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FOREWORD

This is neither a text-book nor a general exposition of mathematics. It is

an explanation of certain extremely useful branches of mathematics, some
of which are little known to non-specialists. Though originally only of

academic interest, they have been developed to tackle problems which

proved unsolvable by the old mathematics. Some general knowledge of

them is essential to the understanding of modern science, almost every

department of which has its own special mathematical technique. This

mathematisation of science is quite a recent phenomenon, for, until about

the close of the nineteenth century, most branches of science were largely

descriptive. It is true that the physical sciences, such as physics and

astronomy, did use a good deal of mathematics, but even in these sciences

one could get along and often make useful contributions without it. In

fact, some of the most significant contributions to these sciences were

made by non-mathematicians. Nowadays, even descriptive sciences, e.g.

biology, zoology, genetics, psychology, neurology, medicine, economics,

philology, etc., have begun to employ elaborate mathematical techniques.

The mathematics used is not always difficult, but it is often unfamiliar

even to people who have had some mathematical training at a university.

This is inevitable because the mathematics used is of recent origin and has

not yet found its way into the school and college curricula.

One consequence of this development is that science is becoming the

exclusive preserve of specialists. This is particularly unfortunate as science

is the agency whereby our society has been changed in the past and will be

changed still more rapidly and profoundly—perhaps within our own life-

time. It is dangerous to let this knowledge remain in the hands of a small

group of specialists, however gifted, for the potentialities of science for

good and evil are infinite. If this danger is to be averted, everyone, in-

cluding you and I, must make a serious effort to understand what con-

temporary scientists are doing; but this understanding is impossible with-

out some insight into the ideas of modern mathematics.

Fortunately, the need for popularising mathematical ideas is now
universally recognised. More than twenty years ago an excellent popularisa-

tion of mathematics appeared in Professor Lancelot Hogben's Mathe-

matics for the Million. This book deals with mathematics as it developed

till about the middle of the eighteenth century. There is need for a similar

popularisation of mathematical ideas that have come into being during

the last two hundred years and are now proving so fruitful in genetics,



VU1 FOREWORD

economics, psychology, evolution, etc., as well as in physics, astronomy

and chemistry. The task will probably require many hands, if only for the

reason that no single person can hope to master more than a few branches

of the subject.

In this book I have tried to give a popular and, I hope, a not-too-

inexact exposition of some major mathematical ideas that have been

invented during the past two centuries or so. In explaining these topics, I

have assumed the reader to have some knowledge of elementary mathe-

matics such as could be obtained from any text-book on school algebra

and geometry. I have tried to show how the most fruitful of these newer

ideas arose as a result of man's impulse to mould his environment accord-

ing to his heart's desire, and that where this impulse has been lacking

mathematical progress has been stunted.

Although some of the theories explained in this book are still contro-

versial, I have often taken 'sides' in presenting the different points of view,

preferring to present things as I see them rather than as they might appear

to an imaginary observer. However, the reader should find the treatment

on the whole sufficiently unbiased for him to judge the issues for himself.

Calcutta Jagjit Singh



THE NATURE OF MATHEMATICS

We learn about the universe around us by experience and observa-

tion on the one hand, and by thought and deductive reasoning

on the other. Although in practice we get most of our knowledge
by continually combining observation with deduction, it is possible sub-

sequently to formulate certain types of knowledge by pure deduction

starting from a set of 'axioms'—that is, statements accepted as true with-

out proof because we feel that their truth is self-evident. The classic ex-

ample of deductive method is school geometry, where we postulate certain

definitions and axioms concerning points, lines, etc., and deduce a logical

chain of theorems concerning lines, angles, triangles, and so forth. The
great advantage of the deductive method is the certainty of its conclusions.

If there is no fallacy in our reasoning the conclusions must be correct

—

unless there is something wrong with our axioms. But the question whether
the axioms chosen at the outset are valid is a difficult one. Certain axioms,

which appear obvious to some, may seem clearly false or at least very

doubtful to others. A familiar example of this kind is Euclid's axiom that

parallel lines never meet. Mathematicians now recognise that it cannot be
accepted as self-evident even though schoolboys are still taught geometry
as if it were true. Indeed, the examination of the validity of any given

axiom system is such a vexed question that some people propose to cut the

Gordian knot by claiming that 'pure' mathematics is merely concerned with
working out the consequences of stated axioms with no reference whatever
to whether there is anything in the real world that satisfies these axioms.

Further support to this view was lent by the profound and penetrating

studies of the foundations of Euclidean geometry towards the close of the

nineteenth century. They revealed that geometrical proofs depend mainly
on diagrams embodying properties which we accept as part of our equip-

ment without including them in the axioms. Consequently an attempt was
made to prove geometrical theorems without using the meanings of geo-

metrical terms—like points and lines—as understood in everyday speech,

but only their relations and properties as explicitly stated in the initial

axioms. It was declared that 'if geometry is to be deductive, the deduction

must everywhere be independent of the meaning of geometrical concepts,

just as it must be independent of diagrams; only the relations specified in

the axioms employed may legitimately be taken into account.'
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But the insistence that the proof be independent of the meanings of the

terms used, and employ only their mutual relations as explicitly stated in

the basic axioms, did not mean that these terms were to be 'meaningless'*

—only that they should have no specific reference to any particular thing.

The terms of the axiom system should remain deliberately undefined

—

that is, free from association with any specific thing so that they become

pure symbols formally related to one another in certain ways embodied in

the axioms of the system.

There are two advantages in adopting such a procedure. First, by cutting

out all associations that otherwise cling to terms used in the ordinary

meanings of everyday speech, we eliminate the tendency to use meanings

and relations other than those expressly stipulated in our axiom system

—

a tendency so prominent in Euclidean proofs. Second, the axiom system

acquires a generality otherwise impossible. For example, it becomes possi-

ble to encompass within the single framework of an axiom system con-

cepts, such as group\ and abstract space, appearing in seemingly unrelated

branches of mathematics. These very valuable gains are not to be despised.

But the systematic draining of all meaning and content from the terms of our

discourse, and thus turning them into pure symbols, means that mathe-

matical proof becomes a sort of game with symbols. In a somewhat over-

simplified form this is the view advocated by some mathematicians. In-

stead of playing-cards, dice, or pawns, bishops, rooks and knights, we

may start with a collection of symbols such as ~, — , X , +, =, etc., and

a set of 'rules' or 'axioms' according to which they may be combined. We
then proceed to play a game which consists of arranging these symbols to

form 'meaningless' expressions according to the given 'rules'. We could

change the symbols or the rules or both in any arbitrary manner we liked;

the result would always be 'pure' mathematics.

Like all games this game of manipulating paper marks, that is, 'pure'

mathematics, has, according to its present-day exponents, no ostensible

object in view except the fun of playing it and playing it well. If men,

nevertheless, find its results of great practical utility in their daily lives,

that is not its raison d'etre. Its sole function has been and should be merely

to divert the human mind by the 'elegance' and 'beauty' of its expressions,

irrespective of their utility. It is, no doubt, possible to argue in favour of

this view. In fact, G. H. Hardy has done so in his charming little book, A
Mathematician's Apology. His argument seems to rest on a distinction

between what he calls 'school' or 'Hogben' mathematics, that is both

* This usage of the word must be distinguished from that of everyday speech as a

term of disparagement. The word 'meaning-free' comes closer to the sense in which it is

used here.

t See Chapter 7.
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'trivial' and 'dull' but has considerable practical utility, and 'serious'

mathematics that alone is the 'real' mathematician's delight despite its

remoteness from everyday life.

It is evident that even those who hold this view cannot boast too

seriously about the uselessness of their work and the 'meaninglessness' of

the symbols and rules of their game. They do not go so far as to express

dismay when their work turns out to be useful! Moreover, they are suffi-

ciently sane to allow that a 'certain sense of fitness of things' should at any

rate forbid a 'wild overturning of the law and order established in the

development of mathematics'.

Mathematics is too intimately associated with science to be explained

away as a mere game. Science is serious work serving social ends. To isolate

mathematics from the social conditions which bring mathematicians (even

of the Game Theory school) into existence is to do violence to history.

Hogben and other writers have shown how great mathematical discoveries

and inventions have throughout history been rooted in the social and

economic needs of the times. Most books take us little beyond the eight-

eenth century in tracing this connection. A mistaken view has grown up
in certain quarters that modern mathematics, particularly during the last

150 years, is a 'free creation' of the human mind, having little or nothing

to do with the technological and social demands of the time. If science and
technology have been able to make use of such mathematical inventions

as, for example, the tensor calculus in Relativity and the matrix theory in

Quantum physics, that in no way influenced their creation. Nevertheless,

as will appear in the sequel, there is a close tie-up between the practice and

theory (which has largely remained mathematical even up to the present

time) of science and technology. Thus, while the empirical practices of the

eighteenth-century mechanical engineers from Savery to Watt led to

Thermodynamics, the 'pure' theory of Faraday and Maxwell paved the

way for the practical inventions of Edison and Marconi. As Leonardo da

Vinci remarked, science is the captain and practice the soldiers: both must
march together. One reason why Einstein's Relativity theory has not yet

advanced very much beyond the stage it reached during the second decade

of the twentieth century may be the fact that it has made no practical

difference in the calculation of the astronomical tables in the Nautical

Almanac. If, at some future date, we are able to undertake interplanetary

voyages, relativity might find a field of applications for want of which it

has languished.

In spite of the 'game' theory, mathematics is still largely inspired by

contemporary social, technological and scientific demands, as in the new
'pure' mathematics that has been created to deal with the problems of

cosmic rays, stellar dynamics, stochastic processes and cybernetics. The
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present-day needs of science and technology for speedier methods of

calculation by means of electronic machines may well inaugurate as great

a mathematical revolution as the Hindu invention of zero and the posi-

tional system of writing numbers.

Far from despising utility and practical applications, the early pioneers

of modern science and mathematics—men like Huygens, Newton and

Leibnitz,toname only a few—cultivated them mainly for the advancement

of technics. Is it any wonder then that the founders, patrons and some of

the first scientists of such scientific academies as the Italian Academie del

Simento, the English Royal Society or the French Academie des Sciences,

were kings, nobles, courtiers, magnates and city merchants ? The idea of a

machine as the demiurge of a new heaven on earth was so uppermost in

their minds that the very first standing committee of the Royal Society

had for its terms of reference the 'consideration and improvement of all

mechanical inventions'.

What, then, has given rise to the recent idea that mathematics is a game,

a jeu dy

esprit or 'free creation' of the mind divorced from the practical

problems of daily life? It is the fact that the intimate connection between

mathematics and reality is lost sight of in the abstract logical schemes which

a mathematician constructs, though these always embody certain essential

features abstracted from some sphere of reality. These logical schemes

created by mathematicians do often look like games of manipulating

symbols according to certain rules. This, however, does not mean that

arithmetic, geometry, algebra, the calculus, etc., arose by someone con-

structing these theories as games played according to some rules. Quite the

contrary. They arose as abstractions from concrete applications, though

their subsequent logical formulation may appear like games played with

symbols. The authors of the game theory are, of course, aware of this dis-

tinction between the historical genesis of mathematical knowledge and its

subsequent logical formulation. But when they claim that mathematics is

a game they seem to confuse the means of expressing mathematical truths

and the mathematics itself. (We shall deal with this subtle question more

fully in the last chapter.)
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When Ulysses had left the land of the Cyclops, after blinding

Polyphemus, the poor old giant used to sit every morning near

the entrance to his cave with a heap of pebbles and pick up one

for every ewe that he let pass. In the evening when the ewes returned, he

would drop one pebble for every ewe that he admitted to the cave. In this

way, by exhausting the stock of pebbles that he had picked up in the

morning he ensured that all his flock had returned.

The story is apocryphal, but this is precisely what the primitive shepherd

did with his sheep before he learnt to count them. This also is not very far

from what a modern mathematician does when he wants to compare two

infinite collections, which cannot be counted in the ordinary way. However,

the important difference between the two is that while the former used this

tallying process without knowing what he was doing, like M. Jourdain

speaking prose, the latter uses it with knowledge and insight. He thus ac-

quires certain powers, otherwise unattainable, such as the power to count

the uncountable. We shall see later (in Chapter 5) how the mathematician,

by refining the primitive shepherd's practice, has succeeded in accom-

plishing this and other seemingly paradoxical feats. Meanwhile, we may
note the theory behind the shepherd's practice. This theory is based on the

fact that ifthe individuals of a flock can be matched, one by one, with those

of a heap of pebbles so that both are exhausted together, then the two

groups are equal. If they are not, the one that gets exhausted earlier is the

lesser.

What gives this matching process its great power is that it can be ap-

plied universally to all kinds of aggregates—from collections of ewes and

pebbles to those of belles and braces, apples and angels, or virtues and

vipers. Any two aggregates whatever can be matched so long as the mind

is able to distinguish their constituent members from one another.

Gradually men formed the notion of having a series of standard collec-

tions for matching the members of any given group or aggregate. One such

series consisted of the ten different collections formed by including one or

more fingers of their two hands. All collections, which could, for example,

be matched on the fingers of one hand were 'similar' in at least one respect,

however they might otherwise differ among themselves. They were, as we
now say, all equal. These standard collections were then given names

—
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One, Two, Three . . . etc. This is the social origin of the practice of count-

ing. Thus, when we now say that the number of petals in a rose is five, all

that we mean is that if we start matching the petals one by one with the

fingers of one hand, the members of both the collections are exhausted

simultaneously. By long practice in handling the abstract symbols 1, 2,

3 ... we are liable to forget that they are only a shorthand way of describ-

ing the result of an operation, viz., that of matching the items of an aggre-

gate with those of some set of standard collections that are presumed to be

known. The process is so habitual that it usually escapes notice. This has

caused endless confusion in the past, when, for long centuries, even learned

men failed to understand the nature of number, particularly when they

began to handle negative and imaginary numbers. If we keep in view the

fact that whole numbers or integers are a mere shorthand for describing

the result of a matching process, in which one of the collections is pre-

sumed to be known, we shall avoid a lot of trouble in understanding the

nature of more sophisticated types of numbers in mathematical literature.

We have seen that originally man formed his standard collections for

counting with the fingers of his hands. In the beginning this sufficed, there

being no occasion to budget for atomic piles, armament races, refugee re-

liefs, or Marshall Aid. But presently, even in the days of the river-valley

civilisations of antiquity, the needs of armies, taxation and trade gave rise

to collections which could hardly be matched on the fingers of the two

hands. What could man do about it? He could use the marks on his

fingers instead of the fingers themselves for the purpose ; but even so he

would not have enough of them. But as the matching process was inde-

pendent of the nature of the members constituting the collections, it did

not matter whether he formed them by means of fingers or finger-marks or

anything else. So he conceived the idea of generating a new standard col-

lection from one already known by mentally adding just one more item to

it. And as the process could be repeated indefinitely, he produced an un-

ending succession of standard collections some one of which, sufficed to

match any given collection, however large. Thus to the original idea of

matching or tallying was grafted another—that of order—in virtue of

which relative rank is given to each object in the collection. Out of the

union of the two arose the idea of integral number—an unending, ordered

sequence of integers.

In matching two collections we have hitherto considered them as mere

crowds of individuals without any internal order between themselves. The

concept of number as the characteristic of a class of similar collections

evolved from the practice of matching unordered aggregates {e.g. using

any pebble in Cyclops' hand for tallying any ewe in the fold) is known as

the cardinal number. However, we can also conceive of ordered aggregates,
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such as soldiers in a battle-array or ewes arranged in a straight file, in

which every element has a rank or place. When we match such ordered

aggregates and conceive of number as the characteristic of a class of

similar ordered aggregates, which exhaust themselves together in a match-

ing process, it is known as the ordinal number. Primitive man used both

these concepts without making any distinction between them. When he

used pebbles like Cyclops, he was using cardinal numbers; but when he

used his fingers he probably used them in a definite order, possibly first

his right-hand thumb, then the index, middle, ring and little fingers. In the

latter case, he was using ordinal numbers. The distinction between the two

types of numbers is somewhat subtle and was not noticed by mathe-

maticians themselves till about the end of the nineteenth century. For-

tunately, it is of no great importance for all ordinary purposes and may be

ignored. The sole justification for introducing what may appear to some a

pedantic distinction is the importance it assumes in the theory of trans-

finite numbers.*

Now, quite early in life we are taught the technique of adding and

multiplying the integers. Underlying this technique are certain general

laws of addition and multiplication. Though known by high-sounding

names they merely express in symbolic language just one commonplace
fact of everyday experience. That is, that it makes no difference in what

order you add the various sets of objects. Thus whether you buy two books

on the first occasion and three on the second or vice versa, your total

purchase remains the same. We express facts like this by the formula

2 + 3 = 3 + 2. This formula is a particular case of a more general law,

the commutative law of addition, which requires that the sum of any two

integers such as a and b is the same in whatever order we may choose to

add them. In symbols,

a + b = b + a (1)

Next, there is the associative addition law, expressed by the equality

(a + Z>) + c = a + (6 + c)t (2)

Since multiplication is only reiterated addition, there are naturally also

corresponding commutative and associative multiplication laws, the counter-

parts of the addition laws. Thus

:

a.b = b.a (3), corresponding to ( 1

)

and (ab)c = a(bc) . (4), corresponding to (2)

Finally, we have the distributive law

a(b + c) --= ab + ac . . . (5)

* See Chapter 5.

t The brackets here simply mean that the numbers within them are to be added first.
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In the following sections we shall see how the number system of integers

can be extended to include other types of numbers like negative, fractional

and irrational numbers. It will also be shown that the above five funda-

mental laws hold equally well for these more complicated types of num-
bers. Further, they remain valid even for sets of symbols which are not

numbers but behave like numbers in some respects. We shall cite several

instances of such sets later.* But the fact that such sets of symbols are

possible has enabled modern mathematicians to make truly amazing feats

of abstraction. We can, for instance, picture a set of 'elements' a, b, c,

d . . . about which we assume nothing except that they obey the five

fundamental laws of arithmetic. Starting from this assumption we can

prove a number of theorems about them. These theorems will hold, not

only for numbers—whether integers, fractions or irrationals—but also for

a much wider class of symbols which includes these numbers as a special

case. In other words, we are able to subsume the properties of a vast

variety of elements under one generic form that applies to them all. This

is the method of abstraction which is the very life-breath of modern

mathematics.

Indeed, the main difference between ancient and modern mathematics

is just this. In its relentless drive towards greater abstraction it refuses to

tie up the symbols of its discourse to anything concrete, so it cannot make
much use of the meanings of these symbols. How could it, indeed—since

it refuses to give them any meanings, or at any rate keeps them as meaning-

free as possible ? Mathematics thus has to base itself more on the mutual

relations of abstract symbols, as embodied in laws like the five fundamental

laws of arithmetic, than on the meanings of these symbols. That is why
some people call ancient mathematics 'thing-mathematics*, meaning con-

crete, and modern mathematics 'relation-mathematics', meaning abstract.

This difference does not imply that modern mathematicians are cleverer

or more imaginative than their forefathers. It is largely the outcome of

changes that have since occurred in the mode of civilized living. In the

ancient world, where material production was largely for use and barter,

things had not yet become completely metamorphosed into abstract

embodiments of sale or money value. This could occur only with the

change from a productive system for use or barter to a money economy
producing commodities. In such a social system all qualitative differences

between commodities are effaced in money and one begins to think in

terms of their money values as—four talents, four livres or four guineas.

From this it is but a step to think of the number 'four' as dropping its

material crutches and coming into its own as an abstract conceptual

symbol for the common quadruplicity of them all. But this is by no means
* See pages 21 and 146.
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the end. A modem mathematician is able to cany on the process of ab-

straction much farther. All that he needs is a system of elements obeying

some scheme of abstract laws like the five laws of arithmetic cited above.

You may wonder whether these abstract schemes about phantom enti-

ties obeying phantom laws are of any use at all. They are indeed. As
science advances, sooner or later a stage is reached when it has to reckon

with what is sometimes called interphenomena, that is, phenomena be-

yond the limit of direct observation. Thus no one can see what actually

happens inside a star, an atom, a gene, a virus* an amacrine cell or an
ultramicroscopic speck of nerve fibre. And yet a scientist must somehow
figure it out if he is to give an intelligible account of perceptible phenomena.
One way of doing it is to adopt some abstract scheme of a mathematician's

fancy and see where it leads us. It may happen that it enables us to pre-

dict some observable phenomena capable of direct observation. If we do
succeed in observing the predicted phenomena, we may be sure that the

abstract scheme does embody at least some features of the interphenomena

under study. Surprising as it may seem, the method actually works. It is by
the use of such abstract mathematical schemes that scientists have been

able to fathom what happens in the interiors of stars and atoms.

Stars and atoms may seem very remote, but they have now begun to

influence our everyday lives very directly, for their study has revealed new
sources of power which, in the case of atoms, we may use for war or peace

as we may choose. For instance, thanks to these studies we can now
imitate, though in a rudimentary manner, the cosmic processes at work in

the solar interior and construct here on earth those miniature suns, the

H-bombs, which threaten to wipe the human race out of existence. And
yet the same theory which has produced the H-bomb is also potentially

capable of putting, as it were, sunshine on tap for the advancement of

technics, civilisation and life.

As we have seen, early man's need to compare discrete groups, such as

flocks of sheep, herds of cattle, fleets of vessels and quivers of arrows, gave

rise to the concept of the integer. His other needs had even more fruitful

consequences. For instance, he wanted to know whether the milk-yield of

his cattle was rising or falling, or to make sure that no one encroached on
his field at harvest time. Here he was faced with continuously varying

quantities that could not be counted like the discrete objects of a group,

such as eggs in a basket. Nevertheless, he found a way of reducing the

problem of quantizing these continuous magnitudes to that of counting a

discrete group. Thus, he took a standard yard-stick and counted the num-



10 MATHEMATICAL IDEAS

ber of such sticks, which, placed end to end, covered the entire length of the

field from one extremity to the other. The continuous length thereby be-

came a discrete group of equal yard-sticks. Or he took a standard vessel

and poured out of his milk-yield as many vessel-fuls as he possibly could.

The continuous quantity—i.e., milk-yield—was thus changed into a dis-

crete collection of standard-sized vessels. In this way continuous quantity

became discrete and could be counted. But the solution had its awkward-

ness. For, in reducing the length of a field to a discrete group of yard-

sticks or unit-measures, it might happen that a residue was left. For in-

stance, the yard-stick might cover a given length 200 times and then leave

a residue smaller than the yard-stick. What was he to do with it?

There were two ways of handling it, namely to find a unit that leaves no

residue or to ignore it altogether. The first method was used in measuring

time when men divided the duration of daylight into twelve equal hours.

The hour was thus a variable unit, for a duration of one hour at the time

of summer solstice, for instance, was not the same as that at the time of

vernal equinox. At a time when there were no Hours of Employment

Regulations, overtime wages, payment by the hour, etc., this meant no

social inconvenience. It was otherwise with measuring the lengths of fields.

For it would have been necessary to discover by trial and error a unit that

would cover each length exactly without leaving a residue. Even if he

found one it would most probably be of no use for measuring another

length, for which it would be necessary to seek another unit. If, therefore,

residues were to be eliminated by this method, almost every length would

have needed a special unit of its own—very much like Chinese writing,

which has a separate ideograph for every word in its vocabulary. With such

a medley of different units, not only the calculus of lengths would have

been more complicated than Chinese writing but few lengths could have

been compared with each other. A fixed standard of length, as also of

weight and volume, was therefore a prime necessity of social intercourse.

Consequently, while all the early civilisations adopted variable units of

time, the units of lengths, weights and measures were fixed. As early as

2300 B.C. the Sumerian Hammurabi, for example, issued edicts fixing

these standards.

But if these units were to remain invariable, the problem of the residue

had to be solved. Now it would be a mistake to imagine that early man

became 'residue-conscious' overnight. Far from it. Actually this residue-

consciousness took whole millennia acoming. Too often and too long men

tried to ignore the residues and were content to make do with approxima-

tions, even ludicrous approximations, such as the value of n — 3 adopted

in the Book of Kings, in Chronicles* and by the Babylonians. Neverthe-

* 1 Kings vii, 23 ; 2 Chronicles iv, 2.
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less, the problems of trade and the administration of the vast revenues of

temples, city states and empires, kept in the forefront the mathematical
problem of the residues. Even then our present insight into the nature of

fractional numbers, which were created to solve it, was gained with the

greatest difficulty. The Egyptians, who treated only fractions with the

numerator 1, never understood that fractions were amenable to the same
rules as integers. The Babylonians, who had begun to deal with fractions

as early as 5000 B.C., did not acquire complete mastery of fractional

numbers until 2000 B.C. We can well appreciate their difficulty: they faced

problems unprecedented in human history. To solve them they had to

find their way about in an utterly strange and uncharted domain. No
wonder that, like the early navigators, they often reached their goal by the

longest and most devious route. And yet it is easy, retrospectively, to state

the residue problem and its solution. The problem of the residue is simply
this:

If the fixed unit yardstick does not happen to go into the length to be
measured an exact number of times, how are we to measure the residue ?

The solution is equally simple. Divide the unit yardstick itself into a
number of aliquot parts and then measure the residue with it. For instance,

the yard may be divided into 3 sub-units, each one foot long, and we may
try to measure the residue with the sub-unit, the foot. It may be that the

new sub-unit will lie along the residue from end to end exactly twice. We
thus have a sub-unit which covers the residue twice and our original unit

—

the yardstick itself—thrice. This process gives us a number couple, viz. 2
and 3, which can be used as a measure of the residue. We may write it as

I as our Hindu ancestors did, or I or 2/3, as in modern text books, or

as (2,3) as some learned people might advocate; it matters little. The
important point is that it is a shorthand for an operation just as the single

integer by itself is a symbolical way of describing the result of a matching
process. A number pair like f or (2,3) says what in ordinary language
would have to be expressed somewhat as follows

:

Tf you take a sub-unit that divides the fixed unit, say a yard, exactly

thrice, and use it to span the residue in question, it will go into the residue

exactly twice'.

The problem of measuring residues is, therefore, merely the problem of
finding some sub-unit that will cover exactly both the residue and the fixed

unit. Although, as we shall see later, strictly speaking it is not soluble in

all cases, a solution that is good enough for all practical purposes can
always be found. For, ifwe take a sufficiently small sub-unit of the original

unit, it will either cover the residue exactly or, at most, leave a remainder
less than the chosen sub-unit. But as the sub-unit can be made as small as

we please, the remainder, if any, will always be smaller still.
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Having found a way to measure residues or fractions, as they are gener-

ally called, it was necessary to devise methods of adding and multiplying

them. In time, general rules for adding and multiplying fractions were

framed. They are the well-known rules we all learnt at school, viz. :

Addition rule: (a, b) + (c, d) = {ad + be, bd),

Multiplication rule: (a, b)(c, d) = (ac, bd)*

You could, if you were in doubt, even 'prove' these rules by strict logic.

All that you need do is to recall the meaning of number pairs (a, b) and

(c, d) and the way to add or multiply them would be clear. But the point

that is of greater interest is that these two rules for adding and multiplying

fractions show that fractions too obey the same five fundamental laws of

arithmetic as the integers. This too can be proved logically.

If you operate with the first three integers 1, 2, 3, you may easily verify

that you can combine them in pairs in 3 x 3 = 9 ways. These nine ways

lead to the nine fractional numbers

:

(1, 1), (1, 2), (1, 3)

(2, 1), (2, 2), (2, 3)

(3, 1), (3, 2), (3, 3)

Likewise, four integers produce 4 x 4 = 16 fractions and five integers

5 x 5 = 25 fractions. From this you may easily infer that with N integers

you can manufacture N x N = N2 fractions. This would seem to show

that the set of fractional numbers is vastly more numerous than that of

positive integers. But the set of positive integers is a never-ending or

infinite set. If we denote this infinity by the usual symbol oo, the infinity of

fractional numbers would appear to be the much bigger infinity oo x co ==

(oo)2 . And yet if, in the manner of the Cyclops, you started matching the

infinite set of fractional numbers with the infinite set of integers, both the

sets would be exhausted together—provided one could speak of exhausting

inexhaustible or infinite sets ! In other words, the two infinite sets of integers

and rational fractions are exactly 'equal'. This is, no doubt, paradoxical.

We shall explain this paradox in Chapter 5.

If early man noticed that one herd of cattle could be 'added' to another

and he thus formed the notion of 'addition', he also performed the reverse

* (a, b), (c, d) are here used to denote the fractions ajb, c\d.
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operation—that of taking some cattle out of his herd as, for instance, for

the purpose of bartering them for other goods. This is the origin of 'sub-

traction', the inverse of addition. Similarly, multiplication, which is only a

reiterated addition, gave rise to its inverse, 'division', a reiterated sub-

traction. At first, these new operations caused him some confusion. For,

while he could always add and multiply any two integers, he could not
always perform the inverse operations. Thus, he could add any two herds

of cattle, but he could not take out, say, fifty cows from a herd of only

forty. Division, too, must have worried him at times, and he must have
often wondered whether a division of, say, seven by two is possible at all.

Like most children beginning to learn arithmetic, he, too, must have felt

that there isn't a 'reaV half of seven.

Nevertheless, for two reasons early man had less trouble with division

than with subtraction. First, he could always divide one integer, say 7, by
another, say 2, and supplement the result by adding that the division is not

'exact' and leaves a remainder. Second, even if he had to divide a smaller

number, say 5, by a larger, say 7, he could interpret the result as a number
pair (5, 7)—the fractional number that he had already devised for measur-
ing continuous magnitudes. But if he was asked to subtract, say 7 from 5,

he was quite befogged. To make this magic possible, he had to wait for the

rise of a banking system with an international credit structure, such as

came into being in the towns of Northern Italy (particularly Florence and
Venice) during the fourteenth century. The seemingly absurd subtraction

of 7 from 5 now became possible when the new bankers began to allow

their clients to draw seven gold ducats while their deposit stood at five.

All that was necessary for the purpose was to write the difference, 2, on
another side of the ledger—the debit side.

Although the attempt to resolve the difficulties of awkward divisions

and subtractions did lead to the recognition of fractional and negative

numbers, the realisation that they arose from the limitations of the in-

tegral number system itself, and could only be overcome by suitably ex-

tending that system, came much later. Thus, suppose we are given only
the unending sequence of positive integers 1, 2, 3, We can clearly add
any two of these integers, their sum being itself a positive integer. But we
cannot always perform the inverse operation of subtraction. For instance,

while we can subtract five from seven we cannot subtract seven from five.

If we want to ensure that subtraction of one integer from another be as

freely possible as addition, we must extend the number system of positive

integers to include negative integers, so as to form a doubly unending set

of positive and negative integers

:

... -4, -3, -2, -1, 0, 1, 2, 3, 4, . . .
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Only when we operate with such an extended set can we perform the

operation of addition and its inverse subtraction on any two numbers

without any restriction whatsoever. In other words, to make subtraction

universally possible the system of positive integers must be extended to

include negative integers too. This has as a consequence that to every

positive integer, such as a, there corresponds its negative or inverse, —a,

which belongs to the same set and is such that the sum a + (—a) is zero.

This fact may also be expressed by the statement that the equation a + x

= has always a solution x = —a (also belonging to the set). If we con-

sider the particular case of this equation when a = 0, we find that x too

is zero. It therefore follows that the number zero of the set is its own in-

verse. It is called the 'identity element' of the setfor addition. We call it the

identity element as its addition to any integer leaves the latter unaltered.

If we imagine that the relation between an integer and its inverse is like

that of an object and its mirror image, then the identity element zero is

like the reflecting surface, which is its own image.

Our first extension of the number system is thus the doubly unending

set of positive and negative integers complete with the identity element

zero:

... -4, -3, -2, -1, 0, 1, 2, 3, 4, . . .

Such a system of positive and negative integers, including zero, is known

as an integral domain. It is not possible to extend the integral domain any

farther by means of addition and subtraction alone. No matter which two

numbers of the domain we may add or subtract, we shall always end up

with a positive or negative integer belonging to the integral domain. We
may say that the integral domain is closed under addition and subtraction

because the way to further extension of the domain by performing these

two operations is blocked.

Just as we had to extend the system of positive integers to include

negative integers in order to make subtraction universally possible, a

similar consideration with regard to division leads to a further extension

of integers to include rational fractions. For, so long as we work with

integers, we can always multiply any two of them, but the inverse opera-

tion—division—is not always possible. To make division between any two

integers as universally possible as multiplication, we have to extend the

number system to include rational fractions, that is, number pairs devised

to measure residues. In other words, the set of all integers must be ex-

tended to include all rational fractions so that each number a (other than

zero) of the set has an inverse 1 /a belonging to the set with respect to

multiplication. We may express the same thing by saying that the equation

ax = 1 has a solution x -= l/a belonging to the set for all a's not equal to
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zero. If we consider the particular case of this equation when a = 1, we
find that x is also 1. It therefore follows that the number 1 of the set is its

own inverse. It is called the "identity element"* for multiplication, since

multiplying it by any number leaves the latter unaltered. Such a system

which includes all positive and negative integers as well as fractions is

called afield.

With the construction of the field of rational numbers our second ex-

tension of the number system is in a way complete. It permits us to per-

form on any two numbers of the system not only addition and its inverse,

subtraction, but also multiplication and its inverse, division, and express

the result by a number belonging to the rational field. No further extension

of the field is possible by performing any of these four arithmetical opera-

tions on any two numbers of the rational field. No matter which two
numbers of the rational field we may add, subtract, multiply or divide, we
shall always end up with a number belonging to the rational field. In other

words, the field of rational numbers is closed under all the four arithmetical

operations. But even so the number system still remains incomplete in

some ways. It can be shown that certain magnitudes like the diagonal of a

unit square cannot be measured by rational fractions. To measure the

diagonal we have to find a sub-unit that goes an exact number of times

into the side as well as the diagonal. Suppose, if possible, there is such a

sub-unit which divides the side m times and the diagonal n times. Then the

length of the diagonal is given by the number pair or fractional number
njm. We may assume that m and n are not both even, for if they were, we
could cancel out the common factor 2 from the numerator and de-

nominator till one of them became odd. Now, the lengths of the two sides

of the square AB, BC, are both equal to unity, and that of the diagonal is

njm (see Fig. 1). But in a right-angled triangle like ABC,

AB2 + BC2 = AC2
.

In other words, 2 = n2/m2

or n2 = 2m2
.

But it can be proved that no two integers can satisfy this equation unless

they are both even—a possibility which has been expressly excluded by our

hypothesis. It is therefore impossible to find a rational number to measure
the diagonal length AC.
The discovery of magnitudes which, like the diagonal of a unit square,

cannot be measured by any whole number or rational fraction, that is, by
means of integers, singly or in couples, was first made by Pythagoras some
2500 years ago. This discovery was a great shock to him. For he was a

* Note carefully that the number 1 plays the same role with regard to multiplication as
the number zero with regard to addition. (See page 14.)
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number mystic who looked upon integers in much the same reverential

spirit as some present-day physicists choose to regard Dirac's p, q num-

bers, viz. as the essence and principle of all things in the universe. When,

therefore, he found that the integers did not suffice to measure even the

length ofthe diagonal of a unit square, he must have felt like a Titan cheated

AE=AB

Fig. 1—The diagonal and the side of the square

are incommensurable.

by the gods. He swore his followers to a secret vow never to divulge the

awful discovery to the world at large and turned the Greek mind once for

all away from the idea of applying numbers to measure geometrical

lengths. He thus created an impassable chasm between algebra and

geometry that was not bridged till the time of Descartes nearly 2000 years

later.

Nevertheless, there is no great difficulty in measuring the length of the

diagonal by an extension of the process that gave rise to fractions. Suppose

we use the unit stick to measure the diagonal AC of the square. It goes

once up to E and leaves a residue EC (see Fig. 1). Its length is therefore

1 + EC. Now suppose we use a sub-unit which goes into the original

unit ten times, in order to measure EC. We shall find that it will cover EC
four times, leaving again a small residue. This gives us a closer measure of

the diagonal length, viz., 1 + 4/10 plus a second residue. To obtain a still

closer estimate, we try to measure the second residue with a still smaller

sub-unit which divides our original unit into, say, 100 equal parts. We shall

find that it goes into the second residue just once but again leaves a third

residue. Our new estimate is thus 1+4/10+1/100 plus a small residue.

To measure this last residue, we can again use a still smaller sub-unit, say,

one-thousandth part of the unit, and observe how many times it covers it.

We shall find that it covers it four times and still leaves a residue. The

diagonal length then is 1 + 4/10 + 1/100 + 4/1000 plus a residue.

Now, the important point is that no matter how far we go, the residue

always remains. For suppose, if possible, we were left with no residue when

we began to use a scale equal to, say, a thousandth part of our unit. This
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would mean that a scale that covered the unit 1000 times would cover the

diagonal 1414 times exactly. In other words, it would be measured by the

fraction 1414/1000, but this, as we saw (page 15), is impossible. Thus,

while we may be able to reduce the residue to as small a length as we please

by prolonging this process far enough, we can never hope to abolish it

altogether. How shall we express, then, the length of our diagonal if we
want to do it exactly? We can do so by the never-ending sum:

1 + 4/10 + 1/100 + 4/1000 + 2/10,000 + . . .

Or, if this is too cumbersome, we may use the non-terminating decimal

expression, 1-4142 . . ., which is only an abridged way of writing the same
thing. A still shorter way of writing it would be 'square root of 2' or \/2,

which means that it is some number whose square is two. Numbers like y/2
were called 'irrationals', as they did not appear to be amenable to reason;

they escaped the number mesh cast by man to trap them. For instance,

take y/2 itself: if we do not wish to go beyond the first decimal place, the

fraction 1-4 is a little too small, while 1*5 too large. By going to the second

place, we can get a closer mesh, viz., 1-41 and 1*42. The third decimal place

gives us 1-414 and 1-415, fourth decimal place 1-4142 and 1-4143, and so

on. If we square the end numbers of each of these meshes of the number-

net we have

(1-4)2 = 1-96 < 2 < (1-5)2 = 2-25;

(1-41)2 - 1-9881 <2 < (1-42)2 = 20164;

(1-414)2 = 1-999396 < 2 < (1-415)2 = 2-002225;

(1-4142)* = 1-99996164 < 2 <(1-4143)2 = 2-00024449;

We note two properties of the end numbers of this mesh system that we
have created to trap the square root of 2. First, the left-hand end numbers,

viz. 1-4, 1-41, 1-414, 1-4142 continually increase or at least

never decrease. Second, no matter how far we go, the square of any
number in the sequence always falls short of 2, though the difference

continually decreases. Similarly the right-hand end numbers, viz. 1-5,

1-42, 1-415, 1-4143 continually decrease or at any rate never

increase. Likewise, the square of any member always exceeds 2, though
the difference continually diminishes the farther we go. We have here a

process whereby we generate two sequences of fractional numbers which
continually approach the square root of 2 from both below and above,

although they never actually reach it. Whatever the degree of precision

required in the estimate, we can always pick up two numbers, one from
each sequence, which are sufficiently close together, and between which
the desired square root lies. Can we, then, say that this hunt for the square
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root of 2 is not as 'perfect and absolute a blank' as that of Lewis Carroll's

crew in the hunting of the Snark? In other words, can we assert that the

square root of 2 'exists', in spite of the fact that it cannot be expressed as

an ordinary fraction? The question is not entirely academic, for unless

we admit its 'existence', our number system is not complete. Our number

vocabulary is not rich enough to quantize certain magnitudes. Without the

irrationals we should have no numbers for exactly measuring certain

lengths, although we might have increasingly finer sets of approximations.

Voltaire once remarked that if God did not exist, it would be necessary to

invent Him. With still greater justification, the mathematician says that if

the square root of2 does not exist, it is necessary to invent it, and he invents

it by writing y/2. It is the unique number towards which the infinite ever-

increasing sequence of fractional numbers 1-4, 1-41, 1-414, 1-4142 . . . con-

tinually tends without ever reaching it. In other words, it is the ultima

Thule or limit of this sequence which we usually abbreviate as the non-

terminating, non-recurring decimal, 1-4142 ....

Now it is no use inventing numbers unless we know how to combine

them by addition, multiplication, etc. What do we mean by adding two

irrational numbers like \/2 and \/3 ? We defined \/2 as the limit of an

infinite never-decreasing sequence of rational fractions, such as

:

1-4, 1-41, 1-414, 1-4142,

Likewise \/3 is the limit of another infinite never-decreasing sequence of

fractions, namely:

1-7, 1-73, 1-732, 1-7321

The sum of -y/2 and y/3 is merely the limit of the new infinite never-

decreasing sequence formed by adding the corresponding terms of these

two sequences viz.

:

(1-4 + 1-7), (1-41 + 1-73), (1-414 + 1-732), (1-4142 + 1-7321),

Likewise, the product of \/2 and \/3 is the limit of the infinite sequence:

(l-4)(l-7), (l-41)(l-73), (l-414)(l-732), (1-4142)(1-7321), . . .

Since fractional numbers are subject to the commutative, associative

and distributive laws of arithmetic, so are the irrational numbers like y/2

and y/3, as they are defined as mere limits of infinite sequences of rational

fractions. For instance, -\/2 + y/3 is the limit of the sequence

(1-4 + 1-7), (1-41 + 1-73), (1-414 + 1-732) (1)

and V3 + V2 is the limit of

(1-7 + 1-4), (1-73 + 1-41), (1-732 + 1-414) .... . (2)
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Sequences (1) and (2) are obviously identical and consequently so also are

their respective limits. In other words,

V2 + V3 = V3 + V2.

The addition of irrational numbers to the field of rational numbers

makes what is known as the real number field. It is the aggregate of all

integral, fractional and irrational numbers, whether positive or negative.

It is obvious that we can perform any of the four arithmetical operations

on any two of its numbers and express the result as a number belonging to

itself. This means that the real number field is also closed under the arith-

metical operations. It might thus appear that our third extension of the

number system is at last complete. But, as we shall see later, the real

number field too is incomplete in some ways and needs further extension.

As we have seen, starting with positive integers, the number domain was

extended to cover the entire set of real numbers by the invention of nega-

tive numbers, fractions and irrationals. We shall see later how the idea of

vectors and complex numbers grew out of real numbers, and that of

quaternions and hypercomplex numbers out of vectors and complex

numbers. With the invention of hypercomplex numbers the art of number-

making seemed to have reached its acme, for any kind of number could be

shown to be a particular case of some hypercomplex number. With the

closing of the field of number-making, mathematicians returned to the

integer from which they had started and opened another. In endeavouring

to discover the essence of the integer they created a new subject—mathe-

matical logic. By the first two decades of the twentieth century, they had

succeeded in creating a mere mathematician's delight, and that to such a

degree that it was in real danger of becoming what the Americans call

'gobbledygook'. Fortunately it was rescued from this disaster by the prac-

tice of electronic engineers, who applied it to produce new types of ultra-

rapid automatic calculating machines employing all manner of electrical

apparatus. With the invention of these new electronic devices it was possi-

ble to apply the abstract ideas of mathematical logic to advance the design

of calculating machines far beyond the dreams of early pioneers like

Pascal and Leibnitz or even Babbage.

The reason why mathematical logic has had such great influence on the

art of numerical computation is that the calculus of reasoning is sym-

bolically identical with the calculus of number. Since in logic we deal with

statements or propositions which have some meaning, every such proposi-

tion is either true or false. Let us assign the truth value T = I when the
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proposition is true, and T = O when it is false. Every proposition such as

A will then have a truth value T which may be either zero or one. If we
have another proposition B, we can form a compound proposition from

these two in two ways. First, we may produce a compound proposition S

which is considered true provided either A or B is true. In this case S is the

logical sum ofA and B and the process of obtaining it is the analogue of

numerical addition. Second, we may obtain another compound proposi-

tion P which is considered true if, and only if, both A and B are true. P is

known as the logical product ofA and B and the process of obtaining it is

the counterpart of arithmetical multiplication.* For example, let A be the

proposition 'Socrates drank the hemlock' and B the proposition 'Voltaire

wrote Gulliver's Travels'. S, the logical sum of A and B, will then be the

compound proposition:

„ J Either 'Socrates drank the hemlock'

[ or 'Voltaire wrote Gulliver's Travels',

P, the logical product of A and B, will, on the other hand, be the com-

pound proposition

:

P«
'Socrates drank the hemlock'

and

'Voltaire wrote Gulliver's Travels'.

Since we know that in this case A is true and B false, then S will be true

but P false. Consequently when the truth value of A is 1 and of B zero,

that of S will be 1 and of P zero. In the same way we can easily work out

the truth values of S and P, given those of A and B in any other case. In

general, as mentioned earlier, for S to be true only one of the two consti-

tuents A and B need be true, whereas for P to be true both A and B have

to be true. This rule sufficies to evaluate the truth values of S and P as we
shall now show.

Suppose both A and B are true so that the truth values of both are one.

Since S is true when either A or B is true, the truth value of S is I . This

leads to the summation rule:

1 + 1 = 1.

If both A and B are false, then obviously their logical sum S too is equally

false so that the summation rule now is:

O + O = O.

* S is also known as the disjunction of A and B and is written as S = AvB.

P is also known as the conjunction of A and B and is written P = A.B.
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But if only one of the two, viz. A or B, is true, then S is also true, because
S is true when either of them is true. This leads to the summation rules:

0+ I = I, I +0= I.

We may summarise these summation rules in the table of logical addition

:

Logical Addition

+
O
I

O I

O I

I I

To read the result of the addition of any two truth values, say O and I

,

take the row O and the column I ; these are easily seen to intersect at I

.

The same rule applies in reading all other tables described in this section.

Consider now the product proposition P. Since P is true only when both
A and B are true, its truth value is I only when that of both A and B is I

.

In every other case P is not true and therefore its truth value is zero. This
leads to the product rules:

1x1 = 1,0x1=0,1x0 = 0,0x0 = 0.

This may be summarised in the table of logical multiplication:

Logical Multiplication

X 1

1 1

We shall now show that these tables* of logical addition and multiplica-
tion are very similar to their counterparts of arithmetical addition and
multiplication. Although we use the ten digits, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to
write numbers, this is merely due to the physiological accident that we
have ten fingers. If we had had only eight, we might have worked with
only eight digits viz. 0, 1, 2, 3, 4, 5, 6, 7. In that case what we now write as
'8\ '9' and '10' would be written '10', '11' and '12', respectively. A num-
ber like 123 written in this octonal notation would really be an abbreviation
of 1(8)

2 + 2(8)* + 3(8)° just as 123 in the decimal notation is a short-
hand for 1(10)2 + 2(10)! + 3(10)°. In the octonal notation, therefore, the
number '123' would be 64 + 16 + 3 = 83 in the usual decimal notation.
What notation we choose for writing numbers, whether decimal,

* With the help of these tables you may readily verily that the symbols O, I, though
not numbers in the ordinary sense, yet obey the five fundamental laws of arithmetic.
This is an instance of a set of 'elements' other than numbers satisfying the laws of
arithmetic.
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octonal or any other, is arbitrary. In principle we are free to make any

choice we like. Of all the possible choices the simplest, though not the

most familiar, is the binary notation in which we work with only two

digits and 1. It is remarkable that we can express any number whatever

in the binary notation, using only these two digits. Thus, the number two

would be written in the binary notation as 10, three as 11, four as 100,

five as 101, six as 110 and so on. For 10 in the binary notation is

(2)
1 + 0(2)° = 2 in the decimal notation. Likewise, 1 10 in the binary nota-

tion is 1(2)
2 + l(2)x + 0(2)° = 4 + 2 + = 6 in the decimal notation.

A binary 'millionaire' would be a very poor man indeed, for the figure

1,000,000 in the binary scale is a paltry:

1(2)« + 0(2)
6 + 0(2)

4 + 0(2)
3 + 0(2)

2 + 0(2)* + 0(2)» = (2)« - 64

in the decimal notation. Nevertheless, the binary notation is potentially as

capable of expressing large numbers as the decimal or any other system.

The only difference is that it is a bit lavish in the use of digits. Thus the very

large number of grains of wheat which the poor King Shirman* was in-

veigled into promising his sly Grand Vizier as a reward for the latter'

s

invention of chess could, in the binary notation, be expressed simply as a

succession of sixty-four ones

:

111, 111, 111, 111, 111, 111, . . . sixty-four times.

In the decimal notation of everyday use we should need twenty digits to

write it.

The rules of ordinary addition and multiplication in the binary notation

are

+ = 0; -f 1 = 1 ; 1 + = 1 ; 1 + 1 = 10.

If we remember that while adding one to one, we get a 'one' which should

be 'carried' to the next place, we can summarise the addition rules in the

table of arithmetical addition:

Arithmetical Addition

+ 1

1

1

1 1

* The allusion here is to the well-known legend of the Grand Vizier who asked for

one grain of wheat in the first square of a chessboard, two in the second, four in the

third, eight in the fourth, sixteen in the fifth and so on till the sixty-fourth square. The

poor king never suspected till it was too late that the total number of grains required to

fill the board in this manner would exceed the total world production of wheat during

two millennia at its present rate of production!
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Similarly, the rules of ordinary multiplication are:

0x0 = 0; Ox 1=0; 1x0 = 0; 1x1 = 1.

They too can be summarised in a similar table of arithmetical multiplica-

tion:

Arithmetical Multiplication

X 1

1 1

A glance at the tables of logical and arithmetical addition shows that they
are identical. So also are those of logical and arithmetical multiplication.

Now the ideal calculating machine must be such that with an initial

input of data it turns out the final answer with as little human inter-

ference as possible until the very end. This means that after the initial

insertion of the numerical data the machine must not only be able to
perform the computation but also be able to decide between the various
contingencies that may arise during the course of the calculation in the
light of instructions also inserted into it along with the numerical data at

the beginning. In other words, a calculating machine must also be a
logical machine capable of making a choice between 'yes' and 'no', the
choice of adopting one or other of two alternative courses open to it at

each contingency that may arise during the course of the computation. It

is because of the formal identity of the rules of the logical and arithmetic
calculi (in the binary notation) that the apparatus designed to mechanise
calculation is also able to mechanise processes of thought. That is why the
binary system is superior to other systems in both arithmetic and logic.

Another advantage of the binary system is this. A calculating machine
can operate in only two ways. First, it may consist of a device which
translates numbers into physical quantities measured on specified con-
tinuous scales—such as lengths, angular rotations, voltages, etc. After
operating with these quantities it measures some physical magnitude which
gives the result.* Second, it may consist of a device which operates with
numbers directly in their digital form by counting discrete objects such as
the teeth of a gear-wheel, or discrete events such as electrical pulses. Such,
for instance, is the case with the ordinary desk calculating machines like

the Brunsviga and Marchant. Naturally, the accuracy of the first type

* For example, a product xy may be evaluated by converting the logarithm of
numbers x,y into lengths on a slide rule. We first read the length corresponding to
the logarithm of the number x and add to it the length corresponding to that of
number y. We then read the number corresponding to the combined lengths to obtain
the product xy.
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depends on the accuracy of the construction of the continuous scale, and

that of the second on the sharpness with which the discrete set of events,

such as wheel teeth or electrical pulses, can be distinguished from one

another. Since it is easier to distinguish a set of discrete events than to

construct a fine continuous scale, the latter type, viz. the digital machine,

is preferable for highly accurate work. Further, since it is easier to dis-

tinguish between two discrete events than ten, digital machines constructed

on the binary scale are superior to those on the decimal scale. In other

words, the structure of the ideal machine should be a bank of relays each

capable of two conditions—say, 'on' and 'off'; at each stage the relays

must be able to assume positions determined by the position of some or

all ofthe relays ofthe bank at a previous stage. This means that the machine

must incorporate a clocking arrangement for progressing the various stages

by means of one or more central clocks.

Now, as Norbert Wiener has remarked, the human and animal nervous

systems, which too are capable of the work of a computation system, con-

tain elements—the nerve cells or neurons—which are ideally suited to act

as relays:

'While they show rather complicated properties under the influence of

electrical currents, in their ordinary physiological action they conform

very nearly to the "all-or-none" principle; that is, they are either at rest,

or when they "fire" they go through a series of changes almost independent

of the nature and intensity of the stimulus.' This fact provides the link

between the art of calculation and the new science of Cybernetics, recently

created by Norbert Wiener and his collaborators.

This science (cybernetics) is the study of the 'mechanism of control and

communication in the animal and the machine', and bids fair to inaugurate

a new social revolution likely to be quite as profound as the earlier In-

dustrial Revolution inaugurated by the invention of the steam engine.

While the steam engine devalued brawn, cybernetics may well devalue

brain—at least, brain of a certain sort. For the new science is already

creating machines that imitate certain processes of thought and do some

kinds of mentalworkwith a speed, skilland accuracy farbeyondthe capacity

of any living human being.

The mechanism of control and communication between the brain and

various parts of an animal is not yet clearly understood. We still do not

know very much about the physical process of thinking in the animal

brain, but we do know that the passage of some kind of physico-chemical

impulse through the nerve-fibres between the nuclei of the nerve cells

accompanies all thinking, feeling, seeing, etc. Can we reproduce these

processes by artificial means? Not exactly, but it has been found possible

to imitate them in a rudimentary manner by substituting wire for nerve-
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fibre, hardware for flesh, and electro-magnetic waves for the unknown

impulse in the living nerve-fibre. For example, the process whereby flat-

worms exhibit negative phototropism—that is, a tendency to avoid light

—

has been imitated by means of a combination of photocells, a Wheatstone

bridge and certain devices to give an adequate phototropic control for a

little boat. No doubt it is impossible to build this apparatus on the scale

of the flatworm, but this is only a particular case of the general rule that

the artificial imitations of living mechanisms tend to be much more lavish

in the use of space than their prototypes. But they more than make up for

this extravagance by being enormously faster. For this reason, rudimentary

as these artificial reproductions of cerebral processes still are, the thinking

machines already produced achieve their respective purposes for which

they are designed incomparably better than any human brain.

As the study of cybernetics advances—and it must be remembered that

this science is just an infant barely ten years old—there is hardly any limit

to what these thinking-machines may not do for man. Already the tech-

nical means exist for producing automatic typists, stenographers, multi-

lingual interpreters, librarians, psychopaths, traffic regulators, factory-

planners, logical truth calculators, etc. For instance, if you had to plan a

production schedule for your factory, you would need only to put into a

machine a description of the orders to be executed, and it would do the

rest. It would know how much raw material is necessary and what equip-

ment and labour are required to produce it. It would then turn out the

best possible production schedule showing who should do what and when.

Or again, if you were a logician concerned with evaluating the logical

truth of certain propositions deducible from a set of given premises, a

thinking machine like the Kalin-Burkhart Logical Truth Calculator could

work it out for you very much faster and with much less risk of error than

any human being. Before long we may have mechanical devices capable of

doing almost anything from solving equations to factory planning. Never-

theless, no machine can create more thought than is put into it in the form

of the initial instructions. In this respect it is very definitely limited by a

sort of conservation law, the law of conservation of thought or instruction.

For none of these machines is capable of thinking anything new.

A 'thinking machine' merely works out what has already been thought

of beforehand by the designer and supplied to it in the form of instruc-

tions. In fact, it obeys these instructions as literally as the unfortunate

Casabianca boy, who remained on the burning deck because his father

had told him to do so. For instance, if in the course of a computation the

machine requires the quotient of two numbers of which the divisor hap-

pens to be zero, it will go on, Sisyphus-wise, trying to divide by zero for

ever unless expressly forbidden by prior instruction. A human computer
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would certainly not go on dividing by zero, whatever else he might do. The

limitation imposed by the aforementioned conservation law has made it

necessary to bear in mind what Hartree has called the 'machine-eye view'

in designing such machines. In other words, it is necessary to think out in

advance every possible contingency that might arise in the course of the

work and give the machine appropriate instructions for each case, because

the machine will not deviate one whit from what the 'Moving Finger' of

prior instructions has already decreed. Although the limitation imposed

by this conservation law on the power of machines to produce original

thinking is probably destined to remain for ever, writers have never ceased

to speculate on the danger to man from robot machines of his own crea-

tion. This, for example, is the moral of stories as old as those of Famulus

and Frankenstein, and as recent as those of Karel Capek's play, R.U.R.,

Olaf Stapledon's First and Last Men.

It is true that as yet there is no possibility whatsoever of constructing

Frankenstein monsters, Rossum robots or Great Brains—that is, artificial

beings possessed of a 'free will' of their own. This, however, does not

mean that the new developments in this field are without danger to man-
kind. The danger from the robot machines is not technical but social. It

is not that they will disobey man but that if introduced on a large enough

scale, they are liable to lead to widespread unemployment.
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The knowledge that things, in spite of their apparent permanence,

are really in a state of perpetual flux and change, is probably as old

as human civilisation. This knowledge formed the basis of philo-

sophical speculations about flux and change which preceded the mathe-

matical formulations by whole millennia. Long before Greek civilisation,

the mystical view of change, that nothing really exists but only flux or

flow—a view revived more recently in Bergson's Creative Evolution—had

evolved from commonplace observations. But the mathematics (as op-

posed to the mysticism of flux) originated during the second half of the

seventeenth century, when mathematicians began to study the problem of

change.

Speaking of the mathematics of flux, Leibnitz, who shares with Newton

the honour ofinventing it, said, 'My new calculus . . . offers truth by a kind

of analysis and without any effort of the imagination—which often suc-

ceeds only by accident; and it gives us all the advantages over Archimedes

that Vieta and Descartes have given us over Apollonius.' This claim was no

exaggeration, for the calculus proved to be the master key to the entire

technological progress of the following three centuries. What then is this

calculus of Newton and Leibnitz which has had such momentous conse-

quences ?

Mathematically, the calculus is designed to deal with the fundamental

problem of change, viz. the rate at which anything changes or grows. You
cannot even begin to answer questions like this unless you know what it is

that changes and how it changes. What you need, in fact, is a growth

function—that is, a correlation of its growth against the flow of time. But

growth and flow are rather vague terms and must first be given precise^

mathematical expression. Take first the flow of time. Our daily perception

of events around us, not to speak of the physiology of our own bodies,

makes us aware ofwhat we call the flow of time. This means that every one

of us can arrange the events that we perceive in an orderly sequence. In

other words, we can tell which of any two events perceived occurred earlier

and which later. By means of physical appliances, such as a watch, we
can even say how much earlier or later. This enables us to particularise or

'date' the events by a number—the number of suns, moons or seconds that

have elapsed since a certain beginning of time. This is the commonsense
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way of reckoning time, which both Newton and Leibnitz took for granted.

Now about growth. Here again, to fix ideas we may think of something

concrete that grows, e.g. the weight of a newly born baby. We could say

something about its growth if we weighed it on a number of different

occasions. If we 'dated' the occasions we should get a succession of num-
ber pairs, one number denoting the date of weighing and the other the

corresponding weight on that date. This table of number pairs, i.e. the

weight and its corresponding date, is, in fact, the growth function—the

mathematical representation of what we have called the correlation of

growth against the flow of time.

We must first somehow infer the growth function ofchanging phenomena
before the calculus can be applied, and our guide in this matter is mostly

experience. Historically, the first phenomenon to be studied by the calculus

was the motion of material bodies, such as that of a stone rolling down a

hillside. Galileo inferred the growth function of rolling stones from study-

ing its laboratory replica. He allowed balls to roll down inclined planes

and observed the distances travelled by them at various times or 'dates'

such as at 1, 2, 3, . . . minutes after the commencement of the roll. If we
repeat his experiment we may, for example, find the following table of

corresponding number pairs

:

Time if) in seconds: 0, 1,2, 3, 4, 5, . .

.

Distance rolled (y) in feet: 0, 1, 4, 9, 16, 25, . . .

It is clear that we may replace this table by the formula y = t
2
, which is

called the growth function of the distance. The problem that the calculus

is designed to handle is as follows. Knowing the growth function of the

distance the ball rolls, can we discover how fast it moves ? In other words,

what is its speed ?

It is obvious that the ball does not travel with the same speed during the

whole course of its motion. The speed itself continually grows. The calculus

seeks to derive the growth function of the speed, knowing that of the

distance, and thus to give us a formula which enables us to obtain the speed

at any given time. Suppose we wish to find its speed at the time denoted by

t = 2. Take any other time close to t = 2 but slightly later, say ^ = 2*1.

The distances travelled in these two times are (2)
2 and (2- 1)

2 units of dis-

tance (say feet), respectively, for the distance rule, y = t\ applies equally

when r is a fraction. The distance travelled during the time interval from

t = 2 to t = 2-1 is therefore (2-1)
2 — (2)

2
. Hence, the average speed during

the interval of time from 2 to 2-1, or 0-1 units of time (say seconds) is

(2-1)2 - (2)
2— = 4-1 feet per second. We could regard it as the actual speed

of the ball at the time t =- 2 for all ordinary purposes ; but if someone in-
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sisted that it was only an average during the interval taken and not the

actual speed at t = 2, we should have to concede the point. To satisfy our
opponent, we might calculate the average speed during still shorter inter-

vals of time, say, that during the intervals (2, 2-01), (2, 2-001), (2, 2-0001),

. . ., — In exactly the same way as before, we find that the respective

averages during these shorter intervals are 401, 4-001, 4-0001, . . ., ...

feet per second. This shows that the average continually approaches 4 as

we successively shorten the interval used for averaging. More precisely, we
can make it come as close to 4 as we like provided only we take a sufficiently

small interval of time for calculating the average. This value 4 is then the

limit of the average—it is a sort of terminal point or bound below which
the average can never fall. We are, therefore, justified in taking this limit

as the actual speed at t = 2. If we try to work out the speed at other times

such as t = 1, 3, 4, 5, ... in the same way, we find it to be 2, 6, 8, 10, . .

.

respectively. Thus the table of corresponding values of speed at various

times is

:

Time (/) in seconds: 1, 2, 3, 4, 5, ...

Speed (v) in feet per second: 2, 4, 6, 8, 10, . .

.

This suggests the formula v = It for the growth function of speed.

We could treat the speed function in exactly the same way as we have

treated the distance function. In other words, we could now enquire how
fast does the speed change or what is the acceleration of the ball. We pro-

ceed in the same manner as before by taking an instant of time, say 2-1,

very close to the instant 2. The speed changes from 2(2) to 2(2-1) so that

the average increase in speed—or the acceleration—is

2(2-1) - 2(2) _
(2-1 - 2)

We get the same result no matter how close to 2 we choose the second

instant of time for averaging the increase in speed. We may, therefore, re-

gard this average acceleration as the actual acceleration at t = 2. If we try

to work out in the same manner the acceleration at other instants of time,

such as t — 1, 3, 4, . . ., we find that it remains 2 all the time. Consequently,

the table of corresponding values of acceleration at various times is

:

Time (/) in seconds: 0, 1, 2, 3, 4, . ....

Acceleration (a): 2, 2, 2, 2, 2, . .

.

This suggests the formula a = 2, which means that acceleration remains 2

at all instants of time. In other words, the ball rolls with uniform accelera-

tion.

Although the calculus was originally devised to calculate time rates of

change like speeds and accelerations of moving bodies, its technique is
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equally applicable to all sorts of rates of change. In everyday life we usually

come across time rates, such as interest, speed, acceleration, growth, etc.,

but whenever we have one variable quantity, y, depending on another

variable, x, we may enquire about the rate of change of y per unit change

of x. Thus the irrigation engineer is interested in the hydraulic pressure, y,

that the dam surface has to endure at any given depth, x, below the water

surface. Here, although the water pressure is assumed to remain static

everywhere, we may, nevertheless, legitimately enquire how fast the water

pressure rises with increasing depth. In other words, we may wish to de-

termine the rate of change of pressure per unit change of depth.

Whenever we have a pair of magnitudes, y and x (such as hydraulic

pressure and depth, freight or fare payable and distance ofjourney, income

tax and income, etc.), so related that the measure of one depends on that

of the other, the former is said to be a function of the latter. Symbolically,

we denote this dependence by the expression y = f(x), where / is only a

shorthand for 'depends on'.

Now since dependence like so many other relations, such as friendship,

is a reciprocal relation, we could equally regard the measure of x as de-

pending on that of y. Thus, if y is a function of x, then equally x is some

function F of y. The function F(y) is called the inverse of f(x). For in-

stance, if y = 3x — 6, then x — y/3 + 2. Hence the inverse of v, v = f(x)

= 3x — 6 is the same asx = F(y) = y/3 + 2. Although, strictly speak-

ing, either variable may be expressed as a function of the other, in most

situations it is more natural to regard the variation of one as independent

of and, in a way, 'controlling' that of the other. For instance, in the above-

mentioned illustrations it is more natural to consider income tax as a

function of income, railway freight as a function of distance, or hydraulic

pressure as a function of depth, rather than the other way about. Income

tax, railway freight and hydraulic pressure are therefore dependent

variables, as they do, in a real way, depend on income, distance and depth,

respectively. It is true that there are some cases in which it may not be

quite obvious which of the two variables should be treated as independent,

but in such cases we may make any choice to suit our convenience.

In most cases the dependence between the two variables y, x is far too

complicated to be reduced to a formula. For example, the bitterness of

Swift's satire or the pungency of Carlyle's invective may, perhaps, if they

could be measured, be functions of the amount of bile secreted by their

livers at the times of writing. But if so, no formula can be devised to ex-

press this dependence. In science, however, we mostly deal with functional

dependences which can be reduced to a formula. For a closer peep into the

working of nature, where we also come across dependences far too com-
plex to be trapped in the neat expression ofa single formula, mathematicians



THE CALCULUS 31

during the last century or so have been obliged to consider functional

dependences, which may be expressed by a series of formulae instead of by

a single formula. As an instance of such a function we may cite the rela-

tion between pressure, y, and volume, x, of a gas at constant temperature.

For ordinary pressures such as could be applied in the time of Boyle, the

formula, v = constantjx, usually known as Boyle's law, expresses this de-

pendence. For other ranges of pressure such as are now possible, different

formulae have to be used. The functional relation between pressure and

volume of a gas is thus a multi-formula function. The same is true of most

laws of nature.

Now, whatever y and x may be, and whatever the formula or formulae

expressing their dependence, we may want to know the rate of change of

one per unit increase of the other. Suppose y — fix) is a functional rela-

tion between any dependent variable y and an independent variable x.

Let us calculate the rate of change off(x) per unit change ofx . In general,

this rate will itself vary and depend on the particular value of x chosen.

Suppose we want it for x = 2, then, as in the case of time when we were

discussing speed above, we choose a short range of the independent vari-

able lying between 2 and 2 + h, h being a small number. If the independent

variable varies from 2 to 2 + h, the dependent variable v will change from

/(2) to/(2 + h). The net change of its value over the range (2, 2 + h) is

/(2 + h) — f(2). The average rate of change over this range is, therefore,

/(2 + /i)-/(2)

If h is reasonably small, we may take this average rate as the actual rate of

change of/(*) at x = 2. But if someone insisted that this is only an average

and not the actual rate, we should have to accept the validity of his objec-

tion. To avoid such an objection, we say that the actual rate of change of

y at x — 2 is the limit of the average rate of change of y per unit change

of x, when the interval of x, over which it is averaged, is decreased in-

definitely. The idea is exactly analogous to that of speed, with x substituted

for /. This limit is known as the differential co-efficient or derivative of y

with respect to x at x = 2, and is usually written as i— 1 , or/'(2).

We could do tof\x) what we did to/(x), that is, we could enquire what

is the rate of change of/'(*) with respect to x at the value x = 2—or at

any other value, for that matter. It is similarly the limit of the average

rate of change:

f'(2 + h) -f'(2)
^ _
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as h tends to zero. This limit is the differential co-efficient or derivative of

/'(*) with respect to x at x = 2. Since f'(x) itself was derived from/(x)

by the same process, we may also call the limiting value of (1) the second

differential coefficient or derivative offix) with respect to x at x = 2. We

denote it by
(S),

or f(2). There is no reason why we should

stop here. We could repeat the process to derive successively the third,

fourth . . . differential coefficients off(x) for any specific value of x, such

as 2. This successive generation of differential coefficients is no mere free

Fig. 2—As Q travels along the graph line to coincide with P, PQ
takes the position of the tangent PT. The angle

<f>
becomes the angle a.

dy
In the limit therefore, -r = tan 6.

ax

creation of the curious mind. The railroad engineer has to employ second

derivatives to calculate the curvature of the line he constructs. He needs a

precise measure of the curvature to find the exact degree of banking re-

quired to prevent trains from overturning. The automobile designer

utilises the third derivative in order to test the riding quality of the car he

designs, and the structural engineer has even to go to the fourth derivative

in order to measure the elasticity of beams and the strength of columns.

It is not difficult to see how the first and higher order derivatives arise

naturally in problems like these. Suppose the curve APQC represents the

railway line. (See Fig. 2.) Before the calculus can be applied we must

somehow represent it algebraically, that is, by some functional formula.

This is done by taking any two perpendicular reference lines XOX' and
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YO Y' through a point of origin and indicating the position of any point

P by its distances (x, y) from these reference lines or 'axes'. The distances,

x, y, are called co-ordinates. Now if we consider any point P on the line

and measure its co-ordinates (x, y), we find that y is usually some function

of x, such as y = f(x).

This equation gives the variation of y due to a change of x. At any
point P(xQ, y ) of the line the value of y is f(x ). At another point

Q(x +- h, y + d) very close to P and also on the railway line, the value

ofy is/(* + h). Hence the change in y is/(* + h) -f(x ), or the length

QR = d. The average rate of change ofy per unit change of x is

f(x + h)-f(x ) _d _QR
h h PR

If the angle QPR is denoted by <p, the ratio QR/PR is known as the slope

or gradient of the line PQ, and is written as tan 9?, which is short for tangent

of the angle <p. It follows, therefore, that the average rate of change of v

at P with respect to x is the gradient or slope of the chord joining P to

another point Q of the line very close to P. If we diminish h, the average

rate ofchange ofy during the interval (xq, x + h) approximates more and
more closely to the actual value of the instantaneous rate at P. The latter

has already been defined as dy/dx. On the other hand, as h diminishes and

Q approaches P along the graph line, the chord line PQ becomes a tangent

to it at P, that is, the straight line PT which just grazes it. Hence the value

of dy/dx at P measures the gradient or slope of the tangent to the curve at

P.

dy
In symbols, — = tan 0.

dx

Now, at any point P the direction of the line is along the tangent PT.

At another point Q on the line it is along the tangent QT at Q. (See Fig.

3.) The measure of its bend as we travel from P to Q along the line is

therefore the angle between the two tangents at P and Q. The rate of its

bend or curvature is the ratio

:

total bend

length of the curved line PQ

This is, of course, the average curvature along the whole length of the

arc PQ. If we want its precise curvature at the point P, we must, as before,

find the limit of this ratio as the length of the arc PQ is indefinitely de-

creased by bringing Q infinitely close to P. In other words, we have to

differentiate the angle of the tangential direction at P with respect to the

length PQ of the arc. But, as we have seen already, tan 6 is dy/dx. It is,



MATHEMATICAL IDEAS

Fig. 3—The total bend of the line as we move from P to Q is the angle between the two
tangents at P and Q, that is, 0' — 0.

therefore, inevitable that in the process of differentiation of the angle

we should encounter second derivatives.

As we saw, the problem of calculating instantaneous speed and accelera-

tion of moving bodies at any given instant of time from the mathematical

formula connecting the distance (y) travelled and the time (t) of their fall

or flight, gave rise to the differential calculus. The inverse problem of

calculating the distance travelled, given a mathematical formula connect-

ing speed or acceleration with time, led to the development of the Integral

Calculus.

Suppose a particle moves with speed v which is given by the relation

v = t . What is the distance, s, travelled during the time interval from say

t = l to t — 6? If the speed had been uniform we could have got the

desired distance by multiplying the uniform speed by the duration of the

time interval during which it was maintained. But in the problem before

us the speed does not remain the same even for two consecutive instants.

How are we to apply the rule which is valid for a static speed to

calculating the distance travelled when it is no longer so?

Essentially this is a problem of reconciling irreconcilables, of finding a

method of resolving the inherent conflict between change and permanence.

This conflict is universal—between the ever-changing material world and

the static, permanent or quasi-permanent forms and categories that we

invent and impose upon the world to understand it. Newton and Leibnitz

were the first to devise a practical way of resolving this conflict in the case
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of moving bodies. The method proposed was simple in principle—once it

was discovered. They divided the duration of motion into a large number
of sub-intervals during each of Which its velocity was assumed not to

change. The rule for static speed could now be applied for each sub-

interval separately and the distance derived by summing all the distances

travelled in each sub-interval.

Suppose, for instance, we divide the interval of time from t = 1 to

t = 6 into any number, say 10, of equal sub-intervals, each of duration

6— 1——— = i second, by taking nine intermediate point-instants 1 + \,

1 + f , 1 + i, 1 -f- 1, . . ., 1 -f f between the times / = 1 and t — 6.

Consider now the first sub-interval from the initial instant / = 1 to

f = 1 -f £. Since the speed v is given by the formula v = t the speeds at

the beginning and end of the first sub-interval were 1 and (1 + i) res-

pectively. The distance travelled during the first sub-interval is, therefore,

greater than l(i) but less than (1 + i)i- Similarly the limits between which

the distances travelled during the second, third, fourth, . . . and tenth

sub-intervals lie, can be calculated. We tabulate these limits below:

Sub-interval Lower limit ofthe Upper limit of the

of time distance travelled distance travelled

First Kl) (i + m
Second (i + m (l + f)G)
Third (i + D(i) (l + IXi)
Fourth (l + IXi) (l + #Xi)
Fifth (i + t)(i) (l + IXi)
Sixth (i + m> (1 + IXi)
Seventh (1 + IXi) (i + m)
Eighth (l + *Xi) (l + f)(i)

Ninth (l + |Xi) (l + fXi)
Tenth (1 + f)G) (i + ¥)G)

Total = Si Sx

Let sx and Sx be the sums ofthe lower and upper limits of distances travelled

during the ten sub-intervals. Ifwe add up the ten terms shown in the above

table of lower and upper limits we get,

si = H10 + (1 + 2 + 3 + • • • 9H}
= K10 + ¥)= 16-25;

= K10 + ¥) = 18-75.

The actual distance travelled, therefore, lies between 16-25 and 18-75 feet.

It is not an exact answer but good enough for rough purposes. To improve
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the precision of our answer, we have to shorten further the sub-intervals

by dividing the original interval t = 1 to t = 6 into a larger number of

sub-intervals, say, 100 instead of 10 so that the duration of each sub-

6-1 1

interval now is = — . The only snag is that the calculation is longer
100 20

but not different in principle. If we denote by s2 and S2 the corresponding

sums of lower and upper limits for the distance travelled during these

shorter sub-intervals, we find that

= afcllOO + (1+2 + 3 + ... 99)2*6-} = 17-37;

= iro{100 + (1 + 2 + 3 + . . . lOO)^} - 17-63.and, Sj

This gives us still closer limits within which the actual distance travelled

must lie, viz. 17-37 and 17-63. If we repeat the calculation by dividing the

interval into 1000 sub-intervals, the corresponding sums s3 and S3 will be

found to be

s3 = 2tVo(l000 + (1 + 2 + 3 + . . . 999)2tW} = 17-48;

and, S3= 2-£o{1000 + (1 + 2 + 3 + . . . 1000)2iW} = 17-51.

These are even closer limits for the actual distance travelled during the

interval (1, 6). We may tabulate the successive values of the upper and

lower limits

:

sx = 16-250 St = 18-750

s2 = 17-375 S2 = 17-625

s3 = 17-4875 S3 = 17-5125

54 = 17-49875 S4 = 17-50125.

From the above table, we may infer that the sums of lower limits or, for

short, lower sums slt s2 , s3 , . . . continually increase while the upper sums
Slt 5*2, S3, . . . continually decrease. Moreover, the difference between the

two corresponding lower and upper sums continually decreases so that

both sums approach the same limit as the number of sub-intervals is in-

definitely increased. This common limit of the two sums which, as we may
guess, is 17-5, is the actual distance travelled. It is also known as the in-

tegral of speed with respect to time over the interval (1, 6). We denote it

by the symbol
re re

sdt, or tdt, as s

In this, the integral sign f is only a distorted form of S, short for sum, to

remind us that it is really a limiting sum.

If we look at the speed-time graph (Fig. 4), the line ODC will represent

the relation s = t. We can use this graph to simplify the calculation of the
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speed integral. Suppose we divide the time interval (1, 6) represented by
the segment AB ofthe time-axis Ot into any number of equal sub-intervals.

Consider now any such sub-interval, say, LM. At the instant oftime repre-

sented by the point L, the speed is given by LP and at M byMQ. The dis-

tance actually travelled during the sub-intervalLM, therefore, lies between
the lower limit, LM.LP, and the upper limit, LM.MQ, since distance

Fig. 4

= time x speed. These limits are obviously the areas ofthe two rectangles,

LPQ'Mand LP'QM. As we increase the number of sub-intervals, the sub-

interval LM diminishes indefinitely. The areas of the two rectangles be-

tween which the actual distance travelled lies approximate more and more
closely to the area of the trapezium LPQM. But as the total distance

travelled during the interval (1, 6) is the sum of all such areas, it is naturally

represented by the area of the trapezium ABCD. Now the area of the

trapezium ABCD—
= A OBC - A OAD
= UOB)(BC) - KOA)(AD)
= K6)(6)-K1)(D
= K62 - l

2
) = 17-5.

We may therefore write
j

tdt = #62 — l
2
).

From this we may readily infer that the distance travelled during any
rti

interval (/„, tx) is the definite integral tdt = ftt\ — f*).
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We can further generalise this result. Instead of working with the speed-

time graph s = t, we may start with the graph of any function y = f{x),

and enquire what is the area enclosed by the graph line BC, the two ordin-

ate lines AB, DC and the segment AD on the x-axis, where OA is any
length x and OD any other length xv (See Fig. 5.) As before, we divide

the segment AD into any number of equal sub-intervals. Take any sub-

interval LM. The area LPQM enclosed by the arc PQ of the curve evi-

dently lies between the areas of the inner rectangle LPQ'M and the outer

rectangle LP'QM. As we increase the number of these rectangles m-
definitely, the areas of the two rectangles approximate more and more
closely to the area LPQM enclosed by the small arcPQ of the graph line.

But the sum of the areas of inner rectangles like LPQ'M is the exact

M D

Fig. 5

analogue of the lower sum, and that of the outer rectangles like LP'QM
that of the upper sum we constructed earlier while integrating the speed

graph v = t. These two upper and lower sums tend to a common limit as

the number of sub-intervals is indefinitely increased. This common limit is

the integral f(x)dx. Obviously, this integral is also the measure of the

area ABCD enclosed by the graph line BC as each of the inner and outer

rectangles approximates, more and more closely, to the actual areaLPQM
under an elementary arc PQ of the graph line.

Now although we have defined the definite integral
|

f(x)dx as the

area of the curve ABCD, it is not the only possible interpretation that can
be given to it. The essential idea behind it is that it is a limiting sum of an
infinite series of terms. It thus comes to pass that whenever we have to
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add up an infinite number of values of a function corresponding to an

infinite number of values of its independent variable, the definite integral

plays an indispensable role. For instance, when the hydraulic engineer

constructing a dam wants to ascertain the total water pressure likely to

be exerted on the whole face of the dam, he divides the entire dam surface

into an infinite number of point-bits. As the pressure at any arbitrary

point-bit ofthe dam surface can be calculated, the calculation of the whole

pressure on the dam surface is a summation problem and therefore amen-
able to integration.

Here pressure is a function of the depth of the point-bit below the water

surface. It is the same with other problems facing the bridge engineer, the

architect and the electrician in the calculations, respectively, of moments
of inertia, centres of gravity of solids and surfaces, magnitudes of electro-

magnetic fields, etc. In all these problems the value of a quantity such as

mass, moment, hydraulic pressure, electric or magnetic forces, is given at

each of an infinite number of points in a region or space and it is desired

to calculate their sum.

It is often inconvenient to calculate such limiting sums directly. The
calculation is greatly simplified by the use of a theorem which links inte-

gration with differentiation. As we have seen, the integral f(x)dx is the

area enclosed by ADCB (Fig. 5). Ifwe treat xr in this integral as a variable,

the integral itself becomes a function of xv Let us call it F(x^). Then

J*0
f(x)dx.

What is the differential coefficient of F(Xj) ? According to the rule we have

established, it is the limit of

F(Xl + h)- F(Xl)

as h tends to zero. Now F(xj) is the area AQPB (Fig. 6) and F(xx + h) is

the area AQ'P'B (Fig. 6). The difference is the area QQ'P'P or approxi-

mately QQ'PQ = A./(jcj). The smaller h is, the more nearly is the area

PQQ'P' equal to h.f(xx) and hence as h tends to zero, the limiting value of

dF d cxx
In other words,— =— f(x)dx = /(.*i).

dX-y dXx J Xq
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That is, the differential coefficient of the integral of a function is the func-

tion itself. Thus differentiation and integration are inverse operations Kke
multiplication and division. Just as multiplying a number by another and

Fig. 6—F(pcd is the areaAQPB, and F(xt + h)the area AQ'P'B. The
difference, therefore, is the area QQ'P'P which is approximately
QQ'.PQ, orfixj.h. The rate of change of area under the curve at P
is the value offix) at P.

then dividing the product by the same factor leaves the number unchanged,

so integrating a function f(x) and then differentiating the integral leaves

the function as it was before.

The great power of the calculus depends on this fundamental theorem,

for, in our study ofnature we often assume a formula for the rate ofgrowth

O

of one variable per unit change of the independent variable, and we then

want to know if the formula really works. For instance, in his study of

motion Newton assumed that the temporal rate of change of velocity of

a moving body, that is, its acceleration, is equal to FJm, where F is the

force applied to it and m is its mass. He applied this formula to a wide

class of phenomena, from the motion of the pendulum to that of the moon.



THE CALCULUS 41

This formula always led to an equation in which occurred the rates of

change or the differential coefficients. Thus,*in the case of the motion of

the pendulum bob, it led to the equation dv/dt = F/m.

Now, if we assume that the circular arc that the bob describes is small,

we may consider it as oscillating along the straight line BC instead of the

arc BAC (see Fig. 7). Let its distance in any position P be x from the

central position O'. The force F acting on it in this position is that part or

component* of the tension of the string holding the bob, which acts

along the direction of its motion, that is, the direction O'B. It can be

shown that this component is —mg.x/l, where lis the length of the string

and mg the weightf of the bob. Newton's formula, therefore, leads to the

equation

dv/dt = —gx/l.

But as we know, v itself is dx/dt, so that the equation of the motion of the

pendulum bob is

dv d/dx\ d2x gx

It
=

Jt\dt)
=
~W

=
T

or, d*x/dt* = -gx/l . . . . (1)

Such an equation in which differential coefficients ofthe dependent variable

with respect to the independent variable occur is known as a differential

equation. All that Newton's famous laws of motion and gravitation do is

to set up a system of one or more differential equations essentially of the

type written above. The motion of the body or system of bodies is then

known, if we can 'solve' the differential equations, that is, find x as a

function of t so that it satisfies them.

If we consider the solution of any differential equation such as (1) we
shall find that it is indeterminate in one respect. You will recall that in

formulating it, we merely used Newton's law and took no account of the

initial position from where the bob is let go. This means that the differential

equation is indifferent to its initial position. J No matter where the bob is,

one and the same differential equation (1) results, and yet what motion it

actually executes must also depend on its initial position. Thus its motion

when it is released at B is not the same as when it is released at P. In the

one case it oscillates between B and C and in the other between P and Q
(see Fig. 7). It therefore follows that the differential equation defines no

* See Chapter 4 for a fuller explanation of the component of a force.

t Weight, by the way, is the product of mass m and the acceleration g of gravity, the

acceleration with which everything when released falls towards the surface of the earth.

X The assumption is still made that the arc 5Cis small and can be identified with the

chord BC.
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particular motion of the bob but the whole class of its possible motions

corresponding to all its initial positions.

The precise solution of the equation therefore involves the choice of that

particular solution out of this class which fits the prescribed initial condi-

tion. Here the initial condition is specified by a single magnitude denoting

the position of the bob just at the commencement of its motion. But in

more complicated cases there are usually many initial conditions which

have to be specified by several magnitudes. Take, for instance, Lord

Kelvin's theory of the transmission of signals in a submarine cable,

whereby he established the theoretical feasibility of an Atlantic cable long

before trans-oceanic cablegram became an accomplished fact.

In this case, not only is the differential equationmore complicated but the

initial conditions too are more numerous. The reason is that we need to

know the state of the cable before one of its ends is suddenly connected

to a battery terminal, and not merely at one particular point but all along

its length. In other words, the initial conditions also include boundary

conditions—that is, the initial state of affairs prevailing all over the

boundary or surface of the cable.

From what has just been said it follows that even ifwe are somehow able

to solve a differential equation, we must adjust it to suit the given initial

conditions. A vast amount of new mathematics created during the past

200 years is merely the outcome of this search in physics and astronomy

for solutions of differential equations satisfying prescribed initial condi-

tions. After a prodigious number of special solution functions had been

invented, it was found that in many cases a differential equation along

with its accompanying set of initial conditions is equivalent to an integral

equation, in which the unknown variable x appears under an integral sign

instead of a sign of derivation. It is thus possible to reformulate certain

physical problems in terms of integral rather than differential equations.

The great advantage of such reformulation is that the passage from simpler

to more difficult problems is not attended with any serious increase in

complication as is the case with differential equations.

There are, however, phenomena in which the initial state of a system

does not suffice to determine its subsequent evolution. Thus, the evolution

of an elastic system is not always determined by its initial state alone but

by all its previous states. The past is not completely obliterated and an

ancestral influence of a sort controls the shape of things to come. For in-

stance, the type of motion a pendulum bob executes depends solely on the

initial position from where it is released no matter what oscillations it

might have executed earlier, but if you try to twist an elastic wire, the

result will largely depend on how and how many times it had been twisted

before. It is because of this hereditary or ancestral influence that materials
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sometimes fatigue and break down under comparatively minor strains,

whereas earlier they could have stood up to much heavier strains.

Such hereditary phenomena require a new mathematical instrument

called the integro-differential equation, in which the unknown function x
appears under a sign of both integration and derivation. It can be shown
that such an equation is equivalent to an infinite number of ordinary

differential equations, and this is the reason why they apply to hereditary

phenomena. For the initial state which was determined earlier by a few

magnitudes has now to be broadened to include the whole infinity of past

states. It has, therefore, to be specified by an appropriate choice of an
infinite number of magnitudes.

Now, if we view the elastic system atomistically, and thus consider an
extremely large number of ordinary differential equations regulating the

motions of an extremely large number of particles, each with its own set of

initial conditions, we may disregard the hereditary feature which experi-

ence seems to require. But as an infinity of differential equations is mathe-

matically intractable, it has to be replaced by a single integro-differential

equation which is equivalent to this infinite set.

It is needless to add that it is easier to write equations, whether differ-

ential, integral or integro-differential, than to solve them. Only a small

class of such equations has been solved explicitly. In some cases, when, due

to its importance in physics or elsewhere, we cannot do without an equa-

tion of the insoluble variety, we use the equation itself to define the func-

tion, just as Prince Charming used the glass slipper to define Cinderella as

the girl who could wear it. Very often the artifice works ; it suffices to iso-

late the function from other undesirables in much the same way as the

slipper sufficed to distinguish Cinderella from her ugly sisters.

{Thefollowing section may be omitted on first reading)

So far we have considered only functions which depend on a single

independent variable x. This assumes that variation in a magnitude (y)

can be explained by the variation in a single independent variable x. But
in most situations, where we have to explain the variation of a magnitude

(y), this assumption is simply not true. As a rule a dependent variable y is

influenced by several independent variables simultaneously. Even in the

simple case cited earlier, of the pressure of a gas enclosed in a cylinder, it

is rather an over-simplification to say that pressure depends on volume,

because in actual fact it also depends very materially on temperature too.

In this case this extra dependence on temperature does not cause much
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inconvenience, for we can study the functional relationship between pres-

sure and volume by keeping the temperature constant. But in many cases

this device merely produces an abstract schema too far removed from
reality.

For example, in econometrics the price of a commodity is considered to

be a function of a whole host of variables, such as the incomes of various

social groups, prices of other competing goods, production costs, the

nature of the commodity itself (e.g. a necessity or a luxury), and the

seasonal effects in the case of what are called 'anchovy goods', which are

goods with very heavy supply-fluctuations, such as the catch of fish, which

in one year may be a hundredfold that of another year. An econometric

law which correlates one magnitude with another single variable under the

ceteris paribus condition (other factors remaining the same) can never be

actually tested, as the 'other factors' do not, in fact, remain the same. Nor
would it be of much use even if it were 'true' in some imaginary market
where other factors were assumed to remain the same. But long before

econometricians felt the need for a calculus of multi-variate functions, that

is functions depending on more than one independent variable, mathe-

maticians had begun to create one in an attempt to study fluid motions.

Just as Newton was led to the notion of differential coefficients in his

studies of the motion of projectiles and heavenly bodies, so also Euler was
led to the notion of partial differential coefficients in applying Newton's
equations of ordinary dynamics to fluid motion. In ordinary dynamics the

projectile (or heavenly body) is considered to be a particle whose velocity

is a function of the single independent variable time. But a fluid cannot be

treated as a mere particle. It has bulk which cannot be disregarded even in

an abstract schematic treatment. Moreover, a fluid in general not only

varies in velocity from point to point in space at any one instant, but

also from moment to moment of time at any one point.

A fluid motion, say on the Earth, has therefore two aspects : a geographic

aspect and an historic aspect. When we* consider the former, we fix our

attention on a particular instant / of time and wish to study the velocity of

a fluid particle as a function of its geographic position. In the latter we
rivet our attention on a specified particle of the fluid and study its velocity

as a function of time. A combination of both the aspects, that is, con-

sideration of the velocity of a fluid particle as a function of both space and
time simultaneously, will give an actual picture of the fluid flow as a whole.

In this way we are led to the notion of a multivariate function; that is, a

function depending on more than one variable. Such, for instance, is the

case with the velocity of a fluid particle, as it is a function not only of time

but also of the position co-ordinates of the particle in question.

To illustrate the idea of the partial differential coefficient to which Euler
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was led by a study of fluid motions, let us consider a function y which

depends on two independent variables xx , x2 , simultaneously:

y=A*i> *2).

Consider first xx . Since y is a function of xx , x2 only, that is, it depends on
only xx, xit any change (small or otherwise) in its value can arise only on
account of a change in xx or x2 or both. In science, whenever we have to

investigate a phenomenon which depends on more than one cause (e.g.

agricultural yield, which among other things is a function of the qualities

of both manure and seed), we disentangle the complex field of influence of

the two factors by studying the influence of each in isolation from the

other. Once we have studied the effect of the causes singly, we can give

due weight to each when the isolates are put back into their natural inter-

relations.

This method is appropriate in the case under consideration. To begin

with, we make a small change dxx in the value ofxx only, making no change

in that ofx2 . What change would it cause in the value off(xx) ? As we have

seen, the derivative df/dxx , is the rate of change off(xx) oryper unitchange
of xx . That is, for every unit change of xx , the corresponding change in/
or y is df/dxx . Hence for a small change dxx in the value of xx the corres-

ponding change in /or y would be the product:

<£h
Note carefully that /is a function of xx as well as x2 ; but as we have

assumed no change in the value of x2 we must express this fact somehow
in our notation. This is done by writing df/dxx instead of dfjdxx so as to

remind us that the other variable, x2 , is not to be changed and is therefore

to be treated as if it were a constant. The quantity df/dxx is known as the

partial derivative of/ with respect to xx . Hence the change in /or y cor-

responding to a small change in xx , x2 remaining unchanged, is ( -r- ) dxx .

We now study the change in/(or y) corresponding to a small change in

the value of x2 while no change is made in the value of xx . A similar argu-

ment shows that it is

:

^—dx2 .

cx2

What then is the change in / (or y) if both xx , x2 are changed simul-

taneously ? We may assume that it is the sum of the changes induced by
the small changes in xx and x2 acting singly. It may not be an accurate
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assumption to make when the changes in xx and x2 are combined to pro-

duce a new complex, but it is quite good, for all practical purposes, if the

changes in x
x , x2 are infinitesimally small. We therefore conclude that a

small change in the value of y, induced by the joint operation of small

changes xt and x2 in the values of xx and x2 , is the sum of the changes in-

duced by them singly. In other words,

df df
dy = ^-dxx + —dx2 .

ox^ ox2

In obtaining his equations of motion of fluid flow Euler merely made
use of an extension of this theorem, viz. a small change in any function

f(xx , x2 , x3 , t) of four independent variables xx , x2 , x3 , and time t is given

by the sum:

df df df df
df= ^— dxx +— dx2 +— dx3 + — dt.

dxt dx2 dx3 dt

With the help of this theorem and the application to a small volume

of fluid element the second law of Newton

—

viz., that the product of the

mass and rate ofchange of velocity in any direction is equal to the resultant

of forces (including fluid pressures) acting thereon in that direction, Euler

obtained equations ofmotion connecting the partial differential coefficients

(or rates of change) of velocities with respect to the three spatial co-

ordinates and the time. In addition, he obtained another partial

differential equation—the equation of continuity—from the consideration

that the mass of any moving fluid element under consideration remains

constant.

Now, since velocity at any point has three components, say (u, v, w),

along the three co-ordinate axes, it is obvious that the above-mentioned

equations would involve partial differential coefficients of three separate

functions («, v, w) with respect to x, y, z and t. It is possible in many cases

to merge the search for the three separate functions, u, v, w, satisfying these

equations into the search for a single function called the velocity-potential

function, &, of four independent variables x, y, z, t satisfying the same
equations. But the equations by themselves do not specify the velocity-

potential function uniquely. They are satisfied by a far more general class

of functions of which the potential function is just one. To narrow down
further the margin of mdeterminateness we have to make use of boundary

conditions which the velocity potential must satisfy. What this means may
be explained by an example.

Suppose we consider the flow of water in a canal between two parallel

banks. In this case the velocity potential & must not only satisfy the

Eulerian equations of motion and continuity referred to above but also
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the further condition that at the boundary of the fluid (that is, at the bank)

the velocity component perpendicular to the bank is zero. In other words,

must satisfy the boundary condition that the fluid flow at the bank is

parallel to it and that no particle flows past it, which could happen only if

the banks were breached. Thus, if the Eulerian equations of motion and

continuity are the slippers that isolate our ^-Cinderella from the undesir-

able members of its family, the boundary condition is the censor that for-

bids the banns should a relation attempt to masquerade as ^-Cinderella

by wearing the slippers. Unfortunately it has not been possible to discover

a ^-Cinderella who could wear the slippers and satisfy the censor in the

general case of fluid motions. And yet Euler had made the slippers rather

loose, since he disregarded an important property of real fluids, viz. their

viscosity.* Seventy years later Navier and Stokes made them much tighter

by adding what may be called the viscous terms to the three Eulerian equa-

tions of fluid motion. That made matters more difficult.

Largely owing to the great inherent difficulties of the subject, hydro-

dynamical theory was obliged to make a number of simplifying assump-

tions and thus became more a study of 'perfect' or 'ideal' fluids than that

of actual fluids in the real world. This was natural. But unfortunately the

next step—that of proceeding to a more realistic state of affairs by em-

broidering variation from the ideal on the theory—was long delayed. As a

result the theoretical development of fluid mechanics did not lead to such

perfect harmony between theory and observation as in other branches of

mathematical physics such as optics, electricity, magnetism, thermo-

dynamics, etc.

For instance, soon after the formulation of the Eulerian equations of

fluid motion a paradox, known as D'Alembert's paradox, emerged. The

paradox arose because hydrodynamical theory seemed to prove that any

body completely immersed in a uniform, steady stream of fluid would

experience no resistance whatever—a result quite contrary to experience.

D'Alembert's paradox was not an isolated case where plausible hydro-

dynamical argument led to a conclusion contradicted by physical observa-

tion. Before long it appeared that classical hydrodynamical theory was

replete with paradoxes which it was unable to rationalise. Such, for in-

stance, were Kopal's paradoxes, paradoxes of airfoil theory, the reversi-

bility paradox, the rising bubble paradox, the paradox of turbulence in

pipes, Stokes' paradox, the Eiffel paradox, the Earnshaw paradox, the

DuBuat paradox, etc.

The emergence of such a multitude of paradoxes clearly showed that

hydrodynamical theory did not conform to experimental reality. One

* We commonly call liquids like tar or treacle viscous as they exhibit a tendency to

resist change of shape.
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consequence of this failure was particularly unfortunate. It made hydro-
dynamics increasingly abstract, academic and removed from actuality.

The engineers, who felt that the mathematicians had left them in the
lurch by producing hydrodynamical results largely at variance with reality,

began to create a new science of their own. This science of hydraulics was
designed to give approximate solutions to real problems. But, lacking a
sound theoretical foundation, hydraulics rapidly degenerated into a morass
of empirical and semi-empirical formulae. So, by the close of the nine-
teenth century, both the mathematicians engrossed in 'pure' theory devoid
of fresh physical inspiration, and the engineers absorbed in accumulating
experimental data without adequate rationalisation by deductive theory,
seemed each to have reached blind alleys of their own.
With further progress thus blocked, it was now time to think of a way

out. Naturally the very first question that arose was to consider whether
these paradoxes were due to the neglect of viscosity or to some more
serious flaw deep in the fundamental assumptions of traditional hydro-
dynamics. We shall examine this basic question of the foundations of
hydrodynamics a little more fully. To begin with, let us take viscosity.

It will be recalled that hydrodynamical theory considered ideal fluids of
zero viscosity rather than real fluids which show more or less tendency to
resist change of shape. But this is only part of the story. The complete
story is that in deriving the equations of fluid motion we must make one of
two approximations. Either we neglect viscosity, which leads to Euler's
equations for a so-called non-viscous fluid, or we neglect compressibility
and assume that fluid density remains constant to obtain Navier-Stokes'
equations for an incompressible fluid. Can we attribute the paradoxes of
hydrodynamics solely to one of these two approximations? The answer is

no, because it can be shown that many of the paradoxes are not due to one
or other of these two approximations. But even if it were shown that they
were, there seems to be no way of avoiding them, for even with these
simplifying approximations the mathematical problem in most cases is

quite involved if not intractable. Besides, these approximations have to be
made because we do not actually know how viscosity acts in a fluid under
rapid compression. Without them hydrodynamical theory, therefore,
would have to stop almost at the very threshold. How are we then to
rationalise hydrodynamical paradoxes?

Birkhoff has recently shown that there can be no simple answer to this
difficult question. What is required is a profound analysis of the entire
body of mathematical, logical and physical assumptions (tacit or other-
wise) of hydrodynamical theory in the light of experimental data, for, as
Birkhoff has demonstrated, hydrodynamical paradoxes are not solely due
to the single 'unjustified' neglect of viscosity. They are equally due to
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faulty physical and logical assumptions underlying hydrodynamical

reasoning. Take, for instance, the rising bubble paradox. If we consider a

small air bubble rising in a large mass of water under its own buoyancy,

conditions of symmetry* require that it should rise vertically. And yet in

most cases it ascends in a vertical spiral instead. This paradox arises be-

cause of the assumption that *symmetric causes produce symmetric effects'.

But as Birkhoff rightly suggests, the symmetric effects that symmetric

causes produce need not necessarily be stable. If they happen to be un-

stable, a slight deviation would tend to multiply and the symmetry in

effects would be too short-lived to be noticeable: the observed effects

therefore would be non-symmetric. In other words, while exact symmetric

causes would, no doubt, produce exact symmetric effects, nearly symmetric

causes need not produce nearly symmetric effects // they happen to be

unstable. Hence before we can legitimately use the arguments of symmetry,

we must first show that symmetric effects deduced are stable. But a demon-
stration of the stability of a mathematical problem is far more intricate

than the deduction itself. It therefore happens that the deduction is often

made before its stability can be proved. This leaves only one alternative,

viz., to make use of the symmetric argument but to test the stability of

deduction in practice—that is, by experiment. This is one illustration ofthe

way in which deductive theory must be interwoven with experimental

practice if hydrodynamics is to be freed from paradox.

Another cause of paradox is the assumption that small causes produce

small effects. Since every physical experiment is actually affected by in-

numerable minute causes, we should be quite unable to predict the result

ofa single such experiment ifwe did not continually make this assumption;

and yet it is not universally true. An obscure fanatic's bullet—as at

Sarajevo—may precipitate a global war, a slight fault in the earth's crust

may cause a devastating earthquake or a deep-sea explosion, and a single

mutation in a gene may alter the entire genetic mould of an individual or

even a race. In the limited field of fluid mechanics there are cases where

arbitrarily small causes do produce significant effects which cannot be

neglected. For instance, a small change in viscosity (though not a small

change in compressibility) may drastically affect fluid flow. This is because

in Navier-Stokes' equations of fluid motion viscosity is the coefficient of

the highest order derivative appearing in the equations. Now in systems

of differential equations, the presence of arbitrarily small terms of higher

order can entirely change the behaviour ofthe solutions. It is not always the

case that as the coefficient of a term in an equation tends to zero, its solu-

tion tends to the solution obtained by deleting that coefficient. It may also

* Under surface tension the air bubble will be spherical and there is no cause which
does not operate symmetrically through the centre of the bubble.
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happen that as this coefficient tends to zero the solution suffers an abrupt

change of nature at some stage. Thus, for example, in the equations of

motion of a sphere through a fluid, a minute change in the value of the

viscosity coefficient from a small value of 10~6 to 0-5 X 10~6 causes a

sudden and radical change in the nature of the whole solution, resulting

in Eiffel's paradox.

We must therefore learn to discriminate between 'right' and 'wrong' ap-

proximations. The only way we can do so is boldly to use them in our

deductive theory but to test the conclusions so derived by experiment. If

any of its conclusions is contradicted by physical observation, we should

have to examine all the approximations made to discover those at fault.

This is the only way we can proceed and even then we may not always be
able to overcome the trouble. For it is quite possible for a paradox to

arise because too many approximations have been assumed* and it is

almost impossible to say which of them was 'wrong'.

These considerations show that hydrodynamical paradoxes are due to

over-free use of approximations, non-rigorous symmetry considerations

and physical over-simplifications. But this does not mean that we can

rescue hydrodynamical theory by supplanting mathematical deduction by
the more 'physical' reasoning so popular with practical engineers—quite

the contrary. For recent developments in fluid mechanics have shown that

mathematics is not just a useful device for presenting results whose broad
outlines were suggested by physical intuition, as Archimedes and Newton
used geometry to present results derived by 'analytical* or 'fluxion' methods.

In many cases mathematical deduction gives correct results verified by later

experiments which physical intuition is not only unable to derive but

would, in fact, straightway reject as grossly absurd. The moral of all this is

that what we need to build (that is, a paradox-free fluid mechanics) is a

happy blend of the practice of the hydraulic engineer with the deductive

theory of the mathematician—a complete interpenetration of deductive

theory and practical experience at all levels. It is fortunate that during the

past fifty years, mainly as a result of the impetus provided by the needs of

aviation, this gap between hydrodynamical theory and experiment has been
progressively bridged by just such a happy blend.

Lewis Mumford has divided the history of the Western machine civilisa-

tion during the past millennium into three successive but over-lapping and
interpenetrating phases. During the first phase—the eotechnic phase

—

trade, which at the beginning was no more than an irregular trickle, grew
to such an extent that it transformed the whole life of Western Europe. It

* This is the case with the Earnshaw paradox.



THE CALCULUS 51

is true that the development oftrade led to a steady growth of manufacture

as well, but throughout this period (which lasted till about the middle of

the eighteenth century) trade on the whole dominated manufacture. Thus

it was that the minds ofmen were occupied more with problems connected

with trade, such as the evolution of safe and reliable methods of naviga-

tion, than with those of manufacture. Consequently, while the two ancient

sources of power, wind and water, were developed at a steadily accelerating

pace to increase manufacture, the attention of most leading scientists,

particularly during the last three centuries of this phase, was directed to-

wards the solution of navigational problems. The chief and most difficult

ofthese was that of finding the longitude of a ship at sea. It was imperative

that a solution should be found as the inability to determine longitudes led

to very heavy shipping losses. Newton had tackled it, although without

providing a satisfactorily practical answer. In fact, as Hessen has shown,

Newton's masterpiece, the Principia, was in part an endeavour to deal with

the problems of gravity, planetary motions and the shape and size of the

earth, in order to meet the demands for better navigation. It was shown

that the most promising method of determining longitude from observa-

tion of heavenly bodies was provided by the moon. The theory of lunar

motion, therefore, began to absorb the attention of an increasing number

of distinguished mathematicians of England, France, Germany and

America.

Although more arithmetic and algebra were devoted to Lunar Theory

than to any other question of astronomy or mathematical physics, a

solution was not found till the middle of the eighteenth century, when suc-

cessful chronometers, that could keep time on a ship in spite of pitching

and rolling in rough weather, were constructed. Once the problem of

longitude was solved it led to a further growth of trade, which in turn in-

duced a corresponding increase in manufacture. A stage was now reached

when the old sources of power, namely wind and water, proved too 'weak,

fickle, and irregular' to meet the needs ofa trade that had burst all previous

bounds. Men began to look for new sources ofpower rather thannew trade

routes.

This change marks the beginning of Mumford's second phase, the

palaeotechnic phase, which ushered in the era of the 'dark Satanic mills'.

As manufacture began to dominate trade, the problem of discovering new

prime movers became the dominant social problem of the time. It was

eventually solved by the invention of the steam engine. The discovery of

the power of steam—the chief palaeotechnic source ofpower—was not the

work of 'pure' scientists; it was made possible by the combined efforts of

a long succession of technicians, craftsmen and engineers from Porta,

Rivault, Caus, Branca, Savery and Newcomen to Watt and Boulton.
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Although the power of steam to do useful work had been known since

the time of Hero of Alexandria (a.d. 50), the social impetus to make it the

chief prime mover was lacking before the eighteenth century. Further, a

successful steam engine could not have been invented even then had it not

been for the introduction by craftsmen of more precise methods of

measurement in engineering design. Thus, the success of the first two en-

gines that Watt erected at Bloomfield colliery in Staffordshire, and at

John Wilkinson's new foundry at Broseley, depended in a great measure

on the accurate cylinders made by Wilkinson's new machine tool with a

limit of error not exceeding 'the thickness of a thin six pence' in a diameter

of seventy-two inches. The importance of the introduction ofnew precision

tools, producing parts with increasingly narrower 'tolerances', in revolu-

tionising production has never been fully recognised. The transformation

of the steam engine from the wasteful burner of fuel that it was at the

time of Newcomen into the economical source of power that it became in

the hands of Watt and his successors seventy years later, was achieved as

much by the introduction of precision methods in technology as by Black's

discovery of the latent heat of steam.

A natural consequence of the introduction of higher standards of re-

finement in industry and technology was that mathematical language itself

became increasingly exact, subtle, fine, intricate and complex. The greatest

change in this direction occurred in the language of the infinitesimal

calculus, as the reasoning on which its technique had been based was
shockingly illogical.

The methods of calculus were accepted, not because their reasoning was
logically impeccable, but because they 'worked'—that is, led to useful re-

sults. For instance, in calculating the 'fluxion', or—as we now say—the

differential coefficient of x2
, the founders of the calculus would substitute

x 4- for x in a term like x2
, expand the resultant expression (x + 0)

2 as

if the zero within the bracket was a non-vanishing quantity, and then let

disappear in the final step. In other words, they believed that there

existed quantities known as the 'infinitesimals', or 'fluxions', which could

be treated as zero or non-zero according to the convenience of the mathe-
matician.

This glaring illogicality of the calculus did not escape unnoticed. It was
exposed with masterly skill by a non-mathematician, Bishop Berkeley, the

famous idealist philosopher. While the mathematicians, with unerring

instinct, ignored the attack and went on piling formulae upon formulae
like Ossa upon Pelion, these methods brought the mathematicians into

bad repute. Swift's caricature of the mathematicians of Laputa and his

denunciation of them as 'very bad reasoners' was possibly inspired by
Berkeley's withering critique of the 'fluxions'. In his VHomme Aux
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Quarante Ecus, Voltaire, too, had a dig at the analysts when he remarked

that a 'geometer shows you that between a circle and a tangent you can

pass an infinity of curved lines but only one straight line, while your eyes

and reason tell you otherwise.'

It is true that some gifted mathematicians of the eighteenth century had

realised that although the calculus towered over mathematics like a

colossus, its feet were made of clay. Thus, D'Alembert neatly epitomised

the whole situation when he remarked that 'the theory of limit is the true

metaphysics of the differential calculus'. Lagrange, another eminent

mathematician of the same century, tried, though unsuccessfully, to cut

the Gordian knot by jettisoning the infinitesimals, 'fluxions' and 'limits' as

so much useless lumber, and by representing all functions as sums of a

power series—that is, a non-terminating series like a + axx + a2 x
2+ . . ..

No doubt, in this way he escaped the mysterious infinitesimals which

were both zero and not zero at the same time, but he thereby ran

into another difficulty, no less serious—that of summing an infinite

series.

The way out of the difficulty was first pointed out by a French mathe-

matician, Cauchy, who, during the second decade ofthe nineteenth century,

set out to purge the calculus of all its illogicalities, loose methods of reason-

ing, and premises of doubtful validity. He thus virtually introduced a

'New Look' that has come to stay in mathematical reasoning. New Look
was suspicious of all arguments based on vague analogies and geometric

intuition. So it began to examine more precisely all those vague notions

and concepts which had hitherto been taken for granted. Take, for in-

stance, the idea of mathematical limit which we explained earlier. The

founders of the calculus thought they knew what they meant by a limit.

In ordinary language, we use it to mean a sort of a terminal point or a

bound that may not or cannot be passed. Thus, the Phoenician navigators

considered the Pillars of Hercules as the limit of navigation, because in

those days few ships that sailed beyond them ever returned. When mathe-

maticians began to define speed at an instant as the limit of the average

speed when the time interval over which it is averaged tends to zero, they

pictured it in much the same manner as the Phoenicians thought of the

Pillars—as a sort of barrier past which the average cannot go. But this

explanation of the limit notion, though it may be a good enough start, is

not sufficient. For, while the mathematical meaning of limit is vaguely sug-

gested by its linguistic usage, it is not precisely defined thereby. Cauchy
gave the first genuinely mathematical definition of limit, and it has never

required modification. The need for it had been realised earlier by many,

but it came into being nearly 150 years after mathematicians had been man-
ipulating with limits. So if you do not get it right first reading, do not
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be disappointed. It took the mathematicians themselves the best part of a

century to frame it.

To grasp the idea underlying Cauchy's definition of a limit, let us con-

sider once again the distance function y = t
2 by which we introduced the

limit notion, but to give greater generality to our results we shall make our

symbols y and t meaning-free. That is, we shall no longer think of y as

distance and t as time but let them denote any two variables whatever re-

lated by the same functional formula. It would help in this abstraction if

we changed the notation a little and worked with the formula y = xz

instead of y = t
2

. Earlier we defined dyjdx at x = 2 as the limit of

(2 + hf - (2)*

(2 + h) - 2 '
' '

K)

when h tends to zero. Here the expression (1) is really a function of k as it

depends on the value of h taken. For any given value of h (except h = 0*),

we can calculate the corresponding value of (1) by substituting it for h in the

expression (1). In fact, if we simplify this expression, we find that it is

4 + 4A + W -4 (4 + h)h A ,

* =—
h~ =4 + /l

for any value of h other than zero.

This shows that if we assume h successively to be -1, -01, -001, -0001,

. . ., the corresponding values of (1) are 4-1, 4-01, 4-001, 4-0001, . .

.

respectively.

We thus conclude that the limit of (1) is 4 as h is indefinitely decreased.

This may seem to suggest that the limiting number 4 is a sort of barrier

point beyond which the value of (1) cannot pass. Actually this is not always

true. Thus if we assign h a succession of negative and positive values

•1, —1, -01, —01, -001, —001, -0001, —0001, ... we obtain for (1) the

values 41, 3-9, 4-01, 3-99, 4-001, 3-999, 40001, 3-9999, . . ..

Here even though the value of (1) continually crosses the barrier num-
ber 4 backward and forward, nevertheless it keeps on coming closer and
closer to 4. We are, therefore, still justified in calling 4 as the limit of (1).

The essential idea of the limit is not that it is a sort of impassable terminal

but that it is a point of continually closer and closer approach. For this

purpose it is, of course, necessary that we should be able to make the

value of (1) approach as near its limiting value 4 as we like by making h

sufficiently small. But what is even more important is that once we have so

* For h = 0, the formula gives the meaningless expression 0/0. Division by zero is a
taboo in mathematics as it leads to no result. For instance, if you had hundred rupees
you could issue ten cheques of Rs. 10 each in all. But ifyou issued cheques of zero value,

you could issue any number of them for all the difference it would make to your bank
balance.
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brought the value of (1) within any arbitrarily chosen small range of close-

ness to its limiting value, it should continue to remain as close, if not closer,

for all other numerically smaller values of h. Thus, suppose we wish the

value (1) to differ from its limiting value 4 by less than an arbitrarily small

number, say, e. In order that the difference

(4 + h) - 4

may remain numerically less than s, all that we need do is to make h less

than e. So long as we keep h smaller than e the difference between 4 and the

actual value of the expression (1) will never exceed e. In other words, the

value of (1) always lies between 4— e and 4+ e for allvalues ofh less than e.

In general, we say that a function f(x) tends to a limit / as x tends to

zero, if we can keep f{x) as close to / as we like by keeping x sufficiently

close to zero. This means that given any arbitrarily small number e another

small number 6 depending on e alone can be found such that the differ-

ence / — f(x) always remains numerically below e as long as x stays be-

low d. In other words, if you wish to imprison all the values of/(x) with-

in the two corners of a number mesh of any given degree of narrowness

—

no matter how small—round the number /, you have to devise another

number mesh round zero within which the value of x must remain con-

fined. We usually denote the narrowness of the number mesh round / by

e, where e is any arbitrarily small number we care to nominate.

In the same way we could examine iff(x) tends to a definite limit, say,

L when x tends to any other value, say, x = a. The examination may be

done in steps as follows. In the first place, we nominate an arbitrarily

small number to specify the narrowness of the number mesh round L
within which we wish to trap all values off(x). Let it be e. This means that

we wish to confine all values off(x) within the number mesh L — e, L+ e.

The second step is to discover what restriction should be imposed on

the values of x in order to confine f(x) within L — e, L + e. This means

that we are to examine whether we can discover another small number 6

depending on e, such that if we confine x to the number mesh, (a— d,

a + 6) round a, the function f(x) remains within (L — s, L + e). If this

condition is satisfied, we say/(x) tends to L as x tends to a.

This is Cauchy's famous 'epsilon-delta' definition of limit; he defined

it in purely arithmetical terms and thus freed it from vague associations

with its counterpart of everyday speech.

The motive force of modern mathematics is abstraction: in fact, ab-

straction is power and the reason is this. Whenever we treat some real

problem mathematically, whether in physics, astronomy, biology or the
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social sciences, there is only one way in which we can proceed. We must
first simplify it by having recourse to some sort of an abstract model or

replica representing those features of reality considered most essential for

the problem in question. Take, for instance, Eddington's famous elephant

problem. Here an elephant weighing two tons slides down a grassy hill-

side of 60° slope. How long did he take to slide down? If we strip the

problem of its 'poetry' (Eddington's word), that is, if we make an abstract

mathematical model embodying its essential features, all that we have is a

'particle' sliding down an 'inclined plane'. Here 'particle' is a mathematical

abstraction, which just retains that essential property of material bodies

we call 'ponderosity' or 'inertia' common to them all. Similarly, 'inclined

plane' is a geometrical abstraction of hillsides embodying its essential

feature 'steepness'.

Abstract mathematical models of this kind not only simplify the real

problem by retaining only the bare essentials without those encumber-

ances, the irrelevant details which complicate matters and make it in-

tractable, but also apply to a much wider class of problems than the

original. This explains the paradoxical statement sometimes made: the

more modern mathematics departs from reality (that is, grows abstract)

the closer it comes to it. For no matter how abstract it may appear, it is in

the ultimate analysis an embodiment of certain essential features abstracted

from some sphere of reality.

Now an important group ofproblems in the most varied fields of science

may be reduced to the consideration of systems changing with time.

We have already given instances of it—the motion of material bodies such

as stones and elephants rollingdown grassy hill-sides, and the changing posi-
tions of planets in the sky. Other instances of this kind are: in biology, the

development of a population or the growth of an organism; in astronomy,

the changing luminosity of variable stars; in economics, the varying de-

mands and prices of a market; in actuarial science, the changing number of

claims for payment on an insurance company; in telephone theory, the

changing incidence of telephone calls, etc. In any of these problems we
may imagine an abstract mathematical model where 'something' changes

with time. In some problems, such as the development of a biological

population or the growth of insurance claims, this 'something' changes at

discrete moments and in whole numbers. That is, it jumps from one whole

number to another.* In others, such as the positions of planets in the sky

or the growth of a biological organism, the essential feature of the change

is that it takes place incessantly by small degrees.

* For instance, if the population of a species is, say, 10 at any given moment, it cannot
possibly attain fractional values like 10-5 or 9-2 at any other time. The birth and death

of its individuals can only alter it in whole numbers and at discrete moments.
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There are thus two main kinds of mathematical models. In the one de-

signed for handling continuous processes, this 'something*, or the

dependent variable (y), changes continuously with time. In the other, de-

signed for treating discontinuous processes, it jumps discontinuously. We
could, in fact, carry the process of abstraction still farther and consider a

set of related variables—a dependent variable y depending on an inde-

pendent variable x which need not necessarily represent time. The applica-

tion of the fundamental laws of the process usually leads to one or more

differential, integral or integro-differential equations. The question then

arises whether such equations can be solved. In many cases it can be proved

that there is a unique solution, provided it is assumed that y is a continuous

function of x. It is, therefore, important to examine under what conditions

a function is continuous.

Our naive intuitive idea of a continuous function is this. It is continuous

when its graph can be drawn without ever lifting the pencil from paper. If

the graph jumps at any particular point, the function is discontinuous at

that point. Consider, for instance, a rocket fired vertically upwards with an

initial speed of, say 440 feet per second. Suppose further that the rocket

carries an explosive charge, which on explosion during the course of its

ascent is enough to impart to it instantaneously a further vertical speed of

88 feet per second. If the charge explodes, say five seconds after the initial

start, the speed function (y) will be given by the formulae

y = 4AO-32x, . . . . (1)

for all x up to and equal to 5,

and, ^ = 528 -32x, . . . . (2)

for all values exceeding 5 till the vertical ascent of the rocket ceases.

If we draw its graph, it will be represented by the line AB for the values

of x lying between and 5. (See Fig. 8.) At x = 5 the rocket charge ex-

plodes and increases its speed instantaneously by 88 feet per second. The

speed graph is now represented by the parallel line CD for values of x

exceeding 5. The speed function as a whole is, therefore, represented by

the two lines AB and CD. At the point B we have to lift the pencil to draw

it. This shows that the speed function is discontinuous at B.

We can make this notion of continuity more rigorous, if abstract, by

disregarding the graph of the function and considering only the functional

relation between v and x. Ifwe are considering a range of values ofx from

to 5, formula (1) applies. Hence if x tends to 5 from below, that is, by

always remaining less than 5, y tends to 440 — 32(5) = 280. On the other

hand, if x tends to 5 from above, that is, by remaining always more than

5, formula (2) applies and the value of y tends to 528 — 32(5) = 368.
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There is thus a hiatus at x — 5. If we approach from below v tends to 280,

while ifwe approach it from above it tends to 368. This is merely a mathe-
matical translation of the physical fact that at the instant x = 5 the speed
of the rocket jumped by 88 feet per second due to the instantaneous ex-

plosion of the charge during its ascent.

Whenever we have a function whose value tends to two different limits

as x tends to any given value a from above and below, the function is said

X

Fro. 8—The speed function of the rocket jumps at B to C and is therefore discontinuous
at x — 5.

to be discontinuous at x = a. We thus have three values of a function at
any point x = a : its actual value atx = aand the two limits as x approaches
a from two sides—above and below. The function is continuous at x = a
if and only ^all three are equal. If any two happen to differ, the function
is discontinuous at x = a.

All ordinary functions defined by one or more formulae are generally
continuous except, possibly, for some isolated values. Thus, for instance,
the speed function cited above was continuous everywhere except at
x = 5. Is it possible to have functions defined by regular mathematical
formulae, which are discontinuous everywhere throughout the range ofthe
independent variable? The earlier mathematicians would have unhesi-
tatingly replied no. We now know better. Suppose we have a function

y =/(*) defined by the following two formulae for all values of x in the
range (0, 1):

y =/(*) = 0, whenever x is a rational fraction;

and

y =/(*) = 1» whenever x is an irrational fraction.

Thus for x = i, y is zero; but for jc = <y/i y is unity.

Such a function is everywhere discontinuous. For, take any value of x
such as x = \. Within any range round \ no matter how small, there are
any number of rational and irrational values. Thus in the range d — **ta,
i + Tfov), the value \ + **ta is rational and £ + aooW* is irrational.



THE CALCULUS 59

For the rational values of x in the range, /(*) will be zero while for its

irrational values /(x) = 1.

The function fix) therefore continually oscillates between and 1

however narrow the range of values of x round x — i we may choose. It

cannot, therefore, tend to any limit as x tends to £. But there is nothing

in the above argument special about x= \. What has been shown about

the limiting behaviour offix) when x approaches \ holds equally for any

other value of x in the interval (0, 1) for which we have defined the func-

tion f(x). The function/(x) is therefore discontinuous everywhere. It gives

us an absolute discontinuity.

If we have functions which are discontinuous somewhere as well as

everywhere, what about their differential coefficients at these points of dis-

Fio. 9—Herefix) is discontinuous. As x approaches A the

graph line suddenly jumps from Q to R. At this point no
single line which can be regarded as a tangent to the graph
line as a whole can be drawn. The derivative offix), therefore,

does not exist at A.

continuity? Clearly a discontinuous function can have no differential co-

efficient at a point of discontinuity. For, if we draw the graph of the

function (see Fig. 9), there will be a sudden jump at a point of discontin-

uity, so that it is impossible to draw a tangent to it at that point. But since

the slope or gradient of the tangent is the measure of the differential co-

efficient, the latter cannot exist if the tangent cannot be drawn. If the

tangent cannot be drawn at a point of discontinuity, can it be drawn at all

points of continuity? Not necessarily. Examine, for instance, a continuous

curve like the one drawn in Fig. 10. It is continuous everywhere even at the

kinky point Q. But no tangent can be drawn to the graph as a whole at Q.

For the portion of the graph to the right of Q, the tangent at Q is QTt for

that on the left, QT. Since there is no unique tangent to the graph at g,

the differential coefficient cannot exist although the graph is continuous.

It might appear that Q is an exception and that in general a continuous
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function is bound to have a tangent everywhere except possibly at a few
isolated points. This, however, is one instance where our geometric in-

tuition leads us astray. For we can construct functions which, though con-

tinuous for every value of the independent variable, have no derivative for

Fig. 10—The graph line suddenly turns turtle at Q. Although the graph line is clearly

continuous at Q, no single tangent can be drawn to it there. Hence the derivative of
fix) does not exist at Q.

any value whatever. If we draw the graph of any such function, it will be a

continuous line at no point of which we can draw a tangent. Every point

on the graph will thus be a kink like the point Q in Fig. 9. That is why it is

impossible to draw it on paper.

A similar attempt was made to rigourise and refine the theory of inte-

gration. The refinement, no doubt, made it more abstract, complex and
subtle, but it was worthwhile. It paved the way for a much wider generalisa-

tion of the theory of integration, which has been extensively applied. We
shall deal with this generalisation and its applications in Chapter 6.

To understand the refinement, let us recall the essential steps in the

calculation of the speed integral y = t over the time interval (1, 6). First,

we divided the interval (1, 6) into a large number of equal sub-intervals.

Second, we multiplied the duration or length of each sub-interval by the

lower and upper limits of the speed function in that sub-interval. We thus

obtained the lower and upper limits within which lay the actual distance

travelled during that sub-interval. Third, we added the products corre-

sponding to all these sub-intervals and formed two sums, the lower sum s

and the upper sum S, between which lay the total actual distance travelled.

Fourth, we computed the limits of s and S as the number of sub-intervals

was indefinitely increased. This common limit—the speed integral over

time—was then the actual distance travelled.
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Consider now any function y = f(x) of any independent variable x,

which may or may not represent time. Suppose we wish to find the integral

of v over any given range of x, say from x = to x = 5, and suppose

further that/(x) is bounded in the interval (0, 5). This merely means that

all values off(x) remain within two definite bounds, say m and M as x
varies within the interval (0, 5). Thus, for instance, the speed function

y = 440 — 32* of the rocket cited earlier is bounded within the interval

(0, 5). For all values of/(jc) he within the bounds m = 280 and M = 440

as x varies from to 5. On the other hand, the function y = x/(5 — x) for

< x < 5 is infinite for x = 5. Here, as x varies in the range to 5, y
bursts all bounds and assumes bigger and bigger values. The table below
shows this clearly if you have any doubts:

4 4
4-5 9

4-75 19

4-9 49

4-99 499

4-999 4999

4-9999 49999

etc. etc.

The function y = x/(5 — x), therefore, is unbounded. In other words,

there is no definite number or upper bound M below which all the values

of y remain as x varies in the range (0, 5).

It is in this sense that the function/(x) is assumed to be bounded in the

interval (0, 5). Now suppose we divide the interval (0, 5) into three parts,

thus:

I
i( -*--<,

1
ir H „

"
1 2 3 4 S D

I original interval |

You may picture this by breaking a rule (AB) five inches long into three

pieces at the two points marked 2 and 3 inches. We may, for convenience,

call these three pieces ilt i2 , i3 . Tff(x) is bounded in the original interval

(0, 5), it is afortiori bounded in all the three sub-intervals ilt i2, i8 into which

it has been divided. More, the upper and lower bounds for the sub-inter-

vals are usually much closer than those for the original interval. Thus, for

instance, in the case of the function, f(x) — 440 — 32*, it is easy to see

that the lower and upper bounds are 344 and 376 respectively for the second

sub-interval i2 as against 280 and 440 for the whole interval. We tabulate
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the upper and lower bounds of the function for each of these three sub-

intervals:

Sub-interval Lower bound Upper bound

off{x) off{x)

ix 376 440

*2 344 376

*3 280 344

Main interval 280 440

With these preliminaries we may now revert to the integration off(x),

and proceed as before. First, we divide the interval (0, 5) of the inde-

pendent variable x into a number m of sub-intervals which need not be all

equal. As before, you may picture this by breaking a straight stick equal

in length to the line AB into a number of pieces of unequal lengths and

then piecing together the stick by laying the pieces end to end. Let ilt i2 ,

*s , ... be the lengths of the first, second, third, . . . pieces so juxtaposed.

Then the stick is the physical analogue of the total interval AB and the

pieces of the sub-intervals ix , i2 , i8 , .... Since /(jc) is bounded in the whole

interval, it is naturally bounded in every sub-interval also though these

bounds are different for each sub-interval. Consider the first sub-interval

iv Let mx, Mx be the upper and lower bounds off(x) in ix . Likewise, let

(m2 , M^ (m3, Af3), ... be the respective bounds of/(*) in the sub-intervals

*2, *3 , We are now ready for the second step. We multiply the length of

each sub-interval by the upper and lower bounds of f(x) in that sub-

interval. Thus, for the first sub-interval ix , we form the products mxix and

MxiX) for the second sub-interval the products m2i2 and M2i2i for the third

sub-interval the products m3 *3 and M3/3 and so on for the nth and last

sub-interval. We now add these products and form two sums

the upper sum, S = Mxix + M2i2 + MBia + . . . Mniny

and the lower sum, s = mxix + m2i2 + mziz + . . . mnin .

This is the third step. It is obvious that to every method of splitting the

interval (0, 5) there corresponds an upper sum S and a lower sum s. These

two sums, S and s, are known as the upper and lower Darboux sums, after

the French mathematician, J. G. Darboux, who first constructed them.

Finally, we take the fourth step and see what happens when the number
of sub-intervals is increased indefinitely in such a way that the length of

the longest sub-interval tends to zero. This is equivalent to breaking our

stick into smithereens in such a way that the biggest smither is vanishingly

small and no bigger than a pin point. It can be proved that when the

number of sub-intervals is increased in this manner the sums S and s tend

to two definite limits / and /' respectively. (The proof is omitted here.) If
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these two limits are equal, then the common limit I is known as the in-

tegral of/(*). It is written as / = f(x)dx.

The necessary and sufficient condition that the function f(x) be inte-

grate is that the upper and lower Darboux sums S and s tend to the same
limit.

In mathematics we have often to distinguish between the necessary and
sufficient conditions for securing an object. This distinction sometimes

appears mysterious to the layman, although in the days of rationing it

should have been obvious that a condition necessary for a certain purpose

need not be sufficient for it. Thus in order to buy your ration it was

necessary but not sufficient to have the money required to pay for it. The
ration card and the buying power were the necessary and sufficient condi-

tions for securing it, though either in isolation was not sufficient.

It can be shown that iff(x) is a continuous function, the two limits of

Darboux sums I, V are equal. A continuous function is, therefore, always

integrable, though, as we have seen, not necessarily differentiable. Before

the introduction of the New Look style of reasoning in the calculus, it was

generally believed that the two properties of a function, differentiability

and integrability, went hand in hand. About 100 years ago it was shown
that there exist functions which are non-differentiable though continuous

and, therefore, integrable. Thirty years later it was proved that the discord

between the two properties—differentiability and integrability—is reci-

procal when bounded differentiable functions whose derivatives are not

integrable were constructed.
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For about 150 years after Newton the study of the motion of material

bodies, whether cannon balls and bullets, to meet the needs of war,

or the moon and planets to meet those of navigation, closely followed

the Newtonian tradition. Then as it was just about beginning to end up in

high-brow pedantry it was rescued by the emergence of a new science

—

electricity—in much the same way as cybernetics was to rescue mathe-

matical logic a century later.

Though known from earliest times electricity became a quantitative

science in 1819, when Oersted accidentally observed that the flow of an

electric current in a wire deflected a compass needle in its neighbourhood.

This was the first explicit revelation of the profound connection between

electricity and magnetism, already suspected on account of a number

of analogies between the two. A little later Faraday showed that

this connection was no mere one-sided affair. If electricity in

motion produced magnetism, then equally magnets in motion produced

electricity. In other words, electricity in motion produced the same

effects as stationary magnets and magnets in motion the same effects as

electricity.

This reciprocal relation between electricity and magnetism led straight-

way to a whole host of new inventions from the electric telegraph and

telephone to the electric motor and dynamo. In fact, it is the seed from

which has sprouted the whole of heavy electrical industry which was

destined to transform the paleotechnic phase of Western machine civilisa-

tion with its ugly, dark and satanic mills, into the neotechnic phase based

on electric power. But before this industry could arise results of two

generations of experiments and prevailing ideas in different fields of

physics—electricity, magnetism and light—had to be rationalised and

synthesised in a mathematically coherent theory capable of experimental

verification. Now the results of the mathematical theory depended for

their verification on the establishment of accurate units for electricity—

a

task necessary before it could be commercialised for household use. The

theory, thus verified, in turn formed the basis of electrical engineering

—

itself the result of a complete interpenetration of deductive reasoning and

experimental practice. It reached the apogee of its success when Hertz

experimentally demonstrated the existence of electromagnetic waves,
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which Maxwell had postulated on purely theoretical grounds, and from

which wireless telegraphy and all that it implies was to arise later.

Maxwell's theory was actually a mathematisation of the earlier physical

intuitions of Faraday. In this he used all the mathematical apparatus of

mechanics and calculus of the Newtonian period. But in some important

and puzzling respects the new laws ofelectromagnetism differed from those

of Newton. In the first place, all the forces between bodies that he con-

sidered as, for example, the force of earth's gravity on falling bodies, acted

along the line joining their centres. But in the case of a magnetic pole it

was urged to move at right angles to the line joining it to the current-carry-

ing wire. Secondly, electromagnetic theory was differentiated from the

earlier gravitation theory of Newton in its insistence that electric and

magnetic energy actually resided in the surrounding empty space. Accord-

ing to this view the forces acting on electrified and magnetised bodies did

not form the whole system of forces in action but only served to reveal the

presence of a vastly more intricate system of forces acting everywhere in

free space.

The theoretical consequence of this innovation was that while the gravi-

tational effect of a system of material bodies could be fully described by

assigning only a numerical value to each point of free space, that of a

system of electrified and magnetised bodies required in addition the

specification of the direction associated with the numerical value at each

point. Consequently, mathematical theory had to take account not only of

pure magnitudes but also their associated directions.

This was the first clear intimation of the inadequacy of the older arith-

metic in which number alone counted and reigned supreme. It forced the

recognition that the real number system, which man had evolved out of

counting discrete collections and measuring fields, was incomplete in that

its number vocabulary was not rich enough to express fully certain types of

magnitudes which the new science of electromagnetism was creating. In

fact, the inadequacy of the real number was already being felt even in the

older mechanics which had to handle such magnitudes as velocity, accelera-

tion, force, etc. For the peculiar thing about these quantities was that they

too had a direction as well as a magnitude. In arithmetic we treated two

lengths as equivalent in all respects if they were measured by the same

number. Not so in the new science of electromagnetism, or even in the

older Newtonian mechanics. A force, for example, that acted in one direc-

tion did not have the same effect in the material world as a force of equal

magnitude that acted in a different direction.

To specify completely a force, a velocity, an acceleration, an electric

current, a magnetic pull, or more generally any vector, we need two things.

First a way of quantising its magnitude or intensity, and second, a way of
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indicating the direction in which it acts. We have already seen how the real

number system suffices to measure any magnitude. So there is no difficulty

in fulfilling the first requirement. As for the second, we fix two perpendicular

lines (see Fig. U) SONandEOWas our lines of reference. Any vector, like

OP, may now be denoted by the length OP and the angle PON it makes
with one of the fixed lines of reference. It may be expressed geometrically

Fto. 11—The vector sum of the vector OP and the vector OQ is the
vector OR, the diagonal of the parallelogram OPQR.

by the arrowed straight line OP, or analytically by a magnitude r measur-
ing its intensity, and angle a that its line of action OP makes with one of
the reference lines such as SON.
Now suppose we have two such vectors OP and OQ (Fig. 1 1); how shall

we add them? If they act along the same line, there is no difficulty. The
resultant of the two vectors will continue to act in the same line and its

intensity will be the algebraic sum of the intensities of the two given vec-

tors. Thus, if the intensities of OP and OQ are r, r', that of the sum of OP
and OQ will be r + r'. But how shall we add two vectors whose directions

are different—like the two vectors OP and OQ in Fig. 1 1 ? Tn real life we
have often to add two such vectors which act in different directions. For
instance, a boat which a rower is attempting to row across a river has two
velocities. One is the velocity with which the river is carrying the boat
along with everything else down the stream, and the other is the still-

water velocity (the velocity if there were no current) given to it by the
rower at right angles to the direction of the river's flow. The velocity

with which the boat actually moves under the combined effect of these two
velocities may naturally be taken as the sum of the two velocities. (See

Fig. 12.)
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To discover a rule for adding any two vectors like velocities let us first

consider the simplest case of a vector, viz. the case of a pure displacement

of a rigid body from one position to another without change of orienta-

tion. Suppose, for example, we have a rectangular lamina ABCD. (See

Fig. 13.) We may denote its

position with respect to two

reference lines NOS and EOW
by specifying the position of

any point fixed in the lamina,

such as the corner A, and any

line fixed therein such as the

edge AB. That is, if we knew
the position of the corner A
and the direction of the edge

AB, we could fix precisely the

location and orientation of

the lamina. Let the corner A
be at any point Ax and let the

edge AB make any angle a

with the reference line NOS.
The lamina will then be in the

position I shown in Fig. 13.

If we shift the lamina to

another position in such a

way that the corner A now
occupies the position A2 while

the edge AB continues to

make the same angle with

NOS as before, we have a case

of pure displacement* of the

lamina without any change of

orientation. We may denote

this displacement by the

directed line AXA 2 as the line

AXA2 indicates the direction

of the shift of the corner A

-=?<-

Fig. 12—The top two illustrations show the

still-water velocity of the rower and that of the

stream, respectively. The third shows the resultant

(or vector sum) of these two velocities.

and the length AXA 2 the magnitude thereof. But there is no special virtue

in the line AXA2 . As far as the displacement of the lamina is concerned,

we may as well denote it by any other line whatsoever so long as its

direction is parallel to A XA 2 and its magnitude is equal to the length AXA2 .

One such line is the line OP where OP is parallel to AXA2 and OP = AXA%

* Such a displacement without change of orientation is called a translation.
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W

Fig. 13

Fig. 14
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(Fig. 14). We may therefore equally denote the displacement of the lamina

from Ax to A% by the vector OP.

Suppose now we shift the lamina corner A from A% to A% (Fig. 13)

again without any change of orientation. The shift from At to A9 may be

denoted by AsAs or by the vector OQ (Fig. 14) where OQ is parallel to

AtAa and the length OQ is equal to AtA%. Obviously the two combined

shifts of the corner from the position Ax to At and then from the position

Aa to Aa are equivalent to the single shift of the corner A from the initial

position At to the final position Az . This last shift is the vector OR where

OR is parallel to AxAa and the length OR = AXAZ . Now it can be proved

by a little high-school geometry that OR is the diagonal of the parallelo-

gram with OP and OQ as its adjacent sides. It therefore follows that if OP
represents one displacement and OQ another, their resultant is represented

by the diagonal OR of the parallelogram constructed by taking OP and

OQ as adjacent sides. The displacement OR is thus the vector sum of the

displacements OP and OQ.*
Since velocity is only a rate of change of displacement, it follows that

the same rule would apply for adding velocities in two different directions.

But rate of change of velocity is acceleration and acceleration according to

Newton's law is proportional to the force producing acceleration. It is

therefore obvious that the parallelogram law ofvector addition applies not

only to displacements but also to all vectors such as velocities, accelera-

tions, forces, etc.

Now what about the multiplication oftwo vectors like OP and OQ*l In

the case of integers, it is merely the repeated addition of one integer to

itself a certain number of times. Thus, multiplication of four by three is

the addition of four to itself thrice. In the case of fractions and

irrationals, too, we found it useful to introduce multiplication in

order to be able to handle continuous magnitudes. But coming to vectors,

it is not clear what meaning should be attached to multiplication. If

multiplication is to be denned as a sort of repeated addition of vectors, it

can only mean addition of a vector to itself a certain number of times, say,

five. But this would give us the product of a vector by a pure member
such as five and not by a vector, which is what we wanted to define. Before

we set out to search for a suitable multiplication rule for vectors, it may
perhaps be asked why we should bother about multiplication of vectors

-when, primafacie no physical meaning can be attached to it. The reason is

as follows:

If we dispense with the multiplication of vectors, we cannot build up a

generalised number system, of which the real number is only a special

case. Some analogue of multiplication as used in the real number system

* Conversely OP and OQ are the components of OR,



70 MATHEMATICAL IDEAS

is necessary. For otherwise the vector would not be a genuine extension

of the real number system. As we shall see, there are several ways of de-

fining a multiplication rule for vectors. One such way was suggested by the

activities of craftsmen, engineers and technicians. During the second half

of the eighteenth century, Watt, who drew patent royalties in the form of

a percentage of the saving of fuel through the efficiency of his improved

steam engine, was led to careful measurements of work done by steam

engines. This scientific rating of their performance gave rise to the useful

notion of physical work, which could in some way be regarded as the

product oftwo vectors. Following Watt, work was defined as the product*

of force and the displacement produced by it.

For example, work done by a torrent of water flowing down a steep

hillside or a precipice is the product of the force of gravity moving it and

the displacement ofwater which it causes. It is this work which is the source

of hydro-electric power. But from the theoretical point of view this multi-

O
Flo. 15

plication rule has its limitation. It cannot serve as a basis for a generalised

vector calculus, because the multiplication rule which defines work as the

product of two vectors, force and displacement, yields a pure number, as

there is no particular direction which can be associated with it. What the

generalised vector calculus needs is a rule which preserves the vectorial

quality of the vectors it multiplies. The rule must be such that when two

vectors are multiplied the result is a vector and not something less general,

such as a pure number.

To discover such a multiplication rule we must examine how vectors

behave in real life. If two equal but opposite forces act at any point O of

a rigid body, the two forces balance so that the body remains at rest. A
tug ofwar, when the rival teams pull the rope with equal might in opposite

directions, is a case in point (Fig. 15).

If, however, the two forces do not act at the same point but at two

different points of the rigid body, they will not completely balance but

tend to rotate it. You may easily verify this by a simple experiment. Place

a pencil on a table and push it simultaneously at its two ends with equal

force but in opposite directions. The effect of these two equal but opposite

pushes applied at its two extremities will be to rotate it in the plane of the

table (Fig. 16). Such a pair of forces is called a 'couple'.

In practice it is difficult to apply equal pushes at the two ends. But if

you fix one of them by nailing it to the table loosely, the nail will auto-

* Such a product is known as the scalar product.
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matically produce a reaction equal and opposite to the push you apply at

the other. Suppose now you apply a gentle push F at the end B at right

angles to the pencil. This will call forth an equal and opposite reaction at

the other end A. The effect of the two forces will be to rotate the pencil in

the plane of the table. This rotatory effect is a vector, and it is expressed

Push
F

Pencil

F
Push

Flo. 16

as a measure along the axis of rotation of the pencil, that is, a line at right

angles to the table at A. The direction of rotation is indicated by the 'screw

law',* and the magnitude of the moment by the length of the line. This

quantity depends on two things—the intensity of the push and the length

of the pencil. The greater the push and the longer the pencil,,the greater is

this rotatory effect. It may, therefore, be measured by the product Fd, of

the push F and the length d of the pencil.

In making an abstract mathematical model out of this situation, the

pencil, nail and table fade out of the picture and all that we need retain is

a couple of equal and opposite forces separated by a certain length or

o
Fig. 17

distance. The rotatory effect of this couple is a vector because it 'has a

magnitude and direction. Its line of action is perpendicular to the plane of

the parallel forces, and its magnitude is the product of the forces and their

distance apart. It is because of this rotatory effect of equal and opposite

forces that it is possible to transform the linear motion ofthe pistonrods of

a steam or internal combustion engine into a rotatorymotion ofthe wheels.

With these preliminaries we can now devise a suitable multiplication

rule for vectors. Suppose a force F acts at any point P of a rigid body

(Fig. 17). Can we displace it to some other arbitrary point O of the body?
* If rotation is to the left the vector stands up above the table; if it is to the right

the vector points downwards beneath the table.
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In other words, can we combine a vector-force F atP with a displacement-

vector OP in any manner that is physically significant? Since two equal

and opposite forces acting at the same point balance, we may imagine that

two equal and opposite forces F act at O as shown in Fig. 18.

Now if the force F at P and the equal but opposite force F at are

combined to produce a couple, we are left with a single force F acting at O.
In other words, the displacement of the force F from P to O introduces a
couple whose rotatory effect is a vector. Its line of action is at right angles

to the plane of the paper in which the force Fand the displacement OP lie.

Its magnitude Fd is the area of the parallelogram OPQA, whose adjacent

Fig. 18

sides are the vector-force F and the vector-displacement OP. You may
recall that the area of a parallelogram is the product of the base PQ and
the perpendicular distance d from the base to the opposite parallel OA.

This operation of displacing a force from P to O, which introduces a
vector couple with a rotatory effect, is the vector analogue of ordinary
multiplication. Here we multiply vectorially the force-vector F and the
displacement-vector OP. But the method applies to all vectors whatsoever.
All that we need do is to take any two given vectors,p and q, and construct

a parallelogram with them as adjacent sides. The area of the parallelogram

will give us the magnitude of their vector product and the line OP at right

angles to the plane of the parallelogram its direction (see Fig. 19). This
method gives us a multiplication rule, which does not destroy the vec-

torial quality of the vectors it multiplies.

The aforementioned rule of vector multiplication is no mere 'free

creation* of the curious mind. It is a precise expression of an aspect of
vector behaviour in real life. We have seen how in mechanics the operation

of displacing a force a certain distance is a generalisation of ordinary

multiplication in which pure numbers are replaced by vectors like force

and displacement. It is also the way in which electromagnetic vectors such
as electric current and magnetic force actually combine as was first ob-
served by Ampere. In fact, Ampere's rule for deriving the mechanical
force exerted by a magnetic pole on a small element of current carrying
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wire is the same as the rule for multiplying in the manner described above
the two vectors concerned, viz. the electric current and the magnetic
force exerted at that point. (See Fig. 20.)

However, this multiplication rule is rather complicated. For one thing if

Fig. -The product vector OP is at right angles to the plane of the parallelogram
OACB and is equal in magnitude to its area.

we have two vectors in one plane, say, the plane of the paper, the multi-

plication rule gives their product vector along a line at right angles to the

plane of the paper, that is, out in three-dimensional space. We shall

Mechanical
force

Magnetic Pole

c«rrew

Fig. 20—At any pointP of the current-carrying wire the current flows in
the direction of the tangent PT. The magnetic force exerted by a magnetic
pole M acts along PM. The mechanical force exerted on the wire in the
neighbourhood ofP acts along PQ at right angles to both PT and PM.

examine later the consequences of adopting it, as it leads to a further

fascinating generalisation of vectors. Meanwhile let us confine ourselves

to vectors lying in one plane, for example, the plane of the paper and
observe if we can define a simpler multiplication rule for combining two
vectors.
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Let OP and OQ be any two such vectors that we wish to multiply (see

Fig. 21). Let OA be the unit vector, that is, the unit length OA along the

reference line SON. Join AQ and construct on OP a triangle OPR
similar to OA Q. This can easily be done by making LPOR = LAOQ

Fro. 21

and LOPR = LOAQ and letting OR and PR meet in R. Since the tri-

angles OPR and OAQ are similar, the sides opposite equal angles are

proportional, and hence

OR OQ ._ , „ A— = —= = OQ. (as OA = 1)
OP OA

ur^'^ttOUf'* >

Hence OR = OPOQ.

We may, therefore, take 01? as the product of the two vectors OP and

OQ, Note carefully that we obtain the same vector OR if we reverse the
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roles of OP and OQ. You may verify it by describing a triangle on OQ
similar to the triangle OAP. An exactly equivalent way of obtaining the

product vector OR is to rotate the line of action of one of them through

an angle made by the line of the other with the reference line SON. (See

Fig. 22.) Cut off on the direction so obtained a length OR equal to the

product of the lengths r, r' of OP and OQ respectively. Thus, we may
rotate OP through an angle equal to NOQ and bring it to a new position

Fig. 22—Vector product. Rotate one of the vector lines, say OP, through the angle
made by the second, OQ, with SON, to obtain OR. The product vector is then OR where
the length of the line OR is rr'.

OR. This gives the direction of the product vector. We would have ob-
tained the same line of action had we rotated instead the line of action of
OQ through an angle made by OP with the reference line SON.
With the aforementioned rules for the addition and multiplication of

vectors, we can construct a new and more general arithmetic for handling
them. First, take the vector OP. We expressed it analytically by the length

r of the segment OP and the angle a it made with the reference line SON
(see Fig. 23). Draw perpendicularsPM and PL fromP on the two reference

lines. Now, by the parallelogram law of addition the sum ofthe vector OM
along NOS and the vector OLalong EOWis the vector OP* We could,

therefore, equally denote the vector OP by two vectors OM and OL along
the two reference lines. If the magnitude ofOM is x and of OL v, then the

vector sum of x and y is equal to the vector OP. We may thus replace the

vector OP by its components x and y. In other words, a vector may also

be represented by a number couple (x, y).

How shall we add and multiply these number couples? We can deduce

* A rectangle is only a special case of a parallelogram.
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the rules for adding and multiplying such number couples from the cor-

responding rules already given for two vectors. Thus, suppose we have

another vector OQ represented by the number couple (x', y'). Then, as we
have seen, the vector sum of OP and OQ is the vector OR, the diagonal of

the parallelogram with OP and OQ as adjacent sides. Now a glance at

Fig. 23 will show that the vector OR has components x + x', y + y'.

Hence the addition rule:

(x, y) + (*', /) = (x + x', v + /)•

We could also express their product in terms of vector components. To
multiply the vector (x, y) by a vector (V, y') we may carry out the opera-

tion in stages. First, we multiply the vector x by the vector x''. This is

W

Fig. 23

simple, for the line of action of both is the reference line SON, and, there-

fore, their product is xx' along SON. We now multiply the vector x along

ON by the vector y' along OW. The second vector makes an angle of 90°

with the reference line SON. If, therefore, we apply the product rule for

multiplying two vectors whose directions differ, we shall have to rotate x
through 90° so that its line of action becomes EQW. We now multiply the

magnitudes x and y' and the result is the vector xy' along EOW.
Next in order is the product of y and x'. Here, again, the two vectors

are at right angles to one another and, following the same rule, their

product is yx' along EOW. Finally, we have to multiply y and y'. Applying

the same rule, we have to rotate y through an angle that the other, viz. y\
makes with SONt i.e. through 90°. If we rotate the vector y through 90°,
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its line of action becomes OS. Hence the product of the vectors y, y' is the

vector yy' along OS. We thus have four vectors,' xx' along ON and yy'

along OS, on the one hand, and xy' and yx' along OW, on the other.

Hence the components of the product vector are (xx' — yy') along ON,*
and -(xy' + yx') along OfF. This leads to the multiplication rule for the

number couples (x, y) and (x't y')

(x, y)(x', y') == (xx' — yy', xy' + yx').

We have thus a new arithmetic of generalised numbers, vectors, which
are denoted by number couples such as (x, y). The laws of addition and
multiplication of two such generalised numbers like (x, y) and (x', y') are:

Addition law: (x, y) + (x', /) = (x + x' , y + /);

Multiplication law: (x, y)(x', y') = (xx' — ;>)>', xy' + x'y).

In learned treatises on the subject, they sometimes start with number
couples like (x, y) and then attempt to build up an algebra by assuming
various types of addition and multiplication laws. If the object is to con-

struct the theory of rational fractions, the laws assumed are

Addition law: (x, y) + (x', y') = (xy' + x'y, yy')

Multiplication law: (x, y)(x', y') = (xx\ yy').

If the object is to develop the theory of complex numbers, the laws

assumed are

Addition law: (x, y) + (x', y') = (x + x',y + vO-

Multiplication law: (x, y)(x't y') = (xx' — yy', xy' + x'y).

This way of starting the subject is apt to give rise to a sense of mystery.

One wonders why one set of laws is adopted for the one and quite another

for the other. If mathematics were merely a game or a pastime for the in-

genious, any such explanation would also be quite out of place. But as

mathematics, like any other branch of science, arises out of man's attempt

to build a basis for civilised life, such questions are of great social impor-

tance. We sawf how the former set of laws (I) arose quite naturally out of

the need for combining fractional residues. We now see how the latter set

(II) arises equally naturally when we have to combine directed magnitudes
like forces and velocities. This also gives a natural explanation of the so-

called "imaginary" numbers, which puzzled even learned mathematicians

right up to the first half of the nineteenth century and still mystify the

student and the layman. The real devil of the piece is the 'square root of

minus one'. What is that number which when multiplied by itself gives

* The minus sign has been used since yy' is along a direction opposite to that of xx'.

f See page 12.
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the result -1? It cannot be 1 for 1 x 1 is 1. Nor is it - 1, for -1 x -1

is plus 1 and not —I. The answer is: there is no such number.

However, if we extend our number concept to include vectors—general-

ised numbers—which are given by number couples in the manner described

above, we can find a number which answers to the specification. This is

the unit vector, OY, directed along the line OFF (See Fig. 11). Since its

component along ON is zero and along OW, 1, it is given by the number

couple (0, 1). If we multiply it by itself we get by the multiplication rule

(II) quoted above

(0,1) x(0, 1) = (-1,0).

We get the same result if we apply the product rule directly as is, of

course, natural. Let us try to multiply the vector OY by itself. We rotate

Fthrough an angle equal to the angle it makes with ON, that is, through

90°. The direction of the vector is thus along OS. Its magnitude is

1 x 1 = 1. Hence the square of the unit vector along OW gives a unit

vector along OS, or —1 along ON. It is this unit vector along OW, the

number couple (0, 1), whose square is the unit vector along OS, which

may be interpreted as the 'square root of minus one'. In fact, it has a

second 'square root' also. It is the unit vector along OE, or, the number

couple (0, —1), which when multiplied by itself gives rise to the unit

vector along OS, or the number couple (—1, 0). It is usual to denote the

number couple (0, 1) by /, and the number couple (0, —1) by — /. It is

only when we bear in mind that these letters i and — / are infact abbrevia-

tions of their corresponding number couples that we may write the

equality i
2 = — 1, and call t the 'square root of minus one'. But so long as

we remain in the domain of the real number field, it is better to discard

unhesitatingly as non-existent the imaginary i, as our Hindu ancestor,

Mahavira, did eleven centuries ago.

The number couple (x, v) used to denote a vector is also known as

a complex number and is often written as a single letter z. When we do so,

we write z = x + iy, which means that z is a plane vector, whose com-

ponents along the two perpendicular reference lines are x and y. We ex-

press the vector component along ON in ordinary units, but that along

OW'm *V or 'imaginary' units to indicate the fact that any vector along

this line when multiplied by itself undergoes a rotation through one right

angle. The theory of complex numbers is extremely complicated and is

still fast developing. It has reaped a rich harvest largely because of ex-

tensive applications to a wide diversity of phenomena, from the theory of

electric currents to map making and fluid flows.

For example, the theory of conformal transformation, depending as it

does on a basic theorem ofcomplex variables, is absolutely fundamental in
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the practice of making geographic maps. In mapping a surface such as the

surface of the earth, all that we do is to devise a one-to-one matching

process whereby to each point of the earth there corresponds one and only

one point of the map and vice versa. There is an infinite number of ways
of doing this but if the map is to be of any use to a navigator or an ex-

plorer it must ensure conservation of directions. In other words, if a
direction FT at any point P on the earth makes an angle a with some other

direction PT' at the same point, then the matching process which leads to

V

THE EARTH

Fig. 24

corresponding directions pt and pt' on the map must be such as to leave

the angle tpt' unaltered. (See Fig. 24.) Without this conservation of angles

between corresponding directions the map is of no use. Such a map is

known as conformal.

Again, there is an infinite number of types of conformal maps. One such

map is the well-known Mercator's profection used in school atlases. A
Mercator's projection transforms the curved surface of the earth into a

flat sheet of paper in which the meridians and the parallels of latitude on
the sphere correspond to straight lines parallel to the axes of co-ordinates

on the flat map. In fact, the whole spherical surface of the earth is repre-

sented by an infinitely long strip of finite breadth. The mathematical

theory ofcomplex variables which permits this feat—the transformation of
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a spherical surface into a plane—equally permits others still more re-

markable

For example, in the design of aircraft it is necessary to know the lift

exerted on a shaped body, such as an aerofoil,* by an air stream flowing

past it. A well-known theorem of aerodynamics enables this calculation

to be made if the strength of the circulation of the air stream were known.

But this latter quantity can be calculated only in the simple case when the

body in question happens to be a long circular cylinder, the symmetry of

the cylinder introducing a simplicity which a body with a more complicated

shape lacks. Nevertheless, starting with the known flow around a body of

simple shape such as a cylinder, it is possible to deduce the flow round

another body of more complicated shape by a method of transformation

similar to Mercator's.

But the calculation of air flow past objects of any given shape, under-

taken in relation to the development of early aeroplanes, has had wider

applications in ship design and in all problems of air flow—from those of

blast furnaces to air conditioning and domestic ventilation. This is yet

one more instance of the general rule that mathematical theories developed

for one purpose soon have wide repercussions in many other fields of

daily life.

Yet another fruitful consequence of the study of functions of com-

plex variables is the creation of a unified theory of differential equations

during the last 200 years or so. Our first encounter with them occurred

when we cited the differential equation of the motion of a pendulum bob.

This is only one ofthe many that we meet even in one field such as physics.

It may be stated at once that nearly all considerations in the realm of

physics as also in many others besides lead to differential equations. The

reason is this. In physics we wish to ascertain changes in the values of

certain magnitudes corresponding to changes in those of others. The data

of the problem are usually a system of physical laws, which express rates of

change of the former per unit change of some other as a function of these

variables. This gives rise to one or more equations involving all or some of

the variables as well as their rates of change, which are nothing but differ-

ential coefficients of some variables with respect to others. That is why
most riddles in physics when interpreted in mathematical symbolism lead

to one or more differential equations. To divine the riddle is to 'solve' the

differential equations to which it leads.

Sometimes a whole class of riddles leads to the same differential equa-

tion. For instance, the differential equation of wave motion arises as

* The shape of the wing of an aeroplane is called an aerofoil.
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naturally in the electro-magnetic theory of light as in the theory of sound,

elastic vibrations or radio waves. Such equations have, therefore, been

intensively studied during the past two centuries by some of the greatest

mathematicians of aE times, whose abilities were taxed to the utmost in

creating complicated mathematical functions satisfying them. Their crea-

tion would have been all but impossible without recourse to the thedry of

complex variables. The reason is the limitation of the real number field.

We saw earlier (page 14) how the limitation of the integral domain pre-

vented us from carrying out universally the operations of subtraction and

division. To make all these operations universally possible we had to

extend the domain of integers to include fractional and negative numbers.

This made the field of rational numbers closed under the four fundamental

operations of elementary arithmetic.

But the field of rational numbers, though closed, was still not large

enough to prevent anomalies from arising. One such anomaly was that it

did not permit inverses of certain operations like squaring, cubing, etc.

Thus, while every rational number had a rational square, many rational

numbers like 2 and 3 had no rational square roots. The field of rational

numbers had therefore to be further extended. But the extended real

number field is still not large enough to prevent anomalies in the behaviour

of functions of real variable. For instance, even such a simple equation as

x2 + 1 = has no solution so long as we operate only with real numbers.

Again, the solution of certain types of differential equations of mathe-

matical physics requires the integration of complicated functions. Such

integrations in turn lead to their own crop of anomalies. At bottom they

all arise for one and the same reason—the limitation of the real number

field. What we need to remove them is not merely a number field closed

under the four arithmetical operations but a number field which is the

largest so closed. It happens that the class of complex numbers is such a

number field. That is why mathematicians have been obliged to have

recourse to functions of complex variables to get rid of these anomalies.

The theory of complex functions shows that many of the differential

equations of physics and astronomy may be derived from a single generic

form: if the latter could be solved, so could its derivatives, but to solve it

we have to employ new functions previously unknown. One ofthe methods

adopted in inventing these new functions is an extended use of the process

of inversion which, as we have seen, is such a prolific source ofnew mathe-

matical entities. Thus if y is a function of x we may derive its inverse by

expressing'x as a function of y. Suppose, for instance, v is denned by the

equation

-I
xdx.

o
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Here we may readily compute the integral on the right-hand side and re-

place the equation by

y = *72.

This leads to the inverse x = V2y, but if we had a more complicated ex-

pression under the integral sign, we might not be able to complete the

integration. Nevertheless, we may still consider the equation in its un-

simplified form without performing the integration and use it to define x as

an inverse ofy exactly as we did before. The only difficulty is that we cannot

now write xasa function of y in the ordinary way, but it is not insur-

mountable, and in fact, it is overcome in a ridiculously simple manner. We
merely invent a new function x, the inverse of y, and give it a new name.
Surprising as it may seem, this artifice really works, and it enables us to

fix the behaviour pattern of many a newly invented function. The study of

their behaviour shows that some ofthem singly or in suitable combinations

satisfy differential equations of physics and astronomy. In other words,

they provide solutions of these differential equations.

Although the initial impulse to their creation came from the needs of

the physicist and astronomer, many ofthem were later refined, generalised,

or even invented outright with no particular applications in view. This

transition from the immediately applicable to the abstract with no applica-

tion in sight is an ever-recurring theme in the progress of modern mathe-
matics. Like Shelley's 'Skylark'—

Higher still and higher

From the earth thou springest

Like a cloud of fire;

The blue deep thou wingest.

But sooner or later it must descend to earth again to derive fresh inspiration

for a new flight. This is exactly what actually happened also in the theory

of differential equations.

Useful as these solution functions were, many of the newer ones were
too abstract and 'flighty' to be ofmuch use to the physicist. To get on with

the job he has in view, the physicist needs not some abstract way of de-

fining the solution by means of complicated functions, but some practic-

able procedure of calculating their numerical values, involving nothing
more recondite than ordinary addition, subtraction, multiplication and
division. For the sake of such simple procedures he is prepared to pay a
price. He is willing to be much less exacting and is quite prepared to relax

the rigorous standards to which the mathematician wants to cling. The
greatest exponent of this relaxed down-to-earth point of view nowadays is

R. V. Southwell, whose introduction of Relaxation Methods in Engineer-

ing and Physics has inaugurated a truly amazing advance in both.
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The idea underlying Southwell's Relaxation Methods is simple. It rests

on an important distinction in the determination of a function in mathe-

matics and physics. In the former a variable v is defined as a function of a

variable x by means of one or more formulae. For any given value of x

within its range of variation, say and 10a, we can determine the corre-

sponding value of y by means of the given formula or formulae. All that

he requires is that this determination be theoretically possible. He is not

deterred by the practical difficulties encountered in exploiting this theo-

retical possibility. He is quite satisfied if he can assume merely that the

value of the function y is known for each one of the infinite values of x

within the given range. But in physics the data must be obtained by

physical measurement, and, therefore, can be neither exact nor complete.

It cannot be exact because all measurement is subject to error, and it

cannot be complete because the infinity of observations required for the

purpose cannot be obtained in finite time.

In physics, therefore, a function y is said to be known if its approximate

values are known, corresponding to a finite and discrete set ofvalues ofthe

independent variable (x). For instance, when we study y, the magnitude of

current passing through a resistance coil, as a function of x, the voltage

difference across the resistance, we deem y to be known ifwe can measure

its approximate values corresponding to a number of discrete values of x

such as

x = 0, a, 2a, 3a, 4a, 5a, 6a, la, 8a, 9a, 10a.

Consequently the determination of a wanted function has for the

physicist ameaning quite differentfromwhat it carriesto the mathematician.

The former will accept a function, if he can ascertain its approximate

numerical values at a discrete and finite set of values of the independent

variable x. The latter, on the other hand, must have its exact value for

every value of x. But the relaxation introduced by the physicist has its

merit in that it enables solution of many problems quite intractable by the

exact and rigorous methods of orthodox mathematics.

Instead of trying to trap all the- infinity of its values at one blow in one

or more functional forms, which is quite often impossible, relaxation

methods of computation endeavour to evaluate approximate values of the

required function for a discrete and finite set of values of x such as

x = 0, a, 2a, 3a, 4a, 5a, 6a, la, 8a, 9a, 10a.m—i—i—i—i—i—i—i—r~

a 2a 3a 4a 5a 6a la 8a 9a 10a

Such a set defines what Southwell calls a relaxation mesh or net. The

values of x = 0, a, 2a 10a, for which the values of the wanted func-
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tion are to be computed, are known as nodal points and the mesh length a,

that is, the length of the interval separating the nodal points, is called the

mesh-side. It is possible to obtain increasing accuracy, at the cost of pro-
portionately increased labour, by utilising the results obtained on one size

of mesh as a starting assumption in relation to a smaller mesh. In other
words, having calculated the values of the function for the nodal points
x = 0, a, 2a, . . ., 10a, we can proceed to calculate its values for any
number of other intermediate points on the basis of computations already
made. For instance, we may subdivide each of the original ten meshes de-
fined by x = 0, a, 2a, . . ., 10a into three sub-meshes each defined by

x = 0, ia, $a; a, \\a, lfa; 2a, 2\a, 2fa; 3a3 , . . ., 10a.

We thus secure thirty meshes from the original ten. This device is known as
advance to a finer mesh.

The next relaxation adopted by Southwell is the replacement of differ-

ential co-efficients occurring in the differential equation under assault by
theirfinite-difference approximations. To explain the idea offinite-difference
approximations of differential coefficients, consider a function <p(x), which
we shall consider sufficiently determined if we know its values at only
three nodal points, viz. x = 0, a and 2a. Let these three values be <p(0),

<p(a) and <p(2a). Its differential co-efficient ~, too, will have different
dx

values at these three nodal points. Let the three values of— at these three
dx

nodal points x = 0, a, 2a be ( -^ ) , (^ ) and (^ ) . It can
\ax/x=o \dx/x^a \dx/z=2a

be shown that these three values are given approximately by the equations

(*)_. =^j-^°) + M«)-^2<,)} . . (1)

©« -sHro+'H • • • • ©

Now the differential equation is true for all values of x within the range
of its variation and, in particular, for the three nodal values of x under
consideration, viz. x = 0,a and 2a. If we substitute for x its nodal value
x = 0, the independent variable x disappears from the equation altogether

and the equation contains only <p(Q) and ( -~ ) . But the latter term
\dx/x-Q
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can be replaced by the right-hand side of equation (1). Consequently the

differential equation is transformed into an algebraic equation involving

only the three 'wanted' values <p(0), <p(a) and cp{2a) and nothing more. We
could repeat the same process with the two remaining nodal values x = a
and 2a. This would give two more similar algebraic equations containing

only the three unknowns 9>(0), <p(a), <p(2a).

We therefore obtain three algebraic simultaneous equations in three un-

knowns, viz., 9?(0), 95(a), <p(2a). The single differential equation is thus

reduced to a set of three simultaneous algebraic equations. In general, it is

much easier, both in theory and practice, to solve a series of simultaneous

equations than a differential equation. We shall deal with them later in

Chapter 7.

Our survey of arithmetic has led us from positive integers to negative

integers, rational fractions, irrationals and finally to complex numbers. Is

that the end? Alas! there is no end to number making. About 100 years

ago, the celebrated Irish mathematician, Sir William Hamilton, began to

consider space vectors in the manner in which we have considered plane

vectors in our foregoing account. We assumed that all the directions of the

vectors with which we had to deal lay in one plane, the plane of the paper,

on which we drew our diagrams. But in the real world, the forces, velocities,

accelerations and other directed magnitudes need not be and, in fact, often

are not, in one and the same plane. How shall we deal with such vectors?

In the case of two-dimensional vectors lying in the plane of our paper we
denoted them by number couples like (x, y) giving their components along

two mutually perpendicular reference lines. The numbers jc, y were the

co-ordinates ofP with respect to the two reference lines. The extension of

this theory to space vectors is now obvious.

We take three mutually perpendicular reference lines OX, O Y, OZ and
denote the space vector OP by a number triple (jc, y, z), giving its three

components along the three reference lines, the numbers x, y, z being the

co-ordinates of P with respect to the three mutually perpendicular refer-

ence lines (see Fig. 25). If you have difficulty in imagining such reference

lines, have a look at the inside of your study. Take any corner of the floor

as your origin and call it O. Two edges of the floor meeting in O give you
two straight lines at right angles to one another. Call one of them OX and
the other O Y. The vertical line through O to the ceiling, which you may
call OZ, is obviously a line at right angles to OX as well as O Y. These
three lines meet in O and are mutually at right angles to one another. You
cannot draw all three ofthem on paper as they do not lie in one plane; but
you may create an illusion thereof by means of a drawing in perspective
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like Fig. 26. Now imagine any point P in the room, such as a bulb hanging

from the ceiling. What is its height from the floor? To find it you may drop

(in imagination) a plumb-line from P till the lead at its lower end touches

the floor at M. The height ofP above the floor is clearly the length, say, z,

of the string PM when taut with the lead just touching the floor at M.

Consider now M, the point where the plumb-line touches the floor. Let its

z

Flo. 25

distance from the reference line OX be y and that from O Y, x. Then the

numbers x, yt z define the location of the point P with reference to the

three mutually perpendicular reference lines OX, OY, OZ. They are

known as the co-ordinates of the point P but they may also be used to

define the space vector denoted by the line OP. The space vector OP is

simply defined by the number triple (x, y, z) where x, y, z are the co-

ordinates of P as well as its three components along the three reference

lines OX, O Y, and OZ. We may also write it as Ix + 3y + Kz, where the

symbols I, J, K printed in bold type do not represent numbers but opera-

tions or certain acts that you are required to perform. Thus, Ix, or the

operation I on number x means that you are to move a distance x in the

direction of OX. Likewise, the other two operations J and K mean:

Operation J on number y or Jy = Move a distancey in the direction

of OF;

Operation K on number z or Kz = Move a distance z in the direction

ofOZ.
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You may perform these three operations in succession. Thus you may
move first a distance x along OX—operation Ix. This brings you to A.

(See Fig. 26.) Having arrived there, you may perform the next operation,

Jy by moving a distance y from A in the direction of O Y. You are now at

M. FromM the third operation Kz means moving a distance z in the direc-

tion ofOZ or vertically upwards. This third operation sends you to P. Now

does it matter in what order these three operations are performed? We
cannot answer the question a priori. There are many operations where the

order in which they are performed is not immaterial to the end-product.

Suppose I represents an operation of shuffling a pack of cards in a particu-

lar way, while J is another such way. Obviously the final shuffle wiU

ordinarily depend on whether the operation I or J is performed first. We
have to discover in each case by actual trial whether the order in which

operations are performed matters or not. In this particular case, you.may

easily verify that in whatever order the three operations I, J, and K are

performed, you finally reach the same point P. Since the line OP defines

the vector OP, we may represent it by the operational 'sum'

Ix + Jy + Kz.

This means that you can obtain the terminus P of the vector OP by

successively performing the three operations Ix, Jy and Kz. Now consider

another vector OQ (Q being, say, another lamp). In a like manner, we

may also represent it by the operational sum

Lc' + J/ + Kz'.
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What is the vector sum of the two vectors OP and 00? As we have

already seen, it is given by the parallelogram law. That is, we construct a

parallelogram with OP and OQ as adjacent sides and take its diagonal OR
as the vector sum of OP and OQ. Can.we represent the vector OR also as

an operational sum? Yes, we can. It can be shown that the vector

OR is the sum
l(* + *0 + J(y + /) + K(z + z%

But we could have also got this result by adding Ix + Jy + Kz to

I*' + Jy' + Kz' as if the operational symbols I, J, K were ordinary

numbers which they really are not. Such manipulation of operational

symbols as ifthey are ordinary numbers is called formalism. It is a useful

process and often leads to fruitful extensions of mathematical fields. But it

is not without pitfalls, as may be expected. For, after all, if operational

symbols seem to behave like ordinary numbers in some ways, it does not

mean that they will behave like them in all ways. That is why formalism

can be safely employed only if we take care to verify that the formulae de-

rived by formal manipulations yield physically meaningful and correct

results. It happens that in this particular case the formal addition of two

vectors like Lc + Jy + Kz and Ix' + Jy' + Kz' does lead to a correct

and meaningful result.

Having succeeded in our first venture at formal manipulation, we may
now hazard another. Let us multiply the expressions (Lr + Jy + Kz) and

(I*' + Jy' + Kz') as if I, J and K were ordinary numbers /, / and K.

We obtain

T*xx' + J*yy' + K2zz' + Uxy' + Styx' + Kxz' + KLrx' + JKyz'

+ KJz/.

Here we encounter symbols I2, /2
, K2

, IJ, JI, etc., to which we have given

no meaning. How are we to interpret the result of this mathematical

abracadabra? We overcome the difficulty by defining

—

P=— 1, J2 =-l, K2 =-l;

JL = -K, KJ = -I, IK = -J.

Our product then becomes:

-ixx' + yy' + zzO + ICyz' - y'z) + J(zx' - z'x) + K(xy' - x'y).

We can now interpret this result. It can be shown that the first term, viz.

—(xx' + yy' + zz% is the negative of the scalar product and the remain-

ing three terms, viz.

:

10*' - y'z) + J(**' - z'x) + K(xy' - x'y),
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the vector product of the two given vectors. In other words, our formal

multiplication yields at one blow both the scalar and vector products.

Sir William Hamilton, who first suggested this procedure, called the

aforementioned product of the two vectors a quaternion. So a quarternion

is a sort of generalised vector just as a vector is a generalised number.

Hamilton, however, had great difficulty in securing official recognition for

his quaternions. The stumbling block was the hypothesis he made con-

cerning the products like H and JI. It was bad enough equating Is, Js
, K*

to —1, but in his day that could be tolerated, as the introduction of com-
plex or 'imaginary' quantities had inured mathematicians to such sights.

But to set IJ equal to K and JI to —K, that surely was a 'howler', which

no respectable mathematician could accept even on the authority of Sir

William! Of course, if I and J were pure numbers like 2 and 3, it would be

foolish to claim that 2~x 3 is"6 while 3 x 2 is —6. But Hamilton's I, J»K
are not ordinary numbers. They are symbols for certain operations and, as

we have already seen, the end-product in many cases does depend on the

order in which these operations are performed. There was, therefore, no
inherent absurdity in Hamilton's equations, inwhich IJandJIwereunequal.
Hamilton was so fascinated with his own discovery of the quaternions

that he devoted the remainder of his working life solely to their study. He
thought that he had found in the quaternions the master key to geometry,

mechanics and mathematical physics, just as Pythagoras, 2400 years be-

fore, had thought the whole number to be the essence and principle of all

things. Both were disappointed and essentially for the same reason. We
create a number language to describe the mysteries of nature, but we find

them too deep for its vocabulary even though enriched by the acquisition

of fractions, irrationals, imaginaries and quaternions. The difficulty will

certainly remain even if the number language is extended still further.

While Hamilton was creating quaternions in the hope that he had at

last touched the ultima Thule of number extension, one of his con-

temporaries, Grassmann, was developing a method of generating still

more generalised numbers in which Hamiltonian quaternions figured as a
minor detail. Long before Einstein popularised the fourth dimension,

mathematicians were working with purely fictitious spaces of four, five,

and even n dimensions. Grassmann took a vector in such an /i-dimensional

space. As we saw, to specify a two-dimensional plane vector we needed a
number couple: for a space vector we required a number triple. For an

/i-dimensional vector we should naturally want to have an «-ple number
such as (xlt *a, . . . xn). Just as Hamilton denoted a space vector by the

expression Ix + Jy + &?, so also Grassmann denotedAn n-dimensional

vector by the expression

E& + E& + ... + Enxn.
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Like Hamilton's I, J, K» Grassmann's Ex, E2, . . ., En are not ordinary

numbers but operational symbols put in just to remind us that the magni-

tudes of the vector components xlt x2 , .

.

., xn in this expression are not to

be added as we might be tempted to add, say, 2 + 3. Having created n-

dimensional vectors, or hypercomplex numbers as they are generally called,

Grassmann had now to set up rules for combining such numbers. The

addition of two hypercomplex numbers presented no difficulty. It was a

simple extension of the addition law for space vectors. But he had some

difficulty in defining a multiplication law to complete the calculus of

hypercomplex numbers. Here he found that he was literally choked with an

embarras de choix. He gave several such laws, one of which was, in princi-

ple, similar to Hamilton's rule described above.

The theory of hypercomplex numbers of Grassmann includes a host of

other theories such as the theory of quaternions, determinants, matrices

and tensors, which were beginning to be developed about the same time

and the last two of which were to be applied extensively in quantum and

relativity mechanics about seventy years later.

While the extension of the real number system to complex numbers led

to an extensive development of a new theory, the theory of functions of

complex variables, the extension of complex numbers to Hamilton's

quaternions or Grassmann's hypercomplex numbers has not led to any

corresponding development of a theory of functions of hypercomplex

variables. The reason is that while the theory of complex variables, in

spite of its 'purity', has had extensive applications from the theory of

electric currents and map making to that of fluid flows, the 'pure' theory of

Grassmann numbers has hitherto withered for want of a similar applica-

tion. In fact, we remember him now chiefly because his theory has at last

been applied to relativity and quantum physics.

The new and latest generalisation of number to vector is not a 'free

creation* of the spirit; mathematicians dealt with various kinds of directed

magnitudes for over two centuries before they even thought of devising a

simple symbolism to denote them. When, at last, some of them did create

a calculus adequate for the manipulation of the new symbols, the majority

of mathematicians ignored it. It seems that every major extension of

number system receives official recognition with the greatest difficulty.

When Pythagoras came across incommensurable magnitudes, he decided

to suppress his great discovery rather than give up his pre-conceived idea

that integer is the essence of all things. Later, when the discovery became

generally known, the numbers expressing incommensurable magnitudes
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were called 'irrationals', devoid of reason! It took centuries before the
stigma attaching to the irrationals was washed away, and they were ad-
mitted among the comity of numbers as respectable numbers. The next
great extension of the number system occurred when complex numbers
were recognised as essentially a simple case of multiple algebra, in fact, a
double algebra. Here again, the recognition came slowly and tardily, long
after they had begun to occur in the solution of various problems such as
those oftrigonometry—so vital for navigation. In the beginning the mathe-
maticians tried to suppress their existence too, by rejecting them out of
hand as 'imaginary' whenever they appeared. It took a long time to under-
stand that the complex numbers also reflect certain aspects of the external
world, which are as 'real' as those represented by the integers and irra-

tionals. In our own day we find the vector struggling for official recogni-
tion.

During the nineteenth century, while Grassmahn's hypercomplex
numbers were hardly noticed, Hamilton's quaternion calculus fell flat on
the mathematical world. Except for Tait and Gibbs, the majority of the
scientists preferred to work with the old-fashioned Cartesian methods.
Even as recently as about thirty years ago the vector could hardly be said

to have come into its own. In the preface to his Treatise on Vectorial

Mechanics published in 1948, Milne records that he did not at first believe

his teacher Chapman, when he told him (1924) that 'vectors were not
merely a pretty toy, suitable only for elegant proof of general theorems,
but were a powerful weapon ofworkaday mathematical investigation, both
in research and in solving problems of the types set in English examina-
tions.' Since then mathematicians have ceased to look upon vectors as a
'mere shorthand for sets of Cartesian expressions' and have begun to
realise that there is all the difference in the world between the old-fashioned
methods of working with Cartesian co-ordinates and the new vectorial

methods. The former is like picturing a building by looking at its plan and
elevation, while the latter is like seeing it stereoscopicalry, that is, in its

three-dimensional solidity. For, as Milne has remarked, the old-fashioned
Cartesian method diverts attention from lines and surfaces, which are of
primary interest, to their projections on the three axes, whereas vector
analysis provides a kinematic picture of the motion in question that gives

far more insight into the phenomenon than the corresponding Cartesian
analysis. Vector analysis views the phenomenon as a whole, and to that
extent therefore it is more in tune with gestalt methodology. Because of its

great power it is now being extensively applied to a whole gamut of diverse
fields from econometrics to quantum mechanics.
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The web that men weave with words sometimes ensnares their own
minds. Thus for a long time intelligent men were astonished that

Zeno's verbal dialectics should seem to 'prove' that Achilles pur-

suing a tortoise could never overtake it. Some ofthem might perhaps have

even believed that motion was an illusion. If, nevertheless, things did seem

to move, so much the worse for the gross senses that lead men astray! And
yet when Zeno first astounded Athens with his paradoxes, it is all but cer-

tain that he meant them to be taken as mere parables with a moral.

Probably he wanted to harass either the Pythagoreans or the Atomists.

Whatever the motive, the moral he wanted to deduce was that apparently

water-tight reasoning could lead to manifest absurdity. But the moral of a

paradox as of a parable may be misunderstood. Thus, when La Fontaine

related the fable of the gay grasshopper, he (himself a carefree vagabond)

never intended to extol the avarice of the hard-fisted ant and disparage

the song and dance of the grasshopper. Quite the contrary; and it was the

same with Zeno.

Gradually, as the power of the words waned and the astonishment wore

off, men not only disregarded the moral but began even to consider the

paradoxes as sophistries—mere word play. One mightthinkthatnowadays,

over 2300 years after Zeno, we should be rid of such sophistries and cease

to be concerned about them. Yet, as Bertrand Russell has remarked, 'the

arguments of Zeno have, in one form or another, afforded grounds for

almost all the theories of space, time and infinity, which have been con-

structed from his day down to our own.' Indeed, if the ancient world had

one Zend to contend with, we have several, each one of whom has given

his own specific paradox. They are the Italian Burali-Forti, the English

Bertrand Russell, the German KSnig, and the French Richard. We shall

not state their respective antinomies here as some of them can be ex-

pressed only in highly technical language; but we may add that they are in

one way or another all concerned with the nature of infinity and infinite

processes.

But what is infinity? Among the several meanings listed in the Concise

Oxford Dictoinary, 'very many' is shown as one of its synonyms, and his-

torically this is precisely the sense in which the word infinite was originally

used. The technique of counting had not yet been perfected, men could
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count numbers up to only a limited number, and what could not be

counted was 'infinite*, 'very many', or 'numerous', be they the stars in the

sky or the grains of sand on a beach. Infinite, then, was not the 'un-

countable but the yet uncounted'. Later, the technique of counting ad-

vanced and human ingenuity invented numbers for counting bigger and
bigger collections. Our Hindu ancestors actually reached the colossal

figure of 10ls which they called pradha, and which they considered as the

ultra-ultimate number beyond which human mind could not advance.

Several centuries later, Archimedes invented even a bigger number, of the

order of 1052, to represent the number of grains of sand in a globe of the

size of the celestial sphere! Yet bigger and bigger numbers were devised

when finally man realised that there can be no limit to human thought.

However large a collection you may have, you can at least always imagine

a bigger one by adding one more item to it. If, therefore, we require our

number system to be adequate for counting any collection that we may
think of, we cannot close the system of integers with a last integer, however

large. We must keep the domain of integers open in order that we may
always find a number to represent the plurality of collections of any size

whatever. In this act of keeping the number domain open, of not closing

it with a last integer, lies the genesis of the infinite. But alas! the creation

of the infinite, the never-ending repetition of an act or an operation that is

once possible, has turned out to be a snare from which the mathematicians

have been trying to extricate themselves for the past 2500 years—from the

time of Pythagoras and Zeno to Hilbert and Brouwer in our own day.

Perhaps that is why, as Eddington once remarked, mathematicians repre-

sent infinity by the sign of a tangled love knot, <x>.

The root cause of the trouble lies in the fact that the laws of ordinary

logic, such as we derive from an intuitive appreciation of our experience,

inevitably confined to only finite classes, do not apply to infinite collections.

For instance, we know that a whole is necessarily bigger than any genuine

part of itself. Thus, the class of all Asiatics is necessarily smaller than the

class of all Homo Sapiens, for the former is only a sub-class or a part of

the latter. But when we apply this law to an infinite class we fall into

error; for, as we shall presently see, the infinite class of all integers is

exactly equal to any infinite part of it, as, for example, the infinite class

of only even integers.

The failure to understand that an infinite class can be equal to a proper

part of itself led Zeno to his paradox of Achilles and the tortoise. (See

Fig. 27.) Suppose Achilles to be at a point A and the tortoise at a point B
of the course at the beginning of the race. If, subsequently, Achilles over-

takes the tortoise at a point C, then the infinite set of points on the line

AC would have to be exactly equal to that on the line BC. For, to every
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position, say P, of Achilles between A and C, there corresponds one and

only one, viz. Q, of the tortoise between B and C, and vice versa. The

series of point-positions occupied by Achilles has, therefore, the same

number of terms as the series of the point-positions occupied by the

tortoise. Accordingly the aggregate ofpoint-positions occupied by Achilles,

viz. the line AC, is exactly jsqual to the aggregate of the corresponding or

simultaneous point-positiojns occupied by the tortoise, that is, the line BC.

M

Fig. 27—Adhilles and the Tortoise. See the Text.

But this seems to lead to (the paradoxical conclusion that the line AC is

equal to the line BC\
Zeno's paradox remained unresolved for about 2000 years till Galileo

observed that, unlike the finite classes, an infinite class must necessarily

have as many things in some part of it as there are in the whole of it. Just

as primitive men thought] all pluralities which they could not count as

equivalent as, for instance, the primitive Tasmanians for whom all num-
bers bigger than two were 'plenty' in the sense that they transcended the

limit of their ability to count, so Galileo thought that all infinite classes

were equal. Thus, in his book entitled Dialogues Concerning the New
Sciences, he argued that the number of points on one line is the same as on

any other because both are infinite, and the conception of one being bigger

than the other was not applicable to infinite collections but only to finite.

All infinities, therefore, were equivalent.

But even primitive man must have noticed that there are 'manys' and
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'manys'—the difference, for instance, between the 'many' soldiers in an
invading host, the 'many' stars in the nocturnal sky, or the 'many' grains

of sand on the beaches. So, too, the scientists began to feel vaguely that

there are infinities and infinities. How did they discriminate between the

various infinities if none of them could be counted? It was indeed by an
extension ofan old idea which had preceded even the practice of counting,

the idea underlying the matching process that we explained in Chapter 2.

The idea is so important that it may be explained again by a simple

illustration.

Ifyou had a large audience in a hall and a number of chairs, how would
you decide which ofthe two was more numerous without actually counting

them? You could ask your audience to take their seats, one person to a

chair, and watch the result. If, after everybody was seated, there were still

some chairs left, obviously the number of chairs was larger than the num-
ber of persons. If, on the other hand, after all the chairs were occupied you
still had some persons left, the number in the audience was the bigger. And
if, finally, neither any chair was left unoccupied nor any person left stand-

ing, the two collections were exactly numerically equal. Now this process of

'marrying' the items of one group to those of another is called matching,

and if the matching between the items of two groups is essentially 'mono-

gamous' so that one item in any set has a unique partner in the other and

vice versa, the two groups are obviously equal. If the same idea is applied

to two infinite groups, obviously you cannot complete the matching pro-

cess because the number of items in either group is inexhaustible. But you

may be able to set up a general formula whereby, given any item of one

infinite group, you could discover its unique mate or counterpart in the

other. For instance, the collection of integers

1. 2, 3, 4, 5, . .

.

and that of even integers

2,4,6,8,10,...

are both infinite. But we could formulate that to every number, say 5, in

the first group, corresponds its double, viz. 10, considered as a number of

.

the second group, and to every number in the second, say 10, corresponds

its half, viz. 5, in the first. We have thus specified a general rule whereby

the members in the two groups are uniquely 'married' or correlated and
we are thus justified in calling the infinite set of integers and that of the

even integers as equal though infinite.* Similarly, we could devise a formula

for 'marrying' monogamously the points on a straight line to those of any

* In passing, we may note that any infinite set or collection, whose items can be thus

monogamously married off to those of the infinite set of integers, 1, 2, 3, 4, . . ., is known
as an enumerable or a countable set.
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other line. Let AB and CD be any two such lines (Fig. 28). Let AC, BD
meet in O. IfP is any point on CD we can obtain its corresponding mate Q
on AB by joining OP and letting it intersect AB in Q. Conversely, given Q,
we obtain its corresponding mate P in CD by joining OQ and letting it

intersect CD at P. The rule ip general and the correspondence it establishes

between the points of CD a)ad AB is 'monogamous'. The infinite number

of points on the line AB isj therefore, the same as that of points on the

line CD.
Since AB> CD are any pair of lines arbitrarily selected, we find that the

number of points on any sjtraight line is exactly 'equal' to that on any

other, the word 'equal' here meaning merely that the points of one can be

married off monogamously to those of the other. In particular, the infinite

number of points on any line is the same as that on a line of unit length.

Now how does the infinity of points on a unit segment AB compare with

the infinity of the unending set of positive integers

1,2,3,4,5,...?

Since both the collections—the collection of points on the unit segment

AB and the collection of positive integers—are infinite, we can compare

them only by seeing whether the elements of one can be married offmono-
gamously to those of the other. If so, we could reasonably call the two

infinite collections equal in the sense defined above. If not, one of the two

would be bigger. Now if the monogamous marriage of the points on AB
and the unending series of integers 1, 2, 3, . . . were possible, this would

simply mean that we could have a roll-call of the points of the line in much
the same way as a foreman might muster his gang. The essence of the roll-

call process is that each one of the gangmen, Bill, Fred, Harry, Casey, . .

.
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has one and only one roll number assigned to him, so that when any

number, say 3, is spoken, only one person in the gang, say Harry, answers

the call. Now before we can roll-call the points on the line AB we have to

devise a way of naming them. Since, unlike the number of men in the

gang, the number of points is inexhaustible, we cannot hope to name each

one ofthem individually. All that we can do is to devise a rule or a formula

whereby, given any point, we could manufacture its name. One such way
would be to call them arbitrarily Ply P2, P9 Pn, .... But the trouble

with such an indefinite naming scheme is that it gives us no grip on the

points named. We have no way of telling which particular point has been

namedP8 for example. A better procedure, which gives a firmer grip on the

points named, would be to name the point by means of the number de-

noting its distance from one end. In other words, ifwe choose a point, say

-P8, whose distance from A is £ we can call it the point '^' aliasPz . Similarly

if the distance of another point, say P2, from A is £, we could name it the

point '£'. We shall find it more convenient to express the distances in the

decimal notation, that is, by the non-terminating decimals :50000 . . .,

and 0*333 . . . instead of the fractions '£' and '£' respectively. If we adopt

this system of naming points on the line, every 'name' such as the number
*¥ or its decimal equivalent, 0-142857142857 . . ., for example, leads to a

definite point Px whose distance from A is (in this case) the length I.

Since, by hypothesis, the entire length of the line AB is unity, we shall

never have occasion to use a number exceeding 1 in order to name the

points. Having devised a scheme of naming the points, we are now ready

for the roll-call. If the infinite set of points on the line AB is 'equal* to the

unending series of integers

1, 2, 3, 4, . . .,

it would be possible to assign to every name one and only one number of

the series 1, 2, 3, 4, In other words, we could express the distance of

every point on the line AB in a roll-call order of, say, the following type:

Roll Indefinite name Distance name of the point from A
{umber of the point

1 Pi • 1 4 2 8 5 7 14285 7...

2 A • 3 3333333333 3...

3 P* • 5 00000 0...

4 P* • 6 6666666666 6...

5 P* • 7 2 1 8 9 6 524714...
6 P. • 8 1235291412 3...

7 P,

P*

etc.

8

etc.
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Now consider the number in the decimal notation formed by taking

only the digits in bold type in the above scheme. This number is

•130692...

From it we could manufacture a series of other numbers. This way of

generating a number is known as Cantor's diagonal process. The reason is

that we pick up the digits in the diagonal of the array and produce another

by changing each. For instance, we could substitute for T in the first

digit the next number 2, for the number '3' in the second digit the number
4 and for '0' in the third place 1, for '6' in the fourth place 7, for '9' in the

fifth place (notten),for'2'in the sixth place 3 and so on. We thus obtain

from the number -130692 . . . another number -241703 ... It can be

shown that this last number is not included in the aforementioned roll-

call scheme. For it is not the first number, because by the very process

of its manufacture it was made to differ from the first numberPr in the first

digit. This difference in the first digits of the two numbers suffices to make
them different, even if every one of their succeeding digits tallied. Like-

wise, it is not the second number, for its second digit was made to differ

from the second digit ofthe second number. It is obvious that the argument

can be repeated indefinitely so that the number -241703 . . . that we have

manufactured differs in at least one place from every one of the numbers
listed in the roll-call scheme. The point on the line whose 'name' or dis-

tance from A is the number -241703 ... is thus left out of the muster that

we have attempted to design.

The assumption that we can specify a formula whereby the points on
the line AB can be married off monogamously to the members of the

infinite set of integers 1, 2, 3, . . . leads to a contradiction. Whatever we do
there is always at least one point on the line AB left without any partner in

the integral number fold. We thus regard the infinity of the aggregate of

points on a straight line like AB as bigger than that of the aggregate of

integers. If we denote the 'infinity' or 'power' of the latter by the symbol a

and the bigger infinity or power of the former by c, we have what are called

transfinite numbers.* We might conceivably have a transfinite of a higher

power than a but lower than c. No one has yet produced an intermediate

transfinite of this kind. It is believed that there are none such, although no
one has yet succeeded in clinching the issue by a strict mathematical

demonstration of the non-existence of such intermediate transfinites. On
the other hand, infinite aggregates with a power greater than c can be con-

structed. In fact, Cantor proved that if an infinite aggregate M with any

* An infinite aggregate like the unending set of positive integers is sometimes called

a-infinite, enumerable, or countable, while the infinite aggregate of points on a line

is called c-infinite.
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power a exists, another infinite aggregate M' with power p exceeding a can

always be constructed.

Suppose we have an infinite aggregate M of the lowest power a, viz.

the ^-infinite set of integers

1, 2, 3, 4, . . . m . .

.

we may consider the elements m of the set M as arranged in their natural

order as written above. Now this ordered set of elements can be made to

generate a whole group of other sets. To do so we may make use of Con-

fucius''s dualistic notion of yin (female) and yang (male). Let us then denote

a yin by the symbol o and a yang by the symbol £. We start with the

given set M of integers m, thus:

1, 2, 3, 4, . . . m . .

.

Suppose we replace every element m of this set by either a yin o or &

yang £. We thus obtain an arrangement or permutation of yins and

yangs. For instance, suppose we replace 1 inM by a yin, 2 by a yang, 3 by

yin, 4 by yang, 5 by yin, 6 by yin, and so on. We have then an arrangement

of yins and yangs such as:

£ O £ O O £ £ £ • • •

Proceeding in this way we can generate a whole infinity of permutations

of yins and yangs. Consider now the infinite aggregate M' of all such

permutations or arrangements of yins and yangs obtained by replacing

the elements m of the set M. We can show that the infinity of the aggre-

gate M' is higher than that ofM. In other words, if we tried to match the

elements of M' over those of M, some elements of the former would be

left over. Suppose, if possible, we matched the following permutations of

yins and yangs—elements ofM

'

—over the elements of M, that is, the set

of positive integers 1, 2, 3, . . ..

Elements

M
1

2

3

4

5

of Elements ofM' or

Arrangements ofyins and yangs

©£0£00£££...
£ © £ £ £ £-•••

£0©0£0££--0.-.
00£IO£000--

Now consider the permutation of yins and yangs obtained by picking

out those in bold type in the above scheme. This is the arrangement:

O © O £ ...
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If, now, we change every yin into a yang and vice versa in this arrangement,

we have the arrangement

£££©••.
This arrangement clearly differs from every one of the arrangements listed

in the above matching scheme. For in the first place we have put a yang

against the yin appearing in the first place of the first arrangement. It

therefore differs from the first arrangement. In the second place we have

substituted a yang as against the yin in the second place of the second

arrangement. It therefore also differs from the second arrangement, and

so on. We have thus manufactured a permutation of yins and yangs, that

is, an element of At* which cannot be matched over the elements of M.
ConsequentlyM' is of higher power than M. In fact, it can be shown that

the power ofM' is the same as that of the unit line AB (page 98).

Consider now the set M' of the points of the unit line AB. We could do

to the elements of this set (that is, the points of the line AB) just as we did

to the elements m of the first set M, viz. the set of infinite integers. In

other words, we could replace each element or point P of the line AB> by a

yin or yang. We thus obtain again an infinite arrangement of yins and
yangs. Notice carefully that the arrangement of yins and yangs thus ob-

tained would now consist of an infinite number of yins and yangs as be-

fore but that the power of this infinity would be higher. The reason is that

formerly we replaced the '^-finite' set ofintegers by yins and yangs, whereas

we are now replacing the 'c-infinite' set of points of the line AB by yins and

yangs.

If this way of distinguishing the two types of arrangements appears too

abstract, you may try to picture them in another way. This alternative way,

too, needs a good deal of imaginative effort, but it is well worth making

as it will show you how vastly greater c-infinity is compared to a-infinity.

As we have seen, an a-infinite arrangement of yins and yangs is simply an

unending sequence such as:

0££0££00 (1)

Now we can also construct an arrangement of yins and yangs which is

a doubly unending mosaic of the type

• (2)

o £ £ O £ £ O o ...

o O £ O £ O £ o ...

£ £ O £ O O O £ ...

O

*

£ O O £ £ £ o ...
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©&&0&£0©
v///i © * © *

'

/ / /g & <•> & © © © £ '

(•© tf © © * A * ©

Fig. 29—If you start counting the yins and yangs in the figure, following the

direction of the arrows, you will be able to match all of them over the infinite

series of integers 1, 2, 3, 4 This doubly-unending mosaic of yins and

yangs is therefore enumerable.

Fig. 30—Fig. 29 shows that a doubly unending mosaic ofyins and yangs is enumerable.

Now, we could arrange all fractions (or rational numbers) in a similar mosaic-

type arrangement and match them with the series of integers in the same manner.

Hence the infinite set of all fractions or rational numbers is also enumerable.
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Contrary to what our intuition may tell us, this mosaic-type arrangement

is really no bigger than the single-line sequence (1). In other words, it is

still a-infinite. A glance at Figs. 29 and 30 should make this clear. From
a mosaic of type (2) we can manufacture a trebly unending lattice—

a

never-ending flight of mosaic storeys. For the ground floor we may take a

mosaic arrangement such as (2). For the first floor we take another mosaic
of the same type but with a different arrangement of yins and yangs, e.g.

£ O O £ O £
£ £ O O O £
O £ O £ O G

For the second floor we take another mosaic and so on endlessly like the

builders of the Tower of Babel with only this difference that no confusion

Fig. 31

of tongues is to interfere with our attempt to reach the vault of heaven.
(See Fig. 31.) This trebly unending lattice-type arrangement is again no
bigger than the simple sequence (1).

We are now at the end of our tether, for we can move only backwards or
forwards, right or left, and up or down. We used the first type ofmotion to

obtain an infinite sequence of the type (1). We used both, the first and
second kinds of motions, to create an infinite mosaic such as (2) and all



ZENO AND INFINITY 103

three to manufacture an infinite flight of mosaic floors or a trebly un-

ending lattice-type arrangement. To proceed farther we need at least one

more 'degree of freedom'—a new dimension. Although our physical space

allowsjust three dimensions formovement and no more, the mathematician,

unlike Alexander, never cries that he has no more worlds to conquer. From
a three-dimensional lattice of yins and yangs he constructs (in imagination

now) a quadruply unending 'super-lattice' arrangement of yins and yangs

in exactly the same way as we built a mosaic such as (2) out of a sequence

like (1) and a Babel-type lattice out of a mosaic like (2). But even so, we

have only an arrangement as a-infinite as the simple sequence (1) ever was.

So you see it is no easy matter to soar out of the prison walls of even a-

infinity, though it is the lowest type of infinity among mathematical

infinities.

There is, however, no limit to a mathematician's imagination. He soars

higher and higher and builds a whole series of super-lattice arrangements

of yins and yangs. He evolves a whole hierarchy of them, beginning with a

singly unending sequence such as (1), then a doubly unending mosaic such

as (2), then a trebly unending lattice, like a never-ending flight of mosaic

floors, then a quadruply unending super-lattice, and so on for ever and

ever. This last 'for-ever-and-ever' type of super-lattice arrangement of yins

and yangs, which is so to speak unendingly unending, is at long last bigger

than the infinite sequence (1) and has the power c. We have now flown out

of the prison walls of a-infinity : but what a flight!

Consider now a c-infinite arrangement of yins and yangs, an unendingly

unending 'super-lattice' of the type described above. As we saw, we de-

rived it by replacing each point P of the line AB by either a yin or a yang.

Obviously we could produce an infinite number of other arrangements of

yins and yangs similar to this super-lattice arrangement. The aggregate of

all such possible super-lattice types of arrangements of yins and yangs is

itself an infinite setM". It can be shown that the power y of the setM" is

higher than the power c of the infinite set M'. In other words, if the ele-

ments of M" were to be matched over those ofM', a number of the ele-

ments of M" would be left without any partners in M'. The power y of

the infinite aggregate M" is therefore higher than c, the power ofM. We
might call M" the super-lattice manifold but it is more usually called the

functional manifold. As before, there is nothing to indicate in Cantor's

theory that there are no transfinites lying between c and y; but it is gener-

ally believed that there are none such. We could repeat the same process

by starting with the elements of the aggregate M" and generate another

aggregate with still higher power and so on ad infinitum. As the process is

interminable there can be no last transfinite. Musing over the glory of

heavens, St. Paul once said, 'There is one glory of the sun and another
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glory of the moon and another glory of the stars; for one star differeth

from another star in glory.'* Musing over infinity a mathematician might
well exclaim 'there is one infinity of the integers, another of the real num-
bers, and another of the functional manifold; for one aggregate differeth

from another in the power of its infinity!'

This act of transcending the infinite and weighing it, as it were, in the

balance, was a veritable tour deforce on the part of Cantor, the creator of
the theory of transfinite numbers. But, alas! no sooner was this beautiful

structure of thought reared than it began to appear that somewhere deep
down in its foundations there was a serious flaw. For while, as we have
seen, one train of Cantor's arguments led to the conclusion that there is

no last transfinite, another apparently equally valid seemed to prove that

this cannot be so ! For the power ofthe aggregate of all possible aggregates

must be a transfinite, which is the greatest conceivable or the ultima Thule

ofnumber evolution. It is, therefore, the last transfinite! This contradiction

is allied to certain other antinomies of the infinite, which sprang up from
the ambiguous manner in which Cantor and others had used the word 'all'

in their reasoning. Such, for instance, was the paradox ofthe Italian Burali-

Forti, who showed that 'the ordered series of all ordinal numbers defines

a new ordinal number which is not one of the "all"'. This might appear a
little too recondite but Burali-Forti's point would be understood by con-

sidering the paradox of the village barber who shaves all men who do not
shave themselves. Either the barber shaves himself or he does not. If he
does not shave himself, he is one of the non-selfshavers and is, therefore,

shaved by the barber, that is, himself. If, on the other hand, the barber

shaves himself, he is one of the men who shave themselves, and hence he
is not shaved by the barber, i.e. he does not shave himself. In either case

there is a contradiction, which arises on account of the illegitimate in-

clusion of the barber himself in the word 'all' of the original enunciation.

With the emergence ofthe paradoxes ofthe infinite discovered by Burali-

Forti and others, the ghosts of Zeno, Eudoxus and Cavalieri, that had ap-

parently been laid to rest by the work of Galileo and Bolzano, stirred to

life again and began to mock the analysts' attempt to comprehend the

nature of the infinite. It seemed as though mathematics could steer clear

of the Scylla ofa paradoxical infinite only by perishing in the Charybdis of a
severely restricted arithmetic. Amazing as it may seem, the neo-Pythagorean

L. Kronecker did openly suggest that mathematics practically scuttle itself

in such a Charybdis of a narrow arithmetic. This mathematical Samson
threatened to demolish the real number system, the calculus and every

branch of mathematics which employed the infinite. He demanded that the

infinite must be banished outright from mathematical thought and every

* 1 Corinthians xv, 41.
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theorem in analysis stated as a relation between integral numbers only,

thus eliminating entirely the terminology involved in the use of negative,

fractional and irrational numbers. 'God made the integers, all else is the

work of man,* he said, and insisted that man must operate with God-given

integers and nothing else. If Kronecker could have had his way, very little

of mathematics as we know it today would be left. It would, perhaps, be a

delightful prospect for the high-school student, but you would also have to

do without numbers to express many magnitudes of everyday use, such as

the diagonal of a square in terms of its side or the area of a circle in terms

of its radius. Obviously, therefore, Kronecker's nihilistic programme

could not be practical mathematics.

Nevertheless, Kronecker's lead was followed by some of the greatest

mathematicians of our time, at least in precept, even though their practice

did not always conform to it. Poincar6, Brouwer, Weyl, one after the other,

thundered against Cantor's theory of the infinite and condemned it as a

'disease* of which mathematics had to be cured. They held that for a con-

cept to be admissible in mathematics, it is not enough that it be *well

defined' in words. It must also be 'constructible', that is, obtainable by a

finite number of processes, or at least by such infinite processes as are re-

ducible to finite by means of a finite number of rules. For instance, if we

require the square root of 625, the ordinary process of root extraction is

'admissible' because, after a finite number ofdivisions, we obtain the square

root 25. But if, on the other hand, we require the square root of 2, the

same process had to be repeated ad infinitum. It is true that by stopping the

process after a finite number of steps, we can secure as close an approxima-

tion to the square root of 2 as we like. But, however far we may go, a

finite number of steps will never lead us to exactly the number whose square

is 2. Hence, conclude the rigid finitists, that y/2 is not an 'admissible'

number. The finitist's argument is that since the infinite sometimes leads

to contradiction, it should be completely banished from mathematics.

One is reminded of the pious Sur Das who blinded himself because the

sight of beautiful girls occasionally caused him concupiscence.

If, then, the infinite cannot be banished from mathematics without

destroying nearly all of it, how are its contraditions to be resolved? There

are some who, like Tobias Dantzig, are willing to accept the 'illusion' of

the iminite as a 'mathematical necessity' on the ground that it preserves

and furthers the intellectual life of the race. On that score, they agree to

'counterfeit' the universe by number, by the infinite and accept an other-

wise 'false' judgment, justifying the acceptance by Nietzsche's aphorism,

'renunciation of all false judgment would mean a renunciation, a negation

of life'! If it means anything, it is presumably this. Since we literally think

with concepts which are expressed in language, the picture we make of the
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universe around us is refracted by our linguistic medium very much as the

stars are displaced by the atmosphere through which we see them.

The progressive elimination ofthis falsifying ofthe universe by language,

number and symbolism is one of the major tasks of the philosophy of

science. We cannot shirk it on the plea that it is one of those inevitables

that must be endured because it cannot be cured. For instance, one species

of aberration is the creation of static and permanent forms and categories

that we invent and impose on the ever-changing universe to understand

and transform it. We correct this aberration later by breaking the old

categories and synthesising new ones. In the case of infinity its introduction

appears to some 'illusory' or 'false' because they tend to think in terms of

too rigid categories which they are unable to synthesise. Accordingly, the

concept of the infinite, in which the mind conceives of an infinite number
of single objects and at the same time treats the whole as an individual

object, appears self-contradictory and therefore 'false'. This is an old and

persistent error of idealist philosophy. About 2300 years ago, noticing the

existence of opposite qualities in matter (as, for example, the union of the

quality of hardness with that of softness in a piece of wood), Plato was led

to the idealist belief that matter is 'self-contradictory' and therefore 'un-

real'. The only difference between him and his present-day successors is

that the latter, with their sharper sense of fullness of life, agree to accept a

'false' judgment so as to further the 'intellectual life of the race'.



THE THEORY OF SETS

In
the study of mathematics we come across the term 'point' for the

first time in geometry, where it appears as quite a humble sort of item.

The text-book definition, that a point is that which has position but no
magnitude—meaning thereby that it is a disembodied dot—sounds rather

like a riddle. And yet within the last century and a half this scarcely visible

speck of ink—the 'point'—has grown into a giant, a veritable Atlas, that

now supports the entire mathematical world! How has this miracle come
to pass ?

Two independent lines of development have contributed to the exalta-

tion of the point as the sovereign entity ofmathematical thought : dynamics

and the theory of heat. The need oftraders for safe and reliable methods of

navigation led to the study of dynamics during the sixteenth and seven-

teenth centuries. The need of manufacturers for a new source of power to

meet the ever-growing demands of trade, and its partial satisfaction by the

invention of the steam engine during the following century, gave rise to

more precise studies of thermal phenomena and theories of heat. The be-

ginnings of the first line of development, the evolution of dynamical

theory, can be traced to Descartes, who turned to good account the prac-

tice of the medieval cartographers whereby the location of terrestrial

places could be indicated on charts or maps. The idea underlying their

practice is simple. If we draw two reference lines on the surface of the

earth such as, for example, the equator and the Greenwich meridian, the

position of every place on the earth's surface can be specified by giving two
numbers indicating its longitude and latitude. Applying the same idea to a

flat surface like the plane of paper, we take any two reference lines XOX\
YO Y' through a point of origin O and indicate the position of any point

P by its distances from these reference lines. (See Fig. 32.)

We can also extend this procedure to indicate the location of points in

air, such as positions of flying aeroplanes, by taking the vertical through

the origin O as our third reference line in addition to two mutually per-

pendicular lines in a horizontal plane. Thus on a flat surface, such as a

plane field, the position of every point is given by two numbers—its two
distances from two given reference lines. In space its position would be

given by three numbers, its three distances from three given reference

planes (see Fig. 33).
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The discovery that points on a flat plane can be represented by a number

couple and those in space by a number triple was revolutionary enough,

but still more revolutionary was the converse idea that any number

Y
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Fig. 32

couple could be represented^by a point on a plane such as the surface of a

graph paper. This idea is nowadays a mere commonplace and is used

extensively by people other than mathematicians when they wish to keep

an eye on some state of affairs. For instance, take a business man who is

VERTICAL
THROUGH O

FLYING AEROPLANE

-» HORIZONTAL PLANE

Fig. 33

usually concerned with the growth of his turnover. He has in mind a se-

quence of number pairs, the amount of his turnover and the date thereof.

He represents all such number pairs by a series of points on graph paper.

Drawing a continuous line through them he obtains a graph, which gives

him a vivid idea of the growth of his turnover. Similarly, if he is interested
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in the correlation between his sales and prices, he draws the sales and price

diagram, in which each point is represented by a number pair denoting the

sale and the corresponding price. But if he wanted to study the inter-

relation between a larger number of items such as his sales, prices, number

of salesmen engaged, their wages bill, etc., by graphical method, he would

have to devise a way of representing all these sets of corresponding num-

bers by a single 'point', whose 'graph' would then be a picture of this

inter-relationship.

Although business men hardly use it, a way exists whereby a set of three

or more numbers, which, taken together, indicate some state of affairs,

can be represented by a single point. It was used for the first time in

dynamics. Take, for example, the simple case of the motion of a single

particle in a straight line. To know the state of its motion completely we

require two quantities, its distance from a fixed origin and its speed at any

particular time. We can represent this number couple—its distance and

speed—by a point in a plane. A series of such points corresponding to

different positions and speeds of the particle at different times would give

a graph of its motion. Now suppose we had a system of two particles

moving in a straight line in such a way that they have the same speed at

any time. The state of this dynamical system is given by three numbers,

two for the positions of the two particles and one for their common speed.

If we want to draw a graph line to represent the dynamical state of this

system, we cannot proceed as in the case of a single particle. The reason

is that while a point in the plane of a graph paper can deputise for a

number couple, it cannot do so for a number triple. To be able to draw a

graph in such a case we should have either to omit one number out of the

three required for the description of the state of the system, or find a way

of drawing a three-dimensional graph. Obviously such a graph cannot be

drawn on an ordinary two-dimensional graph paper. But it can be drawn

in the perceptible three-dimensional space around us. Takingthree mutually

perpendicular reference lines in space, say, two horizontal lines and the

vertical through a point of origin O, we can represent any state of our

dynamical system as given by its three specification numbers by a point in

space. The line joining all such points would thus be the analogue of our

graph line in a two-dimensional space like that of the graph paper.

Now dynamical systems are of various degrees of complexity and may

need one, two, three, four or more specification numbers for a complete

description of their state. In the case of systems consisting of a large num-

ber of particles, this number may indeed be very large, although, due to

the existence of mutual interlocking and constraints subsisting between the

particles of the system, it may not be as large as we may be led to imagine

at first sight. For instance, consider the motion of a rigid door about its
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hinges. We might imagine that to specify completely the state of its motion
we have to know the positions and velocities of the innumerable particles

of which it is composed. Actually, however, its motion is completely

described by two specification numbers just as a smart tailor is able to fit

your clothes like a glove by taking a few measurements over selected por-

tions of your body. Your suit has to fit your body over a large number of
parts, over the sleeves, the chest, the back, the neck, etc. Thanks to the

mutual interlocking between the sizes of the various parts of the human
body, the suit would fit all over if it fitted the measured parts.

In the same way, we could deduce the position ofany particle ofthe door
whatever if we knew just one specification number, viz. the angle made by

LINE OF
HINGES

REFERENCE
PLANE

Fig. 34

the plane of the door with any selected reference plane through its hinges

(see Fig. 34). Likewise, the speed of any particle of the door could be
worked out if we knew the angular velocity of the door round the hinges.

Just as ordinary velocity is the distance travelled per unit time, so angular
velocity is the angle through which the door swings in a unit time. Thus
two specification numbers suffice in this case, although the door consists of
innumerable particles. On the other hand, a single particle moving freely

in space would need as many as six specification numbers for a complete
description of its motion—three to indicate its position in space and an
equal number for the three components of its velocity along the three co-

ordinate axes. A plane disc moving in any manner in space would require

six specification numbers to fix only its position in space for the following

reasons.
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You would need three numbers just to locate its centre of gravity. Sup-

pose its centre of gravity was at a point marked G in Fig. 35. You could

specify it by three numbers, viz. its three distances from the three co-

ordinate axes ; but fixing G does not fix the disc. With its centre of gravity at

G the disc could have any orientation whatever in space. Fig. 35 shows just

two ofthem but you could have any number of them. To fix its orientation

you would need to know the direction of a line at right angles to the plane

of the disc. But to specify the direction of this line you have to measure

DIRECTION OF THE
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Z

I

FIRST ORIENTATION
OF THE DISC
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OF THE DISC

Fig. 35

the three angles it makes with the three reference lines OX, O Y, OZ. This

makes a total of six specification numbers—three for the centre of gravity

and three for the perpendicular line—required to fix in space the position

of the disc.

To fix its velocity another set of six specification numbers would be re-

quired, three for the three components of the velocity of its centre of

gravity and three for the components of rotations of the disc around the

three co-ordinate axes. The state ofthe motion of the disc is thus described

completely by a set of six specification numbers for its position and another

set of six for its velocity—twelve specification numbers in all. In general,

any dynamical system could be described completely by a set of n specifica-

tion numbers in so far as the position and configuration in space of its

constituent particles are concerned, and another set of an equal number

of specification numbers for its 'velocities', in all 2n specification numbers.

In the case of the moving disc, as we saw, n is 6.

Now, if n = 1, as is the case with the motion of a single particle moving
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in a line or a door swinging on its hinges, we need only two specification

numbers to describe the state of motion of the dynamical system. No
difficulty arises in drawing a graph to represent this state, as the two num-
bers can be adequately represented by a point on a graph paper. The graph
line joining the sequence of such points is a picture of the dynamical state

of the system. But when the number n becomes 2, we need four specifica-

tion numbers to describe the state ofthe system. As we saw before,we could
draw a space-graph to represent the state of systems requiring three

specification numbers for their description, but what shall we do when we
require four or more specification numbers for a complete description of
the dynamical state? Since our physical space ends with three dimensions,
we can invent spaces of four, five, six, ... or, in general, n dimensions to
enable us to represent states with four or more specification numbers by
means of 'points'. Such 'spaces' are, of course, pure phantasies, like the
castles which Don Quixote imagined when he saw a wayside inn. The im-
portant difference, however, is that while the renowned Knight De la

Mancha always came to grief because of his dreams, the mathematician's
phantasy creates ordnance maps which help man to mould his environment
to his heart's desire.

For instance, Hamilton derived his famous principle of least action by
representing the configuration of any dynamical system at any time t as
specified by its n specification numbers by means ofa 'point' in an imaginary
space of n dimensions. Since every dynamical situation of the system is

given by specifying a set of n numbers, the latter can be represented by a
point in a super-space ofn dimensions. As the system changes its configura-

tion with the passage of time, we can visualise a series of 'points' in our
super-space to correspond to each new situation of the system. The history

ofthe system is then epitomised by a set of 'points' in our imaginary super-
space, generally known as 'configuration space'. This set of 'points' is

virtually the 'path' followed by the dynamical system as a whole in our
super-space. Hamilton showed that the system as a whole moves along a
'path' such that the time integral of 'action'* over the set of 'points' con-
stituting this 'path' is a minimum.
While Hamilton, and following him Jacobi and others, were turning

dynamics into an abstract theory of 'point' sets in imaginary spaces of
several dimensions, a further impetus to the study of 'point' sets in such
spaces was given by the successful operation of the steam engine. If the
scientists can claim any credit at all for the creation of the steam engine, it

must be admitted that they, like Seeley's Englishman, created it in a fit of

* Every dynamical system has two kinds of energies—one due to the motion of its

particles and the other in virtue of their position. The difference of the two is known as
action.
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absent-mindedness. For a working model of the steam engine came into

being long before there was any understanding of its basic theory—i.e.

the nature of heat, its conduction and conversion into mechanical work,

the behaviour of gases and vapours like steam, etc. These questions now

began to receive attention. The theory ofheat conduction, for example, was

studied by Fourier, and this led him to the remarkable conclusion that any

arbitrary function whatever could be represented by a sum of trigono-

metrical series since known as Fourier's series. This discovery was the

veritable germ from which grew a general theory of 'point' sets. The study

of the behaviour of gases and vapours like steam gave rise to the kinetic

theory of gases. A gas enclosed in a cylinder or chamber was visualised as

a swarm of a definite number N of molecules moving at random. As the

dynamical state of each molecule can be specified by six numbers, three for

its position co-ordinates and three for its velocity components, the

dynamical state of the gas as a whole would be specified by a set of 6N

numbers. To represent it by a single point we should require a super-space

of 6N dimensions, technically known as 'phase space'. Working in such a

space and using simple hypotheses such as that of molecular chaos,

Liouville, Boltzmann, Gibbs and others provedabout gases thefundamental

theorems that are named after them, and that have now become classical.

Although the beginnings of the theory of point sets are to be found in

the studies of mathematical physicists occupied with theories of heat,

molecular motion, etc.—studies directly inspired by the successful work-

ing ofthe steam engine—the theory was taken up by pure mathematicians.

Soon they presented it in a finished form of its own, obliterating all traces

of any contact with questions of dynamics, thermal flow, molecular

motion—questions which actually gave birth to it. By the end of the nine-

teenth century, the pure mathematicians came into their own and began

even to criticise violently the reasoning of the mathematical physicists as

shockinglyimperfectandillogical. Forexample,theGermanmathematician,

Zermelo, initiated himself into the methods of the mathematical physicist

by translating into German Gibbs's book on Statistical Mechanics. He

was shocked by the scandalous state of Gibbs's reasoning and raised a

powerful objection against it—an objection which was not cleared till two

distinguished physicists, Paul Ehrenfest and his wife Tatjana, took the

trouble to learn enough mathematics to hoist the pure mathematician with

his own petard.

The theory of point sets has manifold applications in modern mathe-

matics. It owes its great power to the fact that members of the set-

generalised 'points'—can be made to represent almost any measurable

thing from the dynamical state of a system of moving particles to that of

Ford's business administration. That is how the 'point', the dimensionless
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and scarcely visible dot, so insignificant by itself and yet so powerful in
league, has come to establish its hegemony over almost the entire realm of
modern mathematics.

A set in mathematics means exactly what it does in ordinary speech,
viz. a collection or an aggregate of objects having certain specified proper-
ties. In real life we come across numerous kinds of sets, such as the set of
stars of fifth magnitude, the set of horses participating in a race, the set of
days in a week, etc. The objects of the set need not be concrete; they may
be any entities ofhuman thought whatever so long as they are well defined.

Now a set may be defined by cataloguing all its members as, for instance,
the set of first five integers 1, 2, 3, 4, 5 or the set of telephone subscribers
listed in a directory. Alternatively, it may also be defined by specifying
some common property or properties of all its members as, for instance,
the set of U.N. soldiers who fought in Korea, the set of babies born in
India in 1950, the set ofeven integers, or the set ofpoints on a given straight

line. The most important sets from the point of view of the mathematician
are sets of points on a straight line, plane, space or super-space of four or
more dimensions. Before we describe the theory of such point sets, we may
in passing note a few general characteristics of sets, whose elements may
be objects of any kind whatever and not necessarily 'points'.

Suppose we have a set S of any kind, clearly we can form another sub-
set, S\ by taking only some of its elements. Thus if S is the set of babies
born in India in the year 1950, we may construct a sub-set S' by taking
only the female babies belonging to the set S. In general, S' is said to be a
sub-set of a set S if every element of S' is an element of the set S. When
this happens, we write

S'cS,

where c means 'belongs to'. Naturally 'belongs to' is a two-way relation,

for if S' belongs to 5, then equally S 'owns' or 'contains' S'. Another way
of paraphrasing the above statement would therefore be

where 3 means 'owns' or 'contains'.

Like most other possessive relations, the 'belonging to' and 'owning'
relations, c and D , can be passed on from one set to another. In other
words, ifa set S" belongs to S" and5" to S, then 5"' belongs to S. In symbols,

if S" c S" and S" c S, then S" c S.

An equivalent way of stating the same thing would be if S 'owns' or
contains S" and S" contains S\ then S contains 5". In symbols, ifSd S',

and 5'd 5", then S d S". For example, the set S", consisting of all
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journalists living in New Delhi, belongs to the set S' of its literate adults,

which itself belongs to the set S of all adults of the city.

Now suppose we have a set S' of literate adults living in New Delhi and

a set s of the first five integers 1, 2, 3, 4, 5. If we combine the two sets S'

and s, we shall get a hybrid set one part of which will consists of literate

adults and another part of the first five integers. Obviously such sets do

not mix well and nothing of interest emerges out of combining them. A
more useful way of building up a theory of sets would be to consider a

universal set U, which would include all the items about which we may

wish to talk. For instance, such a set may consist of all the people residing

in New Delhi at a particular time, if we wish to talk about the inhabitants

of that city. Confining ourselves to this universal set t/, we may construct

a set of all adults. Can we generate another set out of Ul Ofcourse we can.

Such a set would consist of items of the universal set U not included in S.

A set like this is known as the complement of S in U and is usually written

as S*. In the example cited, S* is the set of all the people living in New
Delhi who are not adults. Now suppose we construct another set, S', con-

sisting of all the literate people living in New Delhi. Out of the two sets S,

S' we can construct another more comprehensive set which consists of all

the people who are either adult or literate. Some of the adults (members

of S) may not be literate (members of S') and some literates may not be

adults. No matter; we include in the combined set / all people who are

either members of the first, that is, are adult, or members of the second,

that is, are literate. Such a set I is obviously the sum of the two sets S and

S' and is written as S + <S". In other words, the sum set / of S and S'

consists of all people who are either adult or literate. In symbols,

7=5 + 5".

Another way of constructing a set out of the two given sets S and S' is

to take only those items of S and 5" which are common to both. In the

case under consideration such a set would consist of literate adults, that is,

those people who are adults as well as literate and are, therefore, members

of both the sets S and 5" at the same time. Such a set is known as the

product set P of S and S' and is written as S.S'. In symbols, P = S.S'.

See the example in Fig. 36.

With these definitions we can now build up a new algebra—the algebra

of sets. For instance, let us try to add a set S and its complement 5*. By

definition S*, the complement of S, consists of all those items of U, the

universal set, which are not already included in S. Hence their sum would

be the universal set itself.

Or, S + S* = U (1)

What is their product ? The product ofthe sets consists ofitems common
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Fig. 36—U (the universal set) — the set of all chess pieces of both

players. S — the set of all pawns of both players. S* (the complement

of S) = the set of the pieces of U, excluding the pawns. Note that

S + S* = U, and that S and S* have no common pieces. That is,

S.S* - 0.

to both S and S*. Since S* consists of only those items of U which do not

belong to S, clearly there is no common element between them. A set

which contains no element is known as the empty or null set and is denoted

by 0. The product set of S and S* is therefore the empty set 0. In symbols,

S.S* = ..... (2)

Equalities like (1) and (2) epitomise in algebraic phraseology two well-

known laws of classical logic. Thus (2) is really a statement of the 'logical

law of contradiction', viz., an object cannot possess a property and not

possess it. (Example: A cannot be both red and not red at the same time.)

Likewise (1) is another version of the 'law of excluded middle', viz. An

object must either possess a given property or not possess it (Example :
A

is either red or not red.) It is possible to construct a large number of similar

equalities and thus reduce all the laws of classical logic to mere algebraic

formulae in the theory of sets. Comparatively recent work by a number of

mathematicians like Boole, Bertrand Russell, Whitehead and others has

practically turned classical logic into a formal algebraic system that
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operates almost exclusively with symbols like c, D , +, etc. We shall dis-

cuss later the value of such attempts. Meanwhile we proceed with the

theory of sets.

Hitherto we have considered our sets as mere aggregates of objects.

What about their magnitude ? If the objects within them are discrete, we
can count the number of objects within each. Suppose we have a set S of
discrete objects m in number and another set S' of n objects. What is the

magnitude of the pooled set, S + 5"? It might, perhaps, be thought that

the number of objects in it would be/n + n, but that would be the case

only if Sand S' had no common elements. If they did have some common
elements, these would be counted twice in the pooled set—if we tried to

deduce the number of objects in it by adding together m and n. For in-

stance, if you had a team of eleven cricket players and a team of eleven

football players, the combined teams would have 22 players if there were
no common players who figured in both the teams. If there were some
players, say two, who played in both the teams, the number of players in

the pooled team would be only 22 — 2 = 20. In general, the magnitude of
the sum ofany number offinite and discrete sets is the sum ofthe magnitudes
of the individual sets provided no two of the sets have any overlapping or

common elements. This simple commonplace addition rule will be our
main guide in evolving a generalised notion of magnitude applicable to

more complicated point sets.

Just as a set is defined by specifying some common property or proper-

ties of all its items, so also the type or class of a number of different sets

may be defined by some property or properties belonging to the class of

sets as a whole. Suppose, for instance, our universal set U is the set of all

houses in a city. (See Fig. 37.) With this main set we can form a large

number of sets consisting of one or more houses. Some of these sets may
have the property that the houses included in them are in the same block.

This would give us the class of all those sets whose houses are in one block.

It is obvious that all sets of houses that we can possibly form are not of
this type or class. Only some of the total number of sets that we can form
will be of this type. Similarly, other types of sets may be constructed. An
important class or type of sets is what is known as an additive class of sets.

Among other conditions which sets of this type must satisfy, the most
important is this: If two or more sets belong to an additive class, then the

combined set obtained by adding them must also be a member ofthe class.

Consider, for instance, the class Cx of sets of houses in one block. If we
have two such sets of houses in each of which the houses lie in one block,
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it is clear that the pooled set fanned by combining them need not have all

its houses in one block and will not, therefore, be of the type under con-

sideration. The class Cx of sets of houses in one block is consequently not

an additive class. Consider now an extended class C2 of sets of houses that

lie in one or at most two blocks. If we have two sets of this class in each

of which the houses are in one block, the combined set will have its

houses in at most two blocks and will therefore belong to the class. But if

Fjg. 37—Additive sets. If our universal set U is a set of houses in a city, a set of

houses in one, two or three blocks is not an additive set. On the other hand, the set of

houses in one or more blocks is additive.

we add three such sets, we shall produce a set whose houses may lie in

more than two blocks. Such a set will not, therefore, belong to the extended

class C2 we have just constructed. This class, too, is therefore not an addi-

tive class. We can also construct a still more extended class C3 of sets of

houses whose elements lie in one, two or at most three blocks. A similar

argument shows that even this extended class C3 is not additive.

Now suppose we constructed a class C of sets of houses which he in one

or more blocks. Any number of sets of this class when combined will pro-

duce a set which belongs to the class C, as the houses in the pooled set will

obviously be in one or more blocks. Such a class C of sets is known as an

additive class. In general, an additive class of sets must satisfy three

conditions:

1. The universal set U itself belongs to the class.

2. If every one of the sets Slf S2y Ss, . . . belongs to the class, then the

sum set S± + S2 + Ss + . . . also belongs to the class.

3. If S belongs to the class, then the complementary set S* in U also

belongs to the class.
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It is easy to see that all these conditions are satisfied in the case of class C
ofsets ofhouses in one ormore blocks cited above. First, the universal set U,

the set of all houses in the city, is clearly a set of houses arranged in more
than one block. It, therefore, belongs to the class. Secondly, any number of

sets of houses in one or more blocks will combine to form a set whose
houses are in one or more blocks. The pooled set, therefore, is also of the

same type. Finally, if you take out of the universal set a set S of houses in

one or more blocks, the remainder, that is, the complement of S, will also be

a set of houses in one or more blocks. It will therefore be ofthe same class.

So far we have been concerned with sets of absolutely any kind. We now
consider sets of points, that is, sets whose items consist ofpoints. Naturally

whatever is true of sets in general is equally true of sets of points. But point

sets have some further properties that have been extensively applied in

numerous other branches of mathematics. Although point sets may be

considered in super-spaces of any number of dimensions, we shall confine

ourselves here to sets ofpoints lying on a straight line. Such sets are known
as linear point sets. If we choose on our straight line an origin O, a unit

of measurement and a positive direction, we can measure the distance of

any point P on it from O. (See Fig 40, page 133.) The distance OP can be

represented by a real number *, which can serve as a sort of identification

mark to identify the point just like the registration number of a car. It is

true that this number x is the measure ofthe length of the segment OP, but

it equally serves as a registration mark for P. The simplest case of a linear

point set is an interval, that is, the set of all points of a segment of the line

lying between two given points, say O and A. Suppose the length of

OA = 1, then the identification mark for O is aod for A is 1. The interval

OA is the set of all points lying between O and A. We also define the

same interval analytically, that is, by means of numbers as the point set

x, where x is any real number between and 1.

Another instance ofa linear point set is the set ofpoints whose identifica-

tion marks are, say,

1, 1/2, 1/3, 1/4, ..., 1/10.

Such a set is a finite point set as its member points are finite in number,

being 10 in all. In fact, we could construct any number of linear point sets

by clubbing together any finite or infinite number of points of the fine

segment OA. Finite point sets are easy to treat but are of limited interest.

We make a list of their member points and there is nothing more that we

can do with them. Infinite point sets are more interesting. Now, as we

saw before, there are infinities and infinities. There is the enumerable or

countable infinity of the endless series of integers

1, 2, 3, 4, . .

.
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and there is the much bigger infinity of the non-enumerable set of points

on a line. In Chapter 5 we denoted these infinities by a and c respectively.

Corresponding to these two types of infinities we have two types of linear

infinite point sets. First, there is the enumerably infinite point set, for

instance, the set of points consisting of the endless series

1/2, 1/3 1/n, . .

.

Second, there is the non-enumerably infinite point set consisting of all the

points in the interval (0, 1) or any non-vanishing sub-interval thereof.

One common property of both types of infinite point sets is that every

bounded set has at least one limitingpoint. This statement contains two new

terms that have not yet been explained, viz. 'bounded' and 'limiting

point'. A set is said to be 'bounded' when all its points are situated within

finite bounds. That is, there exist two numbers a and b, within which lie

all the numbers which stand for the registration marks or co-ordinates of

the points of the set. Take, for instance, the infinite set S of points on the

line OA, whose registration marks or co-ordinates are the numbers

1/2, 1/3, . . ., 1/n, . .

.

This set is 'bounded' because eveiy number belonging to it lies between

and 1. Now if every number of S is less than 1, afortioriix will also be less

than 2, 2-5, 3 and, in fact, every number greater than 1. As scientists

valuing precision we are interested in the lowest number that can serve as

an upper bound for the numbers of S. Obviously such a lowest number is

1/2. For, if we took any number less than 1/2, say, 4/9 it would not be an

upper bound of 5", because one number of S at least, viz. 1/2, itself ex-

ceeds the number (4/9) so selected. At the same time any number greater

than 1/2 would be unnecessarily big as no number of the set exceeds 1/2.

When a set 5, as in this case, itselfcontains a number greater than any and

every other number belonging to it, this greatest number of the set will

clearly be the lowest number that can serve as an upper bound of S. This

greatest number of the set is then known as the upper bound of S, and S is

said to attain the upper bound.

Consider now the lower bound of the set 5"

1/2, 1/3, 1/4 1/n, . .

.

Here every number of S obviously exceeds zero and, therefore, a fortiori,

also —1* —2, ... or, for that matter, any number less than zero. We
could thus take any of these numbers 0, —i, — 1, —2, ... as a lower bound

of the set. It will serve as an effective lower barrier past which no member

of S can go. But, again, as men valuing precision we naturally look for

the greatest of these numbers, which can serve as a lower bound. We scan

our set and we find no member in it which we could spot as the lowest
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member of the set. All the numbers of S keep on decreasing without ever

coming to an end. Is there then a number which is less than all the members

of S. Clearly zero is a number with this property. Moreover, it is also the

greatest; there is no number greater than zero with this property. For sup-

pose, if possible, there was another such number, e.g.
100qqqq

> greater

than zero but less than all the members of S. Obviously it cannot serve as

a lower bound for our set S, as it exceeds the numbers, Tqqqqq7»
i 000002

of the set. The number is therefore not a lower bound of S. The
1,uuu,uuu

same is true of every other small number greater than zero. Zero is there-

fore the greatest number which is less than all the members of S. For no

matter how small a number greater than zero we may choose we can

always discover some member of S which is smaller still. Zero is thus the

greatest lower bound of S.

In general, if an infinite set is bounded—that is, if all its numbers he be-

tween two numbers such as a and b—then an infinitepair of other numbers

can also serve as bounds for the set. Our problem is to discover the least

upper bound and the greatest lower bound. How do we know that we can

always find them? To show that this can always be done, Dedekind, a

German mathematician, stated an axiom whose truth, he hoped, would be

self-evident to all reasonable persons. If it appears so to you, there will be

no difficulty in understanding his 'proof of the existence of these bounds.

If not, you may assume that if a set has one upper bound and, therefore,

an infinity of them, there will always be oneM among these upper bounds

which is the least. Using the phraseology of the New Look style of reason-

ing popularised by the mathematicians of the 'rigorous' school, it has the

following property

:

Either M belongs to the set and is its greatest number, or if not, given

any number e, however small, there is at least one number of the set which

exceeds M — e and is less than M.
This statement requires some further elucidation. As we have already

seen, in the case of the set S

h h h i • • •

cited above, the least upper boundM is i and it belongs to S. But Af, the

least upper bound, need not belong to the set. Consider, for example, the

infinite set S'

12 3 4 5 6 1,000,000 1,000,001 n

2' 3' 4' 5' 6' 7'
'

'
" 1,000,001* 1,000,002' n + 1"
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This set is clearly bounded, for no matter how far we may go no number of

the set (by the very manner of its construction) exceeds 1. As you would
have observed, the denominator of every number of the set exceeds the

numerator by one. No number of the set can therefore exceed or even

equal one. Hence, although the number 1 itself does not belong to the

set, it is an upper bound of the setrBut is it the least upper bound? That
is, is there any number less than 1 which can also function as an effective

barrier past which no number of the set can go ?

If possible, let us choose a number less than one but very close to it, as

for instance the number, 1 — , and try if it can function as an

1 000 000
upper bound. The answer is no. Because the number ' ' is clearly a

member ofour set and it exceeds the number chosen, viz. ( 1 — I

\ 1,000,000/

999,999 T . ,

It is the same with any other number less than 1 no matter
1,000,000

how close to 1. In other words, given any number e, however small,

1 — e is not an upper bound because there is always at least one number of

the set which exceeds 1 — e but is less than 1.

Hence, the least upper bound M of any set can be only one of the two
things. Either M itself is a member of the set and is therefore its greatest

number asls the case with the number '£' vis-a-vis the set S; or, if not,

there is always at least one member of the set greater thanM — e but less

than M, where e is any arbitrarily small number we choose to nominate.

(This is the case with the number T vis-a-vis the set S'.)

A similar statement is true of the lower bound mofa set but the fol-

lowing changes in phraseology should be noted. Either m, the lower bound,
is itself a member of the set and is therefore its least number, as, for

instance, is the case with the number *£' vis-a-vis the set S'; or, if not,

there is always at least one member of the set less than m + e but greater

than m, where e, as usual, is any arbitrarily small number we choose to

nominate. This is the case with the number zero vis-a-vis the set S.

To revert to Dedekind's axiom. According to it, if you have found a
way of dividing all real numbers into two classes L(eft) and i?(ight) sucn
that

(0 every real number belongs either to L or to R but not to both or to

none; and

(«) every member of R exceeds every member of Z,;
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then there exists a dividing numberM which forms the frontier of the two

classes such that every number greater than M belongs to R and every

number smaller than M to L, while the number M itself may belong to

L or R. Now suppose we have an infinite set S of numbers with an upper

bound b. We can divide all real numbers including the members of our

set S into two classes, L and R. We place in R all real numbers like b which

exceed all numbers of S and in L all real numbers which either belong to

S or are less than some or all members of S. This way of partitioning the

real numbers in two classes L and R satisfies the two conditions (/) and (ii)

of 'Dedekind's cut', as it has been named. There is therefore a frontier

number M and this is the least upper bound of S.

In a similar manner it may be shown that if a lower bound exists there

is a number m which is the greatest lower bound.

We now define a limiting point of a set. It is a kind of rallying point or

point of condensation round which an infinite number of points belonging

to the set cluster. Thus in the case of the infinite point set

h (i + *), i. ft + i), h <* + *),... i/«, <i + i/«), . .

.

the point zero is a limiting point as an infinite number of points of the

set tend to congregate round it. A more recondite definition of the limiting

point of a set is this: A point x is a limiting point of the set S if at least

one point of the set S lies in the interval (x — e, x + c) no matter how
small s may be. Except for the fact that it uses the fashionable terminology

of the new style of reasoning, it is completely equivalent to the one pre-

viously given. A limiting point of a set, then, is a privileged sort of point,

which contains at least one point of the set in its neighbourhood no matter

how small. It itself may or may not belong to the set.

To prove our statement that every bounded infinite set has at least one

limiting point, consider a bounded set whose points lie between and 1.

If we divided the interval (0, 1)

1

into two halves, (0, i) and (£, 1),

1

then one of the two halves at least must contain an infinite number of

points of the set, because otherwise the set would be a finite set. Suppose

the left half
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contained an infinite number of points of the given set. We could split this

new interval (0, £) again into two equal halves.

i

At least one of these two new sub-intervals would again have an infinite

number of points of the set. In this way we can go on dividing every
interval into two halves, picking up the one that contains an infinite

number of points belonging to the set.

i

i

TV _
i

OtV

etc.

In the limit, we shall reach at least one limiting point round which an
infinite number of points of the set congregate.

This act of successively breaking an interval or a stick in two halves is

a useful artifice which is often employed in mathematics to prove a variety

of results. For instance, we may use it to sum up an infinite series that we
shall require later. Suppose we have a stick of any length / and we break
it into two halves. Take now the right halfand break it into two halves and
so on indefinitely. We shall have thus broken the stick into an infinite

number of pieces of various lengths, each piece being half the size of the
preceding as shown in the diagram below:

/

First half -

Second half

Third half

I

8

16
Fourth half

—-.-

Fifth half L
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It is plain that the sum of the lengths of all these infinite number of pieces

r, u l I I I
ot lengths -, -, -, — , . . . is exactly the same as the length of the original

stick. In other words, the sum of the infinite series

I I I I
- -I U__| L

is simply /.

The theory ofpoint sets is yet another illustration ofthe one conspicuous
feature of mathematical history that we have stressed repeatedly, viz.

the intimate mutual interaction between the development of mathematics
and its applications or in other words, the close tie-up between 'pure' and
'applied' mathematics. As we remarked before, the theory of point sets

originated from studies of heat flow, kinetic theory, molecular motion,
thermodynamics, etc. These studies were in turn directly inspired by a
desire to improve the working and design of the steam engine, which be-
came the chief prime mover in Western Europe during the era of the dark
Satanic mills and 'carboniferous' capitalism that descended on it suddenly
towards the close of the eighteenth century. The theory of point sets was
thus already quite advanced when the 'pure' mathematician began to take
it up during the second half of the nineteenth century. Now, as often hap-
pens, the 'pure' theory gave rise to certain subtle problems of its own. The
chief among these problems that began to claim attention during the last

two decades of the nineteenth century was how to measure the magnitude
of absolutely discontinuous infinite point sets. As we saw, if we have a
finite set of discrete objects such as a bunch of bananas, we can define its

'magnitude' by the number of objects belonging to it. But in the case of
infinite point sets this method does not work. We have, therefore, to devise
some other way of measuring the magnitude of such sets. If the infinite

point set is a continuous interval such as the set of all points lying between
two real numbers, say, 1/3 and 3/4, the length 3/4 - 1/3 = 5/12 of the
interval can be taken as its 'magnitude'. But it is not clear how we should
define an analogue oflength when the point set is not a continuous interval
but an absolutely discontinuous set such as the set Si of only irrational

numbers lying between and 1. The length of the unit interval (0, 1) can-
not a priori be taken as a measure of its 'magnitude' as this length also
includes an infinity of rational points like 1/2, 2/3, . . . expressly excluded
from the set Sx .

The first to suggest a method for assessing the magnitude or 'measure'
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of absolutely discontinuous infinite point sets like Sx was the German
mathematician, Hankel. He was followed by Harnack, Stolz and Cantor,

who further developed his idea during the eighties of the nineteenth cen-

tury. It was presently superseded by that of the celebrated French mathe-

matician, Emile Borel. In 1902 Henri Lebesgue, a pupil of Borel, extended

his master's theory and showed a way of measuring the magnitude or

length-analogue of absolutely discontinuous infinite point sets like Sv
Lebesgue's discovery came none too soon, for already discontinuity had
begun to invade physics. Planck, during the preceding year, had dis-

covered that a black body radiates energy discontinuously, that is, always

in whole numbers of energy-packets or 'quanta', but never in fractions of

a quantum. Hitherto it was tacitly assumed that most physical quantities

varied continuously. Mathematical theory was therefore mainly concerned

with continuous variables, which had no more than a few isolated dis-

continuities at the most. Now that it began to be realised that the structure

of electricity, matter and energy was granular, so that measures of these

quantities varied in jumps or discontinuously, studies of point sets, which
could serve as replicas of absolute discontinuity, became socially impor-

tant. Nevertheless, for a time the 'pure' theory of point sets ploughed its

lonely furrow without any thought of possible applications and forgot

even its past severely practical origin. For, once Lebesgue had shown Jhe

way, more and more abstract theories of measuring the 'magnitude' of
point sets were created so as to include all the phenomena of continuity,

discontinuity, limit, integrability, differentiability, etc., within the orbit of
their sweep.

By the late twenties it seemed as though the 'magnitude' or 'measure'
theory, as it is generally called, had gone too far in advance of its applica-

tions. Fortunately the balance between theory and practice was redressed
in the thirties of the present century, when the Russian mathematician
Kolmogorov first applied the measure theory of point sets to give a new
definition of mathematical probability*—now beginning to dominate
quantum physics. Since then the measure theory of point sets has been
extensively applied in mathematical statistics, electronics, telephone
theory, cybernetics, econometrics, theory of games and economic be-
haviour, theory of insurance risks, stochastic or random processes such as
the growth of biological populations and the fluctuation problem ofcosmic
ray showers, etc.

In all these problems the mathematical model embodying their essential
feature is concerned with certain states of affairs denoted by a number of
magnitudes. Earlier we saw how the state ofa gas consisting of ATmolecules
enclosed in a cylinder could be specified by 6N magnitudes. In a like man-

* See Chapter 9.
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ner, the state of a biological population at any time may be described by
the number of births and deaths of its members at that time. In telephone

theory the state of affairs may be indicated by the total number of tele-

phone calls put in and the number that go through. In the problem of
cosmic ray showers it is denoted by the number of electrons and photons
constituting the shower that disappear or die and the number of new
electrons and photons that appear or are born. In mathematical statistics

it is the state of the sample on the basis of which we propose to infer the

characteristic of the population from which it is drawn.

Now, as we have seen, any such state of affairs can be represented by a
'point' in some imaginary space like the state of gas molecules in a phase

space of 6JV dimensions. A succession of such states of affairs is then repre-

sented by a set of 'points' in some such space. These problems thus boil

down to a consideration of point sets in imaginary spaces. In many cases

the point sets obtained are not continuous sets. To give mathematics a
foothold in these cases, it is necessary to devise a way of assigning to such

point sets some magnitude or measure which plays the same role with

respect to them as length does in the case of continuous intervals. That is

why many of these problems cannot be solved without resort to Lebesgue's

theory of measure, which attempts to define an analogue of length when
the point set is not a continuous interval but a complicated set like the

set Sx mentioned above.

To devise a way of ascertaining the 'magnitude', 'length-analogue', or

'measure' of a discontinuous set like Slt consider first the universal set

(0, 1) within which we define any interval, say, (£, £). Let us call it i. (Fig.

38 A.) The length L(i) ofthe interval / will then be (f - £)= tV. Now if

split a stick in two parts, the lengths of the two parts added together equal

that of the original unbroken stick. In exactly the same way, if we divide i

into two non-overlapping sub-intervals ilt i2 the length of i will be the

sum of the lengths of ix and i2 . (Fig. 38 B.)

In symbols, L(i) = L{i^ . -f £(/2) . . . . (1)

Obviously the equality holds even if we divide i into any finite number n
of non-overlapping sub-intervals. Thus

m=md + uti-.-mj . . . (2)

In fact, it is true even when n becomes infinite. It might seem evident

that if the equality (2) is true for any finite «, it is necessarily true when n is

infinite. But infinity in mathematics is a tricky business and we have to be
on guard when extending relations like (2) that are true for any finite n to
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include cases when n becomes infinite. Nevertheless, a 'rigorous' proof of
the equality (2) for the infinite case can be given although it will not be
repeated here. We may thus assume that if an interval is divided into a
finite or an enumerably infinite number of non-overlapping intervals, the

length of the total interval is equal to the sum of the lengths of all its

h fc
o

B »/
3 3/4

Fig. 38

constituent sub-intervals. The length L{i) of an interval / is thus known as
an additive function of the interval i. However, we can construct sets of
points more complicated than intervals.

Can we define some magnitude or measure, L(S), of a set S which has
the same property with regard to it as the length function L{i) has with
respect to the interval i? In other words, can we devise a function L(S)
which could serve as a measure of the density of packing of the points
of the set in the same way as the length of an interval is a measure of the
packing of the points within its fold ? If S consists of a single point, say i,
the measure L(S) of the set will obviously be zero as the point by itself

occupies no length whatever. If S consists of two points, say $ and £, the
measure L(S) of the new set will still be zero, as two extensionless points
occupy no more length taken together than singly, just as two penniless
have-nots after pooling their resources remain as penniless as before.
In fact, if S consists of any finite number n of dimensionless points, such
as h i, i, . .

.
l/(« -f 1), the measure, L(S), ofS by the same tokens remains

zero.

However, when n becomes infinite it is not clear whether L(S) would
still be zero or different. A priori, it cannot be stated that an infinite num-
ber of dimensionless points would aggregate to zero length as the infinite

number of points in the interval (0, 1) do produce the non-zero length
unity. The problem, then, is to discover what length would an infinite set
of points occupy, if they were all packed together as tightly as the points
on a line. Now the infinite set may be enumerable or non-enumerable.
Consider first of all an enumerably infinite set of points like

h hh • • -, 1/", . •

.

Let us enclose each of these points in intervals of very small lengths. Since
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the point itself has no magnitude it can always be so enclosed no matter

how small the enclosing piece.

Now think of any number as small as you please, say 0-0001. Take a

stick whose length is 0*0001 and break it into two halves. Retain the left

half and break the right half again into two halves and so on indefinitely.

We have thus broken the stick into an infinite number of successive pieces

of lengths

—

00001/2, 00001/4, 0-0001/8, 0-0001/16, . .

.

each piece being half the length of the preceding. Now enclose the first

point, viz. % in the first piece, the second point, viz. % in the second, the

third, viz. £ in the third, and so on. If we packed all these points, viz.

h h h • as closely as 'adjacent' points on a line are, obviously they

would occupy a length not exceeding the sum of the lengths of all the

enclosing pieces. Hence all that the points in the enumerably infinite

sequence S
h i, i, .

. •, !/«> • • •

when packed together would occupy is a length no more than that of the

original unbroken stick, viz. 0-0001, the arbitrarily small number with

which you began the operation. That is, the measure L(<S), of the set S, is

less than any arbitrarily small number you care to nominate, which is

another way of saying that it is zero. The measure of a finite or an enumer-

ably infinite point set is therefore zero.

Now how shall we define L(S)> the measure of the extent of inner pack-

ing of the points of a set S, when it is a non-enumerably infinite set? If S
is a continuous set such as an interval, its length would be the measure

L{S) of its inner packing. But what about non-enumerable point sets which

are not intervals? It is not very difficult to define such sets. A classical

instance is the set of points in the universal set (0, 1), whose co-ordinate

is any irrational fraction less than unity. As we know, the interval (0, 1)

consists of points the co-ordinate of each of which is any real number,

that is, either a rational number or an irrational number lying between

and 1. We can, therefore, divide the universal set, the interval (0, 1), into

two complementary sets ; the set Sx consisting of only points with irrational

co-ordinates and S*x consisting of points with rational co-ordinates.

Now both the sets Sx and S*x consist of an infinite number of points

but the two infinities are of different power. We showed in the last chapter

that while the power of the infinite number of real numbers between 0, 1

is c that of the infinite number of integers

1, 2, 3, 4, . .

.

is only a. It can be shown that the power of the infinite number of rational
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points between 0, 1 is the same as that ofthe infinite number of integers.* It

follows, therefore, that the infinite point set S\ is enumerable. The set Sx

is therefore non-enumerable. For, if not, let Sx be enumerable also. The

pooled set S*x + Si, that is, the set of points in the interval (0, 1), would

also be enumerable because the sum of two enumerable sets is itself

enumerable. But we showed in the last chapter that the set of points in

the interval (0, 1) is not enumerable. Si therefore cannot be enumerable.

What is the measure of the extent of inner packing of the points of a

non-enumerable set like Si? We have agreed to measure the extent of

c2 <

Fig. 39

packing of all the points of the interval (0, 1) by its length, unity. Now all

these points fall in two mutually exclusive classes—those belonging to Sx

and those to S\. But the latter set is enumerable so that the measure ofthe

extent of packing of the points of S*x is zero. It follows, therefore, that the

measure of the density of packing of the points of the non-enumerable set

Sx is 1.

It might perhaps be imagined that as the power c of non-enumerable

infinity is higher than a, the power of the enumerable infinity, the measure

of the density of packing of points of a non-enumerable set is always

higher than that of the extent of packing of points of an enumerable set.

As we have already seen, the latter is always zero. It might therefore

appear that the measure of the extent of packing of points in a non-

enumerable set is always greater than zero. This, however, is not always

true. We can construct non-enumerable sets of points whose measure of

the extent of inner packing is zero. Here is one example given by Cantor.

Consider a straight line OA, where O is the origin and OA is a unit

length. Remove from it the middle third consisting of all points whose co-

ordinate x lies between | and § . (See Fig. 39.) We then obtain two non-

overlapping segments or intervals towards each end. Let the set of points

in these two end segments be called Q. Now remove from Cx the middle

third of each of its two segments. This will leave us a set C2 consisting of

four segments, each of length 1/3
2

. Repeat this process of removing the

* For proof see Fig. 30 of Chapter 5.
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middle third of each of the four segments of Ca . We thus obtain another
set C3 of eight segments each of length 1/3

3
. By continuing this process

ad infinitum we can generate successively sets C4 , C6, C6 ,

Let C be the set of points on the unit segment OA after all the intervals

have been removed so that C is the set of points common to the infinite

sequence of sets Clf C2 , C3 , — It can be shown by means of Cantor's
diagonal process used in the last chapter to prove the non-enumerability of
the set of all real numbers in the interval (0, 1) that the set C, like the con-
tinuum of real numbers, is non-enumerable. What is the extent of inner

packing of the points of C? Since one segment of length £ was removed at

the first step; two segments each of length ($)
2 at the second step; 22 seg-

ments each of length (£)
3 at the third step; and so on; the total length of

the segments successively removed is

H + 2-ft)
2 + 22

-(i)3 + . .

.

It can be shown that this infinite sum is unity, the total length of the seg-

ment OA. Although the entire length ofthe segment OA has been removed,
there still remain points of the line OA, viz. members of the set C. Such,

for example, are the points with co-ordinates 1/3, 2/3, 1/9, . . ., 2/9, 7/9,

8/9, ... by which the successive segments are trisected. The measure of
the extent of inner packing of points of the non-enumerable set C is there-

fore zero. Thus while the measure of the extent of inner packing of points

of an enumerable set is always zero that of a non-enumerable set may or

may not be zero.

Consider now any non-enumerable discontinuous set S. Obviously a
length analogue or measure function L(S) will have to satisfy the require-

ment that if S is divided into a finite or an enumerably infinite number of

sub-sets Sl9 S2 , Sz, . . . with no common points, then

L(S) = L(St) + L(S2) + USZ) + (3)

It will be observed that this is merely a generalisation of the addition rule

applicable to finite and discrete sets as also to sets of intervals.

In general, it is not always possible to define a measure function L(S)
having this property for every non-enumerable and discontinuous set.

But for the class of sets known as additive sets, a measure function L(S)
can be defined. Hence the great importance of the additive class of sets in

the theory of point sets.

We explained earlier the idea of an additive class of sets by an example
of the class of sets of houses in one or more blocks. We now illustrate the

idea of an additive class of point sets by another. Let our universal point

set be the interval (0, 1) and let us consider the class Bx of all intervals

lying within the main interval. Is this class additive ? In order to see this
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we verify if it satisfies all the three conditions specified earlier. (See page
119.) To begin with, the universal set U, the interval (0, 1) is itself an
interval and therefore belongs to Blt the class of intervals in (0, 1). The
first condition is therefore satisfied. Now take two sets belonging to Bl9

say, the interval (0, i) and the interval (f, 1). The combined set of the two
intervals is not an interval. (See Fig. 40.) The pooled set is therefore not an
interval and does not belong to Bx , the class of intervals. The second condi-
tion is thus not satisfied and hence the class Bx of sets of intervals in (0, 1)

is not an additive class.

Consider now the class B2 of sets which are either intervals or sum of a
finite or an enumerably infinite sequence of intervals. Such a class would
now satisfy the first and second conditions necessary for an additive class.

But what about the third condition? Let us consider the set^*! mentioned
above of points whose identification marks or co-ordinates are rational

2 4

Fig. 40

fractions less than unity. As we saw, S*t is an enumerable set. Each ofthese
points may be considered as an interval of zero length. S*x is thus the
sum of an enumerable sequence of intervals each of zero length. It there-

fore belongs to the class B2 . The complement of S\, viz. Slt is then the
sequence of points in (0, 1) the co-ordinate of each of which is an irrational

number less than unity. Now if we try to represent St as a sequence of an
infinite number of points (intervals of zero lengths), a non-enumerable
infinity of such points will be required. Sj therefore cannot be represented

as the sum of an enumeiably infinite number of intervals. Consequently
Slt the complement of S*lt is not a member of class Bt . The third condition
is not satisfied so that the class B2 , too, is not additive.

We began with a class Bx of sets consisting of intervals and found it

non-additive. We extended it to include all sets which were intervals or
sum of a finite or an enumerably infinite number of intervals. We found
that even this extended class B% is non-additive. We could go on extending
the class of sets in this way and form a class Ba by including in it sets

formed by the sums and products of an enumerable infinity of sets in Ba .

We can show that even B3 is not additive. In fact, we could go on in this

way without ever producing an additive class. But if we considered this

infinite process of successive extensions giving us classes like Blt Bit Bz,

. ..ad infinitum as finally completed, we obtain the totality of all sets ever
reached in this way. Such a class is known as the class B of Borel sets in



134 MATHEMATICAL IDEAS

the interval (0, 1), named after the French mathematician, £mile Borel,

who first studied them. This class of Borel sets is an additive class.

We now revert to the definition of a measure function L(S) of sets which

are not intervals. As a first step we consider a class B2 of sets defined above.

Such a class consists of sets which are sums of a finite or an enumerably

infinite sequence of intervals. If any of the intervals overlap we can drop

the overlapping portion in one of them so that the set may be defined as

the sum of a sequence of non-overlapping intervals, like tlf i2 , i3, . . . with

no common points between them. If all the points of such a set were

packed together as tightly as they are in a straight line, they would evidently

extend to the length of intervals ilt i2, . . . laid end to end. Its measure

function L(S) is therefore merely the sum of the interval lengths ilt ia, i8,

. . . which go to constitute the set. Thus

US) = U& + I<y + L(ia) + . .

.

Obviously in whatever way we divide or subdivide the intervals /x, z'a, i8,

... the sum of the lengths of the new intervals so constructed would re-

main the same just as the total length of all the pieces of a foot-rule when

laid end to end remains the same whether you break it into five or fifty

pieces. The set function, L(S), is called the Lebesgue measure of the set 5,

in honour of the French mathematician, Henri Lebesgue.

Let us now consider a class of sets which cannot be represented as the

sum of a finite or an enumerably infinite sequence of intervals. One such

set, as we have already seen, is the set St of points in the interval (0, 1) the

identification mark or co-ordinate of each of which is any positive irra-

tional number less than unity. Many other point sets of similar kind can

be defined. How shall we measure the extent of inner packing of points in

such sets? Let us first consider the problem in more general terms. We
shall revert to the set Sx consisting only of irrational points later. Take

any point set S whatever in the universal set U, that is, the interval (0, 1).

Since all the points of the set S lie in the interval (0, 1)—the universal set—

the length of this interval, unity, is the upper limit of the measure of the

extent of packing of points in S. We could enclose all the points of S

within another set / consisting of the sum of one or more intervals. For

example, let S be the infinite set

t> i> *> ie» • • •

We could enclose all the points of S within a single interval such as (0, $).

As we can see, every point of the set S lies within this interval. We could

also enclose all of its points within two intervals such as the interval

(0, i) and the interval (£ - t£o, i + t&t). For the first interval (0, i)

covers every point of S except the first, viz. \> which is covered by the
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second interval (£ — tot»> i + tott), and so on. (See Fig. 41.) Thus a set /

of intervals enclosing all the points of S can be built up in an infinite

number of ways. J may be a single interval like (0, i), or alternatively a

combination of two intervals like (0, i) and (| — tJtf. i + rh) or three

intervals like (0, i), (i — too*, i + tsW) and (i — t$o, i + rfo), etc.

There are infinitely many more complicated ways of manufacturing / but

whatever we do we must ensure that each one ofthese ways of constructing

/ produces a set of one or more intervals such that every point of S is en-

closed by at least one interval of the set /. To each such set / of intervals

there corresponds a measure function £(/). We thus have an infinite set of

values ofL(I) corresponding to the infinite number ofways of constructing
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/ so as to cover every point of S. Which one of these infinite values of
UJ) shall we pick as the measure of the extent of packing of the points in
SI Clearly, the minimum value of L(J). Now if you were given a finite set

of values of a function like Z(7), you could write them all out in a tabular
form and then look for the minimum. But when the set of values happens
to be infinite how shall we even know whether there is any such minimum
at all? However, in any case we know that L(I) cannot be more than 1,

the length of the universal set in which all the points of S and all the
intervals of the set (/) are included. Nor canL(/)be less than zero, for
whatever may happen the points in the set cannot occupy a length less

than zero. Hence the infinite set of values of UJ) is bounded between
and 1. But every bounded set, as we saw before, has a greatest lower
bound and a least upper bound. Let / be the greatest lower bound of the
set of values of UJ). What it means is that a number / with the following
two properties can always be found:

(0 No UJ) of the set is less than /. In other words, no set (/) of inter-

vals covering all the points ofS can be devised such that the corresponding
L(I) falls short of the lower bound /;

(ii) At the same time given any positive number e, however small, there

always exists some system / of intervals covering all the points of S such
that the corresponding UJ) is less than / + e.

We may denote / by L(S). It is known as the outer measure of the set S.

But from any given set S, we can derive another set S*, the complement of
S in (0, 1). We can, therefore, in exactly the same way, also define the

outer measure, L(S*) of the complementary set S*. The inner measure
U.S) of S is then defined by the relation:

US)=l-US*).

In general, L(S) and l(S) are not equal. But when 1(5) = l(S), the set

S is said to be measurable and the common value of the outer and inner
measure of S is known as the measure of S. It is the complete analogue of
length when S is no longer the sum of a finite or an enumerably infinite

sequence of intervals. It can be shown that L(S) = £(S) whenever 5" is a
Borel or an additive class set.

Let us now revert to Slt the set of points in (0, 1) with irrational co-

ordinates. There are various ways of constructing a set / of intervals such
that each point of Sx is covered by at least one interval of /. One of the

members of /is the set consisting of the single interval (0, 1)—the universal

set £/—-in which all the points of St are enclosed. L{U) is unity. There are

many other ways of constructing / but it is not difficult to see that the

corresponding L{T) would never be less than L(U). In other words,
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L(U) = 1 is the greatest lower bound of the set L(/). Hence the outer
measure (/) of the set St is unity. What is the inner measure of S1 ? To find
it consider its complement S\, the set of points with rational co-ordinates.
S*! is therefore enumerable. But in the case of an enumerable set like S*x,

we showed that a set / of enclosing intervals can always be chosen such
that L(I) is less than any arbitrarily small number. The greatest lower
bound of the set of values of£(/) corresponding to the set S*t is therefore
zero. In other words, L(S*J = 0. But £(Si) = 1 - Z(S*) so that
l(Sd = 1.

The inner measure of Sx is therefore unity as is also its outer measure.
Sx is consequently a measurable set and its measure is unity. It may be
remarked that the measure of Sx remains the same as that of the universal
set, the interval (0, 1), although Si is constructed from it by excluding an
enumerable infinity of points with rational co-ordinates from the interval.
This is only a particular case of the more general theorem that the exclu-
sion of a set of measure zero from another set has no effect on the measure
of the latter. In the case of the discontinuous set Slt consisting of only
irrational points in (0, 1), the extent of inner packing of its points is the
same as that of all the points in the continuous interval (0, 1). The exclu-
sion of rational points from the interval (0, 1) no doubt creates an infinite
number of gaps in it; but it makes no difference whatever to the density of
packing of the remaining points in the interval. The reason is that the
excluded points form only an enumerable set whose measure is zero.

(This section may be omitted onfirst reading)

We explained in Chapter 4 how the problem of summing or integrating
a function over a continuous interval, area, or space crops up over and
oyer again in the most varied fields of science. For instance, to calculate the
distance travelled by a moving body during any interval of time we have
to integrate the speed function over the time interval. In the design of
irrigation dams, it is necessary to integrate the pressure function over the
entire area of the dam surface to derive the whole pressure that the dam
face has to endure. In many electrical problems we have to integrate the
electric force function over a region of space. In all these problems the
value of a function is defined at every point of a continuous interval, area,
or region of space, and we have to sum these values corresponding to all
the points of the interval, area or region in question.

In more complex problems, the function is not defined over a continuous
interval, area or region but only over a non-continuous set of points lying
in such intervals, areas or regions. The solution of these problems requires
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the summation of such functions over non-continuous sets of points. For

example, consider the fundamental problem of mathematical statistics.

Here we wish to infer the unknown characteristic of a given population by

observing samples of some fixed size drawn from it in a suitable manner.

For the sake of simplicity let the sample size be such that a single item

drawn from our population constitutes the sample. The sample is there-

fore defined by a single magnitude measuring the particular attribute

under study ofthe selected item. Ifwe take on a straight line a point whose

distance from a fixed origin is the single magnitude pertaining to the ob-

served sample, we may represent this single-unit sample by such a point.

Ifthe entire population consists ofa finite number of members, say 10,000,

it is obvious that the number of samples that can be drawn from it is also

finite. In fact, in this case the number of single-unit samples that can be

drawn is the same, viz. 10,000. Consequently the totality of all possible

samples that we can draw may be represented by a set S consisting of

10,000 points on a straight line, each point representing some possible

sample. A sub-class of samples out of this totality of all possible samples,

such as, for example, those whose sample magnitudes lie between any two

arbitrarily given values will naturally be denoted by some sub-set 5" of the

main set S.

Now each sample has a probability of its occurrence depending on the

method of drawing the sample and the constitution of the population.

Hence to each sample point of the set 5" of the aggregate of all possible

sample points there corresponds its probability of selection. In other words,

the probability function ofthe sample is defined only forthe non-continuous

set S of sample points and no others. But the solution of the sampling

problem requires the calculation ofthe probability that the sample selected

belongs to the sub-set £" of some particular sub-class of samples. This

means that the probability function has to be summed over the non-

continuous set S". When the population considered is infinite, the cor-

responding sets S and S" of sample points become infinite point sets which

moreover are non-continuous in many cases. That is why it is necessary to

generalise the notion of integration so as to permit integration of functions

over non-continuous sets.

To arrive at such a generalisation we observe that the 'measure' of a

continuous set like an interval i between any two real numbers a, b is the

length (b — a) of the interval. We can also interpret the length of this

interval as the integral I */xor dx over the interval /.Inexactlythe same
J a J i

manner, the 'measure' or length-analogue of an infinite non-continuous

but measurable set s can also be interpreted as a new kind of integral i dx
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over the set s. This new type of integral is known as the Lebesgue integral.
In other words, the concept of ordinary integral of a function /(jc) over
an interval / can be generalised to yield that of a Lebesgue integral of a
function over a non-continuous but measurable set s such as the set St of
only irrational points within the unit interval (0, 1). In fact, the parallel
between an ordinary integral and a Lebesgue integral is so close that we
can actually derive the latter from the former by merely substituting the
measurable set s for the interval / everywhere as follows:

PARALLEL BETWEEN ORDINARY AND LEBESGUE INTEGRAL

Ordinary Integral Lebesgue Integral

Let/T*) be a function defined for every Let /(*) be a function defined for
point in an interval / between any two some points of the interval i and let s
real numbers a, b. be the set of these points for which

fix) is defined such as the set of only
irrational points of the interval /. We
assume that the set s is measurable.

To derive the Lebesgue integral of
fix) oyer the set s, we first divide the
set s into a finite number n of non-
overlapping sub-sets. Let these sub-
sets be su st, ...,sk,.. ., s„, such that

s = st + st + . . . sk + . . . sn.

Since s is measurable, there is a meas-
ure function Lis) analogous to the
length of an interval such that

L(s) = List) + £(*,) + . . . L(sk)
+ ...LC%).

We form the product of the measure
L(sk) of each sub-set sk and the value
f(xk) of fix) at any point of the sub-
set sk and add all these products to
obtain the sum

Zn = fixdLis^ + fix^Lisd + ...

fixk)Lisk) + ...fisn)Lisn).

The limit ofZn, as n is indefinitely in-
creased in such a way that the measure
of every sub-set tends to zero is

known as the Lebesgue integral

J
fix)dx over the set s.

If the limit of S\ as well as Zn as n tends to infinity in the manner
described above does not exist, as might happen, fix) is not integrable

To derive the ordinary integral of
fix) over the interval i, we first divide
the interval i into a finite number n of
non-overlapping sub-intervals /lt ia . . .,

** in , such that

' = h + h + . . . ik + . . . /„.

We form the product of the length of
each sub-interval ik and the value
fixk) of fix) at any point of that sub-
interval and add all these products to
obtain the sum

S*n=fix1)il +fixjii + ...

fixk)ik, . . .fixn)in .

The limit of S*n as n is indefinitely in-
creased in such a way that the length
of every sub-interval tends to zero is

known as the ordinary integral

ffix)dx or jfix)d>
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neither in the ordinary nor in the Lebesgue sense. But it is quite possible

for the limit of Zn to exist while that of S*n does not. Consider, for in-

stance, the absolutely discontinuous function /(x) mentioned in Chapter 3

denned within the interval (0, 1) by the formulae

f(x) = 0, for all rational values of x,

= 1, for all irrational values of x.

It can be shown that the ordinary integral f(x)dx over the interval (0, 1)
J o

does not exist in this case, whereas the Lebesgue integral of f(x)dx over
J Sj

the set St of all irrational values of x in the interval (0, 1) does exist. The

reason is that the value of f(x) is uniform all over the set S^ whereas it

continually oscillates between and 1 in the unit interval (0, 1). On the

other hand, whenever the ordinary integral of a function over an interval

does exist, then so does its Lebesgue integral over the set of all points in

that interval. In fact, the two are identical as the Lebesgue measure of a

sub-set that is a sub-interval is merely the length of that sub-interval. That

is why Lebesgue integral is a tremendous generalisation of ordinary

integral.

The goddess of mathematics, when in a giving mood, is often embarrass-

ingly bountiful. If she allows one gift she allows an infinity. For more than

twenty years mathematicians looked round for a suitable measure of the

extent of inner packing of points in a set without much success. At last,

when Lebesgue found one, they discovered an infinite number of other

ways of doing the same thing. Suppose, for instance, we have a measurable

set S, whose Lebesgue measure is L(S). Let f(x) be a fixed non-negative

function integrable over any finite interval. If we have a measurable set S
in the interval, we can define a new function P(S) of the set S by the equa-

tion

P(S) =
J

f(x)dx,

whenever f(x) is integrable over S. If not, we simply equate P(S) to in-

finity. This new function P(S) has the additive property similar to that of

the Lebesgue measure L(S). In other words, if

5 = "1 T "J T uj " ' "i

then,

P(S) = P(SJ + P(SS) + P(SJ + - - -.
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We could, therefore, takeP(5) also as a measure of the density of packing

of the points in S. The only difference is that when S is a continuous inter-

val like (a, b), L(S) is merely the length (b — a) of the interval, whereas

P(S) becomes the ordinary integral

\

b

f(x)dx.
J a

The difference between P(S), or P-measure, and L(S), the Lebesgue

measure, of a set S may be illustrated by means of an analogy. Suppose we
have a straight thin metal rod. If its density is uniform, we can express the

weight of any portion of its length by the length of that portion. Suppose

we want the weight of its length lying between two points A and B distant

a and b respectively from one end (see Fig. 42). To deduce the actual weight

of AB, we have only to multiply its length (b — a) by its density which is

o— — —i

^ I— A ^ b B

O 5
1 1—

|

1

A B

Fig. 42

uniform all over. We may, therefore, take (b — a) itself as a measure of

its weight. Suppose now that the density of the rod varies from point to

point and depends on the distance of the point from one of its ends.

Obviously, we cannot now take the bare length (b — a) of the portion AB
as a measure of its weight. We have to 'weight' each portion of its length

by an appropriate factor to take account of the variable density.

If the density at a point is a function, /(jc), of its distance x from one

extremity, the weight of a small portion dx of its length will bef(x)dx and,

therefore, that of a finite portion of the length AB will be the integral

b

f(x)dx. Thus, whereas in the former case the length (b — a) could be
I

taken as the measure of the concentration of the material of the rod in the

length AB, in the latter case it has to be f(x)dx. The former case is only
J a

a special case of the latter when/(x) happens to be unity throughout. In

the same way P-measure of a set S is a generalisation of its L-measure or

Lebesgue measure. P- measure reduces to L-measure whenf(x) assumed for

the definition of P(S) is put equal to unity everywhere in S.

The introduction of P-measure has been of great service as with its

help it has been possible to define a yet more general class of integrals

that have been widely applied in statistics, diffusion problems, population

theory, cosmic ray research, etc.
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There are in many men two conflicting impulses—one urging them
towards science and the other towards mysticism. The former

springs from the belief that the universe is potentially explicable by
rational enquiry and sensuous observation. The latter originates from faith

in a way ofknowledge which does not depend on sense, reason or analysis

but on revelation, insight or intuition. In the last analysis mysticism postu-

lates that the laws of the universe are fundamentally unknowable and no
'true' understanding of the ways of the world is really possible without

invoking God, spirit, elan, nisus, entelechy, or some similar mystical

principle. The conflict between these two antipodal beliefs is not new. It

existed (as it exists today) in an acute form in antiquity almost since the

very inception of the scientific method. Sometimes a compromise is at-

tempted by letting God or the gods continue their rule in an Olympian

world of their own and virtually forbidding them from infringing upon the

workings ofthe mundane world. Epicurus did this in the ancient world, and

in the modern worldNewton did the samewhen he assumed, at least insome

passages of the Principia, that after its initial creation by God the world

has been quite independent ofHim for its continued existence and motion.

Nevertheless, it seems to me that these two world-views are essentially

irreconcilable, although there are many cases where men's minds have

been exercised deeply by both views at the same time. For mysticism, in

spite of its appeal to intuition or insight, often fascinates men of the finest1

intellect, who are lured into it by an unwarranted extension of some in-

dubitable scientific fact. Thus, the fact that the ratio of the lengths of two
vibrating strings emitting two different notes of the musical scale can be

expressed in terms of natural numbers, suggested to Pythagoras—the

Greek number mystic—and also to his followers that number is God, and

led them even to compose prayers such as
—

'Bless us, divine number, thou

who generatest gods and men,' etc. In our own day recent developments in

nuclear physics have led some eminent contemporary scientists to the

view that, alongside the physical world which science probes, there lies a

'spiritual' world which a scientist may recognise but cannot explore by the

scientific method. Their reason is as follows.

Till about fifty years ago the physicists tried to explain and correlate

observable phenomena of the physical world by means of models, which
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were supposed to function like ordinary objects of everyday experience.
For instance, the kinetic theory of gases explained their behaviour on the
hypothesis that gas molecules were miniature billiard balls, and the wave
theory of light conceived light to be a form of wave motion in a cosmic
ocean of jelly called the ether. But as they began to delve deeper into the
nature of atomic and sub-atomic phenomena, the attempt to explain the
microscopic world of atoms and electrons by means of concepts drawn
from the level of everyday experience broke down.

Since what actually happens inside the atoms is unobservable, some
scientists have come to the conclusion that the world ofphysics is a scheme
of abstract metrical symbols connected by mathematical equations, which
in some mysterious way 'shadows' the familiar world of our consciousness
but can never penetrate it because its real nature is unknowable. For
handling this 'shadow-world' of abstract metrical symbols they have re-

course to a more recondite algebra than the ordinary high-school algebra.
In ordinary algebra we encounter unknown quantities x, y, z, Al-
though the quantities are unknown, we are ultimately able to find their

values because, by subjecting them to known operations like addition,
multiplication, subtraction,squaring, cubing, etc., we obtain known results.

But that is a defect in the eyes of a mystic, who is dominated by the faith
that the universe is essentially unknowable. For him an instrument that
tells us so much is thereby almost disqualified for 'treating a universe
which is the theatre of unknowable actions and operations'. So Eddington
argues that 'we need a super-mathematics in which the operations are as
unknown as the quantities they operate on, and a super-mathematician,
who does not know what he is doing when he performs these operations.
Such a super-mathematics is the Theory of Groups.'
Now what is this 'super-mathematics', the Theory of Groups? It is

simply an algebraic theory that came into being during the early decades
of the nineteenth century in order to clear up certain questions in the
theory of equations. Mathematicians had dealt with algebraic equations
since remote antiquity, although they did not write them in the way we
do now. For example, the Rhind papyrus, written by the scribe Ahmes
sometime before 1700 B.C. and based on a text that may be at least two
centuries older, mentions the equation: 'Heap; its 1/7, its whole; it makes
19', which in our language would be written as x/7 + x = 19. With the
very dawn of civilised life in cities, whether in ancient Egypt, Sumeria,
China, India, or elsewhere, men were faced with problems in astronomy,
architecture, calendar making, barter, interest, discount, partnership, etc.,

which required at least a rudimentary knowledge of forming equations
and solving them. When the slave basis of these ancient civilisations gave
birth to a firmly entrenched leisure class, the same device was used to con-
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struct and solve numerical puzzles or riddles which became a favourite

social pastime.

The Palatine Anthology, for instance, cited by Cajori, included about
fifty arithmetical epigrams (like Euclid's riddle quoted below), which im-
plied knowledge of algebraic equations : 'A mule and donkey were walking
along laden with corn. The mule says to the donkey, "If you gave me one
measure I should carry twice as much as you. If I gave you one, we should
bothcarryequal burdens." Tell me their burdens, O most learned master of
geometry.' Bhaskara's great work, Lilavati, is full of several such epigrams
or puzzles written in florid poetical language.

Although equations of varying degrees of complexity had been handled
since remote antiquity, it took a long time before there was any clear

understanding of their general theory. This was only natural as the num-
ber system with which the algebraists operated was incomplete. It did not
include even negative numbers, not to speak of the imaginary numbers.
Even as late as the twelfth century, the 'learned Brahmins of Hindustan',

who, according to Hankel, were the real inventors of algebra and who had
already recognised the existence of negative numbers by means of ideas of
'debt' and 'possession', rejected negative roots ofequations. Thus Bhaskara,
who gave x = 50 and x = — 5 for the roots of x* — 45* = 250, discarded
the second value, 'for it is inadequate, and people do not approve of
negative roots'. It was not till the close of the eighteenth century that the

number field was fully extended by the explicit inclusion of integers, frac-

tions, irrationals, negatives and imaginaries in one number field, the field

ofcomplex numbers. Only then was it possible even to statethe fundamental
theorem of the theory of equations, viz. every equation of wth degree

«o*
n + axx

n-* + a2 , xn~* + . . . an_ xx + an =
has exactly n roots, no more and no less.

As long as there was no explicit recognition of imaginary and negative

numbers, such roots were ignored and it was not clear how many solutions

an equation ought to have. However, by the time Gauss proved this

fundamental theorem for the first time towards the close of the eighteenth
century, earlier investigators had already given general methods for the
solution ofequations of second, third and fourth degrees, that is, equations
in which the highest power of x is 2, 3 and 4 respectively. In other words,
rules or formulae were given so that bythe adding, multiplying, subtracting,

dividing, extracting square or cube roots, etc., of the co-efficients of the
unknown x in the equation, all the solutions (or roots) of the equation
could be found. For instance, the general form of a quadratic equation, in

which the highest power of x is 2, is

ax2 + bx + c — 0,
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and by our fundamental theorem, it will have just two roots, say jq and
x2 . The solution of the equation means the explicit statement of a rule by
means of which we can calculate "both xt and x2 from a, b, c, the co-
efficients of the equation. In this particular case, the rule is comparatively
simple

:

-b + Vb* - Aac
1

la

and

_ -b- Vb* — Aac
2

la

Naturally the corresponding rules for equations of the third and fourth
degrees are more complicated but they were discovered by the sixteenth
century. During the succeeding two centuries, many unsuccessful attempts
were made to give similar general rules for solving equations of the fifth

and higher degrees. But as no such formulae could be found, men began
to wonder whether it was at all possible to frame them. In mathematics it

often happens that after repeated failures to solve a problem someone
comes along and proves that the solution sought for is impossible. Thus,
for centuries mathematicians tried to square a circle, trisect an angle, or
prove the parallel postulate till it was shown that none of these feats was
possible.

The same thing happened with the problem of solving generally equa-
tions of the fifth and higher degrees. Abel, Wantzel and Galois showed
conclusively that such equations could not be solved generally. In other
words, it was impossible to give formulae involving the sums, differences,
products, quotients, squares, cubes or other roots of the coefficients of
the equation whereby all its roots could be calculated—at least in principle.
This, of course, does not mean that the equations have no roots. They have
them; only we cannot trap them in algebraic formulae ofthe sort described
above.

Now, lack of a general solution of equations of higher degree than the
fourth is no serious handicap. For, short-cut methods offindingthe approxi-
mate values of the roots of any given numerical equation of any degree are
available. Even in the case ofequations of the third and fourth degrees, we
often prefer not to use the complicated algebraic general formulae and we
work out their approximate solutions by simpler methods of numerical
computation such as Horner's or Newton's methods or even by a calculat-
ing machine. Nevertheless, the algebraic investigations, which Abel and
Galois conducted to prove the impossibility of a general solution in the
case of equations of degree higher than four, had fruitful consequences.
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Out of them grew the Theory of Groups and other revolutionary develop-

ments in modern algebra.

Now what is a group ? First of all a group, as in ordinary language, is

a collection, set, or aggregate. The elements of the group or the set may be

objects of any kind, such as quantities, numbers, points, planes, curves,

surfaces, displacements, rotations or other operations of any kind what-

ever. In elementary algebra we use the mystery symbol x to denote some

unknown number, but when we want a 'super-algebra' we no longer

restrict the mystery symbol x to represent a number. We use it to denote an

'indefinable'. That is to say, x is just a symbol concerning which nothing

is assumed except that it obeys certain fundamental laws of algebra. We
then start with a set of 'indefinables' denoted by the mystery symbol x. If

we want to distinguish between the various elements of this set, we may

represent them by xx, x2 ,—
Now at the outset, it might be objected that to call the mystery symbol x

an 'indefinable' is an unwarranted piece of sophistication, for we require

it to obey the fundamental laws of algebra and what else other than a

number could obey those laws? But it will be recalled that there are sets of

elements which are not numbers, though they behave like numbers in

some respects. The set of symbols O, I , denoting the truth values of

propositions introduced in Chapter 2, is a case in point. It is easy to

construct examples of sets of elements other ihan numbers which obey

algebraic laws.

Take, for instance, three playing cards—the ace, two, and three—out of

a pack (Fig. 43). From any arrangement of these three cards you could

produce several others by various ways of shuffling them. Let us recount

these ways. First of all, we may leave the cards undisturbed. This is the

way ofno shuffle. We get three distinct ways of shufflingby interchange of

the first and second, the first and third, and the second and third cards.

The fifth way of shuffling is produced by interchanging the first and second

followed by an interchange *>f the second and third. The sixth way of

shuffling is given by interchanging the first and second followed by an

interchange of the first and third. There is no other way, as we shall show

presently. Let us now consider a set whose 'indefinable' member x is one

or other of the aforementioned six ways of shuffling three cards. Let us

denote them by the symbols xu x2 , xa, x4, x& xt . The following scheme

then defines the 'indefinable' operations xlt x2 ,

.

. ., x6 composing the set.

Xxi The way of no shuffle or leaving the cards as they are.

x2 : The way of interchanging the first and second cards.

xs : The way of interchanging the first and third cards.

jc4 : The way of interchanging the second and third cards.
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Fig. 43

x6 : The way of interchanging the first and secondfollowed by an inter-

change of the second and third cards.

x6 : The way of interchanging the first and second followed by an inter-

change of the first and third cards.

Now suppose you started with any arrangement of cards, say (2),

which means ace on top, two in the middle and three at the bottom. If we
apply the shuffle denoted by the symbol xlf we have the same arrangement
as Xj is the way of no shuffle or leaving the original arrangement intact. If

we apply the shuffle x2 to it, we get the arrangement
(

1 1. We may denote

the result symbolically by the equation,

*°(H)
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Similarly by applying the remaining ways of shuffling we get in all six

ways of shuffling the three cards as shown below:mm
As may be readily verified, there are no arrangements of these three cards

other than the six enumerated above. If we applied successively any two
or more ways of shuffling cards to any given arrangement, we should pro-

duce only an arrangementwhichwecould have got straightway by applying

only one of the aforementioned six shuffling ways singly. For instance, let

us apply the ways x2 and xs successively to our initial arrangement (21.

w
Applying x2 to it, we get I 1 ) ; and then applying xa to the latter we get

w
/
3V /

3
\

(
II. But we could have got (II by applying the single shuffle x9 to our

W W
original arrangement (21. We may, therefore, take two successive shuffles

\v
x2 , Xa in this order as equivalent to a single shuffle x6 . Symbolically,

Hence x$.x2 — x$.

Let us now apply the shuffle x4 after we have applied the shuffles x2 , x3 in

succession. As we saw, the latter two shuffles produce the arrangement

/
3
\ /

3
\

(
1 I, to which we now apply x4 . This gives (21, which we could have ob-

W W
tained from our original arrangement

(
2 I by applying to it the single

w
shuffle x3 .
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Symbolically, x

and

Therefore, x4 .jc3 .;t2 = *3-

We could apply the same operation successively. For instance, jca f 2 1 gives

W
/
2
\

111. If we apply to this result the same shuffle a second time we get

w
(

l

\
12). We could get the same shuffle by a single application of shuffle xv

Hence,

or, X2>xa — ^i»

/'\ /
2
\

If we apply xa a third time to 2 1, we get again
[

1 1, which we can obtain

w W
p\

from 1 2 ) by a single application of xa . In other words, three successive

w
applications ofxa are equivalent to a single application of xa . Symbolically

X2.Xg.X2 == Xa ^= Xa .

We thus see that the resultant effect of applying any numbers of shuffles

xlt xa , • -t *e any number of times to any given arrangement of the cards

is the same as that of a single application of some one or other of these six

shuffles. As We have seen, two successive applications of xa are equivalent

to xlt three to x2 , and so on. In fact, we can give a table showing the single

shuffle to which a combination of any two of the six shuffles specified

above are equivalent. The table is reproduced below and may be verified

by applying, any two of the shuffles successively. To read it proceed as

follows:

Suppose we want the result ofapplying two successive shuffles, first x3and
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then jc4 . Look in the column headed by the first shuffle, viz. jc8, and the

row headed by the second shuffle, viz. x4 . The result is easily read as x6 .

And so on for other pairs.

Columns

Xi x% x8 XA x6 *«

Xi Xi x% Xz x* x& x9

x% x% X! x6 Xq X3 Xi

Rows *3 Xz Xq, Xi x6 *i x2

x* xA x* x9 Xl x% x$

x& *6 Xx x% x$ x* Xi

x» x« xz X*. x2 xx x6

A set or collection of 'indefinables' x, like the set of six shuffles described

above, whose elements combine in such a way that any two or more of

them are equivalent to some single item of the set, is known as a group.

The essential point is that the elements of the group may be combined

according to a law and any combination of them produces an element

belonging to the set itself. It is, therefore, completely self-contained. It is

obvious that every set of aggregate cannot be a group. For instance, the

set of all males aged thirty in India, or the set of all concentric circles in

a plane, is not a group as there is no way specified in which any two ele-

ments of the set may be combined. Even if we specified a way of com-

bining the elements of a set, it may still not form a group as the combina-

tion of two elements of the set may form an element not belonging to the

group. Take, for instance, the set of the first ten integers, 1, 2, 3, . . ., 10; we

could combine any two of its elements by adding any two numbers of the

set. If we apply the ordinary addition rule for combining elements in this

set, we may or may not get an element belonging to the set. Thus, if we

combine say 3 and 5, or 4 and 2 by addition, we get elements belonging to

the set; but if we combine two elements like 9 and 8 of the set, we get an

element 17 which does not belong to the set. The set of the firstten integers

is, therefore, not a group. For a set to be a group it is necessary that there

should be a rulefor combining any two of its elements and thtat the resultant

element so produced is itselfa member of the set. Although this definition

of a group will suffice for our purposes, we shall give below a technically

more precise definition, just to show how the group is the most charac-

teristic concept of modern mathematics. You may skip over it and the

rest of the following paragraph if you find it too difficult.

A group is a system of a finite or infinite number of objects within which

an operation is defined which generates from any two elements a, b
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another object ab also belonging to the system, subject only to two condi-

tions:

(0 The operation according to which the elements of the system are

combined obeys the associative law a(bc) = (ab)c;

(k) If a, b are any two elements of the system, there also exist two
elements x, y of the system such that ax — b and ya = b.

It is really a wonder that from these two insignificant-looking assump-
tions there springs an abundance of profound relations tying up in the

single framework of an axiom system an astounding variety of seemingly

unrelated branches. For instance, an integral domain, which is a set for

which two operations, viz. addition and multiplication, are defined, is a
group under addition alone. Afield, on the other hand, is a set which is

not only a group under addition but also under multiplication provided

we exclude the zero element. If a set is a group and if we take any of its

elements, say a and further also take b identical with a, by hypothesis (if)

above, there exists an element jc such that ax = a. In other words, the

group also contains x which is an identity element* of the group, that is,

an element which leaves unaltered any element with which it is combined.
It can be shown that there is one and only one such identity element in a
group. You may easily verify by means of the table given in the text that

the set G of six shuffling operations xlt x2, xa, x4, x6 and xt satisfies the

aforementioned two conditions of a group. Can you figure out its identity

element?

In the foregoing example of the group G of six shuffles xx, x2, . . ., xt,

the sub-set G' of three ways of shuffling, viz. xx, xh, #, is by itself a group.

For, consider this sub-set (GO of the three shuffles, xx, x6, jte . The rule for

combining shuffles given in the aforementioned table shows that xx .x6
= *s> *i-*e = x9, x5 .x6 = xx, xx .xx = xx, x& .xs = xe, x9 .x9 = xb . Thus
any repetition or successive applications of the three shuffles xx, x5, jc,

produce an arrangement which could be obtained by a single application

of some one of these three shuffles. Hence the sub-set G' of the three

shuffles xx, x6, x9 is itself a group. A sub-set like G' which, being a part of
a larger group G, itself possesses the group property in its own right, is

known as a sub-group of the original group. Another example of a sub-

group is the set x , x6
8
, x6

s = xXt for any combination of x's in the sub-
group leads back to one or other element of itself. This may also be
verified easily from the table reproduced above.

A group like the above, which is obtained by permuting cards, letters,

symbols, etc., is called a permutation group. The number of cards, or
letters permuted, is called the degree of the group. In the aforementioned

* It is exactly what zero is in an integral domain.
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example we produced our group of 6 x's by permuting three cards. Its

degree is therefore three. The number of all possible arrangements or per-

mutations of 3 cards is 3 .2. 1 = 6, and is known as the order of the group.

The group of six x's is called a symmetric permutation group of degree 3

and order 6. The sub-group consisting of xl9 xh, x is of degree three and
order three. The sub-group consisting of x6 , x6

2
, xs

* = xlt whose elements

are generated by the powers of a single element like *6 , is known as a

cyclic group.

A group may consist of a finite or infinite number of elements. So far

we have given only examples of finite groups. As an example of an infinite

group, consider the set of positive integers. We can combine any two
elements of the set in two ways by adding them or multiplying them. Let

us choose the ordinary addition (which should also include its inverse sub-

traction) as the rule for combining the elements of this set. With this

broader concept of 'addition' which includes subtraction, the 'sum' of two
positive integers is not always a positive integer. Hence the set of all

positive integers is not a group under 'addition'. On the other hand, the set

of all positive and negative integers including zero is a group under

'addition'. For the sum (or diflFerence) of any two integers of the set would
belong to the set itself. To say that the set of positive and negative integers

is a group under addition is merely another way of paraphrasing the

statement made in Chapter 2 that such a set is closed under addition and
subtraction.

If instead of generalised addition we adopted 'generalised' multiplica-

tion, which includes its inverse division as well, the set of positive and
negative integers—including zero—is not a group, for the division of one

integer by another is not always exact. On the other hand, the set of alt

real numbers (excluding zero) forms a group if the rule of combination is

generalised multiplication.

Now we may have two groups consisting of widely different elements

but with identical group structure. What this means may be illustrated by

an example. Suppose we have a group G of four numbers,

1, V^-T, -1, -V^T
Ifwe adopt the usual multiplication rule as the rule of combination, it may
easily be verified that the four elements form a group. For instance, the

product of V— 1 and —V— 1 is +1, which is an element of the set, and
so on for other products in pairs. We can also form another set of four

elements, a group G' of rotations of a line OA in a plane through angles of

0°, 90°, 180°, 270°. Any two successive rotations of the set are equivalent

to some single rotation belonging to the set. Thus, suppose we first rotate

the line OA through 270° and then follow it up by another rotation through
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180°. The final position is the same as if it had been subjected to a single

rotation through 90° (see Fig. 44). The set G' of four rotations is therefore

a group. We thus have two groups G, G' with four elements in each. Now
suppose we postulate the following correspondence between the elements
of GandG':

1 corresponds to a rotation through 0°

90°

180°

270°

Fig. 44

If we combine any two numbers of G and any two corresponding rota-

tions of G' according to their respective laws of combination, the resultant

elements of G and G' are also corresponding elements. Suppose we com-
bine V^-i and —1. The product is the element — V^-l of G. The ele-

ments in G' corresponding to V— 1 and — 1 in G are rotations through 90°

and 180° respectively. Two such successive rotations are equivalent to a
single rotation through 270° which, as shown above, corresponds to

—V— 1. This is true of any pairs of elements of G or G'. Thus the two
groups G and G' have the following properties:

(0 Both have the same number of elements;

(k) To every element of G there corresponds just one element of G' and
vice versa;
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(iff) If we produce an element x of G and an element x' of G' by com-
bining any two given elements of G with corresponding elements in

G\ then the element x of G will correspond to the element x' of G\

Such groups are equivalent to one another as far as their group structure,

or the pattern of inner interlocking between their respective elements, is

concerned. The group structure of both is therefore the same although the

nature ofthe elements ofthe two groups differs radically from one another

in other respects. Now suppose we construct another group g of four

'indefinables', xlt xa , x8, x4 about which we know nothing except that any

two of them combine according to the following scheme:

*1 *2 x$ X*

Xl *1 *2 *3 *4

x2 *s *3 x4 xx

x* *8 x* Xi x%

*4 x4 Xi Xi x*

We may easily test that the elements do form a group as any two or

more of them combine to form an element belonging to the set itself. We
may also verify that the group g is equivalent to G by making xv x2 , x3, x4
correspond to 1, V— 1, —1, —V— 1, respectively. The structure of inner

interlocking of the elements of g, or the pattern of their internal relation-

ship, is exactly the same as the tie-up between the elements of G (or G').

The 'super-algebra' that deals with this inner structure is therefore the same

whether we are dealing with a group of rotations, complex numbers, or

'indefinables*.

This fact is the basis of the claim made by scientific mystics like Edding-

ton that 'the universe is of the nature of a thought or sensation in a uni-

versal Mind.' Eddington admits that this statement 'is open to criticism'

and 'requires more guarded expression if it is to be accepted as a truth

transcending forms of thought.' Nevertheless, he considers it 'true in the

sense that it is a logical consequence of the form of thought which formu-

lates our knowledge as a description of a Universe.' However that may be,

it seems to me that its truth, in whatever sense it may be said to be true,

is not suggested, much less established, by the fact that mathematical

physics nowadays is a scheme of symbols interlocked by the existence of

abstract structure. To understand their argument in favour of this claim

and the fallacy underlying it, we may further illustrate how these ideas

have been applied by mathematicians to the concept of space. The simplest

case mathematically is that of spherical space.

To save ourselves turning somersaults in four-dimensional space, con-
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sider a spherical space like the surface of a globe such as is used to repre-
sent the earth in geography. Let us consider the 'space' formed by its sur-
face only, that is, the set of points lying on the globular shell excluding
those inside or outside the globe. Any point on its surface can be changed
into any other by a rotation of the globe round its North-South axis.

Thus you could shift a point marked, say Paris, from a position just in
front of you to any other position. Starting from any orientation of the
globe you could obtain an infinite number of others by rotating it through
different angles from 0° to 360°.

All such rotations form a group because any two rotations of the globe
round its axis would give you a position which you could obtain by a single
rotation belonging to the group itself. Thus if you first applied a rotation
through 90° and then another through 60°, the resultant of these two rota-
tions is equivalent to a single rotation through 150°. Two successive rota-
tions through 270° and 180° degrees are equivalent to a single rotation
through 90°, and so on. In fact, if you could rotate your globe round any
axis instead of only one—the North-South axis—you could generate a
much bigger set, the set of all possible rotations of the globe round any
axis whatever. This set of rotations also possesses the group property, and
the group of rotations round the North-South axis is only a sub-group of
this larger group. Now, mathematically, the structure of the 'space' given
by the surface ofthe globe is the same as that ofany group of 'indefinables'
equivalent to this group of rotations. Hence, argues Eddington,
'When we introduce spherical space in physics, we refer to something—

we know not what—which has this structure. ... The general concept,
which attempts to describe space as it appears in familiar apprehension—
what it looks like, what it feels like, its negativeness as compared with
matter, its "thereness"—is an embellishment of the bare structural de-
scription. So far as physical knowledge is concerned, this embellishment is

an unauthorised addition.' In other words, all that the 'super-algebra' used
by physics for describing the structure of space requires is some group of
'indefinables' equivalent to the group of rotations.

In the same way, Eddington considers that although we^ actually expeii-
ence sensations with all the welter of pictorial details accompanying them,
the starting point of physical science is knowledge of only the group
structure of a set of sensations in a consciousness. Eddington is, of course,
aware that to get at such knowledge ofgroup structure we have to visualise
rotations in actual space and experience sensations in the ordinary way and
that this is impossible without the aid ofwhat he calls 'embellishments' and
'unauthorised additions'. But when he says that the starting point of
physical science is knowledge of the group structure of a set of sensations,
he does not mean the historical starting point but the logical starting point.
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In this way he makes a distinction between the genesis of this knowledge

and its subsequent logical formulation, which no longer requires the con-

crete pictorial details out of which it has actually grown. This is fair

enough, for in mathematics the distinction between an abstract logical

scheme and its actual realisation is well understood. But he certainly goes

too far when, on the basis of the fact that for applying group algebra to

certain aspects of physical phenomena all that we require is the abstract

and logically pure concept of structure without the pictorial details, he

claims that physical theory, concerned as it is with only this abstract

structure of a group of metrical symbols, can tell us nothing of the external

world which is of an inscrutable nature.

The fact that the group theory deals only with the inner structure of the

elements of equivalent groups and pays no heed to their other characteris-

tics is no reason for claiming that the 'real' nature of the external world is

inscrutable. For the abstraction introduced by group theory is of a piece

with the abstractions of ordinary algebra and is in keeping with the general

trend of modern mathematics towards greater abstraction. Even ele-

mentary algebra is in its own way abstract enough. If we have two sets or

aggregates, say a bunch of bananas and a heap of wheat sacks, whose

elements can be matched with the fingers of one hand, we represent the

plurality of both by the same symbol, the number 5. For purposes of

calculation the difference between bananas and wheat sacks is of no im-

portance and what is common to both, viz. their plurality, is expressed by

one and the same symbol—the number 5. On this ground, we do not claim

that elementary algebra justifies the view that the 'true' nature of bananas

and wheat sacks is unknowable and that all that we can know about them

is the possibility of matching them on an equivalent set of 'indefinables'.

Why then should we accept Eddington's claim that the 'super-algebra' of

Group Theory justifies the view that physical science can give us no com-

municable knowledge of space, sensations, etc., other than that of the

inner structure of a group of 'indefinables' equivalent to the group of

rotations, sensations, etc. ? Take, for instance, the concept of the two-

dimensional spherical space discussed above. All the qualities of this space,

its 'thereness', 'curvature', etc., are necessary before we can even define the

group of rotations and the groundwork of their internal relationship, i.e.

their internal structure. After we have done this, we may construct an

equivalent group of 'indefinables' with the same structure, just as we may

construct an equivalent set of 'indefinables' with the same plurality to

count concrete sets like bunches of bananas and wheat sacks; but that

gives us no right to claim that physical science tells us no more about

space than the fact that its group structure is the same as that of a group

of 'indefinables'—'we know not what'. On the other hand, we actually use
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all the qualities of space, which a logician may subsequently dismiss as an
'unauthorised embellishment' in his formulations, just to discover that its

group structure is that of a group of 'indefinables' which we literally create
afterwards on the pattern of the structure of the group of rotations. It

seems that confusion is caused by the use of the word 'indefinable' by
'super-algebraists' of the group theory. 'Indefinable' of the 'super-
algebraists' is not the ineffable of the mystics—a mysterious something
that is too deep for words and cannot be denned. It is simply the undefined
that is not pinned down to anything concrete in order to create an instru-

ment of analysis that may be as widely applicable as possible. In other
words, we leave the mystery element x of our group deliberately undefined
in order to secure the widest possible generality in our theory. But when
we apply it to any particular case as, for instance, to space, we do define
rotations with all the 'embellishments' of space before we can even know
that they form a group. Having ascertained this, we neglect these 'em-
bellishments' and apply the algebra of group theory to develop a mathe-
matical theory of spherical space.

It happens that the application gives us a 'picture' of space very much
like a navigator's chart which is a representation of the actual course of his
ship through the oceanic wastes. The mystic is so fascinated with the pic-
ture he creates that like Narcissus he can do nothing but gaze at it. His
tragedy is that in his state of self-hypnotism he cannot 'kiss the lips he so
ardently desires because they are his own'. It seems that in this crisis-

ridden world of today Narcissism is one way of escape for sensitive souls
anxious to avoid the raging conflicts that threaten to engulf them. Edding-
ton's mysticism is an expression of this tendency* in science like the work
of the symbolists in art and literature. In fixing his gaze on the symbolic
world of physics, the abstract structure of the group of sensations, Ed-
dington reminds one of the literary Narcissus, Andre" Gide, who, in his
Les Nourritures Terrestres, and other works is so busy looking at himself
that he himself becomes just vision: 'Et merne moi, je n'y suis rien que
vision.'

Another variety of mysticism with a strong flavour of modern science
sprang up during the first two decades of the twentieth century. Following
the success of Einstein's theory of Relativity, Minkowski put forward the
metaphysical view that henceforth space and time were to have no separate

* Eddington is fully aware of this link between himself and the artist. He says that
the artist may partly understand his statement that our account of 'the external world
is a "Jabberwocky" of unknown actors executing unknown actions.' In fact, this is also
Eddington's explanation of the 'Jabberwockies* that we see hung in Art galleries New
Pathways in Science, page 256.
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significance, but were to be only shadows of a 'higher' unity transcending

both. Basing himself on the Minkowski dictum of space-time unity,

Alexander evolved a hierarchy of categories beginning with Existence,

Relation, Order, etc., and ending ultimately with Deity as the final end-

product ofthe universe and not the origin, as is usual in orthodox theologies.

In spite of magnificent work, the scientific support that Alexander* sought

from Relativity physics for his metaphysical views on matter, mind, Deity,

etc., was gratuitous. A. N. Alexander had several imitators of lesser

calibre, who, exploiting the great difficulty involved in understanding

Relativity mathematics, let loose a deluge of mystical theories of God,

World-Will, World-Intelligence, etc., all claiming to emanate from Rela-

tivity equations. In order to show how unwarranted is the support claimed

for these views from relativity physics, we shall explain the ideas under-

lying the mathematical apparatus used by Einstein in formulating his

Relativity Theory.

Einstein's theory is geometrisation of physics. Now, geometry deals

with 'space', and space, as we saw earlier, may be of one, two, three or

more dimensions. It is true that our actual physical space is three-dimen-

sional, but 'pure' geometry may deal with space of any number of dimen-

sions. During the nineteenth century mathematicians developed a general-

ised 'pure' geometry of w-dimensional 'space'. In formulating his special

Relativity Theory, Einstein used this geometry for the special case n = 4.

As we are concerned here only with the ideas underlying this geometry,

we shall confine ourselves to two-dimensional space such as the plane of

paper or the surface of a spherical globe. The four-dimensional geometry

actually used by Einstein is no doubt more complicated, but all the es-

sential ideas underlying it can be more simply explained in terms of the

two-dimensional case.

Let us consider a two-dimensional space such as the plane of paper or

the surface of a spherical globe. If we wish to develop its geometry, we

shall naturally have to talk about points which, in their totality, make up

that space. Now, if we desire to talk about the individuals of any aggre-

gate, such as the employees of a mill, we give each one ofthem a name. For

certain purposes, we also assign them numbers such as ticket numbers,

provident fund numbers, ration card numbers, etc. Each individual then

has a name and a set of numbers each one of which identifies him and thus

serves as a label for him. To have complete information about our em-

ployees, we require a table showing against each individual his respective

ticket number, provident fund number, ration card number, etc. Knowing

any one of these particulars, we can ascertain every other particular of the

individual in question by consulting our table. This procedure is, however,

* A. N. Alexander: Space, Time and Deity, 1928.
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workable only if the number of individuals in our aggregate is finite. But
if the number of individuals in the aggregate is infinite and if we want
complete information about every one of them, it is of no help. For,
obviously, we cannot construct a table with an infinite number of entries
even ifwe could find the time to scan its never-ending columns. Ifwe want
to know all the other particulars of an individual, given any one of them,
we shall have to replace our table of individual entries by a set of general
rules. For instance, we may lay down the rule that a ration card number
of an employee shall always be twice the number of his ticket and thrice

Fig. 45

his provident fund number. Knowing these rules, we can deduce all other
relevant numbers pertaining to any individual provided we are given any
one of his specification numbers.
The need for such general rules in geometry is all the greater as each one

of the elements in the aggregate, that is, the points in space, can have an
infinity of registration numbers, the counterparts of ticket numbers or
ration card numbers of our illustration. For example, for certain purposes
we measure the distances x, y of a point P from two perpendicular lines in
a plane and take them as a label or registration mark for the point P. For
other purposes, we may measure similar distances x\ y' from another set
of axes and take the new numbers x', y' as another registration mark for
P. For still other purposes, we may take the distance r ofP from a fixed
origin O" and the angle which 0"P makes with a given direction. This
gives yet another label or registration mark for the same point P and so
on ad infinitum. (See Fig. 45.) In such cases, we need a neat method of
deriving all kinds of registration marks of P, given any one of them
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Obviously we cannot use the tabular method; we have to specify general

rules whereby we can derive any kind of registration mark, say (x\ y')

of P from a knowledge of any other, say (x, y). Such general rules are

known as rules of transformation as they enable us to transform one kind

of label or registration mark into those of another kind. The most

general rule of transformation of the co-ordinates (x, y) ofP into the co-

ordinates x\ y' of another kind is

*' =f(x,y),
y' = <p(x, v),

where/, q> are any functions of x, y whatever. If we know the functions

/, <p, the above formulae enable us to calculate the co-ordinates (*', y')

of any point, given its co-ordinates (x, y). The simplest rule for trans-

forming x, y into x\ y' is given by the formulae,

x' = a1x + a2y m
y = b1x + b2y

'
' • '

Ki)

where the coefficients of x, y, viz. the numbers ax , a2 , blt b2 are presumed

to be known. This pair of equations is called a linear transformation.

We have shown above how a linear transformation may arise when we

try to express the co-ordinates (x', y') of a point P with respect to a new

set of axes in terms of its co-ordinates (x, y) with respect to the old axes.

In other words, we transform the co-ordinate axes but keep the point

fixed to obtain a linear transformation. However, we could also generate

a linear transformation by reversing the procedure, that is, by keeping the

axes fixed and transforming the point P into another point P' by some

process. A simple way of producing a linear transformation is by means of

reflection. Here we keep the axes fixed and transform each point P into its

image P' reflected in a mirror placed along any given line^ through the

origin such as the x-axis. Since the image of any point lies as far behind the

mirror as the point is in front, a glance at Fig. 46 shows that if the co-

ordinates of any point P are (x, y), then those of its image P\ viz. (x\ y>
are given by the equations:

x ' = x=l.x + 0.y
y' = —y = 0.x— \.y

Obviously, this transformation is only a particular case of the more

general linear transformation (1), when a± = 1, a2 = 0, bx = and

2>2 =-l.
Likewise, we may transform each point on the surface of an elastic

material, such as India rubber or steel plate, by stretching, bending, etc.

In many cases the transformations produced in this manner are also linear.

In whatever manner we may evolve a linear transformation—whether by

transforming the co-ordinate axes or by reflection, stretching, etc.—the
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important point is that it is expressed by equations ofthe same form as (1).
So far we have confined ourselves to points in two-dimensional spaces

such as the plane of paper in which we have drawn our diagram. But we
can easily extend the notion of linear transformation to three-dimensional
space and even to hyper-spaces of more than three dimensions. In order to

PCx.y)

rMirror

iw

(2)

Fig. 46

be able to point out more easily the corresponding extensions to hyper-
spaces of three, four, ... and « dimensions, we shall change our notation
and denote the co-ordinates x, y of our point P by the symbols xx , x2 .

The co-ordinates of a 'point' in n- dimensional space would then be xlt x2 ,

x3) . . ., xn . Reverting now to linear transformations in two-dimensional
space we may write the formula for transforming xlt x2 into x\, x\ as

x\ = axxx + a2x2

X 2
== 01*1 ~f~ #2*2

This linear transformation is completely determined if we know the
four coefiicients or numbers, alt a2 , bx, b2 . We may denote it by the symbol
A or by the combination (ax, a2, bx , b2) so long as we know where to put
each coefficient in writing out the equations of transformation (2). This
notation is, however, inconvenient when we deal with transformations in
w-dimensional space. So we write it in the form of a square array that we
obtain by erasing every symbol in the equations (2) except the coefficients.
This gives us the square array

ax a*

bi S
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This square array is known as a matrix and completely defines the trans-

formation A. We express this by writing

A == ax «& .... (3)

In particular, since the linear transformation produced by reflection in

a mirror placed along OXx is given by the equations:

x\ = l.Xi + 0*,,

x\ = 0.xx — \xtt

its matrix A' is denoted by the array

A' =
(4)

In equations like (3) or (4) the equality sign = does not mean that the

numbers on both sides of it are equal, because neither A nor the square

array on the light-hand side is a number. A is only a name for the trans-

formation obtained by applying equations (2) and the square array is an

arrangement of writing the coefficients involved in these equations. It is

convenient because we can easily pass on from the equations to the array

and vice versa.

Now suppose we transform the co-ordinates from xlt xa to *'„ x't by

a linear transformation A given by the matrix (3), and transform x\,

x\ into x\, x\ by another transformation A' given by the equations

x\ = a\x\ 4- a'&\

The matrix of the new transformation A' is

A' = a\ a

b\ b'%

• (5)

. (6)

What is the matrix of the transformation A' which converts xlt xt

directly into x\, x"2 instead of through the intermediary of A'l The

resultant A' of two successive transformations A followed by A' is called

the product of A and A' and is symbolically written as

A" = A'.A.

Here again A', A'\ A are not numbers but mere names for the three trans-

formations specified above. By the product of any two transformations

A', A, we understand the final effect of applying first A and then A'.
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Fig. 47a—A'. A transforms P into P*

Fig. 47b—A .A' transforms P into Pf.
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In general, the product of any two transformations such as A and A'

depends on the order in which they are applied. Suppose, for instance, we

place two mirrors,one alongQXX and the other along any other linethrough

O such as OM. Let reflection in the former be the transformation A and

that in the latter the transformation A'. If we apply to any point P the

transformationA first,we get its imageP'. Applying now the transformation

A'toP\ we obtainthe point P\ viz. the reflection of P' in the second mirror

along OM. On the other hand, applying the transformation A' first and

then A to P, that is, by reflecting P first in the second mirror along OM
and then by reflecting the image P\ so obtained in the first mirror along

OXlt leads to the point P\. (See Fig. 47.)

It follows, therefore, that the effect of the transformation A' .A is not

the same as that of A .A'. In symbols,

A'.A^A.A'.

We can also define the sum of two matrices A and A'. Let the first

matrix A transform a point P into P' by, say, reflection in a mirror along

OXv (See Fig. 48).

Let the second matrix A' transform P into P" by reflection in another

mirror along OM. Join P\P" and take the mid-point R of P'P". Join OR
and produce it to P'" so that RP'" = OR. It can be shown that the trans-

formation which changes P into P'" directly is also linear. Its matrix is

known as the sum ofthe two matrices A and A'. It is obvious that we reach

the same point P'" whether we reflect P first in the mirror along OXx and

then in that along OM or vice versa. In other words, the sum (unlike the
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product) of the two matrices A, A' does not depend on the order in which
they are added. In symbols,

A + A' = A' + A.

With these definitions of the sum and product of matrices we can develop
an algebra of matrices in much the same way as that of sets or truth values
of propositions. This algebra has manifold applications from the theory
of elastic strains, games and economic behaviour to that of splitting atoms.
The reason is that matrix is a neat way of mathematising operations of the
most complex kind or writing several sets of magnitudes. For instance, the
railway engineer has, to ensure the safety of trains, to figure out under
what strains rails fracture. This leads him to the study of stresses and

Q CD Q CD CD Q Q

pO Oq O O O O Q

CM>-c^-e-£>-c}-Q

'O-i^-e-O-G-O-O

FiG. 49

strains in material bodies. Now the strains set up in a steel rail when a
train passes over it can be specified by a matrix. What actually happens
is that in its free unloaded state, the molecules of the material of the rail
are arranged in small squares very much as shown in Fig. 49. When the
rail is strained by the passage of a train the square arrangement of the
molecules is disturbed. The little squares such slsPQRS in Fig. 49 become
little parallelograms like P'Q'R'S' as in Fig. 50.

If we keep the co-ordinate axes fixed, the transformation of points like
P, Q, etc. into P\ Q\ etc., may be denoted by a pair of linear equations
like (1). (See page 160.) In other words, the state of strain produced by the
moving train may be denoted by the matrix of a linear transformation.

Matrix algebra has also been used to rescue the classical atomic theory
from the cul-de-sac into which it found itself about thirty years ago.
According to the classical theory an atom is a miniature planetary system
in which a number of electrons continually dance round a central nucleus.
On the basis of such a model and with the help of certain ad hoc modifica-
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tions of the classical laws of electrodynamics, it was possible to explain

some of the experimental observations. But the theory soon reached the

limits of its achievements and proved powerless to account for a number

of other observations. This failure of the theory led some physicists to the

conclusion that the trouble was perhaps due to the fact that the theory

took too much for granted.

The theory operated with such concepts as the position and velocity of

electrons, their orbits and so forth and then applied its conclusions to

interpret experimental observations. And yet what is actually observed is

Fig. 50

never the electrons and their orbits, velocities, etc., but the radiations

emitted by a whole aggregate of atoms. These radiations are nothing but

light waves, even though many ofthemcannot be seen in the ordinary way.

Like light waves of different colours—or radio waves for that matter

—

each kind of radiation has its own characteristic wave length and intensity.

They are actually observed by examining the radiation by means of a

spectroscope.

It therefore happens that the classical theory has recourse to the con-

cepts of motion, position and velocities of electrons, while what experi-

mental observations yield is wave lengths and intensities of the radiations

emitted by manifolds of excited atoms. This would seem to show that the

basic concepts ofthe theory are ofno account for the final result. One may
therefore be tempted to examine how far one could go if the classical

model were to be abandoned. Now if one were to construct a theory of

atomic behaviour without invoking the assumed but unobservable elec-

tronic motions within the atom, one could hardly do without matrices and

matrix algebra for the following reason.

When we examine the pattern of radiation emitted by an aggregate of

atoms—and this is all that observation can do—we may conceive of each

radiation of one wave length as emanating from some single atom of the

aggregate at any one time. The pattern of radiations emitted by an ag-
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gregate of atoms, andthrough it indirectly the state ofthe entire aggregate
of atoms, may thus be described by a succession of numbers giving the
characteristic wave length and intensity of each kind of radiation that the.

aggregate may possibly emit. Such a succession of numbers may be ar-

ranged as a matrix. A matrix therefore is one way of describing the state of
affairs prevailing within a manifold of atoms, ifwe wish to avoid reference
to quantities which, like the position and velocity of an electron, are in
principle unobservable* That is why matrices and matrix algebra have
helped advance the classical atomic theory beyond the range of its original

validity.

This success of matrix algebra in solving a number of problems of
quantum physics has been used to justify the view that the world ofphysics
is merely a 'shadow-world* of metrical symbols. But with the progress of
time these new theories, too, have gotinto as great—though quite different

—difficulties as the older quantum theory. New phenomena revealed by
the study of the atomic nucleus have forced a multitude of ad hoc amend-
ments ofthe theory, with the result that it has again become a mere medley
of assumptions without any internal consistency. Consequently the
'scientific' basis of the mystical superstructure that was being raised on it

is spurious.

Suppose now we have two equations

x\ = axxx + a&%

x't = hxx + baxt
(7)

Can we express xx, xt in terms of x\, x\t Under certain conditions, we
can. For we may now treat these equations inversely as two simultaneous
equations in two unknowns xlt xt and solve them in terms ofa\ b's and
x'i, x't . This gives

x - ***'* ~ "**'* - gi*'« ~ ***'i

axbt — aj>x * " axbt — ajbx
'

With two equations the algebra is not complicated but if we have three or
four equations, it begins to become increasingly tedious. With a still

larger number of equations, it is completely unmanageable. If, therefore,
we wish to transform co-ordinates in a generalised space of n dimensions,
we must devise a neater way of solving simultaneous equations in n
variables. This neater way is by the use of determinants. In elementary
arithmetic if we are given a number like (2 x 7 — 3 x 4), we simplify it

by actually carrying out the multiplications and other arithmetical opera-
tions involved in the expression and write the result as 2. In higher algebra,
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we often find it more convenient not to perform these operations or at

least to postpone them till the very end. A determinant is an expression of

this kind in which the numbers involved are to be combined in a certain

way if we want its exact value but may with advantage be left untouched.

The above expression can be written in a determinant form

2 3

4 7

in which the arrows link up the numbers to be multiplied. This is only

another way of writing the number 2, which is derived from it by multiply-

ing the first number, 2, by its diagonally opposite number, 7, and sub-

tracting from it the product of the other two diagonally opposite numbers,

viz. 3 and 4. In other words,

2 3

4 7

= (2 X 7 - 3 X 4) = 2.

In practice, the arrows are omitted.

In general, ax a2

bi b2

= (axb2 — aj>x)

Another way of performing the same calculation is this. Fix your attention

on the numbers in any row, such as the numbers 2 and 3 in the first row.

Take first the number 2 in the first row. Equally it occurs in the first

column also. If you delete all the numbers in the first row and first column

in which the number 2 occurs, you are left with only one number, viz. 1

X?
/I

Form the product 2 X 7. It gives 14.

Now take the second number in the first row, viz. 3. As before, erase all

the numbers in the first row and second column, that is, the row and column

in which the number 3 occurs.

XX
4/
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This leaves the number 4. Again form the product 3 x 4. It gives 12. The
determinant then is the difference between the two products

14 - 12 = 2.

The advantage of this apparently involved way of performing the calcula-

tion over that previously given is that it is applicable to higher order

determinants. For example, a third-order determinant is a square array

with three rows and three columns such as

2 1 3

3 4 2

112,
This means that the numbers like 2, 1, 3, 3, etc., written above, are to be
combined according to a certain rule. This rule is a simple extension of that

for second-order determinants already described.

The great utility of these fanciful expressions is that they enable us to

give a neat solution of simultaneous linear equations, or at least a neat

way of writing it out even if we do not get the actual numerical values in

any given case without a lot more tedious computations. For instance, in

the case of equations (7), page 167, viz.

X i — &\X\ ~V &%X%i

we found that

Xi =
UypC J Q<£C 2

CljX 2 DyX J

We may also write this solution in terms of determinants as under

Xa

*1 =
*'l «2 <*X x\
*' K

>
X2

K X 2

*i «2 «1 a2

h K K h
When we have to solve linear simultaneous equations in three or more

unknowns it is possible to write the solution in determinant form by a

simple extension of the procedure adopted in the case of two unknowns.

The problem may therefore be regarded as completely solved thereby.

But this solution is a mere figure of speech when the number of simultane-
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ous equations to be solved is really large, say fifty. For the actual values

of fifty unknowns of a set of fifty linear equations are buried as deep
under the dead-weight of fifty-order determinants as in the original fifty

equations. The reason is that it is not a simple matter to evaluate a de-

terminant of order fifty and you would have to evaluate fifty-one of them
before you could get at the actual values ofthe fifty unknowns in question.

And yet fifty unknowns is no large number.

As we saw in Chapter 4, Southwell's relaxation methods reduce the

problem of solving a differential equation to that of solving a set of alge-

braic equations involving the unknown values of the wanted function at a
number of its nodal points. But a function could hardly be said to be
known unless we knew its values at fifty or more nodal points. Conse-
quently, algebraic equations involving fifty or more unknowns are of
frequent occurrence nowadays in the solution of various problems in

physics and engineering. A theoretical solution in determinant form is not

of much help here and a practical method for pencil and paper work is

provided by Southwell's relaxation technique.

Although it would be possible to design a special machine to carry out

this process, Hartree considers that Southwell's technique is not very

suitable for a general-purpose machine. He has therefore suggested another

which is more suitable for the general-purpose calculating machines
already constructed or under construction. The idea underlying Hartree's

method is very simple. Taking the two equations (7) in two unknowns
xlt jca we have

«i*i + a&t — *'i = 0,

*2*i + bjpct — x't = 0.

If we square and add the expressions on the left-hand sides we obtain a
quadratic expression

fa*! + a&t ~ *'i)* + (b&i + bjct - x'J* =

which vanishes for just those values ofxx and xt which are solutions ofthe
equations (7). But since the quadratic expression is a sum of two square

terms it cannot be negative. Consequently the minimum value of this

quadratic expression can only be zero, which it assumes for just those

values of xu x% which are solutions of (7). The problem of solving equa-
tions (7) is therefore reduced to that of minimising the value of the afore-

mentioned quadratic expression which is more suitable for a general-

purpose calculating machine than Southwell's relaxation technique.

This is one instance of the way in which modern methods of computa-
tion as developed by Hartree, Southwell and others are leading to a new
revolution in mathematics to which we alluded in Chapter 1. The older
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point of view was to regard the minimising ofa quadratic form as reducing
to the solution of a set of simultaneous algebraic equations. But in view of
the computing facilities now available it is more feasible to think the other
way round, that is, to regard the solution of the simultaneous equations
being reduced to the minimising of a quadratic form. In a similar manner
the older method of solving a differential equation was to approach the
solution through a sequence of functions each of which satisfies the equa-
tion but not all the initial Or boundary conditions. Again, in view of the
computing facilities now provided by the automatic calculating machines,
the final solution is approached through a sequence of functions each of
which satisfies all the boundary conditions but not the differential equation.
The reason is that many forms which appear very sophisticated according
to the older point of view are very suitable for the new methods of
numerical computation by calculating machines, many of which can per-
form about a million multiplications an hour.

The theory of matrices and determinants is a highly developed branch of
algebra, and has been extensively applied to the theory of equations,

geometry and, as we have seen, more recently to quantum theory of the
atomic nucleus. It has also been made to carry grist to the mystic mill.

The mystic tries to find support for his views in the occurrence of certain
invariant expressions in physical theory. An invariant, as the name
indicates, is something that does not vary. In a world of change and flux,

'something' that does not vary or remains 'eternal' is apt to be equated
to a godhead; but mathematical 'invariants', as we shall see, are by no
means such exalted beings. Without a mystic's intuition they would at

best look rather like stuffed images of 'immutability'.

The fact of the matter is that when we apply algebra to geometry by
assigning co-ordinates to various points of the space or surface under
study, we can also express certain inherent or intrinsic properties of con-
figurations of its points by means of algebraic expressions involving their

co-ordinates. For instance, suppose we have two points P, Q in a plane
with co-ordinates (x, v) and (*', y') with respect to two rectangular axes.

The distance, j, between P and Q can be easily expressed in terms of the
co-ordinates ofP and Q. If we apply Pythagoras's theorem to the right-

angled triangle PQL (see Fig. 51), we obtain the equation

S* = PQ* = PL* + LQ*
= (x'-x)* + (y'-y)\

°*> S* = {x'-xy + {y'-yy . . . (1)
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Q(x'y»)

Fig. 51

The distance formula (1) is thus merely the well-known Pythagorean

theorem translated into the language of algebra. But since the distance PQ
is an intrinsic property of the points themselves and does not in any way

depend on the co-ordinate axes used to assign co-ordinates to P and Q, it

is obvious that we shall get the same value for S ifwe use any other system

of rectangular axes. Suppose we use another set of such axes and suppose

the new co-ordinates of P and Q are (xlt yd and (x\, y\). They are, of

course, quite different from the old co-ordinates (x, y) and' (a:', y'); but the

value of the expression (jt'i — jq)
2 + (y\ — yj2

is exactly the same as

that of the old expression (*' — yf + (/ — y)\ as both measure the

square of the same distance PQ. Such an expression is called an invariant

as it retains the same value so long as we use any system of rectangular

co-ordinates.

In this case the expression remains invariant only for a rather special

classof co-ordinates—the rectangular co-ordinates—butwe can also derive

similar algebraic expressions which retain the same value however we

may change the co-ordinate axes. The idea may be illustrated by an

analogy. To express a thought or an idea, we need a language but there

are many kinds of languages. Although every expression of an idea in a

language is often charged with linguistic and emotional overtones peculiar

to that language, it is, nevertheless, possible to say that the idea common

to a number of translations of an expression is the 'invariant' kernel that

remains however we may alter its linguistic outfit. In the same way ana-

lytical geometry formulates algebraic expressions in terms of co-ordinates
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for various geometrical magnitudes, such as distances between points,

angles between lines, areas of figures, etc. However we may alter the co-

ordinates, the final value of the expression remains invariant, as the magni-
tude expressed by it is independent of the co-ordinate system in much the

same way as the idea underlying its linguistic expression in any language is

independent of that language.

The discovery of 'invariants' was made almost as soon as algebra began
to be applied to geometry. It caused no excitement then or afterwards.

But the trouble arose during the first decade of the twentieth century when
algebraic geometry began to be applied to physics. Physics is mainly con-

cerned with events, such as the arrival of a light ray at a particular point,

the explosion of an atom, the emeigence of a nova, etc. To be able to talk

about events in the same way as we talk about points in geometry, we
need a method for assigning registration marks to these events. This is

easy, for every event must take place somewhere and sometime. So, if we
took the co-ordinates of the point of its occurrence and watched the

instant of time at which it occurred, we would have a complete set of

specification marks to identify the event. Every point or 'point-event', to

use geometric terminology, has therefore a set of four numbers xl9 xt , x3i

xt to identify it.

We may thus conceive of our eternally changing world of events as a
static geometric manifold of 'point-events'. In dealing with this imaginary

static manifold of 'point-events' by the methods of analytical geometry
we encounter certain algebraic expressions, which, no doubt, involve the

co-ordinates of point-events but nevertheless retain the same value how-
ever we may alter the co-ordinate system. This fact enables us to express

certain physical laws, e.g. the law of gravitation, in invariant forms, that

is, forms which stand like a rock among the shifting quicksands of co-

ordinate transformations. These invariant forms of point-events are in

principle no different from the invariant expressions for distances, angles,

areas, etc., of the ordinary three or two-dimensional space, though they

have quite unjustifiably been used to support mystical theories claiming to

'prove' 'mathematically' the existence of God, Deity, World-Will, World-
Intelligence, etc.

An interesting application of the theory of sets, vectors, matrices and
groups is the mathematical theory of games created by Neumann and
Morgenstern in an attempt to provide a new approach to economic
questions as yet unsettled. As they rightly point out, classical economics
left out of consideration a vital element of political economy, that is,

group rivalries and clash of interests. Of old, it has been known that
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whereas some economic policies may benefit everybody in more or less

degree, certain policies would benefit one or more groups only at the cost

of others. In spite of this conflict of various group interests, classical

economics was dominated by the idea that if an individual were free to

pursue his own good, he in some mysterious manner promoted the good

of everyone else at the same time. Hence its advocacy of the Benthamite

formula—the promotion of 'the greatest good of the greatest number'.

In an economy of the isolated Robinson Crusoe type it is, no doubt,

possible for an individual (that is, Crusoe) to implement this formula, at

least in principle, and direct his economic effort to maximise his own good.

But even a Crusoe begins to get the creeps when he sees any sign of another

will intruding on his domain as, in fact, Defoe's Crusoe did when he first

saw the footsteps of the cannibals. Consequently, the Benthamite formula

is practical economics for an isolated Crusoe but not for a participant in

a real economy. For, while the former faces merely 'dead data' 01 'the

unalterable physical background of the situation', the latter has to face,

in addition 'live data'—that is, the actions of other participants which he

can no longer control and whose interests may even run counter to his own.

This consideration introduces a difficulty hitherto disregarded by classical

economy. It is with a view to overcoming it that Neumann and Morgen-

stern have developed the mathematical theory of 'games of strategy', their

object being the creation of theoretical models designed to play the same

role in economic theory as the various geometrico-mathematical models

have played successfully in physical theory.

Now, what is a game? In ordinary parlance it is a contest between a

number of players, played for fun or forfeit according to some pre-

determined rules and decided by skill, strength or chance. Although a

game may be played for mere fun or some non-monetary forfeit, such as

Cupid played with Lyly's Campaspe,* for most econometric purposes it

would do if it were assumed to be played for money or some such thing as

'utility' which we may suppose to be measurable. In most games played

for monetary stakes such as Bridge, Poker, etc., the algebraic sum of the

gains and losses of all the players is zero. Such a game is called a zero-sum

game. In other words, most ordinary games are zero-sum games wherein

the play does not add a single penny to the total wealth of all players. It

merely results in a new distribution of their old possessions.

A game theory of economic behaviour can therefore deal only with a

* John Lyly, Campaspe, HI, v:

Cupid and my Campaspe play'd

At cards for kisses, Cupid paid;

He stakes his quiver, bow, and arrows;

His mother's doves, and team of sparrows;

Loses them too; then, down he throws . .

.
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pure problem of distribution or imputation, that is, a problem wherein an

economic group of Peters could only be paid by robbing a group of Pauls.

In any real economy the actual situation is different. In fact, most econom-

ically significant schemes cannot be treated as zero-sum games at all for

the sum of all the payments—the total social product—is in general not

zero. It does not even remain a constant.

To take account of this important feature of social economy, Neumann
and Morgenstern broaden the concept of a game wherein the sum of the

total proceeds* of all players is not zero. This is done by proving that a

non-zero sum game played by (n — 1) persons is very closely related to a

zero-sum game played by n persons. Consequently the case of a zero-sum

w-person game is sufficiently broad to cover the general problem of social

economy, viz. the problem of imputation with or without the creation of

'utility' during the process of play. We shall, therefore, confine our

description to the case of a zero-sum game only.

The simplest case of such a game is the case of a single player. As he

faces no opponent his task is the extremely simple one of maximising his

own 'good', 'satisfaction* or 'utility'. At least it is so in theory. This case

corresponds to a rigidly established dictatorship in which one unalterable

scheme of distribution prevails and the interests of all the members of the

society are assumed to be identical with those of the dictator. There is

nothing further that the game theory can tell us in the solution of the

imputation problem in this case.

Next in order of complexity is the case of a zero-sum two-person game.

This case corresponds to a market wherein a single buyer 'bargains' with

a single seller. The game becomes more complex when there are three or

more players. The reason is this. While in a two-person game there is

always a total clash of interests, in a three-person game there occurs a

partial mitigation of this total clash. The mere existence of a third player

opens up possibilities ofcoalitions and alliances by any two ofthem against

the third. This case corresponds to dupolistic market wherein a buyer

faces two producers ofthe same commodity. The possibilities of coalitions

and alliances increase enormously as the number («) of players increases.

Nevertheless, it is often possible to reduce a general zero-sum n-person

game to the simpler case of a zero-sum two-person game. For consider a

game played by n players denoted, for brevity, by the numbers 1, 2, 3, . . .,

n. Let / = (1, 2, 3, . . ., n) be the set of all these players. Let S be a sub-set

of any players who decide to form a coalition and co-operate fully against

the rest. Let S* be the complement of S in / and let.it be further assumed
that the players in S*, too, decide to play as a coalition in self-defence. The
result is merely a zero-sum two-person game between the two coalitions

* These may be measured in terms of either money or utility.
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S and S*. That is why the case of a zero-sum two-person game is quite

fundamental in the whole theory, and we shall now consider it in greater

detail.

For the sake of simplicity we may visualise a zero-sum two-person game

as a sequence of only two moves: a first move by player 1, followed by a

second move by player 2. Let player l's move consist in throwing a die

which may turn up with any of the following six integers uppermost:

1, 2, 3, 4, 5, 6.

Let player 2's move consist in throwing a coin which has integers 1, 2

stamped on its two faces instead of the usual head and tail. Player 1 then

chooses an integer i from the set of six integers 1, 2, 3, 4, 5, 6, by a throw

of the die, and player 2 integer j from the set of two integers 1, 2, by a

throw of the coin. In other words, i can assume any one of the six values

1, 2, 3, 4, 5, 6, andy any one of the two values 1, 2. Any actual play will give

rise to an i and aj, the individual choices of the two players. It is clear that

there will be in all 6 X 2 = 12 such pairs of fs and/s, each one of which

is an outcome of some particular play. The entire set of 12 pairs of fs

and/s covering the entire totality of all possible plays defines thegameG as

distinct from any particular play thereof. Now the rules of the game must

also prescribe the payment functions KXi K2> that each player has to make

to the other as a result of a play. Klt K2 can only be functions ofthe choices

/, j that the two players make in the two moves permitted to them by the

rules ofthe game. We may therefore write K^j, i) as the amount that player

1 gets if the play results in a choice i by player 1 and a choicej by player 2.

Likewise K2(j, i) is the sum obtained by player 2 for the same choice /, j.

Since the game is zero-sum,

Uj,i)=-K2{j,i).

We may express this by writing

KiU, = K(j, i), K2(j, i) = -K(j, i).

The course of the play will be determined by the desire of the first

player to maximiseKx orKand that ofthe second player to maximiseK2 or,

what comes to the same thing, minimise K. Thus both concentrate on the

same function K, one with the intention of maximising it and the other

with that of minimising it. However, neither of the players is in a position

to do anything in the matter as the moves of both are chance moves de-

cided by the throw of a die and a coin.

To give some scope to the play of free will of the participants let us

now assume that player 1 makes a personal move instead of a chance

move. In other words, he selects a number i out of the six members 1, 2,
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3, 4, 5, 6 by an arbitrary act of free choice instead of by a throw of a die.

Likewise let the second player also select a number j out of the two num-

bers 1, 2 by a similar act of free choice. We have now to define the payment

function K(j, i) for each pair of (j, i)'s which specifies a particular outcome

of the game. For instance, let us suppose that if player 1 chooses 5 and

player 2 chooses 1, the former receives 2 coins, whereas if these choices

are 5 and 2 respectively he pays 2 coins. In other words, we assume

K(l, 5) = 2 and K(2, 5) = -2.

In the sameway the values of K(j, i) for another ten pairs of possible choices

j, i can be assumed. We exhibit these assumed values ofK function in the

form of a rectangular matrix as follows:

1 2 3 4 5 6

1 m. i)

= i

*d,2)
= -8

K(l, 3)

= -3
K(l,4)

= -9
K(l, 5)

= 2
W,6)
= 7

2 K(2, 1)

= 3

*(2,2)

= 9

K(2, 3) K(2,4)

= -7
*(2,5)

= -2
K(2, 6)

= 8

Now if player 1 moves first and makes his choice of an /, player 2, who
now makes his move in full knowledge of his opponent's move, can so

select hisj as to minimise K. Thus suppose player 1 selects i = 5. Once he

has chosen i = 5, he can receive only one of the two figures under the

column headed 5 in the above matrix, viz. 2 or —2. Player 2, who knows

that 5 has been chosen, will naturally choose,/ = 2 so as to allow him the

minimum of these two figures. In other words, although player 1 is free

to choose any i out of the six integers

1, 2, 3, 4, 5, 6,

he can expect to get only the minimum of the two figures shown in each of

the six columns headed successively 1, 2, 3, 4, 5, 6. As a glance at the

matrix would show, these six column minima are

1,-8,-3,-9,-2,7.

Player 1 will therefore choose that column which contains the maximum of

these minima. This is 7, which is the value ofKwhen i = 6 andy* = 1. In

other words, a rational way of behaving in this case would be for player 1

to choose i — 6 and player 2 to choosey = 1. This will lead to player l's

gaining 7 coins at the cost of player 2.
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Now it might seem unfair to let player 1 make the first move and player

2 the second move. To redress the balance between the two let us reverse

their roles and see what happens. Player 2 has now to make the first move,
that is, choose ay, and player 1 chooses an i in full knowledge of his op-
ponent's move. If player 2 chooses j = 1, he restricts the value of player

l's gains to the figures in the first row of the ^-matrix. He may then expect
player 1 to choose an i which corresponds to the maximum figure in the

first row. This maximum of the first row is 7. If he chooses j = 2, player

1 will choose the maximum of the second row which is 9. Consequently, it

would be rational for player 2 to choose j = 1, in which case player 1

chooses i = 6. This again leads to player l*s gaining 7 coins (the matrix
element corresponding to i = 6, j = 1) at the cost of player 2.

It would thus be seen that in this case it is immaterial who makes the
first move. There is only one solution of the game which corresponds to a
choice of i = 6, j = 1 and K{\, 6) = 7. In other words, in the case of
figures tabulated in the aforementioned ^-matrix, whether we first choose
the minima of the columns and then choose the maximum of these column-
minima or we choose the maxima ofthe rows and then choose the minimum
of these row-maxima, the end-product is the same. When this is the case

the game is said to be strictly determined as there is only one possible out-

come with a definite value ofK which one player has to pay the other. But
such strictly determined games are exceptions. In the example cited above
we artificially constructed the JK-matrix so as to ensure that the maximum
of the column-minima equals the minimum of the row-maxima. In other
words,

Max. (Column-minima) = Min. (Row-maxima).

This is not the case in general. Consider, for instance, the K function

defined by the following rectangular matrix.

\ i

1 2 3 4 5 6

1 K(l, 1)

= 1

m, 2)

= -i
m, 3)

= i

K(l,4)

= -1 = i

K(\, 6)

= -1

2 K(2, 1) K(2, 2)

= 1

K(2, 3) K(2, 4)

= 1

K(2,S)

= -1
K(2, 6)

= 1

This means that if i,j are either both odd or both even, player 1 gains 1 coin

from player 2, otherwise he loses the same amount to him. In this case the

minimum of the first column is —1. In fact, the minimum of all the six
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columns is the same number — 1. Hence the maximum of the column

minima is —1. In other words,

Max. (Column-minima) = — 1.

Likewise, the maximum of the first row is 1 and so also of the second

row. Consequently the minimum of the row maxima is 1.

Or, Min. (Row-maxima) = 1.

Consequently, Max. (Column-minima) ^ Min. (Row-maxima).

Here, priority in the first move is a very material factor in the outcome

of a play. If it is player 1, he knows whatever / he may choose, his opponent

will choose ay' to make loss a certainty. Suppose he chooses i = 3, in that

case player 2 chooses j = 2 and K(2t 3) = — 1. Similarly, if he chooses

i = 2, player 2 will choosey = 1 and #(1,2) is again — 1. In other words,

the mere fact that player 1 makes the first move ensures that K = — 1,

which means that he loses 1 coin.

The situation is altogether changed if player 2 has to make a first move.

It is easy to see that whatever row number (j) he may choose player 1 can

choose a suitable i to make K= 1. In other words, he is now certain to

gain 1 coin. But in the abstract game G in which neither player knows the

move of his opponent there is no strictly determined outcome and the

payment function K will continually oscillate between the two values —1
and 1. In general, a zero-sum two-persons game is not strictly determined

and the value of a play will vary within a range Vx to V2 . In our example,

Vx was — 1 and V2 , 1 and the value of the play oscillated between these two

numbers.

A typical application of the theory of two-person games is the case of a

two-person market which is equivalent to the simplest form of the classical

problem of bilateral monopoly. Here let us equate player 1 = seller,

player 2 = buyer.

First move by player 1 : Choose a price p for his commodity A and

offer it to player 2.

Secondmove byplayer 2: Accept or reject the offer.

In order that the transaction have any sense it has also to be assumed

that the value (u) of the possession of A to 1 is less than the value v of its

possession to 2. If the buyer accepts the price p offered, the amounts the

two players get are

Player 1 = p,

Player 2 = v — p

Since player 1 agrees to the sale at price p, p must exceed w, the pre-sale
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value of the commodity to him. Since the buyer agrees to buy, the value v

must exceed the price p paid by him. In other words,

p^ u and v ^ p,
or u < p < v.

Here u, v correspond to Vx and V% of the general theory of the two-person
game described above. The actual value of the play, that is the price p,
oscillates between these two values. In this model we have assumed that

the game is played in two moves giving rise to a single bid which is either

accepted or rejected. But in actual practice a good deal of bargaining,

haggling and negotiating takes place. Consequently, a satisfactory theory of
this oversimplified model will have to leave the entire interval (m, v) free

for p to move in.

This result could, no doubt, have been reached by common sense straight-

way without the long theoretical preamble preceding it. But the value of a
theory is not judged by its treatment of simple and trivial cases but rather

by that of complicated cases where common-sense considerations fail to

lead anywhere. Neumann and Morgenstern believe that the mathematical
theory of games is valuable in that it provides a possible theoretical

foundation for econometrics without which it will remain no better than a
morass of empirical or semi-empirical formulae or worse still, a pseudo-

science of vague generalisations and half-truths.

But a serious limitation ofthe theory in view of sociological applications

lies in the fact that the mathematical method suggested is not quite suited

to the field to which it is being applied. It seems impossible to devise

sufficiently realistic assumptions which can provide a basis for the mathe-
matical super-structure. Even the basic assumption of the game theory

that all players in the game are equally rational or intelligent is not really

true in economics. If the struggle for livelihood is a game, it is too much
like that of herding a majority of sheep by a minority of shepherds, to

make Neumann's assumption realistic. An added source of complication

is the fact that while some shepherds sometimes behave like sheep some
sheep exhibit unusual intelligence. It is therefore likely that Neumann's
theory may remain a mere mathematician's delight or at best be applicable

to actual societies to a very limited extent.*

One of the most spectacular successes of group theory is in the field of

differential equations which, as we have seen, is the heart of almost all

* For an interesting application of the theory of games to industrial statistics, see
page 253.
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applied mathematics. Whether we study the motion of pendulum bobs or

cannon balls, of planets or galaxies, of fluids in pipes or river beds, of

winds in laboratory tunnels or over aircraft wings in the sky, of tiny solid

particles like sand and gravel suspended in moving water in river and har-

bour models, or of underwater missiles like depth charges, we have, in the

last analysis, to solve a set of one or more differential equations. In many
cases the situation is so complex that it may not be possible even to frame

the appropriate differential equation or set of equations. But our ability to

frame it by no means implies our ability to solve it. In fact, given a set of

differential equations, the odds are heavy against its being amenable to

any known treatment. That is why any new way of treating them is so

valuable. Group theory is valuable as it is the master key that solves a

large class of equations that can be solved in no other way.

In order to see this we shall first remark that a group may consist of a

finite or infinite number of elements. As an illustration ofa finite group we
may cite the case of six shuffling operations xl9 x2 , xz, x4, x6, x6 by which
we introduced the idea of group. As an illustration of an infinite group we
have the group of all rotations of a sphere about any diameter by which we
defined the two-dimensional space that is the surface of its spherical shell.

Another instance of an infinite group is the infinite aggregate of scales on
which we may measure any physical magnitude such as distance. Obviously
any given length may be measured in any unit—miles, yards, feet, inches,

kilometres, metres, centimetres, kos, versts, lis, leagues, light-years,

parsecs, or any of their infinite aliquot parts, fractions or multiples. We
can easily transform a length measured in any unit into any other by
multiplying it by an appropriate conversion factor. Mathematically we
can express the entire aggregate of operations whereby we convert distance

in any unit into any other as follows:

Let S be the transformation of a length expressed in any unit, say yards,

to another, say centimetres. If x is its measure in the former and x' in the

latter and a the conversion factor,* then algebraically S, the operation of
converting yards into centimetres is the transformation x' = ax. If now
we considered another transformation S' of the length (*') expressed in

centimetres to another x" expressed in, say leagues, S' is the transformation

x" = a'x' where a' is the new conversion factor appropriate for converting

centimetres into leagues, f From x" in leagues we could derive another
transformation S" which gives the measure x'" in some other units, say
versts. It is clear that we could construct an infinity ofsuch transformations
S, S", S", S"\ . . . corresponding to an infinite number of values a, a\ a",

a'", . . . of the conversion factor. The infinite set oftransformations S, S',

* That is, one yard — a centimetres.

f That is, one centimetre = a' leagues.
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S", S'"> . . . whereby we are able to convert a measure in one unit to any

other, possesses the group property as we shall now show.

Algebraically, all these transformations <S, 5", S", . . . may be subsumed

under a single equation of the type x' = ax, where a is any real number

other than zero. In other words, S is the transformation x' = ax, S' the

transformation x" = a'x', S" the transformation x'" = a"x", S'" the

transformation xiy = a"'x"\ and so on. Now ifwe perform in succession

any two transformations belonging to this aggregate, the end-product is

again a transformation belonging to the aggregate. For example, let us

combine the transformations S and S', then SS' is evidently the trans-

formation x" = a'x' — a'iax) = aa'x = ax, where a, the product of the

conversion factors a, a', is again a real number. Consequently SS' is the

transformation x" = ax which by definition belongs to the same aggre-

gate. The number a appearing in the transformation x' = ax is called the

parameter of the group. The transformation x' — ax is therefore an

infinite, continuous one-parameter group.

Now the link between group theory and differential equations is pro-

vided by an extension of an old Greek idea, the idea of geometrical

similarity, ratio and proportion. For example, two similar triangles are

identical except for the scale or conversion factor. One is a miniature

replica of the other. We could derive all the dimensions of one from those

of the other if we knew the value of this conversion factor. But what is

true of similar triangles is true of every physical quantity. If we think

systematically about the conversion factors needed to convert physical

quantities from one system of units to another, we find that every physical

quantity has certain 'dimensions' to be written as exponents. Take, for

instance, velocity. It is simply the quotient of distance divided by time. If

we represent the dimension of distance or length by L, and the dimension

of time by T, the dimensions of velocity are LITwhich may also be written

as LT-1
. In other words, if we change the unit of length by the conversion*

factor a and oftime by the conversion factor b, then the measure ofvelocity

will have to be changed by the conversion factor ab~x
. Similarly accelera-

tion, which is rate of change of velocity, that is, the quotient of increase

in velocity divided by time, will have the dimensions of velocity, viz.

(LT~1
), divided by T. Its dimensions will therefore be LT~*. Consequently

if we make the same change of units of length and time as before, the

measure of acceleration will have to be changed by the conversion

factor ab~2
.

Fourier was the first to show that by simple change of units it is easy

to treat problems involving heat conduction in small spheres and in the

earth by the same analytical formulae. For after all the earth is. only a

small sphere magnified by an appropriate conversion factor. Even though
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Fourier's deductions went badly astray,* due to the neglect of the effect of
the then unknown radioactive materials in the earth's core, Fourier's idea

was basically right and suggested fundamental laws in the hands of Stokes,

Savart, Reynolds, Rayleigh, Froude and others. The idea has now been
vastly generalised and provides the basis for what is called dimensional
analysis.

The essence of dimensional analysis is that any physical equation

—

differential or algebraic—that is, any equation involving physical magni-
tudes, must be dimensionally homogeneous. In other words, any such
equation remains valid no matter in what units we may decide to measure
the physical quantities appearing therein. In the language of group algebra

the same thing is expressed more precisely by saying that every physical

equation is invariant under the group of transformations employed for

converting magnitudes from one set of units to another. Take, for in-

stance, the differential equation of the motion of a pendulum bob we en-

countered in Chapter 3.

d2x/dt2 = - gx/l . (l)

If we use the transformations x' — ax and t' = bt to express the length
x and time t in new units by means of the conversion factors a and b, the

new equation involving new magnitudes x' and t' in new units will be
exactly of the same form as the original equation in terms of x and f.

Making the substitutions given above we may easily verify that

^1 = 1^. d2x_b2 d2x' _ 1 d2x'

dt'2 b2 dt2 *
°r

dt2 ~ a dt'2
~~ dr2 dP2

'

To convert g, which is acceleration of gravity, into new units, we shall

have to multiply it by the conversion factor ab~2
. Hence the value g' of

gravity in new units will be (ab~2
)g. Likewise *' and /' in new units will be

ax and al respectively. The original equation (1) in old units x, t therefore
becomes

1 d*x' _ g' x'a

ab~2 dt'2 ab~2 a I"

or (Px'/dt'2 = -g'x'/l' . . . . (2)

The new equation (2) is thus exactly of the same form as the old equa-
tion (1) except that the new magnitudes x\ t\ g', V are now expressed in
new units derived from the old by the conversion factors a and b. This
simple fact—the invariance of physical equations under the group of

* This again shows the hidden pitfalls of 'pure' deduction. Even the most plausible
deduction may go over the rocks due to the neglect of some unforeseen factor.
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transformations of units—has far-reaching consequences. For if a differ-

ential equation is invariant under a group G of transformations then so

must its solution be under G. This fact may be combined with other con-

siderations, such as those of geometrical or physical symmetry, to solve

differential equations. For example, if we could solve the differential

equation (1) we could calculate the period/? of a short swing of the pendu-

lum bob.

But the group-theoretic approach just described enables us to make this

calculation directly. For clearly p can depend only on g and /, the only

physical quantities appearing in our equation. We may assume that it is a

simple function of these magnitudes such as

p = Cgml
n

(3)

where C is some constant, a pure number. If this solution is to remain in-

variant under the transformation x' = ax and t' = bt, then the various

magnitudes in new units denoted by a dash will be

P' = bp, g' =
jpg,

V = al

Making this substitution in (3), we have

't-°(?)"©'
A2m+i

or p' = Cg'ml'
n—r-.

But the invariance of the solution implies

p' = Cg'ml'
n

.

This means that m+n must be unity for all values of the conversion

factors a and b. This can happen only if the indices of both a and b are

zero. In other words, we must have

2m + 1 = and m + n = 0,

1
or m = —n — — -.

2

Hence the period of the swing is C(g_i/*) or C / -, where C is some con-

stant which we may determine by experiment. We may, for example,

measure the period of a short swing of the bob when / is some known
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magnitude. The same value of C will then hold for every other length of
the pendulum.

We have described in some detail the solution of the differential equa-
tion (1) by means of the group-theoretic approach, although it can also be
solved in a more direct way which has the additional merit of determining
the constant C as well. But the group-theoretic approach applies in more
complicated cases where no other method is available. For instance, the
differential equation of heat diffusion from a point in a medium ofconstant
thermal diffusivity or the differential equations of stationary and non-
stationary flows of compressible non-viscous fluids are amenable to group-
theoretic treatment, while other methods fail or only partially succeed.

Group-theoretic approach owes its great power to the fact that equations
of fluid motion remain invariant not only under the group of transforma-
tions of units considered above but also in many cases under wider groups
of transformations such as the group of rotations and translations. This,
however, is not all. The value of the group-theoretic approach in fluid

mechanics does not only depend on its usefulness in solving the differential

equations of fluid motions: it is also the unifying principle in innumerable
questions of fluid mechanics—as indeed it has already proved to be in
other branches of physics. For instance, it is the very core of modelling
analysis whereby we use river, harbour, aerodynamical and other models
to study actual fluid behaviour experimentally to bridge the gap between
hydrodynamical theory and experience.

The logical foundations of dimensional and modelling analysis are
already a very intricate study. Their fundamental assumptions have been
explicitly stated by Bridgman and searchingly examined by Birkhoff. Some
of these assumptions are still under debate, but beyond all dispute is the
hypothesis underlying the group-theoretic approach,v/z. that ifthe premises
of a theory are invariant under a group G of transformations, then so are
its conclusions. This axiom of group theory is really a mathematical re-

formulation of the old philosophical principle that there is a hidden order
in Nature. The mystics find in this a new confirmation of their belief that
intuition is often more 'reliable' than intellect. But the hidden order that
intellect discovers in nature only by prolonged and patient search is indeed
a far cry from the vague visions of the unity of nature conjured by mystic
intuition. The former is knowledge acquired after a patient unravelling of
the complexity of the real facts of nature. This knowledge is thus quite
literally power, that is, it confers power to change and tame raw nature to
our service. On the other hand, the 'unity' of nature that a mystic sees in
a flash of inspiration, ends in inane and passive contemplation of nature
which on its own bases is not even communicable, or is almost incom-
municable.
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When, in the time of the Pharaohs, the Nile annually overflowed

its banks, there arose the social problem of re-marking the

obliterated land boundaries after the flood waters receded. Thus

originated geometry, the science of measuring land, and many of its rules

were merely the result of empirical observations made by the ancient

Egyptian land surveyors. A similar development took place more or less

independently in almost all other ancient civilisations such as the Baby-

lonian, the Chinese and the Indian, as a result of the activities of land sur-

veyors and architects engaged in building palaces and altars. In time this

empirical knowledge percolated to Greece, where it underwent a remark-

able transformation. From being a haphazard collection of empirically

derived rules of thumb, it became a deductive science of great aesthetic

appeal. For it was discovered that all these rules, and many more besides,

could be deduced by a process of logical deduction from a few simple

propositions. Although this work of logical deduction was actually done

piecemeal by several thinkers over a pretty long period, it was finally

systematised by one man—Euclid. In his Elements, Euclid showed in de-

tail how all the geometrical theorems could be logically deduced from a

dozen odd axioms or postulates. If the truth of his postulates were granted,

that of his theorems would automatically follow.

Now, there was no difficulty in accepting the truth of almost all his

postulates because they appeared 'self-evident'. For instance, one of these

postulates was that if equal magnitudes are deducted from equals, the

remainders are equal among themselves. No one can seriously deny the

truth of this proposition, and other postulates of Euclid were equally

plausible and self-evident. But there was one exception which ultimately

upset the entire Euclidean apple-cart. This was Euclid's fifth postulate

about the behaviour of parallel lines, which signally failed to appear self-

evident to his successors. For over 2,000 years after his day, mathematicians

tried in vain to prove its truth, till about 120 years ago the Russian

Lobachevsky and the Hungarian Bolyai showed indisputably that such a

demonstration could not be given. They pointed out that no a priori

grounds exist justifying belief in the disputed postulate and that an

equally consistent system of geometry could be constructed by replacing

it by its contrary.
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Now what is Euclid's parallel postulate, which has been discussed so

much by mathematicians for over two millennia? It may most simply be
explained by means of a diagram (Fig. 52). Let AB be a straight line andP
a point outside it. Naturally we believe that the straight line AB, if pro-
duced, would go on for ever without coming to an end. In other words, it

is infinite. If we draw straight lines joining P to various points of AB, we

get a pencil of lines radiating fromP to points more and more remote from
O. In the limit when one of the lines, say /, meets the line OA at infinity

towards the right, we say / is parallel to OA. Similarly if we consider the

points of the line towards the left, there will be another line /' through P
which would meet the line OB at infinity towards the left.

Now Euclid assumed that both the lines / and /' would in effect be in one
and the same straight line. In other words, he assumed that the angle be-

tween these two lines /, /' through P would be 180°. But Bolyai and
Lobachevsky argued that it was not logically necessary that the limiting

positions ofthe right and left parallels /, /' must be in the same straight line.

The only reason for assuming it was that in ordinary diagrams such as we
draw on paper the two parallels do appear to lie in one straight line. But
suppose we drew a diagram on a really cosmic scale by taking P as the

centre of Sirius and AB as the line joining, say, the Sun and Polaris. Will
the left and right parallels in this case be in the same straight line, that is,

enclose an angle of 180°? They may or may not do so. There is no a
priori reason why they should. The argument of Bolyai's opponents, based
on the behaviour of parallels in accurately drawn paper diagrams, is no
more applicable than the argument that the surface of a continent must be
flat merely because to all intents and purposes a football field appears flat.

Both Bolyai and Lobachevsky believed that a straight line in space ex-

tends to infinity in both directions. About twenty-five years later Riemann
suggested that there is no logical reason why a straight line should neces-

sarily be of infinite length. The character of the space in which we live

might very well be that all straight lines return to themselves and are of
the same length like the meridians on the surface of the earth. If we reject

the usual assumption that the length of a straight line is infinite, we can
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draw no parallels to it from P as all straight lines drawn from P will inter-

sect it at a finite point. Logically speaking, therefore, there are three

alternatives. We may be able to draw none, one or two parallels to any

given line from a point outside it.

Euclid assumed the second, Bolyai and Lobachevsky suggested the

third and Riemann the first alternative. New geometries, logically as im-

peccable as Euclid's, were constructed by assuming the first and third

alternatives. For instance, in the geometry of Bolyai and Lobachevsky—

also known as hyperbolic geometry—it can be proved that the sum of the

three angles of a triangle is less than two right angles, the deficiency being

proportional to the area of the triangle. Gauss, the celebrated German

mathematician, used this theorem to test the geometry of the actual world.

He measured the angles of the triangle formed by three distant mountain

peaks and found that the deviation of the sum of its angles from 180° was

well within the limits of experimental error. The experiment, however, was

inconclusive as the size of Gauss's triangle, though large compared to

triangles drawn on paper, was small compared to the dimensions of the

universe. But Lobachevsky concluded from the very small value of the

parallaxes of the stars that the actual space could differ from Euclidean

space by an extremely small amount. We shall revert later to the funda-

mental question, whether it is possible to determine by observation what

system of geometry is valid for the actual space we live in. Meanwhile, we

pursue in greater detail the further development of these new ideas in

geometry.

That these developments took place at all was due in a large measure to

the work of a French philosopher-mathematician, Ren6 Descartes, who

liberated geometry from the slavery of diagrams. Before Descartes there

was no way of developing a geometric argument except by drawing a

figure, as every student of school geometry knows. But Descartes showed

that geometry could be reduced to algebra. Instead of denoting points by

dots and crosses, as in a geometrical diagram, we could designate them by

their co-ordinates, that is, distances from a set of mutually perpendicular

reference lines or co-ordinate axes. This algebraicisation of geometry by

the introduction of co-ordinates showed that many inherent or intrinsic

properties of geometric configurations could be expressed by invariant

algebraic expressions. For instance, as we saw in the previous chapter, the

distance formula

s* = (x' -xf + iy'-y)* . • • (1)

expresses the distance s between two points P and Q (see Fig. 53) in terms

of their co-ordinates (x, y) and (x\ /). Since the distance is an intrinsic

property of the points P andg, irrespective of the choice of the co-ordinate
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system, this formula yields the same value for all rectangular co-ordinate

axes with respect to which the co-ordinates ofP and Q may be measured.

Such an expression, which embodies the intrinsic property of a figure and
is independent of the accidental selection of co-ordinate system, is known
as an invariant.

The distinction between the intrinsic and extrinsic properties of a geo-

metrical configuration may be explained by means of an analogy. If I say

in English 'he brags' and in French 'il se vante' I express the same thought

though the words used are different. But if I say 'brag' is a word whose
letters when reversed form the word 'garb', I make a statement which will

Y

N'

N

x' QCx',yO

9^^^ y'-y

L
1-

x'-x

y\

X i

X' O M M' X

V
Fig. 53

not be true when translated into another language. Just as in any one
language we have statements which are no longer valid when translated
into another, so also we have in geometry statements or formulae which
may be true in one co-ordinate system but not in others. For instance, the
measure of the projection ofPQ on the *-axis is not the same in different

co-ordinate systems, though the distance PQ is. Naturally, therefore, in-

variant formulations, that is, formulae which embody the intrinsic proper-
ties of geometric configurations and consequently are independent of the
accidental co-ordinate system chosen, are more important than those
which depend on the particular system of co-ordinates arbitrarily chosen.
At this stage the question may be raised whether there is a large class of

invariant properties of geometric configurations, such as curves, surfaces
and spaces of three or more dimensions. The answer is that there are.

Gauss and Riemann gave a general method for discovering them. This
method depends on the use ofa new system ofco-ordinates since known as
Gaussian co-ordinates. Till the beginning of the nineteenth century, the
co-ordinates of a point on a curve, surface or space were its distances
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from the co-ordinate axes, or distances from arbitrary origins and angles

with arbitrary reference lines. The inconvenience in the use of such co-

ordinates is that, in order to get them, we have to pass out of the surface

or curve on which our point lies. Very often we do not wish to, or cannot,

move out of the surface under study, and it is desirable to have a method

ofgenerating co-ordinates without leaving the surface or the curve. In other

words, we require a method whereby we can derive the co-ordinates of any

point on our surface by means of measurements carried out without leav-

ing the surface and moving into a third dimension or plenum into which

the surface is embedded. Such, for instance, would be the case if we wished

l/=l u=2 «=3 o=4 t/=5

Fig. 54

to discover the nature of the earth's surface by measurements carried out

thereon and not by digging into its interior or flying out into the atmo-

sphere.

As a first step towards understanding Gaussian co-ordinates, we remark

that, unlike Cartesian co-ordinates, the idea of distance is not essential to

them. For instance, if someone enquired of you in Oxford Street, Lon-

don, the location of Selfridges, you could indicate it by saying that it was

at a distance of * yards from where you were. Or, alternatively, you could

also specify it as the nth building from the one opposite which you stood.

In the former case, the co-ordinate jc of the building is its distance from a

given point; in the latter, the co-ordinate n is only a label or identification

mark like the registration number of a car or a building and does not

stand for any magnitude.
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A similar labelling device can be constructed in the case ofa geometrical

surface. Suppose we have a surface such as a sphere, an ellipsoid, or any
other figure whatever. We could cover it with a system of curves such that

no member of the system cuts any other. (See Fig. 54.) Let this system be
called the w-system. Beginning with any curve we could consecutively label

the u-curves u = 1, u = 2, u = 3, . . .. Similarly, we can draw another

system of curves v, labelled v = 1, v = 2, v = 3, . . . such that no v-curve

cuts any other of the system though every one of them cuts all the curves

of the w-system. The u, v, systems of curves thus cover the surface with a

Fig. 55—The distance between any two points P, Q
on a sphere may be measured in two ways. One is the
shortest distance between PQ along the straight line
joining P, Q and piercing the sphere at P and Q; the
other is along the great circle arc PTQ on the surface
of the sphere. We can assume the two distances to be
identical when P and Q are infinitely close together.

network and each mesh of the net is labelled by the labelling numbers of
the u- and v-curves which enclose it. These numbers do not represent

distances, angles, or any other measurable magnitudes but are merely
registration numbers or identification marks of the curves.

But such labelling does not suffice, and we have now to introduce some
measure relation. Suppose we have a very small rigid measuring rod which
we can use to measure distance on or along the surface. This is an important
point and may be further elaborated. Suppose, for instance, we have a
point P on a sphere. Let Q be another point close to it. (See Fig. 55.) The
shortest distance between P and Q is the distance along the straight line

PQ which pierces the sphere at P and emerges at Q. To measure it, we
have to leave the surface of the sphere and bore into it. But if we wish to

explore its intrinsic geometry by measurements carried out without leav-

ing the surface we shall have to measure the distance PQ along the circular
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arc lying on its surface.* If the points P, Q are sufficiently close together,

the two distances along the straight line PQ and arc PQ are equal at least

approximately. By successively carrying out measurements in infinitely

small regions of the surface, we can calculate this distance between any
two points on the surface.

We have now the meshes of the network of the u- and v-systems of

curves and a very small rigid measuring rod. We can use the measuring

rod to measure the small meshes one after another and make a map similar

in structure to the region of our surface. Suppose, for instance, we con-

sider a mesh of the network bounded by the w-curves Nos. 2 and 3 and v-

curves Nos. 5 and 6 (Fig. 56). Let P be any point within the mesh and s

be its distance from O, the corner of the mesh with co-ordinates u = 2,

v = 5. Let PN and PM be lines drawn from P parallel to the mesh lines

OA, OB and M, N be their intersections with them. The points M and N
can also be given their registration numbers or Gaussian co-ordinates.

The co-ordinates ofM may be determined by measuring the side OA of

the parallelogram on whichM lies and the distance ofM from O. The ratio

of the two lengths OM : OA varies from zero to 1 as the point M travels

from Q to A along OA. This ratio itselfcan then be regarded as the increase

of the w-co-ordinate ofM as M moves away from O. If this ratio is du,

the M-co-ordinate ofM will be 2 + du, 2 being the H-co-ordinate of the

corner O of our mesh. AsM coincides with A, the other corner of the mesh,

du— 1, and the M-co-ordinate ofA becomes 3 as it ought to. Similarly, we
determine the v-co-ordinate of N, the intersection of PN and the mesh
line OB. If the ratio of the lengths ON and OB is dv, then we can take dv

* It may be of interest to notice that this circular arc PQ is the exact analogue of a
'straight' line for two-dimensional beings unable to move out of the spherical surface.

That is, it is the direction which a string assumes when it is fully stretched between P
and Q along the surface.
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as the increase of the v-co-ordinate ofN over that of O. The v-co-ordinate

of N is thus 5 + dv, 5 being the v-co-ordinate of O. As N advances to-

wards B, dv becomes unity and the v-co-ordinate of B becomes 6 as we
assumed to start with. The Gaussian co-ordinates of P are then 2 + du,

5 + dv. As P roams within the mesh du, dv vary between and 1.

As du, dv are ratios, they do not give us the lengths of OM and ON. If

we wanted these lengths, we have to discover the scales on which OA and
OB are drawn. Suppose, for instance, a is the scale number for OA. Then
any distance OM in the mesh line OA is given by multiplying the ratio

OM-~ = du by a, the scale number, that is, the actual length OA to be found

by actual measurement, du will, of course, vary asM moves along OA, but
the scale number a, which converts the ratio du into the actual distance

OM, will not change as long as we remain within the mesh under con-

sideration. Similarly, the scale number b, which converts the ratio dv into

distance along the mesh line OB, is also a definite number and remains

constant within the mesh. Now if we wanted the distance ds of OP, we
have by a well-known extension of Pythagoras's theorem,

OP2 = OM2 + PM2 + 20M.ML . . . (2)

Here OP = ds, OM = a du, PM = ON = b.dv. ML is the projection of

MP = b.dv on OA; it also has a fixed ratio to MP* Let c be the fixed

number that converts the ratio dv into ML, the projection ofMP on OA,
whence ML = c.dv. Substituting these values in (2), we obtain

ds2 = a2 du2 + b2 dv2 + 2a du. c dv

= a du -f b dv + 2ac dudv . . . . (3)

This formula gives the distance ds between any point P within the mesh
and the mesh corner O in terms of the increments du, dv of its Gaussian

co-ordinates. The important point to note is that the numbers a, b, c are

fixednumbers and do not change so long as we remain within the same mesh,

although they may and often do have different values from one mesh to

another, f

The internal geometry of the surface is then known precisely ifwe know
the values of a, b, c for every mesh by means of measurements carried out

by always remaining on the surface and without ever going out of it. We
could even represent it on a plane map although the surface may be a

* This may also be seen by use of elementary trigonometry. If the angle between the

mesh lines OA , OB is a then ML = bdv cos, a = b cos a,dv = cdv. Hence a fixed number
c exists which converts the ratio dv into ML, the projection ofMP on OA.

f The scale members a, b, c vary from point to point, just as in a Mercator's map the
scale varies from point to point. It is impossible to make a Mercator's map of the earth
or even a continent or country on a uniform scale.
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complicated surface like that of the earth. For this purpose, we draw two

straight lines and take them as our u and v axes (Fig. 57). Although the

u, v lines are actually curved on our surface, yet they are represented on

our plane map by straight lines, just as the circular lines of latitude and

longitude on earth's surface become straight lines on a Mercator's map.

Q(uW)

Pfr.O

Fig. 57—The distance between P and Q depends on
the route we follow. Taking an infinitesimal bit ds, (AS),

of the route 5", the distance between P, Q along the route

S is given by the sum of an infinite number of such

infinitesimal bits. In other words, it is the integral ds.

If we want the distance between two points P (u, v) and Q (u', v') we shall

have to specify the route by which we travel from P to Q. The shortest

distance route PQ as appearing on the map will not in actual fact be the

shortest route on the surface as all those who have ever handled naviga-

tional charts know very well. If we wish to find the distance PQ along a

specified route S, we shall have to divide the route into an infinitely large

number of bits. Take any one such bit, say AB. The distance, ds, between

A and B is given by

ds* = adu2 + 2acdudv + bdv2
. . . (3)

where u, v are the co-ordinates ofA and u + du,v + dv those of its infinitely

close neighbour B. We must also know the values of a, b,caXA which will

in general be different for every point of the route. The distance s between

P and Q along any given route S is then the integral ds over the route S,

ds being given by (3).

In this way, we are able to measure the distance between any two

points P, Q of the surface along any given route S without ever moving

out of the surface.

The functions a, b, ac are often written as gu , g22 , g12 respectively and

the co-ordinates u, v as x, y. If we adopt the usual notation, our formula

(3) becomes

ds2 --= gxxdx
2 + 2g12dxdy + g^dy* . . . (4)
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The g's with different labels are exactly the same things as the ratios a, b,

ac used formerly and are called the factors of measure determination. The
expression (4) is called the metrical groundform, or simply the metric of the
surface. It is the open sesame of the entire internal or intrinsic geometry
of the surface, for a knowledge of the values of g at every point of the

region or the surface enables us to determine all intrinsic geometrical

properties of the surface. We pause here to glance at the main ideas under-
lying this internal theory of surfaces which Gauss developed without
making any reference to the plenum in which they are embedded.

First, a knowledge of distance is not required for defining Gaussian co-

ordinates of a point on a surface. The distances are then calculated by
assuming that Pythagoras's theorem holds in any infinitely small region of
the surface. By means of actual measurements carried out in this small

region, we derive the three fixed ratios gu, g12 , g22 , which convert the incre-

ments of Gaussian co-ordinates in the small region into distances. The
values of the g's do not remain the same from one region to another but
we build up their values for all regions (by actual measurements) carried

out in them. The main-spring of the theory is, therefore, the principle of
gaining knowledge of the external world from the behaviour of its in-

finitesimal parts. Secondly, by this device, the role of the accidental co-

ordinates is minimised and invariant expressions that remain unchanged
for all co-ordinate systems as, for instance, the expression (1) for the
distance PQ, are obtained for intrinsic properties of the surface. We shall

refer to one such invariant expression as it is of great importance not only
in the theory of surfaces themselves but also in its applications elsewhere.

This expression is related to a property of the surface called its

curvature. In ordinary speech we understand perfectly well what we mean
by the curvature of a curve such as the path of a meandering stream flow-

ing through a valley. For scientific purposes, such as building railway lines

and roads, we need a more exact definition of curvature. In Chapter 3 we
defined curvature of a plane curve as the limit of the ratio

total bend

length of the arc PQ'

when the distance PQ on the curved line shrinks to zero. In other words,
it is the rate at which the tangential directions of the curve diverge as we
travel along it. But the rate at which the tangential directions diverge is

also precisely the rate at which lines drawn from any point at right angles
to the tangents diverge.

Suppose from any point O we draw a unit length Op perpendicular to
the tangent PT to the curve at any arbitrary point P. (See Fig. 58.) We
thus obtain a point p corresponding to any point P of the curve. As P
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moves along the curve, its counterpart p moves on a circle of radius unity,

op being always 1. Consequently as P describes a small arc ds of the curve,

the corresponding point p traces a small arc da of the unit circle. This arc

is also a measure of the plane angle through which the tangent to the

curve has diverged in describing the arc ds from P to P'. Its rate of change

da
is the limiting value of— as ds tends to zero.

ds

Gauss extended this idea of the curvature of lines in a plane to surfaces

in space. He denned it as the measure of the rate at which lines at right

angles to tangent planes diverge in an exactly analogous manner. In place

UNIT CIRCLE

Fig. 58—The curvature of the curve C at P is the rate at which the perpendicular

line PN at P to the tangent PT diverges as P travels along the curve from P to P'. At

P the direction of this perpendicular line is parallel to op and at P' to op'. The direction

of the perpendicular changes from op to op' as P moves along the curve from P to P'.

If the angle pop' is da, the rate of change of the direction of the normal at P per unit

length of the curve is~
as

of the unit circle we now trace a unit sphere by drawing unit vectors from

O perpendicular to the tangent planes to the surface. If a small area dco of

this sphere corresponds to a small area ds of the surface, then dot is the

solid angle formed by the perpendicular lines erected at the points of ds

on the surface. The limiting value of the ratio— as ds shrinks to zero is the

Gaussian measure of curvature. As both dco and ds are areas, their ratio,

as also its limiting value, is a pure number. Gauss also showed that thispure

number, the curvature, is determined by the inner measure relations of the

surface alone.
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More precisely, for calculating the curvature of a surface he discovered

a formula involving only the coefficient g's of the metrical groundform and
their differential coefficients such that its value remains the same for any
two groundforms that arise from each other by a transformation of co-

ordinates. What it means is this:

If we are working with any co-ordinate system x, y we can, by actual

measurements on the surface, discover its metrical groundform, that is, the

ratio numbers g which enable us to calculate distances and lengths on the

surface in any infinitesimally small mesh of the surface. Now suppose we
switch over to another co-ordinate system x'

t
y'

', we can then find formulae

which transform the co-ordinates x, y of a point P to x\ v', its new co-

ordinates in another system. The g's previously discovered were functions

of x, y, and ifwe substitute their values in terms of x', y', we transform the

g's into g"s, the new functions of x\ y', which are the coefficients of the

new metrical groundform appropriate to the new co-ordinate system x'}
y'

.

Gauss's formula for the curvature of the surface gives us the same value

whether we use the original g's and jc, v or the new g"s and the new
co-ordinates x', y'. In other words, it is independent of the particular

co-ordinate system in exactly the same way as the distance formula,

s2 = (x — Xj)2 + (y — yj)
2 gives the distance between two points whose

co-ordinates are (jc, y) and (x
x , Vx), whether we use one or another system

of rectangular co-ordinates. The form of the formula remains unchanged

in spite of all the changes that co-ordinate system itself may undergo. Of
course, the word 'all' here must not be understood too literally but must
be taken for a fairly wide and general class oftransformations to which the

co-ordinate system may reasonably be subjected.

Gauss's theory provided the model, on which his pupil, Riemann, built

up a more general theory of the internal geometry of spaces of three and

more dimensions without referring to hyper-spaces, in which they may be

imagined as immersed in much the same way as the surface of a sphere is

immersed in three-dimensional space. Riemann thus created the heavy

armour by means of which geometry in the hands of Einstein was able to

revolutionise physics and, half a century later, completely occupy some
fairly wide regions of physics. For a time it seemed imminent that

mechanics, optics, electrodynamics, and other branches of physics would

all fall victims, but the latest developments in quantum physics have so far

resisted all attempts to geometrise this branch. While the majority of

physicists are now turning towards a statistical interpretation of funda-

mental physical processes, Einstein was hopeful to the end that all physics

would one day be reduced to a minor detail in a purely geometrical theory

of surfaces and hyper-spaces.

Riemann considered a three-dimensional space in lieu of a two-
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dimensional surface. There would thus be three sets of numbers xx , x2 , x3

instead of two to define the Gaussian co-ordinates of a point. Instead of

imposing on a surface an arbitrary network of meshes defined by a system

of u and v curves, Riemann imposed on his space a network of cells de-

fined by three families of surfaces labelled

Xj = 1, Z, j, . . .

X2 == lj Z, j, • • •

X3 = 1, 2, J, . . .

Just as the distance ds2 of a point P from the corner of a mesh in a two-

dimensional surface was given by the metrical groundform gudx
2 +

2gudxdy + g22dy
2
, so also the distance ds2 of a point P in any cell, from

its corner, is given by the metrical groundform:

gndxj 2 + g22dx2
2 + g33dx3

2 + 2g12dxxdx2 + 2g13dxxdx3 + 2g23dx2dx3 .

As before, the six g's in this form are ratios or pure numbers and have

the same value in the same cell though they vary from one cell to another.

Their real values for each region or cell have to be discovered by actual

measurements carried out in each region by means of an infinitesimally

small rigid rod. Once we have written the metrical groundform for three-

dimensional space, there is no difficulty in writing it for hyper-spaces of

four or more dimensions. Take, for instance, a four-dimensional space, in

which we specify a point by its four Gaussian co-ordinates (xlt x2 , x3 , x^).

We can again divide the hyper-space by a network of cells by four families

of three-dimensional spaces given by

Xx
= 1, Z, J, . . .,

^2 == ***•* ^» • • •»

X3
= 1, Z, J, . • .,

and x4 = 1, 2, 3, . . .,

although we have no visual notion as to what our 'space-cell' that we thus

carve out would look like. A homogeneous expression of second degree

in dxlt dx2 , dx3 , dxx would thus have four squares of terms like dx2
, viz.

dxx
2
, dx2

2
, dxz

2
, dx4

2 and six products of these four differentials taken two

at a time, viz. dxxdx2i dxxdx3, dxxdx^ dx^dx^ dx2dxA , dx^/dx^. The complete

groundform would thus be

gudxj 2 + g22dx2
2 + g33<**3

2 + gudxA2 + 2g12dx1dx2
-\r 2g13dxxdxs

+ 2glidx1dxiL + 2g23dx2dx3 + 2g2tdx2dxx + 2g3Adx3dxi .

In other words, in a four-dimensional space we need to know the values

of ten g's in each space cell by actual exploration therein with a small
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measuring rod. As in the case of two- and three-dimensional spaces, the

values of the g's change from cell to cell though they remain the same in

each cell. A knowledge of the values of these ten g's suffices for a complete

description of all the intrinsic geometrical properties of our hyper-space.

No doubt we cannot conceive what 'distance', 'curvature' or 'straight line'

means or looks like in such an imaginary space, but we can at least set up
suitable extensions of the corresponding algebraic formulae or equations

in two or three dimensions of our perceptual space. Riemann succeeded in

extending the conception of curvature to spaces of three and more dimen-

sions. Gauss had found that the curvature of a surface was a pure number
like temperature or a ratio. Riemann found that the curvature of a space

of three or more dimensions is no longer a pure number but a tensor.

What is a tensor? We saw before that the study of mechanics had led

to a generalisation of number from complex numbers to space vectors. In

order to express mechanical entities like force, velocity, acceleration, etc,

mathematicians had been forced to invent vectors which required two
things for their specification, a pure number to indicate their magnitude

and a line to indicate the direction of their action. As mechanics developed

further and led to a study of elastic bodies, it was discovered that even

vectors do not suffice to express the stresses and strains that are set up
within elastic bodies or viscous fluids. Such entities could be expressed

only by many numbers—tensors—which thus represent a further general-

isation of vectors.

* * * *

In his studies of abstract geometry, Riemann turned to good account

this generalisation that had been made by the physicists. So far, in our
study of the intrinsic geometry of spaces, we have assumed that the set of

g's entering in the metrical groundform is known by actual measurements
carried out in each small region, mesh or cell of our space. Now ifwe con-

sider the actual three-dimensional space in which we live, and not the

purely hypothetical spaces of a mathematician's imagination, the question

arises as to how we should discover its metrical groundform in any given

co-ordinate system. Obviously, all regions of our actual space are not

accessible to us and we cannot always explore them with our measuring

rods in order to discover the values of g's in those regions. To obtain the

g's, we therefore actually proceed in a different way.

One way would be to assume any arbitrary set of functions to define

values of g's and then work out the geometric properties of our space such
as its curvature, etc., at various points. We thus obtain a rich abundance of
geometries and we may choose out of them the one that fits our actual

space the best. Another way is to look around and make some plausible

assumptions regarding the geometric properties of our actual space and
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then see to what values of g's they lead us. Surprising as it may seem, just

one simple assumption that appears eminently reasonable regarding the

character of our actual space ensures that g's can have only a very re-

stricted set of values and no others. All the rich abundance of geometries
that can be invented by giving the g's arbitrary values thus disappears at

one blow and we are left with only a few types of geometries that are

applicable to our actual space.

Now we know that a rigid body may be transferred from one place to

any other and put in any arbitrary direction without altering its form and
content or metrical conditions. This means that space is everywhere homo-
geneous in all directions, that is, one chunk of space is as good as any
other. But if space is homogeneous, its curvature must be the same at all

points. If we make this assumption, the g's in our metrical groundform
can take only certain restricted values. In fact, Riemann showed that in a
homogeneous n-dimensional space of constant curvature a, the factors

£u> #22. • • • of its metrical groundform are simple functions of the co-

ordinates xlt x2 , etc. and the constant curvature a. In other words, a
knowledge that the curvature of space is a given constant everywhere en-

ables us to derive all the factors of its metrical groundform, which, as we
saw before, suffice for a complete description of all the intrinsic geometrical

properties of our space.

This fact may also be appreciated in a more intuitive manner by con-
sidering the case of a one-dimensional 'space' of constant curvature. The
set of points on the circumference of a circle as distinct from other points

of the plane in which it is drawn can be taken as an instance of a one-
dimensional 'space' of constant curvature. Here we can easily see that the

curvature is constant because the circle bends uniformly everywhere in the

two-dimensional plane in which it is embedded. A knowledge of its curva-

ture (or radius) tells us all there is to know about the internal geometry of
this one-dimensional 'space' that is our circle. A sphere—that is, the set of
points constituting its surface as distinct from those lying within or with-

out it in the three-dimensional space in which it is immersed—is the exact

analogue of a two-dimensional space of constant curvature. Here, too, we
can see that the spherical surface bends uniformly everywhere in the three-

dimensional space in which it is embedded.
Again, a knowledge of the curvature of this spherical surface tells us all

that there is to know about its internal geometry. When we come to a
three-dimensional space of uniform curvature we have to view it as im-
bedded in a super-space of four dimensions before we can 'see' it bend
uniformly all over. But that is what we, three-dimensional beings, cannot
do. So we have to content ourselves with an extrapolation and conclude
that what is true of one- and two-dimensional spaces of uniform curvature
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is equally true of a three-dimensional space of uniform curvature where,

too, a knowledge of its curvature suffices to give a complete knowledge of

its intrinsic geometry.

Now if our actual space around us is homogeneous with constant curva-

ture a, there are just three possibilities according as a is zero, negative or

positive, corresponding to the three possibilities we enumerated earlier

concerning the behaviour of parallels drawn from a point P to any given

line AOB (Fig. 52). We saw on page 188 that logically there were just three

possibilities; there may be only one, two or no parallels from P to AOB.
Ifwe assume with Euclid that there is only one parallel through P, we have

Euclidean geometry and this corresponds to zero value of a, the space

curvature. That is why Euclidean space is also known as 'flat' space. If we
assume with Bolyai and Lobachevsky that there are two parallels through
P, we have hyperbolic geometry and this corresponds to a negative value

of a, the space curvature. The last case, in which there is no parallel

through P, gives rise to spherical geometry and corresponds to a positive

value of a, the space curvature.

What then is the geometry of the actual space we live in? We saw that

Gauss tried to ascertain it by measuring the angles of a triangle formed by
three distant mountain peaks, and Lobachevsky tried a guess at it by an
examination of the values of stellar parallaxes (see page 188). These at-

tempts proved nothing. Now, if Gauss's experiment proved inconclusive

only because the size of the triangle he took, though large compared with

paper diagrams of the text-books, was small compared with the dimen-
sions of the universe, obviously the next step is to repeat the test with a

larger triangle—say one whose vertices are formed by three distant stars

or nebulae. But in this case the measurement of angles would depend on
the observation of light rays and consequently on the physical laws

governing the propagation of light through space. The experiment would
therefore tell us more about the behaviour of light rays during their voy-

age through interstellar space than about the nature of physical space it-

self—and we might be able to interpret the result in any of several different

ways.

This fact is the basis for the positivist assertion that the question whether
physical space is Euclidean or not is meaningless. The great French
mathematician, Poincare\ for instance, held that the science of geometry
cannot tell us what kind of space we actually live in, because geometrical

laws are only arbitrary conventions and we could adopt any set of con-
ventions we liked. In his Science and Hypothesis he wrote that the question

whether Euclidean geometry is true or false is as senseless as to ask whether
the metric system of measurement is true and the F.P.S. system false. The
answer is that both the systems are conventional ways of measuring
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quantities and it matters little whether you measure, say, a distance in

kilometres or miles. Like wise, the various systems ofgeometries—Euclidean

and non-Euclidean—are merely conventional ways of representing our

space and we are free to make any choice we please provided we adopt

physical laws appropriate to each mode of representation. What this means
may be elucidated by the example of Mercator's map.

We all know that the earth is a large sphere and We have developed a

geometry of the sphere, that is, a way of measuring distances on its surface.

For certain purposes, we also represent the surface of this sphere on a

piece of paper, as in navigation, when we draw a map of the world, e.g. by

Mercator's projection. Mercator's map is quite a good substitute for the

surface of the globe because it represents all essential terrestrial locations

in relation to one another. In other words, you could assume that the

surface of the earth is 'flat' like that of a piece of paper on which you draw
its map, provided you adopted a different system of geometrical laws. For

instance, on Mercator's chart the ordinary notion of distance does not

apply. Thus, it is impossible to specify a scale that will hold throughout

the chart. A distance of one inch near the equator may represent 100 miles,

while the same distance farther north or south—say in Greenland—may
represent only 10 miles. In consequence, Greenland would appear on the

map far bigger than, say, Greece, although a traveller may experience the

same amount of fatigue in covering both the countries from one end to the

other.

Now Poincar6's thesis was that the global and Mercator's way of repre-

senting terrestrial distances and positional relations of continents, coun-

tries, oceans, etc., are equally valid, and the facts of our experience can be

fitted under both the schemes provided we adopt suitable geometrical laws

appropriate to each way of representation. Hence the question whether

the earth's surface is 'really' round or flat is meaningless—it is only a mat-

ter of convention. Similarly, we could assume that our space is Euclidean;

then we should have to devise a more or less complicated system ofphysical

laws to describe the behaviour of light rays and moving particles. Or,

alternatively, we could assume a more complicated space and simplify our

physical laws, as, in fact, Einstein has done, by giving up the idea of force

and the law of gravitation but by assuming a more complicated space. It

is again a matter only of convention. However, it will perhaps be agreed

that it is stretching facts a bit too far to say that the question whether the

earth is round or flat is 'meaningless' or a matter of mere convention

simply because mathematicians can find a way of representing points of a

sphere on a plane!
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The question of the nature of our actual space (as also of time) is at the
root of Einstein's Generalised Theory of Relativity. One consequence of
this theory is the emergence of cosmology, that is, scientific speculation
regarding the origin and structure ofthe universe as a whole. In cosmology,
too, the very first question that arises is the nature of our space and time.

First, take space. Our common-sense view of space is that it is some sort of
an immovable container, of boundless extent, which is the scene of every-
thing that happens. Even that which happens in sheer imagination, such
as Dante's inferno, is often believed to be located somewhere in this

Brobdingnagian box. The size of this cosmic container is infinite, that is to
say, there is nowhere where we could locate its walls. Its character is

uniform throughout, which means merely that any chunk of its hollow is as
good as any other. This common-sense view of space was also the view of
classical physcists and mainly due to the influence of Newton. How does it

square with the facts of our actual universe? That depends on what we
believe would be the outcome of an imaginary experiment which I will

now describe.

Suppose we imagine ourselves moving outwards in a straight line past
the stars, galaxies or nebulae and beyond them. There are only three
possibilities. First, we may ultimately, find ourselves in an infinite, empty
space with no stars and nebulae. This means that our stellar universe may
be no more than a small oasis in an infinite desert ofempty space. Second,
we may go on and on for ever and ever meeting new stars and nebulae. In
this case there would be an infinite number of stars and nebulae in an
infinite space. Third, we may be able to return ultimately to our starting

point having as it were circumnavigated the universe like a tourist return-

ing home after a round-the-world trip. If we reject the last possibility as
utterly fantastic, we have to do some pretty tough thinking to get over the
difficulties which the other two possibilities raise.

A finite stellar universe in an infinite space would either condense into a
single large mass due to gravitation, or gradually dissipate, because, if

gravitation fails to produce condensation, the stellar radiation, as also the
stars themselves would pass out into infinite empty space never to return,

and even without ever again coming into interaction with other objects of
nature. We find the second possibility—an infinite number of galaxies in

infinite space—no more satisfactory. It leads to the rather ridiculous con-
clusion that gravitational force is everywhere infinite. Every body would
find itself attracted by an infinite pull—infinite not in the metaphorical
sense of something very large but in the mathematical sense of being larger
than any figure we care to name. We could hardly survive such a terrific

pull.

It is true that we could avoid this difficulty by an ad hoc amendment of
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Newton's law but there is a strong feeling against tinkering with well-

established physical laws every time we meet an objection. Besides, the

amendment would be of no avail because there is another objection which

could stilt be raised. Imagine that space is really infinite with an infinite

number of stars and nebulae therein, then the night sky would be a blaze

of light with no dark patches between the stars. To understand the reason

for this, suppose you were in a big sparsely sown forest. No matter how
sparsely sown it might be, provided only it was big enough, the horizon

would be completely blotted out of view by the trunks of the trees.

In the same way, however sparse the nebular distiibution in space, pro-

vided space was infinite, the entire sky would appear to be studded with

stars and nebulae leaving not a single point uncovered. We could, of course,

explain the darkness of the night sky by assuming that the light of some of

the distant nebulae is absorbed en route, or that the nebular density be-

comes progressively less and less as we recede more and more from our

present position, or that the vacant spaces of the sky are occupied by dark

stars or nebulae that we cannot see. But all these assumptions would be

rather arbitrary because all our present experience is to the contrary.

Now about time: Here, too, Newton—and following him the classical

physicists—adopted the common-sense view. This view is based on the fact

that every one of us can arrange the events that we perceive in an orderly

sequence. That is to say, we can tell which of the two events perceived oc-

curred earlier and which later. By means of physical appliances, such as a

watch, we can even say how much earlier or later. Suppose I observe the

occurrence of two events: 04) such as the birth of a new star in the con-

stellation Hercules and another event (B) such as a lunar eclipse. Seeing

them I could tell whether A occurred before, after or simultaneously with

B. I could even measure the time interval between their occurrence by

means of a clock.

Similarly, another observer, say, Voltaire's Micromegas looking from

his native star Sirius, could also observe the same two events. He, too, would

place them in a time order. NowNewton adopted the common-sense view

that the temporal order in which I would place the events A and B would

be precisely the same as that of Micromegas, the Sirian observer. More,my
reckoning of the time interval between the occurrence of the two events by

means of my watch would be identical with the time reckoning of the

Sirian, measured, of course, with a Sirian watch, there being no import of

Swiss watches into Sirius.

Unfortunately, this assumption would be valid only if the time at which

an event is observed were simultaneous with its occurrence. That would be

the case if light travelled, as our ancestors believed, with infinite velocity

so that the news of any event, e.g. the birth of a nova, could be flashed
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instantaneously everywhere. There would thus be no time lag between its

occurrence at one place and its observance from another, however far. We
know now that this is not the case, and instead of instantaneous propaga-

tion of light we find that light takes millions of years to come to us from
some parts of the universe.

When we allow for this time lag between the occurrence and observance

of an event due to finite velocity of light, we find that my reckoning of

time between the events A and B is not the same as that of our imaginary

Sirian. It is possible forA andBto be simultaneous according to my reckon-

ing and yet the Sirian may find that A occurred before B. It is not that the

Sirian watchmakers are in any way inferior to their terrestrial counterparts

of Rolex fame. It is because the velocity of light is found to be constant

with respect to any moving observer. Normally ifyou chased a car moving
at 30 miles per hour on a cycle moving at 10 miles per hour, the car's

velocity relative to you would be only 20 miles per hour. Not so if you
were chasing a ray of light. Its velocity relative to you would still remain

the same, viz. 186,000 miles a second, which you would have found if you
stood still on earth. In fact, no matter whether you moved on a cycle at 10

miles per hour or in a supersonic plane at 2000 miles per hour or in a jet

rocket at 20,000 miles per hour, light would still continue to elude you at

the same even pace, 186,000 miles to a second. It is a result of this pecu-

liarity of the velocity of light—its refusal to mix with other speeds in the

normal understandable high-school fashion—that there can be no unique

universally valid temporal order in which events can be placed.

A way out of these difficulties of classical physics was shown by Ein-

stein. At the mention of Einstein brows start sweating, but there is no need
to be alarmed. Fortunately, like the teeth of an elephant, expositions of

Einstein's theory are of two sorts: one sort for display and the other for

grinding. I shall describe here only the display sort. You may then make
your own guess what the grinding sort is like.

Einstein abandoned the idea ofa container type of space and an absolute

time, existing in their own right independently of matter and radiation as

a sort of theatre for matter and light to enact their drama. He said, in

effect, that you do not need the theatre unless there are actors in it, too

—

or rather, that if you do away with the actors (matter and radiation) you
ipsofacto wipe out of existence the theatre, viz. the space-time framework,
as well. You may recall the old fable of the giant and the parrot whose
lives were bound together. You could kill both by killing either one of the

two. We have Einstein's word that it is the same with space-time on the

one hand and matter and radiation on the other.

The whole universe, including the space-time framework in which the

material events take place, is then a closely bound nexus, one part com-
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pletely determining the other. Given the distribution of matter and radia-

tion in any region, the character of the theatre—that is, of the space-time

framework in which they play their part—is already determined, and vice

versa. This device enabled Einstein to do without the Newtonian idea of

gravitation as a force in order to account for the motions of natural bodies.

He explained planetary motions as a consequence of the very nature of the

space-time framework in their neighbourhood. In this way Einstein tried

to reduce physics, that is, the theory of the motion of large bodies, to

geometry or the theory of space-time and its curvature.

To do so Einstein showed that we could consider the universe to be a

four-dimensional continuum in the sense that every event in it requires

four specification numbers to identify it—three to indicate the place and
one the time of its occurrence. Physical theory—that is to say, the behaviour

of matter and radiation—could then be reduced to the geometry of this

space-time manifold. In particular, the curvature of this manifold at any

point, in Einstein's theory, is simply related to the density of matter in its

neighbourhood.* Hence if the mean density of matter in the universe is

greater than a fixed number, no matter how small, the curvature of the

universe as a whole will be everywhere positive. But a positive curvature of

space implies that it must close in upon itself and thus be finite, as we shall

presently see.

A straight line in a plane is said to be straight or without curvature,

while a circle has curvature which is inversely proportional to its radius.

Thus, ifthe curvature of a circle with one foot radius is taken as unity, that

of a circle with a yard as radius will be one-third. That of a circle

as large as the earth's circumference will be about one part in 21

million. In the last case the curvature is so slight that we should have

difficulty in distinguishing from a straight line any arc of such a circle.

Nevertheless, while the straight line extends to infinity with its two ends

never meeting, the arc of a great circle, if prolonged indefinitely with the

same curvature, will end by closing in on itself. While, therefore, a circle

with positive curvature, however small, is always finite, the straight line is

infinite. The conception of curvature in the case of curved surfaces and

spaces is more complicated, but the essential property remains, namely,

that if the curvature of a surface or space is not zero and exceeds an

arbitrarily small positive number, the surface or the volume must close in on

itself and thus be finite. And as, according to Einstein, the average density

of the universe and therefore its curvature is everywhere necessarily non-

zero, the universe must be finite with a finite quantity of matter. This is

how Einstein proposed to get over the difficulties raised by the idea of

infinite space that we mentioned earlier. As will be recalled, we stated

* For a critique of this theory see Appendix I.
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that there were only three possibilities if we imagined ourselves moving

outwards in a straight line past the stars and nebulae. Einstein's solution

of these difficulties is that the universe is not infinite and that we should

ultimately return to our starting point if we moved on and on in a straight

line. At first sight this may seem incredible, but the theory of curved space-

time enabled Einstein to explain a number of puzzling phenomena and

even to predict some new. This inspired confidence in the theory, so he

proceeded to build a cosmological model of the entire universe on the

basis of these ideas. Naturally he had to make a few further assumptions

to make a move on.

The simplest assumption that could be made is that the universe is

static and uniform all over. That is to say, it stays put in one condition for

ever. Of course, we know that the universe is neither static nor homogeneous

in all its parts. But the assumption is made to render the problem simple

and mathematically tractable so as to obtain a first approximation to the

actual state of affairs. Assuming, then, that the universe is static and homo-
geneous, it can be proved that there are onlytwo possible models to which

it can conform—the Einstein model and the de Sitter model, named after

their inventors. In a way, these two models may be said to represent the

opposite poles of a possible evolutionary tendency in the universe. For in

the former, the universe contains as much matter as it possibly could

without bursting the relativity equations, while in the latter it is completely

empty, permitting neither matter nor radiation. Moreover, the Einstein

universe can be proved to be unstable. In other words, any deviation from

this condition would tend to increase continually. Some cosmologists,

therefore, believe that the actual universe grew out of an initial state

nearly—but not exactly—corresponding to the Einstein model. This state

being unstable the universe would have to progress towards a final state of

extinction corresponding to the empty de Sitter universe. If so, we are at

the moment in some intermediate state between these two extremes.

If, on the other hand, we make the more realistic assumption that the

universe is not static, though uniform all through, we have, on the basis of

relativity mechanics and thermodynamics, only two main possibilities.

Either the universe is expanding or it is oscillating between two extremes

—

expanding in one phase and contracting in the other. As models for the

actual universe, the expanding types have two defects. First, they have the

disadvantage of spending only an inappreciable fraction of their total

existence in a condition comparable to that in which we find ourselves.

Second, they lead to the strange conclusion that the universe started from
the explosion of a giant atom. In other words, the initial state of the uni-

verse was a peculiar condition in which the whole universe was packed

within a pin-point and from which it started on its ever-expanding course.
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Now you may wonder whether such a state of origin is any more com-
prehensible than 'the darkness on the face of the deep' of which the Bible

speaks. The authors themselves are no less bewildered. That is why they

call it a 'singular' state which merely means that it is peculiar or queer.

However, the singularity can be got over. We can construct an expanding

model in which the universe starts expanding from an initial non-singular

state of non-zero radius, and hence the existence of point singularity is

not an irremediable defect. Nevertheless, if we believe that the past state

of our universe is not a mere flash in the pan in the history of cosmos, or

believe that there ought to be something before the initial explosion, we
have no choice but to adopt an oscillating model.

In the oscillating model, the universe expands from an initial state to a

maximum radius, and on reaching the maximum radius the direction of

motion reverses. The contraction thus initiated then continues until ex-

pansion begins again on reaching the initial state. Such an oscillating

model has the advantage of spending all its life in a condition where there

is a finite density of matter such as we find at present. But it has the dis-

advantage ofstarting its career from a singular state ofzero radius involving

an unimaginably dense concentration of all the matter of the universe in the

space of a pin-point. Unlike the expanding models, there is no way of

constructing an oscillating model which starts from an initial non-singular

state of non-zero radius.

At this stage you would, no doubt, want me to stop. For this account of

an expanding or oscillating universe, as though it were a rubber balloon

that was being blown in and out, would appear too incredible to be sober

scientific speculation. But many competent authorities do not think so.

They believe that observation confirms the theory. Some years ago the

American astronomer, the late Edwin P. Hubble, discovered that the dis-

tant nebulae are all receding from us. In fact, the farther off the nebula,

the greater the velocity of its recession from us. His observations showed

that this velocity of recession is directly proportional to its distance. It is

true that the evidence in support of this recession is indirect and that is

natural. We cannot measure the velocity of a nebula as we do that of a

train or a bullet. But similar evidence—a Doppler shift of spectral lines

towards the red end in its spectrum—has hitherto always been found to

indicate that the object under observation is moving away from the ob-

server in the line of his sight. Unless the red shifts in the nebular spectra

are due to some other cause, Hubble's observations would indicate that

every galaxy is running away from every other. In other words, the uni-

verse is expanding literally like the surface of a balloon that is being con-

tinually inflated. This is taken as a confirmation of the theory underlying

the cosmological models described above.
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We may mention here some consequences of this nebular recession or

expanding universe. At a distance ofabout 6 million light years the velocity

of nebular recession is about 300 miles per second. Since the velocity of

recession of a nebula or galaxy is proportional to its distance, a galaxy at

a distance of 150 million light years would be receding at a rate of about

7,500 miles per second and a galaxy at 1,500 million light years at 75,000

miles per second. At this rate a galaxy at a distance of 3,720 million light

years would be receding from us, or (what comes to the same thing) we
should be receding from it, at 186,000 miles per second, which is the

velocity of light. Any ray of light emitted by it would begin to chase us

with the same velocity as that with which we are running away from it.*

It would thus be like a race between Achilles and the tortoise in which the

tortoise for once runs as fast as Achilles and therefore could never be
overtaken. And ifno ray of light emitted by it could ever reach us, it would
neverbe seen by us. Even though space might have an infinite number of

galaxies in the infinite recesses of its depth, we could never see more than

a few, namely, those within a radius of 3,720 million light years from us,

and even these would eventually disappear from our ken.

Since all the nebulae at present visible are receding from us, one day
they too would reach the limit of our vision at the critical distance of 3,720

million light years. When this happens they will pass out of our horizon

and we shall never see them any more. Apparently, therefore, our universe

is doomed to be gradually but systematically impoverished. Nor is the

approach of such Cimmerian nights, when we shall cease to see any galaxy

in the sky, a very long way off after all. The cosmic broomstick that we see

at work may sweep the heavens clean of all the galaxies that we now ob-

serve in about 10,000 million years, which is only a fifth of the life-span of

an average star. After that, our galaxy would have an eternity of solitude.

It is now time to summarise the new Genesis that cosmology is writing

in the language of mathematics. Since I have resolved not to use this

language here, I shall give you a rather free translation. Here, then, is the

new Genesis

:

In the beginning there was neither heaven nor earth,

And there was neither space nor time.

And the Earth, the Sun, the Stars, the Galaxies and the whole Universe were
confined within a small volume like the bottled genie of the Arabian Nights.
And then God said, 'Go!'

* You may find this puzzling in view of the statement previously made that the
velocity of light remains constant with respect to any moving observer. This is only true
in the special theory of relativity (which refers to a particularly simple system of space
and time) but not in Einstein's general theory of relativity. The point is too technical
to be elaborated further here.
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And straightway the Galaxies rushed out of their prison, scattering in all

directions, and they have continued to run away one from another ever since,

afraid lest some cosmic Hand should gather them again and put them back in

their bottle (which is no bigger than a pin-point).

And they shall continue to scatter thus till they fade from each other's ken

—and thus, for each other, cease to exist at all.

You may object that in the foregoing account I have smuggled in God
by an underhand trick. Very well. You may substitute 'And then some-

thing happened' for the words 'And then God said, "Go!" ' The substitu-

tion will make no difference to the meaning of the passage though it may
deflate a bit its somewhat exalted tone. But I brought in God because

some eminent scientists think that the relation of natural science to religion

should now be re-examined to provide lebensrawn for God in its scheme of

things. Not so long ago it used to be the boast of a scientist that he had no

need of the hypothesis of God. Now he finds that he can no longer do

without an Almighty Creator. I do not know for sure whether this is a

sign of progress or merely a reflection of the present-day political and

economic perplexities of the common man, from which his only hope of

deliverance seems to lie in divine intervention.

But to revert to our new Genesis, I should now add that the great

danger that threatens its validity is the possibility that the relativity theory

on which it is based might not be applicable to the universe as a whole.

Realising this danger, Milne broke new ground when he suggested that

locally valid principles, like that of general relativity or other equivalent

theories of gravitation, could be deduced from still more fundamental

world-axioms which could be regarded as 'true' a priori.

Now what are these world principles which can be taken to be 'true' a

prioril Milne's first principle is that the descriptions of the universe as a

whole, and consequently the laws of nature, as given by different observers

located at the nuclei of the galaxies, are the same. Milne admits that it is

very unlikely that the actual universe is such that its contents would be

described in the same way from every nebular nucleus taken as an ob-

serving-point. But his object is to construct a 'science of laws of nature in

an ideal universe in which the various nebular nuclei or fundamental

particles provide identical descriptions of its contents.' Once such a science

has been created it is relatively easy to 'proceed to a more realistic state of

affairs, if we want to, by embroidering perturbations or variations on the

ideal universe.'

Taking his cue from Hubble's observation of nebular recession referred

to above, Milne further postulates that this ideal universe consists of a

swarm of particles (nebulae) which at some given time started receding

from one another with uniform velocities. Milne calls this idealised system
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of mutually separating particles a substratum. He then pushes his analysis

of time reckoning a stage farther, beyond Einstein. As we saw, Einstein

had shown that there was no unique order of temporal events valid for

every observer. It is possible for two events A and B to be simultaneous

according to my reckoning whereas one may precede the other when ob-

served by Micromegas from his native star Sirius. Milne accepts this

result but goes on to add that there is no natural uniform scale of time

measurement either. The idea of a uniform scale of measurement arose

from measuring lengths. It is, however, quite inapplicable to measurement

of time, for the following reason.

If you want to measure a length, you will have first to fix a standard,

e.g. a standard metre or a yard. The act of measurement will involve

superimposing the standard metre or yard alongside the length to be

measured and observing how many times the standard metre or yard

•goes into' the measured length. Thus the process of length measurement

depends on the possibility of superimposing one length over another so

that the two ends of the superimposed lengths coincide, or, what comes to

the same thing, on the possibility of producing equivalent lengths. Now
Milne has pointed out that there is no standard duration of time by which

you can measure the lengths of various time intervals. To say that the

period of time of the earth's diurnal rotatidn or of a pendulum swing is

uniform, and therefore can serve as standard for measuring durations, is to

beg the question. For obviously you cannot as it were 'freeze' the period

of a pendulum swing that is just finished and put it alongside another that

it is about to execute and see if the two durations are really coincident.

Nevertheless, in spite of the impossibility of placing one duration along-

side another in order to establish their equivalence, Milne has shown that

it is possible for different observers in different parts of the universe so

to correlate their time reckonings as to make them in some sense

equivalent.

Although his method of correlating time measurements of different

observers involves some pretty recondite mathematics the basic ideas are

fairly simple. In fact, his theory is merely the arithmetisation of the prac-

tice of an ordinary observer recording his own perceptions. Any observer,

'an ego', is aware of something he calls the 'passage of time'. This means

that if he observes two point-events* A, B, then he can always say whether

B occurred after A or before A, or simultaneously with it. Between any two

non-simultaneous point-events we can interpolate an infinity of other

point-events and all ofthem will be after A but before B ifB was later than

A, just as you can interpolate an infinity of other points between two

* We imagine that the events take place instantaneously so that they are events of

zero duration—very like the geometrical points which are 'lengths' of zero magnitude.
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points A, B of a line such that any interpolated point is to the right of A
but left of B if B is to the right of A (see Fig. 59 below).

O A C B
Fig. 59

In other words, the flow of all the events in his consciousness is a linear

continuum whose mathematical counterpart is a set of points on a straight

line. We could, therefore, represent any event (C) as a point C on a straight

line AB (Fig. 59). Choosing any point O as our origin we can correlate all

points to its right with the positive real numbers and all points to its left

with the negative real numbers, subject to the condition that the numbers

tlt t2 correlated with the events A, B satisfy the relation f2 > tt if B is

later than A. Milne calls any such correlation of events in an observer's

consciousness with real numbers a 'clock arbitrarily graduated', and the

real number t associated with any event C the 'epoch' of that event.

So far we have considered a single observer. But there are an infinite

number of other observers in the universe. Consider another such ob-

server. He too can correlate events in his consciousness with the continnum

of real numbers, that is, he too can set up another arbitrarily graduated

clock in his own neighbourhood. Under what conditions may these two
arbitrarily graduated clocks be said to keep the same time ? To answer this

question we restate the data of the problem in a different form. Funda-

mentally an observer can observe by his own clock the time of occurrence

of any event taking place in his own neighbourhood, the time of occur-

rence and observation being the same. If the event occurs elsewhere the

time at which it actually occurs and the time at which it is observed by the

observer will be different. In this case, the observer can only observe the

time (by his own clock) at which the news of its occurrence reaches him by
a flash of light or a radio signal or otherwise. If, then, he wants to observe

another observer's time or clock, all he can do is to strike a light himself

and watch for it to illuminate the second observer and his clock. If the

second observer co-operates and reflects back to the first observer the

light ray immediately after it has illuminated his own clock, the first ob-

server can observe three times:

(i) the instant of time (by his own clock) at which he flashes the light

signal;

(ii) the reading of the second observer's clock at the moment it becomes

visible to him; and
(iii) the instant of time (also by his own clock) at which he perceives the

second observer when his light ray has been reflected back to him.
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He thus obtains a triplet of time observations and by repeating this

sequence of operations, he can obtain any number of such triplets of time

readings. According to Milne this sequence of triplet readings is sufficient

to afford a measure of the spatio-temporal history of the second observer

relative to the first, and also the history of the second observer's clock as

it appears to the first. In fact, subject to some fairly general considerations,

the two observers can so correlate their clocks that time measurements

made by them can be considered in some real sense equivalent. An outline

of Milne's method defining a time equivalence is described in Appendix II,

and we shall here merely note the basic idea underlying his method.
Milne first lets an observer correlate his own perception of events with

an arithmetical aggregate, that is, a set of real numbers. The second ob-

server in turn does the same. Now while one observer's yardstick for

measuring time cannot be superimposed on to that of another, the arith-

metical aggregates which are the correlates ofthe two observers' conscious-

ness of the passage of time can be. It is thus that Milne succeeds in defining

the notion of equivalence of distant clocks in any kind of relative

motion.

Having defined equivalent or 'congruent' clocks, Milne proceeds to

show that the idea of equivalent or congruent measuring rods is neither

valid nor necessary. Hitherto physicists had relied on two fundamental
instruments for probing into the mysteries of the universe—a clock for

measuring time and a rigid rod for measuring distance. Milne proposes to

dispense with the rigid measuring rod and claims that distance can be
measured solely by means of a clock. The method suggested by him is

precisely the one now used by meteorologists for measuring distances by
means of 'radar-technique', whereby the distance of a reflecting surface is

measured by the time taken by a radio wave to return to the emitter.

Thus, 'equivalent' clocks give all basic measures of space as well as time.

But in attempting to find one way of regulating equivalent clocks or de-

fining an equivalence, Milne actually discovered an infinity.

Of this infinity of modes of describing an equivalence there are two
which are physically the most significant on account of their formal sim-

plicity. Milne has given them special names—the f-time and r-time. If t-

scale were adopted by an observer, he would find that the universe was
'created' at a definite instant of time some 4,000million years ago when all

the nebulae in the universe were packed in a pin-point. Rushing out of this

point the swarm of nebulae would appear to be receding from one another
with uniform relative velocities. An observer located at the centre or nucleus

of a nebula can describe the whole system in terms of his private Euclidean

space. In this space he would appear to be at the centre of an expanding
sphere whose surface moves radially outward with the speed of light. In-
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side this sphere each nebula has a velocity proportional to its distance

from the centre.

Now, as we have seen, Milne imposes the further condition that all ob-

servers located at the nuclei of all the nebulae of this swarm are on a par

with one another. A consequence of this condition is that the universe is

infinite but appears to every observer (in his own private Euclidean space)

to occupy a finite volume. Hence the space appears to him infinitely over-

crowded near the expanding edge of the universe, the last millimetre con-

taining an infinite number of nebulae, just as to an observer at sea all the

oceanic waters appear to be concentrated at the edge of his horizon. But

this is only an apparent effect, for to another local observer, at or near the

former's horizon, everything seems normal—the concentration of oceanic

waters now receding to his horizon.

However, a different system of measurement of time would give another

picture altogether. For if, instead of kinematical time, t, the observer

adopted Milne's dynamical r-time, the time recorded by, say, the rotating

earth, he would find that the universe is not expanding nor was it created

at some finite past. Time would appear to stretch backwards and forwards

for ever in agreement with the commonsense world-view. But this system

of time reckoning forces a modification of our concept of space, which is

no longer Euclidean but hyperbolic. In other words, if we accept the com-

mon-sense view that space is Euclidean, we have to adopt Milne's kine-

matic scale of time with all its difficulty of a finite past but infinite future

and point-singular 'creation' 4,000 million years ago. On the other hand,

if we accept the naive view that time has neither a beginning nor an end,

we are obliged to complicate our notion of space by making it hyperbolic.

We have now outlined the main features of two types of cosmological

models—one based on Relativity Mechanics and the other on a priori

reasoning. While they agree in some details regarding the origin and evolu-

tion of our universe as a whole, they seem to be in flat contradiction with

astrophysical theories. Thus both the relativity and a pridri cosmological

model theories agree that the universe originated from a state of un-

imaginably dense concentration of matter, in which all the nebulae were

packed within a pin point. At a definite epoch of time, about four or five

thousand million years ago, the nebulae rushed out of this 'singular' state.

During the subsequent evolution of the universe they have continued to

recede from each other till a time will come when they will pass out of

each other's ken.

On the other hand, the astrophysical theories claim that in the beginning

the universe was without form and void—a mass of extremely tenuous
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gas spread more or less uniformly throughout all empty space. The nebulae

were formed from gaseous clouds which condensed out of this gas in the

void. The stars condensed out of the nebulae by a similar process of

condensation,just as the nebulae condensed out of the primeval gas. The
trend of universal evolution was thus in the direction of increasing con-

densation in some localities from a state of more or less uniform tenuity

everywhere. Moreover, this process of condensation of the nebulae and
stars could not have been completed in a few thousand million years, which
is the maximum age attributed to the universe by the cosmological model
theories. The astrophysical and cosmological model theories are therefore

in complete discord with one another in almost every respect; and there is

apparently no way of reconciling them.
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as we have seen, some branches of mathematics grew out of man's

Z_\ attempt to satisfy his economic and social needs, but others have

1. JLsprung from sheer curiosity and even from a desire to invent amusing

ways of killing time. For instance, the Greeks despised the practical applica-

tion ofmathematics so much that they considered the very name 'geometry'

ridiculous, because it meant 'measurement of the earth'. About two

millennia later, Louis XIV of France reduced the political power of his

nobles and put an end to their internecine warfare, but left them with

wealth and leisure and encouraged them to congregate at court; games of

chance, such as cards, dice and roulette, then became very fashionable.

This may have contributed to the interest taken by mathematicians at

about this time in the formulation of a precise probability calculus for

assessing the likelihood of uncertain events. Of course, every gambler has

a primitive intuition which enables him to see in certain cases whether one

event is more likely than another, and indeed, without this intuition no

gambling would be possible. Thus, one could not play poker if it were not

intuitively clear that 'full house' is less likely than a 'double pair' and more

likely than a 'four'. However, this primitive intuition is sometimes mis-

leading, as the famous French gambler, Chevalier de Mer6, found about

three centuries ago.

Chevalier de Mere was fond of a dice game which was played in the

following way. A die was thrown four times in succession and one of the

players bet that a six would appear at least once in four throws while the

other bet against. Mer6 found that there was greater chance in favour of the

first player, that is, of getting a six at least once in four throws. Tired of it,

he introduced a variation. The game was now played with two dice instead

of one and the betting was on the appearance or non-appearance of at

least one double-six in twenty-four throws. Mere found that this time the

player who bet against the appearance ofa double-six wonmore frequently.

This seemed strange, as at first sight the chance of getting at least one six

in four throws should be the same as that of at least one double-six in

twenty-four. Mer6 asked the contemporary mathematician, Fermat, to

explain this paradox.

Fermat showed that while the odds in favour of a single six in four

throws were a little more than even (actually about 51:49), those in
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favour of a double-six in twenty-four throws were a little less than even,

being 49:51. In solving this paradox Fermat virtually created a new
science, the Calculus of Probabilities. It was soon discovered that the new
calculus could not only handle problems posed by gamblers like Mer6, but

it could also aid financial speculators engaged in marine insurance.

By the beginning of the nineteenth century, Laplace systematised the

theory of probability and showed, to use his own words, that it was noth-

ing but common sense reduced to calculation. The fundamental idea

underlying his work may be explained by means of a simple example.

Suppose we have an urn containing three similar balls, of which two are

black and one white. Suppose we draw one ball at random. Obviously, we
may chance to pick any one of the three. There are thus three ways of

drawing a ball, ofwhich two give black balls and one white. Hence, argued

Laplace, the probability of drawing a black ball is two chances in three, or

2/3. Similarly the probability ofdrawing a white ball is 1/3. More generally,

if there are in all n possible ways in which an event E can happen, ofwhich

m are favourable to a certain outcome, then the probability of that out-

come is m/n. Thus, in the urn experiment cited above, the event E, drawing

a ball, can happen in three ways of which two are favourable to a certain

outcome, viz. the emergence of a black ball. Accordingly, n — 3 and
m = 2. Hence the probability of the emergence of a black ball in a random
draw from the urn is 2/3.

Let us now complicate the problem a little by introducing another urn

with four similar balls of which three are black and one white. For the

sake of definiteness, we shall call the first urn A and the second urn B.

(See Fig. 60.) We first select at random one of the two urns and from the

urn thus selected we draw a ball. What is the probability that the ball

drawn is black? We might argue that we have two urns with 3 + 4 = 7

Urn A contains O ^ ^
Urn B contains Q (| 9

Fig. 60

balls, of which 2 + 3 = 5 are black. Any one of these seven balls might be

selected and, of these seven, five are black. Hence th& probability of draw-

ing a black ball in the experiment is 5/7. However, no expert in probability

calculus will accept this figure as the correct value of the probability of
selecting a black ball. His reason is that while there is no doubt that there

are in all seven ways of drawing a ball, nevertheless these seven ways are

not equally probable.

There is more chance for any ofthe three balls in the urn A being selected

than any one of the four balls in the urn B. For we first pick up one of the
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two urns at random and the probability that A or B is selected is 1/2. IfA
is selected, we can pick up any of its three balls. This means that 1/2

probability that falls to the lot of ^4-urn balls is equally shared by the

three of them. Hence the probability that an A-urn ball is selected is

1/2 X 1/3 = 1/6. On the other hand, the probability of selecting a ball of

the urn B is obtained by partitioning equally the probability 1/2 of picking it

among the four balls contained therein. It is, therefore, 1/2 x 1/4 = 1/8.

Laplace's m/n lule given above for calculating the probability is valid only

if all the n ways in which the event can happen are equally probable. As in

this case each of the former three out of the seven possible ways are moie
likely than each of the remaining four, we cannot use the m/n formula for

evaluating the probability of drawing a black ball in the experiment.

Now, in this case, we could show by pure reasoning that all the seven

possible alternative ways in which the event could happen are not equally

likely. There are cases where we may not be able to say a priori whether

all possible ways of its happening are or are not equally likely. Suppose,

for instance, we have a die. To all appearance the probability of casting an

ace with it is the same as that of throwing any other figure. All the six

possible outcomes are equally probable and the probability of throwing

one of them, say, an ace, will, therefore, be 1/6. However, as a result of

actual trials we may find that in 100 throws it turns up ace, say 50 times.

We should, then, have serious reason to suspect that the die is not true.

How shall we measure the probability of throwing an ace with it?

In such cases, when we have grown wiser after the event, we reject the

previous value 1/6 calculated from a priori considerations and work out a

new value on the basis of the results of our tiials. If we obtain 50 aces in

100 throws, we assume that the probability of thiowing an ace with oui

loaded die is the ratio of the number of times it falls ace to the total num-
ber of throws, that is, 50/100 = 1/2. This piobability, 1/2, worked out

after the experience acquired by 100 actual trials is known as a posteriori

probability in contradistinction to the a priori probability 1/6, derived

from a priori considerations before the experiment. In the case of a true

die both the a priori and a posteriori probabilities are equal or almost

equal whenever the number of trials on which the latter is based is suffi-

ciently large. In fact, this is the test of its trueness.

In most cases we have no means of ascertaining the a priori probability

of an event, as, for instance, the probability that a man aged thirty will die

during his thirty-first year. In such cases we have to remain content with

only a posteriori probability. In this particular instance, we take all or as

many as possible men aged thirty in a country at any time, and observe how
many of them die in the following year. Ifm persons out of n die, the prob-

ability that a person aged thirty will die during his thirty-first year is
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assumed to be the same as that of drawing a black ball from an urn which
contains m black balls in a total of n. The latter is clearly m/n. Some people
do not like this way of getting probabilities and have given elaborate defi-

nitions, which we will examine in the next section.

The vocabulary of science consists of two kinds of terms. First, there
are those which are borrowed from the language of ordinary speech and
are given a more or less exact scientific meaning quite distinct from that
of general usage. Second, there are others which are specially coined and
have, therefore, no meaning other than their scientific connotation. Thus
such words as 'force', 'work' and 'energy' in physics, or 'limit' and 'con-
tinuity' in mathematics, belong to the first category; while 'entropy',
'electron', 'meson', 'differential coefficient', etc., belong to the second.
The latter type of term usually arises after the particular branch of

science in which it occurs has already progressed so far as to have to
take account of situations not ordinarily experienced. New terms have,
therefore, to be specially invented to meet these situations, as ordinary
speech provides no words to describe them. The first type of term, on the
other hand, is defined at the very outset by refining certain vague notions
derived from our daily experience. For instance, when wemake an exertion,
such as lifting a weight or moving a stationary cart, we experience a
muscular sensation which gives rise to the idea of force. In physics we re-
fine this vague notion and so define force that we can measure it quanti-
tatively in any given case. However, we are not always so lucky. For some-
times we find that the scientific refinement of the term of ordinary speech
can be carried out in several conflicting ways so that we literally have what
the French call an embarras de choix.

Thus, three different ways of refining our primitive notion of time have
been proposed by Einstein, Whitehead and Milne, and we still do not
know which of them is the most appropriate for physics. In fact, at
times, the struggle for a precise and scientific definition of a term in
everyday use is so fierce that the term itself becomes a casualty in the
battle of words that ensues over the claims of rival definitions designed to
clarify its significance. Such, for instance, is the case with the term 'mind',
which behaviourist psychologists find totally meaningless, or with the
term 'meaning', which some semioticians (that is, experts in the theory of
'signs' and their 'meaning') consider too vague to be ofany use in semiotics.

Just as we have primitive notions of force, time, energy, etc., which
physicists have refined for scientific use, so also we have a primitive notion
of probability which statisticians and mathematicians have been trying to
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clarify for the past three centuries without coming to an agreed decision

even today. In ordinary speech we often use the word probability some-

what loosely when we wish to express the strength of our expectation or

belief. Thus we may speak of the probability of tossing a 'head' when we
throw a coin, or we may speak of the probability of Julius Caesar having

visited Great Britain. The two cases are obviously different. One difference

between them is that while the former event is repetitive the latter is not.

For we may throw the coin not only once but over and over again and

obtain as large a series of throws as we please. In the latter case, on the

contrary, we obviously cannot multiply Julius Caesars ad lib., in order that

they may visit Great Britain. This difference between the two types of

cases is the basis for distinguishing two distinct meanings of the word

probability—the technical meaning of physical science, and the non-

technical meaning of everyday speech. When we wish to use probability in

its technical sense we have first to take care that we apply it only to

repetitive events—that is, events whose successive repetitions generate

statistics of their outcome—such as throws of coins and dice, selections of

cards, revolutions of roulette wheels, accidents of a particular kind, etc.

Secondly, we have to repeat the event a large number of times and observe

the proportion of cases in which it leads to the result whose probability is

required. Thus, in the case under consideration, we may throw the coin,

say 1,000 times and observe it fall showing 'heads', say 500 times. The

proportion of 'heads' in this series of 1,000 throws is, then, 500/1,000= 1/2.

This proportion is technically known as the frequency ratio and is the

measure of the probability that the coin will toss 'heads' in a throw.

However, when we apply the term probability to a non-repetitive event

or an isolated case, e.g. Julius Caesar's visit to Great Britain, it is im-

possible, at any rate in any obvious way, to generate a sequence of trials

and thus measure the probability of its occurrence by means of a fre-

quency ratio. We have, therefore, to estimate it by a more or less intuitive

appraisal of such evidence as we may have. Since in such cases a uni-

versally acceptable quantitative estimate of the degree of our confidence or

lack of confidence in the statement cannot be given, probability when

used in this sense cannot form part of a scientific assertion. To avoid con-

fusion it is, therefore, better to restrict the use of probability in a scientific

sense to repetitive events only, and to use the word credibility when we

wish to speak of our expectation of non-repetitive events.

Not that all authorities accept the validity of this distinction between

'probability' and 'credibility'. Lord Keynes and the Cambridge Geo-

physicist, Harold Jeffreys, for instance, reject out of hand the legitimacy of

this distinction as also that of the frequency definition of probability. They

consider that fundamentally there is just one notion of probability cor-
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responding to what we have called 'credibility'. Thus they postulate that if

any given evidenceHjustifies a rational belief ofdegree/? in a statement A,
there is a logical relation between A andHwhich is known as the probability
relation. But since nowhere in their treatises on Probability do they give
any indication as to how this degree of rational belief ought to be assessed
in any given case, their definition has been of as little use to statisticians

and mathematicians as Bergson's notion of time to the physicists.

At first sight the Keynes-Jeffreys rejection of the frequency definition of
probability in the case of repetitive events might appear rather odd. For
what could be more reasonable than measuring probability by means of
frequency? But on closer analysis it must be admitted that the frequency
definition is by no means free from some very serious objections. For, when
we defined probability as a frequency ratio we did not indicate how many
trials we should make for calculating it, beyond the rather vague stipula-
tion that it should be large. In the sample cited above we took 1,000 trials

and obtained 1/2 as our frequency ratio. Suppose we had taken a still

larger number of trials, say, 10,000 and formed a new estimate of the
frequency ratio. Would it be the same as the previous one? Not very
likely. If not, which of the two frequency ratios should we adopt as the
measure of probability ?

In general, since the estimate of the frequency ratio and therefore, of the
probability of the event in question, depends on the number of trials, we
must specify how many trials we should make for estimating the probability.
Obviously, whatever number of trials we may choose to specify, our choice
will be quite arbitrary. We try to get over this difficulty by saying that the
larger the number of trials the 'better' the estimate of the frequency
ratio. This may be expressed more precisely by stating that probability is

the limit of the frequency ratio when the number of trials is infinitely in-
creased. What it means is this: if you take a sufficiently large number of
trials, any further increase in their number will give you approximately
the same value for the frequency ratio. Thus if you took, say, 10,000 trials

you would not appreciably improve your estimate of the frequency ratio
by, say, doubling the number of trials. But when probability is so defined
we get into worse difficulties. For logically there isno reason whatever why
you should get approximately the same estimate of the frequency ratio,
whether you based it on ten thousand trials or on twenty. Even ifwe ignore
this objection, we have to contend with another which is even more serious.

Suppose we have an infinite set of trials of an event, e.g. tosses of a
coin. We can partition this fundamental set into several sub-sets each
consisting of an infinite number of trials. For instance, we could gather all

the odd trials of the set in one sub-set and even trials in another. Both the
sub-sets obviously contain an infinite number of trials. More generally, we
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could divide the fundamental set of trials into three, four, five or more

sub-sets each consisting of an infinite number of trials. Each of these sub-

sets of infinite trials will have its own limiting frequency ratio. The question

then arises whether the frequency ratios corresponding to each of the

infinite sub-sets into which we divide the main set are equal among them-

selves or not.

If the limiting frequency ratios of the various sub-sets are all equal,

however we may partition the fundamental set of trials we have only one

value of frequency ratio which can reasonably be taken to measure the

probability of the event in question. But if, on the other hand, the fre-

quency ratios of the sub-sets are not all equal, we have several different

values of the frequency ratio from which to choose one as a measure of

probability. Which of them should, then, be chosen raises an insoluble

problem, as each of these different values has as much (or as little) right to

represent the probability of the event as any other. It follows, therefore, that

the consistency of the frequency definition depends on our ability to prove

that the limits of frequency ratios of all the infinite sub-sets of trials into

which we may partition the fundamental set of trials are equal to one

another. But unfortunately all attempts to prove it generally must now be

considered to have failed, in spite of some very brilliant attempts by A. H.

Copeland, Abraham Wald, Jean Ville and others.

A way out of the difficulties of the 'frequency' and 'credibility' theories

of probability has recently been suggested by the advocates of axiomatic

theory. They claim that confusion met with in most discussions of proba-

bility theory at the present time arises because the 'formal and empirical

aspects of probability are not kept carefully separate.' They insist that

there are two distinct problems, 'problem I' which aims at setting up a

purely formal calculus to deal with probability numbers, and 'problem II'

which consists in translating the results of the formal calculus to empirical

practice. Problem I is purely mathematical and independent of problem II.

Thus, the sole criterion admissible in judging any axiomatic theory (prob-

lem I) is that of self-consistency, leaving out of consideration whether

theorems derived from the proposed set-up are capable of translation so as

to be relevant to empirical practice. But this view disregards an important

consideration which is relevant and which will now be dealt with.

In an axiomatic theory of geometry, for example, we construct a formal

model in which the entities such as points, lines, etc. are created by ab-

stracting their essential properties from similar entities of our daily ex-

perience. We thus retain their fundamental and essential properties and

discard what appears to be accidental. The theorems of the formal model

can then be applied to empirical points and lines without much difficulty

and can give results that are at least approximately valid. In the case of an
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axiomatic theory of probability, the very question that the formal system
of axioms sets up is an adequate replica of the phenomenon ofrandomness
that we find in the real world is left aside.

In geometry we can all agree that the system of axioms implicitly de-
fining points, lines, etc. is an idealisation of the essential properties of their
grosser counterparts in the real world. But an axiomatic theory of proba-
bility has to satisfyus that it adequately reflects the phenomenon ofrandom-
ness in the real world, if it is not to be a mere exercise in logistics or axio-
matics or a Tree creation of mind'. Now what it does is to postulate a set
of axioms for combining certain numbers called probabilities of certain
undefined things called 'events'. But it provides no way of establishing a
connection between the probabilities that are thus defined implicitly by
the axioms and the actual frequencies with which the 'events' are observed
in the real world. We shall take, for instance, the system of axioms pro-
posed by Kolmogorov.

In presenting these axioms he says that there are other postulational
systems of the theory of probability, particularly those in which concept of
probability 'is not treated as one of the basic concepts but is itself ex-
pressed by means of other concepts. However, in that case, the aim is

different, namely, to tie up as closely as possible the mathematical theory
with the empirical development of the theory of probability.' In other
words, he admits that if the set of axioms is a sufficient basis for the logical
and formal development of probability calculus, it has to be supplemented
by other means in order to establish contact with the real world. It there-
fore follows that, in probability theory, problems I and II cannot be arti-
ficially divorced and have to be considered conjointly. Consequently the
solution of problem I is of limited interest unless it also provides the best
available model for solving problem II.

The need for a close tie-up between problems I and II in probability
theory is not always sufficiently stressed. It is this need that has led Dr.
Good in his recent book to advocate that an axiomatic theory (if it is to
be directly applicable) 'should always be supplemented by a set of clearly
stated rules' and also 'not so clearly phrased suggestions'. This approach has
some advantage in that it pushes the purely axiomatic method as far as it

can go without making any new or veiled assumptions—mathematical or
otherwise. But these new assumptions come in alright when we supple-
ment the axiomatic theory by 'rules' and 'suggestions'. The problem of
'foundations' then hinges on the 'rules' and 'suggestions' imported later.

This is not to deny the value of the purely axiomatic part of the theory.
It is important to ensure that in an axiomatic theory the axioms posed
are self-consistent, that they are as few as possible for the development of
theory, etc. But it is relatively easy to build an axiomatic theory of proba-
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bility by considering certain things called 'events' and assigning to each

such 'event' a number called 'probability'. One could then define 'inde-

pendent' and 'dependent' 'events', etc., and postulate axioms to express

the fundamental rules for operation with such numbers. One could even

define these notions and express their definitions and axioms in the langu-

age of algebra or logic.

There is no great difficulty with the purely mathematical problem of

showing the self-consistency of the set-up and proving that it contains the

minimum number of definitions and axioms necessary for developing the

formal calculus. But all the practical difficulties re-appear the moment one

decides to apply this theoretical set-up to any real phenomenon. In fact,

even in geometry, where one sets out by defining abstract geometrical

entities like points, lines, planes, etc. (which themselves, by the way, are

suggested by our daily experience), we are not concerned merely with the

self-consistency of the axioms and the abstract set-up but also with the

question which of the various possible set-ups (Euclidean or Lobachev-

skian, for instance), conforms to our actual experience.

It is pertinent to remark that Lobachevskian geometry evoked little

interest at the time it was invented, in spite of its logical consistency, and

was seriously studied only when it was realised that it might serve as a

better model for physical space than Euclidean geometry. If the problem

of applicability of the formal or axiomatic theory is of some importance in

geometry, it is absolutely fundamental in a discussion of the foundations of

probability. Besides, axiomatisation, after all, is only setting up in a sym-

bolic form certain features abstracted from human experience after a

careful and profound analysis thereof.

Axiomatisation is possible in a domain which has already been so well

thought out that a universal agreement on the elements to be abstracted

and expressed in axiomatic form can be obtained among mathematicians

and physicists dealing with these concepts, and this is the case, for instance,

in geometry. Where this condition no longer obtains it serves merely to

mask the circular character of the definitions under a veil of elaborate

logical symbolism. Now the one essential feature of our daily experience

that every axiomatic theory of probability must abstract and embody in its

axioms is the phenomenon of randomness. And it seems to me that this is

precisely the feature that an axiomatic theory would fail to embody. To see

the reason for this we must begin with an analysis of the nature of chance.

We are apt to divide phenomena into two mutually exclusive categories

—necessary and contingent. The older and classical view was that every-

thing in nature is strictly predetermined so that chance does not exist

objectively. It is merely an expression of our ignorance as regards the real

causes. It followed, therefore, that chance was a purely subjective category
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which could be eliminated progressively with the advance of knowledge.
Unfortunately for the determinists the reverse has actually happened. The
role of the contingent, instead of diminishing, has increased with greater

knowledge. As a result the pendulum has now swung to the opposite
extreme, viz. to the view maintained by some logical positivists that there
is no necessitation or exclusion except the formal necessitation and exclu-
sion in logic.

If this were true, all 'elementary' propositions or statements would be
completely independent of one another and any two such propositions
would, as Wittgenstein maintained, give to each other the probability 1/2.

In other words, the probability that anything having the simple or 'ele-

mentary' property A has also some other simple or 'elementary' property
B is 1/2. Actually both these extreme views are wrong. Contingency is as
objective a category as necessity. Nor are they mutually exclusive or ex-
ternal to each other. As Engels remarked, 'chance is only one pole of an
interrelation, the other pole of which is called necessity'. The significance

of this remark is best appreciated when we consider how that which is pure
chance for a single throw of a coin becomes contingency for more than
one and statistical necessity for a large number of such accidental throws.
This is how in reality as well as in the knowledge of reality, chance and
necessity interpenetrate into one another at every level.

In view of this continual interplay ofchance and necessity it is impossible
to define chance in purely formal, logical or axiomatic terms. All that we
can do is to take as a starting point for our theory of probability certain

concepts based on our intuitive appreciation of human experience, in the
same way that arithmetic arose out of the experience of matching or
establishing a one-to-one correspondence between similar classes. Now the
concepts from which mathematical theory of probability has developed
from the time of Pascal and Fermat down to Poincar6 and Borel in our
own day and which are at the base of all probability theories, are two,
which will now be considered.

First, probability judgments are concerned only with repetitive events
which have a basic similarity, e.g. throws of dice, drawing of balls from
urns under similar conditions, etc. We cannot definitely predict the out-
come of a single event but on account of the aforementioned interplay be-
tween contingency and necessity we can make probability statements
about groups of such trials. It follows, therefore, that probability of an
event always pertains to a group of trials to which the event may be said
to belong. Now how are we to ascertain the probability of an event E in a
group or series of trials ? If nothing is known about the way in which the
event £can happen, then equally nothing can be said about its probability.

Probability calculus has no magic formula whereby it can transmute blank
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ignorance into some definite knowledge. The Laplacian principle of non-

sufficient reason by which we derived Laplace's mfn rule earlier leads to a

number of paradoxes into which we need not go.

But one kind of knowledge that can lead to knowledge of probabilities

is the fact that the possible consequences of the event are known to be

resolvable into a number of 'equipossible' alternatives. How this know-

ledge may be acquired in any given case is another matter and need not

detain us at the moment. Once this set of equipossible alternatives in

which the event can take place is known, it is easy to calculate the proba-

bility of any given combination of these equipossible alternatives. For

instance, suppose we have an urn containing N balls of which n are black

and N-n white. We draw a ball at random from it. What is the probability

that the ball drawn is black? Here the event—drawing a ball—is resolvable

into N different equipossible alternatives as the known, or at any rate

tacitly assumed, conditions of a draw (e.g. that the balls after 'thorough

mixing' are drawn by someone blindfolded, that the ball drawn is re-

placed before the next draw, that the balls are completely identical to the

sensation of touch and are distinguishable only by their colour, etc.)

definitely ensure that all the N alternatives are completely symmetrical

and therefore equipossible.

Consider now another event such as throwing a die. What is the proba-

bility that it will fall with ace uppermost ? Here our knowledge of the condi-

tions of the throw is not enough to tell us whether the six possible alterna-

tive ways of a fall are equipossible or not. The older indifference theory

treated the alternatives in both these instances as symmetrical and there-

fore equipossible. In the former case it was right, not because we did not

know of any reason favouring one alternative rather than another (as

the theory suggested), but rather because we knew that certain definite

conditions of draw (mentioned above) ensured that the alternatives in

question were equipossible. In the latter case it went astray because it

treated our ignorance of the structure of the die and the conditions of its

fall as a sufficient basis for taking the various alternatives as equipossible.

We could treat the alternatives as equipossible only if we knew that the die

was 'fair'—that is, that it was a perfect cube whose geometrical centre co-

incided with its centre of gravity and the mode of throw was such that it

did not favour the fall of one face rather than another.

This is a far cry from the blank ignorance on the basis of which the

indifference theory tried to assign equal probability to all the possible

alternatives. If we do not have this knowledge, we have to consider the

group of trials produced by a series of its falls. Suppose we have a series of

N falls of the die of which n falls result in an ace. Here, then, we know that

each of the N consequences is an ultimate event in itself and therefore
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equipossible. The probability of the die falling ace in this series ofN trials

is thus n/N. It is true that this definition of probability is relative to a
specific finite series of trials and gives us no measure of probability in

case of a (future) open series of trials, which is what is usually understood
by the term. We shall deal with this issue later.

For the present, our purpose is to explain how the alternative ways in

which an event can happen are judged equipossible. It is not because we
know of no reason why one alternative should be preferred over another.
Our ignorance of the conditions favouring one alternative to another is no
warrant for assuming that there are none such. On the other hand, it is

definite knowledge of the way in which the event can happen that can tell

us whether the alternatives are equipossible or not.

It is true that in a vast majority of cases our knowledge of the conditions
which govern the various alternative outcomes of an event is too meagre
to tell us whether the various alternative ways of its happening are equi-
possible or not. Except for cases of drawing balls from urns or games of
chance we do not have adequate knowledge of the detailed mechanism of
the events happening to be able to resolve the alternative ways of its

occurrence into equipossible alternatives. Yet this is what we must do be-
fore we can measure the probability of any alternative. In fact, before we
can apply mathematics to any phenomenon whatsoever we must either
enumerate or measure. When we enumerate we treat each of the discrete
individuals of the group in question as on a par with one another—that is,

equal in respect of the attribute under enumeration. When we measure any
quantity whatsoever, whether distance, time, mass, utility, etc., we tacitly

assume that it is possible to find a portion of it that will fit another.
In other words, we assume that it is possible to establish superposition.

In geometry, for example, this is the well-known principle of congruence.
Even in the measurement of time, where it is not possible to 'freeze', as it

were, an 'hour-bar' and put it alongside another, some equivalent of it has
to be assumed before we can measure time, and this is done by assuming
that periodic cycles through which a clock passes are equal. It is true that
in the case of time reckoning this is an assumption. But so also is it the
case in geometry where it is now realised that the invariance of a standard
gauge or yardstick after transport from one point to another is as much of
an assumption as the invariance of the period of a stationary clock. With-
out some such principle, measurement of continuously varying attributes
would be out of the question. That is why some equivalent of it has to be
assumed in the measurement of the probability as well.

Two types of cases arise according as the set of alternative ways in which
the event can occur forms a discrete or continuous set. If the set ofvarious
alternatives in which the event can happen is discrete, we must find a way
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of enumerating its outcomes in such a manner that each item enumerated

is on a par with any other—that is, is equipossible. If the set of various

alternatives is continuous, we must discover an 'equipossible gauge' with

which to span the entire continuum of its possibilities in much the same

way as we use a standard yardstick to measure distances. Now the set of

equipossible alternatives may be discrete, continuous, finite or infinite. If

it is discrete and finite, it contains within itself the principle of its metrical

relations a priori as a consequence of the concept of number. Laplace's

mjn formula then suffices to give us a measure of the probability of each

alternative.

Suppose, for instance, we have an urn model containing n identical balls

of which m are white and the rest black. As we saw earlier, the probability

that a ball drawn is white is mjn. No one can seriously deny that this is

clear from the conditions of the trial described above. Consider next the

case of a die. We mentioned that, ifwe did not know that it was a 'fair' die,

the only way of obtaining a set of equiprobable alternatives is to take a set

ofN trials in which each trial is an ultimate unit and therefore equiprob-

able. But what is the probability of an ace in a hypothetical set of open

series of trials ?

Here we encounter an insurmountable difficulty. If we consider the

discrete set of infinite trials, each trial in this (discrete) infinite series is an

ultimate unit and therefore equiprobable. If the probability of each one of

the equiprobable infinite alternatives be taken as zero, then so is the sum

of the probabilities of all the alternatives instead of unity. And if it be not

zero, though no matter how small, the sum is infinite. The frequentists try

to escape this difficulty by claiming that probability of an outcome is the

limit of the frequency of that outcome in N trials when N tends to infinity.

Now this has meaning only if the series is given by a regular formula. But

in that case we can equally define probability in terms of equiprobable

cases without appeal to frequency limit.

Take, for instance, the probability of selecting an even integer from the

open (infinite) class of integers. Here, although the set of various alterna-

tives in which the number can be selected is discrete and infinite, it is

possible to divide the set into two equipossible classes—the class of even

and the class of odd integers—which enables us to calculate the required

probability in terms of equiprobable cases. But if, on the other hand, the

series is random, such as we obtain by an infinite series of throws of a die,

it can never be realised in its entirety. All that we know is a finite section

of it. In such cases nothing is gained by trying to define probability as the

limit of frequency. The only way out is to consider a finite number N of

trials and to base probability of an outcome by treating each of these trials

as an ultimate equipossible unit as indicated above.
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Two objections may be raised against it. First, it makes the measure of

probability depend on the number N chosen. This, however, is no serious

handicap as in any case we have to make do with approximations not only

in this matter but also in the measurement of everything else. Second, it

gives us no measure of the probability of the outcome in any similar future

series of trials. We usually assume that the value given by a series of N
trials would also approximately be the same as that given in a future (large)

series. This, however, is the problem of induction, and its justification is a
matter that arises however probability is denned. As the problem of induc-
tion is beyond the scope of this book, we shall not go into it here.

It is true that this is equivalent to assuming that the probability of the

event is the same as that of drawing a white ball from an urn containing

N balls of which n are white. In other words, we have recourse to Shew-
hart's method of defining a random order by means of 'some chosen
random operation'. The operational model actually chosen by him is

identical with the one postulated above except that Shewhart explicitly

requires that the sequence is 'drawn one at a time with replacement and
thorough mixing by someone who is blindfolded'.

Churchman has raised two objections against Shewhart's operational

model defined above. First—and he concedes this is a trivial one
—

're-

placement' and 'thorough mixing' 'are ill-defined concepts within our
language'. Second, and this he claims is a deeper criticism, is the question

as to how we can know that a certain sequence of operations 'defines' a
concept. In other words, it is contended that 'Shewhart at best gives one
operation that defines randomness and admits to be the only one. The
definition of randomness is therefore not any one of these examples, and
its true meaning must be in a non-operational concept. Operations are

only means to an end, and no single means is necessary for the pursuit of
an end.' If this mode of defining randomness is considered too limited,

Churchman has suggested no better alternative. While I have much sym-
pathy with his viewpoint that it is futile "to reduce the generality of
definition to the specificity of sensation', it seems to me that in this parti-

cular case the operation in question embodies all the essential features of
a random event that probability theory has to handle.

We consider next the case when the set of equally probable alternatives

is non-enumerably infinite or has the power of a continuum. Now in a
continuous manifold the ground-form of metrical relations has to be
sought from outside by the imposition of a measure function on it. In this

connection it is pertinent to recall a remark Riemann made in his well-

known essay on the hypotheses underlying geometry. He said that the

measure of every part of a discrete manifold is determined by the number
ofelements belonging to it, so that a discrete manifold contains within itself
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the principle of its metrical relations, a priori, as a consequence of the

concept of number. Hence there is no ambiguity involved in the determina-

tion of the probability measure of any alternative when the set of equi-

possible alternatives happens to be discrete.

The continuous manifolds, on the contrary, do not contain within

themselves the principle of the measure relations of their constituent parts.

The character of their metric has to come from outside. Once this measure

function is devised it gives us the probability of each alternative. If we
change the measure function of the continuous set of our equally probable

alternatives, we alter the probability measure of that alternative. That is

why continuous probabilities are nowadays almost universally treated by

mathematicians under the title 'measure theory', a measure function being

imposed arbitrarily on the continuous manifold of equally probable

alternatives.*

Apparently, there is no way of getting over the arbitrariness of such a

measure unless the conflict between the two dialectical polarities, the

continuum and the discrete, is somehow resolved and the metric of the

continuum discovered from within as in the case of discrete manifolds. The

fact that a measure function has to be imposed on a continuous manifold

from without enables us to deal with the criticism that classical theory

leads to paradoxical results. These paradoxes arise because the manifold

of equipossible alternative ways in which the event can happen is con-

tinuous and its metric may therefore be chosen in several different ways.

In actual practice, the arbitrariness of the measure function imposed on

the continuum of equipossible alternatives is no great handicap. The

reason is that in many cases additional knowledge of the conditions of

the problem suggests the measure function.

The great bulk of probability calculus is merely concerned with devising

formulae for calculating the probabilities of complex events, given those of

the elementary events which combine to make them. All these formulae

are based on two fundamental rules—the addition and the product rules

—

just as the basis of all arithmetic is ordinary addition and multiplication.

We first give the addition rule of probabilities. Suppose a trial or an

experiment results in one of the several mutually exclusive events Elt E2 ,

. . ., Et
. Such, for instance, will be the case if we draw a ball from an urn

containing balls of different colours. The result of a single draw can only

be a ball of one colour, and if it happens to be, say, red it cannot, at the

* We recall here that if a set is measurable, its measure may be denned in an infinite

number of arbitrary ways. See page 140.
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same time, be another, say, blue. In other words, an event, Ex , like draw-
ing a red ball, excludes the possibility of another such as E2 , viz. drawing
a blue ball. This is the meaning of the phrase 'mutually exclusive events'.

If the probabilities of any two such events, say, Ex and E2 are px and p2

respectively, then the probability of the composite event,* either Ex or E2 ,

is the sum

(Pi + Pi)-

For the sake of definiteness, let us keep to the urn experiment. If there

are in all N balls of which mx are red and m2 blue, then the probability px

of the event EXi viz. drawing a red ball, is obviously mJN. Similarly p2 , the

probability of the event E2 , viz. drawing a blue ball, is mJN. Now if we
considered the composite event E, viz. drawing either a red or a blue ball,

it could happen in (wij -f m2) ways out of a total of N equally probable
ways. The reason is that there are in all mx + w2 balls which are either red
or blue in a total of N. Consequently the probability of the composite
event E is

mx + m2 mx m2

—N- = H + N =Pl+pJ-

More generally, given any number of mutually exclusive events Ex , E2 , . . .,

Es with probabilities px , p2 , .

.

., ps respectively, the probability that any
one of them results is

Pi + P2, • • • + ps -

Unlike the addition rule, the product rule of probability is not con-
cerned with the disjunction of mutually exclusive events but with the
probability of a composite event produced by a succession or conjunction
of two or more consecutive events. Suppose, for instance, we want to
ascertain the probability of a composite event E consisting of a succession
of two aces in two consecutive throws of a die. Here the event Ex is the
appearance of an ace in the first throw and E2 is its appearance in the
second throw. In order that E may occur it is necessary that Ex first

occurs and having occurred is followed by E2 .

In this case the occurrence of Ex has no effect on the probability of E2

as the two throws are independent. But this need not always be the case.

Take, for instance, the case of the urn A containing two black and one
white balls cited above. What is the probability of the composite event E
that in two successive draws the two balls drawn are both black ?

* Such a composite event is also known as a disjunction.

f It is because of the addition rule of probabilities that in an honestly run lottery you
are able to double your chance of a win by buying two tickets instead of one.
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Let Ex be the event that the first draw yields a black ball and E2 the

event that the second draw gives a black ball. In order that E may occur

it is necessary that Ex occurs first and is followed by E2 . But ifEx occurs,

we reduce the number of black balls in the urn and thereby the probability

of E2
* Thus the probability of E2 depends directly on the occurrence or

non-occurrence of Ex . The two events are not independent. In either case

the probability of the composite event E is the product of the probability

px of Et and the probability p2 of E2 , when Ex has already occurred. The
last clause italicised is of no importance if Ex and E2 are independent.

Thus in the former case when Ex , E2 are independent the probability of a

double ace in two successive throws of the die ispxp2 = 1/6 X 1/6 = 1/36.

In the latter case, when the probability of E2 depends on whether Ex has

occurred or not, the probability of drawing two black balls in two suc-

cessive draws is />i/>2 > where px is the probability ofEx and p2 is that of E2

provided Ex has occurred already. px is clearly 2/3. If Ex has already oc-

curred, we are left with only two balls in the urn, ofwhich one is black and

one white, the second black ball of the urn having been already withdrawn

as a result of the occurrence of Ex . p2 is therefore 1/2. Consequently the

probability/? of the composite event Eh Ifi x 1/2 = 1/3. f

These two rules, the addition and product rules, enable us to calculate

the probability of any disjunction or conjunction of elementary events

when those of the latter are known. The actual solution of many problems

in probability calculus may require considerable mathematical skill, but

in principle these two rules always suffice. Take, for instance, the experi-

ment described above (page 217) of drawing a ball from one of the two

urns A and B selected at random. We first calculate the probability of the

event E that the ball selected is a black ball belonging to the urn A. This is

a composite event produced first by the selection of the urn A followed by

drawing a black ball from it. The probability of the former, .viz. selecting

the urn A, is 1/2. Having selected A, the probability that the ball drawn

is black is 2/3, there being two such balls in it. The product rule, there-

fore, gives the probability of E as 1/2 X 2/3 = 1/3.

Similarly, we can work out the probability of the event E' that the

* It is assumed that the second draw is made without replacing the ball drawn in the

first draw.

| It is because of the product rule of probabilities that dividends of double totes in

races are much bigger than those of a single win. For suppose the chance that the horse

you decide to bet on in the first race wins is one in ten. Suppose further that the chance of

a similar win in the second race is one in nine. Then according to the product rule your
chance of a double win is only

xs x o
= To>

that is, one in ninety. Since the product rule results in a heavy slump in your chances of

a double win, the amount you stand to gain in case you do win is correspondingly

higher.
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ball selected is a black ball from the urn B. It is 1/2 x 3/4 = 3/8. Now the
addition rule gives the probability of the disjunction of events E or E\
that is, the event that the ball drawn is a black ball belonging either to A
or to B. It is 1/3 + 3/8 = 17/24. This is the correct value of the probability
of drawing a black ball in the experiment instead of the erroneous value
5/7 given earlier.

James Bernoulli, who turned the speculations of Fermat and Pascal on
Merd's problem to good account for the benefit of the mercantilists and
speculators, proved a remarkable theorem named after him, by means of
these two rules. Bernoulli's theorem enables us to calculate the probabilities
that an event will occur, 0, 1, 2, ... or n times in n trials given the proba-
bility of a single trial. Suppose we draw a ball from the urn A considered
above. Since it contains two black and one white balls, the result of a
single trial is either a black ball or a white ball. As we have seen, the
probabilities of the two events are 2/3 and 1/3 respectively. Consider now a
set of two trials.* Clearly we can have one and only one of the following
four arrangements where the symbol (B) denotes a black ball and (W) a
white ball:

First draw Second draw

(B) (B)

iW) (B)

(B) (W)
(W) (W)

What is the probability of each arrangement? Since the probability of
drawing a black ball in each draw is 2/3 and that of a white ball 1/3 the
probability of each one of the aforementioned arrangements may easily be
calculated by the product rule. Thus the probability of the first arrange-
ment, viz. that of obtaining a black ball in both the draws, is (|)(f) = (f)

2
.

Similarly the probability of the second arrangement, viz. a white in the
first draw and a black in the second, is (£)(£) and so on. We now summarise
the probabilities of each arrangement.

Arrangement

1st draw 2nd draw Probability

Both black (B) (B) (f)($) = (f)*
One black and I (W) (B) (iX*) = (iX*)
one white

\ (B) (W) (*X*) = (iX*)
Both white (W) (W) (iXi) = (i)»

* We assume that the ball drawn in the first trial is replaced in the urn after noting
its colour so as to make the conditions of the second draw identical with those of the
first. This is an important condition as it ensures that the probability of drawing a white
(or black) ball remains the same from one draw to another.
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Now if we disregard the order in which the white and black balls

actually occur and merely want the probability of obtaining one black and

one white ball in a set of two trials, the probability of such a combination

is given by the addition rule. For it is produced either by the arrangement

(W)(B) or by (B)(W). Its probability is therefore the sum ofthe probabilities

of these two arrangements, that is,

2(4)(f).

The probabilities of all the possible three combinations to which the afore-

mentioned arrangements lead, if we disregard the order in which the white

and black balls are drawn in the set of two trials, are therefore

:

Combination Probability

Both black (4)
2

One white, one black 2(4X4)
Both white (4)

2

If we add up the three probabilities, the sum is 1 as, of course, is natural

because we are certain to have one or other of these three combinations.

In fact, we have

(4)
2 + 2(4)(1) + (4)

2 = (4 + 4)
2 = i» = l.

It also follows that the probabilities of the three possible combinations

are the terms of the binomial expansion (4 + 4)
2

-

Consider now a set of three draws with replacement as before. The
number of possible arrangements is now 8 instead of 4 and the result of a

draw can^ be one and only one of them. As before, the probability of each

arrangement is given by the product rule. All the eight possible arrange-

ments and their corresponding probabilities are as shown below

:

Arrangement Probability

1st draw 2nd draw 3rd draw

All black OB) (B) (B) (4X4X4) = (4)
3

Twnhl-HrsmH f <*> ^ (^ GX0G) = Wi)
one white <*> W (*> (4X4X4) = (4)

2
(4)

1 (W) (B) (B) (4X4X4) = (4)
2
(4)

One black f
W W {B) »XiX*) = (im)

and two white W ^ W (B(4X4) = (4)
2
(4)and two white

^ (£) (w) (^ mm) = mi)
All white (W) (W) (W) (4X4X4) = (4)

3

Again, if we disregard the order in which the white and black balls appear

in the various arrangements and want the probability of a given combina-

tion ofblack and white balls, we find that the three arrangements (B)(B)( W),
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(B)(W)(B), (W)(B)(B), for example, lead to a single combination, viz.

two black and one white balls in a set of three trials. The probability of
this combination is therefore the sum of the probabilities of its three
composite arrangements, viz. 3(f)

2
($). Similarly the three arrangements

(W){W)(B\ (W)(B){W), (B)(W)(W) lead to the combination, two white
and one black ball, with probability 3(f)(£)

2
. All the four possible combina-

tions in a set of three draws have therefore the probabilities:

Combination Probability

All three black ($y
Two black, one white 3(f)

2
(£)

One black, two white 3(|)(^)
2

All three white (|)
3

Again, we may verify that the sum of the four probabilities is unity, as
one or other of these four combinations is certain to occur. In fact,

(*)
3 + 3(f)

2
(i) + 3(iXi)

2 + (i)
3

= (* + I)
3 = 1.

This also shows that the four probabilities are the terms of the binomial
expansion (f + £)

3
. If we proceed in this manner we can easily show that

in a set of n draws there can be only {n + 1) possible combinations
(though 2" arrangements) and that the probability of each combination is

as shown below

:

Combination Probability

All n black (|)
n

(n — 1) black, one white »(£)
n_1

(i)

(« — 2) black, two white
W^*

~
(i)

n~2
($)

2

'-iOne black, (n — 1) white «(f)(i)
n

All n white (£)».

As before, the probabilities of the various combinations are the terms
of the binomial expansion (f + $)

n
. Consequently the probability of a

combination of r white balls and (n — r) black balls is

n(n - 1)(« - 2) ...(«- r + 1) ,

(i)
n~r(W

1.2.3.... r
W W '

or, nCr($)
n-r

(W,

where nCr , as usual, is the coefficient of (i)
r
($)

n-r
in the binomial ex-

pansion (£ + f

)

n
.
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More generally, if the probability of the black draw is q instead of \ and

therefore of a white draw/? instead of \ (where/? = 1 — q), the probability

of a set of n draws of which r are white and n — r black is

„(w _ i)(„ _ 2) . . . (n - r + 1)

1.2.3.. ..r
Pq '

or,
nCrp

r
q
n~r

, for short. If we agree to denote the product of successive

integers from unity onwards—that is, the product 1.2.3. . . r—by the

symbol r! (read factorial r), the expression nCrp
r
q
n~r can also be written as

n(n-\)...{n-r+1)
1.2.3....r

n(n - 1)(k - r + 1) (n - r)(n - r - 1) ... 2.1

1.2.3....r («-r)(w-r-l)...2.1

«!

/jY
1-1".

r!(n - r)!
;/r.

Consequently the probability that in a group of n trials an event E occurs

r times and fails to occur in the remaining n — r trials is simply

—
,P

r
Q
n'r

-

r\(n - r)V

This result is known as Bernoulli's theorem. Obviously Bernoulli's theorem

is equally applicable to any series of independent trials of events whose

probability (/?) remains constant in each trial. Thus if in a set of n inde-

pendent trials an event E occurs r times and, therefore, not-£ (or E')

occurs (n — r) times, the probability of obtaining such a set of n trials is

nCr p
r
q
n~r

.

Bernoulli deduced from this theorem what is known as the law of Large

Numbers. This law means, in effect, that if in the above experiment of n

trials, we find that the event E occurs m times and not-is, (n — m) times,

then, given any positive number e, as small as we please, the probability

that the ratio m/n lies between (p — e, p + e) tends to 1 as n tends to

infinity. In other words, it is practically certain that the ratio m/n* will

approximate to the probability (/>) of the event E, provided the number of

trials is sufficiently large. If ever there is safety in mere numbers it is here

—

in Bernoulli's law of large numbers.

* The ratio m/n is also known as the relative frequency of £ in a set of n trials.
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In order to understand further development of piobability theory, as

well as its applications to modern statistics, a short preamble on statistics

is necessary.

In his Facts From Figures (Pelican, 1951), M. J. Moroney has aptly

described statistics as the science of deriving facts from figures. This is

accomplished in two stages. First, we compile figures about the sort of

facts we want to know. Then we try to read the tale the figures tell. There
is thus a close tie-up between the two: the sort of enquiry we intend to

make determines the type of figures we ought to compile and the sort of

figures we compile determines the facts we are able to derive. Although
one of the most interesting studies in statistical theory is the design of

figures we ought to compile for any given purpose, we shall not dwell on
it here. We shall merely assume that the figures have somehow been com-
piled.

If we have an array of figures about any phenomenon, our first problem
is to find a way of summarising the mass of figures presented to us. For
no human mind can grasp the significance of a vast array of figures when
simply confronted with it. In order not to miss the wood for the trees it is

necessary to replace this array by a few selected figures—preferably by a
single figure. How shall we proceed so as to discover a single figure that

could in some way be taken as a representative of the entire array ?

There are several ways of doing this. For example, there is the well-

known method of replacing the entire array by its average or arithmetic

mean. To calculate it we add all the figures in the array and divide it by
the number of figures so added—as every schoolboy knows. However , the

arithmetic average is only one among several possible ways of replacing a
vast array of figures by a single representative figure. In some cases it is

clearly misleading to use the arithmetic average as a representative of an
entire set. For instance, suppose we had two railway yards. Suppose,
further, that in one of these 99% of the wagons suffered a detention of 16

hours and 1% 25 days, while in the second 50% suffered a detention of
1 8 hours and the other 50% 22 hours.* The average detention in the former
case would be about 22 hours while in the latter case 20 hours. Yet on the

whole the wagons in the former suffered less detention than in the latter.

If you pick a wagon at random from each yard, it is 99 to 1 that the

wagon from the second yard has been held up longer. We could say that

the wagons in the former have been held up longer only if the detentions

were evenly distributed; but that is a big 'if.

How can we choose a representative figure so as to get over fallacies of

* Although artificially constructed it is by no means an entirely fanciful example. In
some yards a few wagons suffer prolonged detentions owing to want of wagon labels,
need for repairs, etc.
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this kind ? In such cases we replace our array of figures by another kind of

average which is not influenced by extreme items of the set. One such

average is known as the median. It is the detention suffered by the middle

wagon if we arrange all wagons in order of their detentions. Suppose we
had in our yard 101 wagons with the following detentions:

25 wagons

1 5 wagons

12 wagons

18 wagons

20 wagons

11 wagons

14 hours each

1

5

hours each

24 hours each

36 hours each

40 hours each

47 hours each

If we arranged these 101 wagons in ascending order of detentions suf-

fered by them, the detention of the middle wagon, i.e. the fifty-first wagon
in this ordering, is known as the median. It is easy to see that the fifty-first

wagon would be one of the 12 wagons which suffer a detention of 24 hours

each. The median value is therefore 24 hours. In the same way we observe

that in the case of the two yards cited above the median value for the first

yard is 16 hours and that for the second 20 hours. Ifwe compare the median

detentions of the two yards instead of their arithmetic averages, we shall

avoid the fallacy mentioned above.

Another way of replacing our array of figures of wagon detentions re-

ferred to above is to replace it by what is called the mode. By mode is

meant that value of the detention which pertains to the largest number of

wagons. In the example quoted above the largest group of wagons is the

group of 25 wagons which suffered a detention of 14 hours each. This is

therefore the fashionable or modal value; mode in French meaning

fashion. The mode—that is, the value of wagon detention common to the

largest number of wagons—is thus 14 hours.

From the way in which the median and the mode are obtained it is clear

that they are not influenced by the extreme elements of the array. They are,

therefore, in some cases better representatives of the entire array of figures

than the more usual arithmetic mean. But it will be readily appreciated

that even the best representative figure or average can give only a some-

what oversimplified picture of the facts buried beneath the figures. For a

deeper penetration into these facts we have to relax the restriction we im-

posed at the outset, viz. to make do with a single figure. Suppose then we
were permitted to summarise our array of figures by means of two or more
figures instead of only one. How tshall we proceed?

In the first place we may take the average as one of the two or three

figures permitted us in preparing our summary. How shall we select the

other figures ? That depends on whether we want to have only one or two
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additional figures. If we want our summary to consist of two additional

figures, we can select the maximum and minimum value from our array of

figures in addition to the average. Thus, suppose we were given the follow-

ing array of figures of detentions in hours to freight trains dealt with in a

railway yard like Gaya on a certain day

:

2, 3, 4, 6, 5, 3, 4, 4, 5, 4.

We might replace the entire array by a summarised picture:

Average detention per train . 4 hours

Maximum detention . . .6 hours

Minimum detention . . .2 hours

But if we wanted our summary to contain only two figures, we could

take the difference between the maximum and minimum, viz. 6 — 2 = 4,

as a measure of the range within which the detentions vary. Thus we could

say the average detention per train on that day was 4 hours, with a range

of variation of 4 hours. For technical reasons into which we need not go,

statisticians have not taken kindly to the idea of using range—that is, the

difference between the maximum and minimum—as a measure of the

variance or 'spread' of a given array of figures. They prefer to use another

measure (called the standard deviation) for this purpose. The idea of

standard deviation may most simply be explained as follows.

Taking the figures of the array of detentions to freight trains given above

as an illustration, we may say that the average of our figures is 4 hours. If

we take the deviation or difference of the individual figures from our

average, we have another set of figures equal in number to our original set.

These ten deviations are obtained by subtracting the average 4 from each

item in succession. They are reproduced below:

(2-4), (3-4), (4-4), (6-4), (5-4), (3-4), (4-4), (4-4), (5-4), (4-4),

or, -2, -1, 0, +2, +1, -1, 0, 0, +1, 0.

We could replace this new set, the set of deviations (or differences from the

mean), by a single figure as a representative of the entire set. This latter

figure could then be taken as a measure of the magnitude of the variation

or 'spread' of the original figures from their arithmetic mean.

How shall we replace our set of deviations or differences from the aver-

age by means of a single figure ? If we took the average of these differences

(each difference with its appropriate sign), we should get zero as the aver-

age of these differences as a glance at the figures shows. In fact, this would
be so not only in this particular case but in every case on account of the

very nature of the arithmetic average. You can try this by taking any set

of figures and striking their average. Now take the differences of these
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figures from the average. Some of these differences will be plus, others

minus. If you sum up these differences, having regard to their respective

signs, the sum would be zero.

It would therefore seem that it is no use taking the average of these

differences or deviations as we shall always get one and the same result,

viz. zero. To avoid this difficulty we could ignore the minus sign of the

differences and strike their arithmetic average as if all the differences were
positive. We could thus replace the array of differences by means of this

average of the differences, all of them being regarded as positive. This

would give us a measure of the variance or 'spread' of our original array

of figures. For instance, the average value of the deviations quoted above,

regardless of their signs, would be 8/10 = 0-8. This figure, viz. 0-8 hour,

may be taken as a representative of the set of individual deviations from
the mean and therefore as a measure of the 'spread' of train detentions

round the mean. It is known as the mean deviation.

However, tampering with the sign of deviations brings its own nemesis

in the long run. It makes this measure of variance or 'spread' mathe-

matically intractable. Statisticians therefore do not favour this idea. They
prefer to solve the difficulty in another way. If some of the differences are

positive and others negative, and if the sum of the positive differences

always cancels out that of the negative differences, we could make them
all positive by squaring the differences. You will recall that the product of

two negative numbers is positive so that the square of a negative difference,

e.g. —2, is +4. We could now deal with the squares of differences which

are all positive, and could sum up these squares. Dividing this sum by the

number of differences added up we get the average of these squared differ-

ences. We now take the square root of this average to come back to the

same level of figures as the original. This is known as the standard deviation

and gives a measure of the 'spread' of the given set of figures round the

average.

Using the ten figures of detentions to through trains quoted above as

our illustration, we have our array of differences or deviations from the"

arithmetic average thus

:

-2, -1, 0, +2, +1, -1, 0, 0, +1, 0.

We note that some of them are positive and others negative. We square

these differences to make them all positive. The result is

4, 1, 0, 4, 1, 1, 0, 0, 1, 0.

The sum of these 10 squares of differences is 12. The average is, of

course, io = 1-2. The square root of 1-2 is 1-1, which is thus the value of

our standard deviation.
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Now you have every right to demand why statisticians prefer to use this

roundabout method of measuring the 'spread' of the given array of figures

to the simple method of calculating the mean deviation. The reason is that

the standard deviation enables us to state precisely what proportion of

figures would lie within any stated range. In most cases we find that we
make very little error ifwe assume that 50% of the figures of our array lie

within the range a — fs and a + $s, where a is the average and s the

standard deviation of the array. Similarly 95% of the figures lie within the

range a — Is and a + 2s and 99% within a — 3s and a + 3s. This is, no
doubt, a rough rule, but it is one which is found to work well enough in

practice. In the case of our array of ten figures of detentions to through
trains we found a = 4 and s = M, the range a ± $s, i.e. (3-3, 4-7), con-

tains four items ofthe array. This works to 40% in place ofthe 50% postu-

lated by the rule. The error is due to rounding off our figures of train de-

tentions to the nearest hour. If we did not round off these figures, the

correspondence would be closer still. Similarly the range a ± 2s, viz.

(1-8, 6-2), contains all the ten items of the array. This works to 100% in-

stead of 95% postulated by the rule.

In fact, a knowledge of the arithmetic average a and standard deviation

s ofany given array would enable us to state in most cases, at least approxi-

mately, the percentage or proportion of figures lying in any stated range,

a ± ns. This proportion by the frequency rule is also a measure of the

probability that a figure selected at random from our array lies within the

range. If we give to n different values like n = f, 1, 1-5, 2, etc., we get

different ranges. Tables exist which enable us to state the proportion of
figures of our array lying in the range a ± ns for various values of n.

This proportion is at the same time the probability that any figure of the

array picked up at random lies within the range in question.

In an earlier section we outlined a method for calculating the probability

of complex events, given the probabilities of the component events. For
example, we are given the distribution of black and white balls in an urn
and, therefore, the probability of drawing a black or a white ball in a single

draw. Knowing this we can calculate the probability of obtaining any pre-

assigned set of results such as drawing two black balls and one white in a
set of three trials or drawing one black and six white balls in a set of seven
trials, etc. But the inverse problem of ascertaining the most probable dis-

tribution of the balls in the urn, given the result of a set of trials, is more
interesting and much more difficult.

To take an example, suppose we have an urn known to contain a num-
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ber of similar balls, some of which are white and others black. We draw
one ball after another, replacing each ball before the next draw, so as to
make the conditions of draw in each case identical. Suppose we made 100
draws and found 55 white and 45 black balls. What is the proportion of
white balls in the urn ? Deductive logic provides no answer, for theoretically

you could obtain such a series of draws from an urn containing almost any
proportion of white balls. Nevertheless, certain values of the proportion
of white balls are more likely to lead to the observed result than others.

For example, it can be shown that ifp is 1/2, the probability of drawing
55 white balls in 100 draws is more than 1 1 times as great as that of ob-
taining the same result if/? were 2/3. p is, therefore, more likely to be 1/2

than 2/3.

The problem, however, is to find the best possible value of p. As we
remarked before, as far as the single observation of drawing 55 white balls

in 100 draws is concerned, it could have arisen from almost any value ofp.
We cannot, therefore, expect to find any method of estimation which can
be guaranteed to give us always a close estimate ofp. All we can reasonably
do is to formulate a rule which, if followed all the time, will give us fairly

close estimates ofp in most cases. For instance, ifwe adopted the rule that

p is estimated by the ratio of the number of white balls observed in a series

of draws, 55/100 in the case under consideration, it can be shown that it

would lead to a correct or very nearly correct estimate of p in a vast

majority of cases.

The celebrated statistician, R. A. Fisher, proposed that the method of
estimation chosen should be required to fulfil three conditions. In the first

place, the method of estimation should be consistent. What it means may
be illustrated by an example. Consider a production process turning out
ball bearings of a certain diameter d. However perfect the process, it can-
not turn out all the balls with exactly the same diameter. Their actual

diameters would hover round the specification number d within a more or
less narrow margin. If we are given a large lot of these ball bearings and
we wish to ascertain their average diameter, we may select at random a
sample of, say, 50 balls and ascertain the sample average or mean. We may
then simply take the sample average or mean as equal to the lot average
(d). This is one way of estimating the lot average.

However, the size of the sample remains arbitrary. We could, for in-

stance, take a sample of 100 or of any other larger or smaller number of
balls, instead of a sample of 50, and each such sample would lead in general
to a different estimate of d. There is no reason why a sample average of,

say, 100 balls should equal that of, say, 50. But if our method of estimating
d—i.e. our 'estimator'—is consistent, all these different estimates should
approximate closer to the lot average d as the sample size increases. If
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the given 'lot' is so large that we may treat it as practically infinite, we
could, of course, never sample it completely. But the different estimates of

its value that we should get would converge in probability to a limiting

value d&s the number of balls selected in the sample increased indefinitely.

In other words, the larger the sample the greater the probability that the

estimated value of d differs from its actual value by an arbitrarily small

amount. Any method of estimation which fulfils this requirement is called

consistent.

Very often we have several consistent methods of estimation. For in-

stance, in the aforementioned example, we took the sample average as an
estimate of the lot average. We could instead take the sample median as

an estimate of the lot average. This, as we explained earlier, means that we
first arrange the balls selected in the sample in ascending order of their

magnitude—first the smallest ball of the sample, second the next bigger

and so on, ending with the biggest ball of the sample. The median then is

simply the diameter of the middle ball in this ordering. Thus, if our sample
consisted of 51 balls, the median would be the diameter of the twenty-sixth

ball when all 51 of them are arranged in order of their diameters. If, on the

other hand, the sample size were an even number, e.g. 50, there would
be two middle items, viz. the twenty-fifth and twenty-sixth balls, and the

median would simply be the average diameter of these two. If we adopted
the median method of estimating the average diameter d of the lot, it can
be proved that the sample medians, too, would converge to d as the sample
size increased indefinitely. The median method, therefore, is also consistent.

Which one ofthe two methods—the mean method or the median method

—

then* should we adopt?

To choose between the two we adopt a second criterion of a good
estimator. This is the criterion of efficiency. It recommends us to adopt
that method of estimation which in practice 'works better'. What do we
mean by it? Suppose we decide to adopt the mean method of estimation

and work with samples of any fixed size, say 50. Naturally different sam-
ples selected from the lot would lead to different values of sample means
even though the sample size remained the same. Thus, for instance, five

samples of fifty each may have the following means: 41, 38, 39, 42, 40
millimetres. These different values of the sample means have a definite

standard deviation. Similarly, ifwe decide to adopt the median method and
work with samples of the same size, viz. 50, we shall obtain another

series of values of sample medians given by the different samples. All these

sample medians too have a definite standard deviation. Now, as it happens,

the fact is that the standard deviation of the sample medians is different

from that of the sample means although the sample size in both cases is

the same. The more efficient method of estimation is the one that has a
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lower standard deviation. The reason is that it is less subject to sampling
fluctuations and therefore leads to more stable estimates. In the present
case it can be proved that sample means have a lower standard deviation
than sample medians. The mean method of estimation is therefore more
efficient than the median method.

We can, in fact, compare the relative 'efficiencies' of the two methods.
For it can be shown that the standard deviation of sample medians, when
the sample size is 100, is about the same as that of sample means when the

sample size is 64. The use of the median method therefore sacrifices about
100 — 64 = 36 observations in 100. This sacrifice of observations entails,

in turn, loss of 'information'* contained in the sample. In general, what-
ever method of estimation we might choose it would involve some loss of
'information'. Naturally the 'best' method of estimation is the one which
does not lose any. Such a method of estimation is said to be sufficient. In
practice this means that if our method of estimation is sufficient, it gives

all the 'information' that the sample can supply about the lot average and
no other method of estimation can add anything to it. It is, therefore, the

best estimate one could ever have. But unfortunately sufficient estimators

do not always exist, and in fact they are the exception rather than the rule.

Since sufficient estimators do not always exist, other methods of approach
have been suggested by various writers.

In order to explain the vocabulary required for a discussion of an
alternative approach to the problem of estimation and inductive inference,

we shall now complicate a little the urn problem cited above. Let us imagine
that we have a collection of three different types of urns, each of which
contains a certain known proportion of white balls (see Fig. 61). We first

select an urn at random and draw our series (with replacement) as before.

We are given the number of white balls in the series of draws. What type
of urn did we select for drawing our series? Here again, our actual series

could have, in principle, arisen from almost any type of urn. But we have
to select the most reasonable alternative on given evidence. Now, T. Bayes
showed that this problem could not be solved without some additional

information. Not only must we know the result of our series of draws and
the actual proportions of white balls in each type of urn, but we must also

know the relative proportions of the various types of urns in our collection

of urns.

The proportions of various types of urns may be equal or we may have

* This use of the word 'information' is technical but is fairly closely allied to its

everyday meaning.
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a preponderance of some types of urns over others. The proportion of an
urn of any type to the total number of urns in our collection represents the

initial chance of its being selected for the purpose of drawing our series.

Thus, if our collection had 30 urns of three types, 10 of each type, each

type of urn has an equal chance of being selected initially. But if, on the

other hand, it had 20 of type A, 5 of type B and 5 of type C, the initial

First scheme of Distribution of Urns

Ten Urns of type A each containing O 9 9
Ten Urns of type B each containing O 9 9
Ten Urns of type C each containing O 999 9

Second Scheme

Twenty Urns oftypeA each containing O 9 9
Five Urns oftype Beach containing O 9 9 9
Five Urns of type C each containing Q 99 9 9

Fig. 61

chance of selecting an urn of type A would be four times that of type B or

C. This initial chance is technically known as its prior probability. In the

examples just quoted the prior probabilities of the three types of urns A,
B and C are all equal, being 1/3 in the former case and 2/3, 1/6, 1/6 res-

pectively in the latter case. Bayes showed that, given the prior probabilities

of each type of urn in addition to other information already mentioned,
we can work out which of the various alternatives is the most reasonable to

adopt. But in the absence of any information about prior probabilities the

problem cannot be solved.

At this point it may justly be objected that there seems little or no con-
nection between the experiments ofdrawing balls from urns and the actual

problems of inductive inference. But it is remarkable that the practical

problems of scientific inference in widely different fields—such as the prob-
lems arising in the oxidation of rubber, the genetics of bacteria, fruit fly or

human beings, testing the quality of manufactured goods and many more
besides, involve the solution of 'urn-problems' of this and similar kinds.*

In dealing with more complicated problems we find that when the problem
is transcribed in terms of a suitable urn model, we often do not know the

prior probabilities of the various types of urns without which Bayes's

solution is inapplicable.

* For example, the problem of estimating p by observing the proportion of white
balls in a series of, say, 100 draws is similar to that of ascertaining the proportion (/>)
of defectives in a production process as a whole by observing the fraction defectives in
a sample of, say, 100 articles.
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Many scientists try to evade this difficulty by suggesting that if we do
not know anything about the initial proportions of the various types of

urns, i.e. their prior probabilities, we may assume them to be all equal

to one another, and use Bayes's formula to obtain a solution. Others,

recognising the arbitrary nature of this assumption, propose to circumvent

Bayes's formula by specially devised postulates. For instance, R. A. Fisher

proposed to replace Bayes's formula by what he called the postulate of

'maximum likelihood'. Without going into technical details, Fisher's

postulate merely means that we should select that particular alternative

which is most likely to produce the result actually observed.

In this form Fisher's postulate seems eminently reasonable, but if its

actual application is examined more closely it makes the same assumption

about prior probabilities as Bayes. The only difference is that in Bayes's

formula the assumption is clearly visible, while in Fisher's formulation it

appears in a disguised form. Still others attempt to avoid making Bayes's

assumption, but on closer examination Bayes's assumption comes out in

the open. It seems that Bayes's theorem, like the legendary phoenix, once

burnt reappears from its ashes in another form. What then is the way out

of the impasse? Apparently we can adopt only two courses; either we
guess the unknown prior probabilities as plausibly as we can and use

Bayes's theorem, or try a totally different approach by modifying the

problem in the manner recently suggested by Neyman, Wald and others so

as to avoid having to use the unknown prior probabilities.

Neyman has suggested that the problem be modified in the same way as

Henri Lebesgue modified the concept of ordinary integral. As we saw in

Chapter 3, behind the concept of a definite integral there is the intuitive

idea of an area bounded by a curve. We can in most cases compute the

'area' enclosed by a curve by means of an ordinary integral. But there are

cases where a procedure for computing the 'area' is needed and yet the

ordinary integral does not exist. The difficulty was resolved by Lebesgue,

who gave a new definition of integral which applies to a wider class of

functions to which the earlier concept of an integral could not be applied.

But whenever the ordinary integral exists it coincides with the Lebesgue

integral. Neyman considers that a similar generalisation of Bayes's theorem

is necessary. This generalised theorem should include Bayes's theorem as

a particular case when prior probabilities are known, but should be broad

enough to work even when the prior probabilities are unknown, without

which Bayes's theorem is inapplicable. One such generalisation of Bayes's

theorem is Wald's theory of Statistical Decision Functions. To explain his

ideas it is necessary to digress a little on statistical theory.

The most important problem in statistical theory is that of inferring tne

characteristic of a population by observing a random sample selected



CHANCE AND PROBABILITY 247

from it. Suppose, for instance, you were in charge of a manufacturing

process producing millions of articles. You would naturally want to know
what proportion of the articles produced were defective. One method of

ascertaining it would be to test all the'articles produced in the past and to

compute the fraction defective. But it would be impracticable to do so, not

only because the number of articles to be tested is too large, but also be-

cause in many cases the test may involve destruction of the article to be
tested, as, for example, in testing the tensile strength of steel bars. We can

therefore only 'estimate' the characteristic of our 'population' (in this case

the proportion of defectives among the entire output of the manufactured

products taken as a whole) by observing a specimen sample.

In dealing with this problem Wald has, under pragmatic influence, given

up the older point of view, which regarded the question of the value of the

proportion defective as something objective and quite independent of the

consequences it may entail. Instead, he considers that in ascertaining the

proportion of defectives in a lot of manufactured products the question of

its 'true' value has no meaning unless its consequences in action are fully

investigated. Thus, if you concluded on the basis«of certain data that this

proportion was quite low, say less than one per cent, you might decide to

release the product for sale at regular price. If, on the other hand, you
concluded that it was rather large, say ten per cent or more, you might
decide to withhold it altogether. For intermediate values between one and
ten per cent you might decide to sell it at a reduced price.

Now, since no matter what you do, you can never be absolutely sure that

your estimate is 'true', you run a risk of making a wrong decision which
will result in some loss. Wald admits that estimation of such a loss when
any particular decision happens to go wrong may often run into difficul-

ties; but he cuts the Gordian knot by remarking that it is not a statistical

problem but a problem of 'values'. Granting the existence of a 'loss'

function corresponding to the entire field of possible decisions, Wald
makes the natural assumption that any decision (Z>) is better than another

decision (d), if the expected value of the loss incurred by adopting D is less

than that incurred by adopting d. But which among the many possible

decisions is the best? Here, there is a fairly wide choice of criteria available

and it cannot be stated unequivocally that any one of them is superior to

others in all circumstances. However among the various criteria possible

Wald suggests that a decision (£>) which minimises the maximum risk is

the 'best'. What does he mean by it?

To explain his meaning, let us consider the urn problem cited at the

beginning of this section. Here, the datum of the problem is knowledge of
the number of white balls in a series of, say, n draws, and we are required

to decide from which of the three types of urns, A, B and C, we drew the
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series. For the sake of simplicity we shall assume that n is unity and that

the single ball drawn is white. That is, we propose to decide the type ofurn
selected for making the draw on the basis of a single observation that a ball

drawn from it at random is white. Now if we are given the initial chance

(or prior probability) of the selection of each type of urn, by means of

Bayes's theorem we can calculate the chance that the given series of draws

was made from an urn of type A, B or C. On the basis of these chances

we can evaluate the 'loss' that we may expect to incur corresponding to

each of the three possible decisions that we may adopt. For instance, sup-

pose the initial chance (or prior probability) of the selection of the three

types ofurnswas the same for all—that is, 1/3 for all the three types A, B, C.

On the basis of this assumption we can prove by means of Bayes's theorem

that the chance that the urn selected was of type A is 20/47, of type B,

15/47 and of type C, 12/47.

In other words, if we happened to decide that the urn selected was of

type A, we should expect to be right only about 20 times out of 47 and

therefore wrong about 27 times out of 47. Now if we go wrong we incur

some 'loss'. Although, as mentioned earlier, the actual estimation of this

loss is not a simple matter, yet we may simplify the situation by assuming

that every time we make a wrong decision we incur a unit loss, otherwise

zero. In other words, the loss that we incur in case we decide in favour of

an urn of type A is zero if our decision is right and 1 if our decision is

wrong. But the chance of a right decision in this case is 20/47 and that of

a wrong one 27/47. It therefore follows that the expected value of the loss

in case we decide in favour of an urn of type A is X (f$) + 1(H) = ff

.

Similarly the expected values of loss in case we decide in favour of types

B and C are 32/47 and 35/47 respectively. We note that the minimum of

these three values is 27/47, corresponding to a decision in favour of typeA.

We may now summarise the results of our discussion as follows:

Assumed
prior probabilities

Values of expected
losses corresponding

to the three possible

decisions, A, B, C,

Minimum
loss

Decision
corresponding

to minimum loss

*:*:*

ABC
If A

But the assumption that prior probabilities are all equal is arbitrary, for

the proportion of urns of various types in our collection may as well be

quite different. If it is, say, $:£ :f, a similar calculation by means of Bayes's

theorem shows that the chances that the urn selected is of type A, B or C
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are 10/61, 15/61 and 36/61 respectively. Consequently the three values of
expected losses are 51/61, 46/61, 25/61, of which the minimum is 25/61. In
general, to each set of values of the prior probabilities there corresponds a
minimum value of the expected loss. Since theoretically the number of sets

of values that prior probabilities can have is infinite and, as each set gener-

ates its own minimum of expected loss, we have an infinite number of such
minimum values of expected loss. We may thus construct a table like the

one reproduced below showing the minimum loss corresponding to each
possible set of values or prior probabilities.

TABLE OF MINIMUM LOSSES

Assumed
prior probabilities

Values of expected
losses corresponding

to three possible

decisions, A, B, C

Minimum
loss

Decision

corresponding

to minimum loss

ABC
H H if

ft H MHAM
2.Z
47
25.
61

A

A
C
B

Out of this infinity ofminimum values of expected loss,each contributed

by a possible set of prior probabilities, it is possible that there may* be a
maximum. We pick up that decision as the 'best' which corresponds to
this maximum of the minimum losses.f Such a solution is known as a
minimax solution of the decision problem and corresponds to a least

favourable prior probability of selecting the three types of urns. In other
words, if we adopt a minimax solution of a decision problem, we shall

minimise the loss thatwe stand to suffer even under the worst circumstances.

Although we have explained the idea of a minimax solution by means of
the notion of prior probability and Bayes's theorem, it must be emphasised
that Wald's approach is actually designed to circumvent the use of prior

probabilities. He has shown that under some very general conditions a

* We say 'may' because the set of minima in the third column is infinite. If it were
finite, there would certainly be a maximum. But an infinite set need have no maximum
belonging to itself.

t We may remark in passing that there is a close parallel between Wald's theory of
decision functions and Neumann's theory of games. Just as we solve a game problem by
selecting a maximum of colunm-minima of AT-matrix, we solve a decision problem by
finding the maximum of the column-minima recorded in the third column of our table.
As will be shown in the sequel, Wald has developed this parallel still further.
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minimax solution of a decision problem does exist and that this solution

corresponds to Bayes's solution relative to a least favourable prior proba-

bility of the unknown characteristic of the population, (viz. the type of

urn from which the series of draws was made in the case under considera-

tion), even though this least favourable prior probability is actually

unknown.

However the main difficulty in applying Wald's theory is three-fold.

First, Wald's proof of the existence of a minimax solution of a decision

problem is chiefly of heuristic value. It does not enable us to find one in

many concrete cases. Second, Wald's principle prescribes in some cases

a course of action that would be considered irrational by all reasonable

men. Suppose, for instance, a manufacturing process produces articles of

which a constant (but unknown) proportion (p) is defective. Suppose

further the manufacturer wishes to decide between the following two

alternative courses of action:

Alternative I: Sell the lot with a double-your-money-back

guarantee for each defective article.

Alternative II: Withhold the lot altogether from the market.

Here it can be shown that the minimax solution of the decision problem

is in favour of alternative II so long as the manufacturer considers the

possibility p > % even remotely possible. Nevertheless, it will be agreed

that it would be foolish to dump the lot merely because there is a slight

chance of more than half the lot turning out to be defective. Third, a

rather more serious difficulty arises when Wald's methodology is general-

ised to cover cases other than those of industrial application. The reason

is that in Wald's theory, the term 'loss' is not restricted to loss of money

which an industrialist may incur by making a wrong decision. It is given a

very general meaning and includes 'damage' not necessarily measurable by

monetary standards.

Thus, if you wanted to estimate the lethal concentration of a certain

dosage relative to human beings, and if your estimate was significantly in

excess of the 'true' value, your decision would have disastrous conse-

quences. Such a disaster would still be called 'loss' although it could not

be measured in money. However, Wald and his followers admit that

estimation of 'loss' does run into difficulties in such cases but consider

that it is not a statistical problem. Nevertheless, they do assume that this

evaluation of 'loss', at least in a simplified and approximate form such as

we adopted earlier, is often possible in general even when there is no

question of any financial loss.

In spite of these difficulties Wald's theory of statistical decision functions

is already a major advance, unifying, as it does, a number of widely
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different statistical theories such as Fisher's theory of design of experi-

ments and the Neyman-Pearson theory of testing of hypothesis. Fisher's

theory is concerned with agricultural experiments designed to compare the
relative yields of a number of experimental treatments such as varieties of
seeds, manures, etc. Suppose, for instance, we have three varieties ofwheat
seeds. In order that all the varieties be equally represented, we subdivide
the entire area of the experiment into 3x3 compact plots formed into 3
rows and 3 columns.

If any of the three varieties were sown on any of the nine plots, there
would in all be 3 x 32 = 38 = 27 different ways of assigning the three
varieties to 32 or nine plots. But in all ofthese 27 different ways of assigning
varieties to plots all the three varieties are not equally represented (see

A B C A B B

B C A B A C

C A B B C A

Fig. 62—These two squares represent two ways of assigning three varieties A, B C
to nine plots. The left-hand square is a latin square, as all the three varieties are equally
represented in the nine plots. In each column or row each variety appears once and
only once. The nght-hand square is not a latin square, as in the first row variety C does
not appear at all whereas variety B appears twice.

Fig. 62). In order to do this we have to limit our choice to only those of
these 27 ways in which each variety appears only once in each row and
column. Such an arrangement of assigning varieties to plots is known as
Latin square. Fisher's theory of design and Latin squares here is simply
the problem: which of these twenty-seven different ways should we select
to obtain optimum results? Wald has shown that Fisher's theory is a
particular case of his theory of decision functions.

In the Neyman-Pearson theory oftesting a hypothesis the question at issue
is the acceptance or rejection of a statistical hypothesis H. Suppose, for
instance, a lot consisting of N units of a manufactured product is sub-
mitted with the claim that the proportion (p) of defectives in the lot is not
more than, say 5%. The problem is to devise a procedure for testing the
hypothesis (H) that p is less than or at most equal to 005. The procedure
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prescribed is to select at random a number (n) of articles out of the lot and
decide either to accept or reject Hon the basis of observations made on this

sample of size n. An elementary theorem of permutations and combina-

tions shows that there are in all

n\(N-n)l

different ways of selecting a sample of size n out of the lot containing in all

N articles. There are thus S = N\/n\{N — n)\ different samples that could

be picked. A test procedure is merely a method of dividing this totality (S)

of all possible samples of size n into two complementary sub-sets, say

sets s and s* together with the statement of a rule prescribing the rejection

or acceptance ofHaccording as the sample selected belongs to the sub-set

sots*. The sub-set s of the set S of all possible samples is known as the

critical region. There are in general infinitely many ways of choosing a

critical region, that is, a sub-set s of the set S of all possible samples. All

such ways are not equally good and Neyman and Pearson have suggested

certain principles for the proper choice of the critical region, that is, the

sub-set s.

They point out that in accepting or rejecting an hypothesis H we may
commit errors of two kinds:

(i) we may reject H when it is, in fact, true;

or, (ii) we may accept H when it is, in fact, false.

They then calculate the probabilities of committing these two kinds of

errors. The probability a of the former is really the probability determined

on the assumption that H is true, that the observed sample belongs to the

sub-set s or the critical region. The probability /? of the latter is really the

probability determined on the assumption that H is false, that the ob-

served sample belongs to the sub-set s*—that is, falls outside the critical

region. The probabilities a and /S therefore simply mean this : Suppose we
draw a large number, say M, of samples of size n. If we follow the rule of

rejecting H when any one of the M samples belongs to s and accepting it

when the sample belongs to $*, we shall make M statements of rejection

or acceptance of H. Some of these statements will be wrong. IfH is true

and M large, it is practically certain that the proportion of wrong state-

ments will be approximately a. Likewise, if H is false and M large, it is

practically certain that the proportion of wrong statements will be ap-

proximately /S. Naturally the choice of the critical region or sub-set s

should be such as to minimise both a,
ft,

that is, the proportion of wrong

statements whether H is true or false. Now it is quite easy to select a

critical region for which either a or is arbitrarily small. But it is impossi-
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ble to make both a and /? arbitrarily small at the same time for a fixed value

of sample size n. Consequently Neyman and Pearson consider critical

regions for which a has a fixed value and out of the totality of all such
regions they select the one for which /? is a minimum. The quantity a is

called the size of the critical region and the quantity (1 — fl), the power of
the critical region. Neyman and Pearson propose to select out of critical

regions of a fixed size a that one which is the most powerful.

Wald has shown that this theory of critical regions is also a special case

of the decision function theory. In fact, Wald's theory is so general that it

is even possible to interpret a statistical decision problem as a zero-sum
two-person game. As we saw in Chapter 7, von Neumann and Morgen-
stern have developed an interesting theory of games with a view to inter-

preting economic behaviour. In such a game the strategy of one player is

designed to maximise the payment or outcome function K(Jt i) while the

other endeavours to minimise it. Now Wald suggests that a statistical

decision problem can be interpreted as a zero-sum two-person game by
setting up the following correspondence

:

Two-person Game Decision Problem

Player 1 Nature

Player 2 Experimenter

Outcome K(J, i) Loss function

Wald shows that the analogy between the decision problem and a zero-

sum game is complete except for one feature, viz. the absence of sharp
clash of interests between the two players in a game. While it is true that

the experimenter wishes to minimise the loss function, we could hardly say
that Nature opposes him by endeavouring to maximise it. However, Wald
counters this objection with the suggestion that it is not unreasonable for

the experimenter to act as //Nature wanted to maximise the loss function.

This is, no doubt, playing safe, but the trouble is that it is apt to be too safe

in many cases.

For instance, we saw earlier how the minimax solution of the decision

problem facing a manufacturer wishing either to sell his product with a
double-your-money-back guarantee in case of a defective article or to
dump the lot was irrationally overcautious. This is because, interpreted as a
game, the problem views Nature as a hostile opponent endeavouring to

make the player lose asmuch as possible. But actually in many situations, far

from actively opposing the experimenter, Naturemay even help him. Some
post-Waldian work on compound Decision Functions seems to show that

there exist situations inwhich one would profit by discarding the Wald view
of expecting either definite hostility or even belligerent neutrality from
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Nature and actually planning the experiment on anticipations of positive

help.

One consequence of the probability calculus is that no successful gamb-

ling system can be devised. But as many were slow to realise it, attempts at

creating such a system continued to be made for a long time. Indeed, they

have not ceased altogether, even now, and sometimes such 'infallible'

gambling systems are described in popular magazines or offered for sale at

casino meets and gambling dens. Here is one specimen: Double your stake

each time you lose till you score a win. A simple calculation would show

that, if you followed this rule consistently, you are certain to make a net

gain equal to the amount of your initial wager. Suppose, for instance, you

bet one rupee initially and lose four times in succession but win on the

fifth occasion. You would thus lose fifteen rupees in the first four trials

but gain sixteen in the fifth trial. By repeating this process indefinitely you

could no doubt become a multi-millionaire in no time.

However, the reason why I do not fly to Monte Carlo and try this

system is that there are two very serious snags in applying it. In the first

place, it assumes that I have literally an infinite fortune to enable me to

double the stakes each time I lose. Secondly, it assumes that the 'bank'

against whom I play would be willing to take on my bets each time I

raised the stakes. If I repeat this process indefinitely, sooner or later

I am bound to have a run of bad luck, which may result in, say, ten suc-

cessive failures. I should then have to raise my stake to a sum of Rs. 1 ,024

—

if I am to continue the game. If I lost 20 times in succession, my next bet

would have to be over the million mark. On the other hand, a succession

of wins would bring in no corresponding gains as my bets would remain

as low as the initial bet.

You could, of course, make the game less exciting and much less

catastrophic by raising only slightly the amount of bet after each loss and

slightly lowering it after each win, every increase being a little more than

the previous decrease. If then you win and lose alternately with complete

regularity, your capital would oscillate up and down but would increase

on the whole as each increase is slightly larger than the previous decrease.

In this way, too, you could win a huge fortune for yourself, but here again

the rub is that such regularity does not usually occur and the chance of

its occurrence is as small as that of an equal number of straight wins. In

all this, of course, it has been assumed that the bank takes no cut. But as a

matter of fact, since every roulette wheel has one or more zeros, this

raises the odds against the player, so that no matter what system the latter

may adopt, his money gradually must leak from his pocket to that of
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the bank as surely as the heat of a boiler leaks into the surrounding

air.

I have used the above analogy purposely as there is a basic similarity

between the two phenomena. Both are subject to the laws of probability

and if you could beat the laws of chance in a casino you could do many
more wonderful things. You could, for instance, create perpetual motion
machines and thus run ocean-going liners without fuel or devise self-

operating factories. For, if you could reverse the flow of money from the

pocket of the casino bank to that of the gambler, you could equally well

reverse the flow of heat from the surrounding air into the boiler and thus

operate your factory or liner without fuel. The reason for this is that heat

processes themselves are very similar in their nature to games of dice and
roulette, and to expect that heat will flow from the surrounding air to the

boiler is as vain as to hope that money will flow from the pocket of a
casino bank into that of a player.

Heat in a body is nothing but the rapid and irregular motion of its

constituent atoms and molecules. The more violent this molecular motion
is, the warmer is the body. As this motion is quite irregular, it is subject to

the laws of chance and the probability of the body being in any given

thermal state can be worked out in the same manner as the probability

of getting a given combination of, say, ones and sixes when a large number
of dice are thrown together. Just as we can work out what is the most
probable combination likely to result from throwing a large number of
dice, we can also work out the most probable state of motion in a system
consisting of a large number of particles moving about irregularly. This
state actually corresponds to a more or less uniform distribution among
all of them of the total available energy. Thus, if one part of a body is

heated so that the particles in this region begin to move faster, one would
expect this energy to be distributed evenly among all the remaining
particles. However, as the motion of the particles is quite irregular, there

is also the possibility that, merely by chance, a certain group of faster

moving particles congregate together and thus collect a larger part of the

available energy in one region at the expense of the other. This spontane-

ous concentration of heat in a particular part of the body would corre-

spond to the flow of heat against the temperature gradient, that is, to the

flow of heat from the cooler to the warmer portion of the body, like the

flow ofmoney from the pocket of the bank to that of the gambler. Neither
of these phenomena is excluded in principle ; only the probabilities of their

occurrence are negligibly small.

Obviously the flow of heat from the warmer to the cooler portion of a
body is accompanied by a greater degree of disorder of molecular motion.
For while in the previous state the faster-moving molecules flock together,
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in the latter the faster and the slower are distributed randomly all over. The
degree of disorder of molecular motion in any given system of bodies or

particles is called entropy. Hence the flow of heat from the hotter part of
a body to the cooler part tends to increase the entropy of the system or the

degree of disorder in its molecular motion. Now if you considered the

entire universe as one statistical ensemble of irregularly moving particles,

each state is likely to be followed by a more disorderly one, as absolute dis-

order is the most probable state. It follows, therefore, that the universe as

a whole tends towards a state of maximum entropy or maximum dis-

order. If, as is currently believed, it is this increasing entropy that gives the

flow of time its irreversible trend, time itself would cease to flow the

moment the entropy of the universe as a whole attained its absolute

maximum, towards which it is hastening. It is, indeed, a far cry from
M6r6's paradox to speculations about the end of Time, but the calculus

designed to resolve the one foretells the other.

Laplace, the celebrated mathematician of the early nineteenth century,

once remarked that, given the initial position and velocity of every particle

in the universe at any particular instant, and given all the forces at work in

Nature, a super-intelligence could calculate with precision the entire past

and future history of the cosmos. Nothing would be uncertain for him;
the future,as also the past, would lie before him, unfolded in a vast cosmic

panorama. The reason why he could thus apprehend at one glance the

history of the cosmos from beginning to end was the fact that its affairs,

or at any rate those studied by physics, were governed by a system of
rigid causal laws, which ensured that the present state of the cosmos
exactly determines its future, as it is itself already determined by the past.

It followed, therefore, that a knowledge of the forces animating the

universe, as well as its initial state at any instant of time, is all that is re-

quired to foresee its future history and comprehend its past evolution.

But the rub was that the cosmic calculation posed by Laplace was for

ever beyond the capacity of human mathematicians, even if they could

somehow divine the system ofcausal laws and the initial state ofthe cosmos
at a particular time. For our human—all too human—mathematicians

found even the comparatively simple problem of the 'three bodies' (that is,

the problem of determining the motion of only three bodies moving under
their own mutual interactions) practically insoluble. One could, therefore,

hardly hope for a solution of Laplace's problem wherein virtually an
infinite number of bodies move under their own actions and reactions.

Finding itself helpless before such a welter of individual motions,
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mathematical physics, towards the middle of the nineteenth century, struck

out in a new direction. Instead of attempting to keep track of each indi-

vidual particle, molecule or event, it began to focus attention on the
statstical properties of large crowds of them. For instance, in the kinetic

theory of gases, a gas enclosed in a cylinder was envisaged as a swarm ofan
immense number of randomly moving molecules. Kinetic theory did not
concern itself with the motion of any one of these molecules individually,

but rather tried to grasp the motion of the entire assembly of molecules at

one blow by a statistical study of the entire group as, for instance, by
calculating the average energy of the group of molecules as a whole and
identifying it with the measure of gaseous temperature.

In this way it was discovered that, in addition to causal laws which
produce determinate effects, there are statistical laws derived from a
statistical study of crowds of molecules or events. Such, for example, is

the second law of thermodynamics,which states that heat flows from a hot
to a cold body when the two are placed in contact. As Boltzmann showed,
this law could easily be deduced from statistical considerations.

To understand Boltzmann's argument, consider first the following ana-
logy. Suppose we have two committees of representatives of teachers and
students. The teachers predominate in one and the students in the other.

Suppose, further, that a number of persons picked at random from the
first committee are exchanged with an equal number also picked at random
from the second. Since the teachers predominate in the first and the stu-

dents in the second, the exchange is likely to reduce the proportion of
teachers in the first and increase it in the second. Consequently the average
age of the first group would decrease, while that of the second would in-

crease. This is what is most likely to happen. But it is not altogether im-
possible that the exchange may result in the influx of more teachers from
the second committee in return for a corresponding number of students
from the first. If this happens, the average age of the first committee would
increase while that of the second would decrease.

To revert to Boltzmann's argument, consider now two chambers con-
taining a gas at two different temperatures. Since the temperature of a gas
according to the kinetic theory is merely a manifestation of the average
kinetic energy of its constituent molecules, it follows that the molecules
ofthe gas in the hot chamber have on the average greater energy than those
of the cold. In other words, there are more faster moving molecules in the
former than in the latter. In terms of our analogy the former has more
'teachers' than 'students'. Now when the chambers are connected together,

approximately equal numbers of molecules will move from one to the
other chamber. The exchange results in the influx into the hot chamber of
a larger number of slow-moving molecules (students) from the cold cham-
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ber in lieu of the fast-moving molecules (teachers) of the hot chamber.

The reverse is the case with the cold chamber. The average energy of the

molecules of the cold chamber, and consequently its temperature,

increases at the expense of the molecules in the hot chamber whose

average energy correspondingly decreases. Heat thus flows from the hot to

the cold chamber.

However, the assumption that when the two chambers are connected to-

gether, a greater proportion of the fast-moving molecules leaves the hot

chamber and is exchanged with the slow-moving molecules from the cold

chamber, is only 'reasonable' on probability considerations. No doubt it is

very likely to be true, but it need not necessarily be always true. For in-

stance, once in a while, the warm chamber may exchange all or most of its

slow-moving molecules (students) with only the fast-moving molecules

(teachers) of the cold chamber. If this happens the hot chamber will be-

come hotter, and the cold chamber cooler still. The second law of thermo-

dynamics would be violated as we should have a case where heat flowed

against the temperature gradient, viz. from the cold to the warm chamber.

Such a contingency is not impossible, though extremely improbable, as the

probability of its occurrence is infinitesimally small. Thus, while the causal

law rigidly lays down how any event should happen in the future, the

statistical law visualises a manifold of infinite possibilities for crowds of

events out of which it picks up those that are mostly likely to occur.

Now, till very recently, the statistical laws, in spite of their obvious

utility, were never considered 'really' fundamental. They were tolerated as

ersatz laws and used in the hope that some day they would be reduced to

genuine laws of the causal type. But about forty years ago the Austrian

scientist, Franz Exner, put forward the opposite view that the 'assumption

that every individual occurrence is strictly causally determined has no

longer any justification based on experience.'

Although little attention was paid to it at the time, yet only a few years

later a large number of eminent scientists, one after another, came to a

similar conclusion. Thus Heinsenberg, Schrodinger, Born, Eddington,

Jeans, Weyl, Dirac, etc., expressed the view that modern developments in

quantum physics definitely show that statistical laws are the fundamental

laws of nature and that all the so-called causal laws are merely the result

of statistical regularities of crowds of microscopic events derived by the

application of probability calculus.

However, it seems to me that the introduction of the probability notion

into fundamental physical theory does not indicate that the microscopic

event in question is not causally determined. It merely shows that we do

not know whether the necessary and sufficient conditions for it to material-

ise are fulfilled or not For instance, take the question of assessing the
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expectation of human life. There are two distinct methods of ascertaining

it. One is the method of medical diagnosis of a doctor who may be able to

tell me that I have just a year to live. The second is the method of a life

insurance actuary, who calculates the average expectation of life of a whole
class of individuals from a statistical study of mortality tables. The reason
why the second method works at all is the fact that there are determinate
laws which govern the expectation of life of every individual. Only they
have still to be unravelled; and,where we are interested only in the average
properties of crowds of events, it is futile to attempt the unravelling.

Nevertheless, if the causal laws of life and death change, as they do with
the more efficient organisation of health services or (in the reverse direc-

tion) with the outbreak of war, they force a corresponding change in the
actuarial calculations.

In fact, the probability calculus is based on the empirical assumption
that the relative frequencies of events of a particular kind in a 'collective'

of a large number of such events remain stable. Thus, if the event in ques-
tion is the survival of an individual, say aged 30, during his thirty-first

year, we consider a collective of a large number of individuals aged 30
in a society. We observe the number of those who survive after their thirty-

first year and calculate the frequency or the ratio of the survivors to the
total. This frequency, which remains the same for some time, represents

the probability of the survival of the group. It is true that sometimes we
are able to state the probability of an event from a priori considerations, as

when we say that the probability of tossing 'heads' with a coin is 1/2. But
even here, the statement finds its ultimate justification in the fact that the
frequencyratio of 'heads'in a large number of throws remains stable at 1/2.

This stability of the frequency ratio would be impossible if every indi-

vidual event were completely indeterminate and if a sort of Ariadne's
thread did not run through the causal nexus tying up the collective as a
whole. When this thread snaps, the probability calculus breaks down or, at

least, has to reconstruct the calculation de nouveau, basing itself on a new
probability value. All this is well understood in actuarial practice, where
the average expectation of life is continually revised as determined by the
conditions of life and health in a changing society. In wave mechanics,
however, this aspect is taken care of by making each separate measurement
or observation the basis of a new estimate of quantum mechanical proba-
bilities in a highly artificial manner. This artificial manner of their deriva-
tion is, then, justified by the experimental success of the underlying ad hoc
assumptions.

Their success is not denied, even though the present state of quantum
theory is considered far from satisfactory by the advocates of indeter-

minism themselves. But this very success, which implies that the quantum
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probabilities, mere frequency ratios, remain stable, is an indication that

some sort of causal laws governing the quantum phenomena are at work
'behind' the statistical laws. The success of quantum mechanics, such as it

is, therefore, does not involve the breakdown of the causality concept any
more than the success of actuorial calculations meansthe breakdown of the

medical (causal) laws of health and disease in a community.

The new developments in quantum mechanics, therefore, far from in-

volving the total breakdown of the old determinist principle of causality,

are merely a pointer that it can no longer be expressed in purely mechanist

terms of classical physics and is in need of a reformulation in terms of

categories of a wider and profounder logic as indicated in the sequel.

Before examining some suggested reformulations we may, at the out-

set, meet the criticism that such a formulation is for ever impossible. For

instance, J. von Neumann is said to have 'proved' mathematically that the

theory of quantum mechanics can never be so extended and perfected as

to yield perfectly determinate predictions. It is thus claimed that the

determinate prediction of atomic phenomena is 'impossible not only in

present-day practice but in eternal principle'. But as this 'proof is based

on the tacit assumption that the laws of quantum mechanics are valid for

all kinds of statistical assemblages, it begs the very question it sets out to

'prove'. It is like trying to show the impossibility of the methods of medical

diagnosis by the assumptions of actuarial science. Most indeterminists,

therefore, are less dogmatic and accept that no logical reasons exist for

excluding the possibility that 'quantum mechanics might one day be con-

sidered as a statistical part of science imbedded in a universal science of

causal character', even though they actually deny any possibility of such a

formulation.

This denial is justified by an appeal to Heisenberg's principle of in-

determinacy, which, broadly speaking, recognises the fact that every act of

observation disturbs the very object it tries to observe. In a way, this

principle is not entirely new and was recognised even in classical physics.

For instance, it was realised that observing the temperature of a liquid by

immersing a thermometer therein does to some extent modify its actual

temperature. But this disturbance being of a determinate character,

classical theory could calculate it and account for it. What is new in

Heisenberg's principle is that the act of observation disturbs the atom,

electron, or proton, etc., in an unpredictable way. It is this feature that is

new to physics and is, indeed, the kernel of the indeterminacy principle.

However, if Heisenberg's principle were consistently followed to its

logical conclusion, there could be no prediction of any sort whatever.

Accordingly, the indeterminists themselves do not consistently stick to it

and proceed to make scientific predictions by assuming a veiled form of
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causality under the guise of probability laws, which scientists always found
handy, when it was either too much trouble to apply the causal laws to

individual phenomena or when the laws themselves happened to be un-
known.

There is, however, one sense in which the quantum critique of the old

Laplacian conception of causality is right. Laplace, as we mentioned be-

fore, envisaged a universe of independent particles whose future course of
motion could be written down from a knowledge of their initial positions

and velocities. But position at a point in space and velocity at an instant of
time depend on two abstractions, namely, that of a 'point' as a dimension-
less length and that of an 'instant' as an extensionless duration. The under-

lying assumption by which these abstractions are evolved is the hypothesis

that any length or any duration, no matter how short, can, in principle, be
measured. Now the new developments in modern physics seem to show
that this assumption is no longer valid in the sub-atomic regions. The
only way whereby we can measure the length between two adjacent points

is by means of light. But two points, whose distance apart is less than a
certain function of the wave length of light by which they are observed,

form only one image and are, therefore, seen as coincident. Consequently,

the physical means of measurement impose a natural limit to the precision

of measurement. Whatever we may do we cannot surpass this limit.

Likewise, two events close together can be distinguished as distinct only

if they are separated by a certain minimum duration. If they are closer

than this minimum limit, they are observed as one, or are not recognised

as distinct events at all, lacking the time for their formation, which, though
small, is not zero. Hence the basic assumption of the mathematical theory

of physics, viz. that time and length measurements can be made with an
indefinitely increasing degree of precision, has now come into conflict with
the present-day practice of physicists, whose means no longer permit them
to cross certain narrow limits. It is, therefore, likely that while the classical

abstractions, point-position and instantaneous-velocity have been ex-

tremely useful and, in fact, indispensable for the creation of rational

mechanics, they are now preventing a fuller apprehension of physical pro-

cesses on the sub-atomic scale. Science recognises the need for abstractions,

but it also stresses the importance of going beyond them and creating new
ones in order to have a better grasp of natural processes when new de-

velopments show up the limitations of the old. It seems to me, therefore,

that the old abstractions, point-position and instantaneous-velocity,

along with their inevitable concomitants like electrons, positrons, photons,

collisions, attractions, spins, waves, etc. (with the possible exception of the
quantum of action), have to give way to newer abstractions, which some-
how resolve the conflict between the apparent continuityofthe macrocosm
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(or the world of everyday observations), and the absolute discontinuity of
the microcosm (or the sub-atomic world). Naturally, such abstractions

cannot be cast in the image of anything that we can intuitively derive from
our everyday daily experiences of the macroscopic world.

Some eminent scientists seem to think that quantum mechanics has
sounded the knell ofcausality for good and all ; and, like the fallen Humpty-
Dumpty, not all the king's horses can put it together again. Eddington,
for example, says, 'indeterminism (of atomic phenomena) cannot be got
rid of by any possible change of the present-day concepts of position and
velocity to some other concepts'. Why? Because 'it is not possible to

transform the current system of physics, which by its equations links

probabilities in the future with probabilities in the present, without alter-

ing its observable content.' But this is so only because it continues to

stick to the Newtonian abstractions of point-position and instantaneous-

velocity, which are apparently no longer suited to the new situations en-

countered in present-day physical research. As a result, physical theory is

forced to resort to probability calculus, as observation enables it to de-

termine only one-half the co-ordinates of the physical configurations

exactly, while leaving the other half entirely undetermined. However, if

physics could find a way out of the abstractions of point-position and
instantaneous-velocity to a more rational synthesis of sub-atomic notions
in terms of non-intuitive parameters, it need not have to appeal to proba-
bilities at all, except for developing a theory of errors, as in classical

physics.

But to attain to this fuller synthesis of motion, it would be first necessary

to create a new mathematics which is able to unite in itself the positive

sides of analysis as well as of the theory of discrete manifolds. At present,

both analysis based on the notion of continuity and its opposite—the

theory of discrete manifolds—are being developed in isolation one from
the other. The problem is to create a new mathematics which embodies
the reciprocal unity of both. When such a mathematical apparatus is at

last forged and the continuum and the discrete synthesised, it might be
possible to overcome the antagonism between the wave-aspect and the

particle-aspect of both matter and light and construct a more rational

scheme of things than the mathematical abracadabra that is present-day

quantum mechanics.

Unfortunately, instead of developing the quantum theory on these lines,

the quantum physicists are content to adopt a positivist outlook. The
positivists claim that science reveals a number of laws connecting our
sensations and it is only a 'more or less refined metaphysics' to try to go
deeper and explain these laws. As a result, they are led by the logical de-

velopment of their own thoughts to a peculiar realm of what Reichenbach
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calls 'interphenomena' and Jeans calls the 'substratum', and tend to a
mystical interpretation of the sub-atomic particles. No wonder there are

almost as many different schools of wave mechanics as there are of
psychology, and, as in psychology, scientific observation is quite unable to

decide between them, not only here and now but in 'eternal principle'. All

this may not matter to the positivistically minded quantum physicists, who
seem to have reconciled themselves to the view that the fundamental
processes of nature are inexplicable and that it is futile to try to fit them
into the causal scheme of science as a whole. But it is an unsatisfactory

state of affairs for those who seek a deeper understanding of the natural

processes and firmly believe that nothing in nature is isolated or inexplicable.

In an earlier section we gave an account of the 'frequency', 'credibility',

'axiomatic' and Laplace's 'classical' theories of probability. We saw that

although all of them were in one way or another unsatisfactory, the last-

mentioned theory, amended in the manner indicated, was the most suit-

able. Now, if we examine closely the chance phenomena to which mathe-
matical theory of probability is actually applied, such as games of chance,
genetics, statistical mechanics and statistics, we shall find that the proba-
bility definition in terms of equipossible cases is not only adequate but is

the one that is actually used.

Games of Chance

As we have seen already, probability definition in terms of equipossible

cases is not only adequate for all problems arising here but is in fact the
only one available. The frequencies actually observed are used only as a
test for the verification of initial hypotheses, from which probability is

derived (on what may be described as a priori grounds) by resolving the

outcome into a number of equipossible alternatives.

Genetics

Jean Jacques Rousseau began his inimitable Confessions by compli-
menting himself with the remark that nature broke the mould in which he
was cast. Had the findings of modern genetics been known in his day, he
would have realised that this indeed was no great distinction. For each
one of us—genius or dunce, prodigy or imbecile, beauty or beast, blonde
or brunette—is cast in a genetical mould the like of which has never been
in all history, nor shall ever be again in all eternity. The reason is that the
process of casting genetical moulds is in some ways very similar to dealing
card hands and there is actually more likelihood of a given bridge hand
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being repeated than that of duplicating the genetical mould of any given
individual. First, this given individual is the result of mating by just two
specific parents out of all the myriads of the past and present, and he
could have been produced by no others. But this is not all. These two
specificparents could have theoreticallyproduced some 300,000,000,000,000

different genetical moulds, each different from any other in one or more
ways.

During conception, when a male sperm fertilises a female ovum, the

nuclei of both the sperm and the ovum split into a number of parts to pro-

duce a new cell, which is, in fact, the genetical mould* of that particular

individual. To understand the mechanics of this mould-making process,

imagine a pack of cards with the four kings removed. You will then have
48 cards grouped in 24 pairs, twelve black pairs beginning with a
pair of black aces and ending with a pair of black queens, and
twelve red pairs beginning with a pair of red aces and ending with a pair

of red queens. Now pick up one card out of each such pair, that is, either

the ace of spades or clubs out of the pair of black aces and so on for all

pairs of each denomination and colour. How many different sets of 24
cards could you pick up in this way?
To simplify the problem let us first take a pack containing only four aces

—two pairs in all, a black pair and a red (see Fig. 63). Out of the pair of

black aces we could pick the ace of either spades or clubs. This gives two
ways of picking a black card. Similarly, there are two ways of picking a
card of the second (red) pair, and since each of the former two ways can be
combined independently with the latter there are in all 2 x 2 = 22 = 4

ways of picking two cards out of four, as a glance at Figure 63 will show. If

you had three pairs of cards, two pairs of black and red aces and a third

pair of, say, black twos, a similar calculation would show that you could

pick up three cards out of the six in 2 x 2 x 2 = 23 = 8 different ways
(see Fig. 64).

It is not difficult to see that for every increase in the number of pairs in

our pack the number of different ways increases by a power of two. So,

out of the full pack of 48 cards of 24 pairs with whichwe originally started,

we can pick up 24 cards in the manner described in 224 = 16,777,216

different ways. Now if you substitute for the cards what geneticists call

'chromosomes', you have a pretty close approximation to what actually

happens when a sperm or ovum is formed from germ cells by a process of

cell division. For a germ cell consists of 24 pairs of different chromosomes,
very much as our pack of cards consists of 24 pairs of cards of the same

* This mould is admittedly very plastic and is modified a good deal by the baking it

subsequently receives in the environmental furnace, but it carries within it all the legacy
that the parents have to give.
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denomination and colour. When it divides, one chromosome out of each
pair separates from its associate in the pair and the result is the production
of two sperms (or ova) each containing only 24 single chromosomes.
The process of sperm (or ovum) formation out of the germ cell is thus

closely analogous to that of picking 24 cards out of 48 in the original pack.
That is why a sperm (or ovum) may be any one of the 224== 16,777,216
different combinations of 24 chromosomes out of the 48 in the
germ cell. But any one of these 16 million odd different sperms may
fertilise any one of the same member of different kinds of possible ova at
the time of conception to form a genetical mould of 24 pairs of chromo-
somes. Consequently, the total number of different genetical moulds that
any given pair of parents could theoretically cast is 2M x2M = 2w =
281,474,976,710,656 or, in round figures, 300,000,000,000,000. In other
words, the chance of even a given pair of parents ever duplicating any one
of these genetical moulds is so remote that it could happen only once in
about (300,000,000,000,000)2 = 9 X 1028 times. This is many million times
rarer than duplicating a given bridge hand in a bridge game and about 200
times rarer than dealing all thefour players a complete suit of cards.

This shows how the probability calculus, and in particular the definition
of probability in terms of equipossible cases, helps us solve one problem of
human genetics, the problem of what Amram Scheinfeld has called The
Miracle of "you".' But the same calculus and the same concept of proba-
bility can handle much more complicated genetical problems. Naturally
the manifold of permutations and combinations possible with a set of 24
pairs ofchromosomes in the human germ cells, out ofwhich human sperms
and eggs are formed by a process of bifurcating one chromosome out of
each pair, is truly prodigious. But to add to the complication the chromo-
somes themselves are by no means the ultimate factors of heredity. They
are really packets of many gelatinous beads closely strung together. It is

these beads called genes which are the ultimate carriers of whatever genetic
legacy a parent has to pass on to its offspring. The technics of mathe-
matics required to deal with this additional complication are therefore
rather stiff; but the probability concept in terms of equipossible notion
underlying the technics remains the same as in the case of ordinary card
and dice games. That is why the probability calculus designed to deal with
card or dice games is at the same time adequate for handling problems of
modern genetics.

Statistical Mechanics

In statistical mechanics we study the statistical properties of ensembles
of particles. As we saw before, mathematical physics, unable to keep track
of the individual motions of the molecules of a gas enclosed in a chamber,
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was obliged to study the statistical properties of the entire swarm as a

whole. Suppose, for instance, we have a gas chamber containing N gas

molecules in all. According to the kinetic theory of gases, each of these

molecules is in a state of incessant motion. At any instant each of them has

a position specified by three position co-ordinates (x, y, z) and a velocity

specified by three components («, v, w) along the three co-ordinate axes.

The state of each molecule is thus specified by 6 numbers. Since there are

N molecules in all, the state of all the gas molecules in the chamber is

specified by 6 N numbers.

Now, if you imagine an imaginary space of 6N dimensions, that state of

the gas as a whole could be represented by a single 'point' in this super-

space of 6N dimensions. Each point in this space is specified by 6N 'co-

ordinates', the set of 6N specification numbers required to fix the state of

the gas as a whole at any particular instant. Such a superspace of 6N

dimensions is called phase space. Let us divide this superspace into two

regions of equal 'volume' and let r molecules be in one and the remaining

N—r be in the other. In how many different ways could we divide N mole-

cules into two classes so as to have r in one region andN — r in the other ?

An elementary theorem of combinations in algebra shows that this

number is:

N\

rl(N-r)\'

This means that to each macrophysical state of the gas in which the two

regions of equal volume of the phase space contain r and (N — r) mole-

cules there correspond

Nl

r\(N-r)\

different microphysical states, each of which is considered equiprobable a

priori* Thus, here again the notion at the base is that of equiprobability.

The position has not changed with the discovery of discontinuities in

physical processes as a result ofquantum theory. In the classical theory the

subdivision of the phase space into equal volume elements was arbitrary

but in the new mechanics certain regions are prohibited to the system by

quantum conditions. Nevertheless, the statistics of the classical quantum

theory are based on the same notion as the earlier statistical mechanics,

viz. that all arrangements obtained by assigning similar particles to re-

gions of phase space of equal volume are equally probable a priori.

* For the sake of simplicity we have divided phase space into two parts of equal

volume, but the same argument holds even if we divide it into any number of parts

of equal volume.
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The earlier statistical mechanics assumed that one can distinguish be-

tween similar elements or particles. The present form of quantum theory
or wave mechanics abandons the principle of distinguishability. But this

does not introduce any new concept of probability. It has merely the effect

that instead of treatingeach arrangement of molecules asaprioriequiprob-
able we now treat each distribution as equiprobable since we no longer can

distinguishone arrangementfrom another. In other words, all the
'

r\(N — r)\

different arrangements which give rise to the distribution r molecules in

one region and N — r in the other are treated as indistinguishable and all

possible distributions are treated as a priori equiprobable instead of all

arrangements.

Thus, in theBose-Einstein statisticsassumedbyBosetoderivePlanck'slaw
for heat radiation by a statistical theory of quanta, it is assumed that every
distribution (instead of arrangement) is a priori equiprobable. The further

assumption made was that a region in phase space can have any number of
particles. Fermi extended Pauli's exclusion principle to molecules of an
ideal gas and assumed that no two molecules can occupy the same region.

But none of these innovations affects the notion of probability—that is, the
basis of the new mechanics.

Statistics

It now remains to comment on the probability notion actually employed
in the theory of mathematical statistics. It is generally considered that the
mathematical theory of statistics actually uses the frequency notion. This
is due to the fact that in a vast majority of cases our knowledge of the
conditions governing the event does not permit us to enumerate the equi-
probable ways in which the event can occur. In such cases the only way we
can form estimates of its probability is to gather empirical evidence of its

actual happening in a number of trials. But this is a problem of evaluation
and not of definition. In tackling this problem, viz. that of evaluation, we
consider a discrete finite set ofN trials and treat each trial in this group as
equiprobable so that relative frequency of a particular outcome is also the
ratio of the equipossible alternatives favourable to that outcome to the
total number (N) of such alternatives.

It is, therefore, clear that even in cases where no a priori estimate of
probability is possible, the a posteriori estimate thereof based on frequency
acquires meaning only in terms of the equipossible notion. In fact, if

frequency theory were adopted consistently, a priori estimates, even in
cases where knowledge of conditions of symmetry such as in games of
chance makes such estimates possible, would be meaningless. All that we
should have would be mere empirically ascertained frequencies and the
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bottom would be knocked out of the foundations of the theory of testing

hypotheses. If, for example, we wish to design an experiment to test the

claim of the lady, cited by Fisher, that she could discriminate whether the

milk or the tea was added first to the cup, we have to compare the empiric-

ally ascertained frequency of right answers with their a priori probability.

If the frequency of the right answers in a long series of trials was signi-

ficantly higher than their a priori probability on the basis of a denial of her

claim, this would be a strong reason in its favour. But as there is no place

for any a priori probability in the frequency theory, reasoning of this kind

has no validity in frequency theory. Whenever we test a statistical hypo-

thesis, all that we do is to deduce the probability that a given function of

the observations will occur on the assumption of that hypothesis in exactly

the same way as we deduce the probability of getting a given distribution

of white and black balls in a series of draws from an urn with known
composition content. If this probability is very low, we reject the hypo-

thesis; otherwise we proceed as if it were true. The hypothesis in question

may involve a number of presuppositions, some explicit others implicit, and

it is on the basis of these considerations that probability is deduced by

resolving the various outcomes into a number of equipossible alternatives.

It is true that we do not have a conclusive argument in any case, for

any value of this probability (except and 1) is compatible with the hypo-

thesis. But the main point at issue is that unless probability is defined in

terms of the equipossible alternatives by means of what may be called the

a priori presuppositions of the hypothesis in question, there is no logical

basis for tests of hypotheses in statistical theory. In other words, a con-

sistent adherence to frequency definition leaves no room for a theory of

testing statistical hypotheses. For we can then no longer explain empirically

ascertained frequencies and have to content ourselves with merely record-

ing the difference of frequencies.

We therefore observe that the classical definition of probability, based on

the notion of equipossible cases but amended in the manner indicated

above, is adequate for all present-day applications of probability theory.
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LOGIC AND MATHEMATICS

The non-mathematician is apt to believe that the mathematician is in

possession of a set ofinfallible principles of reasoning which enables

him to reach truth without ever going astray. For a long time this

belief was universally held. But when, with the invention of the calculus,

mathematicians began to work with queer sorts of notions like that of the

infinitesimal—a paradoxical entity that was sometimes zero and sometimes
not zero at the convenience of the calculator—faith in the infallibility of
mathematical reasoning began to wane. Fortunately, however, the economy
of Western Europe at the time was in its ascendant progressive phase. It

was then in the midst of transforming itself from a static feudal society of
serfs and seigneurs into a dynamic society of the bourgeoisie and the

merchant adventurers.

Technological problems presented by such a society could not be solved

by disputatious men wrangling on the nature of the infinite and the

infinitesimal in the hidden retreats of their monasteries. They could be
tackled only by practicalmenwho observed things forthemselves and experi-

mented in their laboratories. These men did not set out to create a static

hierarchy of 'eternal' truths but adopted such methods as seemed likely to

lead to the solution ofcurrent problems before them. As a result, following

D'Alembert's maxim, 'push on, and faith will follow', they fashioned the

Infinitesimal Calculus into a magnificent instrument for handling problems
of flux and change. Its methods, no doubt, sometimes led to absurd re-

sults, but on the whole they were adequate to do the job for which they

were devised. It was only during the nineteenth century, after the calculus

had already advanced quite far, that the work of purging it of contradic-

tions and looseness of reasoning was undertaken by Cauchy, Weierstrass,

Riemann and others.

As we have already seen, their work introduced new canons of rigour

in mathematical reasoning. In fact, so great was the success of this new
mode of reasoning that, towards the close of the nineteenth century, it

appeared as if the calculus had been finally rid of all contradictions. But
alas! the appearance was an illusion. For, the discovery soon after of new
paradoxes of the infinite showed that mathematical logic was not infallible

after all.
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Unfortunately, the efforts of contemporary mathematicians to resolve

these paradoxes have not been as successful as those of their forbears of
the early and mid-nineteenth century. The main cause of this failure ap-
pears to be the quasi-theological desire of some modern mathematicians
to set up an absolute logic or super-theory, whose principles are absolutely

sacrosanct and from which all 'law and order' should emanate. In their

search for such an unchangeable pattern of 'eternal' truths, which may be
extended but not controverted, these mathematicians have developed two
distinct schools—the logicalist and the formalist schools. The former en-

deavours to achieve this result by reducing mathematics to an absolute

logic, a sort of infallible, supreme code against which there can be no
appeal. The latter, on the other hand, considers that this reduction, even if

successful, would still not suffice to free mathematics of paradox. It there-

fore endeavours to set up another Absolute—a Super-theory ('meta-

mathematics')—above both logic and mathematics. We shall examine the
formalist viewpoint in greater detail later. Here, we shall show how the

logicalist school proposes to restore 'absolute' certainty to mathematics
by attempting to reduce it to logic.

Now, as we all know, logic* is that branch of philosophy which deals

with the nature and criteria of reasoning. In other words, it tells us the

correct way ofdeducing valid conclusions from givenpremises . The ancients

set much store by it, for (so ran the argument), our senses might deceive us
but our reasoning never. From the fact that our senses sometimes mislead
us—as, for example, when we see a mirage or experience an hallucination

—

they concluded that human senses could give only a misleading conception
of 'reality' and should therefore not be trusted. This was, for instance,

Plato's view, when he compared human beings to chained cave-dwellers

condemned to watch shadows on a wall without ever being able to see the

'real' objects that cast them. How, then, was this 'reality' to be appre-

hended? Plato considered that the ultimate nature of the universe could be
comprehended only by 'pure' thought, contemplation and reasoning.

Logic, the science of deductive inference, was therefore the sole instrument

available to man for understanding the nature of 'reality'; for the laws of
logic had a kind of superior authority to which 'reality' must itself con-

form. It is a relic of this ancient tradition that 'illogical' and 'contradictory'

are even today taken as synonymous with the unreal and non-existing.

In spite of Plato's insistence on the primacy of reason over the senses,

most of the ancient Greek philosophers were restrained in their tendency
to deduce scientific laws from a priori conceptions by their delight in

sensuous observation. The Middle Ages inherited this tendency without

* There is also another sense in which the word logic is used by modern logicians.

We shall refer to it later (see page 279).
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the Greek restraint, and the result was a disaster. For the medieval philo-

sophers—the 'scholastics'—concluded that all the fundamental problems

of human knowledge could quite literally be solved by a sort of verbal

'dialectics' based on purely syllogistic reasoning. So they posed certain

questions and disputed endlessly about them according to certain rules.

No doubt many of them were very able men whose debates and dis-

cussions conditioned men's minds to the notion of a rational universe, an
essential prerequisite of modern science. But as neither the questions nor

the rules of disputation were concerned with the actual needs of men and
of life at the time, scholasticism largely lost itself in barren oddities which
led nowhere. For instance, they would ask what is the 'thing' or the

'essence', and giant summas would be written in futile wrangles over the

question. In fact, some of them were concerned merely with 'disputation'

itself and made no attempt to arrive at any conclusions. Thus, in his

masterpiece, Sic et Non, 'Yes and No', the scholastic Abelard argued at

length a great variety of 'theses', but gave no indication on which side of

the fence he himself sat.

Such was medieval scholasticism. It nourished unchallenged for cen-

turies because its social and economic roots lay in the stagnant feudal

society of the Middle Ages. In such a society everything seemed to be

eternally fixed or pre-ordained fromthe position of the Vicar of Christ and
the seigneur down to the meanest serf. Naturally, in such a static society,

there could not arise the idea that man could mould his environment

according to his conscious purposes. Nor, consequently, the methodology
appropriate to such a world view. However, by the close of the thirteenth

century the gradual but steady growth of international trade had already

paved the way for the break-up of feudal society. By this time international

trade in Western Europe, which a few centuries earlier was a mere trickle,

had become a veritable flood, and led to prosperity never known before.

As a result, a new way of life gradually began to emerge all over Europe
and with it the intellect of Europe burst out of its scholastic shell.

The emergence of this new way of life gave rise to a number of techno-

logical problems of trade, industry and navigation which could not be

solved by 'pure' thought and meditation. You may be able to speculate

in the quiet solitude of your study about the nature of God, Angels, Void
or the Heavens without bringing disaster to yourself or anyone else, but

it is otherwise if you have to determine the longitude of your ship while at

sea. If you rely on 'pure' thought to determine your longitude, sooner or

later you will take your ship on the rocks. Thus it was that observation

came into its own because the social problems that arose could be solved

in no other way. So great and rapid was the success of the new empirical

method in physics, chemistry and other sciences that scientists, one and
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all, gave up the Platonic method of pure speculation in favour of empirical

observation.

But the philosopher was still not quite satisfied. On the one hand, he

knew that there was nothing mandatory in the laws of logic; that is to say,

there was no reason why 'reality' should necessarily conform to the laws

of thought. On the other, he saw that although human senses were not

always to be trusted, they alone gave us whateverknowledge we had of the

outside world. Whence, then, could 'absolutely certain' knowledge come

—

from mental experience or from observation? And the old dilemma con-

cerning the priority of one over the other arose all over again.

Modern philosophy proposes the answer that logic and mathematics

alone can give 'absolutely' certain knowledge. But as absolutely certain

knowledge in an ever-changing world is not easy to acquire, the knowledge

which logicians obtain from logic is ofa rather trivial kind. It is 'absolutely'

certain precisely because it tells us nothing at all. For logic is only con-

cerned with deducing valid conclusions from given premises. What is in-

ferred as the conclusion is at the very outset contained in the premises

from which the deduction proceeds. Thus, if all A's are Zand ifB is an A,

then itfollows that B is X. The deduction merely reiterates what lies already

hidden in the premises. It thus establishes a purely formal relation be-

tween the symbols B and X, given the relation between the symbols A and

X, and B and A. A logical inference like, 'if all 4's are X and if B is an A,

then B is X\ is a 'tautology' ; that is, a formula 'whose truth is independent

of the elementary propositions contained in it'. This means that it is true

even if in the real world the objects corresponding to the symbol A do not

have the character or quality corresponding to the symbol X.

Thus, if in our example,/! stood for 'all men', Zfor 'mortal' and B for

'Socrates', 'Socrates is mortal' would still be true even if, in actual fact,

all men (like Swift's Struldbrugs) lived for ever. A tautology, therefore, is

that combination of elementary propositions which is always 'true' no mat-

ter whether its constituent propositions are true or false. Since logic

studies the relations between propositions independently of what each

proposition is about, its first problem is to identify those elementary

propositions which are always true irrespective of the truth or falsity of

their constituent propositions. Obviously, the truth of a tautology depends

on the form of its elementary propositions rather than their truth or falsity

and in the last analysis it is only a roundabout way of saying A is A.

Now the logistic thesis is that 'pure' mathematics is nothing but logic.

As in logic, mathematical propositions do not say anything about the

material objects aboutwhich its propositions apparently talk. They merely

state in different terms what is already contained in its axioms. In other

words, they are tautologies. But the view that all the theorems of pure
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mathematics which fill so many volumes are only a roundabout way of

saying that A is A seems, to say the least, very surprising. Nevertheless,

some mathematicians of the logistic school as, for example, Bertrand

Russell, undertook to prove it in detail.

To prove the identity of logic and mathematics it is necessary (a) to

show that all concepts of mathematics can be derived from those of logic,

and (b) to construct a logic which yields all of mathematics but none of

its paradoxes or contradictions, such as that of the 'set of all sets' in

Cantor's theory, and those of Zeno, Burali-Forti and others. As a first step

towards proving (a) Russell tried to define number in logical terms, since

the basis of mathematics is the number system. Starting from natural

numbers, that is, the positive integers, we can successively generate all

other types of numbers such as negative, fractional, irrational and com-
plex numbers. According to Russell, the natural numbers, however, can-

not be further analysed in mathematical terms, but in terms of the logical

concept of a 'class', that is, an ensemble which consists of all individuals

having a certain property.

To define natural numbers, he defines the notion of 'similar' classes. Two
given classes are considered similar if the elements of one can be put in

'one-to-one correspondence' with those of the other in exactly the same
way as the blind Cyclops matched his flock of sheep with a heap of peb-

bles. Number is then defined as the 'class of all classes that are similar to

it'. This looks pretty stiff. But what it really means is that ifyou considered,

say, all classes of pairs, e.g. pairs of shoes, pairs of boys, pairs of socks,

pairs of virtues, pairs of angels, etc., all these classes of pairs have one
common quality, viz. that of being a 'pair' and this common characteristic

of the class, of all these classes of pairs, serves to define the number two.

This definition seems to suggest that we have somehow reached the

ultimate '2' as the class of all pairs. But whether any given class is a pair

or not can be known only if we can match its elements 'monogamously'

with those of another class already known to be a pair. In other words, a
definite matching process is necessary as a test before we can pronounce
any class to be a pair, which is just what Russell seems to wish to avoid.

There are many other difficulties which Russell's definition raises but we
shall not go into them here.

Now, you may object with Poincar6 that integers are indefinable and it

is futile to get behind them. But Russell and his followers refuse to accept

this position, as being too 'vague' and even 'metaphysical'. They affirm

that natural numbers could and should beprecisely defined. Unfortunately,

however, the idea underlying Russell's definition is that entities remain
permanent, which is false. For, as Engels said, 'The world is not to be

comprehended as a complex of ready-made things, but as a complex of
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processes in which apparently stable (i.e., permanent) things, and also

their mind-images in our heads, go through an uninterrupted change of
coming into being and passing away'.*

Thus, for example, this man you see now is, strictly speaking, not the

'same' as he was a moment ago. He is no longer the same complex of cells

and their functioning as he was. Russell and his followers might reply that

he remains the 'same' for all practical purposes, and if they did we should

be satisfied. But they do not seem inclined to compromise the precision of
their theory by making any concession to what we may call 'practical

purposes'. Moreover, they do not wish to make part of deductive logic any
'empirical' proposition, that is, any experience gathered in human practice.

They thus cut themselves off from the only source of knowledge that we
have, viz. human observation. So the endless and futile search for a 'pure'

and 'precise' definition of natural numbers continues in a truly scholastic

fashion. The Polish logician, Chwistek, himself a follower of Russell's

logistic school, somewhat ruefully summed up the latest position as follows

:

'All other attempts to develop arithmetic {that is, to define natural

numbers) are either fragmentary and therefore not entirely clear, or are

based upon certain metaphysical suppositions which contradict the

principles of sound reason. The first objection applies to the axiomatic

method which was employed by Peano and Hilbert, the second to such

systems as that of Whitehead and Russell and even to my theory of con-

structive types' (italics inserted).

Thus ends Russell's quest for a 'precise' definition of number which
everyone takes for granted. Of course, clarity of thought and precision of

expression are as precious to a thinker as gold to the kings. But a Midas
touch in precision, the reward, which Russell and his followers ask of their

deity, Logic, can be as ruinous as the gift of Bacchus to King Midas.

If the attempt to derive the concept of number from the logical concept

of class did not quite succeed, the effort to construct a paradox-free or

consistent logic capable of yielding all of mathematics did not fare any
better.,To construct such a logic Whitehead and Russell made extensive

use of a mathematical symbolism devised to mathematise logic. We ex-

plained in Chapter 2 how logic could be mathematised by means of an
appropriate symbolism and how the calculus of reasoning that results is

symbolically identical with that of numerical computation in the binary

scale. In Chapter 6 we showed how the logical laws of contradiction and

* This idea did not, of course, originate with Engels. It is one of the oldest ideas in

the history of philosophy.
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excluded middle could be expressed in algebraic form—the algebra of sets.

This process of symbolising logic confers on it great power and has there-

fore been followed up energetically by the logicalists, who have perhaps
tended to push it to unwarrantable extremes. They have thus used their

symbolic logic to further the logical analysis of mathematics itself—that is,

to provide a logistic 'foundation' for mathematics. This fusion of mathe-
matical logic with the logical analysis of mathematics has, no doubt,
illumined the process of mathematical deduction, but it has not been able

to fulfil the main object for which it was designed. We shall indicate here
very briefly the main developments in this field.

First, a rich symbolic vocabulary is created to enable the use of sym-
bolic methods of operation in logic similar to those used in algebra and
other branches of mathematics. In Chapter 2 we used the symbols (v)

and (.) to denote the logical sum and product of propositions and the
symbols I and O to denote the truth and falsity of a proposition. In their

Principia Mathematics Whitehead and Russell use many more symbols
besides these four, but the chiefamong them is the symbol D used to denote
the logical idea of implication. When we say that a proposition p implies

another proposition q we mean, in ordinary parlance, that ifp is true,

then q is true. But what ifp is not true? In that case we, the lay folks, do
not care whether q is true or false. But the logician, who is not concerned
with the truth or falsity of elementary propositions so much as with their

mutual relations, cannot afford to ignore the case when p is false. Con-
sequently he subsumes these two cases—the case when p is false an4 q is

true and the case when p is false and q is false—in the same notion of
implication. Accordingly, when he says that p implies q he excludes only
the last mentioned of the following four possible cases, viz. the conjunc-
tion of the truth ofp and the falsity of q :

!Case I: p true, q true,

Case II: p false, q true,

Case III: p false, q false,

Case IV: p true, q false.

A corollary of this extension of the notion of implication is the curious
result that a false proposition implies any proposition. With the help of
symbols like v, ., d , etc., it is possible to express in symbolic language
certain basic or fundamental propositions called primitive propositions,*
on which all subsequent deduction is to rest. Whitehead and Russell
actually assumed five such propositions but Bernays reduced their num-
ber to four by showing that one ofthem could be deduced from the remain-

* These primitive propositions are tautologies.
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ing four. We shall cite here only two of these four as a specimen just to

show what they are like. They are:

Primitive I: pvpZ) p.

Primitive II : p D p v q.

Primitive I is the principle oftautology which when translated into ordin-

ary language would read 'if either p is true or p is true, then p is true.'

Primitive II is called the principle of addition and translates into 'ifp is

true, then either p or q is true'.

At first sight they look pretty trivial but quite complicated results can be

deduced from them by logical deduction; but here we face a difficulty.

Since the ultimate object is to develop a theory of inference in order to

provide a foundation for mathematical deduction, we have to decide what

kind of deduction is to be permitted to deduce a theory of mathematico-

logical deduction. Whitehead and Russell consider that two rules of pro-

cedure—the rule of substitution and the principle of syllogism—are valid

for deducing logical formulae from the set of primitive propositions. The

rule of substitution is simply this. If we have a tautology and replace

therein any given symbol/? everywhere it occurs by any other symbol or

combination of symbols, the result is another tautology. For example, if

we substitute 'pvq' for p in the first primitive or tautology, viz. pvp D p,

we obtain a new tautology, viz. (pvq) v (pvq) D (pvq).

The syllogistic principle stipulates that anything implied by a true

proposition is true. In other words, ifp D q and ifp is true, then q is true.

This is required because the logical notion of implication is wider than its

counterpart of everyday speech in that it also subsumes the two cases (i) p
false, q true and (ii) p false, q false besides the 'normal' case ofp true and

q true. But the symbolisation of logic, setting up of primitive tautologies

from which all deduction is to emanate, and the two rules of procedure for

deducing theorems from the primitive tautologies do not suffice to rid

mathematical reasoning of contradiction and paradox. To do so, White-

head and Russell have to introduce another theory, the theory of types.

The essence of this theory is that paradoxes originate from a vicious circle

due to tacitly assuming that a function which defines a class or set can

itself satisfy the function. For instance, in the paradox of the village

barber referred to in Chapter 5, the function defining the class of shavers

is the class of individuals not shaved by the barber. To make the barber,

by which the class of shavers is defined, a member of this class itself, is to

argue in a vicious circle.

To take another example, consider the paradox in Cantor's theory of

transfinite numbers mentioned in Chapter 5. It arises because it permits us

to speak of the 'set of all sets' which it then puts on the same level as an
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ordinary set. As we saw, Cantor defines a set as a collection of some given

individuals. The sets that we may form by combining one or more indi-

viduals is a set of the first level. From sets of level I we may form sets of
sets, that is, sets of level* 2 and from sets of sets, 'sets of sets of sets', that

is, sets of level 3 and so on ad infinitum. The theory of types requires that

if a set s belongs to a set S, then s must be a set (or individual) of a level

lower than S. If we adhere to this rule, the set of all sets becomes a phan-
tom entity inadmissible by the rules of our inference.

The Russell-Whitehead theory of types does the job it was meant to do,

viz. eliminate paradox and contradiction from mathematical reasoning.

But the trouble is that in trying to avoid paradox it runs into other diffi-

culties. For instance, it would seem to indicate that irrational numbers are

of higher type than rational numbers for the former are defined as classes

of rational numbers. To obviate these difficulties Whitehead and Russell

introduce another axiom, the Axiom of Reducibility, which has been
criticised as arbitrary and extra-logical because it is not a tautology as

other primitive propositions of the Principia system are. It is true that the

theory of types can be eliminated by using a sufficiently complex system of
symbols as has been shown by the investigations of Chwistek, Church and
Quine. But these investigations in turn have given rise to their own crop
of tangles. The necessity for clearing them up has weakened the thesis of
the identity of mathematics and logic. But this is not all. There are other
axioms, such as the axiom of infinity and axiom of choice or multiplica-

tive axiom, which too, like the axiom of reducibility, are non-tautological

though necessary for the foundation of mathematics. We shall not ex-

amine them here in detail as the only point we wish to emphasise is that

the introduction of all these non-tautological extra-logical axioms seems
to show that it is not possible to reduce all of mathematics to logic.

In our examination of the Russell-Whitehead attempt to reduce mathe-
matics to logic, we considered logic as that branch of philosophy which
deals with the nature and criteria of reasoning. According to this view,
there are certain a priori principles of reasoning which it is the business of
logic to study and formulate. There is, however, another sense in which
the word logic is now used by modern logicians. The germ of this view of
logic is to be found in the work of Russell's celebrated pupil, Ludwig
Wittgenstein, although he himselfremained an adherent of the former view.

Unlike his master, Wittgenstein has expounded all his ideas in a single

* Thus if a pair of individuals is a set of level 1 , the set of such sets of pairs is a set of
level 2.
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short book entitled Tractatus Logico-Philosophicus; but as it has been
written in the form of cryptic aphorisms, it is not always very intelligible.

Nevertheless, brief as the Tractatus is, it seeks to clarify many aspects of

a number of different subjects by starting from the principles of symbolism

and logic and then proceeding to apply them to Epistemology, Physics,

Ethics, and finally, to what he calls the Mystical. But, after a very learned

discussion, which at times is Jrarely intelligible, he comes to the curious

conclusion that nothing correct can be 'said' in philosophy so that philo-

sophical discussion is a futile and senseless pastime. However, it is well

worth while going a little way with Wittgenstein, as his work is the first

draft of the prescription which logical positivists have been elaborating

ever since for curing what Sartre has called the sickness of language. This

sickness descended on our language almost with a bang during the two
world wars, when the world and language began to appear as hopelessly

divided from one another. In the words ofAntoine Roquentin, the hero of

Sartre's La Nansie, the word remained on the speaker's lips and refused to

go and rest upon the thing, making language an absurd medley of sounds

and symbols beyond which flowed the world—an undiscriminated and
incommunicable chaos.

Wittgenstein considers that the main cause of this sickness of language

is inadequate understanding ofthe conditions which a vigorous and healthy

language, that is, a logically perfect language, needs must fulfil. But what
is a language? Language, of course, is the means whereby men communi-
cate to one another their ideas. In the extended sense used by Wittgenstein

and his followers, it includes any system of signs or symbols used for the

purpose of intercommunication. These signs may be sounds (spoken

words), marks on paper (printed words), or any other signalling device,

e.g. flashlight, etc. Now it is well known that everyday language, such as

we all use in our daily affairs, is by no means perfect. Excellent though it

be for the purpose for which it was evolved by the combined social effort

of the community, it does not always enable us to say exactly what we
intend to convey.

This is very often the cause of misunderstandings, especially when we
interpret the messages ofprophets, thinkers, leaders and important person-

ages who have something particularly significant to say to the world.

Indeed, a single line in their work may sometimes require a Talmud of

commentary to elucidate what it 'really' means. And yet it may still re-

main meaningless to many. Wittgenstein claims that all such confusions

arise from an inadequate understanding of the nature of a logically per-

fect language. Not that he has constructed such an ideal language for

universal use. Far from it. But he considers that an understanding of the

conditions of a logically perfect language will dissipate all confusion.
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Now what are the conditions of a logically perfect language? In the

first place, the rules of grammar of such a language must explicitly exclude

nonsensical combinations of signs (or words). What it means is that every

language has to have a grammar or, more particularly, a syntax, which

lays down rules for combining different signs (or words). But these gram-

matical rules are not as precise as an ideally perfect language would re-

quire. For instance, the laws of English syntax explicitly exclude such a

word-combination as 'heavy is spectrum this' but not 'this spectrum is

heavy', although both are nonsensical word-combinations. The reason

why the syntax of English language often permits such nonsensical word-

combinations as the latter is that its syntax is not as complete as that of a

logiaally perfect language.

The rules of syntax, or syntactical rules, of a logically perfect language,

must exclude all nonsensical word-combinations. In such a language its

grammar or syntactical rules would not allow us to form any meaningless

word-combination such as the one cited above. Secondly, a symbol or a

sign must not be ambiguous; it must have a definite and unique meaning.

Ordinary language, such as English, of course, abounds in words with

multiple meanings. Such, for instance, is the case with the words 'rubber'

and 'graft'. The former may mean in one context as eraser for rubbing off

pencil marks, and in another winning two games in a round of twot>r three

games of bridge. The latter likewise may mean a shoot inserted in a slit in

another stock, a piece of transplanted living tissue, or illicit spoil in

politics.

These are', no doubt, ordinary ambiguities which are often clarified by

the context in which they actually occur. But most languages also abound
in words having 'emotive meanings', that is, expressions without any

clearly discernible referential quality to any class, entity or category be-

longing to a common objective world. Even if we ignore altogether such

verbal ghosts as some men like to conjure when, carried away by a sort of

enchantment, they begin to tread on the margin of meaning and 'hover

over the brink of unideal vacancy', we shall still be left with enough words
and phrases having no clearly recognisable meaning to provide adequate

vocabulary for all sorts of 'doubletalk', 'doublethink' and 'blackwhite'

languages, in some ways similar to George Orwell's 'Newspeak'.*

For example, 'democracy', and 'socialism' are no longer identifiable

forms of government, nor 'good' and 'true' universally recognised values.

That is why Ministries of Truth disseminate lies and Bureaux of Enlight-

enment propagate obscurantism. Then again, there is a literary style of

* Considering this phenomenon, one might be tempted to believe in the linguist

E. H. Sturtevant's paradoxical theory that language was invented for the purpose of
lying and deceiving.
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writing which uses words for their obscure harmonics, giving them vague
and sometimes private meanings contrary to their true meanings of every-

day speech.* Thus, on both counts, that is, whether we consider its syntax

or vocabulary, every language of daily use, such as English, falls far short

of the ideal and is in need of a theory of symbolism for carrying out a
comprehensive programme of what Morris calls 'debabelisation'.

Wittgenstein himself has not gone very far in this direction but he does

seem to give the appearance of having prepared the ground for such a

reconstruction. This is done by majcing a very subtle and scholastic dis-

tinction between what he calls 'saying' and 'showing'. What he means
thereby is this. If I make a statement asserting a certain fact, there must
be something in common between the structure of the signs in the state-

ment and the structure of the fact. Or, as he himself says, 'in order to be

a picture (of a fact) a fact must have something in common with what it

pictures.' 'What the picture must have in common with reality in order to

be able to represent it after its manner—rightly or falsely—is its form of

representation'. That which has to be in common between the sentence

and the fact cannot (so he contends) be itself in turn said in language,

though it can be shown.

To take an example, suppose I said, 'The sun crosses the meridian at

midday'. On the one hand, I have the 'picture' of the fact, that is, a certain

combination of words, and on the other the 'fact', viz. the crossing of the

meridian by a luminous heavenly body. The two have something in com-
mon whereby the 'picture' or the statement can serve as a substitute for

the 'fact'. And this common element is inexpressible in language, though

it 'shows' itself. This scholastic distinction between 'saying' and 'showing'

becomes of paramount importance in Wittgenstein's theory because he

overlooks its actual origin. Its origin is simply the social practice whereby

men have agreed to represent the luminous heavenly body by the word-

sign, sun, and so on for other objects, actions, processes, thoughts, etc.

Thus, the 'picture' represents a 'fact', not because there is some mysterious,

unutterable element common between the two, but simply because the

community of human beings agree to take the 'picture' as a substitute for

the *fact\ Moreover, the agreement is social, otherwise there can be no
intercommunication.

* These attempts are all of a piece with that 'long, immense and reasoned deranging
of all the senses' which, according to Rimbaud, is the poet's main task and which has
inspired most surrealist painting and sculpture, such as Duchamp's false pieces of sugar
actually cut in marble and designed to show the unwary visitor (who suddenly dis-

covers their unexpected weight) the self-destruction of the objective essence of sugar in

a blaze of instantaneous, almost Buddha-wise illumination. The ancient Zeuxis-myth
was content to make the birds peck at his grapes: our surrealist contemporaries are

more ambitious!
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Wittgenstein, however, ignores this obvious explanation of the phenom-
enon, whereby we are able to represent a fact by a socially agreed con-

vention. On the contrary, he goes on to combine this distinction between

'saying' and 'showing', the most fundamental thesis in his theory, with the

Principle of Verification to produce patently invalid conclusions. Super-

ficially his principle of verification appears innocent enough and indeed

very scientific. For it merely requires that 'in order to discover whether a
picture of a fact is true or false (i.e. to verify it) we must compare it with

reality'. Hence the process of verification involves a comparison of the

'picture' with its corresponding 'fact', or 'of a configuration of signs with

a configuration ofthe objects signified'. Now such a comparison or verifica-

tion may either be made by myself alone in all its details or by the col-

lective efforts of a socially organised group. Thus, if I had to verify the

statement referred to above, viz. 'the sun crosses the meridian at noon', I

might go to an observatory and personally see the sun crossing the 'spider's

web' in the eyepiece of a telescope, or I might accept the experiment

performed by a set of qualified astronomers.

Although, nowadays, every scientific verification is actually a social

process—it could hardly be otherwise—Wittgenstein insists that I cannot

verify a proposition except by reference to facts presented in my experi-

ence. It is true that he does not say it in so many words. Nevertheless, to

use his own phraseology, he 'shows' it clearly enough even though he may
not 'say' it. For verification, according to Wittgenstein, can mean only

'verification in my own experience'. And since it can mean nothing else, it

need not be said, for why say something that goes without saying? Intact,

it would, for this very reason, be meaningless to say so, for 'entities must
not be multiplied without necessity' in accordance with the principle of

economy (Occam's razor) that he advocates. So he is led head-on to

solipsism, the doctrine that nothing is real except my 'sense data' and that

the universe around me is nothing but my dream. Thus he says, 'In fact

what solipsism means is quite correct, only it cannot be said; but it shows
itself. The world is my world, shows itself in the fact that the limits of the

language (the language which I understand) mean the limits of my world'.

In this way Wittgenstein fulfils his philosophic destiny of 'drawing a
limit to thinking or rather not to thinking, butto the expression ofthoughts'.
And what is the result ? One must say nothing except what can be said, i.e.

'the propositions of natural science, that is, something that has nothing
to do with philosophy and then always when someone wished to say

something metaphysical, to demonstrate to him that he had given no
meaning to certain signs in his propositions.' But his advice to confine

oneself to propositions of the science only or the 'totality of true proposi-

tions', as he calls them, is in the end self-defeating. For he excludes thereby
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all those hypotheses from 'the sphere of natural science' which are not

true. And since we can never tell a true hypothesis from a false with

absolute certainty, we can never know whether or not it belongs to the

sphere of natural science. Obviously, therefore, we can no longer speak of

even scientific 'laws' any more than of philosophic propositions, as both,

after his own manner of speaking, can only be 'shown' but not 'said'.

We saw earlier how a search after scholastic 'precision' by Russell led to

metaphysical mystification in logic and mathematics. We now see how
Wittgenstein's attack on metaphysics is self-destructive as it leads only to a

new Metaphysic of Silence whose last commandment is 'whereof one can-

not speak thereof one must be silent.' Is it an accident that Wittgenstein's

reasoned analysis of language leads him to the same sort of mystico-

metaphysical silence as Rimbaud's 'reasoned derangement of all the

senses' ?

Although Wittgenstein was the first to enunciate a programme of the

logical analysis of language, he himself did not go very far in carrying it

out. As we have seen, the line of thought he followed led him into the

blind alley of solipsism. Carnap proposes to remedy this defect by a more

thoroughgoing analysis of language. Suppose we wish to study any given

language O. The language O is called object-language. But before we can

say anything about O, we must presuppose some language M in which we
propose to talk about it. The language M, in which the results of our

investigation are to be formulated, is known as metalanguage. Thus, in

Siepmann's French Grammar, the object-language is French and meta-

language is English. In Nesfield's Grammar, on the other hand, both the

object-language and metalanguage are the same, viz. English. Now, any

object-language O presupposes the existence of three factors. In the first

place, there is the speaker (or writer) and his listener (or reader). Secondly,

there is the word, the spoken sound (or written mark) which serves as a

conventional sign for denoting some object, property or action. Finally,

there is the object, property or action itself, denoted by the word-sign.

Of course, a valid analysis of the functioning of any object-language

ought to consider all the three factors together in all their mutual actions

and interactions. But, to start with, we may simplify our problem by ignor-

ing some of these factors. If we study our object-language in abstraction

from the speaker (which includes his listener as well) we are left only with

words and their meanings. A study of the relations between the sentences

6f an object-language and their meanings without any regard to the persons

using them is known as Semantics.

Semantics divides the words (or signs) of the object-language into two
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categories—descriptive signs and logical signs. Those words (or signs)

which designate things, properties of things, relations among things, ac-

tions, etc., are called descriptive signs. The other signs are taken as logical

signs. They are used only for connecting descriptive signs to form sentences

and do not by themselves designate things, properties of things, etc. Such,

for example, are the words 'IT, 'any', 'all', 'some', 'not', 'is', 'are', and so

on. But semantics by itself is notenoughto clear confusionfrom philosophy
and give its propositions 'absolute' certainty. While it does away with one
cause of confusion (the speakers and listeners of the language), it has to

put up with the nuisance of the factual meaning ofwords. Carnap therefore

proposes to 'abstract from the second factor also and thus proceed from
semantics to syntax'. If we take into consideration only the expressions

(strings of word-signs) or sentences, leaving aside the objects, properties,

states of affairs, or whatever may be designated by the word-signs occur-

ring in the expressions, we get wnat Carnap calls the syntax of the object-

language under examination. Carnap, of course, realises that as 'the

meaning ofwords is the basis of the whole semantical system, it might seem
as if nothing would be left if we eliminated the second factor as well'

To understand Carnap's answer to this objection, a short digression on
a paradoxical remark of Bertrand Russell's concerning the nature of
mathematics might help. Mathematics^ said Russell, is the only science

where one never knows what one is talking about nor whether what is said

is true. At first sight Russell's aphorism might appear to degrade mathe-
matics to the triviality of a meaningless gibberish, but what he means to
say is that in 'pure' mathematics we deal with various entities without
knowing or even caring to know their 'meaning'. Take, for instance, the

branch of mathematics usually called geometry, where we talk about
entities such as points, lines, planes, circles, etc. Now, if we attempt to

define what we mean by these terms, we often encounter pretty serious

difficulties.

Thus, the text-book definitions of geometrical terms, e.g. of a point as

'that which has position but no magnitude*, or of a straight line as the

'shortest distance between two points', are not quite satisfactory even
though they may be good enough for a beginner. Since the attempt to
define the meanings of mathematical terms leads sometimes to confusion
or even contradiction, Russell and his followers propose that 'pure'

mathematics should have nothing to do with the meanings of these terms.
All that is necessary for the development of mathematics is to start from
certain arbitrary definitions and axioms (or 'formal' rules) according to,
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whiQfe' these terms are to be used in the sequel, and to stick to them con-

sistently throughout.

So, in 'pure' geometry, the geometer should hot concern himselfwhether

a 'point' means an infinitely small dot and a 'line' an infinitely thin scratch

on a piece of paper, but should merely specify the axioms or 'formal' rules

according to which he proposes to use them in developing his subject. For

instance, he may proceed by postulating that there are certain things called

'points', 'lines', 'planes', etc., such that two 'points' determine a 'line', two

'lines' determine a 'plane', and so on. From these and other similar axioms

explicitly set up at the outset, he should derive all the conclusions that

follow logically. In this way, he would never need to know what he means

by these terms, or whether what is said of them is true. He would thereby

avoid having to answer certain awkward questions regarding the nature of

mathematical entities or concepts, although his theorems would be de-

nuded of all 'content' or 'meaning' as a result and would possess a purely

formal structure—a sort of internal relatedness among themselves.

Carnap has recourse to Russell's method of formalised discourse in

order to overcome the objection mentioned above, namely that nothing

would be left if we attempted to proceed from semantics to syntax by

leaving aside the meanings of words as well from our consideration. He
says, in effect, that just as the attempt to define the 'meaning' of mathe-

matical terms leads to confusion and contradiction, so also the attempt to

read 'meaning' into the propositions of logic and philosophy gives rise to

philosophic difficulties and 'pseudo-propositions'.

He therefore proposes that, in logic and philosophy, we must deal only

with the relations between different propositions but never with the relation

between a proposition and the fact it represents. In other words, we may
never inquire into the meaning of philosophic propositions. But how, one

may ask, are we to deal with propositions which are not allowed to have

any meaning or whose meanings we are forbidden to investigate ? In order

to meet this, Carnap distinguishes two modes of speech. In the one that

he calls the 'material' mode of speech, statements concerning 'objects',

'facts', or 'states of affairs' have 'sense', 'content', or 'meaning'. In the

second, that he labels the 'formal' mode of speech, propositions have no

'meaning' or 'content'. They say nothing at all about the world at large

and are mere conventions governing the usage of certain words or terms

in subsequent discussion.*

Take the proposition which in the 'material.' mode says that 'time has

* Here, one may even recognise a parallel with Mallarmd,who sought to turn language

into something of a pure non-referential structure on its own, a sort of pure being—
that is, an incantation wherefrom the ordinary senses of the words have been systematic-

ally drained away. But with Mellarme, at any rate, the object is not communication

per se, whatever else it may be.
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neither a beginning nor an end'. According to Carnap, a discussion of this

thesis in the 'material' mode, that is, as a proposition referring to the flow

of time in the real objective world, would give rise to 'insoluble difficulties

and contradictions'. This is, indeed, true, as Kant showed in what he
called the First Antinomy of Pure Reason when he demonstrated that it

could be proved equally conclusively that time has a beginning and that

it has none. Carnap therefore suggests that we should translate this thesis

into the 'formal' mode : 'Every positive and negative real number expression

can be used as a time co-ordinate'.

In this form—that is, in the 'formal' mode of speech—we do not assert

anything at all about the real objective time of the physical universe being

endless in both directions or not. We merely set up a 'convention' or a
'formal rule', which we propose to use in our discourse on something we
choose to call 'time'. As long as we consistently stick to the convention

we have set up at the outset and refrain from giving it a 'meaning' or 'con-

tent', no contradiction can arise. Carnap therefore claims that the so-

called ^pseudo-propositions' so common in philosophy and philosophical

analysis arise because of our usual habit of speaking in the 'material' mode.
If such pseudo-theses are to be avoided, we must 'avoid the use of the

material mode entirely', that is, we must cease to speak meaningfully.

Now ifwe adopt Carnap's suggestion and define our terms in the formal

metalanguage, by means of expressions of the object-language without any
reference to the meanings of those expressions, all we are left with is a
system of syntactical rules of formation and transformation according to

which we may choose to string together the signs (or words) of the object-

language. Obviously these rules could be chosen arbitrarily if no regard is

to be paid to anv interpretation of the words of the object-language. It

follows that we are at liberty to set up almost any system of syntactical or

logical rules, any kind of logic or logical calculus. To be sure', Carnap
hastens to add, 'the choice is not irrelevant; it depends on whether the

logical calculus so invented yields on interpretation by the addition of
semantical rules, a rich language or only a poor one. But, in principle,

there is before us the boundless ocean of unlimited possibilities.'

There is, of course, no objection in principle to introducing abstractions

in scientific and mathematical analysis. We are thereby able to concentrate

on essentials, to the exclusion of complicating or irrelevant details. But the

abstractions introduced by Carnap in his analysis of language are self-

destructive. For, if we analyse language in abstraction from the two fac-

tors, namely, the speakers and the meanings of the words used by them, it

ceases to be a language altogether. For language is a 'whole' created by
the meaningful speeches of its speakers. If we abstract our language from
the speakers and their meanings we do not have an analysis of language
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but of the private vocabulary of a grammarian who chooses to set up his

own syntax (or logic). This point may be made clearer by means of an

analogy.

Suppose we wish to develop a theory of triangles. If we construct our

theory by ignoring one of the sides ofa triangle, we do not have a theory of

triangles but one of angles. If we ignore the second side as well, we
have a theory of finite segments. Such abstractions are quite futile, as in

making them we destroy the whole entity (triangle in this case) we set out

to study. The abstractions proposed by Carnap in his analysis of language

are of the same type. They destroy the very object under investigation. If

Carnap, nevertheless, does manage to give the appearance of having

constructed a semantical and syntactical theory of language, it is because

he tacitly substitutes himself as the interpreter of the words of the object-

language he proposes to analyse.

His theory of semantics and syntax is, therefore, merely a solipsistic

analysis of language, that is, language as understood and practised in one's

own private comprehension, just as the solipsist interprets the objective

world as a reflection of his own sensory experience. As a result, Carnap's

semantics or syntax is not a theory of language as we know it—that is, as

a vehicle of social intercommunication. It is rather a hotchpotch of syn-

tactical conventions that one sets up artificially for one's own private use

or comprehension, ignoring other people as well as the objects of the

material world.

Unfortunately, even when Carnap and his followers thus retire into the

inmost recesses of their own private understanding, the 'eternal' truth they

set out to trap eludes their grasp. For every syntactical (or logical) system

which the wit ofman has been able to devise is, on close examination, found

inevitably to be tinged with the imperfection of its human creators. Con-

sequently, the logicians keep on inventing increasingly heavier and stiffer

brands of logic, which others keep on tearing to pieces. The history of

mathematics and logic during the past fifty years is indeed a brave record

of the births and deaths of numerous such monolithic systems which were

believed to be infallible at the time they were created but were subsequently

found wanting.

For instance, about forty-five years ago, Whitehead and Russell seemed

to have all but succeeded in reducing mathematics to an absolute logic; but

within a decade of the publication of their Principia Mathematical Ramsey

and Chwistek exposed a number of contradictions in the Principia logic.

Unfortunately, neither Ramsey's application of Wittgenstein's ideas, nor

Chistwek's theory of constructive types, both of which were designed to

save the Principia system from shipwreck, had any better luck. So mathe-

maticians began to devise newer and still more ponderous logics. Such
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were the logics of Curry and Church which, in their turn, were proved
inconsistent by Kleene and Rosser. Of the five different systems of logics

enumerated by Lewis and Langford, in their Symbolic Logic, not one was
found by the authors sufficiently 'precise' to embody 'acceptable principles

of deduction.'

Paradoxical as it may seem, all these attempts to set up an absolute and
infallible logic have come home to roost in the work of the Austrian
logician, Kurt G6del, who seems to have proved that if any system that

includes arithmetic contained a proof of its consistency, it would also con-
tain one of its own inconsistency. It would thus appear that mathematical
logicians have not succeeded in making logic invulnerable any more than
Thetis did in making Achilles immortal. Every one of their dips in the

philosophical Styx has conferred immortality but with its own equivalent

of Achilles's heel.

If the logicians' attempts to set up an Absolute Logic have not entirely

succeeded, the efforts of the formalists to create a static hierarchy headed
by another Absolute—in this case metamathematics—have also run into

difficulties. The formalists endeavour to reduce mathematics to a game of
manipulating symbols, mere marks on paper like +, — , =, D , etc., in

accordance with certain formal rules. The logic of handling these symbols,
viz. metamathematics, thus becomes an Absolute—a sort of super-

theory designed to 'justify' mathematical reasoning by showing that it

does not lead to any inconsistency or contradiction. Now, consistency in a
system of statements means a kind of coherence displayed by the set so
that these statements and their consequences do not clash. For instance, if

I make the three statements,

(i) No prophet was ever born in Patna;

(ii) Guru Gobind Singh was born in Patna;

(iii) Guru Gobind was a prophet;

the set is obviously inconsistent. For, from the second and the third, I can
'deduce' a conclusion contrary to the first statement. The formalists con-
tend that 'pure' mathematics is concerned with a set of initial statements,

called 'axioms', from which we derive a number of Consequences.
The formalist problem, then, is to show that the initial statements and

any possible consequences such as we may derive from them do not clash

as the three statements in the foregoing illustration do. But derivation of
consequences from the initial statements presupposes a method of draw-
ing conclusions or a theory of inference. Such a theory has, therefore, to
distinguish between a right and a wrong way of drawing inferences. If it is
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arbitrarily decided that a certain way of drawing inferences is the right

way, it will lead only to a meaningless play with the symbols isolated from

the practical problem of scientific methodology. If, on the other hand, we
decide that our actual way of handling statements and arguing from given

premises is the right way, the meta-theory which the formalists try to set

up is built on the very foundation which the formalist super-theory is

intended to examine.

It therefore seems that a thorough-going formalist foundation of mathe-

matics is impossible, though formalist theory is very valuable on account of

the light it throws on the interrelations between the distant parts of mathe-

matics, and in particular on the relation between logic and mathematics.

This difficulty of the formalist theory may also be stated in somewhat

different terms. To 'justify' mathematics, the formalist endeavours to set

up a meta-theory—that is, metamathematics. But, to justify the latter, he

would need a still higher super-theory, a sort of meta-meta-mathematics,

and so on. In this way he involves himself in an endless regress from which

there is no escape. In other words, if a metamathematical theory of proof

is to be formalised as a set of symbols manipulated according to specified

rules, then there must be an infinite regress of such rules, assuming that

the metamathematical theory is to be completely described. This is the

heart of Godel's theorem referred to earlier.

It appears, therefore, that the endeavour ofthe logicalists and the forma-

lists to establish mathematics as an Absolute or a monolithic system of

Eternal Truths is not likely to succeed completely. With increasing aware-

ness of this, there has also occurred a certain weakening of the formalist

thesis that mathematics is a game played with arbitrary symbols according

to arbitrary rules subject only to the condition of consistency. It is now
claimed that this play is like a game—which is, of course, not quite the

same thing as to be a game. Nevertheless, since the symbols remain

arbitrary, subject to arbitrary rules of combination and at the same time

free of all meaning except such as they may acquire by being placed in

juxtaposition with one another, formalism does run into difficulties in

explaining the applications of mathematics.

However much it may claim to be a pure structure, independent of any

application, reference, or content, its value (which is undoubtedly great),

depends precisely on the fact that it does not ignore application altogether.

Even Hilbert, the leader of the formalist movement, considers that meta-

mathematics deals with mathematics in the same way as the 'physicist in-

vestigates his apparatus'. But since mathematical proofs, so in far as they

prove anything significant, deal with certain aspects abstracted from some

sphere of reality, formalist metamathematics cannot completely cut the

umbilical cord that ties mathematics to reality.
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For even if these aspects are embodied in an axiomatic form and treated

as pure structures of meaning-free symbols independent of any outside

reference, the meaning comes into the symbols all the same as a result of

the mutual connections of the various symbols as expressed in the initial

axioms. What actually happens is that formalist analysis is able to purify

meanings of symbols in order to study their properties, very much as a

chemist purifies a substance in order the better to study its behaviour. The
axiomatic or formalist approach, insofar as it is significant, is therefore

really a sophisticated analysis of mathematical concepts to show what is

involved in our knowledge of them even though it cannot explain their

origin. Consequently even a formalist, try as he may, cannot escape

meaning, content (and therefore application of a sort), any more than

Francis Thompson could flee the Hound of Heaven:

I fled Him, down the nights and down the days;

I fled Him, down the arches of the years;

I fled Him, down the labyrinthine ways

But with unhurrying chase,

And unperturb'd pace,

Deliberate speed, majestic instancy,

They beat—and a Voice beat

More instant than the Feet

—

'All things betray thee, who betrayest Me.'

Since the logicalists' and formalists' analysis of number and mathe-

matical proof raises such a storm of difficulties, we are justified in seeking

some other way out. It seems to me that the intuitionists are right in

asserting outright that the whole numbers are given us immediately in

intuition and that it is vain to try to get behind them. At most, we may
consider them as generated by successive additions of unity to other

numbers already formed. Thus, starting with unity, we generate the num-
ber 2 by the addition of unity to itself, the number 3 by that of unity to 2,

and so on indefinitely. The most important element in this construction

of whole numbers is, therefore, the concept of unity, a concept given us by
our immediate intuition.

At the root of this concept of unity is the fact that most things in the

universe around us do manage to retain a measure of stability or perman-

ence—at least to our human scale of observation—even though they are

really in a state of ceaseless flux. Once the series of whole numbers is con-

structed by successive acts of addition of unity in the manner described

above, it is quite possible to base mathematics entirely on this notion of
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integers by a sound analysis of the constructions and processes of mathe-
matics, described in ordinary language and ordinary mathematical sym-
bols, plus a few logical symbols, as has been done by Paul Dienes. But the

intuitionist solution of the foundation problem raises the question of the

validity of a fundamental law. of classical logic which Euclid employs
frequently in his proofs of geometric theorems.

When Euclid is hard put to demonstrating a theorem, he usually adopts
the following strategem. He says, in effect, that if you are not willing to

concede the truth of his theorem, suppose it is not true. Starting from the

assumption that the theorem in question is false, he deduces by a sequence
of logical steps an absurd conclusion, whence it is evident that the theorem
must be true, Q.E.D. This procedure is a useful logical device and
without it a good deal of geometry and other parts of mathematics would
be as good as lost. Unfortunately, the intuitionist analysis of the founda-

tions of mathematics has called in question the validity of this device. The
reason is that it is based on the tacit assumption that every statement is

either true or false, and if it cannot be false it must be true.

At first sight it might seem astounding that anyone should challenge

this assumption, which is technically known as the law of excluded middle.

Nevertheless, a deeper examination shows that an unqualified acceptance

of the law does give rise to difficulties. In the first place, it is not true that

every statement must either be true or false. For instance, the statement

'virtue is red', is neither true nor false; it is only a meaningless string of

words. However, this objection is of no importance, for we may legislate

that the law is true of all meaningful statements, particularly as in logic

and science we usually deal with only meaningful statements. Conse-
quently, a rule that is true of all meaningful statements, though not of all

statements, is none the less valuable for being thus limited.

A more serious difficulty is the fact that it may not sometimes be true of

even meaningful statements. For example, if I state that X's hair is black,

it cannot be said that there are only two alternatives, namely that either

the statement is true (that is, X's hair is black) or it is not true (that is, his

hair is not black), for it may be that X is bald. Nevertheless, we may still

save the law of excluded middle by adding the clause, 'if X's hair exist* it

is either black or not black. But then, we have to explain what we mean by
the verb 'exist' and what is involved in the notion of 'existence'.

Unfortunately the idea of 'existence' has been a source of endless con-

fusion in philosophy for the past two millennia, beginning with Plato's

Theaetetus, and it has not been cleared up even today. The root cause of

trouble lies in the multiplicity of different meanings usually associated with

the notion of 'existence'. There is one sense of the word 'exist' when I say,

'Tigers exist', and quite another when I assert the 'existence' of virtue, a
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bank overdraft, an electron or the ether. A detailed analysis of the Various

meanings of the word 'existence' would lead us too far away from our

present theme. We shall, therefore, confine ourselves merely to explaining

the notion of 'existence' as used in mathematics.

Now, in mathematics, we consider an entity as 'existing' if it fulfils at

least one of the following two conditions. First, we may be able to point

to it by means of a definite process or construction. Second, we may be

able to show that the denial of its 'existence' leads to an absurdity. For

instance, if I want to assert the existence of the square root of, say, 25,

1

specify the process of square root extraction and point to the number 5,

which, multiplied by itself, gives the product 25. On the other hand, as an
example of the second kind, suppose I wish to assert the existence of an

integer N such that any integer n greater than N can be represented as the

sum of at most four primes (that is, of numbers not divisible by any

number other than unity). I can do this only in an indirect fashion by

showing that the denial of the existence of a number with such a property

leads to an absurdity, as the Russian mathematician, Yinogradoff, has

recently done.

It has not been possible, at any rate for the present, to point to any such

number N in the same direct manner as in the case of the square root of

25. In the former case, we have a tangible entity whose property we have

asserted; in the latter we only show that if the entity possessing the

postulated property does not exist, we can deduce a contradiction. Some
distinguished mathematicians have recently put forward the view that the

second, indirect and non-constructive method of proving the existence of

mathematical entities is inadmissible, or at least of doubtful validity in

many cases where it is employed.

. The reason for their objection may be made clear by a deeper analysis

of the aforementioned statement, viz. X's hair is either black or not black.

This statement involves an implicit reference to two collections into which

we choose to divide the possible colour attributes of all kinds of hair. In

one of these collections, we include those hairs which have the colour

black and in the second those of all other colours excepting black. With-

out such a frame of reference, the full content of the negative statement

cannot be determined. Now, in this case both the collections of the

attributes black and not black are static and have fixed meanings, so that

they do not alter during the course ofthe argument. In such a situation, the

law of excluded middle holds that ifX has hair, it belongs to one or other

of these two mutually exclusive attribute collections. It cannot belong to

both or neither of these two collections at the same time. However, there

are collections which, even when 'well defined' by means of an exact

phraseology, do not remain static but are (so to speak) in a perpetual
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state of formation. Such, for instance, is Richard's collection of all num-
bers definable with less than one hundred words.

There are only a finite number of words listed in any dictionary. Out of

these we can form various combinations of one hundred words or less.

Many of these combinations will be meaningless strings of words; others

will be meaningful but will not define any number. Only some of these

combinations will define numbers, e.g. the word combination 'five

multiplied by six, reduced by seven'. Let us retain only such combinations

of words as define some real number. We will thus have a finite number of

numbers definable with one hundred words or less. Some one of these

finite numbers must be larger than all the rest. Now, 'increase this largest

of these finite numbers by one'. This is a number defined with less than

one hundred word|, as may be verified by counting the words within in-

verted commas in the foregoing sentence. It therefore belongs to Richard's

collections. But it is by construction not a member of this collection.

The paradox arises because, on the one hand, the collection is conceived

of as a completed totality of numbers definable with less than one hundred

words, while on the other, these definitions constitute a collection in a

continual state of formation which generate newer definitions from those

already formed. In other words, the terms used to define numbers have not

sufficient fixity of meaning. Unfortunately, classical logic is applicable

only when its concepts have fixity of significance to serve as the terms of its

syllogism. It fails when it has to handle statements whose implicit frame of

reference involves concepts or collections in a perpetual state of dynamical

evolution. To deal with them successfully, we require a profounder logic,

the logic based on unitary principle.

Now, in mathematics there are collections which cannot be regarded as

static, mere aggregates of individuals formed by a definite rule. One such

collection is the continuum of all real numbers lying between two given

numbers. The idea of the continuum is easy to explain, though difficult to

define in a mathematically rigorous fashion. Suppose, for instance, we
have a metal rod. When it is heated, it expands from its initial length, say

15 inches, to another length, say 15-25 inches. We assume that it could not

have done so without passing through all possible lengths between 15 and

15-25 inches. This is the practical intuitive idea of the continuum. Mathe-

matically, its characteristic is that it consists of all real numbers between

15 and 15-25.

We consider any real number between 15 and 15-25 as a definite object

(of thought) ifwe are given a definite rule for determining all the consecu-

tive digits of its 'complete' decimal representation. For instance, a real

number.like IS™ or 15-1 is a definite object because its complete decimal

form is 15-1000000 . . ., an endless chain of zeros following unity in
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the first decimal place. Similarly we consider a real number like 15^ as

definite because we can represent it by means of the recurring decimal

15-142857,142857,142857, ....

These rules, however, do not create all the infinite decimal forms or

real numbers. For, in addition to the real numbers devolved by such rules,

we may also conceive of real numbers in another way, viz. by determining

the successive digits of its decimal form by arbitrary acts of free choice

instead of definite rules. Thus, for instance, after we have determined any

digit, say, in the fifth place, we are free to pick the next from any of the

ten digits, 0, 1,2, 3, 4, 5, 6, 7, 8 and 9. Such a decimal form which is in a

perpetual state of dynamical evolution may be called an evolving decimal

form, after Paul Dienes. The continuum, then, is the complete class of

both devolving and evolving decimal forms, that is, forms determined by
definite rules as well as by arbitrary acts of free choice. Consequently, its

constituent numbers obey no regular law of formation, and to that extent

the concept of the continuum, like Richard's collection, is a dynamically

evolving collection.

When, therefore, the intuitionists deny the validity of the application of

the law of excluded middle to statements whose implicit frame of reference

is the continuum, they are enunciating merely the fundamental law of a

new and profounder logic, that the principle of contradiction breaks down
when applied to collectives in a ceaseless state of becoming. Unfortunately,

the intuitionist reasoning, whereby Brouwer and his disciples support this

conclusion, is obscure and only partially correct. This seems to give an air

of paradox to an otherwise correct point of view.

Thus, as an instance of the breakdown of the law of excluded middle,

Brouwer cited a statement concerning the decimal representation of the

number n. It is known that the ratio of the circumference of a circle to its

diameter is the same for all circles, whatever the radius. This number is

denoted by the Greek letters. Its value is 3-14159 . . . and we have definite

rules whereby we can calculate it correct to any number of decimal places.

In the Science Museum of Paris, they have written its value up to several

hundred decimal places.* Nowhere in this finite representation of n as a

decimal form do we find the group of digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9

in their natural order. Now, if we imagined the value of n to be worked
out to an infinite number of decimal places, would the following pro-

position be true or false?

'That somewhere in the infinite decimal representation ofn there occurs

the group of digits 0, 1,2, 3, 4, 5, 6, 7, 8, 9 in their natural order.'

Brouwer holds that this statement cannot be considered either true or

false as it cannot be verified in a finite number of steps. But as n is a

* Its value has now been worked to 2,035 digits by means of the ENIAC computer,
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definite real number whose digits in the decimal form can be worked out

to any number of places we like, Brouwer's query is a determinate problem

admitting a 'yes or no' answer, although actually we are unable to decide

the issue. This practical difficulty does not invalidate the application of the

law of excluded middle in this particular instance, though Brouwer is

right in denying its universal validity and querying the formalist assump-

tion that the answer to every mathematical question is a simple 'yes or no'

even if it is 'well put'. It seems to me that the validity of Brouwer's objec-

tion lies more in the application of this principle to statements whose

implicit frame of reference consists of collections which, like the con-

tinuum, are always in a continual state of formation and remain for ever

unfinished, rather than in the distinction he makes between known and

unknown results.

To recapitulate, one of the fundamental problems of the foundations of

mathematics is the reform of mathematical reasoning so as to avoid

paradox or contradiction. Mathematical reasoning has been haunted by

the fear of paradox since the days of Pythagoras and Zeno. As we saw,

Pythagoras found to his dismay that the diagonal of a unit square cannot

be expressed as a ratio of two integers, and Zeno astounded Athens by

apparently proving that Achilles could never overtake the tortoise. Para-

doxes inmanyways similar to these have been discoveredfrom time to time,

and as recently as the close of the nineteenth century a whole series of

them were uncovered by Burali-Forti, Russell, Richard, Konig, Berry and

others. The logical positivists claim that, if mathematical reasoning is to

avoid paradox and contradiction not only here and now but 'for ever',

then it must be reduced to logic which is nothing but language—or rather

the syntax of a language—made perfect. But the conditions of a logically

perfect language are two. First, the rules of its grammar must explicitly

exclude nonsensical combinations of signs (or words). Second, every

symbol or sign in it must have a definite, unambiguous and unique mean-

ing.

The first to lay down these conditions of a logically perfect language was

Wittgenstein. But, as he was led head-on to solipsism, the doctrine that

nothing is real except the thinker's sense-data, and that everybody and

everything else around are nothing but his dream, most logical positivists

now consider this consequence of Wittgenstein's reasoning to be a great

defect. Carnap undertook to remedy it by making a distinction between

what he called the 'materia ' and 'formal' modes of speech. When we use

the material mode of speech, our statements and propositions have mean-

ing and content. But when we use the 'formal' mode of speech, we do not
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assert anything at all about the real things or events about which our

statements or propositions appear to talk. We merely set up 'conventions'

or 'formal rules' which we propose to use in our discourse on the 'things'

or 'events' in question. As long as we consistently stick to the conventions

we have set up at the outset and refrain from giving our statements a

'meaning' or 'content', no contradiction can arise. Carnap therefore claims

that the only way to eliminate the so-called 'pseudo-propositions' of

philosophy is to 'avoid the use of the material mode entirely'.

Carnap is right in insisting that all questions of philosophy have a

linguistic aspect, because we have to use language to express them. For

instance, the question regarding the nature of space has a linguistic aspect

because we could express its properties by using the language of Euclidean

geometry, provided we correlated the measurements of time by different

observers in the manner suggested by Milne.* Or, alternatively, we could

use the language of Riemannian geometry, provided we reckoned time

according to Einstein. To this extent it could be asserted that philosophic

theses with regard to the nature of space are questions of linguistic forms.

But Carnap goes too far when he claims that the philosophic question

regarding the real nature of space ends here and can have no other aspect

than that of the linguistic form just discussed.

Obviously, objective space, the theatre of perceptible phenomena occur-

ring in the universe around us, has 'real' properties quite apart from the

question of linguistic conventions that we may choose to adopt for their

description. To dismiss such questions as mere 'metaphysics' or as 'pseudo-

propositions' devoid of all sense and having no relevance to the philosophy

of science, is to emasculate both philosophy and science and to degrade

them to a mere hotchpotch of conventions. It is true that language is the

only instrument we have for expressing and communicating scientific and

philosophic propositions. But ifthe reality of the external universe happens

to be at times too complex to be trapped in the neat linguistic expressions

of our making, we have no right-to reject this 'reality' itself as a meta-

physical phantom and confine our thinking activity to a barren formalisa-

tion of language devoid of all 'content' or 'meaning'. Thus, if the thesis

that 'time is endless' (to use the 'material' mode of speech) leads to verbal

contradiction, we cannot get over this difficulty merely by denying the

reality of time itself and setting up formal rules according to which we
propose to use the word 'time', and thus turning it into a 'meaningless'

formal construct of an artificial language. For, we do not thereby know
whether time as the temporal link between objective world events has a

beginning or not, we only have a convention governing the use of the word

'time' in our discourse.

* See Chapter 8.
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This is not to deny the importance ofthe linguistic and even conventional
aspects of scientific and philosophic theses. Their study is one of the most
important and pressing tasks of philosophy. For not only is language our
only instrument of expression and communication, it is also the very warp
and woof of our thought. In fact, it dominates and determines our thought
so completely that the limits of our language are in many cases the limits

of our world, a truth which the authors of Orwell's 'Newspeak' tried to

exploit in their efforts to control human thought. Moreover, the defects of
our language, the imprecision of its words, the tyranny of its phrases, the

rigidity of its structure, and the cumbersomeness of its style may cost us

very dear. They may even make us lose battles as they did the Japanese

during the last war.*

For these reasons it must be admitted that logical positivism has been
of great value in that it has fostered this awareness of the powers and
limits of language with a vigour and clarity never attempted before. But
for all that, language must remain a means to an end, the end being the

understanding of the world around us with a view to changing it for the

better, and to the communication of that understanding to others. To
make its study an end in itself, as the logical positivists seem inclined to

do, is to indulge in a sort of Tarasconnade—that is, a chase for chase's

sake—complete with all the paraphernalia of fowling-pieces, game-bags,

whips, whistles, hounds and hunting-horns, but in a country where there

is no game to be had, not even the lone and legendary rabbit. Let us con-

sider the effect on mathematics of this inversion of means and ends.

In their endeavour to rid mathematical reasoning permanently of

paradox and contradiction, at one stroke, the logical positivists are obliged

to deny that there is any relation between a mathematical structure and a
sphere of reality. As a result, they are led to the view that mathematics is a
branchoflogicwhichisonlyalanguage allofwhosestatementsaretautologies,
or disguised and roundabout ways of saying that A is A. In so far as the

positivists consider mathematics as alanguage, a mere construct ofsymbols
arbitrarily selected, they lose sight of the intimate connection between our
understanding of the mathematical truths and their expression in symbolic
language for the purpose of communication.

If there is any arbitrariness, it is not in our understanding of them, but
rather in the particular symbols used to write them. Whether we write

'two and two make four' or 'deux et deux font quatre', or *2 + 2 = 4', may
be arbitrary, but not what these expressions mean. Likewise, whether we

* In The Hinge of Fate, Sir Winston Churchill writes: "The rigidity of the Japanese
planning and the tendency to abandon the object when their plans did not go according
to schedule is thought to have been largely due to the cumbersome and imprecise nature
of their language which rendered it extremely difficult to improvise by means of signalled
communication.'
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denote fifty by 50 or L may be arbitrary, but not what the fundamental

signs stand for. But even here the immense superiority of the former

notation shows that this arbitrariness has its limits. Much of the argument

for the arbitrary character of mathematics implicit in the Game theory is

really due to the confusion between the means of expressing mathematical

truths, which may within limits be selected arbitrarily, and the mathe-

matics itself.

But, this apart, the positivists face a dilemma on their own basis. For if

mathematics is an arbitrary construct of symbols, how could it ever be

applied and used to predict events? It is no answer, as Kattsoff has re-

marked, to say that experience might not have verified the prediction, for

the point is that it did. The only way they can escape this dilemma is by

introducing a distinction between pure and applied mathematics. Any such

distinction must be false, for pure mathematics has actually arisen as an

abstraction from empirical practice. For example, pure geometry stems

from the practice of land measurement and pure arithmetic (Boolean

algebra) from that of counting. In turn, it is revitalised by some concrete

application like pure geometry to physics and statistics, or pure arithmetic

to the theory of calculating machines.

To isolate pure mathematics from the applied is like isolating the giant

Antaeus from his mother Terra, the earth, contact with which gave him

renewed strength from every fall in all his contests. To lift pure mathe-

matics to the high heaven of passive contemplation, away from the mun-

dane applications of the work-a-day world, is to stifle it, very much as

Hercules stifled Antaeus in mid-air. Therefore, instead of isolating the

pure and applied aspects of mathematics we must endeavour to under-

stand their interrelation and thereby the relation of mathematics to reality.

This means that we must not treat mathematics as a game of manipulating

arbitrary symbols or paper marks according to arbitrary rules, or even as

resembling such a game, but as a product of human societies whose

members co-operate socially to advance civilisation and culture. This

means that mathematics has sociological, psychological, pragmatic and

empirical aspects, besides the syntactical aspect with which alone the

positivists seem to be concerned. For we must remember that, while

mathematics has to resort to abstractions to secure a foothold for a first

peep into reality, it must continually transcend them and go beyond them

by taking into account other aspects, previously ignored, to get a fuller

view of reality. This is the only way out of the dilemma into which posi-

tivism pushes the mathematician.
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A. Einstein and A. N. Whitehead

Dr. Johnson is said to have pooh-poohed Gulliver's Travels with the remark
that once you have thought of little men about ten times smaller and big
men about ten times bigger than human beings, the rest followed auto-
matically. Johnson, of course, missed the point of Swift's classic and his

criticism was unjust. However, a more scientific criticism of Swift's satire

might be that he made the untenable assumption that the world of pheno-
mena continues to present in the main the same aspect to infinitely small
or infinitely big beings as it does to those built on our own scale of dimen-
sions. For instance, the table on which I write appears to me as an en-
during, stable object but to the Lilliputians, or at any rate to intelligent

beings made on a sufficiently small scale, it might appear as a swarm of
chaotically moving particles with no permanence of structure such as it

displays to us humans. On the other hand, to the Brobdingnagians, or bet-

ter still, to beings as big as Voltaire's Micromegas, who was so huge that

all the waters of the Mediterranean did not suffice to wet his heels, the

universe might appear very much as it does to an intelligent fish without
a fixed habitat and perpetually tossed about by the waves of the ocean.

Now, while it has been a favourite device of some writers to present

their own world-view as seen by beings ofvarious sizes, or even by animals
of various sorts, no one has attempted to present the world from the eyes

of a roving fish.* The main difference between the outlook of such a fish

and that of man arises from the fact that the former's environment is in a
state of ceaseless flux while that of the latter does show relative stability.

It is true, as Engels remarked, that even for man, the world cannot be
comprehended as a 'complex of ready-made things, but as a complex of
processes'. Nevertheless, in spite of the 'uninterrupted change of coming
into being and passing through', which all things suffer, they do appear to

remain stable—that is, to retain their identities. It is to this ability to

recognise 'sameness' beneath the ceaseless flux of things that we owe the

creation of science itself. For a being Without even an apparently stable

milieu, whose environment changed as ceaselessly as the waves surround-
ing our hypothetical fish, and in whose experience nothing seemed to re-

main permanent, could not possibly evolve the concept of number, which,

as Tobias Dantzig has remarked, is the language of science. The reason is

* Except Rupert Brooke,in his charming but hardly apposite verses entitled Heaven.



APPENDIX I 301

that the idea ofnumber originated from the empirical practice of counting,

which in turn depends on our ability to recognise objects which remain the

'same' with the passage of time, and which are, moreover, discrete.

Likewise, measurement depends not only on our capacity to recognise

discrete objects which remain the 'same' but on our ability to perform a

series of operations which are also recognised as the 'same'. Thus, if I am
able to measure lengths it is because of two reasons. First, I can recognise

that the yard or the metre, which I use as my standard of measurement,

remains—or at least, appears to remain—the 'same'. If the yardstick

ceased to have even this appearance of permanence, I should have no

standard whereby to measure lengths. Second, I can recognise that the

operation of measuring any given length by successively laying the measur-

ing rod along it and counting how many times it goes between its extremi-

ties remains the 'same', whether the length thus measured is here or else-

where. In other words, transporting the measuring rod from one place to

another makes no difference to its length. It would, therefore, seem that a

background of 'sameness' or uniformity behind the changing pattern of

the complex of processes is essential to the emergence of the concepts of

number and measurement on which all science, at any rate physical science,

rests.

Now the essence of Whitehead's objection to Einstein's theory of Rela-

tivity is that it involves the demolition of this background of uniformity

on which science is built. As we saw in the text, Einstein claims that you

cannot have space without things, or things without space, any more than

you can have a grin without a Cheshire cat. Further, the character of space-

time matrix of material events everywhere is determined by the density,

momentum and energy of matter and radiation at that point. But the

distribution of matter and radiation in the universe is far from uniform.

For example, there are places in the universe, such as the interior of the

stars known as 'white dwarfs', where matter is almost incomparably

denser than in the interstellar voids—or, for that matter, in the interior of

giant stars. It follows, therefore, that the character of the space-time frame-

work which is determined by this non-uniform distribution of matter and

radiation, is itself non-uniform. In other words, one chunk of space-time

is not the 'same' as another.

For this reason Whitehead doubts the possibility of conducting any

measurement in a space which is heterogeneous or non-uniform as to its

properties in different parts. For such a framework precludes the possi-

bility of any fixed conditions for obtaining a basis for measurement.

Whitehead's point might, perhaps, be made clearer by means of an illu-

stration. Suppose I want to measure the length of the arc of the earth's

meridian from the North Pole to a point on the equator. If I start measur-
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ing this distance by means of a rod, taking the rod first to the North Pole

and then gradually laying it along the meridian till I arrive at the equator,

I should make a serious error in my measurement if I ignored the fact that

the rod, in travelling through the Polar regions to the equator, changes its

length due to expansion or contraction caused by temperature differences.

In this particular case, I can correct the error because I can express the

length of the rod at any temperature in terms of its length at a suitably

selected standard temperature, of, say, zero degree Centigrade. I can, then,

say that the length of the meridian arc is about 10 million times the length

of the standard metre rod at the standard temperature. In other words, I

can state that the meridian arc will accommodate about 10 million metre

rods of this kind between its two extremities assuming that each rod remains

at one uniform temperature, even though we know that the temperature is

not the same all along the meridian arc. If there is no possibility of reduc-

ing the conditions of measurement to such a uniform basis, no measure-

ment can be made. Einstein's non-uniform heterogeneous space makes it

impossible to state the uniform conditions which are the pre-requisites of

every measurement. Accordingly, concludes Whitehead, the practice of

measurement in heterogeneous physical space, such as Einstein postulates,

is.devoid of any 'real' meaning.

There is considerable force in this objection, and that is perhaps why
some men of science try to explain Einstein's theory by positing a uni-

form space offive dimensions in which the universe is set. But, as White-

head himself has observed, such a fictitious space, which never enters into

experience, cannot get over the difficulty.

A similar point has been made by Milne, many of whose conclusions

are similar to those of Whitehead, in the alternative formulation of his

Kinematic Relativity. Einstein himself has not bothered to present his

views as a consistent logical system. He claims that the system of postulates

set up by him leads to equations that have proved their superiority em-

pirically by eliminating the chief discrepancies remaining in Newtonian

theory, as well as by predicting two experimental results that had never

been thought of before. Nevertheless, this experimental confirmation of

Einstein's law of gravity does not necessarily guarantee the validity of his

postulates, as Whitehead, too, deduced from different assumptions results

which are identical with Einstein's within the limits of present-day experi-

mental errors. Moreover, experimental confirmation of a theory at a

particular stage of scientific development need not always be a proof of

its 'eternal' truth, particularly when the abstractions introduced by it to

get to grips with nature show up their own limitations.

Accordingly, Whitehead's criticism of Einstein's theory cannot be re-

jected as invalid offhand. All the more so, because Einstein's theory is
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based on the philosophically anarchic idea that the universe is a con-

glomeration of units moving along isolated 'world-lines' or courses un-

influenced by time as an active 'factor in causation', and that its events are

mere coincidences of these 'world lines'. Now, however useful the ab-

straction of 'world lines' and their 'coincidences' may be in geometricising

physics, it is not clear, as Whitehead has remarked, how the perception of

light, on which almost every physical experiment ultimately depends, can

be reduced to a perception of coincidences. The same objection cannot be

raised against Whitehead, for he seeks to make the idea of temporal pro-

cess the basis of all intellectual and scientific thought. To this extent, at

least, it has to be admitted that Whitehead's theory is more organic and

renders a better account of the unity of the cosmos than do Einstein's

abstractions, world-lines and their coincidences.
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We have shown in the text how an observer can make a triplet of time
observations. Consider first only two observers, A and B, and a triplet of
time observations of each. If (tlt t2 , fg) is one such triplet observed by A,
then tz is the time (given by ^'s clock) at the instant he sees B's clock
indicating an epoch t2 . Now to each reading tz of A's clock there corre-
sponds a reading t2 of B's clock. Let A graph tz against t2 , obtaining a
relation

h=f(t2) (1)

Now consider any triplet of time readings (Tlt T2 , T3) observed by B.
Here T3 is the time given by B's clock at the instant B observes ,4's clock,
indicating an epoch T2 . Let B plot likewise Ts against T2 , obtaining a
relation

T* = <P(Td (2)

It is obvious that the simplest case in which we can hope to synchronise
the clocks ofA and B is when A and B move relatively to one another in a
straight line and the relation ofA to B is symmetrical—that is, that things
would remain the same ifthe roles ofA andBwere reversed. Mathematically,
this will be the case only if the function/is identical with the function <p\
or, if/= (p. If this relation does not hold, the two clocks are not syn-
chronous or congruent. Under what conditions then will the two clocks
be congruent?

To answer this question we note that some 7"s, the readings of B's clock,
will coincide with some t% the readings of A's clock, if we imagine the
following experiment: Suppose A strikes a match at time t (by his own
clock), and B reflects the ray by means of a mirror. A then again re-reflects
the reflected ray back to B and so on endlessly.The result may be shown
diagramatically as in Fig. 65.

it

it
3i

tx
—

A B
Fig. 65
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^'s triplets are (h, t%i t& (f3 , f4, *6), (f6 , f„ t7) B's triplets would then

be (t2i t3, tj, (tlt *6, r6), . . .. Since the second and third numbers of each of

A's triplets are related by (1), we have a series of equations like

*3 =/('2), h =/('«), h = /(*«) and so on.

In general, for any odd i

'i =/('<-i) (3)

Now consider B's triplets. Since the last two of each triplet are related

by (2), we have another series of equations

h = <P(*£> h = <P(h)> h = Mi), etc.

In general, for any even i

'* = 9<'t-i) (4)

To make the two clocks congruent we must equate

f=<p.

Hence, the two relations (3) and (4) can be combined into one and stated

as under:

For any i (odd or even), t€ =f(ti^1)

In other words, if t
t
is any reading of one observer's clock at the instant

he sees the reading^ of another's clock, a function/must exist such that

'i=/('i-i).

Milne calls such a function/the signal function of the two observers. Now
if there are more than two observers, e.g. A, B, C, D, ... all moving in

one straight line, to each pair will correspond a signal function. Let fAB
be the signal function ofA and B,fCD that of C and D, and so on. In order

that clocks of all these observers be congruent or equivalent, Milne shows

that they must satisfy the further condition:

fABfCD =fCDJAB
In other words,

ffo — /o/>

where /o is a given function.

It can be shown that solutions of this equation, in which the unknown

is not a magnitude but a functional form, is a group and that/(/) must be

of the form

/^b(0 = WabVTK0»
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where aAB is a positive real number characteristic of the observers A, B
corresponding tofAB, and y> is an arbitrary function and yT1

its inverse. In
other words, to every function y> there corresponds a way whereby all the
observers A, B, C, D, .

.

. can correlate their time measurements or clocks
and make them equivalent or congruent. Such a function ip is then said
to generate an equivalence; that is, a way of synchronising the clocks of
different observers so as to make them equivalent. Now Milne's main
theorem is that if we took another function <pt that is to say, adopted
another way of synchronising the different clocks, then this ?>-way of
clock synchronisation becomes identical with the y>-way, if we regraduate
the clocks of the observers of the ^-equivalence in an appropriate way.
Essentially, therefore, there is only one equivalence, and the different

equivalences generated by different functions y> are merely different des-
criptions of the same kinematic entity.

Of the numerous possible descriptions of this kinematic entity—the
equivalence—the most important are two. In the one tp(t) is simply equated
with t and in the other with i9 log t/t where t is an arbitrary constant.
The former defines a way of clock graduation so that an equivalence is

described *as consisting of particles in uniform relative motion separating
from a common point of coincidence'. The latter defines another way of
clock graduation whereby the same equivalence appears to consist of
relatively stationary particles. We have thus isolated two measures of time
t and t. It is r-time that is identified with the Newtonian time of classical

physics. But it is the /-time, Milne's time, that is more fundamental. The
reason is that r-time depends on a constant t which appears in the generat-
ing function tp of the T-equivalence, namely tp(t) = t log t/t . On the other
hand, the f-form of the equivalence is simply defined by \p{t) = tin which
no t appears. This is because the /-equivalence has a natural origin of
time / = 0, the epoch of coincidence of all the observers. Here / is simply
the 'age' of the system at that event.



NAME INDEX

Abel, N. H., 145

Abelard, P., 273

Ahmes, 143

Alembert, J. le R. d', 47, 53, 271

Alexander, A. N., 158

Alexander the Great, 103

Ampere, A. M., 72

Apollonius, 27

Archimedes, 50, 93

Babbage, C, 19

Bayes, T„ 244-6

Bergson, H., 27, 221

Berkeley, G., 52

Bernays, P., 277

Bernoulli, J., 233, 236

Berry, —, 296

Bhaskara, 144

Birkhoff, G., 48-9, 185

Black, J., 52

Boltzmann, L., 113, 257

B61yai, J., 186-8, 201

Bolzano, N., 104

Boole, G., 117

Borel, E., 127, 134, 225

Born, M., 258

Bose, S. N., 269

Boulton, M., 51

Branca, G., 51

Bridgman, P. W., 185

Brouwer, L. E. J., 93, 105, 295-6

Burali-Forti, C, 92, 104, 275, 296

Cajori F. 144

Cantor, G., 98, 103-5, 127, 131, 275

Capek, Karel, 26

Carnap, R., 284-9, 296-7

Carroll, Lewis, 18

Cauchy, A. L., 53*5, 271

Caus, Solomon de, 51

CavaUeri, B., 104

Chapman, S., 91

Church, A., 279, 289

Churchill, Winston, 298

Churchman, —, 229

Chwistek, L., 276, 279, 288

Confucius, 99

Copeland, A. H., 222

Curry, H. B., 289

Dantzig, T., 105, 300

Darboux, J. G., 62

Dedekind, J. W. R., 122

Defoe, Daniel, 174

Descartes, R., 16, 27, 107, 188

Dienes, P., 292, 295

Dirac, P. A. M., 16, 258

DuBuat, —, 47

Duchamp, —, 282
r--'

Earnshaw, —, 47, 50

Eddington, A. S., 56, 93, 143, 154-7, 258

Edison, T. A., 3

Ehrenfest, P., 113

Ehrenfest, T., 113

Eiffel, G., 47, 50

Einstein, A., 3, 89, 157-8, 197, 202-10,

219, 269, 297, 300-3

Engels, F., 225, 275-6, 300

Epicurus, 142

Euclid, 186-8, 201, 292

Eudoxus, 104

Euler, L., 44, 46-8

Exner, F., 258

Faraday, M., 3, 64-5

Fermat, P., 216-17, 225, 233

Fermi, E., 269

Fisher, R. A., 242-4, 246, 251, 270

Fourier, J. B. J., 113, 182-3

Froude, W., 183

Galileo Galilei, 28, 94, 104

Galois, E., 145

Gauss, C. F., 144, 188, 189, 195-9, 201

Gibbs,J. W., 91, 113

Gide, A., 157

Godel, K., 289-90

Good, I. J., 223

Grassmann, H. G., 89

Hamilton, W. R., 85, 89, 90, 112

Hammurabi, 10

Hankel, H, 127, 144

Hardy, G. H., 2
Harnack, A., 127

Hartree, D. R., 26, 170

Heisenberg, W., 258, 260

Hero, 52



308 NAME INDEX
Hertz, H. R., 64
Hessen, B., 51 „

Hilbert, D., 93, 276, 290
Hogben, L., 2
Horner, W. G., 145
Hubble, E., 208, 210
Huygens, C, 4

Jacobi, C G. J., 112
Jeans, J. H., 258, 263
Jeffreys, H., 220
Johnson, S., 300
Julius Caesar, 220

Kant, L, 287
Kattsoff, L. O., 299
Kelvin, see Thomson
Keynes, G. M., 220
Kleene, S. C, 289
Kolmogorov, A., 127, 223
Konig, —, 92, 296
Kopal, —, 47
Kronecker, L., 104-5

La Fontaine, J. de, 92
Lagrange, J. L., 53
Langford, C. H., 289
Laplace, P. S., 217, 256, 261
Lebesgue, H. L., 127, 134, 246
Leibnitz, G. W., 4, 19, 27-8, 34
Lewis, C, 289
Liouville, J., 113

Lobachevsky, N. L, 186-8, 201
Louis XIV, 216
Lyly, J., 174

Mahavira, —, 78
MallarmS, S., 286
Marconi, G, 3

Maxwell, J. C, 3, 65
Mere, Chevalier de, 216-17, 233, 256
Milne, E. A., 91, 210-14, 219, 297, 302,

304-6

Minkowski, H., 157
Morgenstern, O., 173-80, 253
Moroney, M. J., 237
Morris, C, 282
Mumford, L., 50-1

Navier, M. H., 47-9
Nesfield, J., 284
Neumann, J. von, 173-80, 249, 253, 260
Newcomen, T., 51-2
Newton, I., 4, 27-8, 34, 40-6, 50-1,

64-5, 145, 203-4

Neyman, J., 246, 251-3
Nietzsche, F., 105

Oersted, H. C, 64
Orwell, G, 281

Pascal, B., 19, 225, 233
Pauli, W., 269
Peano,G.,276
Pearson, E. S., 251-3
Planck, M., 127, 269
Plato, 106, 272, 292
Poincare\ H., ,105, 201-2, 225, 275
Porta, J. B., 51

Pythagoras, 15, 89, 90, 93, 142, 195, 296

Quine, W. V., 279

Raleigh, J. W., 183
Ramsey, F. P., 288
Reichenbach, H., 262
Reynolds, J., 183
Richard, J., 92, 294-6
Riemann, G. F. B., 187-9, 197, 199,

229, 271

Rivault, —, 51

Rosser, J. B., 289
Rousseau, J. J., 263
Russell, Bertrand, 92, 117, 275-9,

284-5, 288, 296

Sartre, J.-P., 280
Savart, —, 183
Savery, T., 3, 51

Scheinfeld, A., 267
Schrodinger, E., 258
Seeley, J. R., 112
Shelley, P. B., 82
Shewhart, W. A., 229
Siepmann, O., 284
Sitter, W. de, 207-8
Southwell, R. V., 82-5, 170
Stapledon, O., 26
Stokes, G. G, 47-9, 183
Stolz, O., 127
Sturtevants, E. H., 281
Swift, Jonathan, 52, 274, 300

Tait, P. G., 91

Thompson, Francis, 291
Thomson, W. (Lord Kelvin), 42

Ulysses, 5

Vieta, F., 27
Ville, Jean, 222



NAME INDEX 309

Vinci, Leonardo da, 3 Whitehead, A. N., 117, 219, 276-9,

Vinogradoff, I. M., 293 288, 300-3

Voltaire, 18, 53, 300 Wiener, N., 24
Wilkinson, J., 52

Wald, A., 222, 246-50, 253 Wittgenstein, L., 225, 279^84, 288, 296
v

Wantzel, P. L., 145

Watt, J., 3, 51-2, 70
Weierstrass, K., 271 Zeno, 92-3, 104, 275, 296
Weyl, H., 105, 258 Zermelo, E., 113



SUBJECT INDEX

Abstract structure, 154-7

Abstraction, 8, 55-6, 156

Acceleration, 29, 69, 182

Associative law, 7

Axioms, 1, 186, 285-6

Axiom system, 151

Bayes's theorem, 244-6
Bernoulli's theorem, 236
Binary, 22
Bound, greatest lower and least upper,

122-3

lower and upper, 61-2
Boundary conditions, 42, 47, 171

Calculating machines, 19-26, 171

Calculus, differential, 27-34
integral, 34-40

Cantor's diagonal process, 98
Causality, 258-63

Chance, 224-5

Change, rate of, 31-3

Class, 275
Conjunction, 20, 232
Contingency, 224-5

Continuum, 294-6

not countable, 96-8

Commutative law, 7

Coordinates, Gaussian, 190-3

plane, 33, 107

space, 86-7, 108

Correspondence, one to one, 5, 7, 95-7,

275
Cosmological models, 207-15
Counting, 5-6

Couple, 70
Curvature, 33-4, 195-7, 199-201

Cybernetics, 24-6, 64, 127

Decision functions, 247, 253
minimax solution of, 247-50, 253

Dedekind's axiom, 123

Deduction, theory of mathematical,
289-90

Design of experiments, theory of, 251

Determinants, 167^-71

Determinism, 256-63

Differential coefficient, 31-2

partial, 45-6

Dimensions, 182

Dimensional analysis, 183-5

Disjunction, 20, 231

Distributive law, 7

Domain, integral, 14, 151

Doppler shift, 208

Econometrics, 44, 91, 127, 173-80

Entropy, 256
Equations, algebraic, 143-5, 167-71

differential, 40-3, 80-5, 183-5

integral and integro-differential, 42-3

fluid flow, 46-7

Equivalence, 212-13, 304-6

Estimation, 244-50

Fisher's approach, 241-4
Existence, 292-3

Expanding universe, 207, 214

Field, 15, 19, 151

Formalism, 88, 289-91

Formalist school, 272
Foundations of mathematics, 274-96
Function, 57-9

inverse, 30
multivariate, 43-4

Gambling systems, 254
'Game theory* of mathematics, 2-4,

289-91, 298-9

Games, theory of, 173-80, 253
Genetics and probability, 263-7

Geometry, Euclidean, 186, 199-202

internal, 189-99

non-Euclidean, 186-8, 199-202

of actual space, 203-14

Godel's theorem, 289-90
Group, 2, 146-55

continuous, 182

structure, 154-7

Heat, theory of, 255-6

Hydrodynamics, 47-50

Identity element, 14-15, 151

Implication, logical, 277
Indeterminacy, principle of, 260
Indeterminism, 258-63
Inductive inference, 241-4



SUBJECT INDEX 311

Infinity, analysis of, 104-6

enumerable and non-enumerable, 12,

92-8

Integral, Lebesgue, 137-41

Integration, inverse of differentiation,

. 39-40

theory of, 60-3

Intuitionism, 291-6

Invariants, 171-3, 189, 195-7

Inversion, 81-2^

Kinetic theory, 113, 257-8

Language, syntax of, 280-8

Latin squares, 251

Law, associative, 7

causal, 258-61

commutative, 7
of contradiction, 117, 276
of excluded middle, 117, 276, 292-6

of large numbers, 236
of motion, 41

statistical, 258-61

Limit, 31, 53-5

Logic, 272-89

identity of with mathematics, 275-9

mathematical, 19-26

symbolic, 19-21,289

Logical positivism, 280-9, 298

Logicalist school, 272, 275-9

Manifold, functional, 103

Mathematical models, 57, 127-8

Matrices, 161-7, 173

Maximum likelihood, postulate of, 246
Mean, arithmetic, 237

deviation, 240
Measure, Lebesgue, 140-1

of sets, 126-37

P-, 140-1

Mechanics, fluid, 46-50, 185

Median, 238, 243
Metamathematics, 272, 289-91

Metrical groundform, 195-200

Modelling analysis, 185

Mysticism, 142, 185

Number, cardinal, 6
complex, 75-8

fractional, 11-12, 77, 279
imaginary, 75-8

irrational, 15-19, 279
negative, 13

ordinal, 7
real, 19, 294-5

transfinite, 7, 98-104

Parallel postulate, 186-7

Parallelogram law, 69

Pendulum, 41, 184

Planck's law, 269

Point, limiting, 121, 124-5

singularity, 208

Probability, 218

calculus of, 230-3

foundations of, 219-30

as measure, 230
prior, 245-6

and statistics, 269-70

Product, logical, 21

Quantum mechanics, 91, 165-7, 258-63,

268-9

Quaternion, 89

Randomness, 224, 229

Relativity, kinematic, 210-14, 304-6

theory of, 203-10, 300-3

Relaxation methods, 83-5, 170

Sampling, 138,242-4

Scalar product, 70
Semantics, 284, 286
Set, additive, 119-20, 132-4

Borel, 133-4

Cantor's, 131

complementary, 115

measure of, 126-37

Sets, algebra of, 115-17

enumerable, 120-1

non-enumerable, 121

Signal function, 305

Signs, descriptive, 285

Solipsism, 283-4, 288, 296

Space, configuration, 112

phase, 113, 268

Space-time, 158

continuum, 205-6

Standard deviation, 240
Statistical hypotheses, tests of, 251-3,

269-70
Statistics, 127, 237, 269-70

Substratum, 211

Sum, limiting, 28-9

logical, 21

Tautology, 274, 298
Tensor, 90, 199

Theory of types, 279
Thermodynamics, second law of, 257
Time, measurement of, 204-5, 21 1-14,

304-6

/-, T-, 213, 306



312 SUBJECT INDEX
Transformation, conformal, 78-80

linear, 160-5

Translation, 67
Truth-value, 19-21,277

Variable, dependent and independent, 30
Vector, 65, 173

components, 69

product, 69-73. 74-5
space, 85

sum, 66-9, 76, 88
Velocity, 29, 69, 182

of light, 205
potential, 46

Work, 70



JAGJIT
JAGJIT SINGH SINGH

Mathe-

Mathematical Ideas ""*">
Ideas


