

The concepts of a class and a set are distinguished in a 
natural language by means of traditional word usage. This 
fact is exlpicitly noted in a paper by E. V. Paducheva*: 
“As is known, the concepts of a class** and a property are

* E. V. Paducheva, On the generation of a compound sentence 
from simple ones, Studies in mathematical linguistics, mathematical 
logic and information languages, pp. 59-68, M., “Science”, 1972.

** It is clear from the context in the paper that the author has 
in mind the concept of a set which we have been using.
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identified in mathematics. However, this distinction often 
receives formal expression in natural languages. Thus, not in 
every sentence can we replace those by such, or vice versa.” 
In the following example, translated from the cited paper, 
it is clear that this distinction is essential, at least in the 
English* language:

“He sang those songs which we liked last time.” 
“He sang such songs as we liked.”

It was noted in the same paper that these words are some­
times neutralized, in particular, when pertaining to amounts, 
positions in space, etc. But in such situations, both words 
denote classes of objects defined by properties:

“I like buying things for those low prices that are 
charged these days.”

“I like buying things for such low prices that are 
charged these days.”

In both cases there is no identification of an object, but 
only an indication of a common property of the objects un­
der question**.

So far we have been speaking only of the logical or, more 
precisely, the epistemological distinction between two me­
thods of describing reality. But there is an ontological 
meaning in this distinction. We could have taken the nomi­
nalistic point of view, asserting that only individualized 
objects are real, while properties relate to the realm of con­
structs, and possess no independent reality.

We might have chosen the realistic point of view***, ac­
cording to which true reality is possessed only by concepts 
(i.e. properties and relations between them), while the exis­
tence of individual objects is determined by the properties 
put into them.

Traditional set theory neutralizes this philosophically 
important confrontation, and in this lies the source of a 
significant loss. In the paper by A.A. Lyubishchev, cited

* In the original: Russian. ( T r a n s ,  n o te . )
** It is worth-while noting that we do use the pronoun “those” in 

the above sentence. But here the question is not of the identity of 
objects, but of the identity of their symbols, i.e. of a metause of the 
word “those”.

*** What we have in mind are “realism” and “nominalism” in the 
sense of scholastic philosophy.



4, Real Objects and Set-Theoretical Concepts 265

above, the insufficiency of pure nominalism, as well as of 
pure realism, in applications to the natural sciences is de­
monstrated. We also believe in the reasonableness of a du- 
alistic synthesis, a mutually enriching coexistence of the 
nominalistic and realistic conceptions, in which different 
kinds of existence of objects are recognized, but the distin­
ctions between them are not lost, at least not in the methods 
of describing objects of various natures.

This position is apparently in complete accord with the 
outlook of modern physics. An elementary particle (say, 
an electron) is not individualizable (as is immediately 
evident in the formalism of physical statistics—be it of 
the Bose-Einstein or the Fermi-Dirac case). We cannot 
say that we are observing the same electron as yesterday, or 
that it is an entirely different electron. But we are capable 
of distinguishing and identifying photographs of nuclear 
processes, made in a Wilson chamber. Incidentally, this 
idea already existed in scholastic philosophy, according to 
which it makes no sense to speak of whether we met one 
and the same Seraphim today, or different ones. By virtue 
of their perfection, angels can be distinguished only by 
their nine stages, but not by individuality.

The classical formulation of the problem of recognizing 
images serves as a characteristic example of the refusal to 
distinguish classes given by properties from sets of indivi­
dual objects.

When the problem of recognizing a specific letter among 
various differently written letters, or of recognizing a cat’s 
picture among different pictures is posed, the existence of 
characteristic properties of the object to be recognised is 
presupposed. By the same token, it is assumed that sets of 
individualized objects can be reduced to classes defined 
with the aid of uniquely verifiable properties. The main 
difficulty here is seen by most authors in the procedure of 
searching for the discriminating properties. But would it 
not pay to think about whether the procedures of classifica­
tion and individual recognition might have essentially 
different natures, and so the possibility of reducing one of 
them to the other is a rare exception, rather than a natu­
rally worth-while aim?

In information-search problems, the situation of a predi-
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cative definition of an object is the typical situation of a 
thematic search: on the basis of the Universal Decimal 
classification, a descriptor language, etc.

The opposite situation consists of an individualized des­
cription of the required documents: on the basis of refer­
ences, reviews, a direct examination of a mass of docu­
ments.

Experience obtained in working with all known search 
systems has convincingly shown that no such classification 
system has been found, which might be comparable to the 
individual recognition of documents from the point of view 
of accuracy. At best, such a system would yield the possi­
bility of narrowing the field for a meaningful search, but 
this gives rise to inevitable losses.

The situation of a predicative definilion of a class is an 
external situation, a situation of alienation from the objects 
to be defined, when these objects are averaged out for us by 
means of their properties. In this case, the “I and they” 
relation arises, when I am outside of the defined class, un­
connected by any personal “internal” relations. An object of 
the given class exists for me only in so far as it belongs to 
this class, singled out by the necessary properties. If that 
same object would appear in a different role, not as a repre­
sentative of its class, then it would not be known for me. 
This is precisely what is meant by the meaninglessness of 
the question of identity in the given situation. An analogy 
with a play performed by unknown actors of average ability 
is germane here. They are distinguishable as long as they 
are on stage. In real life, or in another play, it would be as 
though they were different persons. I could not even iden­
tify an actor who plays different roles in different acts.
I could only distinguish the characters of the play. This 
situation is the opposite of the one where there exists for 
me not only a character of a play, but also a concrete, fami­
liar actor playing this role, where I see not merely Hamlet, 
but Smoktunovsky or Scofield in the role of Hamlet.

An individualized object is an object with which there 
arises an internal relation, a relation of the “I and you” 
type, where the significant thing is not the role played by a 
given object, but the object, itself. In this case, it makes 
sense to speak of one and the same object’s occurrence in
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different classes (definable by these or those properties) or 
in different sets.

One can also say the following. In defining a class, we are 
simultaneously constructing a supply of objects, from which 
this class may be constituted. It is as though this class of 
objects were created for the given situation. An intensional 
presentation of a class does not require the prior existence 
of this class’ representatives, does not require a finished 
universe. If there is a play, one can gather a troupe of actors 
for it, and it’s not very significant whether one actor has 
to play several roles, or even whether one role has to be 
divided up among several actors.

An extensional definition of a set presupposes that there 
is a finished collection of objects beforehand. This is the 
case when we have already organized a troupe, and then 
choose a play for the actors who are already present.

It is also helpful to trace this difference between the in­
tensional and extensional approaches for properties cha­
racterizing /z-tuples of objects.

An individual object admits, in a certain sense, an ex­
haustive description. In any case, this description permits 
an observer, related internally to this object, to recognize 
the given object. For example, one can present a photo­
graph of a given person, a score or tape recording of a sym­
phony, a text of a poem, etc.

On the other hand, there is no possibility of presenting a 
photograph of a person in general, or of a tape recording of 
a symphony in general. It is possible to produce a photograph 
of a specific person’s nephew, but it is impossible to imagine 
a photograph of the binary predicate “nephew”. On the 
other hand, when this predicate is realized as a binary rela­
tion in a specific set of people (recall that a relation is not 
a property, but a set—a set of pairs, triples, etc., of ele­
ments of a fixed set), then we can somehow present this 
relation’s photograph. To do this, we combine a group pho­
tograph, where the various nephews are pictured in pairs 
with their uncles and aunts. But this will be a photograph 
of just a relation (a set of ordered pairs), and not of a pro­
perty. Those same pairs in this set might have been singled 
out by some other property, coinciding extensionally (but 
not intensionally!) with the property “nephew”.
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There now arises the question of how a class can be con­
verted into a set. How can we, say, organize a certain class 
of passers-by, flashing past us, into a set of human indivi­
duals, or the class of musical excerpts, which we are liste­
ning to, into a set of individualized musical compositions? 
In essence, that same problem arises in the definition of 
the natural number series. The question is one of identi­
fying, in one case, different appearances of one and the 
same person, in another case—equipollent sets, etc.

The problem consists in introducing the equivalence 
property (binary predicate) in an abstract manner. This 
predicate, in turn, is defined by means of the well-known 
properties of reflexivity, symmetry and transitivity. The 
most unpleasant of these properties is the first, which 
signifies that identical objects are equivalent, or that the 
holding of the equivalence property for two objects follows 
from the identity of these objects.

Therefore, in order to define equivalence, we must already 
have a completed definition of identity in the class of objects 
under consideration.

We may, in order to handle this difficulty, make use of 
the following device. Call a binary predicate a quasi-equi­
valence if it is symmetric and transitive. Then the follow­
ing statement is easily derived (for sets): an object is quasi­
equivalent to itself if it is quasi-equivalent to at least one 
of the objects in the given class (see Chap. II, § 2). We can 
use this property, proven for relations, as a heuristic prin­
ciple in the construction of an equivalence relation out of a 
quasi-equivalence. Namely, we can narrow down the re­
quired class of objects, retaining only those which are quasi­
equivalent to at least one object. In the new class, each 
object is quasi-equivalent to at least one of the objects. 
The quasi-equivalence predicate is apparently reflexive in 
this new class. Denote the subclass of elements, quasi­
equivalent to x , by K x. Each such class is non-empty by 
construction. It is easy to convince oneself that any two 
such classes either coincide (intensionally) or are disjoint. 
These classes now form what we are prepared to regard 
below as a set. Indeed, it now makes sense to speak of self- 
identification for such classes.

Let us consider the situation described above, with the
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aid of the following analogy. Suppose we are observing pas­
sers-by in the street. Having seen a passer-by once, we may 
never see him again, or may never find out whether he 
appeared before us for a second time. It is as though this 
passer-by did not exist for us, because he isn’t identified 
with anyone. We can’t even be sure that we saw him, and 
not a passing hallucination. It’s an entirely different matter 
if, seeing this person for the second time, we recognize him. 
It is possible that we made a mistake and identified different 
people. This isn’t so essential for our arguments. We iden­
tified a class of people, and so we can introduce the class 
of people identified by us on the basis of some kind (per­
haps unknown to us) of considerations.

Let us strengthen this example. Imagine that we are ob­
serving patterns of foam in the sea or clouds in the sky. 
They pass by without leaving any trace, without staying in 
our memory. But suddenly we discover that this pattern (or 
one similar to it) has already passed by. By the same token, 
this pattern (or type of pattern) has been stamped in our 
memory, acquiring some sort of individuality. At the mo­
ment when we began our mental comparison of patterns, 
these patterns began to exist as elements of a new class, 
where there already is an equivalence relation. (Earlier 
there was only a quasi-equivalence, which may have been 
the empty relation.) This equivalence relation arose on the 
narrowed class of objects, called forth by our memory from 
non-being, from chaos, where they only “pre-existed”. The 
subjectivism of such an “existence” doesn’t contradict the 
world’s objective existence. Waves in the sea exist inde­
pendently of our memory and our relationship to them. They 
foam without caring whether anybody is examining their 
patterns of foam.

But the very concept of a pattern or a type of pattern 
is created by an observer who is grouping them into 
classes. And that is why there is nothing remarkable 
about the fact that the forming of types of patterns into 
sets is determined by the observer’s concrete memory or 
by the abstract memory effecting the identification of 
patterns into classes. This corresponds to the thesis, enun­
ciated by us, that the category of a set is epistemological, 
and not ontological. It is worth-while noting that the first
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level of understanding a foreign language begins with the 
discovery of words in a stream of speech.

M.M. Novoselov’s treatment of the concept of identity* 
is related in a definite sense to the point of view set forth 
here. He distinguishes between the ontological and episte­
mological realms of this problem. The principle of indivi­
dualization—the absence of indistinguishable things in 
the universe—is put in the foundations of the ontological 
concept of identity. The author cites the following impor­
tant thesis of Thomas Aquinas: “every self-essence, composed 
of matter and form, is composed of individual form and 
individual matter”. Therefore, things are “in themselves” 
individualized and self-identified. The analogy (developed 
by M.M. Novoselov) between the principle of individualiza­
tion and G. Cantor’s hypothesis to the effect that any two 
elements of a set are either identical or distinguishable is 
thus entirely to the point.

A universe of things is regarded in such a treatment as a 
certain universal set of individualized objects. Neverthe­
less, not even such a treatment is incompatible with the 
ideas expressed earlier to the effect that the category of 
a set pertains, not to ontology, but to epistemology. The 
fact of the matter is that as long as only the “set” of all 
things was in question, nothing was said about anything 
above and beyond things. In particular, certain “subsets” of 
things are no longer things, and hence, the principle of 
individualization is not applicable to such objects.

M.M. Novoselov employs the abstraction of identification 
(with a reference to Leibnitz) on the epistemological level. 
In a paper of the author**, it is noted that the for­
mation of a model begins precisely with the abstraction of 
identification. This identification defines the universe of 
discourse. Not things, but objects, serve as the elements 
of this universe. M. M. Novoselov introduces the important 
concept of an interval of the abstraction of identification. 
This interval is determined by the choice of a certain pro-

* See M.M. Novoselov, Identity, Philosophical Encyclopaedia, 
vol. 5, M., 1970.

** See Ju.A. Schreider, On the notion of a ‘mathematical model 
of a language’, Mathematical linguistics, M., “Science”, 1973, pp. 63- 
83.
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perty*, and objects simultaneously possessing this property 
are identified. From the point of view of the situation deve­
loped by us, it would be more convenient to speak in some­
what different terms. Instead of a universe of things, we 
shall speak of a universe of space-time events. This is an 
ontological universe, since things do not exist eternally. 
It would be legitimate to attribute the principle of indivi­
dualization’s field of action to this universe. We then intro­
duce the epistemological concept of an “act of observation”, 
as a result of which there arises an “observed event”, to 
which the principle of individualization is hardly applic­
able.

Identification can be carried out in the class of observed 
events. But it would hardly pay to restrict these identifica­
tions to identification on the basis of properties. For exam­
ple, when A.A. Markov introduces the concept of an abs­
tract letter, different drawings of one and the same letter 
are identified, not on the basis of properties (in any case, 
no one as yet knows any objective properties, on the basis 
of which we discover letters), but by means of an indivi­
dual discovery. As a result of the process of identification 
(under the conditions of accepting a certain intervals of the 
abstraction of identification), we construct observed objects 
from observed events. Further, the basic relations are esta­
blished in the resulting class (set) of observed objects, after 
which this set is converted into a model—an object of our 
theories’ interpretation.

An identification may be regarded as the introduction of 
a certain equivalence relation in the universe of discourse.

There are several different methods of introducing an 
equivalence relation in a set (see Chap. II). What is es­
sential is that any equivalence relation in a set can be given 
by any of these methods. Therefore, we can try to use any 
of them for the introduction of the identity in our classes.

The first of them consists in fixing a certain situation 
and identifying elements which are interchangeable in that 
situation. For example, imagine that the result of each act 
of observation is used in making a decision. We can then

* It would probably be better to speak of a discriminating col­
lection of properties.
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identify those acts of observation, as a result of which one 
and the same decision is made. For example, we observe an 
acquired text, which is interpreted by us as an incitement 
to action (an order, a description of an algorithm, etc.). 
If we acquire a text, differing from the previous one in the 
drawing of the letters (within allowable bounds), then the 
very same action will be the result of observing this text. 
In general, an abstract letter may be defined as a class of 
concrete letters, which can replace each other in a text with­
out affecting its meaning. If the letter “o” will be printed in 
a’text in place of, say, the letter “a”, then this misprint is a 
violation of the accepted interval of the abstraction of 
identification. But if the letter will be simply printed some­
what unclearly, then this is not regarded as a misprint. 
Such a violation may throw a reading automaton off the 
track, but a situation with such an automaton present de­
termines a different interval of abstraction—a different 
interchangeability situation.

Note that if we will consider interchangeability with res­
pect to at least one of the situations in a collection, then we 
shall arrive at, not an equivalence relation, but a tolerance 
relation (see Chap. III).

The second method consists in introducing the concept of 
a standard. A relation x St y (to be read “x is a standard for 
z/”) is called a standardness relation if the following axioms 
hold:
Ai. (Vi/) (3a:) x St y —the existence of a standard;
A 2: (Vx) (Vz/) lx St y x St x] — the reflexivity of a 
standard;
A 3: (V̂ c) (V*/) (Vz) lx St y /\ z St y x =  z] — the uniqu­
eness of a standard.

Now, if a standardness relation is given, we can carry out 
identification in accordance with the following rule: y =  z 
if there exists an x, for which x St y and x St z simultaneous­
ly. In other words, the interval of the abstraction of identi­
fication is determined by the presence of a common stan­
dard.

Imagine that as we observe a stream of people, we look 
for each passer-by’s photograph in an album. Then we can 
Easily identify “observations"’ in those cases where one and
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the same person passed by*. Some reading automata recog­
nize letters by means of this same principle—they compare 
each drawing of a letter in a text with the standard patterns 
stored in the machine’s memory.

Finally, the third method consists in mapping the origi­
nal set into some other set, and identifying elements having 
the same image. This is what we do when we observe words 
in a book written in an unfamiliar language. For each word, 
we look for a lexicographic item in a dictionary. Word- 
forms, to which we have assigned one and the same lexi­
cographic item, are regarded as forms of one and the same 
word. The identification of objects by means of properties 
is subsumed by this method, in essence.

Thus, various prescriptions for introducing an equivalence 
can be associated with the general concept of an interval 
of the abstraction of identification. After the introduction 
of this equivalence, we have a new universe, where equiva­
lence classes, or equivalently, standard representatives of 
these classes, serve as elements.

Let us now discuss in greater detail the concepts of a 
standard and a standardness relation. These relations were 
introduced into sets in Chap. II, but questions connected to 
the non-triviality of an identity’s existence were not dis­
cussed there.

First of all, even if standardness is defined in a class 
(where there is no identity), then in Axiom A 3, identity 
is used only in the aggregate of standard elements, which 
can form a set by itself.

Further, we can give up Axiom A iy i.e. waive the require­
ment that a standard exists for each element. We then obtain, 
not an equivalence, but a quasi-equivalence (see above). 
In this case, we shall be able to introduce identification into 
the subclass of the original class, consisting of elements 
which have a standard. For example, observing a passing 
crowd, we can memorize (photograph, compose a word 
picture of, enter into personal contact with, etc.) some of 
its individuals, after which we can identify different ap­
pearances of these individuals. The rest will still remain but, 
a faceless crowd for the observer.

♦ If he didn’t makfc up between the two observations.
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It is worth-while emphasizing that precise facts, extra­
cted within the scope of the “set-theoretical” theory of rela­
tions, open up the possibility for a variety of significant 
approaches to the intensional description of objects. Now 
the necessity of this, all the more profoundly realized by 
today’s mathematics, is related to the fact that mathema­
tics is a language, within whose scope we discover reality.
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