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Preface 

. all histories, to the extent that they contain a system, a drama, or a moral, are 

so much literary fiction... These wise words of George Santayana must give 

pause to anyone who hopes to write an interesting history on any subject. The 

operative word here is interesting; for without system, drama, or moral a book is 

certain to be both confusing and dull. Fortunately, the history of a subject with 

such a rich internal structure as mathematics must exhibit some kind of order, even 

though it may be only the order of a patchwork quilt. Although the past is, as 

C. S. Lewis said, a roaring cataract of hiccups and sneezes, it also contains, here 

and there, bits of comprehensible speech. My purpose in these pages is to exhibit 

those bits and draw connections between them for the reader to think about and 

perhaps argue with. 

This book was begun after several years of teaching a general introduction 

to the history of mathematics aimed at mathematics and mathematics-education 

majors. As with every textbook I have used over three decades of university 

teaching, I could never be quite satisfied in my history courses with the approach 

the author had chosen. Each professor has a particular way of looking at a subject. 

That individual outlook makes the selection of material highly idiosyncratic. The 

following chapters are the result of my own reflection on the subject. Where pieces 

of original mathematical work can be described comprehensibly in a reasonable 

space, I prefer simply to present them, like photos in an album, with just a brief 

caption, so that the reader can appreciate the mathematics at first hand. I am 

not striving to give the reader a detailed chronological history of any part of 

mathematics. To do so in a first course (the only one most students will ever 

take, unfortunately) would require omitting the far more important element of 

appreciation that should (in my view) be at the heart of such a course. 

It is easy to see that drastic principles of selection must be applied in order 

to provide a manageable amount of material for such a course. At one time the 

manuscript of this book was 50 percent larger than its present extent. One by one 

topics had to be eliminated—continued fractions, orthogonal expansions, Bourbaki, 

Plimpton 322, applications to thermodynamics, all sorts of gossip, all attempts at 

fine detail after the year 1700, nearly all biography. Each cut was painful. By what 

principles can a selection be made? If there were general agreement on a ranking 

of mathematical work or mathematicians by quality, one could simply start at the 

top and quit when the book was full. However, the importance of a mathematical 

topic is not always well defined, and there are other considerations to be kept in 

xv 



XVI PREFACE 

mind when writing a book. The most important of these is the potential reading 

audience. What do the people in that audience most need to know? Of nearly equal 

importance is the fact that only the haziest idea of the real achievements of modem 

mathematics can be made comprehensible to undergraduates; without knowledge of 

the mathematical details, the student will not fully understand, but will soon fully 

forget, even the clearest summary description. These considerations have often 

dictated that the amount of space devoted to a mathematician or a mathematical 

topic is not proportional to his/her/its importance. Thus the reader will find more 

material on Pappus than on Euler in this book, even though there is no doubt that 

the latter was a much better mathematician than the former. 

For the most part I have omitted biographies entirely and concentrated in¬ 

stead on the mathematics that was done and what it means in relation to other 

mathematics and other areas of human endeavor. This aim has led me to devote 

space to minor mathematicians, such as Boethius and Maria Gaetana Agnesi, and 

to some people who were not really mathematicians at all, such as Gerbert and 

Benjamin Banneker, while the work of some very good mathematicians, such as 

Simon Stevin, Hermann Amandus Schwarz and Norbert Wiener, is not mentioned. 

In taking this approach I am conscious of being influenced by the great enjoyment 

I once experienced in reading Bertrand Russell’s History of Western Philosophy. 

Russell thought it worthwhile to discuss Lord Byron, who was not a philosopher, 

in order to explain the influence of the Romantic Movement on philosophy, and he 

explicitly stated that philosophical merit was not the basis on which text was allo¬ 

cated to a subject. The absence of biographies, though not a virtue in itself, does 

provide a wealth of topics for students to use for term papers. My own practice 

is to ask each student who wishes to write a biographical term paper to choose 

a notable mathematician and summarize that person’s career, reading at least one 

original paper by the subject. 

The principle of deciding what the reader needs to know, however, is still not 

a complete guide to the selection of material. What an author thinks the reader 

ought to know about such a vast amount of material is sure to be biased toward 

the familiar. I have learned by experience that it is very difficult to appreciate 

the importance of subject areas that lie beyond one’s own complexity horizon (to 

use an elegant expression of John Allen Paulos). One can only make the effort 

to treat unfamiliar subject areas fairly and hope that the author’s own interests 

will not be too apparent to the reader. Let me confess immediately that I find the 

following topics to be of stupefying dullness: (1) the bases for counting used by 

various peoples, (2) the evolution of the symbols for numbers from ancient India 

to modem Europe, and (3) pentagonal and hexagonal numbers. Having admitted 

my bias against these topics, I make a semi-apology for slighting them in the text 

that follows. 

In the course of the writing I learned also that it is extremely difficult to give 

a concise summary of an area of work unless one is very familiar with that area. 

Two solutions to this problem naturally suggest themselves—leave the writing 

to the few mathematical giants who truly understand all these areas, or give a 

detailed presentation. The first alternative, besides leaving the author no book 

to write, has the further disadvantage that these mathematical giants never seem 



PREFACE XVII 

to write for undergraduates; their intended audience always seems to be research 

mathematicians. The second, as I know from reading too many other books, 

produces long, tedious recitals of what was done, by whom, and when. The reader 

is presented with a huge agglomeration of facts without any unifying principle to 

assure that they will be remembered when the book is closed. It is, I believe, better 

to omit important topics than to produce a bleak landscape full of names and dates 

in a futile attempt to tell the whole story. 

I have selected material that I consider interesting for its own sake, but nearly 

every piece of mathematics that is discussed has some larger significance than 

the mere fact that some clever person thought of it. I had originally thought of 

naming this book Issues in the History of Mathematics. At all stages I encourage 

the reader to ask why people were interested in the problems that mathematicians 

were solving and what consequences their solutions had for the further development 

of mathematics and its applications. 

I wish to thank the reviewers whose comments have greatly improved the 

manuscript and express the earnest hope that its postpublication reviewers will 

be equally kind. The reviewers known to me are Joachim Lambek (McGill Uni¬ 

versity), Millianne Lehmann (University of San Francisco), Richard L. Francis 

(Southeast Missouri State University), Frank J. Swetz (The Pennsylvania State 

University), G. G. Bilodeau (Boston College), and W. R. Wade (University of Ten¬ 

nessee). I owe a huge debt to the many historians of mathematics whom I know 

personally and through their works, especially my friend and coauthor V. Fred 

Rickey, who I believe also reviewed some of this book, although I never saw the 

review, and Milo Gardner, who has learned more about Egyptian arithmetic than 

I would have thought possible from the available documents. Inevitably some of 

these people will find that they disagree with some of my judgments and (what is 

worse) that I have made some errors. I welcome all corrections, and—provided 

they do not become too time-consuming—arguments over what is and is not a 

justified conclusion based on the facts. I am also grateful to the students at the 

University of Vermont who have patiently (I hope) learned (I hope) the history 

of mathematics in the courses I have taught over the past 15 years. I also wish 

to acknowledge the patience of a succession of editors, who have been extremely 

tolerant of my idiosyncrasies while guiding my writing with the interests of the 

reader in mind. The biggest debt of all is owed to my wife Cathie, who has pa¬ 

tiently tolerated my mental absence as I sat before the home computers on which 

this book was written. 

University of Vermont 

June 1997 

Roger Cooke 
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PARTI 

Early Western Mathematics 





In this first part of our study we shall look at the origins of mathematics and 

examine its progress in the world around the Mediterranean Sea from prehistoric 

times until the end of the Roman Empire. This study will provide a point of view 

and a basis for comparison with the independent development that took place in the 

Orient. Although we shall not develop this theme in any detail, you should notice 

the important role played by the Mediterranean Sea in fostering communication 

and commercial contacts among a large number of peoples speaking very distinct 

languages. The Mediterranean Sea borders Europe, Africa, and Asia, so that 

much of what we are calling “Western” mathematics has origins south and east of 

Europe. Even the Greeks, the quintessence of Western culture, were immigrants 

to the peninsula on which they lived when they made their great mark on the 

world. It may be this cosmopolitanism (a beautiful Greek word) that accounts 

for the uniqueness of the Greek contribution to mathematics. The organization of 

mathematics into a system of definitions, axioms, and theorems and the requirement 

of formal proof of results is without parallel anywhere else in human history. It 

is, however, only the summit of a large pyramid of knowledge whose lower levels 

were built by people who came before the Greeks. Those people also deserve to 

be remembered. 

Our journey begins with the kind of mathematics that occurs spontaneously to 

human beings in the course of everyday life. We shall see how this mathematics 

becomes increasingly sophisticated as human society becomes more complex. Two 

facts stand out from the very beginning: (1) all societies need some mathematics; 

(2) those who create mathematics by solving mathematical problems nearly always 

develop the subject far beyond its practical value. We shall trace this development 

as one would follow the growth of a wave that ultimately breaks and crashes into 

the shore. The crest of this wave is the mathematics of the Hellenistic period and 

early Roman Empire. It is called “Greek mathematics” because it was written in 

Greek, even though most of it was discovered far from the mainland of Greece. 

After watching the wave break in the later Roman Empire, we shall leave the West 

and turn our attention to other “waves” in other parts of the world. 
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Chapter 1 

Origins 

We begin our study of the development of mathematics by trying to clarify the 

nature of the subject. What is mathematics and how does it arise? The first 

of these questions is a philosophical one, but must be addressed if we hope to 

make any sense out of the history of mathematics. The second question belongs 

really to the prehistory of mathematics, but our tentative answers to it provide the 

foundation for the historical study we are undertaking. 

1.1 The Nature of Mathematics 

In this section we shall survey some issues in the history of mathematics in order to 

free ourselves from the perspective of the school mathematics that we have all been 

taught. The pedagogical ordering of mathematical topics does not always follow 

the chronological order of their invention. In this discussion we are interested not 

in mathematical questions but in questions about mathematics. 

Although twentieth-century mathematics encompasses hundreds of academic 

specialties, these specialties all began with two basic human activities. One of these 

activities is counting and measuring, which is at least as old as human government 

and commerce. The other is categorizing objects according to their shape, which 

is necessary wherever people manufacture tools and decorate their surroundings. 

Wherever people engage in agriculture, commerce, or industry instead of merely 

gathering or hunting the amount of food needed at the moment, they must do three 

things: 

(1) Count separate units of things regarded as identical for the purpose (animals 

in a herd, pottery jars, coins, etc.) 

(2) Measure continuous objects such as rope, land, wine, and bread, that is, 

find lengths, areas, volumes, and weights 

(3) Make objects of simple geometric shape, such as houses (parallelepipeds), 

pottery jars (spheroids), and grain silos (cylinders), and lay out fields in the shape 

of rectangles or triangles. 

5 
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The first and third of these activities lead to arithmetic and geometry, respec¬ 

tively. The second seems to involve both subjects, and it was precisely the attempt 

to mix the two that led to the first sophisticated research in mathematics, 2500 

years ago. 

Number and shape, the prototypes of formal mathematics, can be seen to share 

a common foundation based on the universal human tendency to compare things 

as like or different and rank them in order. At all times and in all places, wherever 

people take an interest in one another and in the world around them, they ask 

questions like, “How much bigger or smaller is my neighbor’s land than mine?” 

“Who goes first in the ceremony?” “How can we apportion the harvest (or the 

representation in Congress) fairly?” “What shape land of a given size (area) can 

be enclosed with the smallest amount of fencing?” The solution of these problems 

requires counting and ordering, and arithmetic and geometry were developed partly 

in order to answer such practical questions. The theory of proportion, which is 

the result of reflecting on such questions of comparison, led to the first formal 

mathematics—the geometry and number theory of the early Greeks—and also to 

the first intellectual conflict between the continuous and the discrete (geometry and 

arithmetic) in the form of the problem of incommensurables and the paradoxes of 

Zeno. One of our main themes will be the development of the theory of propor¬ 

tion. This concept will be seen to occur in a large number of places in science, 

characterized mathematically by linear functions whose outputs are proportional to 

their inputs. It is the most important of the general concepts that have shaped the 

subsequent development of mathematics. We shall begin by looking at the rela¬ 

tion between number and space as reflected in the problem of proportion. Other 

essential aspects of mathematics, such as the use of symbols and logical inference 

to state and prove propositions, will be taken up later. 

1.1.1 Numbers, Space, Symbols, and Logic 

The theory of proportion led to the first attempt to provide a unified foundation 

for mathematics. In the earliest written mathematical documents geometry hardly 

exists as a separate subject. The shapes of lines, surfaces, and solids are of interest 

only because they determine the method by which the size (length, area, or volume) 

of an object is to be found, and size is expressed by number. Thus arithmetic and 

geometry are not coequals at the origins of mathematics. Number is supreme. In 

early mathematical documents lengths, areas, volumes, and weights are measured 

using whole numbers and fractions. The use of fractions is the only thing that 

distinguishes measuring (say, the volume of a grain silo) from counting (say, a flock 

of sheep). It was probably taken for granted that the whole numbers, from which 

fractions are naturally derived, are adequate for the task of studying geometry; and 

indeed, from a practical point of view, they are: all the numbers ever recorded 

on measuring instruments have been rational numbers. Within human intuition, 

however, lay certain assumptions about the nature of the continuous entities that 

geometry deals with. What brought these assumptions to light was logic: the 

attempt to make geometry and arithmetic into deductive systems in Greece during 
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the fifth century B.C.E.1 In the light of logic the numbers known at the time turned 

out to be inadequate for formulating the intuitive idea that a line is continuous. The 

fundamental tool used to compare lengths, the common measure of two objects, 

turned out to be nonexistent in the case of some common pairs of line segments, 

such as the sides and diagonals of regular polygons. The result was a logical 

difficulty known as the problem of incommensurables. The way in which this 

problem was solved is highly interesting, both for its own sake and because the 

success of the resulting geometric theory of proportion banished discrete concepts 

from “official” geometry for a long time. 

The term “official” geometry is being used here to mean geometry as a deduc¬ 

tive system based on the Elements of Euclid. This kind of geometry is difficult, 

and intuition suggests many problems whose resolution is nearly impossible using 

Euclidean principles. It is known, however, that a less formal kind of geometry, 

in which discrete concepts were freely used, existed side by side with the more 

restricted official version for centuries. Even Archimedes, who is acknowledged 

as the greatest of the ancient mathematicians, allowed himself the luxury of dis¬ 

covering his results by thinking of a plane region as a stack of line segments or a 

solid region as a stack of plane figures. 

Numbers were used for more than just measuring space, however, as we learn 

by examining the practice of algebra by Hindu, Chinese, and Islamic mathemati¬ 

cians. In these early algebra problems the emphasis was on finding unknown 

numbers from certain given properties. The intrinsic properties of numbers were 

studied very little, and in many cases the solutions were illustrated geometrically. 

What we think of as the essence of algebra today—the use of equations to deter¬ 

mine unknown numbers represented by symbols—was a rather late development in 

Europe, although it was present from early times in China. Three thousand years 

before algebra became prominent in Europe the mathematicians of the Akkadian 

period in what is now Iraq had rules for finding unknown numbers given certain 

information about those numbers. Nowadays this information would be coded as 

equations, and the rules that were followed to solve such problems are logically 

equivalent to our formulas for solving equations. The role of symbolism in this 

early “algebra” was very restricted compared to its present role, however. Al¬ 

though the words for length and width may have been used abstractly as symbols 

to represent unknown numbers in a problem, there were no such symbols to repre¬ 

sent the data in a generic problem, such as a and b in the generic linear equation 

ax + b = 0. Consequently the general method of solution could not be expressed 

as a formula, but had to be explained by examples. 

Some enlargement in the sphere in which symbols were used occurred in the 

writings of the third-century Greek mathematician Diophantus of Alexandria, but 

the same defect was present as in the case of the Akkadians. This nonsymbolic 

form of algebra was inherited by the Islamic world and further developed, again 

without extensive use of symbols. During the European Renaissance both arith- 

^he traditional notations for eras, B.C. (before Christ) and A.D. (anno Domini) are gradually being 

replaced in scholarly work by B.C.E. (before the Christian era) and C.E. (Christian era). This change 

has come about because the phrase anno Domini (year of the Lord) assumes a specifically Christian 

doctrine. 
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metic and geometry were recast in algebraic terms using essentially the notation 

of today, and a third basic element of modem mathematics arose as a result: the 

use of symbols to represent unknown or variable quantities and the isolation of 

the equation as an important object of study (as opposed to a problem that can 

be stated as an equation). Thus it seems that the power of symbolism appeared 

surprisingly late in mathematics, considering that symbolism itself, in the form of 

written language, is very old. 

1.2 The Origins of Mathematics 

The prehistory of mathematics (mathematics invented before any written texts 

known to us) is an imaginative reconstruction based on information from many 

different sources. Each of the sources suggests, but does not conclusively demon¬ 

strate, something about the way in which mathematics arose as a human activity. 

Five such sources, what they tell us about the origins of mathematics, and their 

possible deficiencies are discussed below. 

1.2.1 Animal Psychology 

Certain ways of coping with the problems of life that may be called “mathematical” 

are shared by human beings and other mammals and birds, namely, distinguishing 

numbers and shape, the fundamental elements of arithmetic and geometry. Estab¬ 

lishing exactly what animals are capable of in these areas is a subtle business. 

There have been claims of horses that “count” by scratching the ground, dogs 

that make sounds alleged to be human speech, and apes that use American Sign 

Language. It has been conclusively established, however, that horses do not really 

count in this sense; in every case that has been investigated the horse has been 

trained to scratch the ground and watch its trainer attentively for a signal to stop. 

As for the “talking” dog, it has been trained to make a certain sequence of sounds 

in response to a fixed cue; there is no question of its attaching any meaning to the 

phrases it produces. The question of ape use of sign language is still in dispute. 

The trainers of the apes are enthusiastic in their belief that apes really do commu¬ 

nicate, while skeptics who have seen videotapes of the performance have pointed 

out subtle cues given by the response of the trainer to correct signs by the ape. 

The pitfalls of such research were carefully avoided in a series of experiments 

with birds conducted in the 1930s and 1940s by Prof. O. Koehler (1889-1974) of 

the University of Freiburg. Koehler kept the trainer isolated from the bird. In the 

final tests (after the birds had been trained), the birds were filmed automatically 

without any human beings present. Koehler found that parrots and ravens could 

learn to compare the number of dots (up to 6) on the lid of a hopper with a “key” 

pattern in order to determine which hopper contained food. They could make the 

comparison no matter how the dots were arranged, so that the only clue they could 

have was the abstract number of dots. 

By a variety of such experiments Koehler was able to establish that birds can 

learn to associate the abstract number of spots on the key pattern with the lid 
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having the same abstract number of spots. Thus it appears that the ability to use 

numerical aspects of the world is among the potential abilities of birds, even though 

no one knows of any example of birds using this ability in the wild. 

If arithmetic is of value to birds in laboratories, it seems clear that the ability 

to perceive shape (geometry) might be of value to an animal even in less artificial 

settings than a laboratory, and indeed the ability of animals to perceive shape has 

been very well documented. In his famous experiments on conditioned reflexes 

using dogs as subjects the Russian scientist Pavlov (1849-1936) taught dogs to 

distinguish ellipses of very small eccentricity from circles. He began by projecting 

a circle of light on the wall every time he fed the dog. Eventually the dog came to 

expect food (as shown by salivation) every time it saw the circle. When the dog 

was completely conditioned, Pavlov began to show the dog an ellipse in which one 

axis was twice as long as the other. The dog soon learned not to expect food when 

shown the ellipse. At this point the malicious scientist began making the ellipse 

less eccentric, and found, with diabolical precision, that when the axes were nearly 

equal (in a ratio of 8 : 9, to be exact) the poor dog went berserk. 

Our point in telling this story is a simple one: certain aspects of reality that 

we may call arithmetical or geometric must be dealt with by all living organisms. 

Organisms possessing at least rudimentary cognitive abilities are therefore capable 

of learning to use these properties of the world about them. In particular, the 

perceptual ability needed to create mathematical concepts is not uniquely human. 

Parrots can learn to identify two collections on the basis of the number of elements 

they contain; dogs can learn to distinguish similar but not identical shapes; and, as 

we shall now show, pigeons can make associations between one event and another 

based on causality or likelihood. In the language of Pavlov’s conditioned reflexes, 

inferences can be made on the basis of incomplete or partial reinforcement. This 

area—the study of sporadic or random phenomena—was one of the last human 

concepts to be mathematized. 

In dealing with reality a knowledge of the likely consequences of an event is 

probably even more valuable than the ability to perceive numbers and shape. The 

attempt to systematize such knowledge has led to the concepts of causality and 

randomness. It was a long time before randomness could be effectively handled by 

mathematical methods, yet the concept of causality itself, the idea of associating 

one event with another, seems to be innate, even in animals. In a fascinating article 

entitled “‘Superstition’ in the pigeon,” which describes research using Pavlov’s 

methods in a nondeterministic manner, B.F. Skinner (1904-1990) gave a model 

for understanding how such associations form in the mind, whether justified by the 

facts or not. He put hungry pigeons in a cage and attached a food hopper to the 

cage with an automatic timer to permit access to the food at regular intervals. The 

pigeons at first engaged in aimless activity when not being fed, but tended to repeat 

whatever activity they happened to be doing when the food arrived, as if they made 

an association between the activity and the arrival of food. Naturally the more they 

repeated a given activity, the more likely that activity was to be reinforced by the 

arrival of food. Since they were always hungry, it was not long before they were 

engaged full-time in an activity that they apparently considered an infallible food 

producer. This activity varied from one bird to another. One pigeon thrust its head 
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into an upper corner of the cage; another made long sweeping movements with its 

head; another tossed its head back; yet another made pecking motions toward the 

floor of the cage. 

Those with a playful imagination may wish to construct a conversation among 

pigeons conditioned to different behaviors: how would they settle among them¬ 

selves the relative food-producing power of turning counterclockwise in the cage 

versus thrusting one’s head into an upper comer? The many difficulties people 

(even mathematicians) have in understanding and applying probability can be seen 

in microcosm in this example. To take just one illustration, the human body has 

a certain power of healing itself. Yet sick people, like hungry pigeons, try various 

methods of alleviating their misery. Like the automatic timer that eventually pro¬ 

vides food to the pigeon, the human immune system often overcomes the disease. 

The consequence is a wide variety of nostrums said to cure a cold or arthritis. One 

of the triumphs of modem mathematical statistics is the establishment of reliable 

systems of inference to replace the inferences Skinner called “superstitious.” 

This tendency to make associations of the form “a causes b” has entered math¬ 

ematics in the form of a relation between propositions: “a implies b.” This relation 

is the glue that holds mathematics together. The correspondence between implica¬ 

tion and cause is a philosophical issue. As an illustration, consider the statement 

“if a is true, then b is true.” This statement is logically equivalent to “if b is false, 

then a is false.” However, absolute truth or falsehood is not available in relation 

to the observed world. As a result, science must actually deal with propositions 

of the form, “if a is tme, then b is highly probable.” One cannot infer from this 

statement that “if b is false, then a is highly /mprobable.” For example, if X is 

an adult male, then X is very probably a law-abiding citizen. One cannot validly 

infer, however, that if X is not a law-abiding citizen, then X is probably not an 

adult male. 

In summary, the ability to use arithmetic, geometric, and probabilistic/caus¬ 

al notions is a vital part of the human perceptual apparatus. This much can 

be inferred from the observation of animals. Animals, however, are clearly not 

capable of formal mathematical reasoning; parrots do not prove theorems about 

prime numbers; dogs do not seek methods of finding the asymptotes of hyperbolas; 

and pigeons do not contemplate the strong law of large numbers. In this respect 

human beings are unique. What were the manifestations of mathematics among 

the earliest human beings? Animal psychology cannot answer this question, and 

so we turn to other sciences for help. 

1.2.2 Archaeology 

Very ancient animal bones have been found in Africa and Europe containing 

notches, strongly suggesting that some sort of counting procedure was being car¬ 

ried on at a very early date, although what exactly was being counted remains 

unknown and perhaps forever unknowable. One thing is clear to everyone, how¬ 

ever: the notches were made by human beings. No natural phenomenon and no 

animal would be capable of making them. One such bone, named after the fishing 
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Figure 1.1: Paleolithic wolf bone, from the Illustrated London News, October 2, 

1937. The Illustrated London News Picture Library. 

village of Ishango on the shore of Lake Edward in Zaire where it was discovered, 

is believed to be between 8500 and 11,000 years old. The Ishango bone, which 

is now in the Mus6e d’Histoire Naturelle in Brussels, contains three columns of 

notches. One column consists of four series of notches containing 11, 21, 19, and 

9 notches. Another consists of four series containing 11, 13, 17, and 19 notches. 

The third consists of eight series containing 3, 6, 4, 8, 10, 5, 5, and 7 notches, with 

larger gaps between the second and third series and between the fourth and fifth 

series. These columns present us with a mystery. Why were they put there? What 

activity was being engaged in by the person who carved them? Conjectures range 

from abstract experimentation with numbers to keeping score in a game. The bone 

could have been merely decorative, or it could have been a decorated tool. 

Another such bone, the radius bone of a wolf (see Fig. 1.1), was discovered 

at Veronice (Czech Republic) in 1937. This bone was marked with two series of 

notches, grouped by fives, the first series containing five groups and the second 

six. Its discoverer, Dr. Karel Absolon (1887-1960), believed the bone to be about 

30,000 years old, though other archaeologists thought it considerably younger. The 

people who produced this bone, though they hunted mammoth and rhinoceros in 

what is now Europe, were clearly a step above mere survival, since a human 

portrait carved in ivory was found in the same settlement along with a variety of 

sophisticated tools. Because of the grouping by fives, it seems clear that this bone 

was being used to count something. Even if the groupings are meant to be purely 

decorative, they point to a use of numbers and counting for a practical or artistic 

purpose. 

Although the examples just given tell us nothing definite about the details of 

primitive mathematics, there are certain archaeological findings that can be woven 
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together with known facts about the physical world to support some highly inter¬ 

esting conjectures. To be specific, circular structures with various alignments that 

seem to be of astronomical significance are found all over the world. Stonehenge, 

near Salisbury, England, is the most famous example. Although we cannot be 

positive about the use of such circles (or even whether they had only one use, 

since different parts of Stonehenge were built at different times), it is clear that 

one possible use was in charting the motions of the sun and moon among the stars. 

If this currently fashionable interpretation of these circles is correct, it follows that 

one of the earliest stimuli to the use of both arithmetic and geometry comes from 

watching the sun and moon move among the stars. The properties of lines, circles, 

and angles come to be understood when stones must be arranged so as to point 

to significant places on the horizon (the sunrise and sunset points at the solstices, 

for example), and once the stones are in place, one can count the days between 

solstices and thereby compute a solar calendar. 

Archaeologists have found significant astronomical alignments in most of these 

circles. One of the most interesting of these circles was discovered at Cahokia, 

Illinois in 1961. The Cahokia site contains more than one circle. Several arcs were 

discovered, but a portion of the site had been removed for construction before its 

archaeological significance was recognized. The archaeologist Warren L. Wittry 

found an arc, which he believes to be part of a full circle about 410 feet in diameter, 

containing post holes suitable for erecting tall poles evenly spaced and about 27.5 

feet apart. Interestingly, there was no observation post at the exact center of the 

circle, but there was one about 5 feet east of the center, and among the post holes 

on the circle there are two so located that, viewed from the observation point, the 

sun rises exactly over them at the winter and summer solstice. Whatever poles may 

have been erected in these holes would have rotted away long ago (the construction 

is believed to be about 3000 years old). 

As with all such circles, we shall probably never know with certainty whether 

the site was used as a calendar or merely for rituals (or even some purely mundane 

practical purpose—might it not have been the framework for a defensive fortress, 

for example?). If the site was used as a calendar, the scale is too small for a very 

precise determination of the solstices, but the precision may have been sufficient 

for the needs of a neolithic society. 

Although we cannot be sure of our interpretations, it is plausible that the 

some of the first steps the human race took in the application of mathematics 

to understand the world were connected with astronomy. Artifacts such as the 

“sun circles” therefore do provide some confirmation that sunrises and full moons 

were among the earliest things that people counted. The important concept of 

time measurement, which depends on the fundamental relationship distance = 

velocity x time, requires a standard motion that can be regarded as taking place 

at constant velocity to provide a definition of the quantity of time elapsed. The 

time elapsed is then directly proportional to the distance traversed; in fact, this 

property is the mathematical definition of constant velocity. Distance, of course, 

can be measured directly. Now of all the motions in the natural world that fit our 

intuitive notion of constant velocity, the regular progression of the stars from east 

to west in the sky every night is the most obvious standard. By comparing the 



1.2. THE ORIGINS OF MATHEMATICS 13 

motions of the sun and moon with this star standard one can detect nonuniformities 

in their motions through the sky. This observation is the beginning of scientific 

astronomy, which came to be interwoven with geometry at an early date. This 

example shows that the concept of direct proportion, which we have mentioned 

above as a central problem of mathematics, is a key element in the measurement 

of time. 

Archaeology can give us information not only on the origins of mathematics 

but also on the great variety of ways in which certain advanced cultures, now 

extinct, have dealt with mathematical concepts. The world’s museums are full of 

mathematically related artifacts such as oracle bones and counting boards found 

in China, clay records of astronomical observations in Mesopotamia, and traveling 

“account books” (packets of knotted threads), known as quipus, used by the Incas 

of South America. 

1.2.3 Anthropology 

Studies of nontechnological societies can provide suggestions about the ways in 

which people create and use mathematics. Moreover, the information obtained 

from this source can be compared with the information available from archaeology 

to make plausible inferences about the earliest mathematics. Anthropological evi¬ 

dence, like archaeological evidence, comes to us filtered through the interpretations 

of its practitioners. It requires the further caveat that some of these societies may 

have learned their mathematics elsewhere rather than creating it from their own 

experience. 

To give an example of the use of anthropological evidence of the origins of 

mathematics, we note that in rural areas in Africa calendars are more a matter of 

observation than a tool. As explained by the Rev. Dr. John S. Mbiti, the phases 

of the moon are so noticeable that the calendar adheres to them strictly, naming 

months after the prevailing weather conditions or the main activity taking place. 

(Contrast this strict lunarity with our “civil” months of 30 or 31 days.) Years tend 

to be counted according to cyclic human activities and weather conditions; they 

do not consist of a canonical number of days, as in Europe, Asia, and America. 

From this description we can see that not every society needs precise mathe¬ 

matics. Only when the future must be planned in great detail is it necessary to 

perform a precise mathematical analysis of astronomical observations. Mbiti points 

out that the African concept of time is almost entirely concerned with the relations 

of earlier, later, and simultaneity in the important events of daily life. The mechan¬ 

ically measured time of a clock is needed only where it is necessary to coordinate 

the activities of large numbers of people who are not personally acquainted with 

one another. When people live in houses they have built themselves and manufac¬ 

ture the objects they use, there is no need to count days in order to compute rent, 

interest on debts, or the date of occupancy of a new dwelling. However, even the 

most uncomplicated life involves some counting, and it appears that the Africans 

discussed by Mbiti make a rough correlation between phases of the moon and their 

hunting activity and between seasons and agricultural activity. 
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As a general rule, people who engage in agriculture use mathematics only as a 

tool, not as an oracle. In making a particular judgment that involves mathematical 

questions they will place the mathematics in its proper perspective, weighing both 

numerical and nonnumerical considerations. This approach to problem-solving is 

taken in both low-technology and high-technology agriculture. For example, in 

modem America, when deciding when to harvest a crop of soybeans, the farmer 

knows that a penalty will be assessed at the grain elevator if the moisture content 

is above 17%. If the moisture content is above this level when harvest time arrives, 

the farmer will weigh the effects of delay on market prices, the possibility of future 

bad weather, and the fact that dry soybean pods tend to break open prematurely 

(causing the beans to drop onto the ground and be wasted) in order to decide the 

optimal time for harvest. These qualitative considerations reflect the same thought 

process described by Dr. Mbiti in connection with the calendar. Nevertheless, with 

the growth of technology the quantitative aspect of farming assumes an ever-larger 

role. Modem dairy farms provide measured nutrients individually adjusted to the 

needs of each cow and dispensed automatically by computer when the cow’s collar 

sends a radio signal. 

It must not be thought, however, that societies with small populations and lit¬ 

tle technology have no interest in mathematics beyond arithmetic. Prof. Marcia 

Ascher has assembled an impressive number of examples of rather arcane pro¬ 

tomathematics among peoples who have very little technology. Mathematics, it 

seems, can be inspired by art as well as by science. The Bushoong people of Zaire 

make part of their living by supplying embroidered cloth, articles of clothing, and 

works of art to others in the economy of the Kuba chiefdom. In connection with 

this work (perhaps even as preparation for it) Bushoong children amuse themselves 

by tracing figures on the ground. The rule of the game is that a figure must be 

traced without repeating any strokes and without lifting the finger from the sand. 

In graph theory this problem is known as the unicursal tracing problem. It was 

thoroughly analyzed by the Swiss mathematician Leonhard Euler (1707-1783) in 

the eighteenth century in connection with the famous KOnigsberg bridge problem. 

According to Ascher, in 1905 some Bushoong children challenged the ethnologist 

Emil Torday (1875-1931) to trace a complicated figure without lifting his finger 

from the sand. Torday did not know how to do this, but he did collect several 

examples of such figures. The Bushoong children seem to learn intuitively what 

Euler proved mathematically: a unicursal tracing of a connected graph is possi¬ 

ble if there are at most two vertices where an odd number of edges meet. The 

Bushoong children become very adept at finding such a tracing, even for figures 

as complicated as that shown in Fig. 1.2. 

Any organized system of society puts everyone in a certain relation to other 

people. The codification of these relations requires a rudimentary analysis that 

may be called mathematical. The abstract study of relations is a part of set theory 

in modem mathematics, but we can see applications of it in nearly every society. 

Ascher gives the example of the Warlpiri of Australia, who assign each person to 

one of eight “sections” of the population. The sections are arranged in four ordered 

pairs, to which for convenience we shall assign numbers rather than names: (1, 5), 

(2,6), (3, 7), (4,8), and there is apparently strong social pressure to marry some- 
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Figure 1.2: A graph for which a unicursal tracing is possible. 

one from the group paired with one’s own group. Children of these “preferred” 

marriages are assigned to a different section depending on the section to which 

their mother belongs, as depicted in the following two schemata: 

1 —>3 —>2 —>4 —> 1; 5 —» 8 —>6 —>7 —>5. 

That is, children are assigned to the group following their mother’s group in these 

schemata. One can thus deduce that, if only preferred marriages occur, a mother- 

daughter chain will stay among groups 1-4 if it begins there, and likewise that it 

will stay among groups 5-8 if it begins there. A father-son chain, on the other 

hand, will always alternate between groups 1-4 and groups 5-8, since men from 

groups 1—4 are expected to marry women from groups 5-8. The Warlpiri system 

is a striking example of the importance of the concept of relatedness in human 

society. As with the Warlpiri, such relations are usually family relations, and they 

were at one time of great importance in the politics of royal succession. 

One obvious point of mathematical interest in the study of any culture is the 

way in which people count. In this connection, words are of primary importance. 

Every society, without exception, has a few proper names for small integers, from 

which the names of larger integers are formed by compounding. The integers with 

simple names indicate the base of the system. Among the bases that have been 

used by various peoples are 2, 3, 5, 10, 12, 20, and 60. Systems with a large base 

are probably a higher-order construction, superimposed on a smaller base. Studies 
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of the Andamans of Australia, for instance, revealed that these people would use 

their fingers to count to 10, saying, “ubatul, ikpor [one, two], anka [and this] ubatul 

ikpor, anka ubatul ikpor, anka ubatul ikpor, anka ubatul ikpor, ardura [that’s all].” 

This last word was spoken while bringing the hands together. This example shows 

a system of base 2, with three and four essentially called “and [another] one two” 

and so forth up to 10. This example brings up a fourth source of knowledge about 

the origins of mathematics. 

1.2.4 Language 

Abstract mathematical concepts are usually given intuitive names having a vivid 

everyday meaning. We speak, for example, of groups, rings, and fields in algebra. 

As a more elementary example our word line is related to linen by more than a 

phonetic coincidence. Both come from the Latin word linea, which means thread. 

It is easy to see here the intuitive origin of the abstract concept of a line. As 

another example, take the words angle and corner. The former comes from the 

Latin word angulus, meaning nook or corner, while the latter is from the Latin 

word cornus, meaning horn. Again we can see what particular objects gave rise 

to the abstract mathematical concepts. This process occurs in any language that 

must express ideas that go beyond the ordinary functions of day-to-day living. 

The word abstract itself, for example, literally means dragged away. We don’t 

really mean that abstract concepts are dragged away, of course; it is their concrete 

interpretation that has been removed when we use them. 

This linguistic process can provide some clues to the origin of mathematics, for 

example, in the nursery rhyme that begins “Hickory, dickory, dock.” This phrase 

preserves in a distorted form the words for “8, 9, 10” in a Celtic language spoken 

in Britain before there were any clocks for a mouse to run up. The most important 

ordinal numbers have recognizable relations to other words. Our word first, for 

example, is a shortened version of foremost, and second comes from a general 

root meaning following. As a method of finding out things about the origin of 

mathematics, linguistic considerations are somewhat limited, since number words 

are so old that they predate any language spoken today. The word digit, of course, 

means both finger and positive integer less than ten, but specific instances of 

digits (one, two, three, four, five, six, seven, eight, nine) have origins lost in dim 

antiquity. Were they perhaps names of specific fingers? Or was two, for example, 

the word for say eyes or ears in some language, and five the word for hands. 

The Russian word for five (pyat *) seems very close to the word for metacarpus2 

(pyastfi however, such phonetic coincidences are bound to occur in any large set of 

words. Although the names for numbers are similar across language groups, there 

is no consistent resemblance in English between the number names and names of 

objects that might plausibly be identified with them. 

Despite the uncertainty of inference from linguistics, the study of the whole 

system of words used for counting, ordering, and dividing can be revealing. The 

2For those who have not gone to medical school, the metacarpus is the portion of the hand excluding 

the fingers and thumb. 
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names people invent for abstract concepts provide a skeleton from which we can 

often discern the general shape of their thought processes. Partly for this reason, 

but mainly because we can conduct this kind of research without leaving our chairs, 

we shall follow up this idea in more detail in the exercises below. 

1.2.5 Child Psychology 

As our final example of a source of information about the origin of mathematics we 

note that our own thought processes and the learning experiences of children may 

provide a basis for conjectures about the creation of mathematics. Here again one 

must be very careful. We presume that mathematics has been created by adults, not 

children. Furthermore, modern children are not creating arithmetic and geometry; 

they are learning it, as did their teachers. Nevertheless, children clearly learn to 

use numbers and spatial concepts to the extent necessary to cope with ordinary 

life before they go to school. It is therefore of interest to see what situations 

require them to talk about numbers and space. The results of many studies have 

been summarized by Prof. Karen Fuson. A few of the results from observation of 

children at play and at lessons were as follows. 

1. A group of nine children from 21 to 45 months was found to have used the 

word two 158 times, the word three 47 times, the word four 18 times, and 

the word five 4 times. 

2. The children seldom had to count “one-two” in order to use the word two 

correctly; for the word three counting was necessary about half the time; for 

the word four it was necessary most of the time; for higher numbers it was 

necessary all the time. 

One can thus observe in children the capacity to recognize groups of two 

or three without performing any conscious numerical process. This observation 

suggests that these numbers are primitive, while larger numbers are a conscious 

creation. 

The most famous work on the development of mathematical concepts in chil¬ 

dren is due to Prof. Jean Piaget (1896-1980) of the University of Geneva, who 

wrote many books on the subject, some of which have been translated into English. 

Piaget divided the development of the child’s ability to perceive space into three 

periods: a first period (up to about 4 months of age) consisting of pure reflexes and 

culminating in the development of primary habits; a second period (up to about 

one year) beginning with the manipulation of objects and culminating in purpose¬ 

ful manipulation; and a third period in which the child conducts experiments and 

becomes able to comprehend new situations. He categorized the primitive spa¬ 

tial properties of objects as proximity, separation, order, enclosure, and continuity. 

These elements are present in greater or less degree in any spatial perception. In 

the baby they come together at the age of about 2 months to provide recognition 

of faces. (The human brain seems to have some special “wiring” for recognizing 

faces.) The interesting thing about these concepts is that mathematicians recognize 

them as belonging to the subject of topology, an advanced branch of geometry that 
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developed in the late nineteenth and early twentieth centuries. It is an interesting 

paradox that the human ability to perceive shape depends on synthesizing vari¬ 

ous topological concepts; this progression reverses the pedagogical and historical 

ordering between geometry and topology. 
Piaget pointed out that children can make topological distinctions (often by 

running their hands over models) before they can make geometric distinctions 

(3-year-old children may fail to distinguish between a square and an ellipse, for 

example). Discussing the perceptions of a group of 3-5-year-olds, Piaget claimed 

that the children had no trouble distinguishing between open and closed figures, 

surfaces with and without holes, intertwined rings and separate rings, and so forth, 

while the seemingly simpler relationships of geometry (distinguishing a square 

from an ellipse, for example) were not mastered until later. 

1.3 Mathematics as a Human Endeavor 

One fact revealed by a study of the history of mathematics is that all human 

cultures create and use mathematics to some degree, while in a few cultures it 

has risen to a very high degree of development. At present higher mathematics 

is the common heritage of the entire world, to which mathematicians of many 

nations have contributed for the last century. It is, along with music, a language 

understood by people from all parts of the world and the closest thing there is to a 

universal cultural phenomenon. Today there is a worldwide unity of mathematical 

standards expressed in mathematical journals published on every continent. To 

understand how this grand phenomenon came about is the ultimate object of our 

investigation. Having begun with the simplest protomathematics in this chapter, 

we shall advance to higher levels of mathematical creation in the later chapters. 

There are several levels of mathematical sophistication. We shall distinguish 

three of these levels, forming a sort of pyramid. The use of numbers, shapes, and 

topological considerations to create tools and art and to engage in commerce is the 

bottom layer of the pyramid; all known societies exhibit this level of mathematical 

awareness. Just above it is the level at which mathematics is distinguished as 

a specialized subject of study. Within the group of societies whose mathematics 

is on this level there again seem to be certain intuitive universals. Rules for 

addition and subtraction and procedures equivalent to multiplication and division 

are found in all such societies. The Pythagorean theorem in its Euclidean form can 

be found in many cultures not known to have had contact with one another. This 

fact suggests that Euclidean geometry, at least, is a universal intuitive concept. 

Another intuitive approach is the attempt to “discretize” geometry, by regarding a 

plane figure as a stack of lines. This kind of intuitive formal mathematics existed 

and produced very similar results both in Europe and in Asia. At the very top of 

the pyramid is mathematics in the form of a logically organized deductive system 

in which conclusions are drawn according to rigorous logical rules rather than by 

intuition. This kind of mathematics was first developed by the ancient Greeks and 

grew alongside the intuitive variety, rather than displacing it. Although one would 

expect this approach to hinder rather than help the discovery of new results, it 
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was precisely the attempt to be clear about assumptions and logical in drawing 

conclusions that suggested a great many fertile fields for study. Noneuclidean 

geometry is the most obvious example of such a field. Although the intuitive 

ideas continued to exist into modem time, the ideal of logical precision persisted, 

and the continuing struggle to make mathematics clear and precise has led to 

new mathematical questions down to the present day. The advantages of this 

approach have been apparent to people throughout the world and have led to a 

broad consensus as to the proper way to state a mathematical proposition. 

We cannot explore all of the history of mathematics in a one-semester course. 

Drastic cuts must be made in both the breadth and depth of the subject in order to 

produce a coherent and meaningful course. We shall first of all confine ourselves 

to the top two layers of the pyramid just described. We shall add nothing to what 

has already been said about the mathematics on the bottom layer. However, the 

amount of material in the top two layers is still prodigiously large. The material in 

the following chapters has been selected to show you the origins of the mathematics 

you learned in elementary and secondary school and the many different ways in 

which these topics have been studied by different societies. You may be surprised to 

find how much of it is a comparatively recent invention and how much has been 

transformed almost beyond recognition from its origins—mathematics does not 

spring full-grown from the earth, it develops like a living organism. An exclusive 

preoccupation with this “standard” mathematics, however, would not provide the 

perspective that comes from seeing other approaches to mathematics. For that 

reason we shall also spend some time studying the mathematics of ancient Egypt 

and the traditional mathematics of India, China, and Japan. 

1.4 Problems and Questions 

1.4.1 Questions on the Nature of Mathematics 

Exercise 1.1 Describe the fundamental operations of grade-school arithmetic and 

geometry and tell how these operations relate to the theory of proportion. Find 

an application of the theory of proportion in the Fourteenth Amendment to the 

American Constitution. 

Exercise 1.2 In what practical contexts of everyday life are the fundamental oper¬ 

ations of arithmetic—addition, subtraction, multiplication, and division—needed? 

Give at least two examples of the use of each. How do these operations apply to 

the problems for which the theory of proportion was invented? 

Exercise 1.3 It was stated above that measurement is performed on infinitely divis¬ 

ible, continuous objects. Are the two adjectives infinitely divisible and continuous 

synonyms, or is one stronger than the other? 

Exercise 1.4 Why aren’t there enough rational fractions so that we can assign one 

fraction to each point on a line? Consider in particular that one can write fractions 

as small as desired, and between any two fractions a and b there are other fractions, 
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such as \{a + b). What more is needed if all points on a line are to be regarded 

as numbers? How can addition and multiplication be defined for all the points on 

a line? 

Exercise 1.5 Why would the discovery of incommensurables be a challenge (or a 

nuisance, depending on your point of view)? What does it imply about the differ¬ 

ence between infinite divisibility and continuity? What unfinished mathematical 

work does it point to? 

1.4.2 Questions on the Origins of Mathematics 

Exercise 1.6 What significance might there be in the fact that there are three 

columns of notches on the Ishango bone? What might be the significance of the 

numbers of notches in the three series? 

Exercise 1.7 Can any firm conclusions be drawn from the Veronice wolf bone? 

Does it follow, for instance that, because the bone is 30,000 years old, the notches 

on it are also that old? If the notches were not used for counting things, what 

other purpose might they have served? 

Exercise 1.8 The construction of a calendar is one of the fundamental problems 

that all large-scale societies have solved with varying degrees of precision. Why 

is a calendar needed by an organized society? Would a very small-scale society 

(consisting of, say, a few dozen families) require a calendar if it engaged mostly 

in hunting or fishing? What if the principal economic activity is agriculture? 

Exercise 1.9 The basic blocks of time in our calendar are weeks, months, and 

years. What is the reason for attaching special significance to just these intervals 

of time and no others? Do these intervals give any clue as to the origin of our 

calendar? In the calendar described by Mbiti only months and years are mentioned; 

moreover months are astronomically defined, while a year is a meteorological term. 

What societal differences correspond to these calendrical differences? 

Exercise 1.10 In constructing a calendar, we encounter the problem of measuring 

time. Measuring space is a comparatively straightforward task, based on the notion 

of congruent lengths. One can use a stick or a knotted rope stretched taut as a 

standard length and compare lengths or areas (rectangles) using it. Two lengths are 

congruent if each bears the same ratio to the standard length. In many cases one 

can move the objects around and bring them into coincidence. But what is meant 

by congruent time intervals? In what sense is the interval of time from 10:15 to 

10:23 congruent to the time interval from 2:41 to 2:49? 

Exercise 1.11 The preceding exercise brings up the general problem of measure¬ 

ment, which affects all of science. Except for mass (weight) and space, it seems 

that none of the quantities physics needs to measure has a straightforward defi¬ 

nition, for example: time, velocity, acceleration, temperature, potential difference, 

and electric charge. Describe a way of measuring time and a way of measuring 

(constant) velocity. Can either of these concepts be described without the other? 
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Exercise 1.12 It appears from the preceding exercise that the scientific measure¬ 

ment of elapsed time requires three things: (1) the ability to measure distance, (2) a 

standard motion accepted as a standard constant velocity, and (3) the mathematical 

relation distance = velocity x time. Give an analogous description of a way of 

measuring temperature. Are there other physical quantities whose measurement 

must be approached in this way? 

Exercise 1.13 Are there any other ways of measuring time besides the method 

already discussed, based on constant velocity? 

Exercise 1.14 What conclusions can be drawn from the accounts of the Bushoong 

and Warlpiri given above? Are these people engaged in doing mathematics as we 

know it? Is there an “intuitive” preverbal knowledge of mathematics that guides 

the creation of mathematics? If so, what additional value is there in systematizing 

mathematics in treatises such as those of Euclid on geometry, in which everything 

is deduced logically from stated premises? Is anything lost in the transition from 

intuitive results to those that are rigorously proved? 

Exercise 1.15 If only preferred marriages are taken into account among the Warl¬ 
piri, then a mother-daughter chain will have period 4, that is, each woman will 

belong to the same section as her great-great grandmother. Show that a father-son 

chain will have period two, that is, each man will belong to the same section as his 

grandfather. Also show that a female chain always stays within either the lower 

half of the numbers (1-4) or the upper half (5-8), while a male chain alternates 

between the two halves. What can be said about a gender-alternating sequence of 

generations, that is, mother-son-daughter-son, etc.? 

Exercise 1.16 What may have happened in the history of the Bushoong and 

Warlpiri to motivate the particular mathematically oriented preoccupations dis¬ 

cussed above? 

Exercise 1.17 Find a unicursal tracing of the graph shown in Fig. 1.2. 

Exercise 1.18 Consider the following three-column list of number names in En¬ 

glish and Russian. The first column contains the cardinal numbers (those used 

for counting), the second column the ordinal numbers (those used for ordering), 

and the third the fractional parts. Study and compare the three columns carefully. 

The ordinal numbers and fractions and the numbers 1 and 2 are grammatically 

adjectives in Russian. They are given in the feminine form, since the fractions are 

always given that way in Russian, the noun dolya, meaning part or share, always 

being understood. If you know any other language, prepare a similar table for that 

language, then describe your observations and inferences. What does the table 

suggest about the origin of counting? 
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English Russian 

one first whole odna pervaya tselaya 

two second half dve vtoraya polovina 

three third third tri tret’ya tret’ 

four fourth fourth chetyre chetvyortaya chetvert’ 

five fifth fifth pyat’ pyataya pyataya 

six sixth sixth shest’ shestaya shestaya 

Exercise 1.19 Does the development of personal knowledge of mathematics mir¬ 

ror the historical development of the subject? That is, do we learn mathematical 

concepts as individuals in the same order in which these concepts appeared histor¬ 

ically? (When answering this question distinguish between formal mathematical 

knowledge and intuitive, nonverbal understanding of mathematical principles.) 

Exercise 1.20 Topology, which may be unfamiliar to you, studies (among other 

things) the mathematical properties of knots, which have been familiar to the human 

race at least as long as most of the subject matter of geometry. Why was such a 

familiar object not studied mathematically until the twentieth century? 

1.5 Endnotes 

1. Koehler’s work on counting birds was published in German in the Bulletin of 

Animal Behavior, No. 9. A translation can be found in Vol. 1 of The World 

of Mathematics, edited by James R. Newman and published by Simon and 

Schuster (New York, 1956) pp. 491-492. 

2. The description of Pavlov’s work is based on Conditioned Reflexes (1928), 

Dover reprint, New York (1960), p. 122, and his Selected Works (Foreign 
Languages Publishing House, Moscow, 1955). 

3. Skinner’s article was published in the Journal of Experimental Psychology, 
38 (1), (Feb. 1948) pp. 168-172. 

4. The discovery of the Moravian wolf bone and other artifacts is described in 

the Illustrated London News of Oct. 2, 1937. 

5. The account of the Cahokia sun circle is summarized from E. C. Krupp’s 

book Echoes of the Ancient Skies (Harper & Row, New York, 1983). 

6. Dr. Mbiti’s discussion of the calendar can found in his book African Reli¬ 

gions and Philosophy, pp. 20-21. This passage is quoted at greater length 

by Prof. Claudia Zaslavsky in Africa Counts, pp. 62-63, which is the source 
of the discussion in this chapter. 

7. Prof. Ascher’s book is Ethnomathematics, Brooks/Cole, 1991. The discus¬ 

sion of the Bushoong is on pp. 70-72, and that of the Warlpiri on pp. 31 

and 62. A full account of the work of Torday can be found in the book of 



1.5. ENDNOTES 23 

John Mack, Emil Torday and the Art of the Congo. 1900-1909 (University 

of Washington Press, Seattle, 1990). 

8. The Andaman method of counting was reported in Numbers and Numerals 

by David Eugene Smith and Jekuthiel Ginsburg, published by the National 

Council of Teachers of Mathematics, Washington, DC., 1937, pp. 2-3. 

9. The book by Prof. Fuson is Children’s Counting and Concepts of Number 

(Springer-Verlag, New York, 1988). The observations mentioned are on p. 

15. 

10. Among Piaget’s published works are The Child’s Conception of Number 

(The Humanities Press, Inc., New York, 1952) and (with Barbel Inhelder) 

The Child’s Conception of Space (Routledge & Kegan Paul, London, 1967). 

The conclusions described here are from the second of these. 
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Chapter 2 

Ancient Egyptian 

Mathematics 

2.1 Introduction and Historical Setting 

In reading the preceding chapter you may have realized that the field of prehis¬ 

tory of mathematics is rich in unsubstantiated conjectures. When we come to the 

earliest written mathematical documents, we still find a wide field of allowable 

interpretation, but we also find a great many more hard facts to base our con¬ 

jectures on. In the last chapter we saw some of the archaeological evidence for 

the most primitive forms of mathematics, which involve merely counting things 

or constructing physical objects in the shape of simple geometric figures. The 

invention of the more sophisticated mathematics involved in performing arithmetic 

operations on whole numbers (addition, subtraction, multiplication, and division), 

the handling of fractions, and the study of such geometric properties as area, vol¬ 

ume, congruence, and proportion is harder to trace. In the earliest treatises the 

operations of arithmetic appear in finished form, without any indication as to how 

they were discovered. We do not know how or why addition and multiplication 

were invented. These operations appeared several thousand years ago, apparently 

independently, in China, India, Mesopotamia, and Egypt. The oldest mathemati¬ 

cal records, dating back more than 4000 years, are found in Mesopotamia (Iraq). 

These records, however, are in the form of individual clay tablets devoted to par¬ 

ticular mathematical problems; consequently they do not give a unified picture of 

the type of mathematics practiced. 

The earliest systematic treatises on mathematics come from the Egyptian civi¬ 

lization, which was already 2000 years old before the mathematical treatises that 

survive today were written. After several thousand years during which the area 

now called Egypt was the home of isolated agricultural communities a process of 

consolidation began, and by 3100 B.C.E. there were two major kingdoms, Upper 

Egypt in the south and Lower Egypt in the north. Egypt became politically unified 

about this time when a ruler of Upper Egypt, variously said to be named Menes, 

25 
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Namier, or ‘Scorpion,’1 conquered Lower Egypt. In the four centuries following 

this conquest, a number of technological advances were made in Egypt making 

it possible to undertake large-scale engineering projects. Such projects required a 

certain amount of arithmetic and geometry. Shortly after the beginning of the Old 

Kingdom (2685 B.C.E.) the famous Step Pyramid of Djoser was built, the first 

structure made entirely of hewn stone. The Old Kingdom, which lasted just over 

five centuries, was a time of active building of temples and tombs. The collapse of 

central authority at the end of this period led to a century and a half during which 

the real power was held by provincial governors. The central authority recovered 

when the governors of Thebes extended their power northward, and over several 

generations brought about the Middle Kingdom (2040—1785 B.C.E.). When the 

central authority weakened again at the end of this period, foreign invaders known 

as the Hyksos conquered most of Egypt from the north. The Hyksos rule lasted 

for about a century, until some of their puppet governors became strong enough to 

usurp their authority; the Hyksos were driven out in 1570 B.C.E., which marked 

the beginning of the New Kingdom. It was during the Hyksos period that the 

earliest mathematical treatises still extant were written. We therefore begin with a 

discussion of mathematics as practiced in the Middle Kingdom. 

2.2 Sources 

The great architectural monuments of ancient Egypt are covered with hieroglyphics, 

some of which contain numbers. In fact, the ceremonial mace of the founder of the 

first dynasty contains records that mention oxen, goats, and prisoners and contain 

the hieroglyphic symbols for the numbers 10,000, 100,000, and 1,000,000. These 

hieroglyphs, while suitable for ceremonial recording of numbers, required some 

simplification for easy writing on papyrus or leather. The simplified cursive form 

of the hieroglyphics, known as the hieratic script, is the language of the earliest 

written documents that have come down to us. 

The most detailed information about Egyptian mathematics comes from a sin¬ 

gle document written in the hieratic script on papyrus around 1650 B.C.E. and 

preserved in the dry Egyptian climate. This document is known properly as the 

Ahmose Papyrus, after its writer, but also as the Rhind Papyrus after the British 

lawyer Alexander Rhind (1833-1863), who went to Egypt for his health and be¬ 

came an Egyptologist. Rhind purchased the papyrus in Luxor, Egypt in 1857. 

Parts of the original document have been lost, but a section consisting of 14 sheets 

glued end to end to form a continuous roll 3^ feet wide and 17 feet long remains. 

Part of it is on public display in the British Museum, where it has been since 

1865. Some missing pieces of this document were later (1922) discovered in the 

Egyptian collection of the New York Historical Society; these are now on display 

at the Brooklyn Museum. A slightly earlier mathematical papyrus, now in the 

Moscow Museum of Fine Arts, consists of sheets about one-fourth the size of the 

Ahmose Papyrus. This papyrus was purchased by V. S. Golenishchev (1856-1947) 

Ht is not known with certainty whether these are one, two, or three persons. 
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in 1893 and donated to the museum in 1912. The Moscow Papyrus, however, is 

difficult reading, even for experts in the hieratic script in which it is written, and 

some of the parts that are completely clear duplicate parts of the Ahmose Papyrus. 

A third document, a leather roll purchased along with the Ahmose Papyrus, was 

not unrolled for 60 years after it reached the British Museum because the curators 

feared it would disintegrate if an attempt was made to unroll it. Because it was 

written on expensive leather, rather than cheap papyrus, the museum authorities 

assumed it contained material of great importance. At last suitable techniques 

were invented for softening the leather, and the document was unrolled in 1927. 

The results were disappointing, as the contents turned out to be a collection of 26 

sums of unit fractions. A fourth set of documents, known as the Reisner Papyri 

after the American archaeologist George Andrew Reisner (1867-1942), who pur¬ 

chased them in 1904, consists of four rolls of records from dockyard workshops, 

apparently from the reign of Senusret I (1971-1926 B.C.E.). They are now in the 

Boston Museum of Fine Arts. These documents show the practical application of 

Egyptian mathematics in construction and commerce. 

We are fortunate to be able to date the Ahmose Papyrus with such precision. 

The author himself gives us his name and tells us that he is writing in the fourth 

month of the flood season of the thirty-third year of the reign of Pharaoh Auserre 

(Apepi I). From this information Egyptologists arrived at a date of around 1650 

B.C.E. for this papyrus. Ahmose tells us, however, that he is merely copying 

work written down in the reign of Pharaoh Nymaatre, also known as Amenemhet 

III (1842-1797 B.C.E.), the sixth pharaoh of the Twelfth Dynasty. It appears, 

therefore, that the mathematical knowledge contained in the papyrus is at least 

4000 years old. 

2.3 The Ahmose Papyrus 

We shall give an overview of the contents of the papyrus before proceeding to a 

detailed study of Egyptian mathematics based on the information it contains. 

The author begins by telling us that his work is a “correct method of reckon¬ 

ing, for grasping the meaning of things, and knowing everything that is, obscuri¬ 

ties. .. and all secrets.” Then follow tables resembling multiplication tables (more 

on this subject below), and then 87 problems involving various mathematical pro¬ 

cesses. Attempts have been made to discern a pattern in the arrangement of these 

problems, but the only suggestion that seems plausible is that the problems are 

grouped according to their application rather than their method of solution. The 

first six problems, for example, involve dividing loaves of bread among 10 people. 

Problems 7-23 are purely technical and show how to add fractional parts and, 

given a certain number of fractional parts, how to find complementary fractional 

parts to obtain a whole. Problems 24-38 are concerned with finding a quantity 

of which certain fractional parts will yield a given number. Area, volume, and 

general measurement problems are numbered from 40 to 60, and the remaining 

problems are concerned with various commercial applications to the distribution 

of goods. 
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2.4 Egyptian Arithmetic 

2.4.1 General Features 

What can we conclude about Egyptian mathematics from the problems considered 

in the Ahmose Papyrus and the methods used to solve them? To answer this 

question we must first clear our minds of modem modes of thought. We naturally 

think of arithmetic as consisting of the four operations of addition, subtraction, 

multiplication, and division performed on whole numbers and fractions. We leam 

the rules for carrying out these operations in childhood and do them automatically, 

without attempting to prove that they are correct. The situation was different for 

the Egyptian. To the Egyptian, it seems, the fundamental operations were addition 

and doubling, and these operations were performed on whole numbers and parts. 
Something needs to be said about these two fundamental differences from our way 

of thinking. 

Let us consider first the absence of multiplication and division as we know 

them. The tables you looked at in Exercise 1.18 should have convinced you that 

there is something special about the number 2. We don’t normally say “one-twoth” 

for the result of dividing something in two parts. This linguistic peculiarity suggests 

that doubling is psychologically different from applying the general concept of 

multiplying in the special case when the multiplier is 2. For the Egyptian the 

more general operation did not exist. It is important in trying to understand the 

thought processes of ancient mathematicians not to impose our own interpretation 

on the subject. Doubling can be done automatically in hieroglyphics. Having 

a hierarchical system of recording numbers in which a unit is represented by a 

vertical stroke (|), 10 by a hoop (n), 100 by a coil resembling rope,2 1000 by a 

lotus flower, etc., the Egyptians could double any given number by simply drawing 

a copy of each symbol next to it, then “trading in” ten of any symbol for one of 

the next higher symbol. There is no need to think of multiplication in general, 

and the process can be carried out automatically with almost no conscious thought. 

It is therefore not surprising that this operation became a substitute for the more 

complicated arithmetic operations. 

Next consider the absence of what we would call fractions. 

The closest Egyptian equivalent to a fraction is what we have called a part 
above. For example, what we refer to nowadays as the fraction y would be referred 

to as “the seventh part.” This language conveys the image of a thing divided into 

seven equal parts arranged in a row and the seventh (and last) one being chosen. 

For that reason, according to B.L. Van der Waerden, (1903-1996) there can be 

only one seventh part (namely the last one), and so there would be no way of 

expressing what we call the fraction |. An exception was the fraction that we call 

§, which occurs constantly in the Ahmose Papyrus. There was a special symbol 

meaning “the two parts” (out of three). In general, however, the Egyptians used 

only parts, which in our way of thinking are unit fractions, that is, fractions whose 

2We shall not burden the student’s memory with the hieroglyphic symbols for larger numbers, since 
the Egyptian mathematical treatises were written in a cursive script rather than hieroglyphics. To get 
the flavor of Egyptian notation, the symbols for 1 and 10 will suffice. 
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numerator is 1. Again, thinking of them as unit fractions only makes the history 

of the subject harder to grasp; our familiarity with fractions in general makes it 

difficult to see what the fuss is about when the author asks what must be added to 

the two parts and the fifteenth part in order to make a whole (Problem 21). If this 

problem is stated in modem notation, it merely asks for the value of 1 — (l5 + D’ 

and of course, we get the answer immediately, expressing it as Both this 

process and the answer would have been foreign to the Egyptian, whose solution 

will be described below. 

2.4.2 Notation 

The Egyptian counting system was a decimal system, as already noted. 

In order to understand the Egyptians we shall try to imitate their way of writing 

down a problem. On the other hand, we would be at a great disadvantage if our 

desire for authenticity led us to try to solve the whole problem using their notation. 

The best compromise seems to be to use our symbols for the whole numbers and 

express a part by the corresponding whole number with a bar over it. Thus the 
fifth part will be written 5 and the thirteenth part by 13, etc. For “the two parts,” 

that is, |, we shall use a double bar, that is, 3. 

2.4.3 Proportion 

Although no general theory of proportion is mentioned in the Ahmose Papyrus, 

the entire document is permeated with the implicit use of this concept. Take, 

for instance, the simplest problem of multiplying two integers, which occurs as a 

“subroutine” in many of the problems. Since the only operation other than addition 

and subtraction of integers (which are performed automatically without comment) 

is doubling, the problem that we would describe as “multiplying 11 by 19” would 

have been written out as follows: 

19 1 * 

38 2 * 

76 4 

152 8 * 

Result 209 11 

Inspection of this process shows its justification. The rows are kept strictly 

in proportion by doubling each time. The final result can be stated by comparing 

the first and last rows: 19 is to 1 as 209 is to 11. The rows in the right-hand 

column that must be added in order to obtain 11 are marked with an asterisk, and 

the corresponding entries in the left-hand column are then added to obtain 209. In 

this way any two positive integers can easily be multiplied. The only problem that 

arises is to decide how many rows to write down and which ones are to be marked 

with an asterisk. But that problem is easily solved. You stop creating rows when 

the next entry in the right-hand column would be bigger than the number you are 

multiplying by (in this case 11). You then mark your last row with an asterisk, 
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subtract the entry in its right-hand column (8) from 11 (getting a remainder of 3), 

then move up and mark the next row whose right-hand column contains an entry 

not larger than this remainder (in this case the second row), subtract the entry in 

its right-hand column (2), from the previous remainder to get a smaller remainder 

(in this case 1), and so forth. 

If, for the sake of brevity, we refer to this general process of doubling and 

adding as “calculating,” then what we call division is expressed in Egyptian terms 

by the same word. For example, what we would call the problem of dividing 873 

by 97 would be expressed by the Egyptian as “calculate with 97 so as to obtain 

873,” and written out as follows: 

* 97 1 

194 2 

388 4 

* 776 8 

873 9 Result 

The process, including the rules for creating the rows and deciding which ones 

to mark with an asterisk, is exactly the same as in the case of multiplication, except 

that now it is the left-hand column that is used rather than the right-hand column. 

We create rows until the next entry in the left-hand column would be larger than 

873. We then mark the last row, subtract the entry in its left-hand column from 873 

to obtain the remainder of 97, then look for the next row above whose left-hand 

entry contains a number not larger than 97, mark that row, and so on. 

2.4.4 “Parts” 

Obviously the second use of the two-column system can lead to complications. 

While in the first problem we can always express any positive integer as a sum of 

powers of two, the second problem is a different matter. We were just lucky that 

we happened to find multiples of 97 that add up to 873. If we hadn’t found them, 

we would have had to deal with those parts that have already been discussed. For 

example, if the problem were “calculate with 12 so as to obtain 28,” it might have 

been handled as follows: 

12 1 
* 24 2 

8 I 
* 4 3_ 

28 2 3 Result 

What is happening in this computation is the following. We stop creating rows 

after 24 because the next entry in the left-hand column (48) would be bigger than 

28. Subtracting 24 from 28, we find that we still need 4, yet no 4 is to be found. 

We therefore go back to the first row and multiply by |, getting the row containing 

8 and 3. Dividing by 2 again gets a 4 in the left-hand column. We then have the 

numbers we need to get 28, and the answer is expressed as 2 3. 
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There are two more complications that arise in doing arithmetic the Egyptian 

way. The first complication is obvious. Since the procedure is based on doubling, 

but the double of a part may not be expressible as a part, how does one “calculate” 

with parts? The answer to that question is contained in a table at the beginning 

of the document. It is easy to double, say, the twenty-sixth part: the double of 

the twenty-sixth part is the thirteenth part. If we try to double again, however, 

we are faced with the problem of doubling a part involving an odd number. The 

table gives the answer: the double of the thirteenth part is the eighth part plus the 

fifty-second part plus the one hundred fourth part. In our terms this tabular entry 

expresses the fact that 

— I _L J-L_ 
13 8 ' 52 ^ 104’ 

With this table, which gives the doubles of all parts involving an odd number up 

to 99, straightforward multiplication involving parts is a feasible problem. There 

remains, however, one final complication before one can set out to solve any and 

all problems. 

The calculation process described above requires subtraction at each stage in 

order to find out what sum is lacking in a given column. When the column already 

contains parts, this leads to the second complication: the problem of subtracting 
parts. (Adding parts is no problem. The author merely writes them one after 

another. The sum is condensed if, for example, the author knows that the sum 

of 3 and 6 is 2.) This technique, which is harder than the simple procedures 

discussed above, is explained in the papyrus itself in Problems 21-23. Problem 

21, as mentioned above, asks for the parts that must be added to the sum of 3 and 

15 to obtain 1. The procedure used to solve this problem is as follows. Begin 

with the two parts in the first row: 

5 15 1 

Now the problem is to see what must be added to the first column in order to 

obtain the second column. Preserving proportions, the author multiplies the row 

by 15, getting 

10 1 15 

It is now clear that, when the problem is “magnified” by a factor of 15, we need 

to add 4 units. Therefore the only remaining problem is, as we would put it, to 

divide 4 by 15, or, in language that may reflect better the thought process of the 

author, to “calculate with 15 so as to obtain 4.” This operation is carried out in 

the usual way: 

15 1 

1 15 
2 10 30 [from the table] 

4 5 15 Result 

Thus the parts that must be added to the sum of 3 and 15 in order to reach 1 

are 5 and 15. It is of interest that this “subroutine,” which is essential to make the 
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system of computation work, was always written in red ink in the manuscripts, as 

if the writers distinguished between computations made within the problem to find 

the answer and computations made in order to operate the system. Having learned 

how to complement (subtract) parts, what are called hau (or aha) computations 

by the author, one can confidently attack any arithmetic problem whatsoever. One 

point should be noted, however: there is no single way of doing these problems. 

In general, the author seems to proceed by getting close to the result that is needed 

in one column, then “shrinking” the whole problem by dividing by a large number, 

so that subsequent steps can be fine enough to hit the target. Specialists in this 

area have detected systematic procedures by which the table of doubles was gen¬ 

erated and patterns in the solution of problems that indicate, if not an algorithmic 

procedure, at least a certain habitual approach to such problems. 

We are now ready to attack a genuine problem from the papyrus. The one we 

pick is Problem 35, which, translated literally and misleadingly, reads as follows: 

Go down I times 3. My third part is added to me. It is filled. What 

is the quantity saying this? 

Properly interpreted, this problem asks for a number that yields 1 when it is 

tripled and the result is then increased by the third part of the original number. In 

other words, “calculate with 3 3 so as to obtain 1.” The solution is as follows: 

3 3 1 
10 3 [multiplied by 3] 

5 jJL 
1 5 10 Result 

2.4.5 “Practical” Problems 

The papyrus contains several problems of a superficially practical nature involving 

the slope of pyramids and the strength of beer. Both of these involve what we think 

of as a ratio. Thus they make good use of the format by which the Egyptians solved 

arithmetic problems. Several units of weight are mentioned in these problems, but 

the measurement we shall pay attention to is not a weight at all, but a measure 

of the dilution of bread or beer. It is called a pesu and defined as the number of 

loaves of bread or jugs of beer obtained from one hekat of grain. A hekat was 

slightly larger than a gallon, 4.8 liters to be precise. Unfortunately, this information 

by itself is useless, since we don’t know the size of a standard loaf of bread or a 

standard jug of beer. What we do know is that the larger the pesu, the weaker the 

bread or beer. 

Problem 71 tells of a jug of beer produced from half a hekat of grain (thus 

its pesu was 2). One-fourth (“the fourth part”) of the beer is poured off, and the 

jug is then topped up with water. The problem asks for the new pesu. The author 

reasons that the eighth part of a hekat of grain was removed, leaving (in his terms) 

4 8 (what we would call |) of a hekat of grain. Since this amount of grain goes 

into one jug, it follows that the pesu of that beer is 2 3. The author gives this 
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result immediately, apparently assuming that by now the reader will know how to 

“calculate with 4 8 until 1 is reached.” 

2.4.6 Algebra 

Problems that require finding an unknown number without specifying which op¬ 

erations are to be performed on the data can be considered to be algebra, even 

though what we consider the distinguishing characteristic of algebra—the use of 

symbols for the unknown—is not present. Many such numerical problems occur 

in the Ahmose Papyrus, mostly involving the notion of proportion. The concept of 

proportion is the key to the problems based on the “rule of false position.” Problem 

24, for example, asks for the quantity that yields 19 when its seventh part is added 

to it. The author notes that if the quantity were 7 (the “false [supposition”), it 

would yield 8 when its seventh part is added to it. Therefore the correct quantity 

will be obtained by performing the same operations on the number 7 that yield 19 

when performed on the number 8. As we have already seen, the Egyptian format 

for such computations is well adapted for handling problems of this sort. 

The scribes were also capable of performing operations more complicated than 

mere proportion. They could take the square root of a number, which they called 

a “comer.” In a papyrus known as the Berlin Papyrus, nearly contemporaneous 

with the Ahmose Papyrus and kept in the State Museum in Berlin, one finds the 

following problem: 

... the area of a square of 100 is equal to that of two smaller squares. 

The side of one is 2 4 the side of the other. Let me know the sides of 

the two unknown squares. 

Here we are asking for two quantities given their ratio (|) and the sum of their 

squares (100). The scribe assumes that one of the squares has side 1 and the other 

has side |. Since the resulting total area is 1 2 16, the square root of this quantity 

is taken (1 4), yielding the side of a square equal to the sum of these two given 

squares. This side is then multiplied by the correct proportionality factor so as to 

yield 10 (the square root of 100). That is, the number 10 is divided by 1 4, giving 

8 as the side of the larger square and hence 6 as the side of the smaller square. 

This example, incidentally, was cited by Van der Waerden as evidence of early 

knowledge of the Pythagorean theorem in Egypt. 

Thus, despite having what appear to us to be rather crude computational meth¬ 

ods, the Egyptians stretched their arithmetical techniques to the maximum and 

were able to handle problems involving two unknown quantities, provided the 

data allowed them to reduce the problem to one in which the two-column direct- 

proportion method applies. The operation of taking the square root makes this 

reduction possible in some cases. We can see that the Egyptians were doing 

mathematics in the full sense of the term—adapting known techniques to solve 

problems requiring a high degree of ingenuity. With the insight produced by our 

more advanced mathematical knowledge we can see that some of these problems 

would be more naturally handled by new techniques unknown to the Egyptians. 
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Mathematics sometimes develops in this way—existing techniques are applied in 

an ingenious way to solve a new and difficult problem. Then, after some insight 

has been gained through such a solution, the problem receives sufficient attention 

to allow the development of a systematic approach usable in a whole class of 

problems. 

2.5 Egyptian Geometry 

Like most ancient cultures, the Egyptians treated geometry as an area of applica¬ 

tion for arithmetic. The only geometric problems considered are those involving 

measurement. These few problems, however, show considerable insight into the 

properties of simple geometric figures such as the circle, the triangle, the rectangle, 

and of course the pyramid. What is frustrating or challenging historically is that 

the author never tells how the procedures for finding area and volume were arrived 

at. They are assumed to be known, and so we are left to conjecture their origin. 

Those involving polygons are correct from the point of view of Euclidean geome¬ 

try, while those involving circles are merely approximations. The author makes no 

distinction between the two. For instance, Problems 48-52 calculate areas in the 

shape of circles, triangles, and rectangles, and in the case of the polygonal figures 

the areas are calculated in agreement with Euclidean geometry. 

2.5.1 The Circle 

Five of the problems (41-43, 48, and 50) involve calculating the area of a circle. 

In all these problems the author assumes the reader knows that the area of a circle 

is the area of the square whose side is obtained by removing the ninth part of the 

diameter.3 There have been various conjectures as to how the Egyptians might 

have arrived at this result. One such conjecture involves a square of side 8. If 

a circle is drawn through the points 2 units from each comer, it is visually clear 

that the four fillets at the comers, at which the square is outside the circle, are 

nearly the same size as the four segments of the circle outside the square, hence 

this circle and this square may be considered equal in area. Now the diameter of 

this circle can be obtained by connecting one of the points of intersection to the 

opposite point, as in Fig. 2.1, and measurement will show that this line is very 

nearly 9 units in length (it is actually \/80 in length). 

It may be appropriate at this point to comment on the value of conjectures such 

as the one just described. Such conjectures are useful in showing us how people 

may have thought, so long as they are not taken as established fact. An example of 

such a metamorphosis of conjecture into “fact” may be known to you. It has been 

widely reported, in numerous textbooks and even in a recent film produced by the 

3 In our language the area is the square on eight-ninths of the diameter, that is, it is the square on ^ 

of the radius. In our language, not that of Egypt, this gives a value of n equal to Please remember, 
however, that the Egyptians had no concept of the number ir. The constant of proportionality that they 
always worked with represents what we would call n/4. 
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Figure 2.1: Conjectured Egyptian squaring of the circle. 

Mathematical Association of America, that the Egyptians laid out right angles by 

stretching a rope with twelve equal intervals knotted on it so as to form a 3-4- 

5 right triangle. What is the evidence for this conjecture? Well, the Egyptians 

did lay out very accurate right angles, and it is known that their surveyors used 

ropes as measuring instruments (see Fig. 2.2) and were referred to by the Greek 

philosopher Democritus as rope-stretchers. That is all the evidence there is in 

favor of this conjecture. The earliest Egyptian text that mentions a right triangle 

and finds the length of all its sides using the Pythagorean theorem dates from about 

300 B.C.E., and by that time the influence of “Greek” mathematics was already 

established. No Egyptian text from Pharaonic times mentions even one special case 

of the Pythagorean theorem. Now, given that the evidence for this conjecture is 

really nonexistent, why is it reported as fact? Simply because it has been repeated 

frequently since it was originally made by the historian Moritz Cantor (1829-1920) 

in 1882. We know precisely the source of the rumor, but historians of mathematics 

have been powerless to prevent enthusiastic mathematicians from turning it into a 

“fact.”4 

Ratio and proportion again occur in Problems 56-60, which involve the slope 

of the sides of pyramids and other figures. It is of interest that there is a unit 

of slope analogous to the pesu in the problems involving strength of bread and 

beer. The unit of slope is the seked, defined as the number of palms of horizontal 

displacement associated with a vertical displacement of 1 royal cubit.5 In Problem 

57 a pyramid with a seked of 5 4 and a base of 140 cubits is given. The problem 

is to find its height. 

The seked given here (| of 7) is exactly that of one of the actual pyramids, the 

pyramid of Khafre, who reigned from 2558 to 2532 B.C.E. It appears from archae¬ 

ological evidence that stones were mass-produced in several standard shapes with 

a seked that could be increased in intervals of one-fourth. Pyramid builders and 

designers could thereby refer to a standard brick shape, just as modern architects 

4This point was made very forcefully by Van der Waerden in Science Awakening. However, in his 
later book Geometry and Algebra in Ancient Civilizations Van der Waerden claimed that integer-sided 
right triangles, which seem to imply knowledge of the Pythagorean theorem, are ubiquitous in the oldest 
megalithic structures. 

5One royal cubit was 7 palms. In our terms the seked is 7 times the tangent of an angle one of 
whose sides is vertical. 
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Figure 2.2: Egyptian surveyors. The Bettmann Archive. 

and contractors can specify a standard diameter for a water pipe. This standard 

manufacturing process may explain why lateral displacement is measured in palms 

and vertical displacement in cubits in the definition of the seked. This way of 

measuring the dimensions will allow an annoying factor of 7 to disappear from the 

computations at an early stage. (The number 7 is computationally awkward in all 

the common bases for arithmetic.) Problem 58 gives the dimensions of the same 

pyramid and asks for its seked. 

2.5.2 Volumes and Curved Surfaces 

One of the most remarkable achievements of the Egyptians is the discovery of 

accurate ways of computing volumes. In Problem 42 we find the correct procedure 

used for finding the volume of a cylindrical silo, that is, the area of the circular 

base is multiplied by the height. Problems 44-46 calculate the volume of prisms 

on a rectangular base by the same procedure. 

Before leaving the subject of Egyptian geometry, we shall note two problems 

from the Moscow Papyrus. Problem 14 from this papyrus asks for the volume of 

the frustum of a square pyramid, given that the side of the lower base is 4, the side 

of the upper base is 2, and the height is 6. The author gives the correct recipe: add 

the areas of the two bases to the area of the rectangle whose sides are the sides of 

the bases, that is, 2x2 + 4x44-2x4, then multiply by the height and divide by 

3. Again, there are various conjectures as to how this knowledge was obtained. 

Problem 10 of the Moscow Papyrus has been subject to various interpretations. 

It asks for the area of a curved surface that is either half of a cylinder or a 

hemisphere. In either case it is worth noting that the area is obtained by multiplying 

the length of a semicircle by another length in order to obtain the area. Since 

finding the area of a hemisphere is an extremely difficult problem, it would be 
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remarkable if the Egyptians even attempted it with their approximative techniques. 

For that reason the interpretation of the figure as half a cylinder may be plausible. 

The problem was translated into German by the Russian scholar V. V. Struve (1889- 

1965); the following is an English translation from the German: 

The way of calculating a basket, if you are given a basket with an 

opening of 4 2. O, tell me its surface! 

Calculate 9 of 9, since the basket is half of an egg. The result is 

E Calculate what is left as 8. Calculate 9_of 8. The result is 3 6 18. 

Calculate what is left of this 8 after this 3 6 18 is taken away. The 

result is 7 9. Calculate 4 2 times with 7 9. The result is 32. Behold, 

this is the surface. You have found it correctly. 

If we interpret the basket as being a hemisphere, the scribe has first doubled 

the diameter of the opening from 4 2 to 9 “because the basket is half of an egg.” 

(If it had been the whole egg, the diameter would have been quadrupled.) The 

procedure used for finding the area here is equivalent to the formula 2d • | • | • d. 

Taking (§) as representing it amounts to ~d2, or 27rr2, which is indeed the 

area of a hemisphere of radius r. 
This value is also the lateral area of half of a cylinder of height d, and base 

diameter d. If the basket is interpreted as half of a cylinder, the opening would 

be square and the number 4 2 would be the side of the square. The numerical 

answer is consistent with this interpretation, but it does seem strange that only the 

lateral surface of the cylinder was given, unless the basket was open at the sides. 

2.6 Pure Mathematics 

Many of the problems in the Ahmose Papyrus go beyond any conceivable practical 

application. For instance, the table of doubles of parts gives the double of the 

61st part as the 40th part plus the 244th part plus the 488th part, plus the 610th 

part. What object could be divided in so many ways? To some extent such 

problems automatically have a practical value—the mathematician does not know 

what specific data will occur in a practical problem and so must develop general 

methods and test them on examples that may be more complicated than the ones 

that will occur in practice. However, the papyrus also contains evidence that its 

author loved the subject for its own sake and enjoyed making up problems for the 

sheer pleasure of seeing the techniques in operation. A good example is Problem 

79, whose language is somewhat obscure, but definitely requires finding the sum 

7 + 72 + 73 4- 74 + 75. 

2.7 Practical Mathematics 

The Reisner Papyri mentioned above provide us with fascinating confirmation 

that this system of arithmetic actually was used in government and commerce 
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in Egypt. These documents contain computations preparatory to the construction 

of a temple and give calculations of the volume of excavation and the number 

of workers required. One portion of the papyrus contains a column of volumes 

computed from length, width, and depth, then divided by 10, which was apparently 

the number of cubic cubits each worker was expected to excavate per day. For 

example, one portion of the building was to be 8 cubits long, 4 cubits wide, and 2 

cubits deep, a total of 64 “cubic cubits.” This volume of 64 cubic cubits is divided 

by 10, resulting in 6 4 10 20 worker-days of digging. 

Another example of the practical use of mathematics is provided by the records 

of the salary distribution of the personnel at the Temple of Illahun during the 

Middle Kingdom and discussed in a 1902 article by L. Borchardt (1863-1938). 

In the record discussed by Borchardt there were 70 loaves of bread, 35 jugs of Sd 

beer, and 115 2 jugs of Hpnw beer. This salary pool was divided into 42 equal 

portions, which the scribe asserted to be 1 3 loaves, 3 6 jugs of Sd beer, and 

(incorrectly) 2 3 10 jugs of Hpnw beer. The last figure should be 2 2 4. The small 

error here (amounting to an excess of 60 of a jug of Hpnw beer) was corrected by 

the scribe without comment in the final tally. The scribe records that the temple 

director was to receive 10 portions; the head lay priest, 3; the head reader, 6; the 

scribe, 1 3; and the usual reader, 4. Seven priests of various sorts were to receive 

2 portions each, an officer referred to as Md’w was to receive one portion, and 

eight various workers and watchmen were to receive 3 each, bringing the total to 

42. R. J. Gillings, from whose book this information is taken, doubts that anyone 

could measure out the amounts recorded (the portion of Hpnw beer given to each 

worker is listed as 3 4 180). It is worth noting, however, that the loaves are to 

be divided into at most 18 pieces, and Gillings himself shows that the fractions 

recorded could be cut evenly from 5 loaves. As for the beer, it is at least possible 

that the ladle used to distribute it really was only one 180th of the jug. 

2.8 The Egyptian Calendar 

Among the most obvious scientific applications of both counting and geometry are 

the establishment of a calendar and the prediction of astronomical phenomena such 

as eclipses. To the extent that the weather is dependent on the celestial latitude of 

the sun, the movement of the sun among the stars is of practical importance to ter¬ 

restrial economy. A calendar is needed even by people living in small groups, and 

it is vital to the coordination of a large-scale economy. It is especially important in 

places like Egypt, where it is necessary to organize mass movements of population 

away from a river during spring floods and then back to the river to cultivate the 

soil deposited by the flood. Populations cannot be moved at a minute’s notice; it 

takes at least several days’ warning to organize such activities. 

There is no doubt that the Egyptians observed the world about them with con¬ 

siderable accuracy, as the careful north-south orientations of some of the pyramids 

shows us. Now anyone who observes the sky for any extended period of time 

cannot help noticing the bright blue-green star Sirius, which is overhead at mid- 
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night during the winter season. To the Egyptians this star was the goddess S6pdit, 

and they had a special reason for noticing it. Like all stars, Sirius gains about 4 

minutes per day on the sun, rising a little earlier each night until finally it rises 

just as the sun is setting. Then for a while it cannot be seen when rising, since 

the sun is still up, but it can be seen setting, since the sun will have gone down 

before it sets. It goes on setting earlier and earlier until finally it sets just after 

the sun. At that point it is too close to the sun to be seen for about 2 months. 

Then it reappears in the sky, rising just before the sun in the early dawn. It was 

during these days that the Nile began its annual flood in ancient times (the floods 

no longer occur since the Aswan Dam was built in the 1950s). Thus the heliacal 

rising of Sirius (just before the sun) signaled the approach of the annual Nile flood. 

The Egyptians therefore had a very good basis for an accurate solar calendar, using 

the heliacal rising of Sirius as the epoch (day one) of the year. 

The Egyptians seem originally to have used a lunar calendar with 12 lunar 

cycles per year. However, such a calendar is seriously out of synchronicity with 

the sun, by about 11 or 12 days per year, so that it was necessary to add an extra 

“intercalary” month every 2 or 3 years. All lunar calendars must do this, or else 

wander through the agricultural year. However, at an early date the Egyptians cut 

their months loose from the moon and simply defined a month to consist of 30 

days. Their calendar was thus a “civil” calendar, neither strictly lunar nor strictly 

solar. Each month was divided into three 10-day “weeks” and the whole system 

was kept from wandering too quickly from the sun by adding five extra days at 

the end of the year, regarded as the birthdays of the gods Osiris, Horus, Seth, Isis, 

and Nephthys. This calendar is still short by about \ day per year, so that in 

1456 years it would wander through an entire cycle of seasons. The discrepancy 

between the calendar and the sun accumulated slowly enough to be adjusted for, 

and so no serious problems arose.6 As already mentioned, this calendar used the 

star Sirius to fix its first day, the star called Sbpdit by the Egyptians. When the 

Greeks learned of Egypt, they called this goddess Sothis. Consequently the period 

of 1456 years is known as the Sothic cycle. 
Throughout most of their history the ancient Egyptians used this very simple 

calendar based on a year of 365 days. Some of the principles on which it is based 

have been incorporated in calendars used by astronomers, in particular the Julian 

calendar. Where computation is concerned the Julian calendar has the supreme 

advantage that the number of days between any two dates is simple to compute. In 

contrast, try to compute in your head the number of days that elapsed from April 

22, 1881 to August 13, 1907.7 From an astronomical point of view, however, it 

has the disadvantage that it falls 3 days behind the sun every 400 years. Thus if 

6In fact, this wandering has been convenient for historians, since the heliacal rising of Sirius was 

regularly recorded. It was on the first day of the Egyptian year in 2773 B.C.E., 1317 B.C.E., and 

139 C.E. Hence a document that says the heliacal rising occurred on the sixteenth day of the fourth 

month of the second season of the seventh year of the reign of Senusret III makes it possible to state 

that Senusret III began his reign in 1878 B.C.E. (See Chronicle of the Pharaohs by Peter A. Clayton, 

Thames and Hudson, London, 1994, pp. 12-13.) On the other hand, some authorities claim that the 

calendar was adjusted by the addition of intercalary days from time to time to keep it from wandering 

too far. 

7The answer is 9608. If you do the computation, remember that 1900 was not a leap year. 
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you need to know when the winter solstice occurred in a certain year, you have 

a difficult computational job ahead of you, whereas with our present (Gregorian) 

calendar we can say with confidence that the solstice was somewhere between 

December 20 and December 22, no matter what the year. 

2.9 Problems and Questions 

2.9.1 Problems in Egyptian Mathematics 

Exercise 2.1 Double the hieroglyphic number ^ ^n. Check your result in mod¬ 

em notation. 

Exercise 2.2 Multiply 27 times 42 the Egyptian way. 

Exercise 2.3 (Stated in the Egyptian style.) Calculate with 13 so as to obtain 364. 

Exercise 2.4 Problem 23 of the papyrus asks what parts must be added to the sum 

of 4, 8, 10, 30, and 45 in order to obtain 3. See if you can obtain the author’s 

answer of 9 40, starting with his technique of magnifying the first row by a factor 

of 45. Remember that | must be expressed as 2 8. 

Exercise 2.5 Problem 24 of the papyrus, as mentioned in the text, asks for a 

number that yields 19 when its seventh part is added to it, and concludes that one 

must perform on 7 the same operations that yield 19 when performed on 8. Now 

in Egyptian terms, 8 must be multiplied by 2 4 8 in order to obtain 19. Multiply 

this number by 7 to obtain the scribe’s answer, namely 16 2 8. 

Exercise 2.6 Multiply the result of the last problem by 7, add the product to the 

result itself, and verify that you do obtain 19, as required. (Note: The table gives 

4 28 as the double of 7.) 

Exercise 2.7 Problem 33 of the papyrus asks for a quantity that yields 37 when 

increased by its two parts (two-thirds), its half, and its seventh part. Try to get 

the author’s answer: the quantity is 16 56 679 776. [Hint: the table for doubling 

fractions gives the last three terms of this expression as the double of 97. The 

scribe first tried the number 16 and found that the result of these operations applied 

to 16 fell short of 37 by the double of 42, which, as it happens, is exactly 13 2 7 

times the double of 97.] 

Exercise 2.8 Verify that the solution to Problem 71 (2 3) is the correct pesu of 

the diluted beer discussed in the problem. 

Exercise 2.9 Verify that the solution 5 10 given for Problem 35 is correct, that 

is, multiply this number by 3 and by 3 and verify that the sum of the two results 

is 1. 
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Exercise 2.10 Find the height of the pyramid with base 140 cubits and seked equal 

to 5 4 (Problem 57 of the Ahmose Papyrus). 

Exercise 2.11 Prove that the implied formula for the volume of a frustum of a 

square pyramid is correct. If the sides of the upper and lower squares are a and 

b, and the height is h, the implied formula is the following: 

V = -(a2 + ab + 62). 
o 

Exercise 2.12 A tropical year is the time elapsed between successive south-to- 

north crossings of the celestial equator by the sun. A sidereal year is the time 

elapsed between two successive conjunctions of the sun with a given star. Because 

the celestial equator is rotating (about once in 26,000 years) a tropical year is about 

20 minutes shorter than a sidereal year. Would you expect the flooding of the Nile 

to be synchronous with the tropical year or with the sidereal year? If the flooding 

is correlated with the tropical year, how long would it take for the heliacal rising 

of Sirius to be one day out of synchronicity with the Nile flood? If the two were 

synchronous 4000 years ago, how far apart would they be now, and would the 

flood occur later or earlier than the heliacal rising of Sirius? 

2.9.2 Questions about Egyptian Mathematics 

Exercise 2.13 Why do you suppose the author of the Ahmose Papyrus did not 

choose to say that the double of the thirteenth part is the seventh part plus the 

ninety-first part, that is, 
-2- = I + JL? 
13 7 ' 91 ' 

Why is the relation 
_2_ 

13 
I + 2- + 
8 ^ 52 ' 

1 
104 

made the basis for the tabular entry instead? 

Exercise 2.14 Why not simply write 13 13 to stand for what we call y|? What is 

the reason for using two or three other “parts” instead of these two obvious parts? 

Exercise 2.15 Could the ability to solve a problem such as Problem 35, discussed 

above in Section 2.4.4, have been of any practical use? Try to think of a situation 

in which such a problem might arise. 

Exercise 2.16 We would naturally solve many of the problems in the Ahmose 

Papyrus using an equation. Would it be appropriate to say that the Egyptians 

solved equations, or that they did algebra? What does the word algebra mean to 

you? How can you decide whether you are performing algebra or arithmetic? 

Exercise 2.17 Do you agree with Van der Waerden that the presence of many 

“Pythagorean triples” such as 6, 8, 10 is evidence that the Egyptians did know the 

Pythagorean theorem? 



42 CHAPTER 2. ANCIENT EGYPTIAN MATHEMATICS 

2.10 Endnotes 

1. Authorities differ on spellings and dates for Egyptian rulers. The usage in 

this chapter follows Chronicle of the Pharaohs by Peter A. Clayton, Thames 

and Hudson, 1994. Clayton, in turn, follows the Penguin Guide to Ancient 
Egypt by William J. Mumane (1983). 

2. All the information on sources and most of the ensuing discussion is taken 

from the book The Rhind Mathematical Papyrus by Gay Robins and Charles 

Shute, published by the British Museum in 1987 and from the monograph 

Mathematics in the Time of the Pharaohs by Richard J. Gillings (Dover 

reprint, published in 1982). 

3. I am indebted to Milo Gardner for sending me e-mail full of interesting 

information on the system by which the table of doubles of parts was created. 

4. Van der Waerden’s interpretation of Egyptian mathematics can be found in 

his classic work Science Awakening, published originally in Dutch. The 

English translation was published by Wolters-Noordhoff (Groningen, 1971). 

Chapter 1 (pp. 15-36) is devoted to Egyptian mathematics. 

5. The problem of finding a square equal to the sum of two other squares 

is discussed by Gillings (pp. 161-162), who cites a paper by H. Shack- 

Shackenburg, “Der Berliner Papyrus 6619,” in Zeitschrift fur Agyptische 
Sprache, 38 (1900), pp. 135-140; 40 (1902), pp. 65ff. 

6. The conjectured Egyptian squaring of the circle is taken from the book of 

Robins and Shute, p. 45 (op. cit., endnote 2). 

7. The information on the seked of the pyramid of Khafre is taken from the 

book of Robins and Shute, p. 47 (op. cit., endnote 2). 

8. A detailed discussion of the hemisphere/cylinder area problem from the 

Moscow Papyrus can be found in Van der Waerden’s Science Awakening. 
In the English translation this topic is discussed on pages 33-34. 

9. The Egyptian records are taken from the book of Gillings mentioned above, 

pp. 124-126 and pp. 218-225. Gillings cites the article by Borchardt as 

“Salary Distribution for Personnel of the Temple of Illahun,” Zeitschrift fur 
Agyptische Sprache, 40 (1902-1903), pp. 113-117. 

10. The story that the heliacal rising of Sirius was fixed as the first day of the 

calendar was recorded on the outside wall of the Temple of Ramesses III 

at Medinet Habu. [See the book by Pierre Montet, Everyday Life in Egypt 
in the Days of Ramesses The Great, translated from the French by A. R. 

Maxwell-Hyslop and Margaret S. Drower (Greenwood Press, Westport, CT, 
1974).] 



Chapter 3 

Mesopotamia 

3.1 Historical Setting 

In contrast to Egypt, which had a fairly stable culture throughout many millennia, 

the region known as Mesopotamia (Greek for “between the rivers”) was the home of 

many successive, quite distinct, civilizations. The name of the region derives from 

the two rivers, the Euphrates and the Tigris, that flow from the mountainous regions 

around the Mediterranean, Black, and Caspian seas into the Persian Gulf. In 

ancient times this region was a very fertile floodplain, although it suffered from an 

unpredictable climate. It was repeatedly invaded and conquered, and the successive 

dynasties spoke and wrote in many different languages. The convention of referring 

to all the mathematical texts that come from this area between 2500 B.C.E. and 300 

B.C.E. as “Babylonian” gives undue credit to a single one of the many dynasties 

that ruled over this region. Although many different peoples invaded this region 

over time, occupying different parts of it, for purposes of analysis this history may 

be oversimplified and divided into eight different civilizations, as follows: 

1. Sumerian. The Sumerians were either the original inhabitants of the region 

or immigrants from farther east. They spoke a language unrelated to the 

Semitic and Indo-European groups. They held sway over this region for 

several hundred years, starting about 3000 B.C.E. It was the Sumerians 

who invented the method of writing known as cuneiform (wedge-shaped), 

performed by pressing a stylus into wet clay. Many of the small clay tablets 

containing such records dried out (or were deliberately baked to preserve 

them) and have kept their information for over 4000 years. 

2. Akkadian. These people were conquerors who spoke a Semitic language 

and adapted the Sumerian cuneiform writing to their own language. One 

consequence was the compilation of Sumerian-Akkadian dictionaries, the 

equivalent of the Egyptian Rosetta Stone for the later deciphering of these 

documents. The Akkadians established a commercial empire under King 

Sargon (ca. 2371-2316 B.C.E.), which eventually collapsed and was re- 

43 



44 CHAPTER 3. MESOPOTAMIA 

placed by a system of city-states in which the city of Ur at the mouth of the 

Euphrates was dominant. 

3. Amorite. The Amorites, like the Akkadians, spoke a Semitic language. They 

invaded the area just before 2000 B.C.E. and established a number of small 

kingdoms, of which Assyria was the first to become prominent, but was 

soon succeeded by Babylon under Hammurabi (1792-1750 B.C.E.) 

4. Hittite. The Hittites expanded from the west, the region now called Turkey. 

They spoke a language of the Indo-European family (the family to which 

English belongs). By 1650 B.C.E. they had established a kingdom to rival 

the Amorites, and in 1595 they sacked the city of Babylon. The Hittite 

civilization collapsed around 1200 B.C.E. due ultimately to pressure from 

the west exerted by the “Sea Peoples,” known to us from the Bible as the 

Philistines. 

5. Assyrian. The Sea Peoples, although they caused the collapse of the Hittite 

Empire, did not occupy the portion of Mesopotamia that had been part of 

that Empire. Instead, an empire based in the old city of Assyria began to 

grow and expand as far as its very well organized army and clever diplomacy 

could sustain it. The Assyrians eventually controlled a large portion of the 

region between the Mediterranean and the Persian Gulf, including present- 

day Palestine and parts of northern Egypt. Since this empire included the 

city of Babylon, it absorbed a great deal of the culture associated with that 

city. The Assyrian empire was finally conquered by the Chaldean King 

Nebuchadnezzar (605-562 B.C.E.). 

6. Chaldean. This empire, although very short-lived (ca. 625-539 B.C.E.), is 

well-known in the West because of Nebuchadnezzar, who is mentioned in the 

books of Kings, Jeremiah, and Daniel in the Bible. It was Nebuchadnezzar 

who conquered Jerusalem in 597 B.C.E. and took the King of Judah and his 

followers into exile in Babylon. This civilization exerted a great influence 

on the writers of the Bible, especially the customs of the Chaldean court, 

where astrology was taken seriously. 

7. Persian. As is well known from the Book of Daniel, the Chaldean em¬ 

pire was conquered in 539 B.C.E. by the Persian king Cyrus the Great. 

Cyrus repatriated the exiles from Jerusalem and ordered the rebuilding of 

the Temple. The Persians, who speak an Indo-European language, have 

had an unbroken civilization since that time, although one subject to many 

changes of dynasty and religion. We shall see them coming into the story of 

mathematics at various points. 

8. Seleucid. The high period of culture in mainland Greece coincided with the 

rise of the Athenian Empire in the middle of the fifth century B.C.E. The 

Athenian Empire was perceived as a threat by the Spartans, who brought 

it down through the Peloponnesian War (429-404 B.C.E.). By that time, 

however, Greek scholarship and the Greek language were well established 
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as intellectual forces. When the Macedonian kings Philip and Alexander 

conquered the territory from mainland Greece to India and northwest Africa, 

they consciously attempted to spread this culture. As a result, intellectual 

centers grew up in widely separated places where scholars, not all Greek by 

birth, wrote and argued in the Greek language. Paradoxically the three best 

known Greek mathematicians, Euclid, Archimedes, and Apollonius, lived 

and worked in Egypt, Sicily, and Turkey. 

When Alexander died in 323 B.C.E., his empire was divided among three 

of his generals. Besides the original Macedonian kingdom centered at Pella 

just north of Greece, there were two other regions with centers in Egypt and 

the Fertile Crescent. Egypt was ruled by the general Ptolemy Soter (the last 

of his heirs was Cleopatra, who presided over the incorporation of Egypt 

into the Roman Empire under Julius Caesar) while the regions around the 

Fertile Crescent were ruled by general Seleucus, and thereby became known 

as the Seleucid Kingdom. 

3.2 Cuneiform Texts 

Of the many thousands of cuneiform texts scattered through museums around the 

world, a few hundred have been found to be mathematical in content. These 

texts come mostly from the period of late Akkadian, Amorite, and Hittite dom¬ 

inance and from the Seleucid period. Deciphering them has not been an easy 

task, although the work was made simpler by mutilingual tablets that were cre¬ 

ated because the cuneiform writers themselves had need to know what had been 

written in earlier languages. It was not until 1854 that enough tablets had been 

deciphered to reveal the system of computation used, and not until the early twen¬ 

tieth century were significant numbers of mathematical texts deciphered and ana¬ 

lyzed. The most complete analysis of these is the 1935 two-volume work by Otto 

Neugebauer (1899-1992), Mathematische Keilschrifttexte, recently republished by 

Springer-Verlag. Neugebauer also wrote a popular exposition of both Babylonian 

and Egyptian science under the title The Exact Sciences in Antiquity, a book highly 

recommended for the general reader. 

To discuss the clay tablet texts we shall consider the following questions: 

1. What kinds of problems are addressed? 

2. What systematic procedures are used to solve these problems? 

3. What procedures are taken for granted, as something the reader would au¬ 

tomatically know? 

4. For what purpose was the writer engaged in doing mathematics? 
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3.3 The Number System 

The most striking discovery about the Babylonian number system was that the 

cuneiform writers used a positional system based on 60. Digits up to 9 are repre¬ 

sented by vertical strokes, and then the number 10 is represented by a boomerang¬ 

shaped figure. Thus far the system resembles the Egyptian, and we might expect 

that new symbols would be invented for 100, 1000, etc. Here is where the surprise 

comes in. Numbers are written using the symbols for 1 and 10 only up to 59. For 

the number 60 the vertical stroke is repeated, and thereafter numbers are recorded 

more or less as we record them in the decimal system, using the physical location 

of a symbol in relation to other symbols as the guide to its value. For example, 

using our system, in the number 372 the 7 stands for 7 tens, that is, 70, and the 

3 stands for 3 hundreds, that is, 300. The cuneiform system is similar, except 

that (1) places represent powers of 60 instead of powers of 10 and (2) there is 

no symbol for 0 at the end of a number and, in the earlier texts, no symbol for 

0 between two other digits. Hence there is no way to distinguish 73 from 703, 

except by context. This much turned out to be fairly easy to infer from the tablets 

because many of them bear symbols in a precise logical order that can only mean 

the tablets were multiplication tables. 

Since we wish to look at “Babylonian” mathematics on its own terms but not 

to handicap ourselves by having to use the Babylonian symbols, we shall adopt a 

compromise similar to the one we used for representing the Egyptian parts. We 

shall write numbers through 59 with our standard symbols, but larger numbers 

will be written in the sexigesimal system, separating the places with commas and 

putting a semicolon where our system would use a decimal point. Thus we shall 

write the number 193 as 3, 13 (meaning 3 x 60+ 13) and the number 7275 as 2, 1, 

15 (meaning 2 x (60)2 + 1 x 60 + 15). Sexigesimal fractions are particularly easy. 

Thus what we would write as ~ can be written as ;15 (meaning 15 sixtieths), etc. 

Various conjectures have been advanced as to the origin of this system. The most 

logical explanation seems to be that a people counting by tens came into contact 

with a people counting by twelves, since the least common multiple of 10 and 12 is 

60. We have already seen that the Egyptians divided weeks into 10 days, but years 

into 12 months and day and night into 24 hours. Thus the basis for a sexigesimal 

system—the simultaneous use of tens and twelves—was present in Egypt as well. 

Commercially this basis exists in American society also, where feet are divided 

into 12 inches, and eggs and pencils are sold by the dozen, yet the currency is 

decimalized. It is known that the monetary system in use throughout Mesopotamia 

in early times involved division by 60 (60 shekels = 1 mina, 60 minae = 1 talent). 

3.4 Babylonian Arithmetic 

3.4.1 General Features 

Tablets from the site of Senkereh (also known as Larsa), kept in the British Mu¬ 

seum, contain tables of products, reciprocals, squares, cubes, square roots, and 
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cube roots of integers. It appears that the people who worked with mathematics in 

the civilizations we are discussing learned by heart, just as we do, the products of 

all the small integers. Of course for them a theoretical multiplication table would 

have to go as far as 59 x 59, and the consequent strain on memory would be large 

(that fact may account for the existence of so many written tables). Just as most 

of us learn, without being required to do so, that \ = .3333..., the Babylonians 

wrote their fractions usually as sexigesimal fractions and came to recognize certain 

reciprocals, for example ^ = 0; 6,40. As with multiplication, the labor involved 

for 60 reciprocals is large. Moreover the reciprocal of 7 is a problem in both 

decimal and sexigesimal notation in that its expansion never terminates. With a 

system based on 30 or 60, all the numbers less than 10 except 7 have terminating 

reciprocals. In order to get a terminating reciprocal for 7 one would have to go to 

a system based on 210, which is of course out of the question. 

3.4.2 Things “Everybody Knew” in Babylon 

Not only are sexigesimal fractions handled easily in all the tablets; the concept 

of a square root occurs explicitly, and actual square roots are approximated by 

sexigesimal fractions, showing that the mathematicians of the time realized that 

they hadn’t been able to make these square roots come out even. (Whether they 

realized that the square root would never come out even is not clear.) For example, 

text AO 6484 (the AO stands for Antiques Orientales) from the Louvre in Paris 

contains the following problem on lines 19 and 20: 

The diagonal of a square is 10 Ells. How long is the side? [To find 

the answer] multiply 10 by 0;42,30. [The result is] 7;5. 

Now 0; 42, 30 is ~ ^ = 0.7083, approximately. This is a very good 

approximation to l/\/2 « 0.7071, and the answer 7; 5 is, of course, 7-— = 7.083 = 

10 x 0.7083. The writer of this tablet seems to have known that the ratio of the 

side of a square to its diagonal is approximately It is rather intriguing that 

the approximation to y/2 that arises from what is now called the Newton-Raphson 

method turns up the number || in obtaining the third approximation. The method 

of approximating square roots can be understood as the following procedure. Since 

1 is smaller than \[2 and 2 is larger, let their average be the first approximation, 

that is, |. This number happens to be too large to be \/2, but it is not necessary 

to know that fact to improve the approximation. Whether it errs by being too large 

or two small, the result of dividing 2 by this number will err in the other direction. 

Thus, since § is too large, ^ = | is too small to be \[2. It therefore seems likely 

that the average of these two numbers will be closer to \/2 than either number, 

that is, our second approximation to \/2 is + |) = ~. Again whether this 

number is too large or two small, the number — ff err in the opposite 

direction, so that we can average the two numbers again and continue this process 

as long as we like. 

The writers of these tablets realized that when numbers are combined by mul¬ 

tiplying, adding, etc., it may be of interest to know how to recover the original 
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data from the result. This realization is the first step toward attacking the problem 

of inverting binary operations. Such a problem leads to the solution of quadratic 

equations in our time, although one may question whether the Babylonians solved 

equations. Their approach to this problem was to associate with every pair of 

numbers, say 13 and 27, two other numbers, namely their average (13+27 = 20) 

and their semidifference1 (27/13 = 7). The average and semidifference can easily 

be calculated from the two numbers, and likewise the original data can be cal¬ 

culated from the average and semidifference. The larger number (27) is the sum 

of the average and semidifference: 20 -f 7 = 27, and the smaller number (13) is 

their difference: 20 - 7 = 13. The realization of this mutual connection makes 

it possible essentially to “change coordinates” from the number pair (a, b) to the 

pair ((a + b)/2, (a — b)/2). 

At some point lost to history some Babylonian mathematician came to realize 

that the product of two numbers is the difference of the squares of the average and 

semidifference: 27 x 13 = (20)2 - 72 = 351 (or 5, 51 in Babylonian notation). 

This principle made it possible to recover two numbers knowing their sum and 

product or knowing their difference and product. For example, given that the sum 

is 10 and the product is 21, we know that the average is 5 (half of the sum), hence 

that the square of the semidifference is 52 - 21 = 4. Therefore the semidifference 

is 2, and so the two numbers are 5 + 2 = 7 and 5 — 2 = 3. Similarly, knowing 

that the difference is 9 and the product is 52, we conclude that the semidifference 

is 4.5 and the square of the average is 52 + (4.5)2 = 72.25. Hence the average is 

a/72.25 = 8.5. Therefore the two numbers are 8.5 4- 4.5 = 13 and 8.5 — 4.5 = 4. 

The two techniques just illustrated occur constantly in the cuneiform texts, and 

were clearly taken to be procedures familiar to everyone, requiring no explanation. 

3.43 Applications 

Like all mathematicians at all times, having discovered some basic principles that 

are useful for solving a limited number of problems, the Babylonian mathematicians 

tried to extend these principles to the limit of their applicability. In so doing they 

were able to reduce a large number of problems to the form in which the sum 

and product or the difference and product of two unknown numbers are given. 

We shall consider just one example, a famous one that has been written about by 

many authors. The problem in question occurs on a tablet from the Louvre in 

Paris, known as AO 8862. 

A loose translation of the text of this tablet (made from Neugebauer’s German 

translation) reads as follows: 

1 This word is coined because English contains no one-word description of this concept, which 
must otherwise be described as half of the difference of the two numbers. It is clear from the way in 
which the number constantly occurs that the original writers of these tablets automatically looked at this 
number along with the average when given two numbers as data. However, there seems to be no word 
in the Akkadian, Sumerian, and ideogram glossary given by Neugebauer to indicate that the writers of 
the clay tablets had a special word for these concepts. In the translations given by Neugebauer they 
are obtained one step at a time, by first adding or subtracting the two numbers, then taking half of the 
result. 
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I have multiplied the length and width so as to make the area. 

Then I added to the area the amount by which the length exceeds the 

width, obtaining 3,3. Then I added the length and width together, 

obtaining 27. What are the length, width and area? 
27 3,3 the sums 

15 length 

3,0 area 

12 width 

You proceed as follows: 

Add the sum (27) of the length and width to 3,3. You thereby obtain 

3,30. Next add 2 to 27, getting 29. You then divide 29 in half, 

getting 14;30. The square of 14;30 is 3,30; 15. You subtract 3,30 

from 3,30; 15, leaving the difference of 0; 15. The square root of 0; 15 

is 0;30. Adding 0;30 to the original 14;30 gives 15, which is the 

length. Subtracting 0;30 from 14;30 gives 14 as width. You then 

subtract 2, which was added to the 27, from 14, giving 12 as the final 

width... 

The text continues, verifying that these numbers do indeed solve the prob¬ 

lem. Naturally, this text requires some commentary. Indeed most students find 

it completely baffling at first. Knowing the general approach of the Babylonian 

mathematicians to problems of this sort, one can understand the reason for dividing 

29 in half (so as to get the average of two numbers) and the reason for subtracting 

3,30 from the square of 14;30 (as we saw above, the difference between the square 

of the average and the product will be the square of the semidifference of the two 

numbers whose sum is 29 and whose product is 3,30, that is, 210). What is not 

clear is the following: Why add 27 to the number 3,3 in the first place, and why 

add 2 to 27? 

Let us see if we can get inside the head of the unknown author of this problem. 

Van der Waerden (in Science Awakening) claimed that the operation of adding the 

difference between length and width to area, being a logically absurd operation 

(since one cannot add things of different types), was proof that this is a problem 

of pure algebra. He further noted that the words for length (us) and width (sag) 
are indeclinable, and claimed that they were being used like variables x and y in 

modem mathematics. On that basis, concluded Van der Waerden, “we may safely 

set [this problem] down as a set of two equations in two unknowns.” Now it is 

quite true that if you do what Van der Waerden suggested, you will obtain the 

equations 

xy + (x — y) — 183 

x -f y — 27. 

If you then add the resulting equations, as seems to be indicated by adding the two 

numbers given in the problem, the resulting equation 

xy + 2x — 210, 
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does indeed say that the product of two more than the width (y + 2) and the 

length (x) is 3,30. This result suggests that we consider a new problem with 

width increased by 2. In that new problem we know that the product of length 

and width is 3,30 and the sum of length and width is 29. We have thus arrived 

at a new problem that can be thought of as a “standard form” problem: find two 

unknown numbers given their product and their sum (in this case 210 and 29, 

respectively). Undoubtedly we are seeing here an early example of a procedure 

mathematicians undertake constantly: to compile as many variants as possible of 

certain standard problems, so as to reduce the number of solution techniques that 

must be learned to a minimum. The question is whether the original writer wrote 

down these symbolic expressions and added them in order to obtain the reduced, 

standard-form problem. 

It is clear that some process closely related to Van der Waerden’s description 

must have been what the author had in mind, since the rest of the problem is merely 

a repetition of the standard procedure for finding two numbers given their sum and 

product, as discussed above. Nevertheless the author need not have been thinking 

of length, width, and area as abstract variables. It is quite possible that some 

geometric interpretation was used as a guide to the solution. Particularly when 

thinking of the numerical value of a length rather than the abstract concept of 

length, one might well have used the word length as a shorthand way of referring 

to a rectangular area of the given length and having width equal to 1. If so, 

adding the difference between length and width to the area would have meant 

constructing the upper gnomon (L-shaped region) in Fig. 3.1, while “the sum of 

length and width” would represent the lower gnomon. It is then clear that the 

two gnomons fit together to form a rectangle whose length is that of the original 

rectangle, but whose width is larger by 2 units. In favor of this interpretation we 

can point out that when subtracting the 2 after solving the transformed problem 

the author subtracts it from the new width (14) rather than from the length (15). 

Algebraically this 2 might just as well have been subtracted from the 15, giving 

the solution of length 14 and width 13, but to do so one would have to regard 

the length in the original problem as the width in the new problem and the width 

in the original problem as 2 less than the length in the new problem. The fact 

that the author doesn’t do this suggests that the words width and length retained 

some of their concrete geometric interpretation, and that perhaps the author had a 

picture like Fig. 3.1 in mind when thinking about this problem. 

3.4.4 The Nature of Babylonian Algebra 

The question whether the Babylonian mathematicians developed algebra is a matter 

of definition. What does elementary algebra mean to you? If it means the study 

of equations written using abstract symbols for the unknown numbers and solved 

using a fixed set of algorithms, then almost certainly the Babylonians did not 
develop algebra. On the other hand, what are you really doing when you solve, 

say, a quadratic equation 

ax2 -f- bx + c = 0? 



3.4. BABYLONIAN ARITHMETIC 51 

Figure 3.1: Reduction of a problem to standard fonn. 

What data (input) must you have to solve the problem, and how is the solution 

(output) related to the data? It seems at first sight that the data for the problem 

are a, b, and c, but this is misleading. The equation is not a quadratic equation if 

a — 0; and if a f 0, you can divide by a, getting an equation with the same roots, 

but only two bits of data, namely 

x2 + Ax + J3 = 0, 

where A = b/o, and D = c/a. The data for the problem are therefore A and B. 

The solution consists of two roots r\ and r2. How are these roots related to the 

data? Well, since the equation is 

0 = (x - ri)(x - r2) = x2 - (r*i + r2)x + rxr2, 

we see that A = —{r\ + r2) and B = r\r2. Hence, in essence the problem of 

solving a quadratic equation is the problem of finding two numbers when given 

their sum and their product. 

In this form, as we have seen, the Babylonians certainly did develop algebra. 

And, as Neugebauer pointed out, the old Sumerian ideograms served a very impor¬ 

tant function as mathematical symbols. For that reason he transcribed ideograms 

as ideograms in his German edition of the texts, even in cases when it was clear 

that they were read as if they were Akkadian. 

Let us look at this question from yet another point of view. In our educational 

system the break between arithmetic and algebra is clear. In arithmetic one uses 

symbols for numbers, but a given symbol such as the ideogram 5 always represents 

the same (known) number. The transition from arithmetic to algebra is marked 

by the use of letters instead of number symbols; moreover, each of the new letter 
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symbols stands for a variable or an unknown number, which will change from 

one setting to another. This change defines the difference between algebra and 

arithmetic for most people. 
A more fundamental difference between arithmetic and algebra, however, is 

the following. Arithmetic consists of certain unary and binary operations such as 

addition, subtraction, multiplication, division, squaring, cubing, and taking square 

and cube roots. Whenever a sequence of arithmetic operations is performed on a 

set of data in order to produce a set of results, the question naturally arises how 

one could go the other direction and recover the original data from the results. 

If we define arithmetic to be the process of applying these standard operations to 

known numbers, we can define elementary algebra to be the study of the opposite 

problem of recovering the input when the operations applied and the output are 

known. 
With this second definition it can certainly be said that the Babylonians did 

algebra. We have already seen how they recovered two numbers given their sum 

and product or their difference and product. A further example may be provided 

by certain tablets that give the sum of the squares and the cubes of integers. These 

tablets may have been used for finding the numbers to which this operation was 

applied in order to obtain a given number. In our terms these tablets make it 

possible to solve the equation x3 -f x2 = a, a very difficult problem indeed. 

3.5 Babylonian Geometry 

As in Egyptian geometry, the primary problem in Babylonian geometry is that of 

area and volume. In contrast to the case of Egypt, however, we have hard proof 

that the Babylonians knew the Pythagorean theorem in full generality at least a 

thousand years before Pythagoras. They were thus already on the road to finding 

more abstract properties of geometric figures than mere size. How might they 

have discovered the Pythagorean theorem? The following fanciful story (based 

on Plato’s dialogue Meno) is merely a plausible way in which a person of some 

mathematical ability might have made this discovery. We preface the story with a 

word of warning, however. Please keep in mind that the story is only a conjecture, 

not to be made into a “fact” like Cantor’s story of the Egyptian “application” of 

the Pythagorean theorem. It gives the psychologically simplest derivation of the 

Pythagorean theorem. As any mathematician knows, however, theorems are often 

discovered in a way that is not psychologically the simplest. Once a theorem is 

stated and proved, it often happens that a much simpler proof is discovered. One 

should therefore not infer that the following explanation is “the way it happened.” 

Suppose that for purposes of surveying, taxation, or amusement you find it 

necessary to construct a square twice as large as a given square. How would you 

go about doing so? You might double the side of the square, but you would soon 

realize that doing so actually quadruples the size of the square. If you drew out 

the quadrupled square and contemplated it for a while, you might be led to join 

the midpoints of its sides in order, that is, to draw the diagonals of the four copies 

of the original square. Since these diagonals cut the four squares in half, they will 
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Figure 3.2: Doubling a square (a); The Pythagorean theorem (b). 

enclose a square twice as big as the original one (Fig. 3.2). Now it is not at all 

unlikely that someone, either for practical purposes or just for fun, discovered this 

way of doubling a square. If so, someone “playing” with the figure, might have 

considered the result of joining in order the points at a given distance from the 

comers of a square instead of joining the midpoints of the sides. Doing so creates 

a square in the center of the larger square surrounded by four copies of a right 

triangle whose hypotenuse equals the side of the center square (Fig. 3.2); it also 

creates the two squares on the legs of that right triangle and two rectangles that 

together are equal in area to four copies of the triangle. (In Fig. 3.2 one of these 

rectangles is divided into two equal parts by its diagonal, which is the hypotenuse 

of the right triangle.) Hence the larger square consists of four copies of the right 

triangle plus the center square. It also consists of four copies of the right triangle 

plus the squares on the two legs of the right triangle. The inevitable conclusion 

is that the square on the hypotenuse of any right triangle equals the sum of the 

squares on the legs. This is the Pythagorean theorem, and it is used in many places 

in the cuneiform texts. Whether or not this fictitious story is the way in which 

this theorem came to be discovered, it is a fact that the figure on the left in Fig. 

3.2, and possibly the one on the right as well, occurs on the British Museum tablet 

BM 15 285, which dates from the period of the Amorite civilization (Fig. 3.3). 

In general it can be said that Babylonian geometry, like its Egyptian counterpart, 

was regarded more as an application of mathematics than as mathematics proper. 

The primary emphasis was on areas and volumes, and the cuneiform tablets contain 

computations of some of the same volumes (frustum of a pyramid, for example) 

that are computed in the Ahmose Papyrus. As Neugebauer puts it, “ ‘geometry’ 

is no special mathematical discipline, but is treated on an equal level with any 

other form of numerical relation between practical objects.” We have seen that the 

Egyptian method of finding the area of a circle was to square eight-ninths of the 

diameter (corresponding to a value of 7r equal to ^p). The commonest method in 

the Babylonian tablets was to take 3 times the square on the radius (corresponding 

to 7T = 3), although a later tablet used the value 3p. For a general quadrilateral 

the procedure for finding area was to take the product of the averages of the 

opposite sides, again showing the prominence of the average of two quantities in 
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Figure 3.3: Cuneiform text BM 15 285. Copyright British Museum. 

Babylonian mathematics. This formula, however, is not exact from the point of 

view of Euclidean geometry; it is a good approximation only for quadrilaterals 

whose angles are nearly right angles, so that the opposite sides are nearly equal. 

Volumes were handled similarly. For example, in many cases the volume of the 

frustum of a pyramid was found (incorrectly) by taking the average of the upper 

and lower bases and multiplying by the height, although the correct procedure is 

also found in some tablets. 

3.6 Astronomy and the Calendar 

Since one of the earliest scientific applications of mathematics, involving first 

numbers, then geometry, was to astronomy, the history of mathematics in early 

times cannot be told completely without some reference to astronomy. At the stage 

of history now being discussed astronomy is largely a matter of arithmetic: counting 

the days between full moons, solstices, etc. Keep in mind that the Copemican 

system that forms the basis of our picture of the universe is an imaginative construct 
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suggested only by sophisticated mathematical reasoning. Ordinary observation 

suggests a geocentric universe, and that is what we shall now discuss. 

Anyone not prejudiced by “book-learning” who observed the sky carefully over 

a period of time would notice several phenomena that need to be explained. 

1. The vast majority of stars seem to rotate in perfect circles at a constant rate 

of speed about a fixed axis whose direction, by definition, is north-south. 

Thus they can be pictured as stuck to a large sphere with its center in the 

earth; this sphere is called the celestial sphere. 

2. The sun seems to fall behind the stars by a very small amount each day. In 

addition the sun moves north and south in a cyclic pattern, each cycle taking 

one year. (Here we assume that the term year has a meteorological meaning 

in terms of the air temperature; otherwise this cycle is merely the definition 

of a tropical year.) The path of the sun through the stars does not seem to 

vary from year to year. It is a great circle on the celestial sphere (called in 

modem astronomy the ecliptic). 

3. The moon falls even farther behind the stars than does the sun. In fact the 

sun passes the moon every 29 or 30 days. The lighted face of the moon 

changes regularly, showing that it shines by reflecting the light of the sun. 

The moon follows nearly the same path through the stars (the ecliptic) as the 

sun, but wobbles above and below this path. When the moon crosses this 

path in its full phase, it is eclipsed. The sun is also eclipsed at certain times 

by the moon, and this happens only when the moon crosses the ecliptic in 

its new phase. However, there are times when the moon crosses the ecliptic 

in its new phase, yet no eclipse is observed. 

4. There are five “wandering” stars, brighter than average, whose motions 

through the sky are very irregular. They all seem to follow roughly the 

same route through the stars as the sun and moon. However, unlike the sun 

and moon, which always move eastward relative to the stars, these planets, 
from the Greek word planan {jxXqv clv), meaning to wander or go astray, 
sometimes stop and move westward for a few weeks, then resume their 

eastward march. 

These phenomena would be of interest to anyone with a curiosity about the 

world, and some of them would have practical effects as well. The main practical 

effects from the early period will be discussed at this point. We shall reserve the 

more sophisticated Seleucid period astronomy to be discussed along with Greek 

astronomy. The main point to be noticed in these “early days” is that geometry 

is not really involved. The whole procedure for predicting the motions of the 

heavenly bodies is purely a matter of counting days between the recurrence of 

various phenomena—usually conjunction with the sun or first visibility after a 

conjunction. For the moon these conjunctions (new moons) marked the beginning 

of the months by which religious festivals and civil holidays were regulated. Where 

the economy depended on agriculture, and hence on the solar year, it was important 
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to keep these months in harmony with the years. The planetary phenomena have 

no practical importance, but were nevertheless observed and counted because they 

were thought to have an influence on human destiny (astrology). 

The main item of practical importance in early astronomy is the establishment 

of the relation between a lunar month and a solar year. Normally there are 12 

full moons in each solar year. However, in ancient times months and years were 

very much out of balance, and for civil purposes kings had to declare a thirteenth 

(intercalary) month occasionally in order to maintain the balance. This practice was 

still being carried out as late as the middle sixth century B.C.E., with the Chaldean 

king Nabonadi and the Persian kings Cyrus and Cambyses declaring intercalary 

months when required. However, during the reign of the Persian king Artaxerxes 

II (404-358 B.C.E.) a regular lunar calendar was declared, having a 19-year cycle 

consisting of 12 years of 12 months and 7 years of 13 months. This cycle is still 

a feature of lunar calendars today. (An error of one day will accumulate on this 

calendar in 6840 years.) 

We know indirectly that the Mesopotamians bequeathed a large legacy of astro¬ 

nomical observations to the Hellenistic natural philosophers, since the astronomer 

Claudius Ptolemy, who lived in the second century C.E., in choosing an epoch 

(time zero) for computing the mean motion of the sun, says in passing that he uses 

the reign of Nabonassar for this purpose, since “that is the era beginning from 

which the ancient observations are, on the whole, preserved to our own time.” 

The Nabonassar mentioned by Ptolemy is an Assyrian king whose 14-year 

reign began in 746 B.C.E. The records used by Ptolemy have not come down 

to us through any other channel. However, large numbers of astronomical and 

mathematical tablets written in Uruk and Babylon during the Seleucid period have 

been unearthed, and these tablets give us a glimpse of two clever schemes—theories 

in the modern sense of unifying systems of explanation for natural phenomena—for 

predicting the motion of the sun, moon, and planets. We shall reserve these theories 

for a later chapter. The time period in which the Ptolemaic theory was developed 

is later than the period of this chapter, and the problems involve astronomical 

phenomena somewhat more subtle than those listed above, such as the fact that 

some new moons are 29 days apart and others 30 days apart, and that the sun’s 

motion along the ecliptic is not at constant velocity (using the stars as the standard 

of constant velocity). At this point we shall merely note that by the reign of 

Artaxerxes II ordinary observation had established that 19 solar years are almost 

exactly equal to 235 lunar months (235 = 12 • 12 + 7 • 13). From the year 380 

B.C.E. onward this cycle was the basis of the lunar calendar used in Mesopotamia. 

3.7 Problems and Questions 

3.7.1 Problems in Babylonian Mathematics 

Exercise 3.1 Write the number 345.75 in the sexigesimal notation adopted in this 
chapter. 
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Exercise 3.2 Find two numbers whose sum is 5 and whose product is ^ using 

the procedure sketched in the text. 

Exercise 3.3 Find two numbers whose difference is ~ and whose product is || 

using the procedure in the text. 

Exercise 3.4 Solve the following problem from the cuneiform tablet BM 85 196, 

dating from the time of the Hittite civilization or perhaps earlier (numbers in square 

brackets have been reconstructed, having been effaced from the tablet itself). Then 

explain the author’s solution. 

A beam of length 0;30 GAR is leaning against a wall. Its upper 

end is 0;6 GAR lower than it would be if it were perfectly upright. 

How far is its lower end from the wall? 

Do the following: Square 0;30, obtaining 0; 15. Subtracting 0;6 

from 0;30 leaves 0;24. Square 0;24, obtaining 0;9,36. Subtract 0;9,36 

from [0; 15], leaving 0;5,24. What is the square root of Q;5,24? The 

lower end of the beam is [0; 18] from the wall. 

When the lower end is 0; 18 from the wall, how far has the top 

slid down9 Square 0; 18, obtaining 0;5;24... . 

3.7.2 Questions about Babylonian Mathematics 

Exercise 3.5 What do the two problems of recovering two numbers from their 

sum and product or from their difference and product have to do with quadratic 

equations as we understand them today? Can we conclude that the Babylonians 

“did algebra”? 

Exercise 3.6 You can easily verify that the solution of the problem from tablet AO 

8862 (15 and 12) given by the author is not the only possible one. The numbers 

14 and 13 will also satisfy the conditions of the problem. Why didn’t the author 

give this solution? 

Exercise 3.7 Of what practical value are the problems we have called “algebra”? 

Taking just the quadratic equation as an example, the data can be construed as 

the area and the semiperimeter of a rectangle and the solutions as the sides of the 

rectangle. What need, if any, could there be for solving such a problem? 

Exercise 3.8 Read Plato’s dialogue Meno, in which the problem of doubling a 

square is discussed. Note that mathematics is not the point of the dialogue. What 

is the role of mathematics in this dialogue? 

3.8 Endnotes 

1. Much of this chapter is based on the work of Neugebauer, whose books The 

Exact Sciences in Antiquity, Mathematische Keilschrifttexte, and A History 
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of Ancient Mathematical Astronomy are masterpieces of scholarship and 

beautiful writing. In particular the first of these, which is aimed at the 

general educated reader, is a fascinating concise account of mathematics and 

astronomy in Egypt and Mesopotamia and should be read before any other 

book on the subject. 

2. The quotation from the tablet AO 6484 is taken from Mathematische Keil- 

schrifttexte, Part 1, p. 100. 

3. Van der Waerden’s discussion of AO 8862 is on pp. 63-65 of Science Awak¬ 

ening. 

4. Neugebauer’s remark on ancient geometry is taken from The Exact Sciences 

in Antiquity, p. 44. 

5. The quotation from Ptolemy is taken from the recent edition of the Almagest 

edited by G. J. Toomer (Springer-Verlag, New York, 1984), p. 166. 



Chapter 4 

The Early Greeks 

4.1 Introduction 

The last two chapters have sketched some of the mathematical knowledge that 

existed around the shores of the Mediterranean Sea in the two millennia B.C.E. 

Many different peoples shared in this knowledge and helped to create it. Its 

transmission to us, however, came through a particular people, the Greeks, who 

introduced an innovation that has no parallel in any other time or place: the creation 

of systematic, logically deductive mathematical theories. Logic and common-sense 

reasoning are inherent in all of mathematics, of course, but a meticulous attention 

to assumptions and rules of inference, controlling the exposition of the subject, is 

uniquely Greek. All other peoples solved problems; the Greeks proved theorems. 

The word theorem is probably related to theasthai (Oeaadai), meaning to see. 

The value of such an approach, not only for avoiding inconsistency, but also for 

suggesting new paths to explore, will be seen throughout the rest of this book. Its 

universal appeal to mathematically inclined minds is attested by the fact that the 

mathematicians of China, India, and Japan eventually began to practice this style 

of mathematics after they became aware of it through contact with Western traders 

and missionaries. The direct intellectual heirs of the Greeks, the medieval Muslims 

and modem Europeans, created geometry in the style of Euclid, and attempted to 

give their own mathematical innovations in other areas (algebra and calculus) the 

same logical rigor that they found in geometry. 

The complexity of society should make us suspicious of any facile explanations 

of a phenomenon such as Greek geometry. One important factor contributing to 

the appearance of this innovation among the Greeks, however, is the existence 

of schools of philosophy in the Greek city-states. These schools, in turn, can be 

explained at least partly by the fact that some of the Greeks grew wealthy through 

commerce with foreigners rather than having control of the resources and labor of 

their own land, as was the case in Egypt. Effective commerce requires realism in 

dealing with the world. It also leads to questioning one’s own traditions and mores. 

These ingredients, combined with the leisure time for reflection made possible by 
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increased wealth, encourage a probing, philosophical outlook on all aspects of life. 

Whether anything more is required to explain the uniqueness of Greek geometry 

is a question left to the reader. 

4.2 Sources 

Before we embark on an exploration of Greek mathematics, however, we need to 

say a few words about the sources of our knowledge. The mathematics we shall be 

discussing in this chapter and the four following was created in the millennium from 

500 B.C.E. to 500 C.E. It is therefore considerably later than the mathematics we 

have discussed up to now. Paradoxically, our sources for the later mathematics are 

less direct than those from the earlier times. Egyptian papyri and Mesopotamian 

clay tablets have proved to be much more durable than the materials on which 

Greek mathematics was written. The oldest surviving copies of almost any Greek 

treatise in mathematical science are typically no more than 1000 years old. These 

documents are, with good reason, considered to be faithful copies of the originals, 

which were written in some cases more than a thousand years earlier. Errors do 

creep in, however, and careful scholarship is required to establish the authentic 

text of any of the famous Greek treatises. Moreover, some documents did not 

survive at all, and their existence is known only because they are mentioned by 

later commentators. Indeed a major part of what is known about early Greek 

mathematics is due to quotations and summaries in the work of later commentators. 

Here are some of the more important of these commentators. All dates given for 

their lives are only approximate. 

1. Marcus Vitruvius (first century B.C.E.) was a Roman architect who wrote 

an extremely influential treatise on architecture in 10 books. He is regarded 

as a rather unreliable source for information about mathematics, however. 

2. Plutarch (45-120 C.E.) was the author of the Parallel Lives of the Greeks 

and Romans, in which he compares famous Greeks with eminent Romans 

who engaged in the same occupation, such as the orators Demosthenes and 

Cicero. Shakespeare relied on his account of the lives of many people, for 

example Julius Caesar, even describing the miraculous omens that Plutarch 

reported as having occurred just before Caesar’s death. Plutarch is important 

to the history of mathematics for what he reports on natural philosophers such 

as Thales. 

3. Theon of Smyrna (ca. 100 C.E.) was the author of an introduction to mathe¬ 

matics written as background for reading Plato, a copy of which still exists. 

It contains many quotations from earlier authors. 

4. Diogenes Laertius (third century C.E.) wrote a comprehensive history of 

philosophy, Lives of Eminent Philosophers, which contains summaries of 

many earlier works and gives details of the lives and work of many of the 

pre-Socratic philosophers. 
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5. Iamblichus (285-330 C.E.) was the author of many treatises, including 10 

books on the Pythagoreans, 5 of which have been preserved. 

6. Pappus (ca. 300 C.E.) wrote many books on geometry, including a compre¬ 

hensive treatise of eight mathematical books. He is immortalized in calculus 

books for his theorem on the volume of a solid of revolution. Besides being a 

first-rate geometer in his own right, he wrote commentaries on the Almagest 

of Ptolemy and the tenth book of Euclid’s Elements. 

7. Proclus (412-485 C.E.) is important for our story as the author of a com¬ 

mentary on the first book of Euclid, in which he quotes long passages from 

a history of mathematics (now lost) by Eudemus, a pupil of Aristotle. 

8. Simplicius (500-549 C.E.) was a commentator on philosophy. His works 

contain many quotations from the pre-Socratic philosophers. 

9. Eutocius (ca. 700 C.E.) was a mathematician who lived in the port city of 

Askelon in Palestine and wrote an extensive commentary on the works of 

Archimedes. 

Most of these commentators wrote in Greek. Knowledge of Greek sank to a 

very low level in western Europe as a result of the upheavals of the fifth century. 

Although learning was preserved by the Church and much of the Bible was writ¬ 

ten in Greek, a Latin translation (the Vulgate) was made by Jerome in the fifth 

century. From that time on Greek documents were preserved mostly in the East¬ 

ern (Byzantine) Empire. After the Muslim conquest of North Africa and Spain 

in the eighth century some of these Greek documents were translated into Ara¬ 

bic and circulated in Spain and the Middle East. From the eleventh century on, 

as secular learning began to revive in the West, scholars from England, France, 

and Germany made journeys to these centers and to Constantinople, copied out 

manuscripts, translated them from Arabic and Greek into Latin, and tried to piece 

together some long-forgotten parts of ancient learning. We shall encounter these 

Medieval and Renaissance humanists in later chapters. The task they began will 

never be complete, and scholars continue to seek more old manuscripts right down 

to the present day. To mention just one example, in 1906 the Danish scholar J.L. 

Heiberg (1854-1928), who established the definitive text of many Greek scientific 

treatises, investigated a report of a mathematical treatise in Constantinople. This 

treatise proved to be a long-lost work of Archimedes, revealing that the great math¬ 

ematician did not adhere exclusively to the rigorous principles of the Euclidean 

tradition, but possessed in addition an intuitive and highly fruitful method of dis¬ 

covery. A more recent example is the discovery of an Arabic version of four books 

of Diophantus’ Arithmetike. 

It is thus to the later commentators and the labors of antiquarian scholars since 

late Medieval times that we owe most of what we know about the ancient Greeks. 

We are forced to trust expert authority for most of what we believe. Therefore it is 

somewhat misleading to say that we personally know the things we believe. Rather 

we know that authoritative scholars have made certain assertions, and we trust those 



62 CHAPTER 4. THE EARLY GREEKS 

Figure 4.1: Architecture uses mathematics both to solve practical construction 

problems and to create structures of great beauty. A classical European illustration 

of this phenomenon is the Parthenon, whose front is shown here. The Bettmann 

Archive. 

scholars. Only a few experts, each in a narrow field, truly know anything, in the 

sense of being able to summarize the evidence on which the knowledge is based. 

This situation, though unavoidable, is nevertheless disquieting—after all, scholarly 

opinion does change, sometimes even reversing itself. Moreover it is unsatisfying 

to realize that what we really know is not, for example, that Thales predicted an 

eclipse, but that documents believed to be authentic by scholars report that Thales 

predicted an eclipse. 

Since the life story of the documents themselves is incredibly complicated in 

some cases, we shall give just one or two examples. After that we shall merely re¬ 

port what the experts say as fact. The treatise now known as Ptolemy’s Almagest, 

which was written about 150 C.E. and was the standard treatise on astronomy for 

nearly 1400 years, exists in nine manuscripts, the earliest of which was written in 

the ninth century, in other words 700 years after the original of which it is presum¬ 

ably a copy. The story is the same for most other works: the extant manuscripts 

are copies, sometimes translations into Arabic or Latin of works originally written 

in a form of Greek that had become a dead language centuries earlier. 

The consequences of these facts are twofold: first, anyone who wishes to study 

“Greek mathematics” seriously has to know Arabic; second, it is necessary to 

compare as many independent manuscripts as can be found in order to compensate 

for scribal errors, and even then it is obvious from common sense that many copy 

errors (due to the imperfect understanding of the copyists) have crept in. For 
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example, G. J. Toomer, who has recently edited and commented an English edition 

of the Almagest, has said that, “there are whole classes of textual matter which 

must... be regarded as interpolations.” 

The question of authenticity of sources is very vexed; and if we were to pursue 

it in every case, we would wind up in a labyrinth without a torch to light our way. 

Without years of training in the relevant languages and an intimate knowledge 

of the issues involved, our judgments as to authenticity would be worthless. We 

therefore take as given the documents that have been worked up by historians who 

specialize in these areas. In so doing we recognize that our knowledge is based 

on certain assumptions that we cannot ourselves justify. 

4.3 The Beginnings of Greek Mathematics 

The period we are calling “Early Greek” is actually rather late in the history of 

ancient Greece. The Greeks invaded and settled the Greek peninsula in several 

waves some time during the second millennium B.C.E. The period of time we are 

concerned with in the present chapter begins with the philosopher Thales around 

600 B.C.E. and ends around the time of Plato in 350 B.C.E. This period is marked 

by an increasing sophistication of mathematics, leaving a number of intriguing 

problems to be solved by future generations of mathematicians. 

In this chapter our emphasis is still on arithmetic and geometry, especially the 

latter. Algebra in the form known to us is still far in the future. Although the 

mathematics involved is much more sophisticated than the mathematics of Egypt 

and Mesopotamia, the study of it becomes easier because it is possible to detect 

certain unifying themes. Among these themes are (1) the beginnings of proof and 

formal deduction, (2) a systematic attempt to develop a theory of proportion, and 

(3) an attempt to use mathematics to construct scientific theories. 

As mentioned in Chapter 1, the concept of proportion plays a very large role in 

mathematics and its applications. If there is a single thread that runs through the 

history of mathematics from earliest times right down to the twentieth century, that 

thread is the idea of proportion. We have already seen that the notion is implicit 

in the Egyptian method of multiplication and in the pesu and seked problems of 

the Ahmose Papyrus. Much of Greek geometry is an attempt to discover propor¬ 

tions between different geometric figures. In other situations where the notion of 

proportion is not immediately applicable, we find attempts to apply it indirectly 

through procedures like the “Merton rule” (which you will meet when we study 

Medieval European mathematics). The calculus can be understood as an attempt 

to apply direct proportion locally and approximately when it does not apply over 

larger intervals. The whole subject of linear transformations of vector spaces is 

an elaboration of the idea of proportion, and even in the sophisticated problems of 

twentieth-century mathematics a frequently applied technique for studying compli¬ 

cated dynamic systems is to begin with a “linear” approximation, that is, one in 

which the idea of proportion is applicable. 

Now proportion is applicable to both arithmetic and geometry. Four numbers 

are in proportion a : b :: c : d if the quotients a/b and c/d are equal; alternatively 



64 CHAPTER 4. THE EARLY GREEKS 

one can use the criterion that the products ad and be are equal. If the four quantities 

a, b, c, and d represent line segments, the corresponding fact ought to be that a 

rectangle of sides a and d has the same area as a rectangle of sides b and c. 

Geometric proportion is important both in science, as we shall see in Chapter 

7, and in art, where it is used in the design of beautiful buildings such as the 

Parthenon (see Fig. 4.1). 

The attempt to transfer the relatively straightforward arithmetic theory of pro¬ 

portion to geometry, combined with a demand for rigorous proof, led to the dis¬ 

covery of incommensurables at an early date. In the words of the historian of 

mathematics J. J. Gray, this discovery was perhaps “the first good piece of pure 

mathematics.” It marks the decisive point at which a universal sort of intuitive 

arithmetic and geometry becomes infused with logic and suitable for organization 

into systematic treatises. 

4.4 Early Philosophers 

Our story begins around the year 600 B.C.E. with a group of philosophers associ¬ 

ated with the Greek commercial cities of the eastern Mediterranean. The mainland 

of Greece is rather infertile, and the Greeks were consequently engaged in planting 

colonies to relieve the pressure of an increasing population. Their commercial 

interests led to a way of life that encouraged interest in the world, a liberation 

from rigid social customs, and an eagerness to find new ways of doing things. The 

earliest Greek thinkers of whom we have a record are associated with the Greek 

colonies of Miletus, Samos, and Chios, near the western coast of what is now 

Turkey. 

These Greek commercial cities came into conflict with the Persians in the early 

fifth century B.C.E., and the history of the resulting wars was written, along with 

a large number of fascinating stories and legends, by Herodotus, who was a child 

at the time of the wars. We shall begin our story with him. 

4.4.1 Thales 

Herodotus mentions Thales, the first philosopher/mathematician we have to deal 

with, in several places. Discussing the war between the Medes and the Lydian 

king Croesus, which had taken place in the previous century, he says that an 

eclipse of the sun frightened the combatants into making peace. Thales, according 

to Herodotus, had predicted that an eclipse would occur no later than the year 

in which it actually occurred. Herodotus goes on to say that Thales had helped 

Croesus to divert the river Halys so that his army could cross it. 

These anecdotes show that Thales had both scientific and practical interests. 

His prediction of a solar eclipse (which, according to the astronomers, occurred 

in 585 B.C.E.) seems quite remarkable. Although solar eclipses occur regularly, 

they are visible only over small portions of the earth, so that their regularity is 

difficult to discover and verify. Lunar eclipses, however, exhibit the same period 
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Figure 4.2: Equality of vertical angles. 

as solar eclipses and are easier to observe. Eclipses recur in cycles of about 235 

lunar months (19 solar years), a period that seems to have been known to many 

ancient peoples. Among the cuneiform tablets from Mesopotamia there are many 

that discuss astronomy, and Ptolemy uses Mesopotamian observations in his system 

of astronomy. Thus Thales could easily have acquired such knowledge in various 

places. 

Thales must have traveled widely and learned what there was to know from 

the older civilizations of the region. He was also, according to Eudemus, the first 

real geometer, said to be responsible for the following facts: 

1. The vertical angles formed by two intersecting lines are equal. 

2. The base angles of an isosceles triangle are equal. 

3. A circle is bisected by any line through its center. 

4. Two triangles are congruent if they have two angles and the side between 
them equal. 

Historians also associate Thales with the theorem that an angle inscribed in a 

semicircle is a right angle. According to Diogenes Laertius, a Roman historian 

named Pamphila, who lived in the time of Nero, credits Thales with being the 

first to inscribe a right triangle in a circle. To achieve this construction one 

would obviously have to know that the hypotenuse of the inscribed triangle is a 

diameter. Diogenes Laertius goes on to say that others attribute this construction 

to Pythagoras. 

It is not clear in what sense Thales “knew” these facts. Had he proved them 

in the modem sense? If so, from what premises? Perhaps he invented a way of 

showing that they follow from more obvious facts. For example, one can show 

that a pair of vertical angles are equal by observing that each adds up to a straight 

angle with one of the other pair of vertical angles formed by the same intersecting 

lines, as in Fig. 4.2, where one can easily see that Z.AOC + ZCOB = 180° = 

ZDOB+ZCOB, and hence that ZAOC = ZDOB. It may be that to Thales these 

propositions were simply self-evident fundamental principles that have significant 

practical applications. 

In giving Thales credit for the theorem that a circle is bisected by a diameter 

Proclus also says why the theorem is true. According to Proclus, 

The cause of this bisection is the undeviating course of the straight 

line through the center; for since it moves through the middle and 
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throughout all parts of its identical movement refrains from swerving 

to either side, it cuts off equal lengths of the circumference on both 

sides. 

This argument is just the kind of vague intuitive argument decried by geome¬ 

try teachers for centuries, and one is surprised to find a prominent mathematical 

philosopher offering it. Proclus, however, presents it only as an intuitive argument 

and follows it with a more rigorous geometric argument. This argument is still 

unfortunately not entirely clear, but the idea is apparently to reflect the portion 

of the circle on one side of the diameter and then argue that the reflected points 

must lie on the other portion of the circle since all of the radii are equal. Whether 

Proclus’ argument is the one Thales is supposed to have given is also not clear. 

Plutarch reports that Thales traveled to Egypt and was able to calculate the 

height of the Great Pyramid by using the proportion between his own height and 

shadow and measuring the length of the shadow of the pyramid. The mathematics 

involved in doing this would not have been beyond the Egyptians themselves, 

so that it is possible that Thales learned some mathematics in Egypt. Diogenes 

Laertius says that Thales calculated the height of the pyramid by waiting until 

his shadow was exactly as long as he was tall, then measuring the length of the 

shadow of the Great Pyramid. There are practical difficulties in executing this 

plan, connected with the fact that one could not get into the Pyramid to measure 

the distance from the center to the tip of the shadow directly. One might use 

the Pythagorean theorem to measure the distance from the center of the pyramid 

to the point where its outer wall intersects the line to the tip of the shadow. 

It is certainly possible that Thales knew the Pythagorean theorem. There are 

ways of computing this distance from proportion, however, that do not involve the 

Pythagorean theorem. 

4.4.2 Pythagoras 

About half a century later than Thales another early mathematician, named Pythag¬ 

oras, was bom on the island of Samos. No books of Pythagoras survive, but many 

later writers mention him, including Aristotle. Diogenes Laertius, in his work 

Lives of Eminent Philosophers, devotes a full chapter to the life of Pythagoras, 

including several of his alleged previous incarnations and two contradictory stories 

of his death. Diogenes Laertius mentions several books that Pythagoras is said to 

have written and tells us the names of his wife, daughter, and son. 

If the stories about Pythagoras can be believed, he, like Thales, traveled widely, 

to Egypt and Mesopotamia. He gathered about him a large school of followers, 

who observed a mystical discipline and devoted themselves to contemplation. This 

group of people gave us some words that we use nearly every day, words that frame 

the world in a particular way for us, of which we are seldom consciously aware. 

Among these words is the word theory. 

Diogenes Laertius quotes a certain Hellenistic philosopher named Alexander 

who claimed that the Pythagoreans generated the world from monads (units). By 
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adding a single monad to itself, they generated the natural numbers. By allow¬ 

ing the monad to move, they generated a line, then by further motion the line 

generated plane figures (polygons), the plane figures then moved to generate three- 

dimensional figures (polyhedra). From the regular polyhedra they generated the 

four elements of earth, air, fire, and water. 

To the Greeks 1 was not a number, but it did generate numbers by the process 

of successive addition. From numbers arose lines. This idea seems very natural to 

us, since we have been taught analytic geometry. In Greek times, however, it led 

to certain difficulties, to be discussed below. Using the first geometric dimension 

(a line) to generate two- and three-dimensional space, and then deriving matter 

from physical space, the Pythagoreans thus generated the whole universe out of 

their monads. Moreover, this cosmology was mathematical in nature, since it was 

based on arithmetic and geometry. The way in which matter was believed to 

arise from geometry was particularly interesting, involving the five regular solid 

figures. According to the writer Aetius, who lived around 100 C.E., Pythagoras 

said that the earth arose from the cube, fire from the pyramid (tetrahedron), air 

from the octahedron, water from the icosahedron, and the sphere of the universe 

from the dodecahedron. Proclus also credits Pythagoras with the discovery of the 

five regular solids, though other writers claim that these solids were first discussed 

by Theatetus, a contemporary of Plato. 

The best known of the followers of Pythagoras is Philolaus, who lived in the 

fifth century B.C.E. Although he first lived with the Pythagoreans in Croton in 

southern Italy, he fled to Tarentum to escape the wrath of the citizens of Croton 

against the Pythagoreans. (The Pythagoreans were regarded as a cult that ensnared 

young people.) He became a wandering philosopher, propagating Pythagoreanism 

wherever he went. He is the author of a book On Nature (now lost) that is the 

basis for a good deal of what other ancient writers reported about the Pythagorean 

philosophy. This book presented a cosmology in which the sun, moon, Mercury, 

Venus, Mars, Jupiter, Saturn, the earth, and “counterearth” move around a central 

fire. 

Philolaus’ book is the first astronomical theory in recorded history, and it is 

remarkable that it is not geocentric. In Book II of his work On the Heavens 

Aristotle says that the Pythagoreans placed the most valuable substance—fire— 

at the most important place in the universe, which they called the “guardhouse 

of Zeus.” He says sarcastically that there is no need to be so disturbed about the 

universe or to post a guard at its center. Later followers of Pythagoras claimed that 

Aristotle had misunderstood the doctrine. Like most of Pythagoreanism, Philolaus’ 

book contained both scientific and mystical elements. For example there were 

several reasons for introducing the counterearth and the central fire. First, on 

mystical grounds it was believed that the number of heavenly bodies must be 

10, the basis of arithmetic. Second, it had been observed that eclipses of the 

moon could occur while the sun was above the horizon. This would seem to be 

impossible if the eclipse is merely the shadow of the earth falling on the moon. 

With the Pythagorean system the eclipse could be understood as the shadow of the 

counterearth on the moon. Third, the counterearth explains the fact that eclipses of 

the moon are more commonly observed than eclipses of the sun. The fact that the 
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central fire could not be observed was explained by saying that the earth always 

turns the same side to it, just as the moon always turns the same side to the earth. 

Pythagorean Arithmetic 

The Pythagoreans held a more abstract view of numbers than any we have encoun¬ 

tered so far. Our knowledge of Pythagorean number theory is based on several 

sources, including Books VII-IX of Euclid’s Elements and a treatise on arithmetic 

by the neo-Pythagorean Nicomachus of Gerasa, who lived about 100 C.E. On 

the basis of these documents we can make the following observations about the 

Pythagorean arithmetic. 

To begin with, the Pythagoreans made the elementary distinction between odd 

and even numbers. Having made this distinction, they proceeded to refine it, 

distinguishing between even numbers divisible by 4 (evenly even) and those that 

are not (even x odd). They went on to classify odd numbers in a similar way, coming 

thereby to the concept of prime and composite numbers, and what we now call 

pairs of relatively prime numbers. The notion of a relational property was difficult 

for Greek philosophers, and Nicomachus expresses the notion of relatively prime 

numbers somewhat confusingly, referring to three species of odd numbers: the 

prime and incomposite, the secondary and composite, and “the variety which, in 

itself is secondary and composite, but relatively is prime and incomposite.” This 

way of writing seems to imply that there are three kinds of integers, prime and 

incomposite, secondary and composite, and a third kind midway between the other 

two. It also seems to imply that one can look at an individual integer and classify 

it into exactly one of these three classes. 

Like Nicomachus, Euclid devotes his three books on number theory to the 

mysteries of divisibility theory, spending most of the time on proportions among 

integers, and on prime and composite numbers. Only at the end of Book IX does 

he prove a theorem of a different sort, giving a method of searching for perfect 

numbers (numbers, such as 6 and 28, that are equal to the sum of their proper 

divisors). 

The study of prime numbers has been one of continuing importance in math¬ 

ematics right down to the present day, and the Pythagoreans must be given credit 

for beginning this study. Another aspect of their study of numbers has been far 

less fruitful, however, namely the study of figurate numbers. The Pythagoreans 

distinguished triangular numbers (1, 3, 6, 10, 15, 21,...) square numbers (1, 4, 

9, 16, 25, 36,...), pentagonal numbers, and the like and proved abstract theorems, 

such as the theorem that the sum of two successive triangular numbers is a square 

number (for example, 15 + 21 = 36). It is difficult to see how anyone could 

have predicted which of these two seedlings nourished by the Pythagoreans—the 

study of divisibility theory, and the study of figurate numbers—would grow into a 

mighty tree. The two were planted together, and no doubt both seemed important 

to their founders. Yet the study of prime numbers has led to enormous amounts 

of profound mathematics, while, except for squares, the study of figurate numbers 

has never been more than a curiosity. 
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In connection with the theory of divisibility and proportion for integers, it seems 

likely that the Pythagoreans would have known how to find the greatest common 

divisor (factor) of two numbers. There is evidence for this assertion, in that such 

a procedure is described in Proposition 2 of Book VII of Euclid’s Elements, and 

the three books of the Elements concerned with number theory are believed to be 

Pythagorean. This procedure, now known as the Euclidean algorithm, deserves a 

detailed explanation. 

For definiteness, we shall imagine that the two quantities whose greatest com¬ 

mon measure is to be found are two lengths, say a and b. Suppose that a is longer 

than b. (If the two are equal, then clearly their common value is also their greatest 

common divisor.) Here is an elaboration of the procedure described in a few words 

by Euclid: 

1. Replace the pair (a, b) by the pair (a — b,b). Then the greatest common 

measure of a — b and b is also the greatest common measure of a and b. For 

if a length c divides both a — b and b (say, a — b = rc and b = sc for integers 

r and 5), then c also measures a [since a = a — b + b = rc + sc = (r + s)c]. 

Thus any common measure of a — b and b is also a common measure of 

a and b, and clearly the argument works in reverse. That is, (a, b) and 

(a — 6, b) have the same common measures. In particular if a — b = b, then 

this common value (b) is the greatest common measure. If a — b f b, we 

start over with the new pair. We shall denote the new pair by (a1? hi) and 

assume that a\ > b\. 

2. We can now repeat the argument with the new pair, in which one of the 

elements is shorter than the larger element of the original pair by an amount 

equal to the shorter element of the original pair. It is clear that, if the 

argument is repeated, leading to the sequence (ai, &i),.. •, (an, bn),... either 
an equal pair eventually occurs or else the larger element an will eventually 

become less than half of the original larger element a. For one can see 

easily that the shorter element after one subtraction is less than half of the 

original larger element, and repeated subtraction of this shorter element from 

the other will eventually leave a remainder that is even shorter. Each pair 

produced will have the same common measures as its predecessor, and hence 

the same common measures as the original pair (a, b). 

3. Since the greatest common measure of o, and b divides both an and bn, it 

follows that an cannot be smaller than this common divisor. We have noted, 

however, that either an = bn for some n or an < \a for some n. Hence 

if the process does not terminate, an eventually becomes arbitrarily small. 

It follows that if there is a common measure of a and b, the process must 

terminate by producing an equal pair in a finite number of steps. 

An example will make all this clear. Let us find the greatest common measure 

(divisor) of 24 and 488. Clearly a common measure does exist, namely the integer 

1. Starting with the pair (488, 24), we subtract the smaller from the larger, getting 

the new pair (464,24). Since this pair is not equal, we repeat the process. The 
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repeated subtraction described in the pure algorithm can be shortened by division: 

488 divided by 24 gives a quotient of 20 and a remainder of 8. Thus we would 

apply the algorithm 20 times, getting the successive pairs (488,24), (464,24), 

(440,24),..., (32,24), (8,24). At this point we start with the pair (24,8) and 

get successively (16,8), (8,8). Having finally reached an equal pair, we conclude 

that the greatest common divisor of 488 and 24 is 8. 

Proportion and Measurement 

The greatest common divisor plays an important role in the theory of proportion. 

If two integers are to be used to express the ratio of one object to another, it is 

advisable to divide out their greatest common measure. Thus it would be foolish 

to say that two lines were in the ratio of 36 to 54, when one could divide both 

of these numbers by 18 and say that the ratio is 2 to 3. Now, in order to find 

the ratio in the first place for objects such as line segments, the simplest thing is 

to find the greatest common measure and see how many times it is contained in 

each. That is what we do when we use any calibrated measuring instrument, a 

ruler, for example. We take the smallest calibration (say, one millimeter), which is 

regarded as a divisor of the length we are measuring. This assumption is acceptable 

since we are seeking only approximation, although it is not strictly speaking true. 

Since the smallest calibration certainly divides the unit length (say, one meter), it 

provides us with a common measure of the object to be measured and the unit of 

measurement. Thus if we say that a line is seven millimeters long, we are really 

expressing its ratio to the standard meter as 7 : 1000. In this way any length can 

be compared with the standard length, and so any two lengths can be compared 

with each other. It follows that any two measured quantities of the same kind 

(lengths, areas, mass, etc.) will have a common measure, simply because of what 

we take measurement to mean. 

Pythagorean Geometry 

Before discussing the clash between arithmetic and geometry in Pythagoreanism, 

we need to reconstruct their geometry as well as we can, since, like arithmetic, 

it played an important role in their cosmology. From Proclus and other later au¬ 

thors we have a glimpse of a fairly sophisticated Pythagorean geometry, intimately 

intertwined with their characteristic mysticism. For example, Proclus reports that 

the Pythagoreans regarded the right angle as ethically and aesthetically superior to 

acute and obtuse angles, since it was “upright, uninclined to evil, and inflexible.” 

Right angles, he says, were referred to the “immaculate essences” while the ob¬ 

tuse and acute angles were assigned to divinities responsible for changes in things. 

Thus the Pythagoreans had a bias in favor of the eternal over the changeable, and 

they placed the right angle among the eternal things since, unlike acute and obtuse 

angles, it cannot change without losing its character. 

Proclus mentions two specific parts of geometry as being Pythagorean in origin. 

One is the theorem that the sum of the angles of a triangle is two right angles. 

The other is a portion of Euclid that is not generally taught any more, the topic 
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Figure 4.3: Application (a); application with defect (b). 

E 

Figure 4.4: Application with excess. 

of application of areas. There are three such problems: (1) given a straight line 

segment of length a and a second line passing through its endpoint, to construct 

a parallelogram having the side of length a as base, the other line as a side, 

and a prescribed area (<application); (2) given the prescribed area, to construct a 

parallelogram equal to that area on part of the base a and having the second line 

as a side in such a way that the parallelogram needed to fill up a parallelogram on 

the entire base (called the defect) will have a prescribed shape (<application with 

defect); and (3) given the prescribed areas, to construct a parallelogram on a side 

containing the base a having the second line as a side and such that portion of 

the parallelogram extending beyond the base a (the excess) will have a prescribed 

shape (<application with excess). These constructions are shown in Figs. 4.3 and 

4.4 for the case when the angle in which the area (A) is to be inscribed is a right 

angle and the ratio of the sides of the defect (D) or excess (E) is 2 : 3. (The area 

A is not labeled in Fig. 4.4 since the excess E forms a part of it.) Proclus cites 

Eudemus in asserting that the solution of these problems was an ancient discovery 

of the Pythagoreans. 

The first of these problems amounts to finding the second side of the paral¬ 

lelogram, given its area, one of its sides, and the angle between the sides. In the 

important case when the two lines are perpendicular and the excess or defect is 

a square, the second and third problems amount to finding two unknown quanti¬ 

ties (lengths) given their sum and product (application with deficiency) or given 

their difference and product (application with excess). As we saw in the preced¬ 

ing chapter, in modern terms these problems amount to quadratic equations, and 

numerical procedures for solving them occur constantly in the cuneiform tablets. 

Undoubtedly this Babylonian mathematics was known to the early Greeks. The 

question that we cannot answer definitely is: How did these problems come to 

appear in geometric form in Euclid’s treatise? Is there a reason why Euclid did 
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not write about the numerical version of the problems? Is that reason connected 

with the fact that the solution of these problems involves extracting square roots, 

which usually were not numbers in the sense understood by the Greeks? Or do 

these constructions have some purely geometric origin unconnected with the earlier 

numerical problems? The geometric problems are stated for parallelograms in such 

a way that no simple numerical interpretation of them exists. 

We cannot give definite answers to these questions, but it may well be that 

certain difficulties we are about to discuss convinced the Greeks that not every 

ratio could be regarded as a number, so that the theory of proportion in geometry 

had to be constructed in a more complicated manner than the theory of proportion 

in arithmetic. 

4.4.3 Zeno of Elea 

Although we have some idea of the geometric results proved by the Pythagoreans, 

our knowledge of their interpretation of these results is murkier. How did they 

conceive of geometric entities such as points, lines, planes, and solids? Were these 

objects physically real or merely ideas? What properties did they have? Some 

light is shed on this question by the philosophical critics of Pythagoreanism, and 

we shall now discuss the ideas of the most prominent of these critics. 

The Pythagoreans began with a mystical faith in the power of numbers to ex¬ 

plain the universe. At the same time, by developing geometry, they were conjuring 

up the nemesis of arithmetic. It turned out that the Pythagorean view of geometry 

and number contained paradoxes within itself, which were starkly pointed out by 

the philosopher Zeno of Elea. Zeno died around 430 B.C.E., and, as usual in 

such cases, we do not have any of his works to rely on, only expositions of them 

by other writers. Aristotle, in particular, says that Zeno gave four puzzles about 

motion, which he called the Dichotomy (division), the Achilles, the Arrow, and 

the Stadium. Here is a summary of these arguments in modem language, based 

on Book VI of Aristotle’s Physics. 

1. The Dichotomy. Motion is impossible because before an object can arrive 

at its destination it must first arrive at the middle of its route. But before it 

can arrive at the middle, it must travel one-fourth of the way, etc. Thus we 

see that the object must do infinitely many things in a finite time in order 

to move. 

2. The Achilles. (So-called because the legendary warrior Achilles chased the 

Trojan hero Hector around the walls of Troy, overtook him, and killed him.) 

If given a head start, the slower runner will never be overtaken by the faster 

runner. For, before the two runners can be at the same point at the same 

instant, the faster runner must first reach the point from which the slower 

runner started. But at that instant the slower runner will have reached another 

point ahead of the faster. Hence the race can be thought of as beginning again 

at that instant, with the slower runner still having a head start. Clearly the 

race will “begin again” in this sense infinitely many times with the slower 
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runner always having a head start. Thus, as in the dichotomy, infinitely 

many things must be accomplished in a finite time in order for the faster 

runner to overtake the slower. 

3. The Arrow. An arrow in flight is at rest at each instant of time. That is, 

it does not move from one place to another during that instant. But then 

it follows that it cannot traverse any positive distance because successive 

additions of zero will never result in anything but zero. 

4. The Stadium. (In athletic stadiums in Greece the athletes ran from the goal to 

a halfway post and then back. This paradox seems to have been inspired by 

imagining two lines of athletes running in opposite directions and meeting 

each other.) Consider two parallel line segments of equal length moving 

toward each other with equal speeds. The speed of each line is measured by 

the number of points of space it passes by in a given time. But each point 

of one line passes twice that many points of the other line in the same time 

as the two lines move past each other. Hence the velocity of the line must 

equal its double, which is absurd. 

Given the modem outlook on the world, it is difficult to appreciate the problem 

that these paradoxes created for the Pythagoreans. There are two reasons for our 

difficulty in understanding the paradoxes. First, mathematicians have worked out 

ways of avoiding these paradoxes, and our view of the world is now such that 

the paradoxes cannot easily be stated. Second, we tend to regard such puzzles 

as recreation, not to be taken seriously. In ancient Greece those who chose to 

spend their time in schools (a leisure class) regarded thinking about such puzzles 

as important work.1 In our modem democracies, in contrast, large numbers of 

people attend universities and wonder why pedantic professors waste their time 

with such pointless word-spinning. Our purpose in presenting these paradoxes is 

to see what issues they raise for the development of mathematics. In order to 

do that, we must clear our minds of modem concepts of motion inherited from 

Newtonian mechanics and the popularized theory of relativity. 

The stadium paradox, for instance, seems transparent to a twentieth-century 

mind. The velocity of each row of bodies relative to the other is double its velocity 

relative to the ground, and there is no mystery here. It seemed otherwise to the 

Greeks, for whom the velocity of a moving point was not relative to another object, 

but rather was a measure of (proportional to) the quantity of space it passed in a 

given time. From this point of view, it does indeed seem a contradiction that the 

velocity can be two things. As noted above in connection with relatively prime 

numbers, Greek philosophers had difficulty with relational properties. We have 

seen Nicomachus’ awkward description of relatively prime integers as being “in 

between” prime and composite integers—composite in the absolute sense but prime 

1One must be careful in generalizing about the ancient Greeks, however. Our records are biased 

toward the views of the scholars who wrote the records. It is quite possible that most of Plato’s students 

were young aristocrats who went to the Academy because their parents wanted them to be cultured. 

Like the sons of the British nobility who were educated at Eton, many of them probably preferred 

hunting and carousing to study. 
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with respect to each other. There is a further difficulty in the present situation in 

that those who translate the original Greek into modern languages cannot be sure of 

the meaning of the original language. It seems likely that, because the problem is a 

paradox, its statement was confused by those who attempted to report it, until now 

it is impossible to know how the paradox was originally stated. It is possible to 

make a real paradox out of this thought experiment by assuming that time consists 

of indivisible instants. If the bodies are such that each body in motion moves past 

a body at rest in exactly one instant of time, then two bodies in oppositely directed 

motion move past each other in half an instant, which is an impossibility, since 

instants cannot be divided in half. However, this paradox seems rather far from 

the language in which Aristotle reports the argument. 

Similarly in the arrow paradox, Newtonian physicists would agree that in a 

given instant the arrow does not move. They would not agree, however, that it 

is “at rest” at that instant, that is, its velocity at that instant is zero. As for the 

dichotomy and Achilles paradoxes, any modem mathematician would point out 

that, although it is true that the traveling object must begin shorter and shorter 

journeys before it can get anywhere and the race between the fast and slow runner 

must begin infinitely many times before the fast runner overtakes the slow one, 

each new beginning requires less time than the one before, and the total sum of 

the times required is finite. Thus the modem world disposes of these paradoxes. 

The situation was different for the Pythagoreans, however. They had built their 

system on lines “made up” of points, and now Zeno was showing them that space 

cannot be “made up” of points in the same way that a building can be made of 

bricks. For assuredly the number of points in a line segment cannot be finite. If 

it were, the line would not be infinitely divisible as the dichotomy and Achilles 

paradoxes showed it must be; moreover the stadium paradox would show that the 

number of points in a line segment equals its double. There must therefore be an 

infinity of points in a line. But then each of these points must take up no space; for 

if each point occupied some space, an infinite number of them would occupy an 

infinite amount of space. But if points occupy no space, how can the arrow, whose 

tip is at a single point at each instant of time move through a positive quantity 

of space? From these difficulties the Pythagoreans apparently found no escape. 

A continuum whose elements are points seemed to be needed for geometry, yet 

it could not be thought of as being made up of points in the way that discrete 

collections are made up of individuals. 

4.4.4 The Problem of Incommensurables 

The difficulties pointed out by Zeno lay in the background of Pythagorean geometry. 

That is, they affected the interpretation of geometric theorems, but not the logical 

validity of their derivation from first principles. There was, however, a difficulty 

within the geometry that the Pythagoreans were practicing, only waiting for its 

chance to spring forth as soon as someone examined the matter closely enough. 

We now turn to examine this problem as it must have arisen in the fifth century 

B.C.E. Of course, we do not know how the discovery was made, and what 
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follows is merely one possible way it may have happened. (We shall look at other 

possibilities in the next chapter.) As background for the discussion we assume the 

elements of number theory as reflected by Nicomachus in his Arithmetic, and we 

assume a certain amount of knowledge of elementary geometry on the part of the 

Pythagoreans. The quotations from Proclus show that this assumption is a safe one. 

Indeed it is safe to say that the Pythagoreans knew most of the standard theorems 

on congruence of figures and the relations between chords, arcs, and tangents on 

a circle. The conflict we are about to discuss probably originated in the theory of 

similar figures. 

To exhibit the conflict, we return to the problem of proportion in geome¬ 

try and attempt to apply the Euclidean algorithm described above to find cer¬ 

tain proportions. Because any two measured quantities of the same kind are 

commensurable—they have as a common measure the smallest calibration on the 

measuring instrument—the problem we are about to discuss is not a practical prob¬ 

lem. It arises rather from reflecting very deeply on the idealizations that make up 

the essence of mathematics. Thus we find that one of the first fruits of careful 

thought is confusion—the attempt to be more than ordinarily clear about the pro¬ 

cess of comparing lengths led to the first dilemma in the history of mathematics. 

We now describe that dilemma. The Euclidean algorithm works for positive in¬ 

tegers, because positive integers are made up of “atoms” (a Greek word meaning 

indivisible). That is, there is no positive integer smaller than 1, which is a com¬ 

mon divisor of all positive integers. It seems to common sense that the same can 

be said about lines. Lines are made up of points, which seem to play the same 

atomic role in geometry that the number 1 plays in arithmetic. Once we have a 

common measure of two objects, we can talk about their ratio (the ratio of the 

number of times each is divisible by the common measure). Therefore, it seems, 

the Euclidean algorithm should enable us to find the ratios among the parts of 

simple geometric figures, in particular between the sides and diagonals of squares, 

pentagons, and hexagons. These figures were fundamental to the Pythagoreans. 

As we saw above, they identified the physical elements of the world with the 

regular solids: the tetrahedron with fire, the octahedron with air, the icosahedron 

with water, and the cube with earth. The first three of these regular solids have 

faces that are triangles, and the cube has square faces. The dodecahedron, which 

has pentagonal faces, was identified with the universe itself. The pentagon thereby 

became a mystical figure for the Pythagoreans. The ratio between its sides and 

diagonals must have been a subject of intense interest. Indeed, that ratio is said to 

occur as the ratio of sides of rectangles in many of the classical buildings, such as 

the Parthenon (see Fig. 4.1), though others find the side and diagonal of a square 

to be the underlying “theme” for the same structure. Let us apply the Euclidean 

algorithm to the side and diagonal of a regular pentagon to see if we can discover 

their greatest common measure. Consider the pentagon ABODE in Figure 4.5 

with diagonals AC and AD drawn. It is easy to see that the two diagonals trisect 

the angle at A, since the three angles formed by the sides and diagonals meeting 

at A are inscribed in equal arcs of the circle. Since the base angles of the triangle 

ACD are inscribed in arcs twice as long, these angles are each equal to twice 

angle CAD. Knowing, as the Pythagoreans did, that the sum of the angles of a 
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A 

Figure 4.5: Diagonal and side of a regular pentagon. 

triangle is 180°, we conclude that angles ACD and ADC are each 72° and angle 

CAD is 36°. Now if the bisector of the angle ACD meets AD at the point F, 

the triangle CDF will have an angle of 36° at C. Angle CFD will therefore be 

72°, and hence the triangle CDF will have the same angles as the original triangle 

ACD. It follows that DF is the side of a (smaller) pentagon whose diagonals 

all equal CD (and CF). Now angle ACF is also 36°, and so triangle ACF is 

isosceles (AF = CF). Hence AD — CD = AD — CF = AD — AF = DF. 

Now to apply the Euclidean algorithm, we could represent the diagonal and 

side of the pentagon ABC DE by the pair (AD, CD). The algorithm would cause 

us to replace this pair by (AD — CD, CD). We have just seen that this pair is 

the same as the pair (DF,CD). But we have also just seen that this new pair 

also forms the side and diagonal of a pentagon! Thus, no matter how many times 

we apply the procedure of the Euclidean algorithm, the result will always be a 

pair consisting of the side and diagonal of a pentagon. Therefore in this case the 

Euclidean algorithm will never produce an equal pair of lines. We know, however, 

that it must produce an equal pair if a common measure exists. We conclude that 

no common measure can exist for the side and diagonal of a pentagon. These 

two lengths are said to be incommensurable. A similar argument can be applied to 

the side and diagonal of a square, only in that case the algorithm must be applied 

twice before the new pair is the side and diagonal of a smaller square. 

Whether by this argument or some other, the Greeks discovered the existence of 

incommensurable pairs of line segments before the time of Plato. For Pythagorean 

metaphysics this discovery was disturbing: number, it seems, is not adequate to 

explain all of nature. A legend arose that the Pythagoreans attempted to keep 

secret the discovery of this paradox. However, scholars believe that the discovery 

of incommensurables came near the end of the fifth century B.C.E., when the 

original Pythagorean group was already defunct. 

The existence of incommensurables is one of the two horns of the dilemma 

that led the Greek philosophers to speculate on the metaphysical underpinnings of 

mathematics. The other horn is the belief that any two line segments should have 

a common measure, since both are made up of identical points (atoms of a sort). 

This is the first clash between the discrete and the continuous in mathematics, and 
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the war between them—between arithmetic and geometry—has raged intermittently 

ever since. The best efforts of mathematical “diplomats” have never resulted in 

anything better than a temporary and uneasy truce. 

The existence of incommensurables throws doubt on certain oversimplified 

proofs of geometric proportion. When two lines or areas are commensurable, one 

can describe their ratio as, say, 5 : 7, meaning that there is a common measure 

such that the first object is five times this measure and the second is seven times 

it. A proportion such as a : b :: c : d then is the statement that both of the ratios 

a : b and c : d are represented by the same pair of numbers. 

Now this theory of proportion is extremely important in geometry if we are 

to have such theorems as Proposition 1 of Book VI of Euclid’s Elements, which 

says that the areas of two triangles or two parallelograms having the same height 

are proportional to their bases, or the theorem (Book XII, Proposition 2) that the 

areas of two circles are proportional to the squares on their diameters. Even the 

simplest constructions, such as the construction of a square equal in area to a 

given rectangle or the three application problems mentioned above, may require 

the concept of proportionality of lines. Because of the extreme importance of 

the theory of proportion for geometry, the discovery of incommensurables made it 

imperative to give a definition of proportion without relying on a common measure 

to define a ratio. 

The problem was a deeply philosophical one. What is ultimately desired is a 

theory of proportion, but for that purpose it was necessary to have a clear idea of a 

ratio. As long as two objects are commensurable, their ratio can be thought of as 

the ratio of two positive integers (what we would call a rational number). Without 

commensurability, it would seem that we could define equality of two ratios, at 

least for lines, by saying a : b :: c : d if the rectangle on a and d has the same area 

as the rectangle on b and c, as suggested above. However, this approach would 

define equality of ratios, yet leave the ratios themselves undefined. As we shall 

see, the ultimate solution chosen by the Greek mathematicians did, in effect, the 

same thing, although Euclid tried to blur this fact with a rather vague definition 

of a ratio. The solution of this problem, due to Eudoxus, will be discussed in the 

next chapter. 

At this point we leave the Pythagoreans. They made some notable advances in 

the theory of numbers and elementary geometry, leading to fundamental and far- 

reaching mathematical theories. In trying to be logical and clear they succeeded 

in uncovering new and unsuspected difficulties in their subject, difficulties that 

later generations of mathematicians would have to resolve. The paradoxes of 

Zeno showed that there must be a difficulty somewhere within the Pythagorean 

philosophy. However, they did not contradict any single Pythagorean doctrine, only 

the total collection of doctrines. They could therefore be ignored by those who 

merely wished to prove theorems. The problem of incommensurables, however, 

contradicted assumptions explicitly made in proofs of theorems on proportion. 

Proofs based on the use of a common measure were, as a result of the discovery 

of these paradoxes, overtly fallacious; something had to be done to repair them. 

Once those repairs were made, the way was clear for the construction of one of 

the epoch-making advances in human knowledge, the first systematic, deductive 
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Figure 4.6: Transforming a triangle into a rectangle. 

theory, as expounded in the immortal textbook of Euclid. We shall take up this 

part of the story in the next chapter. For the remainder of the present chapter we 

shall explore other aspects of the early development of geometry. 

4.5 Other Greek Geometry 

Because the success of Euclid’s treatise on geometry made earlier treatises obsolete, 

we have limited knowledge of what geometry consisted of in the fifth and fourth 

centuries. Nevertheless it is plausible that the proportions and congruences to 

be found among circles and rectilinear plane figures were well known. Since 

the proofs of such theorems depend on a theory of proportion, we can picture 

the situation somewhat as follows. The elements of plane geometry involving the 

transformation of areas (to be discussed below) and the construction of certain lines, 

such as the tangent to a circle, were well established by the late fifth century B.C.E. 

At this point geometers were faced with two sets of problems: first, to extend 

the transformation of rectilinear areas to areas bounded by curves and to three 

dimensions (transformation of volumes); second, to reinstate the jeopardized theory 

of proportion by constructing a theory that would apply to both commensurable 

and incommensurable magnitudes. Only the first of these concerns us at present. 

It is an elementary construction to transform a triangle into a rectangle, that is, 

to partition the triangle into a trapezoid and two smaller triangles that can then be 

reassembled into a rectangle, as in Fig. 4.6. 

The elementary construction of the mean proportional between two lengths, 

illustrated in Fig. 4.7, then makes it possible to construct a square equal in area to 

a rectangle. Hence one can construct a square equal to any triangle. Then, using 

the Pythagorean theorem, which makes it possible to construct a square equal to 

the sum of two other squares, one can easily see how to construct a square equal to 

any figure that can be triangulated (partitioned into a finite number of triangles). 

Since any polygon can be triangulated, we see that it is possible to construct 

a square equal in area to any polygon. All this theory, known as quadrature 

(squaring), must have been known to the Pythagoreans. Now any mathematician, 

surveying this scene, would immediately attempt to extend these results further. 

In particular two problems naturally arise: (1) construct a square equal to a given 

circle (quadrature of the circle) and (2) construct a cube equal in volume to any 

given closed polyhedron. A third classical problem arises in carrying out plane 
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Figure 4.7: Transforming a rectangle into a square (s2 = ab) 

constructions. It is frequently necessary to divide a line into a finite number of 

equal parts, and the construction for doing so is well known. Dividing angles 

(arcs), however, is not so easy. The construction for half of an angle or arc is well 

known and simple, but the construction for one-third of an angle is more elusive. 

Trisecting the angle was the third classical problem of geometry. 

These problems were always understood in the sense of finding chords or 

arcs. Thus constructing a square or cube meant constructing the length of its 

side. Although later writers have posed these problems so as to limit the allowable 

methods, the Greeks may not have imposed such limitations. One would naturally 

try to solve these problems using only straight lines and circles, since these were 

the simplest devices and had been successfully used to solve many other problems. 

If no success was achieved after a certain amount of effort, it was natural to look 

for other devices or to modify the goal slightly, and that is in fact what happened. 

Several of the sources mentioned above, including Proclus and Vitruvius, re¬ 

port that the problem of squaring the circle was worked on by the philosopher 

Anaxagoras around 440 B.C.E., when he was imprisoned in Athens by the ene¬ 

mies of Pericles. Vitruvius also relates that Anaxagoras worked together with the 

philosopher Democritus (one of the two originators of the atomic theory of matter) 

on geometric problems in the design of scenery for the theater. Having no details 

of the contents of this work, however, we mention it only to show the sort of 

activity that was taking place in the fifth century B.C.E. 

4.5.1 Hippocrates of Chios 

We know from the accounts of later writers that a number of authors worked on 

the classical problems. One of these was Hippocrates of Chios (not to be confused 

with the famous physician Hippocrates of Cos), who lived in the second half of 

the fifth century B.C.E. and is thought to have died in Athens. His work was 

not preserved, but fortunately it was described in detail in Eudemus’ history of 

mathematics, and Simplicius considered this passage important enough to quote 

it at length in his commentary on Aristotle’s Physics. As often happens with 

an intractable mathematical problem, mathematicians tried an indirect or partial 

approach. In the case of squaring the circle, Hippocrates was successful in squaring 
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certain regions between two overlapping circles. Such regions resemble crescent 

moons and are therefore called lunes. As a sample of Hippocrates’ work, found 

in Simplicius and attributed to Eudemus, consider the following simple quadrature 

of a lune. 

Figure 4.8 shows a small circle whose diameter AB is the chord on a 90° arc 

of a larger circle centered at O. The diameter of the smaller circle is therefore 4= 

times the diameter of the larger circle. Since the areas of circles are proportional 

to the squares on their diameters, the area of the smaller circle is half the area 

of the larger circle. In particular the semicircle whose diameter is AB equals the 

quarter-circle whose radii are OA and OB. If we subtract the segment of the 

larger circle that is common to both of these regions, we find that the remainders 

are equal. That is to say, the triangle OAB is equal in area to the lune that is 

inside the smaller circle and outside the larger one. 

Thus an area bounded by circular arcs can be proved equal to a rectilinear area. 

This result, although not a solution of the problem of squaring the circle, is at least 

progress in that direction. Hippocrates worked out the quadrature of many simple 

lunes, but always it appeared that the quadrature was possible only because of a 

subtraction. Some mysterious complication in the circle was canceled out when 

part of one circle was subtracted from another, so that the difference of two circles 

could be squared, but not a single circle. 

A similar piecemeal approach characterized the extension of the theory of mea¬ 

surement to three dimensions. Remembering our conjecture that the Pythagorean 

theorem may have been discovered in solving the problem of doubling a square, 

we can see that it would be natural to begin by trying to construct a cube equal 

to the union of two identical cubes. This is the classical problem of duplicating 

the cube, and Hippocrates of Chios is said to have worked on this problem also. 

Proclus says that Hippocrates was the first to reduce this problem to the problem 

of finding two numbers between two given numbers so that the four would be 

in continued proportion. This reduction caused the problem to be known as the 

problem of two mean proportionals. 

Both Theon of Smyrna and Eutocius tell colorful stories about the origin of 

this problem. According to these authors, the citizens of Delos learned from an 
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oracle that a plague afflicting the city would be lifted only when they doubled the 

size of an existing altar. Theon goes on to say that the Delians consulted Plato 

about ways of accomplishing this construction, but Plato told them that the altar 

was a red herring—the gods really just wanted the Delians to pay more attention to 

the study of geometry. Eutocius quotes a letter allegedly from the mathematician 

Eratosthenes, who will be discussed in a later chapter, relating a similar story about 

doubling the size of a tomb. The letter goes on to say that Hippocrates’ reduction 

of the problem to the construction of two mean proportionals was of no value: 

“the puzzle was by him turned into no less a puzzle.” Modem scholars claim, 

however, that this letter was a forgery. 

4.6 Problems and Questions 

4.6.1 Problems in Greek Geometry 

Exercise 4.1 The repeated subtraction in the Euclidean algorithm is usually short¬ 

ened by simply dividing the larger quantity by the smaller and taking the divisor 

and remainder as the new pair. Illustrate this procedure by finding the greatest 

common divisor of 189,189 and 13,923. 

Exercise 4.2 What is the ratio of the diagonal of a regular pentagon to its side? 

Find this number (d/s), given that d : s :: 5 : (d — s). It is known as the Golden 
Section. What is its approximate numerical value, expressed as a finite decimal 

number? 

Exercise 4.3 Prove the statement in the text that the problem of constructing a 

rectangle of prescribed area on part of a given base a in such a way that the defect 

is a square is precisely the problem of finding two numbers given their sum and 

product (the two numbers are the lengths of the sides of the rectangle). Similarly 

prove that the problem of application with square excess is precisely the problem 

of finding two numbers (lengths) given their difference and product. 

Exercise 4.4 Show that the problem of application with square excess has a so¬ 

lution for any given area and any given base. What restrictions are needed on the 

area and base in order for the problem of application with square defect to have a 

solution? 

Exercise 4.5 Use an argument similar to that in the text to show that the side 

and diagonal of a square are incommensurable. That is, show that the Euclidean 

algorithm, when applied to the diagonal and side of a square requires only two 

steps to produce the side and diagonal of a smaller square, and hence can never 

produce an equal pair. To do so, refer to Fig. 4.9. 

In this figure AD = DC, angle ADC is a right angle, AD is the bisector 

of angle CAD, and DE is drawn perpendicular to AC. Prove that DD = DE, 
DE = EC, and AD = AE. Then show that the Euclidean algorithm starting 

with the pair (AC, AD) leads first to the pair (AD, EC) = (DC, DD), and then 
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Figure 4.9: Diagonal and side of a square. 

to the pair (CD, BD) = (CD, DE), and these last two are the diagonal and side 

of a square. 

Exercise 4.6 Proposition 1 of Book VI of Euclid’s Elements asserts that two tri¬ 

angles having the same altitude have areas proportional to their bases. Draw two 

different-shaped triangles of equal altitude but with bases in the ratio of 5 : 3. 

Prove that their areas are in the ratio of 5 : 3 also. You may use the fact that 

two triangles with equal bases and equal altitudes have equal areas, but do not use 

the formula A = \bh. Instead, divide the two bases into 5 and 3 equal pieces 

and draw lines from the vertices to the endpoints of these pieces. How could you 

prove this theorem if the bases were not commensurable? 

4.6.2 Questions about Early Greek Mathematics 

Exercise 4.7 This exercise will take you to the library. Choose a Greek mathe¬ 

matician and find out what is said about him or her, on what authority, and (if 

possible) what original documentary sources for this information exist and where 

they are housed. Here are suggestions: Dinostratus, Hippias of Elis, Antiphon, 

Autolycus, Hypatia (the only woman mathematician of ancient times whose name 

is recorded by the standard sources). 

Exercise 4.8 It was stated above that Thales might have used the Pythagorean 

theorem in order to calculate the distance from the center of the Great Pyramid to 

the tip of its shadow. How could this distance be computed without the Pythagorean 

theorem? 

Exercise 4.9 Try to construct your own proofs of the theorems credited to Thales. 

Don’t strain to remember the axioms of geometry—in Thales’ time these axioms 

had surely not been formulated. Just try to deduce these statements logically from 

other principles that seem more obvious. 
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Exercise 4.10 In discussing the validity of various achievements credited to the 

Pythagoreans, the nineteenth-century historian of mathematics Moritz Cantor wrote 

the following. 

We shall not hesitate to ascribe to Pythagoras himself certain things 

belonging particularly to the history of mathematics. Among these is 

the Pythagorean theorem, which we shall attribute to him under any 

circumstances. It may be that no weight should be given to the testi¬ 

mony of Vitruvius, Plutarch, Diogenes Laertius and Proclus because of 

their late dates, even though they all agree. Nevertheless those whom 

Proclus cites as his defenders carry much more weight: “Those who 

wish to tell of ancient times,” whether this phrase means Eudemus, 

as is commonly assumed, or not. Most convincing of all to us is 

the indirect confirmation in the list of old mathematicians. It is there 

stated explicitly that Pythagoras discovered the theory of irrationals. 

But such a theory would be completely impossible—the study of irra¬ 

tionals would be unthinkable—unless the theorem about the squares 

of the sides of a right triangle were known beforehand; and one would 

be in an even more difficult position if, by not crediting Pythagoras 

with this discovery, one were forced to assume it to be even older than 

Pythagoras. 

How do we know that Cantor’s conclusion here is wrong? What is wrong with 

his reasoning? 

Exercise 4.11 State the paradoxes of Zeno in your own words and tell how you 

would have advised the Pythagoreans to modify their system in order to avoid these 

paradoxes. 

Exercise 4.12 Do we share any of the Pythagorean mysticism about geometric 

shapes? Think of the way in which we refer to an honorable person as upright, or 

speak of getting a square deal, while a person who cheats is said to be crooked. 
Are there other geometric images in our speech that have ethical connotations? 

Exercise 4.13 The Pythagoreans occupy a place in music history very similar to 

their place in the history of mathematics, that is, many legends have accumulated, 

and they have been credited by some scholars with achievements that other schol¬ 

ars regard as “too advanced” to be believable in their time. They are said to have 

recognized that the intervals we call the octave, the fifth, and the fourth are pro¬ 

duced by clamping a plucked string so that half, two-thirds, or three-fourths of the 

string is allowed to vibrate. They thus associated tones with ratios, and supposedly 

declared that the pleasing tones are associated with the division of the string into 

commensurable lengths. Would you expect them to write a composition in which 

the octave would be “bisected,” that is, one containing a tone that is the geometric 

mean between a given tone and its octave? (On a piano such a tone, relative to 

middle C and the C above it, is the F# between them.) If you have a piano, play 

the chord C-F#-C, and decide whether you consider it a pleasing sound. 
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Exercise 4.14 Was the overall effect of the discovery of incommensurables to ad¬ 

vance or retard the development of mathematics? Keep in mind that it stimulated 

the discovery of a new theory of proportion, but also caused the Greek mathemati¬ 

cians to avoid regarding lengths as numbers. Might the Greeks have developed 

analytic geometry if not for this difficulty? 

Exercise 4.15 In the period discussed in the present chapter we find two kinds of 

mathematical activity. One kind, represented by the attempt to extend the theory 

of the measurement of rectilinear plane figures to curvilinear and solid figures, 

is an attempt to discover new facts and enlarge the sphere of mathematics. The 

other, represented by the discovery of incommensurables, is an attempt to bring into 

sharper focus the theorems already proved and to test the underlying assumptions of 

a theory. Are these kinds of activity complementary, opposed, or simply unrelated 

to each other? 

Exercise 4.16 In the discussion of Hippocrates’ quadrature of a lune we used the 

fact that the areas of circles are proportional to the squares on their radii. Could 

Hippocrates have known this fact? Could he have proved it? 

Exercise 4.17 In both the Egyptian and Babylonian documents we found many 

problems that we would now regard as algebra problems. What reasons can you 

give for the absence of such problems among the Greek writers? Were they taken 

for granted as problems that had already been solved? Were they overshadowed in 

importance by the new systematic geometry being developed? Did they appear in 

disguised form? Or is it possible that documents discussing such problems once 
existed, but have all been lost? 

4.7 Endnotes 

1. Toomer’s edition of the Almagest was published in America by Springer- 

Verlag (New York, 1984). The quotation is from p. 5. 

2. Gray’s comment on the importance of the discovery of incommensurables 

is in the book Ideas of Space. Euclidean, Non-Euclidean, and Relativistic, 

2nd ed. (Clarendon Press, Oxford, 1989), p. 15. 

3. Herodotus’ remarks on Thales can be found in his book The History, trans¬ 

lated by David Grene (University of Chicago Press, 1987), pp. 67-68. 

4. Proclus’ commentaries are available in an annotated English translation by 

Glenn R. Morrow (Princeton University Press, 1970). 

5. Diogenes Laertius’ description of the Pythagorean cosmology can be found 

in the Loeb Classical Library edition of his Lives of the Philosophers, Vol. 2 

(Putnam, New York, 1925), pp. 341-343. The cosmology is also discussed 

in the book by Walter Burkert, Lore and Science in Ancient Pythagoreanism, 
translated by Edwin L. Minar, Jr. (Harvard University Press, 1972). In this 
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book the difficulty of ascertaining what the Pythagoreans actually believed 

is amply demonstrated. 

6. An English translation of Nicomachus’ Arithmetic by Professor Martin Luth¬ 

er D’Ooge was annotated and published after the translator’s death by F. E. 

Robbins and L. C. Karpinski (Macmillan, New York, 1926). The passages 

on the classification of numbers are found in Chapters XI-XIII, pp. 201-204. 

7. Proclus’ citation of the Pythagorean view of the ethical qualities of angles 

is from the edition mentioned above, pp. 106-107. 

8. Zeno’s paradoxes can be found in many sources. They are discussed in 

Aristotle’s Physics, 239b and in the commentaries on this book by Simplicius 

and others. See Simplicius: On Aristotle’s Physics 6, translated by David 
Konstan (Cornell University Press, 1989). 

9. The discussion of Hippocrates’ quadrature of lunes is based on an extended 

quotation by Simplicius, taken here from Vol. I of Selections Illustrating the 

History of Greek Mathematics, with a translation by Ivor Thomas (Harvard 

University Press, 1939), pp. 235-253. 
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Chapter 5 

The Euclidean Synthesis 

By the fourth century B.C.E. geometry had attained the status of a theory, that is, a 

body of knowledge given coherence by logical relations among its parts. Like all 

theories, it produced a number of unanswered questions and contained unresolved 

difficulties. We have seen some of these questions and difficulties in the last 

chapter in the form of the three classical problems, the paradoxes of Zeno, and 

the problem of incommensurables. Only the last of these was in pressing need 

of resolution at the time, and a solution was found by mathematicians working in 

Athens in the time of Plato. Once this difficulty was overcome, the way was clear 

for a comprehensive summary of the subject to be written, giving it a permanent 

place in human culture. The construction of this synthesis forms the subject of the 

present chapter. We begin our discussion with the statement and resolution of the 

problem of incommensurables during the fourth century B.C.E. We then discuss 

some other issues involved in organizing the presentation, followed by the contents 

of Euclid’s Elements and some geometry that goes beyond Euclid. 

5.1 The Problem of Incommensurables 

5.1.1 Incommensurables in Plato’s Dialogues 

In a dialogue called the Theatetus Plato gives us a glimpse of what must have 

been a current debate over the problem of incommensurables. Like most of Plato’s 

characters, the title character was a real person, an Athenian whose dates are given 

as 414-369 B.C.E. He was a friend of Plato and a student of the Pythagorean 

geometer Theodorus of Cyrene (ca. 460-399), who is mentioned in the dialogue. 

Theatetus reports that Theodorus proved that the side of a square of area 3, 5, 

etc., up to 17 is not commensurable with the side of a square of area 1 (except, 

of course, squares of area 4, 9, and 16), saying that, for some reason Theodorus 

stopped at that point. On that basis the students decided to classify numbers (what 

we now call positive rational numbers) into “equilateral” and “oblong” numbers. 

The former class consists of the squares of rational numbers, such as and the 

87 
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latter are all other positive rational numbers, such as 2. 

One cannot help wondering why Theodorus stopped at 17 after proving that 

the sides of squares of areas 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, and 15 are incom¬ 

mensurable with the unit length. The implication is that Theodorus “got stuck” 

trying to prove this fact for a square of area 17. If such is the case, what caused 

him to get stuck? Most assuredly the square root of 17 is irrational, and the proof 

commonly given nowadays to show the irrationality of y/3, for example, based on 

the unique prime factorization of integers, works just as well for 17 as any other 

number. If Theodorus had our proof, he wouldn’t have been stuck doing 17, and 

he wouldn’t have bothered to do so many special cases, since the proofs are all 

the same. Therefore we must assume that he had some other method. 

An ingenious conjecture as to Theodorus’ method was provided by W. Knorr 

(1945-1997) in his book The Evolution of the Euclidean Elements (Reidel, Dor¬ 

drecht/Boston, 1975). Knorr suggests that the proof was based on the elementary 

distinction between even and odd. To see how such a proof works, suppose that 

7 is an equilateral number in the sense mentioned by Theatetus. Then there must 

exist two integers such that the square of the first is seven times the square of the 

second. We can assume that both integers are odd, since if both are even, we can 

divide them both by 2, and it is impossible for one of them to be odd and the 

other even (the fact that the square of one equals seven times the square of the 

other would imply that an odd integer equals an even integer if this were the case). 

But it is well known that the square of an odd integer is always 1 larger than a 

multiple of 8. The supposition that the one square is seven times the other then 

implies that an integer 1 larger than a multiple of 8 equals an integer 7 larger than 

a multiple of 8, and this is clearly impossible. 

This argument carries over to show that none of the odd numbers 3, 5, 7, 11, 

13, and 15 can be the square of a rational number. With a slight modification it 

can also be made to show that none of the numbers 2, 6, 8, 10, 12, and 14 is the 

square of a rational number, though this is superfluous in the case of 8 and 12, 

since it is already known that \/2 and \/3 are irrational. Notice that the argument 

fails, as it must, for 9: a number 9 larger than a multiple of 8 is also 1 larger than 

a multiple of 8. However, it also breaks down for 17, and for the same reason: 

a number 17 larger than a multiple of 8 is also 1 larger than a multiple of 8. 

Thus, even though it is true that 17 is not the square of a rational number, the 

Pythagorean-type argument just given cannot be used to prove this fact. In this 

way the conjectured method of proof would explain why Theodorus got stuck at 
17. 

5.1.2 The Eudoxan Solution 

The existence of incommensurable lines was well known by the time of Plato, 

and the problem that these lines posed for the geometric theory of proportion was 

acute. If we cannot say that A : B :: m : n for positive integers m and n, how 

can we assert, for example, that the areas of two circles are proportional to the 

squares on their diameters? The solution that Euclid chose in his exposition of 
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this problem was invented a few years after the time of Theodorus. 

The formulation of a usable definition of proportion for continuous quantities 

was given by Eudoxus of Cnidos (400-347 B.C.E.). Eudoxus’ solution can be 

understood through the following considerations. Let D be the diagonal of a 

square and S its side, and let A and D be any two quantities of the same type, 

say lengths for definiteness. What could we mean by saying that D : S = A: B1 
If the quantities were commensurable, we would say that there are integers m and 

n such that D : S = m : n, that is, nD = mS, and also A : B = m : n, that is, 

nA = mB. In other words, the integers would be used as a “common currency” 

to express the equality of ratios of things of various kinds. Now we know that 

there are no integers m and n such that D : S = m : n. However, we also know 

two important bits of positive information. First, for any two integers m and n 
we must have either D : S > m : n (that is, nD > mS) or D : S < m : n 
(nD < mS), and a similar statement holds for A and B. Second, we can find 

pairs of integers m, n and p, q whose ratios are respectively larger and smaller than 

D : S in the sense just mentioned while the ratios m : n and p : q are as close to 

each other as desired, so that it seems we can approximate the ratio D : S with 

rational numbers as closely as desired. 

Putting these two facts together suggests that we define the proportion D : S = 

A : B to mean that for every pair of integers m and n the ratio D : S is in the 

same relation to m : n as A : B, that is, if D : S > m : n, then A : B > m : n; if 

D : S = rn : n, then A : B = m : n, and if D : S < m : n, then A : B < m : n. 

When the ratios are eliminated by cross-multiplying, we see that this definition of 

the proportion D : S = A : B amounts to the following: For any two integers 

m and n, if nD > mS, then nA > mB; if nD = mS, then nA = mB; and if 

nD < mS, then nA < mB. 
This is the way the definition is given in Book V of Euclid (the material in 

brackets is added from the discussion just given to clarify the meaning): 

Magnitudes are said to be in the same ratio, the first to the second 

[D : 5] and the third to the fourth [A : B], when, if any equimultiples 

whatever be taken of the first and third [nD and nA] and any equi¬ 

multiples whatever of the second and fourth [mB and mB], the former 

equimultiples alike exceed, are alike equal to, or are alike less than the 

latter equimultiples taken in corresponding order [that is, nD > m,S 
and nA > mB, or nD = mS and nA = mB, or nD < mS and 

nA < mB]. 

5.1.3 How to Apply the Eudoxan Definition 

Let us look at one example of the application of Eudoxus’ definition of proportion, 

so that we will know how the seemingly cumbersome definition was used. A 

fundamental result in the theory of proportion is that two triangles having equal 

altitudes have areas proportional to their bases. This assertion is half of Proposition 

1 of Book VI of Euclid’s Elements. Let us now examine the proof, referring to 

Fig. 5.1. 
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A 

Figure 5.1: A use of the Eudoxan definition of proportion. 

The proof depends on Proposition 38 of Book I, which asserts that two triangles 

having equal bases and altitudes are of equal area; and as a corollary, if two 

triangles have equal altitudes but unequal bases, the one with the larger base is the 

larger. 

In the figure ABC and ACD are triangles having the same altitude. We want 

to prove that their areas have the same ratio as their bases BC and CD. To do 

that, we take any multiple m of the base BC (the figure shows how to do this by 

extending BD leftward to H so that BC = BG = GH, giving the triangle AHC 
which is 3 times triangle ABC). Similarly take some multiple n of the base CD 
(again this is done in the figure by extending CD to L so that CD = DK = KL, 
yielding triangle ACL equal to 3 times triangle ACD). 

Then if mCH > nCL, triangle ACH is larger than triangle ACL, that is, 

mAABC > nAACD, and similar reasoning applies when we have mCH = 
nCL or mCH < nCL, all three arguments being direct consequences of Book I, 
Proposition 38. 

These conclusions are by definition what is meant by the proportion ABC : 

ACD :: BC : CD, which is therefore proved. 

5.2 Other Issues in Geometry 

5.2.1 Aristotle’s View of Mathematics 

Plato died in 347 B.C.E. In the quarter-century after his death the development 

of Greek thought, at least as it seems from the long perspective of history, was 

dominated by Aristotle (384-322), whose views diverged from those of Plato in 

certain important respects. Aristotle’s writings cover a much wider field than those 

of Plato, embracing ethics, literature, medicine, natural science, mathematics, and 
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logic. Like Plato, in mathematics he seems more like a well-informed generalist 

than a specialist. 

Theories in General 

Aristotle gave a very thorough and rigorous discussion of formal inference, the 

validity of various kinds of deductions (syllogisms, reductio ad absurdum, etc.) 

in his treatise Prior Analytics. We are so used to the application of logic in 

science and mathematics that it is difficult to imagine a time when logic was a new 

subject. It appears that Aristotle invented a good deal of this subject. His word for 

deduction, for example, is syllogismos (avXXoy Lapoq), which means reasoning 
together. The more specific meaning we give to the word syllogism today is the 

result of Aristotle’s emphasis on the importance of this kind of inference. Three 

parts of a theory are relevant to our present purpose, namely definitions, postulates, 

and deduction. 

Definitions. According to Aristotle, a definition is “a statement that describes 

the essence of a thing.” (He gives this definition of definition, or one equivalent 

to it, in several places.) The idea of a definition thus seems to be to codify 

an intuition in words. This enterprise, as we now know, has certain limitations, 

since a basic level of understanding is necessary before anything at all can be 

communicated. The attempt to define everything leads in a circle. Most twentieth- 

century philosophers regard definitions as constructions of pure thought, which 

may or may not correspond to something real, whereas Aristotle thought of his 

“essences” as real. He thought of definitions as discoveries rather than inventions. 

In the twentieth century there has been a view of mathematics called logicism, 

associated with the British philosopher Bertrand Russell (1872-1970) according 

to which mathematics is merely an extension of formal logic. A related view, 

associated with the German mathematician David Hilbert (1862-1943) and known 

as formalism, regards mathematical propositions as purely formal assertions, having 

no meaning until the terms they contain are given a real-world interpretation. From 

these two points of view, mathematical theories begin with undefined terms that 

do not correspond to anything real or even intuitive. Needless to say, Greek 

mathematical works should not be judged by the degree to which they comply 

with the canons of logicism and formalism. Euclid was not striving unsuccessfully 

to create Hilbert’s mathematics. In forming judgments about Euclid’s works we 

must see what he was attempting to do and then decide how successful the end 

result was. It should be remarked that both logicism and formalism, as well as 

their rival, intuitionism, are we/omathematical theories. Practicing mathematicians, 

though they may subscribe to some overall view of mathematics in private, are not 

restricted by these principles in their daily work. 

Postulates. The second important starting point for a theory is a set of postulates. 
On the modem view these are merely starting points, not statements accepted as 

true. For, on the modem view, the terms they contain have no meaning until they 

are interpreted, and mathematics proper is not concerned with interpretation. The 

view of Aristotle and Euclid was different. They were not consciously engaged in 
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building purely formal systems. To them points, lines, and planes were not mere 

undefined terms, but rather essential constituents of the physical world (or at least 

of an ideal world). The postulates taken without proof therefore had meaning, that 

is, were capable of being true or false. They were, of course, believed to be true. 

Aristotle distinguishes between universal first principles, and those proper to 

a particular branch of science. In both cases, however, he believes the principles 

are in some sense true. 

Instances of first principles peculiar to a science are the assumptions 

that a line is of such and such a character, and similarly for the straight 

line, whereas it is a common principle, for instance, that if equals be 

subtracted from equals the remainders are equal. 

Deduction. In most of Aristotle’s Prior Analytics the illustrative examples of 

logical deductions involve familiar concepts such as color and familiar objects 

such as animals and people. Only occasionally does Aristotle give an example 

from geometry. One important occasion on which he does invoke geometry occurs 

in section 65a of the Prior Analytics, in which he discusses the question of whether 

parallel lines exist. It is interesting to find this question being discussed for several 

reasons. First, the notion of parallelism (which literally means “lying alongside”) 

is not discussed in the dialogues of Plato. Parallel lines do exist in Euclidean 

geometry, of course, and most people seem to have a Euclidean intuition. The 

best proof of that fact is that the Euclidean form of the Pythagorean theorem was 

discovered independently in several different civilizations. Second, it is curious 

that Aristotle considered the existence of parallel lines doubtful. Why would he 

have doubts about something that is so clear on an intuitive level? One possible 

reason is that parallelism involves the infinite: parallelism asserts that two finite 

line segments will never meet, no matter how far they are extended. If geometry 

is interpreted physically (say, by regarding a straight line as the path of a light 

ray), we really have no assurance whatever that parallel lines exist—how could 

anyone assert with confidence what will happen if two apparently parallel lines 

are extended to a length of hundreds of light years? Third, Aristotle’s discussion 

shows that he understood well the logical issues involved and the kinds of geometry 

in which there would be no parallel lines. He writes: 

... it is really not strange for the same falsehood to result by means of 

several assumptions, as for instance, it results that parallels intersect 

both if the internal angle is greater than the external and if a triangle 

has more than two right angles... 

This last sentence gives an intriguing glimpse of an issue in geometry just 

before the time of Euclid. Aristotle knows that an exterior angle of a triangle 

is larger than either opposite interior angle. This fact is proved by Euclid as 

Proposition 16 of Book I, and we may infer that this proof was known to Aristotle. 

Euclid makes a number of fundamental facts depend on this proposition, among 

them the fact that parallel lines exist (Book I, Proposition 27), and Aristotle shows 

that he is aware of this connection. Proposition 16 also implies that the sum of the 
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angles of a triangle is at most two right angles, though this fact is not proved by 

Euclid, since the parallel postulate implies that the sum of the angles is exactly two 

right angles (Book I, Proposition 32). Aristotle’s remark that there are no parallel 

lines (or, as he puts the matter oxymoronically, that parallels intersect) if the sum 

of the angles of a triangle is greater than two right angles gives an early hint as 

to what should be expected in a certain kind of noneuclidean geometry. Aristotle, 

of course, did not view the question this way, since he was sure that the angles 

of a triangle do not total more than two right angles. Nevertheless, in the light of 

noneuclidean geometry, the phrase just quoted seems amazingly prescient. 

5.3 Euclid’s Elements 

By the year 300 B.C.E. the materials were available for writing a comprehen¬ 

sive summary of the basic parts of geometry. The order of presentation, choice 

of definitions, and assumptions, and the like would be decided according to the 

author’s taste. Undoubtedly more than one such treatise was written in the late 

fourth century B.C.E., but all were superseded by one particular treatise that be¬ 

came the standard and remained so for centuries. This treatise is Euclid’s Elements 

(Fig. 5.2), a textbook on the mathematics of the Pythagoreans, both arithmetic and 

geometry, as emended by the Eudoxan theory of proportion. This mathematics 

included all the standard geometry of polygons and circles, polyhedra and spheres, 

and the theory we would call quadratic irrationals. Since the geometry taught in 

high schools nowadays is a modernized approach (and considerably watered-down 

in terms of difficulty), it is worthwhile to look at this treatise on its own terms. 

We begin with a few words about its author. 

5.3.1 Euclid of Alexandria 

A biography of Euclid written in the twentieth century would necessarily be very 

brief, since almost nothing is known about the man or his life. He must have 

lived around 300 B.C.E., since he lived before Archimedes, whose death can 

be precisely dated, and worked in the research center in Alexandria, which was 

founded by Ptolemy I after the death of Alexander the Great in 322 B.C.E. Euclid 

is believed to have been invited to Alexandria by Ptolemy. There is a great deal 

of conjecture about him—that he may have worked in Athens before coming to 

Alexandria, that he was the founder of the Alexandrian mathematical school, etc., 

but as far as definite knowledge goes, he is defined for us only as the author of 

his books, chiefly the Elements, but also a few others that we shall not discuss: 

the Optics, the Data, the Division of Figures, and the Phaenomena. 

5.3.2 General Nature of the Elements 

Euclid’s Elements consists of 13 books, of which only certain parts of the first 4 

books are commonly taught in plane geometry nowadays. These first four books 
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Imprinted at London by John Oayc. 

Figure 5.2: Frontispiece from Euclid’s Elements. The Bettmann Archive. 
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contain the theory of angles, lines, circles, triangles, squares, etc. Book V is 

devoted to the Eudoxan theory of proportion, and Book VI is commonly referred 

to as “geometric algebra,” since it contains a series of geometric constructions 

that are logically equivalent to the solution of certain equations. Books VII-IX 

contain Pythagorean number theory. Book X (the longest book of all) contains 

a thorough study of quadratic surds, which are irrationals of the form v a + Vb, 

and Books XI-XIII are devoted to solid geometry, although they also contain some 

fundamental parts of plane geometry needed to establish the theory of proportion 

for solid figures. 

The Elements is the earliest surviving example of a systematic treatise ex¬ 

pounded in logical order. As such it became a kind of ideal model for scientific 

treatises, and philosophers and scientists strove to imitate its economy of expres¬ 

sion. Inevitably, too, readers began to detect weaknesses in the treatise. Some of 

these weaknesses were the unavoidable flaws that every author must contend with. 

Others, as we shall see, were not really weaknesses from Euclid’s point of view, 

merely signs that his purposes were different from those of his later critics. 

D. H. Fowler, in The Mathematics of Plato’s Academy, gives a thorough dis¬ 

cussion of the existing manuscripts of Greek geometry. A few ostraca (shells) 

dated to the late third century B.C.E. have been found on Elephantine Island in 

the Nile River near the site of the ancient city of Syene and the modem city of 

Aswan, about 500 miles south of Alexandria. Some scrolls containing parts of 

the Elements were found in the ruins of Herculaneum, which was destroyed by 

the eruption of Mt. Vesuvius in 79 C.E., but only a few fragments have survived 

the attempt to unroll them. Other papyri dated to 75-125 C.E. from Oxyrhyncus, 

a Roman town in Egypt about 120 miles south of present-day Cairo, contain ge¬ 

ometric propositions that are recognizably part of Euclid. The earliest complete 

texts, however, are a ninth-century manuscript in the Bodleian Library at Oxford 

and a tenth-century manuscript in the Vatican. 

5.3.3 The Logical Development of Geometry 

The Definitions 

Looking into Euclid’s Elements from a twentieth-century perspective, one cannot 

help noticing an apparently futile attempt to define the undefinable. Book I begins 

with 23 “definitions,” of which we give only a few samples: 

1. A point is that which has no part. 

2. A line is breadthless length. 

3. The extremities of a line are points... 

23. Parallel straight lines are lines which, being in the same plane and being 

produced indefinitely in both directions, do not meet one another in either direction. 

The modern view is that one cannot define everything. While this view has 

much to recommend it as a way of understanding mathematics, it should not be 
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projected backwards into the minds of the mathematical pioneers. Euclid had a def¬ 

inite interpretation in mind for the words point, line, plane, etc., and the attempted 

definitions just given express what that interpretation was. It should be noticed 

that, despite modem views of what geometry “really” is, we all leam geometry as 
if it had some connection with physical space. Thus Euclid’s definitions, though 

logically defective, have been psychologically very effective in communicating a 

particular interpretation of geometry for more than two millennia. 

The twenty-third and last of Euclid’s definitions is the definition of parallel 

lines. You should pause and ask yourself what definition you would have given 

of parallel lines. Most students, when asked, reply that parallel lines are lines 

that are equidistant from each other. This property of parallel lines can be proved 

from Euclid’s postulates, but it is stronger than the definition given by Euclid, 

and it is not obvious that two lines can be equidistant (the assumption that they 

can is equivalent to the parallel postulate). About every definition one should ask 

whether objects satisfying the conditions of the definition exist. In Definition 22, 

for example, Euclid defines a square as an equilateral quadrilateral having right 

angles. It is not obvious that such an object exists, and indeed it turns out that the 

existence of rectangles is equivalent to Euclid’s parallel postulate. The existence of 

parallel lines can be proved without the parallel postulate; but, as Aristotle pointed 

out in the passage quoted above, certain assumptions that he regarded as false— 

for example, that an exterior angle of a triangle may be smaller than an opposite 

interior angle—can lead to a proof that there are no parallel lines. Euclid’s proof 

that parallel lines exist (Book I, Proposition 27) is based on two assumptions that 

are not made explicitly—they are part of the interpretation he gave to his terms, 
as we shall see below. 

To summarize, Euclid chose to define parallel lines as coplanar nonintersecting 

lines. From Euclid’s postulates, including two “hidden” postulates, it is possible 

to prove that parallel lines exist without using the parallel postulate. If one defines 
parallel lines differently, for example, as lines that are equidistant at all points, then 

the assumption that a pair of parallel lines exists is equivalent to Euclid’s parallel 

postulate. We see, then, that a theory can be looked at from different perspectives. 

In one order of development a statement may be a theorem, while in another it is 
a definition. 

The Postulates 

After giving his twenty-three definitions, Euclid passes to his postulates for ge¬ 

ometry. There are five of these: (1) [It is possible] to draw a straight line from 

any point to any point; (2) [it is possible] to produce [extend] a finite straight line 

continuously in a straight line; (3) [it is possible] to describe a circle with any 

center and radius; (4) all right angles are equal [congruent]; and (5) if a straight 

line falling on two straight lines makes the interior angles on the same side less 

than two right angles, the two straight lines, if produced indefinitely, meet on the 

side on which the angles are less than two right angles. 

The first four of these postulates have always been accepted as reasonable start¬ 

ing points for geometry, but the complicated nature of the fifth postulate aroused 
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Figure 5.3: Proof that parallel lines exist (Euclid I, Proposition 27). 

controversy from the very beginning. Once its rather complex language has been 

assimilated, it is seen to be intuitively plausible, and indeed nearly obvious to most 

people, for the following reason. One can prove—in fact Euclid does prove—that 

a pair of lines will be parallel under certain conditions, namely when the lines 

are cut by a transversal and the interior angles on one side of the transversal are 

together equal to two right angles. An informal proof of this result (not Euclid’s 

proof) proceeds by finding a contradiction when it is assumed that the lines inter¬ 

sect. Since the proof is by contradiction, the illustration of it requires a figure that 

is impossible, so the reader will have to bear with us while we make some state¬ 

ments that are visually absurd. We shall assume that two lines cut by a transversal 

in such a way as to make the interior angles on one side equal to two right angles, 

nevertheless meet on that side. Thus, in Fig. 5.3, let BC be a straight line and 

let AC also be a straight line. Assume that AABC + ABAC equals two right 

angles (this is visually wrong in the figure, the first impossibility in it). Let the 

straight line CA be extended from A away from C to D so that AD = BC (this 

is glaringly wrong, since CAD is clearly not a straight line, but remember, we 

are seeking a contradiction here—we know the figure is impossible). Since CAD 
is a straight line, it follows that ADAB + ABAC equals two right angles, and 

therefore that ADAB = AABC. But then, if we draw BD, since side AB is 

common and AD = BC, it follows that A ABC is congruent to A BAD. Then 

AABD = ABAC, and so AABC -f AABD equals two right angles also, so that 

DBC is also a straight line. Thus the two points D and C are joined by two 

distinct straight lines DAC and DBC. 

Now the question arises as to just what contradiction we have obtained here. 

Where in his axioms did Euclid say that only one straight line can be drawn 

between two distinct points? Nowhere, apparently. This is one of the “hidden” 

axioms that Euclid didn’t write down, but conveyed as part of the interpretation of 

his system. On this point the modern mathematicians who have “improved” Euclid 

are completely correct. Except for this assumption the great circles on a sphere 

satisfy all of Euclid’s axioms (including the parallel postulate), and yet any two of 

them intersect. Since Euclid knew all about great circles on a sphere, it is clear 

that he intended his plane geometry to exclude this case. Let us therefore keep in 

mind that Euclid assumed this axiom implicitly. Do we now have a contradiction? 

Only if we know that C and D are really distinct points. Flow can we know this? 
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If you reflect on the figure, it may occur to you that C and D lie on opposite sides 

of the line AB, and hence must be distinct points. Here again, however, we run 

into a hidden axiom. How do we know that a line separates the plane into two 

disjoint half-planes? To be explicit about this point, modem mathematicians have 

had to add certain axioms stating that lines are ordered in the sense that if A, B, 
and C are distinct points on a line, then precisely one of these points is between 

the other two. Like the other hidden axiom, this assumption is intuitively clear and 

for that reason hard to make explicit. Without it the geometry of the projective 

plane satisfies all of Euclid’s axioms, and again, any two lines intersect. 

Thus, by slightly emending Euclid we arrive at a proof of the intuitive propo¬ 

sition that two lines are parallel if the interior angles they form on one side of 

a transversal total two right angles. Putting the same thing another way, there 

is no triangle (such as the hypothetical A ABC above) in which the sum of two 

of the three angles is equal to or greater than two right angles. What makes the 

parallel postulate reasonable in this context is that it seems to be the converse of 

this assertion—given a base (the transversal AB) and two angles on one side of 

that base totaling less than two right angles, those two sides will meet and form 

a triangle. This is the form in which Euclid states the parallel postulate, and the 

form most useful for the purpose of proving theorems. 

The Disputed Parallel Postulate 

We have seen through the quotation from Aristotle that parallelism was the subject 

of debate even before Euclid. The question of the proper definition of parallel lines 

and what it is reasonable to assume about parallelism must have been difficult to 

decide, and any decision would have been likely to encounter criticism. Certainly 

the decision actually made by Euclid did encounter criticism. We know from 

Proclus’ Commentary that other mathematicians tried to find ways to eliminate this 

assumption, proving it as a theorem. Thus began a long enterprise that resulted 

ultimately in a clarification of the connection between geometry and the physical 

world and a clarification of the logical relations among the objects studied by 

geometry. This enterprise encompassed some of the best mathematics ever done, 

and we shall follow it from now on. At present we merely note what Proclus has 

to say. 

Proclus claimed that the parallel postulate could be proved, in fact that it 

had been proved by Ptolemy. Unfortunately, he was unable to make good on his 

advertising when it came time to produce the proof. To prove the parallel postulate 

it would suffice to show that if parallel lines are cut by a transversal, then the 

interior angles on each side of the transversal total two right angles. Referring to 

Fig. 5.4, Proclus says the following: 

... AF and CG are no more parallel than FB and GD, so that if the 

line falling on AF and CG makes the interior angles greater than two 

right angles, so also does the line falling on FB and GD make the 

interior angles greater than two right angles. But these same angles 

are less than two right angles (for the four angles AFG, CGF, BFG, 
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Figure 5.4: Ptolemy’s “proof’ of the parallel postulate. 
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D A 

Figure 5.5: Expression of a rectangle as the difference of two squares. 

and DGF are equal to four right angles), which is impossible. 

The weak point in this argument is the pseudomathematical assertion that AF 
and CG are “no more parallel” than FD and GD. There are no degrees of paral¬ 

lelism. What Ptolemy and Proclus had in mind is that parallelism is bilateral, so 

that if lines do not meet, they should form a figure symmetric about any transver¬ 

sal. The argument, though it assumes what is to be proved, nevertheless has some 

positive value. It shows a certain consequence that must be accepted if the par¬ 

allel postulate is denied, namely that parallelism is no longer two-sided. If the 

parallel postulate had been merely accepted as obvious, these consequences would 

never have been explored. Thus the attempt to create a deductive system, far from 

hindering imagination, actually stimulates it to create new ideas. 

5.3.4 Contents of the Elements 

The contents of the first book of the Elements are covered in the standard geome¬ 

try courses given in high schools. This material involves the elementary geometric 

constructions of copying angles and line segments, drawing squares, etc., and the 

basic properties of parallelograms, culminating in the Pythagorean theorem (Propo¬ 

sition 47). In addition, these properties are applied to the problem of transformation 

of areas, leading to the construction of a parallelogram with a given base angle, 

and equal in area to any given polygon (Proposition 45). There the matter rests 

until the end of Book II, where it is shown (Proposition 14) how to construct a 

square equal to any given polygon. 

Book II, in contrast to Book I, is neglected in most high school geometry texts. 

It contains geometric constructions needed to solve problems that may involve 
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quadratic incommensurables without resorting to the Eudoxan theory of proportion. 

For example, a fundamental result is Proposition 5: If a straight line is cut into 

equal and unequal segments, the rectangle contained by the unequal segments of 

the whole together with the square on the straight line between the points of the 

section is equal to the square on the half This proposition is easily seen using 

Fig. 5.5, in terms of which it asserts that (A + B) + D = 2A + C + D, that is, 

B = A + C. 
This proposition, in arithmetic form, appeared as a fundamental tool in the 

cuneiform tablets. For if the unequal segments of the line are regarded as two 

unknown quantities, then half of the segment is precisely their average, and the 

straight line between the points (that is, the segment between the midpoint of the 

whole segment and the point dividing the whole segment into unequal parts) is 

precisely what we called earlier the semidifference. Thus this proposition says that 

the square of the average equals the product plus the square of the semidifference; 

and that result was fundamental, as we saw in Chapter 3, for solving the important 

problems of finding two numbers given their sum and product or their difference 

and product. The geometric equivalent of these problems, however, does not appear 

until Book VI, Proposition 28: To a given straight line to apply a parallelogram 

equal to a given rectilineal figure [polygon] and deficient by a parallelogram 

figure similar to a given one. As we saw in the previous chapter, when the 

“defect” is a square, this problem, known as application with defect, is equivalent 

to finding two numbers having a prescribed sum and product. Proposition 29 of 

Book VI says: To a given straight line to apply a parallelogram equal to a given 

rectilineal figure and exceeding by a parallelogram figure similar to a given one. 

When the “excess” is a square, this problem (<application with excess) is equivalent 

to the finding two numbers having prescribed difference and product. It always 

has a unique solution. We leave it to the reader to surmise why the treatment of 

this topic is delayed to Book VI, when it seems to mesh so neatly with the material 

of Book II. 

These application problems are also important because of a geometric connec¬ 

tion with the conics that we shall study in the next chapter. The Greek word for 

application is parabole (napafoXrj), whose roots para, meaning alongside (think 

of paramedics, paramilitary, and paralegals) and bole, meaning throw (think of bal¬ 

listics), are reflected in the English cognate word parable, meaning a story with 

an application (moral). The Greek word for application with excess is hyperbole 

(‘virepfioXi)), which has a literary meaning of exaggerating (“overshooting”), and 

application with defect is called elleipsis feXXeifiiy), yet another word used in lit¬ 

erature to denote the omission of certain words that are understood without being 

expressed. Mathematicians know these words as the names of the three different 

kinds of conic sections. The reason for using these terms for conics will appear 

in the next chapter. 

Books III and IV take up topics familiar from high-school geometry: circles, 

tangents and secants, and inscribed and circumscribed polygons. In particular, 

Book IV shows how to inscribe a regular pentagon in a circle (Proposition 11) 

and how to circumscribe a regular pentagon about a circle (Proposition 12), then 

reverses the figures and shows how to get the circles given the pentagon (Proposi- 
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tions 13 and 14). After the easy construction of a regular hexagon (Proposition 15), 

Euclid finishes off Book IV with the construction of a regular 15-sided polygon 

(Proposition 16). 

Book V contains the all-important theory of geometric proportion based on 

the work of Eudoxus discussed above. Here we find (Proposition 13) the explicit 

construction of the mean proportional between two line segments. As already 

mentioned, Book VI applies this theory to the transformation of areas to solve the 

important problems of application with defect and excess. In Book VI Euclid also 

constructs the famous Golden Section (Proposition 30): To divide a line into mean 

and extreme ratio. This means to find a point on the line so that the whole line is 

to one part as that part is to the second part. In fact this construction is precisely 

that of applying an area equal to the square on the whole line segment in such a 

way that the excess is a square. As such it is a special case of the general problem 

of application with excess. The Pythagorean theorem is then generalized to cover 

not merely the squares on the sides of a right triangle, but any similar polygons on 

those sides (Proposition 31). The book finishes with the well-known statement that 

central and inscribed angles in a circle are proportional to the arcs they subtend. 

Books VII-IX are nongeometrical and devoted entirely to Pythagorean number 

theory. Here, since irrationals cannot occur, the notion of proportion is redefined 

to eliminate the awkward Eudoxan technique. Book VII develops proportion for 

positive integers as part of a general discussion of how to reduce a ratio to lowest 

terms. The notion of relatively prime numbers is introduced, and the elementary 

theory of divisibility is developed as far as finding least common multiples and 

greatest common factors. Book VIII resumes the subject of proportion and extends 

it to squares and cubes of integers. Book IX continues this topic; it also contains 

the famous theorem that there are infinitely many primes (Proposition 20) and ends 

with a method of constructing perfect numbers (Proposition 36): If the sum of the 

numbers 1, 2, 4,..., 2n_1 is prime, then this sum multiplied by the last term will 

be perfect. The modem statement of this fact is given in the exercises below. To 

see this recipe at work, start with 1, then double and add: 1 + 2 = 3. Since 3 is 

prime, multiply it by the last term, that is, 2. The result is 6, a perfect number. 

Continuing, 1 + 2 + 4 = 7, which is prime. Multiplying 7 by 4 yields 28, the 

next perfect number. Then, 1 + 2 + 4 + 8 + 16 = 31, which is prime. Hence 

31 • 16 = 496 is a perfect number. For practice the reader should continue this 

procedure and find the next perfect number. It is of interest that no perfect number 

has yet been found that is not generated by this procedure, although no proof exists 

that all perfect numbers are of this form. 

Book X occupies fully one-fourth of the entire length of the Elements. For 

its sheer bulk, one would be inclined to consider it the most important of all 

the thirteen books, yet its 115 Propositions are among the least studied of all, 

principally because of their technical nature. The irrationals constructed in this 

book by taking square roots are needed in the theory developed in Book XIII for 

inscribing regular solids in a sphere. Book X begins with the operating principle 

of the Euclidean algorithm (Proposition 1): Given two unequal quantities, if from 

the larger a quantity larger than its half is subtracted, and from that which is left 

a quantity larger than its half, and so forth, eventually the remaining quantity will 
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/V 

Figure 5.6: Bisecting an arc. 

be less than the smaller given quantity. The way in which this process can be 

used to exhibit incommensurables, by showing that the Euclidean algorithm does 

not terminate, then follows (Book X, Proposition 2): If, when the smaller of two 

given quantities is continually subtracted from the larger, that which is left never 

divides evenly the one before it, the quantities are incommensurable. (Recall that 

we used this method of showing that the side and diagonal of a regular pentagon are 

incommensurable.) Proposition 1 forms the basis of what is known as the method 

of exhaustion, a way of proving certain proportionalities for curved figures (for 

example, that two circles are proportional to the squares on their diameters) by first 

proving that the proportionalities hold for similar polygons, then approximating the 

curved line by a polygon. In the case of circles, for instance, it is easy to prove that 

when an arc is bisected, the segment between the original chord and the circle is 

replaced by two smaller segments, which together are less than half of the original 

(see Fig. 5.6). Thus, if an inscribed regular polygon is thought of as approximating 

the circle, doubling the number of sides decreases the error of approximation by 

more than half. It therefore follows from this proposition that a circle can be 

approximated arbitrarily closely by an inscribed polygon. 

Book XI contains the elementary parts of the solid geometry of planes, par¬ 

allelepipeds, and pyramids. The theory of proportion for these solid figures is 

developed in Book XII, where one finds neatly tucked away the important theorem 

that circles are proportional to the squares on their diameters (Proposition 2). 

The proof of Proposition 2 of Book XII is a typical instance of the use of the 

method of exhaustion together with the Eudoxan definition of proportion. First the 

Eudoxan theory is used in Proposition 1 to show that similar polygons inscribed 

in circles are proportional to the squares on the diameters of the circles. Then if 

£1 and S2 are the squares on the diameters of circles G\ and C2, respectively, 

it is first assumed that S\ : S2 :: C\ : D, where D is less than the second 

circle. At this point similar polygons P\ and P2 are inscribed in the two circles, 

so that the area of P2 is larger than the area D. By Proposition 1 we then have 

S\ : S2 :: Pi : P2 < C\ : D, since P\ < C and P2 > D, contradicting the original 

assumption. The same reasoning shows that one cannot have S2 : S\ :: C2 : D 

for any area D less than C\, and hence the only remaining possibility is that 

The difficulty with all arguments like this one that use the Eudoxan definition 

of proportion and the method of exhaustion is that one must know the result in 
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advance: the method is not a method of discovery. Such being the case, we are left 

wondering how such results were discovered in the first place. We now know that 

alongside the rigorous techniques that make the Elements such a logical masterpiece 

the Greeks also had an informal, intuitive method of reasoning, usually referred 

to as the method of indivisibles, which led them to make discoveries that could 

then be established rigorously by the method of exhaustion. We shall examine this 

method in the next chapter when we discuss Archimedes. 

Book XII continues by establishing the usual proportions and volume relations 

for solid figures; for example, a triangular prism can be divided by planes into three 

pyramids, all having the same volume (Proposition 7), a cone has one-third the 

volume of a cylinder on the same base, similar cones and cylinders are proportional 

to the cubes of their linear dimensions, ending with the proof that spheres are 

proportional to the cubes on their diameters (Proposition 18) 

Book XIII of the Elements is devoted to the construction of the regular solids 

and the relation between their dimensions and the dimensions of the sphere in 

which they are inscribed. The last proposition (Proposition 18) sets out the sides 

of these regular solids and their ratios to one another. An informal discussion 

following this proposition concludes that there can be only five regular solids. 

5.4 Contemporaries of Euclid 

The Elements was by no means a complete treatise of all that was known in 

Euclid’s time. It was rather, as its name suggests, a treatment of the essential core 

of geometry to prepare the student to do research in the advanced topics of current 

research. There were other topics, in which research was still going on, that do 

not appear in the Elements. For example, Euclid never mentions conic sections in 

the Elements, even though he does mention a section of a cylinder in Book XII, 

Proposition 13 and is known to have written a separate treatise on this subject (it 

has been lost). We shall now look briefly at some of this other mathematics. 

5.4.1 Menaechmus 

Eutocius and Proclus both attribute the discovery of the conic sections to Menaech¬ 

mus, who lived in Athens in the late fourth century B.C.E. Proclus, quoting Eratos¬ 

thenes, refers to “the conic section triads of Menaechmus.” Since this quotation 

comes just after a discussion of “the section of a right-angled cone” and “the sec¬ 

tion of an acute-angled cone,” it is inferred that the conic sections were produced 

by cutting a cone with a plane perpendicular to one of its elements. Then if the 

vertex angle of the cone is acute, the resulting section (called an oxytome) is an 

ellipse. If the angle is right, the section (orthotome) is a parabola, and if the angle 

is obtuse, the section (amblytome) is an hyperbola (see Fig. 5.7). 

Eutocius, in a commentary on a work of Archimedes, credits Menaechmus with 

the following solution of the problem of the two mean proportionals, that is, given 

two lines a and d, to find lines b and c such that a : b :: b : c :: c : d. 
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Figure 5.7: The triad of Menaechmus. 

Let the two lines be a and d. Consider a pair of mutually perpendicular 

lines. Construct a parabola symmetric about the first line as axis and having the 

point of intersection of the two lines as vertex and such that the square on the 

line segment from each point of the parabola perpendicular to its axis equals the 

rectangle on a and the segment cut off on the axis. (That is, the “ordinate” is the 

mean proportional between the “abscissa” and the fixed line a. In our terms such a 

parabola would have the equation y2 = ax.) Then construct a similar curve on the 

axis perpendicular to the axis of this parabola. (In our terms this is the parabola 

x2 = dy on the same set of coordinate axes.) The two parabolas intersect at a 

point x = c, y = b such that ac = b2 and c2 = bd, that is, a : b :: b : c :: c : d, as 

required. 

The properties of a parabola used here by Menaechmus are so close to the 

modem equation that very little distortion is involved in the simplifications intro¬ 

duced into the discussion above. It is therefore an interesting problem to what 

extent the Greek treatment of the conic sections mirrors the “analytic geometry” 

that is now taught. We shall look at this problem again when we discuss the main 

Greek treatise on the subject, due to Apollonius. Just now we are interested only 

in the route by which conic sections came to be of interest to the Greeks. The 

question we have to address is: What do mean proportionals have to do with conic 

sections? 

The standard Greek way of producing the mean proportional between two line 

segments is given in Euclid, Book VI, Proposition 13. The two line segments are 

laid end to end in a straight line, and a circle is drawn having the combined line 

segment as diameter. The chord perpendicular to this diameter at the point where 

the two segments join is then drawn, and the mean proportional is one half of this 

chord (see Fig. 4.7). 

This construction shows that the principle behind the construction of a mean 

proportional is that the perpendicular from a point on a circle to a diameter is 

the mean proportional between the segments it cuts off on the diameter. What is 

needed for the problem of two mean proportionals is a family of mean proportionals 

of various sizes, from which one can be chosen satisfying an additional condition. 

That is, we need a family of pairs of line segments x and y such that a : x : : x : y, 

from which we hope to choose a pair for which a : x :: y : d. From this fact 
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it appears that we need a family of circles of continuously varying radius. This 

family of circles is provided by “stacking” the circles to form a cone. 

5.4.2 Archytas 

Diogenes Laertius reports that Archytas, one of several eminent Greek scholars 

of the same name, was a contemporary of Plato and saved Plato from being put 

to death by Dionysius, the ruler of Syracuse. He is said to have been not only a 

great scholar but also a great general, never suffering a defeat. He is mentioned by 

many authors, including Aristotle, who wrote books (now lost) on his philosophy. 

He was a native of the Greek port city of Tarentum in the southeast part of Italy. 

Diogenes Laertius says that Archytas was a Pythagorean and that he was 

the first to bring mechanics to a system by applying mathematical 

principles; he also first employed mechanical motion in a geometric 

construction, namely when he tried by means of a section of a half¬ 

cylinder, to find two mean proportionals in order to duplicate the cube. 

Plutarch says that Plato criticized Eudoxus, Archytas, and Menaechmus for con¬ 

sidering the use of mechanical devices, which he believed were a perversion of the 

true purpose of geometry—to elevate the soul above the material world. 

Eutocius quotes a now-lost passage from Eudemus’ history of mathematics 

giving Archytas’ solution of the problem of two mean proportionals. If this passage 

is an accurate report of Archytas’ reasoning, one can see why Plato objected to 

it. For one of the points needed for the construction is located as the point of 

intersection of a cone with a second curve that is described only as the path of a 

moving point (the intersection of a cylinder with a semicircle rotating about one 

end of its diameter). This curve is not easily visualized or apprehended with the 

mind. It is not a planar curve, so that it cannot even be drawn with drafting 

instruments. However, if Plutarch is to be believed, Plato would have objected 

even if the curve could have been drawn with such instruments. He apparently 

accepted only reasoning that can be analyzed from fairly elementary and easily 

visualizable figures such as circles and straight lines. 

5.5 Problems and Questions 

5.5.1 Problems in Euclidean Mathematics 

Exercise 5.1 Prove that the square of an odd integer is always one larger than a 

multiple of 8, that is, that n2 — 1 is divisible by 8 if n is odd. 

Exercise 5.2 Carry out the details of the reasoning using only odd-and-even prin¬ 

ciples to show that \/TT is irrational. Do the same for \/l2, then tell how the 

irrationality of \/l2 could be proved by relying on the irrationality of \/3. 
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Exercise 5.3 We suggested in the previous chapter that the incommensurability 

of the side and diagonal of a pentagon could have been discovered by applying 

the Euclidean algorithm and observing that it leads to a cyclic process, in which 

after a finite number of steps a new pair is reached having the same ratio as the 

original. This argument, which was given geometrically, can also be formulated 

numerically. For example, to prove that y/2 is irrational, we can consider the pair 

(\/2,1), which then yields (1, \/2 — 1) and then (2 — \/2, V2 — 1). But this last 

pair has the same ratio as the original pair, as one can see by “cross-multiplying”: 

y/2 x (y/2 — 1) = (2 — \/2) x 1. Similarly, starting with (\/3,1), three applications 

of the algorithm yield (2>/3 — 3,2 — \/3), and this is the same ratio as the original 

pair, as we see by cross-multiplying: \/3 x (2 — y/3) = 1 x (2\/3 — 3). 

Thus in both of these cases we see that the Euclidean algorithm will never 

produce an equal pair. We have therefore a proof of the irrationality of the numbers 

in question. Construct a similar proof for y/E. How long does the algorithm take 

to cycle in this case? Is this an argument that could have been used by the Greeks? 

Write a computer program to calculate the length of the cycles in the Euclidean 

algorithm for any integer whose square root is irrational, and compare the lengths 

for nonsquare integers up to 19. Does the result explain why Theodorus stopped 

at 17? Could he have been using this method? 

Exercise 5.4 Show how to set up the problem of constructing the Golden Section 

as a problem involving application with excess. (It may help to phrase both 

the general application with excess problem and the Golden Section problem as 

quadratic equations.) 

Exercise 5.5 You have probably been taught the parallel postulate in a different 

form: Given a line l and a point P not on l there is one and only one line passing 

through P parallel to l. This equivalent form of the parallel postulate is due to 

the Scottish mathematician John Playfair (1748-1819), who used it in his textbook 

on geometry. Playfair’s version of the axiom is grammatically much simpler than 

Euclid’s, and hence high-school textbooks have tended to prefer it. It is not so 

useful, however, in the actual proving of theorems, since a frequent use of the 

postulate is to show that two lines intersect. Euclid can do this by cutting the 

lines with a transversal and showing that the interior angles on one side are less 

than two right angles, whereas Playfair’s version requires finding or constructing a 

line that intersects one of the lines and is parallel to the other. In this context and 

in others, Euclid’s version leads to a shorter and simpler proof. Try proving, for 

instance, that if two parallel lines are cut by a transversal, then the alternate interior 

angles are equal (Euclid, Book I, Proposition 29) using first Euclid’s definition, 

then using Playfair’s. Which is easier? 

Exercise 5.6 Euclid’s two “hidden” postulates show up clearly in Book I, Propo¬ 

sition 16, in which he proves that an exterior angle to a triangle is greater than 

either of the opposite interior angles. Here is a sketch of the proof, based on Fig. 

5.8. Tell where the two hidden postulates are used. How does the proof break 

down if lines are interpreted as great circles on a sphere? 



5.5. PROBLEMS AND QUESTIONS 107 

Figure 5.8: The exterior angle theorem. 

Let ABC be any triangle, let side BC be extended to D, forming exterior 

angle ACD. We claim that AACD > ABAC. For, let AC be bisected at E. 

Draw BE and extend it to F so that EF = BE, and draw CF. Then ACEF is 

congruent to AAEB (by side-angle-side). It follows that ABAE equals AECF. 

Thus 

ABAC = ABAE = AECE < AACD. 

Exercise 5.7 Euclid’s formula for perfect numbers amounts to the statement that 

2n-i(2n — 1) is a perfect number if 2n — 1 is prime. Write out the proper divisors 

of such a number, and prove that it must be perfect. Is your argument one that the 

Pythagoreans would have used? 

5.5.2 Questions about Euclidean Mathematics 

Exercise 5.8 Why did Euclid postpone the discussion of the problems of applica¬ 

tion with excess and defect until Book VI, when much of the “geometric algebra” 

needed for this topic was developed in Book II? 

Exercise 5.9 The philosopher Karl Popper (1902-1994) suggested that Plato may 

have believed that all ratios could be expressed in terms of three kinds of line 

segments: (1) segments commensurable with a given unit of length, (2) the diagonal 

of a square having the given unit of length as its side (\/2), and (3) the altitude of 

an equilateral triangle having the given unit length as half of its base (\/3). Popper 

advances two reasons for this conjecture. 

First, these two ratios occur constantly in Plato’s mystical dialogue known as 

Timaeus. These incommensurables occur in what we commonly call the 45-^45— 

90 right triangle (half of a square) and the 30-60-90 right triangle (half of an 

equilateral triangle). Their mystical use by Plato was based on the four-element 

cosmology of fire, air, water, and earth. These elements, as already mentioned, 

were identified respectively with the regular polyhedra, namely the tetrahedron, 

the octahedron, the icosahedron, and the cube respectively. In the Timaeus Plato 

gives a rationale for this assignment by generating these regular solids from the 
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two basic right triangles. He argues that every physical body must be bounded by 

a surface, which, if it is a regular polyhedron, can be triangulated. And, except for 

the dodecahedron, the faces of a regular polyhedron are either squares or triangles. 

Hence, if the faces are bisected, only these two triangles will occur. The idea was 

that, since water and air were regarded as “mean proportionals” between earth and 

fire the chemical processes that change one of these bodies into another should be 

mirrored by geometric transformations enabling one figure to be built out of the 

other. 
Second, Plato must have been interested in finding the area of the circle. Since 

the inscribed octagon has area equal to 2\/2r2, and the circumscribed hexagon has 

area 2\/3r2, Plato may have believed the average of these to be the area of the 

circle, that is, in our terms Plato may have believed that 7r = \/2 + \fZ. This is in 

fact very close, since y/2 + y/3 ~ 3.14626 and 7r « 3.14159. In other words, the 

relative error is less than 

Popper also alludes to a passage in Plato’s dialogue Greater Hippias in which 

Socrates says that when two things are separately inexpressible, they may together 

be expressible. The word for “inexpressible” here is also Euclid’s word for incom¬ 

mensurable: it is arrhetos (’approx). (The word has the same root as the word 

rhetoric.) 

How plausible do you find this argument? 

Exercise 5.10 In Plato’s dialogue The Laws the participants are Cleinias (a Cre¬ 

tan), Megillus (a Spartan), and an unidentified Athenian visiting Crete. The three 

discuss several aspects of the ideal society. When they come to education (in Book 

Seven) the Athenian describes the Egyptian system of education in mathematics 

and speaks of the “deep-rooted ignorance, at once comic and shocking, that all 

men display in this field.” The Athenian, probably speaking for Plato himself, 

says 

But if, as I put it, “all we Greeks” believe them to be commensurable 

when fundamentally they are /^commensurable, one had better address 

these people as follows (blushing the while on their behalf): “Now 

then, most esteemed among the Greeks, isn’t this one of those subjects 

we said it was disgraceful not to understand—not that a knowledge of 

the basic essentials was much to be proud of?” 

The writer clearly expects his reader to be scandalized at the general level of 

ignorance about incommensurables. What differences between twentieth-century 

American culture and the culture of upper-class Greeks in the time of Plato are 

pointed up by this assumption on Plato’s part? 

Exercise 5.11 If, as seems likely, the Athenian speaking in the Laws represents 

the views of Plato himself, we may infer that geometry, in opening his eyes to the 

problem of incommensurables, has greatly enlarged his perspective rather late in 

life in a way that arithmetic alone never could have done. If such is the case, what 

might Plato have meant by the motto he is said to have placed above the door to 

his Academy: “Let no ungeometrical person come under this roof’? 
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Exercise 5.12 D. H. Fowler traces the history of the alleged motto of Plato’s 

Academy in great detail. The legend seems to have begun in an oration of the 

Emperor Julian the Apostate in 362 C.E., who mentions an inscription over Aris¬ 

totle’s classroom and alludes to one by Plato, without saying anything about the 

wording of either one. The unknown author of a marginal note in a slightly later 

fourth-century manuscript wrote that the motto had been inscribed at the front of 

the school of Plato, adding that the word ungeometrical was a replacement for the 

usual formula, “Let no impure person enter,” found at sacred shrines. The story of 

the inscription can be found in many writers from the sixth century onward, but 

nothing is known earlier than the fourth-century sources just mentioned. These 

people, of course, lived more than 600 years after Plato. 

Seen in this context, what does the motto tell about the emotional significance 

of Plato’s Academy to its pupils? 

Exercise 5.13 Plato’s Theatetus gives the twentieth-century student the opportu¬ 

nity to imagine what it must have been like to engage in conversation with Socrates. 

For most people who have had a good modem education through high-school math¬ 

ematics Theatetus’ classification of numbers into equilateral and oblong probably 

seemed pointless. After all, we know that all positive numbers are perfect squares, 

don’t we? Our calculators are designed to produce an approximation to \/2 at the 

touch of a button. Imagine yourself trying to convince Socrates of this (assuming 

he could speak English and knew our decimal notation for numbers). Continue 

the dialogue that begins below. 

Modern Student. Theatetus is wrong, Socrates, all numbers are 

equilateral in the sense he defined. It is true, as Theodorus has proved, 

that y/2 is not rational, but it is a real number, nevertheless? 

Socrates. Really? What number is it? 

Modern Student. Approximately 1.414. 

Socrates. But the square of 1.414 is 1.999396, which is not 2. 

We already know ways of finding numbers whose squares are approx¬ 

imately 2. You claim to know a number whose square is exactly 2. 

What is this number? 

Modern Student. It is the square root of 2. 

Socrates. And what number is “the square root of 2”? 

Modern Student. It is the unique positive real number whose 

square is 2. 

Socrates. You are going in circles, my friend. The whole point in 

dispute is whether such a number exists. 

Modern Student. But I know how to find the decimal expansion 

of this number to as many places as desired. 

Socrates. Yes, but you live for only a finite length of time, and 

the expansion you are talking about goes on forever, so you will never 

know the “number” you claim to know. As I said, we Greeks already 

know how to find numbers whose squares are as close to 2 as de¬ 

sired. Anyway, what gives you the right to call a decimal expansion 
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a number? Numbers are objects that can be added and multiplied. 

If you don’t know the whole decimal expansion, how can you claim 

to calculate with it? And even if you did know the whole decimal 

expansion, how would that enable you to find the decimal expansion 

of the sum of two numbers? Tell me how you would find the decimal 

expansion of \/2+ \/3, for example, if you knew the whole expansion 

for y/2 and the whole expansion for >/3. 

Exercise 5.14 The Greek philosophers and mathematicians looked very suspi¬ 

ciously at the concept of infinity. The words we have put into Socrates’ mouth 

in the previous exercise, objecting to infinite decimal expansions, reflect a certain 

attitude that one can discern behind much of their writing. Here, for instance, is 

what Aristotle says in his Physics, III. 6. 206a9-b27: 

We must keep in mind that the word “is” means either what po¬ 

tentially is or what fully is... 

But the phrase “potential existence” is ambiguous. When we speak 

of the potential existence of a statue we mean that there will be an 

actual statue. It is not so with the infinite. There will not be an actual 

infinite. 

How do Aristotle’s arguments affect the Eudoxan theory of proportion? Has 

Eudoxus, with his “any equimultiples whatsoever,” brought the infinite into geom¬ 

etry? Are we dealing with an actual infinity in Aristotle’s sense, when we talk 

about the whole set of possible multiples? 

Exercise 5.15 Contrast Euclid’s discussion of Eudoxus’ definition of proportion, 

which mentions “any equimultiples whatever,” with his careful statement about 

the extension of lines: “a line can be prolonged to any length.” We nowadays 

teach geometry students that lines are of infinite length, but to Euclid this infinity 

was merely potential: any actual line was of finite length, but capable of being 

extended if necessary. Is Euclid being inconsistent here? Is he avoiding the actual 

infinity when talking about lines and allowing it when talking about proportion? 

Or is the latter use also only a “potential” infinity? 

Exercise 5.16 Consider the claim by Proclus that the existence of incommensu- 

rables results from the existence of infinity, since if infinity did not exist, “there 

would be nothing inexpressible (arrheton) or irrational (alogon), features that are 

thought to distinguish geometry from arithmetic.” The distinction between “inex¬ 

pressible” magnitudes (what we call irrational square roots) and “irrational” num¬ 

bers (all other irrationals, in our terms) is not pursued by Proclus. Is he justified 

in saying that the existence of incommensurables is due to infinity? 

Exercise 5.17 Common sense seems to indicate that a logical development of a 

theory would have one great advantage over an informal intuitive development, 

namely that its conclusions would be certain, and one could therefore have much 

more confidence in them than in the results of vague intuitive arguments. Common 
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sense also seems to indicate that one would pay for this increased certainty by 

having to give up many appealing intuitive ideas that are too vague to be captured 

in a logical presentation. Are there any respects in which this common sense is 

the opposite of the truth? Can you think of any cases where the effect of logical 

development is to make conclusions seem more, rather than less, doubtful and to 

stimulate the creation of new intuitive possibilities rather than excluding others? 

You may find the history of noneuclidean geometry relevant to your answer. 

Exercise 5.18 Plato apparently refers to the famous 3-4-5 right triangle in the 

Republic, 546c. Proclus alludes to this passage in a discussion of right triangles 

with commensurable sides. We can formulate the recipes Proclus attributes to 

Pythagoras and Plato respectively as 

(2 n + l)2 + (2n2 + 2 n)2 = (2n2 + 2 n + l)2 

and 

(2 n)2 + (n2 — l)2 = (n2 + l)2. 

Considering that Euclid’s treatise is regarded as the summation of Pythagorean 

mathematics, why is this topic not discussed? In which book of the Elements 

wouid it belong? 

Exercise 5.19 Proposition 14 of Book II of Euclid shows how to construct a square 

equal in area to a rectangle. Since this construction is logically equivalent to con¬ 

structing the mean proportional between two line segments, why does Euclid wait 

until Book VI, Proposition 13 to give the construction of the mean proportional? 

Exercise 5.20 Why might Plato have objected to the various solutions of Archytas, 

Menaechmus, and others to the problem of the two mean proportionals? What 

aspects of his view of the world might have been in conflict with this approach to 

science? 

5.6 Endnotes 

1. All excerpts from Euclid’s Elements are taken from the three-volume work 

by T. H. Heath (Dover reprint, New York, 1956). 

2. The quotations from Aristotle’s Prior Analytics are taken from the translation 

by Robin Smith (Hackett Publishing Co., Indianapolis, 1989), pp. 91, 93. 

3. The discussion of original texts of the Elements is given by D. H. Fowler in 

The Mathematics of Plato’s Academy (Clarendon Press, Oxford, 1987), pp. 

202-220. 

4. Proclus’ discussion of Euclid’s fifth postulate can be found in the translation 

of his Commentary by Glenn R. Morrow (Princeton University Press, 1970), 

pp. 150-151. 
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5. Ptolemy’s attempted proof of the parallel postulate can be found in Proclus’ 

Commentary (op. cit.), pp. 286-287. 

6. Diogenes Laertius’ biography of Archytas can be found in the Loeb Classical 

Library edition of his Lives of the Philosophers (Putnam, New York, 1925), 

Vol. 2, pp. 393-397. 

7. Plutarch’s report that Plato rejected the use of mechanical drawing devices 

can be found in the Loeb Classical Library edition of Selections Illustrat¬ 

ing the History of Greek Mathematics, with a translation by Ivor Thomas 

(Harvard University Press, 1939), Vol. 1, pp. 387-389. 

8. Popper’s conjecture on Plato’s mystical use of the square roots of 2 and 3 

is taken from the notes at the end of volume 1 of The Open Society and its 

Enemies (Princeton University Press, 1963), pp. 251-252. 

9. The quotation from Plato’s Laws is taken from the Penguin Books edition 

(London, 1930), pp. 313-314. 

10. The discussion of the motto of Plato’s Academy is given by D.H. Fowler 

(op. cit.), pp. 197-202. 

11. The quotation on the infinite from Aristotle’s Physics is taken from volume 

2 of The Works of Aristotle Translated into English by R. P. Hardie and R. K. 

Gaye (Clarendon Press, Oxford, 1930). 

12. Proclus’ discussion of right triangles with commensurable sides can be found 

in his Commentary (op. cit.), p. 428. 



Chapter 6 

Archimedes and Apollonius 

Among the many authors of mathematical treatises in Hellenistic times there are 

two besides Euclid who wrote works of such lasting significance that they deserve 

to be looked at in some detail in an introductory history such as the present one. 

These two, Archimedes of Syracuse and Apollonius of Perga, form the subject of 

the present chapter. Both are of importance because of the profundity of their work 

and its influence on the subsequent development of mathematics. 

6.1 Archimedes 

Archimedes is one of a small number of mathematicians of antiquity of whose 

works we know more than a few fragments and of whose life we know more than 

the approximate time and place. It is ironic that the man indirectly responsible 

for his death, the Roman general Marcellus, is also indirectly responsible for the 

preservation of some of what we know about him. Archimedes lived in the Greek 

city of Syracuse on the island of Sicily during the third century B.C.E. and is 

said by Plutarch to have been a relative of King Hieron II. Since Sicily is nearly 

on the direct line between Carthage and Rome, it is not surprising that it became 

embroiled in the Second Punic War. Marcellus took the city of Syracuse after a 

long siege, and Archimedes was killed by a Roman soldier in the chaos of the 

final fall of the city. It was Plutarch’s interest in Marcellus that led him to write 

a few lines about Archimedes. 

According to Plutarch’s biography of Marcellus, the general was very upset that 

Archimedes had been killed and had his body buried in a suitably imposing tomb. 

It often happens when a nation is conquered that the conquerors are insufficiently 

appreciative of its cultural achievements and the conquered nation is unable to 

preserve the relics of that culture. Such was the case with Archimedes. According 

to Eutocius, a biography of Archimedes was written by a certain Heracleides, who 

is mentioned in some of Archimedes’ letters. However, no copy of this biography 

is known to exist today. A century after Archimedes’ death his tomb had fallen into 

neglect. In his Tusculan Disputations, written in 45 B.C.E., the famous Roman 
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orator and statesman Cicero recalled his discovery of this tomb when was quaestor 

in Sicily (76 B.C.E.) 

When I was quaestor I tracked out [Archimedes’] grave, which was 

unknown to the Syracusans (as they totally denied its existence), and 

found it enclosed all round and covered with brambles and thickets; 

for I remembered certain doggerel lines inscribed, as I had heard, upon 

his tomb, which stated that a sphere along with a cylinder had been 

set up on the top of his grave... Slaves were sent in with sickles who 

cleared the ground of obstacles... So you see, one of the most famous 

cities of Greece... would have been ignorant of the tomb of its one 

most ingenious citizen, had not a man of Arpinum pointed it out. 

During the Middle Ages and later Sicily was conquered many times, and the tomb 

of Archimedes was lost again. In popular tradition several tombs were erroneously 

believed to belong to Archimedes. However, the actual tomb may have been 

rediscovered in 1957, during an excavation.1 Since Syracuse was taken in 212 

B.C.E. and Archimedes was reported by a twelfth-century Byzantine historian 

named Tzetzes to have been 75 years old at the time of his death, his dates are 

generally given as 287-212. 

There are many famous legends connected with Archimedes. These are scat¬ 

tered among the various sources. Plutarch, for instance, says that Archimedes 

made many mechanical contrivances but generally despised such work in compar¬ 

ison with pure mathematical thought. Plutarch also reports three different stories 

of the death of Archimedes and tells us that Archimedes wished to have a sphere 

inscribed in a cylinder carved on his tombstone. The famous story that Archimedes 

ran naked through the streets shouting “Eureka!” (“I’ve got it!”) when he dis¬ 

covered the principle of specific gravity in the baths is reported by the Roman 

architect Vitruvius. The commentator Proclus gives another well-known anecdote 

that Archimedes built a system of pulleys that enabled him (or King Hieron) single- 

handedly to pull a ship through the water. Finally, Plutarch and Pappus both quote 

Archimedes as saying (in connection with his discovery of the principle of the 

lever): “Give me a place to stand and I will move the earth.” 

With Archimedes we encounter the first author of a considerable body of orig¬ 

inal mathematical research that has been preserved to the present day. Historians 

of mathematics have unanimously praised him as one of the greatest mathematical 

geniuses in history. Before adding our own voice to the chorus of praise, we should 

pause and ask what makes a mathematician great. Some criteria that one might 

use are the following: 

1 This claim was made by Prof. Salvatore Ciancio in 1965 on the basis of several criteria, in¬ 

cluding the location and date of the relics and a gold signet ring found in the crematory urn inside 

the tomb and bearing the ancient seal of the city of Alexandria. The famous sphere and cylin¬ 

der were not part of the find. The claim was contradicted at the time by the Curator of Antiq¬ 

uities in Syracuse Prof. Bernabb Brea. Another counterclaim is made by D. L. Simms in “The 

trail for Archimedes’ tomb,” Journal of the Warburg and Courtauld Institute, 53 (1990), pp. 281- 

286 (reference taken from the World Wide Web). More information can be obtained at the address 

http ://www. mcs .drexel .edu/~crorres/Arch imedes/contents. html. 
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1. Solving problems that others have worked on without success. The fact 

that others have worked on the problems shows genera! agreement that the 

problems were important, and lack of success by others is evidence that the 

one who solved the problem has more than ordinary talent. 

2. Creating beautiful new theories to describe the world. The “raw material” 

for such theories can come from art, physical science, social science, and 

mathematics itself. 

3. Discovering mathematical relations linking observations or facts that were 

previously thought to be unrelated. 

4. Reorganizing and streamlining the presentation of existing theories to make 

their inner structure more comprehensible or more rigorous. 

5. Suggesting lines of research leading to subsequent work of great importance. 

Thus in judging the quality of a mathematician one looks at versatility, profun¬ 

dity, creativity, imagination, rigor, and influence. Archimedes can be given high 

marks in all of these areas. 

6.1.1 The Works of Archimedes 

Ten of Archimedes’ treatises have come down to the present, along with a “Book 

of Lemmas” that seems to be Archimedean, though the manuscript mentions 

Archimedes in the third person in some places. Some of these works are pref¬ 

aced by a “cover letter” intended to explain their contents to the person to whom 

Archimedes sent them. These correspondents of Archimedes were: Gelon, son of 

Hieron II and one of the kings of Syracuse during Archimedes’ life; Dositheus, 

a student of Archimedes’ student and close friend Conon; and Eratosthenes, an 

astronomer who worked at the Museum in Alexandria. Like the manuscripts of 

Euclid, all of the Archimedean manuscripts date from the ninth century or later, 

usually much later. These manuscripts have been translated into English and pub¬ 

lished by various authors. A complete set of Medieval manuscripts of Archimedes’ 

work has been published by Marshall Clagett in the University of Wisconsin series 

on Medieval Science. 

The 10 treatises referred to above are 

1. On the Equilibrium of Planes, Part I. 

2. Quadrature of the Parabola. 

3. On the Equilibrium of Planes, Part II. 

4. On the Sphere and the Cylinder, Parts I and II. 

5. On Spirals. 

6. On Conoids and Spheroids. 
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7. On Floating Bodies. 

8. Measurement of a Circle. 

9. The Sand-reckoner. 

10. The Method. 

References by Archimedes himself and other mathematicians tell of the exis¬ 

tence of other works by Archimedes of which no manuscripts are now known to 

exist. These include many works on the theory of balances and levers, optics, the 

regular polyhedra, the calendar, and the construction of mechanical representations 

of the motion of heavenly bodies. 
From this list we can see the versatility of Archimedes. His treatises on the 

equilibrium of planes and floating bodies contain principles that are now fun¬ 

damental in mechanics and hydrostatics. The works on the quadrature of the 

parabola, conoids and spheroids, the measurement of the circle, and the sphere 

and cylinder extend the theory of proportion, area, and volume found in Euclid for 

polyhedra and polygons to the more complicated figures bounded by curved lines 

and surfaces. The work on spirals introduces an entirely new class of curves, and 

develops the theory of length, area, and proportion for them. 

Archimedes’ contributions to number theory are less impressive. Except for 

a single Diophantine problem2 known as the “cattle problem,” his only number- 

theoretic work is The Sand-reckoner, which constructs a systematic hierarchy of 

numbers so as to be able to express compactly and accurately numbers of any 

conceivable size. Finally, the Method shows an entirely different approach to 

geometry based on what we now call infinitesimal considerations. 

The profundity of Archimedes’ thought, which has given the world theorems 

that might otherwise have remained undiscovered, will appear in the discussion 

of the details of some of these works. We shall reserve the “physical” works on 

equilibrium of planes and floating bodies until the next chapter, where we shall 

give a general discussion of the mathematical science of Archimedes’ time. In the 

present chapter we confine ourselves to his pure mathematics. 

We shall discuss Archimedes’ geometry in increasing order of its complexity, 

starting with the work that seems to have been most influential in the Medieval 

West, the Measurement of a Circle, then taking up the Quadrature of the Parabola, 

The Sphere and Cylinder, and On Conoids and Spheroids. We shall then turn to 

some works that involve different themes, The Sand-reckoner, On Spirals, and the 

Method. 

The Measurement of a Circle 

The treatise on the measurement of a circle is a brief one, containing only three 

formally stated propositions. The first proposition, demonstrated in strict Euclidean 

style, is that a circle equals (in area) a right triangle with one leg equal to the 

2 A Diophantine problem is an equation in two or more unknowns for which integer solutions are 
to be found. 



6.1. ARCHIMEDES 117 

radius of the circle and the other equal to the circumference. The method of proof 

is exactly the method used by Euclid to prove that circles are proportional to the 

squares on their diameters (see the previous chapter). That is, it uses the method 

of exhaustion, and the trichotomy for ratios (given two ratios, either they are equal 

or one is larger than the other). 

Proposition 1 shows that the problem of measuring the area of a circle reduces 

to finding the ratio of the circumference to the diameter, the number we now call 

7T (Archimedes did not have any symbol for this number). An approximation to 

this number is the content of the main proposition of the treatise, Proposition 3: 

Every circle exceeds three times its diameter by an amount less than one-seventh 

and more than 10 parts of 71 parts of the diameter. 

In our language this proposition says 3^f < 7T < 3y. The proof seems natural 

enough, being based on comparison of chords and tangents to very small arcs 

obtained by three successive bisections of a 30° angle. Since the procedure for 

finding the chord of half an arc involves square roots, Archimedes had to get careful 

bounds on these square roots at each stage in order to avoid error accumulation. 

In the end he arrived at the result 

14,688 , 667| 

4673l ~ + 4673| 

By following the same procedure, using angles with their vertex at one end of 

the diameter, starting with a 30° angle, and using the estimate v^3 < 1351 : 780, 

Archimedes found an estimate for the perimeter of the inscribed regular polygon 

of 96 sides, leading to the estimate tt > 3^y. 

The approximations used for the quadrature of a circle are sometimes used 

as a measure of the mathematical sophistication of a culture. This criterion is 

naive as it stands: the numbers used for approximating and measuring depend to 

some extent on the base used for counting, and in any case one might stumble 

onto a very accurate value of 7r, say « 3.14159292, from irrelevant aesthetic 

considerations or by merely guessing. A more refined version of the criterion is 

the method used for approximating tt and the extent to which the approximation 

error can be proved to be small. We have seen in Chapter 2 that the Egyptians 

approximated the area of a circle by a method that implies tt = This value 

may have been discovered by visual examination of a circle intersecting a certain 

square, as discussed in Chapter 2. It amounts to the equation tt = 3.160493827. 

It is much closer than the value implied by the following passage from the Bible 

in I Kings (or III Kings, depending on the translation), 7:23. 

And [Solomon] made a molten sea ten cubits from the one brim to the 

other: it was round all about... and a line of thirty cubits did compass 

it round about. 

The implied value tt = 3 here is also found in many Babylonian tablets, although 

the value 3; 7, 30 (= 3.125) is also found in the tablets. (Some commentators claim 

the 10-cubit diameter refers to the outside of the rim and the 30-cubit circumference 

to the inside rim.) In comparison with these values Archimedes’ result is much 
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more sophisticated, since he gives both a lower and an upper bound, which in our 

terms are as follows: 

3.14084507042 < tt < 3.14285714286. 

What is more important than accuracy, however, is that Archimedes, building on 

the theory of proportion developed in Euclid, can prove that tt lies between these 

two values, rather than merely asserting it, as is done in many other sources. (Of 

course, the Egyptians and Babylonians may also have arrived at their approxima¬ 

tions through sophisticated upper and lower estimates that have been lost.) If we 

take the average of Archimedes’ two values (3.14183582289), we obtain a value 

that exceeds tt by only 0.008%. 

Quadrature of the Parabola 

In view of the lack of success the Greeks had had in squaring the circle one 

can appreciate that success in squaring a segment of any conic section would 

be considered a great achievement. Archimedes himself puts the quadrature of 

the parabola in this context in an accompanying letter to Dositheus. In the letter 

Archimedes expresses his grief over the recent death of his friend Conon, whose 

mathematical abilities he praises highly. He mentions various attempts at the 

quadrature of circles and segments of circles, saying that these efforts assumed 

things that could not be granted. He then announces his own success in giving a 

rigorous quadrature of a segment of a parabola. 

This letter gives us a glimpse of Archimedes’ personality. He must have been 

close to Conon, both personally and professionally.3 This letter also shows why 

Archimedes prized this result: it was the first quadrature of a conic section and 

contrasted starkly with the failure to square the circle. One lemma that Archimedes 

used in this work asserts that, given two areas, some multiple of the first exceeds 

the second. This simple proposition, which denies the existence of infinitesimal 

areas, fits well into the modem rigorous expositions of analysis. It is reflected in 

the concept of Archimedean ordered fields.4 

Archimedes’ gives two proofs of his quadrature, one based on mechanical 

considerations of balance, the other on the method of exhaustion. In the latter 

approach Archimedes inscribed a maximal triangle in the segment and then did 

the same in each of the two smaller parabolic segments created by two sides of 

this triangle. He found that the two smaller triangles were each one-eighth as large 

as the original triangle. Hence, by repeating this operation, Archimedes was led to 

approximate the area by the sum of a finite geometric progression, which he could 

prove rigorously to be tending to | of the original inscribed triangle. 

3Apollonius also mentions a person by the name of Conon, probably the same person; Apollonius 
finds it necessary to defend Conon’s mathematical prowess against a critic named Thrasydaeus. 

4 A field can be described informally as a structure on which addition, subtraction, multiplication, 
and division (except by zero) are defined and have the usual arithmetic properties. An ordered field, 
such as the rational numbers or the real numbers, is Archimedean if for any element a of the field there 
is a positive integer n with n > a. 
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The Sphere and the Cylinder 

Archimedes’ two works on the sphere and cylinder were also sent to Dosithe- 

us. In the letter accompanying the first of these he mentions the work on the 

quadrature of a parabola, so that the chronology of these works is completely 

established. Archimedes again shows his human side in this letter. After stating 

the most important of its contents (that the area and volume of a closed cylinder 

circumscribed about a sphere are each half again as large as the area and volume 

respectively of the sphere), he gives a little of the history of the problem, crediting 

Eudoxus with being the first to establish rigorously the volume of a pyramid. 

Archimedes considered his results on the sphere to be rigorously established, but 

he did have one regret: 

They ought to have been published while Conon was still alive, for I 

should conceive that he would best have been able to grasp them and 

to pronounce upon them the appropriate verdict; but, as I judge it well 

to communicate them to those who are conversant with mathematics, 

I send them to you with the proofs written out, which it will be open 

to mathematicians to examine. 

The fact that a pyramid is one-third of a prism on the same base and altitude 

is Proposition 7 of Book XII of Euclid’s Elements. Thus Archimedes could say 

confidently that this theorem was well established. He seems to suggest that 

there were other results on volumes that were not well established. Archimedes 

approached the surface area of a sphere by finding the lateral surface area of a 

frustum of a cone and the lateral area of a right cylinder. In our terms the area of 

a frustum of a cone with upper radius r, lower radius R, and side of slant height 

h is nh(R + r). Archimedes phrased this fact by saying that the area is that of a 

circle whose radius is the mean proportional between the slant height and the sum 

of the two radii [that is, the radius is y/h(R -f r)]. Likewise our formula for the 

lateral surface area of a cylinder of radius r and height h is 2nrh. Archimedes 

said it was the area of a circle whose radius is the mean proportional between the 

diameter and height of the cylinder. 

These results can be applied to the figures generated by revolving a circle about 

a diameter with certain chords drawn. Archimedes showed (Proposition 22) that 

(DD' + CC' + • • • + KK' + LM) : AM = A'B : BA 

in Fig. 6.1. This result is easily derived by connecting B' to C, C' to K, and K' 

to L and considering the ratios of the legs of the resulting similar triangles. These 

ratios can be added. All that then remains is to cross-multiply this proportion and 

use the expressions already derived for the area of a frustum of a cone. One finds 

easily that the area of the surface obtained by revolving the broken line ABCKL 

about the axis AA' is iiAM ■ A' B. The method of exhaustion then shows that the 

product AM ■ A' B can be made arbitrarily close to the square of AA'; it therefore 

gives the following result (Proposition 33): The surface of any sphere is equal to 

four times the greatest circle in it. 
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Figure 6.1: Finding the surface area of a sphere. 

By the same method, using the inscribed right circular cone with the equatorial 

circle of the sphere as a base, Archimedes shows that the volume of the sphere 

is four times the volume of this cone. He then obtains the relations between the 

areas and volumes of the sphere and circumscribed closed cylinder. He finishes 

this first treatise with results on the area and volume of a segment of a sphere, that 

is, the portion of a sphere cut off by a plane. This argument is the only ancient 

proof of the area and volume of a sphere that meets Euclidean standards of rigor. 

Three remarks should be made on this proof. First, in view of the failure of 

efforts to square the circle, it seems that the later Greek mathematicians had two 

standard areas, the circle and the square. Archimedes expressed the area of a 

sphere in terms of the area of a circle. Second, the volume of a sphere was found 

in other places, notably China (several centuries after Archimedes’ time), but the 

justification for it always involved intuitive principles such as “Cavalieri’s prin¬ 

ciple” that do not meet Euclidean standards. Third, Archimedes did not discover 

this theorem by Euclidean methods. He told how he came to discover it in his 

Method, which will be discussed below. 

In his second treatise on the subject Archimedes attacked two sophisticated 

problems of solid geometry: 

1. Given a cone or cylinder, to construct a sphere of the same volume. Arch¬ 

imedes points out that this problem could be solved if, given a cylinder, 

one could construct a cylinder of equal volume whose height equals the 

diameter of its base. (Such a cylinder could be circumscribed about a sphere, 

whose volume would then need to be increased by half. In this way the 

problem would reduce to the problem of two mean proportionals.) Thus the 
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problem of transforming the cylinder to the standard shape is also equivalent 

to duplicating the cube. Thus, in the typical fashion of mathematicians, he 

showed that one problem can be reduced to another problem that has already 

been studied (but not completely solved). In view of the failure to duplicate 

the cube and square the circle, it seems that Archimedes had to settle for 

two standards of volume, the cube and the sphere. The problem discussed 

here represents an attempt to express the volumes of certain familiar shapes 

in terms of one of these standards. 

2. Cut a given sphere by a plane so that the surfaces or volumes of the resulting 

segments have a prescribed ratio. Archimedes remarks that in this form 

the problem requires an investigation to determine which data will give a 

problem for which a solution exists. This aspect of a problem, a general 

analysis to determine which data will yield a solution, was so important that 

Apollonius and the later commentators used a special Greek word to refer to 

it. That word is diorismos (btopLapoq), from a root meaning to divide or to 

distinguish; we shall simply borrow this word wherever it occurs from now 

on. The manuscripts of Archimedes’ work do not contain his solution, and 

Eutocius quotes other mathematicians to the effect that Archimedes did not 

fulfill his promise to give the solution of this last problem. Eutocius then 

tells of his own very interesting research, in which he hunted around through 

some old books and found a manuscript that seemed from its mathematical 

and linguistic style to be a work of Archimedes. In that work he found the 

solution, albeit in a very obscure form, which he was able to straighten it out 

with great difficulty. Eutocius was only one of several mathematicians who 

subsequently worked on the problem of dividing a sphere in a fixed ratio. 

Thus in advancing this problem Archimedes was opening up new avenues 

of research. 

On Conoids and Spheroids 

Archimedes also extended the range of geometry by studying the solids formed by 

revolving a conic section about its axis of symmetry. For the figures generated by 

revolving unbounded conics (parabolas and hyperbolas) he used the term conoids, 

while for ellipses he spoke of spheroids. He investigated the segments of such 

figures cut off by various planes. We shall not discuss this work in detail, but it 

will be mentioned in the next chapter in connection with Archimedes’ contributions 

to physics. 

On Spirals 

The work On Spirals was sent to Dositheus as a follow-up report on some earlier 

theorems that Archimedes had sent to Conon. In the cover letter Archimedes again 

laments the loss of Conon, whose work on these problems was cut short by his 

death. 



122 CHAPTER 6. ARCHIMEDES AND APOLLONIUS 

For I know well that it was no common ability that he brought to bear 

on mathematics, and that his industry was extraordinary. But, though 

many years have elapsed since Conon’s death, I do not find that any 

one of the problems has been stirred by a single person. 

Archimedes’ work on spirals is not directly connected with his other geometric 

work, which was a natural extension of the core of Greek geometry. The reason 

for Archimedes’ interest in this problem is therefore a subject for conjecture. The 

most obvious explanation is that the spirals considered by Archimedes, which are 

generated by a point moving at constant speed along a ray rotating at constant 

angular velocity, make it possible to draw a straight line equal in length to the 

circumference of a given circle and to divide any angle into any number of equal 

parts. The spiral therefore solves two of the classical problems in the sense that, 

if one could draw the spiral, it would be possible to perform these constructions. 

Archimedes does not directly mention this connection. However, the first propo¬ 

sition after the preliminary lemmas on lines in arithmetic progression (Proposition 

12) states explicitly that the radii drawn at equal angles to one another will be in 

arithmetical progression, and this is the essential property needed for trisecting an 

angle. 

This paper is noteworthy as one of the places, along with the Quadrature of the 

Parabola, where the tangent to a curve plays an important role. The tangent to the 

end of the first turn of the spiral contains the hypotenuse of a right triangle having 

the line from the beginning of the spiral to the end of the first turn as one leg (see 

Fig. 6.2). By delicate use of inequalities Archimedes was able to show that the 

other leg of this right triangle is equal to the circumference of the circle whose 

radius is the first leg. The area of this triangle is therefore exactly equal to that of 

the circle in question. Hence it would be possible to square a circle if one could do 

the following two things: (1) draw a spiral from the center of the circle whose first 

revolution ends on the circle, and (2) draw the tangent to the spiral at the end of 

the first revolution. This is the first place in Greek mathematics where the tangent 

to a curve other than a conic section is of importance; and, as noted, it raises the 

problem of how such a tangent is to be drawn. (The tangent to a conic section 

can be drawn with straightedge and compass if the section itself has been drawn.) 

Even more significant in retrospect is that it connects the problem of computing 

length and area with the problem of constructing a tangent. In modem terms we 

would say it connects integration and differentiation, though these concepts are 

in the future, and it does not appear that Archimedes had any idea that the area 

problem and the tangent problem are connected. 

To find the tangent to a spiral, however, is difficult. Archimedes recognized 

that the problem was equivalent to squaring the circle. Nowadays, of course, we 

use analytic methods (the derivative) to draw the tangent to any “reasonable” curve. 

Archimedes seems to sense the need for some tangent-drawing technique. Perhaps 

that is why his prefatory note laments the loss of Conon. Mathematicians like to 

see their ideas extended by younger minds into new areas which the limitations 

of their own background prevents them from creating. Archimedes must have 

believed that Conon could have advanced this topic. 
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Figure 6.2: The first turn of an Archimedean spiral. 

The Sand-reckoner 

This treatise, whose contents are very different from Archimedes’ other works, 

was apparently inspired by a specific question, as Archimedes explained in his 

cover letter to King Gelon: Is the number of grains of sand required to fill up the 

Universe finite or infinite? Archimedes’ cover letter is of interest, not only as a 

preface to the mathematical work but also because of incidental remarks that reveal 

some of the ideas then current in astronomy. Archimedes states the geocentric 

cosmology as the accepted one, but mentions that Aristarchus had proposed a 

heliocentric model. In the geocentric cosmology, the entire Universe is the interior 

of the celestial sphere, to which the stars are rigidly attached. Archimedes criticizes 

Aristarchus for sloppy language in saying that the celestial sphere was so large 

that its ratio to that of the earth’s orbit is that of the surface of a sphere to its 

center. Archimedes quite properly notes that a surface cannot have any ratio to 

a point. After correcting Aristarchus, he then proceeds to demonstrate that the 

number of grains of sand required to fill up the celestial sphere is finite. The 

machinery he develops to solve this problem is a cumbersome system of successive 

powers. While Archimedes’ system of enumeration seems tiresome and hardly 

worth looking at nowadays, it was inspired by a real problem of stretching the 

human imagination. How small can a number be before it is perceived as zero? 

How large can it be before it is perceived as infinity? Archimedes’ introduction to 

this work shows that some people were conflating the concepts of very large and 

infinite. One instance of this confusion is the view attributed to Aristarchus that 

the ratio of the orbit of the earth to the sphere of fixed stars is that of the center of 

a sphere to its surface. This view would not shock scientists who use mathematics 

only formally and nonrigorously, but Archimedes remarks very logically on the 

absurdity of the statement if taken literally. Yet we now know that the ratio 

is so small as to be indistinguishable from zero for practical purposes, and the 
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astronomer Ptolemy makes a remark to this effect in Book I, Chapter 6 of the 

Almagest: “The earth has to the senses the ratio of a point to the distances of the 

sphere of fixed stars.” 

The Method 

Early in the twentieth century the historian of mathematics J. L. Heiberg, reading 

in a bibliographical journal of 1899 the account of the discovery of a tenth-century 

manuscript with mathematical content, deduced from a few quotations that the 

manuscript was a copy of a work of Archimedes. In 1906 and 1908 he journeyed 

to Constantinople and established the text, as far as was possible. Attempts had 

been made to wash off the mathematical text during the Middle Ages so that 

the parchment could be used to write a book of prayers. The 177 pages of this 

manuscript contain nearly complete texts of most of the works just discussed and 

a work called Method. The existence of such a work had been known because 

of the writings of commentators on Archimedes. There are quotations from it in 

a work of the mathematician Heron called the Metrica (which, however, was not 

discovered until 1903). 

The Method was sent to the astronomer Eratosthenes as a follow-up to a pre¬ 

vious letter that had contained the statements of two theorems without proofs and 

a challenge to discover the proofs. (This kind of game, in which a mathematician 

announces a theorem without giving its proof, has occurred often in the history 

of mathematics.) Both of the theorems involve the volume and surface of solids. 

In contrast to his other work on this subject, however, Archimedes here makes 

free use of a principle similar to one that was discovered independently in several 

places, particularly in China (some centuries after Archimedes’ time) and in Italy 

during the sixteenth century. This principle, now commonly known as Cavalieri’s 

principle, says that if two solids have equal cross sections at every height, then 

they have equal volumes. The implied reasoning is that in some sense a volume is 

the “sum” of its cross sections, and therefore (since “sums” of equals are equal) 

volumes having equal cross sections must be equal. Archimedes’ Method is a 

refinement of this principle, obtained by imagining the sections balanced about a 

fulcrum. The reasoning is that each pair of corresponding sections will balance, 

and therefore the two bodies will balance. 

The volume of a sphere is four times the volume of the cone with base equal 

to a great circle of the sphere and height equal to its radius, and the cylinder with 

base equal to a great circle of the sphere and height equal to the diameter is half 

again as large as the sphere. 

Archimedes’ proof is based on Fig. 6.3. If this figure is revolved about the line 

CAH, the circle with center at K generates a sphere, the triangle AEF generates 

a cone, the rectangle LGFE generates a cylinder, and each horizontal line such as 

MN generates a disk. The point A is the midpoint of CH. Archimedes shows that 

the area of the disk generated by revolving QR plus the area of the disk generated 

by revolving OP has the same ratio to the area of the disk generated by revolving 

MN that AS has to AH. It follows from his work on the equilibrium of planes 

(discussed in the next chapter) that if the first two of these disks are hung at H, 
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H 

Figure 6.3: Volumes of sphere, cone, and cylinder 

they will balance the third disk about A as a fulcrum. Archimedes concluded from 

this that the sphere and cone together placed with their centers of gravity at H 

would balance (about the point A) the cylinder, whose center of gravity is at K. 

Therefore, 

HA : AK = (cylinder) : (sphere + cone). 

But HA = 2AK. Therefore the cylinder equals twice the sum of the sphere and 

the cone AEF. And, since it is well known that the cylinder is three times the 

cone AEF, it follows that the cone AEF is twice the sphere. 

But, since EF = 2BD, cone AEF is eight times cone ADD, and so the 

sphere is four times the cone ABD. 

From this fact Archimedes easily deduces the famous result allegedly depicted 

on his tombstone: The cylinder circumscribed about a sphere equals the volume 

of the sphere plus the volume of a right circular cone inscribed in the cylinder. 

Having concluded the demonstration, Archimedes reveals that it was this meth¬ 

od that enabled him to discover the area of a sphere. He writes 

.. .judging from the fact that any circle is equal to a triangle with base 

equal to the circumference and height equal to the radius of the circle, 

I apprehended that in like manner any sphere is equal to a cone with 

base equal to the surface of the sphere and height equal to the radius. 

The importance of the Method for understanding the history of Greek math¬ 

ematics cannot be overestimated. Works written in the style of Euclid are like 

magnificent cathedrals from which the scaffolding has been removed. One can say 
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that obviously the stones were not simply thrown up the sides so as to land one on 

top of another, but the actual route by which they arrived is no longer visible. The 

method of exhaustion is convincing as a method of proving a theorem, but useless 

as a method of discovering it. With his pleasant openness Archimedes makes no 

attempt to conceal the routes by which he discovered his results. 

6.2 Apollonius 

From what we have already seen of Greek geometry we can understand how 

the study of the conic sections came to seem important. From commentators like 

Pappus we know of treatises on the subject by Aristaeus, a contemporary of Euclid 

who is said to have written a book on Solid Loci, and by Euclid himself. We 

have also just seen that Archimedes devoted a great deal of attention to the conic 

sections, usually referring to them as sections of an acute-angled, right-angled, or 

obtuse-angled cone. The only treatise on the subject that has survived, however, 

is that of Apollonius, and even for this work, unfortunately, no faithful translation 

into English exists. The version most accessible is that of Heath, who says in 

his preface that writing his translation involved “the substitution of a new and 

uniform notation, the condensation of some propositions, the combination of two 

or more into one, some slight re-arrangements of order for the purpose of bringing 

together kindred propositions in cases where their separation was rather a matter of 

accident than indicative of design, and so on.” He might also have mentioned that 

he supplemented Apollonius’ purely synthetic methods with analytic arguments, 

based on the algebraic notation we are familiar with. All this labor has no doubt 

made Apollonius more readable. On the other hand, Apollonius’ work is no longer 

of any value to research mathematicians, and from the historian’s point of view 

this kind of tinkering with the text only makes it harder to place the work in proper 

perspective. 

6.2.1 Biography of Apollonius 

In contrast to his older contemporary Archimedes, Apollonius remains a rather 

obscure figure. His dates can be determined from the commentary written on the 

Conics by Eutocius. Eutocius identifies Apollonius as a contemporary of the king 

Ptolemy Euergetes and defends him against a charge by Archimedes’ biographer 

Heracleides that Apollonius plagiarized results of Archimedes. Eutocius’ infor¬ 

mation places Apollonius reliably in the second half of the third century B.C.E., 

perhaps a generation or so younger than Archimedes. 

Pappus says that Apollonius studied at Alexandria as a young man and made 

there the acquaintance of a certain Eudemus. It is probably this Eudemus to 

whom Apollonius addresses himself in the preface to Book I of his treatise. From 

Apollonius’ own words we know that he had been in Alexandria and in Perga, 

which had a library that rivalled the one in Alexandria. Eutocius reports an earlier 

writer, Geminus by name, as saying that Apollonius was called “the great geometer” 
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by his contemporaries. He was indeed highly esteemed as a mathematician by 

later mathematicians, as the quotations from his works by Ptolemy and Pappus 

attest. In Book XII of the Almagest Ptolemy attributes to Apollonius a geometric 

construction for locating the point at which a planet begins to undergo retrograde 

motion. From these later mathematicians we know the names of several works by 

Apollonius and have some idea of their contents. However, only two of his works 

survive to this day, and for them we are indebted to the Islamic mathematicians 

who continued to work on the problems that Apollonius considered important. Our 

present knowledge of Apollonius’ Cutting off of a Ratio, which contains geometric 

problems solvable by the methods of application with defect and excess is entirely 

based on an Arabic manuscript, no Greek manuscripts having survived. Of the 

eight books of Apollonius’ Conics, only seven have survived in Arabic, and only 

four in Greek. None of Apollonius’ other works have survived at all. 

6.2.2 History of the Conics 

The genesis of the Conics was reported by Pappus (five centuries after they were 

written). Pappus claims that Apollonius’ work completed four books written by 

Euclid on the subject. Although he gives Apollonius fair credit for advancing the 

subject considerably, he makes a number of unkind remarks as to his character, 

accusing him of being a braggart and concealing his debt to Euclid. We, of course, 

are not able to sort out these internal quarrels of the ancients, and we shall not 

attempt to do so. As already mentioned, the first four books of Apollonius’ Conics 
survived in Greek, and seven of the eight books have survived in Arabic; the 

astronomer Edmund Halley (1656-1743) published a Latin edition in 1710. 

6.2.3 Contents of the Conics 

Since the conic sections represent the first extension of the Euclidean theory of 

lines and circles to more general curves, we should expect Apollonius to discover 

and prove relations for them analogous to those proved for the circle in Books 

III and IV of the Elements, that is, to discuss the proportions that exist among 

chords and tangents of such curves. We do indeed find this, and much more 

besides, in the treatise. The subject is much more complicated than the theory of 

circles, however, since the hyperbola and parabola are unbounded curves and the 

hyperbola consists of two branches. Even the ellipse lacks the homogeneity of a 

circle, having curvature that varies from one point to another, so that the points of 

least and greatest curvature are of special importance. 

To understand Greek mathematics the modem student must try to appreciate 

facts that hardly seem worthy of note nowadays, but were formidable obstacles 

to the Greeks. We have grown so used to “nonconstructive” mathematics and the 

easy application of analytic geometry that we are quite ready to accept as a plane 

curve any equation in two variables, even if we cannot easily compute even one 

point on it, for example 

y5 -F 3x2y2 + 4.x7 — 2.x — Sy — 1 = 0. 
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It is easy to verify that there is a point on this curve lying on the y axis somewhere 

between y = 1 and y = 2 and a point on the x axis somewhere between x = 0 and 

x = 1. This information is sufficient to convince most students that the equation 

defines a curve, even though we cannot begin to draw it. If we want to know more, 

we resort to numerical methods or computer graphics. The situation for Apollonius 

was very different. Ignoring for the moment the absence of algebraic notation in his 

time, one can substitute for the equation a condition and ask which points satisfy 

this condition. This is exactly what Apollonius is doing in the “three-line locus” 

and “four-line locus” problems. In some cases it may be possible to discover all 

the points that satisfy a condition. Those points form the locus (the Latin word for 

place) of the condition. It was only through locus problems that new curves could 

be introduced. Archimedes, to be sure, stretched the use of the locus method in 

his treatise on spirals by introducing motion into the definition, as did Apollonius 

(unnecessarily) in his definition of a cone, but with that exception, new curves 

were introduced by the Greeks only as loci, which were a static concept. The 

use of loci, rather than motion, as the device for defining curves restricted the 

kinds of curves that could be studied. This restriction was not overcome until the 

invention of analytic geometry provided an unlimited supply through equations in 

two variables. 

The use of loci provides a basis for the study of the curves that can be defined 

in this way, but it also entails difficulties. Which verbal conditions will lead to 

a real locus? Given a condition that must be satisfied, such as those mentioned 

by Pappus, how can we tell whether there will be any points on the locus? This 

question brings up the whole circle of ideas connected with diorismos. It seems 

clear that this way of proceeding is going to impose a severe restriction on the 

number of curves we can consider, and some historians attribute the eventual 

withering of Greek mathematics in part to the shortage of useful curves. 

In a preface addressed to the aforementioned Eudemus Apollonius lists the 

important results of his work: the description of the sections, the properties of 

the figures relating to their diameters, axes, and asymptotes, things necessary for 

diorismos, and the three- and four-line locus. He continues 

The third book contains many remarkable theorems of use for the 

construction of solid loci and for diorismos, of which the greatest part 

and the most beautiful are new. And when we had grasped these, we 

knew that the three-line and four-line locus had not been constructed 

by Euclid, but only a chance part of it and that not very happily. For 

it was not possible for this construction to be completed without the 

additional things found by us. 

Since it is not feasible to look at the details of the entire work, we shall focus 

on just three aspects of it. First we shall consider Apollonius’ construction of the 

conic sections and the way in which he defined them (Book I). Second, we shall 

look at the elementary properties of their axes and diameters, as he calls them, from 

Book II. Finally we shall examine some of the “remarkable” theorems from Book 

III, in particular the focal properties of the central conics and the problem known 

as the three-line locus, which Apollonius mentions in the passage just quoted. 
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Figure 6.4: Section of a cone parallel to the base. 

Definition of the Conics as Loci 

The first task Apollonius faced was that of defining the conic sections as loci. As 

we know, these curves had previously been defined as the intersection of a cone 

with a plane, and such of their properties as were known had been deduced from 

that definition. Defining the curves as plane loci would eliminate the need for 

the cone and all the three-dimensional paraphernalia it entailed. Having a locus 

condition as the definition of the conic, one could then give an intrinsic discussion 

of the conic section, independently of the cone and plane that generated it, and 

thus one could analyze such a curve as fully as Euclid had analyzed the circle. 

This extension of geometry to new curves was not achieved easily. The mere 

description of these curves as loci is complicated. 

Apollonius defined a cone as the figure formed by a family of straight line 

segments, all passing through a common endpoint (called the apex of the cone) 

and also intersecting a fixed (generating) circle in a plane not containing the apex. 

The line through the apex and the center of the generating circle forms the axis of 

the cone. A plane containing the axis of the cone intersects the portion of the cone 

between the apex and the generating circle in a triangle called an axial triangle 

having as base a diameter of the circle and as opposite vertex the apex of the cone. 

Apollonius’ first important result is not surprising (Book I, Proposition 4): All 

sections of a cone parallel to its base are circles. This is easily proved (see Fig. 

6.4) by the fact that the lines op and OP from the axis to a point on the intersections 

of the cone with the two planes remain parallel as the point P traverses the circle 

in the base. Hence the ratio op : OP remains constant, and since OP remains 

constant, so must op. The next proposition (Book I, Proposition 5), however, is 

surprising. In Fig. 6.5 the cone is cut by a plane that is perpendicular to the plane of 

the axial triangle, though its intersection HK with the axial triangle is not parallel 

to the base BC. Even so, it forms a triangle AHK having the same angles as 

ABC, that is, ZAHK = Z.ACB and AAKH = AABC. The resulting section 

of the cone is said to be subcontrary, and it is also a circle! For from any point 

P on the section one can drop a perpendicular to the plane of the axial triangle 

(parallel to the base), meeting the axial triangle in a point M. Through M one can 

draw a plane parallel to the base (hence containing the point P), and this plane will 

meet the cone in a circle and the axial triangle in a line DE parallel to BC. Then, 
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A 

Figure 6.5: Subcontrary section of a cone. 

because triangles DMH and KME are similar, DM • ME = HM • MK. But 

since the curve DPE is a circle, PM is the mean proportional between DM and 

ME, that is, PM2 = DM ■ ME. Hence PM must also be the mean proportional 

between HM and MK. But this property is precisely the characteristic property 

of a circle. Thus there are two families of sections of a cone consisting entirely of 

circles, those parallel to the base, and those that are subcontrary. All other sections 

are noncircular. They form the subject matter of the treatise. 

With this much as background, let us look at the construction of an ellipse 

in Book I, referring to Fig. 6.6. (Apollonius’ constructions of the hyperbola and 

parabola are analogous.) To do so, we consider a planar section of a cone that 

is neither parallel to the base nor subcontrary. The distinguishing property of an 

elliptic section is that the cutting plane intersects all the generators of the cone on 

the same side of its apex. To state this fact clearly, one needs an axial section of the 

cone made by a plane perpendicular to the cutting plane. The cutting plane is then 

required to intersect both sides of the axial triangle. Apollonius proved that there 

is a certain line, which he called the upright side (now known by its Latin name 

latus rectum) such that the square on the ordinate from any point of the section to 

its axis equals the rectangle applied to the portion of the axis cut off by this ordi¬ 

nate (the abscissa) and whose defect on the axis is similar to the rectangle formed 

by the axis and the latus rectum. He gave a complicated rule for constructing 

the latus rectum. Because of its connection with the problem of application with 
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Figure 6.6: Apollonius’ construction of the ellipse. 

defect, he called the resulting conic section an ellipse. (Similar connections with 

the problems of application and application with excess respectively arise in Apol¬ 

lonius’ construction of the parabola and hyperbola. These connections motivated 

the names he gave to these curves.) 

The locus definition for an ellipse is not far removed from what we now think 

of as the equation of the ellipse. If we write LM = y and EM = x in Fig. 6.6 

(so that we are essentially taking rectangular coordinates with origin at E) ,we see 

that Apollonius is claiming that y2 = x • EO. Now, however, EO = EH — OH, 

and EH is constant, while OH is directly proportional to EM, that is, to x. Thus, 

if we write OH = kx and EH = C, we find that Apollonius’ locus condition 

can be stated as the equation y2 = Cx — kx2. By completing the square on x, 

transposing terms, and dividing by the constant term, we can bring this equation 

into what we call the standard normal form for an ellipse with center at (h, 0): 

(x - ft-)2 y 
a* b2 

= 1. 

(In these terms the latus rectum is 2b2/a.) For this reason, some mathematicians 

say that Apollonius’ methods were essentially equivalent to analytic geometry. 

This statement must be regarded with extreme caution, however. Apollonius did 

not have the concept of an equation nor the symbolic algebraic notation we now 

use, and this absence gave his work on conics a ponderous character with which 

most mathematicians today have little patience. 

We emphasize again the “planimetric” character of Apollonius’ development 

of the properties of conic sections. Once the locus condition that characterizes the 

conic is accepted, the whole three-dimensional apparatus can be dispensed with. 

All subsequent theorems that do not explicitly mention cones in their hypotheses 

will be proved using the locus condition, which, as we have just seen, is logically 

equivalent to what we call the equation of the curve. 

Axes and Diameters 

Apollonius defines a diameter of a conic to be a chord that bisects any chord that 

it intersects from a family of parallel chords. In other words, given a family of 
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parallel chords, the diameter is the locus of their midpoints. It is not obvious 

that this locus is a straight line, and that is what Apollonius proves early in 

the work (Book I, Proposition 7): If a cone is cut by a plane which intersects 

the plane of the base in a straight line perpendicular to the base of the axial 

triangle, the intersection of the plane and the axial triangle is a diameter of the 

section. This construction makes it easy to construct diameters by merely drawing 

the line through the midpoints of any two parallel chords (Book II, Proposition 

44). Apollonius shows that if one diameter bisects a second, then the second also 

bisects the first (Book I, Proposition 15). The two diameters are then said to be 

conjugates, and the point where they meet (the midpoint of each of them) is called 

the center. Only circles, ellipses and hyperbolas have centers, and of course the 

center of such a central conic can easily be found by merely drawing two diameters 

(Book II, Proposition 45). If a diameter is the perpendicular bisector of a family 

of parallel chords, it is called an axis of the conic. Apollonius shows (Book II, 

Proposition 48) that no central conic has more than two axes. The importance 

of conjugate diameters shows up especially in the construction of the tangent to 

a central conic. The tangent at any point is parallel to the conjugate diameter to 

the diameter through that point, as Apollonius shows in Book I, Propositions 47 

and 48. Thus drawing the tangent to a conic is a straightforward operation, given 

the conic, in contrast to the more complicated spirals considered by Archimedes. 

The importance of tangents to conic sections appears in connection with the locus 

problems considered later. 

For the hyperbola Apollonius proves the existence of asymptotes, that is, a pair 

of lines through the center that never meet the hyperbola, but such that any line 

through the center passing into the region containing the hyperbola does meet the 

hyperbola. The word asymptote means literally not falling together. 

Books I and II are occupied with finding the proportions among line segments 

cut off by chords and tangents on conic sections, the analogs of results on circles 

in Books III and IV of Euclid. These constructions involve finding the tangents to 

the curves satisfying various supplementary conditions such as being parallel to a 

given line, etc. 

Foci and the Three-Line Locus 

We are nowadays accustomed to constructing the conic sections using the focus- 

directrix property, so that it comes as a surprise that the original expert on the 

subject does not seem to recognize the importance of the foci. He never mentions 

the focus of a parabola, and for the ellipse and hyperbola he refers to these points 

only as “the points arising out of the application.” The “application” he has in 

mind is explained in Book III. Propositions 48 and 52 read as follows: 

(Proposition 48). If in an ellipse a rectangle equal to the fourth part of the figure 

is applied from both sides to the major axis and deficient by a square figure, 

and from the points resulting from the application straight lines are drawn to the 

ellipse, the lines will make equal angles with the tangent at that point. 

(Proposition 52). If in an ellipse a rectangle equal to the fourth part of the figure 
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Figure 6.7: Focal properties of an ellipse. 

is applied from both sides to the major axis and deficient by a square figure, 

and from the points resulting from the application straight lines are drawn to the 

ellipse, the two lines will be equal to the axis. 

The “figure” referred to is the rectangle whose sides are the major axis of the 

ellipse and the latus rectum. In Fig. 6.7 the points F\ and F2 must be chosen on 

the major axis AB so that AF\ ■ F\B and AF2 ■ BF2 both equal one-fourth of 

thv area of the rectangle formed by the axis AB and the latus rectum. Proposition 

48 expresses precisely the focal property of these two points: any ray of light 

emanating from one will be reflected to the other. Proposition 52 is the “string 

property” that characterizes the ellipse as the locus of points such that the sum of 

the distances to the foci is constant. These are just two of the dozens of theorems 

Apollonius was immodest enough to call “remarkable.” Apollonius makes little 

use of these properties, however, and does not discuss the use of the string property 

to draw an ellipse. 

A very influential part of the Conics consists of Propositions 54-56 of Book III, 

which contain the solution to the three- and four-line locus problems mentioned by 

Apollonius in his preface. Both in their own time and because of their subsequent 

influence the three- and four-line locus problems have been of enormous importance 

for the development of mathematics. To avoid excessive complexity, we merely 

state the three-line locus problem and tell how it was solved. The data for the 

problem are three lines, which for definiteness we suppose to intersect two at a 

time so as to form a triangle, and three given angles, one corresponding to each 

line. The problem requires the locus of points P such that if lines are drawn 

from P to the three lines, each making the corresponding angle with the given 

line, the square on the first will have a constant ratio to the rectangle on the other 

two. Apollonius shows that this problem can be solved by drawing a conic section 

having one side of the triangle as a chord and at the same time tangent to the other 

two lines at the endpoints of the chord. This conic will then be the required locus. 

We shall see that later mathematicians such as Pappus and Descartes set great 

store by these locus problems. The solution of this problem was later seen as the 

high-water mark of Greek geometry. It was his success in extending this problem 

to more than four lines that convinced Descartes of the value of his geometric 

methods. 
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6.3 Problems and Questions 

6.3.1 Problems from Archimedes and Apollonius 

Exercise 6.1 Show that the problem of squaring the circle is equivalent to the 

problem of squaring one segment of a circle when the central angle subtended by 

the segment is known. (Knowing a central angle means having two line segments 

whose ratio is the same as the ratio of the angle to a full revolution.) 

Exercise 6.2 Show that the real-valued rational functions are an example of a non- 

Archimedean ordered field. A rational function is the quotient of two polynomials. 

One rational function R\(x) is said to be larger than another R2(x) if R\(x) > 

R2(x) for all large positive values of x. An integer in this context means a constant 

function whose constant value is an integer. Show that in this field no integer n 

exceeds the function x. 

Exercise 6.3 Referring to Fig. 6.1, show that all the right triangles in the figure 

formed by connecting B' with C, C' with K, and K' with L are similar. Write 

down a string of equal ratios (of their legs). Then add all the numerators and 

denominators to deduce the equation 

(BBf + CC' + • • • + KK' + LM) : AM = A'B : BA. 

Exercise 6.4 The parametric equations of an Archimedean spiral are x = a9 cos 6, 

y = ad sin 9. Use these equations to prove that the tangent to the spiral at the 

point (27ra, 0) (corresponding to 9 — 2n) meets the y axis at the point (0, —An2a). 

Exercise 6.5 Prove the proportion that Archimedes claims in Fig. 6.3. To do 

so use the facts that MS = CA and SQ = AS to establish that MS • SQ = 

CA-AS = AO2 = OS2 + AS2 = OS2 + SQ2. Then use the fact that HA = CA 

to show that HA : AS = CA : AS = MS : SQ = MS2 : MS • SQ = MS2 : 

(OS2 + SQ2) = MN2 : (OP2 + QR2). 

Exercise 6.6 Show that Archimedes’ result on the relative volumes of the sphere, 

cylinder, and cone can be obtained more simply by considering the cylinder, sphere 

and double-napped cone formed by revolving a circle inscribed in a square about a 

midline of the square, the cone being generated by the diagonals of the square. In 

this case the area of a circular section of the cone plus the area of the same section 

of the sphere equals the area of the section of the cylinder since the three radii 

form the sides of a right triangle. (The radius of a section of the sphere cuts off a 

segment of the axis of rotation from the center equal to the radius of the section of 

the cone, since the vertex angle of the cone is a right angle. These two segments 

form the legs of a right triangle whose hypotenuse is a radius of the sphere, which 

is equal to the radius of the section of the cylinder). 

Exercise 6.7 One minor work of Archimedes that we did not discuss, called the 

Book of Lemmas, contains the following trisection of the angle. In Fig. 6.8, we are 
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Figure 6.8: Archimedes’ trisection of an angle (/3 ~ ^a). 

given an acute angle a = Z.AOB, whose trisection is required. We draw a circle 

ABC of any radius r about O, the vertex of the angle. Then, using a straightedge, 

we mark off on it two points P and Q separated by the distance r. Setting the 

straightedge down so that P is on the extension of the diameter CA, Q is on the 

semicircle ABC, and the point B is also on the edge of the straightedge, we draw 

the line PB, which contains the point Q. By drawing the radius QO, we obtain 

two isosceles triangles OQP and QOB. The equal angles of the first of these will 

be denoted (3, and since the exterior angle of a triangle equals the sum of the two 

opposite interior angles, it follows that the equal angles of the second are equal 

to 2(3. Therefore ZBPO = (3, APBO = 2(3, and again by the exterior angle 

theorem a = S/3. That is, we have constructed an angle (3 equal to one-third of a. 

Why is this construction not a straightedge-and-compass trisection of the angle, 

which is known to be impossible? 

Exercise 6.8 Justify the remark in the text that the problem of increasing the 

size of a sphere by half is equivalent to the problem of two mean proportionals 

(duplicating the cube). 

Exercise 6.9 A circle can be regarded as a special case of an ellipse. What is the 

latus rectum of a circle? 

Exercise 6.10 When the equation y2 

form 
(x — h)2 

a 2 

Cx — kx2 

+ l!_ = i 
b2 ’ 

is converted to the standard 

what are the quantities h, a, and b in terms of C and k? 

Exercise 6.11 Show from Apollonius’ definition of the foci that the product of 

the distances from each focus to the ends of the major axis of an ellipse equals 

the square on half of the minor axis. 

Exercise 6.12 We have seen that the three- and four-line locus problems have 

conic sections as their solutions. State and solve the two-line locus problem. You 

may use modern analytic geometry and assume that the two lines are the x axis 

and the line y = ax. The locus is the set of points whose distances to these two 

lines have a given ratio. What curve is this? 
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Exercise 6.13 Show that the apparent generality of Apollonius’ statement of the 

three-line locus problem, in which arbitrary angles can be prescribed at which lines 

are drawn from the locus to the fixed lines, is illusory. (To do this, show that the 

ratio of a line from a point P to line l making a fixed angle 9 with the line l 

bears a constant ratio to the line segment from P perpendicular to /. Hence if the 

problem is solved for all ratios in the special case when lines are drawn from the 

locus perpendicular to the given lines, then it is solved for all ratios in any case.) 

Exercise 6.14 Show that the line segment from a point P = (x,y) to a line 

ax -f by = c making angle 6 with the line has length 

\ax + by — c\ 

\/a1 + b2 sin 6 

Use this expression and three given lines k : a{x + biy = c*, i = 1,2,3, to 

formulate the three-line locus problem analytically as a quadratic equation in two 

variables by setting the square of the distance from (x,y) to line l\ equal to a 

constant multiple of the product of the distances to l2 and Z3. Show that the locus 

passes through the intersection of the line l\ with l2 and Z3, but not through the 

intersection of l2 with Z3. Also show that its tangent line where it intersects U is 

li itself, i = 2,3. 

6.3.2 Questions about Archimedes and Apollonius 

Exercise 6.15 Can you suggest any criteria for “mathematical greatness” not given 

in the list at the beginning of this chapter? In what ways does Archimedes fit these 

criteria? Give examples from the discussion of his works. 

Exercise 6.16 At one point in his estimation of 7r Archimedes arrives at a rational 

approximation that he writes as 5911 : 153. Now the fraction ~ that occurs in this 

expression could actually be replaced by y, and would yield a stronger estimate. 

Why do you think Archimedes prefers the weaker estimate with |? 

Exercise 6.17 Archimedes’ argument actually obtains the upper bound ^6388 for 

7r. How much smaller is this number than ^? Why do you think Archimedes 

settled for the weaker estimate %r? 

Exercise 6.18 Wfry didn’t Archimedes give a pure existence proof for the finite¬ 

ness of the number of grains of sand required to fill up the universe, based on his 

axiom that some multiple of any volume must exceed any other volume? 

Exercise 6.19 Archimedes’ Method is based on an appeal to physical intuition. 

For example, each section of the sphere and cone discussed above is balanced 

by a corresponding section of the cylinder. As mentioned above, a very similar 

technique now known as Cavalieri’s principle was used both in China and in early 

modern Europe for finding areas and volumes. The idea is that if every pair of 

sections of two bodies has a certain ratio, say 2:1, then the bodies themselves will 



6.4. ENDNOTES 137 

have this ratio. The difficulty from a logical point of view is that, as Zeno showed, 

a continuous body is not simply the “sum” of lower-dimensional pieces. We 

therefore cannot be sure that our intuition does not mislead us. Does Archimedes’ 

introduction of the principle of the lever in his application of the method answer 

this objection? 

Exercise 6.20 One reason for doubting Cavalieri’s principle is that it breaks down 

in one dimension. Consider, for instance, that every section of a right triangle 

parallel to one of its legs meets the other leg and the hypotenuse in congruent 

figures (a single point in each case). Yet the other leg and the hypotenuse are 

obviously of different lengths. Is there a way of redefining “sections” for one¬ 

dimensional figures so that Cavalieri’s principle can be retained? If you could do 

this, would your confidence in the validity of the principle be restored? 

Exercise 6.21 We know that interest in conic sections arose because of their appli¬ 

cation to the problem of two mean proportionals (duplication of the cube). Why do 

you think interest in them was sustained to the extent that caused Euclid, Aristaeus, 

and Apollonius to write treatises developing their properties in such detail? 

Exercise 6.22 As we have seen, Apollonius was aware of the string property of 

ellipses, yet he did not mention that this property could be used to draw an ellipse. 

Do you think that he did not notice this fact, or did he omit to mention it because 

he considered it unimportant? 

6.4 Endnotes 

1. The quotation from Cicero is taken from his Tusculan Disputations, trans¬ 

lated by J.E. King (G. P. Putnam’s Sons, New York, 1927), pp. 491, 493. 

2. The information on the modem identification of Archimedes’ tomb is based 

on La tomba di Archimede by Salvatore Ciancio ( Ciranna, Rome, 1965). 

3. The discussion of Archimedes’ Measurement of the Circle is based on Vol. 1 

of Clagett’s Archimedes in the Middle Ages (University of Wisconsin Press, 

1964), p. 49, and on T. L. Heath’s The Works of Archimedes, Dover Reprint, 

New York 1953, pp. 91-99. 

4. All quotations from Archimedes’ prefatory letters to his works are taken 

from the book of Heath (op. cit.). 

5. Eutocius’ research on Archimedes is described in the book of Heath (op. 

cit.), p. 66. 

6. Archimedes’ near approach to the idea of a derivative in his work on spi¬ 

rals was pointed out in an after-dinner speech given by S. Bochner on his 

retirement from Princeton University in 1969. 
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7. Pappus’ comments on Apollonius can be found in the book of T. L. Heath, 

Apollonius Pergaeus. Treatise on Conic Sections (Cambridge University 

Press, 1896), pp. xxxi-xxxiii. 



Chapter 7 

Hellenistic Mathematical 
Science 

Both science and technology reached very high levels during the half millennium 

that passed between 200 B.C.E. and 300 C.E. There is not enough space here to 

discuss the technology of the period, and in any case this technology had very little 

to do with mathematics. For that reason we shall concentrate on the role played 

by mathematics in the formulation of the principles of certain parts of physics and 

astronomy. This mathematical science poses a problem for the historian. It seems 

to be an application of some of the simpler parts of Euclid’s geometry together 

with the older and distinctly uneuclidean idea of attaching numbers (lengths) to 

line segments and arcs. Did the applied mathematicians guide the development 

of geometry, or did they opportunistically use the relations that geometers had 

developed? The texts do not tell us the answer. 

We have seen that mathematical astronomy in Mesopotamia was basically nu¬ 

merical, a matter of counting the days between full moons, eclipses, etc. In the 

Greek world geometry was added to this science in a combination with computation 

that prefigures the subject now known as trigonometry. Geometry also penetrated 

into mechanics, optics, and astronomy in the time of Euclid. These three areas 

will form the subject matter of this chapter. 

7.1 Mechanics 

As mentioned in the preceding chapter, Archimedes made important contributions 

to the mathematization of physics, using the geometric theory of proportion to 

establish the basic principles of the lever and floating bodies. He was not the 

first to attempt a mathematical treatment of these questions, however. The subject 

of physics was already well advanced by the time of Aristotle, who included it 

among the many subjects on which he wrote treatises. We shall contrast Aristotle’s 

explanation of the principle of the lever with that of Archimedes. 

139 
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7.1.1 Aristotle’s Physics and Mechanics 

The Physics 

The word physics is related to other ancient Greek words such as physikos, mean¬ 

ing natural or inborn. This etymology reflects the principles by which Aristotle 

interpreted the physical world: each identifiable object in the world has a certain 

inborn nature in terms of which its behavior is explained. This nature expresses 

itself as a cause of motion. Aristotle uses the terms motion and rest more broadly 

than we use them today. He defines motion as “the fulfillment of what exists po¬ 

tentially.” Thus growth and decay are forms of motion in this sense. To preserve 

the distinction it is useful to refer to the common meaning of the English word 

motion, that is, change of place, as locomotion. In all cases motion (in the broader 

sense) requires (1) a mover (cause of motion), (2) a thing moved, and (3) a state 

or place moved to. Aristotle does not include a state or place moved from, on the 

grounds that it is the goal of the motion that determines its nature. In Book VII of 

the Physics he lays down the general principle that “everything that is in motion 

must be moved by something.” By tracing backward from the existing motion and 

denying the actually infinite, he is thus led to the ultimate source of a particular 

motion, which must itself be eternally unmoved. The cause of motion of a partic¬ 

ular body, however, may be the body itself; Aristotle includes this case among the 

possible cases of motion. For bodies moved by other bodies he distinguishes four 

cases: pushing, pulling, carrying, and rotating. All more complex motions, such 

as compressing, stretching, and combing, he says, are to be analyzed as various 

combinations of these things. 

The principles of physics laid down thus far are qualitative and verbal. Math¬ 

ematics does not enter into this kinematic theory (from kinymai, meaning to be 

moved). When Aristotle comes to formulate dynamics (from dynamis, meaning 

power), however, he does invoke mathematics, in particular the notion of propor¬ 

tion. He says in Book VII.5 that if a mover has moved a body B a distance T 

in time A, then in the same time the same mover will move a body of size \B 

a distance 2T, and in time it will move the body \B the full distance T, 

“for in this way the rules of proportion will be observed.” Thus it appears at first 

sight that Aristotle is saying that a “mover” can be quantified as the product of 

the “body” and the distance divided by the time. If we assume that bodies are 

measured by their mass and that the quantified “mover” is force, this definition 

would make force proportional to what we now call momentum. This projection of 

modern ideas, however, will not work. For Aristotle has only an intuitive concept 

of what we now call instantaneous velocity. This concept occurs implicitly when 

he talks about objects moving faster or slower than other objects. Whenever a 

specific motion is in question, however, he always speaks of the distance moved in 

a given time, that is, the data for finding what we would call the average velocity. 

Moreover, he explicitly denies that the simple mathematical proportion that he uses 

to relate the motion of a body to the motion of a body half as large can be extended 

in the opposite direction to relate to a body twice as large. 

The principles of physics are further developed in Aristotle’s book On the 
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Heavens, where, in Book III, he discusses motion for bodies below the circle of 

the moon. It is in this treatise that most of the famous “erroneous” principles 

that everyone has heard of are formally stated. For example, in Book II, while 

explaining his reason for believing the earth to be circular, Aristotle reports that 

“a little bit of earth, let loose in mid-air, moves and will not stay still, and the 

more there is of it the faster it moves.” Apparently this misleading observation had 

caused people to wonder why the whole earth does not similarly move, yet faster. 

Aristotle advances a circular earth at the center of the universe as the solution of 

the seeming paradox. Again, to reconcile the principle that everything in motion 

is moved by something with the observation that a stone thrown through the air 

continues to move even after it has left the hand, Aristotle says that, “the force 

transmits the movement to the body first by, as it were, impregnating the air,” so 

that it is really the air that moves the object. In Book IV Aristotle distinguishes 

between gravity and levity (gravity is not a force, as we now think of it, but rather 

a property of a body, as is its opposite, levity, which we no longer believe in at 

all). Aristotle says that “there are things whose constant nature it is to move away 

from the center, while others move constantly toward the center.” Whether this 

center is the center of the earth or the center of the universe, Aristotle says, can be 

left to another inquiry, since the two centers coincide. Aristotle understands that 

motion cannot be explained only in terms of what we call density, but that shape 

must play a role. He says that, while shape will not account for motion per se, it 

will account for the velocity of the motion. He notes that a (thin) flat piece of iron 

can be made to float on water, while a round piece will sink. Democritus, who 

had propounded an atomic theory of matter, claimed that warm bodies (atoms) 

could move up out of the water in sufficient numbers to support a broad piece of 

iron, but not a narrow one. To the objection that this effect is not observed in 

air Democritus (as reported by Aristotle) had replied that the atoms of air do not 

all move upward, so that their action was diluted, so to speak. Aristotle comes 

close to the modem explanation (surface tension) in saying that air is more easily 

divided than water, so that a body placed on a broad surface of water must “work 

harder” to divide the water and thus sink. 

The Mechanics 

The treatise known as the Mechanics was almost certainly the work of scholars 

who adhered to Aristotle’s basic principles, but it was not written by Aristotle 

himself. The title of this treatise, which comes from mechane, meaning machine, 

is almost the exact opposite of physics. Indeed the author of the work says in 

the preface that the subject matter of mechanics is precisely those devices used 

to produce an effect contrary to nature. The most important simple machine is 

the lever, which makes it possible to move great weights with very little force, in 

seeming contradiction to nature. 

The author of the Mechanics traces the basic principle of the lever to the circle, 

which embodies a unity of opposites. For when a circle is rotated about its center, 

it is in motion, yet the center does not move. In addition antipodal points on 

a rotating circle are moving in opposite directions at any given time. Two such 
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B 

Figure 7.1: Circular motion according to Aristotle. 

points are continually exchanging their motions. If one thinks of the points as 

being ordered, then the last point is continually becoming the first point. 

The practical question about levers to which the author wishes to apply physical 

principles is: Why are large balances more accurate than small ones? This question 

is formulated in physical terms as the following: Why does a point on a rotating 

circle farther from the center move more rapidly than a point closer to the center? 

The author finds the answer to this question in the principle of combined motions: 

Now whenever a body is moved in two directions in a fixed ratio, it 

necessarily travels in a straight line, which is the diagonal of the figure 

which the lines arranged in this ratio describe. 

Here we find a very clear statement of the principle known as the parallelogram 

law for addition of vectors. It is applied here to the path followed by an object 

moved by two forces at once, whereas in modem physics it applies to a wide 

variety of physical quantities. The author gives a geometric argument to justify 

this assertion. Then (see Fig. 7.1) the author says that circular motion cannot 

be compounded of two constant motions such as BD and DG, since if it were, 

the body would move along the chord BG in accordance with the parallelogram 

principle. Circular motion of the body is explained in terms of the attraction of the 

center of the circle. Points near the center are more strongly attracted than those 

farther away, and since the more interference there is, the more slowly an object 

moves, it follows that those points nearer the center will move more slowly than 

those farther away. 

This happens with any radius which describes a circle; it moves along 

a curve naturally in the direction of the tangent, but is attracted to 

the center contrary to nature. The lesser radius [of a balance beam] 

always moves in its unnatural direction; for because it is nearer to the 

center which attracts it, it is the more influenced. 

The idea expressed here is contained in the concept of curvature. The curvature 

of a circle, as you know from calculus courses, is inversely proportional to the 

radius—A small circle curves more than a large one. In fact a sufficiently large 

circle looks rather straight.1 Thus, if a point is directly above the center of a circle 

and moving along the circle, its natural motion will be tangential, to the right 

1 This observation was used by Aristotle in his book On the Heavens to reply to those who claimed 

the earth was flat. 
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or left; but if the point is attached to the center, it will be constrained to move 

downward (toward the center). This latter effect will be greater at points closer 

to the center. The author says explicitly that “one would expect the two motions 

(natural and unnatural) to be in proportion.” 

Applying this principle to a lever, the author of the Mechanics states that 

“the ratio of the weight moved to the weight moving it is the inverse ratio of the 

distances from the center.” 

The Mechanics is not a deductive physical theory. It does not contain any 

general postulates as a starting point, but is rather confined to special problems 

solved by ad hoc methods. In this respect it contrasts with the work of Archimedes 

we are about to discuss. 

7.1.2 Archimedes’ Physical Treatises 

Levers 

While Aristotle’s explanation of the lever involves only a rudimentary amount of 

geometry, the treatise of Archimedes On the Equilibrium of Planes gives a geo¬ 

metric derivation of the law in accordance with the strict principles of the Eudoxan 

theory of proportion. Moreover, Archimedes makes no use of the large array of 

concepts from Aristotelian physics—he never mentions gravity or levity, nor does 

he make use of any principles like “whatever moves is moved by something,” nor 

does he classify motion into pushing, pulling, carrying, and rotating. Archimedes’ 

starting points (postulates) are mathematical and apparently based on intuitive ideas 

of symmetry. To give an idea of the structure of the theory Archimedes intends to 

create, we shall list some of his postulates. 

1. Equal weights balance at equal distances (from the fulcrum); at equal dis¬ 

tances with unequal weights the larger weight will sink. 

2. If two weights balance and more weight is added to one of the two, that one 

will sink. 

3. If two weights balance and some weight is removed from one of the two, 

that weight will rise. 

4. If two magnitudes balance at certain distances (regardless of shape) two 

other magnitudes equal to them will also balance at these distances 

From his postulates Archimedes deduces with strict logic that weights that 

balance at equal distances are equal (Proposition 1) and that if unequal weights 

balance, the larger weight will be closer to the fulcrum (Proposition 3). At this 

point Archimedes makes use of the concept of center of gravity, proving that the 

center of gravity of a system of two equal bodies is the midpoint of the line joining 

their individual centers of gravity (Proposition 4) and that if three equal magnitudes 

have their centers of gravity on a straight line, the outer two being equidistant from 

the middle one, then the center of gravity of the three-body system coincides with 
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Figure 7.2: Balancing commensurable weights. 

D * 
C 
A * E 

Figure 7.3: A lever with fulcrum at C. 

the center of gravity of the middle body (Proposition 5). These two propositions 

are then extended to any even or odd number of bodies symmetrically arranged 

about a center. 
At this point it is an easy matter to show that the inverse proportion law 

of the lever holds for commensurable magnitudes. The essence of the argument 

is that one can select a common measure of the two magnitudes such that one 

of the magnitudes is 2m times the common measure and the other is 2n times 

it. Given two distances in the same proportion as the two magnitudes, choose 

a common measure of the two distances such that one of them is 2m times the 

common measure and the other is 2n times it. Then simply imagine the two lines 

extending in opposite directions from a given point and marked off into 2m + 2n 

equal segments; also imagine the two magnitudes broken into 2m + 2n equal 

pieces. Placing one piece over each segment, one finds that they balance with 

m + n segments and pieces on each side of the fulcrum. But the first body can be 

thought of as consisting of 2m of these pieces lying on a (weightless) secondary 

lever situated on top of the primary one, m pieces being on each side of the 

fulcrum in the secondary lever; and the second body likewise can be thought of 

as the remaining 2n pieces, balanced on a secondary lever with n pieces on each 

side. It is then clear that these secondary fulcrums are respectively n and m units 

from the primary fulcrum. Thus the two bodies will balance if their centers of 

gravity are suspended at these points (see Fig. 7.2). 

There are no surprises for the modem mathematician in this treatment of the law 

of the lever for commensurable magnitudes. Archimedes’ treatment of the subject 

differs from modern versions only in the logical rigor with which Archimedes 

deduced the fundamental principle. Adhering to the principles of the Eudoxan 

theory of proportion, he found it necessary to consider the incommensurable case 

as well. Since this law is seldom proved in modem physics textbooks, it will be of 

interest to see how incommensurable magnitudes are handled. Archimedes argues 

as follows. 

Assume that the magnitudes A and B are incommensurable. Choose C on the 

line DE so that A : B = DC : CE, as in Fig. 7.3. We claim that weight A 

placed at E and B placed at D must balance about C as a fulcrum. Suppose not, 

that is, suppose that the point E sinks and the point D rises when the weights are 
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suspended this way. Then A is too heavy to balance B, and so some smaller weight 

(say, A') must balance B exactly. Between A and A' there is some weight A" that 

is commensurable with B. But then the ratio A" : B is less than DC : CE, and 

so by the commensurable case the point E will rise when A" is suspended at E 

and B is suspended at D. A fortiori the point E will rise when A' is suspended 

at E and B is suspended at D, contradicting the way in which A' was chosen. 

A similar proof, with a weight A' larger than A and A" between A and A' and 

commensurable with B, shows that the point E cannot rise when the weights A 

and B are suspended as stated. Thus by the trichotomy we conclude that the 

weights will balance. 

Notice that Archimedes’ use of the Eudoxan theory of proportion avoids the 

cumbersomeness of the direct definition of proportion from Book V of Euclid. 

Evidently someone, perhaps Archimedes himself, discovered that arguments could 

be “streamlined” by making use of the following result: Given three magnitudes 

A, A', and B of the same kind, with A f A', there is a magnitude A" of the same 

kind intermediate in size between A and A! and commensurable with B. This 

principle can be stated in modern language by saying that the rational numbers are 

dense in the real numbers. 

Hydrostatics 

Archimedes’ treatises On Floating Bodies are the earliest mathematical treatments 

of hydrostatics. He begins, as in the treatise on levers, with a simple intuitive 

postulate. If we imagine that the only force acting on a given point, curve, or 

surface in a fluid is the weight of the fluid directly above it, the part in question 

can be thought of as compressed by the weight of the fluid above it. If this 

compression is uneven between two points at the same distance from the center 

toward which the fluid is sinking (the center of the earth), then the fluid will move 

laterally from the point of higher pressure toward the point of lower pressure. In 

modem terms this is the definition of a fluid: a substance that cannot support a 

shear stress. This principle is the only postulate for the work. From this principle 

it is not difficult to deduce that the surface of a fluid at rest is a sphere whose 

center is the center of the earth (Proposition 2). Archimedes then shows that a 

solid of equal density with a fluid will sink to a level even with the surface but not 

lower. (He doesn’t use the word density, but rather refers to solids that, “size for 

size are of equal weight with the fluid.”) For if the solid did not sink to that level, 

the fluid at any level below the body would be compressed by a weight equal to 

the weight of fluid above any other portion of the same size and elevation, and 

also by the weight of the portion of the body projecting out of the fluid. Hence 

there would be a pressure imbalance at that level and equilibrium would not occur. 

The fundamental principles of hydrostatics are all deduced from this single 

principle. The most important of these is Proposition 7: A solid heavier than a 

fluid will, if placed in it, descend to the bottom of the fluid, and the solid will, 

when weighed in the fluid, be lighter than its true weight by the weight of the fluid 

displaced. 
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This last proposition forms the basis for the famous story of Archimedes in the 

bath. The Roman architect Vitruvius gives this story in the preface to Book IX of 

his De Architectura. According to Vitruvius, Archimedes weighed an amount of 

gold equal to the weight of the king’s crown and also an amount of silver equal 

to the weight of the crown. He then measured the amount of water displaced by 

these three equal weights. He found that the crown displaced more water than an 

equal weight of gold, but less than an equal weight of silver. 

In Book II Archimedes investigated the stability of a segment of a paraboloid 

of revolution floating in a fluid. In particular in Proposition 2 he showed that 

a segment cut off perpendicular to the axis and placed in the fluid with the base 

above the surface of the fluid will adjust its position so that the axis of the segment 

is vertical, provided the material of which the segment is made has density less 

than that of the fluid and the length of the axis of the segment is at most three- 

fourths of the latus rectum p of the generating parabola. For segments whose axis 

A is larger than |p he showed that the same proposition will hold provided the 

density is less than that of the fluid but not less than (l — |p/A) . Continuing in 

this vein, Archimedes studied the equilibrium positions of segments of paraboloids 

of revolution of many shapes, describing precisely the angle between the axis and 

the vertical. This work is an imposing intellectual feat, leading to very elegant 

descriptions of physical situations that one would have found impossible to analyze 

without the groundwork provided by the fundamental principles of geometry. 

7.1.3 Heron’s Mechanical Works 

The dates of Alexandrian scholar Heron are uncertain, somewhere between 150 

B.C.E. and 250 C.E. The majority opinion puts him in the first century C.E. He is 

best remembered for having discovered how to find the area of a triangle in terms 

of the lengths of its sides and for having invented an early steam-powered machine. 

In fact he created many interesting mechanical devices besides the steam engine 

and wrote a treatise on surveying (Dioptrica). In keeping with the principles of 

the present chapter we shall discuss only certain theoretical work in physics at 

this point. In his Mechanica, part of which is quoted by Pappus, he considers 

the mechanics of a bent lever. Pappus uses this principle of Heron to discuss the 

problem of the power (force) required to move a weight up an inclined plane. He 

imagines the weight as located at the center of a sphere being rolled up the inclined 

plane and balanced by a fictitious weight B on the surface of the sphere at the 

same elevation as the center and as close as possible to the plane (see Fig. 7.4). 

He takes the power required as the sum of the power required to move the two 

weights along a horizontal surface. (This reasoning uses Aristotelian principles 

of physics that we no longer accept. On the modem view, except to overcome 

rolling friction, no force at all is required to roll a ball along a horizontal surface 

once it has started to roll.) Thus, although the principle of the lever was well 

understood in Hellenistic times, that of the inclined plane was not. Since the 

modern law involves only the proportions in a triangle, it seems strange that this 

simple principle was not discovered. 
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Figure 7.4: The law of the inclined plane according to Heron and Pappus. 

7.2 Optics 

The subject of optics, understood in Hellenistic times as the study of vision rather 

than light, is very naturally amenable to geometric treatment. Thus it is not sur¬ 

prising that Euclid wrote a textbook on the subject. A lost work of Archimedes 

called Catoptrics (reflection) is known to have existed because a remark from it 

is quoted by the fourth-century writer Theon of Smyrna. In the generation after 

Archimedes’ death Diocles wrote a work On Burning Mirrors, which begins with 

two propositions related to its title and then wanders off into pure mathematics. 

Being so closely akin to geometry, the subject of optics has attracted the attention of 

many great scientists over the centuries, including the second-century astronomer 

Ptolemy, the Islamic mathematician Al-Haitham (Alhazen), Descartes, Huygens, 

and Newton, all of whom wrote treatises on optics. 

Euclid: Optics 

One of the surviving books of Euclid is a treatise on optics, and it appears that he, 

like Archimedes, wrote a book on catoptrics (reflection) that has been lost. The 

Euclidean style is evident in the Optics, which begins with a list of postulates, 

such as the postulate that visual rays are emitted from the eye in straight lines. 

(This, of course, is the opposite of the actual direction of travel of light rays, but 

for Euclid’s geometric treatment the direction of travel is not important.) Euclid 

proceeds from these postulates to a large number of propositions that incorporate 

general principles. Typical of these propositions is Proposition 8, which asserts 

that the apparent sizes of equal and parallel magnitudes at unequal distances from 

the eye are not (inversely) proportional to those distances, that is, an object when 

removed to twice a given distance does not appear to be half as large. The ratio of 

the apparent size of the near object to the apparent size of the more distant object 

is less than the ratio of the larger distance to the smaller distance. The apparent 

size of an object is the angle it subtends when projected to the eye of the observer. 

(This is the fourth of the basic principles laid down by Euclid as a foundation of 

the subject.) 

In precise terms (see Fig. 7.5), the angles BE A and DEG subtended at the 

eye E by the equal and parallel lines AB and DG are not in inverse proportion 

with the distances BE and DE (perpendicular to the lines AB and DG), and in 

fact AD EG : ABE A < EB : ED. Indeed by drawing the arc TZH one can see 
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Figure 7.5: Apparent size of objects at different distances. 

that AEZG is larger than sector EZH, while AEDZ is less than sector ETZ. 

Thus 
A EZG : sector EZH > 1 > A EDZ : sector ETZ, 

so that 
A EZG : A EDZ > sector EZH : sector ETZ 

and (adding 1 to both sides) 

A EDG : A EDZ > sectoi ETH : sector ETZ. 

Now the two sectors are proportional to the central angles they occupy, so that 

sector ETH : sectoi ETZ = ZD EG : ZDEZ. 

Since the two triangles are on the same base ED they are proportional to their 

altitudes, so that 

DG : DZ > ZDEG : ZDEZ. 

Since AB = DG we find that AB : DZ > ZDEG : ZDEZ, and finally by 

similar triangles and the fact that ZDEZ = ZBEA, 

EB : ED = AB : DZ > ZDEG : ZBEA. 

In the Optics Euclid states 61 propositions relating to perspective. Many of 

these were not new at the time. Proposition 18, for example, which calls for 

determining the height of an inaccessible object when the sun is above the horizon, 

echoes the famous story told about Thales’ having measured the height of the 

Great Pyramid by measuring the length of his own shadow and the shadow of the 

pyramid. It is interesting, however, that this technique does not require any angle 

to be measured; it relies instead on similar triangles. In that respect it resembles 

the method used for surveying in China, India, the Islamic world, and Medieval 
Europe. 

An example of the type of theorem on perspective that can be found in the 

Optics is Proposition 35, which asserts that if the line from the eye to the center of a 

circle is perpendicular to the plane of the circle, then all the diameters of the circle 

will appear equal. We now know that if the problem implicit in this proposition 

(What is the apparent shape of a circle viewed from outside its plane?) is pursued, 
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it leads to projective geometry and a unified treatment of the conic sections. It 

would be too much to expect one scholar to carry mathematics so far, however. 

This subject was not explored in depth until modem times. 

Diodes and Heron: Catoptrics (Reflection) 

Diodes The original Greek version of the treatise known as On Burning Mirrors 

and said to have been written by Diodes has been lost. An English translation 

and facsimile of an Arabic translation, which occasionally mentions Diodes in the 

third person, has been published by G. J. Toomer. In the introduction to this work 

Diodes mentions that “when the astronomer Zenodoms came down to Arcadia and 

was introduced to us, he asked us how to find a mirror surface such that when it 

is placed facing the sun the rays reflected from it meet [in] a point and thus cause 

burning.” This sentence gives us a hint that the mathematicians of the time were 

widely scattered geographically, but in constant touch by correspondence, since 

Diodes, living in Arcadia (in the Peloponnesus) is nevertheless well acquainted 

with the works of the mathematicians we have encountered and is quite current on 

the important questions of the time. 

The title On Burning Mirrors was bestowed because the first two propositions 

of the treatise are occupied with the question just quoted and a similar question said 

by Diodes to have been posed to Conon regarding a mirror that would reflect all 

the sun’s rays through the circumference of a circle. Diodes says that Dositheus, 

whom we have encountered as the recipient of letters from Archimedes, solved the 

burning mirror problem. The solution is a paraboloid of revolution, which reflects 

all rays parallel to the axis into the focus, the point on the axis located at a distance 

from the vertex equal to one-fourth of the latus rectum. 

Heron Although Diodes uses the fact that the angle of incidence equals the 

angle of reflection, he does not state this fact as a basic principle or try to derive 

it from other hypotheses. The famous argument that a path for which the angle 

of incidence equals the angle of reflection is the shortest path emanating from a 

given point, meeting a given line, and ending in a second given point is due to 

Heron, whose derivation of this principle in a work entitled Catoptrics is the now 

standard one, based on Fig. 7.6. In that figure consider any hypothetical path 

emanating from point S, meeting line MM' in the point P', and then passing to 

the point E. The line segment SP' is reflected in the line MM' to produce the 

line segment S'P' of the same length. The problem of minimizing the path length, 

then becomes a matter of minimizing the length of the paths from S' to E. Since 

the shortest such path is obviously a straight line S' PE, it is clear that in the 

shortest path AS PM (the angle of incidence) equals AMPS' by congruence, and 

AMPS' equals AEPM' (vertical angles). This geometric principle was thought 

to apply to the path of a light ray because of the Aristotelian principle that Nature 

does nothing in vain. 
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Figure 7.6: Shortest path between two points meeting a line. 

Ptolemy: Dioptrics (Refraction) 

The phenomenon of refraction manifests itself in the bent appearance of a stick 

half of which is submerged in water. This phenomenon can be explained by 

assuming that the brain interprets the light waves reaching the eye as if they had 

traveled along a straight line, while in fact, when the light has passed through two 

different media such as water and air these rays will be bent at the interface of the 

two media. The modern explanation of refraction is that light travels at different 

speeds in different media, and a light ray always moves along a path that (locally) 

requires less time than any nearby path. Refraction effects in crystals can be very 

complicated, since the angle of refraction can vary, depending on the polarization of 

the light. This phenomenon (double refraction), however, was not to be discovered 

until the seventeenth century. At the early stage we are now considering the only 

problem to be solved is the quantification of simple refraction in at the interface 

of media such as water, glass, and air. The problem is to determine the angle the 

refracted ray makes at the interface and set down the correspondence between the 

angle of incidence and the angle of refraction. 

For light passing from water to air, refraction can be observed by a famous 

experiment, commonly shown to grade-school students. A coin is placed at the 

bottom of a cup and the observer moves away from the cup until the coin is 

concealed from view by the rim of the cup. Water is then poured into the cup, 

and the coin comes into view, even though it has not moved. This experiment 

was first described by Ptolemy in his work Optics. In the fifth and last of the 

books of this treatise Ptolemy describes a number of observations of light passing 

from air to water, air to glass, and water to glass. He observed the empirical 

fact that light passing from a denser object to one less dense is refracted away 

from the perpendicular, while the refraction is the opposite when the path moves 

in the opposite direction (since the light ray can be run in reverse). In observing 

this effect Ptolemy made an important contribution to the future of science. The 

explanation we now give for the effect—that light travels with different velocities 

in the two media—was not involved in Ptolemy’s description of the phenomenon. 

The subject of dioptrics was still in its infancy and was purely observational. 

Ptolemy used a wheel submerged in water up to its axle in order to determine 

the refraction of light in passing from water to air. Based on his observations he 

gave the following table of the angles of refraction for angles of incidence of 10°, 

20°,..., 80°. 
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Since the differences of the angles of refraction in this table form an arithmetic 

sequence, one may deduce that the table is effectively the table of values of what 

we would call a quadratic function. To be specific, if 6\ is the angle of incidence 

and #2 is the angle of refraction, then 

0 2 
33 n 1 r,2 
40Ul 400^1- 

In writing down this tables Ptolemy took an important step toward the for¬ 

mulation of the concept of correlated variables, which are the essential elements 

in the modem notion of a function. It is particularly significant that the values 

are such that the right-hand column can be computed from the left-hand column. 

The computational process then amounts to the functional operation. It seems that 

either Ptolemy had in mind a particular form for the relation between the two 

angles, or he noticed that the angle of refraction increased out of proportion to 

the angle of incidence and chose the simplest way to make this happen, forming 

successive entries in the table by adding the terms of an arithmetic sequence rather 

than constant terms. The latter seems more likely on psychological grounds (it is 

simpler), but no direct evidence exists to confirm or refute it. If he had an idea 

that the relation should be of a particular type, it would be interesting to know 

what physical considerations led him to that belief. 

7.3 Astronomy 

In our discussion of astronomy in Chapters 2 and 3 we summarized a few of the 

celestial phenomena—full moons, new moons, and eclipses—that are obvious to 

everyone. These make up the content of what A. Aaboe has called “shepherd’s 

astronomy.” Merely by counting days and keeping records of these phenomena over 

many decades, one can construct an astronomy of some sophistication, suitable for 

making calendars and even predicting eclipses. 

The progress of astronomy has been marked by an increasing ability to take 

account of small deviations from a basically simple pattern. The simplest pattern 

of all is the diurnal rotation of the stars. Many centuries are required before the 

proper motion of the stars relative to one another can be detected. Therefore we 

can ignore this phenomenon in an account of early astronomy. From a natural 
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human vantage point the stars seem to be attached to a large sphere (called the 

celestial sphere in geometric astronomy) with center at the center of the earth. This 

sphere rotates uniformly once every 23 hours, 56 minutes (the sidereal day) about 

an axis tilted at an angle that depends on the geographic location of the observer. 

At the North Pole the axis is vertical; on the equator it is horizontal. The angle 

this axis makes with the horizontal (the elevation of the North Star in the Northern 

Hemisphere) is equal to the geographic latitude of the observer. 

Such is the basic pattern against which the less regular motions of other celes¬ 

tial bodies can be described. Actually, as was realized by Hellenistic times, this 

celestial sphere “wobbles” in its rotation, so that the axis of rotation traverses a 

circle in the sky, a phenomenon called precession. However this wobbling is very 

slow (less than 2° per century). 

The simplest motion to describe against the stars is that of the sun. It seems to 

march eastward by a little less than one degree of arc per day, along a great circle 

on the celestial sphere known as the ecliptic. The ecliptic makes an angle of about 

23^° with the celestial equator, and the sun is north of the celestial equator during 

summer in the northern hemisphere of the earth and south of it during the winter. 

The point on the ecliptic at which the sun crosses the equator when moving from 

south to north is called the vernal equinox. On the day the sun reaches this point, 

around March 21, there are approximately 12 hours of sunlight and 12 hours of 

darkness at every point on the earth. This much astronomy can easily be observed 

informally. 

More sophisticated astronomy must take account of certain refinements to this 

picture. First, the sun moves most slowly along the ecliptic in early July, just 

after reaching its northernmost point, and conversely it moves most rapidly in 

early January, just after reaching the southernmost point.2 Second, after many 

centuries of observation, it was noticed that the celestial equator was wobbling (the 

phenomenon pf precession mentioned above), so that the vernal equinox, which by 

definition is the point on the ecliptic at which the sun crosses the celestial equator 

moving from south to north, moves along the ecliptic in the direction opposite that 

of the sun. It follows that this crossing occurs near different stars as time goes 

on. As a matter of fact, if you measure with sufficient accuracy the point on the 

ecliptic at which the vernal equinox occurs one year, then again the next year, you 

will find that the two points are different, and that the sun actually requires some 

20 minutes to travel from this year’s equinoctial point on the ecliptic to last year’s. 

There is thus a slight discrepancy between the tropical year (the time between two 

south-to-north crossings of the celestial equator) and the sidereal year (the time 

required for a complete circuit of the ecliptic). 

This precession of the equinoxes obviously will not cause the tropical and side¬ 

real years to diverge very rapidly. In an average human lifetime the difference will 

be only about one day. Over a period of several centuries, however, a discrepancy 

large enough to be noticed will accumulate. Thus, when the zodiacal constellations 

were first used in Hellenistic times, the vernal equinox was at the beginning of 

2The speed referred to here is measured in degrees of arc per day on the ecliptic. It does not refer 

to the north-south motion of the sun, which is most rapid around the equinoxes. 
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the constellation Aries. Over the 2.5 millennia that have elapsed since that time 

it has moved to the beginning of the constellation Pisces.3 We are writing here 

as if the ecliptic were a fixed path among the fixed stars. Actually even this path 

“wobbles” a bit, but the wobbling is a much weaker effect than the precession of 

the equinoxes, and only modern astronomy is precise enough to handle it. We shall 

consider it to be a third-order effect, comparable to the proper motions of distant 

stars, which will be neglected in this book. 

After the motion of the sun among the stars has been well established, the more 

complicated motions of the moon and planets can be considered. The common 

period of the sun and moon has already been commented on, and cuneiform tablets 

have been found that give the position in the stars at which the conjunctions and 

oppositions of the sun and moon (new moons and full moons) occur. These 

positions are given as a certain number of degrees in a zodiacal sign, each sign 

occupying a 30° arc of the ecliptic. From the data given in these tablets scholars 

have been able to infer that they were not compiled by observation. In the first 

place, the precision of the numbers is too good. For instance, in a famous tablet 

from the year 102 B.C.E., accurately dated because the tablet itself contains the 

statement diat it was written on Day 18 of Month IX of year 209 of the Seleucid 

era, the conjunction for Month XII of year 207 of the Seleucid era (March of 

104 B.C.E.) is said to have occurred at the position 2° 2' 6" 20'v/ of the sign of 

Aries. One can hardly believe that a new moon could be observed within one 

degree (since the moon is not visible when so close to the sun), much less that 

it could have been measured to minutes, seconds, and sixtieths of a second! In 

the second place, the numbers fit a simple pattern, much simpler than what we 

know to be the actual motions of these conjunctions in the stars. The differences 

in position from one conjunction to the next increase or decrease by 18 seconds 

of arc each month, except when the increase or decrease would cause the new 

value of the difference to exceed 30° 1/ 59". When that happens, the excess part 

of the 18 seconds is applied in the opposite direction. Thus the arcs of the ecliptic 

between successive conjunctions, according to the table, lengthen and shorten in a 

regular progression. This kind of “Babylonian” numerical astronomy existed side 

by side with Hellenistic attempts to understand the motions of the celestial bodies. 

The question naturally arises of whether the astronomers who wrote these tables 

could detect the discrepancy between the theoretical values of the quantities and 

the observed values. If not, we can call the unrealistic precision a natural artifact 

of their mathematical model. If, on the other hand, they had observational data 

that did not fit the pattern, we must wonder whether they believed strongly enough 

in their mathematical model to attribute the discrepancy to observational error, or 

merely considered the mathematical model to be the best simple approximation to 

the truth. 

According to Aaboe, who has performed most of the analysis on which an 

understanding of this early astronomy is based, scientific astronomy should be 

3Most astrologers continue to refer to the period from March 21 to April 20 as the “sign of 

Aries.” They rationalize this seeming inconsistency by saying that the names of the constellations were 

adopted only as convenient reference points when astrology became codified, while the true astrological 

influences are deeper than mere star patterns. 
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said to begin when a predictive theory is formulated that enables the positions 

of the celestial bodies to be computed rather than extrapolated from tables. To 

formulate such an astronomy was the challenge to the Hellenistic mathematicians, 

and we shall now examine their efforts. 

7.3.1 Hipparchus 

When we are reading authors who record observations of astronomical phenomena, 

the records themselves may provide evidence for the dating of the documents, due to 

proper motion of stars, precession of the equinoxes, etc. For this reason the earliest 

theoretical astronomer we are considering, Hipparchus, can be confidently assigned 

to the middle of the second century B.C.E. He made very great contributions to 

astronomy, as we know from other sources, even though only one of his own works 

is still extant (a commentary on the work of Aratus, who lived two centuries earlier). 

Ptolemy, in Book III of the Almagest, quotes at length observations either made 

or used by Hipparchus to determine the length of the tropical year. Hipparchus 

suspected that this length was not a constant number of days and fractions of a 

day, whereas Ptolemy assures the reader that it is. It is interesting that the earlier 

astronomer Hipparchus was willing to consider the possibility that the precession 

of the equinoxes occurs at an uneven rate, while the later scholar Ptolemy will 

have nothing to do with this hypothesis. 

Hipparchus’ worry about the constancy of the tropical year was connected 

with his discovery of the precession of the equinoxes. Ptolemy, in Book VII of the 

Almagest, quotes Hipparchus as saying that the bright star Spica in the constellation 

Virgo was about 6° ahead of the autumnal equinox, whereas it had been 8° ahead 

a century and a half earlier in the time of a previous astronomer at Alexandria 

named Timocharis. It was therefore clear that the celestial equator was not fixed 

among the stars, but precessed by a small amount. 

7.3.2 Apollonius 

Our knowledge of Apollonius’ contribution to astronomy is indirect, as none of his 

treatises on this subject have survived. There are references to him in Ptolemy’s 

Almagest, however, in connection with the explanation of planetary phenomena. 

Once the observation is made that the sun seems to move faster along the 

ecliptic in winter than in summer, two explanations naturally come to mind for 

a person assuming a geocentric universe. The first is that, although the sun is 

moving uniformly along the ecliptic, the earth is not at the center of the ecliptic, 

but is displaced toward the winter solstice (the southernmost point on the ecliptic). 

This is the theory of eccentric motion. A second explanation—seemingly more 

complicated, but actually equivalent in simple cases—is that the sun moves along 

a small circle whose center moves along the ecliptic. In this way the faster and 

slower phases of the motion can be explained as the periods when the sun is moving 

in the same direction as the center of its orbit or in the opposite direction. This 

theory is the epicycle theory. The advantage of epicycles shows up in the theory 
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c 

Figure 7.7: Equivalence of epicycles and eccentrics. 

of planetary motion: by choosing the radius and speed of rotation on the epicycle 

suitably one can explain how a planet can appear to move backward among the 

stars (retrograde motion). Once the theory of epicycles has been adopted the 

explanation of planetary motion is a matter of “curve fitting,” that is, choosing an 

optimal number of epicycles and their radii and periods of revolution, so as to fit 

observed data. 

The fact that a uniform motion along a circle viewed from an eccentric point is 

exactly the same as a uniform motion along an epicycle combined with a uniform 

motion of the epicycle can be seen in Fig. 7.7, in which an epicycle of radius r 

moves along a circle (called the deferent) of radius R in such a way that the angle 

with which a body rotates clockwise on the epicycle relative to the extended radius 

of the deferent equals the angle with which its center has rotated counterclockwise 

along the deferent, measured from a fixed diameter of the deferent. Because 

OABC is a parallelogram, the angle with which an observer at A at distance r 

from the center of the deferent sees the center of the epicycle is exactly the same 

as the angle at which an observer at the center of the deferent sees the point on 

the epicycle. 

The single-epicycle, or eccentric, model is well suited for a comparatively 

simple motion such as that of the sun. The path of the sun among the stars is 

the ecliptic, which for our purposes is regarded as a fixed circle. Its motion along 

this path, however, is not at a uniform angular rate. It moves most slowly when 

passing through the constellation Gemini. Nowadays this occurs in early July, 

shortly after the summer solstice (the northernmost point on the ecliptic). Because 

of precession of the equinoxes, the summer solstice in Hellenistic times was in 

the constellation Cancer, so that the slowest motion of the sun occurred before 

the solstice, in late May. If we use the epicycle model just described, it is clear 

that the slowest motion occurs when the object moving on the epicycle is farthest 

from the observer (since at that point the rotation along the epicycle is directly 

opposite the rotation of the center of the epicycle along the deferent). This point 

is called apogee (farthest from earth). The opposite point is called the perigee. 

The astronomer Hipparchus placed the sun’s apogee about 24° before the summer 

solstice. Using this information and the fact that (in his day), spring was 94^ days 
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long while summer was 92^ days long, Ptolemy managed to fit the sun’s motion 

by using an epicycle and deferent whose radii were in the ratio of 1 : 24. Such 

a ratio means that the sun’s actual motion will never be more than about 2° 23' 

from its average motion, which is in good agreement with observation. 

In Chapter 1 of Book XII of the Almagest, Ptolemy attributes the use of epicy¬ 

cles to Apollonius, quoting a particular technical lemma said to have been proved 

by Apollonius on the location of the points on an epicycle at which retrograde 

motion begins. 

7.3.3 Ptolemy 

The author of the standard astronomical text, originally called the Mathematike 

syntaxis (Mathematical treatise) but now better known as the Almagest (a hybrid 

word containing the Arabic definite article al and the Greek word megistos, mean¬ 

ing “greatest”), lived during the second century C.E. and worked at Alexandria. 

The treatise itself was published around 150 C.E. 

There is insufficient space here to describe the whole treatise, and in any case 

our primary concern is with its mathematical innovations. We have already quoted 

parts of it above to show how the Babylonian arithmetical astronomy was refined 

by the Greeks. The addition of epicycles, which were a prominent feature of the 

Ptolemaic system, involved considerably more sophisticated geometry than mere 

measurement of observable positions, as in the Babylonian records. Mathemat¬ 

ics makes a valuable contribution to the understanding of astronomy through the 

sophisticated combination of numbers and geometry known as trigonometry. 

Trigonometry 

The word trigonometry means triangle measurement, but angles are generally 

measured in terms of the amount of rotation they represent, that is, in terms of 

the ratio of the length of the arc they subtend to the circumference of the circle 

containing the arc. In a system that is still basically the standard one, Ptolemy 

divides the circumference into 360 equal parts, and measures angles in terms of 

those parts, that is, in degrees. The basic problem of trigonometry, from this point 

of view, is to determine the length of the chord subtended by a given arc and vice 

versa. To this end, following the Babylonian sexigesimal system, Ptolemy uses ^ 

of the radius of the circle as the standard of length for chords in a given circle. The 

effect of this technique is that when two circles intersect, their common chord must 

be expressed in two different ways, in terms of the two radii. This procedure leads 

to constant “scaling” of lengths, and is apt to provoke an impatient reaction from 

the modem reader. Cumbersome though it was, however, it worked and enabled 

Ptolemy to give an accurate quantitative description of celestial motions. 

The computation of the table of chords used by Ptolemy is an interesting 

exercise in numerical methods. The natural approach would be to start with an 

angle whose chord is known (say, 60°), then use half-angle formulas to compute the 

chord of 30°, 15°, 7° 30', etc., until the desired tabular difference is achieved, after 



7.3. ASTRONOMY 157 

Figure 7.8: Ptolemy’s theorem. 

which one would build up the table in these intervals using the addition formulas 

for the trigonometric functions.4 Ptolemy’s approach is like this, but he does the 

computations very elegantly, using Ptolemy’s theorem: In a quadrilateral inscribed 

in a circle, the rectangle on the diagonals equals the sum of the rectangles on 

the two paws of opposite sides. To prove this theorem, draw a line BE from 

the vertex B to the diagonal AC such that A ABE = ADBC, as in Fig. 7.8. 

Hence AEBC = AABD. Therefore, since angles BAC and BDC are both 

inscribed in the same arc, triangles ABE and DBC are similar; for the same 

reason, triangles EBC and ABD are similar. It follows that AB-CD+BC-AD = 

AE ■ BD + EC • BD = AC ■ BD. 

Ptolemy’s theorem makes it possible to express the chord on the difference of 

two arcs in terms of the chords on the individual arcs. Given three points on a 

circle, say A, B, and C, take point D diametrically opposite one of the points, 

say A (see Fig. 7.9). If the chords AC and AB are given, draw the diameter AD, 

and the chords BC, DB, and CD. The chord AD is known, being the diameter 

of the circle (hence equal to 120 of Ptolemy’s units). Then DB and DC can be 

computed using the Pythagorean theorem from the diameter and the given chords. 

Hence in the inscribed quadrilateral ABCD both diagonals and all sides except 

BC are known, and so BC can be computed. 

To construct his table of chords Ptolemy begins with a regular decagon in¬ 

scribed in a circle. The central angles subtended by the sides of this decagon are 

36°. Because of the compass-and-straightedge construction of this figure, its side 

can be expressed as \/4500 — 30 (when the radius has length 60). Instead of re¬ 

peatedly bisecting this angle, however, Ptolemy adopts an indirect strategy to find 

the chord of a smaller angle without having to repeat so many square roots. He 

uses the fact that the side of the regular pentagon inscribed in a circle (the chord 

of 72°) is known from Euclid, Book XIII, Proposition 10 to be the hypotenuse 

of the right triangle whose legs are the radius of the circle and the side of the 

inscribed regular decagon. Thus this chord is approximately 70; 32, 3. Since the 

chord of 60° is obviously 60, one can then use Ptolemy’s theorem to compute the 

4In fact the algorithm by which hand calculators evaluate the trigonometric functions works roughly 
along these lines. Certain values are hard-wired into the calculator and others are computed by appli¬ 
cation of the addition formulas. 
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Figure 7.9: Difference of two chords. 

chord of 72° — 60° = 12°. Ptolemy then shows how to compute the chord of 

half an angle if the chord of the angle is known. (This is easier than deriving the 

trigonometric functions for half-angles: try it yourself!) In this way he is able to 

compute successively the chords of 6°, then 3°, then 1° 30', and finally 0o45'. 

The ingenious idea of starting from a 72° angle, rather than the more natural 60° 

angle, allowed Ptolemy to reach angles less than 1° while minimizing the roundoff 

error caused by approximating square roots. 

Ptolemy’s construction of his table misses the important angle of 1°. This gap is 

not accidental: all the angles that can be found by his strategy can be constructed 

with compass and straightedge, but a 1° angle is not constructible with these 

instruments alone. In order to estimate the chord of 1°, Ptolemy combines the two 

chords on each side of 1°, namely 1° 30' and 0° 45' with a useful approximation 

theorem: The ratio of the larger of two chords to the smaller is less than the ratio 

of the arcs they subtend. Because of this proposition the chord of 1° is less than 

| the chord of 0° 45', yet larger than | the chord of 1° 30'. In this way Ptolemy 

was able to establish that the chord of 1° is approximately 1; 2, 50 units (where 

the radius is 60 units). Then, using his half-angle formula, he finds the chord of 

0° 30', after which he is able to construct a table of chords for angles at half-degree 

intervals.5 

The table of chords makes it possible to solve right triangles, in particular, to 

find the angles in such a triangle when given the ratio of its sides. In astronomy, 

however, one is always using angular coordinates on a sphere, since both the sides 

and angles of a spherical triangle are given as angles. It would be clumsy always 

to have to introduce plane triangles in order to find the parts of spherical triangles, 

and so Ptolemy included certain relations among the parts of spherical triangles 

as lemmas. These are not the laws of cosines and sines now used in spherical 

trigonometry, but rather two theorems that had been published half a century earlier 

in a work called Sphaerike by a certain Menelaus. With these relations it is possible 

to solve such problems as finding which portion of the ecliptic rises simultaneously 

with a given portion of the celestial equator, for example. 

With this mathematical equipment and a wealth of observational data, Ptolemy 

was able to apply the theoretical methods invented by earlier astronomers such 

as Apollonius. The 12 books of the Almagest became the standard astronomical 

5Two minor points may be noted in connection with this work. First, Ptolemy’s use of sexigesimal 
notation is only partial; he does not write 1° 30', as we have done, but rather l|°. Second, in 
establishing the approximation for the chord of 1° he writes absurdly that “the chord of 1° was shown 
to be both greater and less than the same amount.” But we know what he means. 
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treatise over a large part of the world until the seventeenth century. 

7.4 Problems and Questions 

7.4.1 Problems in Hellenistic Mathematical Science 

Exercise 7.1 The law of the lever is usually not proved in physics textbooks today. 

Rather the notion of moment about an axis is introduced. Confining ourselves to 

forces all lying in a single plane, we can define this moment as the product of the 

distance from the point at which the force is applied to the axis and the component 

of the force perpendicular to the line joining the point of application to the axis, 

that is, El = Fr, where El is the moment, F is the force, and r the distance. The 

moment is given a positive sign if it tends to produce counterclockwise rotation, 

and negative otherwise. One of the postulates of mechanics is that a body is in 

rotational equilibrium if the algebraic sum of the moments is zero. Apply this 

definition to the case when the body is a lever with two weights hung from its 

ends and shuw that it is exactly equivalent to the law of the lever as stated by the 

author of the Mechanics and by Archimedes. 

Exercise 7.2 Prove that given any three magnitudes of the same kind that can 

be divided into arbitrarily small pieces (say, A, B, and C) with A < B, there 

is a fourth quantity D of the same kind commensurable with C and such that 

A < D < B. [Hint: By taking away half of C, then half of what is left, etc., 

in a finite number of steps one will obtain a magnitude E commensurable with C 

and smaller than the difference between B and A. Then some multiple of E will 

exceed A. Now show that the smallest multiple of E that exceeds A lies between 

A and B and is commensurable with C.] 

Exercise 7.3 Give a proof of the law of the lever for incommensurable magni¬ 

tudes without using the principle invoked by Archimedes (stated in the previous 

problem). That is, use only the definition of proportion as given by Eudoxus. 

[Hint: Suppose A and B are the two magnitudes and CD and CE are lengths 

such that A and B balance when suspended from D and E, respectively. You 

wish to show that CE : CD = A : B. Imagine that m and n are integers such 

that mA > nB. You need to show that mCE > nCD. Use the commensurable 

case and Archimedes’ postulates to do this.] 

Exercise 7.4 Using modem trigonometry, one can express Proposition 8 of Eu¬ 

clid’s Optics, proved above, as an inequality between certain trigonometric func¬ 

tions of the two angles TEZ and TEH in Fig. 7.5. Write out this inequality. 

History books sometimes say (to save space) that Euclid proved this inequality. 

What are the advantages and disadvantages of describing Euclid’s work this way? 

Would Euclid have recognized this description of his work? 

Exercise 7.5 Describe the point where a ray of light parallel to the axis of a 

hemispherical mirror before reflection will strike the axis of the hemisphere after 

reflection. 
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Exercise 7.6 Diodes solved the problem of two mean proportionals using a curve 

that was later called the cissoid (from the Greek word for ivy). In terms of our 

analytic geometry the equation of this curve is (a — x)3 = y2(a + x), where a is a 

given number. How can this curve be used to construct a line segment of length, 

say, \/3a? 

Exercise 7.7 Consider the following observations: (1) an ellipse is the locus of 

points the sum of whose distances from two fixed points is constant (Apollonius’ 

Conics, Book III, Proposition 52); (2) therefore the inside of the ellipse consists 

of points such that the sum of the distances is less than that constant, and the 

outside consists of points such that the sum of the distances is greater than that 

constant. Now consider the tangent at any point of the ellipse. Since the ellipse is 

convex, it lies entirely on one side of the tangent. Now of the rays emanating from 

one fixed point, meeting the tangent, and then passing to the other fixed point, 

all of them except the one that travels to the point of tangency must go outside 

the ellipse. Therefore the shortest such path is the one that goes to the point of 

tangency. Now use Heron’s shortest-path criterion to derive a proof of the focal 

property of ellipses (Apollonius’ Conics, Book III, Proposition 48): A ray of light 

emanating from one focus of an ellipse will be reflected to the other focus. 

Exercise 7.8 According to Snell’s law, the angle of incidence 6i and the angle of 

refraction 02 for light passing from one medium to another are related by 

sin 6\ v\ 

sin 62 v2 ’ 

where v\ and v2 are the velocities of light in the respective media. For water 

and air the ratio of these two velocities is about 3 : 4. Therefore the modem 

theoretical relationship is roughly 02 = arcsin(0.75sin6\) instead of the value 

= 4§^i “ 4000? implied by Ptolemy’s table. Notice that Ptolemy’s f§ is just 
10% larger than the ratio of the two velocities. Computing the table of angles of 

refraction from Snell’s law, we find, to the nearest half-degree, the following table. 

Angle of Incidence Angle of Refraction 

0
 

0
 

1—
1 ry 

to
 

0
 

0
 

15° 

C
O

 
0

 
0

 

22° 

0
 
0

 29° 
50° 35° 
60° 40i‘ 

0
 

0
 45i‘ 

0
 

0
 

0
0

 47f 

Compare this table with the one given by Ptolemy. How good is the agreement? 

Compute the first few terms of the power series for d2 in terms of 6\ and show 
that Snell’s law says that 

02 -A 
19 g3 
64^1' 
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Does this agreement reflect accurate observation on Ptolemy’s part, or just good 

intuition? 

Exercise 7.9 How do you account for the precession of the equinoxes in terms 

of the heliocentric theory now taught? How does the heliocentric theory account 

for the variation in the daily progress of the sun along the ecliptic? How does it 

account for the fact that the ecliptic itself wobbles slightly? 

Exercise 7.10 The precession of the equinoxes can be explained by saying that 

the celestial equator rotates among the fixed stars. Does this mean that the earth’s 

equator moves around on the earth also? 

Exercise 7.11 Ptolemy’s trigonometry refers continually to the chord of twice an 

arc. Let us denote the chord of twice an arc of x degrees by C(x). Assuming the 

radius of the circle is 60 units long, show that C(90° —x) = (120)2 — (C(x))2. 

Exercise 7.12 At present the sun reaches apogee in early July. Just to get definite 

numbers, we shall take some observations from 1964. On July 1 of that year the 

sun was 99.19° along the ecliptic, measured from the vernal equinox. Consider 

Ptolemy’s model with the sun on an epicycle whose radius is ^ times the radius 

of its deferent and assume that the sun and the centers of the epicycle and deferent 

are in a straight line on July 1. How far along the ecliptic will the sun be 123 

days later, on November 1? The center of the epicycle progresses uniformly by 

degrees per day, and the sun moves backward on the epicycle at exactly 

the same rate. (The result obtained from this model is very close to the observed 

value, within 18' of arc, to be precise.) 

Exercise 7.13 Another application of spherical trigonometry is in finding the lo¬ 

cation of sunrise and the length of day at different times of the year in different 

geographical locations. For this application one needs to consider the arcs on the 

celestial sphere shown in Fig. 7.10. (This figure is slightly distorted in order to 

give us a peek at the arc EQ, which is below the horizon.) In this figure N and 

E are respectively the northern and eastern points on the horizon, so that arc NE 

is a 90° arc. Assume that the sun is north of the celestial equator (that is, the 

season is either spring or summer in the northern hemisphere). The point P is the 

north celestial pole, and PQ is the 90° arc from the pole through the sun (S) to 

the equator, and EQ is an arc of the celestial equator. We shall use the symbol 

A for the geographic colatitude of the observer (the distance in degrees from the 

north celestial pole P to the point directly overhead) and a :=SQ for the length of 

the arc from the sun perpendicular to the celestial equator, called the declination 

of the sun. We wish to know the point on the horizon at which the sun will rise, 

that is, the arc 7 :=SE. One can show through trigonometry that 

sin a 
sm 7 = -7—r. 

sin A 

Show that this equation can be solved for 7 if and only if |cr| < min(A, 180° — A). 
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N 

Figure 7.10: Local direction of sunrise. 

Consider as an example the summer solstice (June 21), when cr = 23° 30', and 

show that in Stockholm (A = 30°) the sun rises about 53° north of east on this 

date. 

Exercise 7.14 Ignoring the motion of the sun along the ecliptic in the course of 

one day (which is small), one can say that the sun describes a circle in the sky of 

radius Rcosa on a day when its declination is cr, where R is the radius of the 

celestial sphere (it can be taken as 1). The chord on this circle that separates the 

portion above the horizon (local day) from the portion below the horizon (local 

night) is the chord joining the two points of intersection of this circle with the 

horizon circle. Hence by the preceding exercise, that chord is of length 2R cos 7. 

Deduce that the arc of the sun’s path above the horizon (in the spring and summer) 

is of length 180° + 2a., where 

cos 7 
coso; = -. 

COS (J 

Compute that the center of the sun should be above the horizon in Stockholm for 

about 18 hours and 30 minutes on June 21. Give two independent refinements 

to this model, each of which helps to explain why daylight lasts longer than this 

computed value. 

Exercise 7.15 Given three points on a circle A, B, and C bounding arcs such 

that AB >BC, prove that AB.BC > AB : BC. Use this result to show that the 

chord of 1° is larger than | of the chord of 1° 30' and smaller than | of the chord 

of 0° 45'. 

7.4.2 Questions about Hellenistic Mathematical Science 

Exercise 7.16 What differences are there in the approach to physics by Aristotle 

and by the mathematically inclined scientists such as Archimedes, Diodes, and 

Ptolemy? Do these approaches differ in their effectiveness? Is a theory constructed 



7.5. ENDNOTES 163 

along the lines of one approach more effective or “better” than one constructed in 

the other way? 

Exercise 7.17 The logic of Archimedes’ solution to the problem of analyzing the 

king’s crown is as follows. If the crown is of pure gold, it will have the same 

specific gravity as pure gold (and hence the crown will displace the same amount 

of water as an equal weight of pure gold). By observation, the crown displaces 

more water than an equal weight of pure gold. Therefore, it is not of pure gold. 

Hence it would seem that Archimedes had no need to compare the amount of water 

displaced by an equal weight of silver. What then is the relevance of the silver in 

the story reported by Vitruvius? 

Exercise 7.18 In what sense is Euclid using the word “appear” when he says that 

all diameters of a circle whose plane is perpendicular to the line of sight will 

appear equal? Draw a horizontal line 5 centimeters long and a vertical line exactly 

the same length. Do these lines appear to be equal? 

Exercise 7.19 Considering how heavily we have relied on the work of Neugebauer 

for our summary of early astronomy, it is only fair to let the reader know Neuge¬ 

bauer’s opinion of some of the other authors whom we have quoted with respect. 

Here is what he says on p. 572 of his treatise A History of Ancient Mathematical 

Astronomy. Do you agree? If not, how do you refute these opinions? 

One need only read the gibberish of Proclus’ introduction to his huge 

commentary on Book I of Euclid’s “Elements” to get a vivid picture 

of what would have become of science in the hands of philosophers. 

The real “Greek miracle” is the fact that a scientific methodology was 

developed, and survived, in spite of the existence of a widely admired 

dogmatic philosophy... . 

7.5 Endnotes 

1. The discussion of Aristotle’s Physics and On the Heavens is based on the 

book The Works of Aristotle Translated into English, Vol. Ill, edited by W. D. 

Ross, (Clarendon Press, Oxford 1930). 

2. The discussion of the Aristotelian property of the lever is from the “Mechan¬ 

ical Problems” in Aristotle. Minor Works, translated by W. S. Hett (Harvard 

University Press, Cambridge, 1936), pp. 331-411. The present discussion is 

based on pp. 331-353. 

3. Archimedes’ work on the lever and floating bodies is based on The Works 

of Archimedes by T. L. Heath (Dover Reprint, New York, 1953). 

4. The discussion of the inclined plane as studied by Heron and Pappus is based 

on A History of Mechanics by Ren£ Dugas, translated from the French by 

J. R. Maddox (Central Book Company, New York, 1955), pp. 32-35. 
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5. The discussion of Euclid’s proof of the nonproportionality of apparent size 

and distance is based on Selections Illustrating the History of Greek Mathe¬ 

matics, with a translation by Ivor Thomas (Harvard University Press, Cam¬ 

bridge, MA, 1936), pp. 502-505. 

6. Diodes’ treatise can be found in the book Diocles. On Burning Mirrors, by 

G. J. Toomer (Springer-Verlag, New York, 1976). 

7. The discussion of Ptolemy’s work on refraction is based on the account given 

by George Gamow in Biography of Physics (Harper & Brothers, New York, 

1961), pp. 20-22. 

8. The discussion of early astronomy is based partly on Neugebauer’s History 

of Ancient Mathematical Astronomy (3 vols.), Springer-Verlag, New York, 

1975, and partly on the article by A. Aaboe, “Scientific astronomy in antiq¬ 

uity,” which was published in The Place of Astronomy in the Ancient World, 

F. R. Hodson, ed. (Oxford University Press, London, 1974), pp. 21-43. 

9. The quotation from Ptolemy’s Almagest is taken from the edition by G.J. 

Toomer (Springer-Verlag, New York, 1984), p. 191. 



Chapter 8 

Mathematics in the Roman 
Empire 

8.1 Introduction 

The Greeks came into contact with the mathematical achievements of earlier cen¬ 

turies through the commercial activities of their colonies on the coast of Asia Minor. 

The foundations of deductive mathematics were laid in the Greek colonies of south¬ 

ern Italy and further developed on the mainland of Greece. When the Macedonian 

Empire of Philip and Alexander conquered Greece, these mathematical seedlings 

were transplanted to the East as far as India, and the city of Alexandria in Egypt 

became the most important mathematical center in the world. Alexandria was not 

the only center of excellence, however. The presence of such mathematicians as 

Archimedes in Sicily, Apollonius in Asia Minor, and Diodes in the Peloponnesus, 

each familiar with the work of other mathematicians in other places, shows that a 

wide network of mathematicians was in existence in Hellenistic times. Despite the 

turbulence of the Hellenistic era, these mathematicians managed to stay aware of 

the current state of research. One might have expected that an end to the political 

instability would usher in an era of expansion of mathematical research, and it is 

therefore surprising that events did not turn out that way. 

The Roman expansion began with the incorporation of the Greek cities of south¬ 

ern Italy around the time of Euclid. The Romans took sides in the internecine dis¬ 

putes of these cities. Their intervention provoked a countermove by King Pyrrhus 

of Epirus, whose “victories” over the Romans cost him so dearly that he decided 

to abandon Italy and mount an expedition to defend the Greek cities of Sicily 

against the Carthaginians. At this point the Romans formed an alliance with the 

Carthaginians. They finally defeated Pyrrhus in 275 B.C.E. (Pyrrhus’ name has 

become traditional; a Pyrrhic victory is one that costs more than it gains.) A 

decade later the Romans found themselves embroiled in a dispute in Sicily, in 

which King Hieron II of Syracuse was allied with the Carthaginians. This dispute 

provoked the First Punic War (the word Punic is the Latin word corresponding 
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to Phoenician). After early Roman successes this war dragged on for more than 

twenty years before the Romans defeated the Carthaginians in a sea battle off the 

western coast of Sicily. This war brought the Romans control of most of Sicily, 

the city of Syracuse being one of the exceptions. That exception was to have 

significant consequences for the greatest mathematician of antiquity, as we shall 

see. 
Roman expansion led to further conflict with the Carthaginians, who were 

attempting to recoup their economic losses with colonies in southern Spain. The 

Romans seized the island of Sardinia at a time when the Carthaginians were in 

no position to do anything about this outright piracy. By 219 B.C.E. both sides 

were spoiling for a fight, and they found no difficulty in concocting a cause. The 

Carthaginian leader Hannibal moved his army across the Alps, winning major 

victories for a few years. In the end, however, the “Fabian” tactics of the Roman 

general Q. Fabius Maximus gained the victory for Rome in this war of attrition. 

The Carthaginians surrendered in 202 B.C.E. 

The expansion of Rome accelerated after the Roman victory in the Second Punic 

War. We have mentioned this war previously only because it caused the death of 

Archimedes. Although Rome was victorious, the victory was a very narrow thing. 

The Romans had suffered catastrophic defeats by Hannibal in such disasters as 

the Battle of Cannae; but in the end, because of victories by Scipio Africanus and 

Q. Fabius Maximus, they prevailed. The Phoenician base at Carthage in North 

Africa remained a threat, however. To eliminate that threat the Romans undertook 

the pre-emptive Third Punic War (150-146 B.C.E.) in which Carthage was utterly 

destroyed. Having eliminated their only serious challenger, the Romans began to 

conquer more and more territory. The political fragmentation of the Mediterranean 

world under the successors of Alexander had led to a long period of unrest, with 

continual small wars being waged. The Roman expansion brought stability, which 

facilitated further expansion. The mainland of Greece was incorporated into the 

Roman Empire in the two generations following the Third Punic War. Egypt 

became a Roman province under Julius Caesar in the time of Cleopatra, the last 

ruling descendant of Alexander’s general Ptolemy. 

Under Caesar Augustus, with the Pax Romana firmly established in the entire 

Mediterranean world, one would expect conditions to be ideal for peaceful intel¬ 

lectual activities such as mathematics. The fact is, however, that the mathematics 

produced under the Roman Empire was much less original and profound than that 

which had been produced during the earlier periods of political chaos. The schol¬ 

ars at Alexandria and Athens, for some reason, stopped advancing knowledge with 

original research and spent their time commenting on and elaborating the work of 

the great mathematicians of the past. The reasons for this decline are a subject 

of speculation. Nevertheless, the four centuries from the time of Augustus to the 

sack of Rome were not entirely barren. They were filled with the work of the 

commentators listed in Chapter 4 and with a few original thinkers worthy of study. 

We shall examine the works of two of these mathematicians, Diophantus (dates un¬ 

certain, but probably third century C.E.) and Pappus (ca. 300 C.E.), both of whom 

worked at Alexandria, and we shall briefly mention some other late commentators, 

including the philosopher/mathematician Hypatia, the only woman mathematician 
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from the ancient world about whose life some details are known. 

8.2 Diophantus 

Little is known about Diophantus of Alexandria, other than the place where he 

worked. His dates are known only approximately. In his book on polygonal num¬ 

bers he refers to the writer Hypsicles, who is known to have flourished around 150 

B.C.E. Diophantus, in turn, is referred to by the commentator Theon of Alexan¬ 

dria, who lived in the fourth century. Because the third-century Bishop Anatolius 

of Laodicea dedicated a book to a person named Diophantus, it is conjectured that 

Diophantus flourished about 250 C.E. 

Two works of Diophantus have survived in part, the treatise on polygonal num¬ 

bers mentioned above and the work for which he is best known, the Arithmetike. 

Like many other ancient works, including those of Euclid, Apollonius, Ptolemy, 

and the commentators Proclus and Theon, these managed to survive because of the 

efforts of a ninth-century Byzantine mathematician named Leon, who organized 

a major effort to copy and preserve these works. There is little record of the 

influence the works of Diophantus may have exerted before this time. 

According to the introduction to the Arithmetike, this work consisted originally 

of 13 books, but until recently only 6 were known to have survived; it was assumed 

that these were the first 6 books, on which Hypatia (the daughter of Theon of 

Alexandria) wrote a commentary. However, recently 4 more books have been 

found in Arabic manuscript, which proved from internal evidence to be books 

4 through 7. It thus appears that we now have the first 7 books and 3 others. 

As is usual in such cases, the oldest extant manuscripts date to Medieval times, 

specifically to a monk named Maximus Planudes, who lived in Byzantium at the 

end of the thirteenth century, and wrote a commentary on Books I and II. 

8.2.1 Characteristics of Diophantus’ Algebra 

The Arithmetike is the earliest treatise that is recognizable as algebra, and it earned 

Diophantus the name “Father of Algebra.” Still, it is not algebra as taught in high 

schools or universities today. The similarities and differences between Diophantus 

and modern algebra are almost equally noticeable. We begin by describing the 

similarities: 

1. Symbolism. Diophantus began by introducing a symbol for a constant unit 
o 

M, from monas (poode), along with a symbol for an unknown number c, 

conjectured to be an abbreviation of the first two letters of the Greek word 

for number: arithmos (cpiOfioq). For the square of an unknown he used A A 

the first two letters of dynamis (Avvapiy), meaning power. For its cube 

he used Kv, the first two letters of kybos (Kv/3oq), meaning cube. He then 

combined these letters to get fourth (AVA), fifth (AKv), and sixth (KVK) 

powers. For the reciprocals of these powers of the unknown he invented 

names by adjoining the suffix -ton (-too) to the names of the corresponding 
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powers. These various powers of the unknown were called eida (U8a), 

meaning species. Diophantus’ system for writing down the equivalent of 

a polynomial in the unknown consisted of writing down these symbols in 

order to indicate addition, each term followed by the corresponding number 

symbol (for which the Greeks used their alphabet). Terms to be added were 

placed first, separated by a pitchfork (rti) from those to be subtracted. T. L. 

Heath conjectured that this pitchfork symbol is a condensation of the letters 

lambda and iota, the first two letters of the Greek root meaning less or leave. 

Thus what we would call the expression 2.t4 — x3 — 3x2 + 4x + 2 would be 

written AVA(3<;8 M {3 rti KvaAv^. 

2. Emphasis on equations. The central idea in all of Diophantus’ problems is 

the use of descriptions of an unknown number to determine the number. The 

procedure is analogous to replacing the name “George Washington” with 

the descriptive phrase “first President of the United States.” Since these 

descriptive expressions represented numbers, it was necessary to tell how to 

add and multiply them. Diophantus provides rules for such manipulations, 

explaining that a subtracted term multiplied by a subtracted term produces an 

added term. (Since he did not have the concept of zero or negative numbers, 

Diophantus could speak only of terms subtracted from other terms.) Whether 

this step amounts to an explicit invention of equations can be debated. To 

study this question it is necessary to look at the original Greek in which 

Diophantus wrote. For example, a standard translation of part of the Preface 

to Book I of the Arithmetike reads as follows: 

Next, if there result from a problem an equation in which certain 

terms are equal to terms of the same species, but with different 

coefficients, it will be necessary to subtract like from like on both 

sides until one term is found equal to one term. 

A more literal translation of the same passage goes as follows: 

Now in this way, if from a certain problem some species become 

equal to the same species, but not in the same multitude, it is 

necessary to subtract the same from each of the parts until one 

species becomes equal to one species. 

Clearly the idea of an equation is present here. Diophantus has rules for 

manipulating equations; and if his abbreviation for equals (i'a.) is replaced 

by our we can see that the translator does not distort very much in 

replacing Diophantus’ expression 

qp M 8 Ta. □ 

by 

8.t + 4 = a square. 
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Notice, however, that the equals sign here really means that the expression 

belongs to a certain class. This equation does not express the equality of 

two numbers. 

3. Subject matter. The problems in the Arithmetike consist of finding one or 

more unknown numbers satisfying certain conditions. Frequently the condi¬ 

tion is given as the result of applying certain operations to those numbers. 

The first problem of the treatise, for example, is to separate a given num¬ 

ber into two [other numbers] having a given difference. In other words, to 

find two numbers given their sum and difference. This type of problem, as 

we argued in Chapter 3, is the essence of algebra. Moreover the problems 

are stated by formally equating (in words) two different expressions for the 

same unknown number, as we have just seen. Thus the equation becomes 

the central tool for solving problems. 

4. Algorithmic techniques. Problems in Diophantus are usually solved by be¬ 

ginning with the statement that two formally different descriptions represent 

the same number. Diophantus gives the rules for transposition and cancella¬ 

tion to make it possible to convert such statements into simpler statements 

of the same type. For example, for the problem just mentioned Diophantus 

illustrates the general procedure with a single example in which the sum is 

100 and the difference is 40. Taking the smaller of the two numbers as the 

unknown, he observes that twice the unknown plus 40 must equal 100. That 

is, the larger number must be the unknown plus 40, and since the sum of the 

larger and the smaller numbers must be 100, he has, except for the unimpor¬ 

tant difference between his notation and ours, the equation 2x + 40 = 100. 

Diophantus has already stated the rules for solving such an equation in his 

introduction; without repeating himself on this point, he merely notes that 

x = 30, so that the required numbers are 30 and 70. 

The differences between the Arithmetike and modern algebra are also quite 

noticeable, however. 

1. Restricted symbolism. Diophantus’ use of symbolism is rather sparing by 

modem standards; he often uses words where we would use symbolic manip¬ 

ulation. For this reason his algebra was described by the nineteenth-century 

German historian of mathematics G. H.F. Nesselmann (1811-1881) as an 

intermediate “syncopated” phase between the earliest “rhetorical” algebra, 

in which everything is written out in words, and the modem “symbolic” 

algebra. The peculiarity of the “syncopated” phase is that the symbols are 

abbreviations for words, rather than ideograms like our modem symbols + 

and +. 

A further point to be noted in connection with the restricted symbolism is 

that Diophantus did not handle equations with unspecified coefficients. That 

is, he did not write the analog of ax2 + bx + c = 0 to discuss a general 

quadratic equation (and of course he didn’t classify his equations as linear 

and quadratic anyway). The whole Greek alphabet, plus three additional 
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symbols, was used for writing the specific numbers 1,..., 9, 10,..., 90, and 

100,... 900. He would therefore have had to invent still more symbols and 

rules of manipulating them in order to conduct a discussion on the modem 

level of abstraction. He also never employed a symbol for a second unknown, 

even though many of his problems require finding several unknown numbers. 

This notational restriction led to some constraints on his methods of solution. 

2. Restricted role of equations. For Diophantus the equation is a basic tool, but 

it is not itself the subject of investigation. He investigates different types of 

problems but does not classify equations. This difference from modem high- 

school algebra is related to the fact that he cannot handle generic equations 

(with parameters for coefficients). 

3. Indeterminate problems. Many of Diophantus’ problems have an infinite 

family of solutions. Instead of seeking unknown numbers when given the 

result of performing certain operations on them, Diophantus frequently seeks 

numbers of a certain form or satisfying certain conditions. For example, 

Problem 11 of Book II is to add the same number to two given numbers so 

as to make each of them a square. A problem of this sort is not an equation. 

4. Restricted concept of number. Diophantus’ concept of a number is the strict 

Greek notion, corresponding to what we now call a positive rational number. 

This requirement forces Diophantus into the activity known as diorismos, 

that is, stating restrictions on the allowable data for a problem so as to 

ensure that a positive rational solution exists. The geometric equivalent of 

the problem of finding two numbers given their sum and product (applying 

a rectangle equal to a given area to a line in such a way that the defect is a 

square) has a solution only when the given area is at most equal to the square 

on half of the line. This restriction was the diorismos for this problem. No 

diorismos is necessary for the geometric equivalent of finding two numbers 

given their difference and product (where the square is an excess rather 

than a defect), since there is always a solution to the geometric problem. 

However, the arithmetical version of the problem does require a diorismos, 

since the positive solution can be found only by taking a square root, an 

operation that may lead outside the class of rational numbers. This problem 

happens to be Problem 30 of Book I. Since the numerical solution involves 

taking the square root of the sum of four times the product and the square of 

the difference, the diorismos requires that this last number be a square. In 

illustrating the procedure by example Diophantus chooses data satisfying this 

condition (product 96, difference 4, so that the procedure involves finding 

the square root of 400). 

5. Incomplete solutions. Requiring positive rational solutions sometimes has the 

effect of reducing an infinite class of solutions of an indeterminate problem 

to a finite class. The fact that the solutions Diophantus sought had to be 

positive rational numbers distinguished his work from the so-called geometric 

algebra found in Euclid. This restriction has remained in mathematics and 
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caused the name of Diophantus to be attached to the problem of finding all 

rational solutions to an equation in more than one unknown. For example, 

there are no positive rational numbers x, y, and z satisfying the equation 

x4 + y4 = z2. 

A Diophantine equation is not intrinsically different from any other equa¬ 

tion. What makes an equation “Diophantine” is the fact that only rational 

(or integer) solutions are considered. It should be noted, however, that Dio¬ 

phantus does not try to find all solutions to his problems. He produces one 

solution as a representative sample of the method and then leaves it to the 

reader to look for others. 

6. Connection with number theory. Because the existence or nonexistence of 

rational solutions to an indeterminate equation depends on the arithmetic 

properf es of the coefficients, such equations relate algebra to number theory. 

For example, the number of ordered pairs of integers (x,y) satisfying x2 + 

y2 — n, y > 0, and x > 0 equals the difference between the number of 

divisors of n that leave a remainder of 1 when divided by 4 and the number 

of divisors of n that leave a remainder of 3 when divided by 4.1 

8.2.2 Contents of the Arithmetike 

In view of the recent discovery of four lost books mentioned above, prevailing 

beliefs about the arrangement of problems in the Arithmetike had to be modified. 

Even with this new information the division of the work into separate books is 

difficult to explain in terms of the contents or methods of solution. There seems 

to be very little difference, for example, between the last problem of Book II and 

the first problem of Book III. The former (Problem 35 of Book II) is to find three 

numbers such that the square of any one decreased by the sum of all three gives a 

square. The latter is to find three numbers such that the sum of all three decreased 

by the square of any one of them gives a square. Perhaps if we had a complete 

pristine version of the Arithmetike free of all interpolations and commentaries, we 

might see the pattern that Diophantus himself insists is present. He says in his 

introduction that the different types of problems proceed from simple to complex, 

which is true, and are distinguished from one another (one wonders how, since 

there are no subheadings or explanations to tell when one type ends and another 

begins). Whatever the organizing principle of the work, if we adhere to a crude 

distinction between determinate and indeterminate problems, we can describe the 

arrangement of topics in the Arithmetike roughly as consisting of a small set of 

determinate problems, which are pure algebra, followed by a large number of 

indeterminate (“Diophantine”) problems, which link algebra and number theory. 

1To illustrate this fact, consider for example n = 450, which has the divisors 1, 2, 3, 5, 6, 9, 10, 
15, 18, 25, 30, 45, 50, 75, 90, 150, 225, and 450. Six of these 18 divisors (1, 5, 9, 25, 45, and 
225) leave a remainder of 1 when divided by 4. Three (3, 15, and 75) leave a remainder of 3 when 
divided by 4. The other 9 leave a remainder of 2. Thus there should be three ordered pairs of positive 
integers the sum of whose squares is 450, and indeed there are: (15, 15), (3, 21), and (21,3). 
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Determinate Problems 

The determinate problems in the Arithmetike require that one or more unknown 

numbers be found from conditions that we would nowadays write as systems of 

linear or quadratic equations. The 39 problems of Book I and the first 10 problems 

of Book II are of these types. Some of these problems have a unique solution. 

For example, Problem 7 of Book I is from a given unknown number, subtract two 

given numbers so that the remainders have a given ratio. In our terms, this says 

x — a = m(x — b), 

where x is unknown, a and b are the given numbers, and m is the given ratio. 

Since it is obvious that m > 1 if all quantities are positive and a < b, Diophantus 

has no need to state this restriction. 

Some of the problems that are determinate from our point of view may have 

no positive rational solutions for certain data. In such cases Diophantus requires 

a diorismos to restrict the data so that positive rational solutions will exist. For 

example, Problem 8 of Book I is to two given numbers to add the same unknown 

number so that the sums have a given ratio. This problem amounts to the equation 

x + a = m(x + b). 

It is clear that if x > 0 and a > b, then 1 < rn — (x + a)/(x -P b) < a/b. This 

restriction is the diorismos for the problem, that is, the given ratio must be larger 

than 1 and less than the ratio of the larger number to the smaller. 

Some of the earlier problems are indeterminate because not enough conditions 

are imposed on the data. In such cases Diophantus obtains a determinate problem 

by adding a new restriction in the course of the solution. For example Problem 25 

of Book I requires four numbers such that if each is increased by a given fraction 

of the sum of the other three, the four results are equal. Setting four numbers 

equal to one another gives only three equations. Diophantus assumes a value for 

the sum of the second, third, and fourth numbers, then uses successive elimination 

to express the second, third, and fourth unknown numbers in terms of the first. 

In all cases when a problem requires more than one unknown to be found, 

more than one condition must be specified. At these places we can detect a 

systematic method in the Arithmetike. In the case of two unknown numbers, for 

example, Diophantus always assumes that the required numbers are expressed in 

terms of the one symbol he has for an unknown in a form that makes one of 

the conditions automatically true. The remaining condition can then be written 

as an equation that can be solved using the rules of manipulation stated in the 

introduction. For example, Problem 15 of Book I is to find two numbers such that 

each after receiving from the other a given number shall bear to the remainder a 

given ratio. We would express this problem as 

x + a y + b 
-= r, :-- = 5. 
y — a x — b 

Diophantus takes the data to be a = 30, r = 2, b = 50, s = 3. He then introduces 

the unknown c, as follows. The second number (what we called y) is assumed to 
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be q + 30 and the first unknown number (x) is 2$ — 30, so that first condition is 

automatically satisfied. Then by the second condition, q + 80 = 3(2c — 80), which 

leads to c = 64, and so the two numbers are 98, that is, 2c — 30, and 94, that is, 

c + 30. 

Indeterminate Problems 

The problems of Book I are either determinate or are made so by adding new re¬ 

strictions in the course of the solution. Where these problems are indeterminate the 

indeterminacy is the result of an insufficient number of restrictions on the output. 

The problems are followed in Book II by some problems that are indeterminate 

for a different reason. In these problems the result of applying certain operations 

to unknown numbers is not specified as a number, but is required only to belong 

to given classes of numbers, usually square numbers and occasionally cubes. A 

famous example of this type is Problem 8 of Book II, to separate a given square 

number into two squares. Diophantus illustrates this problem using the number 

16 as an example. His method in this indeterminate problem is similar to that fol¬ 

lowed in the determinate problem discussed above. That is, he expresses the two 

numbers in terms of his single unknown in such a way that one of the conditions 

is automatically satisfied. Thus letting one of the two squares be Av (which is 

C2 in our terms) the other will automatically be 16 — c2. To get a determinate 

equation for q, he assumes that the other number to be squared is 4 less than a 

multiple of q. (The number 4 is chosen because it is the square root of 16. In our 

terms, it leads to a quadratic equation, one of whose roots is zero, so that the other 

root can be found by solving a linear equation.) Illustrating the general procedure 

by a particular example, he assumes that the other square is (2c — 4)2. Since this 

number must be 16 — c2, he thus finds that 4c2 — 16c -f 16 = 16 — c2, so that 

C= It is clear that this procedure can be applied very generally, showing an 

infinite number of ways of dividing a given square into two other squares. 

In the seventeenth century this particular problem achieved a fame far beyond 

its intrinsic importance when Fermat, who was studying the Arithmetike, remarked 

that the analogous problem for cubes and higher powers had no solution, that is, 

one cannot find positive rational numbers x, y, and z satisfying X3 + y3 = z3 

or x4 + y4 = z4, etc. Fermat stated that he had found a proof of this fact, but 

unfortunately did not have room to write it in the margin of the book. Fermat 

never published any general proof of this fact, although certain special cases such 

as n = 3 and n = 4 are consequences of a method of proof developed by Fermat 

and known as the method of infinite descent. The problem was a tantalizing one 

because of its comprehensibility. Anyone with a high-school education in math¬ 

ematics can understand the statement of the problem, and probably the majority 

of mathematicians dreamed of solving it when they were young. Despite the ef¬ 

forts of hundreds of amateurs and prizes offered for the solution, no correct proof 

was found for more than 350 years. On June 23, 1993 the British mathematician 

Andrew Wiles announced at a conference held at Cambridge University that he 

had succeeded in proving a certain conjecture in algebraic geometry known as the 

Shimura-Taniyama conjecture, (see Fig. 8.1) from which Fermat’s conjecture is 
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known to follow. This is the first claim of a proof by a reputable mathemati¬ 

cian using a technique that is known to be feasible, and the result was tentatively 

endorsed by other mathematicians of high reputation. After several months of 

checking some doubts arose. Wiles had claimed in his announcement that cer¬ 

tain techniques involving what are called Euler systems could be extended in a 

particular way, and this extension proved to be doubtful. In collaboration with an¬ 

other British mathematician, Richard Taylor, Wiles eventually found an alternate 

approach that simplified the proof considerably, and it is now believed by experts 

in number theory that the problem has been solved. 

To give another illustration of the same method, we consider the problem 

following the one just discussed, that is, Problem 9 of Book II: to separate a given 

number that is the sum of two squares into two other squares. (That is, given one 

representation of a number as a sum of two squares, find a new representation of 

the same type.) Diophantus shows how to do this using the example 13 = 22 +32. 

He lets one of the two squares be (q -f 2)2 and the other (2q — 3)2, resulting in 

the equation 5c2 — 8c = 0. Thus c = §, and indeed (4p)2 + (|)2 = 13. 
Some of Diophantus’ indeterminate problems reach a high degree of complexity. 

For example, Problem 19 of Book III asks for four numbers such that if any of the 

numbers is added to or subtracted from the square of the sum of the numbers, the 

result is a square number. Diophantus gives the solutions as 

17,136,600 12,675,000 15,615,600 8,517,600 

163,021,824’ 163,021,824’ 163,021,824’ 163,021,824' 

8.2.3 Diophantus’ Place in Greek Mathematics 

Diophantus occupies a unique position in the world of Greek mathematics. Turning 

away from the great achievement of the Greeks in geometry, he took his subject 

matter from the very oldest mathematics studied by the Greeks—the properties 

of the positive rational numbers. Even within this subject, his Arithmetike is 

occupied with problems of the “find a number such that... ” type. He does not 

prove general theorems about figurate numbers or any sophisticated results on 

primes or divisibility. What is original in Diophantus is his introduction of the 

technique of writing down equations with a symbol for the unknown number. Later 

mathematicians wrote commentaries on the Arithmetike, but there is nothing else 

like it among the surviving documents from this period. 

8.3 Pappus 

Like Diophantus, the second outstanding mathematician from this period is person¬ 

ally obscure. He probably lived at the time of Roman decline, during the reign of 

the emperor Diocletian (285-305), who split the Empire into eastern and western 

halves, and Constantine, the first Emperor to convert to Christianity. To judge 

from his surviving works, Pappus was the ideal of a liberal scholar, well read in 

the areas of mathematics, astronomy, and geography. He wrote commentaries on 



8.3. PAPPUS 175 

At Last, Shout of ‘Eureka!’ 
In Age-Old Math Mystery 

By GINA KOLATA 

More than 350 years ago, a 
French mathematician wrote a 
deceptively simple theorem in the 
margins of a book, adding that he 
had discovered a marvelous proof 
of it but lacked space to include it 
in the margin. He died without 
ever offering his proof, and math¬ 
ematicians have been trying ever 
since to supply it. 

Now, after thousands of claims 
of success that proved untrue, 
mathematicians say the daunting 
challenge, perhaps the most fa¬ 
mous of unsolved mathematical 
problems, has at last been sur¬ 
mounted. 

The problem is Fermat’s last 
theorem, and its apparent con¬ 
queror is Dr. Andrew Wiles, a 40- 
year-old English mathematician 

Bettmann Archive 

Pierre de Fermat, whose theo¬ 
rem may have been proved. 

who works at Princeton Universi¬ 
ty. Dr. Wiles announced the result 
yesterday at the last of three lec¬ 
tures given over three days at 
Cambridge University j in Eng¬ 
land. 

Within a few minutes of the 
conclusion of his final lecture, 
computer mail messages were 
winging around the world as 
mathematicians alerted each oth¬ 
er to the startling and almost 
wholly unexpected result. 

Dr. Leonard Adelman of the 
University of Southern California 
said he received a message about 
an hour after Dr. Wiles’s an¬ 
nouncement. The frenzy is justi¬ 
fied, he said. “It’s the most excit¬ 
ing thing that’s happened in — 
geez — maybe ever, in mathemat¬ 
ics.” 

Impossible Is Possible 

Mathematicians present at the 
lecture said they felt “an elation,” 
said Dr. Kenneth Ribet of the Uni¬ 
versity of California at Berkeley, 
in a telephone interview from 
Cambridge. 

The theorem, an overarching 
statement about what solutions 
are possible for certain simple 
equations, was stated in 1637 by 
Pierre de Fermat, a 17th- century 
French mathematician and physi¬ 
cist. Many of the brightest minds 
in mathematics have struggled to 
find the proof ever since, and 
many have concluded that Fer¬ 
mat, contrary to his tantalizing 
claim, had probably failed to de¬ 
velop one despite his considerable 

Continued on Page D22, Column 1 

Figure 8.1: Front-page story on the proof of Fermat’s conjecture, from The New 

York Times, June 24, 1993. Copyright The New York Times. The Bettman Archive. 
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the major works of Euclid, Ptolemy, Apollonius, Archimedes, Heron, and others. 
These commentaries are not mere explanations of obscure points in the works, 
but contain extensions of the results of the great scholars. In addition he wrote, 
around the year 320, an original work known as the Collection (Synagoge). This 
work consisted of eight books, but Book I and the first part of Book II have not 
survived. The part that has come down to us begins in the middle of a descrip¬ 
tion of Apollonius’ system of writing numbers in tetrads (similar to Archimedes’ 
Sand-reckoner). The Collection is not focused, like the Arithmetike, on a single 
topic; it ranges over a variety of topics and gives information about the authors, 
clarifications of their proofs, and new theorems. It can therefore be read with 
profit and pleasure by anyone who has a basic acquaintance with the great authors 
and their works. 

8.3.1 Contents of the Collection 

As mentioned above, Book I has been lost, although it almost certainly contained 
material similar to that in the surviving part of Book II, that is, on the rather dull 
topic of notation for writing large integers. The remaining books merit a more 
detailed discussion. In general, they explore in more detail topics that had been 
studied by earlier writers. Often they present generalizations of known theorems 
and raise questions that had not been previously studied. 

The Classical Problems and the Pythagorean Theorem 

Book III contains a thorough discussion of the problem of two mean proportionals, 
presenting the solutions of this problem by earlier authors and placing it in the 
context of the general theory of arithmetic, geometric, and harmonic means. Pappus 
described a classification of various geometric constructions, which he attributed 
to “the ancient geometers” as “planar” (hrCrpSa, solvable using only circles and 
straight lines in a plane), “solid” (arepea, solvable with the use of conic sections, 
which are surfaces generated in space by circles and straight lines), and “linear” 
(7pappuxa, requiring curves not generated by straight lines and circles, even in 
three dimensions). Among these more general curves Pappus mentions several, 
including spirals, the conchoid, and the quadratrix. (We have not discussed these 
last two curves because of lack of space; they occur frequently as problems in 
calculus books in connection with polar and parametric equations.) Of the problem 
of two mean proportionals Pappus says 

Thus, given that problems are distinguished in this way, the geometers 
of old were not able to construct the solution of the problem of the 
mean proportionals to two lines by geometric reasoning, it being by 
nature a solid problem, since conic sections are difficult to draw in 
a plane. However, they achieved this construction by use of certain 
wonderful hand instruments. 

Book IV contains a famous generalization of the Pythagorean theorem: Given 
a triangle ADC and any parallelograms ACFG and BAED constructed on two 
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H 

Figure 8.2: Pappus’ generalization of the Pythagorean theorem. 

sides, it is possible to construct (with straightedge and compass) a parallelogram 

BCML on the third side equal in area to the sum of the other two (see Fig. 8.2). 

This is easily done by extending the sides FG and DE to meet at a point H, then 

drawing HA and extending it to meet BC in the point K. If lines are now drawn 

parallel to HK through B and C, meeting DE in L and FG in M, then BL and 

CM are both equal to AH, so that BCML is a parallelogram. Now if LM is 

joined, meeting AK in the point N, then the parallelogram CMNK equals (in 

area) the parallelogram CM HA, since both have the same base CM and the sides 

opposite this base both lie on the line HK, which is parallel to CM. But CM HA 
equals CFG A since both have the base AC and the sides opposite this base lie 

on the line HF, which is parallel to AC. Hence CMNK = CFG A. Likewise 

BKNL = BAHL = BAED, and so BAED + CFGA = BKNL+KCMN = 
BCML. 

Book IV also contains a discussion of the other two classical problems, squaring 

the circle and trisecting the angle. In the course of this discussion Pappus tells 

much of what is known about the history of these problems and the curves used 

to solve them. Squaring the circle is a problem of the sort Pappus calls “linear,” 

but trisecting the angle is a “solid” problem, and Pappus shows how to solve it by 

drawing a suitable hyperbola. 

The Isoperimetric Problem 

In Book V Pappus takes up a topic not mentioned by Euclid, but apparently 

discussed by the Athenian mathematician Zenodorus, whose acquaintance with 

Diodes was mentioned in the previous chapter. This topic is the isoperimetric 

problem: Which plane figure of a given perimeter encloses the largest area? Which 
solid figure having a given surface area encloses the largest volume? Pappus 
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introduces this problem with one of the most charming essays in the history of 

mathematics, one that has frequently been excerpted under the title On the Sagacity 
of Bees. Pappus speaks poetically of the divine mission of the bees to bring from 

heaven the wonderful nectar known as honey, and says that in keeping with this 

mission they must make their honeycombs without any cracks through which honey 

could be lost. Having also a divine sense of symmetry, the bees had to choose 

among the regular shapes that could fulfill this condition, that is, triangles, squares, 

and hexagons. They chose the hexagon because a hexagonal prism required the 

least material to enclose a given volume. 

It was apparently Zenodorus who first stated that of all plane figures of given 

perimeter the circle encloses the greatest area. Pappus shows first that of two 

regular polygons having the same circumference, the one with the larger number 

of sides encloses the larger area. He then shows that a circle encloses a larger area 

than any regular polygon of the same perimeter. In three dimensions he shows that 

a sphere encloses a greater volume than any regular polyhedron having the same 

surface area and also greater than any cone or cylinder having the same surface 

area. Only then does he prove the three-dimensional analog of his comparison of 

polygons, that is, that if two regular solids have the same surface area, the one 

with the larger number of faces encloses the larger volume. 

Book VI is devoted to commentary on various astronomical treatises. 

Locus Problems 

Book VII is of historical importance not only because of the thesis advanced in 

it by Pappus but even more because of the information he provides in illustrating 

this thesis. The subject of the book is locus problems, such as we have already en¬ 

countered in Apollonius’ Conics. In the course of the discussion Pappus mentions 

a number of Greek works and states the number of propositions each contains, 

thereby providing us with a list of many now-lost works of Greek geometers. In 

particular Pappus discusses the three- and four-line locus found in Book III of 

Apollonius’ Conics. For these cases the locus is always one of the three conic 

sections. Pappus says that the locus to five or six lines, which involves a ratio of 

products of three lines—in other words, a ratio of two volumes—leads to curves 

which “cannot yet be understood in ordinary reasoning, but are merely called lines 

(it is not clear what they are and what properties they have).” In our terms these 

are cubic curves, and a really comprehensive study of them was not completed 

until the nineteenth century. Indeed, work continues even today on this topic in 

the abstract setting of modem algebra and number theory, and it was precisely 

conjectures about cubic curves that led to the proof of Fermat’s conjecture. 

In connection with this type of problem, Pappus offers an insight with the 

potential for enormous further advances in mathematics. Considering the locus to 

more than six lines, Pappus says that these conditions determine a curve. This step 

was an innovation, since it proposed the possibility that a curve could be uniquely 

determined by certain conditions without being explicitly constructible. Moreover 

it forced Pappus to go beyond the usual geometric interpretation of products of 

lines as rectangles. Noting that “there is nothing contained under more than three 
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dimensions” (that is, one cannot form a notion of more than three dimensions), he 

continues: 

It is true that some recent writers have agreed among themselves to use 

such expressions, but they have no clear meaning when they multiply 

the rectangle contained by these straight lines with the square on that or 

the rectangle contained by those. They might, however, have expressed 

such matters by means of the composition of ratios, and have given a 

general proof... . 

This passage is of crucial importance in the history of mathematics, since it 

states both the fundamental difficulty in the development of analytic geometry 

within the Euclidean system and the route by which this difficulty might have 

been overcome. The fundamental idea of analytic geometry, already present in 

Euclid’s books on number theory, is that numbers can be represented by line seg¬ 

ments. The problem of incommensurables is that there seems to be an excess of 

line segments: Some line segments cannot be regarded as numbers. This problem 

might have been overcome if the algebraic operations on numbers had been suit¬ 

ably interpreted. Addition and subtraction have a straightforward interpretation by 

placing line segments end to end. The product of two line segments is interpreted 

as a rectangle having the segments as sides, and the quotient as their geometric 

“ratio.” But this last notion is not clearly defined in Euclid, as we have already 

seen. These interpretations made it impossible to give a geometric representation 

of a product of more than three lines. The notion of composite proportions—a 

product or ratio of ratios—as suggested by Pappus, would have overcome these 

problems. Thus, instead of the “ratio” abed, : efgh, which had no meaning when 

a,.. .h were interpreted as lines, Pappus proposed considering the “compound ra¬ 

tio” (a : e) • (b : /) • (c : g) • (d : h), which made perfectly good sense. Although 

Pappus did not work out the details, this idea naturally leads to the interpretation 

of a number as a ratio of line segments rather than as a single line segment. It 

is significant that this step was the critical one for Descartes when he created his 

analytic geometry. He took as given a certain line segment regarded as unity. A 

number was then interpreted as a line segment having a given ratio to the unit 

segment, so that the product of two lines could be interpreted as a line, rather than 

as an area. Not by coincidence, Descartes was convinced of the value of this work 

precisely because it enabled him to study the locus to five and six lines. 

The passage just discussed in Book VII of the Collection is immediately fol¬ 

lowed by Pappus’ statement that the topic is of limited importance compared with 

some theorems he himself had proved. He then gives the following statement of 

such a theorem: The ratio of [areas] completely rotated is compounded from the 

ratios of the [areas] rotated and the ratios of the lengths of lines from the centers 

of gravity similarly drawn to the axes of rotation. The modem theorem called Pap¬ 

pus’ theorem asserts that the volume of a solid of revolution is equal to the product 

of the area rotated and the distance traversed by its center of gravity (which is 2n 

times the length of the line from the center of gravity to the axis of rotation). In the 

modem form this theorem was first stated by the Swiss astronomer/mathematician 
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H.P. Guldin (1577-1643). Unfortunately we do not have Pappus’ proof of this 

theorem. 
The eighth and last book of the Collection contains a discussion of mechanical 

devices using the geometric theory of proportion. It is here that Pappus quotes 

Archimedes as saying, “<5ck /iol nav aru koll kivlo tt)v 7rjv.” (“Give me a place 

to stand, and I will move the earth.”) The basic problem is to move a given weight 

with a given force. These problems are interspersed with discussion of certain 

purely geometric questions such as to draw an ellipse through five given coplanar 

points. 

8.4 Hypatia 

The major part of mathematical writing from the period of Roman hegemony con¬ 

sists of commentaries. Some of these commentators—Proclus, Theon of Smyrna, 

Iamblichus, Simplicius, and Eutocius—have been mentioned in Chapter 4. Two 

others worthy of mention are Theon of Alexandria (fourth century) and his daugh¬ 

ter Hypatia (ca. 355-415), the first woman mathematician whose name is known. 

Unfortunately little else is known about her. There are two primary sources for 

information about her life. One is a passage in a seven-book history of the Chris¬ 

tian Church written by Socrates Scholasticus, who was a contemporary of Hypatia, 

but lived in Constantinople; the other is an article in the Suda, an encyclopedia 

compiled at the end of the tenth century, that is, some five centuries after Hypatia. 

(This work bears the traditional name Suidas, erroneously thought to be the name 

of the person who compiled it.) In addition several letters of Synesius, bishop of 

Ptolemais (in what is now Libya), who was a disciple of Hypatia, were written 

to her or mention her, always in terms of high respect. In one letter he requests 

her, being in the “big city,” to procure him a scientific instrument (hygrometer) not 

available in the less urban area where he lived. In another he asks her judgment 

on whether to publish two books that he had written, saying 

If you decree that 1 ought to publish my book, I will dedicate it to 

orators and philosophers together. The first it will please, and to the 

other it will be useful, provided of course that it is not rejected by you, 

who are really able to pass judgment. If it does not seem to you worthy 

of Greek ears, if, like Aristotle, you prize truth more than friendship, 

a close and profound darkness will overshadow it, and mankind will 

never hear it mentioned... 

The account of Hypatia’s life written by Socrates Scholasticus, who was a later 

contemporary of Hypatia, occupies Chapter XV of Book VII of his Ecclesastical 

History. Socrates Scholasticus describes Hypatia as the pre-eminent philosopher of 

Alexandria in her own time and a pillar of Alexandrian society, who entertained the 

elite of the city in her home. Among that elite was the Roman procurator Orestes. 

There was considerable strife at the time among Christians, Jews, and pagans in 

Alexandria, and Cyril, the bishop of Alexandria, was apparently in conflict with 

Orestes. According to Socrates, a rumor was spread that Hypatia prevented Orestes 
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from being reconciled with Cyril. This rumor caused some of the more volatile 

members of the Christian community to seize Hypatia and murder her in March 

of the year 415. 
Five centuries after the death of Hypatia a Greek encyclopedia known as the 

Suda was compiled. The Suda devotes a long article to Hypatia, repeating in 

essence what was related by Socrates Scholasticus. It adds, however, that Hypatia 

was the wife of the philosopher Isodoros, which is definitely not the case, since 

Isodoros lived at a later time. The Suda assigns the blame for her death to Cyril 

himself. 

Yet another eight centuries passed, and Edward Gibbon came to write the story 

in his Decline and Fall of the Roman Empire (Chapter XLVII). In his version 

Cyril’s responsibility for the death of Hypatia is reported as fact, and the murder 

itself is described with certain gory details for which there is no factual basis (the 

version given by Eocrates Scholasticus is revolting enough, and did not need the 

additional horror invented by Gibbon). 

A fictionalized version of Hypatia’s life can be found in a nineteenth-century 

novel by Charles Kingsley, bearing the title Hypatia, or New Foes with an Old 

Face. What facts are known were organized in an article by Michael Deakin 

entitled “Hypatia and her mathematics” in the American Mathematical Monthly, 

March 1994, and a biographical study of her life by Maria Dzielska entitled Hypatia 

of Alexandria was published in 1995. 

8.5 Roman Mathematics 

Mathematics was not developed by the Romans, but even they found some uses 

for it in architecture, engineering, and geography, all of which were essential for 

administering the Empire. 

8.5.1 Arches 

Although a few arches are found here and there in Egyptian and Greek buildings, 

the predominant structures in both of these civilizations use post-and-lintel window 

and door frames, that is, a flat stone lying atop two posts. Such a construction 

leaves a tensile stress at the bottom surface of the lintel, which will break under its 

own weight if the posts are too far apart. For their bridges and tunnels the Romans 

used semicircular arches, which direct much of the tension outward to the posts. 

The arches are constructed of trapezoidal blocks called voussoirs arranged so that 

the weight on the center is passed to the blocks on each side. This structure allows 

much wider distances between the posts at the cost of requiring buttressing of the 

posts, which would otherwise be forced apart by the arch. A splendid example 

of this kind of Roman engineering is provided by the bridge at Nimes, France 

(see Fig. 8.3). The Romans also used rows of such arches to support long tunnels 

and tunnel-shaped rooms in buildings. This structure is known as a barrel vault.; 

its chief disadvantage is that it places considerable lateral stress on the walls and 

requires heavy buttressing. 
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Figure 8.3: The Roman Aqueduct at Nimes. The Bettmann Archive. 

8.5.2 Mapmaking 

In order to administer their extensive empire the Romans naturally needed accurate 

large-scale maps. Caesar Augustus commissioned his favorite admiral Agrippa 

to compile a map of the world. This map, which was incomplete at the time 

of Agrippa’s death in 12 B.C.E., was completed under Augustus’ direction and 

painted on a wall along the road in Rome now known as the Via del Corso. This 

wall has been destroyed, and no trace of the map remains. Such large-scale map¬ 

making requires that one take account of the curvature of the earth, and raises the 

problem of representing a curved surface on a plane. (This problem was to become 

one of the sources of differential geometry.) 

Ptolemy, who lived under Roman rule in Alexandria, was the first scholar 

known to have looked at the problem of representing large portions of the earth’s 

surface on a flat map. He also introduced the now-familiar lines of latitude and 

longitude. These lines have the advantage of being perpendicular to one another, 

but the disadvantage that the parallels of latitude are of different sizes. Hence a 

degree of longitude stands for different distances at different latitudes. Ptolemy’s 

maps (see Fig. 8.4) are nevertheless a good example of the power of geometry for 

representing knowledge. 

8.5.3 The Groma, the Car do, and the Decumanus 

From the ruins of Pompeii archaeologists have recovered a vital clue to Roman 

surveying, an instrument called the groma. The word is a mysterious one, variously 

thought to be a Latin corruption of the Greek gnomon, or derived from a conjectured 

word gnorma that was the source of both the Latin and Greek words as well as the 
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Figure 8.4: Ptolemy’s map of the world. The Bettmann Archive. 

word normal now used in mathematics to mean perpendicular. Writing in 1880, 

the German historian Moritz Cantor had only a picture of a groma, found in the 

tomb of a surveyor and published in 1854, on which to base his account of its use. 

Only one (damaged) instrument has actually been found, and it is in a room in the 

Naples Archaeological Museum not open to the public. A groma consisted of an 

iron cross with plumblines attached to the ends of each arm. It is believed that 

the surveyor sighted along the plumb-bobs toward an assistant who held a pole 

or stake. The instrument is well adapted for laying out accurate right angles, but 

not for measuring any other angles. As we shall see below, one can do accurate 

surveying without having to measure any angles except right angles. 

The Romans conducted surveying in connection with the construction of roads 

and towns. The center of a Roman village would be at the intersection of two 

perpendicular roads, a north-south road called the cardo maximus (literally the 

“main hinge”) and an east-west road called decumanus maximus, the “main tenth.” 

Lots were laid out in blocks (insulce) called “hundredths” (centurice), each block 

being given essentially what we call Cartesian coordinates (.x,y), meaning x units 

dextra decumani (right) or sinistra decumani (left) and y units ultra cardinem (far) 

or citra cardinem (near). 

8.5.4 The Corpus Agrimensorum Romanorum 

A large collection of Roman writings on surveying was collected, translated into 

German, and published in Berlin in the middle of the nineteenth century. This 
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F 

Figure 8.5: Nipsus’ method of computing the width of a river. 

two-volume work bears the title Corpus Agrimensorum Romanorum, the word 

agrimensor (field measurer) being the Latin name for a surveyor. Among the 

authors there contained is one M. Iunius Nipsus, who gives the following directions 

for measuring the width of a river (see Fig. 8.5). 

You mark the point C on the opposite bank from B (a part of the procedure 

Nipsus neglects to mention until later), continue the straight line CB to some 

convenient point A, lay down the crossroads sign at A, then move perpendicularly 

to D, and then perpendicularly an indefinite distance to F, mark the midpoint G 

of AD with a pole, sight from G to C, then extend the line CG until it meets DF 

at H. Since the triangles AGC and DGH are congruent (by angle-side-angle), 

it follows that CB = CA- AB = HD - AB. 

8.6 Problems and Questions 

8.6.1 Problems from Diophantus and Pappus 

Exercise 8.1 Problem 6 of Book I of the Arithmetike is to separate a given number 

into two numbers such that a given fraction of the first exceeds a given fraction 

of the other by a given number In our terms this is a problem in two unknowns 

x and y, and there are four bits of data: the sum of the two numbers, which we 

denote by a, the two proper fractions r and s, and the amount b by which rx 

exceeds sy. Write down and solve the two equations that this problem involves. 

Under what conditions will the solutions be positive rational numbers (assuming 

that a, b, r, and 8 are positive rational numbers)? Compare your statement of this 

condition with Diophantus’ diorismos, stated in very complicated language: The 

last given number must be less than that which arises when that fraction of the 

first number is taken which exceeds the other fraction. 

Exercise 8.2 Compare your solution of the problem just discussed with that given 

by Diophantus. He illustrates the general case by dividing 100 into two parts, such 
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H 

Figure 8.6: Pappus’ proof of the Pythagorean theorem. 

that | of the first part exceeds | of the second part by 20 (since 20 is less than | 

of 100, the diorismos is satisfied). Diophantus lets the second part be 6x, so that 

the first part is 4(x + 20). Hence IO.t + 80 = 100, so that x — 2. The parts are 

therefore 88 and 12. 

Exercise 8.3 Solve Problem 25 of Book I of Diophantus. Find four numbers such 

that if each is increased by the same fraction of the other three the four resulting 

numbers are equal. To make the problem determinate, assume that the sum of the 

last three numbers is 50 and that the given fraction by which all the numbers are 

to be increased is f 

Exercise 8.4 Solve Problem 19 of Book III of Diophantus (described above) by 

following Diophantus’ approach: In any right triangle the square on the hy¬ 

potenuse increased or decreased by twice the product of the legs is a square. 

Therefore we must find [the legs of four right triangles having the same hy¬ 

potenuse. That is, we must find a square that is divisible into two squares in four 

different ways. Diophantus’ idea is, having found such a number, that is, having 

found four pairs (a*, fy), i = 1,2,3,4, such that a2 4- b2 = c2, if one can arrange 

things so that 2{a\b\ + a262 + a3&3 + a4b4) = c, then one can take the four numbers 

to be 2 atbi, i = 1,2,3,4. For, the sum being c, one has c2 ± 2 afi = (a* ± fy)2. 

The condition 2(afyi + a2fr2 + a363 + a4b4) = c can be obtained by scaling. 

Specifically, having any four pairs at, bi satisfying a2 + b2 = c2 for one and the 

same number c, we have, for any c, (u7;c)2 + (fyc)2 = (c<r)2. It is then merely a 

matter of choosing so that 2[(aic)(fric) 4-f (a4c)(^4^)] = cq. This last equa¬ 

tion is easily solved: <; = c/[2(a\bi + • • • + a464)]. The problem thus is merely 

to find the four Pythagorean triples with the same hypotenuse. This problem was 

solved in Problem 9 of Book II, which was discussed in the text. Diophantus takes 

c — 65. 

Exercise 8.5 Show that Pappus’ generalization reduces to the usual Pythagorean 

theorem if the triangle ADC is a right triangle and the parallelograms on the legs 
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are squares, that is, show that the parallelogram on the hypotenuse is also a square 

(see Fig. 8.6). [Hint: If ZA is a right angle and AC EG and BAED are squares, 

then the triangles GHA and EAH are each congruent to the original triangle 

ABC, and so AACB = AG AH = ZBAK. Therefore triangle ABK is also 

a right triangle, that is, HK is perpendicular to BC and CM LB is a rectangle. 

Since CM = AH = BC, it follows that CM LB is a square.] 

8.6.2 Questions about Diophantus and Pappus 

Exercise 8.6 Building on our earlier definition of algebra from Chapter 3, we can 

characterize an algebra problem as being of the following generic type: Certain 

standard arithmetic operations were performed on (unknown) numbers, and cer¬ 

tain given numbers resulted. Find the numbers on which these operations were 

performed. Diophantus’ notation makes it possible to give a symbolic representa¬ 

tion of the sequence of operations performed. Does it help in finding the solution 

of the problem? 

Exercise 8.7 Do bees really construct hexagons in their honeycombs, or are the 

cells merely tangent circles whose interstices are filled with beeswax? 

Exercise 8.8 Pappus, as we saw, paid little attention to the locus to more than 

six lines on the grounds that there are only three spatial dimensions, so that a 

product of four lines had no geometric meaning. Diophantus, on the other hand, 

considered (numerical) products of up to six factors. If these two mathematicians 

had combined their ideas, could they have invented parts of what we now know 

as analytic geometry? Sketch the outline of a project that would implement this 

program, showing how the notion of an unknown number could be combined with 

the notion of a number as a ratio of two line segments to produce the “equation 

of a curve.” 

Exercise 8.9 Pappus’ assertion that the locus to five or six lines is a definite 

curve implicitly introduces into mathematics the notion of abstract “existence” as 

opposed to explicit exhibition. For instance, many constructions by Archimedes 

and others used lines that were assumed to exist but could not be constructed 

with straightedge and compass. The Greeks were reluctant to use such objects but 

found it unavoidable. There is a psychological difficulty in reasoning about objects 

that cannot be seen and processes that take place, so to speak, “offstage.” Does 

such “offstage” action occur in high-school mathematics? Give an example from 

geometry and one from algebra in which one concludes that a point or a number 

exists, even though no method of exhibiting it is available. 

8.7 Endnotes 

1. The discussion of Diophantus is based on the edition of his works by T. L. 

Heath and the recent book by J. Sesiano, Books IV to VII of Diophan- 
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tus’ Arithmetica in the Arabic Translation Attributed to Qusta ibn Luqa 

(Springer-Verlag, New York, 1982). 

2. The quotation of Diophantus’ rules for cancellation is taken from Selections 

Illustrating the History of Greek Mathematics, with a translation by Ivor 

Thomas (Harvard University Press, 1939), Vol. 2, p. 525. 

3. The discussion of Pappus’ works is based on the Latin-Greek edition of the 

Collection in three volumes published by Adolf M. Hakkert Verlag (Ams¬ 

terdam, 1965). 

4. The quotation of Pappus’ opinion on the product of more than three lines is 

taken from Selections Illustrating the History of Greek Mathematics, Vol. 2, 

p. 603. 

5. The quotation from a letter of Synesius is from The Letters of Synesius of 

Cyrene, translated by Augustine Fitzgerald (Oxford University Press, 1926). 

6. The discussion of the chapter from Socrates Scholasticus is from the book 

Ecclesiastical History. A History of the Church in Seven Books (Samuel 

Bagster and Sons, London, 1844), pp. 482-483. 

7. The information from the Suda is taken from the Greek original Suidae 

Lexicon (Teubner-Verlag, Stuttgart, 1971), Vol. 4, pp. 644-645. 

8. The discussion of Gibbon is based on The History of the Decline and Fall of 

the Roman Empire, with notes by Dean Milman, M. Guizot, and Dr. William 

Smith (Harper & Brothers, New York, 1880), Vol. 4, pp. 646-647. 





PART II 

Other Mathematical Traditions 





The development of mathematics in the West as a deductive system is a unique 

phenomenon. In other parts of the world mathematical results of considerable 

sophistication, involving the correct use of very intricate techniques and subtle 

reasoning, were obtained without the kind of formal proof demanded by Euclidean 

geometry. This feat seems almost more remarkable than the creation of Euclidean 

geometry itself. How is it possible to avoid delicate but fatal errors without the 

guidance of formally stated axioms and rules of inference? Perhaps the answer 

is that “mathematizing,” like creating music, is an innate ability possessed by 

everyone to some degree and by a few geniuses to a high degree. Everyone knows 

that the music of different cultures sounds very different, yet we all recognize 

that there is something important that Yitzhak Perlman, Ravi Shankar, and John 

Coltrane all have in common. In only one culture did music lead to the symphony 

orchestra, and in only one culture did mathematics lead to deductive theories. Now, 

just as a concentration on symphonies would deprive the listener of the beauty of 

the koto or the sitar, and to spend all one’s time studying the Impressionists would 

be to deny oneself the pleasure of African art, so an exclusive concentration on the 

standard mathematics of the modern curriculum would prevent the student from 

gaining the insight and pleasure that can be found in the mathematics of India, 

China, and Japan. 

We study the mathematics of other cultures for a variety of reasons. Chief 

among them are the following: (1) the creators of this mathematics were excep¬ 

tional geniuses whose creations deserve to be remembered; (2) their alternative 

ways of looking at problems cause us to rethink our own solutions; (3) some of 

what they did became part of the world’s mathematical heritage, and its history 

ought to be told; and (4) some of the problems that other cultures have studied 

have no parallel in our own culture and are a delight to the imagination. 

The different mathematical traditions are linked by the Muslim culture, which 

stretched from Mongolia to Spain, and built on knowledge inherited from the 

Greeks, Hindus, and Chinese. Muslim mathematics thus provides a natural bridge 

from the ancient world to the modem. 
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Chapter 9 

The Mathematics of the 
Hindus 

9.1 Indian Civilization 

The Indian subcontinent has been inhabited for tens of thousands of years and 

has been the home of various civilizations for at least the last 4000 years. From 

archaeological excavations at Mohenjo Daro and Harappa on the Indus River in 

Pakistan it is known that an early civilization existed in this northwestern comer 

of the region for about a millennium starting in 2500 B.C.E. This civilization may 

have been an amalgam of several different cultures, since anthropologists recognize 

five different physical types among the human remains. Many of the artifacts that 

were produced by this culture have been found in Mesopotamia, evidence of trade 

between the two civilizations. 

9.1.1 The Aryan Civilization 

The early civilization of these five groups of people disappeared around 1500 

B.C.E., and its existence was not known in the modern world until 1925. The 

cause of its extinction is believed to be an invasion from the northwest by a sixth 

group of people, who spoke a language closely akin to early Greek. Because of their 

language these people are referred to as Aryans. The Aryans gradually expanded 

and formed a civilization of small kingdoms, which lasted about a millennium. 

This classical civilization of northwest India exerted a strong influence on the 

customs and religion of India up to the present day, although it was subject to 

numerous stresses over the centuries due to foreign invasion. 

Sanskrit Literature 

The language of the Aryans became a literary language known as Sanskrit, in which 

great classics of literature and science have been written. Sanskrit thus played a 
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role in southern Asia analogous to Greek in the Mediterranean world. That is, it 

provided a common means of communication among scholars whose native dialects 

were not mutually comprehensible and a basis for a common literature in which 

cultural values could be preserved and transmitted. During the millennium of Aryan 

dominance the spoken language of the people gradually diverged from written 

Sanskrit. (Close modem descendants of Sanskrit are Hindi, Gujarati, Bengali, and 

others.) Sanskrit is the language of the Mahabharata and the Ramayana, two epic 

poems whose themes bear some resemblance to the Homeric epics, and of the 

Upanishads, which contain much of the moral teaching of Hinduism. 

Among the most ancient works of literature in the world are the Hindu Vedas. 

The word means “knowledge” and is related to the English word wit. The compo¬ 

sition of the Vedas began around 900 B.C.E., and additions continued to be made 

to them for several centuries. Some of these Vedas contain information about 

mathematics, conveyed incidentally in the course of telling important myths. 

Hindu Religious Reformers 

Near the end of the Aryan civilization, in the second half of the sixth century 

B.C.E., two figures of historical importance arise. The first of these was Gautama 

Buddha, the heir to a kingdom near the Himalayas, whose spiritual journey through 

life led to the principles of Buddhism. The second leader, Mahavira, is less well 

known, but more important for the history of mathematics. Like his contemporary 

Buddha, he began a reform movement within Hinduism. This movement, known 

as Jainism, still has several million adherents in India. It is based on a metaphysic 

that takes very seriously what is known in some Western ethical systems as the 

chain of being. Living creatures are ranked according to their awareness. Those 

having five senses are the highest, and those having only one sense are the lowest. 

All life is considered sacred. It is recognized that it is necessary to kill some life 

(at least plant life) in order to remain alive, but the most deeply initiated Jainas 

frequently wear cloths over their mouths to prevent the inadvertent inhalation of 

a small insect. They practice an extreme asceticism, recognizing fully that such 

practices are injurious to their health. In fact Jainism is the only religion to approve 

of hastening one’s own death (under strictly specified conditions) in order to be 

free of the matter that weighs down the soul. What these principles have to do 
with mathematics will appear below. 

9.1.2 The Maurya Dynasty 

The Aryan system of small kingdoms was threatened by the invasion of Alexander 

of Macedon in 326 B.C.E. Although he defeated an Aryan army, Alexander was 

forced to return to the West by a rebellion in his own army. Five years later 

Chandragupta Maurya became the strongest of the local lords and founded the 

first empire in India. His empire was very short-lived, however, as his grandson 

Asoka, a convert to Buddhism, was reluctant to use military force. Asoka died 

in 232 B.C.E., and the last Mauryan ruler was assassinated in 185. The Mauryan 
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empire was then invaded from the south and simultaneously from the northwest. 

The invader from the northwest was a Hellenistic prince named Demetrius. He 

established a regime along the lines of the Seleucid rulers. His coins bore Greek 

engravings on one side and Indian on the other. 

9.1.3 The Kushan Empire and the Gupta Empire 

By the year 100 B.C.E., the kingdom of Demetrius had been conquered by invaders 

who established the Kushan Empire. This empire lasted for about 150 years 

and was marked by brilliant achievements in art, architecture, and science. It 

was replaced by a short-lived domination by Persia. Meanwhile in the south the 

Dravidian peoples, speaking Tamil, had absorbed a great deal of Hindu culture 

and were at the same time in contact with the Hellenistic world, as shown by 

the presence of Tamil words for various spices in the Greek language. When 

the Kushan Empire began to crumble around 220 C.E., a century of disorder 

followed in the north, ending with the ascension of Chandragupta I (not related 

to Chandragupta Maurya), who established himself as ruler of the entire Ganges 

Valley. This empire expanded for about a century and managed to check an 

invasion by the Huns in the fifth century. During this time India established 

colonies in southeast Asia, some of which endured as independent Indian kingdoms 

for over a millennium. The Gupta period was another time of brilliant literary and 

scientific achievement, the golden age of Sanskrit literature, in which the fifth- 

century author Kalidasa wrote lyric and epic poems and dramas of such quality 

that he has been compared with Shakespeare. At the university at Nalanda Hindu 

scholars studied astronomy and mathematics. Two outstanding mathematicians, 

whose discoveries we shall be discussing below, lived during this period. 

9.1.4 Islam in India 

The amazingly rapid Muslim expansion from the Arabian desert in the seventh 

century brought Muslim invaders to India by the early eighth century. The southern 

valley of the Indus river became a province of the huge Umayyad Empire, but the 

rest of India preserved its independence, as it did 300 years later when another 

Muslim people, the Turks and Afghans, invaded. The complete and destructive 

conquest of India by the Muslims under Timur the Lame came at the end of the 

fourteenth century. Timur did not remain in India, but sought new conquests; 

eventually he was defeated by the Ming dynasty in China. Nevertheless, India was 

desolated by his attack, and was decisively conquered a century later by Akbar 

the Lion, a descendant of both Genghis Khan and Timur the Lame and the first 

of the Mogul emperors. The Mogul empire lasted nearly three centuries, and was 

a time of prosperity and cultural resurgence. It was near the end of this period 

(midseventeenth century) that the Taj Mahal (Fig. 9.1) was built in Delhi by Shah 

Jahan as a mausoleum for himself and his favorite wife. Although Akbar himself 

was tolerant of non-Muslims, his successors were not. In contrast to the relative 

tolerance the Muslims had extended to Christians and Jews, they dealt ruthlessly 
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Figure 9.1: The Taj Mahal. Like the Parthenon, this famous mausoleum, built by 

the Muslim prince Shah Jahan in the seventeenth century, shows a sophisticated 

knowledge of geometric principles to solve practical problems and create beauty. 

The Bettmann Archive. 

with the Hindus, whom they considered pagans. As a result, the Indian populace 

did not abandon Hinduism for Islam, as the majority had abandoned Christianity 

in the Middle East. India has been religiously divided since this time. 

9.1.5 British Rule 

During the seventeenth and eighteenth centuries British and French trading com¬ 

panies were in competition for the lucrative trade with the Mogul Empire. British 

victories during the Seven Years War left Britain in complete control of this trade. 

Coming at the time of Mogul decline (due to internal strife among the Muslims 

and ferocious resistance on the part of the persecuted Hindus), this trade opened 

the door for the British to make India part of their empire. British colonial rule 

lasted nearly 200 years, coming to an end only after World War II. British rule 

made it possible for European scholars to become acquainted with Hindu classics 

of literature and science. As a result many Sanskrit works were translated into 

English in the early nineteenth century and became part of the world’s science and 

literature. 
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9.2 The Beginnings of Hindu Mathematics 

The oldest surviving documents on Hindu mathematics are copies of works written 

in the middle of the first millennium B.C.E., approximately the time during which 

Thales and Pythagoras lived. We shall discuss two types of documents, the Sulva 

Sutras, which convey mathematical information in relation to rules for the ordering 

of life, and systematic treatises bearing the name Siddhanta in their title. The 

word Siddhanta means that which is proved or established. The Sulva Sutras are 

of Hindu origin, but the Siddhantas contain so many words of foreign origin that 

they undoubtedly have roots in Mesopotamia and Greece. 

Since there is known to have been trade between the Middle East and India 

during this period, the Babylonian mathematics that had such a strong influence 

on Greece may also have been known in India, and there may also have been 

influence in the opposite direction. Mathematics was written down systematically 

during the Gupta empire, which was the time of Greek and Roman decline. When 

the Ummayads conquered part of the Indus valley in the eighth century, much of 

this Hindu mathematics came to the Islamic world. There it was further developed 

and ultimately made a contribution to the world of modem mathematics, which 

began in Europe during the sixteenth century. 

Our story of the mathematics among the Hindus will be divided into three 

periods: (1) the early period of the Sulva Sutras and Siddhantas (from the sixth 

century B.C.E. to the fifth century C.E., but building on knowledge of much older 

date); (2) the period from Aryabhata (fifth century C.E.) to Bhaskara (twelfth 

century C.E.); and (3) the modem period. 

9.3 The Earliest Period 

The best-known fact about Hindu mathematics is that the decimal notation and 

the symbols for numerals we use today originated in India and came to Europe 

through the Arabs. Of course, decimal systems are very common throughout the 

world. What makes the Hindu system valuable is the place-value notation, which 

we have encountered already in Mesopotamia in connection with a sexigesimal 

system. Whether this system originated in China or India is not absolutely certain, 

since the two countries were in contact from a very early date, but it certainly 

came to the West from the Arabs, who learned it from India. In fact, one of the 

influential treatises by which Europeans learned about the decimal system and the 

symbols for digits was a treatise by the Muslim scholar Kushyar ibn Labban (ca. 

971-1029), and the title he gave to the treatise is The Art of Hindu Reckoning. 

The Hindus invented names for very large powers of 10 at an early date. One 

early poem, the Valmiki Ramayana, from about 500 B.C.E., explains the numeration 

system in the course of recounting the size of an army. The description uses special 

words for 107, 1012, 1017, and many other denominations, all the way up to 10°°. 

Essential to a place-value notation is a symbol for nothing, which is known to 

have been invented in India before 200 B.C.E. 
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9.3.1 The Sulva Sutras 

In the period from 800 to 500 B.C.E. a set of verses of geometric and arithmetic 

content were written and became part of the Vedas. These verses are known 

collectively as the Sulva Sutras. The name means Cord Book or Cord Rules, 

a name that may reflect the same origin as the word rope stretchers used by 

Democritus. The root sulv originally meant to measure or to rule, although it 

also has the meaning of a cord or rope; sutra means thread or cord, a common 

measuring instrument. 

Number Theory 

The arithmetic content of the Sulva Sutras consists of rules for finding Pythagorean 

triples of integers, such as (3,4, 5), (5,12,13), (8,15,17), and (12, 35, 37). It is 

not certain what practical use these arithmetic rules had. The best conjecture is that 

they were part of religious ritual. A Hindu home was required to have three fires 

burning at three different altars. The three altars were to be of different shapes, but 

all three were to have the same area. These conditions led to certain “Diophantine” 

problems, a particular case of which is the generation of Pythagorean triples, so 

as to make one square integer equal to the sum of two others. 

One class of mathematical problems associated with altar building involves an 

altar of prescribed area in layers. In one problem from the Bodhayana Sutra the 

altar is to have five layers of bricks, each layer containing 21 bricks. Now one 

cannot simply divide a pile of 105 identical bricks into five layers and pile them 

up. Such a structure would not be stable. It is necessary to stagger the edges of 

the bricks. Thus, so that the outside of the altar will not be jagged, it is necessary 

to have at least two different sizes of bricks. The problem is to decide how many 

different sizes of bricks will be needed and how to arrange them. Assuming an 

area of one square unit (actually the unit is one square vyayam, about 64 square 

feet), the author suggests using three kinds of square bricks, of areas jg, and 

^ square unit. The first, third, and fifth layers are to have 9 of the first kind and 

12 of the second. The second and fourth layers get 16 of the first kind and five 
of the third. 

Geometry 

The geometric content of the Sulva Sutras encompasses many of the transformation- 

of-area constructions known from Euclid. In particular the Pythagorean theorem, 

and constructions for finding the side of a square equal to a rectangle, or the sum 

or difference of two other squares are given. This construction resembles the one 

found in Proposition 5 of Book II of Euclid rather than Euclid’s construction of 

the mean proportional in Book VI. The Pythagorean theorem is not given a name, 

but is stated as the fact that “the diagonal of a rectangle produces both [areas] 

which its length and breadth produce separately.” It is interesting that the problem 

of doubling a square, which we speculated in Chapter 3 might have led to the 

discovery of this theorem, produces a figure in the shape of one of the altars 
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Figure 9.2: Quadrature of the rectangle in the Sulva Sutra. 

discussed in the Vedas. Is it merely a coincidence that the problem of doubling 

the cube was said by the Greeks to have been inspired by an attempt to double the 

size of an altar? 

The Hindu method of constructing of a square equal to a given rectangle (see 

Fig. 9.2) is as follows. Let ABCD be the given rectangle, with AD longer than 

AB. Mark point E on AD so that AE = AB and F on BC so that BF = AB. 

Draw EF, obtaining the square ABFE. Let G be the midpoint of ED and H the 

midpoint of FC. Draw GH and extend it to K so that GK = AG. Extend AB to 

L so that AL = GK = AG. Draw KL, obtaining the square ALKG. Extend EF 

to meet LK at M. Then the rectangle ABCD equals the square ALKG minus 

the square HKMF (since the rectangle CDGH equals the rectangle BLMF). 

Next choose P on BH so that PL = KL (this can be done by drawing a circle 

with L as center and LK as radius). Draw the line from P perpendicular to LK 

meeting LK at Q. Then the square on LQ is the square on LP minus the square 

on PQ. But since PQ = HK and LP = LK, it follows that the square on LQ 

is precisely equal to the rectangle ABCD. 

To construct a square equal to a multiple of a given square, say seven times 

as large as a square of side a, the Katyayana Sutra says to construct an isosceles 

triangle of base 6a and two sides equal to 4a. The altitude, that is, the perpendicular 

bisector of the base, will have length ay/42 — 32 = \fla, and hence will be the 

side of a square 7 times the original square. 

The requirement of three altars of equal areas but different shapes would ex¬ 

plain the interest in transformation of areas. Among other transformation of area 

problems the Hindus considered in particular the problem of squaring the circle. 

The Bodhayana Sutra states the converse problem of constructing a circle equal to 

a given square. The following approximate construction is given as the solution. 

Let ABCD be the square (see Fig. 9.3). From the center O of the square draw 

a circle with radius equal to OC. Let L be the midpoint of side BC, and let the 
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Figure 9.3: Rounding a square. 

radius through L meet the circle in the point E. Choose a point P on LE one-third 

of the way from L to E. The point P will lie on the circle with center at O equal 

to the square ABCD. In contrast to the previously cited results on transformation 

of areas, which were exact, this result is only approximate. The authors, however, 

made no distinction between the two results. In terms that we can appreciate, this 

construction gives a value for tt of 18(3 — 2\/2), which is about 3.088. 

Square Roots 

The Hindus also had a very good system of approximating irrational square roots. 

Three of the Sulva Sutras contain the expression 

, 1 1 1 1 + — T-— - 
3 3-4 3-4-34 

for the diagonal of a square of side 1 (that is, y/2). If this series represents 

successive approximations to \/2, these approximations ^ 1, & If. The 

method described in Chapter 3 gives 1, 2, §, |, ff,... . We can only conjecture 

how such an approximation was obtained. One guess is the approximation 

«- r (r/2a)2 
2 + r = a +-rN-t-- —- 

2 a 2[a + r/2a] 

with a = | and r — This approximation follows a rule given by the twelfth- 
century Muslim mathematician Al-Hassar. 

It is not certain just how the early Hindu mathematicians conceived of irrational 

numbers, whether they had a name for them, or were merely content to find a 

number that would serve for practical purposes. By the year 1500 C.E., however, 

Hindu commentators were stating plainly their belief that the circumference and 

diameter of a circle are incommensurable. 

Here we see an instance in which the Greek insistence on logical correctness 

was a hindrance. The Greeks did not regard \[2 as a number, since they could 

not express it exactly as a ratio and they knew that they could not. The Hindus 
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may or may not have known of the impossibility of a rational expression for this 

number (they certainly knew that they did not have any rational expression for it); 

but, undeterred by the incompleteness of their knowledge, they proceeded to make 

what use they could of this number. This same “reckless” spirit served them well 

in the use of infinity and the invention of zero and negative numbers. They saw 

the usefulness of such numbers and either chose to live with, or did not notice, 

certain difficulties of a metaphysical character. 

9.3.2 Jaina Mathematics 

Like Greek mathematics, Hindu mathematics has a prominent metaphysical com¬ 

ponent. This metaphysical aspect manifests itself in various ways. One important 

place is in the handling of the infinite. Where the Greeks had regarded all reason¬ 

ing as finite and accepted only a potential infinity, the Hindus accepted an actual 

infinity and classified different kinds of infinities. This part of Hindu mathemat¬ 

ics is particularly noticeable with the Jainas, who were mentioned above. They 

classified numbers as enumerable, unenumerable, and infinite, and space as one¬ 

dimensional, two-dimensional, three-dimensional, and infinitely infinite. Further, 

they seem to have given a classification of infinite numbers remarkably similar to 

the modern-day theory of infinite ordinals. The idea is to progress through the 

finite numbers 2,3,4,... until the “first unenumerable” number is reached. This 

number corresponds to what is now called uo, the first infinite ordinal number. 

Then, exactly as in modem set theory, one can consider the unenumerable num¬ 

bers cu + l, tu + 2,. .., u;2, etc. We do not have enough specifics to say any more, but 

there is a very strong temptation to say that the Jaina classification of enumerable, 

unenumerable, infinite corresponds to our modern classification of finite, countably 

infinite, and uncountably infinite. One must be careful, however. It appears that 

the Jainas considered every number to have both a successor and a predecessor, 

while in modem set theory not every infinite ordinal has a predecessor. 

The metaphysics of the Jainas, based on a classification of sentient beings 

according to the number of senses possessed, led them to a mathematical topic not 

discussed by the Greeks. They called it vikalpa, and we know it as combinatorics. 

(The Sanskrit word kalpa has many meanings, among which are possible, feasible, 

and more significantly from our point of view, ordered. The prefix vi- corresponds 

roughly to the English prefix dis-, so that vikalpa may mean distribution. The 

occurrence of the word in the present context probably derives from the Kalpa 

Sutras, a set of Jaina verses.) 

Given that there are five senses and animals are to be classified according to the 

senses they possess, how many different classes will there be? A typical question 

might be, how many groups of three can be fonned from a set of five elements? 

We know the answer, as did the early Jaina mathematicians. In the Bhagabati 

Sutra, written about 300 B.C.E., the author asks how many philosophical systems 

can be formed by taking a certain number of doctrines from a given list of basic 

doctrines. After giving the answers for 2, 3, 4, etc., the author says that enumerable, 

unenumerable, and infinite numbers of things can be discussed, and, “as the number 
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Figure 9.4: The Meru Prastara. 

of combinations are formed, all of them must be worked out.” 

The general process for computing combinatorial coefficients was known to 

the Hindus at an early date. Combinatorial questions seemed to arise everywhere 

for the Hindus, not only in the examples just given but also in a much earlier work 

on medicine that poses the problem of the number of different flavors that can be 

made by choosing subsets of six basic flavors (bitter, sour, salty, astringent, sweet, 

hot). The author gives the answer as 6 + 15 + 20 + 15 + 6+1, that is, 63. We 

recognize here the combinatorial coefficients that give the subsets of various sizes 

that can be formed from six elements. (The author did not count the possibility of 

no flavor at all.) 

Combinatorics also arose with the Hindus in the study of literature, when a 

writer named Pingala in the third century B.C.E. gave a rule for finding the number 

of different words that could be formed from a given number of letters. This rule 

was written very obscurely, but a commentator named Halayudha in the tenth 

century C.E., explained it as follows. First draw a square. Below it and starting 

from the middle of the lower side, draw two squares. Then draw three squares 

below these, and so on. Write the number 1 in the middle of the top square and 

inside the first and last squares of each row. Inside every other square the number 

to be written is the sum of the numbers in the two squares above it and overlapping 

it. This, of course, is a perfect description of Pascal’s triangle, 300 years before 

it was published in China and 700 years before Pascal. Moreover it purports to 

be only a clarification of a rule invented 1200 years earlier! The priority for this 

discovery thus belongs to the Hindus. Its Sanskrit name is Meru Prastara (see 

Fig. 9.4), which means the spread out or stratified Mount Meru.1 We note that 

the inspiration for the study of this figure was quite different in China and India. 

In China, as we shall see in the next chapter, it came about in connection with the 

1 In Hindu mythology Mount Meru plays a role similar to that of Mount Olympus in Greek mythology. 
One Sanskrit dictionary gives this mathematical phrase as a separate entry. 
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extraction of roots and the solution of equations, whereas in India the inspiration 

was directly from the area of combinatorics. 

9.3.3 The Bakshali Manuscript 

A birchbark manuscript unearthed in 1881 in the village of Bakshali, near Pe¬ 

shawar, is now believed to date from the seventh century C.E. It contains some 

interesting algebra, including a symbol for an unknown quantity (C). One of the 

problems considered is written as follows, using modem number symbols and a 

transliteration of the Sanskrit into the Latin alphabet: 

1 
5 

yu mu 
1 

7+ rnu C 

1 1 

which can be interpreted as, “a certain thing is increased by 5 and the square root 

is taken, giving [another] thing; and the thing is decreased by 7 and the square 

root is taken, giving [yet another] thing.” In other words, we are looking for a 

number x such that x + 5 and x — 7 are both perfect squares. This problem is 

remarkably like certain problems in Diophantus. For example, Problem 11 of Book 

II of Diophantus is to add the same number to two given numbers so as to make 

each them a square. (If the two given numbers are 5 and —7, this is exactly the 

problem stated here.) 

The Bakshali manuscript also contains problems in linear equations, of the sort 

that have had a long history in elementary mathematics texts. For example, three 

persons possess 7 thoroughbred horses, 9 draft horses, and 10 camels respectively. 

Each gives one animal to each of the others. The three are then equally wealthy. 

Find the (relative) prices of the three animals. 

9.3.4 The Siddhantas 

Just after the time of Ptolemy, in the second, third, and fourth centuries C.E., 

Hindu scientists were compiling treatises on astronomy known as Siddhantas. The 

word Siddhanta means a system and thus corresponds very nearly to the title 

of Ptolemy’s treatise, the Syntaxis. One of these systems, the Surya Siddhanta 

(System of the Sun), from the late fourth century, has survived intact. Another 

from approximately the same time, the Paulisha Siddhanta, was frequently referred 

to by the Muslim scholar Al-Biruni (973-1048). The name of this treatise seems 

to have been bestowed by Al-Biruni, who says that the treatise was written by 

an Alexandrian astrologer named Paul. Trigonometry is an essential tool in the 

study of astronomy, and this subject was extremely well developed by the Hindus. 

It was the Hindus who discovered that the subject is simpler if you express the 

relations between circular arcs and chords in terms of half-chords, what are now 

called sines. 
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9.4 The Middle Period 

Although there is a long tradition of mathematical activity in India, only a few of 

the mathematicians are known by name. The most prominent of these are naturally 

the ones who wrote treatises that survive today We shall sample this tradition in 

the works of the three best known: Aryabhata, Brahmagupta, and Bhaskara. 

9.4.1 Aryabhata 

The earliest Hindu treatise still surviving from the second period is apparently a 

summary of a mathematical tradition of which no other written record survives. 

We are therefore in somewhat the same position in relation to this period of Hindu 

mathematics that we would be in relative to Greek geometry if we had only Pro- 

clus’ commentary on Euclid and had lost entirely the Elements themselves. Besides 

the difficulties of translating an ancient language from obscurely written and frag¬ 

mentary manuscripts, the translators were faced with an additional problem: How 

can we know what point the author was trying to make if we do not have access 

to the knowledge he took for granted? The problems of interpretation in regard to 

Aryabhata’s work are therefore considerable. Aryabhata himself (one of at least 

two mathematicians bearing that name) lived in the late fifth and early sixth cen¬ 

turies at Kusumapura (now Pataliputra, a village near the city of Patna) and wrote 

a book called the Aryabhatiya. This work had been lost for centuries when it 

was recovered by the Indian scholar Bhau Daji in 1864. Scholars had known of 

its existence through the writings of commentators and had been looking for it. 

Writing in 1817, the English author Henry Thomas Colebrooke reported, “A long 

and diligent research of various parts of India has, however, failed of recovering 

any part of the... Algebra and other works of Aryabhata.” 

Ten years after its discovery the Aryabhatiya was published at Leyden and 

attracted the interest of European and American scholars. It consists of 123 stanzas 

of verse, divided into four sections, of which the first, third, and fourth, are 

concerned with astronomy and the measurement of time. The following examples 

are taken from this work. 

Astronomy 

In the first chapter Aryabhata begins with some astronomical facts: 

In a yuga the revolutions of the sun are 4,320,000; of the moon 

57,753,336; of the earth eastward 1,582,237,500; of Saturn 146,564; 

of Jupiter 364,224; of Mars 2,296,824; of Mercury and Venus the 

same as those of the sun. 

The word yuga means yoke. This passage is intriguing for several reasons. It refers 

to an eastward rotation of the earth, suggesting that the author regards the stars 

as fixed, with the earth rotating beneath them, while the sun, moon, and planets 

wander among the stars. When the stars are fixed, the resulting time periods are 



9.4. THE MIDDLE PERIOD 205 

Figure 9.5: The “bowstring” (sine). 

called sidereal periods, as discussed in Chapter 7. A yuga is a common period 

for all of the heavenly bodies: at the end of one yuga, they will all be in the same 

relative positions they were in at the beginning. 

By dividing the figure given for the earth by the figure given for the sun, we 

find a sidereal year of 366.26 sidereal days, which is very close to the modem 

value. (A sidereal year is one day longer than a tropical year, since the sun makes 

one eastward circuit during the year, that is, the stars will have rotated east-to-west 

relative to the earth one more time than the sun.) 

These figures give Jupiter a sidereal year of 11.86 years and Mars a year of 687 

days. Again both of these figures agree with the modem values. The figure for 

Saturn is 29.47 years, while the best modern value is 29.46 years. Since Mercury 

and Venus must stay close to the sun, obviously they will make exactly the same 

number of circuits as the sun during any period in which they end where they 

began. (This is a well-known principle, known as Rouch&’s theorem in complex 

analysis.) 

Geometry 

Aryabhata gave the correct rule for area of a triangle and an incorrect rule for 

the volume of a pyramid. (He claimed the volume was half the height times the 

area of the base.) It is clear, therefore, that Aryabhata was not concerned with 

demonstration; we may infer that he was unfamiliar with Euclid, even though it 

was at least possible for him to have read Euclid. He seems to be reliable as 

regards plane figures, but unreliable in three dimensions. For example, he says the 

area of a circle is half the diameter times half the circumference, which is correct. 

He then says that the volume of a sphere is the area of a great circle times its own 

square root, which would be correct only if 7r = very far from the truth! Yet 

Aryabhata clearly knew a very good approximation to n. He writes 

Add 4 to 100, multiply by 8, and add 62,000. The result is approxi¬ 

mately the circumference of a circle of which the diameter is 20,000. 

This gives a value of n equal to 3.1416, which is quite accurate indeed. It is 

unfortunate that we do not know how this number was arrived at. 
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Trigonometry 

Aryabhata used half-chords (sines), which occur in the earlier Surya Siddhanta, to 

study trigonometry. The Aryabhatiya contains a table of sines in intervals of 225 

minutes of angle. The choice of the interval (3.75°) is undoubtedly motivated by 

the fact that this angle can be obtained by three angle bisections starting from 30°. 

It also suggests that the discoverer didn’t know Ptolemy’s work, since Ptolemy 

had a much more sophisticated system based on the regular pentagon and was able 

to start with a 6° angle and bisect down to §° intervals. We shall not examine 

this table, since it differs in technical respects from what we would call a table of 

sines, while giving equivalent information. 

Aryabhata used the Sanskrit word jya for what we call a sine. The original 

meaning of this word was bowstring, and the reason for applying it to a chord 

on a circle is obvious from a glance at a drawing of the relevant geometric figure 

(Fig. 9.5). (The Greek word x°P^7l^ transliterated as chorde, also means string.) 

A half-chord was originally called ardhajya, but since full chords were never used, 

the first syllable was eventually dropped. When the Aryabhatiya was translated 

into Arabic, this word was taken directly without translation; it simply became 

jb. In the eleventh century, when Plato of Tivoli translated a treatise on celestial 

mechanics by the Syrian astronomer Al-Battani from Arabic into Latin, he used 

the Latin word sinus, which denotes a cavity or fold, and corresponds to the Arabic 

word jaib, thereby giving us the word sine, although it has nothing to do with the 

original meaning of the concept. 

Despite knowing a sophisticated version of trigonometry, Aryabhata discussed 

surveying without making any use of angles other than right angles. In fact, his 

method of surveying seems to be of much older date than his trigonometry. It is 

identical to a method that was used in China for centuries before this time and was 

still being used in the Muslim world and Medieval Europe many centuries later. He 

gives the following method of finding the height and distance of an object. Erect 

two poles of equal height and imagine a light at the top of the object shining down 

so that the poles cast shadows. Then the computations are as follows (brackets 
refer to Fig. 9.6). 

The distance between the ends of the two shadows [AD] multiplied 

by the length of the shadow [BE] and divided by the difference in 

length of the two shadows [AF - BE] gives the koti [BC]. The koti 

multiplied by the length of the gnomon [h] and divided by the length 

of the shadow [BE] gives the length of the bhuja [CD]. 

Algebra 

Aryabhata studied some problems that we have come to regard as algebra. For 

example, he considered the problem of finding two numbers given their product 

and their difference and gave the standard recipe for solving it: 
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Figure 9.6: The Hindu method of surveying. 

Multiply the product by four, add the square of the difference, take 

the square root, then add and subtract the difference and divide the 

result by 2. This will yield the two numbers. 

Aryabhata also considered finite arithmetic progressions and gave a rather com¬ 

plicated recipe for finding the sum of the terms. He gave more elegant rules for 

the sum of the squares and cubes of an initial segment of the positive integers. 

The sixth part of the product of three quantities consisting of the 

number of terms, the number of terms plus one, and twice the number 

of terms plus one is the sum of the squares. The square of the sum of 

the series is the sum of the cubes. 

Here we find a completely general statement of the rules that we now write as 

12 + 22 + • ■ • + n2 

13 + 23 +-bn3 

n(n + 1)(2 n + 1) 

= 6 ’ 

= (1 + 2 +-bn)2. 

Number Theory 

Aryabhata considered a number theory problem connected with the theorem now 

called the Chinese remainder theorem (it was stated in a Chinese treatise written 

about a century earlier than the Aryabhatiya). The problem considered by Aryab¬ 

hata is to find a number leaving specified remainders when divided by specified 

integers. However, the relevant passage in the Aryabhatiya is a very enigmatically 

stated rule, from which the problem to be solved must be inferred. The text was 

obscure, even to other mathematicians writing in Sanskrit, who found it necessary 

to clarify it with commentary, and so we shall not state it at this point. 
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9.4.2 Brahmagupta 

About a century after Aryabhata another of the middle-period Hindu mathemati¬ 

cians, Brahmagupta, was bom in the city of Sind, now in Pakistan. He was 

primarily an astronomer, but his astronomical treatise, the Brahmasphutasiddhanta 

(literally “The Corrected Brahma Siddhanta,” contains several chapters on com¬ 

putation (Ganita). It was this work, translated into Arabic at the instigation of 

the Caliph Al-Mansur in the eighth century, that brought Hindu astronomy to the 

Muslims. 

Arithmetic 

Brahmagupta gives mles for handling common fractions. Although these rules are 

now commonplace, it should be remembered that they are by no means obvious, 

being unknown to the Egyptians and the Greeks. In addition, Brahmagupta’s 

arithmetic contains some original ways of looking at many things that we take for 

granted. For example, to do a long division with remainder, say, he would 

look for the next number after 22 that divides 750 evenly (25) and write 

750 _ 750 i / 750\ _3_ 
22 25 ' \ 25 / 22 ’ 

that is, 

l*=30(l + &) = 30+ 1 = 34^. 

Beyond these simple operations, he also codifies the methods of taking square and 

cube roots, and he states clearly the rule of three. This rule used to be a part of 

every child’s mathematical education, but has not been taught under that name in 

American schools for several decades. It answers familiar problems of the type, 

“If three bananas cost 75 cents, how much will seven bananas cost?” Here one 

is given three numbers and asked to find a fourth number in direct proportion. 

Brahmagupta names the three terms the “argument ” (3), the “fruit” (75), and the 

“requisition” (7), and points out that the argument and the requisition must be 

the same kind of thing (in this case bananas). The unknown number he calls the 

“produce,” and he gives the rule that the produce is the requisition multiplied by 

the fruit and divided by the argument. 

Geometry 

Brahmagupta also gives some geometric results; and, like Aryabhata, he is not 

always accurate. One of his best is the formula for the diameter of the circle 

through the vertices of a triangle. If a and b are two sides, and p the altitude 

to side c, this diameter is correctly given as ab/p. (This result, in a different 

mathematical language, is found in Ptolemy.) He was particularly interested in 

finding quadrilaterals that can be inscribed in a circle and have rational sides. He 

is most famous for theorems still known by his name. One of these gives a rule 

for finding the diagonals of a quadrilateral in terms of the sides, and the other 

reads as follows: Half the sum of the sides set down four times and severally 
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lessened by the sides, being multiplied together, the square root of the product is 

the area. In our terms this says that the area of a quadrilateral of sides a, b, c, 

and d is y/(s — a)(s — b)(s — c)(s — d), where s is half of the sum of the lengths 

of the sides. (The case when d = 0, which is a triangle, is known as Heron’s 

formula). Brahmagupta did not mention the restriction that the quadrilateral must 

be inscribed in a circle. 

9.4.3 Linear Congruences and Kuttaka 

Brahmagupta gives rules for handling sums of arithmetic progressions, stating 

the simpler of the two rules given by Aryabhata. His most notable contribution 

to algebra, however, involves the systematic introduction of zero and negative 

numbers. He gives the correct rules for manipulating them in the eighteenth chapter 

of the Brahmasphutasiddhanta, which is devoted to a special method of solving the 

problem now known as the Chinese remainder problem. This topic was developed 

to a very high degree of sophistication. 

The method is called the kuttaka (pulverizer). It was greatly simplified by 

later commentators, and we shall confine our discussion to the refined version. To 

explain the method let us first examine the purely mathematical problem it was 

designed to solve, that of finding integers x and y such that 

ax = by + c, 

where a, b, and c are given integers. The heart of the problem is an application of 

the Euclidean algorithm for finding the greatest common divisor of two integers. 

Let us assume that a and b are relatively prime, so that their greatest common 

divisor is 1. The Euclidean algorithm proceeds as follows: 

b = qia + rl, 

a = Q2ri+r2, 

n = qsr2 + r3, 

r2 = <74^3 + r4, 

and so forth, where a > r\ > r2 > • • • > 0. To illustrate the method, let us 

assume that r4 = 1. Then, applying the first equation, we can rewrite the desired 

equation ax = by -f c as 

ax = (iq\a + rf)y -f c, thatis, az = ryy + c, 

where x — q\y + z. Then, applying the second equation, 

(q2r\ 4- r2)z = r\y + c, thatis, r2z = r\u -f c, 

where y = q2z + u. Continuing, we find 

r2z = (q3r2 + r3)u + c, thatis, r2v = r3u, -1- c, 
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where 2 = q3u 4- v. Finally, since r4 = 1, we get 

(q4r3 + l)v = r3u + c, that is, v = r3w + c, 

where u = 94V + w. 

At this point, finding x and y amounts to solving the simultaneous equations 

x = qxy + 2:, 

y = 92 z + u, 

z = q3u + v, 

u = q\V + w, 

v = r3w + c. 

This is a system of five equations in the six unknowns x,y, z,u,v,w, and w 

can be arbitrary. Making the assignment w = 0, we nowadays would write this 

system as the matrix equation 

~x~ ~9i y + z~ 

y 92 Z + U 

z -- 93u + v 

u 94V 

_ V _ c 

Notice that the matrix form of this system indicates how it is to be solved. 

The right-hand matrix tells just what to do with the rows of the left-hand matrix: 

x = q\y + z, that is, the top row of the matrix (containing x) is obtained by 

multiplying the row just below it (containing y) by the first quotient (qi) from the 

Euclidean algorithm, and then adding the second row below it (containing z). A 

similar assertion holds for the second row, using the second quotient instead of 

the first: y = q2z + u. Obviously this procedure will work in general, at least as 

far as the third row from the bottom; each row is found by multiplying the row 

just below it by the corresponding quotient and adding the second row below it. 

If we adjoin a new below the bottom row and put a zero in it, this procedure even 

works for the second row from the bottom. The bottom row here simply contains 

the original data c, which is directly assigned to the variable v. That assignment 

gets the solving procedure started, and we proceed upwards from the bottom: 

v = c 

u = q^c 

z = q3q4C + c 

V = 9292,94c + 92c + 94c 

x = 9i929394C + 9i92C + 9i94C + q3qAc + c. 

These observations are the basis of the kuttaka algorithm. 

The astonishing sophistication of early Hindu mathematics is shown by the 

fact that this matrix manipulation was known in India in the eighth century. The 
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kuttaka method consists of the following algorithm for solving the congruence 

ax = by + c, with b > a > 0 and a and b relatively prime. Write the quotients 

from the Euclidean algorithm (carried out until 1 appears as a remainder) in order 

in a column, and beneath them write the additive term (c), and below that term 

a zero. (The zero is inserted so that the same transformation rule applies at the 

beginning as in all other steps of the algorithm.) Then reduce the number of rows 

successively by operating on the bottom three rows at each stage. The second- 

ffom-last row is replaced by its product with the next-to-last row plus the last row; 

the next-to-last row is simply copied, and the last row is discarded. Thus to solve 

this system the kuttaka method amounts to the transformations 

91 
92 

93 

94 
c 

0 

9 i 

92 

93 

q4c 

c 

91 
92 

9394C + c 

94 c 

91 

929394C + Q2C + q4c 

9394C + C 

^ 91929394c + 9i92C + 9194c + 9394c + C 

929394C + 92c + q4c. 

(A word of caution is needed at this point. If the number of quotients is odd, 

one must put — c instead of c after the quotients, as one can see from the discussion 

given above. If the Euclidean algorithm had terminated with r3 = 1, we would 

have set v = 0, and the equation r2v = r3u, + c would have meant u = — c. 

The remainders in this process appear on the same side of the equation as their 

predecessor, but are on the opposite side at the next step.) 

The sophistication of this method does not end with matrix manipulations. The 

two entries in the last matrix give values of x and y satisfying the linear congruence. 

As we have seen, Diophantus showed how to find a particular solution of such 

a congruence. The Hindus, however, found all the solutions. They took the 

solutions x and y obtained by the kuttaka method, which were generally quite 

large numbers, divided x by b and y by a, replaced them by the remainders, and 

gave the general x and y as a pair of arithmetic sequences with differences h and 

a, respectively. Brahmagupta’s rule for finding the solutions is more complicated 

than the discussion just given, since he does not assume that the numbers a and 

b are relatively prime. (If the greatest common divisor of a and b is not a factor 

of c, the problem is impossible; if it is a factor of c, it can be divided out of the 

problem.) 

If the number of quotients in the Euclidean algorithm is odd, the last nonzero 

row of the matrix will be — c rather than c, so that all the terms will become nega¬ 

tive. Thus when the expressions for x and y are reduced by taking the remainders 

r and 5 when |.t| and \y\ are divided by b and a respectively, the solutions must be 

taken as £ = b — r and 77 = a — s. Brahmagupta gives this rule also. He considers 

such congruences with negative data as well, and is not in the least troubled by 

this complication. It seems clear that the name pulverizer was applied because 

the original data are repeatedly broken down by the Euclidean algorithm (they are 

“pulverized”). 
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Applications of the Kuttaka Method 

The kuttaka method is ideal for solving simultaneous linear congruences. For 

example, suppose we need to find a number n whose remainder on division with 

11 is 6 and whose remainder on division by 9 is 5. We are thus trying to solve 

9x + 5 = lly + 6, that is, 9x = lly + 1. Following the kuttaka algorithm, since 

11 = 1-9 + 2 and 9 = 4-2 + 1, we perform the operations 

1 
4 

1 
0 

1 

-> 4 

1 
4’ 

so that x = 5 and y = 4. The number is thus 9-5 + 5 = 11-4 + 6 = 50, and the 

general solution is n = 50 + 99k, that is, n must leave a remainder of 50 when 

divided by 99. 
Brahmagupta applied this technique to solve certain problems connected with 

the calendar. To see how the method might be used for this purpose, consider that 

a year is about 365^ days long and a lunar month is about 291 days long. If we 

take as a unit of time one-fourth of a day, then a year is 1461 units long and a 

month is 118 units long. A full moon occurred on January 27, 1994. Let us now 

ask what is the next year in which there will be a full moon on February 14. Since 

February 14 is 18 days, or 72 time units after January 27, we need to solve the 

problem 

118.x = 1461?/+ 72. 

By following the kuttaka algorithm, you can easily find that y = 22, that is, this 

model predicts that the moon will be full on February 14, 2016.2 Because a 

sequence of simultaneous congruences can be solved two at a time, it is possible 

to take account of many different astronomical phenomena at once by this method. 

Two remarks need to be made here. First, linear congruences were not a 

mere mathematical curiosity to the Hindus; they provided a method of regulating 

the calendar from knowledge of the periods of the heavenly bodies. Second, the 

essence of the pulverizer method involves use of the remainders when one integer 

is divided by another. If the division comes out even, this remainder is zero. It is 

interesting that the Sanskrit word for zero (sunya, meaning empty space) appears 

in Brahmagupta’s treatise only in this connection. It may be that the symbol 

for zero was invented in connection with the pulverizer method, rather than as a 

place-holder in a decimal notation. 

9.4.4 Bhaskara 

Approximately 500 years after Brahmagupta, in the twelfth century, the mathe¬ 

matician Bhaskara was born on the site of the modem city of Bijapur. He is the 

author of a work bearing the title Siddhanta Siromani, in four parts; it is concerned 

2This problem illustrates the difficulty of applying theory to the physical world. In fact the moon 
will be full on February 20, 2016. The reader is invited to find the flaw in the reasoning. 
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with algebra and geometric astronomy. Only the first of these parts, known as the 

Lilavati, and the second, known as the Vijaganita3 concern us here. Bhaskara says 

that his work is a compendium of knowledge, a sort of textbook of astronomy and 

mathematics. The name Lilavati, which was common among Hindu women, seems 

to have been a fancy of Bhaskara himself. Many of the problems are written in 

the form of puzzles addressed to this Lilavati. As we have already discussed most 

of the material contained in it in connection with Aryabhata and Brahmagupta, we 

confine our discussion to topics we have not yet mentioned. 

Algebra 

The Lilavati contains a collection of problems in algebra, which are sometimes 

stated as though they were intended purely for amusement. For example, 

One pair out of a flock of geese remained sporting in the water, and 

saw seven times the half of the square-root of the flock proceeding to 

the shore, tired of the diversion. Tell me, dear girl, the number of the 

flock. 

Like countless other unrealistic algebra problems that have appeared in textbooks 

over the centuries, this story is a way of posing to the student a specific quadratic 

equation, namely \\[x + 2 = x, whose solution is x = 16. 

Combinatorics 

Bhaskara gives a thorough treatment of permutations and combinations, which, as 

we know, already had a long history in India. He describes combinatorial formulas 

such as 
7-6-5 

1-2-3 
= 35 

by saying 

Let the figures from one upward, differing by one, put in the inverse 

order, be divided by the same in the direct order; and let the subsequent 

be multiplied by the preceding and the next following by the foregoing. 

The several results are the changes by ones, twos, threes, etc. 

He illustrates this principle by asking how many possible combinations of 

stressed and unstressed syllables there are in a six-syllable verse. His solution is 

as follows: 

The figures from 1 to 6 are set down, and the statement of them, in 

direct and inverse order is 

6 5 4 3 2 1 

1 2 3 4 5 6' 

3This Sanskrit word means literally “source computation.” It is compounded from the Sanskrit root 
vij- or bij-, which means seed. As we discussed in Chapter 3, the basic idea of algebra is to find one 
or more numbers (the “source”) knowing the result of operating on them in various ways. The word 
is usually translated as “algebra.” 
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The results are: changes with one long syllable, 6; with two 15; with 

three, 20; with four, 15, with five, 6; with all long, 1. 

Bhaskara assures the reader that the same method can be used to find the permu¬ 

tations of all varieties of meter. He then goes on to develop some variants of this 

problem, for example, 

A number has 5 digits and the sum of the digits is 13. If zero is not 

a digit, find the total number of possible numbers. 

To solve this problem, you have to consider the possibility of two distinct digits (for 

example, 91111, 52222, 13333, 55111, 22333), three distinct digits (for example 

82111, 73111) and count all the possible rearrangements of the digits. 

Bhaskara reports that the initial syllables of the names for colors “have been 

selected by venerable teachers for names of values of unknown quantities, for the 

purpose of reckoning therewith.” He proceeds to give the rules for manipulating 

expressions involving such quantities; for example, the rule that we would write 

as (-x - 1) + (2.x - 8) = x - 9 is written 

ya1 ru 1 

ya2 ru8 

Sum ya 1 ru 9, 

where the dots indicate negative quantities. The syllable ya is the first syllable of 

the word for black, and ru is the first syllable of the word for species. 

Bhaskara gives the usual rule for solving a quadratic equation by radicals, then 

goes on to give a criterion for a quadratic equation to have two (positive) roots. 

He also says that “if the solution cannot be found in this way, as in the case of 

cubic or quartic equations, it must be found by the solver’s own ingenuity.” 

Bhaskara says explicitly (in the Vijaganita) that a nonzero number divided by 

zero gives an infinite quotient. 

3 
OJ ’ of which the denominator is cipher, is termed This fraction 

an infinite quantity. 

In this quantity consisting of that which has cipher for its divisor, 

there is no alteration, though many be inserted or extracted; as no 

change takes place in the infinite and immutable GOD, at the period 

of the destruction or creation of worlds, though numerous orders of 

beings are absorbed or put forth. 

In his astronomical work Bhaskara gives one procedure that looks like a pre¬ 

figuration of infinitesimal methods, in the following statement: 

The product of the cosine of the semidiameter by the element of the 

radius gives the difference of the two sines. 

This says, in our terms, that sin y — sin x = [y — x) cos y, which, if x is close to 

y, amounts to the statement that the derivative of the sine is the cosine. There is 
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no known case where Bhaskara applied this approximation to other functions, and 

he did not develop the notion of a derivative. However, he did use infinitesimal 

methods similar to cylindrical approximations for finding the area of a sphere, and 

so anticipated the essence of the integral calculus. 

9.5 The Continuing Tradition 

Bhaskara lived before the Muslim conquest of India. Although dates are uncertain, 

other Indian mathematicians slightly later than Bhaskara found power series for 

the arcs corresponding to various angles. In particular an early-sixteenth-century 

work contains in full generality a description of a rule for forming the series now 

used for the arctangent function. The author (named Jyesthadeva) says that an arc 

6 on a circle of radius r is given by 
Q r *“7 

„ /sin6 sin 0 sin 0 sin \ 
0 = r-1---1-) 

V cos 6 3 cos3 6 5 cos5 0 7 cos7 0 / 

The author says explicitly that this will work only if the arc is less than half of 

a quadrant of a circle, showing that he understood the concept of convergence of 

an infinite series. This series made it possible to compute the value of n to 10 

decimal places. Commentaries written during this time express a firm conviction 

that the circumference and diameter of a circle are not commensurable. 

India is an integral part of the modem mathematical world, possessing a large 

number of mathematical publications and excellent mathematicians. Indian mathe¬ 

maticians, working in India, Europe, and North America, have made contributions 

to mathematical research far out of proportion to their numbers. India has a special 

claim to pride in this area, both because of the general excellence of its mathe¬ 

maticians and because India produced one of those rare geniuses who appear only 

once in hundreds of years. No doubt such geniuses are bom considerably more 

often, but only a few of those who are bom with the talent are able to express it. 

9.5.1 Srinivasa Ramanujan 

The topic of power series is one in which Indian mathematicians had anticipated 

some of the discoveries in seventeenth- and eighteenth-century Europe. It was a 

facility with this technique that distinguished Srinivasa Ramanujan (1887-1920), 

who taught himself mathematics after having been refused admission to universities 

in India. After publishing a few papers, starting in 1911, he was able to obtain 

a stipend to study at the University of Madras. In 1913 he took the bold step 

of communicating some of his results to one of the outstanding analysts of the 

early twentieth century, G. H. Hardy (1877-1947) of Cambridge University. Hardy 

was so impressed by Ramanujan’s ability that he arranged for Ramanujan to come 

to England. Thus began a collaboration that resulted in seven joint papers with 

Hardy, while Ramanujan alone was the author of some thirty others. 

Unfortunately, Ramanujan was in frail health, and the English climate did not 

agree with him. Nor was it easy for him to maintain his devout Hindu practices 
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so far from his normal Indian diet. He returned to India in 1919, but succumbed 

to illness the following year. His notebooks were found among the papers of G.N. 

Watson in the 1960s (1886-1965) and finally published in the mid-1980s. 

9.6 Problems and Questions 

9.6.1 Hindu Mathematical Problems 

Exercise 9.1 Generalize the method given in the Sulva Sutras for multiplying an 

area. What should the base and equal sides of the triangle be if the altitude is 

to be of length ^/na, where a is the side of a given square? On what algebraic 

identity is this fact based? 

Exercise 9.2 Solve the horse-and-camel problem described above from the Bak- 

shali manuscript. Does a problem of this sort have any practical application? 

Exercise 9.3 Solve the Bakshali manuscript problem of finding a (rational) number 

x such that x + 5 and x - 7 are both perfect squares. In how many ways can this 

be done? 

Exercise 9.4 Verily that Aryabhata’s rules for surveying are correct. 

Exercise 9.5 Given an arithmetic sequence a, a + d, a + 2d,..., a + nd, find an 

expression for the sum S = a + (a + d) + (a + 2d) + • • ■ + (a + nd). [You will 

need the expression for triangular numbers: 1 + 2 + • —b n = n(n+l)/2.] Solve 

this equation to obtain n in terms of S, a, and d. Then compare your result with 

Aryabhata’s rule: 

Multiply the sum of the progression (5) by eight times the common 

difference (d), add the square of the difference between twice the first 

term (a) and the common difference, take the square root of this, 

subtract twice the first term, divide by the common difference, add 

one, and divide by two. The result will be the number of terms. 

Exercise 9.6 Perform the division ^ following the method used by Brahmagupta. 

Exercise 9.7 Why is it necessary that a quadrilateral be inscribed in a circle in 

order to compute its diagonals knowing the lengths of its sides? 

Exercise 9.8 Show that the formula given by Brahmagupta for the area of a quadri¬ 

lateral is correct if and only if the quadrilateral can be inscribed in a circle. 

Exercise 9.9 Show that the kuttaka method yields the negatives of the solutions 

of ax = by + c if the total number of quotients is odd. Carry out the argument in 

detail assuming that r3 = 1 in the example given. 
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Exercise 9.10 We saw above that n = 50 + 99k gives all the solutions of the 

simultaneous equations n = llx + 6 and n = 9y -f 5. Find all solutions to the 

system consisting of these equations and the equations n = 7z + 2 and n = bw + 1. 

[Hint: Start with the equation 7z 4- 2 = 99k + 50 and proceed as in the text. The 

answer is n = 2921 + 3465p.] 

Exercise 9.11 Verify the computation that implies that the moon will be full on 

February 14, 2016. [Hint: Be careful here; the number of quotients is odd.] 

Exercise 9.12 Solve the following problem from Brahmagupta: What number, 

divided by 6, leaves a remainder of 5, and divided by 5 a remainder of 4, and by 

4 a remainder of 3, and by 3 a remainder of 2? [Hint: As you proceed, you will 

find some equations in which the coefficients have a common factor. Be sure to 

divide out this factor, so that the kuttaka procedure will work as described above.] 

Exercise 9.13 Brahmagupta gives the sidereal periods of many heavenly bodies, 

in particular the sun, which he says makes 30 circuits of the ecliptic in 10, 960 

days. (In other words, the sun moves of a sidereal year every day.) Thus 

he imagines the ecliptic divided into 10, 960 congruent arcs, with the sun starting 

at the beginning of the first arc on the first day of a 10, 960-day cycle, during 

which it will make 30 complete revolutions. He then asks how many days (x) 

have elapsed since the beginning of the 10960 day period if the sun is exactly at 

the end of arc number 8080. Thus he asks for an integer x such that for some 

integer y the equation 

8080 

10960 

30 
thatis, 30.x = 10960i/ + 8080 

holds. Use the kuttaka method to derive Brahmagupta’s solution: x = 1000 days 

(and y = 2 sidereal years). 

Exercise 9.14 Solve the following linear congruence problem of Bhaskara. What 

quantity is it, which multiplied by 5 and divided by 63 gives a residue of 7; and 

the same multiplied by 10 and divided by 63, a remainder of 14? 

Exercise 9.15 Solve the Bhaskara problem of finding the number of five-digit 

numbers having no zero digits and sum of the digits equal to 13. 

Exercise 9.16 Take 9/r = arctanx and use the fact that tan t = sin tf cos t to 

convert Jyesthadeva’s series into the Maclaurin series for arctanx. How many 

terms of this series would be needed to compute arctanO.5 to 10 decimal places? 

[Hint: Remember that in an alternating series with terms decreasing in absolute 

value, the error in stopping after finitely many terms is less than the absolute value 

of the first neglected term but larger than the absolute value of the sum of the first 

two neglected terms.] 
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9.6.2 Questions about Hindu Mathematics 

Exercise 9.17 Compare the method of squaring a rectangle in the Sulva Sutras 

with the method given in Euclid, Book II and Book VI (see Figs. 5.5 and 4.7). 

Are the underlying principles different or merely differently arranged? 

Exercise 9.18 Show that the Sulva Sutra method of constructing a circle equal to a 

given square amounts to saying that the radius of the circle should be the weighted 

average of the radii of the inscribed circle (weighted as §) and the circumscribed 

circle (weighted as |). By looking at these two circles, make a conjecture as to 

the origin of this approximation. 

Exercise 9.19 Compare the method of rounding a square illustrated in Fig. 9.3 

with the conjectured source of the Egyptian formula for the area of a circle in Fig. 

2.1. What similarities and differences do you notice? 

Exercise 9.20 Compare the conjecture given in the text as to the origin of the 

approximation for \/2 with the following, due to a later commentator of 1500 C.E. 

Assume that each side of the square is 12 units long. Then the diagonal has length 

12\/2 = \/288 - V172 - 1 »17-^ [since y/1 - x « 1 - (x/2)\. It follows 

that y/2 « ^ - 3^34 = 1 + I + 3^4 - 3^34- Which explanation seems more 

probable to you? Does either imply the other? 

Exercise 9.21 What differences do you notice in the “style” of mathematics in 

Greece and India? Consider very particularly the importance of logic, the meta¬ 

physical views of the nature of such things as lines, circles, etc., and the interpre¬ 

tation of infinite objects. 

Exercise 9.22 Does the division of the circle into 360 degrees by the Hindu math¬ 

ematicians indicate that they received their knowledge of trigonometry from the 

Greeks? 

Exercise 9.23 Besides the sine function, we also use the tangent and secant and 

their cofunctions. What is the origin of the words tangent and secant (in Latin), 

and why are they applied to the objects of trigonometry? 

Exercise 9.24 Thinking over the mathematical traditions we have studied, do you 

find a point in their development at which mathematics ceases to be a disjointed 

collection of techniques and becomes systematic? What criteria would you use for 

defining such a point, and where would you place it in the mathematics of Egypt, 

Mesopotamia, Greece, and India? 

Exercise 9.25 Does the similarity between Aryabhata’s method of surveying to a 

method used earlier in China indicate a common source? Why does Aryabhata use 

this “primitive” surveying technique when he has available a table of sines? 

Exercise 9.26 Aryabhata gives no proof of any of his geometric rules, some of 

which are correct, others not. How might he have arrived at such rules? Given 
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that he knew how to find the sum of the squares of the first n integers, how could 

he have used this sum as a guide to obtain the correct formula for the volume of 

a pyramid? 

Exercise 9.27 Recall that Archimedes wrote the Sand-reckoner to prove that the 

universe could be filled with a finite number of grains of sand. The necessity 

of doing so shows that the Greeks had the same psychological difficulties that all 

people have in distinguishing clearly between “infinite” and “very large.” Compare 

what Archimedes did (Chapter 6) with the following passage from a Jaina work, 

telling how to reach the largest enumerable number. 

Consider a trough whose diameter is of the size of the earth. Fill it up 

with white mustard seeds counting them one after another. Similarly, 

fill up with mustard seeds other troughs of the sizes of the various 

lands and seas. Still it is difficult to reach the highest enumerable 

number. 

Exercise 9.28 If the Hindus actually used Diophantine equations to predict astro¬ 

nomical phenomena, they must have realized very quickly that these computations 

are extremely hard to use, for two reasons. First, the date of a full moon, for 

example, is an integer-valued function of a quantity that varies continuously. It 

is therefore bound to have sudden jumps. For example, suppose the moon comes 

into exact opposition at 12:30 A.M. on one particular date and on some later date 

it is in exact opposition at 11:45 RM. Simply subtracting the dates to get the 

time between full moons gives an integer number of days, even though the actual 

time elapsed is nearly a full day longer than the computed figure. Second, with a 

Julian or Gregorian calendar the extra fraction of a mean solar day is added only 

once every four years. Therefore, if one does not know in advance how many 

years ahead the prediction is going to be, the phenomenon may occur nearly a full 

day later than computed. Thus one could be in error by almost two full days. 

Moreover, remainders after division are extremely unstable functions of their data 

(this fact is the basis of certain modem codes for encryption of infonnation). To 

make the computations reasonably accurate, then, one needs a very short unit of 

time, say, one second. But then the question when the moon will be full on a 

certain date requires the solution of a separate set of equations for each second in 

the given day, that is, 86,400 different sets of equations! What conclusions do you 

draw about the application of mathematics to nature? 

9.7 Endnotes 

1. Much of the information in this chapter comes from two secondary sources: 

(a) the book The Elistory of Ancient Indian Mathematics by C.N. Srini- 

vasiengar (The World Press Private Ltd., Calcutta, 1967); (b) Ancient Hindu 

Geometry, by Bibhutibhushan Datta (Cosmo Publications, New Delhi, 1993). 
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2. The quotation from the Bhagabati Sutra is from the book of Srinivasiengar 

(op. cit.), p. 27. 

3. The English translation of the Aryabhatiya is based on the Sanskrit original 

published in Leyden in 1874. The translator, Professor Walter Eugene Clark 

of Harvard University, made no claims regarding the age of the Sanskrit 

original. The English version is The Aryabhatiya of Aryabhata (University 

of Chicago Press, 1930). 

4. Quotations from the works of Brahmagupta and Bhaskara are based on Cole- 

brooke’s 1817 translation: Algebra with Arithmetic and Mensuration from 

the Sanscrit of Brahmegupta and Bhascara (John Murray, London, 1817). 

5. The quotation in Exercise 9.27 is from Srinivasiengar (op. cit.), p. 24. 



Chapter 10 

Chinese Mathematics 

10.1 Introduction 

The name China refers to a region unified under a central government but whose 

exact geographic extent has varied considerably over the 4000 years of its his¬ 

tory. To frame our discussion we shall use the following convenient division into 

dynastic periods:1 

1. Prehistory. Fossil evidence shows that the area now known as China has 

been inhabited by human beings for a very long time, at least 30,000 years, 

and prehuman hominid fossils have been found there dating back at least 

half a million years. Neolithic settlements at least 6000 years old have been 

found in the north and northwest of this area. Chinese tradition includes an 

early dynasty known as the Xia, but no archaeological confirmation of this 

dynasty has been found. 

2. The Shang Dynasty (sixteenth to eleventh centuries B.C.E.). The use of 

bronze began in China about 1600 B.C.E., approximately a thousand years 

after it had begun in Europe. This technological innovation coincided with 

the beginning of the first historical dynasty, the Shang. The Shang rulers 

controlled the northern part of what is now China and had an extensive 

commercial empire. 

3. The Zhou Dynasty (eleventh to eighth centuries B.C.E.). The Shang Dynasty 

was conquered by people from the northwest known as the Zhou. The Zhou 

empire was extensive, but broken up into many smaller domains. Around 

the eighth century the power of the Zhou rulers was greatly diminished, and 

because of total ignorance of the Chinese language, the author is forced to rely on translations 
of all documents. We shall adhere to the system of writing Chinese words in the Latin alphabet with 
accent marks used in the translation of the book by Li Yan and Du Shiran. In this system the letter q 

is pronounced like the ch in church, x like the sh in shoe, c like the ts in cats, z like the dz in adze, 

and zh like the j in jump. However, we shall omit the accents used to indicate the pitch of the vowels, 
since these cannot be pronounced by foreigners without special training. 

221 
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there was a long period of strife as their vassals struggled for supreme power. 

It was during this chaotic period that the great Chinese philosophers known 

in the West as Confucius, Mencius, and Lao-tzu lived and taught. 

4. The Period of Warring States (403-221 B.C.E.) and the Qin Dynasty (221— 

206 B.C.E.). Warfare was nearly continuous in the fourth and third centuries 

B.C.E., but in the second half of the third century the northwestern border 

state of Qin gradually defeated all of its rivals and became the supreme 

power under the first Qin emperor. The name China is derived from the Qin. 

In order to maintain an efficient chain of command the emperor organized 

the country into 36 military provinces. He also ordered that a series of 

defensive walls that had been built in the past be connected to form the 

famous Great Wall. Traditional accounts of the great emperor say that in 

order to unify his people and wean them away from their provincialism 

he made a concerted attack on all traditions, ordering that all books be 

burned (with a few exceptions) and making any appeal to tradition against 

his authority a capital crime. 

5. The Han Dynasty (206 B.C.E.-220 C.E.). The empire was conquered shortly 

after the death of the great emperor by people known as the Han, who ex¬ 

panded their control far to the south, into present-day Viet Nam, and es¬ 

tablished a colonial rule in the Korean peninsula. During the Han Dynasty 

commerce and science flourished, and trade became established between the 

Roman Empire and China, both of which were in their period of maximum 

prosperity during the second and third centuries C.E. This trade was con¬ 

ducted overland, with the Roman merchants traveling eastward from Syria 

over the Pamir Mountains and the Chinese traveling westward, the two meet¬ 

ing at a site in present-day Turkestan. This trade ultimately worked to the 

economic disadvantage of the Roman Empire, since the taste for silk and 

precious gems led to a trade imbalance and the devaluation of Roman cur¬ 

rency. 

6. The Tang Dynasty (seventh and eighth centuries). The Chinese Empire began 

its “decline and fall” nearly two centuries before the Roman, early in the 

third century with the fall of the Han Dynasty. Just as the Roman decline 

was simultaneous with the rise of Christianity, the Chinese decline coincided 

with the rise of Buddhism, which was spread by missionaries from India. 

This contact led to cultural exchanges as well. Hindu trigonometry may have 

come to China at this time, and certain Chinese geometric techniques seem 

to be reflected in later Hindu writing. Recovery also came some centuries 

earlier in China than in the West, under the Tang Dynasty. The Tang Dynasty 

was a period of high scholarship, in which, for example, block printing 

was invented. The geographical boundaries of China expanded during this 

period, and there was extensive commercial contact with Persia, which had 

only recently become an Islamic country. Decline set in after a disastrous 

military defeat in the year 751, as a result of which China lost Turkestan to 
the Prince of Tashkent. 
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7. The Song Dynasty (960-1279). The period of disorder after the fall of the 

Tang Dynasty ended with the accession of the first Song Emperor. Con¬ 

fucianism underwent a resurgence in this period, supplementing its moral 

teaching with metaphysical speculation. As a result a large number of sci¬ 

entific treatises, on chemistry, zoology, and botany were written, and—what 

is of most interest to us—the Chinese became the world’s most advanced 

algebraists. In the last century of this period China was split into two rival 

states, the Song, and the Qin (not related to the Qin for whom China was 

named). 

8. The Mongol conquest and the closing of China. The Song Dynasty was 

ended in the thirteenth century by the Mongol conquest under the descendants 

of Genghis Khan, whose grandson Kublai Khan was the first emperor of the 

dynasty known to the Chinese as the Yuan. As the Mongols were Muslims, 

this conquest brought China into contact with the intellectual achievements 

of the Muslim world. Knowledge flowed both ways, of course, and the 

sophisticated Chinese methods of root extraction seem to be reflected in the 

works of later Muslim scholars such as the fifteenth-century mathematician 

Al-Kashi. The vast Mongol Empire facilitated East-West contacts, and it was 

during this period that Marco Polo made his famous voyage to the Orient. 

9. The Ming Dynasty (fourteenth to seventeenth centuries). While the Mon¬ 

gol conquest of Russia lasted 240 years, the Mongols governed China so 

incompetently that they were driven out in less than a century by the first 

Ming Emperor. In the Ming Dynasty Chinese trade and scholarship rapidly 

recovered. The effect of the conquest, however, was to encourage Chinese 

isolationism, which became the official policy of the later Ming emperors 

during the period of European expansion. The first significant European 

contact came in the year 1582, when the Jesuit priest Matteo Ricci arrived 

in China. The Jesuits were particularly interested in bringing Western sci¬ 

ence to China to aid in converting the Chinese to Christianity. They persisted 

in these efforts despite the opposition of the Emperor. The Ming Dynasty 

ended in the mid-seventeenth century with conquest by the Manchus. 

10.2 Aspects of Chinese Mathematics 

There is a stream of Chinese mathematical literature extending from more than 

2000 years ago into the present. Throughout this long period of time there have 

been outstanding intellects working on mathematical problems and writing their 

thoughts in Chinese. The earliest period of indigenous Chinese mathematics shows 

the influence of the needs of administration. This mathematics consists of the 

geometry and arithmetic needed to solve problems in surveying, taxation, and 

commerce. From this practical beginning purely mathematical questions arose, 

just as in Greece. In pure mathematics the Chinese worked on some problems 

that were not considered in the West until much later, such as magic squares and 
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the solution of simultaneous linear congruences. In addition, the Chinese had 

two important mechanical computing devices that stimulated the development of 

arithmetic and algebra, namely counting rods and the counting board, which mimics 

a matrix. For example the abstract notion of a negative number, as opposed to a 

number subtracted from another, was formulated in China at an early date. The 

counting board helps to bring out the distinction between a variable (square on 

a counting board) and its value (number of tallies occupying the square). The 

period of time involved in the mathematics we shall be discussing ranges from the 

earliest documents (variously dated from 1200 to 100 B.C.E.) to the Yuan period 

(fourteenth century C.E.). 

10.3 Some Important Early Documents 

The origin of mathematics in China dates from the time of the mythological Em¬ 

peror Yu (ca. 2100 B.C.E.), who is said to have received a diagram called the Luo 

Shu, from a tortoise in the Luo River. There are several such legends, and in one 

ancient chronicle Yu is described as going about “with a plumb line in his left 

hand and a gnomon and compass in his right” in the course of survey work as part 

of a flood control project. The Luo Shu is a 3 x 3 magic square, with diagrams 

representing the numbers from 1 to 9 in each location so that all rows, columns, 

and diagonals total 15: 
2 9 4 

7 5 3 

6 1 8 

The alternation of even and odd numbers in this magic square reveals a poetic 

approach to mathematics in harmony with traditional Chinese philosophy. Ac¬ 

cording to the mathematician F. J. Swetz, this square reflected, “a plan of universal 

harmony based on a cosmology predicated on the dualistic theory of the Yin and 

the Yang.” 

From what was just quoted about the Emperor Yu one can see that the Chinese 

were familiar with scale drawings and the square (gnomon) and circle (compass) 

at a very early period. A treatise from about the fourth century B.C.E. called the 

Book of Crafts gives names to certain angles: the right angle (ju), half of a right 

angle (xuan), and the angles obtained by increasing the latter by 50% in three 

stages, that is, angles of 67° 30' (zhu), 101° 15' (ke), and 151° 52' 30" (qingzhe). 

10.3.1 Archaeological Data 

The earliest physical evidence of mathematical activity in China comes from oracle 

bones dated to the Shang Dynasty. Archaeological evidence suggests that a decimal 

place-value system was used. (See also the Shang numerals, Fig. 10.1.) 

Chinese documents from the second century B.C.E. mention the use of counting 

rods, and a set of such rods from the first century B.C.E. were discovered in 1970. 

These are the earliest known mechanical computing devices. These devices were 
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Figure 10.1: The Shang numerals. 

used to perform the computations described in the Chinese documents from this 

period. The rods can be arranged to form the Shang numerals (Fig. 10.1) and 

thereby represent decimal digits. They were apparently used in conjunction with 

a counting board (a board ruled into squares, so that each column represents a 

particular item). A picture of such a board is almost exactly what we now call a 

matrix, and there is no doubt that the proficiency with which the Chinese handled 

linear equations was due to this system of representation. It seems reasonable that 

the early development of a place-value decimal system in China was facilitated 

by the use of these mechanical devices. This development, as we have seen, 

cannot be taken for granted, since none of the European civilizations made the 

discovery. (The cuneiform texts have a place-value system, but one based on 60 

and clearly superimposed on an earlier decimal system that was not place-value, 

since separate symbols exist for units and tens.) Even more striking is the fact that 

black rods were used to represent positive numbers and red ones negative. Just 

when this innovation was made is uncertain, but it is mentioned in a third-century 

commentary known as the Nine Chapters on the Mathematical Art. 

10.3.2 The Arithmetical Classic 

The earliest Chinese mathematical document still in existence, the The Arithmetical 

Classic of the Gnomon and the Circular Paths of Heaven (Zhoubi suanjing), is 

concerned with astronomy and the applications of mathematics to the study of 

the heavens. The title apparently refers to the use of the sundial or gnomon in 

astronomy. 

This document was begun before the third century B.C.E. and contains a famous 

diagram (sketched in Fig. 10.2) giving a proof of the Pythagorean theorem for the 

special case of a 3-4-5 triangle. (The general statement of the theorem occurs 

later in the document.) 

The Arithmetical Classic dates from the Han Dynasty (206 B.C.E.-220 C.E.) 

and, as just mentioned, is concerned mostly with the astronomical and geographic 

applications of geometry, for which the Pythagorean theorem is essential. The 

vertical bar on a sundial was called a gu in Chinese, and its shadow on the sundial 

was called gou\ for that reason the Pythagorean theorem was known as the gougu 

theorem. The treatise says that “The Emperor Yu can rule the country because 

of the gougu theorem.” A commentator on this book named Zhao Shuang (third 

century C.E.) made advertising claims for geometry unequaled at any time before 

or since, even by the most enthusiastic proponents of the subject. The Emperor Yu 

was credited with saving his people from floods and other great calamities, and, 

“This is made possible because of the gougu theorem... .” 

The use of the gnomon in surveying is a very simple exercise in proportion, but 
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Figure 10.2: Chinese proof of the Pythagorean theorem. 

observations using the gnomon cannot be made from an arbitrary location. One 

must be able to move to a suitable place. The instructions in the Arithmetical 

Classic for use of the gnomon are very simple: “Align the gnomon with the plumb 

line to determine the horizontal, lay down the gnomon to find the height, reverse 

the gnomon to find the depth, lay the gnomon flat to determine the distance.” The 

principle is thus the basic principle of trigonometry, similar triangles. However, 

unless one has a variety of gnomons with different ratios of legs, it will be necessary 

to move to just the right location in order to determine, say, the height of a tall 

tree. Notice that this kind of surveying does not require the measurement of 

any angles, only lengths. It is interesting that when surveyors began to attack 

more complicated measurement problems, their first instinct was to make more 

measurements with one rigid instrument, rather than designing an instrument that 

would provide variable angles. 

The Arithmetical Classic was completed in its present form some time between 

100 B.C.E. and 100 C.E. As in the case of ancient Greek documents, however, the 

oldest extant manuscript is much more recent, dating from 1213 C.E. The astro¬ 

nomical content of the Arithmetical Classic is shown in the use of the Pythagorean 

theorem to calculate the height of the sun, given that at the summer solstice a stake 

eight chi high casts a shadow six chi long, and that the shadow length decreases 

by one fen for every thousand li that the stake is moved south, casting no shadow 

at all when moved 60,000 li to the south. Using the 6 : 8 proportion, the author 

reasons that the sun is 80,000 li high. 

Although the proportions are accurate here, the geometry is slightly wrong, 

since the length of a real shadow does not vary directly with the distance traveled. 

Also, the computation is clearly based on a flat earth. Finally, the lengths are not 

realistic, since one chi is about 10 inches long (one fen is about 1 inch). One li is 

1800 chi, that is, about 1500 feet. Thus 60,000 li are about 18,000 miles. Later 

Chinese commentators recognized this inaccuracy, and in the eighth-century C.E. 

an expedition to survey accurately a line of longitude found the actual lengthening 

(at certain latitudes) to be four fen per thousand li. 
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10.3.3 The Nine Chapters and Liu Hui 

The earliest Chinese work on pure and applied mathematics, resembling in style 

the Ahmose Papyrus from Egypt, is the Nine Chapters on the Mathematical Art 

(.Jiuzhang suanshu), probably assembled in its present form in the first century 

C.E. It is said to have been recovered during the Han Dynasty. A commentary on 

this work by Liu Hui dates from the third century C.E. Like the Ahmose Papyrus, 

the Nine Chapters consists of a set of pure and applied problems set out and 

solved. The first of the nine chapters is called “Field Measurement” (Fang tian). 

It contains the computations of areas of rather complicated shape, such as the area 

of a segment of a circle, a segment of a sphere, and an annulus. (The first two of 

these are given only approximately, and the author assumes the circumference is 

three times the diameter.) 

The remaining eight chapters bear the following titles: “Cereals,” “Distribu¬ 

tion by Proportion,” “What Width?,” “Construction Consultations,” “Fair Taxes,” 

“Excess and Deficiency,” “Rectangular Arrays,” and “gougu” (The Pythagorean 

theorem). These titles and descriptions of contents suggest a compendium of en¬ 

gineering and administrative problems such as are found in the Ahmose Papyrus. 

Its role in Chinese mathematics is much more central than that of the Ahmose 

papyrus in Western mathematics, however. As Swetz has remarked, “its influence 

on Oriental mathematics may be likened to that of Euclid’s Elements on western 

mathematical thought.” 

10.3.4 Linear Equations 

The Nine Chapters contains 246 word problems, including the following example 

of what we now call linear algebra: 

There are three kinds of wheat. The grains contained in two, three 

and four bundles, respectively, of these three classes of wheat, are not 

sufficient to make a whole measure. If however we add to them one 

bundle of the 2nd, 3rd, and 1st classes, respectively, then the grains 

would become one full measure in each case. How many measures of 

grain does then each one bundle of the different classes contain? 

The following counting-board arrangement is given for this problem. 

1 2 1st class 

3 1 2nd class 

4 1 3rd class 

1 1 1 measures 

Here the columns from right to left represent the three samples of wheat. Thus 

the right-hand column represents 2 bundles of the first class of wheat, to which 

one bundle of the second class has been added. The bottom row gives the result 

in each case: 1 measure of wheat. The word problem might be clearer if the 

final result is thought of as the result of threshing the raw wheat to produce pure 
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grain. We can easily, and without much distortion in the procedure followed by the 

author, write down this counting board as a matrix and solve the resulting system 

of three equations in three unknowns. The author gives the solution: a bundle of 

the first type of wheat contains ^ measures, a bundle of the second ^ measures, 

and a bundle of the third ^ measures. 
The significance of this problem is that in order to solve it, one must subtract 

bundles of one kind of wheat from bundles of another kind. Since this is a physical 

impossibility, one must therefore have some concept of a negative number, that is, 

a deficiency of a thing. The use of red counting rods to represent a deficiency 

and black rods for a positive amount handles this difficulty. The commentator Liu 

Hui explained the procedure to be followed when adding and subtracting quantities 

of opposite sign, or when subtracting a quantity from zero where necessary, for 

example, in solving the linear system of equations given above. 

The solution of linear equations such as those occurring in this example re¬ 

quires skill at manipulating fractions, which, as we have seen, was by no means 

widespread in the ancient world. Of the groups we have discussed so far, only 

the Babylonians used a place-value system to represent fractions. The Chinese 

made this discovery at an early stage, and the Nine Chapters also contains the 

oldest exposition of the use of common fractions (those written in quotient form), 

including the idea of least common denominator. In comparison with the Ahmose 

Papyrus, which it resembles in the problems discussed, the Nine Chapters con¬ 

tains a much more efficient system of computation. The method of solving the 

problem is that of successive elimination of variables by adding and subtracting 

the equations from one another This method was called fang cheng, which meant 

originally “rectangular computing.” It now means simply equations. 

10.3.5 Square Roots and Quadratic Equations 

In the Nine Chapters there is a method of extracting square roots that is equivalent 

to the computational procedure used in Europe and America until the late twentieth 

century, when calculators made it obsolete for computational purposes. In China, 

however, this computational process had a theoretical influence of great importance, 

and for that reason we shall discuss Problem 12 in the Chapter “What Width?”. 

This problem requires extracting the square root of 55,225. The procedure is 
reasoned out as follows. 

Since the number of digits in n2 is either twice the number in n or one less 

than twice that number, we group the digits in pairs, writing 5 52 25. It is then 

clear that the square root is between 200 and 300. This information gives us the 

first digit (2). Thus, for a given integer N (in this case 55,225), we have found a 

first approximation ax (the first digit, in this case standing for 200) for y/N. This 

is the initial step. The rest of the procedure consists of replacing a\ by better and 

better approximations. We note that if the exact square root is a\ + h, then 

N - (gl\ -(-/?,)“ = Gq T ‘2hd\ T h^1. 

A suitable choice of h will give us a second approximation a2 = a\ + h. Noticing 
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that the best possible value of h would satisfy 

h = 
N — a\ 

2a\ + h ’ 

we see that one algorithm (nowadays called the Newton-Raphson algorithm) is to 

take h = (N — a\)/2a\. For a pencil-and-paper process, this algorithm is modified 

slightly. Instead of the h just given the largest integer in this number (rounded 

downward to one significant digit) is usually taken as the “trial”; if the trial proves 

to be too large, it is replaced by the next smaller digit, until finally a2 = a\ 4- h is 

chosen as large as possible with its square not exceeding N. In the present case 

we should take 
_ 55,225 - 40,000 15,225 

800 ~ 400 

In practice, since we are trying to find only one digit at a time, we would use only 

the first digit of = 38 as the trial value of h. That is we take 3 as our next digit, 

(h = 30). Thus our second approximation becomes a2 = 230. We now need the 

difference N — a2 = N — (ai + h)2 = N — a\ — 2a\h — h?. Since we have already 

computed N — a\ = 15, 225, we need only compute 2a\h + h2 = h{2a\ 4- h) = 

30(430) = 12900, then subtract from N — a2, that is, 15, 225 — 12, 900 = 2325. 
We now start over again, trying to find a3 = a2 + h, with a new h obtained by 

adjusting (TV — a\)/2a2 = We therefore take h = 5 and get a3 = 235. This 

time when we compute N — a2 = N — a2 — 2ha2 — h2, we find it equal to zero, 

and so the computation ceases. 

The computation is usually arranged as follows, suppressing final strings of 

zeros in each partial computation: 

2 3 5 

\/5 52 25 

4 

40 152 25 

43 129 

460 23 25 

465 23 25 

This procedure rests on two observations, namely that when an approximation 

a to x/TV is replaced by a better approximation a -f h, 

1. A good way to get a close guess to the exact h is by taking h = (N — a2)/2a. 

2. The error of approximation N — a2 becomes N — a2 — h(2a + h). That is, 

the adjustment in the error when the approximation a is replaced by a + h 

amounts to h(2a + h). 

In particular, in the computations above, the values of 2a and 2a + h at each 

stage appear on the left-hand side as the pairs 40,43 (standing for 400,430, since 

final zeros are suppressed) and 460,465. The successive values of TV - a2 appear 

as 15, 225, 2325, and 0. 
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This computational procedure led to an important theoretical advance in China 

by suggesting a way of solving the general quadratic equation 

x2 +px = q. 

Indeed, the left-hand side here calls to mind the second remark just made. Casting 

x in the role of h and p in the role of 2a, we see that the left-hand side represents 

the amount by which the error N - a2 = N - p2/4 would change if the “first 

approximation” p/2 to a certain square root y/N were adjusted to the “second 

approximation” p/2 + x. If we assume that the second approximation is exactly 

y/N, it then follows that N - p2/4 = x2 + px = q, that is, N = q + p2 /4. Thus 

the number N can be found from the data of the problem. But then the square 

root of AMs £ + p/2, and so x = y/N - p/2. This result can be summarized as 

a formula 

This reasoning is the essence of Problem 20 of the gougu chapter of the Nine 

Chapters. The problem asks for the solution of 

x2 + 34.t = 71,000, 

and gives the answer as 250, found by “using the number 34 in the corollary to 

the square root method,” that is, using 34 in the role of 2a, and x in the role of h. 

The Nine Chapters also contains a method for extracting cube roots, based on 

the fact that (a + 6)3 = a3 + 3a2b + 3ab2 + b3, but this procedure did not lead to 

a corresponding method of solving cubic equations by radicals. 

10.3.6 Geometry 

The geometric formulas given in the Nine Chapters are more extensive than those of 

the Ahmose Papyrus; for example, there are approximate formulas for the volume 

of segment of a sphere and the area of a segment of a circle. The implied value 

of 7r, however, is 7r = 3. It is surprising to find this value in the Nine Chapters, 

since it is known that the value 3.15147 had been obtained in China by the first 

century, and the third-century commentator Liu Hui refined this value to 3.141024 

Liu Hui apparently derived this value by a method similar to that of Archime¬ 

des, that is, by use of successive inscribed polygons of 6, 12, 24, 48, 96, and 192 

sides, finding that this last polygon, inscribed in a circle of radius 1 chi would 

have an area of 314^§§ square fen. (The meaning of these lengths is explained 

above.) This reasoning gives a value of 7r approximately 3.14638, very close to 

Archimedes’ value. 

In his commentary on the Nine Chapters Liu Hui used a method similar to 

the Archimedean method for finding the relative volumes of a sphere and cone 

inscribed in a cylinder. He considered a cube and a cylinder both circumscribed 

about the sphere and evaluated the ratios of the areas of planar sections of them. 

He knew that the ratio of the volume of the cube to that of the cylinder was 4 : n. 
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He then reasoned that the cylinder has a horizontal cross section that is a circle, 

as does the sphere, and a vertical cross section that is a square, as does the cube. 

He argued on this basis that the volume of the cylinder is the mean proportional 

between the volumes of the sphere and cube. If this result were correct, the volume 

of the sphere would be equal to 7t/4 times the volume of the cylinder. In our terms 

this would make the volume of the sphere (7r2/2)r3, a result which would be 

correct only if n = |. 

10.4 The Sea Island Manual 

In his commentary Liu Hui mentions that the last of the Nine Chapters, in which 

the theory of right triangles is developed, is inadequate. He filled the gap in an 

extended commentary on this chapter. Some of what is known about the mathe¬ 

matics of surveying in China comes from this commentary on the gougu theorem, 

which became separated from the rest of Liu Hui’s commentary and circulated as 

an independent treatise known as the Sea Island Mathematical Manual (Haidao 

suanjing). This work consists of nine problems. Information on the mathematics 

of surveying is found in the first problem, from which the work is named. The 

problem is to compute the height and distance of a mountain on an offshore island 

(without getting into a boat, of course). The mathematics needed was called the 

method of double differences (chong cha). It is identical to the procedure dis¬ 

cussed in the preceding chapter; hence there may be a common source for the use 

of this method in both India and China. Indeed, this method of surveying was used 

even more widely, being found in Islamic treatises from medieval times. The idea 

of making two sightings instead of measuring angles is also a feature of certain 

methods of surveying found in Europe during the Middle Ages. 

10.5 Number Theory 

The fundamental problem of divisibility, which is treated in Euclid’s Books VII-IX, 

also occurs in Chinese treatises, in particular in a third-century treatise known as 

Master Sun’s Mathematical Manual (Sunzi Suanjing), which contains the essence 

of the result still known today as the Chinese remainder theorem. The problem 

asks for a number that leaves a remainder of 2 when divided by 3, a remainder 

of 3 when divided by 5, and a remainder of 2 when divided by 7. This problem 

involves the notion of congruence. We are trying to find all numbers that leave 

the given remainders “modulo” the three given primes. The assertion that any 

number of such congruences can be solved simultaneously if the moduli are all 

pairwise relatively prime is the content of the Chinese remainder theorem. The 

author gives the answer to this problem as 23. We have already seen how to 

solve these problems using the kuttaka discussed by Brahmagupta. Master Sun’s 

solution, however, is not placed in the context of a general method. 
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10.6 Applied Mathematics 

Like other peoples, the Chinese needed an accurate calendar, and to obtain it 

they observed the stars and planets. Indeed, astronomical observation became one 

of the principal government programs, causing much of the vital information on 

observation to be buried in official government reports, rather than expounded in 

systematic treatises. Furthermore independent study of astronomy became nearly 

tantamount to treason, so that the effect of government support on the development 

of astronomy may not have been entirely positive. Nevertheless, China provides 

some of the best astronomical records available for much of the first millennium 

C.E. During this period several supemovae appeared in the sky, and were recorded 

only in China. Since supemovae are a sporadic phenomenon not amenable to 

treatment by geometric astronomy, we shall say no more about them. Likewise, 

although the retrograde motion of the planets was discussed in China as early as 

the first century B.C.E., for the sake of simplicity we shall confine our discussion 

of Chinese astronomy to the theory of the sun’s motion and its role in establishing 

a calendar. Space does not permit the full discussion that would be necessary to 

take account of the different and conflicting cosmologies used by various Chinese 

astronomers. 
The early Chinese treatises on the calendar, of which Master Lu ’s Spring and 

Autumn Annals (third century B.C.E.) is representative, describe years of 12 lunar 

months each and give astronomical characterizations of each of the months. As we 

know from our previous discussion of the calendar, it is necessary to interpolate 7 

extra months in each 19-year period in order to keep the lunar calendar in harmony 

with the tropical or sidereal year. This 19-year cycle is noted in the Arithmetical 

Classic, as is the more refined fact that one day must be dropped from every 

four such cycles in order to preserve the harmony. This resemblance to the lunar 

calendars used in the Mediterranean world has led some scholars to conclude that 

the earlier Babylonian calendar was imported into China. Other scholars, however, 

have noted significant differences, such as the division of celestial circles into 365 \ 

equal parts in China rather than 360, as in the West and different groupings of 

stars into constellations. 

The nonuniformity of the sun’s motion, which was noted by the astronomer 

Zhang Heng around the year 100 C.E., caused difficulties in establishing the cal¬ 

endar and in astronomy. For both purposes it is important to know the location 

of the sun in relation to the stars at any given time, and considerable precision 

is needed. For example, since the diameter of the sun (and the moon also) is 

about half a degree on the celestial sphere, an error of one degree can cause the 

prediction of an eclipse to be entirely wrong. The Chinese astronomers therefore 

developed some sophisticated methods of interpolation to keep theory in harmony 

with observation. 

The first of these methods, developed in the sixth century C.E., involves es¬ 

sentially quadratic interpolation. That is, observations of the sun’s distance from 

some fixed point, usually the vernal equinox, are made at equal time intervals. 

The successive increments, which would all be equal if the sun moved uniformly, 

are found to differ, and by a larger amount than can be explained by observa- 
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tional errors. In other words, a linear function will not do for interpolation. The 

second differences, however, that is, the differences of the successive increments, 

are much smaller because a quadratic function can fit the data much better, and 

discrepancies in them can be attributed to observational error. Hence the second 

differences are taken as the foundation of a computational system for predicting 

the position of the sun. The mathematical problem then arises of reconstructing a 

quantity depending on time knowing its (constant) second differences. To do so, 

one must know not only the initial value but also the initial difference. Thus, if the 

initial value is 0 and the initial difference is 1, while the constant second difference 

is —0.1, the successive values of the differences will be 1, 0.9, 0.8, 0.7,..., and 

the successive values of the function will be 1, 1.9, 2.7, 3.4,... . This method 

was employed to create the Imperial Standard Calendar in the year 600 C.E. 

As astronomy grew more sophisticated, the equipment used in making astro¬ 

nomical measurements became more precise. During the Yuan Dynasty a 40-foot- 

high tower was erected in the capital city with a perfectly level path, known as 

the sky measuring scale, leading away from its center to the north. It was flanked 

on both sides by a trench filled with water, so that the surface of the water could 

be used to verify that it was level. On this path the length of the sun’s shadow 

could be measured very accurately and the solstices therefore determined with great 

precision. 

Along with the better observations, the numerical techniques for representing 

observations grew still more sophisticated, involving third-order differences and 

the replacement of accumulated discrepancies between observation and linear in¬ 

terpolation by average daily discrepancies. This technique was used by the math¬ 

ematician/astronomer Guo Shojing and others to produce the “Works and Days 

Calendar” in the late thirteenth century. 

One can easily see how these problems might lead to the development of a sys¬ 

tematic theory of finite differences, in which the basic problem is the reconstruction 

of a function from its differences of a given order plus a certain number of initial 

values for the function and lower-order differences. It also led to the investigation 

of progressions and series during the thirteenth and fourteenth centuries. 

10.7 Foreign Influences 

Cultural contacts between India and China began just before the Tang Dynasty. 

Hindu astronomers, who had been in contact with Hellenistic mathematics, brought 

their system of circle measurement based on degrees and the Hindu approach 

to trigonometry using half-chords rather than Ptolemy’s chords. Unmistakable 

evidence of Hindu influence can be found in a 1299 treatise called Introduction 

to Mathematical Studies (Suanxue qimeng) by the mathematician Zhu Shijie. The 

author of this book introduced names for very large powers of 10, including the 

term “sand of the Ganges” for 1096. Incidentally, this work later disappeared from 

China, but was preserved in Korea under the name Sanhak Kyemong, where it was 

eventually (1839) noticed and reprinted in China. 
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Islamic influences on China, particularly from Persia, began during the Tang 

Dynasty and became extensive during the time of Mongol rule. It is known from 

imperial records that many Arabic treatises were translated into Chinese during 

the Yuan Dynasty. Unfortunately, the works themselves have not survived, and so 

we cannot know if these works included Arabic versions of the Greek classics. 

Archaeologists have discovered iron plates from the Yuan Dynasty bearing 6x6 

magic squares written in Arabic characters. A graphic method of computing a 

product (as opposed to the mechanical methods of counting rods or the abacus) 

also came into China from the Islamic world. 

10.8 Later Developments 

During the Medieval period in Europe Chinese mathematicians continued to make 

advances in geometry and algebra. We shall sample a few of these achievements 

in the present section. 

10.8.1 Zu Chongzhi 

The fifth-century mathematician Zu Chongzhi made outstanding contributions to 

mechanics, astronomy, and mathematics. Together with his son Zu Geng, he was 

the first to act on Liu Hui’s remark that the existing computation of the volume of 

a sphere was incorrect and to find the volume correctly using a technique similar 

to Archimedes’ Method. The two mathematicians considered a figure formed by 

two right circular cylinders of radius a whose axes intersect at at right angles to 

each other at the center of a cube of side 2a. The two cylinders formed a figure 

that they called a double umbrella (see Fig. 10.3). A sphere of radius a with center 

at the center of the cube will be tangent to the double umbrella along two mutually 

perpendicular great circles. Now consider a horizontal section of the original cube 

at height h above the middle plane of the cube. In the double umbrella this section 

is a square of side 2fa2 - h2 and hence area 4(a2 — h2). Therefore the area 

outside the double umbrella and inside the cube is 4h2. This is the same area as 

the corresponding cross section of an upside-down pyramid with a square base of 

side 2a and height a. Hence the volume of the portion of the cube outside the 

double umbrella in the upper half of the cube equals the volume of a a pyramid 

with square base 2a and height a. Since this volume is |a3, it therefore follows 

(after doubling, to include the portion below the middle plane) that the region 

inside the cube but outside the double umbrella has volume |a3, and hence that 

the double umbrella itself has volume ^a3. 

We now compare sections of the double umbrella with those of the sphere. 

Each horizontal cross section of this sphere is the circle inscribed in the same 

section of the double umbrella. It therefore has area n(a2 - h2), or, to stay closer 

to what seems to be the language of the original document, the ratio of its area 

to the area of the same section of the double umbrella is the ratio of a circle to 

the circumscribed square (7r/4). The volumes must therefore be in this same ratio, 

that is, the sphere has volume (zr/4) • yya3, or ra3. 
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2 a 

Figure 10.3: Sections of the cube, double umbrella, and sphere at height h. The 

area between the two squares (the sections of the cube and double umbrella) is 
4/72. 

The principle used here—that if all horizontal sections of two volumes are in 

a given ratio, then the volumes are in that same ratio—had been used earlier by 

Archimedes, as we have seen. It was revived independently in Europe a thousand 

years after the time of Zu Chongzi and Zu Geng and has been traditionally referred 

to as Cavalieri’s principle. There is no reason to doubt that this principle was 

discovered independently in Europe and Asia. The idea of regarding a plane figure 

as a stack of lines seems to occur naturally as soon as geometry is sufficiently far 

advanced. 

Zu Chongzhi also proved that the value of ir lies between 3.1415926 and 

3.1415927, which was the greatest accuracy achieved by any civilization until the 

time of the Islamic mathematicians. 

10.8.2 Later Chinese Algebra: Higher-Degree Equations 

Mathematics attained a very high level in China during the Song and Yuan dy¬ 

nasties, from about 1000 C.E. to 1400 C.E., which was also a high point for 

mathematics in the Islamic world in the West and the beginning of the European 

revival of learning. At this period the Chinese were the most advanced algebraists 

in the world. They studied equations and classified them according to degree, 

giving the poetic name of “celestial element” (tian yuan) to the unknown. Their 

approach to higher-degree equations reflects an understanding that the method of 

solving quadratic equations, based on the square-root algorithm, does not gen¬ 

eralize easily to cubic equations. As we have seen, they had found a complete 

solution of quadratic equations based on the algorithm for extracting square roots 

at an early date. They did not find a similar algorithm for solving cubic and 

quartic equations. Instead they developed a method of finding a numerical ap¬ 

proximation of a root, similar to a method that was rediscovered independently in 

the nineteenth century in Europe and is commonly called Horner’s method. This 

method was used around the year 1200 C.E. by the mathematician Yang Hui. Be¬ 

cause of its efficiency in finding approximate roots the Chinese were not deterred 

by large coefficients and high-degree equations. Yang Hui’s method of solving 

equations is highly effective from a practical point of view. On the other hand, 
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Figure 10.4: The Chinese abacus (suan pan). The Bettmann Archive 
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the existence of effective numerical methods and computational machinery such 

as the abacus (Fig. 10.4) may have turned the interest of Chinese mathematicians 

away from the search for closed-form solutions by radicals, a search that was a 

powerful stimulus to mathematical advances in the Islamic world and in Europe. It 

led Islamic scholars such as Omar Khayyam, for example, to study the application 

of conic sections to the solution of such equations, presenting the solution of a 

cubic equation as a simultaneous solution of two quadratic equations. This kind of 

analysis focuses attention on the symmetries of the equation itself rather than the 

numerical values of its coefficients, and brings out the sequence of operations that 

must be performed to get from the coefficients to the roots, the so-called solution 

by radicals. As we shall see, such solutions by radicals can be found for cubic 

and quartic equations, although the radicals are often misleading as to the numer¬ 

ical value of the solution. The search for a closed-form solution by radicals for 

the fifth-degree equation, even though no such solution exists, led to the beautiful 

subject of Galois theory, now taught in universities throughout the world. We see 

here a good illustration of a principle of compensation: each decision to pursue 

one line of inquiry causes a different line of inquiry to be neglected, and only when 

several approaches to a problem have been explored can we see what is missing 

in each of them. 

The so-called “Pascal triangle,” for which Pascal is given credit because of 

his detailed development of its properties, appeared in a Chinese book written by 

Yang Hui in 1261. The figure was credited by Yang Hui to the eleventh-century 

mathematician Jia Xian. As we have already seen, it was known centuries earlier 

in India under the name Meru Prastara. However, it may also have been known 

much earlier in China. Since the two civilizations were in contact from early times, 

it is difficult to be sure which way any particular idea was passed. 

Yang Hui is also the author of Yang Hui’s Methods of Computation, which 

became one of the standard textbooks in Korea during the Yi Dynasty (fourteenth 

to seventeenth centuries). Like Zhu Shijie’s Introduction, this book was lost from 

China for many centuries and eventually recovered because it had been reprinted 

in Korea. 

Chinese mathematicians of this period considered geometric problems that lead 

to higher-degree equations, such as the following thirteenth-century problem from 

the Sea Mirror of Circle Measurements by the mathematician Li Ye (see Fig. 10.5): 

Three li north of the wall of a circular town there is a tree. A traveler walking 

east from the southern gate of the town first sees the tree after walking 9 li. What 

is the diameter of the town? 

This problem is obviously concocted so as to lead to an equation of higher 

degree. (The diameter of the town could surely be measured directly from inside, 

so that it is highly unlikely that anyone would ever need to solve such a problem 

for a practical purpose.) Li Ye found a tenth-degree equation for the square root 

of the diameter of the town, but (see Fig. 10.5) it is easy to see that if the diameter 

of the town rather than its square root is taken as the unknown, the result is the 

quartic equation x4 -F 6.x3 + 9x2 — 972x — 2916 = 0. This fact was pointed out by 

the later mathematician Li Rui (1773-1817). (Actually, the similar right triangles 

in Fig. 10.5 lead to the cubic equation 2r3 + 3r2 = 243for the radius.) 
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Figure 10.5: A quartic equation problem. 

10.8.3 Magic Squares 

Like the figurate numbers studied by the Pythagoreans, magic squares have never 

found any significant application. They have fascinated people for a long time, 

however, and their mathematical theory has been developed. The Chinese were 

apparently the first to develop this topic, which the Pythagoreans do not seem to 

have noticed. We have already mentioned the 3 x 3 magic square contained in 

the Luo Shu. Larger magic squares, up to 10 x 10, were given by Yang Hui in 

the thirteenth century, although the diagonal in his 10 x 10 magic square has the 

wrong sum: 

1 20 21 40 41 60 61 80 81 100 

99 82 79 62 59 42 39 22 19 2 
3 18 23 38 43 58 63 78 83 98 

97 84 77 64 57 44 37 24 17 4 
5 16 25 36 45 56 65 76 85 96 

95 86 75 66 55 46 35 26 15 6 
14 7 34 27 54 47 74 67 94 87 
88 93 68 73 48 53 28 33 8 13 
12 9 32 29 52 49 72 69 02 89 
91 90 7' 70 51 50 31 30 11 10 

Methods of constructing such squares are now known (by a modification of 

the “knight’s move” when the number of rows and columns is odd, for example). 

10.8.4 Mechanical Computation 

As can be gathered from the discussions above, the Chinese used mechanical aids 

to computation from a very early date. The first device used was counting rods, and 

these were later combined with counting boards. The rods no doubt facilitated the 

development of the place-value decimal system, and the boards helped to develop 

algebra, since different locations on the board can be assigned to different powers of 
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the unknown, with the number of rods in the location representing the coefficient of 

the corresponding power. There is insufficient space here to describe the gradual 

improvement in the “software” accompanying this “hardware.” For details the 

reader is referred to the book by Yan and Shiran Chinese Mathematics, A Concise 

History, Clarendon Press, Oxford, 1987, pp. 177-184. The rods were eventually 

replaced with beads, which were then strung together to produce the famous device 

we now know as the abacus. This last invention came during the Yuan Dynasty 

(fourteenth century). In countries where modem calculators are not available the 

abacus is still used in commerce and taught in schools; and the speed that a 

competent operator can achieve is amazing to one who has grown up in a society 

where only electronic cash registers are seen. 

10.9 The Modern Era 

When Western mathematics and science entered China with the Jesuits in the sev¬ 

enteenth century, the result was a conflict between traditionalists and modernists 

among Chinese scholars. In the end, like many other nations, China joined the 

common world mathematical culture, and made outstanding contributions to that 

culture. The routes by which European mathematics came to China were vari¬ 

ous, but when the Chinese began actively seeking more information about Western 

mathematics during the nineteenth century, one of their chief sources was trans¬ 

lations from the Encyclopedia Britannica. A large number of Chinese scholars, 

both in China and abroad, have made outstanding discoveries in the many fields 

of modem mathematics, and their names have become associated with some of the 

most profound results yet attained in analysis, algebra, differential geometry, and 

other areas. 

10.10 Problems and Questions 

10.10.1 Chinese Mathematical Problems 

Exercise 10.1 Compare the following loosely interpreted problems from the Nine 

Chapters and the Ahmose Papyrus. First, from the Nine Chapters: five offi¬ 

cials went hunting and killed five deer. Their ranks entitle them to shares in the 

proportion 1 : 2 : 3 : 4 : 5. What part of a deer does each receive? 

Second, from the Ahmose Papyrus (Problem 40): 100 loaves of bread are to be 

divided among 5 people (in arithmetic progression), in such a way that the amount 

received by the last two (together) is one-seventh of the amount received by the 

first three (together). How much bread does each person receive? 

Exercise 10.2 Carry out the solution of the bundles of wheat problem in the text. 

Is it possible to solve this problem without the use of negative numbers? 

Exercise 10.3 Find ^451, 584 by the method of the text. 
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Exercise 10.4 Without using the formula given in the text, but repeating the rea¬ 

soning that accompanies it, solve the equation x2 + 8x = 65. 

Exercise 10.5 The gougu section of the Nine Chapters contains the following 

problem. “Under a tree 20 feet high and 3 in circumference there grows a vine, 

which winds seven times the stem of the tree and just reaches its top. How long 

is the vine?” Solve this problem. [Hint: Despite appearances, the number n isn’t 

involved here. Imagine that the tree is a perfect cylinder (the usual unrealistic 

assumption needed to get a solvable mathematical problem); then imagine that you 

have cut down the tree and rolled it on the ground to unwind the vine in a straight 

line.] 

Exercise 10.6 Another right-triangle problem from the Nine Chapters is the fol¬ 

lowing. “There is a string hanging down from the top of a pole, and the last 3 

feet of string are lying flat on the ground. When the string is stretched, it reaches 

a point 8 feet from the pole. How long is the string?” Solve this problem. (You 

can also, of course, figure out how high the pole is from this information.) 

Exercise 10.7 The most famous of all the problems from the Nine Chapters is the 

“broken bamboo” problem: A bamboo 10 feet high is broken and the top touches 

the ground at a point 3 feet from the stem. What is the height of the break? Solve 

this problem, which reappeared several centuries later in the writings of the Hindu 

mathematician Brahmagupta. 

Exercise 10.8 Find the smallest positive number that leaves remainders of 3, 4, 

and 6 when divided by 8, 11, and 15 respectively. 

Exercise 10.9 Explain how Fig. 10.2 can be used to prove a particular case of the 

Pythagorean theorem. 

Exercise 10.10 The thirteenth-century work called the Sea Mirror of Circle Mea¬ 

surements by the mathematician Li Ye contains the following problem. [Assume 

there is a circular fort of unknown diameter and circumference.] One person walks 

out of the south gate 135 steps and another person walks out of the east gate 16 

steps, and then they see each other. [ What is the diameter?] 

Draw a figure and set up the equation to solve this problem. Solve the equation 

by guessing a solution. Then explain the steps in the solution given by the author, 

as follows. [The entries in each column represent coefficients of powers of the 

unknown, but some of them are negative powers, that is, powers of ^.] 

Let the unknown be the radius of the fort; lay it down and add to it the 

southward steps, getting the gu? 

r 
135 

Then add to it the eastward steps, getting the gou. 

2This expression represents r + 135, and similarly for subsequent boxes. 
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1 

16 

Multiply the gou and the gu together, getting 

r 
151 

2160 

Divide by the unknown, getting the hypotenuse3 

F 
151 

2160 

Multiply this by itself, getting the square of the hypotenuse, and place this on 

the left: 

1 

302 

27, 121 

652, 320 

4,665, 600 

Multiply the gou by itself, getting 

r 
32 

256 

and multiply the gu by itself, getting 

F 
270 

18,225 

The two configurations added give 

T 
302 

18,481 

which is the same value [previously obtained for the square of the hypotenuse]. 

Cancel it [with the previous value]4 

^F 
o 

8640 

652,320 

4,665,600 

which is a fourth-degree equation giving 120 steps as the radius of the fort. 

What similarities with your own process of solution do you notice? What 

differences? 

3Because the radius of the circle (the unknown) is the altitude of the right triangle, the product of 
the legs equals the product of the unknown and the hypotenuse (both are equal to twice the area of the 
triangle). This expression thus represents r + 151 + 2160/r. 

4This final expression can be thought of as set equal to zero. It stands for —r2 + 8640 + 
652, 320r—1 + 4, 665, 600r-2. 
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Exercise 10.11 Solve the equation for the diameter of a town considered by Li 

Rui. [Hint: Since x = -3 is an obvious solution, this equation can actually be 

written as x3 + 3.x2 = 972.] 

10.10.2 Questions about Chinese Mathematics 

Exercise 10.12 How do the rules for manipulating negative numbers in the Nine 

Chapters compare with Diophantus’ rules for adding and multiplying expressions 

in an unknown quantity? 

Exercise 10.13 Obviously one can find the successive digits of the square root 

of a number by trial and error. For example, in the problem given in the text 

of finding ^55,225, we find that 2002 = 40,000 < 55,225 < 90,000 = 3002, 

so that the first digit is 2. Then by trial and error, perhaps starting with 250 as 

a “guess,” we soon discover that 2302 = 52,900 < 55,225 < 57,600 = 2402, 

so that the second digit is 3, etc. In view of this fact, what is the advantage of 

learning an algorithm, such as the one described in the text? 

Exercise 10.14 In several contexts now we have seen that a problem (for example, 

an equation) can be solved either approximately by numerical methods or in “closed 

form.” For example, the equation x2 — 2 = 0 has the closed-form solutions 

x = ±y/2 and the approximate solutions x — ±1.41421. What are the advantages 

and disadvantages of concentrating on one of these approaches to the exclusion of 
the other? 

10.11 Endnotes 

1. The study of Chinese mathematics in America and Europe has blossomed 

in the past few decades, and a number of good expositions can be found. A 

concise introduction can be found in the brief article by F. J. Swetz, “The 

Evolution of Mathematics in Ancient China,” Mathematics Magazine, 52 

(1), (Jan. 1979), pp. 10-19. A much more extensive, but still very readable 

full-length account is given in the book by Li Yan and Du Shiran, Chi¬ 

nese Mathematics, A Concise History (Clarendon Press, Oxford, 1987). A 

very complete treatment is given in Part 19 of Science and Civilisation in 

China, by Joseph Needham (Cambridge University Press, 1959). Most of 

the present chapter is based on these last two sources, together with the book 

by Yoshio Mikami, The Development of Mathematics in China and Japan 

(Chelsea Reprint, New York, 1913) and the book by Ulrich Libbrecht, Chi¬ 

nese Mathematics in the Thirteenth Century (MIT Press, Cambridge, MA, 
1973). 

2. The quotation about the Luo Shu is taken from the article by Swetz (op. 
cit.). 
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3. The linear algebra problem from the Nine Chapters is taken from the book 

of Mikami (op. cit.), p. 20. 

4. The rules for handling negative numbers in the Nine Chapters are quoted 

from the book of Mikami (op. cit.), p. 21. 

5. The derivation of the accurate value of n by Liu Hui is given in an article by 

Lam Lay-Yong and Ang Tian-Se, “Circle measurements in Ancient China,” 

Historia Mathematica, 13 (4), (1986), pp. 325-340. 

6. A complete English translation of the Sea Island Manual by Ang Tian Se 

and Frank J. Swetz was published in Historia Mathematica, 13 (2), (1986), 

pp. 99-117. 

7. The discussion of Chinese astronomy is based on Joseph Needham’s Science 

and Civilization in China, Cambridge University Press, 1959. 

8. The Chinese use of Cavalieri’s principle is explained in an article by Lam 

Lay-Yong and Shen Kangsheng, “The Chinese concept of Cavalieri’s Princi¬ 

ple and its applications,” Historia Mathematica, 12 (3), (1985), pp. 219-228. 

A recent article by Daiwie Fu, “Why did Liu Hui fail to derive the volume of 

a sphere?” in Historia Mathematica, 18 (3), (1991), pp. 212-238, analyzes 

these precursors of the infinitesimal methods and shows their limitations 

when applied to the sphere. 

9. The cubic equation problem from the Sea Mirror of Circle Measurements 

is taken from the book by Ulrich Libbrecht, Chinese Mathematics in the 

Thirteenth Century (MIT Press, Cambridge, MA, 1973), pp. 134-135. 
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Chapter 11 

Korea and Japan 

Both Korea and Japan adopted the Chinese system of writing their languages. Thus 

for the Orient the Chinese language played the same role that was played by Greek 

in the Hellenistic world, by Sanskrit in India, by Arabic in the Muslim world, and 

by Latin in Medieval Europe. That is, it provided a common language for scholars 

of many nations and a body of “classical” literature familiar to all educated people. 

The influence of Chinese mathematics on both Korea and Japan was consider¬ 

able. Indeed the courses of university instruction in this subject in both countries 

were based on reading (in the original Chinese language) the Chinese classics we 

have discussed in the preceding chapter. The Koreans played a role as transmitters, 

passing Chinese learning and inventions to Japan. (Two Korean scholars named 

Wang Lian-tung and Wang Pu-son journeyed to Japan in 553-554.) For many 

centuries both the Koreans and the Japanese worked within the system of Chinese 

mathematics. The earliest records of new and original work in these countries date 

from the 17th century. By that time mathematical activity was exploding in Europe, 

and Europeans had begun their long voyages of exploration and conquest. There 

is therefore only a comparatively brief window of time during which indigenous 

mathematics could grow up in these countries independently of Western influence. 

11.1 Korean Mathematics 

During the Koryo Dynasty of the tenth century a national university was established 

at Kukchagam with two professors of mathematics. The textbooks used were the 

Nine Chapters and later the Introduction to Mathematical Studies by Zhu Shijie. 

The Koreans were particularly interested in the study of equations with integer 

coefficients, which they called ch’onwonsul.1 A 2-day examination was given in 

mathematics, during which the student was expected to recite whole chapters of 

the textbooks from memory and answer correctly at least four out of six questions 

posed. 

Recall that the Chinese name for the procedure of solving an equation was tian yuan shu, meaning 

method of the celestial element. 

245 
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The role of Korean mathematicians was not limited to mere transmission, how¬ 

ever. In the fifteenth century Sejong, the fourth king of the Yi Dynasty, personally 

checked the surveying results of his mathematicians and found them wanting. To 

reform the educational system he allowed the children of the nobility to study 

mathematics and sent Korean scholars to China to learn more mathematics. At his 

instigation new Korean editions of Yang Hui ’s Methods of Calculation (referred to 

in Korea as Yanghwi Sanpob) and the Introduction to Mathematical Studies (San- 

hak Kyemong) were printed. Sejong is said to have observed the relation between 

pitch and length of a flute and to have established the Korean musical scale; com¬ 

parisons with Pythagoras naturally spring to mind. The Introduction was reprinted 

in the seventeenth century, with the addition of a chapter on trigonometry. 

New mathematics was created in Korea in the seventeenth century by Ch’oe 

Sok-jong (1646-1715), who was also active in political life (he served as prime 

minister six times). His mathematical interests were influenced by philosophy, 

and he was fascinated by magic squares. Regarding the 10 x 10 magic square 

reproduced in the preceding chapter he observed that in the first and last rows 

the ones digit of every entry is either 1 or 0, in the second and ninth rows it is 

either 2 or 9, etc. Perhaps because of the legend that the Luo Shu was given to 

the Emperor Yu by a tortoise, Ch’oe Sok-jong was interested in the tortoise shape 

(hexagon), and constructed some magic figures based on this shape. As mentioned 

in the preceding chapter, however, this topic has never blossomed into a major 

branch of mathematics. Nowadays Korean mathematicians work in the same areas 

as mathematicians of other nations. 

11.2 Japanese Mathematics 

11.2.1 Chinese Influence: Calculating Devices 

The only surviving Japanese records date from the time after Japan had adopted the 

Chinese writing system. Like the Koreans, the Japanese were for a time content 

to read the Chinese classics. In 701 the emperor Monbu established a university 

system, in which the mathematical part of the curriculum consisted of 10 Chinese 

treatises. Some of these are no longer known, but the Arithmetical Classic, Master 

Sun’s Mathematical Manual, the Nine Chapters, and the Sea Island Manual were 

among them. The evidence of Chinese influence is unmistakable in the mechanical 

methods of calculation used for centuries—counting rods, counting boards, and the 

abacus, which played an especially important role in Japan. 

The Koreans adopted the Chinese counting rods and counting boards, which the 

Japanese subsequently adopted from them. The abacus was a technology beyond 

what was needed for Korean commerce. It too was exported to Japan, however, 

where it was eagerly adopted and improved. The abacus (suan pan) was invented 

in China, probably in the fourteenth century, when methods of computing with 

counting rods had become so efficient that the rods themselves were a hindrance 

to the performance of the computation (see Fig. 10.4). From China the invention 

passed to Korea, where it was known as the sanbob. Because it did not prove 
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useful in Korean business, it did not become widespread there. It did, however, 

pass on to Japan, where it was known as the soroban, which may be related to the 

Japanese word for an orderly table (soroibari). The Japanese made two important 

technical improvements in the abacus: (1) they replaced the round beads by beads 

with sharp edges, which are easier to manipulate; and (2) they eliminated the 

superfluous second 5-bead on each string. 

11.2.2 Japanese Mathematical Innovations 

It was reported by one nineteenth-century Japanese historian that the late-sixteenth- 

century emperor Hideyoshi sent the scholar Mori Shigeyoshi to China to learn 

mathematics. According to the story, the Chinese ignored the emissary because 

he was not of noble birth. When he returned to Japan and reported this fact, 

the emperor conferred noble status on him and sent him back. Unfortunately, his 

second visit to China coincided with Hideyoshi’s unsuccessful attempt to invade 

Korea, which made his emissary unwelcome in China. Mori Shigeyoshi did not 

return to Japan until after the death of Hideyoshi, but when he did return (in the 

early seventeenth century), he brought the abacus with him. Whether this story 

is true or not, it is a fact that Mori Shigeyoshi was one of the most influential 

early Japanese mathematicians. He wrote several treatises, all of which have been 

lost, but his work led to a great flowering of mathematical activity in seventeenth- 

century Japan, through the work of his students. 

Yoshida Koyu 

Mori Shigeyoshi trained three outstanding students during his lifetime, of whom 

we shall discuss only the first. This student was Yoshida Koyu (1598-1672). 

Being handicapped in his studies at first by his ignorance of Chinese, Yoshida 

Koyu devoted extra effort to this language in order to read the Systematic Treatise 

on Arithmetic by Cheng Dawei, published in 1592. This book is well described 

by its title. It contains a systematic treatment of the kinds of problems handled 

in traditional Chinese mathematics, and at the end has a bibliography of some 50 

other works on mathematics. Having read this book, it is said, Yoshida Koyu made 

rapid progress in mathematics and soon excelled even Mori Shigeyoshi himself. 

Eventually he was called to the court of a nobleman as a tutor in mathematics. 

In 1627 Yoshida Koyu wrote his own textbook (in Japanese) based on the 

Systematic Treatise, calling his work the Treatise on Large and Small Numbers. 

Although this book was mostly derivative, it did contain a statement of what is 

known in modem mathematics as the Josephus problem. The Japanese version 

of the problem involves a family of 30 children choosing one of the children to 

inherit the parents’ property. The children are arranged in a circle and count 

off by tens; the unlucky children who get the number 10 are eliminated, that is, 

numbers 10, 20, and 30 drop out. The remaining 27 children then count off again. 

The children originally numbered 11 and 22 will be eliminated in this round, and 

when the second round of numbering is complete, the child who was first will 
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have the number 8. Hence the children originally numbered 3, 15, and 27 will 

be eliminated on the next round, and the first child will start the following round 

as number 3. The problem is to see which child will be the last one remaining. 

Obviously solving this problem in advance could be very profitable, as the original 

Josephus story indicates.2 The Japanese problem is made more interesting and 

more complicated by considering that half of the children belong to the couple and 

half are the husband’s children by a former marriage. The wife naturally wishes 

one of her own children to inherit, and she persuades the husband to count in 

different ways on different rounds. The problem was reprinted by several later 

mathematicians. 

The Treatise on Large and Small Numbers concluded with a list of challenge 

questions and thereby stimulated a great deal of further work. Here are some of 

the questions: 

1. There is a log of precious wood 18 feet long whose bases are 5 feet and 

2^ feet in circumference. Into what lengths should it be cut to trisect the 

volume? 

2. There have been excavated 560 measures of earth, which are to be used for 

the base of a building. The base is to be 3 measures square and 9 measures 

high. Required, the size of the upper base. 

3. There is a mound of earth in the shape of a frustum of a circular cone. 

The circumferences of the bases are 40 measures and 120 measures and the 

mound is 6 measures high. If 1200 measures of earth are taken evenly off 

the top, what will be the height? 

4. A circular piece of land 100 [linear] measures in diameter is to be divided 

among three persons so that they shall receive 2900, 2500, and 2500 [square] 

measures respectively. Required, the lengths of the chords and the altitudes 

of the segments. 

These problems were solved in a later treatise, which in turn posed new math¬ 

ematical problems to be solved; this was the beginning of a tradition of posing and 

solving problems that lasted for 150 years. 

2Josephus tells us that, faced with capture by the Romans after the fall of Jotapata, he and his 
Jewish comrades decided to commit mass suicide rather than surrender. Later commentators claimed 
that they stood in a circle and counted by threes, agreeing that every third soldier would be killed by 
the person on his left. The last one standing was duty bound to fall on his sword. According to this 
folk legend, Josephus immediately computed where he should position himself in order to be that last 
person, but decided to surrender instead of carrying out the bargain. Josephus himself, however, writes 
in The Jewish Wars, Book III, Chapter 8 that the order of execution was determined by drawing lots 
and that he and his best friend survived either by chance or by divine intervention in these lots. The 
mathematical problem we are discussing is also said to have been invented by Abraham ben Meir ibn 
Ezra (1092-1167), better known as Rabbi Ben Ezra, one of many Jewish scholars who flourished in 
the Caliphate of Cordoba. 
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11.2.3 Isomura Kittoku 

A great many treatises on mathematics were written in seventeenth-century Japan, 

resulting in the creation of an indigenous mathematics called wasan. The word 

comes from Wa, meaning Japan, and san meaning mathematics. (The word san 

is apparently related to the Chinese word suan, since the modem Japanese word 

for mathematics is sugaku.) This wasan bypassed many topics found in Euclid in 

favor of area and volume problems that were too difficult for Euclid. 

In particular the attempt to approximate the volume of a sphere by cylindrical 

shells can be seen in Fig. 11.1. This figure is taken from a 1684 edition of a 

work known as Ketsugi-sho (literally “combination book”), first published in 1660 

by Isomura Kittoku, a student of a student of Mori Shigeyoshi. The method is 

explained by the author as follows: 

If we cut a sphere of diameter 1 foot into 10,000 slices, the thickness 

of each slice is 0.001 feet, which will be something like that of a very 

thin paper. Finding in this way the volume of each of them, we sum 

up the results, 10,000 in number, when we get 532.6 measures [that 

is, a volume of 0.5326 cubic feet]. Besides, it is true, there are small 

incommensurable parts, which are neglected. 

If we make allowance for what may be inaccuracies in the translation (the word 

incommensurable, for example, seems to be inappropriate), the method is perfectly 

sound as an approximation, and the figure is accurate to all the decimal places 

given. This technique raises an important question about the level of sophistication 

of Japanese mathematics at this period. It is a good thing, of course, to realize 

that the ratio of the circumference of a circle to its diameter is the same for all 

circles. It is a further advance to speculate on the value of this number and its 

relation to other numbers, both for theoretical and computational purposes. The 

value 7T = y/10, for example, was used in China, India, and Japan at various 

times. In the problem we are now discussing, Isomura Kittoku has exhibited 

another constant, the ratio of the volume of a sphere to the cube on its diameter. 

He knows that this ratio is the same for all spheres, and is approximately 0.5326. 

The question that naturally comes to mind is: Did Isomura Kittoku know that this 

second constant is 7r/6? Perhaps not when the Ketsugi-sho was first published, 

since at that time he believed n = y/lQ = 3.162. But only 3 years later (1663) 

another mathematician, Muramatsu Mosei, published a work called the Sanso 

based on the Chinese Introduction to Mathematical Studies (Suanxue, apparently 

the source of the word Sanso), in which he used the approximation technique 

of repeatedly doubling the number of sides of a polygon inscribed in a circle of 

unit diameter to estimate the circumference. Starting with a square and finishing 

with a polygon of 31,768 sides, he found the perimeter of this polygon to be 

3.141592648777698869248. If this number is taken as the circumference of the 

circle, it is correct to eight places (tt = 3.14159265...). Once this value is 

known, it would be a natural conjecture that the constant for the sphere (0.5236) 

is g. In other words, the two constants are very simply related to each other. This 

technique of obtaining extraordinary precision and using it to perform numerical 
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Figure 11.1: Isomura Kittoku’s computation of the volume of a sphere (oriented 

sideways). Stock Montage, Inc. 

experiments which provide the basis for general assertions appears elsewhere in 

Japanese mathematics, in particular in the summation of infinite series. 

That Isomura Kittoku did indeed know the relation between these two constants 

can be inferred from his work on the surface area of the sphere. He had stated 

incorrectly in the original (1660) edition of the Ketsugi-sho that the surface area 

of a sphere is one-fourth the square of the circumference. He had cited several 

previous authorities for this statement. In our terms, he would be saying that 

A = tr2r2, which is about 9.9r2, although of course he would have believed it 

to be 10r2, since he believed n = \/T0. By the time of the second edition in 

1684 he had realized that this value of 7r is wrong, probably because of the work 

of Muramatsu Mosei. This time he used a spherical shell method, taking two 

concentric spheres with diameters 10 and 10.002. By his formula, their volumes 

would be 523.6 and 523.9142 .... The difference between the volumes should be 
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approximately 0.001 times the area of the sphere of diameter 10, since the distance 

between the concentric spheres is 0.001. Thus a sphere of diameter 10 should have 

a surface area approximately 314.2... « 1007T. From this numerical experiment, 

Isomura Kittoku concluded correctly that a sphere of diameter 10 should have an 

area of 1007T, and in general the surface area of a sphere is 7r times the square of 

its diameter. 

11.2.4 Japanese Algebra 

Another impetus to the development of mathematics in Japan came with the arrival 

of the Chinese “method of the celestial element” (tian yuan shu), which spread to 

Korea as ch ’onwonsul and thence to Japan as tengen jutsu. This form of algebra, 

adapted for work on a counting board, was expounded in the Introduction to 

Mathematical Studies by Zhu Shijie and the Sea Mirror of Circle Measurements 

by Li Zhi, both of which were standard textbooks in Korea during the fourteenth 

century. The first of these became part of the standard Japanese curriculum before 

the seventeenth century. 

When Japanese mathematicians began to develop this subject in the seventeenth 

century, they made some advances on what they had learned from the Chinese. In 

1666 Sato Seiko wrote a treatise called the Kongenki in which he recognized the 

possibility of more than one solution to an equation. His contemporary Sawaguchi 

Kazuyuki asserted that when the equation of a problem has more than one solution, 

there is something wrong with the data that lead to the problem. For example, 

Sato Seiko had posed the following problem: There is a circle from within which 

a square is cut, the remaining portion having an area of 47.6255. If the diameter 

of the circle is 7 more than the square root of a side of the square, it is required 

to find the diameter of the circle and the side of the square. If the diameter of 

the circle is d and the side of the square is s, we would write this problem as the 

equations 

47.6255, 

7 + y/s, 

which has the natural solutions d = 9, s = 4 (when n is taken as 3.142), but also 

the “unnatural” solutions d = 7.8242133..., s = 0.67932764... . Sawaguchi 

Kazuyuki removed the difficulty by making the area 12.278 instead of 46.6255 

and the difference between the diameter of the circle and the side of the square 4 

instead of 7. Then the only positive solutions are d = 6 and s = 4. Of course, 

this way of dealing with the ambiguity of multiple roots is really only a way of 

avoiding the problem. 

11.2.5 Seki Kowa 

One figure in seventeenth-century Japanese mathematics stands out far above all 

others, a genius who is frequently compared with Archimedes, Newton, and Gauss. 
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His name was Seki Kowa, and he was bom around the year 1642, the same year 

in which Isaac Newton was bom in England. The stories told of him bear a great 

resemblance to similar stories told about other mathematical geniuses. For example, 

one of his biographers says that at the age of five Seki Kowa pointed out errors in 

a computation that was being discussed by his elders. A very similar story is told 

about Gauss. Being the child of a samurai father and adopted by a noble family, 

Seki Kowa had access to books. He was mostly self-educated in mathematics, 

having paid little attention to those who tried to instruct him; in this respect he 

resembles Newton. Like Newton, he served as an advisor on high finance to 

the government, becoming examiner of accounts to the lord of Koshu. Unlike 

Newton, however, he was a popular teacher and physically vigorous. He became a 

shogunate samurai and master of ceremonies in the household of the Shogun. He 

died at the age of 66, leaving no direct heirs. His tomb in the Buddhist cemetery 

in Tokyo was rebuilt 80 years after his death by mathematicians of his school. His 

pedagogical activity earned him the title of Sansei, or Arithmetical Sage, a title 

that was carved on his tomb. Although he published very little during his lifetime, 

his work became known through his teaching activity, and he is said to have left 

copious notebooks. 

Seki Kowa made profound contributions to several areas of mathematics. He 

was primarily an algebraist who converted the celestial element method into two 

more sophisticated and subtle methods of handling equations, known as the method 

of explanation and the method of clarifying things of obscure origin. He kept this 

latter method a secret. According to some scholars, his pupil Takebe Kenko (1664- 

1739) refused to divulge the secret, saying, “I fear that one whose knowledge is 

so limited as mine would tend to misrepresent its significance.” However, other 

scholars claim that Takebe Kenko did write an exposition of the latter method, and 

that it amounts to the principles of cancellation and transposition (see below). 

Seki Kowa took up the challenge that Sawaguchi Kazuyuki had avoided and 

considered equations with more than one root, even negative roots. He classified 

equations as perfect (having precisely one real root), varied (more than one root, but 

all roots of the same sign), mixed (both positive and negative roots), and rootless. 

He was aware that only an equation of even degree can be rootless. He also wrote 

a treatise on the calendar (a commentary on an earlier treatise), in which he used 

black and red symbols to distinguish positive and negative numbers. 

Algebra 

There can be no doubt about Seki Kowa’s prowess in solving algebraic prob¬ 

lems. Consider, for example, his solution of the fourteenth problem of Sawaguchi 

Kazuyuki: There is a quadrilateral whose sides and diagonals are u, v, w, x, y, 
and z [as shown in Fig. 11.2]. 

It is given that 

271 

217 

60.8 
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y3 -w3 = 326.2 

w3 — x3 = 61. 

Required, to find the values of u, v, w, x, y, z. 

Seki Kowa does not tell the reader any details of the solution. He gives only 

a bare outline: 

Take the “celestial element” for z, from which the expressions of 

the cubes of u, v, w, x, and y may be derived. 

Then eliminate x3, leading to an equation of the 18th degree. 

Next eliminate w3, leading to an equation of the 54th degree. 

Next eliminate y3, leading to an equation of the 162nd degree. 

Next eliminate v3, leading to an equation of the 486th degree. 

Now by eliminating u3 two equal expressions result from which 

the final equation of the 1458th degree is obtained. 

The fact that the six quantities are the sides and diagonals of a quadrilateral 

provides one equation that they must satisfy, namely: 

(uw)2[(u2 + w2) - (v2 + x2) - (y2 + z2)} + (vx)2[-(u2 + w2) + 

+ (v2 + x2) - {y2 + z2)} + (yz)2[-(u2 + w2) - (y2 + x2) + 

+ (y2 + z2)\ + uvy + vwz + wxy + vxz = 0. 

This equation, together with the five given conditions, provides a complete set 

of equations for the six quantities, and this system of equations can be solved, 

as Seki Kowa showed. Such equations were solved numerically by the Chinese 

using Yang Hui’s method, the calculations being performed on a counting board. 

Historians of Japanese mathematics report that for equations of such prodigiously 

high degree a counting board the size of an entire room was ruled into small 

squares. As remarked by the twentieth-century Japanese historian Yoshio Mikami, 

“Perseverance and hard study were a part of the spirit that characterized Japanese 

mathematics of the old times,” Nevertheless one cannot help thinking that such 

problems must have been a powerful stimulus to the invention of a compact nota¬ 

tion for equations, and Seki Kowa made a contribution in this direction with his 

methods. 

Seki Kowa always appealed to reason and logic and explained his solutions. 

His influence might have led to the development of algebra as a deductive system 

comparable to Euclid’s geometry. However, deductive systems do not seem to have 

had much appeal for the practitioners of wasan. The historian of mathematics T. 

Murata reports that, having seen Chinese translations of Euclid, they were repelled 

by the great amount of fuss required to derive elementary facts. 

As mentioned above, one of Seki Kowa’s contributions to algebra was called 

by him the method of clarifying things of obscure origin (the Japanese phrase 

is also translated as method for revealing the true and buried origin of things). 

This method is simply the principles of transposition used in algebra for solving 

equations. Seki Kowa himself kept the method secret during his lifetime, but it 
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Figure 11.2: Sawaguchi Kazuyuki’s quadrilateral problem. 

was written about by his pupil Takebe Kenko, who called the method tenzan, a 

combination of two Chinese symbols ten (restore) and zan (strike off). These oper¬ 

ations are familiar to us as transposition and cancellation. This method represents 

a shift in focus from the use of counting boards and counting rods for representing 

the equation to a purely graphical representation. Accompanying this shift was a 

great improvement in notation. Seki Kowa wrote fractions more or less as we do, 

except that he would write a\b where we write b/a. For expressions such as a4b7 

he would write , meaning that a is to be multiplied by itself three times and b 

is to be multiplied by itself six times. (Of course, he didn’t use the letters a and 

6.) 

Determinants 

Seki Kowa alone is given the credit for inventing one of the central ideas of 

modem mathematics, namely determinants. This concept is usually introduced 

in connection with linear equations, but Seki Kowa developed it in relation to 

equations of higher degree as well. The method is explained as follows. Suppose 

we are trying to solve two simultaneous quadratic equations 

ax2 + bx -f c = 0 

ax2 + b'x + c = 0. 

When we eliminate x2, we find the linear equation 

(a'b — ab')x + (a'c — ad) = 0. 

Similarly, if we eliminate the constant term and divide by x, we find 

{ad — a'c)x + {be — b'c) = 0. 

Thus from two quadratic equations we have derived two linear equations. Seki 

Kowa called this process folding. The same method makes it possible to replace 

n equations of degree n by n equations of degree n — 1. 
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We have written out explicit expressions for the simple 2x2 determinants here, 

for example, 
a c 

= ac — a c 
a c 

but, as everyone knows, the full expanded expressions for determinants are very 

cumbersome even for the 3 x 3 case. It is therefore important to know ways 

of simplifying such determinants, using the structural properties we now call the 

multilinear property and the alternating property. Seki Kowa knew explicitly how 

to make use of the multilinear property to take out a common factor from a given 

row. He not only formulated the concept of a determinant but also knew many of 

their properties, including how to determine which terms are positive and which 

are negative in the expansion of a determinant. 

11.2.6 Beginnings of the Calculus in Japan 

The traditional Japanese mathematicians considered many problems of area and 

volume and developed techniques for solving them that look very much like the 

approximating sums for integrals. They were thus well on the way to discovering 

the integral calculus. The calculus was invented and highly developed in Europe by 

the end of the seventeenth century; however, none of this knowledge had reached 

Japan, and the work of the Japanese mathematicians is undoubtedly original and 

independent of European work. 

The essence of the calculus is the use of infinitesimals or limits. Now passage 

to a limit can sometimes be performed by summing an infinite series. This step was 

taken by Seki Kowa’s pupil Takebe Kenko, who wrote that Seki Kowa disliked 

complicated theories, but that he himself succeeded in finding the quadrature of the 

circle. Takebe Kenko’s method was an ingenious discovery of the relation between 

the square of half of an arc a2/4, the height h of the arc, and the diameter d of 

the circle. He began with height h = 0.000001 and d = 10, finding the square of 

the arc geometrically with accuracy to 53 decimal places. Approximating the half¬ 

arc by its chord and applying the Pythagorean theorem gives the approximation 

hd for a2/4. Having 53 decimal places at his disposal to correct this value, he 

noticed that the correction that had to be added to obtain the more accurate result 

was approximately \h2. Taking this as a first crude correction and successively 

refining the result, he observed that each successive corrective term was obtained 

by multiplying its predecessor by (h/d)f(Vd)ii, (frAOfi*-*- • At 
this point he was able to guess the general law, which we would express by saying 

that corrective term number n is obtained by multiplying corrective term number 

n — 1 by (h/d)[2n2/(n + l)(2n + 1)]. Putting these corrections together as an 

infinite series leads to the expression 

In our terms a — 2darcsin (^/h/d). Notice what a lucky example this turned 

out to be: The quantity a cannot be expressed as a power series in h and d, but 
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a2 can be so expressed. In using this numerical approach, Takebe Kenko was 

expressing a faith (which turned out to be justified) that the coefficients of the 

power series are rational numbers that satisfy a fairly simple recursive formula. 

This series solves the problem of rectification of the circle, and hence all 

problems that depend on knowing the value of n. Takebe Kenko obtained this 

result about 15 years before the series for the arcsine was obtained by Leonhard 

Euler. 

If the techniques just used were the basis of all reasoning on infinite series, 

it does not seem likely that any great generality could be obtained. There is 

evidence, however, for another form of passage to the limit that resembles modem 

methods. In an eighteenth-century manuscript of unknown authorship called the 

Rolls of Heaven and Earth (attributed to Seki Kowa by one Japanese historian 

of mathematics, though this claim is disputed by others), one finds a method of 

computing the volume of a spherical segment by slicing it into a general number 

of thin sections, then taking the limit as the number of sections tends to infinity. 

This technique involves knowing that the sum of the first n integers is n{n + l)/2 

and that the sum of their squares is n(n + l)(2n + l)/6. Since this fact was 

known more than a thousand years earlier in India, it was very likely known to 

the Japanese algebraists. The limiting process is not general, but uses only the 

fact that a quotient of polynomials p(x)/q(x), where q is of higher degree than p, 

must tend to zero as x tends to infinity. Thus we do find the essential concept of 

calculus (passage to a limit) in wasan. 

11.2.7 Western Contacts 

Because Japanese mathematics developed rather late, its greatest flowering being 

in the seventeenth century, the question of contact between the West and Japan and 

the sharing of ideas has been considered by historians. Determinants, for example, 

began to come into focus in Europe at exactly the same time that Seki Kowa was 

studying them. They were introduced in a letter written by Leibniz in 1693. 

The policy of the Ming emperors in China was isolationist. In the seventeenth 

century the shoguns adopted an even stricter policy, one which could be more 

easily enforced in a small island kingdom such as Japan. The attempt to emigrate 

from Japan was considered treason, punishable by death. Christian missionaries 

were banned, and the practice of Christianity made illegal. European access to 

Japan was strictly controlled; only the Dutch were allowed to come for trade, and 

only at Nagasaki. As in China, these bans were not lifted until the nineteenth 

century, as the result of the threat of military action by Western powers. In such 

an atmosphere the exchange of ideas was very difficult, and it is not surprising 

that the Japanese and Europeans duplicated each other’s work to some extent. No 

absolutely watertight ban on contact has ever been successful, however, and it is 

known that at least two Japanese students were studying in Leyden during the 

1650s and 1660s. Their complete biography, however, is missing, and it is not 

known whether they returned to Japan. 

There seems to have been a mutual complacency in the West and Japan that 
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hindered scholarly contact. On the Japanese side this complacency was accom¬ 

panied by a fear of social disruption from an invasion of foreign ideas, and the 

isolation was enforced by rigid government decrees, while in Europe from the sev¬ 

enteenth century on the level of intellectual activity was so high that Europeans 

felt no need to look outside their own borders for ideas. A book calling itself a 

history of the subject of determinants (it is actually better described as a catalog 

of papers on the subject, with commentaries), was written by the South African 

mathematician Thomas Muir (1844-1934) in 1905. Although this book consists 

of four volumes totaling some 2000 pages, it does not mention Seki Kowa, the 

true discoverer of determinants! 

Commercial contact was bound to result in some cultural penetration, however 

limited, and Western mathematical advances came to be known little by little in 

Japan. By the time Japan was opened to the West in 1854 Japanese mathematicians 

were already aware of many European topics of investigation. In joining the 

community of nations for trade and politics Japan also joined it intellectually. 

In the early nineteenth century Japanese mathematicians were writing about such 

questions as the rectification of the ellipse, a subject of interest in Europe at the 

same period. By the end of the nineteenth century there were several Japanese 

mathematical journals publishing work (in European languages) comparable to 

what was being done in Europe at the same period, and a few European scholars 

were already reading these journals to see what advances were being made by 

the Japanese. In the twentieth century, this trickle of Japanese work into Europe 

became a flood, and Japanese mathematicians have been represented among the 

leaders in nearly every field of mathematics. 

11.3 Problems and Questions 

11.3.1 Problems in Japanese Mathematics 

Exercise 11.1 Solve the Japanese Josephus problem, assuming that the children 

wear labels 1,..., 30 to begin with. What label will be on the last child left? 

Is there a method or formula by which this answer could be arrived at without 

performing the experiment? 

Exercise 11.2 One Japanese problem is the following: There is a right triangle 

whose hypotenuse is 6, and the sum of whose area and the square root of one 

side is 7.2384. Required the other two sides. (Problem No. 64 of the Kongenki). 

Letting x be the side whose square root is mentioned, derive the equation 

(x4 - 36x2 + 4x + 209.57773824)2 = 3353.24381184.x, 

then analyze the solution offered by Sawaguchi Kazuyuki. Let the unknown be the 

first side. Square it and subtract the result from the square of the hypotenuse. The 

difference is the square of the second side. Multiply it by the square of the first 

side, to obtain four times the square of the area. Denote this quantity by A. Let D 

equal four times the first side. Square the sum of the area and the square root of 
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the first side, multiply by four, and subtract A and B from the result. The square 

of the difference is four times AB. Denote this number by X, thus obtaining an 

equation of degree 8, which can be solved to yield the unknown. 

The two sides are then given as 5.76 and 1.68. Verify that x = 5.76 is indeed 

a solution. [Note also that (5.76)2 + (1.68)2 = 36, as required.] 

Exercise 11.3 Among the problems stated by Isomura Kittoku was the following 

(Problem 41): There is a log 18 feet long, the diameter of the extremities being 1 

foot and 2.6 feet respectively. This is wound spirally with a string 75 feet long, 

the coils being 2.5 feet apart. How many times does the string go around it? 

How does this problem relate to the simpler Chinese problem of a vine winding 

around a tree (Exercise 10.5) from the previous chapter? Can it be solved by an 

analogous technique? What is the answer to this problem? 

Exercise 11.4 Problem 85 of Isomura Kittoku is to find the length of one axis of 

an ellipsoid of revolution if the other axis is 1.8 feet long and the volume is 2.422. 

Does it make a difference whether the given axis is the axis of revolution? What 

is the solution? 

Exercise 11.5 The first problem posed by Sawaguchi Kazuyuki is as follows. In a 

large circle three smaller circles are inscribed, so that each is tangent to the other 

two and to the larger circle. Two of the inscribed circles are the same size and the 

third has a diameter 5 units larger than them. The area inside the largest circle 

and outside the three smaller ones is 120 square units. What are the diameters 

of the various circles? Let the unknowns be the diameter d. of the smallest two 

circles and the diameter D of the outside circle. Show that these quantities must 
satisfy the equations 

(8 d2 + 20 d + 50 )D = 4 d3 + 40 d2 + (Jf- + 125) d + (250 + — ); 

D2 = Ad2 + 10d + 25 4- — 
7T 

(This problem was solved by Seki Kowa, who found an equation of degree 6 for 
d.) 

11.3.2 Questions about Japanese Mathematics 

Exercise 11.6 How is it possible that many Japanese authorities believed the area 

of the sphere to be one-fourth the square of the circumference, that is, ir2r2 rather 

than the true value 47rr2? Smith and Mikami assert in A History of Japanese 

Mathematics (Open Court Publishing Co., Chicago, 1914) that the error arose as 

follows: one can imagine a globe sliced along equally spaced lines of longitude 

and flattened out, so as to form very many thin “wedges” with curved sides tangent 

to one another and height irr, approximately. The equator (of length 27rr) runs 

directly through the middle of all these wedges. If these wedges are cut in half 

along the equator, the two parts can be fitted together like sawteeth, to form 
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approximately a rectangle of sides 2nr and \nr. Why doesn’t this argument give 

the correct result? Is there any way of seeing that it doesn’t work without the use 

of rigorous mathematics? 

Exercise 11.7 If a circle is sliced into sectors and the sectors are spread out by 

laying the circumference down along a straight line, the result is a large number 

of thin triangles of height approximately r and total base 2nr. Therefore the area 

of the circle is nr2. Why does this argument give the correct result when the 

analogous argument for the sphere (given in the previous problem) does not? Can 

we expect to find the lengths of arbitrary curves by inscribing broken lines in 

them? Can we expect to find the areas of arbitrary surfaces by inscribing triangles 

in them? Is this a part of mathematics where logical rigor is essential to avoid 

mistakes? 

Exercise 11.8 Would a problem such as Exercise 11.2 have been considered a 

sensible problem to the Greeks? What meaning can be attached to the square 

root of a side of a square? Do these considerations suggest that the Japanese 

problems were purely arithmetical in nature, not related to the solution of real- 

world problems? How do you think the Japanese mathematicians would have 

reacted if they had read Pappus’ statement that a product of more than three lines 

is impossible? 

Exercise 11.9 Problem 84 of Isomura Kittoku is to find the length of the minor 

axis of an ellipse whose area is 758.940625 and whose major axis is 38. What 

must have been known about ellipses in order for such a problem to be formulated? 

How could it have been solved in the methodology of wasan, that is, using the 

approximative techniques discussed above? 

Exercise 11.10 Many of the algebra problems considered by the Japanese mathe¬ 

maticians require that more than one unknown be found. Yet the celestial element 

method makes no provision for more than one unknown. Read again the solutions 

given by the Japanese mathematicians to see how they handled such problems, 

How do their methods compare with those of Diophantus? 

Exercise 11.11 Why is Seki Kowa the central figure in Japanese mathematics? 

Are comparisons between him and his contemporary Isaac Newton justified? 

Exercise 11.12 What is the justification for the statement by the historian of math¬ 

ematics T. Murata that Japanese mathematics was not a science but an art? 

Exercise 11.13 Why might Seki Kowa and other Japanese mathematicians have 

wanted to keep their methods secret, and why did their students, such as Takebe 

Kenko, honor this secrecy? 

Exercise 11.14 For what purpose was algebra developed in China and Japan? 

Was it needed for science and/or government, or was it an “impractical” liberal- 

arts subject, on a par with the Confucian classics? 
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11.4 Endnotes 

1. The information on Korean mathematics is based on a series of articles by 

Kim Yong-Woon that appeared in Korea Journal, 18 (7-9), (1973), pp. lb- 

39, and on the article “Pan-paradigm and Korean Mathematics in the Choson 

Dynasty,” which appeared in Korea Journal in March 1986, pp. 25—46. 

2. The section on Japanese mathematics is based on the book by Yoshio Mi- 

kami, Mathematics in China and Japan, the original 1913 edition of which 

was reprinted by Chelsea Publishing Co. (New York, 1961), and the book by 

David Eugene Smith and Yoshio Mikami, A History of Japanese Mathemat¬ 

ics (Open Court Publishing Co., Chicago, 1914). Japanese names are given 

surname first, following these books. A recent article entitled “Indigenous 

Japanese Mathematics, Wasan,” by Tamotsu Murata, gives the surname last, 

and also gives variant versions of some of the names and dates. Murata’s 

article can be found in the Companion Encyclopedia of the History and 

Philosophy of Mathematical Science, Vol. I (Routledge, London and New 

York, 1994), pp. 104-110. 

3. The note on the Josephus problem is based on the book by W. Ahrens, 

Mathematische Unterhaltungen und Spiele (Teubner, Leipzig, 1901), pp. 

286-287, and on Josephus: The Jewish War, Gaalya Cornfield, general 

editor, Benjamin Mazar and Paul L. Maier, consulting editors (Zondervan 

Publishing House, Grand Rapids, MI, 1982), pp. 238-241. 

4. Seki Kowa’s solution of the equation of degree 1458 is quoted from the 

book by Smith and Mikami (op. cit.), pp. 100-101. 



Chapter 12 

Islamic Mathematics 

12.1 The Expansion of Islam 

During the period from 700 to 1300 C. E. the most important advances in science 

and mathematics in the West came in the lands under Muslim rule. Starting as a 

small and persecuted sect in the early seventh century, by mid-century the Muslims 

had expanded by conquest as far as Persia. They then turned West and conquered 

Egypt, all of the Mediterranean coast of Africa, and the island of Sicily. Moorish 

influence on Spanish architecture is evident in the Alhambra (Fig. 12.1). 

12.1.1 The Umayyads 

A palace revolution among the Islamic leaders led to the triumph of the first dy¬ 

nasty, the Umayyad (sometimes spelled Ommiad) in the year 660. Under the 

Umayyads Muslim expansion continued around the Mediterranean coast and east¬ 

ward as far as India. This expansion was checked by the Byzantine Empire at 

the Battle of Constantinople in 717. In the West a Muslim general named Tarik 

led an army into Spain, giving his name to the mountain at the southern tip of 

Spain—Jabal Tarik, known in English as Gibraltar. The Muslim expansion in the 

West was halted by the Franks under Charles Martel at the Battle of Tours in 732. 

In 750 another revolution resulted in the overthrow of the Umayyad Dynasty and 

its replacement in the East by the Abbasid Dynasty. The Umayyads remained in 

power in Spain, however, a region known during this time as the Caliphate of 

Cordoba. 

12.1.2 The Abbasids 

Al-Mansur, the second of the Abbasid caliphs, built the capital of the new dynasty, 

the city of Baghdad, on the Tigris River. Both the Abbasids and the Umayyads 

cultivated science and the arts, and mathematics made advances in both the Eastern 

and Western parts of the Islamic world. The story of Islamic mathematics begins 

261 
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in the city of Baghdad in the reign of two caliphs. The first of these was Harun 

Al-Raschid (786-809), a contemporary of Charlemagne. The second is the son of 

Harun Al-Raschid, Al-Mamun (813-833), whose court life provided the setting of 

the Thousand and One Nights. 

12.1.3 The Turkish and Mongol Conquests 

Near the end of the tenth century a group of Turkish nomads called Seljuks migrated 

from Asia into the Abbasid territory and converted to Islam. Gradually the Seljuks 

began to seize territory from the Abbasids, and in 1055 they took over Baghdad. 

It was their advance into Palestine that provoked the first Crusade in 1096. The 

Seljuks left the Abbasids as the nominal rulers of the empire, but in the thirteenth 

century both Abbasids and Seljuks were conquered by the same Mongols who 

had overrun Russia and China. The Mongol conquest of Iraq was particularly 

devastating, since it resulted in the destruction of the irrigation system that had 

supported the economy of the area for thousands of years. As in China, the 

Mongol rule was short-lived and was succeeded by another conquest, this time by 

the Ottoman Turks, who conquered Constantinople in 1453 and remained a threat 

to Europe until the nineteenth century. 

12.1.4 Islamic Mathematics 

The Islamic empire was unchallenged for 300 years in the East and six hundred 

in Spain. During this period Islamic mathematicians assimilated the science and 

mathematics of their predecessors and made their own unique additions and mod¬ 

ifications to what they inherited. For many centuries they were the people who 

had the most extensive texts of the works of Archimedes, Apollonius, and Euclid 

and strove to advance beyond the point reached by these illustrious Greek math¬ 

ematicians. The Greek mathematicians, however, were not the only influence on 

them. From earliest times the Caliph was in diplomatic contact with India, and 

one of Harun Al-Raschid’s contributions was to obtain translations from Sanskrit 

into Arabic of the works of Aryabhata, Brahmagupta, and others. Some of the 

translators took the occasion to write their own mathematical works, and so began 

the Islamic contribution to mathematics. Besides the Arabic translations of many 

Greek works of which the originals have been lost, the modem world has inherited 

a considerable amount of scientific and mathematical literature in Arabic. This 

language has given us many words relating to science, such as alcohol, alchemy, 

zenith, and the mysterious names of the stars such as Altair, Aldebaran, Algol, and 

Betelgeuse. 

12.2 Al-Khwarizmi 

In the ninth century the caliph Al-Mamun established at Baghdad a “House of 

Wisdom,” a research institute to which scholars were invited. There were Hindu 
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Figure 12.1: The Alhambra. Like the Parthenon, the Taj Mahal, and the Roman 

aqueducts, this building uses principles of geometry to determine a shape that 

is both strong and beautiful. In addition, its walls are decorated with abstract 

geometric patterns that incorporate symmetries of plane figures. The Bettmann 

Archive. 
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scholars at this institute in the early days, so that some aspects of Hindu alge¬ 

bra must have been known from the very beginning. In particular the notion of 

zero came with these scholars. The Sanskrit word sunya (empty) was translated 

into Arabic as sifr. This word came into Latin as zephyrum and ultimately into 

English as the words zero and cipher. Among the early scholars was a mathemati¬ 

cian and astronomer from the territory now known as Uzbekistan. His name was 

Muhammad ibn Musa Al-Khwarizmi (Muhammed, son of Moses, from Khorezm, 

780-850). He wrote several works, not all of which have survived. Among the 

works attributed to him with high probability is an Art of Hindu Reckoning, which 

was so influential in its Latin translation that the Hindu numerals came to be 

known in Europe as Arabic numerals. The Arabic original of this work no longer 

exists, and it is not known who translated it into Latin. The Latin manuscript was 

published in 1857 by an Italian nobleman who discovered it in the library of Cam¬ 

bridge University. The reason for attributing the original to Al-Khwarizmi is that 

the Latin text begins, “Al-Khwarizmi has said... ” (Dixit algoritmi...). In this 

way a mathematician of 1200 years ago has given his name to one of the central 

concepts of modem mathematics and computer science. It was through the works 

of Al-Khwarizmi that the techniques of arithmetic came to be known in Europe as 

algorism; and the name has remained, in the modem form of algorithm to denote 

any systematic procedure for solving a problem in a finite number of steps. 

12.2.1 Algebra 

Although Al-Khwarizmi’s treatise on arithmetic did not survive in the original 

Arabic, his Algebra did, and gave us a second word of central importance in 

science. This work, which is the main source of the fame of Al-Khwarizmi, bears 

the Arabic title: Kitab fi al-jabr wa’l-muqabala. This title contains the origin 

of the word algebra. The words refer to restoring or reuniting (one meaning of 

muqabala is a meeting place).1 The title refers to the processes performed on 

algebraic expressions in order to solve an equation, that is, keeping the equation 

in balance by performing the same operation on both sides, or more specifically, 

gathering all like terms on the same side of the equation. The word jabr originally 

referred to adding the same positive quantity to both sides of an equation so as to 

remove negative terms, while muqabala meant canceling like terms from the two 

sides of the equation. 

In his preface Al-Khwarizmi describes his book: 

... a short work on Calculating by the rules of completion and reduc¬ 

tion, confining it to what is easiest and most useful in arithmetic, such 

as men constantly require in cases of inheritance, legacies, partition, 

law-suits, and trade, and in all their dealings with one another, or where 

the measuring of lands, the digging of canals, geometric computation, 

and other objects of various sorts and kinds are concerned... . 

Recall the discussion of the Japanese tenzan in the previous chapter. 
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As this preface indicates, the work is intended to be “practical mathematics” 

in the sense of many modem books bearing that title. The subject matter is not 

confined to algebra, although the technique of setting up and solving an equation is 

a common thread throughout the book. Because of the Hindu connection mentioned 

above, there is no doubt that the basic ideas of algebra came to the Muslims 

from India. As we saw in Chapter 9, the Vijaganita (source computation) of 

Brahmagupta contained all the necessary elements: symbols (color names) for 

the unknown and rules for manipulating expressions involving unknowns. The 

development of these ideas by Brahmagupta, however, was rudimentary, covering 

only the case of a few quadratic equations and some linear systems of equations 

in more than one unknown. 

In this earliest Muslim algebra, the extent of the subject was even more limited, 

however, an indication that the writers were themselves still striving to understand 

the work of the earlier Hindu scholars. For example, Al-Khwarizmi does not use 

negative numbers as data in his equations, although he recognizes the rules for 

operating with negative numbers, and at one point refers to negative roots. This 

absence prevented the theory of equations from becoming as unified as it might 

have been. It is, however, real algebra, since the central concept is an unknown 

appearing in one or more formal expressions representing data, from which the 

unknown number is to be determined. Certainly Al-Khwarizmi is much closer to 

our way of thinking than Diophantus was. (Recall that the Diophantine “equations” 

were not always thought of as equations; Diophantus asked such questions as how 

a number could be divided into the sum of two squares.) The notation used by 

Al-Khwarizmi, however, is entirely rhetorical, with no symbolism of any kind. He 

always uses a geometric figure to illustrate his solution of an equation. Consider, 

for example, his solution of the following problem: 

A square and 10 roots equal 39 dirhems. [A dirhem was a monetary 

unit.] 

Al-Khwarizmi’s solution of this problem is to draw a square of unspecified size 

(the side of the square is the desired unknown) to represent the square (Fig. 12.2). 

To add 10 roots, he then attaches to each side a rectangle of length equal to the 

side of the square and width 2.5 (since 4 times 2.5 equals 10). The resulting 

cross-shaped figure has, by the condition of the problem, area equal to 39. Now 

to fill in the four comers of the figure (literally “completing the square”), he adds 

4 squares, each 2.5 on a side, having total area 4 x (2.5)2 or 4 x 6.25, that is, 

25. Since 39 + 25 = 64, the completed square has side 8. Since this square was 

obtained by adding rectangles of side 2.5 to the original square, it follows that the 

original square had side 3. 

Because negative numbers were not considered as data for a problem, it was 

necessary for Al-Khwarizmi to consider separately various classes of quadratic 

equations: square plus root equals number, square plus number equals root, square 

equals root plus number, etc. Each type called for its own technique, illustrated 

with rectangles and squares, as in Fig. 12.2. Al-Khwarizmi did not develop the 

theory of cubic equations. Roughly the first third of the book is devoted to various 

examples of pure mathematical problems leading to quadratic equations, causing 
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Figure 12.2: Al-Khwarizmi’s solution of “square plus 10 roots equals 39.” 

the reader to be somewhat skeptical of his claim to be presenting the material 

needed in commerce and law. In fact, there are no genuine applications of quadratic 

equations in the book. 

12.2.2 Geometry 

As the problem discussed above indicates, this algebra is very geometric, and 

part of Al-Khwarizmi’s book is devoted to formulas for areas and volumes. Al- 

Khwarizmi’s indebtedness to the Hindus is shown in his use of the terms bow and 

arrow to refer to an arc of a circle and the perpendicular from the midpoint of the 

arc to its chord. Al-Khwarizmi gives three different ratios for the number n. 

In any circle the product of its diameter multiplied by 3^ will be 

equal to the periphery. This is the rule generally followed in practical 

life, though it is not quite exact. The geometricians have two other 

methods. One of them is, that you multiply the diameter by itself; then 

by 10, and hereafter take the root of the product; the root will be the 

periphery. The other method is used by the astronomers among them: 

it is this, that you multiply the diameter by 62,832, and then divide 

the product by 20,000; the quotient is the periphery. Both methods 

come very nearly to the same effect. 

Thus for the number 7r Al-Khwarizmi gives the Archimedean value the tradi¬ 

tional y/m, and Aryabhata’s 3.1416. 

Al-Khwarizmi gives formulas for the volume and area of many simple geomet¬ 

ric figures, all of which are correct from the modem point of view. 
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12.2.3 Applications 

Let us now consider how well Al-Khwarizmi lives up to his advertised purpose of 

providing the solution of practical problems. It may be worthwhile also to compare 

his algebra with the geometric algebra found in Euclid. The two are quite similar 

in that the problems solved are confined to linear and quadratic equations. That the 

motivation for them was different is shown by the fact that Al-Khwarizmi refers 

to the unknown as a root (jadhr in Arabic), while the Greeks had always called it 

a side (pleurd in Greek). The Greek name suggests that the unknown was thought 

of as the side of a square or cube. Latin works translated from Arabic always use 

the word radix (root) while those translated from Greek use the word latus (side). 

These considerations suggest that the motivation for Al-Khwarizmi’s algebra was 

in arithmetic rather than geometry, but the questions remain: How did algebra 

arise? What motivated the problems and techniques discussed by Al-Khwarizmi? 

Was there some practical or commercial problem requiring their use? 

When we read the Algebra in this light, we notice a peculiar fact—Quadratic 

equations never occur in the applications either in geometry or commerce. Actually 

there is no need to be surprised by this fact. In everyday life the average person 

today never needs to solve a quadratic equation, and things were not any different in 

earlier eras. Indeed, an inspection of any algebra text written in the last thousand 

years will not disclose a single practical application of quadratic equations in 

everyday life, although many books fraudulently claim such applications. 

But if quadratic equations have no practical applications (outside of technology, 

of course), what about linear equations? Here there definitely are practical appli¬ 

cations. A single linear equation, however, can be solved using only the standard 

four operations of addition, subtraction, multiplication, and division. The contribu¬ 

tion that algebra can make to such applications is marginal at best. Nevertheless, 

there are occasions when the analysis really calls for algebra, and Al-Khwarizmi 

found many such cases in problems of inheritance, which occupy more than half 

of his Algebra. We now give a sample. 

A man dies leaving two sons behind him, and bequeathing one-fifth 

of his property and one dirhem to a friend. He leaves 10 dirhems in 

property and one of the sons owes him 10 dirhems. How much does 

each legatee receive? 

Before studying Al-Khwarizmi’s solution, consider for a moment how this estate 

would be settled under modem law. The man’s estate would be considered to 

consist of 20 dirhems, the 10 dirhems cash on hand, and the 10 dirhems owed 

by one of the sons. The friend would be entitled to 5 dirhems (one-fifth plus one 

dirhem), and the indebted son would owe the estate 10 dirhems. His share of the 

estate would be one-half of the 15 dirhems left after the friend’s share is taken 

out, or dirhems. He would therefore have to pay 2\ dirhems to the estate, 

providing it with cash on hand equal to 12^ dirhems. His brother would receive 

dirhems. 

Now the notion of an estate as a legal entity that can owe and be owed money 

is a modem European one, alien to the world of Al-Khwarizmi. Apparently in 



268 CHAPTER 12. ISLAMIC MATHEMATICS 

Al-Khwarizmi’s time money could be owed only to a person. What principles 

are to be used for settling accounts in this case? Judging from the solution given 

by Al-Khwarizmi, the estate is to consist of the 10 dirhems cash on hand, plus a 

certain portion (not all) of the debt the second son owed to his deceased father. 

This “certain portion” is the unknown in a linear equation, and is the reason for 

invoking algebra in the solution. It is to be chosen so that when the estate is 

divided up, the indebted son neither receives any more money nor owes any to 

the other heirs. This condition leads to an equation that can be solved by algebra. 

Al-Khwarizmi explains the solution as follows (we put the legal principle that 

provides the equation in capital letters): 

Call the amount taken out of the debt thing. Add this to the property; 

the sum is 10 dirhems plus thing. Subtract one-fifth of this, since he 

has bequeathed one-fifth of his property to the friend. The remainder 

is 8 dirhems plus | of thing. Then subtract the 1 dirhem extra that 

is bequeathed to the friend. There remain 7 dirhems and | of thing. 

Divide this between the two sons. The portion of each of them is 

3 A dirhems plus ? of thing. THIS MUST BE EQUAL TO THING. 

Reduce it by subtracting | of thing from thing. Then you have | of 

thing equal to 3-^ dirhems. Form a complete thing by adding to this 

quantity | of itself. Now | of 3| dirhems is 2 ^ dirhems, so that 

thing is 51 dirhems. 

One of the more intriguing aspects of the Algebra is the mixture of practical 

legal considerations with mathematics. For example, Al-Khwarizmi considers the 

case of a man who marries while in his final illness and pays a marriage settlement 

of his entire property in the amount of 100 dirhems, 10 dirhems of which was his 

wife’s dowry. His plans are upset, however, as his wife dies first, leaving one-third 

of her property to a third party, after which the husband dies. There are then three 

sets of claimants to the 100 dirhems: (1) the third party, (2) the wife’s direct heirs 

(her family), and (3) the husband’s direct heirs (his children or parents). How is 

the estate to be divided up? 

The translator of Al-Khwarizmi’s work has suggested that the many arbitrary 

principles used in these problems were introduced by lawyers to protect the interests 

of next-of-kin against those of other legatees. 

12.3 Abu Kamil 

A commentary on Al-Khwarizmi’s Algebra was written by the mathematician Abu 

Kamil (ca. 850-930). His exposition of the subject contained none of the legacy 

problems found in Al-Khwarizmi’s treatise, but after giving the basic rules of 

algebra, it listed 69 problems of considerable intricacy to be solved. For example, 

a paraphrase of problem 10 is as follows: 

The number 50 is divided by a certain number. If the divisor is 

increased by 3, the quotient decreases by 3|. What is the divisor? 
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Abu Kamil is also noteworthy because many of his problems were copied by 

Leonardo of Pisa (Fibonacci) in his thirteenth-century treatise on algebra, one of 

the first works to introduce the mathematics of the Muslims into Europe. 

12.4 Thabit ibn Qurra 

About two generations later than Al-Khwarizmi another great commentator and 

mathematician worked in Baghdad translating Greek and Syriac treatises and taking 

the opportunity to carry out his own mathematical research. This mathematician, 

Thabit ibn Qurra (836-901), is the only source for three of the books of Apollonius’ 

Conics, and he also translated many works of Archimedes, Euclid, Ptolemy, and 

others. In the course of making these translations he generated a good deal of 

mathematics of his own, especially in number theory and geometry. 

12.4.1 Number Theory 

We have already mentioned the standard way of generating perfect numbers in 

Chapter 5, namely the Euclidean formula 2n~1(2n — 1), whenever 2n — 1 is a 

prime. Thabit ibn Qurra found a similar way of generating pairs of amicable 

numbers, that is, pairs of numbers such that each is the sum of the proper divisors 

of the other. His formula is 

2"(3 • 2n - 1)(3 • 2n_1 - 1) and 2"(9 • 22n_1 - 1), 

whenever 3 • 2n — 1, 3 • 2n_1 — 1, and 9 • 22”-1 - 1 are all prime. The case 

n = 2 gives the pair 220 and 284. No one knows just how many new cases can 

be generated from this formula, but there definitely are some. For example, when 

n = 4, we obtain the amicable pair 17, 296 = 16-23-47 and 18,416 = 16 • 1151. 

Indeed if we add up the divisors of 17,296, we find 

1 + 2 + 4 + 8 + 16 + 23 + 46 + 92 + 184 + 368 + 47 + 94 + 

+ 188 + 376 + 752 + 1081 + 2162 + 4324 + 8648 = 18,416, 

and if we add up the divisors of 18,416, we find 

1 + 2 + 4 + 8 + 16 + 1151 + 2302 + 4604 + 9208 = 17, 296. 

Unlike some other number-theory problems such as the Chinese remainder theorem, 

which arose in a genuinely practical context, the theory of amicable numbers is an 

offshoot of the theory of perfect numbers, which was already a completely “useless” 

topic from the beginning. It did not seem useless to the people who developed it, 

however. The tenth-century mystic Al-Majriti of Madrid recommended as a love 

potion writing the numbers on two sheets of paper and eating the number 284, 

while causing the beloved to eat the number 220. (He claimed to have verified the 

effectiveness of this charm by personal experience!) 
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Figure 12.3: Thabit ibn Qurra’s Pythagorean theorem. 

12.4.2 Geometry 

Thabit ibn Qurra also contributed a famous generalization of the Pythagorean 

theorem, different from the generalization by Pappus we discussed previously. The 

new theorem is easily derived from similar triangles. Consider a triangle ABC 

whose longest side is BC The idea is to copy angle B with A as vertex and AC 

as one side, extending the other side to meet BC in point C', then to copy angle 

C with A as vertex and BA as one side, extending the other side to meet BC 

in point B', so that angle AB'B and angle AC'C both equal angle A. It then 

follows that the triangles ABB' and ACC' are similar to the original triangle, and 

so AB2 = BC ■ BB7 and AC'2 = BC ■ CC1, hence 

AB2 + AC2 = + CC7). 

The case when angle A is acute is shown in Fig. 12.3. 

12.4.3 Other Work 

Thabit ibn-Qurra was a versatile scholar whose contributions to mathematics are 

difficult to summarize. They are known to us through remarks made by later 

authors, who credit him with an angle trisection that is basically the same as that of 

Pappus (using a hyperbola). He independently rediscovered some of Archimedes’ 
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quadratures and found the volume of the figure obtained by revolving a parabolic 

segment about its axis. He also wrote philosophical essays on the nature of number 

and geometry, trying, like the Jainas, to make sense of the infinite. He speculated 

on the seeming paradox that both the even and the odd numbers are infinite, and 

he claimed that the number of even numbers was only half of the number of all 

numbers. 

12.5 Omar Khayyam 

Nearly everyone has heard of the Rubaiyat of Omar Khayyam, and most people 

have at one time had occasion to memorize the opening lines of its translation by 

the English poet Edward Fitzgerald (“A Book of Verses underneath the Bough, 

A Jug of Wine, a Loaf of Bread and Thou,...”). This multitalented Persian of 

the eleventh century (1050-1123) was also a distinguished scientist. He wrote 

his scientific works in Arabic, which at the time was the language of science. 

Omar Khayyam’s Algebra gives a thorough classification of quadratic and cubic 

equations and shows how to solve them geometrically. 

The influence of Greek geometry on Omar Khayyam’s algebra is seen in his 

denial of the possibility of forming a fourth power (Diophantus’ dynamis dynamis). 

To Omar Khayyam, the unknown had to be represented by a line segment, the 

product by a rectangle, etc., in the strict Euclidean tradition. He made the following 

assertion: 

I say what is called square square by algebraists in continuous mag¬ 

nitude is a theoretical fact. It does not exist in reality in any way. 

12.5.1 The Cubic Equation 

Omar Khayyam did not have modern algebraic symbolism. He lived within the 

confines of the universe constructed by the Greeks. His classification of equations, 

like Al-Khwarizmi’s, is conditioned by the use of only positive numbers as data. 

For that reason his classification is even more complicated than Al-Khwarizmi’s, 

since Omar Khayyam considers cubic equations as well as quadratics. Neverthe¬ 

less, even though he illustrates his solutions with geometry, it is clear that the 

object of study is the equation, which it was not in Euclid. 

Omar Khayyam shows how to handle many varieties of cubic equations. We 

shall illustrate these techniques with one particular example, his solution of a cubic 

equation by use of the rectangular hyperbola. The particular form considered is 

cubes plus squares plus roots equal number, or, as we would phrase it, .t3 -f 

ax2 + bx = c. In keeping with his geometric interpretation of magnitudes as line 

segments, Omar Khayyam had to regard the coefficient b as a square, so that we 

shall write b2 rather than b. Similarly he regarded the constant term as a solid, 

which without any loss of generality he considered to be a rectangular prism whose 

base was an area equal to the coefficient of the unknown. In keeping with this 

reduction we shall write b2c instead of c. Thus Omar Khayyam actually considered 
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Figure 12.4: Omar Khayyam’s solution of x3 + ax2 + b2x = b2c. 

the equation x3 +ax2 + b2x = b2c. where a, b, and c are data for the problem. His 

solution is illustrated in Fig. 12.4. He drew a pair of perpendicular lines intersecting 

at a point O and marked off OA = a and OC — c in opposite directions on one 

of the lines and OB = b on the other line. He then drew a semicircle having AC 

as diameter, followed by the line DB through B perpendicular to OB (parallel to 

AC), and the rectangular hyperbola through C having DB and the extension of 

OB as asymptotes. This hyperbola intersects the semicircle in the point C and in 

a second point Z. From Z he drew ZP perpendicular to the extension of OB and 

ZQ perpendicular to DB and intersecting AC at L. Then ZP represented the 

solution of the cubic. This fact follows quite easily from two other facts. The first 

of these is an elementary property of the hyperbola, namely that the product of the 

perpendiculars from points on the hyperbola to the asymptotes is constant, that is, 

~ZP -~ZQ = OC • OB_= cb. Thus be = ~ZP YQ = ~ZP ■ (ZL + b), which can be 

written as b ■ (c — ZP) = ZL ■ ZP. The second fact is the fundamental property 

of half-chords to a diameter, that ZL2 = CL ■ LA = (c — ZP) • (a + ZP). We 

can rewrite these two equations as proportions: 

~ZL:(c- ~ZP) = b : ~ZP 

ZL2 :{c- YP f = (ZP + a) : (c - ~ZP). 

Squaring the first of these proportions and substituting into the second gives 

b2 : ZP2 = (ZP + a) : (c - ZP), 

and cross-multiplying the proportion gives 

ZP3 + aZP2 + b2~ZP = b2c, 

showing that ZP is indeed a solution. 

We now ask a fundamental question: In what sense did Omar Khayyam solve 

the cubic equation? Certainly his method gives a graphical solution provided one 

can draw a rectangular hyperbola through a given point having given asymptotes. 

That, however, is a large proviso. We have no instrument that will do this. In this 
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sense Omar Khayyam’s solution is a theoretical one, phrased in geometric terms. 

To find the numerical value of the root, one would have to perform a physical 

measurement. 

Still, it is interesting that the solution of a cubic equation can be represented 

as the intersection of two simple geometric figures. It is worth emphasizing this 

point, precisely because it clarifies the difference between algebra as understood 

by Omar Khayyam and algebra as we know it today. For us a numerical answer 

in terms of numerical data is the only real solution. To what extent can Omar 

Khayyam’s solution provide the kind of result we would demand? 

For the answer to this question, we return to Omar Khayyam’s solution, that is, 

the line segment ZP, and we ask what we know about it numerically. In proving 

his solution correct Omar Khayyam established two geometric facts about ZP. 

We can express these facts by the two equations 

ZP • {ZL + b) = be, 

ZL2 = (c- ZP) ■ (a + ZP). 

Thus, to find ZP numerically, it is necessary to eliminate ZL from these two 

equations and solve for ZP (that is, one must solve a pair of simultaneous quadratic 

equations in two unknowns). However, any attempt to solve these equations merely 

leads back to the original cubic equation! 

Thus, from a computational point of view, Omar Khayyam’s solution is circular, 

a mere restatement of the problem. We shall see that the cubic equation has a long 

history of solutions that in some cases turn out to be mere restatements of the 

problem, and in fact no method of solution exists (or can exist) that reduces the 

solution of every cubic equation with real roots to the extraction of real square and 

cube roots of real numbers. 

12.6 The Foundations of Geometry 

As the passage from Omar Khayyam quoted above shows, the Islamic mathemati¬ 

cians knew Euclid well enough to speculate on his defects. The most glaring 

of these defects, as it seemed to them, was the parallel postulate. The Islamic 

scholar Ibn Al-Haitham (950-1039), known traditionally in the West through his 

Latin name of Alhazen, attempted to prove the parallel postulate. His argument is 

illustrated in Fig. 12.5. 
The argument runs as follows. Given two lines perpendicular to line AD at A 

and B, it will be proved that every perpendicular from one of them to the other 

is equal to AB. Thus in Fig. 12.5 AG and DB are drawn perpendicular to AB, 

and GD is perpendicular to DB. The claim is that GD = AB. To establish this 

claim, line segments GA and DB are doubled, to GE and DT respectively. It 

is easy to prove that ET _L BT and that ET is congruent to GD. (Simply draw 

the two diagonals GB and BE and use congruent triangles.) Al-Haitham claimed 

to have established that if the line segment ET is kept perpendicular to line DT 

and the point T is moved, then the other point E will trace a straight line. Thus 
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Figure 12.5: Al-Haitham’s “proof’ of the parallel postulate. 

if ET is longer than AB, when T is moved to B, line segment ET will occupy 

an extension BH of the line segment BA. Then when T arrives at D, TE will 

coincide with DG. Hence, since it has traced a straight line, there will be two 

straight lines GAE and GHE joining the points G and E. 

Omar Khayyam raised a number of questions for the benefit of those who do not 

see why this argument is wrong: He asked how a line could move while remaining 

perpendicular to a given line, and more generally how geometry and motion could 

be connected. Even admitting that Euclid allowed a line to be generated by a 

moving point and a surface by a moving line, he pointed out that Al-Haitham was 

requiring something more. 

Mathematicians do not accept Al-Haitham’s argument as valid today. The 

weakness of the argument lies in the claim that the set of points equidistant from a 

line is itself a line. This claim is equivalent to the parallel postulate. In hyperbolic 

geometry the curve described by Al-Haitham is called an equidistant curve and 

is not a straight line. The advance in Al-Haitham’s work (based on an earlier 

idea of Thabit Ibn Qurra) is that it shows the relation between parallelism and 

the angle sum of a quadrilateral. The quadrilateral DGET, which has two equal 

sides perpendicular to a third side, is nowadays called a Saccheri quadrilateral, 

and the two quadrilaterals AGDB and AETB, into which it is divided, having 

three right angles, are called Lambert quadrilaterals. These quadrilaterals are 

basic to the study of noneuclidean geometry. 

12.7 Later Islamic Science 

As the Christian West went on the offensive in the twelfth century, the Islamic 

world suffered increasing disruptions, and scientific research declined. Neverthe¬ 

less, in the thirteenth century the astronomer Nasir-Eddin Al-Tusi (1201-1274) 

continued to work on the problem of the parallel postulate, introduced all the 

trigonometric functions that we know today, and discovered the interesting theo¬ 

rem that if a circle rolls without slipping inside a circle twice as large, each point 
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Figure 12.6: A problem from Al-Khwarizmi. 

on the smaller circle moves back and forth along a diameter of the larger circle. 

(This is easy to prove, and an interesting exercise in geometry.) This kind of result 

might easily have led to the consideration of more general locus problems if social 

and political conditions had allowed Islamic scholarship to be sustained. 

12.8 Problems and Questions 

12.8.1 Problems in Islamic Mathematics 

Exercise 12.1 Let x replace Al-Khwarizmi’s word thing in the legacy problem 

discussed in the text. Replace each of the statements about thing by an equation 

and explain how the statements solve the equation. Compare the amount of money 

the three legatees receive under this solution with the amount they would receive 

under modem law. 

Exercise 12.2 Solve the following geometric problem of Al-Khwarizmi: Given 

an isosceles triangle with base 12 and legs each equal to 10, inscribe a square 

inside the triangle with one side along the base and the other two vertices on 

the legs. What is the side of the square? First work out your own solution, then 

explain how Al-Khwarizmi obtained the equation 

48 = x2 A- x(g - -) + -(8 X) = 10.T, 

so that x = 4.8. (See Fig. 12.6.) 

Exercise 12.3 Solve the following legacy problem from Al-Kwharizmi’s Algebra: 

A woman dies and leaves her daughter, her mother, and her husband, and be¬ 

queaths to some person as much as the share of her mother and to another as 

much as one-ninth of her entire capital. Find the share of each person. fit 

was understood from legal principles that the mother’s share would be and the 

husband’s ^.] 
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Exercise 12.4 Solve the problem of Abu-Kamil in the text. 

Exercise 12.5 Can the pair of amicable numbers 1184 and 1210 be constructed 
from Thabit ibn-Qurra’s formula? Find one new pair that can be constructed from 

this formula, beyond those already mentioned. 

Exercise 12.6 Explain how Thabit ibn-Qurra’s generalization of the Pythagorean 
theorem reduces to that theorem when angle A is a right angle. What does the 
figure look like if angle A is obtuse? Is there an analogous theorem if BC is not 
the longest side of the triangle? 

Exercise 12.7 One form of noneuclidean geometry, known as doubly elliptic ge¬ 
ometry, is formed by replacing the plane with a sphere and straight lines with 
great circles, that is, the intersections of the sphere with planes passing through 
its center. Let one “line” (great circle) be the equator of the sphere. Describe the 
equidistant curve generated by the endpoint of a “line segment” (arc of a great 
circle) of fixed length and perpendicular to the equator when the other endpoint 
moves along the equator. Why is this curve not a “line”? 

Exercise 12.8 If you know some modem algebra, explain why it is not surprising 
that Omar Khayyam’s geometric solution of the cubic cannot be turned into an 
algebraic procedure. [Hint: Fill in the details of the following argument. Consider 
a cubic equation with rational coefficients, but no rational roots, such as x3 = 2. 
The procedure for eliminating one variable between the two quadratic equations 
representing the hyperbola and circle is a rational one (it involves only multipli¬ 
cation and addition). Since the coefficients of the two equations are rational, the 
result of the elimination will be a polynomial equation with rational coefficients. If 
the root is irrational, that polynomial will be divisible by the minimal polynomial 
for the root over the rational numbers. However, a cubic polynomial with rational 
coefficients but no rational roots is itself the minimal polynomial for its roots.] 

Exercise 12.9 Al-Haitham’s attempted proof of the parallel postulate is fallacious 
because in noneuclidean geometry two straight lines cannot be equidistant at all 
points. Thus in a noneuclidean space the two rails of a railroad cannot both be 
straight lines. Assuming Newton’s laws of motion (an object that does not move in 
a straight line must be subject to some force), show that in a noneuclidean universe 
one of the wheels in a pair of opposite wheels on a train must be subject to some 
unbalanced force at all times. [Note: The spherical earth that we live on happens 
to be noneuclidean. Therefore the pairs of opposite wheels on a train cannot both 
be moving in a great circle on the earth’s surface.] 

Exercise 12.10 Prove Nasir-Eddin’s theorem about a circle rolling inside a second 
circle twice as large. Can you think of a mechanical application of this theorem? 

12.8.2 Questions about Islamic Mathematics 

Exercise 12.11 Why did Al-Khwarizmi include so much material on the solution 
of quadratic equations in his treatise, when he had no applications for them at all? 
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Exercise 12.12 Contrast the modem Western solution of the Islamic legacy prob¬ 

lem with the solution of Al-Khwarizmi. Is one solution “fairer” than the other? 

Can mathematics make any contribution to deciding what is fair? 

Exercise 12.13 Assuming that one had some practical application for cubic equa¬ 

tions, would Omar Khayyam’s solution of the cubic be adequate for practical 

purposes, or would one need some numerical procedure such as the Chinese were 

using about the same time for solving such equations? 

Exercise 12.14 If numerical methods of solving equations can satisfy all practical 

needs, what value can there be in the efforts of people such as Omar Khayyam and 

the many European mathematicians who worked along the same lines to reduce 

the solution to the operations of arithmetic and the extraction of roots? 

12.9 Endnotes 

1. The distinction between the use of side and root for the solution to an equa¬ 

tion was pointed out by Ali Abdullah Al-Daffa, in The Muslim Contribution 

to Mathematics (Humanities Press, Atlantic Highlands, NJ), 1977, p. 52. 

2. The formula for amicable numbers attributed to Thabit ibn-Qurra was pub¬ 

lished by Franz Woepke in an article entitled “Notice sur une theorie ajoutee 

par Th&bit ben Korrah h l’arithm6tique speculative des Grecs” in the Journal 

Asiatique (October-November 1852), pp. 420-429. [Cited by Cantor, Vor- 

lesungen uber Geschichte der Mathematik (Teubner, Leipzig, 1880), Vol. 1, 

p. 631.] 

3. The story of the use of 220 and 284 as a love potion is told by Cantor (op. 

cit.), Vol. 1, p. 631. 

4. Omar Khayyam’s remark on the impossibility of a geometric product of four 

factors was taken from the source book by J. J. Gray and J. Fauvel, The 

History of Mathematics: a Reader (Macmillan Press, New York, 1987), pp. 

225-226. 

5. The attempted proof of the parallel postulate by Ibn Al-Haitham is quoted 

by Gray and Fauvel (op. cit.), pp. 235-236. 

6. Omar Khayyam’s criticism of Al-Haitham is quoted in full by Gray and 

Fauvel (op. cit.), p. 236. 





PART III 

Modern Mathematics 





Modem mathematics began in fifteenth-century Italy with the development of al¬ 

gebra in a form that begins to resemble what is now taught in high schools. Before 

that time there was a period of several hundred years when Europeans gradually 

absorbed the mathematics that had been invented in the Islamic world and recov¬ 

ered as much as possible of the Greek heritage. The Medieval order in Europe 

had been based on the twin authorities of the Pope and the Emperor. In the fif¬ 

teenth century this order broke down and was followed by a chaotic period of rival 

nation-states, wars of religion and territory, and the age of discovery. The complex 

cultural flowering known as the Renaissance and the scientific revolution devel¬ 

oped from intellectual seeds planted in the Medieval universities. Accompanying 

the European colonial expansion, European science came to the older civilizations 

of Asia in the eighteenth and nineteenth centuries; these civilizations added to the 

sum of human knowledge, and the result was the larger scientific community that 

now exists. 

The volume of mathematics created since the sixteenth century far exceeds all 

that we have studied up to now (and we have omitted important parts of even that 

story). Moreover, mathematics becomes increasingly sophisticated from this time 

on, and the essence of a mathematical achievement often cannot be comprehensibly 

summarized. For that reason as the story progresses we shall be forced to give 

fewer and fewer technical accounts of mathematical advances and concentrate 

instead on the impact of the work. 

The background to modem mathematics lies in the Medieval period, when 

scholars assimilated the knowledge of the Islamic world and recovered some of 

the Greek works. Already in the fourteenth century European mathematicians 

were contributing new ideas of fundamental importance, such as the representation 

of variable quantities on a coordinate system. These Medieval advances were 

followed by the brilliant discovery in sixteenth-century Italy of algebraic techniques 

for solving cubic and quartic equations. The late sixteenth and early seventeenth 

centuries brought the invention of analytic geometry, projective geometry, and 

logarithms. 

In the seventeenth and eighteenth centuries ideas that had been used individ¬ 

ually for centuries were combined in new ways to produce the calculus, which 

was then applied to study an immense variety of physical phenomena. The cal¬ 

culus raised a number of questions, whose study led to the development of the 

theories of functions of a complex variable and functions of a real variable. In 

the nineteenth century progress was made on the solution of many old puzzles 

about Euclidean geometry and infinity, as well as the logical underpinnings of the 

calculus. Other mysteries involving the solvability of equations by radicals and 

the nature of probability were effectively solved or greatly clarified. 

Analysis, which seemed to have acquired a rigorous foundation in the work of 

such mathematicians as Augustin-Louis Cauchy (1789-1856) and Karl Weierstrass 

(1815-1896), proved more resistant to ultimate clarity than had been expected, 

when the set theory created by Georg Cantor (1854-1918) in the late nineteenth 

century generated paradoxes. Our story comes to a close with a survey of the vast 

world of twentieth-century mathematics. 
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Chapter 13 

Medieval Europe 

13.1 The Early Middle Ages 

The decline of cities in the West as the authority of the Roman Emperor failed was 

accompanied by a decline in scholarship. Only in the monasteries was learning 

preserved. As a result documents from this period tend to be biased toward issues 

that concern the clergy. Natural science and mathematics declined in importance 

among educated people and were replaced by theology, interpretation of scripture, 

hagiography, and church history. Nevertheless, science and mathematics were not 

entirely forgotten. 

13.1.1 Boethius 

The philosopher Anicius Manlius Severinus Boethius (480-524) wrote Latin trans¬ 

lations of many classical Greek works of mathematics and philosophy and watered 

down their harder parts to adapt them to the intellectually degenerate time in which 

he lived. His works on mathematics proper are very elementary expositions of the 

simpler parts of Nicomachus and Euclid and are confined mostly to topics of 

use in measurement or related to philosophy; they fit the classical quadrivium of 

arithmetic, geometry, music, and astronomy, as depicted in Fig. 13.1. 

Arithmetic and Geometry 

The only topic discussed by Boethius that is not in Euclid’s Elements is the abacus 

(a ruled board, not the device we now call an abacus). In this drastic abridgment 

the elaborate logical system of Euclid is lost entirely. The influence of this very 

simple mathematics on the imagination of people in the Middle Ages can be gauged 

from the last Canto of Dante’s Divine Comedy, which describes the poet’s vision 

of heaven: 

... As one, 

Who versed in geometric lore, would fain 

283 
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Measure the circle; and, though pondering long 

And deeply, that beginning, which he needs, 

Finds not: e’en such was I, intent to scan 

The novel wonder, and trace out the form, 

How to the circle fitted, and therein 

How placed: but the flight was not for my wing; 

Had not a flash darted athwart my mind, 

And, in the spleen, unfolded what it sought. 

Here vigour fail’d the towering fantasy: 

But yet the will roll’d onward, like a wheel 

In even motion, by the Love impell’d, 

That moves the sun in Heaven and all the stars. 

Music and Astronomy 

Boethius’ work on astronomy is also derivative, based on Greek sources, and 

omits all the harder parts of Ptolemy’s treatise. In addition, he wrote an influential 

book with the title De institutions musica that is of interest in the history of 

mathematics, since it adopts the Platonic (Pythagorean) point of view that music 

is a subdivision of arithmetic. Boethius divides the subject of music into three 

areas: Musica Mundana, which encompasses the “music of the spheres,” that is, 

the regular mathematical relations observed in the stars and reflected in the sounds 

of nature; Musica Humana, which reflects the orderliness of the human body 

and soul; and Musica Instrumentalis, the music produced by physical instruments, 

which exemplify the principles of order noticed by the Pythagoreans, particularly 

in the simple mathematical relations between pitch and length of a string. For 

over a millennium such ideas had a firm grasp on writers such as Dante and 

scientists such as the seventeenth-century mathematician and astronomer Johannes 

Kepler. Indeed, De institutions musica was used as a textbook at Oxford until the 

eighteenth century. Kepler actually wrote the music of the spheres as he conceived 

it. 

13.1.2 The Carolingian Empire 

From the sixth to the ninth centuries a considerable amount of classical learning 

was preserved in the monasteries in Ireland, which had been spared some of the 

tumult that accompanied the decline of Roman power in the rest of Europe. From 

this source came a few scholars to the court of Charlemagne to teach Greek and 

the quadrivium (arithmetic, geometry, music, and astronomy) during the early ninth 

century. Charlemagne’s attempt to promote the liberal arts, however, encountered 

great obstacles, as his empire was divided among his three sons after his death. 

In addition the ninth and tenth centuries saw the last waves of invaders from the 

north—the Vikings, who disrupted commerce and civilization both on the continent 

and in Britain and Ireland until they themselves became Christians and adopted 

a settled way of life. Nevertheless, Charlemagne’s directive to create cathedral 
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Figure 13.1: The quadrivium, from Boethius’ Arithmetic. Foto Marburg/Art Re 

source. 
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and monastery schools had a permanent effect, leading eventually the synthesis of 

observation and logic known as modem science. 

13.1.3 Gerbert 

In the chaos that accompanied the breakup of the Carolingian Empire and the 

Viking invasions the main source of stability was the Church. A career in public 

life for one not of noble birth was necessarily an ecclesiastical career, and church 

officials had to play both pastoral and diplomatic roles. That some of them also 

found time for scholarly activity is evidence of remarkable talent. 

Such a talent was Gerbert of Aurillac. He was bom to lower-class but free 

parents in south-central France some time in the 940s. He benefited from Charle¬ 

magne’s decree that monasteries and cathedrals must have schools and was edu¬ 

cated in Latin grammar at the monastery of St. Gerald in Aurillac. Throughout 

a vigorous career in the Church that led to his coronation as Pope Sylvester II in 

the year 999 he worked for a revival of learning, both literary and scientific. His 

work as secretary to the Archbishop of Reims was reported by a monk of that city 

named Richer, who described an abacus (counting board) constructed to Gerbert’s 

specifications. It was said to have been divided into 27 lengths, and Gerbert as¬ 

tounded audiences with his skill in multiplying and dividing large numbers on this 

device. 

While revising the curriculum in arithmetic Gerbert wrote a tract on the use of 

the abacus in which the Hindu-Arabic numerals were first introduced into northern 

Europe. This innovation caught on very slowly and required reintroduction several 

times. 

Mathematical Activities 

In some early letters written addressed to the monk Constantine of Fleury just 

before he became Abbot of Bobbio, Gerbert discusses some passages in Boethius’ 

Arithmetic, and in the last letter written before he became pope, he writes to 

Adalbold of Li6ge about an inconsistency in Boethius’ work. He discusses an 

equilateral triangle of side 30 and height 26 (since 26 « 15\/3), whose area is 

therefore 390. He says that if the triangle is measured by the arithmetical rule given 

by Boethius, that is, in terms of its side only, the rule is “one side is multiplied 

by the other and the number of one side is added to this multiplication, and from 

this sum one-half is taken.” In our terms this would give area s(s + l)/2 to 

an equilateral triangle of side s. We recognize here the formula for a triangular 

number. Thus, guided by arithmetical considerations and figurate numbers, one 

would expect that this formula should give the correct area. However, in the case 

being considered, the rule leads to an area of 465, which is too large by 20%. 

Gerbert correctly deduces that Boethius’ rule actually gives the area of a cross 

section of a stack of rectangles containing the triangle in question and that the 

excess results from the pieces of the rectangles sticking outside the triangle. He 
includes a figure to explain this point to Adalbold. 
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We can see from this discussion by one of the leading scholars of Europe 

to what an elementary level scientific and mathematical knowledge had sunk a 

thousand years ago. From these humble beginnings European knowledge of science 

underwent an amazing growth over the next few centuries. 

13.1.4 Geometry 

A picture of the level of geometric knowledge in the eleventh and twelfth centuries, 

before there was any major influx of translations of Arabic and Greek treatises, 

can be gained from an early twelfth-century treatise called Practica geometriae 

(The Practice of Geometry), attributed to Master Hugh of the Abbey of St. Victor 

in Paris. 

The content of the Practica geometriae is aimed at the needs of surveying 

and astronomy and resembles the treatise of Gerbert in its content. This geom¬ 

etry, although elementary, is by no means unsophisticated. It discusses similar 

triangles and spherical triangles, using three mutually perpendicular great circles 

to determine positions on the sphere. After a discussion of the virtues and uses 

of the astrolabe, the author takes up the subjects of “altimetry” (surveying) and 

“cosmimetry” (astronomical measurements). 

The discussion of “altimetry” is a straightforward application of similar trian¬ 

gles to measure inaccessible distances. The section on “cosmimetry” is of interest 

for two reasons. First, it gives a glimpse of what was remembered of ancient work 

in this area; and second, it shows what techniques were used for astronomical 

measurements in the twelfth century. The author begins by giving the history of 

measurements of the diameter of the earth, saying that the earth seems large to us, 

due to our confinement to its surface, even though “Compared to the incompre¬ 

hensible immensity of the celestial sphere with everything in its ambit, earth, one 

must admit, seems but an indivisible point.” 

These views had been expressed by Ptolemy as justification for idealizing the 

earth as a point in his astronomy, and, of course, they are completely in accord 

with modern knowledge of the size of the cosmos. The author then goes on to 

discuss in detail the history of measurements of the circumference of the earth. 

He tells the famous story of Eratosthenes’ measurement of a degree of latitude,1 

and mentions that Eratosthenes had overestimated the length of a degree by about 

25%. 

The author of the Practica geometriae continues by calculating the height of 

the sun by use of similar triangles. To do this, one must know the distance from the 

point of measurement to the point where the sun is directly overhead, then measure 

the length of the noontime shadow cast by a pole of known height. The author 

says that the Egyptians should be given credit as the first to compute solar altitude 

this way and that they were successful because their country was flat and close 

to the sun! The figure cited for the diameter of the sun’s orbit (this is geocentric 

1From the difference in altitude of the sun at Alexandria and Cyene Eratosthenes deduced that 

Alexandria was 71 degrees north of Cyene. By measuring this distance and dividing by 7^, he 

calculated the length of a degree. 
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astronomy) is 9,720,181 + ± ^ miles. Using the value tt = the author 

computes the length of the sun’s orbit as 30,549,142§ + ~ miles. (Needless to 

say, this number is only about 6% of the true value.) 

13.2 The High Middle Ages 

By the end of the eleventh century, the Medieval order in Europe had produced 

considerable prosperity, despite many local wars. The monasteries in particular 

were prosperous centers of both piety and learning.2 European expansion began 

with the Christian reconquest of Spain from the Muslims (which took four centuries 

to complete) and the Crusades against the Turks in Palestine. In their sometimes 

violent rivalry with paganism and Judaism for adherents in the early centuries 

of the Christian era, Christian leaders had used appeal to reason as one of their 

strategies. This appeal had become unnecessary after Christianity became the 

official religion of the Empire at the end of the fourth century, but logical and 

theological disputation had continued in order to maintain doctrinal unity in the 

face of the heresies that were constantly arising. In the Middle Ages, faced with 

a rival religion that had displaced Christianity for several centuries in most of the 

Middle East, Christian scholars sought ways of competing with Islam in addition to 

war, whose outcome could not be guaranteed. Once again they cultivated reasoned 

debate. Centuries of debate in the monasteries and cathedral schools about fme 

points of theology produced scholars of formidable forensic ability. The attempt 

to settle fme metaphysical questions had led to a habit of scrutinizing arguments 

down to the tiniest hidden assumptions and reading ancient documents carefully to 

gamer support from the authorities of antiquity. Although the attempt to establish 

the Christian faith on a foundation of pure reason would nowadays be considered a 

mistake by most people, this activity is an important part of the intellectual tradition 

that produced modem science when it was brought to bear on questions about 

the physical world. As Prof. David Lindberg expresses the situation, “...natural 

philosophy could not be separated from the rest of philosophy and, therefore, shared 

the fate of the larger whole of which it was a part.” 

13.2.1 The Revival of Mathematics 

By the midtwelfth century European civilization had absorbed much of the learning 

of the Islamic world and was nearly ready to embark on its own explorations. This 

was the zenith of papal power in Europe, exemplified by the ascendancy of the 

popes Gregory VII (1073-1085) and Innocent III (1198-1216) over the emperors 

and kings of the time. The Emperor Frederick I, known as Frederick Barbarossa 

because of his red beard, who ruled the empire from 1152 to 1190, tried to maintain 

the principle that his power was not dependent on the Pope, but was ultimately 

2The term center of learning is relative, however. The library holdings of most monasteries 
amounted to a few dozen books, compared with the thousands available in the libraries of the Is¬ 
lamic world at the same period. 
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unsuccessful. His grandson Frederick II (1194-1250) was a cultured man who 

encouraged the arts and sciences. To his court in Sicily he invited distinguished 

scholars of many different religions, and he corresponded with many others. He 

himself wrote a treatise on the principles of falconry. He was in conflict with the 

Pope for much of his life and even tried to establish a new religion, based on the 

premise that “no man should believe aught but what may be proved by the power 

and reason of nature,” as the papal document excommunicating him stated. 

13.2.2 Leonardo of Pisa 

Into this empire, in the city of Pisa in the year 1170, there was bom a man named 

Leonardo, the son of Gulielmo (William). Leonardo says in the introduction to his 

major book that he accompanied his father on an extended commercial mission 

in Algeria with a group of Pisan merchants. There, he says, his father had him 

instructed in the Hindu-Arabic numerals and computation, which he enjoyed so 

much that he continued his studies while on business trips to Egypt, Syria, Greece, 

Sicily, and Provence. Upon his return to Pisa he wrote a treatise to introduce this 

new learning to Italy. 

The Liber Abaci 

Leonardo’s greatest work bears the title Liber abaci (The Book of the Abacus). 

As a document intended to promote the use of Hindu-Arabic numerals it is not 

a happy effort. Many of the problems reflect the routine computations that must 

be performed when converting currencies. These are applications of the rule of 

three that we find already in Brahmagupta and Bhaskara. Many of the other 

problems are purely fanciful and taken directly from Abu-Kamil. Moreover, from 

our present perspective Leonardo made things harder than they really needed to 

be by frequently expressing fractions as unit fractions. Here is a sample problem: 

One-quarter and one-third of a tree lie below ground, a total of 21 palmi in 

length. What is the length of the tree? The author imagines the tree divided into 

12 equal parts, so that 7 of these parts are underground, then uses the proportion 

7 : 21 = 12 : x to find the length of the tree. 

The reader can easily figure out that the tree is 36 palmi high. Leonardo goes 

on to give a description of the rule of three for solving such proportions. The 

Liber abaci was not published in printed form until the nineteenth century. 

The Liber Quadratorum 

Leonardo wrote other books on mathematics that, when compared with the writings 

of Gerbert, show the extent to which scientific knowledge had increased over two 

centuries. In particular, his Liber quadratorum (Book of Squares) reflects the new 

vigor of intellectual life. In the prologue, addressed to the Emperor Frederick II, 

Leonardo says that he had been inspired to write the book because John of Palermo, 

whom he had met at Frederick’s court, had challenged him to find a square number 
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such that if 5 is added to it or subtracted from it the result is again a square. This 

question inspired him to reflect on the difference between square and nonsquare 

numbers. He then notes his pleasure on learning that Frederick had actually read 

one of his previous books, and uses that fact as justification for writing on the 

challenge problem. 
The Liber quadratorum is written in the spirit of Diophantus and shows a 

keen appreciation of the conditions under which a rational number is a square. 

For example, the ninth of its 24 propositions is, Given a nonsquare number that is 

the sum of two squares, find a second pair of squares having this number as their 

sum. Leonardo’s solution of this problem involves a great deal of arbitrariness, 

since the problem does not have a unique solution (see Exercise 13.4). 

Leonardo’s Contribution to Mathematics 

Leonardo of Pisa was a gifted mathematician who wrote treatises on both algebra 

and number theory. Moreover his approach to algebra begins to look modem, in 

that he uses letters to stand for unknown numbers. In one of his works called the 

Flos (Blossom) he considers the case of the cubic equation that we would write 

as .t3 + 2.x2 + IO.t = 20. This equation has a unique positive root, which he 

gives in sexagesimal notation correct to six places. In addition, his approach to the 

problem contains a very important original element: he shows by using divisibility 

properties of numbers that there cannot be a rational solution or a solution obtained 

using only rational numbers and square roots of rational numbers. This kind of 

reasoning represents a new way of looking at equations, and one that was to be 

very fruitful for the subsequent development of algebra. 

The securest basis of Leonardo’s fame is a single problem from the Liber 

abaci’. 

How many pairs of rabbits can be bred from one pair in one year, 

given that each pair begins to breed in the second month after its 

birth, producing one new pair per month? 

By brute-force enumeration of cases, the author concludes that there will be 

377 pairs, and “in this way you can do it for the case of infinite numbers of 

months.” 

The sequence generated here, namely 1, 1, 2, 3, 5, 8,..., in which each term 

after the second is the sum of its two predecessors, has been known as the Fi¬ 

bonacci sequence ever since the Liber abaci was first printed in the nineteenth 

century. The name Fibonacci seems to have been bestowed on Leonardo by the 

nineteenth-century historian of mathematics Guillaume Libri (1803-1869), under 

the mistaken impression that Leonardo’s father was named Bonaccio (Fibonacci 

means “son of Bonaccio”). Bonaccio was apparently the family name, so that 

Fibonacci is equivalent to “of the Bonnaci.” The Fibonacci sequence has been an 

inexhaustible source of identities, and many curious representations of its terms 

have been obtained, and there is a mathematical journal, the Fibonacci Quarterly, 

named in honor of Leonardo. 
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13.2.3 The Academic World 

Scientific research, like all culture, depends on patronage. Scholars and artists have 

to be supported if they are to have time for their creative work; and this support, 

for those who are not of independent means, involves convincing someone with 

money that creative work is worth paying for. Leonardo of Pisa may have acquired 

the means to support his mathematical hobby through his commercial activity; he is 

known to have received a salary from the city of Pisa, connected with his teaching 

and consulting activity. Other scholars were supported at the court of Frederick 

II. Just why kings and emperors supported the arts and sciences by founding 

academies of sciences and universities is an interesting question to which there 

are many answers. The crudest answer is that they expected to gain something 

from the work of scholars and artists. We nowadays expect scientific advances to 

cure disease or provide us with new inventions to make our work easier and our 

leisure time more amusing. However, very little science and almost no mathematics 

actually has this effect. A more plausible answer is that real political power and 

influence depends on a number of very subtle factors, one of which is prestige. 

The huge palaces at Versailles, Charlottenburg, Windsor, and other places were 

intended to impress visiting dignitaries with the wealth and power of the realm. A 

sufficiently impressive display could have the effect of deterring aggression. Apart 

from such utilitarian explanations, however, there is a basic human sense of beauty 

that finds palaces, music, philosophy, and science satisfying. We may give some 

credit to the taste of monarchs, and assume that at least part of the reason for their 

support of academies of sciences and universities was a genuine desire to elevate 

the culture of the people. 

Let us now return to more mundane matters and examine some of the work 

that was going on in universities during this time. 

Reason in Philosophy and Theology 

The rationalist program is exemplified by Anselm of Canterbury (1033-1109), 

who offered the “ontological” argument for the existence of God,3 in contrast to 

earlier theologians, who appealed to an inspired reading of the Bible or to personal 

revelation or Church authority. This rationalizing work was continued in France 

by Peter Abelard (1079-1142), who wrote Sic et non (Yes and No), a collection of 

conflicting opinions by authorities on theological matters, to exhibit the necessity 

of reason in theology. Natural philosophy was not at first a major theme in this 

program. Indeed, one of the most influential metaphysical treatises of the times 

was Plato’s Timaeus. The Timaeus contains a great deal of unscientific mysticism. 

It also, however, contains the crucial idea of a rationally ordered cosmos in which 

mathematics is the key to understanding. 

Science as we know it, a blend of observation, experiment, and conceptual 

modeling, gained a foothold in the Medieval universities. By the year 1200 there 

3In a somewhat distorted summary, this argument is that a greatest conceivable being must exist; 
for, if such a being did not exist, a greater one could be conceived, namely one having all the properties 
of the nonexisting greatest conceivable being, and also the property of existing. 
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were universities at Oxford, Paris, and Bologna. These universities grew out of 

cathedral schools, but developed in different ways. In Bologna students were in 

control of the administration, and were able in some cases to dictate the curriculum. 

From the time of the universities onward there is a very good documentary trail 

in which scholars tell about themselves and their motives; and it is clear from 

these documents that simple human curiosity is very often the strongest motive 

of all. Once a question has been asked, whether from urgent practical needs or 

simply as an attempt to relieve boredom, it acquires an importance of its own; and 

some scholar is almost certain to devote whatever time is necessary to finding the 

answer, whether the result justifies the effort in practical terms or not. 

Although the most prominent philosophers of the late Roman Empire and the 

early Middle Ages were Platonists, the Platonic temperament is inclined toward 

mysticism and not at all methodical. The kind of close reasoning we find in 

Medieval philosophy is much more characteristic of Aristotle’s cataloguing and 

classifying. Which was cause and which effect we do not have space to discuss, 

but the fact is that from the thirteenth century on Aristotle plays a much more 

prominent role than Plato in Medieval scholarship, which becomes increasingly 

concerned with analyzing the world through Aristotelian categories. This change 

encountered some early resistance, since Aristotle had been used as a source of 

philosophical support by the Islamic scholars to promote theological doctrines 

(such as the nonexistence of individual souls and the impossibility of miracles) 

that contradicted Christian orthodoxy. The teaching of Aristotelian doctrine was 

banned at the University of Paris in 1210, and this ban was reiterated in 1231 by 

Pope Gregory IX. Gradually ways were found to harmonize Aristotle with Christian 

theology, however, and in 1255 the study of Aristotle was made mandatory in Paris. 

Aristotle’s metamorphosis within a single generation from being forbidden to being 

mandatory is an indication of some fundamental change of interest and outlook in 

the centers of learning. Let us now examine some of these new interests. 

13.2.4 Jordanus Nemorarius 

Little is known about the life of Jordanus Nemorarius, the thirteenth-century author 

of many works on mathematics and physics. Even the surname Nemorarius seems 

to suggest a pseudonym (nemo is Latin for nobody). What we do know is that he 

lived after the first Latin translation of Al-Khwarizmi’s Algebra in 1145 and before 

the year 1250, when he is mentioned in a list of books called the Biblionomia. His 

work shows considerable progress in algebra in comparison with the work of Al- 

Khwarizmi. In one of his works entitled De numeris datis (On Given Numbers), 

for example, the well-known elementary fact that two numbers can be found if 

their sum and difference are known is generalized to the theorem that any set of 

numbers can be found if the differences of the successive numbers and the sum 

of all the numbers is known. A large variety of data sets that determine numbers 

then follows, for example, if the sum of the squares of two numbers is known, and 

the square of the difference of the numbers is known, then the numbers can be 

found. The four books of De numeris datis contain about a hundred such results. 
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13.2.5 Medieval Physics 

The adoption of Aristotelian metaphysics meant that henceforth natural philosophy 

would become a logical subject in which the concepts of cause and effect were 

central. This way of looking at the world took a powerful hold everywhere, and 

today it is a basic element in the everyday thought of most people. In Medieval 

times these two aspects of the study of motion led to the important distinction 

between kinematics (the observed motion, which is an effect) and dynamics (the 

force causing the motion). It was possible to study kinematics independently of 

dynamics. Much of the history of mechanics can be interpreted as the attempt to 

provide a theoretical cause (dynamics) for an observed motion (kinematics). 

The Science of Weights 

The works of Archimedes were translated into Latin in the thirteenth century, and 

his work on the principles of mechanics was extended. One of the authors involved 

in this work was Jordanus Nemorarius, the author of several works on statics for 

which manuscripts still exist dating to the actual time of composition. The most 

sophisticated of these works bears the title Liber Jordani de ratione ponderum 

(Jordanus5 Book on the Ratio of Weights). In this work, which consists of four 

parts, Jordanus begins with some Aristotelian principles that look suspicious, such 

as the postulate “That which is heavier descends more quickly.” Nevertheless 

he improves on the results of Archimedes and Heron. In one result from Part 

1 he shows that if two arms of different lengths suspended at different angles 

from a fulcrum have equal horizontal projections, then equal weights suspended 

from their ends will balance. This is a generalization of the basic Archimedean 

principle that equal weights suspended from the ends of two horizontal arms of 

equal length will balance. Moreover it recognizes implicitly the principle that the 

horizontal projection determines the moment of a weight suspended from an arm. 

Actually Jordanus did not have the concept of moment, but he did have the notion 

of “heavier (or lighter) in position,” which fulfills the same function in the analysis 

of problems in statics. 

This principle is used to obtain the final result of Part 1: If two weights descend 

along diversely inclined planes, then, if the inclinations are directly proportional 

to the weights, they will be of equal force in descending. Referring to Fig. 13.2, 

Jordanus states that the weights W\ and W2 will balance if W\ : W2 = DC : DA. 

This is precisely the modem law of the inclined plane. Recall that Heron of 

Alexandria had been mistaken in his analysis of this problem (Chapter 7), and 

Pappus also had given an erroneous solution. 

The Merton Scholars 

At Merton College, Oxford, in the midfourteenth century there was an active 

group of scholars with an interest in mathematics and physics. Among them were 

Thomas Bradwardine (1295-1349), William Heytesbury (1313-1372), and Richard 
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Figure 13.2: The law of the inclined plane {W\ : W2 :: DC : DA). 

Swineshead.4 They formulated and studied the concept of instantaneous velocity 

and uniformly accelerated motion. In contrast to the case of motion at constant 

velocity (the well-known rule d = rt taught in junior high schools), the relation 

between distance and time is not simple when the velocity is not constant. To 

get a handle on more complicated types of motion, it is necessary to generalize 

step by step. The first natural generalization to be considered was that of uniform 

acceleration. Galileo, three centuries later, made the claim that falling bodies near 

the earth’s surface undergo uniformly accelerated motion. The Merton scholars 

gave no way of attaching a number to instantaneous velocity (unless the velocity is 

constant). However, the Aristotelian categories came to their aid in formulating the 

intuitive idea. They thought of velocity as a quality of motion, and they recognized 

that qualities could exist in greater or lesser degree, i.e, objects can be hotter or 

colder, denser or rarer, and so forth, so that velocity played a role in discussing 

motion analogous to that of temperature in discussing heat or density in discussing 

weight. 

In retrospect we can see that this is an extremely useful insight. The unity of the 

three examples given here is provided by the mathematical notion of proportion— 

the amount of matter per unit volume is by definition density, the thermal energy 

per unit volume (total translational kinetic energy of molecules) is proportional to 

the absolute temperature, and distance traversed is proportional to time when the 

velocity is constant. These examples also show the difficulty of the mechanical 

problem in comparison with the definitions of density and temperature, since in 

elementary situations the density of matter being considered is constant throughout 

a given sample and the temperature is also uniform, while velocity varies consid¬ 

erably even in simple problems. It would be many centuries before physics could 

consider the study of bodies in which the temperature or density varied from point 

to point. The first attempt to handle a “nonlinear” problem in physics occurs here 

in the problem of nonconstant velocity. This point also brings us back to a theme 

we addressed in connection with Greek science and geometry—the fundamental 

and pervasive presence of the idea of proportion in science, and consequently the 

4Dates uncertain. There may have been as many as three scholars named Swineshead at Oxford 
during the fourteenth century. 
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fundamental importance of the arithmetic operations of multiplication and division, 

which correspond to this notion. 

Without having a precise definition of instantaneous velocity, the Merton schol¬ 

ars defined uniformly accelerated motion as motion in which the velocity increases 

by equal increments in equal increments of time. For this kind of motion a rule 

known as the Merton rule was eventually distilled: 

A body moving with a uniformly accelerated motion moves in a given 

time exactly the same distance it would move at constant velocity 

equal to its instantaneous velocity at the midpoint of the time interval 

under consideration. 

This rule was illustrated in many specific examples in a book by Swineshead 

called Liber calculationum. It was to play a very important role in the future of 

European mathematics and mechanics, becoming the object of study by the brilliant 

fourteenth-century scholar Nicole of Oresme. It provide one of the most important 

examples in the “new” science of mechanics created by Galileo, who claimed it 

was the kind of motion undergone by freely falling bodies. 

The Concept of Force 

It was mentioned in Chapter 7 that in Aristotelian physics the size of a force 

(mover) was measured by the distance an object of given size could be moved in 

a given time. If we anachronistically introduce the more precise concept of mass, 

we can use this property as a definition of force, that is, F = kmd/t, where k is 

a constant of proportionality, m the mass, d, the distance moved, and t the time of 

the motion. Since d/t is just the velocity, we might say that force is proportional 

to mass times velocity. Actually the mass is irrelevant if the body is being rolled 

and not lifted; its function in this relation is to measure the resistance to the force 

(inertia), and so a more general way of phrasing the relation is F = kRv, where 

R is the resistance and v the velocity. In a treatise written in 1328 bearing the title 

Tractatus proportionum Thomas Bradwardine presented a variety of arguments in 

favor of a new way of thinking about force, resistance, and velocity. He argued 

that the Aristotelian relation allows any force to impart at least some velocity, 

no matter what the resistance, which is absurd if the resistance is greater than the 

force. According to Bradwardine, velocity is proportional to the ratio of the motive 

force to the resisting force. 

This geometric proportionality means that in order to double a velocity it is 

necessary to square the ratio of motive force to resistance, while to get half the 

velocity, one would take the square root of the ratio. In this way the motive 

force must always be larger than the resistance, no matter how small the velocity 

required. Thus Bradwardine’s principle avoids the paradox of a force overcoming 

a resistance larger than itself. By taking this step Bradwardine had introduced the 

concept of fractional powers. For one might wish to increase velocity by any real 

ratio, in which case it would be necessary to raise the ratio of motive force to 

resistance to the corresponding power. The challenge of realizing this operation 
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(c) 

Figure 13.3: Oresme’s classification of quadrangles: (a) uniform; (b) difform; (c) 

uniformly difform. 

was undertaken by one of Bradwardine’s successors, to whose works we now turn. 

13.2.6 Nicole of Oresme 

One of the most distinguished of the Medieval philosophers was Nicole of Oresme 

(1323-1382), whose clerical career brought him to the office of Bishop of Lisieux 

in 1377. Oresme had a wide-ranging intellect that covered economics, physics, 

and mathematics, as well as theology and philosophy. He considered the motion 

of physical bodies from various points of view, some of which physicists would 

nowadays not bother to consider. For example, it is an obvious fact that a falling 

body accelerates, but according to what law? We now believe that (neglecting air 

resistance, variations in the gravitational field of the earth, relativistic effects, and 

the like) the acceleration is constant, that is, the velocity is directly proportional to 

the time during which the body has been falling. However, how do we know that 

the velocity isn’t proportional to the distance fallen? It might, in fact, have any 

one of infinitely many different mathematical relations to the time or the distance 

fallen. When mechanics was in its infancy, all of these possibilities had to be kept 

in mind. 

Mathematical Physics 

Oresme arrived at his results in a very Aristotelian way, by considering qualities. 

In a work entitled Quaestiones super geometriam Euclidis he discusses three kinds 

of “altitudes” for quadrangular figures. These are uniform, difform, and uniformly 

difform. The first of these simply means a figure all of whose altitudes to some 

base are equal, that is, a rectangle (although Oresme also uses the term uniform 

in a similar sense to describe the curvature of a circle). The second means any 

irregular figure. The third is explained by Oresme in terms that imply that the 

figure is bounded above and below by straight lines that are not parallel to each 
other (see Fig. 13.3). 
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The innovation made by Oresme was his use of these figures to represent 

motion. He argues that a two-dimensional figure must be used to represent any 

quality, one dimension to indicate its physical location (along a line), the other its 

intensity. He called these longitude and latitude, respectively. The total quality was 

thus to be represented as an area. Applying this principle to motion, he arrives 

at a representation of the distance traveled as an area whose two dimensions 

are longitude (representing the time of travel) and the latitude (representing the 

velocity). Anticipating an objection on the part of his reader, he notes that Aristotle 

had used lines to represent time. 

Oresme formulated the Merton rule and for the first time in history explicitly 

used one line to represent time, a line perpendicular to it to represent velocity, and 

the area under the graph (as we would call it) to represent distance. He knew 

that it would be necessary to convince his readers that an area could be used to 

represent a line, and so he appealed to the ancients for examples of such usage. 

His conclusions were to be reiterated and further developed 250 years later in the 

mechanics of Galileo and the analytic geometry of Descartes. 

The graphic representation of relationships between variable quantities was de¬ 

veloped in more detail in Oresme’s work Tractatus de configurationibus qualitatum 

et motuum. A treatise entitled Tractatus de latitudinibus for mar um (Treatise on 

the Latitudes of Forms) was written shortly after the death of Oresme. (This work 

was once attributed to Oresme himself, but experts in the subject do not think 

this attribution is correct. The work is certainly based on what Oresme wrote, 

however.) Thus Oresme anticipated some of the ideas of analytic geometry, in par¬ 

ticular the idea of mutually perpendicular coordinates and the use of coordinates 

to study complicated curves. This work was done long before a clear notion of a 

function had been formulated and is an extraordinary advance for one person to 

have made. 

Ratios 

Oresme followed up on Bradwardine’s Tractatus proportionum with his own Trac¬ 

tatus de proportionibus proportionum. A reading of this work reveals that tremen¬ 

dous progress had been made in geometry since the time of Gerbert. Oresme 

presents his material in logical order with definitions, postulates, and propositions, 

together with rigorous proofs. Moreover he is careful to keep the distinction be¬ 

tween commensurable and incommensurable, and he refers to Euclid’s fifth book, 

which had not been mentioned by Boethius. Indeed, Oresme was even more ad¬ 

vanced than the average twentieth-century person, in that he recognized a logical 

difficulty in talking about a power of, say, | that equals He showed that two 

such ratios are incommensurable if there is no mean between the numbers of the 

greater ratio (for example, 1 and 3; the number 3 has no rational root of any order). 

In modern education students are taught how to use the rules of exponents and 
/g 

not encouraged to ask what is meant by, say, y/2 . If only rational numbers are 

considered to exist, it will be very unusual if one can raise a given rational number 

to a given rational power, as would be required by Bradwardine’s rule. 
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13.3 The Late Middle Ages 

The fourteenth century was a period of turmoil in Europe as the Plantagenet kings 

of England attempted to assert claims to rule in France. Until this conflict was 

settled there was intermittent war from 1328 until 1452 (the Hundred Years’ War). 

Even more devastating calamities were to come. In the midfourteenth century 

came the first of many epidemics of bubonic plague, which is estimated to have 

killed more than one third of the population. Needless to say, the survivors of 

this epidemic were deeply affected by the catastrophe. In view of these conditions 

it would be remarkable if cultural progress continued. The advance of European 

culture paused for a few decades, then resumed strongly in the fifteenth century. 

That part of the story forms our next chapter. 

13.4 Problems and Questions 

13.4.1 Problems in Medieval Mathematics 

Exercise 13.1 What happens to the discrepancy between the two rules for area of 

an equilateral triangle discussed by Gerbert, if the side s gets very large? Does 

the relative discrepancy increase or decrease? (One formula is the correct formula 

A = s2V3/2; the other is the incorrect triangular number formula A = s(s+l)/2.) 

Compare the discrepancy with the true value, take the limit as s —» oo, and express 

the result as a percent. 

Exercise 13.2 The Practica geometriae tells how to find the height of a distant 

object even if there is an obstacle between the observer and the object: After 

obtaining the ratio of height to distance as already shown, move back to a second 

position and repeat this operation. Then measure the distance between the two 

points of observation, and compute the distance from the object to the first point 

of observation by comparison of these measurements. (In our terms, given that 

h/di = a\ and h/d^ — a2, where a\ and a2 are known, if we also know d = 

c/2 — d\, we can find d\, and hence h. Carry out this computation for the example 

given in the Practica geometriae, where hjd\ = hfd^ = to find the ratio 

of h to d\. (The author does not give the value of d2 — d\.) What similarities 

and differences do you notice in comparison with the method of surveying used in 

India and China? 

Exercise 13.3 Readers with a strong stomach may wish to solve the following 

problem from Leonardo of Pisa: A lion can eat one sheep in 4 hours; a leopard 

requires 5 hours; and a bear requires 6 hours. If a single sheep were given to 

all three, how long would it take them to devour it? [The correct answer is lp 

hours.] 

Exercise 13.4 Leonardo’s solution to the problem of finding a second pair of 

squares having a given sum is explained in general terms, then illustrated with a 

special case. He considers the case 42 + 52 = 41. He first finds two numbers 
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(namely 3 and 4) for which the sum of the squares is a square. He then forms the 

product of 41 and the sum of the squares of the latter pair, obtaining 25 -41 = 1025. 

Then he finds two squares whose sum equals this number, namely 31 and 8 or 32 

and 1. He thus obtains the results (^)2 + (|)“ = 41 and (^)2 + (4)“ = 41. 

Find another pair of rational numbers whose sum is 41 following this method. 

Why does this method work? 

Exercise 13.5 If the general term of the Fibonacci sequence is an, show that 

an < an+1 < 2an, so that the ratio an+i/an always lies between 1 and 2. 

Assuming that this ratio has a limit, what is that limit? 

Exercise 13.6 Let the Fibonacci sequence (an}^L0 be given by a0 = 0, a\ = 1, 

&2 = 1, a>3 = 2, a4 = 3, etc., as in the text above, and define bn for n — 1,2,..., 

by 

Prove that bn = an_i + an+1, for n = 1,2,... . 

Exercise 13.7 Consider Problem 27 of Book I of De numeris datis: Two numbers 

are given whose sum is 10. If one is divided by 4 and the other by 2, the product 

of the quotients is 2. What are the two numbers? Solve this problem in your own 

way, then solve it following Jordanus’ recipe, which we paraphrase as follows. 

Let the two numbers be x and y, and let the quotients be e and / when x and y 

are divided by c and d respectively; let the product of the quotients be ef = b. 

Let be = h, which is the same as fee or fx. Then multiply d by h to produce 

j, which is the same as xdf or xy. Since we now know both x + y and xy, we 

can find x and y. [Jordanus used letters preceded and followed by a period for 

his variables, such as .a. and .b..] 

Exercise 13.8 From Jordanus’ rule of the inclined plane, suppose given a trian¬ 

gular frame with a level base of any size, and two other sides of length 35 and 

64. If a weight of 80 kilograms lies on the side of length 35, how much weight 

lying on the side of length 64 will be required to keep the weight from sliding up 

or down if the two weights are joined by a rope passing over the vertex opposite 

the base? (Neglect friction.) 

Exercise 13.9 Suppose ZC in Fig. 13.2 is a right angle. What does the law of 

the inclined plane become in this case, stated in terms of the angle A1 

Exercise 13.10 State the general law of the inclined plane in terms of angles A 

and C in Fig. 13.2. 

Exercise 13.11 It is an observational fact that a body heavy enough so that air 

resistance can be neglected in its fall will undergo nearly constant acceleration 

during free fall. In fact, its velocity will increase by 9.8 meters per second every 

second. Using the Merton rule, how far will such a body fall in 8 seconds? 
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13.4.2 Questions about Medieval Mathematics 

Exercise 13.12 Dante’s final stanza (quoted above) uses the problem of squaring 

the circle to express the sense of an intellect overwhelmed, which was inspired by 

his vision of heaven. What resolution does he find for the inability of his mind 

to grasp the vision rationally? Would such an attitude, if widely shared, affect 

mathematical and scientific activity in a society? 

Exercise 13.13 What is the significance of ruling a board into 27 columns to make 

an abacus, as Gerbert is said to have done? Does it indicate that there was no 

symbol for zero? 

Exercise 13.14 One frequently repeated story about Christopher Columbus is that 

he proved to a doubting public that the earth was round. What grounds are there for 

believing that “the public” doubted this fact? Which people in the Middle Ages 

would have been likely to believe in a flat earth? Consider also the frequently 

repeated story that people used to believe the stars were near the earth. Is this 

view of Medieval people plausible in the light of the Practica geometriael 

Exercise 13.15 The use of copious symbols as in Exercise 13.7 is typical of both 

Leonardo of Pisa and Jordanus Nemorarius. If you compared your own solution of 

the problem with that of Jordanus, you must have found that his solution is horribly 

cumbersome. WTiat was “missing” from his algebra that makes the problem so 

much easier to solve nowadays? [Hint: The unknowns in the original problem are 

not really referred to as “two numbers whose sum is 10,” but as “two parts of 10 

that are to be found.” What is the psychological and notational difference between 

these two ways of describing the numbers?] 

13.5 Endnotes 

1. The discussion of the study of science in Medieval universities is based 

partly on the book by David C. Lindberg, The Beginnings of Western Science 

(University of Chicago Press, 1992). 

2. The quotation from Dante’s Divine Comedy is from the Harvard Classic 

Edition (Collier, New York, 1909). 

3. Richer’s comments on Gerbert are quoted by Harriet Pratt Lattin in The 

Letters of Gerbert (Columbia University Press, New York, 1961), p. 46. 

4. Gerbert’s remark on Boethius’ formula for the area of a triangle can be found 

in The Letters of Gerbert, cited above. 

5. The section on the Practica geometriae is based on the translation and 

annotation of this work by Frederick A. Homann, S. J. (Marquette University 

Press, Milwaukee, 1991). 
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6. The problems quoted from the Liber abaci are taken from the source book by 

John Fauvel and J. J. Gray, The History of Mathematics: A Reader (Macmil¬ 

lan Press, New York, 1987), pp. 241-243. 

7. The discussion of the Liber quadratorum is based on the recent annotated 

translation by L.E. Sigler, Academic Press, New York, 1987. 

8. The discussion of Bradwardine’s use of proportion is based on De propor- 

tionibus proportionum by Oresme, translated by Edward Grant (University of 

Wisconsin Press, Madison, 1966). The quotation from Bradwardine occurs 

in a footnote on p. 18. 

9. The discussion of Oresme’s Questions on Euclid’s Elements is based on 

Nicole Oresme and the Medieval Geometry of Qualities and Motions, edited 

with translation and commentary by Marshall Clagett (University of Wis¬ 

consin Press, 1968), pp. 527-545. 





Chapter 14 

The Renaissance 

The term Renaissance is cultural rather than chronological. The Renaissance began 

in Italy in the fifteenth century and spread northward over the next few centuries. 

The advance of science and scientific method, accompanied by the fragmentation 

of the Christian Church, led to a complete change in the world-view of educated 

people by the year 1700. This 300-year period saw an astonishing growth in 

science, paralleled by a rapid growth in mathematics. Although many details must 

necessarily be left out, we shall sample as much of this exciting period as space 

permits. There are three main themes that we shall be following: (1) the continued 

development of algebra, through the solution of the cubic and quartic equations; 

(2) new ways of computing products, made necessary by the high precision of 

the trigonometric tables used in astronomy; and (3) the beginning of projective 
geometry. 

14.1 Algebra and Trigonometry 

14.1.1 Regiomontanus 

The work of translating the Greek and Arabic mathematical works took several 

centuries to complete. One of the last to work on this project was Johann Muller 

of KOnigsberg (1436-1476), better known by his Latin name of Regiomontanus, a 

translation of Konigsberg (King’s Mountain). Although he died young, Regiomon¬ 

tanus made valuable contributions to astronomy, mathematics, and the construction 

of scientific measuring instruments. He studied in Leipzig while a teenager, then 

spent a decade in Vienna and the decade following in Italy and Hungary. The last 

5 years of his life were spent in NUrnberg. He is said to have died of an epidemic 

while in Rome as a consultant to the Pope on the reform of the calendar. 

Regiomontanus checked the data in copies of Ptolemy’s Almagest and made 

new observations with his own instruments. He laid down a challenge to astron¬ 

omy, remarking that further improvement in theoretical astronomy, especially the 

theory of planetary motion, would require more accurate measuring instruments. 

303 
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Figure 14.1: Triangle problem from Regiomontanus. 

He established his own printing press in NUmberg, so that he could publish his 

works. These works included several treatises on pure mathematics. He estab¬ 

lished trigonometry as an independent branch of mathematics rather than a tool in 

astronomy. In doing so, having considerable contact with right triangles and the 

Pythagorean theorem, he was frequently called upon to solve quadratic equations. 

For example, he considered the problem of solving a triangle given one side, the 

altitude to that side, and the ratio of the other two sides. Suppose the unknown 

sides are a and b = ra, where r is the ratio of the sides; suppose also that the 

known side is c, and it is divided into parts x and y by the known altitude h. Then 

we have the following relations (see Fig. 14.1): 

ra — b 

x + y 

0, 

c, 
which leads to the general biquadratic equation for a, 

2\2 (l-r2) 
4c2 

-a4 — 
1F r \ 9 la 9 

—-— )a2 + -c2 4- hr — 0. 

Regiomontanus solved such equations rhetorically, as Al-Khwarizmi had done. 

The main results we now know as plane and spherical trigonometry are in his 

book De Triangulis Omnimodis, although not exactly in the language we now use. 

For example (Book II, Theorem 1): In every rectilinear triangle the ratio of one 

side to another side [equals) that of the right sine of the angle opposite one of 

the sides to the right sine of the angle opposite the other side. We know this 

fact as the law of sines for plane triangles. His proof, however, is different from 

ours, because, while we think of the sine as the ratio of the opposite side to the 

hypotenuse in a right triangle, Regiomontanus thought of it as half the chord of 

twice the arc. In particular the value of the sine depended on the size of the circle, 
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and Regiomontanus was careful to say that sines could be compared only in circles 

of the same size. One important difference between Regiomontanus’ trigonometry 

and ours is his exclusive use of sines rather than cosines and tangents. In fact it is 

rather intriguing that De Triangulis, which was begun in 1462, does not mention 

the tangent function, since it is known that Regiomontanus was using the tangent 

only 2 years later. Of course any one trigonometric function will suffice for solving 

triangles. 

Regiomontanus states all of his theorems in words, never once writing out 

anything that looks like an equation. His proofs seem to indicate that he had a 

sense of humor. For instance, Theorem 6 of Book II states that if the three angles 

of a triangle are known, the ratios of its sides can be found. As proof of this fact 

Regiomontanus says, “This theorem presents no difficulty unless Theorem 1 above 

was carelessly passed over... 

Although he never used the cosine directly, Regiomontanus used an equivalent 

function called the versed sine (which is the outermost of the two portions of a 

radius cut off by a sine and can be thought of as 1 minus the cosine). Using this 

function he was the first to state the law of cosines for spherical triangles. In a 

spherical triangle, that is, the figure formed by three great circles on a sphere, both 

angles and sides are measured as arcs (since the sides are arcs). The law is stated 

by Regiomontanus as follows (Book V, Theorem 2): 

In every spherical triangle that is constructed from the arcs of great 

circles, the ratio of the versed sine of any angle to the difference of two 

versed sines, of which one is the versed sine of the side subtending 

this angle while the other is the versed sine of the difference of the 

two arcs including this angle, is as the ratio of the square of the whole 

right sine [that is, the square of the radius] to the rectangular product 

of the sines of the arcs placed around the mentioned angle. 

If the triangle has sides a, b, and c, and the angle opposite side a is a, this fact 

can be expressed as the trigonometric equation 

R(1 — cos a) R2 

R( 1 — cos a) — R( 1 — cos(b — c)) Rsinb ■ jRsinc’ 

which easily reduces to 

cos a = cos b cos c + sin b sin c cos a. 

This is the spherical law of cosines as taught nowadays. 

14.1.2 Chuquet 

The French BibliothSque Nationale is in possession of the original manuscript of 

a comprehensive mathematical treatise written at Lyons in 1484 by one Nicolas 

Chuquet. Little is known about the author, except that he describes himself as a 

Parisian and a man possessing the degree of Bachelor of Medicine. The treatise 
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consists of four parts: a treatise on arithmetic and algebra called Triparty en la 

Science des Nombres, a book of problems to illustrate and accompany the principles 

of the Triparty, a book on geometrical mensuration, and a book of commercial 

arithmetic. The last two are applications of the principles in the first book. 

Algebra in the Triparty 

There are several new things in the Triparty. One is a superscript notation sim¬ 

ilar to the modem notation for the powers of the unknown in an equation. The 

unknown itself is called the premier or “first.” Algebra in general is called the 

rigle des premiers or “rule of firsts.” Chuquet listed the first 20 powers of 2 and 

pointed out that when two such numbers are multiplied their indices are added. 

Thus he had a clear idea of the laws of integer exponents. A second innovation 

in the Triparty is the free use of negative numbers as coefficients, solutions, and 

exponents. Still another innovation is the use of some symbolic abbreviations. 

For example, the square root is denoted R2 (R for the Latin Radix, or perhaps 

the French Racine). The equation we would write as 3x2 + 12 = 9x was writ¬ 

ten .3.2 p. 12. egaulx a .9.1. Chuquet called this equation impossible, since its 

solution would involve taking the square root of —63. 

Chuquet gave an interesting way of getting rational approximations to irrational 

square roots, which he called the rule of intermediate numbers. For example, 

knowing that the square root of 6 is between | and §, he adds the numerators and 

denominators to obtain a number in between these two, that is, As this number 

is too small, he pairs it with | again, getting y, which is still too small. The next 

approximation is y, which is just slightly too small. Then yy is a bit too large, 

so that the next step is i+T, that is, Chuquet carries on with this process 

until he reaches the approximation y§§ = 2.4494949..., whereas the actual root 

is 2.4494897.... 

Chuquet’s approach to algebra and its application can be gathered from one of 

the illustrative problems in the second part (Problem 35). This problem tells of a 

merchant who buys 15 pieces of cloth, spending a total of 160 ecus. Some of the 

pieces cost 11 ecus each, and the others 13 ecus. How many were bought at each 

price? 

If x is the number bought at 11 ecus apiece, this problem leads to the equation 

llx + 13(15 — x) = 160. Since the solution is x = 17^, this means the merchant 

bought —2y pieces at 13 ecus. How does one set about buying a negative number 

of pieces of cloth? Chuquet said that these 2\ pieces were bought on credit! 

Luca Pacioli 

The progress of algebra was not steadily upward. Written at almost the same time 

as Chuquet’s Triparty was a work called the Summa de Arithmetica, Geometrica, 

Proportioni et Proportionalita by Luca Pacioli (or Paciuolo) (1445-1517). Since 

Chuquet’s work was not printed until the nineteenth century, Pacioli’s work is 

believed to be the first printed work on algebra. In comparison with the Triparty, 
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however, the Summa seems less original. The steps that Chuquet had taken toward 

an efficient way of writing a polynomial in an unknown were lacking in the Summa, 

except for the use of p for plus and m for minus. Other than that, Pacioli has 

only a few abbreviations, such as co for cos a, meaning thing (the unknown), ce 

for censo (the square of the unknown), and ce for cequitur (equals). Despite its 

inferiority to the Triparty, the Summa was much the more influential of the two 

books, because it was printed. It is referred to by the Italian algebraists of the 

early sixteenth century as a basic source. 

14.1.3 Solution of Cubic and Quartic Equations 

In Europe algebra was confined to linear and quadratic equations for many cen¬ 

turies, whereas the Chinese and Japanese had not hesitated to attack equations of 

any degree. The difference in the two approaches is a result of different ideas 

of what constitutes a solution. This distinction is easy to make nowadays: the 

European mathematicians were seeking an exact solution using only arithmetic 

operations and root extractions, what is called solution by radicals. 

Our last visit with cubic equations (except for one equation considered by 

Leonardo of Pisa) was the discussion of the geometric solution by Omar Khayyam. 

At that time we remarked that, although the solution is graphically correct, being 

presented as the intersection of a circle and an hyperbola, any attempt at an alge¬ 

braic solution of the corresponding set of two simultaneous equations describing 

the two curves merely leads back to the original cubic equation. This fact was 

fully appreciated by mathematicians at the time, and the algebraic solution of the 

cubic was regarded as impossible or at least very difficult. The Italian algebraists 

of the early sixteenth century brought a change in this way of thinking. 

Scipione del Ferro (1465-1525) 

The credit for the discovery of a method of solving (certain) cubic equations 

belongs rightly to a Professor (Lector) at the University of Bologna, Scipione 

del Ferro, who discovered, around the year 1500, how to solve equations of the 

type “cube plus things equal number,” what we would phrase as x3 + px = q, 

where p and q are positive numbers. He communicated this discovery under an 

oath of secrecy to his son-in-law A. Nave and to another mathematician named 

Antonio Maria Fior. Fior used this knowledge to build his own academic reputation 

by challenging others to contests, which of course he would win because of the 

method he learned from del Ferro. 

NiccolO Tartaglia (1500-1557) 

Fior overreached himself in 1535, when he challenged Niccolb Fontana of Brescia, 

known as Tartaglia (the Stammerer) because a wound he received as a child when 

the French overran Brescia in 1512 left him with a speech impediment. Fior 

challenged Tartaglia to solve a set of thirty problems, among which were finding a 
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number which yields 6 when its cube root is added to it, and finding where to cut 

a tree 12 braceia high in such a way that the part left standing will be the cube 

root of the part cut off at the top. What Fior had not counted on is that much of 

the difficulty of a mathematical problem lies in not knowing whether a solution 

exists. Once it is known that a problem is solvable, it often happens that many 

people are able to discover independent proofs of it. Tartaglia discovered how to 

solve the equation and so won the contest. 

Gerolamo Cardano (1501-1576) 

One of the many eccentric creative geniuses of the time in Italy was a young 

man whose abilities had brought him the office of Rector of the University of 

Padua at the age of 25. This man, Gerolamo Cardano (Fig. 14.2), was writing 

a book on mathematics in 1535 when he heard of Tartaglia’s victory over Fior. 

He naturally wished to include the secret of the cubic in his book, and he wrote 

asking permission, which Tartaglia at first refused, hoping to work out all the 

details of all cases of the cubic and write a treatise himself. Algebra had taken 

a step backward from the time of Chuquet, in that all terms had to be positive. 

There were therefore a total of thirteen possible types of cubic equations, each of 

which required its own method of solution. In 1539 Tartaglia, according to his 

own account, confided the secret of one kind of cubic to Cardano after Cardano 

swore a solemn oath never to publish them without permission and gave Tartaglia 

a letter of introduction to the Marchese of Vigevano. Tartaglia revealed a rhyme 

by which he had memorized the procedure. 

The verses Tartaglia had memorized say, in modem language, that to solve 

the problem x3 + px = q, one should look for two numbers u and v satisfying 

u — v = q, uv = (p/3)3. The problem of finding u and v is that of finding two 

numbers given their difference and their product, and of course, that is merely a 

matter of solving a quadratic equation, a problem that had already been completely 

solved. Once this quadratic has been solved, the solution of the original cubic is 

X — y/u — y/v. 

To see how this method works in a particular example, consider the equation 

x3 + l‘32x = 1267. Following Tartaglia’s method, we need to find numbers u 

and v such that u — v = 1267 and uv = (-Np)3 = (44)3 = 85,184. Follow¬ 

ing the venerable procedure for finding two such numbers, we recall that u + 

v = y/(u - v)2 + 4uv = y/(1267)2 + 4 • (18,184) = ^/l, 605, 289 + 340, 736 = 

yT, 946,025 = 1395. Now that we have both u — v and u + v, it is easy to see 
that u = 1267+139° =1331 and v = 139o~126' — 64. The solution is therefore 

x = \/l331 — \/64 = 11 — 4 = 7. This answer can then easily be checked. 

Tartaglia did not claim to have given Cardano any proof that this procedure 

works. It was left to Cardano himself to find the demonstration. Cardano kept 

his promise not to publish this result until 1545. However, as Tartaglia delayed 

his own publication, and in the meantime Cardano had discovered the solution of 

other cases of the cubic himself and had also heard that del Ferro had priority 

anyway, he published the result in his Ars Magna (Great Art), giving full credit 
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Figure 14.2: Gerolamo Cardano, from his Arithmetic. Stock Montage, Inc. 
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to Tartaglia. Tartaglia was furious, and started a bitter controversy over Cardano’s 

alleged breach of faith. 
Cardano’s Ars Magna contains a very thorough discussion of the thirteen kinds 

of cubic equations. Some of them yield very easily to a recipe like the one just 

given. Others cause trouble in some cases. For example, consider the case x3 = 

px + q. Cardano says (in words, not letters) that if (p/3)3 < (q/2)2, then the 

solution can be given by following a recipe (which we write anachronistically as 

a formula) 

The condition amounts to a diorismos for this problem. 

condition is not met, Cardano said, 

When this 

the solution of this problem can be found by the Aliza rule which is 

discussed in the book of geometrical problems. 

[The word Aliza is mysterious. Prof. J. F. Porto da Silveira has said (in an e- 

mail message to the author) that the Italian historian of mathematics Gino Loria 

(1862-1954) claimed the word was an Arabic word meaning difficult.] 

Chapter XXV gives some rules for dealing with this “irreducible” case of the 

cubic, as it later came to be called. The rules in this chapter are, as Cardano 

said, not “general” since they do not work for all possible data. He considers the 

examples of the equations x3 = 16.x + 21 and x3 = 4x -f 15. His technique is to 

add or subtract a constant on both sides so that a common factor can be divided out. 

In the first case, for example, adding 27 to both sides gives x3 + 27 = 16.t + 48, so 

that (x + 3)(x2 — 3x + 9) = 16(x + 3). Thus the equation becomes the quadratic 

x2 = 3x + 7, which everyone knew how to solve. In the second case, subtracting 

27 leads to x3 — 27 = 4.x — 12, so that x2 + 3.x + 9 = 4, which to Cardano was 

absurd. Cardano had clearly wanted to solve all cubic equations, and he did not 

give up easily in the face of such problems. Indeed, he was the first to consider 

seriously the possibility of roots for quadratic equations ax2 + 6x + c = 0 when the 

discriminant b2 — 4ac is negative. In the Ars Magna he considers the problem of 

finding two numbers whose sum is 10 and whose product is 40. This is a quadratic 

equation problem that does not satisfy the required diorismos that the discriminant 

be nonnegative. Following the usual recipe given that x + y = 10, and xy = 40, 

to find x — y, one must write x — y = yj(x + y)2 — 4xy = \/—60 = —15, 

and so Cardano is willing to speculate that the two numbers are 5 + f—lb and 

5 — y/—15. After exploring the geometric ramifications of this idea, he concludes 

that, “this final point is... as subtle as it is useless.” 

As Cardano points out elsewhere, the technique for deciding what to add in 

order to solve the equation x3 = px + q is equivalent to solving the equation 

x3 + q = px. Now this may actually be easier psychologically, in that one may be 

able to guess a solution to the second equation but not to the first. As a general 

method of solving this case of the cubic, however, it is circular. 
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Ludovico Ferrari (1522-1565) 

Cardano’s student Ludovico Ferrari worked with him in the solution of the cubic, 

and between them they had soon found a way of solving certain fourth-degree 

equations. Thus armed, they did not shrink from combat with Tartaglia. Once 

again Tartaglia found himself challenged with a set of 30 problems, among which 

were some algebraic problems of a new kind, such as Number 17, Divide 8 into 

two parts such that the product times the difference of the parts shall be as large 

as possible, proving everything, and Number 21, Find six quantities in geometric 

proportion such that the double of the second plus the triple of the third equals 

the square root of the sixth. Others were philosophical, such as Number 22, which 

asks for an exposition of a passage in Plato’s Timaeus, and Number 30: Is unity 

a number?. 

Tartaglia replied that in problem Number 17 the required two parts were 4 + 

J§\ and 4 — and that the solution to Number 21 was the series with ratio 

\/47 + \/l2 + y47 - s/n, saying that there was no point in writing out all six 

terms, since no skill was required to do that. He objected to the philosophical 

problem Number 22 on the ground that it was not a mathematical question. 

Ferrari’s riposte was scornful. He pointed out that Tartaglia had neglected the 

two most important words in Problem 17: proving everything. 

Ferrari’s solution of the quartic was included near the end of Cardano’s Ars 

Magna. Counting cases as for the cubic, one finds a total of 20 possibilities. The 

principle in most cases is the same, however. The idea is to make a perfect square 

in x2 equal to a perfect square in x by adding the same expression to both sides. 

For example, Cardano gives the example 

60x = x4 + 6.x2 + 36. 

It is necessary to add to both sides an expression rx2 + s to make both sides 

squares, that is, so that both sides of 

rx2 + 60.x + s = x4 + (6 + r)x2 + (36 + s) 

are perfect squares. Now the condition for this to happen is well known: ax2 + 

bx + c is a perfect square if and only if b2 — 4ac = 0. Hence we need to have 

simultaneously 

3600 - 4sr = 0, (6 + r)2 - 4(36 + s) = 0. 

Solving the first of these equations for s in terms of r, substituting in the second, 

and clearing the denominator leads to the equation 

r3 + 12r2 = 108r + 3600. 

This is a cubic equation called the resolvent cubic. Once it is solved, the original 

quartic breaks into two quadratic equations upon taking square roots and adding 

an ambiguous sign. 
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Significance of the Solution of the Cubic 

The mathematicians involved in the solution of the general cubic equation had 

reason to be proud of themselves. To find a numerical process that solves a cubic 

equation exactly was genuinely new, something that had escaped both the ancient 

Greeks and the Islamic scholars. This work raised several important issues that 

should be mentioned. 

1. The problem is not a practical one. We have already seen that even solving 

quadratic equations is of little practical use except in astronomy. 

2. The Cardano recipe for solving an equation sometimes gives the solution 

in a rather strange form. For example, Cardano says that the solution of 

x3 + 6x = 20 is yTToITTo - y/^108 —~10. This is correct, but would 

you know that this number is actually 2? 

3. The procedure does not always work. For example, the equation x3 + 6 = lx 

has to be solved by guessing a number that can be added to both sides so as 

to produce a common factor that can be canceled out. The number in this 

case is 21, but there is no algorithm for finding such a number. 

4. For equations of the type x3 + 6 = 7x the algebraic procedures for finding x 

involve square roots of negative numbers. The search for an algebraic pro¬ 

cedure using only real numbers to solve this case of the cubic continued for 

some three hundred years, until finally it was shown that no such procedure 

can exist. 

5. It was a significant fact that knowledge of algebra increased two steps at 

a time. After the earliest days when linear and quadratic equations could 

be solved the next leap is the one we have just seen, where cubic and 

quartic equations can be solved. Likewise, it was a significant fact proved 

by Pappus that the three- and four-line loci were all conic sections, and, as 

Omar Khayyam had shown, conic sections suffice to solve cubic equations 

(and by implication quartic equations also, although Omar Khayyam did 

not know this). The parallel here could not fail to impress a well-read 

mathematician, and we shall see that Descartes noticed this fact. 

6. The solution of cubic and quartic equations was a good piece of mathematics 

in that it settled an interesting open question and raised others of equal 

interest, while pointing out a possible method of attack on the new questions. 

The most natural of these is: How does one solve the fifth-degree equation? 

Two and a half centuries were to pass before this question was answered 

partially, and a full three centuries before an actual solution of the fifth- 

degree equation was found. 
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Rafael Bombelli (1526-1572) 

In comparison with the preceding centuries the level of mathematical activity in 

Italy during the first half of the sixteenth century was astonishing. In addition to 

those already mentioned we must also mention an engineer in the service an Italian 

nobleman. This engineer, Rafael Bombelli, is the author of a treatise on algebra 

which appeared in 1572 (it was written about 1560). In the introduction to this 

treatise we find the first mention of Diophantus in the modem era. Bombelli says 

that, while all authorities are agreed that the Arabs invented algebra, he, having 

been shown the work of Diophantus, credits the actual invention to the latter. 

Bombelli attacked the irreducible case of the cubic, which as we have seen, leads 

to the cube root of a complex number. Since imaginary numbers had been rejected 

in connection with quadratic equations, and the modem symbolism had not yet 

been invented, Bombelli was forced to build from the ground up. He invented 

the name “plus of minus” to denote a square root of —1 and “minus of minus” 

for its negative. He did not think of these two concepts as different numbers, 

but rather as the same number being added in the first case and subtracted in the 

second. What is most important is that he realized what rules must apply to them 

in computation: plus of minus times plus of minus makes minus and minus of 

minus times minus of minus makes minus, while plus of minus times minus of 

minus makes plus. Such were the first attempts to make sense of these numbers. 

Bombelli had no systematic way of taking the cube root of a complex number. In 

considering the equation x3 = 15.t + 4, he found by applying the formula that 

x = \/2 + >/~121 + \/2 — y/—121. In this case, however, Bombelli was able to 
work backward, since he knew in advance that one root is 4; the problem was to 

make the formula say “4.” Bombelli had the idea that the two cube roots must 

consist of real numbers together with his “plus of minus” or “minus of minus.” 

Since the imaginary parts in the sum of the two cube roots must cancel out and 

the real parts must add up to 4, it seems obvious that the real parts of the cube 

roots must be 2. In our terms, the cube roots must be 2 ±.t\/—T for some x. Then 

since the cube of the cube roots must be 2 d= 11\/—T (what Bombelli called 2 plus 

11 times “plus of minus”), it is clear that the cube roots must be 2 plus “plus of 

minus” and 2 minus “plus of minus,” that is, 2 ± \/—'1. As a way of solving the 

equation, this is circular, but it does allow the formula to make sense even in the 

irreducible case. 

Notation 

All original algebra treatises written up to and including the treatise of Bombelli 

are very tiresome for the modern student, who is familiar with symbolic notation. 

For that reason we have allowed ourselves the convenience of modern notation 

when doing so will not distort the thought process involved. In the years between 

1575 and 1650 several innovations in notation were introduced that make treatises 

written since that time appear essentially modem. The symbols + and — were 

originally used in bookkeeping in warehouses to indicate excess and deficiencies; 

they first appeared in a German treatise on commercial arithmetic in 1489, but 
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were not widely used in the rest of Europe for another century. The sign for 

equality was introduced by a Welsh medical doctor, physician to the short-lived 

Edward VI, named Robert Recorde (1510-1558). His symbol was a very long pair 

of parallel lines, because, as he said, “noe 2. thynges, can be moare equalle.” The 

use of abbreviations for the various powers of the unknown in an equation was 

eventually recovered from Diophantus, but there was a further step that needed to 

be taken before algebra became a mathematical subject on a par with geometry. 

Our discussion of sixteenth-century algebra will conclude with that step. 

Francois Vifcte (1540-1603) 

Francis Vifcte, a lawyer who worked as tutor in a wealthy family and later became 

an advisor to Henri de Navarre (the future king Henri IV), found time to study 

Diophantus and to introduce his own ideas into algebra. Vi£te can be credited with 

several crucial advances in the subject. In his book Artis Analyticae Praxis (The 

Practice of the Analytic Art) he begins by giving the rules for powers of binomials 

(in words). For example, he describes the fifth power of a binomial as, “the fifth 

power of the first [term], plus the product of the fourth power of the first and five 

times the second,... .” 
As this quotation shows, Vifcte appears to be following the tedious route of 

writing everything out in words. However, the introduction is followed by five 

books of “zetetica” [from the Greek word zetein (£r}T£Lv), meaning seek]. The 

mention of “roots” in connection with the binomial expansions was not accidental. 

Vi£te studied the relation between roots and coefficients in general equations, 

though he was somewhat handicapped in this enterprise, since he did not recognize 

the negative and imaginary roots. His approach was to see how to find the roots 

given various information about them, for example (Zetetic XV of the second 

book), he says that, given the product of the roots and the difference between their 

cubes, the roots will be found. 

The five books of zetetics are followed by “Treatises on the Understanding 

and Amendment of Equations.” These treatises, despite such awkward neologisms 

as “zetetics,” “plasmatic modification,” and “syncrisis,” contain several very im¬ 

portant advances in algebra. The first is a general discussion of the structure of 

equations. By using vowels to represent unknowns and consonants to represent 

data for a problem, Vi£te finally achieved what was lacking in earlier treatises: 

a convenient way of talking about general data without having to give specific 

examples. His consonants could be thought of as representing numbers that would 

be known in any particular application of a process, but were left unspecified 

for purposes of describing the process itself. His first example was the equation 

A2 + AB = Z2, in other words, a standard quadratic equation. According to Vi£te 

these three letters are associated with three numbers in direct proportion, Z being 

the middle, B the difference between the extremes, and A the smallest number. In 

our terms, this says that Z = Ar and B = Ar2 — A. Thus the general problem 

reduces to finding the smallest of three numbers A, Ar, Ar2 given the middle 

value and the difference of the largest and smallest. Vi£te had already shown how 

to do that in his books of zetetics. 
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This kind of analysis showed Vifcte the true relation between the coefficients 

and the roots. For example, he knew that in the equation x 3 — Qx2 + 11.x = 6, 

the sum and product of the roots must be 6 and the sum of the products taken 

two at a time must be 11. This observation still did not enable him to solve the 

general cubic equation, but he did study the problem geometrically and show that 

any cubic could be solved provided one could solve two of the classical problems 

of antiquity: constructing two mean proportionals between two given lines and 

trisecting any angle. As he concluded at the end of his geometric chapter, “It is 

very worthwhile to note this.” 

14.2 Prosthapheresis and Logarithms 

The increased accuracy of astronomical instruments, among other applications, led 

to a need to multiply numbers having a large number of digits. Now it is well- 

known that the amount of labor involved in multiplying two numbers increases as 

the product of the number of digits, while the labor of adding increases according 

to the number of digits in the smaller number. Thus, multiplying two 15-digit 

numbers requires over 200 one-digit multiplications, while adding the two numbers 

requires only 15 such operations (not including carrying). Obviously multiplication 

is going to be more error-prone as well. Hence astronomical measurements and the 

solution of triangles with high precision could be greatly facilitated if the operation 

of multiplication could be simplified. Two methods of achieving this simplification 

were invented in the late sixteenth century, and we shall now examine them. 

14.2.1 Prosthapheresis 

Like a steam-driven sawmill that feeds its engines with its own wood shavings, 

trigonometry provided the first method of simplifying its own computations. The 

key turned out to be in the tables of sines and cosines that were causing the 

problem in the first place. The process was called prosthapheresis, from two 

Greek words meaning addition and subtraction. There are hints of this process 

in several sixteenth-century works, but we shall quote just one example. In his 

Trigonometria, first published in Heidelberg in 1595, the theologian and math¬ 

ematician Bartholomeus Pitiscus (1561-1613), posed the following problem: To 

solve the proportion in which the first term is the radius, while the second and 

third terms are sines, avoiding multiplication and division. The problem here is 

to find the fourth proportional x, satisfying r : a = b : x, where r is the radius 

of the circle, and a and b are two sines (half-chords) in the circle. We can see 

immediately that x = oL/r, but, as Pitiscus says, the idea is to avoid the multi¬ 

plication and division, since in the trigonometric tables of the time a and b might 

easily have seven or eight digits each. 

The key to prosthapheresis is the well-known formula 

. sin(o: + /3) + sin(a — (5) 
sin a cos p = 

2 
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This formula is applied as follows: If you have to multiply two large numbers, 

regard one of them as the sine of an angle, the other as the cosine of a second 

angle. (Since Pitiscus had only tables of sines, he had to use the complement of 

the angle having the second number as a sine.) Add the angles and take the sine 

of their sum to obtain the first term; then subtract the angles and take the sine 

of their difference to obtain a second term. Finally divide the sum of the two 

terms by 2 to obtain the desired product. To take a very simple example, suppose 

we wish to multiply 155 by 36. A table of trigonometric functions shows that 

sin 8° 55' = 0.15500 and cos 68° 54' = 0.36000. Hence 

r sin 77° 49' + sin(-59° 59') 97748 - 86588 
36 x 155 = 105-—--- =---= 5580. 

jU £ 

In general some significant figures will be lost in this kind of multiplication. 

For large numbers this procedure saves labor, since multiplying even two 7-digit 

numbers would tax the patience of most people nowadays. A further advantage 

is that prosthapheresis is less error-prone than multiplication. Its advantages were 

known to the Danish astronomer Tycho Brahe (1546-1601), who used it in the 

astronomical computations connected with the extremely precise observations he 

made at his observatory during the latter part of the sixteenth century. 

14.2.2 Logarithms 

The problem of simplifying laborious multiplications, divisions, root extractions, 

etc., was being attacked at the same time in another part of the world and from 

another point of view. The connection between geometric and arithmetic proportion 

had been noticed earlier by Chuquet, but the practical application of this fact had 

never been worked out. The Scottish laird John Napier, Baron of Murchiston 

(1550-1617) tried to clarify this connection and apply it. His work consisted 

of two parts, a theoretical part based on a continuous geometric model, and a 

computational part, involving a discrete (tabular) approximation of the continuous 

model. The computational part was published in 1614. However, Napier hesitated 

to publish his explanation of the theoretical foundation. Only in 1619, 2 years 

after his death, did his son publish an English translation of Napier’s theoretical 

work under the title Mirifici logarithmorum canonis descriptio (A Description of 

the Marvelous Rule of Logarithms). The word logarithm means ratio number, and 

it was from the concept of ratios (geometric progressions) that Napier proceeded. 

The Theoretical Model 

In order to explain his ideas Napier resorted to the concept of moving points. He 

imagined one point P moving along a straight line from a point T toward a point 

S with decreasing velocity such that the ratio of the distances from the point P 

to S at two different times depends only on the difference in the times. (Actually 

he called the line ending at S a sine and imagined it shrinking from its initial size 

TS, which he called the radius.) A second point is imagined as moving along a 
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T A B C D S 

o a b c d 

Figure 14.3: Geometric basis of logarithms 

second line at a constant velocity equal to that with which the first point began. 

These two motions can be clarified by considering Fig. 14.3. 

The first point sets out from T at the same time and with the same speed with 

which the second point sets out from o. The first point, however slows down, 

while the second point continues to move at constant speed. The figure shows the 

locations reached at various times by the two points: When the first point is at A, 

the second is at a, when the first point is at B, the second is at b, etc. The point 

moving with decreasing velocity requires a certain amount of time to move from 

T to A, then the same amount of time to move from A to B, from B to C, from 

C to D, etc., and TS : AS = AS : BS = BS : CS = CS : DS, etc. In the same 

amount of time required for this first point to move from T to A the second point 

moves from o to a, from a to b, etc. 

The first point will never reach S, since it keeps slowing down, and its velocity 

at S would be zero. The second point will travel indefinitely far, given enough 

time. Because the points are in correspondence, the division relation that exists 

between two positions in the first case is mirrored by a subtractive relation in the 

corresponding positions in the second case. Thus this diagram essentially changes 

division into subtraction, and of course multiplication into addition. The top scale 

in Fig. 14.3 resembles a slide rule, and this resemblance is not accidental: a slide 

rule is merely an analog computer that incorporates a table of logarithms. 

Napier’s definition of the logarithm can be stated in the modem notation of 

functions by writing log(AS') = oa, log (BS) = ob, etc., in other words, the 

logarithm increases as the “sine” decreases. These considerations contain the 

essential idea of logarithms. The quantity Napier defined is not the logarithm as 

we know it today. If points T, A, and P correspond to points o, a, and p, then 

where k =-. 
TS 

Computational Considerations 

The geometric model just discussed is theoretically perfect, but of course one 

cannot put the points on a line into a table of numbers. It is necessary to construct 

the table from a finite set of points; and these points, when converted into numbers, 

must be rounded off. Napier was very careful to analyze the maximum errors that 
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could arise in constructing such a table. Referring again to Fig. 14.3, he showed 

that oa, which is the logarithm of AS, satisfies 

(These inequalities are simple to prove, since the point describing oa has a velocity 

larger than the velocity of the point describing TA but less than TS/AS times 

the velocity of that point.) Thus the tabular value for the logarithm of AS can be 

taken as the average of the two extremes, that is, TA[l + (T A/2 AS)], and the 

relative error will be very small when TA is small. 

Napier’s death at the age of 61 prevented him from making some improve¬ 

ments in his system, which are sketched in an appendix to his treatise. These 

improvements consist of scaling in such a way that the logarithm of 1 is 0 and 

the logarithm of 10 is 1, which is the basic idea of what we now call common 

logarithms. These further improvements to the theory of logarithms were made by 

Professor Henry Briggs (1561-1630), who was in contact with Napier for the last 

two years of Napier’s life and wrote a commentary on the appendix to Napier’s 

treatise. As a consequence, logarithms to base 10 came to be known as Brigssian 

logarithms. 

14.3 Projective Geometry 

In art the fifteenth century was a period of great innovation in which a large number 

of beautiful paintings were produced. In an effort to give the illusion of depth 

in two-dimensional representations some artists looked at geometry from a new 

point of view, studying the projection of two- and three-dimensional shapes in two 

dimensions to see what properties were preserved and how others were changed. A 

description of such a procedure (based partly on the work of his predecessors) was 

given by Leon Battista Alberti (1404-1472) in a treatise entitled Della pictura, 

published posthumously in 1511. 

The essence of the idea is that if the eye is thought of as being at the same 

height as a point P (Fig. 14.4) above a horizontal plane, parallel horizontal lines 

in that plane receding from the imagined point where the eye is located can be 

drawn as rays emanating from P, giving the illusion that P is infinitely distant. 

The application to art is obvious: Since the canvas can be thought of as a window 

through which the scene is viewed, if you want to draw parallel horizontal lines as 

they would appear through a window, you must draw them as if they all converged 

on the point P (the vanishing point). Thus a family of lines having one thing 

in common (passing through P) projects to a family having a different common 

property (parallelism). It is clear that lines remain lines under such a projection. 

However, perpendicular lines will not remain perpendicular, nor will circles remain 

circles. The later discovery of projective invariants built these rudimentary ideas 

into a useful and beautiful mathematical structure. 
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P 

14.4 Problems and Questions 

14.4.1 Problems in Renaissance Mathematics 

Exercise 14.1 Solve the triangle problem quoted from Regiomontanus with data 

h = 125, c — 250, r = .8165. 

Exercise 14.2 The triangle construction problem cited above in connection with 

Regiomontanus shows how to find the other two sides of a triangle given its base 

and altitude and the ratio of the two sides. Are there any restrictions on the data of 

this problem, or can it be solved given any three values of base, altitude, and side 

ratio? [Recall the Greek notion of diorismos, a discussion of the data allowable 

in a problem. What is the diorismos for this problem?] 

Exercise 14.3 Suppose you wish to build two ramps leaning against each other, 

and having their other ends 48 feet apart, with height 20 feet, in such a way that 

a weight of 100 kilograms on one ramp will exactly balance a weight of 200 

kilograms on the other when the weights are connected by a rope passing over the 

point where the ramps meet. How long should the ramps be? [Remember the law 

of the inclined plane from the last chapter.] 

Exercise 14.4 Use the spherical law of cosines to compute the number of degrees 

in a great circle from New York to Paris, given the following geographic infor¬ 

mation. New York lies at 41° N, 74° W and Paris lies at 49° N, 2° E. How far 

is it from New York to Paris, given that one degree of a great circle is about 69 

miles? [Let side a of the triangle be the great circle joining Paris and New York. 

Let sides b and c be the lines of longitude joining these two cities to the North 

Pole (90° N).] 

Exercise 14.5 Use Chuquef s method to find an approximation to >/E given that 
20 ^ ^ 23 
9 < 10- 

Exercise 14.6 Solve the equation x3 + 60.x = 992 using the recipe given by 

Tartaglia. 
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Exercise 14.7 How can you prove that \/\/l08 + 10 — \/\/l08 — 10 = 2? 

Exercise 14.8 Was Tartaglia correct in his solution of the problem of finding two 

numbers whose sum is 8 such that the product of the numbers multiplied by their 

difference is maximal? 

Exercise 14.9 Show that solving the equation x3 + q = px makes it possible to 

find a number r3 = pr-q that can be added to both sides of x3 = px + q, leading 

to the equation x3 + r3 = px + q + r3, which has x + r as a factor on both sides. 

Exercise 14.10 This exercise and the six following are intended to clarify certain 

facts that Cardano, Tartaglia, and the others saw only dimly. This extra insight is 

provided by modem algebraic notation. 

The general cubic equation 

Ax3 + Bx2 + Cx + D = 0, A + 0, 

is equivalent to a monic equation 

x3 + ax2 + bx -f c = 0, 

with a = B/A, b = C/A, c = D/A. The substitution x = y — (a/3), then reduces 

the problem of solving the original equation to the simpler problem of finding y 

such that 

y3+py + q = 0, (14.2) 

where p = b — (a2/3) and q = c — (ab/3) + (2a2/27). Considering the identity 

(u — v)3 + 3 uv(u — v) + (v3 — u3) = 0, 

we see that y = u — v will be a solution of Eq. 14.2 provided u and v can be 

chosen so that 
o o 

3 uv = p, v — u = q. 

In terms of the new variables z — v3 and w = u3, we thus need only find z and w, 

given that z — w = q and zw = p3 /27. Hence solving the general cubic equation 

requires four operations: (1) dividing by the leading coefficient; (2) substituting 

x = y — (a/3) and rewriting the equation in terms of y as y3 + py + q = 0; (3) 

solving the (quadratic) equation z — w = q, zw = p3/27; (4) taking the cube roots 

of z and w and setting x = y/w — yfz — (a/3). 

Follow this procedure to solve the equation 

1000.T3 - 6000t2 + 16,950.x - 19,944 = 0. 

Exercise 14.11 Show that the procedure of the preceding exercise leads to the 

general formula 
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for a solution of y3 -f py + q = 0. Apply this formula to the following equations: 

y3 + 84y — 279 = 0, y3 + by — 42 = 0, y3 — 7y — 6 = 0. Notice that the root 

produced is the same (3) for the first two cases; why then is the answer given in 

such a simple form for the first and such a complicated form for the second? Why 

does the formula fail for the third case? Find the solution(s) of the third equation 

by guessing. 

Exercise 14.12 Plot the graph of z = y3 + py + q for various values of p and 

q. Notice that if p > 0, this function is always increasing, hence has exactly 

one real zero, while if p < 0, it has a maximum at y = —(—p/3)1/2 and a 

minimum at y = +(— p/3)1/2. If the value of y3 + py + q is negative at the 

first of these values (case 1) or positive at the second value (case 2), then the 

equation still has only one real root. In the first case this condition amounts to 

— (—p/3)1/2] — p(—p/3)1/2 + q < 0. Since —p is positive, we can write 

—p = \fp* and rewrite this equation as —1(— p3/3)1/2 + (—p3/3)1/2 + q < 0 

or § < —\(—p3/3)1/2. Note that q must be negative if this condition is to hold, 

since the right-hand side of this last inequality is negative. For the second case we 

have similarly | > ^( — p3/3)1/2 > 0. The two cases can then be combined. The 

equation has precisely one real root if and only if (q2 /4) + (p3/27) > 0. (Note 

that this condition automatically holds if p > 0, and it holds when p = 0 if and 

only if q ^ 0.) Compare this result with the cases in the preceding problem. The 

expression (g2/4) + (p3/27) is called the discriminant of the cubic y3 +py + q = 0. 

In terms of the discriminant, when does the formula for solving the cubic work, 

and when does it break down? 

Exercise 14.13 In the preceding exercise we found a necessary and sufficient 

condition for the cubic equation y3 + py + q = 0 with real numbers p and q to 

have exactly one real root. A cubic equation can also have exactly two real roots; 

in that case one of the roots will be a double root. Show that in this case the 

discriminant equals zero, but the cubic formula continues to produce a solution of 

the equation. Does the formula “pick out” the single root or the double root? 

Exercise 14.14 Conclude from the preceding exercises that the cubic formula for 

equations with real coefficients breaks down if and only if the discriminant is 

negative, and this happens if and only if there are three distinct real roots. (If we 

think of the cubic formula as a genie that answers our request for a solution of the 

equation, the genie doesn’t have any way of choosing one root rather than another, 

so it has a nervous breakdown.) 

Exercise 14.15 We have just seen that the formula for solving a cubic equation 

with real coefficients and three real roots leads to the problem of finding the cube 

root of a complex number. Can this operation be reduced to algebraic operations 

that involve only real numbers? Consider, for example, the analogous problem of 

finding a complex number x -f iy whose square is a + ib, where x, p, a, b are all 

real. We need to solve the two equations 

x2 — y2 — a, 2 xy = b. 
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If b = 0, this is merely the problem of finding the square root of a real number, 

which we already know how to do (but the answer will be an imaginary number 

if a < 0). Hence assume b ^ 0, so that and y ^ 0 also. Solving the second 

equation for y in terms of x, and substituting into the first equation leads to the 

biquadratic equation x4 - ax2 - \b2 = 0, and hence we find that with a suitable 

choice of sign 

Thus the problem of taking the square root of a complex number reduces to taking 

square roots of nonnegative real numbers. 
Try the same procedure with cube roots, that is, try to solve simultaneously 

x3 — 3 xy2 = a, 3 x2y — y3 = b. 

What equation results when you eliminate one of the variables between these 

two equations? Remembering that the cubic formula requires you to solve these 

equations simultaneously in order to find the solution of a cubic equation having 

three real roots, can it truly be said that the cubic formula solves the problem in 

this case? Is it not rather a circular process? 

Exercise 14.16 If you know the polar form of complex numbers z = r cos 6 + 

zrsinfl, show that the problem of taking the cube root of a complex number is 

equivalent to simultaneously solving two of the classical problems of antiquity, 

namely the problem of two mean proportionals, and the problem of trisecting the 

angle. (Recall that Vifcte had mentioned this fact.) 

Exercise 14.17 Consider Vifete’s problem of finding three numbers in direct pro¬ 

portion given the middle number and the difference between the largest and small¬ 

est. Show that this problem amounts to finding x and y given ^Jxy and y — x. 

How do you solve such a problem? 

Exercise 14.18 Multiply 78,642 by 9753 using a five-place table of sines (use only 

the sine column of your trigonometric table). [There are two ways to proceed, since 

you can regard the number 9753 as either 0.97530 or as 0.09753. Do the problem 

both ways. Remember, you need to find angles a and [3 such that sin a = 0.78642 

and sin(90° — f3) = 0.97530. You then take the average of sin(o; + (3) and 

sin(cK — /3).\ Check your work with a calculator or by hand computation. 

Exercise 14.19 How can prosthapheresis be used to avoid division? 

14.4.2 Questions about Renaissance Mathematics 

Exercise 14.20 Why did Chuquet choose to interpret the negative amount of cloth 

bought as if it had been bought on credit? Would it not have been more logical to 

interpret it as a certain amount of cloth soldi Could the use of negative numbers 

be made consistent with Chuquet’s interpretation? 
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Exercise 14.21 List all 13 possible cubic equations, given that the coefficients 

must be positive, but the terms can be on either side of the equation. 

Exercise 14.22 If you were a teacher making up problems for your pupils to 

practice solving cubic equations, how would you construct examples for which the 

cube roots “come out even” as in the first example of Exercise 14.11, avoiding 

the messy case in the second example? [Hint: Look at the identity in u and v on 

which the solution is based.] 

Exercise 14.23 Summarize in your own words the meaning of the solution of the 

cubic equation. In what sense is the problem solved? What operations must one 

be able to perform in order to use the method? What restrictions on data are there? 

Exercise 14.24 Although complex numbers are now taught to high-school students 

in connection with the solution of quadratic equations, mathematicians were able to 

ignore them in that context at first. Why was this possible? Why did the solution 

of cubic equations force mathematicians to deal with square roots of negative 

numbers when quadratic equations had not done so? 

Exercise 14.25 Why is notation such an important component of mathematics? 

Is it true that “the medium is the message,” as the Canadian scholar Marshall 

McLuhan (1911-1980) was often quoted as saying? Does the style in which an 

idea is expressed change the idea? Consider this question in relation to the problem 

of solving an equation as stated nowadays and as stated in the sixteenth century. 

Exercise 14.26 As we saw, by the late sixteenth century two methods were avail¬ 

able for simplifying laborious multiplications and divisions by changing them into 

addition and subtraction. The first was prosthapheresis, based on the properties 

of the trigonometric functions. The second was logarithms, created on the basis 

of the theory of proportion, but, as we now know, essentially based on the laws 

of exponents. Are these two methods really different? If not, what connection is 

there between them? 

14.5 Endnotes 

1. The quotations from Regiomontanus are taken from the translation of De 

Triangulis Omnimodis by Barnabas Hughes (University of Wisconsin Press, 

Madison, 1967). 

2. The section on Chuquet is based largely on Mathematics from Manuscript to 

Print, 1300-1600, edited by Cynthia Hay (Oxford University Press 1988), 

especially the article by G. Flegg, “Nicolas Chuquet-an introduction,” pp. 

59-72. 

3. The discussion of Cardano’s Ars Magna is based on the translation by T. 

Richard Witmer (MIT Press, 1968). The quotation on the Aliza problem is 

on p. 103. 
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4. The discussion of the dispute between Tartaglia and Ferrari is based on 

the corresponding readings in The History of Mathematics: A Reader by J. 

Fauvel and J. J. Gray (Macmillan, New York, 1987). 

5. The discussion of the work of Vi£te is based on the English translation 

The Analytic Art (Kent State University Press, 1983). The quotation on the 

binomial expansion of the fifth power is on p. 41 of that book. 

6. The discussions of prosthapheresis and logarithms are based on the selections 

in A Source Book in Mathematics by David Eugene Smith (Dover Reprint, 

New York, 1959). 



Chapter 15 

The Calculus 

The watershed in the history of mathematics is the invention of the calculus. It 

synthesized nearly all the algebra and geometry that had come before and generated 

problems that led to most of the mathematics studied today. Although calculus is 

an amalgam of algebra and geometry, it soon developed results that were indis- 

pensible in other areas of mathematics. Even theories whose origins seem to be 

independent of all forms of geometry—combinatorics, for example—turn out to 

involve concepts such as generating functions, for which the calculus is essential. 

Elements of the calculus had existed from the earliest times in the form of 

infinitesimal methods in geometry, and such techniques were refined in the early 

seventeenth century. In this way the raw materials for the calculus were available 

by the middle of the seventeenth century; the invention of the calculus was more 

like focusing a camera than painting on a blank canvas. 

15.1 Analytic Geometry 

The idea of representing numbers by lines is a very old one, occurring even in 

Euclid’s books on number theory. The principle of using a line to represent a vari¬ 

able number, which associates geometry with algebra, can be seen in Apollonius’ 

Conics. It was the basis of Omar Khayyam’s solution of the cubic equation, and is 

explicit in the writings of Nicole of Oresme. As often happens when an idea gradu¬ 

ally becomes recognized, the idea for the final step occurred nearly simultaneously 

to two people. 

15.1.1 Pierre de Fermat 

The works of Diophantus and Pappus were among the favorite reading of a lawyer 

at Toulouse named Pierre de Fermat (1601-1665). Despite his busy life of public 

service, Fermat found time to study the works of these two authors and reflect on 

them. What he made of Diophantus will be discussed in the next chapter. Just now 

it is the influence of Pappus that is important, particularly the things Pappus wrote 

325 
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about loci. From Pappus’ description of the treatise of Apollonius on loci, Fermat 

attempted to reconstruct the results that this treatise must have contained. By 

the year 1630 Fermat had discovered most of the principles of analytic geometry. 

The important innovation, which Pappus had not known, was the concept of an 

equation. Where Pappus had spoken of loci, which are verbal descriptions of 

conditions that a point must satisfy, Fermat thought of equations, which most of 

the verbal descriptions really are. At the beginning of his book Ad locos pianos et 

solidos isagoge (.Introduction to Plane and Solid Loci) he describes the situation 

as follows: 

Whenever two unknown magnitudes appear in a final equation we have 

a locus, the extremity of one of the unknown magnitudes describing a 

straight line or a curve... 

It is desirable, in order to aid the concept of an equation, to let 

the two unknown magnitudes form an angle, which usually we would 

suppose to be a right angle... 

We see here some of the basic results still taught in analytic geometry today. 

Fermat followed the notation of Vi£te, using vowels to denote variables and conso¬ 

nants to denote constants. He describes the general equation of a line as da = be, 

where a and e stand for what we would call x and y. Fermat was careful to ob¬ 

serve the required physical dimensions in his equations by ensuring that every term 

contained the same number of letters. For the square of a quantity Fermat used 

the Roman numeral II to indicate the exponent. Thus he described the equation of 

the hyperbola as ae = z11. After showing how to obtain equations for the parabola 

and circle, Fermat says that he has been able in this way to reconstruct all of the 

propositions of the second book of Apollonius’ On Plane Loci. He concludes by 

stating a generalization of the two-line locus problem: Given the position of any 

number of lines; if from some definite point lines be drawn forming given angles 

with the given lines, and the sum of the squares of all the segments is equal to 

a given area, the point will describe a solid locus [conic section] of determined 

position. 

Fermat did not publish his discoveries on analytic geometry during his life¬ 

time, though they were circulated among scholars in manuscript form and finally 

published in 1679. 

15.1.2 Ren6 Descartes 

The person who is popularly credited with being the discoverer of analytic geometry 

was the philosopher Ren6 Descartes (1596-1650), one of the most influential 

thinkers of the modem era. He was educated in the Jesuit school at La Fl£che and 

at the university at Poitiers, where he studied law. Having obtained his law degree, 

he “drifted” for some time, serving in the army, traveling and studying. He was past 

forty when he wrote his philosophical treatise Discours de la m&thode, to which 

La g&om&trie was an appendix. However, many of the ideas contained in it had 

been written down as early as 1620, when he seems to have had a mystical flash 
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of insight, which he wrote down in a Latin work entitled Rules for the Guidance 

of Thought. 

It is in the appendix to his Discours, however, that the fundamental ideas of 

analytic geometry appear in detail. In the opening words of La g£om£trie we find 

the point of view from which Descartes regarded his work. He saw the difference 

between geometry and arithmetic not only as the contrast of the continuous and 

the discrete, but also in the more methodical principles of arithmetic as compared 

with geometry. Arithmetic consisted of just five operations, and all else depended 

on these basic concepts, whereas geometry had no such neat structure. Descartes 

intended to provide one. As he says, 

Any problem in geometry can easily be reduced to such terms that a 

knowledge of the lengths of certain straight lines is sufficient for its 

construction... in geometry, to find required lines it is merely necessary 

to add or subtract other lines; or else, taking one line which I shall 

call unity in order to relate it as closely as possible to numbers, and 

which can in general be chosen arbitrarily, and having given two other 

lines, to find a fourth line, which shall be to one of the given lines as 

the other is to unity (which is the same as multiplication); or, again, to 

find a fourth line which is to one of the given lines as unity is to the 

other (which is equivalent to division); or, finally, to find one, two, or 

several mean proportionals between unity and some other line (which 

is the same as extracting the square root, cube root, etc., of the given 

line). And I shall not hesitate to introduce these arithmetical terms 

into geometry, for the sake of greater clearness. 

Here Descartes takes an important step that Fermat did not take, by introducing a 

unit of length. As he says in the passage just quoted, this step makes it possible to 

represent the product of two lines as a line rather than a rectangle. That approach 

freed him from the necessity of having the same number of factors in all terms 

in an equation. After showing the simple geometric constructions for product, 

quotient, and square roots, he notes that 

unity can always be understood, even when there are too many or 

too few dimensions; thus, if it be required to extract the cube root of 

o2b2 — b, we must consider the quantity a2b2 divided once by unity 

and the quantity b multiplied twice by unity. 

By this apparently simple step Descartes had used algebra to introduce arith¬ 

metic into geometry. Nowadays mathematicians would say that he had shown how 

to make directed line segments into a field. To illustrate these ideas Descartes 

showed how to solve the quadratic equation z2 = az + b2. 

In contrast to the notation of all of his predecessors, Descartes’ notation looks 

extremely modem. His convention that letters at the beginning of the alphabet stand 

for data and letters at the end stand for variables or unknowns was adopted as the 

standard and has remained down to the present with only a few improvements. 

Like Fermat, Descartes used his analytic geometry to attack the problems of 

Pappus, in particular the three- and four-line locus problems, for which he found 
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the general equation to be y2 = ay — bxy + cy — dx2. This problem was the 

showpiece of La g&om&trie. He quoted Pappus at length and explained the kinds 

of curves that can be expected with different numbers of lines. He gave many 

examples showing how a motion described geometrically can be translated into 

equations and how equations can be analyzed to describe the resulting locus. How 

deeply he had penetrated into algebra is clear from his remarks on equations. He 

says explicitly that the best way to consider an equation is to set all the terms on one 

side and zero on the other and that the number of distinct roots equals the degree 

of the equation. This assertion implies that he was willing to consider negative 

and imaginary roots, and he does say that some of the roots may be “false,” that 

is, less than nothing. He notes that a polynomial is divisible by x - a if and only 

if a is a zero of the polynomial, and he gives what is known as Descartes’ rule of 

signs: An equation can have as many true \positive] roots as it contains changes 

of sign, from + to — or from — to +; and as many false [negative] roots as the 

number of times two -f signs or two — signs are found in succession. 

15.2 The Calculus 

We have seen certain prefigurations of the calculus in the work of Archimedes, in 

the method used by Zu Chongzhi and Zu Geng to find the volume of a sphere, in 

the recursive methods of approximating certain geometric quantities used by the 

Japanese mathematicians, the infinite series expansions of the Hindus, and other 

places. We now wish to discuss how such diverse techniques coalesced into a 

unified and powerful method of solving geometric problems. Let us consider three 

aspects of the calculus: differentiation, integration, and infinite series. All three 

are taught nowadays along with certain elementary applications that tend to conceal 

the unity of calculus. Differentiation has an elementary application in the problem 

of finding maxima and minima; integration has the application of finding area and 

volumes; and infinite series can be used to compute the values of exponentials, 

logarithms, and trigonometric functions. 

The unity of calculus arises from certain physical problems involving the study 

of changes in quantities over time. The main use of differentiation is to describe 

such phenomena as differential equations. Integration then becomes the method of 

solving these equations. Infinite series enter the picture since integration is often 

not possible in terms of elementary functions. (Most of the important equations 

of mathematical physics cannot be solved by direct integration; in such cases the 

equation itself is sometimes used to generate a solution in the form of an infinite 

series.) 

Calculus was not invented all at one time. Instead the application of algebra to 

certain geometric problems, and the study of new curves in geometry gradually led 

to a number of techniques and results that began to present a pattern. A surprisingly 

simple and crucial step was the replacement of the subtangent (defined below) by 

the notion of relative rate of change (what we now call slope). Although the 

two concepts are closely related and each can be defined in terms of the other, 

problems can be solved much more quickly when analyzed in terms of slopes or 
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relative rates of change than by use of the subtangent. Here we can see a principle 

that will appear many times in the history of mathematics—two concepts that 

are logically equivalent in the context of a theory may be psychologically very 

different. In some cases priority disputes arise when one mathematician can claim 

with perfect truthfulness to have stated a principle before another (that is, to have 

stated something logically equivalent to it). 

Some mathematicians, primarily Isaac Newton (1642-1727) in England and 

Gottfried Wilhelm Leibniz (1646-1716) on the Continent saw this pattern and 

its ramifications more clearly than others, and so became generally known as the 

creators of the subject. The subject was not perfected by Newton and Leibniz, 

however, and the full understanding of what could and could not be done with the 

techniques of calculus came only in the generation or two following them. We 

shall divide the history of the subject into three stages: (1) a period when certain 

geometric problems involving the tangent to various curves and the area bounded 

by curves were attacked by use of algebra and a hazily stated idea of passage to 

the limit; (2) the systematization of these isolated techniques into a unified set 

of algorithms—the invention of the calculus proper; (3) the consolidation of the 

new invention and its application to a wide variety of problems in physics and 

astronomy. 

As heirs of the ancient Greek mathematicians, modem mathematicians could 

not be content for long with mere intuitive ideas. The results produced by the 

calculus were so spectacular that no one was prepared to abandon them, yet it 

was realized that the foundations of the calculus were not as secure as those of 

traditional geometry. As a result the search for a rigorous foundation of the calculus 

began as soon as the subject was systematically organized, and this search was not 

complete until the midnineteenth century. 

15.2.1 Tangents 

The main problem in finding a tangent to a curve at a given point is to find 

some second condition that this line must satisfy so as to determine it uniquely. 

Given that the line passes through the point in question, it suffices to know either a 

second point that it must pass through or the angle that it must make with a second 

line. The way in which algebra can assist in finding this condition, especially for 

algebraic curves, can be illustrated with several examples. 

Descartes 

Obviously one can find the tangent to a curve at a given point if and only if one 

can find the normal (perpendicular to the tangent) at that point; hence it is a matter 

of indifference which of these things one chooses to do. In La g&om&trie Descartes 

proposed the following method for finding the normal to a curve. Given the curve 

CE referred to an axis GA and the point C where the normal is required, consider 

all the circles passing through C with center P on GA. By solving the equation of 

a typical circle simultaneously with the equation of the curve, one finds in general 
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Figure 15.1: Descartes’ construction of the normal to a curve. 

Figure 15.2: Fermat’s method of finding the subtangent. 

several points of intersection. If the point P is chosen so that there is only one 

point of intersection, then the circle will be tangent to the curve, and therefore its 

radius will be the required normal (see Fig. 15.1). 

Descartes illustrated this method with a specific example, taking the curve CE 

to be an ellipse and MA the portion of the major axis from one vertex. He wrote 

the equation of the ellipse by translating Apollonius’ definition into symbolic form: 

x2 = ry — (r/q)y2. Here r is the latus rectum of the ellipse and q its diameter; x 

is the ordinate and y the abscissa, measured from the end of the axis. 

Fermat 

Fermat had attacked the problem of finding maxima and minima of variables even 

before the publication of Descartes’ G6om£trie. As his works were not published 

during his lifetime, but only circulated among those who were in a rather select 

group of correspondents, his work in this area was not recognized for some time. 

His method is very close to what is still taught in calculus books today. The 

difference is that, where we now use the derivative to find the slope of the tangent 

line, that is, the tangent of the angle it makes with a reference axis, Fermat looked 

for the point where the tangent intercepted that axis. If the two lines did not 

intersect, obviously the tangent was easily determined as the unique parallel through 

the given point to the given axis. In all other cases Fermat needed to determine the 

length of the projection of the tangent on the axis from the point of intersection 

to the point below the point of tangency, a length known as the subtangent. In a 

letter sent to Marin Mersenne (1588-1648) and forwarded to Descartes in 1638 

Fermat explained his method of finding the subtangent. 
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In Fig. 15.2 the curve DB is a parabola with axis CE, and the tangent at B 

meets the axis at E. Since the parabola is convex, a point O between B and E 

on the tangent lies outside the parabola, and since the abscissas measured along 

the axis are proportional to the squares of the ordinates measured perpendicular 

to the axis, it follows that CD : DI > BC2 : 01“. (Equality would hold 

here if 01 were replaced by the portion of it cut off by the parabola.) Since 

BC : OL = CE : EL, it follows that CD : DI > CE2 : EE. Then abbreviating 

by setting CD = g, CE = x, and Cl = y, we have g : g — y > x2 : x2 Cy2 —2xy, 

and cross-multiplying, 

gx2 + gy2 — 2gxy > gx2 — x2y. 

Canceling the term gx2, and dividing by y, we obtain gy — 2gx > — x2. Since this 

inequality must hold for all y (no matter how small), it follows that x2 > 2gx, 

that is, x > 2g if x > 0. Choosing a point O beyond B on the tangent and 

reasoning in the same way would give x < 2g, so that x = 2g. Since x was 

the quantity to be determined, the problem is solved. Actually we have slightly 

distorted Fermat’s words here. He referred to a previous argument and simply 

said that gy2 4- x2y would become equal to 2gxy. We know, of course that this 

equality really holds only when y — 0, and hence his next step, dividing by y, 

is not legitimate. However, he clearly had in mind the idea of a limit of positive 

quantities, rather than dividing by zero. The ideas were new and difficult to express 

clearly. 

In this paper Fermat asserted, “And this method never fails....” This assertion 

provoked an objection from Descartes, who challenged Fermat with the curve now 

known as the folium of Descartes, having equation x3 + y3 = 3axy. 

The Cycloid 

Since analytic geometry is an application of algebra to geometry, one would expect 

that the first curves studied would be algebraic curves; and indeed such is the case 

in the writings of Fermat and Descartes. In fact Descartes was rather disdainful 

of nonalgebraic curves such as the spiral and the quadratrix, saying that they are 

generated by two motions whose relationship to each other cannot be determined 

exactly, and therefore should be dismissed. One such curve, which had first been 

noticed in the early sixteenth century by an obscure mathematician named Charles 

Bouvelles (ca. 1470-ca. 1553), is the cycloid, the curve generated by a point on a 

circle (called the generating circle) that rolls without slipping along a straight line. 

This curve is easily pictured by imagining a painted spot on the rim of a wheel as 

the wheel rolls along the ground. Since the linear velocity of the rim relative to its 

center is exactly equal to the linear velocity of the center, it follows that the point 

is at any instant moving along the bisector of the angle formed by a horizontal line 

and the tangent to the generating circle. In this way, given the generating circle, it 

is an easy matter to construct the tangent to the cycloid. This result was obtained 

independently around 1638 by Descartes, Fennat, and Gilles Personne de Roberval 

(1602-1675), and slightly later by Evangelista Torricelli (1608-1647), a pupil of 
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Galileo Galilei (1564-1642). This approach represents yet a third (kinematic) way 

of constructing tangents, independent of the methods of Descartes and Fermat. 

15.2.2 Lengths, Areas, and Volumes 

Seventeenth-century mathematicians had inherited two conceptually different ways 

of applying infinitesimal ideas to find areas and volumes. One was to regard an 

area as a “sum of lines.” The other was to approximate the area by a sum of regular 

figures and try to show that the approximation got better as the individual regular 

figures got smaller. The rigorous version of the latter argument—the method of 

exhaustion, was tedious and of limited application. 

Cavalieri’s Principle 

In the “sum of lines” approach a figure whose area or volume was required was 

sliced into parallel sections, and these sections were shown to be equal to, or con¬ 

stant multiples of, corresponding sections of a second figure whose area or volume 

was known. The first figure was then asserted to be equal to (or a constant mul¬ 

tiple of) the second. The principle was formally stated by Bonaventura Cavalieri 

(1598-1647), a Jesuit priest and a student of Galileo. At the time it was customary 

for professors to prove their worthiness for a chair of mathematics by a learned 

dissertation. As part of his application for a position at the University of Bologna 

in 1629, Cavalieri submitted a work with the title Geometria indivisibilibus contin- 

uorum nova quadam ratione promota (Geometry Advanced in a New Way by the 

Indivisible Parts of Continua). In this work, published in 1635, Cavalieri asserted 

that figures lying between two parallel lines and such that all sections parallel to 

those lines have the same length must have equal area. 

This principle is now called Cavalieri’s principle. The idea of regarding a 

two-dimensional figure as a sum of lines or a three-dimensional figure as a sum of 

plane figures was extended by Cavalieri to consideration of the squares on the lines 

in a plane figure, then to the cubes on the lines in a figure, etc. What Cavalieri 

has in mind, in the case of a sum of squares, is the volume of a figure whose 

cross-section at height h parallel to a given plane equals the square of the line cut 

off by the plane figure at that same height. 

To illustrate these ideas in a simple case, consider the two triangles into which 

a diagonal divides a parallelogram. It is obvious that the two are congruent, and 

hence have equal area. Cavalieri shows this by pairing the section in one of them a 

given distance above the lower base with the section of the other the same distance 

below the upper base. Since the sections are the same, it follows that the sum of 

the lines in each triangle is half the sum of the lines in the parallelogram. 

Passing to the squares of the lines inside these triangles is trickier. Referring to 

Fig. 15.3, we can see that RT2 +TV2 = 2RS2+2TS2, since RS = \{RT+TV) 

and TS = RT — RS = \{RT — TV). Hence, if □(■) denotes the sum of the 

squares of the lines inside a given figure, then 

D(AEC) + D(CEG) = 2D(ABFE) 4- 2D(MEF) + 2D(MBC). 
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ADC 

Figure 15.3: Cavalieri’s principle. 

Because of symmetry it is obvious that D(AEC) = \D(CEG), and D(MEF) = 
D(MBC). Hence 

UiCEG) = □ {ABFE) + 2 D(MEF) 

Now by pairing the line parallel to BF at distance h from E in the triangle MEF 
with the line at distance 2h from E in the triangle CEG, one finds the lines 

to be in the ratio of 2 to 1; hence their squares are in a ratio of 4 to 1, and 

since there are twice as many such lines in CEG as in MEF, it follows that 

D(CEG) = 8U{MEF), and so \U{CEG) = □ {ABFE). Since each section 
of ABFE is half of the same section of ACGE, it follows that C\{ACGE) = 
4D{ABFE) = 3E\{CEG). That is, the sum of the squares of the lines in each 

of the two triangles is one-third of the sum of the squares of the lines in the 

whole parallelogram. The latter is a2h, where a is the base and h the height 

of the parallelogram. Hence n(CEG) = \>a2h. By continuing this process, 

Cavalieri eventually concluded that the sum of the nth powers of the lines in one 

of the triangles is l/(n + 1) times the sum of the nth powers of the lines in the 

parallelogram. When the parallelogram is a square, so that h = a, this result 

foreshadows the formula we know as an integral: 1^ xn dx = an+l/{n +1). 

Area of the Cycloid 

Cavalieri’s principle was soon applied to find the area of an entirely new curve. 

The curve known as the cycloid was mentioned above in connection with tangents. 

Around 1630 Mersenne proposed using the cycloid as a test case for the new 

methods of indivisibles being used. This curve had been named by Galileo, who 

wrote to Cavalieri in 1640 that he had studied it 50 years earlier. On the basis 

of geometrical considerations he had conjectured that the area under one arch was 

three times the area of the generating circle, but experiments with physical models 

had convinced him that it was less than three times. He then suspected that the 

area was incommensurable with the area of the generating circle. 

Galileo’s intuition was better than he knew; in fact the area under one arch 

of a cycloid is exactly three times that of the generating circle, as was already 
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Figure 15.4: Roberval’s quadrature of the cycloid. 

known to Roberval by the time Galileo wrote to Cavalieri. Roberval, who found 

the tangent to the cycloid, also found the area beneath it by a clever use of the 

method of indivisibles. He considered along with half an arch of the cycloid itself 

a curve he called the companion to the cycloid. This curve is generated by a 

point that is always directly below or above the center of the generating circle as 

it rolls along and at the same height as the point on the rim that is generating 

the cycloid. As the circle makes half a revolution (see Fig. 15.4), the cycloid 

and its companion first diverge from the ground level, then meet again at the top. 

Symmetry considerations show that the area under the companion curve is exactly 

one-half of the rectangle whose vertical sides are the initial and final positions 

of the diameter of the generating circle through the point generating the cycloid. 

But by definition of the two curves their generating points are always at the same 

height, and the horizontal distance between them at any instant is the corresponding 

horizontal section of half of the generating circle. Hence by Cavalieri’s principle 

the area between the two curves is exactly half the area of the circle. Now the 

rectangle has height equal to the diameter of the circle and length equal to half 

its circumference. Its area is therefore twice the area of the generating circle. 

Half of it (the area below the companion curve) is exactly equal to the area of 

the generating circle. Therefore the area under this half-arch of the cycloid is 1.5 

times the area of the generating circle, and so the area under the full arch is three 

times the area of the generating circle. 

Solids of Revolution 

Cavalieri’s method of indivisibles was intended to give exact results for areas 

and volumes. The intuitive idea of infinitesimals, however, is based on finite 

approximations. That point of view was adopted by Johannes Kepler (1571-1630). 

In 1615 he wrote a work entitled Nova stereometria doliorum vinariorum (A New 

Volume Measure for Wine Barrels), in which he studied the volumes of various 

solids of revolution. A fundamental preliminary needed in this context is the value 

of 7r. Kepler quoted Archimedes’ value ^r, and in his proof of it he broke the 

circle into very small arcs, which he regarded as straight lines. This result is only 

approximate, as Kepler well knew, since no arc of a circle, no matter how short, is 
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Figure 15.5: Fermat’s quadrature of a generalized hyperbola. 

really straight. Among the theorems he proved was Theorem 18, which is a special 

case of the theorem attributed to Pappus: Any ring with circular or elliptic cross 

section is equal to a cylinder whose altitude equals the length of the circumference 

which the center of the rotated figure describes, and whose base is the same as 

the cross section of the ring. Kepler’s proof of this fact involved cutting the ring 

into an infinite number of very thin disks. 

Rectangular Approximations and the Method of Exhaustion 

Besides the method of indivisibles (Cavalieri’s principle), mathematicians of the 

time also applied the method of polygonal approximation to find areas. In 1640 

Fermat wrote a paper on quadratures in which he found the areas under certain 

figures by a method that he saw could easily be generalized. He considered a 

“general hyperbola,” as in Fig. 15.5, a curve referred to asymptotes AR and AC 

and defined by the property that the ratio AHm : AGm = EGn : HLn is the 

same for any two points E and / on the curve; we would describe this property by 

saying xmyn = const. The ordinary conic hyperbola is obtained when m = n = 

1. Fermat showed how to find the area by constructing a sequence of ordinates 

and assuming that they are sufficiently close together that the rectangles such as 

GE x GH and the portion cut off under the curve GHLE can be regarded as 

approximately equal “following the method of Archimedes.” As Fermat stated, it 

sufficed to make this remark only once; there was no need to repeat it, “and insist 

constantly upon a device well known to mathematicians.” 

For the particular class of curves he was dealing with, Fermat found that it was 

useful to arrange the points G, H, O, M,... as a geometric sequence, the reason 

being that the ratio of successive ordinates would be equal to a ratio of powers of 

the abscissas. Since the abscissas are in geometric progression, the rectangles are 

also, and therefore it is very easy to find upper and lower bounds for them. In this 

way Fermat found that the area under the curve x2y = const from EG to infinity 

equals the rectangle BAGE. He also pointed out that the problem can be solved 

similarly for all hyperbolas except the conical hyperbola xy = const (for which 

the area is infinite). 
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Figure 15.6: Sum of the sines in a quadrant. 

Powers of Sines 

Among the many geniuses of seventeenth-century France one of the most interest¬ 

ing is Blaise Pascal (1623-1662). Attracted by both the harmonies of the physical 

world and religious mysticism, he wrote brilliantly on both subjects. His Pens&es 

have provided inspiration to countless readers, while his mathematical achieve¬ 

ments have inspired only the few able to read them. We have seen above how 

Cavalieri found the “sums of the powers of the lines” inside a triangle. In 1659 

Pascal did the same for the “sums of the powers of the lines inside a quad¬ 

rant of a circle.” Now a line inside a quadrant of a circle is called a sine, so 

that he found the sum of the powers of the sines of a quadrant of a circle. In 

modem terms, where Cavalieri found 1^ xn dx = an+1/(n +1), Pascal found 

lf(R sin (p) Rdp = R(Rcosa — R cos /?). 

Pascal’s insight was that if any tangent is drawn to the circle, such as EF in 

Fig. 15.6, and two lines are drawn from its ends perpendicular to the base of the 

quadrant, then the small triangle EFG around the point of tangency is similar to 

the triangle AID, so that the rectangle EF x DI equals the rectangle FG x AI. In 

the language of infinitesimals FG represents dx = d(R cos p) and EF represents 

ds = d(Rip), the arc length on the circle. Of course, AI = R and DI = Rs'mp. 

Since the tangent is very nearly equal to the arc, and for “infinitely thin” slices 

is exactly equal to it, the conclusion, in our terms, is that if the sines are multiplied 

by infinitely small sections of an arc and the products are added, the result is equal 

to a rectangle whose base is the projection of the arc parallel to the sines and whose 

height is the radius of the circle. In other words, since an infinitely small section 

of an arc represents what we think of as Rdp, where dip is an infinitely small 

fP 
central angle, / Rsm p Rdp = R(Rcosa — Rcosfl). 

■la 

This argument, like Kepler’s, is subject to attack on the grounds that a small 

arc is set equal to a small piece of the tangent to it. Pascal recognized that this 

point might provoke an objection, and he did his best to answer it, saying that 

even though equality does not hold for a finite number of sines, it became true for 

an infinite number, “because then the sum of all the equal tangents differs... from 

the sum of all the equal arcs by less than any given quantity.” 
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In other words, Pascal was appealing to the same reasoning as was used in 

the ancient method of exhaustion, where two numbers or ratios were shown to 

be equal because the assumption that they differ by any positive amount leads to 

a contradiction. The difficulty is that, even though the individual arcs are well 

approximated by the individual tangents, a great quantity of them are being added, 

so that the errors may possibly accumulate and not disappear in the limit at infinity. 

Archimedes and Euclid, when they used the method of exhaustion, were careful 

to give the details, and never spoke of the circle as being an infinite number of 

infinitely short lines (Aristotle had strictly warned against confusing these two 

qualitatively different things). Some clarification of Pascal’s reasoning was sure 

to be demanded eventually. 

Powers of x 

A close approximation to the modem method of integrating to find the area under 

the curve y = xn was used by the English mathematician John Wallis (1616- 

1703). In 1655 he published his Arithmetica infinitorum, in which he found the 

sums of the first few powers of initial segments of the integers, formulas equivalent 

to 

ELi k i, ELi fc2 ii. 
(n + l)n 2’ (n + l)n2 3 6n’ 

ELi fc3 i , i 
(n + l)n3 4 4n ’ 

and so on up to the sum of the sixth powers. By writing the sums this way he 

concluded that if the curve y = xr is approximated with rectangles, with the 

portion under the curve from x = 0 to x = a being broken into n intervals of 

length a/n, the sum of the areas of the rectangles will tend to ar+1 /(r +1). Wallis 

went further and made the same case for the use of fractional powers and even 

irrational powers r. 

15.2.3 The Relation between Tangents and Areas 

Except for the use of infinitely short lines in both problems, there seems to be no 

natural relation between the tangent problems and the area problems just discussed. 

Just how deep this relation lies can be seen by Archimedes’ near brush with it, 

when he pointed out that the tangent to a spiral at the end of its first turn forms 

the hypotenuse of a right triangle equal in area to the circle through the point of 

tangency. It is clear from his silence that he does not suspect that the tangent 

and area problems are systematically related for all curves. The very deep relation 

between the two might eventually have been guessed by comparing formulas for 

area and the slope of the tangent; but that step was far away, since tangents 

were not originally determined in terms of their slopes. Certain specific problems 

gradually brought this relation closer to the surface, such as the problem of finding 

the curves on a globe cutting all meridians of longitude at the same angle (these 
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curves are called loxodromes) or finding a curve all of whose subtangents are 

the same length. In both of these problems one is trying to construct a curve 

given certain information about its tangent line: its angle of inclination in the 

case of a loxodrome, the length of its projection on an axis in the second. Once 

mathematicians turned their attention to the problem of constructing a curve given 

information about its subtangents they were headed in the right direction to make 

this discovery. 

The first clear statement of a relation between tangents and areas appears in 

1670 in a book entitled Lectiones Geometricae by Isaac Barrow (1630-1677), a 

professor of mathematics at Cambridge and later chaplain to Charles II. Barrow 

carefully gives the credit for this theorem to “that most learned man, Gregory 

of Aberdeen” (James Gregory, 1638-1675). Barrow states several theorems re¬ 

sembling the fundamental theorem of calculus. The first theorem (Section 11 of 

Lecture X) is the easiest to understand. Given a curve referred to an axis, Barrow 

constructs a second curve such that the ordinate at each point is proportional to 

the area under the original curve up to that point. We would express this relation 

as F(x) = (1 /R) f* f(t)dt, where y = f(x) is the first curve, y = F(x) is 

the second, and 1/R is the constant of proportionality. If the point T = (£, 0) 

is chosen on the axis so that (x — t) • f(x) = RF(x), then, said Barrow, T is 

the foot of the subtangent to the curve y = F(x), that is, x — t is the length 

of the subtangent. In modem language the length of the subtangent to the curve 

y = F(x) is \F(x)/F'(x)\. This expression would replace (x — t) in the equation 

given by Barrow. If both F(x) and F'(x) are positive, this relation really does 

say that f(x) = RF'(x) = (d/dx) / * f(t) dt. 

Later, in Section 19 of Lecture XI, Barrow shows the other version of the 

fundamental theorem, that is, that if a curve is chosen so that the ratio of its 

ordinate to its subtangent (this ratio is precisely what we now call the derivative) 

is proportional to the ordinate of a second curve, then the area under the second 

curve is proportional to the ordinate of the first. 

In these results Barrow had discovered a theorem logically equivalent to the 

central fact of the calculus. He also developed some change-of-variable theorems, 

such as a result (stated in terms of the subtangent) equivalent to the formula 

Nevertheless, he had not invented calculus; he formulated his results in terms of 

the subtangent. What makes calculus a flexible and powerful tool is the use of 

differential equations, but before they could be introduced the useful but clumsy 

subtangent had to be replaced by the derivative. This step is the crucial one taken 

by Newton and Leibniz. 

15.2.4 Infinite Series and Products 

The methods of integration requiring the summing of infinitesimal rectangles or all 

the lines inside a plane figure led naturally to the consideration of infinite series. 
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Several special series were known by the midseventeenth century. For example the 

Scottish mathematician James Gregory published a work on geometry in 1668 in 

which he stated the equivalent of 

arctan x — x-1-F • • •. 
3 5 7 

(We have already seen that this result was known in India at least 150 years earlier.) 

As another example, the Italian priest Pietro Mengoli (1625-1686) discovered the 

sum of the alternating harmonic series. In our terms this sum is 

“-‘-H-i4- 

Likewise at least two infinite product expansions were known by this time for the 

number n. One, given by Vi£te, is 

The other, due to Wallis, is 

2 1 • 3 • 3 • 5 ■ 5 • 7 ■ ■ • 

7r “ 2 • 2 • 4 • 4 •()•()•••' 

Vote’s formula results from inscribing polygons in the circle, starting with a square 

and continually doubling the number of sides. Wallis obtained his result by trying, 

like Pascal, to sum the sines inside a quadrant of a circle. 

Isaac Newton 

It was the binomial series that really established the use of infinite series in analysis. 

The expansion of a power of a binomial leads to finite series when the exponent 

is a nonnegative integer, and to an infinite series otherwise. This series, which we 

now write in the form 

oo 

(1+*)•• = 1 + £ 
r(r — !)•••( r 

k— 1 
1 ■■■k 

was discovered first by Isaac Newton (1642-1727) around 1665, although, of 

course, he expressed it in a different language. In a 1676 letter to Henry Oldenburg 

(1615-1677), the Secretary of the Royal Society, Newton wrote 

The extractions of roots are much shortened by the theorem 

—-——i m n rn rn . ^ m — n „ _ 
P T- PQ — = P-1-AQ 4-——DQ 

1 n n n Zn 
m — 2n _ rn — 3n 

+ —  CQ-F 
3 n 4 n 

DQ + etc. 
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where P + PQ stands for a quantity whose root or power or whose 

root of a power is to be found, P being the first term of that quantity, 

Q being the remaining terms divided by the first term and m/n the 

numerical index of the powers of P + PQ... A stands for the first 

term P| —, B for the second term —AQ, and so on... . 
i n ’ n *J 

Newton’s explanation of the meaning of the terms A, P, C,..., means that the kth 

term is obtained from its predecessor via multiplication by { (m/n) - k]/(k + 

1)}Q. He stated explicitly that ~ could be any fraction, positive or negative. 

Gottfried Wilhelm Leibniz 

The codiscoverer of the calculus, Gottfried Wilhelm Leibniz (1646-1716), also 

practiced summing infinite series, starting from a known sum and deriving a series 

from what he called the harmonic triangle. He had been led to this triangle 

during the 1670s by reading the works of Pascal. Pascal had written a treatise on 

the Pascal triangle (which, as we know, had been discovered centuries earlier in 

India and China). He developed in detail many of the properties of the binomial 

coefficients that make it up and in particular gave its most prominent property, the 

fact that each term not in the first row or column is the sum of the number on its 

left and the number directly above it. It follows that each term is the difference of 

the term directly below it and the term to the left of that term. Leibniz’ harmonic 

triangle started with the reciprocals of the integers in its first row and column. 

Thereafter each term was the difference of the term directly above it and the term 

directly to the right of that term. For comparison, here are the two triangles: 

11111 1 l l l i 
2 3 4 5 6 

1 2 3 4 5 1 l j_ jl J_ 
2 6 12 20 30 

1 3 6 10 l j_ j_ j_ 
3 12 30 60 

1 4 10 
20 60 

1 5 1 _1_ 
5 30 

1 l 
6 

15.2.5 The Synthesis 

The results we have just examined show that parts of the calculus were already 

explicitly recognized by the midseventeenth century, like the pieces of a jigsaw 

puzzle lying loose on a table. What was needed was someone to see the pattern 
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and fit all the pieces together. The unifying principle was the concept of a deriva¬ 

tive, and that concept came to Newton and Leibniz independently and in slightly 

differing forms. 

15.2.6 Isaac Newton 

Isaac Newton was bom prematurely on Christmas day in 1642; his parents were 

minor gentry, but his father had died before his birth. The midwives who assisted 

at the birth are said to have predicted that the child would not live out the day. 

(Medical predictions are notoriously unreliable, and this one was wrong by 85 

years!) He was 6 years old when the English Civil War began, and the rest of his 

childhood was spent in that turbulent period. He attended a neighborhood school, 

and though not particularly a good student, exhibited enough talent to inspire his 

uncle to send him to Cambridge University, which he entered about the time of 

the restoration of Charles II to the throne. Although he was primarily interested 

in chemistry, he did buy and read not only Euclid but also some of the current 

treatises on algebra and analytic geometry. From 1663 on he attended the lectures 

of Isaac Barrow. 

Due to an outbreak of plague in 1665 he returned to his family home at Wool- 

sthorpe, and during the next two years, while the University was closed, he alter¬ 

nated between Woolsthorpe and his rooms in Cambridge, pursuing his own math¬ 

ematical and physical researches. He was a careful observer and experimenter, 

and this period was, as he later recalled, the most productive of his life. Besides 

the binomial theorem already discussed, he discovered the general use of infinite 

series and what he called the method of fluxions. He also made discoveries in 

physics that will be discussed in a later chapter. At the moment we concentrate 

on the fluxions and infinite series. 

First Development of the Calculus 

Newton first developed the calculus in what we would call parametric form. Time 

was the universal independent variable, and the relative rates of change of other 

variables were computed as the ratios of their absolute rates of change with respect 

to time. Newton thought of variables as moving quantities, and focused attention 

on their velocities. To illustrate, he regarded o as a small time interval and used p 

for the velocity of the variable x, so that the change in x over the time interval o was 

op. Similarly, using q for the velocity of y, if y and x are related by yn = xm, then 

(y+°q)n = (x+op)m. Both sides can be expanded by the binomial theorem. Then 

if the equal terms yn and xm are subtracted, all the remaining terms are divisible by 

o. When o is divided out, one side is nqyn~l -f oA and the other is rnpxm_1 +oB. 

Ignoring the terms containing o, since o is small, one finds that the relative rate of 

change of the two variables, q/p is given by q/p = (raxm_1)/(ra/n_1); and since 

y = x^, it follows that q/p = (m/n)x^m/n^_1. Here at last was the concept of 

a derivative. 

Newton recognized that reversing the process of finding the relative rate of 
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change provides a solution of the area problem. He was able to find the area 

under the curve y = axm/n by working backwards. He considered a curve with 

ordinates y whose area is z, with the area and the abscissa x related by z = 

[n/(m + n)\ ax^rn+n^n. When x is regarded as the independent variable, if it is 

increased by o, the area will be increased by oy, since that is the area of a rectangle 

of base o and height y. Thus z + oy = [n/(mA-n)]a{x + ox)^m+n^n. Following 

the standard procedure of expanding by the binomial theorem, subtracting 2 and 

[n/(m + n)]ax(<m+n^n, dividing by o, and ignoring the terms that still contain 

o, he found y = axm/n. Since the curve determines and is determined by the 

curve proportional to the areas, it follows that if y — axm^n, then the area is 

z = [n/(m + n)]a?/m+n)/n. In this result we see Barrow’s work beginning to 

take a form more like what we are used to seeing in calculus textbooks. It is easy 

to recognize the formula J axr dx = axr+1 /(r + 1) here, with r = m/n. 

Fluxions and Fluents 

Newton’s “second draft” of the calculus was the concept of fluents and fluxions. A 

fluent is a moving or flowing quantity; its fluxion is its rate of flow, what we now 

call its velocity or derivative. In a work written in Latin in 1671 and published 

in 1742 (an English translation appeared in 1736), he replaced the notation p for 

velocity by x, a notation still used in mechanics and in the calculus of variations. 

Newton’s notation for the opposite operation of finding a fluent from the fluxion 

has been abandoned: where we write f x(t) dt, he wrote i. 

In the opening chapter of the Fluxions Newton first explains some operations 

needed for finding roots of equations, then states the two basic problems: Given 

an expression for distance in terms of time, compute the velocity, and given an 

expression for velocity in terms of time, compute the distance. He mentions that 

the use of the word time is merely a convenient way of speaking of a general 

independent variable. His exposition of the calculus, as in his first conception of 

it, was parametric, that is, all variables are assumed to depend on some parameter 

conveniently called time. The first problem is The relation of the flowing quantities 

to one another being given, to determine the relation of their fluxions. The rule 

given for solving this problem is to arrange the equation that expresses the given 

relation (assumed algebraic) in powers of one of the variables, say x, multiply its 

terms by any arithmetic progression (that is, the first power is multiplied by c, the 

square by 2c, the cube by 3c, etc.), and then multiply by x/x. After this operation 

has been performed for each of the variables, the sum of all the resulting terms is 

set equal to zero. 

Newton illustrated this operation with the relation x3 — ax2 -\-axy — y2 = 0, for 

which the corresponding fluxion relation is 3x2x—2axx+axy-\-axy—2yy = 0, and 

by numerous examples of finding tangents to well-known curves such as the spiral, 

and the cycloid. Newton also found their curvatures and areas. The combination 

of these techniques with infinite series was vital, since fluents often could not be 

found in finite terms. For example, Newton found that the area under the curve 

z = 1/(1 + x2) was given by Gregory’s series z = x — ^.t3 + lx5 — yx7 + • • •. 
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Later Reflections on the Calculus 

The technique of using fluxions and fluents was simple and the richness of the 

benefits to be derived from it made a mathematician’s paradise. This paradise, 

however, contained a serpent, namely its dubious logical foundations. Operations 

were performed using increments in an independent variable, division, for example, 

which are not allowed if the increment is zero. But then, after the division is 

performed, these increments are set equal to zero. Is this not self-contradictory? 

Similarly, in his use of infinite series, Newton asserted that a series would vanish 

if all of its terms vanished. This statement is no doubt true, but in its applications 

the terms vanish because their denominators become infinite. Can finite quantities 

flow out to infinity? If they do, will sums and products made from them flow to the 

“right” values, especially when there are infinitely many terms? These questions 

would eventually have to be answered, and for a time even good mathematicians 

occasionally got the answer wrong. 

Newton later made another attempt to explain fluxions in terms that would be 

more logically acceptable, calling it the “method of first and last ratios.” In his 

great treatise on mechanics, the Philosophiae Naturalis Principia Mathematica, 

published in 1687, he explained a ratio of two fluxions as follows. 

Quantities, and the ratios of quantities, which in any finite time con¬ 

verge continually toward equality, and before the end ot that time 

approach nearer to each other than by any given difference, become 

ultimately equal. 

If you deny it, suppose them to be ultimately unequal, and let D 

be their ultimate difference. Therefore they cannot approach nearer 

to equality than by that given difference D; which is contrary to the 

supposition... 

Newton offered this reasoning as a salve to the logical conscience of those 

who found the approach through indivisibles dubious. In fact he came close to 

stating the modem concept of a limit, when he described the “ultimate ratios” 

(derivatives) as “limits towards which the ratios of quantities decreasing without 

limits do always converge, and to which they approach nearer than by any given 

difference.” Here one can almost see the “arbitrarily small e” that plays the central 

role in the concept of a limit. 

Newton’s Later Career 

Newton did not enjoy publishing and kept his brilliant discoveries from the plague 

years mostly to himself. When Barrow left Cambridge in 1669 to become chaplain 

to Charles II, Newton was elected his successor as the Lucasian Professor. In 1672 

he was elected a member of the Royal Society. It was only at the urging of the 

astronomer Halley a decade later that he was persuaded to write his masterpiece, 

the Principia, and Halley had to take responsibility for the expense of printing it 

and settling a quarrel with the physicist Robert Hooke over priority for the inverse- 

square law of gravitation. The strain of organizing this large systematic treatise 
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took a heavy toll on Newton’s peace of mind. In 1692 he suffered a prolonged bout 

of nervous irritability, from which he recovered only in 1694. After this illness 

he never again initiated any original research into scientific questions, though he 

continued to work on specific problems. Entering a career in public life, he became 

warden of the mint in 1695 and master of the mint in 1699. In 1703 he became 

president of the Royal Society. He invested his money shrewdly and left a huge 

fortune at his death. 

Newton’s eccentricities were part and parcel of his genius, which is unques¬ 

tionably above nearly every other thinker in history. His nervous irritability made 

him unpleasant company sometimes, and it is not surprising that he never mar¬ 

ried. He spent a great deal of time in arcane alchemical research and in trying 

to penetrate the mysteries of Biblical prophecy. If he learned anything from these 

researches, it has not been appreciated by posterity. He died in 1727 and is buried 

at Westminster Abbey in London. 

15.2.7 Gottfried Wilhelm von Leibniz 

The codiscoverer with Newton of the calculus was, like Newton, a man involved in 

public life, but a much more amiable character. The philosopher Bertrand Russell, 

who had studied Leibniz and understood him better than anyone else, proclaimed 

him not an admirable man. According to Russell, Leibniz developed a profound 

philosophy, which he kept secret, knowing that it would not be popular, and pub¬ 

lished instead only a fatuous optimism aimed at winning friends. Leibniz, the 

optimistic philosopher, was parodied in the character of Dr. Paingloss in Voltaire’s 

Candide. As was the case with Newton, Leibniz had wide-ranging interests as 

a youth and focused on mathematics only in early adulthood. He was bom in 

Leipzig and entered the university there in 1661, at the age of 15. Like Descartes, 

Fermat and Vifcte, he studied the law, but was considered too young to be awarded 

the degree of doctor of laws when he finished his course at the age of 20. He 

entered the service of the Elector of Mainz as a diplomat and finally came to serve 

the Electors of Hannover for four decades, including the future King George I of 

Britain, who succeeded Queen Anne in 1714. 

During his lifetime France was nearing the zenith of its power on the Continent, 

while Germany was divided and weak. As servant of several German princes, 

Leibniz attempted to shield Germany from the power of the French by diverting 

the interests of Louis XIV toward a holy war in Egypt. It was during a mission 

to Paris in 1672 that Leibniz became interested in mathematics and began to 

read the writings of Pascal. The following year he visited London and met some 

members of the Royal Society, including the secretary Henry Oldenburg and the 

librarian James Collins (1625-1683). He kept a diary of this journey on a sheet 

of paper ruled into columns headed Chemistry, Mechanica, Magnetica, Botanica, 

etc. Under mathematics the notes are very sparse, containing only a reference to a 

general method of finding tangents, probably derived from the lectures of Barrow, 

which he had bought. 

From this time on Leibniz studied mathematics in earnest and within a decade 



15.2. THE CALCULUS 345 

had derived most of the calculus in essentially the form we know it today. His 

approach to the subject, in particular the delicate notion of the meaning to be 

assigned to the limiting ratio of two quantities as they vanish, is quite different 

from Newton’s. Leibniz believed in the reality of infinitesimals, quantities so small 

that any finite sum of them is still less than any assignable positive number, but 

which are nevertheless not zero, so that one is allowed to divide by them. The 

three kinds of numbers (finite, infinite, and infinitesimal) could, in Leibniz’ view, 

be multiplied by one another, and the result of multiplying an infinite number by an 

infinitesimal might be any one of the three kinds. This position was rejected in the 

nineteenth century, but was resurrected in the twentieth century and made logically 

sound. It lies at the heart of what is called “nonstandard analysis,” a subject that 

has not penetrated the undergraduate curriculum. The radical step that must be 

taken in order to believe in infinitesimals is a rejection of the Archimedean axiom 

that for any two positive quantities a sufficient number of bisections of one will 

lead to a quantity smaller than the second. This principle was essential to the use 

of the method of exhaustion, which was one of the crowning glories of Euclidean 

geometry. It is no wonder that mathematicians were reluctant to give it up. 

Leibniz was influenced by the writings of Pascal and Barrow and was interested 

in the triangle that appears in Pascal’s paper on the summation of sines (and had 

appeared in connection with the tangent problem in the work of both Fermat and 

Barrow). The principle for constructing this triangle was the same in the works of 

both Fermat and Barrow: First find a finite right triangle with two vertices on the 

curve, that is, let the hypotenuse be a chord of the curve and the sides parallel to 

the coordinate axes. The finite triangle gives a slope whose numerator is a small 

difference in y and whose denominator is a small difference in x. When one takes 

account of the equation of the curve, it often happens that the small difference 

in x can be canceled from the numerator and denominator, leaving an expression 

independent of this difference, plus a second expression that still contains the 

difference as a factor. The first of these expressions thus determines the slope of 

the tangent line at the point in question as a perfectly well-defined finite entity. 

It was Leibniz who invented the expression dx to indicate the difference of 

two infinitely close values of x, dy to indicate the difference of two infinitely close 

values of y, and dy/dx to indicate the ratio of these two values. This notation was 

beautifully intuitive and is still the preferred notation for thinking about calculus. 

Its logical basis at the time was questionable, since it avoided the objections listed 

above by claiming that the two quantities have not vanished at all, but have yet 

become less than any assigned positive number. However, at the time consistency 

would have been counterproductive in mathematics and science. At the heart of 

Leibniz’ calculus was the characteristic triangle, in which the horizontal side is the 

infinitesimal change in x denoted dx, the vertical side is dy, and the hypotenuse 

ds is the infinitesimal change in arc length on the curve. 

The integral calculus and the fundamental theorem of calculus, flowed very 

naturally from Leibniz’ approach. Just as Leibniz had been able to sum the rows 

of the harmonic triangle because of the collapsing property of the sums, that is, 

T12 + 2!3 + 314+’"=(1~l) + (l'“5) + (5“?)+"' = 1’ 
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he could argue that the ordinates to the points on a curve represent infinitesi¬ 

mal rectangles of height y and width dx, and hence finding the area under the 

curve—“summing all the lines in the figure”—amounted to summing infinitesi¬ 

mal differences in area dA, which collapsed to give the total area. Since it was 

obvious that on the infinitesimal level dA = ydx, the fundamental theorem of 

calculus was an immediate consequence. Leibniz eventually abbreviated the sum 

of all the increments in the area (that is, the total area) using an elongated S, so 

that A = j dA = j ydx. 

Nearly all the basic rules of calculus for finding the derivatives of the elemen¬ 

tary functions and the derivatives of products, quotients, etc., were contained in 

Leibniz’ 1684 paper on his method of finding tangents. However, he had certainly 

obtained these results much earlier. His collected works contain a paper written 

in Latin with the title Compendium Quadraturae Arithmeticae, to which the edi¬ 

tor assigns a date of 1678 or 1679. This paper shows Leibniz’ approach through 

infinitesimal differences and their sums and suggests that it was primarily the prob¬ 

lem of squaring the circle and other conic sections that inspired this work. The 

work consists of 49 propositions and two problems. Most of the propositions are 

stated without proof; they contain the basic results on differentiation and integra¬ 

tion of elementary functions, including the Taylor series expansions of logarithms, 

exponentials, and trigonometric functions. Although the language seems slightly 

archaic, one can easily recognize a core of standard calculus here. 

Despite the attractiveness of infinitesimal methods, Leibniz did not simply 

throw logical caution to the winds. In some places he showed how to justify his 

arguments by the method of exhaustion. In others he attempted to explain his 

rules for working with infinitesimals. Most students who have struggled to un¬ 

derstand the later concept of a limit will be attracted to the apparent simplicity 

of infinitesimals. The difficulty with infinitesimals occurs in the so-called inde¬ 

terminate forms, in which an infinite number is multiplied by an infinitesimal or 

one infinity is subtracted from another. The result may be finite, infinite, or in¬ 

finitesimal, and hard work may be involved in deciding which is the case. The 

fundamental principle laid down by Leibniz in his Compendium (Proposition 20) 

is that 

if V + X and V + Z have a finite ratio (not unity) and X and Z 

are finite, then V is also finite, while if one of X and Z is infinite 

[Leibniz always assumes they are not both infinite], then V is infinite. 

Leibniz put this principle to work in studying what he called paraboloids and 

hyperboloids, the curves whose equations are ym — am~nxn and xnyrn = am+n. 

(The cases m = 1, n — 2 in the first equation and m = n = 1 in the second 

give respectively the ordinary parabola and hyperbola.) Leibniz referred a general 

hyperboloid to a pair of asymptotes as axes and showed (Proposition 21) that 

“the rectangle whose sides are an infinitesimal abscissa and an infinite ordinate is 

infinite, finite, or infinitesimal according as the exponent of the ordinate is less than, 

equal to, or greater than the exponent of the abscissa.” To Leibniz this infinitely 

long, infinitely thin rectangle was a real object, consisting of half-lines parallel to 
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the asymptotes and between the asymptotes and the curve.1 We would think of it 

as the limiting area of a rectangle having sides along the asymptotes, one comer 

being at the intersection of the asymptotes and the opposite comer on the curve. 

If we write the equation of Leibniz’ hyperboloid as y = kx~ this rectangle 

has area xy = kxl~ m, and Leibniz’ assertion is verified: When x = oo, this is 

infinite, finite or infinitesimal (zero) according as m > n, m = n, or m < n (for 

Leibniz, x was the ordinate and y the abscissa). From this result Leibniz deduced 

(Proposition 22) the important result that in any hyperboloid (except the conic 

hyperbola), the area “under the curve” along one asymptote is finite, while the 

area along the other is infinite. In his derivation he took V to be the area “under 

the curve” from some point P out to infinity, Z the infinitely long, infinitely thin 

rectangle just mentioned, and X the rectangle having sides along the asymptotes, 

and opposite comers at P and the point of intersection of the asymptotes. He 

asserted correctly that (V + X)/(V + Z) = m/n, from which the result followed 

by Proposition 20. 

The Compendium contains the basic results on integration, for example (Propo¬ 

sition 25), in Leibniz’ notation: 

I xn dx = 
diff.(x) —,.t— 

n + 1 

Even with the full power of derivatives and integrals to work with, however, 

Leibniz needed the infinite in yet a third form, namely infinite series. His results 

on the harmonic triangle are stated in the Compendium, and many of his results are 

derived by integrating the geometric series or the binomial series (which Leibniz 

knew very well from his correspondence with Oldenburg and Collins). For example 

(Proposition 35): A circle is to the inscribed square... as 

+ 
1 

9 _ I 
y 4 

+ 
25 

+ 

is to 1. One may wonder why Leibniz uses an infinite series here, since it is well 

known that one can express all integrals whose worst irrationality is the square root 

of a quadratic in terms of logarithms and trigonometric functions. Certain other 

papers of Leibniz give the answer: these functions are known only through tables 

calculated laboriously from certain properties of the functions. The power series 

gives first of all a new way of computing the tables. More than that, however, it 

provides a way of calculating the values on the spot, wherever needed, thus giving 

a much more satisfactory numerical approximation to the ratio n for example, and 

making it more practical to dispense with tables entirely. In one of his papers from 

1691 Leibniz emphasized that he had given an arithmetic quadrature of the circle 

that eliminated any need for trigonometric tables. 

Our names for some of the functions considered by Leibniz have changed. The 

notion of the exponential function, for example, was not used by Leibniz; instead 

he let y be the logarithm of x and then gave the expansion of x in terms of y. With 

Tf strict rigor is applied, the existence of such a rectangle contradicts the definition of asymptotes. 
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that caveat we can assert nevertheless that the Compendium contains the equivalent 

of the series expansions 

ln(l + x) 
1 2 + 3 

and other well-known Taylor series. Leibniz also states the rules for working with 

series whose terms alternate in sign and decrease in absolute value (Proposition 

49). 

Later Reflections on the Calculus 

Leibniz, like Newton, was forced to answer objections to the new methods of the 

calculus. In the Acta Eruditorum of 1695 Leibniz published (in Latin) a “Response 

to certain objections raised by Herr Bernardo Niewentiit regarding differential or 

infinitesimal methods.” These objections were three: (1) that certain infinitely 

small quantities were discarded as if they were zero (this principle was set forth as 

fundamental in the following year in the textbook of calculus by the Marquis de 

f Hospital); (2) the method could not be applied when the exponent is a variable; 

and (3) the higher-order differentials were inconsistent with Leibniz’ claim that 

only geometry could provide a foundation. In answer to the first objection Leibniz 

attempted to explain different orders of infinitesimals, pointing out that one could 

neglect all but the lowest orders in a given equation. To answer the second, he 

used the binomial theorem to demonstrate how to handle the differentials dx, dy, 

dz when yx = z. To answer the third Leibniz noted that one should not think of 

d(dx) as a quantity that fails to yield a (finite) quantity even when multiplied by 

an infinite number. He pointed out that if x varies geometrically when y varies 

arithmetically, then dx = (xdy)/a and ddx = (dxdy)/a, which makes perfectly 

good sense. 

Leibniz’ Later Career 

Leibniz’ diplomatic career, had it transpired in the twentieth century, might have 

gained him the Nobel Peace Prize. He was not only a staunch European, working 

to revive the moribund Empire (to which Napoleon administered the coup de grace 

in 1806) but was widely read and interested in Oriental culture. As we have seen, 

determinants were discovered in Japan about this time. Leibniz was the first to 

introduce them into Europe, in a letter to the Marquis de L’Hospital in 1693. He 
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gives no sign that he learned of determinants through reading accounts of Oriental 

mathematics, and one must presume that he thought of the idea himself. No 

particular attention was paid to determinants at the time in any case, and they had 

to be rediscovered in the next century. 

In his work as a diplomat he naturally came to notice the difficulties of com¬ 

municating through natural languages and sought a better design for language, one 

based on symbols. This topic, in fact, was the subject of Leibniz’ first mathemati¬ 

cal work, De arte combinatoria (1666), which was prefaced by an essay claiming 

to prove by mathematics the existence of God. (The argument is based on the 

concept of a Prime Mover, and was not new. What was new was the invocation 

of mathematics in defense of its validity.) 

Leibniz was an indefatigable organizer not only in politics but also in science. 

He was instrumental in the formation of the Berlin Scientific Society and urged the 

founding of similar societies in Vienna and Dresden. In 1714, near the end of his 

life, he traveled to Russia and met the Tsar (Peter I). Hoping to increase contacts 

between western Europe and Russia, he proposed the founding of an Academy of 

Sciences in Russia. In the last year of Peter’s life (1724) this Academy was duly 

founded at St. Petersburg and staffed by 11 imported Western European scientists. 

15.2.8 The Disciples of Newton and Leibniz 

Newton and Leibniz had disciples who carried on their work. Among Newton’s 

followers were Roger Cotes (1682-1716), who oversaw the publication of a later 

edition of Newton’s Principia and defended Newton’s inverse square law of gravi¬ 

tation in a preface to that work. He also fleshed out the calculus with some particu¬ 

lar results on plane loci and considered the extension of functions defined by power 

series to complex values, deriving the important formula icf) = log(cos <fi + i sin 0), 

where i = \/—T- Another of Newton’s followers was Brook Taylor (1685-1731), 

who developed a calculus of finite differences that mirrors in many ways the “con¬ 

tinuous” calculus of Newton and Leibniz and is of both theoretical and practical 

use today. Taylor is famous for the infinite power series representation of functions 

that now bears his name. It appeared in his 1715 treatise on finite differences. 

We have already seen, however, that many particular “Taylor series” were known 

to Newton and Leibniz; Taylor’s merit is to have recognized a general way of 

producing such a series in terms of the derivatives of the generating function. 

Leibniz also had a group of active and intelligent followers who continued to 

develop his ideas. The most prominent of these were the Bernoulli brothers Jakob 

(sometimes referred to in the literature as James or Jacques, 1654-1705) and Johann 

(sometimes referred to in the literature as John or Jean, 1667-1748), citizens of 

Switzerland, between whom relations were not always cordial. They investigated 

problems that arose in connection with calculus and helped to systematize, extend, 

and popularize the subject. In addition they pioneered new mathematical subjects 

such as the calculus of variations, differential equations, and the mathematical the¬ 

ory of probability. A French nobleman, the Marquis de f Hospital (1661-1704), 

took lessons from Johann Bernoulli and paid him a salary in return for the right 
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to Bernoulli’s mathematical discoveries. As a result, Bernoulli’s discovery of a 

way of assigning values to what are now called indeterminate forms appeared in 

L’Hospital’s textbook Analyse des infmiment petits (1696), and has ever since 

been known as L’Hospital’s rule. Like the followers of Newton, who had to an¬ 

swer the objections of Bishop Berkeley (see Chapter 18 below) Leibniz’ followers 

encountered objections from Michel Rolle (1652-1719), which were answered by 

Johann Bernoulli with the claim that Rolle didn’t understand the subject. 

There is some irony in this claim of Bernoulli’s, since Rolle’s theorem is 

equivalent to the mean-value theorem. Rolle’s approach, however, was purely 

algebraic. He described a certain operation on polynomials exactly as Newton had 

described the fluxion, multiplying a given polynomial termwise by the terms of an 

arithmetic sequence (the constant term is multiplied by zero, the linear term by a, 

the square term by 2a, and so on), then dividing by the independent variable. The 

result, which Newton called a fluxion, he called a cascade. In a 1691 treatise on 

the solution of polynomial equations he noted that the cascade always has a root 

between any two roots of the polynomial (Rolle’s theorem). 

The Priority Dispute 

One of the better-known and less edifying incidents in the history of mathematics 

is the dispute between the disciples of Newton and those of Leibniz over the credit 

for the invention of the calculus. Although Newton had discovered the calculus by 

the early 1670s and had described it in a paper sent to James Collins, the librarian 

of the Royal Society, he did not publish his discoveries until 1687. Leibniz made 

his discoveries a few years later than Newton, but published some of them earlier, 

in 1684. Newton’s vanity was wounded in 1695 when he learned that Leibniz was 

regarded on the Continent as the discoverer of the calculus, even though Leibniz 

himself made no claim to this honor. In 1699 a Swiss immigrant to England, 

Nicolas Fatio de Duillier (1664-1753), suggested that Leibniz had seen Newton’s 

paper when he had visited London and talked with Collins in 1673. (Collins died 

in 1683, before his testimony in the matter was needed.) This unfortunate affair 

poisoned relations between Newton and Leibniz and their followers. In 1711-1712 

a committee of the Royal Society (of which Newton was President) investigated 

the matter and reported that it believed Leibniz had seen certain documents that in 

fact he had not seen. Relations between British and Continental mathematicians 

reached such a low ebb that Newton deleted certain laudatory references to Leibniz 

from the third edition of his Principia. This dispute confirmed the British in the 

use of the clumsy Newtonian notation for more than a century, a notation far 

inferior to Leibniz’s elegant and intuitive symbolism. Eventually even the British 

came to prefer the term integral to fluent and derivative to fluxion. 

State of the Calculus around 1700 

Most of what we now know as calculus—rules for differentiating and integrating 

elementary functions, solving simple differential equations, and expanding func- 
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tions in power series—was known by the early eighteenth century. Nevertheless, 

there was much unfinished work. We list here a few of the open questions: 

Nonelementary integrals Differentiation of elementary functions is an algorith¬ 

mic procedure, and the derivative of any elementary function whatsoever, no matter 

how complicated, can be found if the investigator has sufficient patience. Such 

is not the case for the inverse operation of integration. Many important elemen¬ 

tary functions such as (sin.x)/.x and e~x are not the derivatives of elementary 

functions. Within the sphere of algebraic functions, although all rational functions 

could be integrated (provided the polynomials in the numerator and denominator 

could be factored) and even the square roots of quadratic polynomials made no 

difficulty, more complicated integrals involving cube roots or the square roots of 

cubic polynomials could not usually be expressed in terms of elementary functions. 

Since such integrals turned up in the analysis of some fairly simple motions, such 

as that of a pendulum, the problem of these integrals became pressing. 

Classification and solution of differential equations Although integration had 

originally been associated with problems of area and volume, because of the impor¬ 

tance of differential equations in mechanical problems the solution of differential 

equations soon became the major application of integration. The general procedure 

was to convert an equation to a form in which the derivatives could be eliminated 

by integrating both sides (reduction to quadratures). As these applications became 

more extensive, more and more cases began to arise in which the natural physical 

model led to equations that could not be reduced to quadratures. The subject of 

differential equations began to take on a life of its own independent of the calculus. 

Foundational difficulties The philosophical difficulties connected with the use 

of infinitesimal methods were paralleled by mathematical difficulties connected 

with the application of the algebra of finite polynomials to infinite series. These 

difficulties were hidden for some time, and for a blissful century mathematicians 

and physicists operated formally on power series as if they were finite polynomials. 

They did so even though it had been known since the time of Oresme that the partial 

sums of the harmonic series 1 + \ ^ + • • • grow arbitrarily large. 

15.3 Problems and Questions 

15.3.1 Problems in the Early Calculus 

Exercise 15.1 Verify Descartes’ assertion that the line segment MO is the solution 

of the equation z2 = az + b2 if LM = b and OPL is a circle of radius \o. with 

center at N and tangent to LM at L. (See Fig. 15.7.) 

Exercise 15.2 Find the normal to the ellipse considered by Descartes with r = 4, 

q = 1 at the point (1, |). 
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Figure 15.7: Geometric solution of a quadratic equation. 

Exercise 15.3 Find the normal to the curve y = ^Jx at the point (1,1), using the 

rr-axis as the coordinate line, following Descartes’ method. 

Exercise 15.4 Find the length of the subtangent to the ellipse (x2/9) + (t/2/4) = 1 

at the point (3\/3/2,1), using Fermat’s method. 

Exercise 15.5 Consider an ellipse with semiaxes a and b and a circle of radius 6, 

both circle and ellipse lying between a pair of parallel lines a distance 2b apart. 

For every line between the two lines and parallel to them, show that the portion 

inside the ellipse will be a/b, times the portion inside the circle. Use this fact and 

Cavalieri’s principle to compute the area of the ellipse. [This result was given by 

Kepler.] 

Exercise 15.6 Let Pn = cos(#/2) cos(#/4)- • -cos(#/2n) and Qn = 2n sin(#/2n). 

Prove by induction that PnQn = Pn-iQn-i = ••• = PiQi = sin#. Since 
Qn —> # as n —> oo, it follows that Pn —> (sin#)/#. Take # = f and use the 

-I/O 

formula cos(y>/2) = (1 + cosy?)/2] “ to derive Vifcte’s formula. 

Exercise 15.7 By taking ip — 7r/4 in Cotes’ formula 2</> = log(cos (p -F ismcp), 
deduce that log(l 4- i) — log(\/2) + i(7r/4). By integrating the series 1/(1 4-1) = 

from t = 0 to t = i and comparing real and imaginary parts, derive 

Mengoli’s sum of the alternating harmonic series and Proposition 35 of Leibniz’ 

Compendium. 

Exercise 15.8 Show that the point at which the tangent to the curve y = f{x) 
intersects the y axis is y = /(;x) — and verify that the area under this 

curve (more precisely, the integral of f(x) — xf'(x) from x = 0 to x = a) is twice 

the area between the curve y = f(x) and the line ay — f(a)x between the points 

(0,0) and (a,/(a)). (This result was used by Leibniz to illustrate the power of 

his infinitesimal methods.) 

15.3.2 Questions about the Early Calculus 

Exercise 15.9 What might have been Descartes’ reason for introducing his geo¬ 

metric method in the course of explaining his method in philosophy? Why would 

a book on geometry be relevant to a treatise on philosophy? 
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Exercise 15.10 As we saw, the Chinese and the early Greeks had known the 

principle called Cavalieri’s principle. What claim does Cavalieri have to the name 

of this principle? How would you assign credit for this principle? 

Exercise 15.11 Recall that Eudoxus solved the problem of incommensurables by 

changing the definition of proportion, or rather, making a definition to cover cases 

where no definition existed before. Newton’s “theorem” asserting that quantities 

that approach each other continually (we would say monotonically) and become 

arbitrarily close to each other in a finite time must become equal in an infinite time 

assumes that one has a definition of equality at infinity. What is the definition of 

equality at infinity? Since we cannot actually reach infinity, the definition will 

have to be stated as a potential infinity, that is, a statement about all possible 

finite times. Formulate the definition, and then compare Newton’s solution of this 

difficulty with Eudoxus’ solution of the problem of incommensurables. 

Exercise 15.12 Compare the use of ratios in modem times with Leibniz’ discus¬ 

sion of them in his Compendium. How would Euclid have responded to Leibniz’ 

arguments if he could have read them? 

Exercise 15.13 Draw a square and one of its diagonals. Then draw a very fine 

“staircase” by connecting short horizontal and vertical line segments in alternation, 

each segment crossing the diagonal. Clearly the total length of the horizontal 

segments is the same as the side of the square, and the same is true of the vertical 

segments. Now in a certain intuitive sense these segments approximate the diagonal 

of the square, seeming to imply that the diagonal of a square equals twice its side, 

which is absurd. Does this argument show that the method of indivisibles is 

wrong? How could Cavalieri, for example, have defended his method against such 

criticism? 

Exercise 15.14 The reader may have noticed that Vifcte, Fermat, Descartes, and 

Leibniz were all trained in the law. The law thus seems to have provided the 

world with a large number of mathematicians. The number of composers who 

were trained for the law is also impressive, including George Frederick Handel, 

Carl Phillip Emmanuel Bach, Robert Schumann, and Peter Ilyich Tchaikovsky. 

Can you think of anything that mathematics, law, and music have in common that 

would account for the apparently large number of people who excel in all three? 

15.4 Endnotes 

1. The discussions of all the mathematicians in this chapter have been based on 

their published collected works and some excerpts that have been gathered 

in various collections of sources. The following are the source books used: 

(a) D.J. Struik. A Source Book in Mathematics, 1200-1800 (Harvard 

University Press, 1969). 
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(b) David Eugene Smith. A Source Book in Mathematics (Dover Reprint, 

New York, 1959). 

(c) Ronald Calinger, ed. Classics of Mathematics (Prentice-Hall, Engle¬ 

wood Cliffs, NJ, 1995). 

(d) John Fauvel and Jeremy Gray. The History of Mathematics. A Reader 

(Macmillan, London, 1987). 

2. The quotation from Fermat on plane loci is taken from the source book of 

David Eugene Smith (op. cit.), p. 389. 

3. The quotation from Descartes is taken from the Dover translation of La 

g&om&rie, pp. 2-5. 

4. The discussion of Cavalieri’s work is based on the source book of Struik 

(op. cit.). 

5. The quotation from Fermat on the quadrature of hyperboloids is taken from 

the book of Calinger (op. cit.), p. 375. 

6. The quotation from Pascal on the sums of sines is taken from the book of 

Calinger (op. cit.), p. 182. 

7. Newton’s statement of the binomial theorem is taken from the source book 

of David Eugene Smith (op. cit.), p. 225. 

8. The quotation from Newton’s Principia is taken from the Motte-Cajori trans¬ 

lation (Efniversity of California Press, 1966), Vol. 1, p. 38. 



Chapter 16 

Seventeenth-Century 
Mathematics 

While the invention of calculus was the most important mathematical event of 

the modem era, it was by no means the only new development in the seventeenth 

century. In this chapter we shall look at several other significant changes in mathe¬ 

matics during this period: the development of projective geometry and probability, 

some advances in algebra and number theory, the first Western study of combina¬ 

torics, the invention of calculating machines, and the establishment of scientific 

societies and journals. 

16.1 Geometry 

We have seen that projective geometry began in the Renaissance, inspired by the 

desire of artists to represent three-dimensional scenes more realistically. During 

the seventeenth century this subject had two proponents who produced some re¬ 

sults of great significance. The work was temporarily eclipsed by the spectacular 

development of analysis, but eventually came to be appreciated in the nineteenth 

century. 

16.1.1 Desargues 

The French architect and engineer Gerard Desargues (1591-1661) studied the pro¬ 

jections of figures in general and the conic sections in particular. Knowing the 

way in which conics were originally created by the intersection of a cone with 

a plane, he saw that any projection of a conic section from one plane to another 

would remain a conic section. Similarly, if a triangle is projected from a point 

outside its plane onto a plane that intersects its own plane, then each side of the 

triangle and the projection of that side will lie in the plane determined by that side 

and the center of projection. If no side is parallel to its projection, then the line 

355 
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containing each side of the triangle will intersect the line through its projection, 

giving three points of intersection. Each point in which the extension of a side 

meets the extension of its projection lies in both the plane of the triangle and the 

plane of its projection. It follows that these three points of intersection will lie 

on a straight line, namely the line of intersection of the plane of the triangle and 

the plane of its projection. To make this argument clear see Fig. 16.1, in which 

triangle A'B'C' is a section of the projection of triangle ABC from the point O. 
Sides AC and A'C', when extended, meet in point B"; the extensions of sides 

AB and A'B' meet in C"\ and the extensions of sides BC and B’C' meet in A". 
The three points A", B", and C" are collinear. This theorem remains true when 

both triangles are in the same plane, although the proof is more difficult. 

The theorem just stated is a simple theorem in solid geometry; what makes it 

the starting point for projective geometry is the case when one side of the triangle is 

parallel to its projection. In that case it is easy to see that these two sides will also 

be parallel to the line of intersection of the two planes. For this case Desargues 

established a convention that a family of parallel lines in a plane has a fictitious 

point in common, nowadays called the point at infinity. The fictitious points of a 

plane (one for each family of parallel lines) form a fictitious line, called the line 
at infinity. This convention is extremely useful in geometry. Desargues, however, 

expressed his ideas so badly, with neologisms and generally clumsy notation, that 

hardly anyone paid any attention to it. 
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16.1.2 Pascal 

It cannot be said, however, that no one paid any attention to Desargues. His 

treatise, which he called a brouillon projet (rough draft), was published in 1639. 

In that year Blaise Pascal was a youth of 16, but extremely precocious. He wrote 

an Essay pour les coniques in which he proved some fundamental theorems about 

projective invariants. He knew of Desargue’s work, calling him “one of the great 

geniuses of this time and well versed in mathematics, particularly in conics.” He 

further states, “I owe the little that I have found on this subject to his writings 

and... have tried to imitate his method, as far as possible... .” 

Like Desargues, Pascal defines a family of lines all meeting at the same point 

or all parallel as being of the same ordonnance. Such a family is now called a 

pencil or a sheaf. To explain Pascal’s work, we note that if an irregular hexagon is 

inscribed in a circle, the lines containing the pairs of opposite sides will normally 

meet in three collinear points (see Fig. 16.2). If one pair of opposite sides happens 

to be parallel and the other two pairs are not, the line determined by the points of 

intersection of the two pairs of nonparallel opposite sides will be parallel to the 

other two sides, that is, it will pass through the point at infinity associated with 

that family of parallel lines. If two pairs of opposite sides are parallel, then the 

third pair is also, and so all three pairs of opposite sides meet in the line at infinity. 

This theorem is protectively invariant, since the lines in an ordonnance, when 

projected, become the lines in another ordonnance. (If a family of lines all intersect 

in a point, and they are projected from that point, they will project to a family of 

parallel lines.) Since an ellipse can be projected to a circle, it follows that if a 

hexagon is inscribed in an ellipse, the points of intersection of the pairs of opposite 

sides are collinear. 

16.2 Probability 

One of the most interesting and intuitively difficult parts of mathematics is the 

theory of probability. In its elementary parts, in which the possible outcomes 

of an observation or experiment are finite in number and equally likely, nearly 

everyone remembers some confusing introduction to the subject. Unfortunately 
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such introductions entangle probability with combinatorics in such a way that the 

sophisticated counting methods, which are only a tool in the analysis, cause the 

student to lose sight of the fundamental probabilistic ideas. The mathematical 

subject has a rich and interesting history, dating back to Cardano, whose Liber 

de ludo (Book on Gambling) was published about a century after his death. In 

this book Cardano introduces the idea of assigning a probability p between 0 and 

1 to an event whose outcome is not certain. The principal applications of this 

notion were in games of chance, where one might bet, for example, that a player 

could roll a 6 with one die given three chances. The subject is not developed in 

detail in Cardano’s book, much of which is occupied by descriptions of the actual 

games played. However, Cardano does state the multiplicative rule for a run of 

successes in independent trials. Thus the probability of getting a six on each of 

three successive roles with one die is (|) . Most important, he recognized the 

real-world application of what we call the law of large numbers, saying that when 

the probability for an event is p, then after a large number n of repetitions, the 

number of times it will occur does not lie far from the value np. (That is, it is 

not certain that the number of occurrences will be near np, but “that is where the 

smart money bets.”) 

The problem that inspired much of the subsequent development requires some 

imagination to appreciate. An analogy may perhaps make the difficulty clearer. In 

discussing the legacy problems of Al-Khwarizmi, we noted that a debt owed to a 

deceased person by one of the heirs entered a kind of legal limbo. Only a certain 

portion of the debt became part of the inheritance, and that portion was chosen in 

accordance with a legal principle. A similar fate overtakes money that has been 

put up at stake on a bet. Once the bet is made, by the gamblers’ unwritten code, 

the stakes do not belong to anyone. After the bet is settled, the whole amount 

belongs to the winner, and of course, before the bet was made, each player owned 

the amount of the stake he/she put up. In the meantime, however, after the bet is 

made and before it is settled, a player cannot unilaterally withdraw from the bet 

and recover her or his stake. What happens then if the game is interrupted? How 

are the stakes to be divided? The principle that seemed fair was that, regardless 

of the relative amount of the stake each player had bet, a player should recover 

only a portion of the stakes equal to that player’s probability of winning at the 

moment the game was terminated. The translation of this principle into francs and 

sous involves computing the probability of winning at each point of a game, what 

we now call conditional probability. This operation is different for each game and 

usually involves the combinatorial counting techniques the reader has no doubt 

encountered. 

16.2.1 Fermat and Pascal 

A French nobleman, the Chevalier de M6r6, who was fond of gambling, proposed 

to Pascal the problem of dividing the stakes in a game where one player has bet 

that a six will appear in eight rolls of a single die, but the game is terminated 

after three unsuccessful tries. Pascal wrote to Fermat that the player should be 



16.2. PROBABILITY 359 

allowed to sell the throws one at a time. If the first throw is foregone, the player 

should take one-sixth of the stake, leaving five-sixths. Then if the second throw is 

also foregone, the player should take one-sixth of the remaining five-sixths or 

etc. In this way, Pascal argued that the fourth through eighth throws were worth 
1 
6 (l)3 + (l)4 + (l)5 + (l)6 + (l)7]- 

Now, to keep the reader from going astray, let it be said that this expression 

is the value of those throws before any throws have been made. If, after the bets 

are made but before any throws of the die have been made, the bet is changed and 

the players agree that only three throws shall be made, then the player holding the 

die should take this amount as compensation for sacrificing the last five throws. 

However, Fermat saw clearly that if the bet were to be changed after three unsuc¬ 

cessful throws, the matter was different. For at this point the player’s probability 

of winning on the fourth throw is one-sixth. [Before the game started the player’s 

probability of winning on the fourth throw was ^ (|) . This number is smaller by 

a factor (|) representing the probability that the player will not win the game on 

the first three throws.] Fermat expressed the matter as follows: 

... the three first throws having gained nothing for the player who 

holds the die, the total sum thus remaining at stake, he who holds 

the die and who agrees not to play his fourth throw should take ^ 

as his reward. And if he has played four throws without finding the 

desired point and if they agree that he shall not play the fifth time, he 

will, nevertheless, have ^ of the total for his share. Since the whole 

sum stays in play it not only follows from the theory, but it is indeed 

common sense that each throw should be of equal value... 

Pascal immediately wrote back to Fermat, proclaiming himself satisfied with 

Fermat’s analysis and overjoyed to find that “the truth is the same at Toulouse and 

at Paris.” In the course of this correspondence Pascal and Fermat both realized 

that the combinatorial coefficients that occur in the arithmetical triangle (Pascal’s 

triangle) play an important role in the computation of probabilities when dealing 

with equally likely events and repeated independent trials. 

16.2.2 Christiaan Huygens 

A treatise on probability was written in 1657 by the Dutch mathematician and 

scientist Christiaan Huygens (1629-1695). Next to Newton, Huygens was the 

greatest scientist of his era, and we shall study a few of his contributions to 

physics in a later chapter. He was a man of great breadth, who wrote a treatise on 

music and showed considerable talent as an artist. Huygens’ tract De ratiociniis 

in ludo aleae (On Reasoning in a Dice Game) was a compendium of the results of 

Fermat and Pascal. Huygens, however, was able to consider multinomial problems, 

involving three or more players, to which Pascal’s triangle did not apply (he used 

a recursive procedure on the number of players). The idea of an estimate of the 

expectation is due to Huygens. 
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3 1 

b 

a 

Figure 16.3: (a) Mean proportional between 3 and 1; (b) mean proportional be¬ 

tween 3 and —1. 

16.3 Algebra 

16.3.1 Relations between Coefficients and Roots 

The relation between coefficients and roots in an algebraic equation became clearer 

during the seventeenth century as a result of the work of several mathematicians. 

We mention only Albert Girard (1595-1632), a Frenchman who served the Prince 

of Orange as a military engineer. Though mostly concerned with equations having 

integer coefficients, Girard stated correctly that an equation xn+an_2xn_2 + - • • = 

an_!Xn_1 + an_3xn~3 + • • • would have n roots, and that the sum of the roots 

would be an_i, the sum of the products taken two at a time would be an_2, 

etc. Girard was not in a position to prove this assertion, and his language hints 

that there can be exceptions if any of the coefficients equal zero. Nevertheless 

he stated a plausible conjecture that remained for later generations to prove. The 

coefficients a^, which Girard called factions, are now called elementary symmetric 

polynomials. When n = 3, the equation has roots rls r2, r3, a2 = r\ + r2 + r3, 

a\ = r\V2 + rir3 -f r2r3, and ao = rir2r3. Girard’s work led to the view that the 

problem of solving an equation is the problem of expressing variables x, y, z,... 

in terms of the symmetric functions of these variables. For example, in the case of 

two variables with x > y > 0 we can express x and y in terms of the symmetric 

functions x + y and xy as follows: 

(x + y)2 

and 

(x + y)2 
-^-XV- 

Girard’s discovery was duplicated by Newton and further developed to give upper 

and lower bounds on the real roots of an equation. 
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Figure 16.4: Wallis’ geometric solution of a quadratic equation. 

16.3.2 Imaginary Numbers 

Girard’s theorem is true only in the context of complex numbers, and so a full 

proof of it awaited a better understanding of these numbers. We have seen that 

Cardano and Bombelli were willing to consider such numbers, and developed some 

of their properties. Yet the logical foundation for such entities remained obscure. 

In an attempt to make these numbers more familiar, the English mathematician 

John Wallis pointed out that, while no positive or negative number could have 

a negative square, nevertheless it is also true that no physical quantity can be 

negative, that is, less than nothing. Yet negative numbers were accepted and 

interpreted as retreats when the numbers measure advances along a line. Wallis 

thought that what was allowed in lines might also apply to planes, pointing out that 

if 30 acres are reclaimed from the sea, and 40 acres are flooded, the net amount 

“gained” from the sea would be —10 acres. He proposed representing >J—bc as the 

mean proportional between —b and c. Now the mean proportional is easily found 

for two positive line segments b and c. Simply lay them end to end, use the union 

as the diameter of a circle, and erect the sine to that diameter at the point where 

the two segments meet. When one of the numbers (-b) was regarded as negative, 

Wallis regarded the negative quantity as an oppositely directed line segment. He 

then modified the construction of the mean proportion between the two segments. 

When two oppositely directed line segments are joined end to end, one end of the 

shorter segment lies between the point where the two segments meet and the other 

end of the longer segment, so that the point where the segments meet lies outside 

the circle passing through the other two endpoints. Wallis interpreted the mean 

proportional as the tangent to the circle from the point where the two segments 

meet. Thus whereas the mean proportional between two positive quantities is 

represented as a sine, that between a positive and negative quantity is represented 

as a tangent. (See Fig. 16.3.) 

Wallis applied this procedure in an analogous “imaginary” construction prob¬ 

lem. First he stated the following “real” problem. Given an isosceles triangle 

whose equal sides are 15 units long and in which the altitude to the base is 12, 

let P be a point on the extension of the base at distance 20 from the vertex of the 

triangle (see Fig. 16.4). How far is P from each endpoint of the base? Using the 

midpoint of the base as a reference point and applying the Pythagorean theorem 

twice, one easily expresses these numbers as 16 ± 9, that is, 7 and 25. This con¬ 

struction is the well-known method of solving quadratic equations geometrically, 

given earlier by Descartes. Wallis pointed out that this construction always works 
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Figure 16.5: Wallis’ solution of a quadratic with complex roots. 

when the roots are real, whether positive or negative. He then proposed reversing 

the data, in effect considering an impossible isosceles triangle with equal sides 

12 units long and altitude to the base equal to 15. This “imaginary” triangle was 

built around the altitude 15. The “base” was taken to be the line perpendicular to 

the altitude at one of its ends, and the equal sides were drawn as chords 12 units 

long in a circle having the altitude as diameter. Wallis pointed out that, although 

the algebraic problem has no real solution, a fact verified by the geometric figure 

(see Fig. 16.5), nevertheless one could certainly draw the line segments from the 

point P to the two vertices. These line segments could therefore be interpreted 

as solutions of the equation. This was the first realization that complex numbers 

would have to be interpreted as line segments in a plane, a discovery made again 

a century later by the Norwegian surveyor Caspar Wessel (1745-1818). 

16.4 Number Theory 

Number theory was another topic that engaged the mathematicians of the early 

modem era. In this area also they soon discovered that they could go beyond the 

ancients. We have already remarked that Fermat wrote in the margin of his copy 

of Diophantus that the sum of two positive rational cubes could not be a rational 

cube, and so on (Fermat’s last theorem). Although Fermat never communicated 

what he believed his proof of this fact to be, he did devise a method of proof—the 

method of infinite descent—by which many facts in number theory can be proved, 

including the case of cubes and fourth powers in Fermat’s last theorem. The basis 

of the method can be explained in the abstract by sketching a proof of the case of 

a fourth power. Actually the proof shows that there can be no positive integers x, 

y, z, such that x4 + y4 = z2. Supposing that such numbers do exist, we assume 

that z is the smallest positive integer for which there exist positive integers x and 

y satisfying this equation. Then no two of x, y, and z have a common prime 

factor (otherwise the fourth power of this factor could be divided out, producing 

a smaller z). This means that two of the numbers are odd and one is even, and 

in particular that z is odd (since the square of an even number is divisible by 4, 

but the square of an odd number leaves a remainder of 1 when divided by 4). 

Assume that x is odd and y is even. Then x4 = (z + y2)(z — y2). Since z and y 

have no common factor, it follows that z + y2 and z — y2 also have no common 

factor. Since they are relatively prime and their product is a fourth power, each 

of the factors is a fourth power, that is, there exist (odd) integers u, v, such that 

z — y2= u4, z + y2 = v4, and uv - x. Now (v2 —u2)(y2 +u2) = v4 — u4 = 2y2, 
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and since v2 — u2 and v2 + u2 have no common prime factor except 2, there exists 

a factorization of y (y = ljQ such that either 

v2 + u2 — C2 

v2 - u2 = 2uj2 

or 

U2 + LO2 = u2 

u2 + n2 - 2C2 

The first possibility can be ruled out, since the sum of two odd square integers 

cannot be a perfect square. It then follows from the first equation in the second pair 

that u, lj, and v form a Pythagorean triple, and as Exercise 16.4 shows, this means 

there exist integers £ and y such that u = £2 — y2, uj = 2£y, and v = £2 +?]2. Then 

the second equation says that £4 -f r)A = £2. Since ( < y < z, this contradicts the 

assumed minimality of z. 

16.5 Combinatorics 

Leibniz, whose interest in Oriental cultures has already been mentioned, was the 

first to introduce into European mathematics certain topics that had been studied 

earlier in Asia. There is no indication that Leibniz knew these topics had been 

studied in Asia, but his mind coincidentally worked along the same channels as 

the earlier Asian mathematicians. We have already mentioned his introduction of 

determinants. We now come to a topic pioneered by the Hindu mathematicians: 

combinatorics. We have seen that Hindu mathematicians had computed the number 

of different kinds of lines of poetry that could be formed with a given number 

of stressed and unstressed syllables. This kind of problem was the origin of the 

modem subject of combinatorics, which has found numerous applications. A major 

impetus to such studies was Leibniz’ publication of De arte combinatoria in 1666. 

In this work Leibniz gave tables of the number of permutations of n objects. There 

are many very curious aspects of this work. Although written mostly in Latin, it 

is rather polyglot; Leibniz occasionally and unaccountably breaks into Greek or 

German, and the tables are labeled with Hebrew letters. For permutations Leibniz 

used the word numerus to denote the size of the set from which objects are chosen, 

and exponent (literally placing out) for the number of objects chosen. The total 

number of permutations of a number of objects he called its variationes, and for 

the number of combinations of a set of objects taken, say, 4 at a time, he wrote 

con4natio, an abbreviation for conquattuornatio. (The case of 2 provides the 

modem word combination.) These combinations, now called binomial coefficients, 

were referred to generically as complexiones. Leibniz’ first problem was given the 

numerus and the exponent, find the complexiones. In other words, given n and k, 

find the number of combinations of n things taken A: at a time. 
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It is interesting that Leibniz, like the Hindu mathematicians before him, applied 

combinatorics to poetry and music. He considered, for instance, the hexameter lines 

possible with the Guido scale ut, re, mi, fa, sol, la, finding a total of 187,92b.1 

De arte combinatoria contains 12 sophisticated counting problems and a num¬ 

ber of exotic applications of the counting techniques. It appears that Leibniz 

intended these techniques to be a source by which all possible propositions about 

the world could be generated. Then, combined with a good logic-checker, this 

technique would provide the key to all knowledge. His intent was philosophical 

as well as mathematical, as evidenced by his claimed mathematical proof of the 

existence of God at the beginning of the work. 

16.6 Computing Machines 

The graphic arithmetic that had vanquished the counting board a few centuries 

earlier still had certain laborious aspects connected with multiplication and division, 

which mathematicians kept trying to simplify. We have already seen two efforts 

in this direction, the use of prosthapheresis and the invention of logarithms. The 

fact that logarithms change multiplication into addition and that addition can be 

performed mechanically by sliding one ruler along another led to the development 

of rulers with the numbers arranged in proportion to their logarithms (slide rules). 

Napier himself designed a system of rods for this purpose. This linear system 

was soon supplemented by a system of sliding circles. Such a circular slide rule 

was described in a pamphlet entitled Grammelogia written in 1630 by Richard 

Delamain, a mathematics teacher living in London. Delamain urged the use of 

this device on the grounds that it made it easy to compute compound interest. 

Two years later the English clergyman William Oughtred (1574-1660) produced a 

similar description of a more complex device. Oughtred’s “circles of proportion,” 

as he called them, gave sines and tangents of angles in various ranges on eight 

different circles. 

Machines for performing addition mechanically are easy to design, but mul¬ 

tiplication and division require more sophistication. A machine for performing 

the operations of arithmetic was designed by Pascal. (A version of the machine 

built in 1652 and signed by Pascal is in the Conservatoire des Arts et M6tiers in 

Paris.) Actually Pascal was not the first to design a calculating machine. Such a 

machine had been designed in the year Pascal was bom by a Tubingen professor of 

mathematics and astronomy named Wilhelm Schickard (1592-1635), who wrote 

to Kepler about his discovery. Schickard’s machine could also do multiplication, 

although it was necessary for the operator to do some counting. 

The basic principle of such machines was a set of gear teeth, 10 around each 

circle, with every tenth gear tooth longer than the others, so that it would engage 

the adjacent gear once on each rotation and advance it one-tenth of a turn. If each 

gear is attached to a calibrated plate, the plates read off the decimal digits of a 

lrThe first five of these tones are the first syllables of a Medieval Latin chant on ascending tones. 
The replacement of ut by the modern do came later. 
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number. The long tooth then automatically carries or borrows when performing 

addition and subtraction. The mechanical problem to be overcome in designing 

such a machine is to reduce the wear from the unbalanced load that results from 

the carrying operation. Pascal’s machine was designed with counterweights that 

are raised higher and higher as each gear records larger numbers, then drop back 

when the gear goes full circle. 

Pascal’s machine was improved on by Leibniz, who gave a design for a machine 

that would multiply and divide more efficiently. Pascal’s machine had focused on 

the idea of addition. Leibniz’ machine consisted of a set of gears, each of which 

meshed with an identical gear attached to a dial indicating a digit of the number 

to be multiplied. To use it a “multiplier box” was inserted whose gears meshed 

with smaller gears attached to the digits of the number to be multiplied. The gears 

in the multiplier box had diameters equal to 2, 3, 4, 5,... times the size of the 

given gears. Then if, say, the “4” gear were turned once, the gears representing the 

number to be multiplied would each turn four times, and the long teeth on these 

gears would trip the counters of the registry gears four times. The multiplier box 

could be removed and shifted so that the number would be multiplied by 40 when 

the “4” gear was rotated. By 1674, with the help of a young French metalworker, 

Leibniz had produced a practical mechanical model of this machine. It is worth 

pointing out that here, at the very beginning of the history of the computer, it was 

already influencing mathematics: it was through designing such a machine that 

Leibniz was led to wonder if a machine could be made to check logic as well. 

16.7 Societies and Journals 

Science became a societal enterprise during the seventeenth century. Before that 

time mathematicians, like other scholars, had supported themselves or found a 

patron. During the seventeenth century scholars with a common interest formed 

their own societies such as the Accademia dei Lincei in Italy and a group in 

correspondence with Mersenne in Paris. Scholarly activity began to be concentrated 

in universities, and the major contributors to mathematics came more and more 

often from the ranks of professors. In this era of monarchies kings and queens 

became patrons of science partly to enhance the prestige of their realms and partly 

because of the economic and military value of the inventions that scholarship 

could produce. The Royal Society in London was formed in 1662, the Academy 

of Sciences of Paris in 1666. The Academy of Sciences of Berlin was founded 

under Friedrich Wilhelm in 1714. (Leibniz had been instrumental in the founding 

of the Berlin Scientific Society in 1700.) Tsar Peter I chartered the St. Petersburg 

Academy in 1724. 

The network of correspondence was gradually replaced by a system of journals. 

The minutes of the meetings of the societies became the first outlets for research 

papers. The journals provided the same public audience as for a book, but in a 

format suitable for writing about smaller parts of a subject than one would cover 

in a treatise. The Acta Eruditorum, for example, was founded in Leipzig in 1682 

and immediately became an outlet for the work of Leibniz and the Bemoullis. 
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16.8 Problems and Questions 

16.8.1 Problems from the Seventeenth Century 

Exercise 16.1 Prove that if two pairs of opposite sides of a hexagon inscribed in 

a circle are parallel, then the third pair of sides is also parallel. (Hence the points 

of intersection of all three pairs of opposite sides belong to a single line, namely 

the line at infinity.) 

Exercise 16.2 Draw four rays emanating from a single point, and draw two lines, 

one intersecting the four rays in points A, B, C, D (in order) and the other 

intersecting them in A', B', C', D'. Prove that the cross ratios of the four points 

are equal: 
AC • BD A'C' ■ BD" 

BC AD ~ B'C' • A'D' ‘ 

Exercise 16.3 Leibniz gave a determinant condition on the numbers a*, bi, Ci that 

was necessary and sufficient for the equations 

ai + b\x + ciy = 0 

a2 + b2x + c2y = 0 

a3 + b3x + c3y = 0 

to have a solution. What is this condition? 

Exercise 16.4 Prove that if x, y, and z are relatively prime integers such that 

x2 + y2 = z2, with x and z odd and y even, then there exist integers u and v such 

that x = v2 — v2, y = 2uv, and z = u2 + v2. (Imitate the arguments in the text 

above.) 

Exercise 16.5 Use the method of infinite descent to prove that \/3 is irrational. 

[Assuming m? — 3n2, where m and n are positive integers having no common 

factor, that is, they are as small as possible, verify that (m — 3n)2 = 3(m — n)2. 

Note that m < 2n and hence m — n < n.] 

Exercise 16.6 Show that \/3 is irrational, by assuming m3 = 3n3 with m and n 

positive integers having no common factor. [Show that (■m — n)(m2 + mn -\-n2) = 

2n3. Hence, if p is a prime factor of n, then p divides either m—n or m2+mn+n2. 

In either case p must divide m. Since rn and n have no common factor, it follows 

that n = 1.] 

Exercise 16.7 Suppose that x, y, and z are positive integers, no two of which have 

a common factor, none of which is divisible by 3, and such that x3 + y3 = z3. By 

reasoning as in the proof that the equation x4 -f y4 = z2 is impossible, show that 

there exist integers p, q, r, such that z — x = p3, z — y = q3, and x + y = r3. Then, 

letting m = r3 — (p3 + q3) and n — 2pqr, verify from the original equation that 

77/3 = 3n3, which by the previous exercise is impossible if m and n are nonzero. 

Hence n = 0, which means that p — 0 or q = 0, or r = 0, that is, one of x and 

y, and z equals 0. Conclude that no such positive numbers x, y, and z can exist. 
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16.8.2 Questions about Seventeenth-Century Mathematics 

Exercise 16.8 Why is it not feasible simply to allow a gambler to interrupt a 

game, recover his/her stake, and leave? Could a real game take place if this were 

allowed? 

Exercise 16.9 The amount of money Pascal would erroneously have allowed the 

shooter to reclaim for giving up the last five of eight attempts to make a point 

is smaller than the amount Fermat correctly allowed. The amount Pascal would 

have allowed is the correct amount only if the shooter agrees to give up those last 

five shots before making any shots. Yet after those shots have been made, it is the 

shooter’s opponent who has withstood the risk of losing on the first three shots. 

Why should the opponent be willing to pay more for those shots after undergoing 

the risk of losing than beforel 

16.9 Endnotes 

1. The material of this chapter, like that in the preceding chapter, is based on 

the following source books: 

(a) D. J. Struik, A Source Book in Mathematics, 1200-1800 (Harvard Uni¬ 

versity Press, 1969). 

(b) David Eugene Smith, A Source Book in Mathematics (Dover Reprint, 

New York, 1959). 

(c) Ronald Calinger, Classics of Mathematics (Prentice-Hall, Englewood 

Cliffs, NJ, 1995). 

(d) John Fauvel and Jeremy Gray, The History of Mathematics. A Reader 

(Macmillan, London, 1987). 

2. The section on projective geometry is based on the article by Morris Kline, 

“Projective Geometry,” Scientific American (Jan. 1955), reprinted in Math¬ 

ematics. An Introduction to its Spirit and Use (Freeman, San Francisco, 

1979). 

3. The quotation from Pascal’s Essay pour les coniques is taken from Smith’s 

source book (op. cit.), p. 329. 

4. The quotations from the correspondence of Pascal and Fermat on probability 

are taken from Smith’s source book (op. cit.), pp. 546-565. 

5. The discussion of Wallis’ work on imaginary numbers is based on Smith’s 

source book (op. cit.), pp. 46-54. 

6. The discussion of the slide rule is based on Smith’s source book (op. cit.), 

pp. 156-164. 
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7. The discussion of computing machines is based on the book The Computer 

from Pascal to Von Neumann by Herman H. Goldstine (Princeton University 

Press, 1972). 



Chapter 17 

Beyond the Calculus 

Up to the seventeenth century mathematics looks like a number of small rivulets 

meandering here and there. The rapid expansion of discoveries in the seventeenth 

century caused those rivulets to swell into a wide river by the beginning of the 

eighteenth century. This growth continued, so that by the beginning of the twentieth 

century the river had become a mighty flood. To describe the history of the two 

centuries from the calculus to the many subject areas that make up twentieth- 

century mathematics, we shall trace the growth process in the area of calculus 

and then see how these new ideas fostered the development of other traditional 

areas such as geometry and algebra. We are about to embark on a quick tour of 

a large amount of material. We have three goals in mind. First, we shall try to 

trace the origins of the mathematics that forms most of the current undergraduate 

curriculum. Second, we wish to make a survey of the new mathematics created 

in the eighteenth and nineteenth centuries, whether or not it is currently taught to 

undergraduates, in order to give a general idea of what was done and why. Third, 

we shall try to trace as many interconnections as possible, to show that mathematics 

grew as a unified organism. Its roots are very far away from its branches, but the 

two are definitely connected. The main “trunk” that joins all these branches into 

a single organism is the calculus. 

17.1 The Calculus and Its Outgrowths 

17.1.1 Expositions of the Calculus 

Most of what is now called calculus was invented in the last half of the seventeenth 

century and organized systematically in the early decades of the eighteenth. The 

importance of calculus in scientific research can be seen in the work of Newton 

and Leibniz and was amply demonstrated by the great eighteenth-century scientists, 

who laid down the principles that we now think of as “Newtonian” physics. A 

considerable amount of this work is due to one Swiss family, the Bernoullis. We 

shall have space here to discuss only four members of this illustrious family, the 

369 
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brothers Jakob and Johann and Johann’s sons Daniel (1700-1782) and Niklaus 

(1695-1726). It was Jakob who, in a 1690 paper on the isochrone problem,1 

introduced the term integral still used today. Leibniz had used the Latin word 

omnis for this idea of summing up all the infinitesimal changes in a variable. 

In 1692-93, together with his younger brother Johann, Jakob Bernoulli studied 

caustics, the envelopes2 of reflected or refracted systems of rays of light; this 

work led to the appearance of the now-familiar formula for the curvature of a 

plane curve. Many of the well-known curves of calculus, such as the catenary, the 

tractrix, and the lemniscate were first discussed in the works of Jakob Bernoulli in 

the early 1690s. He also introduced the use of polar coordinates. He was proudest 

of all of his exposition of the properties of the logarithmic spiral (in our terms the 

curve r = aebe), which tends to reproduce itself under many common geometric 

transformations. In particular, the caustics resulting from reflection or refraction 

by a logarithmic spiral are also logarithmic spirals. He is said to have asked that 

this curve be inscribed on his tombstone, reminiscent of Archimedes’ sphere and 

cylinder. 
As we saw in Chapter 15, both Newton and Leibniz knew a number of partic¬ 

ular power series expansions. Their disciples, Brook Taylor and Johann Bernoulli, 

discovered the general procedure for generating such series representations in terms 

of the derivatives of the functions represented, that is, the series now known as 

Taylor series. Taylor published his main work, the Methodus incrementorum di¬ 

recta et inversa, a study of differential equations and plane curves, in 1715. It 

was in this work that the famous vibrating string problem was first posed. It also 

contained the power series expansion now named after Taylor, which he had dis¬ 

covered in 1712. Taylor’s claim to this result was disputed by Johann Bernoulli, 

who had made the same discovery somewhat earlier. 

The ratio test for convergence of a series is due to Jean le Rond d’Alembert 

(1717-1783), who also noted that the variable in a power series could be thought 

of as representing a complex number. The extension of the calculus to complex 

numbers turned out to have monumental importance. It was d’Alembert who first 

used complex numbers to give a nearly rigorous proof of the fundamental theorem 

of algebra: Every polynomial of positive degree with complex coefficients must 

be equal to zero for some complex value of the variable. 

Most students of calculus know the Maclaurin series as a special case of the 

Taylor series. Its discoverer was a Scottish contemporary of Taylor, Colin Maclau¬ 

rin (1698-1746), whose treatise on fluxions (1742) contained a thorough and rigor¬ 

ous exposition of calculus. It was written partly as a response to the philosophical 

attacks on the foundations of calculus by the philosopher George Berkeley. 

The secure place of calculus in the mathematical curriculum was established 

by the publication of a number of excellent textbooks. One of the earliest, the 

Analyse des infiniment petits, was published by the Marquis de 1’Hospital in 1696. 

(L’Hospital had become interested in calculus from reading the work of Leibniz 

and had taken instruction from Johann Bernoulli.) 

1The problem of finding the path down which a frictionless particle will slide in a constant time 
independent of its starting point. 

2The envelope of a family of curves or surfaces is a curve or surface tangent to all of its members. 
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The Italian textbook Istituzioni analitiche ad uso della gioventii italiana (Ana¬ 

lytic Principles for the Use of Italian Youth) became a standard treatise on analytic 

geometry and calculus, and was translated into English in 1801. Its author was 

Maria Gaetana Agnesi (1718-1799), one of the first women to achieve promi¬ 

nence in mathematics. In 1750 she became Professor of Mathematics and Natural 

Philosophy at the University of Bologna, one of the oldest and most respected 

universities in Europe. This work contains a discussion of the curve with equa¬ 

tion x2y = a2 (a — y), called by Agnesi the versiera, and through an unfortunate 

translation known in English as the witch of Agnesi. (The Italian word versiera 

does mean she-devil, but Agnesi was probably referring to its twisted character.) 

The definitive textbooks of calculus were written by the greatest mathemati¬ 

cian of the eighteenth century, the Swiss scholar Leonhard Euler (1707-1783). 

In his 1748 Introductio in analysin infmitorum, a two-volume work, Euler gave 

a thorough discussion of analytic geometry in two and three dimensions, infinite 

series (including the use of complex variables in such series), and the founda¬ 

tions of a systematic theory of algebraic functions. The modem presentation of 

trigonometry was established in this work. The Introductio was followed in 1755 

by Institutiones calculi differentialis and a three-volume Institutiones calculi inte¬ 

grals (1768-1774), which included the whole theory of calculus and the elements 

of differential equations, richly illustrated with challenging examples. Modem cal¬ 

culus books essentially repeat what Euler said about differential equations. It was 

from Euler’s textbooks that many prominent nineteenth-century mathematicians 

such as the Norwegian genius Niels Henrik Abel (1802-1829) first encountered 

higher mathematics, and the influence of Euler’s books can be traced in their work. 

More than anyone else Euler determined the general shape of eighteenth-century 

mathematics. He applied mathematics to shipbuilding, geodesy, astronomy, bal¬ 

listics, optics, and a variety of other areas, always manifesting a keen physical 

intuition. He wrote beautiful expository treatises that established much of the no¬ 

tation we now use. For example, the use of the letter e to denote the base of 

natural logarithms first occurred in a paper written by Euler around 1728, which, 

however, was not published until 1862. Euler used this letter in a published work 

on mechanics in 1836, defining it as “the number whose hyperbolic logarithm 

equals unity.” 

As the case of Maria Gaetana Agnesi shows, during the eighteenth century 

a few women managed to break through the social barriers that had previously 

confined them to domestic activities. One of the first to do so, Gabrielli Emilie, 

Marquise du Ch&telet (1706-1749), began by studying languages. At the urging of 

Voltaire she undertook to translate Newton’s Principia into French. To do so meant 

having to understand and explain the most advanced mathematics and science of 

her time. This work was not published until 1756, 8 years after an early death 

deprived the world of the further contributions she might have made. 

Foundational Questions 

The textbooks just discussed were written partly to respond to objections to the 

calculus. The philosophical difficulties with the foundations of the calculus were 
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cogently urged in a treatise by the philosopher George Berkeley (1685-1753) enti¬ 

tled The Analyst (1734). Although Berkeley had pondered the unresolved questions 

on the relations between a line and its points—whether lines could be analyzed 

into infinitely small parts or synthesized from them—as early as 1710, the imme¬ 

diate impetus to the publication of this work was religious. Berkeley knew of a 

man who refused religious rites on his deathbed because he had been convinced 

that theological propositions were meaningless. In response Berkeley, who had 

just become the Anglican Bishop of Cloyne, Ireland, undertook to show that the 

propositions on which current mathematics was based were not the least bit clearer 

to reason than those of theology. His treatise was subtitled Discourse Addressed to 

an Infidel Mathematician (the unnamed infidel was the astronomer Edmund Hal¬ 

ley). Berkeley attacked the infinitesimals at their weakest point, showing that they 

were inconsistently handled in some places as if they were zero, in other places 

as if they were finite numbers. In a famous phrase, he referred to the ratios of 

infinitesimals as “ghosts of departed quantities.” Despite the vigor of his attack, 

however, Berkeley did not doubt or wish others to doubt the truth of mathemati¬ 

cal results. His purpose was just the opposite, to show that such methods, albeit 

seemingly contradictory to human reason, yet led to true results, as (he believed) 

theology did. 

The defense of calculus was led by Maclaurin, whose treatise on fluxions 

developed the subject as Newton had said it could be developed, in accordance 

with the ancient method of exhaustion. 

The difficulties with the notion of instantaneous rate of change, infinitesi¬ 

mals, and the like, caused some mathematicians to look for other ways of deriving 

the results of calculus. In his textbooks entitled Th&orie des fonctions analytiques 

(1797) and Legons sur le calcul des fonctions (1801) the Italian-French mathemati¬ 

cian Joseph-Louis Lagrange (1736-1813) undertook to reformulate the calculus, 

basing it entirely on algebraic principles and stating as a fundamental premise that 

the functions to be considered are those that can be expanded in power series. 

In these textbooks the form of the remainder in a Taylor series now called the 

Lagrange form was introduced. With this approach the derivatives of a function 

need not be defined as ratios of infinitesimals, since they can be defined in terms 

of the coefficients of the series that represents the function. Functions having a 

power series representation are known nowadays as analytic functions (from the 

title of Lagrange’s work). They have the important property that if their values 

are known over any finite interval of variation of the independent variable, no 

matter how short, then the coefficients can all be computed, and hence the values 

of the function can be computed for all values of the independent variable. This 

principle corresponds to the metaphysical principle that perfect information about 

the motion of bodies for a finite interval of time would make it possible to predict 

the entire future course of those bodies. 

Functions 

Infinitesimals were not the only foundational question connected with the calculus. 

The meaning of the algebraic symbols used also raised certain questions. Physical 
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laws were usually expressed as equations containing two or more variables rep¬ 

resenting measurable quantities. The relations among variables were pictured as 

curves or surfaces. 

Leibniz used the word function to denote the relation between a dependent 

variable and one or more independent variables. In ordinary language a function 

is an operation that one carries out, and that seems to be the idea Leibniz had 

in mind. In 1718 Johann Bernoulli gave a definition of this concept close to 

the modem one, writing that “A function of a variable is... a quantity formed 

in any manner from this variable and constants.” The phrase “formed in any 

manner” leaves a great deal of room for ambiguity. The question of just which 

operations are admitted has been disputed ever since, with more and more general 

operations being allowed as time passes. In his 1748 Introductio Euler emended 

the definition, saying that a function is an analytic expression formed from a 

variable and constants. At the time the only analytic expressions allowed were 

finite algebraic and trigonometric expressions and infinite series of powers of a 

variable. Thus for the most part a function meant an algebraic function. The 

use of power series eventually introduced into mathematics huge new classes of 

functions, which could be adapted to solve particular problems. 

The calculus presented a problem: the rules for manipulating the symbols were 

agreed on as long as only finite expressions were involved, but the question was, 

what did the symbols represent? Normally the letters x, y, z, were thought of as 

representing continuous quantities such as lines or ratios in geometry. However, 

if they were thought of as numbers, there was some question as to what sort of 

numbers they could be. Euler explicitly stated that variables were allowed to take 

on negative and imaginary values. Thus, even though the physical quantities the 

variables represented were measured as positive rational numbers, the algebraic 

and geometric properties of negative, irrational, and complex numbers could be 

invoked in the analysis. 

17.1.2 Differential Equations 

One of the most powerful tools that can be constructed out of the calculus is the use 

of differential equations. It is only a small exaggeration to say that the principal 

advantage of the differential calculus is that it makes it possible to write down 

differential equations, and the principal use of the integral calculus is in solving 

differential equations. 

Closed-Form and Series Solutions 

Two kinds of problems arise in the application of differential equations to physics. 

First, the equations have to be manipulated into a form in which the solution 

is merely a matter of integration. This step is called reduction to quadrature. 

Second, the integration has to be carried out. The first step cannot in general be 

performed; in particular it is impossible to carry it out in the case of the equations 

Euler derived to describe the motion of a rigid body and for the equations of the 
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three-body problem. For that reason these problems attracted a great deal of interest 

during the nineteenth century. As for the second step, some very simple problems— 

pendulum motion, for example—lead to equations requiring the integration of the 

square root of a cubic polynomial. In such a case the reduction to quadrature 

is possible, but the great variety of possible behaviors for cubic polynomials in 

two variables made it clear that no simple formula could be found to express 

such integrals. The development of differential equations began to repeat the 

history of algebraic equations, as the early “exact” methods of solution encountered 

insuperable difficulties when the expressions became complicated and had to be 

supplemented by approximate methods. Indeed, this analogy turned out to be very 

deep. 
Thus it soon became apparent that the natural approach to solving differential 

equations—to find a “closed-form” solution by replacing the differential equation 

between the variables by an equivalent relation not involving any differentials—was 

limited to a few special cases, and these cases were not adequate for the problems 

in physics to which mathematicians wished to apply the method. Another early 

method (used by Newton, for example, in his Fluxions) is the so-called method of 

undetermined coefficients, in which a power series expansion is assumed for the 

variable occurring in the differential equation, and the equation itself is used to 

determine the coefficients of the series. This method turned out to be very fruitful, 

both practically and theoretically. The potential practical value was clear, but the 

question whether there exists a power series representing a solution of a given 

differential equation remained open. This question led to a great deal of research 

in the nineteenth and twentieth centuries, and occupied some of the best minds 

of the period. The use of power series was followed by the use of trigonometric 

series, and this technique eventually led to much of modern functional analysis. 

Maclaurin, however, warned against too hasty recourse to infinite series, saying 

that certain integrals could be better expressed geometrically as the arc lengths of 

various curves. 

Geometric Approaches 

The fact that families of curves and surfaces can be defined by a differential 

equation means that the equation can be studied geometrically in terms of these 

curves and surfaces. The curves involved, known as characteristic curves, are 

useful in deciding whether it is or is not possible to find a surface containing a 

given curve and satisfying a given differential equation. This geometric approach 

to differential equations was begun by Gaspard Monge (1746-1818), who also 

defined the principal curvatures of a surface at a point and the notion of lines 

of curvature. He wrote a definitive textbook on this subject entitled G£om£trie 
descriptive. 

Analytic Solutions 

In the early 1820s Augustin-Louis Cauchy (1789-1856) drew attention to an unspo¬ 

ken assumption that mathematicians had been making: that there exists a solution 



17.1. THE CALCULUS AND ITS OUTGROWTHS 375 

to a given differential equation. The technique for solving equations had been to 

reduce them to quadrature (evaluation of indefinite integrals) when possible. If 

this reduction could not be achieved, the solution was assumed to be a convergent 

power series, and the coefficients were then determined by substituting the series 

into the equation. It was Cauchy who first asked why there should be a power 

series solution and, in the 1820s, gave the first rigorous proof that an ordinary 

differential equation has a solution. In 1841 Cauchy developed what is known as 

the method of majorants for proving that a solution of a partial differential equation 

exists in the form of a power series in the independent variables. His technique 

was to replace the equation by another equation that generated a power series with 

larger coefficients than those generated by the given equation. If the new equation 

could be reduced to quadratures and its solution shown to be analytic, it followed 

that the formal power series for the original equation also converged and hence 

represented an actual solution. The method of majorants was developed indepen¬ 

dently by Karl Weierstrass (1815-1896) in that same year in application to a system 

of ordinary differential equations. Weierstrass’ goal was somewhat different from 

Cauchy’s, however; he wanted to show that the differential equation itself could 

be used as the definition of a function, even if the power series representing the 

function could not be completely determined. 

Weierstrass did not publish his work until 1894, when his collected works be¬ 

gan to be published, and Cauchy published so much material that his 1841 papers 

were not noticed when interest in this question was revived in the early 1870s. 

Weierstrass’ student Sofya Kovalevskaya (1850-1891) applied the method of ma¬ 

jorants and a normalization theorem of Carl Gustav Jacobi (1804-1851) to produce 

an exceedingly elegant theorem giving cases in which an analytic solution exists.3 

This theorem is still a centerpiece of the theory of differential equations today, 

and is known as the Cauchy-Kovalevskaya theorem. Moreover, Kovalevskaya 

went beyond the positive result and showed its limitations with a counterexam¬ 

ple. Weierstrass had believed that any equation of mathematical physics could be 

solved by assuming a power series representation of the solution and finding the 

coefficients. Kovalevskaya astounded him by showing that such is not always the 

case. In fact, the heat equation 

du d2u 

~di = Ox2’ 

which describes the temperature in a long thermally insulated wire, has an analytic 

solution if the initial temperature distribution is shaped like a normal probability 

curve, for example, u(x, 0) = e~x , but not if the initial temperature is the versiera 

of Agnesi u(x, 0) = 1/(1 + x2). Since the two curves look very much alike when 

x is regarded as a real variable, the difference must be sought in their different 

properties as functions of a complex variable. Thus complex numbers are relevant 

to the study of this equation, even though the imaginary part of the complex variable 

t seems to have no physical interpretation. 

3Kovalevskaya’s work was partly duplicated by Gaston Darboux (1842-1917). The publicity in¬ 
volved with sorting out priority claims between the two led to the discovery that some of this work 
had been done earlier by Cauchy. 
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Trigonometric Series Solutions 

The use of trigonometric series rather than power series to solve differential equa¬ 
tions began in the mideighteenth century. The first major problem to be attacked 
using this technique was the famous vibrating string problem, represented by the 
one-dimensional wave equation derived by d’Alembert in 1747: 

d2u 2d2vi 

dt2 ° dx2 ’ 

in which u represents the vertical displacement of the vibrating string above the 
point x at time t. In 1749 Daniel Bernoulli found the solution as a series of terms 
of the form un(x,t) = asinnxsinnct. Trigonometric functions really came into 
their own, however, in the work of Joseph Fourier (1768-1830) on heat conduction. 

The general solution of the one-dimensional wave equation was obtained by 
d’Alembert in the form u(x,t) = f(x + ct) + g(x — ct). This solution can 
be interpreted physically as a representation of the wave disturbance u as the 
superposition of a wave / traveling left with velocity c and a wave g traveling 
right with velocity c. 

Sturm-Liouville Problems 

In studying the action of gravity Pierre-Simon Laplace (1749-1827) was led to 
what is now known as Laplace’s equation in three variables. The two-variable 
version of this equation is 

d2u d2u 

dx2 + dy2 

The operator on the left-hand side of this equation is known as the Laplacian. Since 
Laplace’s equation can be thought of as the wave equation with velocity c = \/—T, 
complex numbers again enter into a physical problem. Recalling d’Alembert’s 
solution of the wave equation, Laplace suggested that the solutions of his equation 
might be sought in the form f(x + yy/—l) + g{x — Once again a problem 
that started out as a real-variable problem led inexorably to the need to study 
functions of a complex variable. 

With the use of trigonometric series, which were particularly adapted to the 
solution of certain equations involving the Laplacian, mathematicians were encour¬ 
aged to look for other simple functions in terms of which solutions of more general 
differential equations could be expressed. Between 1836 and 1838 this problem 
was attacked by Charles Sturm (1803-1855) and Joseph Liouville (1809-1882), 
who considered general second-order differential equations of the form 

\p(x)y'(x)}' + [Ar(z) + q(x)]y(x) = 0. 

When a solution of Laplace’s equation is sought in the form of a product of 
functions of one variable, the result is often an equation of this type for the one- 
variable functions. It often happens that only isolated values of A yield solutions 
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satisfying given boundary conditions. Sturm and Liouville found that in general 

there will be an infinite set of values A = An, n = 1,2,..., satisfying the equation 

and a pair of conditions at the endpoints of an interval [a, b\, and that these values 

increase to infinity. The values can be arranged so that the corresponding solutions 

yn{x) have exactly n zeros in [a, b], and any solution of the differential equation 

can be expressed as a series 

oo 

y{x) = J2cnyn(x). 
n= 1 

The sense in which such series converge was still not clear, but it continued to 

be studied by other mathematicians, It required some decades for all these ideas 

to be sorted out clearly. 

17.1.3 Calculus of Variations 

Newton’s formulation of his mechanics was not in the simplest and most pol¬ 

ished form. In particular, although the important law F = ma was stated by 

d’Alembert and Euler in the form of differential equations that explain large num¬ 

bers of phenomena, the solutions of the equations came in a form that sometimes 

concealed some basic physical principles. In the middle of the eighteenth century 

the mathematician/philosopher Pierre de Maupertuis (1698-1759) stated a funda¬ 

mental principle known as the principle of least action, as a guide to the behavior 

of the universe. This principle was also formulated by Euler in a way that made it 

useful in physics and mathematics. To explain it, we need to recall certain basic 

problems. 

Many important questions in geometry and mechanics involve minimizing or 

maximizing not the value of a variable, but some quantity depending on the whole 

set of values of a variable. For example, given two rings of different sizes in 

space, what is the surface having them as boundary that has least area? Or, given 

a fixed area in a plane to be enclosed, what is the shortest curve that will enclose 

the required amount of area? In such questions the unknown is not a number but a 

functional relation. One such problem that appeared in Newton’s Principia is that 

of choosing an optimally streamlined surface for a body moving through a fluid 

(Scholium to Theorem XXVIII in Book II). Newton was unable to solve the general 

problem, but could solve it within restricted classes of surfaces, such as paraboloids 

of revolution or frusta of cones. A similar problem, known as the brachistochrone 

problem, which involves finding the path down which a firictionless particle will 

slide in minimal time from one point to another under the influence of gravity, 

provoked some rivalry and ill-will between Johann and Jakob Bernoulli. Johann 

Bernoulli solved it by appealing to the least-time principle for the path of a light 

ray, from which the law of refraction could be derived; essentially he considered 

a ray of light moving in a medium in which the index of refraction is proportional 

to the square root of its elevation. The solution is an inverted cycloid. 

In a 1744 paper entitled “Curvarum maximi minimive proprietate gaudentium 

inventio nova et facilis” (A new and easy way of finding curves satisfying a 



378 CHAPTER 17. BEYOND THE CALCULUS 

maximal or minimal property) Euler solved the problem of minimizing a functional 

of the form / Z dx, where Z is a function of x, y, p, q, r, etc., and the integral 

is evaluated with y regarded as a function of x and p = (dy/dx), q = (dp/dx) = 

(,d2y/dx2), r = (dq/dx) = (d3y/dx3), etc. Euler’s solution reduced this problem 

to the differential equation 

N_dL + LS.tL + ... = o, 
dx dx2 dx3 

where 

dZ = M dx + TV dy + P dp + Q dq + R dr + • • •, 

In modem terms, when Z is independent of q, r, etc., this equation is written 

d /dZ\ _ dZ 

dx V dy') dy 

and is known as Euler’s equation. This second-order differential equation gives 

only a necessary condition that the minimizing function y(x) must satisfy, but 

usually its solutions are restricted enough that one need not look further for the 

solution. As an application Euler showed that one could calculate the trajectory of 

a body moving under a central force using this equation to minimize the integral 

of its velocity with respect to arc length, and that the result was the same as that 

obtained by Newtonian methods. 

Fifteen years later Lagrange put the theory on a more systematic basis by 

introducing the concept of variation of a curve, analogous to the differential of 

a variable in calculus. If y = y(x) is a curve, its variation is thought of as 

a small increment in y (depending on x), that is, the difference between y(pc) 

and a nearby curve, and denoted 8y. The corresponding variation of the integral 
fb 

I(y) = / F(.t, y, y') dx is the linear part of the actual increment when I(y + 8y) 
■1 a 

is expanded in a power series in 6y. It is not difficult to see through integration 

by parts that 

rb 

a 

d (dF 
( — ) \dv') dx \ dy 

dF- 

dy. 
6y dx. 

Thus, arguing that this last expression must be zero for all 6y if the integral has a 

minimum at y, Lagrange deduced Euler’s equation. 

Euler and Lagrange made the calculus of variations fundamental in mechanics 

by formulating what Euler called the “law of rest.” That is, if the forces acting 

on a system of particles during a physical process are integrated with respect to 

distance (thereby producing what is now called the work done on the body and 

Euler called the effort), the path actually followed by the body will minimize this 

integral. Since this work equals the change in potential energy of the body, Euler’s 

statement amounts to the claim that a body always moves to a state of minimum 

potential with respect to a given set of forces. 
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17.1.4 Analysis 

In the nineteenth century the calculus continued to grow through generalizations 

of its methods and consolidation of its foundations. Both of these directions con¬ 

tributed to the development of calculus into what is now called analysis, a large 

set of topics grouped around two centers called real analysis and complex anal¬ 

ysis. It has turned out that the processes of calculus—differentiation, integration, 

sequences, and series—mean different things when applied to real and complex 

numbers. Roughly speaking, functions of a complex variable tend to possess great 

regularity while functions of a real variable often exhibit pathological irregular¬ 

ity. Both have important applications, and there are many bridges between the two 

subjects. They function together extremely well in the subject known as functional 

analysis. 

The Bifurcation of Analysis 

Real analysis began its growth as an independent subject with the introduction of 

the modem definition of continuity in 1816 by the Czech mathematician Bernard 

Bolzano (1781-1848). Bolzano deduced what is now known as the intermediate- 

value theorem from this new definition of continuity. That is, if a real-valued 

function is continuous and takes on a negative value at one point and a positive 

value at a second point, then there must be some point in between where it is zero. 

To prove this theorem he established one of the fundamental facts about the real 

numbers: a bounded infinite set of real numbers must contain a convergent se¬ 

quence of distinct numbers. (This result is now known as the Bolzano-Weierstrass 

theorem.) Bolzano was not well known in his own time, and the eventual estab¬ 

lishment of these ideas was due to the Cauchy. Before this time mathematicians 

had used the word continuous to refer to a function given by a single analytic 

formula throughout its domain, as opposed to a “discontinuous” function, defined 

by different formulas in different places. The latter may well be continuous in 

the modem sense. The relation between continuity and the derivative remained 

mysterious for many years after this time, although Bolzano had shown that a 

function can be continuous even when there is no interval throughout which it is 

differentiable. (His paper on this subject unfortunately was not published until 

the twentieth century.) Eventually it was realized that functions representable by 

power series (Taylor’s series) are differentiable any number of times and have nat¬ 

ural extensions via the power series to functions of a complex variable. Cauchy 

discovered the interesting fact that the region of convergence of a complex power 

series is either a single point, or all the complex numbers, or a disk together with 

possibly some or all of its boundary. Because the function represented by a power 

series is necessarily “smooth,” the complex variable turns out to be of limited use 

for “rougher” functions. 

Cauchy greatly advanced the subject of complex analysis in 1825, when he 

introduced the notion of an integral along a contour in the complex plane. From this 

idea he discovered that a function having a continuous derivative in the complex 
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sense has a representation as an integral (the Cauchy integral formula): 

JL [ /(O 
27xi J £ — z 

c 

and from that integral the Taylor series of the function can be generated and proved 

to converge. In 1900 Edouard Goursat (1858-1936) showed that the assumption 

that the derivative is continuous was unnecessary. 

From this time on analysis developed along two diverging lines. Integration, 

differentiation, and series representations were the heart of both real and complex 

analysis, but real analysis became concerned with trying to find more and more 

general functions to which integration was applicable; differentiation played a 

definitely subordinate role. For complex analysis the Cauchy integral was adequate, 

and there was no possibility of finding any more general functions than power 

series. 

Real Analysis 

While complex analysis involves power series, much of real analysis is connected 

with series of trigonometric functions. In 1807 Joseph Fourier (1768-1830) singled 

out the natural trigonometric series to represent a function (for convenience we 

consider only even functions): 

oo 

fix) E bk cos kx. 
k=0 

If the series does converge nicely to the function f(x)< that is, if it can be multiplied 

by cos mx and integrated term by term, it is easy to see that bm must be given for 

m > 0 by 

1 f2n 
bm = ~ / fix) cos mx dx. 

71 Jo 
The series with coefficients computed from this formula is known as the Fourier 

series of the function /(.t); and since mathematicians of the time hardly considered 

the possibility that a series could not be integrated term by term, the Fourier series 

was the only trigonometric series that was considered for representing a function. 

The question was whether it converged or not. 

This question was studied by Peter Lejeune-Dirichlet (1805-1859), who pro¬ 

ceeded from the intuitive consideration that each trigonometric function has a 

limited number of intervals on which it is increasing and decreasing. He showed 

that the series must converge to the function that generates it if the latter has only 

a finite number of maxima and minima and only a finite number of discontinuities. 

Moreover at a discontinuity the series converges to the average of the right- and 

left-hand limits of the generating function. 

Dirichlet had started from the function being represented in order to prove that 

the Fourier series converged to it. The opposite question—starting from a conver¬ 

gent series, what can one say about its sum?—had been considered by Cauchy, 



17.1. THE CALCULUS AND ITS OUTGROWTHS 381 

who claimed that the sum of a series of continuous functions was continuous. 

Abel, who admired Cauchy, remarked diplomatically in one of his papers that, “It 

appears to me that this theorem suffers exceptions.” He proceeded to point out the 
example of the series 

if 0 < X < 7T, 

Since the sum of the series is 0 when x is a multiple of 7r, the sum certainly 

cannot be continuous at those points. In noting this fact and giving a rigorous 

discussion of the convergence of power series, Abel was leading the way to the 

notion of uniform convergence, which is crucial for the preservation of continuity 

and for the justification of the termwise operations of differentiation and integration 

performed in analysis. 

The question of the possible values a convergent series of trigonometric func¬ 

tions can have was raised by Bernhard Riemann (1826-1866). In order to answer 

this question he was forced to examine the concept of integration, creating thereby 

(in just three pages) the concept now known as Riemann integration. Riemann 

gave a necessary and sufficient condition for a bounded function to be integrable 

over an interval [a, b]: The function must have the property that for any £ > 0 

there is a number 6 > 0 such that the total length of the intervals on which the 

function oscillates by more than e in a partition of [a, b} into intervals of length 

less than 8 is less than e. This condition is now expressed by saying that the set 
of discontinuities of the function must have measure zero. 

It is a revealing comment on the wealth of talent that existed in Europe by 

this time that such brilliant work of Riemann’s did not immediately become the 

starting point for fresh research. Riemann’s work on trigonometric series was his 

Probevorlesung, the traditional lecture given on assuming a new post in a German 

university (in Riemann’s case, at Gottingen in 1854). Riemann himself did not 

follow up on this work, and it was not published until 1867, the year after he died. 

Algebraic Functions: Abelian Integrals 

With calculus splitting into real and complex halves, the question of the appropriate 

mathematical entities for studying physical phenomena became important. For 

physical applications, in which the variables represent time and space, it seems 

natural to use functions of a real variable, but it often happens that the mathematics 

is clearer when placed in the context of complex analysis. Such was the case with 

the algebraic integrals now known as Abelian integrals. These are integrals of the 

form /' R(x,y) dx, where R(x,y) is a rational function of two variables x and 

y constrained by a polynomial equation p{x,y) = 0. (A function y satisfying 

such an equation is said to be an algebraic function of x.) A simple example 

is the integral / fl — x2 dx, which is / y dx, where x2 + y2 = 1. The most 

important Abelian integrals in Abel’s time were the elliptic integrals, for example, 

f R(x, y) dx, where y2 = x3 + ax2 + bx -f c. These integrals had been studied in 
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minute detail in a three-volume treatise by Adrien-Marie Legendre (1752-1833), 

who had organized them into three distinct classes according to their behavior and 

had shown a wealth of applications of them in physics. (They arise naturally in 

the equation of pendulum motion (9 +sin 6 = 0.) He had also noticed their analogy 

with the trigonometric functions and on that basis had suggested that their inverses 

would have a simpler theory than the integrals themselves. 

The inverse function of such an integral is called an elliptic function. Algebraic 

functions and their integrals were among the leading motives for creating the theory 

of functions of a complex variable. As already pointed out, the techniques of that 

theory, especially the use of power series, automatically generated a huge class 

of nonalgebraic (transcendental) functions to which the same techniques apply, 

thereby providing additional problem-solving potential at little extra cost. 

When elliptic integrals are regarded as functions of complex variables, their 

inverse functions have the important property of double periodicity. Abel had 

developed a general theory of algebraic integrals along these lines. His great paper 

submitted to the Paris Academy of Sciences in 1827, however, was still lost at 

the time of his death. A shortened version of this paper that appeared in 1829 

attracted the attention of Abel’s rival for the honor of creating the theory of elliptic 

functions, Carl Gustav Jacobi. 

Abel had shown that a sum of any number of definite integrals of an algebraic 

integrand could be reduced to the sum of a fixed number p of integrals. The limits 

of integration on the p integrals would be algebraic functions of the limits of the 

original integrals. For the case when p > 1, Jacobi realized that this theorem 

introduced some indeterminacy, since there would be two or more integrals (hence 

two or more upper limits of integration) to be determined from only one equation. 

To make the problem determinate, Jacobi introduced in 1832 a set ofp independent 

integrands and posed the problem of finding the limits of integration simultaneously 

for all p integrands. This problem, known as the Jacobi inversion problem, was an 

open question for 25 years. Jacobi appealed for the publication of Abel’s memoir, 

which was finally located and published in 1841. 

Jacobi also discovered the tool that eventually solved the inversion problem, 

known as theta functions. These are series of functions of the form 0(x) = 

e-x -2ax' Theta functions can be represented by power series that converge ex¬ 

tremely well, and quotients of them can be doubly periodic. They are thus ideally 

adapted for representing elliptic functions. This result led Jacobi to examine places 

where elliptic functions had occurred in physics and to show that the quantities 

involved could be very naturally expressed by theta functions. In particular, in 

1849 he solved the problem of the rotation of a rigid body free of external forces 

using these functions. 

Like many other analysts of the nineteenth century, Weierstrass made important 

contributions to both real and complex analysis. His elegant derivation of repre¬ 

sentations of elliptic functions from their periodicity properties is still taught today. 

In complex analysis he was a champion of the power series as the basic tool, on 

the grounds that differentiability was too vague a property to base a theory on. His 

idea was to start at any point with a convergent power series. To break out of the 
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circle of convergence for the series, the series itself could be used to compute the 

coefficients of another series representing the same function at a point near the 

boundary circle, and the circle of convergence for the new series would normally 

extend outside the original circle. In this way he obtained a chain of circles leading 

from any point in the domain of the function to any other point. Each power series 

in the chain was called an element of the given analytic function. This process is 

called analytic continuation. 

A large amount of Weierstrass’ work was devoted to clarifying the properties 

of algebraic functions of a complex variable. For such functions there are points 

(such as the point 2 = 0 in the case of a function w satisfying w3 — z = 0 for 

example) at which no power series expansion in integer powers of 2 is possible. 

At such points Weierstrass gave a set of expansions in powers of yfz. Algebraic 

functions were his main interest, and the fact that the complex function theory he 

developed turned out to apply to transcendental functions as well was a bonus. 

Weierstrass had worked out a general solution to the Jacobi inversion problem 

and published part of it, but withdrew his second paper when Riemann published 

another solution based on an entirely different approach to complex analysis. 

Riemann’s most important contribution to complex analysis was the idea of a 

Riemann surface 4 This idea can be illustrated with an example. 

For most algebraic functions there was a difficulty with finding inverse func¬ 

tions, which were not uniquely determined, that is, many different values of one 

variable corresponded to a single value of the other. A single example will suffice. 

Everyone knows that there are two values of yfz and these values are negatives of 

each other. If z starts at 1 and traverses a circle in the complex plane with center 

at 0, the square root varying continuously with z, it will be found that when z 

again approaches 1 after making one circuit around the point z — 0, its square 

root approaches the negative of the value it had when starting. Thus fz cannot 

be defined as a continuous function in a neighborhood of 0. Riemann’s idea was 

to have two copies of the z plane associated with one copy of the w plane in the 

relation w = y/z, or, equivalently z = w2. Each copy of the z plane is cut along 

a ray starting at 0 (since there is only one value of >/0) and the edges of the two 

planes are glued together so that z passes from one plane to the other each time 

it crosses the ray. In this way the correspondence between z and w is one-to-one, 

and the square root becomes a continuous function. Cauchy’s contour integrals 

can be computed on the Riemann surface as easily as in the ordinary plane, and a 

great many difficulties are thereby cleared up. 

Each functional relation has its own Riemann surface, and Riemann showed 

how to make a certain number of cuts in a Riemann surface so that it becomes 

simply connected, that is, so that any closed curve can be smoothly shrunk to a 

point. In so doing he created one of the sources of the subject known as algebraic 

topology; for the number of cuts of different kinds that it was necessary to make 

4Some of Riemann’s dissertation was anticipated by a paper of Victor Puiseux (1820-1883) pub¬ 
lished in 1850, the year before Riemann wrote his dissertation. What Puiseux lacked was the notion 
of a branch line connecting different sheets of an algebraic surface. He clung instead to the use of 
subscripts to denote the different values of an algebraic function at a given point (a notation due to 
Cauchy). 
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essentially determined the properties of the Riemann surface. Two surfaces with 

equivalent cuts could be mapped onto each other without folding or tearing. Rie¬ 

mann showed that any simply connected region except the whole plane, no matter 

what its shape, is equivalent to a disk, so that the theory of analytic functions 

in such a region amounts to the same theory in the disk, where power series can 

be used to represent any analytic function. This famous result is known as the 

Riemann mapping theorem. 

17.2 Algebra 

The relation between the roots and the coefficients of a polynomial became more 

and more transparent as time went on. Euler and d’Alembert both gave geometric 

arguments to show that every equation has a root in the complex numbers, so 

that no new kinds of numbers needed to be invented in order to solve equations. 

Euler (1732) noticed that the procedure for solving a third-degree equation for x 

was to let x = u + v, where u3 and v3 satisfy a quadratic equation; in this way 

the problem reduced to an equation of degree one lower, plus the operation of 

extracting the cube root. Similarly the solution of a fourth-degree equation for x 

can achieved by reducing it to a biquadratic equation via a transformation whose 

parameters can be found by solving a cubic equation (the resolvent cubic). From 

these considerations he was able to give a unified method of solving equations 

of degree up to 4. Based on this experience he proposed that, for example, the 

fifth-degree equation might be solved by setting x = ^/u[ + + ^/ui + ^/ul- 

He did not achieve the solution, however. 

Lagrange attacked the same problem by creating auxiliary equations of higher 

degree but greater symmetry, which he called reduced equations (they are now 

called resolvents). In general the resolvent equation is of degree n\ for an equation 

of degree n, but symmetry may make it possible to reduce this degree. For n = 3 

and 4 it can be reduced to an equation of smaller degree (2 and 3, respectively), and 

hence the given equation can be solved. For n = 5 Lagrange was able to reduce his 

“reduced equation” only to degree 6, which left the quintic equation still unsolved. 

However Giovanni Francesco Malfatti (1731-1807) used the resolvent to solve a 

number of particular quintic equations. 

Lagrange’s idea lighted the way to a complete solution of the problem. By 

focusing on the operations one would have to perform in order to solve an equation 

(substitution and reduction), Paolo Ruffini (1765-1822) showed in 1799 that no 

such method can solve every quintic equation. In his paper “Della insolubility delle 

equazioni algebraiche generali di grado superiore al quarto” (On the unsolvability 

of general algebraic equations of degree higher than the fourth) Ruffini introduced a 

concept that he called the permutation of an equation, that is, the set of substitutions 

that leave a given function unchanged. In the form of a permutation group, this 

concept was to have strong influence, not only on the solution of the problem of 

solving equations, but in every area of mathematics. 

The penetration of analysis into algebra increased after the extension of trigono¬ 

metric functions to complex variables by Jakob Bernoulli and Abraham de Moivre 
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(1667-1754). The fundamental question Does every equation have a solution in 

the complex numbers? was answerable only after the calculus was fully extended 

to complex variables in the form now known as complex analysis. Only in this 

context can even cubic equations be said to be completely understandable. That 

development, however, occurred in the nineteenth century, and the last details of 

the solution of the quintic equation were not worked out until the 1990s. 

17.2.1 From Equations to Groups and Fields 

As just mentioned, Ruffini gave an argument purporting to show that the general 

fifth-degree equation is not solvable by algebraic means. Numerical approximations 

to the solutions can, however, be obtained. The Chinese had been finding them 

for centuries, and the Chinese method was discovered independently by William 

Homer (1786-1837), a schoolteacher at Bath. Techniques for numerical solution 

of equations are never perfect and continue to be improved down to the present 

day. Such techniques, however, seldom lead to new areas of thought. It is the 

“impractical” theoretical questions that lead to new mathematics. Chief among 

these questions are the following: How many roots does an equation have? Are 

these roots rational numbers, real numbers, or complex numbers? Or is some kind 

of hypercomplex number required? Granted that the roots are determined by the 

coefficients, how can one proceed from the data (coefficients) to the output (roots)? 

What is the relation between coefficients and roots? 

From the very earliest times the answer to this last question was known for 

quadratic equations. It is nowadays summed up in the quadratic formula taught 

in high-school algebra. A path was found from coefficients to roots for cubic 

and quartic equations in the sixteenth century, but that path sometimes wandered 

through irrational and imaginary numbers, even when it started and ended in ratio¬ 

nal numbers, that is, when both coefficients and roots are integers, as in the case 

of the equation x3 — 7x + 6 = 0. It was the theoretical question that led to the 

creation of the complex numbers with all its beautiful applications; the “practical” 

numerical solution would never have required complex numbers. 

Roots Exist, but How to Find Them? 

Without the adjunction of complex numbers even the question of the existence 

of roots would have required a very clumsy classification of equations, and some 

equations would have no roots at all. By the eighteenth century it was strongly 

suspected that equations always have solutions in the complex numbers. The 

earliest attempts to prove this fact, by d’Alembert, Euler, and Lagrange, were 

brought to perfection by Karl Friedrich Wilhelm Gauss (1777-1855), who gave 

four different proofs of what is now known as the fundamental theorem of algebra: 

For any polynomial p(z) = aQ + o^z + n^z2 H-Fanzn with complex coefficients, 

n > 1 and an 0, there is a complex number r such that p(r) = 0. 

With the theoretical existence question settled, the still-open problem of find¬ 

ing a path from coefficients to roots could be attacked with more confidence of 
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finding a solution. By the end of the eighteenth century, there was a strong suspi¬ 

cion that for the general quintic equation no path (formula) could be constructed 

from coefficients to roots that involved only algebraic operations (the operations 

of arithmetic, together with root extractions). As a young student in Christiania 

(now Oslo), Abel dreamed of finding a general formula for solving all equations 

using algebraic operations and for a brief while thought he had succeeded. When 

he realized his mistake, he produced a proof that no such formula is possible for 

the general quintic. In the process he found it necessary to introduce the notion 

of the numbers generated by given numbers, that is, all the numbers that can be 

formed as a finite arithmetic combination of these numbers and the integers. Abel 

said that these numbers formed the domain of rationality of the given numbers. 

Implicitly here we have the notion now called a field—a structure on which addi¬ 

tion, subtraction, multiplication, and division are defined and obey the usual laws. 

Fields form the natural domain for stating equations, since a polynomial is formed 

using only arithmetic operations. The crucial question is whether a root extraction 

will require elements not in the field. A field, like the complex numbers, in which 

every polynomial equation has a root, is said to be algebraically closed. 

By 1800 it was known that the coefficients are symmetric functions of the roots, 

and so the question of how to get back from the symmetric functions to the roots 

themselves involved an investigation of the symmetries of the coefficients. It was 

this question of symmetry that led to the creation of one of the most fundamental 

concepts in all of mathematics: a group. 

Equations and Their Groups 

The concept of a group was created by ftvariste Galois (1811-1832) while still in 

his teens. He twice submitted a paper on the subject to the Paris Academy, but 

both times it was lost. In 1832, on the night before a duel that led to his death, he 

once again wrote out his thoughts and sent them to a friend. They were published 

in 1846 by Liouville. Galois’ approach to the subject required several pieces of 

background. The first was Abel’s notion of a domain of rationality generated by 

a given set of numbers (in applications the generating set will be the coefficients 

of the equation) and the possibility of enlarging that domain by adjoining new 

numbers (the square roots, cube roots, etc., of numbers in the domain). If one can 

reach a domain containing the roots of the equation in this way, the equation is 

said to be solvable by radicals. 

Galois followed Lagrange in considering permutations of the roots of an equa¬ 

tion. He introduced the term group to describe a set of permutations that is closed 

under composition. He noted that if one group contains another, then the larger 

group can be partitioned into what are now called right and left cosets with respect 

to that subgroup. These are the sets obtained from the smaller group by multiply¬ 

ing on the right or left by elements of the larger group. Galois singled out the case 

in which the right and left cosets of a subgroup are the same. A subgroup having 

this property is now called a normal subgroup, although Galois did not use this 

word; he spoke of a proper decomposition. 
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After Galois’ memoir was understood, it was seen that solving an equation 

whose group contains a nontrivial normal subgroup can be reduced to solving two 

equations of lower degree. In this way, theoretically, the question of whether a 

given equation can be solved reduces to computing the group of the equation. 

Since the group is finite, any question about it can (theoretically) be answered by 

an exhaustive search. Unfortunately, it is seldom easy to calculate the group of an 

equation. 

With criteria for solvability available, it was natural to ask for a way of listing 

all the equations with coefficients in a given field that can be solved by radicals. 

This problem was posed by Leopold Kronecker (1823-1891). Kronecker also con¬ 

jectured that the only Abelian extensions of the rational numbers are the so-called 

cyclotomic fields (those obtained by adjoining roots of unity). This conjecture was 

proved in 1886 by Heinrich Weber (1842-1913). 

Ancestors and Descendants of Group Theory 

The notion of a group had antecedents in the work of Lagrange and Ruffini. Both 

groups and fields occur (but not under those names) in Gauss’ famous treatise 

Disquisitiones arithmeticae, and Cauchy published a number of papers on groups 

of substitutions (again, not calling them groups) in which he, like Lagrange, proved 

theorems about the number of values taken on by a function of several variables 

when the arguments are permuted. The modem definition of a group first appeared 

in an 1854 paper by Arthur Cayley (1821-1895), who developed the theory of finite 

groups and listed all possible multiplication tables for groups of eight elements. 

The basic elements of modem “Galois theory” were published by Camille Jordan 

(1838-1922) in 1870. 

Group theory soon became one of the giant areas of mathematics. The finite 

groups that Galois considered in application to algebraic equations presented many 

mysteries. A complete classification of these groups took a century and a half 

to complete, and the results have still not been presented in a single coherent 

exposition. Such an exposition would require several thousand pages at present, 

and it is hoped that shorter proofs of the main results may be discovered. From 

finite groups, mathematicians turned to infinite groups and continuous groups, both 

of which turned out to be useful in various areas of mathematics and physics. 

17.2.2 Links with Analysis 

The periodicity properties of trigonometric and elliptic functions amount to the 

property of invariance under the action of a certain discrete group of transforma¬ 

tions of the complex plane, namely translations. There are, however, many other 

discrete groups of such transformations of the complex plane. The most important 

of them are the fractional linear transformations 
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where a, b, c, and d are integers. The study of functions invariant under a discrete 

group of fractional linear transformations was inaugurated in the early 1880s by 

Henri Poincare (1854-1912). Poincare came to this theory from the study of 

differential equations with algebraic coefficients. The classes of functions invariant 

under such a group are called automorphic functions. 

17.2.3 Links with Number Theory 

The other side of the coin, so to speak, from the question of which equations 

have solutions, is the question of which equations a given number may satisfy. 

In particular a number that satisfies an equation with integer coefficients is called 

an algebraic number. Numbers that are not algebraic are called transcendental. 

The question whether any transcendental numbers exist is by no means trivial. It 

was answered in the affirmative by Charles Hermite (1822-1902), who proved in 

1878 that e is transcendental. His method of proof was soon adapted by Ferdinand 

Lindemann (1852-1939), who showed in 1881 that n is also transcendental. 

17.2.4 Linear Algebra 

Considering that both differentiation and integration are linear operations and that 

linear functions are the simplest functions from a computational point of view, 

one might have expected linear algebra to develop very early. Actually it is a 

surprisingly late bloomer. The essential elements of the subject—finite-dimensional 

vector spaces, linear operators, and the eigenvalue problem—did not come fully 

into focus until nearly the end of the nineteenth century. In contrast ww/ft'linear 

algebra, as exemplified by the theory of determinants, goes back to the time of 

Leibniz, who gave what is now known as Cramer’s rule for solving a system of 

linear equations.5 Likewise Alexandre Vandermonde (1735-1796) found a need for 

determinants in discussing methods of eliminating variables between simultaneous 

polynomial equations. It will be recalled that the Japanese mathematicians of the 

previous century had used determinants for this same purpose. 

Another source of linear algebra came to prominence in Britain in the midnine¬ 

teenth century. The problem from which it springs is related to certain problems 

of number theory studied by Gauss (see below), but takes on a life of its own in 

the form known as invariance theory. For example, given two linear polynomials 

/(x, y) — ax + by and g(x, y) = cx + dy, the determinant ad — be is said to be an 

invariant of the two polynomials. The meaning of this term is that if x = pu + qv 

and y = ru + sv, the new polynomials become (ap + br)u + (aq + bs)v and 

(cp + dr)u + (cq + ds)v, whose determinant is (ps — rq)(ad — be); in other words, 

the determinant is multiplied by the determinant of the substitution. An invariant 

of a set of polynomials is defined as a homogeneous polynomial in the coefficients 

that is multiplied by a power of the determinant of the substitution when a linear 

substitution is made for the variables. 

5Gabriel Cramer (1704-1752) gave this rule in 1750 in connection with a curve-fitting problem. 
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As this example shows, the study of determinants is an important part of 

invariant theory. The primary figures in invariant theory during the middle and 

late nineteenth century were Cayley and his friend James Joseph Sylvester (1814— 

1897). 

The theory of matrices as objects on which algebraic operations could be per¬ 

formed began with an 1858 paper of Cayley entitled “A memoir on the theory of 

matrices,” which told how to multiply matrices. (Cayley was guided by the idea of 

linear substitutions and defined matrix multiplication to correspond to composition 

of substitutions. Nowadays the concept of substitution has been replaced by that of 

a linear transformation, but the two are algebraically equivalent.) In this paper also 

Cayley stated the famous Cayley-Hamilton theorem, that every matrix satisfies its 

characteristic equation, and proved this result for 2 x 2 and 3x3 matrices. 

Higher-dimensional spaces also entered linear algebra via the work of William 

Rowan Hamilton (1788-1856), the inventor of quaternions (1843), which are most 

simply described as numbers consisting of one real and three imaginary parts: 

A = a + aii + a2j Task, where a, ai, <22, a3 are real numbers and i2 = j2 = k2 = 

— 1 and ij = k, jk = i, and ki = j. Hamilton regarded a quaternion as having 

two parts, one of which was the real part a; the other part (aA + a2j + <23k) he 

called a vector (the Latin word for a carrier). This vector analysis turned out to be 

ideally suited for application to several areas of physics, and was developed into a 

powerful tool by the American mathematician Josiah Willard Gibbs (1839-1903). 

A theory based on multidimensional geometry and having much in common with 

vector analysis was developed by the German mathematician Hennann Gtlnther 

Grassmann (1809-1877), who called it Ausdehnungslehre (Theory of Extensions). 

17.3 Geometry 

One can distinguish many lines of development of geometry in the eighteenth and 

nineteenth centuries. We shall consider six of these lines. 

17.3.1 Analytic Geometry 

The use of three mutually perpendicular axes had been implied as early as 1679 

by Philippe de la Hire (1640-1718), who gave the equation of a cone in terms 

of three variables. Johann Bernoulli gave the equation of a surface in three- 

dimensional coordinates in 1698, and 2 years later Antoine Parent (1666-1716) 

gave the equation of a sphere in essentially its modem form. Alexis-Claude Clairaut 

(1713-1765) studied “curves of double curvature” and in 1731, when he was only 

18, published a treatise on curves of double curvature in three-dimensional space. 

This seems to have been the first time such curves were ever considered. He 

recognized these curves as the intersection of surfaces and therefore realized that a 

curve in three-dimensional space requires two equations for its description. In his 

1748 treatise on infinitesimal analysis Euler expounded three-dimensional analytic 

geometry in a form, that, except for vector notation, is what one now finds in 

calculus books. 
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The name analytic geometry first came into common use in French textbooks 

of the early nineteenth century. In particular Gabriel Lam6 (1795—1870) wrote a 

textbook on methods of solving geometric problems in 1818, in which he gave 

some of the standard notation now used, such as the equation of a plane in terms 

of its intercepts (x/a + y/b + z/c = 1). Much of this language is still retained in 

calculus texts today, though supplemented by vector notation. 

17.3.2 Projective and Descriptive Geometry 

The projective properties of figures and the projective approach to geometry in 

general was developed by a large number of French, German, and Italian mathe¬ 

maticians. Jean Victor Poncelet (1788-1867) defined two figures to be projectives 

if they could be mapped onto each other by a series of projections. The properties 

of a figure that are preserved under projection were its projective properties. The 

property of being a conic section, for example, is a projective property. 

The German mathematicians August Ferdinand MObius (1790-1868) and Julius 

Plilcker (1801-1868) and the Swiss mathematician Jakob Steiner (1796-1863) 

made projective geometry one of the most important areas of German mathemat¬ 

ical research for the middle half of the nineteenth century. Steiner adhered to 

the “synthetic” approach, in which the use of coordinates to prove theorems was 

avoided. Steiner’s idea was to generate more complex figures from simpler ones 

in a natural order. The most elementary shapes were a series of collinear points, a 

pencil of lines (the lines in a plane passing through a single point), and a pencil of 

planes (the planes passing through a single line). Following them were coplanar 

points and lines, and congruences (two-parameter families) of lines and planes. 

These were followed by the points and lines of three-dimensional space. 

Incidentally, Steiner also devoted attention to the problem of constructions with 

ruler and compass. In particular, he showed that if a single circle is drawn, then 

every construction that is possible with ruler and compass can be performed with 

ruler alone. 

In contrast to Steiner’s synthetic approach, Mdbius and Plilcker promoted an¬ 

alytic methods. MObius introduced barycentric coordinates, described as follows. 

Given any three noncollinear points P\, P2, and P3 in a plane, each point P inside 

the triangle formed by these points will be the center of mass of a unique system 

of three masses mi, m2, and m3 for which mi + m2 + m3 = 1. The three masses 

are the barycentric coordinates of P. (If we allow zero and negative masses, then 

points on and outside the triangle can also be given barycentric coordinates). As 

one might expect from the way in which barycentric coordinates are introduced, 

they also lead to very simple formulations of theorems in statics. 

A generalization of this technique is to use what are called homogeneous co¬ 

ordinates, introduced by Pltlcker. The homogeneous coordinates of a point P are 

obtained by taking a fixed point Pq outside the plane and representing P as a sum 
-> -> -> 

ei P0Pi +e2 PqP2 +e3 P0P3. (Barycentric coordinates can be thought of as the 

limiting case of homogeneous coordinates when the point Pq goes off to infinity.) 

The use of such coordinates greatly simplifies the formulation of many theorems 
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on the projective properties of figures, and makes it easy to deal with points and 

lines at infinity. 

Pltlcker’s greatest achievement was the realization that space can be thought of 

as made up of lines or circles, rather than points. The importance of this approach 

is that it leads naturally to spaces (manifolds) of more than three dimensions. 

For example, the space of spheres in three-dimensional space is four-dimensional, 

since three dimensions are required to specify the center of a sphere and a fourth 

is needed to specify the radius. 

The British mathematicians developed projective geometry using analytic meth¬ 

ods. Cayley, in working out the theory of algebraic forms and coordinate mappings, 

introduced what he called a projective metric. Such metrics, as Felix Klein (1849— 

1925) later showed, made it possible to regard both Euclidean and noneuclidean 

geometries as special cases of projective geometry. It was this analytic approach 

that led Klein, as a young professor at the University of Erlangen in 1872,6 to 

propose a program of studying the geometric objects that remain invariant under 

different groups of transformations and thus sort out the relations between the 

different kinds of geometry. This project is known as the Erlonger Programm. 

17.3.3 Algebraic Geometry 

Algebra provided a much more natural classification of curves than the old Greek 

distinction among plane, solid, and linear locus problems. A locus could be said to 

be of order n if the equation of minimal degree representing the curve of the locus 

was of algebraic degree n. One could then state reasonable theorems based on 

this algebraic nomenclature. A good example is provided by a theorem contained 

in a paper by James Stirling (1692-1770) “Lineae tertii ordinis Newtonianae,” 

(Newtonian curves of third order, a commentary on an earlier work of Newton 

on cubic curves). Stirling’s theorem asserts that a curve of order n is uniquely 

determined by ^n(n + 3) points. This would seem to be a natural conclusion, since 

there are [(n + l)(n + 2)]/2 coefficients in the general equation of degree n in two 

variables. Trying to fit [(n + l)(n + 2)]/2 points with such a curve would generally 

force all the coefficients to be zero, and there would be no curve. To be sure of 

leaving one coefficient nonzero, one would attempt to make the curve pass through 

at most [(n -f 1 )(n + 2)]/2 — 1 = [n(n + 3)j/2 distinct points. Thus, since the 

general quadratic equation in two variables represents a conic, there ought to be a 

unique conic passing through any five points. It is obvious from algebra that there 

is at least one conic passing through any five points, and almost equally obvious 

(intuitively) that two distinct conics cannot intersect in more than four points. (This 

last conclusion turns out to reflect our own carelessness in considering degenerate 

cases, as Exercise 17.5 below shows.) 

Stirling’s claim conflicted with a result of Maclaurin, however, published in his 

1720 work Geometrica organica. In this work Maclaurin proved that in general a 

6Until 1875 new professors at Erlangen were required to defend a thesis at a public lecture for 
which a printed program was provided as an invitation. See “Erlangen programs” by Konrad Jacobs 
and Heinrich Utz, in The Mathematical Intelligencer, 6 (1), (1984), p. 79. 
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curve of order m intersects a curve of order n in rrm points (counting multiplici¬ 

ties and imaginary points suitably). This result is now commonly called B&zout’s 

theorem after Etienne B6zout (1730-1783), who discussed it in works published 

in the late 1750s. This result leads to no surprises in the case m = n = 2, where 

one usually does find four points of intersection. The difficulty arises in the case 

of cubics, where Stirling’s result predicts that nine points should determine a cubic 

uniquely, yet Maclaurin’s result predicts that two distinct cubics will intersect in 

nine points. The seeming paradox was noticed by Maclaurin; it was later redis¬ 

covered by Gabriel Cramer and was not adequately explained until the nineteenth 

century. 

The most important curves studied in analytic geometry are those whose equa¬ 

tions take the form p(x,y) = 0, where p(x,y) is a polynomial in two variables. 

Such curves are called algebraic curves, for obvious reasons. It is well known, for 

example, that a curve of degree at most two is a conic section (possibly degener¬ 

ate). Under the influence of Pltlcker these curves came to be studied in projective 

space. Pltlcker used line coordinates, defining the equation of a one-parameter 

family of lines to be the equation of the envelope of that family (the curve tangent 

to all of them). The degree of this equation is called the class of the curve, while 

the degree of its usual point equation is called its order. Pltlcker gave a set of four 

equations relating the order and class of a curve to the number of its nodes, cusps, 

stationary points, and double tangents. 

An important link between geometry and calculus was through the integration 

of algebraic functions, and this became a major theme of nineteenth-century math¬ 

ematics after the work of Abel. The need to regard these functions as functions 

of a complex variable was apparent in the work of Abel and Jacobi. The geo¬ 

metric aspect of the subject showed up best in Riemann’s 1857 paper “Theorie 

der Abelschen Funktionen,” which introduced yet another number to classify such 

curves, the genus. An algebraic curve of genus 0 represents a function whose 

worst irrationality is the square root of a quadratic polynomial. Those of genus 1 

are elliptic functions. This classification laid the foundation for systematic study 

of such curves, which can exhibit a great deal of variety. The nineteenth century 

saw the development of this subject nearly complete, and research in this area did 

not revive until after World War II, when a new and more abstract point of view 

led to still more profound research. 

17.3.4 Differential Geometry 

Along with the language of calculus there came into geometry a whole set of 

analytic methods that made it possible to state and solve problems that went far 

beyond the capabilities of the old Euclidean geometry. The notion of curvature, 

for example, was given by Newton as Problem 5 in his Fluxions. The standard 

measure of curvature was naturally taken to be the circle, and the problem was 

to determine the circle at each point that curves at the same rate as the given 

curve (called the circle of curvature; its radius is the radius of curvature). This 

problem is now well known in calculus and involves the second derivative. The 
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centers of all the circles of curvature of a given curve form a curve called its 

evolute. Intuitively the curve can be obtained from its evolute by imagining a 

string wrapped tightly around the evolute unwinding while being kept taut. This 

fact is expressed by saying that the original curve is the involute of its evolute. 

Such problems as finding the involute and evolute of a curve, shortest paths on 

a surface between two points (geodesics), etc., form the subject matter of early 

differential geometry. 

The subject of differential geometry grew up gradually during the early nine¬ 

teenth century in the research of the French mathematicians and Gauss. Olinde 

Rodrigues (1794-1851), for example, studied lines of curvature and radii of cur¬ 

vature on a surface and discovered what is nowadays known as the Gaussian 

curvature. 

The form differential geometry was to take for the next century was largely 

determined by Gauss’ 1828 work Disquisitiones generales circa superficies curvas 

(General Treatise on Curved Surfaces). Gauss emphasized the definition of a 

surface in parametric form [x = x(p, q), y = y(p, q), z = z(p, q)] in preference to 

the implicit definition by an equation f(x,y,z) = 0 and showed the importance 

of the first and second fundamental forms 

ds2 = E dp2 + 2 Fdpdq + G dq2 and EG - F2, 

where 

E = (dx/dp)2 + (dy/dp)2 + (dz/dp)2, 

F = (dx/dp)(dx/dq) + (dy/dp)(dy/dq) + (dz/dp)(dz/dq), 

G = {dx/dq)2 + {dy/dqf + {dz/dqf, 

for computing arc length and area on the surface. 

Ideally a mapping of a surface area (a city tourist guide), for example, should 

be a scale drawing, so that angles would be preserved between the original surface 

and the length of an object and its image would be in direct proportion. No such 

mapping between a curved surface and a flat surface is possible, of course, and 

so the question arises of whether one can preserve similarity to the maximum 

possible extent, say by mapping a portion of a sphere onto a plane in such a way 

that angles are preserved at each point and the magnification (the limiting ratio of 

the length of a line segment ending at the point to the length of its image) is the 

same in every direction. Such a mapping is said to be conformal, and the question 

whether conformal mappings exist is an important one in differential geometry. 

Gauss showed in his treatise that this question reduced to the question whether 

the fundamental quantities E, F, and G for the two surfaces were proportional. 

He also considered the ratio of the area of a small portion of a surface to the area 

of its projection on a sphere of unit radius having the same tangent plane as the 

surface, the center of the sphere being the center of projection. He showed that 

the limit of this ratio is the product of the largest and smallest curvatures (the 

principal curvatures) at the point. A consequence is that the area of a piece of the 

surface can be obtained by integrating the total curvature of that piece. He went 
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on to find an expression for the curvature in terms of E, F, and G and their partial 

derivatives that was homogeneous of degree 1 (his famous theorema egregium). 

Gauss also considered the question of the shortest cui ved paths along a surface 

from one point to another (given the name geodesics by Joseph Liouville in 1830). 

This topic links geometry with calculus of variations and hence with differential 

equations. A link with noneuclidean geometry came when Gauss showed that 

the area of a triangle whose sides are geodesics is proportional to the difference 

between the sum of the angles of the triangle and two right angles. 

Implicit in these elegant results was the possibility of studying a surface without 

any Euclidean space around it, as if the surface were itself the entire universe. The 

fundamental quadratic forms that Gauss introduced turn out to be independent of 

the parameterization of the surface, and hence define what is called the intrinsic 

geometry of the surface. The possibility thereby arose that the intrinsic geometry of 

physical space might be noneuclidean. This possibility can be tested experimentally 

by measuring the angle sums of large triangles, as Gauss certainly realized. In his 

1828 work on curved surfaces, mentioned above, Gauss took advantage of geodetic 

survey measurements to consider the angles of a very large triangle; the results 

showed no measurable deviation from Euclidean geometry. 

17.3.5 Noneuclidean Geometry 

While analytic geometry was being developed, the old problems associated with 

Euclidean geometry were not forgotten, especially the greatest of them all, the 

problem of “what to do about the parallel postulate.” This problem was systemat¬ 

ically investigated by Girolamo Saccheri (1667-1733), a Jesuit priest. In a treatise 

published in the last year of his life he created a quadrilateral having equal vertical 

sides and right angles at the base, now known as a Saccheri quadrilateral. Its 

importance lies in the fact that the line through the midpoints of two sides of a 

triangle is parallel to the third side. If perpendiculars are dropped to this line from 

the endpoints of the third side, they form a Saccheri quadrilateral. Saccheri showed 

easily, as anyone could, that the other two angles of the Saccheri quadrilaterals, 

called the summit angles, are congruent. He proposed to show that they are right 

angles, thereby proving the parallel postulate. Without much difficulty he was 

able to show that they could not be obtuse angles. This result follows from what 

Euclid showed in Book I, assuming along with Euclid that a line divides the plane 

into two parts and that two distinct lines can intersect in only one point. There 

remained the possibility that the summit angles may be acute. 

Saccheri began deducing consequences of the “hypothesis of the acute angle.” 

One of the most interesting of these—now a pillar of hyperbolic geometry—is 

that two coplanar lines either have one common perpendicular, or meet at some 

point, or continually approach each other in one direction and continually recede 

from each other in the opposite direction (Proposition 23). At this point Saccheri 

was led into reasoning “at infinity.” Considering the third of the possibilities he 

concluded, “we have two lines which produced must run together into the same 

line and have at one and the same infinitely distant point a common perpendicular.” 
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Since infinitely distant points were not part of the machinery of his argument, he 

fell back on intuitive ideas and argued rather vaguely that this conclusion was 

impossible. 

Saccheri, had he only known it, was the discoverer of the noneuclidean geom¬ 

etry that would be rediscovered a century later by J&nos Bblyai (1802-1860) and 

Nikolai Ivanovich Lobachevskii (1792-1856). Like Columbus, however, he did 

not recognize what he had discovered because he was pursuing a different goal. 

Also like Columbus, he reported to the world that he had achieved his goal. His 

treatise bore the title Euclidis ab omni naevo vindicatus (Euclid freed of every 

blemish). 

The pioneers of noneuclidean geometry, Lobachevskii and Bolyai, used a syn¬ 

thetic approach in the 1820s and 1830s to create what is now called hyperbolic 

geometry (a name suggested by Klein). Both men proved a standard set of the¬ 

orems about hyperbolic geometry, and both derived the trigonometric formulas 

appropriate to this geometry. The standard kinds of geometry known as elliptic, 

parabolic (Euclidean), and hyperbolic, can be distinguished by imagining a circle 

tangent to a line, and watching the circle widen and flatten out as its center moves 

away from the line. 

There are three possibilities: 

1. When the center reaches some finite point (called the pole of the line of 

tangency) the circle coincides with the line. This is the case in the geometry 

of a sphere, in which a small circle tangent to the equator of a sphere, 

becomes the equator itself if its center recedes to the pole. 

2. Every point in the half-plane on the side of the tangent line containing 

the circle is eventually engulfed by the circle, but the circle never coincides 

with the tangent line, that is, the circle never reaches the line, but approaches 

arbitrarily closely to it. This is the case in Euclidean geometry. 

3. The circle approaches a limiting curve (called a horocycle), and there is a 

region of points lying between the tangent line and the horocycle. This is 

hyperbolic geometry. If the horocycle is revolved about the radius through the 

point of tangency, the resulting surface in three-dimensional hyperbolic space 

is called a horosphere. Lobachevskii was able to prove that the geometry of 

the horosphere is ordinary Euclidean plane geometry, and from that fact he 

derived the trigonometric formulas for hyperbolic geometry. 

All horocycles are congruent; their existence makes it possible to define an 

absolute unit of length in hyperbolic geometry and to derive a formula for the 

angle a at which a line transversal to a second line at a point P will be parallel 

to a third line perpendicular to the second at a point Q. If the distance between P 

and Q is d, then 

a = 2arctan 

where the length k cannot be determined from the axioms of the geometry. 

It turns out that the trigonometric relations in this geometry bear a strong 

resemblance to those of spherical trigonometry. For example, in a right triangle 
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with legs a and b and hypotenuse c the relation 

cosh — cosh — = cosh — 
k k k 

holds. This formula is analogous to the formula of spherical geometry 

ah c 
cos - cos - = cos -, 

ry* ry» rjr* 

where r is the radius of the sphere. Since cosh.x = coszir (z = 1)> an earlier 

remark of Johann Heinrich Lambert (1728-1777) that an alternative to Euclidean 

geometry could be pictured as the geometry on a sphere of imaginary radius turned 

out to be astoundingly accurate. 
Neither Lobachevskii nor B6lyai received due recognition for this work in 

their lifetimes, but in the next generation the subject blossomed into a beautiful 

and intricate theory as Riemann, Klein, and others developed their own ideas. In 

1868 Eugenio Beltrami (1835-1900) attempted to interpret hyperbolic geometry 

using differential geometry. He introduced a pair of mutually perpendicular lines 

as coordinate axes and set the coordinates of a point equal to its distances from 

these two lines, just as in ordinary analytic geometry. He found that the Gaussian 

curvature of the hyperbolic plane at every point was — (1 /k2). The analogy with 

a sphere of radius r, which has Gaussian curvature 1/r2 at every point, became 

even more apparent. Beltrami went further and sketched an interpretation for the 

hyperbolic plane within Euclidean geometry by regarding lines as chords in a disk. 

The existence of such an interpretation showed that any supposed contradiction in 

hyperbolic geometry would imply a contradiction within Euclidean geometry itself. 

Very soon other mathematicians, including Klein and Poincare, found other 

interpretations for hyperbolic geometry. At the same time, Cayley, Klein, and 

others were developing the noneuclidean geometry that results from assuming that 

any two lines intersect. (Klein suggested the name “elliptic geometry” for this kind 

of geometry.) Spherical geometry gives a good intuitive model of elliptic geometry, 

except that its “lines” (the great circles on a sphere) intersect in two points. 

17.3.6 Topology 

The subject now known as algebraic topology has origins in the seventeenth and 

eighteenth centuries. As early as 1619 Descartes had discovered that for any closed 

polyhedron, such as a tetrahedron, octahedron, dodecahedron, or prism, the number 

of vertices plus the number of faces is always two more than the number of edges. 

For example, a cube has 8 vertices 6 faces, and 12 edges. The number 2, which is 

the excess of the number of vertices and faces over the number of edges, is now 

known as the Euler characteristic of a closed polyhedron (or the plane or a sphere, 

since this branch of mathematics ignores shape). This area of geometry came to 

be known as geometria situs or analysis situs (geometry or analysis of position) 

to contrast with the “geometry of magnitude” that constitutes ordinary geometry. 

This subject is nowadays called topology, from Greek words meaning study of 
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position. This name was first used by Johann Benedikt Listing (1808-1882) in his 

1847 book Vorstudien zur Topologie. 

Topology ignores such notions as exact distance and is concerned only with the 

way in which an object is fitted together, which closed curves or surfaces on the 

object are boundaries of higher-dimensional regions, and the like. In its early days 

attention was focused on numerical relations between the faces of a polyhedron 

and their boundary edges. The earliest example of such a relation is the Euler 

formula just mentioned connecting the number of vertices (No), edges (Ni), and 

faces (N2) of a closed convex polyhedron: 

N0-N1+N2 = 2. 

Obviously this relation will remain true if the polyhedron is stretched or shrunk, 

provided it is not tom or folded over on itself. In more precise terms, in the 

spirit of Klein’s classification of geometry, it is a relation that is preserved under 

continuous one-to-one-transformations (homeomorphisms). 

Euler studied such problems only occasionally. Cauchy also studied the Eu¬ 

ler relation once or twice and extended it to nonclosed polyhedra and unions of 

polyhedra. A more significant generalization came in 1813 from a professor at the 

University of Geneva named Simon l’Huilier (1750-1840), who showed that for 

a closed polyhedron with p cylinders stuck through it No — Ni 4- N2 = 2 — 2p. 

This formula gives the general form of Euler’s relation. (After Riemann’s work, 

the number p could be identified with the genus of the surface.) The general study 

of the numerical relations that could result when faces are glued together along 

edges to form “complexes” was undertaken by Listing in 1862. 

One of the standard objects that now inhabit the world of topology, the Mobius 

band, was introduced by MObius in 1861 and developed more fully in the following 

years. Mobius introduced the concept of “elementary relatedness” to describe 

a correspondence between the points of two surfaces that preserves “infinitely 

near” pairs of points, what is now called a homeomorphism. Using this kind of 

correspondence he found that he could classify polyhedra according to the number 

of boundary curves they possessed. 

These topological questions turn out to be intimately related to the question 

of which differential forms on a surface are exact differentials, a matter of great 

importance in the theory of differential equations and in complex analysis. This 

connection first appeared in the work of Riemann on Riemann surfaces, where 

a major theme is the classification of the closed paths on a Riemann surface, 

distinguishing those that are boundaries from those that are not. Later, when group 

theory came to permeate the subject, this topic would be known as homology theory. 

A related question about a Riemann surface is the question of which curves can be 

deformed continuously to a point on the surface and which can be deformed into 

each other. When formulated in the context of group theory, this question leads to 

homotopy theory. Riemann began the subject by defining a surface to be simply 

connected if every curve on it can be shrunk to a point, doubly connected if it can 

be made simply connected by cutting it open in one place, etc. (For example, a 

disk is simply connected; a disk with its center removed is doubly connected since 

a cut from the center to the boundary makes it simply connected.) 
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The difficulty of this subject is due to the great generality of curves that have to 

be considered. This difficulty shows up particularly well in a famous theorem that 

anyone can understand, but almost no one can prove. It was asserted in 1887 by 

Camille Jordan that a closed curve in the plane divides the plane into two regions, 

the inside and the outside of the curve. His proof, however, was objected to later 

on, and this theorem has had a long history of insufficient proofs. It does have 

some proofs that are regarded as correct. All of them require the subject known 

as algebraic topology. 

In his work on Riemann surfaces Riemann was primarily concerned with com¬ 

plex analysis, but he was also interested in geometry for its own sake. His work 

on higher-dimensional objects was left in fragments at his death and published in 

his collected works. His friend Enrico Betti (1823-1892) was the first to speak 

explicitly of a space of any number of dimensions (in 1871). The introduction of 

such spaces, where visual intuition was limited, led to an increasing reliance on 

algebraic techniques. 

173.7 Links with Differential Equations 

We have already discussed differential equations from an analytic point of view. 

A different way of looking at differential equations was adopted by the Norwegian 

geometer Marius Sophus Lie (1842-1899). Lie hoped to do for differential equa¬ 

tions what Galois had done for algebraic equations, that is, to associate a group 

with each equation to determine whether it can be solved by various prescribed 

methods.7 To do this, he formulated the theory of what are now called Lie groups. 

These are continuous spaces such as the torus or the three-dimensional unit sphere 

in four-dimensional space on which a natural group operation can be defined (if 

the torus is thought of as the set of pairs of complex numbers (z,w) of abso¬ 

lute value 1, the group operation is componentwise multiplication; the 3-sphere in 

four-dimensional space is the group of quaternions of unit length). Lie himself 

worked only with the parts of the group near the identity element; the “global” 

construction of the group is a twentieth-century creation. Associated with every 

Lie group is a purely algebraic object now known as a Lie algebra, generated in a 

natural way by infinitesimal operations on the group. Lie established the relations 

between the Lie group and the purely algebraic structure. The importance of Lie 

groups and Lie algebras in modem physics is enormous. 

The introduction of topological ideas into differential equations came in several 

stages. The Cauchy-Kovalevskaya theorem asserting the existence of analytic 

solutions is a local theorem applicable, for example, to an equation of the form 

dx dy 

X(x,y) Y(x,y) 

7This subject, now known as differential Galois theory, was studied from a different point of view 
by Liouville, who was able to prove that some equations do not have solutions expressible as a finite 
formula involving only elementary functions. For example, Bessel’s equation, x2y" + xy' -f (x2 - 
p2)y = 0, has elementary solutions only when p is half of an odd integer. 
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only at points (x,y) where one of X and Y is nonzero. It turns out that the 

greatest interest lies precisely at the points at which both X and Y vanish, which 

are called singular points. Cauchy’s methods had a pair of strong proponents in 

Charles Auguste Briot (1817-1882) and Jean-Claude Bouquet (1819-1885), who 

worked together to develop the theory of differential equations in terms of these 

singular points. They classified singular points into centers, foci, nodes, and saddle 

points. This classification was very fruitful in the hands of Poincare, who extended 

it to general first-order equations of the form F(x,y,y') = 0. By considering the 

surface F(x, y, z) = 0, Poincare was able to obtain a simple equation relating the 

various kinds of singularities to the genus of the surface. 

One source of Poincare’s work was the need to study differential equations 

qualitatively in situations where closed-form solutions are not possible and nu¬ 

merical solutions offer no insight. Another was the study of algebraic (Abelian) 

integrals using complex variables. From these two bases he realized the need for 

fundamental topological research and undertook such research during the 1890s. 

He was the first to introduce homology theory as it is now known, defining the 

boundary of a manifold as a chain of submanifolds of lower dimension. If the 

boundary is trivial, the manifold is called a cycle. He defined the kth Betti num¬ 

ber of a manifold to be the maximum number of independent k-cycles. (A set of 

/c-cycles is independent if no nontrivial combination of the cycles can form the 

boundary of any higher-dimensional manifold.) Poincare discovered that the Euler 

characteristic of a surface could be expressed in terms of the Betti numbers. In 

this way it became possible to generalize the Euler characteristic to topological 

spaces of higher dimension. 

Poincar6 also generalized Riemann’s ideas of simple connectivity to higher¬ 

dimensional objects, thereby creating homotopy theory. After considerable ex¬ 

perimentation with arcane examples, Poincare conjectured that a closed three- 

dimensional manifold whose homotopy theory is trivial must be topologically 

equivalent to the three-dimensional sphere in four-dimensional space. This fa¬ 

mous conjecture remains unsolved as of the present, although its generalizations 

to dimensions higher than 3 have all been proved. 

17.4 Probability 

One of the classical works in probability is the posthumous (1713) treatise of 

Jakob Bernoulli called the Ars conjectandi (The Art of Prediction). Bernoulli was 

interested in the application of this mathematical technique to human life, and he 

gave a very stark picture of the gap between theory and application, saying that 

only in simple games such as dice could one apply the equal-likelihood approach 

of Fermat and Pascal, whereas in the cases of interest, such as human health and 

longevity, no one had the power to construct a suitable model. He recommended 

statistical studies as the remedy to our ignorance, saying that if 200 people out 

of 300 of a given age and constitution were known to have died within 10 years, 

it was a 2-to-l bet that any other person of that age and constitution would die 

within a decade. 
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17.4.1 The Law of Large Numbers 

Bernoulli imagined an urn containing numbers of black and white pebbles, whose 

ratio is to be determined by sampling with replacement. Here it is possible that you 

will always get a white pebble, no matter how many times you sample. However, 

if black pebbles constitute a significant proportion of the contents of the urn, this 

outcome is very unlikely. After discussing the degree of certainty that would suffice 

for practical purposes (he called it virtual certainty), he noted that this degree 

of certainty could be attained empirically by taking a sufficiently large sample. 

The probability that the empirically determined ratio would be close to the true 

ratio increases as the sample size increases, but the result would be accurate only 

within certain limits of error. More precisely, given certain limits of tolerance, by 

a sufficient number of trials, 

we can attain any desired degree of probability that the ratio found by 

our many repeated observations will lie between these limits... . 

This last statement is the law of large numbers for what are now called 

Bernoulli trials, that is, repeated independent trials with the same probability of a 

given outcome at each trial. (Recall that Cardano had given a vague formulation 

of the same idea.) If the probability of the outcome is p and the number of trials 

is n, this law can be phrased precisely by saying that for any e > 0 there exists a 

number n0 such that if m is the number of times the outcome occurs in n trials 

and n > no, then the probability that the inequality |(m/n) — p\ > e will hold is 

less than e. In other words, one can specify an error tolerance as small as desired 

and a probability of exceeding that error as small as desired. If n is large enough, 

the probability that the proportion of trials in which the outcome occurs will differ 

from the probability of the outcome by more than the tolerated error will be less 

than the specified probability. 

17.4.2 The Central Limit Theorem 

The problem of the law of large numbers raised the secondary problem of estimating 

the sum of a segment of terms in the binomial series. This problem was attacked by 

Abraham de Moivre. In 1733 he wrote a paper on approximation of a sum of terms 

of the binomial expansion (a + 6)n, in which he touched on several important parts 

of modem probability theory. The main problem was to compute the probability 

that the number of occurrences of a given outcome of probability p in n trials 

will be between A and B. Jakob Bernoulli had shown that this probability would 

be A<k<B (a)tA (1 — p)n~k, this expression being simply part of the binomial 
expansion 1 = (p -f (1 — p))n. The difficulty occurs in computing the binomial 

coefficients (£) = [n\/k\(n — &)!]. The factorials rapidly become huge, and 

the amount of computation involved becomes unfeasible. Bernoulli had resorted 

to crude estimates sufficient to establish the law of large numbers. De Moivre 

worked out an approximation to these factorials by focusing on the middle term 

in the expansion of 2n = (1 + l)n. He found that the ratio of this term to 2n 

was approximately 2/(TJ^/n), where the natural logarithm of B (which De Moivre 
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called the hyperbolic logarithm) is given by— 1 + ^ — 3^ + + • • •• 

De Moivre’s friend James Stirling showed that B = y/2n. From this result De 

Moivre was able to show that for large values of n, the term l places from the 

middle term differs from this value by a factor of e~(21 /n) approximately. (De 

Moivre stated this fact in terms of the logarithm; he did not mention the number 

we call e.) Then as a corollary he observed that, if an infinite number of trials 

could be carried out, with equal probability of an event occurring or not occurring 

at each trial, the probability that the number of occurrences of that event would be 

between \n — \\fn and \n+ \ \pn would be 

11 11 

3 2^2-54 

11,11 1 1 

fp7 8 + 24 ■ 9 16 ~~ 120- 1132 + ' " 

+ (-1)*’---— -4- 
1 } k\ ■ (2k + 1) 2k 

This corollary expresses for this particular case what is now known as the central 

limit theorem: If a large number of independent and identically distributed random 

variables, each of which has expected value 0 and standard deviation 1, is averaged, 

the average is approximately a normal distribution with standard deviation In 

particular, for large values of n the approximate probability given by the series 

just written is now expressed by the integral 

These considerations were the first indication of the important role to be played 
_ ~(i 

by the “bell-shaped curve” [the graph of y = (l/v27r)e2)*2'] known as the stan¬ 

dard normal probability density. The fact that the average of suitably normalized 

independent samples of any distribution whatsoever is approximately normal is 

known as the central limit theorem in probability. 

Soon after its introduction by Huygens and Jakob Bernoulli the concept of 

mathematical expectation came in for some critical appraisal. While working in the 

Russian Academy of Sciences, Daniel Bernoulli and his brother Niklaus discussed 

the problem now known as the Petersburg paradox. We can describe this paradox 

informally as follows. Suppose you flip a coin until heads appears. If it appears 

on the first flip, you win $2, if it first appears on the second flip, you win $4, and 

so on; if heads first appears on the nth flip, you win 2n dollars. How much money 

would you be willing to pay to play this game? Now by “rational” computations 

the expected winning is infinite, being 2|+4-| + 8^ + -- -, so that you should be 

willing to pay, say, $10,000 to play each time. On the other hand, who would bet 

$10,000 knowing that there was an even chance of winning back only $2, and that 

the odds are 7 to 1 against winning more than $10? Clearly something more than 

mere expectation was involved here. That something is of vital importance to the 

insurance industry, which makes its profit by having a large enough stake to play 

“games” that resemble the Petersburg paradox. The question involved is: Granted, 

one should expect the “expected” value of a quantity depending on chance, how 
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confidently should one expect it? The question of dispersion or variance of a 

random quantity lies beneath the surface here and needed to be brought out. It 

turns out that when the expected value is infinite, or even when the variance is 

infinite, no rational projections can be made. 

17.4.3 Statistics 

The subject of probability formed the theoretical background for the empirical 

science known as statistics. Some theoretical analysis of the application of proba¬ 

bility to hypothesis testing and modification is due to Thomas Bayes (1702-1761), 

a British clergyman. The first work on statistics proper was a treatise of 1835 en¬ 

titled Physique social by the Belgian scholar Lambert Quetelet (1796-1874). The 

name statistics comes from the records used in administering government, which 

provide the raw data we now call statistics.8 Quetelet introduced certain analogies 

with physical concepts into social analysis, the most famous of these concepts 

being the “average man” (I’homme moyen), which he considered the exact analog 

of the notion of center of gravity of a physical body. The needs of statistics helped 

to guide the development of probability theory, which was applied to analyze large 

data samples by regarding each data point as having the same probability as any 

other data point. This technique has provided some powerful ways of testing 

hypotheses, and is indispensible in modem law, medicine, and many other areas. 

This area, incidentally, is one of the few in which American mathematicians 

made significant contributions during the nineteenth century. For example, the 

Irish-American mathematician Robert Adrain (1775-1843) discovered the normal 

distribution of errors in 1808. As is too often the case with scholars working in 

isolation (the Russians are a good example), the discoveries are often duplicated 

later at large centers of research, and the second discoverer gets all the credit. 

Gauss published the same result in 1809, and the normal distribution is now called 

alternatively the Gaussian distribution. 

17.4.4 Large Numbers and Limit Theorems 

In the late eighteenth century Laplace showed rigorously what de Moivre had al¬ 

ready stated, that the probability that the number of successes in a sequence of 

independent Bernoulli trials is between a and b tends to an expression given by 

an integral of e~l , that is, what is now called a normal, or Gaussian, distribu¬ 

tion. This result was the first special case of what is known as the central limit 

theorem. Laplace, as an astronomer, was interested in this problem as it applied 

to observational errors. 

The law of large numbers was studied by Simeon Denis Poisson (1781-1840), 

who discovered an approximation to the probability of getting at most k successes 

in n trials, and thereby introduced what is now known as the Poisson distribution. 

The Russian mathematician Pafnutii L’vovich Chebyshev (1821-1894) intro¬ 

duced the concept of a random variable and its mathematical expectation. He is 

8Sometimes by folk etymology a single piece of data is called “a statistic.” 
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best known for his 1846 proof of the weak law of large numbers for repeated 

independent trials; he showed that the probability that the actual proportion of 

successes will differ from the expected proportion by less than any specified £ > 0 

tends to 1 as the number of trials increases. In 1867 he proved what is now called 

Chebyshev’s inequality, that the probability that a random variable will assume a 

value more than k standard deviations from its mean is at most 1 /k2; this inequal¬ 

ity implies the law of large numbers. In 1887 Chebyshev also gave an explicit 

statement of the central limit theorem for independent random variables. 

The extension of the law of large numbers to dependent trials was achieved 

by Chebyshev’s student Andrei Andreevich Markov (1856-1922). The subject of 

dependent trials—known as Markov chains—remains an object of current research. 

In its simplest form it applies to a system in one of a number of states {5i,..., Sn} 

which at specified times may change from one state to another. If the probability 

of a transition from Si to Sj is p? 7 , the matrix 

(p 11 ■■■ Pi 

\Pnl Pn 

is called the transition matrix. If successive transitions are all independent of one 

another, one can easily verify that the matrix power Pk gives the probability of a 

transition in k steps. 

17.5 Number Theory 

The seventeenth-century work of Fermat in number theory was ably advanced 

in the eighteenth century. Fermat had conjectured that the number 2^2+ 1 is 

always a prime. This statement is true for n = 1,2, 3,4, as the reader can easily 

check. For n = 5 this number is 4,294,967,297, and to prove that it is prime 

in the crudest manner—by checking all possible prime factors—one must attempt 

to divide it by every prime less than 65,537. In 1732 Euler found that this fifth 

Fermat number is divisible by 641. 

Everyone knows the famous Fermat conjecture that the sum of the nth powers 

of two positive integers is not the nth power of a rational number unless n = 2. 

Fermat himself mentioned that his method of infinite descent could prove this for 

n = 3 and n = 4, but he did not write out the proof. Euler provided the proof in 

1738. He also proved that every positive integer is the sum of at most four square 

integers and conjectured that no sum of fewer than n nth powers could be an nth 

power, a conjecture that was finally refuted for n = 5 in 1966. 

A second assertion of Fermat proved by Euler is now known as “Fermat’s little 

theorem.” It asserts that any prime p divides ap~l — 1 unless a is itself divisible 

by p. Euler went on to show more generally that rn divides a(a^m) — 1), where 

<p(m) is the number of positive integers less than m and relatively prime to rn 

(now called Euler’s (p-function). 
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A problem of number theory whose fame is second only to the Fermat con¬ 

jecture is a conjecture of Christian Goldbach (1690-1764), who wrote to Euler in 

1742 that every odd integer seemed to be a sum of at most three odd prime integers. 

In the form of the slightly emended proposition that every even integer larger than 

4 is the sum of two primes (both necessarily odd, of course), this famous assertion 

is known as the Goldbach conjecture. In 1937 the Russian mathematician Ivan 

Matveevich Vinogradov (1891-1983) proved that every sufficiently large odd inte¬ 

ger is the sum of at most three primes. In proving this result Vinogradov made use 

of elementary but extremely delicate estimates of the magnitudes of trigonometric 

polynomials, showing once again the penetration of analysis into number theory. 

The elegant particular results of Fermat, Euler, and Lagrange in number theory 

were generalized in the course of the nineteenth century. This subject was one of 

Gauss’ favorite objects of contemplation, and his Disquisitiones arithmeticae be¬ 

came a classical work on the properties of integers. One of his earliest discoveries 

as a teenager was the law of quadratic reciprocity. To state it we need the concept 

of congruence modulo an integer. Two integers m and n are said to be congruent 

modulo r if they leave the same remainder when divided by r (equivalently, if 

their difference is divisible by r). The law of quadratic reciprocity says that if p 

and q are two primes both congruent to 3 modulo 4, then precisely one of them is 

congruent to a square integer modulo the other. If one of them is congruent to 1 

modulo 4, then either each is congruent to a square modulo the other or neither is 

congruent to a square modulo the other. 

In attempting to extend the law of quadratic reciprocity to higher powers, Gauss 

was led to consider what are now called the Gaussian integers, that is, the complex 

numbers of the form m + r?V—T. Gauss showed that the concepts of prime and 

composite number make sense in this context just as in the ordinary integers and 

that every such number has a unique representation (up to multiplication by the 

units ±1 and as a product of irreducible factors. Notice that no prime 

integer of the form 4n + 1 can be “prime” in this context, since it is a sum of 

two squares: An + 1 = p2 + q2 = (p + qy/—l){p — q\[—T). The generalization 

of the notion of prime number to the Gaussian integers is an early example of the 

endless generalization and abstraction that characterizes modem mathematics. 

Gauss’ work was carefully read by Dirichlet, who contributed several gems 

to this difficult area. One of these is the theorem that each arithmetic sequence 

in which the first term and the common difference are relatively prime contains 

an infinite number of primes. To prove this result, he introduced the “Dirichlet 

character” x(n) = (—1)A: if n = 2k A- 1, x(n) — 0 if n is even, along with the 
“Dirichlet series” 

17.5.1 The Prime Number Theorem 

Dirichlet’s theorem raises the problem of a quantitative estimate of the relative 

number of primes among the integers. The prime numbers seem to be quite ir- 
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regularly distributed among the integers, but it is known that there is always a 

prime between n and 2n. A good estimate of the number of primes less than or 

equal to a given integer N is given by N/(log N). This estimate was suggested by 

Gauss. Another estimate suggested by Legendre, N/(A\ogN + B) with A = 1, 

B = -1.08366, turns out to be correct only in its first term. This fact was re¬ 

alized by Dirichlet, but only after he had written approvingly of the estimate in 

print. (He corrected himself in a marginal note on a copy of his paper given to 

Gauss.) Dirichlet suggested )C^2[l/(log/c)] as a better approximation. 

This problem was also studied by Chebyshev. The number of primes in the 

finite sequence {1,..., n} is nowadays denoted tt(n). Chebyshev proved that if 

a > 0 is any positive number (no matter how small) and m is any positive number 

(no matter how large), the inequality 

7r(n) > 
an 

In m n 

holds for infinitely many positive integers n, as does the inequality 

fn dx an 
nn) < / t— + • J 2 In x In n 

This result strongly suggests that n(n) ~ [n/(lnn)\, but it would be desirable to 

know if there is a constant A such that 

An 
i b 
in n 

where en is of smaller order than 7r(n). It would also be good to know the rate 

at which en/ir(n) tends to zero. (Chebyshev’s estimates imply that if A exists, it 

must be equal to 1.) He was able to show that in fact 

7r (n) 
0.92129 < /■- - < 1.10555. 

nj m n 

This result and its later refinements is known as the prime number theorem). 

The full proof of the prime number theorem turned out to involve the use of 

complex analysis. Riemann had introduced the function known as the Riemann 

zeta function: 
oo 

coo = E 
n= 1 

1 

ns 
•> 

defined by this formula for Res > 1 and extended by analytic continuation to 

all other complex numbers. It is not difficult to see that the extended function 

has zeros at the even negative integers. Riemann showed that a good estimate of 

7r(x) can be obtained if all the other zeros of £(s) lie on the line s = \ + it, t 

real. This conjecture, still unproved, is known as the Riemann hypothesis. The 

gaps in Riemann’s methods were finally circumvented by two long-lived twentieth- 

century mathematicians, the Belgian Charles de la Vall£e-Poussin (1866-1962) and 
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the Frenchman Jacques Hadamard (1865-1963). The former, in particular, showed 

that 

where for some a > 0 the error term en is bounded by a multiple of ne aVlnn. 

17.5.2 Links with Algebra 

The abstract concepts of modem algebra began to appear thick and fast in the 

late nineteenth century. In work published from the 1870s to the 1890s Richard 

Dedekind (1831-1916) introduced the notion of a field (Zahlkorper) as a collection 

of complex numbers on which the four arithmetic operations are defined and sat¬ 

isfy the commutative, associative, and distributive laws familiar from arithmetic. 

(Nowadays such objects are called subfields of the complex numbers.) He also 

introduced the notions of a module as an object that is closed under addition and 

subtraction (nowadays we would call this a module over the integers) and an ideal 

as an object that is closed under addition and subtraction and under multiplication 

by any number, whether in the ideal or not. 

17.5.3 Links with Analysis 

Assaults on Fermat’s last theorem continued throughout the nineteenth century. In 

1847 Gabriel Lam6 published a paper in which he claimed to have proved the 

result. Unfortunately, he assumed that complex numbers of the form a0 -f afi + 

• • • + an_i#n_1, where 6n = 1 and a0,..., an_i are integers, can be factored 

uniquely, just like ordinary integers. Ernst Eduard Kummer (1810-1893) had 

noticed some 10 years earlier that such is not the case and had constructed what 

he called “ideal divisors” to save the theory. This was just one of the many ways 

in which the objects studied by mathematicians became increasingly abstract, and 

the old objects of numbers and space became merely special cases of the general 

objects about which theorems are proved. Kummer was the first to make general 

progress toward a proof of Fermat’s last theorem. The conjecture that x V + yP = Zp 

has no solutions in positive integers x, y, and z when p is an odd prime had been 

proved only for the cases p = 3, 5, and 7 until Kummer showed that it was true 

for a class of primes called regular primes, which included all the primes less than 

100 except 37, 59, and 67. This step effectively closed off the thought that Fermat 

might be proved wrong. 

17.6 Combinatorics 

The seeds planted by Leibniz in his De arte combinatoria sprouted and grew 

during the nineteenth century as problems from algebra, probability, and topology 

required sophisticated techniques of counting. One of the pioneers was the British 

clergyman Thomas Kirkman (1806-1895). The first combinatorial problem he 



17.7. FOUNDATIONS OF MATHEMATICS 407 

worked on was posed in the Lady’s and Gentleman’s Diary in 1844: Determine 

the maximum number of distinct sets of p symbols that can be formed from a set 

of n symbols subject to the restriction that no combination of q symbols can be 

repeated in different sets. Kirkman himself posed a related problem in the same 

journal 5 years later: Fifteen young ladies in a school walk out three abreast for 7 

days in succession; it is required to arrange them daily so that no two shall walk 

twice abreast. This problem is an early example of a problem in combinatorial 

design. The problem of covering each location in a square array of n rows and n 

columns with a symbol chosen from a set of n symbols in such a way that each 

symbol appears once in each row and once in each column (such an array is called 

a Latin square) is another example. 

Kirkman’s combinatorial work dovetailed with topology in two areas: first in 

the classification of polyheara having prescribed numbers of faces meeting at each 

vertex, second in the theory of knots. The mathematical study of knots was impos¬ 

sible before algebra and combinatorics had advanced to a certain level adequate to 

classify graphs. (Nowadays the subject relies on even more sophisticated notions 

involving the connectivity of the space complementary to the knot itself.) Peter 

Tait (1831-1901) published a paper on knots in 1876, in which he classified all 

knots with seven or fewer crossings. At Tait’s suggestion Kirkman (now a septe- 

genarian) took up the study of knots and links and classified those having up to 

ten crossings. 

17.7 Foundations of Mathematics 

The relation between numbers and the line, that is, the problem of incommensu- 

rables, was finally settled by Richard Dedekind. In an 1872 work entitled Stetigkeit 

und irrationale Zahlen (Continuity and Irrational Numbers) Dedekind pointed out 

the formal similarity in order properties between the line and numbers. The cru¬ 

cial consideration is that each point on a line separates the line into two parts: the 

points to the right of it and the points to the left of it. Dedekind realized that these 

two sets of points could be used in place of the point itself in any argument. There 

is no value in doing so in geometry, but in terms of numbers there is a great deal 

of value in doing so. For there is as yet no definition of an irrational number. If 

the number is simply defined as a partition of the rational numbers such that every 

element in one class is smaller than every element of the other class, the result is 

an object that has all the properties of a number: it can be added to and multiplied 

by other numbers of the same type. As Dedekind said, it was now possible for the 

first time to prove rigorously that \/2\/3 = \/6. Before that time mathematicians 

had been applying the ordinary rules of arithmetic to square roots, logarithms, ex¬ 

ponentials, and many other numbers without having a clear deftnition of what a 

real number is or a rigorous proof that these rules are correct. 

Although the calculus was securely established, the structure of the real line 

was by no means exhaustively studied. A deeper insight into the structure of the 

line came from a different source. Riemann’s work on trigonometric series had 

raised the question whether a trigonometric series that converged to zero at every 
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point must have all coefficients zero. Riemann had given a positive answer to this 

question assuming that the coefficients tend to zero. This work was extended by 

Georg Cantor (1845-1918). Cantor showed that the assumption that the coeffi¬ 

cients tend to zero was unnecessary, and that the conclusion remained valid even 

if the series fails to converge to zero at a finite number of points. Now, given 

an infinite number of points in a finite interval, the Bolzano-Weierstrass theorem 

implies that the points must cluster around one or more points, which are now 

called points of accumulation. Cantor studied the matter further and discovered 

that the theorem remained valid assuming the series converges except at an infinite 

number of points, provided there were only a finite number of points of accumu¬ 

lation. This was the crucial step that led Cantor to the concept of a point set. A 

point can only be a point of accumulation relative to a collection or set of points. 

Starting with a set P, Cantor used the letter P' to denote the set of its points of 

accumulation, known as the derived set. One can then consider P", P'",... P^n\ 

etc. Now the interesting fact is that p(n+1) C pU) for all n, so that the derived 

sets are nested. That makes it possible to consider the derived set of infinite order 

P^\ defining it as the set of points common to all of the derived sets of finite 

order. But then, one can go beyond infinity by considering the derived set of P^\ 

denoted p(u+l\ 

In this way Cantor had discovered the ordinal numbers. The concepts of ordinal 

and cardinal numbers and other mysteries of set theory occupied him for the rest 

of his life. He never went back to the question of uniqueness of trigonometric 

series. His work seemed to some mathematicians to be more philosophy than 

mathematics (and with good reason, since many pages of his early papers were 

devoted to a discussion of what philosophers had said), and many mathematicians 

of a conservative bent opposed it. Prominent among the latter were Poincare 

and Kronecker. The question of the proper foundation of mathematics was now 

joined in earnest; and although set theory remains the basic language for most 

mathematicians today, there are schools of mathematicians, notably the intuitionists, 

who oppose the use of some of its principles. The subject of set theory, which 

was an attempt to analyze the real numbers completely, eventually split into two 

areas. One of these is measure theory, which is concerned with generalizing the 

concept of length, area, and volume from sets that are geometrically simple to 

more complicated ones; it is closely linked with the theory of integration and 

nowadays with probability theory also. The other area is descriptive set theory, 

which attempts to classify sets according to their complexity. It starts with the 

simplest sets (intervals), then passes to countably infinite unions and intersections 

of intervals (class 1), then countably infinite unions and intersections of sets of 

class 1 (class 2), etc. Descriptive set theory has generated some of the hardest 

problems in mathematics, such as the continuum hypothesis. (The continuum 

hypothesis asserts that every uncountable subset of the real numbers can be placed 

in one-to-one correspondence with the whole set of real numbers). 

The topological concepts of compactness, connectedness, convergence, and cat¬ 

egory and their relations to measure-theoretic notions and integration were worked 

out during the two decades from 1890 to 1910. The knowledge needed in order 

to become a mathematician did not increase, however; it merely became more ab- 
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stract. A large number of particular facts about elementary and special functions 

passed out of the curriculum to make room for the new concepts. These forgotten 

particular facts are continually being rediscovered in the late twentieth century and 

occasionally published in good faith as new mathematics. 

17.8 Logic and Calculating Machines 

As is well known today, the construction of effective computing machines and 

programming languages is impossible without symbolic logic. Pioneers in this 

work were two British mathematicians, Augustus de Morgan (1806-1871) and 

George Boole (1815-1864). De Morgan was primarily a logician, who invented a 

symbolism consisting of capital letter-small letter pairs to denote a concept and its 

opposite; for example, if X stands for “human,” then x stands for “nonhuman.” 

He is best remembered for the logical laws that bear his name: “not-(A or B)” is 

equivalent to “(not-A) and (not-B),” and “not-(A and B)” is equivalent to “(not-A) 

or (not-B).” He developed a calculus in which elementary propositions could be 

characterized by equations. 

De Morgan conducted a correspondence with William Rowan Hamilton, the 

inventor of quaternions, on the quantification of propositions. This correspondence 

inspired Boole, who had previously been occupied with more standard mathemat¬ 

ical questions in differential equations, to write a series of books on mathematical 

logic. The third book, entitled The Laws of Thought (1849), gave a systematic 

exposition of symbolic logic and formed an important part of the background for 

the school of mathematical philosophy known as logicism in the early twentieth 

century. 

The early calculating machines of Pascal and Leibniz were improved in design 

by Charles Babbage (1791-1871), who, according to his own account, was dream¬ 

ing over a table of logarithms, when it occurred to him that all of these tables 

could have been computed mechanically. His desire to simplify computation had 

the same source as the logarithms themselves, the needs of astronomy. Babbage 

developed and built a difference engine, which could calculate values of functions 

at small intervals. When tested using the quadratic function x2 + .t+ 41, it proved 

to be greatly superior to hand computation in speed for numbers with a large num¬ 

ber of digits; moreover it was indefatigable and not prone to errors. The success 

of the difference engine led Babbage to attempt to improve it. This project was 

much more difficult and caused Babbage to have a breakdown in 1827. 

Babbage had been inspired by the success of the Jacquard loom, which wove 

predetermined patterns, reading its instructions from punched cards. He designed 

a machine called the analytical engine that would accept and store data from one 

set of cards and instructions from another set of cards. Babbage’s talent brought 

him great honors, despite his irascible character. He made the acquaintance of 

Augusta Ada Lovelace (1815-1852), the daughter of the poet Lord Byron. This 

talented woman had studied mathematics with Augustus de Morgan, through whose 

wife she came to know Babbage. Not at all intimidated by the complexity of the 

analytical engine, she translated and expanded an Italian account of Babbage’s 
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work into a clear exposition of it, and is credited with having written the first 

computer program. Unfortunately, she died at the age of 36, not having had time 

to devote herself systematically to scientific investigation. 

17.9 Problems and Questions 

17.9.1 Problems in Postcalculus Mathematics 

Exercise 17.1 Find the length of the logarithmic spiral r = ee from 6 = 0 to 

0 = ip, where tp is any given angle. [Arc length in polar coordinates is given by 

Ijp) = l'£ yjr2 + (r')2 dQ, where r' means the derivative with respect to 9.] This 

problem was solved by Torricelli in 1640. 

Exercise 17.2 Imagine a thread tightly wrapped around the logarithmic spiral r = 

e6 with its end at the point (1,0). What will be the equation of the end of the 

thread as it is unwound, always being kept taut? [That is, find the locus of points 

P such that the length of the tangent from P to the point Q of tangency equals 

the length of the curve from (1,0) to Q. This curve is called an involute of the 

given curve.] 

Exercise 17.3 Draw the complete graph of the equation y2 = x2(x — 1). (Be 

sure not to leave out any points.) How is the point (0,0) related to the rest of the 

curve? This point is called a conjugate point of the curve. 

Exercise 17.4 Consider a curve y = f(x) in the plane. Its tangent line at a point 

(x0, 2/0) has the equation f'(x0)x — y = f'(x0):x0 — yo, and therefore the normal 
to this line has the equation x + f'(x0)y = x0 + f'(x0)y0. Somewhere on this 

line we should find the center of a circle through (x0,yo) that fits the curve as 

well as any circle can, that is, having the same curvature as the original curve. To 

find this center, solve this equation simultaneously with the corresponding equation 

at a nearby point, that is, x + f'(xi)y = x\ -F f'(xi)yi, obtaining the relation 

(x1 - x0) - (y - yi)(f'{xi) - f'(xo)) + (yi - yo)f'(x0) = 0. Then divide by 

x\ — xo and let x\ tend to x0 to find the limiting value of y. Give an expression 

for the curvature ((.x — xQ)2 + (y — yo)2) 

Exercise 17.5 Consider the two equations 

xy = 0, 

x(y - 1) = 0. 

Show that these two equations are independent, yet will always have infinitely many 

common solutions. What kind of conic sections do these equations represent? 

Exercise 17.6 Consider the general cubic equation 

Ax3 + Bx2y -F Cxy2 + Dy3 + Ex2 + Fxy 4- Gy2 + Hx + Iy -f J = 0, 
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which has 10 coefficients. Show that if this equation is to hold for 10 different 

points (x,y), the only way to achieve this result (in general) would be to take 

all the coefficients A,... J equal to zero. That is, in general one cannot find a 

curve of order at most 3 passing through 10 different points. Show that for any 

nine points, however, there will certainly be solutions A,..., J with some of the 

coefficients nonzero. Use linear algebra to show that, in general, these constants 

would be in proportion for any two such solutions, and hence would represent the 

same curve. That is, there is always at least one curve of order (at most) 3 passing 

through any nine points in the plane, and generally that curve is unique. 

In the same way show that, given eight points, one can always find at least two 

different curves of order (at most) 3 passing through those eight points. Moreover, 

if one has two polynomials P(x,y) and Q(x,y) of degree at most three whose 

coefficients are not proportional to each other such that the curves P(x,y) = 

0 and Q(x,y) = 0 pass through these eight points, then in general any curve 

of order (at most) 3 passing through these points has an equation of the form 

\P(x,y) + yQ(x,y) = 0. 

Exercise 17.7 Use Euler’s equation to find the shortest curve x = x(t) between 

the points (0,1) and (1,2), that is, minimize the arc-length integral 

/ \A + (^(O)2 dt = I f{t,x,x)dt 
Jo Jo 

with a?(0) = 1 and x(l) = 2. [Hint: You know the answer to this problem in 

advance.] 

Exercise 17.8 Show that the differential equation 

dx d,y 
—/ .T —, - 

Ql - x4 yj\ - y4 

has the solution y = [(1 — x2)/(l + .T2)]1/2. Find another obvious solution of this 

equation. 

Exercise 17.9 Use the Maclaurin series for e_(1/2)t2 to verily that the series given 

by de Moivre represents the integral 

1 f1 -U2 

V^J-ie 2 
which is the area under a standard normal (“bell-shaped”) curve within one standard 

deviation of the mean, as given in many tables. 

Exercise 17.10 The Petersburg paradox is one of the paradoxes of the infinite, 

though not of the same sort as the set-theoretic paradoxes. The infinite expected 

winnings in this game depend on being able to play infinitely many games. What 

a rational person must take into account is the likelihood of variance from the 

mean, which could be disastrous in a low-payoff game such as the Petersburg 



412 CHAPTER 17. BEYOND THE CALCULUS 

game if the stakes are high. Show that if you had a large enough stake to play, 

you could expect to come out ahead paying $10,000 per game if you could play 
210,000 games How long would it take you to play this many games? 

Exercise 17.11 Verify that 

275 + 845 + HO5 + 1335 - 1445. 

Exercise 17.12 Prove Fermat’s little theorem by induction on a. [Hint: The 

theorem can be restated as the assertion that p divides ap — a for every positive 

integer a. Use the binomial theorem to show that (a + l)p-(a+l) = mp + ap — a 

for some integer m.\ 

Exercise 17.13 Verify the law of quadratic reciprocity for the primes 17 and 23 

and for 67 and 71. 

Exercise 17.14 Show that Fourier series can be obtained as the solutions to a 

Sturm-Liouville problem on [0, 27r] with p(x) = r(x) = 1, q(x) = 0, with the 

boundary conditions y(0) = y(2tt), y'(0) = y'(2tt). What are the possible values 

of A? 

Exercise 17.15 Using the Maclaurin series ex = 1 + x + x2/2! + rr3/3! + • • • 

and cos x = 1 — x2/2\ + .t4/4! — .t6/6! + • • • and the formula cosh a: = (ex + 

e~x)/2, verify that cos(±ix) = cosh.T, where i = >/—T Hence show that the 

hyperbolic Pythagorean theorem is the spherical Pythagorean theorem with a sphere 

of imaginary radius. Also use these series to show that both of the formulas become 

the ordinary Pythagorean theorem if r = oo. Hence ordinary Euclidean geometry 

results from spherical or hyperbolic geometry when the space becomes flat, that 

is, its curvature 1/r2 becomes zero. 

Exercise 17.16 Prove that the number of primes less than or equal to N is at least 

log2(lV/3), by proceeding as follows. Let pi,... ,pn be the prime numbers among 

1,..., N, and let 9(N) be the number of square-free integers among 1,..., N, that 

is, the integers not divisible by any square number. We then have the following 

relation, since it is known that Y^T=i(V^2) = zr2/6. 

> 
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But a square-free integer k between 1 and TV is of the form k = pl1 ••■perp, 

where each p7 is either 0 or 1. Hence 0(N) < 2n, and so n > log2(7V/3). This 

interesting bit of mathematical trivia is due to the Russian-American mathematician 

Joseph Perott (1854-1924). 

Exercise 17.17 Deduce from Gauss’ theorema egregiwn that if one surface can 

be conformally mapped onto another, the curvatures of the two surfaces at any two 

pairs of corresponding points are proportional. (This fact is also referred to as the 

theorema egregium.) 

Exercise 17.18 Consider a plane with two distinct points O and P singled out 

and identified as the complex numbers 0 and 1, respectively. Then consider all the 

points that can be located (as the intersection of two straight lines, two circles, or 

a straight line and a circle) using a straightedge and compass, starting with these 

two points. (A straight line can be drawn only if two points on it have already 

been located; a circle can be drawn only if its center and one of its points have 

already been located. A point is located if it is the intersection of two curves 

already drawn.) Show that the points corresponding to all complex numbers of the 

form r + si, where r and s are rational, are among these numbers. Show that if 

z is one of these points, so is yfz, and that if a and b are among these points, so 

are a + b, a — b, ab, and (if b / 0) a/6. Conclude that these “Euclidean” numbers 

form a field. Show that every quadratic equation with coefficients in this field has 

a root in this field. Is the same statement true for cubic equations? 

Exercise 17.19 Show that if every polynomial p(z) with real coefficients has a 

zero in the complex numbers, then every polynomial with complex coefficients 

also has a complex zero. (This reduction is vital for some of Gauss’ proofs of 

the fundamental theorem of algebra.) [Hint: If p(z) has complex coefficients, 

consider q(z) = p(z)p(z), where the bar denotes complex conjugation.] 

Exercise 17.20 Show that the quadratic formula 

o . _ —b db Qb2 — 4ac 
ax + bx + c = 0 if x = --- 

2a 

is valid in any field where 1 + 1/0. Naturally 2 here means 1 + 1 in the field, 

and 4 means 1 + 1 + 1 4-1. 

Exercise 17.21 Consider the field consisting of four elements {(), whose 

addition and multiplication tables are 

+ 0 1 1 (3 
0 0 1 a 13 
1 1 0 13 a 

a Ot p 0 1 

p (3 a 1 0 

and 
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• 0 1 a p 
0 0 0 0 0 
1 0 1 a p 
a 0 a p 1 

p 0 p 1 a 

Does the quadratic formula enable you to solve equations in this field? What 

is the solution of the equation x2 + x + 1 = 0? Can this solution be expressed in 

terms of the coefficients of the equation using only the field operations and square 

roots? Does the equation x2 + ax -f 1 = 0 have a solution in this field? 

Exercise 17.22 Show that the factorization of numbers of the form m + n\[~^3 is 

not unique by finding two different factorizations of 4. Is factorization unique for 

numbers of the form m -f n\/—2? 

17.9.2 Questions about Postcalculus Mathematics 

Exercise 17.23 How do you explain the following seeming paradox, based on 

Exercise 17.6? Nine points ought to determine one cubic; yet we can produce a set 

of nine points by simultaneously solving two different cubic equations. Given such 

a set of nine points, for any eight of these points any two essentially different cubic 

polynomials passing through those points ought to determine the whole family of 

cubics that pass through them. In particular the P and Q referred to above ought 

to determine this family. But clearly any curve of this family will also pass through 

the ninth point of intersection of the curves P = 0, Q = 0. 

The logical conclusion is that certain sets of nine points in the plane have a 

peculiar property: eight of them suffice to determine the ninth. Putting it another 

way, given eight points, there is (generally) a ninth point such that any cubic 

passing through the eight points will also pass through the ninth. 

Exercise 17.24 How might Descartes have discovered the Euler characteristic? 

Imagine drawing a connected polygon in the plane. You start with a single vertex 

and a single face (the whole plane) and no edges. Show that each time you add a 

new vertex or a new edge starting from a point already on the graph, the number 

of vertices and faces added equals the number of edges added, no matter how this 

is done. 

17.10 Endnotes 
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Leipzig, 1990). 
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Chapter 18 

Modern Mathematical Science 

The story we have been telling in the last few chapters is distorted by being cut off 

from its roots in physical science. The interaction between science and mathematics 

is profound, mysterious, and beautiful. This subject is vast, and one historian of 

mathematics, Ivor Grattan-Guinness, has devoted more than 1500 pages to a study 

of the development of mathematics and science in France alone in the years from 

1800 to 1840. Grattan-Guinness notes that historians have vastly overemphasized 

pure mathematics, to the detriment of an accurate understanding of the history 

of mathematics. The central role in the development of analysis and differential 

equations during the first half of the nineteenth century in France must be assigned 

to problems of physics and engineering. 

Since the major applications of mathematics have been in physics, we shall 

look at some of the most influential of these connections, in mechanics, electricity 

and magnetism, and relativity. Our purpose is not to give a general account of 

mathematical physics, but only to illustrate the role that mathematics plays in 

science. The same points could have been made by considering other areas, such 

as optics, acoustics, or quantum mechanics. 

18.1 Mechanics and Astronomy 

We shall trace just one thread in the tapestry of celestial mechanics—the expla¬ 

nation of planetary motion—through the work of five scientists: Galileo Kepler, 

Descartes, Fluygens, and Newton. 

18.1.1 Galileo 

In his Dialogues Concerning the Two New Sciences, written while he was under 

house arrest in 1638, Galileo attacked certain Aristotelian concepts of motion, not 

for being in conflict with observation, as is sometimes supposed, but for internal 

inconsistency. Salviati, the main character in the dialogue, speaks on behalf of 

“the author,” who claims to have verified Salviati’s claims by experiment. Salviati 

417 
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v 

Figure 18.1: The Merton rule (velocity v as a function of time t). The distance 

traveled is represented by the lower triangle. 

defines naturally accelerated motion just as the Merton scholars had defined uni¬ 

formly accelerated motion, that is, a motion in which the increase in velocity over 

a time interval is proportional to the length of the interval. Salviati asserts that this 

kind of motion is the motion of actual falling bodies. The other participants in the 

dialogue, Sagredo and Simplicio, do not object to this proposition in principle, but 

ask to have certain difficulties disposed of, for example, the objection that such a 

motion must have zero velocity at its beginning and therefore could never begin. 

Having disposed of such objections and corrected certain conclusions erroneously 

drawn from the hypothesis of uniformly accelerated motion, Galileo states the 

Merton rule for the motion of a uniformly accelerated body and illustrates it with 

exactly the same figure (Fig. 18.1) that was given by Nicole of Oresme two and a 

half centuries earlier. Galileo noted that the distances traveled in successive equal 

time intervals will be in proportion to 1,3,5,..., and from this fact he deduced 

that the distance will be proportional to the square of the time interval. In fact it 

will be given by s = \at2, where s is the distance covered and a the increase in 

velocity per unit time (acceleration). 

Another of Galileo’s contributions to the subject of physics was the idea of 

resolving motion into components parallel to coordinate axes according to the 

parallelogram law. This idea originated in the time of Aristotle, as we saw in 

Chapter 7, but its extensive use in physics dates from the time of Galileo. It 

is the earliest prefiguration of the concept of a vector. Galileo used this idea 

to derive the correct law of the inclined plane, which Jordanus Nemorarius had 

discovered three centuries earlier. He used the same principle to resolve the motion 

of a projectile into a uniform horizontal component and a uniformly accelerated 

vertical component. Since the horizontal motion is at constant velocity, while 

the vertical motion is uniformly accelerated (downward), it followed that vertical 

position would be proportional to the square of the horizontal displacement, so that 
the path would be a parabola. 

So far the mathematics has been algebraic and clean. The crucial step toward 

applying calculus in physics involves imagining that irregular processes (nonuni- 

formly accelerated motion, for example) take place on a microscopic scale over an 
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infinitesimal length of time. On this microlevel, velocities can be regarded as con¬ 

stant and curves as straight lines. Whatever laws can be derived on the rnicrolevel 

can then be transferred to the macrolevel. Galileo had provided this important idea 

in an earlier dialogue On the Two Great World Systems (1632). In that dialogue 

Simplicio claimed that the earth could not rotate, since such a rotation would cause 

the inhabitants to be thrown off at a tangent, like the sparks that fly from a black¬ 

smith’s wheel. Galileo argued that there were two components of force acting on 

the body, the tangential force of its inertia and the centripetal force of gravity. He 

noted (see Fig. 18.2) that if inertia would move the body tangentially from A to B 

in a given time, the centripetal force will keep it on the circle by merely moving 

it from B to C, which is much smaller (in the limit, infinitely smaller) than the 

distance from A to B. Therefore any centripetal force, no matter how small, would 

suffice to overcome any force due to rotation, no matter how large. 

This pattern of reasoning involves three assumptions: 

1. observable phenomena can be regarded as the result of processes taking place 

on an infinitesimal level; 

2. on the infinitesimal level curves can be regarded as straight lines; 

3. approximations that become arbitrarily precise on a sufficiently small finite 

scale become true equality on the infinitesimal level. 

This reasoning was elevated to the status of a scientific principle by Riemann 

in the midnineteenth century, when he argued that the geometry of space must be 

constructed from a metric given on the infinitesimal level. That is, the square 

of an infinitesimal length of curve ds2 must be given as a combination of the 

infinitesimal increments in the coordinates, with coefficients that may vary 

from point to point: 

ds2 — g^u dx^ dxv; 

and the length of a finite curve is then obtained by integrating ds. 

The secret of the success of infinitesimal methods is mathematical simplicity: 

on the infinitesimal level one can assume that an effect is directly proportional 

to its cause. Thus, for example, on the infinitesimal level a planet subject to the 

gravitational attraction of the sun can be assumed to travel along the diagonal of a 

parallelogram one side of which is tangent to its orbit and the other side of which 

is directed toward the sun. In this way, through the mediation of the infinitesimal, 

the notion of direct proportion provides the bedrock of classical mechanics. 

18.1.2 Kepler 

Galileo’s new mechanics of falling bodies developed at almost the same time as 

a new kinematics of celestial motion. The Copernican system had been published 

two decades before Galileo was bom, but it had not yet triumphed and it was 

regarded with suspicion by both Catholic and Protestant leaders. The Danish 

astronomer Tycho Brahe (1546-1601) had not fully accepted it, adhering instead 
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Figure 18.2: Forces on a body in circular motion. 

to a compromise system in which the sun and the outer planets revolved around 

the earth while Mercury and Venus revolved around the sun. Brahe made a large 

number of observations of planetary locations that were much more precise than 

any made previously. After his death it was left to his associate Kepler to pore 

over these voluminous records and wrest from them the secrets of the solar system. 

In his Astronomia nova (1609) Kepler used the language of Cavalieri to express 

one of his discoveries about planetary motion. He described the area swept out by 

the line from the sun to the planet as “the sum of the lines from the sun to the 

planet.” To simplify his explanation of his discovery he first allowed the orbit of 

a planet to be a circle with the sun off-center (eccentric). He then described its 

motion: 

... the total sum of the distances is to the time of a full period as any 

part of the sum of the distances is to its time. 

In modem language this principle says that the area swept out in a given time 

interval by the line joining the sun to a planet is proportional to the length of the 

time interval. This rule is now called Kepler’s second law. Kepler discovered it 

first because it is simpler than his other laws and consistent, as he noted, with all 

kinds of orbits. 

Kepler’s first law was much more difficult to derive. In trying to fit the data 

for the observations of Mars he noted that the orbit deviated inward from a certain 

circle, but outward from an ellipse he had placed inside the circle. He therefore 

looked for an intermediate curve to fit the orbit exactly, and this trick provided 

him with his discovery. Noting that the only mean between a circle and an ellipse 

is another ellipse, he concluded, 

Therefore the path of the planet is an ellipse... 

It was Kepler who coined the name foci for the two points inside an ellipse now 

known by that name. The word focus is the Latin word for a hearth, and it was 

chosen because the sun is located at that point. 

Kepler was inclined toward mysticism and waxed quite lyrical about the sig¬ 

nificance of the sun. He undertook to write the “harmony of the spheres” as music 

to be played. In his youth he had been intrigued by the idea that the orbits of the 

planets are in proportion to the radii of the spheres inscribed in and circumscribed 

about the five regular solids. This principle would imply that there could be no 
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undiscovered planets. Yet as a way of generating conjectures this seemingly ir¬ 

relevant and hopelessly wrong hypothesis led him to a vital discovery, crucial for 

the future of physics. It kept him wondering about the distances of the planets 

from the sun, and caused him to wonder if their sidereal periods had any regular 

relation to their distances from the sun. Eventually he found such a relationship, 

and immediately communicated it in his Harmonice mundi in 1618. He reported 

that the idea first occurred to him on March 8 of that year, but unfortunately was 

rejected because of an erroneous computation. The idea came back to him on May 

15, however, and this time his computations were correct. Kepler was jubilant at 

finding this reward for 17 years of labor among Brahe’s observations, and this feel¬ 

ing made him immediately mistrustful of himself. However, he finally proclaimed 
his third law with confidence. 

... the ratio of the periodic times of any two planets is precisely the 

sesquialteral ratio of the average distances, i.e., of their orbits... 

In modem language the sidereal period of a planet is proportional to a3/2, where a 

is the semimajor axis of the ellipse (the average of the greatest and least elongations 

of the planet from the focus). This third law was to play a major role in the 

establishment of Newtonian mechanics. 

18.1.3 Descartes 

The principles of mechanics were arrived at piecemeal, and the path toward them 

was not entirely straight. Occasionally someone would stumble on the correct and 

simple analysis of a phenomenon, yet reject it because it was inconsistent with 

certain assumptions of the time. Nevertheless, the proper description of certain 

mechanical phenomena gradually came to be understood. Such concepts as force, 

momentum, velocity, and acceleration were gradually given clear definitions and 

their relationships to one another were sorted out. One step on this road can be seen 

in a treatise published by Descartes in 1644, entitled The Principles of Philosophy. 

This treatise contains the modem definition of momentum, the law of conservation 

of momentum, and the law of inertia, including the fact that an unforced motion 

would be in a straight line, which had escaped Galileo. 

... it seems evident to me that it was none other than God who, in his 

omnipotence, created matter with the motion and rest of its parts and 

who now conserves by his regular operations in the universe exactly 

the same amount of movement and rest as set out when he created 

it. For, though movement be only a form in inert matter, that matter 

nevertheless has a definite quantity of it, which never increases or 

decreases, even though there may be more or less of it in various 

parts. This is why, when one piece of matter moves twice as fast as 

another and the other is twice as large as the first, we must consider 

that there is just as much motion in the smaller as in the larger; and 

whenever the motion of one piece decreases, that of some other piece 

increases in proportion... if a body has once begun to move, we must 
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conclude that it continues to move, and that it will never stop of its 

own accord... each piece of matter tends to continue its motion in 

straight lines, never in curves... . 

As this quotation shows, Descartes regarded motion as a “quality” possessed by 

bodies, a very awkward way of thinking about it. He did not understand the 

composition of momenta, and as a result his analysis of the motion of bodies was 

mostly wrong. 
Descartes’ cosmology was short-lived. He was still hampered by trying to 

explain things qualitatively rather than quantitatively. His Principles of Philosophy 

are a mixture of brilliant insight such as the laws of momentum and inertia, side 

by side with utter nonsense, such as the claim that a fixed star can turn into a 

comet and the notion that low tides are caused by pressure from the vortex of the 

moon on the earth. 

18.1.4 Huygens 

The study of motion at constant velocity was fairly complete in ancient times, and 

linear motion under constant acceleration was well explained by Galileo. There 

remained, however, one other geometrically simple motion that needed to be ex¬ 

plained, namely motion in a circle at constant angular velocity. Descartes had 

noted that unforced motion would be in a straight line. Therefore motion in a 

circle of radius r at speed v must be an accelerated motion; symmetry shows that 

the acceleration must be constant in magnitude. The problem was to find its value. 

This problem and many others in mechanics were solved by Huygens. He 

made a thorough investigation of the motion of falling bodies and proved that the 

oscillations of a pendulum are not truly isochronous, as Galileo had believed. He 

found that a particle sliding down a hemispherical bowl would take slightly longer 

to reach the bottom if started from a greater height. He showed mathematically, 

however, that if the bowl was formed by rotating a cycloid, the ball would take the 

same time to reach the bottom, no matter how high it started. He also discovered 

that the involute of a cycloid (the curve obtained as the locus of the end of a piece 

of string initially taut against the cycloid and then unwound while keeping it taut) 

would be another cycloid. These two principles enabled him to design a pendulum 

clock that would theoretically keep the same time no matter how wide an arc the 

pendulum traversed. The top portion of the pendulum was a flexible band, and on 

each side of it were two strips of metal bent into the shape of a cycloid. These 

strips forced the end of the pendulum to swing along the involute of the cycloid, 

i.e, in another cycloid. (See Fig. 18.3.) Because of frictional loss in the flexing of 

the band, the cycloidal pendulum clock does not keep better time than an ordinary 

pendulum clock. However, the problem raised interest in the purely mathematical 

problem of the relation of a curve to its involute. 

In 1673 Huygens published his discoveries in a work entitled De horologio 

oscillatorio, which also contained several theorems now central to classical me¬ 

chanics. One of these was the principle that the center of gravity of a group of 

bodies oscillating periodically rises to its original height during each period, but 
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no higher. This theorem is one application of the law now known as conservation 

of energy. A second fundamental result in this work was the law of acceleration 

for uniform circular motion. A body in uniform circular motion can be thought of 

as continually falling toward the center of the circle with a constant acceleration 

a, and thus the result of Galileo that the distance fallen is \at2 will apply on the 

infinitesimal level. The problem is to find a in terms of the radius r of the circle 

and the linear velocity v of the body. 

Huygens gave this result in the fifth part of his treatise, in which he stated 

that when two equal masses move in unequal circles at the same speed, their 

centrifugal forces (accelerations) are inversely proportional to the diameters of the 

circles (Theorem II), while if two equal masses move on equal circles at different 

constant speeds, the centrifugal forces are directly proportional to the squares of 

the speeds (Theorem III). 

If we assume that a particle is moving along a circle of radius r at constant 

speed v, then by the principle of inertia, without an acceleration, it would move 

from point A to point B, a distance vt tangent to the circle, in time t (see Fig. 

18.2). (The actual point on the circle whose arc from A equals AB is not C, 

but for very small time intervals t the error in using the point C instead of the 

point reached in time t is negligible.) The distance BC that the particle “falls” is 

therefore r[^/l + (vt/r)2 — l], and since fl + x — 1 equals \x for infinitesimal 

values of x (we would now say that the limit of their ratio is 1), the distance 

BC that the particle “falls” toward the center in an infinitesimal time interval t 

is 7j(u2/r)t2. Comparing this expression with Galileo’s law of motion for falling 

bodies s = \gt2, where g is the acceleration due to gravity, we find that the 

acceleration is v2/r. This is the result announced by Huygens. 

18.1.5 Newton 

The idea that the gravitational attraction of one body for another is inversely 

proportional to the square of the distance between them seems intuitively plausible 

if one thinks of gravity as a force that radiates from each particle of matter. The 

total amount of force on a sphere with center at the particle is the same for 

all spheres, while the area of the sphere increases as the square of the radius. 

Therefore, to keep the total force constant, the “concentration” or intensity of 

force at each point must decrease in proportion to the square of the radius. This 

intuitive idea, however, is not the path Newton followed to the discovery of this 

law. Instead he applied the results of Galileo, Huygens, and Kepler to the motion 

of the planets. For a body moving uniformly in a circle of radius r with speed v 

two things can be deduced: (1) the acceleration is v2 jr, as Huygens showed; (2) 

the period T of revolution is given by the equation T = 2nr/v. Then, if Kepler’s 
3 

third law is true, there is a constant k such that T = kr Thus, writing c = 2ir/k, 

we have v = cr~(l/2\ and hence the acceleration is a = v2/r = c2 jr2. This is 

the inverse-square law of gravitational acceleration: The force per unit mass due 

to gravity decreases as the square of the distance. 

To make some rough calculations using these considerations, let us compute 
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the acceleration of the moon. Since the earth’s radius is about 4000 miles, and the 

moon’s center is about 240,000 miles from the center of the earth (on the average), 

we can say that the moon is about 60 times as far from the center of the earth as 

are objects on the earth’s surface. Since the acceleration of gravity at the earth’s 

surface is 32 feet per second per second, the acceleration of the moon should be 

about feet per second per second, that is, in one second the moon should 

“fall” about 3^ feet (since the distance fallen s is given by s = \at2). This is 

about inch, that is, 0.05333... inch. 

Let us compare this computed theoretical value with what is known from 

observation. The sidereal period of the moon is 27.3 days, that is, T « 2,359, 000 

seconds. Since the distance traversed in this time is 2irr, the velocity v is 2nr/T, 

and the distance fallen in one second is \a = v2 / 2r = 2ii2r/T2. Since we 

have used inches as the unit of length in the preceding computation, we have r — 

240, 000 x 5280 x 12. When these numbers are inserted, we find that the observed 

distance fallen in one second is 0.054 inch, a remarkably close agreement of theory 

with observation. However, we have made many careless approximations—the 

moon’s orbit is not exactly circular, and we have rounded off the sidereal period 

of the moon and the radius of the earth. 

When Newton made this computation, he underestimated the radius of the 

earth, believing that one degree of arc on the surface was about 60 miles, when in 

fact it is 69.5 miles. This error threw his computation off by a noticeable amount, 

and the agreement between the inverse-square law and observation was not very 

good. However, in 1684 he happened to hear a report of new and more accurate 

measurements of an arc on the surface of the earth. Returning to the computation, 

he found the better agreement we have just discussed. 

The computation of the shape of an orbit under an inverse-square law of at¬ 

traction is not easy, but Newton was equal to the task. He showed that the only 

possible orbits (assuming a fixed central body and only one other body in orbit 

around it) were conic sections. Since the only closed conic section is an ellipse, it 

followed that the path of a planet must be an ellipse (Kepler’s first law). It was 

this computation, which had stumped several members of the Royal Society, that 
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the astronomer Edmund Halley put to Newton in 1684. Since Robert Hooke had 

asked him about it in 1679, Newton was ready with the answer. Newton’s quick 

response prompted Halley to urge him to write the Principia. 

Kepler’s third law is likewise a consequence of the inverse-square law of 

attraction and Newton’s second law of motion, but again the mathematics needed 

to derive it is somewhat complicated. In the Principia Newton gave a simple 

derivation of Kepler’s second law in a very general form: for any object subject 

to a central attraction, whether inverse-square or some other, the radius from the 

center to the object sweeps out area at a constant rate. Since the argument is 

simple and again illustrates so well the use of infinitesimal analysis in mechanical 

problems, we give a summary of it. This principle is easily derived if there is no 

attraction at all toward the center, since in that case, by Newton’s first law, the 

body moves in a straight line at a constant speed, and so in equal time intervals the 

line from the center sweeps out triangles of equal base (the distance moved by the 

body) and equal height (the perpendicular distance from the center to the line of 

motion, as in the 11 positions shown for a “planet” not attracted by a “sun” in Fig. 

18.4). For a centrally accelerated motion, shown in Fig. 18.5, Newton considered 

a particle originally at a point P, which the attraction of S acting alone would 

cause to fall to the point P' in a given (infinitely short) time, while its motion 

without any attraction toward S would carry it to P" in the same time. By the 

parallelogram law for combining these motions, the body will actually move to 

the point Q in this time. Hence the area swept out will be the triangle SPQ, 

which clearly has the same base SP and the same height (equal to the height of 

the parallelogram P'PP"Q) as the triangle SPP" that would have been swept 

out without the acceleration. In other words, central acceleration does not change 

the rate at which area is swept out, which therefore must be constant. 

In our study of Greek mathematics we saw that such “atomistic” methods in 

geometry were laboriously justified by the complicated methods of Eudoxus. The 

reintroduction of such methods into modern science was bound to cause uneasiness. 

Newton offered the following excuse for not adhering to Euclidean rigor: 

These Lemmas are premised to avoid the tediousness of deducing in¬ 

volved demonstrations ad absurdum, according to the method of the 

ancient geometers [i.e., by the method of exhaustion]. For demonstra¬ 

tions are shorter by the method of indivisibles; but because the hypoth¬ 

esis of indivisibles seems somewhat harsh, and therefore that method 
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is reckoned less geometrical, I chose rather to reduce the demonstra¬ 

tions of the following Propositions to the first and last sums and ratios 

of evanescent quantities, that is, to the limits of those sums and ratios, 

and so to premise, as short as I could, the demonstrations of those 

limits. For hereby the same thing is performed as by the method of 

indivisibles... . Therefore if hereafter I should happen to consider 

quantities as made up of particles, or should use little curved lines for 

right [straight] ones, I would not be understood to mean indivisibles, 

but evanescent divisible quantities... . 

18.2 Electromagnetism and Relativity 

18.2.1 Electricity, Magnetism, and Light 

During the 1830s Gauss worked with the physicist Wilhelm Weber (1804-1891) 

on the new subject of electrodynamics. That a current in a loop would affect 

a compass needle had been discovered in 1820 by the Danish physicist Hans 

Christian Oersted; (1777-1851) the quantitative expression of the force on a magnet 

was expressed by Jean Baptiste Biot (1774-1862) and Felix Savart (1791-1841) 

in the following year. Then over the next 4 years Andr6 Marie Ampere (1775— 

1836) studied quantitatively the effect of one current on another. With amazing 

rapidity the work of Ampere was followed by an 1827 paper of Georg Simon 

Ohm (1787-1854), who made extremely delicate measurements of the torque on 

a needle due to the current in a loop. Ohm found that the relation between the 

torque X and the length of the conductor x of a given cross-sectional area used 

to carry the current were related by an equation of the form X — a/(b + x), 

where a and b are parameters depending on the material of the conductor and 

the method of generating the electricity. In 1827 the British mathematician George 

Green (1793-1841) introduced the notion of a potential function for studying these 

phenomena. Without knowing of Green’s work, which was republished by Lord 

Kelvin (William Thomson, 1824-1907) after Green’s death, Gauss independently 

created the notion of a potential, a function defined in three-dimensional space 

whose partial derivatives give the components of the force at each point. The 

potential functions considered by Green are a special case of Gauss’ potentials. 

Gauss was interested in studying the earth’s magnetic field, and he developed the 

potential of this field in a series of negative powers of r (the distance from the 

earth’s center): 

V = 
Pi P2 

' 9 y* y* 
+ 5 

where Pn satisfies Laplace’s equation. Gauss truncated this series after four terms, 

from which he obtained equations yielding the strength of the earth’s magnetic field. 

In 1845, in a letter to Weber, Gauss suggested a way of computing the interaction 

of two moving electric charges e and e! at distance r from each other. A year later 
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Weber gave the mutual force as 

F = c.e'('l-—t-V + —— V 
\r2 c2-r2\dt) c2 • r dt2 ) 

This law is known as Weber’s law. It depends on a velocity c that must be 

computed experimentally. In 1855 Weber and a collaborator computed this velocity 

as 4.3945 x 1010 centimeters per second. The following year the physicist Gustav 

Kirchhoff (1824-1887) noted the interesting fact that Weber’s constant velocity 

was almost exactly y/2 times the speed of light. However, this coincidence was 

not explored at the time. 

18.2.2 Maxwell 

In trying to develop a model of magnetism as a disturbance in an elastic medium 

referred to as a “magnetic field” the Scottish physicist James Clerk Maxwell (1831- 

1879) imagined the medium divided into cells surrounded by small spherical parti¬ 

cles of electricity. By making reasonable assumptions as to the elasticity of such a 

medium, Maxwell computed the velocity with which a wave would propagate in it 

and found it to be 193,088 miles per second. He compared this number with several 

estimates of the velocity of light given in his day (his own estimate of 192,500 

miles per second, based on aberration, and the values of 195,777 and 193,118 

given by other authors) to conclude that light must be just such a disturbance in 

this medium. Interestingly, he seemed to be aware, as good scientists must be, that 

his own bias and desire for good results could be misleading. He wrote to William 

Thomson in December 1861 that he had made out his equations before he thought 

of any connection between the velocity of propagation of electromagnetic waves 

and the velocity of light. The evidential value of this coincidence would have been 

greatly decreased if he had—perhaps unconsciously—set up the equations so that 

the two velocities coincided. He concluded that the magnetic and lumeniferous 

media were the same and that, 

Weber’s number is really, as it appears to be, one-half the velocity of 

light in millimeters per second. [Maxwell must have meant >/2 where 

he wrote one-half.] 

This event in 1861 remains one of the outstanding contributions of mathematics 

to the understanding of the physical world. To ordinary common sense there is 

not the slightest connection between electricity, magnetism, and light. Yet the 

mathematical analysis of measurements of electric and magnetic forces revealed 

that electromagnetic waves must travel at exactly the speed of light. The inference 

that light is an electromagnetic phenomenon was irresistible. 

The mechanical model just described proved inadequate for several reasons, 

and a decade later, in 1873, Maxwell summarized the many individual results on 

electrical and magnetic interactions in the set of partial differential equations that 

now bear his name. The American mathematician Josiah Willard Gibbs (1839— 

1903) developed a compact notation that makes it very easy nowadays to write 
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Maxwell’s equations in terms of the curl and divergence of two vector fields E 

(the electric field intensity) and B (the magnetic induction) that are related in 

mathematically simple ways to the current density vector J and charge density p: 

V x E = 

V x B = 

V-B = 

i ob 

c dt 
4?r 1<9E 

c + c dt 
0 

V • E = 4np. 

The intuitive brilliance of these equations is that, to one practiced in the use of 

vectors, they convey an immediate and vivid picture and formulate concisely some 

well-known experimental results. The first equation, for example, says that a 

magnetic field that changes over time produces an electric field. The second says 

that currents and changing electric fields produce magnetic fields. The third says 

that there are no magnetic charges, and the fourth says (when combined with the 

divergence theorem) that the electric flux through a closed surface is proportional 

to the charge contained inside that surface. 

18.2.3 Relativity 

Popular accounts of relativity tend to focus on the constancy of the speed of light, 

the famous Michelson-Morley experiment, and mechanical effects, such as the 

contraction of time and space for a body in motion. These observable phenomena, 

however, were not the starting point for relativity. The theory of relativity arose in 

connection with electromagnetism, specifically through the Lorentz1 equation for 

the force on a particle of charge q moving in an electric field E and a magnetic 

induction B with velocity v: 

F = q(E + v x B). 

It is an obvious consequence of Newton’s second law that two observers moving 

with constant velocity relative to each other must agree about the forces acting 

on any particle. Since they will not agree as to the velocity v of the particle 

just mentioned, they must disagree about either E or B, or both. In fact it is not 

difficult to show that they agree about B and disagree about E. Thus physicists 

were faced with a problem in reconciling classical mechanics, which had been 

very successful, with the new mathematical theory of electromagnetism. Albert 

Einstein (1879-1955) called attention to these problems in his 1905 paper, “Zur 

Elektrodynamik bewegter KOrper” (On the electrodynamics of moving bodies), in 

which the special theory of relativity was first introduced. 

It is known that Maxwell’s electrodynamics (in its current interpreta¬ 

tion) when applied to moving bodies, leads to asymmetries which do 

1Named after the Dutch physicist Hendrik Antoon Lorentz (1853-1928). 
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not appear to be intrinsic to the phenomena. Consider, for example, 

the electrodynamic interaction of a magnet and a conductor. The ob¬ 

servable phenomenon here depends only on the relative motion of the 

conductor and the magnet, whereas the standard interpretation draws a 

sharp distinction between the two cases in which either the one or the 

other of these bodies is in motion... Examples of this kind... lead to 

the conjecture.. .that.. .the same laws of electrodynamics and optics 

will be valid for all systems of coordinates in which the equations of 

mechanics hold good. We wish to make this conjecture (whose con¬ 

tent will be called the “Principle of Relativity” from now on) into a 

postulate... 

The success of the special theory of relativity in removing the asymmetries of 

electrodynamics was a powerful argument in its favor; the equivalence of matter 

and energy expressed by the famous equation E — me2 was an added bonus. 

The theory also had some experimental justification from the Michelson-Morley 

experiment, which had not detected any change in the velocity of light traveling 

in different directions relative to the moving earth. 

The fact that such seemingly concrete and indisputable things as distance and 

time would have to be different for two observers in order for mechanics and 

electromagnetism to be mathematically consistent came as a surprise. The fact 

that two observers could agree on the magnitude of a force but disagree about its 

physical nature raised the question as to how two observers could know when they 

were measuring the same physical quantity and using the same physical laws. The 

special theory of relativity considers how to formulate physical laws so that two 

observers moving with constant relative velocity can reconcile their observations. 

The more difficult problem as to how to reconcile the observations of two 

observers in arbitrary relative motion took another decade to consider. Here 

again, Einstein was guided to a large degree by the mathematics available, in 

this case the tensor calculus. Mathematically two different observers are repre¬ 

sented by two different coordinate systems -jV} and {y?} related by equations 

y1 = y?i(rr1,... ,xn),..., yn = (^(sc1,... ,xn). Here the superscripted variables 

xl and j/7 can represent any measurable physical quantities. By the well-known 

rules of differential calculus 

dvl = E 
.7 = 1 

dxA = 

j=l 

The differentials dx1 and dyi are said to be covariant because they transform in 

this way. That is, in matrix language the chain rule becomes 

d,yl 

dyn 

/ dyl \ 
Qx 1 * r)'r'71 

dyl 
dx1 

dx7 

dy71 

dxn 

= J 

/ dx1 

\ dxn 

On the other hand, if 

^ = i>(yl,. , yn ) = (.T1, . . . , .Tn), . . . , Tnix1, . . . , Xn)) 
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is any function of these variables, the partial derivatives of z are contravariant, 

since, for example, 

dz 

' dy1 ' 

l dz , 

dy' 

dx1 
dy1 

dx1 
dyn 

dxn \ / dz \ 

dy1 dx1 » 

dx7 / \ / 
Quantities that transform in these ways are known as tensors. Einstein sug¬ 

gested that different observers could agree that they were measuring the same 

quantity if their measurements transformed in this way. He took the position that 

physical laws should be stated as tensor equations, so that any law can be translated 

into any coordinate system. 

It should be noticed that the transformations just considered involved only one 

differential per term. However the notion of infinitesimal distance for the geometry 

of a curved space that Riemann had proposed involved a product of two differen¬ 

tials: ds2 = v g^v dx^ dxu. Investigating the transformations of such a tensor, 

Einstein noted that if the coefficients were constant in some coordinate system, 

then a certain general tensor R^UT called the Riemann-Christoffel2 tensor derived 

from this one would have all coefficients zero. The Riemann-Christoffel tensor is 

of rank 4, having three covariant indices and 1 contravariant index. By an alge¬ 

braically simple transformation called contraction, the contravariant index p and 

the covariant index r can be made to “annihilate” each other, leaving a covariant 

tensor of rank 2, which in a suitable coordinate system assumes a particularly sim¬ 

ple form G^v. Einstein required the gravitational fields to be such that = 0 

in the absence of matter. Einstein stated explicitly that in making this choice he 

was guided by the fact that G^ was the only tensor of second rank fonned from 

the g^u and their derivatives not involving any derivatives of order higher than 2 

and expressible as a linear function of those derivatives. In other words, it was the 

mathematically simplest tensor that said anything significant about the geometry 

of space. Einstein’s tacit assumption is that one should seek physical laws in the 

simplest possible mathematical form. This principle allows mathematics to guide 

the discovery of physical law. From this point of view observation and experiment 

do not always suggest physical laws by revealing patterns; sometimes they are 

used instead to test laws arrived at on esthetic and mathematical grounds. On the 

other hand, one of Einstein’s goals in creating the general theory of relativity was 

to show that relativistic considerations could account for discrepancies in plane¬ 

tary orbits, specifically a precession of the perihelion of Mercury by 43 seconds 

of arc per century that could not be derived from perturbations due to the other 

planets. Two years before he published his general theory Einstein had rejected an 

earlier version when it predicted a precession of only 18 seconds per century for 

the perihelion of Mercury. 

The equation Gy.u — 0 gave a system of differential equations for the functions 

and mechanics could be formulated by saying that the path of a particle in 

the resulting geometry would be a geodesic, a principle similar to the principle of 

least action in classical mechanics. 

2Named after Riemann and Elwin Bruno Christoffel (1829-1900). 
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The justification of this approach was given by Einstein in his 1916 paper on 

general relativity. After showing that the simplest first-order approximation to his 

law was Newton’s law of gravity, he compared the difference between his law 

of motion and that of Newton for the case of the planet Mercury and found that 

the elliptical orbit of Newtonian mechanics was replaced by a more complicated 

orbit. In second approximation this more complicated orbit was an ellipse whose 

axis rotated (precessed) by an amount he calculated to be 43 seconds of arc per 

century. By a harmony too improbable to be accidental, this was exactly the 

amount of precession that astronomers had been unable to account for as the result 

of perturbations due to the other planets. As Einstein said, “These facts must, in 

my opinion, be taken as convincing proof of the correctness of the theory.” 

We have discussed electrodynamics and relativity in order to show how physi¬ 

cists trying to explain the natural world are often guided by mathematical elegance 

and simplicity in conjecturing the laws of nature. One should, however, balance 

these successes against the wreckage of past mathematical theories (the elastic 

solid theory of light propagation, for example) that seemed to have great success 

for a time, but were eventually overwhelmed by stubborn, unresolvable difficul¬ 

ties. Even these outmoded theories, however, were often essential stepping stones 

on the way to more comprehensive and satisfying theories. The mystery of this 

“preordained harmony” between mathematics and the physical world continues to 

inspire awe in scientists. 

18.3 Questions about Mathematical Physics 

Exercise 18.1 How do you answer the objection that motion cannot begin if the 

velocity of a falling body is zero when it begins to fall? 

Exercise 18.2 Show that the distance traversed under uniformly accelerated mo¬ 

tion, starting from rest, is proportional to the square of the time elapsed, as asserted 

by Galileo. 

Exercise 18.3 If Galileo is correct that any centripetal force will overcome any 

tangential force, why do the sparks from a grinding wheel fly off at a tangent? 

What would happen if the rotation of the earth gradually speeded up until a person 

standing on the equator weighed nothing, and then the speed of rotation increased 

still further? Would the person fly off at a tangent, as Simplicio had argued? 

Exercise 18.4 Newtonian mechanics (neglecting friction and air resistance) pre¬ 

dicts theoretically what Galileo claimed to have observed, that two spheres of 

different sizes will require exactly the same time to roll down an inclined plane. 

Yet this same model predicts that a hoop and a sphere will require different times 

to roll down the plane. What is the explanation for this difference? Did Galileo 

actually observe what he claimed to observe? 

Exercise 18.5 Bertrand Russell, in his History of Western Philosophy, writes, 

“Kepler is one of the most notable examples of what can be achieved by patience 

without much in the way of genius.” Is this a fair verdict on Kepler’s work? 
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Exercise 18.6 Maxwell assured William Thomson that he had not “cooked the 

books” in his theory so that the theoretical speed of propagation of electromagnetic 

waves would turn out to be equal to the measured speed of light. Einstein, on 

the other hand, from the very beginning, wanted a relativistic theory of gravity 

that would explain the precession of the perihelion of Mercury and adjusted his 

physical theory until he got that result. Does this fact decrease the value of this 

explanation as evidence in favor of general relativity? What about our back-of- 

the-envelope computation of the distance the moon falls each second? Was the 

outcome influenced in any way (when Newton did it) by a desire to show that the 

acceleration due to gravity decreases as the square of the distance? 

18.4 Endnotes 

1. The two quotations from Kepler’s Astronomia nova are translated from his 

collected works, published by C. H. Beck’sche Verlagsbbuchhandlung (Mu¬ 

nich), Vol. 3, 1937, pp. 263, 366. 

2. The quotation from Kepler’s Harmonice mundi is translated from his col¬ 

lected works (sp. cit.), Vol. 5, 1940, p. 302. 

3. The quotation from Descartes’ Principia Philosophiae is translated from the 

French translation found in his OEuvres, Vol. 3 (Levrault, Paris, 1824), p. 

151. 

4. The quotation from Newton’s Principia is taken from F. Cajori’s revision 

of Motte’s 1729 translation, published by the University of California Press 

(Berkeley and Los Angeles, 1966), p. 38. 

5. Maxwell’s letter to Thomson can be found in The Scientific Letters and 

Papers of James Clerk Maxwell, Vol. 1 (Cambridge University Press, 1993), 

p. 695. 

6. The quotation from Einstein’s paper on special relativity is translated from 

his original paper, “Zur Elektrodynamik bewegter KOrper,” Annalen der 

Physik, 17 (1905), p. 891; see Collected Papers of Albert Einstein (Princeton 

University Press, 1989), Vol. 2, p. 276. 

7. Einstein’s heuristic path to his law of gravity can be found in The Principle 

of Relativity (Dover, New York, 1952), p. 144. 

8. The information on Einstein’s rejected draft of a general theory of relativity 

is taken from The Collected Papers of Albert Einstein, Vol. 4, Martin J. 

Klein, A. J. Kox, Jurgen Renn, and Robert Schulmann, eds. (Princeton 

University Press, 1985). 
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Chapter 19 

Contemporary Mathematics 

The narrative up to this point has carried the story of mathematics to the end 

of the nineteenth century. In this final chapter we shall look at some parts of 

twentieth-century mathematics, emphasizing the way in which mathematics has 

been practiced. Both internal and external forces have helped to shape this practice, 

and the study of these forces involves sociology and philosophy in ways that would 

soon take us out of our depth if we were to attempt to account for many details. 

The questions deserve to be examined, however. Decisions are being taken every 

day, both by mathematicians and by the leaders of business and government, which 

determine what mathematics will be in the future. As a citizen and a potential 

user or practitioner of mathematics, the student ought to have some idea of how 

mathematics is practiced and what it can contribute to the solution of economic 

and social problems. 

We shall begin by discussing the internal changes in the nature of mathematical 

research, specifically generalization, abstraction, and rigorization, after which we 

shall address the social and political aspects of the practice of mathematics. 

19.1 Generalization and Abstraction 

The most prominent feature of twentieth-century mathematics, compared with that 

of the past, is the high level of abstraction and generality of its results. Through¬ 

out the century there has been a concerted effort to examine the hypotheses and 

methods of proof of major theorems, to strip away the inessential parts and reduce 

hypotheses to a minimum. We shall illustrate this trend with examples from several 

major areas of mathematics. 

19.1.1 Analysis 

While the nineteenth-century mathematicians were concerned with achieving a 

clear definition of continuity that did not rely on vague intuition, they needed 

this definition only for real- and complex-valued functions of real and complex 

435 
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variables. In the early twentieth century, however, Maurice Fr£chet (1878-1973) 

pointed out that the algebraic properties of real and complex numbers really played 

no role in the definition of continuity. What was essential to the definition was 

only a notion of convergence, of nearness, so that it would make sense to say that 

the distance between f(x) and f(y) could be made as small as desired by choosing 

x and y sufficiently close together. In this way continuity could be defined on any 

space in which a notion of distance was defined. 

Felix Hausdorff (1868-1942) noted in his 1914 book Grundziige der Men- 

genlehre (Fundamentals of Set Theory) that nearness could be defined without 

mentioning the notion of distance. The concept of distance was of use in defining 

the interior and boundary of a set. Once that definition was made, it was possi¬ 

ble to consider the class of open sets (sets that do not intersect their boundaries). 

Hausdorff pointed out that open sets could be defined in terms of a concept of 

neighborhood, which is qualitative rather than quantitative. The class of open sets 

is characterized by two properties: (1) any union or finite intersection of open sets 

is an open set, and (2) the empty set and the entire space are open. Any collection 

of sets with these properties defines a topology. Once a topology is defined on the 

domain and range of a function, continuity of a function (at all points) is defined 

by saying that the set of points that map into any open set of the range is an 

open subset of the domain. This definition allows much more general spaces to 

be studied than the spaces of real and complex variables considered previously. 

Throughout the twentieth century analysts, topologists, and geometers have found 

this abstract notion of a topological space essential in their work. 

This kind of abstraction can easily get out of hand, and one of the efforts to 

rein it in consists of theorems showing that an abstractly defined object must ac¬ 

tually resemble a more traditional one. A good example of this kind of theorem is 

the Weierstrass approximation theorem, which asserts that a function about which 

nothing is known except that it is continuous on an interval [a, b} can be approxi¬ 

mated with any required precision by a polynomial (in fact by a polynomial with 

rational coefficients, hence an eminently computable object). Thus the exceedingly 

abstract object known as a continuous function can be represented for all practical 

purposes by a polynomial, a very concrete object. However, the abstractionists 

have not been silenced by this result, and it too has been generalized to a mod¬ 

em version known as the Stone-Weierstrass theorem after its discoverer Marshall 

Stone (1903-1989). The Stone-Weierstrass theorem asserts that any algebra of 

continuous real-valued functions (such as the polynomials) defined on a compact 

Hausdorff space (an example of which is the interval [a, b]), on which the algebra 

separates points and for each point x contains a function that is not zero at x, is 

dense in the space of all continuous real-valued functions, so that any continuous 

function can be approximated by functions of the algebra. 

A similar generalization and abstraction has shaped the development of an¬ 

other major property of real-valued functions: integrability. In the work of fimile 

Borel (1871-1956), Henri Lebesgue (1875-1941), Pierre Fatou (1878-1929), W. H. 

Young (1863-1942), and others in the period from 1890 to 1910, it was shown 

that the essential components of a theory of integration are (1) a collection of sets, 

each of which has a “measure” (length, area, volume, or some generalization of 
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these—such a set is called measurable) and (2) a real-valued function f(x) such 

that the set of points x where a < f(x) <b is a measurable set for each a and b 

(such a function is said to be measurable). The class of measurable sets, called a 

cr-field, resembles the concept of a topological space, except that measurable sets 

are closed under countable unions and intersections rather than arbitrary unions and 

finite intersections. Analysts now routinely work with abstract spaces on which 

both a topology and a cr-field are defined. To limit the apparent abstraction in this 

area Nikolai Nikolaevich Luzin (1883-1950) proved in 1915 that any measurable 

function is the derivative of a continuous function, and Marshall Stone proved a 

classification theorem showing that an abstract measure space can be modeled by 

combining the measurable sets in a Euclidean space with a set of discrete points. 

Examples of this kind of abstraction can be given almost without limit. The 

classical1 theory of Fourier series involved Fourier series of periodic functions and 

Fourier transforms of integrable functions. What these two topics had in common 

was the idea of transforming a function defined on one group (the “circle,” obtained 

by identifying the two endpoints of a closed interval, or the real line) into a different 

function (its sequence of Fourier coefficients, or its Fourier transform) defined on 

another group (the integers or the line) called the dual of the original group. 

These groups possess a topology and a measure that are invariant under the group 

operations (the translate of an open or measurable set is open or measurable and 

has the same measure as the original set). Groups having such topologies and 

measures were already known—the groups called the “classical groups” after the 

title of a famous treatise by Hermann Weyl (1885-1955). The latter are groups 

of invertible matrices, the group operation being matrix multiplication. A square 

matrix of size n x n can be regarded as an element of n2-dimensional Euclidean 

space, providing a natural metric topology on any such group. The construction 

of an invariant measure on any such group was carried out by Alfred Haar (1885— 

1933). 

Even greater abstraction and generality was achieved in the work of Frigyes 

Riesz (1880-1956), Maurice Fr6chet, and others from 1900 to 1910, by regarding 

functions themselves as elements of a space having the algebraic structure of a 

vector space on which a metric is defined. Part of the impetus to this construction 

came from the work of David Hilbert (1862-1943) on integral equations in this 

same period. Hilbert worked with the space of square-integrable functions, which 

is now called a Hilbert space in his honor. Riesz, Fr£chet, and others worked with 

spaces of continuous functions. The end result was summed up in the work of 

Stefan Banach (1892-1945), who studied an abstract class of vector spaces having 

a metric; these are now called Banach spaces. 

When the elements of a Banach space can be multiplied, the result is a richer 

structure called a Banach algebra. The theory of Banach algebras led to yet another 

generalization of Fourier series, as I. M. Gel’fand (b. 1913) showed in 1940 that 

the elements of such an algebra can be transformed into continuous functions on 

1The word classical has special meanings in mathematics. It is most often applied to a famous 

result that has been known for a long time, originally stated in the limited context of Euclidean space 

or real and complex variables, to contrast it with modern abstract generalizations of the theorem. More 

loosely, however, it is used to distinguish any concrete original result from its later more abstract forms. 
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a topological space called the maximal ideal space of the algebra. The Fourier 

transform can be considered a special case of this abstract GeFfand transform. 

19.1.2 Algebra 

One can trace a similar development in algebra, where abstraction and generaliza¬ 

tion began in the late nineteenth century with the creation of the concepts of ideals 

and fields. The study of equations, which had begun with symbols assumed to be 

representing complex numbers, could now be pursued with symbols representing 

elements of an arbitrary field. The theory of finite groups, created by Galois to 

decide whether equations could be solved by radicals, worked in this wider setting. 

The elements of a Galois group are permutations of the roots of an equation. What 

is essential in the study of the group, however, is its multiplication table; one need 

not know exactly which roots are mapped to which in order to analyze the group. 

Thus the modem concept of an abstract group arises, a structure whose elements 

are arbitrary on which a binary operation satisfying a few simple axioms is defined. 

By the early twentieth century a set of standard objects—groups, rings, fields, 

vector spaces, and others—made up the universe of algebra. What these objects 

had in common was that they were composed of elements that could be combined 

two at a time to produce new elements. Inevitably the abstract question arose: 

What kinds of properties can be proved about a collection of elements on which a 

collection of unspecified operations is defined, each of which combines a certain 

number of elements to produce a new element? The result of trying to answer 

questions like this is the contemporary subject known as universal algebra. 

In algebra also the attempt to give general structure theorems showing that 

an abstractly defined object can be built out of certain concrete specific parts is 

exemplified by one of the great triumphs of the twentieth century—the classification 

of all finite groups. From Galois theory came the concept of a solvable group— 

one having a finite nested sequence of normal subgroups (defined in Chapter 17) 

such that the “quotient groups” (the original groups with two elements regarded 

as identical if one can be obtained from the other by multiplying by an element of 

the subgroup) have a prime number of elements. The solvable group is built from 

these quotient groups in a natural way, and the structure of a group having a prime 

number of elements is completely understood. The major question of the century 

was whether every group having an odd number of elements is solvable. The 

affirmative answer to this question came in 1963 from John Thompson (b. 1932) 

and Walter Feit (b. 1930). After this giant leap, a number of smaller steps were 

required—to classify a small set of “sporadic” finite groups (computers were used 

for this work). The work is now finished and remains an impressive monument to 

the algebraists of this era. 

Category Theory 

The applications of algebra in geometry bring out certain strong analogies be¬ 

tween the two subjects. Topological spaces correspond to homology and homo- 
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topy groups, though the correspondence is not perfect. Continuous mappings of 

one space into another (that is, mappings that preserve the topological structure) 

correspond to homomorphisms of the associated groups (mappings that preserve 

the algebraic structure). If the topological space is a surface, it may have a tan¬ 

gent plane, which has the structure of a vector space. Then a mapping from one 

surface to another that is differentiable corresponds to its differential, which is a 

linear transformation of the corresponding tangent spaces. Such analogies led to a 

new subject of study: category theory, which arose in 1942 in the work of Saun¬ 

ders MacLane (1909-1995) and Samuel Eilenberg (b. 1913). In category theory 

the basic elements are sets of “objects” and mappings among the objects called 

“morphisms.” The objects may be vector spaces and the morphisms linear trans¬ 

formations, or the objects may be topological spaces and the morphisms continuous 

functions. All these particular objects are encompassed in the more general subject 
of category theory. 

19.1.3 Geometry 

Abstraction in geometry came from the generalization of surfaces in Euclidean 

space to imaginative constructs (called complexes) that may be physically unreal¬ 

izable. These imaginative constructs are formed from primitive elements (called 

simplexes or cells) such as triangles and tetrahedra by imposing rules for identify¬ 

ing points of different elements (gluing them together in the imagination). In this 

way such objects as the projective plane and the Klein bottle as well as a host of 

higher-dimensional objects could be studied with complete clarity. (It required the 

point-set topology of Hausdorff and others, however, to give a logically acceptable 

interpretation of this kind of gluing.) Since the simplexes or cells of the complex 

could be specified by merely writing down a finite sequence of symbols, alge¬ 

bra could be used to study the geometric properties of the complex objects. The 

inspiration for doing so came partly from complex analysis (Riemann surfaces), 

in which it was necessary to integrate over paths while avoiding certain singular 

points. The resulting abstraction formed the foundation of the theory of homology 

and homotopy in algebraic topology. Since the objects were glued together from 

pieces of Euclidean space, it became worthwhile to investigate the properties of an 

object having a topology (collection of open sets) in which each point is surrounded 

by an open set that has the same topological structure as a ball in Euclidean space. 

Such an object is called a manifold, and manifolds are now a major topic of study 

in geometry and a tool in analysis. 

Here also structure theorems play a role in showing that the abstract objects 

are not completely unknowable. The classical objects of study in geometry were 

surfaces in Euclidean space. A classification theorem, due to Hassler Whitney 

(1907-1989), asserts that a manifold of dimension rn can be regarded as a subset 

of Euclidean space of dimension 2mA-1. Thus any one-dimensional manifold can 

be imbedded in three-dimensional space (as is well known intuitively, since any 

conceivable curve can be actually realized in a physical model using thread). On 

the other hand, there are conceivable surfaces—the Klein bottle and the projective 
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plane, for example—for which no faithful physical model can be constructed. 

19.1.4 Probability 

One subject that became clearer as it became more abstract is probability theory. 

The question of what constitutes an event or a random variable was finally an¬ 

swered in the early twentieth century, thanks to the advances in integration theory 

described above. The notion of an abstract measure space turned out to provide 

the key. A space whose total measure equals 1 can be called a probability space. 

In applications the points of such a space can be the possible outcomes of an 

observation or experiment. Events are sets of such points for which probability is 

defined, that is, measurable sets, and a random variable is a simply a measurable 

function f(x). This interpretation of probability is essentially the one proposed by 

Andrei Nikolaevich Kolmogorov (1903-1987) in 1933. Probability is not simply 

subsumed in the theory of integration, however. It is concerned with special as¬ 

pects of random variables, such as independence and stochastic processes, which 

are not of concern in the general theory of integration. 

19.2 Foundations of Mathematics 

One area of mathematics affects all the others so strongly that it deserves a thorough 

discussion. That area is logic and set theory. 

This area arose from thinking not about mathematical problems, but about the 

nature of mathematics itself, in particular, the grounds on which mathematical re¬ 

sults are accepted or rejected by the community of mathematicians. Mathematics 

cannot produce an algorithm for solving every problem. Mathematics textbooks 

would be much poorer without theorems like the fundamental theorem of algebra, 

which asserts that for any polynomial p there exists a complex number z (what¬ 

ever exists means when applied to incorporeal objects like numbers) satisfying 

the equation p{z) = 0. Mathematicians tend to believe that certain statements 

are either true or false, even when they do not know which is the case. Such 

questions aroused debate around the beginning of the twentieth century, involving 

not only mathematicians, but also philosophers such as Alfred North Whitehead 

(1861-1947) and Bertrand Russell. 

19.2.1 The Progress of Set Theory, 1870-1900 

As we saw in Chapter 17, Georg Cantor had discovered ordinal numbers through 

the study of the derived sets of a set. In the 1880s he also discovered the definition 

of cardinal numbers through the concept of one-to-one correspondence. Galileo 

had noticed that large circles could be placed in such a correspondence with small 

circles. He thought this was merely a puzzle of the infinite. Cantor took it as the 

definition of infinite cardinality. Independently of Cantor other mathematicians 
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were also considering ways of deriving mathematics logically from simplest prin¬ 

ciples. Gottlob Frege (1848-1925), a professor in Jena, who occasionally lectured 

on logic, attempted to establish logic on the basis of “concepts” and “relations” 

to which were attached the labels true or false. He was the first to establish 

a complete predicate calculus, and wrote in 1884 a treatise called Grundgesetze 

der Arithmetik (Foundations of Arithmetic). Meanwhile in Italy, Giuseppe Peano 

(1858-1939) attempted (1889) to axiomatize the natural numbers. Peano took the 

successor relation as fundamental and based his construction of the natural num¬ 

bers on this one relation and nine axioms, together with a symbolic logic that 

he had developed. The work of Cantor, Frege, and Peano attracted the notice 

of a young student at Cambridge, Bertrand Russell, who had written his thesis 

on the philosophy of Leibniz. Russell saw in this work confirmation of a thesis 

that he advocated throughout the rest of a long life: that mathematics is merely a 

prolongation of formal logic. This view, that mathematics can be deduced from 

logic without any new axioms or rules of inference, is now called logicism. It 

encountered difficulties from its beginning, however, as we shall now see. Even 

the seemingly primitive notion of membership in a set turned out to require certain 

caveats. 

19.2.2 Paradoxes 

Cantor defined equality between cardinal numbers as the existence of a one-to-one 

correspondence between sets representing the cardinal numbers. A set B has larger 

cardinality than set A if there is no function / : A —> B that is “onto,” that is, such 

that every element of B is f(x) for some x G A. Cantor showed that the set of all 

subsets of A, which he denoted 2A, is always of larger cardinality than A, so that 

there can be no largest set. For if / : A —> 2A, the set C = {t G A : t ^ /(£)} is 

a subset of A, hence an element of 2A, and it cannot be f(x) for any x G A. For 

if C = f(x), we ask whether x G C or not. If x G C, then x G f(x) and so by 

definition of C, x ^ C. On the other hand, if x £ C, then x £ f(x), and again 

by definition of C, x G C. Since the whole paradox results from the assumption 

that C = f(x) for some x, it follows that no such x exists, that is, the mapping 

/ is not “onto.” This argument was at first disputed by Russell, who wrote in an 

essay entitled “Recent work in the philosophy of mathematics” (1901) that “the 

master has been guilty of a very subtle fallacy.” Russell thought there must clearly 

be a largest set, namely the set of all sets. What fallacy he thought Cantor had 

committed is not clear, since in a later reprint of the article he added a footnote 

explaining that Cantor was right. 

In fact, if we consider the set of all sets, as Russell had suggested, we must, 

by its very definition, believe it to be equal to the set of all its subsets. Therefore 

the mapping f(E) — E should have the property that Cantor says no mapping can 

have. Now if we apply Cantor’s argument to this mapping, we are led to consider 

S = {E : E ^ E}. By definition of the mapping / we should have f(S) = S, 

and so, just as in the case of Cantor’s argument, we ask if S G S. Either way, we 

are led to a contradiction. This result is known as Russell’s paradox. 
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19.2.3 The Debate over the Axiom of Choice 

The trend toward abstraction and generalization that we discussed above has meant 

that much of the action in a proof takes place “offstage.” That is, certain objects 

needed in the proof are shown to exist, but no procedure for constructing them 

is given. Proofs relying on the abstract existence of such objects, when it is not 

possible to choose a particular object and examine it, became more and more 

common in the twentieth century. Indeed much of measure theory, topology, and 

functional analysis would be impossible without such proofs. The principle behind 

these proofs later came to be known as Zermelo’s axiom, after Ernst Zermelo 

(1871-1953), who first formulated it in 1904 in order to prove that every set 

could be well ordered.2 It was also known as the principle of free choice (in 

German, Auswahlprinzip) or, more commonly in English, the axiom of choice. In 

its broadest form this axiom states that there exists a function / defined on the 

class of all nonempty sets such that f(A) e A for every nonempty set. (Intuitively, 

if A is nonempty, there exist elements of A, and f(A) chooses one such element 

from every nonempty set.) 

Zermelo made this axiom explicit and showed its connection with ordinal num¬ 

bers. The problem then was either to justify the axiom of choice, or to find a more 

intuitively acceptable substitute for it, or to find ways of doing without such “non- 

effective” concepts. 

A debate about this axiom took place in 1905 in the pages of the Comptes 

Rendus of the French Academy of Sciences, with arguments for and against it being 

contributed by a number of mathematicians and philosophers. The achievements 

and the program of the logicists were presented in a systematic work by Russell 

and Whitehead in 1910 entitled Principia Mathematica. 

19.2.4 Formalism 

A different view of the foundations of mathematics, known as formalism, was 

advanced by Hilbert, who was interested in the problem of axiomatization (the 

axiomatization of probability theory was the sixth of his famous 23 problems) and 

particularly interested in preserving as much as possible of the freedom to reason 

that Cantor had provided while avoiding the uncomfortable paradoxes of logicism. 

In the formalist view mathematics is the study of formal systems. This view 

involves a strict separation between the symbols and formulas of mathematics and 

the meaning attached to them, that is, a distinction between syntax and semantics. 

A given formal system consists of certain rules for recognizing legitimate formulas, 

certain formulas called axioms, and certain rules of inference (such as syllogism, 

generalization over unspecified variables, and the rules for manipulating equations). 

These rules make up the syntax of the language. One can therefore always tell by 

following clearly prescribed rules whether a formula is meaningful (well formed), 

and whether a sequence of formulas constitutes a valid deduction. To avoid infinity 

2 A set is well ordered if any two elements can be compared and every nonempty subset has a 
smallest element. The positive integers are well ordered. The positive real numbers are not. 
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in this system while preserving sufficient generality Hilbert resorted to a “finitistic” 

device called a schema. Certain basic formulas are declared to be legitimate 

by fiat. Then a few rules are adopted, such as the rule that if A and B are 

legitimate formulas, so is [A => B]. This way of prescribing legitimate (well- 

formed) formulas makes it possible to determine in a finite number of steps whether 

a formula is well formed or not. 

The formalist approach makes a distinction between statements of arithmetic 

and statements about arithmetic. For example, the assertion that there are no 

positive integers x, y, z such that x3 + y3 = z3 is a statement of arithmetic. 

The assertion that this statement can be derived from the axioms of arithmetic is 

a statement about arithmetic. The language in which statements are made about 

arithmetic, called the metalanguage, contains all the meaning to be assigned to the 

statements. In particular it becomes possible to distinguish clearly between what 

is true (that is, what can be known to be true from the metalanguage) and what 

is provable (what can be deduced within the object language). Two questions 

thus arise in the metalanguage: (1) Is every deducible proposition true? (the 

problem of consistency); (2) Is every true proposition deducible? (the problem of 

completeness). 

19.2.5 Intuitionism 

The most cautious approach to the foundations of mathematics, known as intuition¬ 

ism, was championed by the Dutch mathematician Luitzen Egbertus Jan Brouwer 

(1881-1966). In a series of articles published form 1918 to 1928 Brouwer laid 

down the principles of this school of mathematicians. These principles include 

the rejection not only of the axiom of choice, but also of proof by contradic¬ 

tion. Roughly speaking, intuitionists reject any proof whose implementation leaves 

choices to be made by the reader. Thus it is not enough in an intuitionist proof 

to say that objects of a certain kind exist. One must choose such an object and 

use it for the remainder of the proof. This extreme caution has rather drastic 

consequences. For example, the function f(x) defined in ordinary language as 

is not considered to be defined by the intuitionists, since there are ways of defining 

numbers x that do not make it possible to determine whether the number is negative 

or positive. [For example, is the number (—l)n, where n is the trillionth deci¬ 

mal digit of 7r, positive or negative?] This restrictedness has certain advantages, 

however. The objects that are acceptable to the intuitionists tend to have pleasant 

properties. For example, every rational-valued function of a rational variable is 

continuous. 
The intuitionist rejection of proof by contradiction needs to be looked at in 

more detail. Proof by contradiction was always used somewhat reluctantly, since 

such proofs seldom give insight into the structures being studied. For example, 

Euclid’s proof that there are infinitely many primes proceeds by assuming that the 
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set of prime numbers is a finite set P = {puP2, • • • YPh} and showing that in this 

case the number 1 4- Pi • • • pn must either itself be a prime number or be divisible 

by a prime different from pu... ,pn, which contradicts the original assumption 

that pi,... ,pn formed the entire set of prime numbers. 
The appearance of starting with a false assumption and deriving a contradiction 

can be avoided here by stating the theorem as follows: If there exists a set of n 

primes pi,... ppn, then there exists a set of n + 1 primes. The proof is exactly as 

before. Nevertheless, the proof is still not intuitionistically valid, since there is no 

way of saying whether 1 + pi • • • pn is prime or not. 

A purely intuitionist mathematics is obviously going to be somewhat sparser 

in results than mathematics constructed on more liberal principles. 

19.2.6 Clarification of the Difficulties 

The most influential figure in mathematical logic during the twentieth century 

was Kurt Gttdel (1906-1978). The problems connected with consistency and 

completeness of arithmetic, the axiom of choice, and many others all received a 

fully satisfying treatment at his hands that settled many old questions and opened 

up new areas of investigation. In 1931, he astounded the mathematical world 

by producing a proof along strictly finitistic Hilbertian lines that any consistent 

formal language in which arithmetic can be encoded is necessarily incomplete, that 

is, contains statements that are true according to its metalanguage but not deducible 

within the language itself. The intuitive idea behind the proof is a simple one, 

based on the self-destroying statement that follows: 

This statement cannot be proved. 

If one asks whether the statement just given is true, the answer must be positive 

if the system in which it is made is consistent. For if this statement is false, then 

it can be proved; and in a consistent deductive system, a false statement certainly 

cannot be proved. Flence we agree that the statement is true, but by its very nature 

it cannot be proved. 

The example just given is really nonsensical, since we have not carefully delin¬ 

eated the universe of axioms and rules of inference in which the statement is made. 

The word “proved” that it contains is not really defined. GOdel, however, took 

an accepted formalization of the axioms and rules of inference for arithmetic from 

Principia Mathematica and showed that the metalanguage of arithmetic could be 

encoded within arithmetic. In particular each formula can be numbered uniquely, 

and the statement that formula n is (or is not) deducible from those rules can itself 

be coded as a well-formed formula. Then, when n is chosen so that the statement, 

“Formula number n cannot be proved” happens to be formula n, we have exactly 

the situation just described. Godel showed that such an n can be constructed in 

ways that Hilbert would have accepted. Thus, if GOdel’s version of arithmetic is 

consistent, it contains statements that are formally undecidable, that is, true (based 

on the metalanguage) but not deducible. This is GOdel’s first incompleteness the¬ 

orem. His second incompleteness theorem is even more interesting: The assertion 

that arithmetic is consistent is one of the formally undecidable statements. Hence 
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if the formalized version of arithmetic that GOdel considered is consistent, it is 

incapable of proving itself so. It is doubtful, however, that one could truly formal¬ 

ize every kind of argument that a rational person might produce. For that reason, 

great care should be exercised in drawing inferences from GOdel’s work to the 

actual practice of mathematics. In fact, over the last decade Edward Nelson of 

Princeton University and others have shown how to reconstruct a good portion of 

mathematics within a set of rules for which a Unitary proof of consistency exists, 

and computer-implemented proof checkers have been written that can read a file 

written for the most popular mathematical typesetter (TgX,3 the language in which 

this book has been written) and verify proofs. 

19.2.7 The Aftereffects 

The axiom of choice is ubiquitous in modem analysis; almost none of functional 

analysis or point-set topology would remain if it were omitted entirely (although 

much weaker assumptions might suffice). It is fortunate, therefore, that its con¬ 

sistency and independence of the other axioms of set theory has been proved. 

However, the consequences of this axiom are suspiciously strong. In 1924 Alfred 

Tarski (1901-1983) and Stefan Banach deduced from it that any two sets A and B 

in ordinary three-dimensional Euclidean space, each of which contains some ball, 

can be decomposed into pairwise congruent subsets. This means, for example, that 

a cube the size of a grain of salt (set A) and a ball the size of the sun (set B) can 

be written as disjoint unions of sets A\,..., An and B\,..., Bn respectively such 

that Ai is congruent to Bt for each i. This result (the Banach-Tarski paradox) is 

very difficult to accept. It can be rationalized only by realizing that the notion of 

existence in mathematics has no metaphysical content. To say that the subsets Ai, 

Bi “exist” means only that a certain formal statement beginning 3 ... is deducible 

from the axioms of set theory. 

The paradoxes of naive set theory (such as Russell’s paradox) were found to 

be avoidable if the word class is used loosely, as Cantor had previously used the 

word set, but the word set is restricted to mean only a class that is a member of 

some other class. (Classes that are not sets are called proper classes.) Then in 

order to belong to a class A, a class B must not only fulfill the requirements of 

the definition of the class A, but must be known in advance to belong to some 

(possibly different) class. 

This approach avoids Russell’s paradox. The class C = {x : x £ x} is a 

class; its elements are those classes that belong to some class and are not elements 

of themselves. If we now ask the question that led to Russell’s paradox—Is 

C a member of itself?—we do not reach a contradiction. It is true that if we 

assume C E C, then we conclude that C £ C, so that this assumption is not 

tenable. However, the opposite assumption, that C £ C, is acceptable. It no 

longer leads to the conclusion that C E C. For an object x to belong to C, it 

no longer suffices thatyr ^ x; it must also be true that x E A for some class A, 

an assumption not made for the case when x is C. A complete set of axioms for 

3 See D. E. Knuth, A System for Technical Text (Am. Math. Soc., Providence, RI 1979). 
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set theory avoiding all known paradoxes was worked out by Paul Bemays (1888— 

1977) and Adolf Fraenkel (1891-1965). It forms part of the basic education 

of mathematicians today It is generally accepted because mathematics can be 

deduced from it. However, it is very far from what Cantor had hoped to create: 

a clear, concise, and therefore obviously consistent foundation for mathematics. 

The axioms of set theory are extremely complicated and nonintuitive, and far less 

obvious than many things deduced from them. Moreover their consistency is not 

only not obvious, it is even unprovable. In fact one textbook of set theory asserts 

of these axioms that, “Naturally no inconsistency has been found, and we have 

faith that the axioms are, in fact, consistent”! (Emphasis added.) 

So then, does the practice of mathematics require faith? Do mathematicians 

strain at a gnat (arithmetic) and swallow a camel (set theory)? No, common sense 

has not been entirely abandoned. Because of weird statements like the Banach- 

Tarski paradox, set theoreticians have developed substitutes for the axiom of choice 

that allow the deduction of most of the standard mathematical results for which 

the axiom of choice is used but avoid the paradoxical statements. The question 

is: to which philosophy of mathematics do mathematicians subscribe? The fact 

is that most mathematicians need not take any position on these metamathemati- 

cal questions in their professional work. A few actually do, working within the 

framework of intuitionism or a closely related school of constructivism. The ma¬ 

jority of research mathematicians, however, have been taught set theory with all its 

caveats and accept it informally as a basis for communication. Even across schools 

of thought, although mathematicians who accept different fundamental principles 

will naturally not agree that each other’s results are “valid,” they can certainly 

agree that these results do follow from the premises on which they are based. 

This pragmatic approach of most mathematicians is strikingly shown by the fact 

that the intuitionist Brouwer proved theorems in topology whose proofs are not 

intuitionistically valid. 

19.3 Professionalization 

Until the nineteenth century mathematics for the most part grew as a wild plant. 

Although the academies of science of some of the European countries nourished 

mathematical talent once it was exhibited, there were no mathematical societies 

dedicated to producing mathematicians and promoting their work. All this changed 

with the French Revolution and the founding of technical and normal schools to 

make education systematic. The effects of this change were momentous. The 

curriculum shifted its emphasis from classical learning to technology, and research 
and teaching became linked. 

19.3.1 Educational Institutions 

At the time of the French Revolution the old universities began to be supplemented 

by a system of specialized institutions of higher learning. The most famous of 
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these was the £cole Polytechnique, founded in 1795. A great deal of the content 

of modem textbooks of physics and mathematics was first worked out and set down 

in the lectures given at this institution. Admission to the £cole Polytechnique was a 

great honor, and only a few hundred of the brightest young scholars in France were 

accepted each year. This institution and several others founded during the time 

of the French Revolution, such as the £cole Normale Sup6rieure produced a large 

number of brilliant mathematicians during the nineteenth century. Some of their 

research was devoted to questions of practical importance, such as cartography and 

canal building, but basic research into theoretical questions also flourished. 

In Germany the unification of teaching and research proceeded from the other 

direction, as professors at reform-minded universities such as Gottingen (founded 

1737) began to undertake research along with their teaching. This model of de¬ 

velopment was present at the founding of the University of Berlin in 1809. 

This educational trend was duplicated elsewhere in the world. During his 

Italian campaign Napoleon founded the Scuola Normale Superiore in Pisa, which 

reopened in 1843 after a long hiatus. In Russia a university opened along with 

the Petersburg Academy of Sciences in 1726, and the University of Moscow was 

founded a generation later (1755) with the aim of producing qualified professionals. 

It was not until the nineteenth century, however, that the faculty in Moscow began 

to engage in research. The University of Stockholm opened in 1878 with aims 

similar to those of the institutions just named. In Japan an office of translations 

was opened in the Shogunate Observatory in 1811. It was renamed the Institute for 

the Investigation of Foreign Books in 1857, and became the home of a department 

of Occidental mathematics in 1863, taking on two Dutch faculty members in 1865. 

By 1869 only Western mathematics was being taught, and the teaching was being 

done by French and British teachers. 

19.3.2 Mathematical Societies 

Another illustration of the professionalization of mathematics was the founding of 

professional societies to supplement the activities of the mathematical sections in 

academies of sciences. The oldest of these is the Moscow Mathematical Society 

(founded in 1864). The London Mathematical Society was founded in 1866, the 

Japanese Mathematical Society in 1877. The American Mathematical Society 

(originally the New York Mathematical Society) was founded in 1888 and the 

Canadian Mathematical Society in 1945. 

19.3.3 Journals 

These educational institutions and professional societies also published their own 

research journals, such as the Journal de I’Ecole Polytechnique and the Journal 

de I’fccole Normale Sup&rieure, in which some members of the Paris Academy of 

Sciences chose to publish to avoid the delays associated with the official journal of 

the Academy. These journals contained some of the most profound research of the 

nineteenth century. Other nations soon emulated the French. The German Journal 
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fur die reine und angewandte Mathematik was founded by August Leopold Crelle 

(1780-1855) in 1826 (informally it is still called Crelle’s Journal); the Italian An- 

nali di scienze matematiche e fisiche appeared in 1850; the Moscow Mathematical 

Society began publishing the Matematicheskii Sbornik {Mathematical Collection) 

in 1866; the Swedish Acta Mathematica was founded in 1881. By the end of the 

nineteenth century there were mathematical research journals in every European 

country, in North America, and in Japan. The first American research journal, 

The American Journal of Mathematics was founded at Johns Hopkins University 

in 1881 with the British mathematician J.J. Sylvester as its principal editor, as¬ 

sisted by the American William Edward Story (1859-1936). The first issue of The 

Canadian Journal of Mathematics was dated 1949. 

19.4 Democratization 

In the seventeenth century the practice of mathematics in the West was confined to a 

few centers of high culture in Britain, France, Italy, Switzerland, and Germany, with 

only an isolated scholar making important contributions outside this area. Japan 

and China had excellent mathematicians and were beginning to take an interest 

in the mathematics being produced in the West. By the early nineteenth century 

this base had enlarged to include many countries on the periphery of Europe, such 

as Russia, Norway, and Hungary, as well as Canada and the United States. The 

achievements of the European mathematicians have been discussed in previous 

chapters, but this is an appropriate point to survey some of the development of 

mathematics in North America. 

19.4.1 North America 

Until the late nineteenth century most of the mathematics done in North America 

was purely practical, and to find examples of its practitioners we shall have to leave 

mathematics proper and delve into related areas. Commerce required a certain 

amount of mathematics and astronomy to meet the needs of navigation, and all 

the early American universities taught dialing (theory of the sundial), astronomy, 

and navigation. These subjects were standard, long-known mathematics, a great 

contrast to the rapid pace of innovation in Europe at this period. Nevertheless, to 

write the textbooks of navigation and calculate the tides a year in advance required 

some ability. It is remarkable that this knowledge was acquired by two Americans 

who were not given even the limited formal education that could be obtained at an 

American university. These two—Benjamin Banneker and Nathaniel Bowditch— 

are in some respects twins, and in other respects opposites. Both came from 

families of modest means, both had to struggle to make a living, and both eventually 

published works involving a knowledge of astronomy. Yet there was a difference 

between them, which made Banneker’s struggle incomparably more difficult than 

Bowditch’s; for Bowditch’s ancestors came from Europe and Banneker’s from 

Africa. 
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Benjamin Banneker (1731-1806) 

In the fall of 1791 the Baltimore publishing house of William Goddard and James 

Angell published a book bearing the title Banneker’s Almanac and Ephemeris for 

the Year of our Lord 1792... (see Fig. 19.1). The author was at the time about 60 

years old, the only child of parents of African descent4 who had left him a small 

parcel of land as an inheritance. For most of his life Banneker lived near Baltimore, 

struggling as a poor farmer with a rudimentary formal education. Nevertheless, he 

acquired a reputation for cleverness due to his skill in arithmetic. In middle age 

he made the acquaintance of the Ellicotts, a prominent local family, who lent him 

a few books on astronomy. From these meager materials Banneker was able to 

construct an almanac for the year 1791. Encouraged by this success, he prepared 

a similar almanac for 1792. In that year the Ellicotts put him in contact with 

James McHenry (who had been Surgeon General of the American Army during 

the Revolutionary War). McHenry wrote to the editors: 

... he began and finished [this almanac] without the least information 

or assistance from any person, or other books than those I have men¬ 

tioned; so that whatever merit is attached to his present performance 

is exclusively and peculiarly his own. 

Banneker’s Almanac was published and sold all over America in the decade 

from 1792 until 1802. The contents of the Almanac are comparable with those of 

other almanacs that have been published in America: on alternate pages one finds 

calendars for each week or month, giving the phases of the moon, the locations 

of the planets and bright stars visible during the period in question, and the times 

of sunrise, high and low tides, and conjunctions and oppositions of planets. Inter¬ 

spersed among these pages one finds poetry, inspirational essays, lists of roads in 

America, schedules of court sessions, and snatches of medical and financial advice. 

Thus compiling an almanac required not only mathematical talent, but also a good 

literary sense and knowledge of what interested the public. In Banneker’s Almanac 

for 1793, one finds, for example, a proposal for the establishment of a cabinet post, 

Secretary of Peace.5 There is also a long quotation from Thomas Jefferson on the 

evils of slavery. This first edition of the Almanac appeared during the George 

Washington’s term as President, when Jefferson was serving as Secretary of State. 

At this time, a controversy over the location of the capital of the United States had 

been settled by the decision to house it in a district separate from all the states. 

The first surveyor for the district was Andrew Ellicott, and Banneker was one of 

his assistants. 

Was there some intentional irony in Banneker’s quotation of Jefferson? In his 

Notes on Virginia Jefferson had expressed doubts as to the intellectual equality of 

the races, although he kept in mind the possibility that the differences he observed 

were due to social circumstances. As the first Almanac was being published, 

4Banneker’s grandmother was an Englishwoman who married one of her slaves. Their daughter 
Mary, Banneker’s mother, also married a slave, who had the foresight to purchase a farm jointly in his 
own name and in the name of his son Benjamin. 

5At the time what is now called the Department of Defense was known as the Department of War. 
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Banneker sent a copy to Jefferson, along with a letter containing an ardent plea 

that Jefferson would take cognizance of the state of African Americans. He very 

astutely quoted Jefferson’s own words from the Declaration of Independence: We 

hold these truths to be self-evident... . 

Jefferson had a plan for the gradual abolition of slavery, which eventually 

failed because of the importance of the cotton trade to the economy. On the day 

he received the Almanac he wrote to Banneker, thanking him for providing “such 

proofs as you exhibit” that the black race was endowed with intelligence equal to 

those of other races and assuring him that he wished more than anyone else for the 

amelioration of their condition. He wrote to the French mathematician/philosopher 

the Marquis de Condorcet (1743-1794) on the very same day, sending him the 

copy of the Almanac and pointing out the moral to be gleaned from it. 

Recognition came late to Banneker. The money he earned from his Almanac 

gave him some leisure in his old age, and his name was praised by Pitt in Parliament 

and by Condorcet before the French Academy of Sciences. Yet he was never elected 

to any scientific societies in America, despite having achieved considerable fame 

and having corresponded with well-known American scientists. 

Nathaniel Bowditch (1773-1838) 

Benjamin Banneker was about 40 years old and still living in obscurity near Balti¬ 

more when Nathaniel Bowditch was bom in Salem, Massachusetts. His ancestors 

had been shipbuilders, but had accumulated no substantial amount of money by 

this trade. His father abandoned it and became a cooper, a trade that barely pro¬ 

vided for his family of seven children. Nathaniel received only a rudimentary 

public education before being apprenticed to a ship chandler at the age of 10. 

Twelve years later, when Banneker’s Almanac had been published for only a year 

or two, he signed on board a ship and, like Banneker, used his few intervals of 

leisure to study mathematics and astronomy. Bowditch was a natural teacher who 

enthusiastically shared his knowledge of navigation with his shipmates. With his 

aptitude for mathematics, he managed to get through Newton’s Principia, learning 

a considerable amount of Latin on the way. Later he taught himself French, which 

was displacing Latin as the language of science as a result of the pre-eminence of 

French mathematicians and scientists. 

Bowditch first gained a scholarly reputation by pointing out errors in the stan¬ 

dard navigational tables. His abilities immediately attracted interest, and his Prac¬ 

tical Navigator, first published in 1800, gained him wide recognition while he was 

still in his 20s. Bowditch became a member of the American Academy of Arts 

and Letters, and in 1818 was elected a member of the Royal Society. 

With recognition came leisure time to devote to purely scholarly pursuits, a 

luxury denied to Banneker in his most vigorous years. For the last quarter-century 

of his life Bowditch labored on his monumental translation and commentary of the 

M&canique celeste by Laplace. This work amounts really to a complete rewriting 

of Laplace’s treatise, which shows the effects of a pronounced stinginess with ink 

and paper. Bowditch filled in all the missing details of arguments that Laplace 

had merely waved his hand at, not having the patience to write down arguments 
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that had sometimes taken him weeks to discover. These pursuits brought Bowditch 

international fame, and he died covered with honors. The American Journal of 

Science published his obituary with a portrait of him in a classical Roman tunic 

which it is unlikely he ever actually wore. 

North America Joins the European Intellectual World 

The end of the American Civil War in 1865 was followed closely by the founding 

of the Canadian Federation in 1867. The Federation was the result of the British 

North America Act, which reserved some constitutional controls for Britain. (Full 

independence came in 1982.) From that time on both countries experienced a 

remarkable cultural flowering, which included advances in mathematics. Ameri¬ 

cans and Canadians began to go to Europe to leam advanced mathematics. This 

early generation of European-trained mathematicians generally found no incen¬ 

tive to continue research upon returning home. However, they at least made the 

curriculum more sophisticated and prepared the way for the next generation. 

The United States. In Europe there were more Ph.D. mathematicians being pro¬ 

duced than the universities could absorb. Most of these entered other professions, 

but a few emigrated across the Atlantic. A scholarly coup was scored by Johns 

Hopkins University, which opened in 1876 with a first-rate mathematician on 

board, namely James Joseph Sylvester. Despite being 63 years old, Sylvester was 

still a creative algebraist, whose presence in America attracted international atten¬ 

tion. One of his first acts was to found the first American mathematical research 

journal, the American Journal of Mathematics. The founding of this journal had 

been suggested by William Edward Story, one of the many Americans who went 

abroad to get the Ph.D. degree, but atypicaliy continued to do mathematical re¬ 

search after returning to America. Before Johns Hopkins was founded, there had 

been a few graduate programs in mathematics in places such as Harvard and the 

University of Michigan, but now such programs began to multiply. Bryn Mawr 

College opened in the mid-1880s with a graduate program in mathematics. The 

founding of Clark University in Worcester, Massachusetts and the University of 

Chicago in the late 1880s and early 1890s promised that America would soon begin 

to make respectable contributions to mathematical research, and this promise was 

largely fulfilled by the 1920s with a large number of talented Americans achieving 

recognition in Europe. America’s present position as the world leader in mathe¬ 

matics, however, was largely the result of the turbulence of the 1930s and 1940s, 

which drove many of the best European intellectuals to seek refuge far from the 

dangers that threatened them in their homelands. 

Canada. Like American schools of the same period, English-language Canadian 

institutions of higher learning tended to rely on British textbooks such as those of 

Charles Hutton (1737-1823, a professor at the Miltary School in Woolwich). In 

French Canada there was a somewhat longer tradition of educational institutions, 

and a French calculus text written by Abb6 Jean Langevin was published in 1847. 

For Canadians, as for Americans, the importance of research as an activity of the 

mathematics professor arose only after the founding of Johns Hopkins University 
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Figure 19.1: Title page of Benjamin Banneker’s Almanac. The Bettmann Archive. 
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in 1876. In fact the early volumes of the American Journal of Mathematics contain 

several articles by two Canadians, J. G. Glashan (1844-1932), superintendent of 

schools in Ottawa, and G. Paxton Young (1818-1889), a professor of philosophy 

at the University of Toronto. Because of the close proximity of the two countries 

in geography and similar speech patterns, the many Canadian mathematicians who 

come to work in American universities and corporations are routinely mistaken 

for Americans. Canada has faced the same problems as the United States in 

establishing a basis for scientific research; but in addition, the wealth of the United 

States has acted to draw off a number of talented Canadians and to discourage the 

duplication of their activity in Canada.6 An example of this phenomenon is Simon 

Newcomb (1835-1909), a native of Nova Scotia who taught school in a number 

of places in the United States before procuring a job at the Nautical Almanac 

Office in Cambridge, Massachusetts, where he attended Harvard. He eventually 

became Director of the Naval Observatory in Washington, and after 1884 Professor 

of Mathematics at Johns Hopkins. 

Two Canadian mathematicians deserve special mention. The geometer H.S.M. 

Coxeter, a native of Britain, emigrated to Canada in 1936 and has played a leading 

role in Canadian research in symmetry groups and symmetric geometric objects 

of all kinds. John Charles Fields (1863-1932), a native of Hamilton, Ontario, 

received the Ph.D. from Johns Hopkins in 1887 and studied in Europe during the 

1890s. In 1902 he became a professor at the University of Toronto. He wrote one 

book (on algebraic functions). Like many other mathematicians on the intellectual 

periphery of Europe, much of his activity was devoted to encouraging research in 

his native country. In the last few years of his life he established the Fields medals, 

the highest international recognition for mathematicians, which are awarded at the 

quadrennial International Congress of Mathematicians. Beginning in 1936, when 

two awards were given, then resuming in 1950, the Fields Medals have by tradition 

been awarded to researchers early in their careers. To date 36 mathematicians have 

been so honored, among them natives of China, Japan, New Zealand, the former 

Soviet Union, many European countries, and the United States. 

19.4.2 Asia and Africa, and American Minorities 

In these last few chapters we have concentrated on Europe and America. Yet in 

the twentieth century no one is surprised to find names like Hua, Yoshida, and 

Harish-Chandra, among the world mathematical leaders. The nations of Asia have 

assumed a prominent role in mathematical research. Within America also there 

is an increasing diversity of scholars. According to the Notices of the American 

Mathematical Society of December 1994, 30 of the 469 Americans who received 

the Ph.D. degree in mathematics during the 1993-94 academic year were Asian- 

Americans; this figure amounts to more than 6%, from a group that constitutes only 

6An exception to this general rule is the history of mathematics, which enjoys relatively more 

institutional support in Canada than in the United States. The study of the history of mathematics in 

Canada received an impetus from Kenneth May (1915-1977), who left the United States during the 

1950s. 
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3% of the population. For non-U. S. citizens receiving the Ph.D. degree in Ameri¬ 

can universities the proportion of Asians was even more impressive, amounting to 

329 of 590, or more than 50%. 

The peoples of Africa, who have no long history of scientific activity and 

are struggling to industrialize and create nations at the same time, have achieved 

less. Yet there has been progress in Africa also. The immediate problem facing 

African mathematical educators after their nations achieved independence was to 

train a generation of mathematical teachers and create suitable textbooks. In former 

French colonies, for example, most of the teachers had been European French, and 

mathematical textbooks used problems that took for granted French institutions 

and geography. In replacing French texts by those in local languages, even wider 

cultural gulfs had to be bridged. For example, counting in the indigenous languages 

of Senegal was based on 5 rather than 10. 

The first mathematical journal in Africa, called Afrika Mathematica, was 

founded in 1978. In the 1980s the Nigerian Mathematical Journal was founded, 

and in September 1988 the first international symposium of the African Mathe¬ 

matical Union (founded in 1975) was held in Arush, Tanzania. 

African-Americans also are making progress in overcoming the effects of dis¬ 

crimination. The first African-American to obtain a doctorate in mathematics was 

Elbert Cox (1895-1969), who became a professor at Howard University after ob¬ 

taining the doctorate. The first African-American women to receive the doctorate 

in mathematics (both in 1949) were Marjorie Lee Brown (1914-1979) and Evelyn 

Boyd Granville (b. 1924). Brown was a differential topologist who received her 

degree at the University of Michigan and taught at North Carolina Central Univer¬ 

sity. Granville received the Ph.D. from Yale University and worked in the space 

program during the 1960s. She later taught at California State University in Los 

Angeles. 

Although these early examples are inspiring, the number of African-Americans 

choosing to enter mathematics and science is still comparatively small. In fact the 

author of an article entitled “Black Women Ph.D.’s in Mathematics” in the 1980s 

was able to interview all of the people described in the title who were still alive. A 

career in research, after all, requires a long apprenticeship, during which financial 

support must be provided either by family, by extra work, or by grants and loans. 

For people who do not come from wealthy families, other careers, promising earlier 

financial rewards, are likely to seem more attractive. Undoubtedly if the average 

income of African-Americans were higher, more of them would choose scientific 

careers. 

19.4.3 Women Mathematicians 

The democratization of mathematics has taken a very long time to reach women. 

Maria Gaetana Agnesi, who was mentioned in a previous chapter, attained an 

appointment as professor at the University of Bologna; but for reasons that cannot 

be known with certainty, her mathematical research declined and she began to 

engage more and more in charitable work. She left the University after only 
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two years. The situation in France was similar. Despite his efforts at popular 

education, Napoleon was a believer in male dominance (his expressed opinions on 

the rights of women were retrograde in the extreme). As a result Sophie Germain 

(1776-1831) was forced to study and practice mathematics as an outsider. Her 

talent eventually won her a prize from the Paris Academy of Sciences and high 

praise from the Gauss, the greatest mathematician of the nineteenth century. The 

“public” routes to the world of scholarship—the educational institutions—were not 

available to women in northern Europe, so that only a few leisured women such as 

the Marquise du Ch&telet, Augusta Ada Lovelace, mentioned in a previous chapter, 

and Mary Fairfax Somerville (1780-1872, the author of textbooks of astronomy) 

were able to pursue mathematical interests. In Britain, for example, women were 

not allowed to receive degrees at Cambridge until 1948. Yet one woman, Charlotte 

Angas Scott (1858-1931), was allowed to take the Tripos examination for the 

degree at Cambridge in 1880. She ranked eighth in the entire University and was 

wildly cheered by her classmates, even though the rules forbade reading her name 

at the graduation ceremony. Five years later she received the doctorate from the 

University of London. Unable to find a position in Britain, she came to America 

and took up a post at Bryn Mawr College. 

The greatest of the nineteenth-century women, Sofya Vasil’evna Kovalevskaya, 

advanced very far in this male world through her own powerful energy and the 

support of reform-minded mathematicians. Despite never having been allowed 

to enroll in a university mathematics course, Kovalevskaya obtained the Ph.D. 

degree from Gottingen University in 1874, at the age of 24. (She had done her 

work privately with Weierstrass in Berlin, but Weierstrass knew that it would 

be pointless to ask the conservative University of Berlin to grant her a degree.) 

Kovalevskaya published two papers of fundamental importance which are still 

remembered a century later, attained a regular faculty position at the University of 

Stockholm, and won a prize competition at the Paris Academy of Sciences. These 

achievements would be remarkable under any circumstances. When set against the 

brevity of her life (she died just after her 41st birthday) and the discouragement 

she met at every stage of her career from her family and from every institution of 

society, they are awe-inspiring. 

Despite Kovalevskaya’s pioneering achievements, 50 years later the mathemat¬ 

ical genius Emmy Noether (1882-1935) was unable to obtain at Gottingen the 

place her talents deserved, even with the enthusiastic support of Felix Klein and 

David Hilbert, two of the greatest mathematicians in the world. Noether spent the 

first 40 years of her life obtaining the position that she would easily have reached 

in her 20s if she had been a man of comparable talent. Like Kovalevskaya, her 

life at the top was tragically brief. She had barely reached the age of 50 when the 

Nazis took power, and because she was Jewish, she had to emigrate. Unlike the 

toprank male mathematicians who came to America, she was not offered a position 

at the universities that were the major centers of mathematical research (many of 

these universities were open only to men until the 1960s). She found, however, a 

good position at Bryn Mawr College, which she occupied for the one year of life 

remaining to her. 

One of the most versatile mathematicians of the century was Olga Taussky-Todd 



456 CHAPTER 19. CONTEMPORARY MATHEMATICS 

(1906-1995), who worked first in algebraic number theory (class-field theory) and 

later in boundary-value problems for hyperbolic differential equations, numerical 

analysis, and the stability theory of matrices. A close contemporary of Emmy 

Noether, she also worked at Gottingen in the early 1930s, as well as in Vienna 

and came to Bryn Mawr at the same time as Noether (1934). Then, after a few 

years spent in Britain, she returned to America to work at the National Bureau of 

Standards. She later became professor at the California Institute of Technology, 

retiring in 1977. 
In the twentieth century there have been dozens of outstanding women mathe¬ 

matical researchers. A number of them came from the Soviet Union—women such 

as Ol’ga Aleksandrovna Ladyzhenskaya (b. 1922) and Ol’ga Arsenevna Oleinik (b. 

1925), both of whom have made first-rate contributions to the theory of differential 

equations; Luzin numbered several talented women among his students. Two of 

them were Nina Karlovna Bari (1901-1961), who was the first to discover that the 

uniqueness properties of certain sets relative to trigonometric series can be formu¬ 

lated in terms of their number-theoretic properties, and Lyudmila Vsevolodovna 

Keldysh (1904-1976), who gave profound analyses of the hierarchy of Borel sets. 

In America many of the best graduate schools were all-male until the 1960s. 

Despite the lack of encouragement, and even in the face of outright discouragement, 

some American women did manage to obtain the doctorate and find teaching 

positions in universities. One of the most outstanding of these was Julia Bowman 

Robinson (1919-1985), the first woman mathematician elected to the National 

Academy of Sciences. After great hardships in childhood and early adulthood, she 

began to study mathematics in the late 1940s and completed a doctoral dissertation 

with Alfred Tarski at the University of California in 1948. She contributed crucial 

steps to the solution of Hilbert’s tenth problem: Find, if possible, an algorithm 

for determining whether a Diophantine equation is solvable. 

These few examples by no means give a fair picture of women’s contributions 

to twentieth-century mathematics. The vast extent and complexity of twentieth- 

century mathematics make it impossible to summarize, and the contributions of 

women have mostly fallen within this century. Fortunately there are now special¬ 

ized studies devoted to the topic of women in mathematics. 

19.5 Mathematics and Society 

Until the Renaissance mathematicians and scientists in general had been self- 

motivated and self-supporting individuals. During the Renaissance and Enlighten¬ 

ment, for the sake of prestige and a monopoly of scientific discoveries, monarchs 

supported scholars through academies of science and universities. In Europe and 

Canada such support survived the transition to democracy, but in America most 

research was carried on at private or state-funded universities. The Federal Govern¬ 

ment did not begin supporting universities until the midtwentieth century (indeed 

there were no constitutional grounds for the government to do so); and in con¬ 

trast to Europe, members of the American Academy of Sciences do not receive a 

salary for their work (they retain their occupations in whatever industry, business, 
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or university they are employed). In the present era, however, a large portion of 

mathematical research is supported by the government, either through direct grants 

to researchers from agencies such as the Department of Education or the National 

Science Foundation, or indirectly, by paying the tuition of graduate students, which 

is then used to pay salaries to professors, part of whose obligations is research. 

The wisdom and the effects of this system are matters that a responsible citizen of 

a democracy must attempt to judge in order to help set policies for the extent of 

such support. 

To fill out the history of twentieth-century mathematics, we shall examine 

some aspects of the relation of mathematics and government in the Soviet Union, 

Nazi Germany, and America, to see what dangers and opportunities there are in 

cooperation between scholars and government. 

19.5.1 The Soviet Union 

After the October Revolution of 1917 the Communist Party enacted a series of 

measures to shore up its support among the people who had previously been at the 

bottom of the socioeconomic ladder. In particular, it opened up the universities to 

all young people except certain proscribed groups (such as the former nobility and 

the tsarist police). 

The Attack on the Moscow Mathematical Society 

The Academy of Sciences retained its independence somewhat longer than the uni¬ 

versities, partly because the education of a new generation of intellectuals had to 

begin with the universities. These new intellectuals would move into the Academy 

only later. When the attack came, however, mathematicians suffered as much as re¬ 

searchers in other areas of science. The first indirect attacks on the Academy came 

through the Moscow Mathematical Society, and the first to suffer was the Presi¬ 

dent of the Society D. F. Egorov (1869-1931). He was forced to resign one of his 

committee responsibilities at the University of Moscow and in 1929 was dismissed 

as director of the Institute for Mechanics and Mathematics at the University. As 

political power shifted to those loyal to the Party, Egorov came under attack from 

Communist students. In December 1929 he was formally censured at a meeting of 

graduate students, who pledged themselves to take up antireligious work. (Egorov 

was a prominent member of the Russian Orthodox Church.) The following year 

he came under attack at a University council meeting from the militant Czech 

Marxist Arnost Kolman (1892-1979). Kolman accused Egorov of vrediteTstvo, 

a word that literally means damaging and denotes activity somewhere between 

obstruction and outright sabotage. It is usually translated as wrecking. Egorov, not 

at all intimidated, replied that “true wrecking is nothing other than the imposition 

of a standard worldview on scientists,” a very accurate jab at Marxist orthodoxy. 

Kolman was incensed that the moderator of the meeting cut off the argument at 

this point. In the end Egorov was arrested and sentenced to a labor camp. While 

being transported to serve his sentence, he deliberately starved himself to death. 
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The official Soviet view of this affair was summed up in the biography of 

Egorov that appeared in the first Large Soviet Encyclopedia. The editor of the 

Encyclopedia was another mathematician, Otto Yulevich Shmidt (1891-1956), an 

algebraist of some distinction. As an important functionary in the Soviet estab¬ 

lishment, he found it prudent to get as far away from Stalin as possible, and so he 

headed several Arctic expeditions in the late 1930s. In the encyclopedia Egorov is 

described as follows: 

... author of works on analysis, number theory and other areas, not 

containing, however, any significant scholarly discoveries. Promi¬ 

nent representative of the reactionary (idealist) Moscow mathematical 

school. Actively struggled against the measures of the Soviet regime 

for reorganization of higher education and scientific institutes. After 

the exposure of a “Egorov conspiracy” he was removed from his post 

as director of the Institute of Mathematics and Mechanics and in 1930 

excluded from membership in the Moscow Mathematical Society. 

Unpleasant as these words are, one cannot accuse the author of lying. The judgment 

of Egorov’s works is harsh, but not unreasonable—he was not a world leader in 

mathematics. The existence of a Egorov conspiracy is a strained interpretation of 

his opposition to the regime, but opposed he certainly was. Only by silence does 

this article lie, saying nothing about the arrest and death of Egorov. 

This article is worth comparing with the post-Stalinist Brezhnev-era article 

on Egorov, which appeared in the 1972 edition of the Encyclopedia, especially 

since a great many intellectuals in the West were inclined to think the best of the 

post-Stalinist leaders. The new, rehabilitated Egorov, appeared as follows: 

Soviet mathematician, corresponding member of the Academy of Sci¬ 

ences of the USSR (1924), honorary member of the Academy of 

Sciences of the USSR (1929). Graduated from the University of 

Moscow (1891), professor of the University after 1903, President of 

the Moscow Mathematical Society (1922-1931) [emphasis added]. 

The article then goes on to depict in glowing terms the worldwide importance 

of Egorov’s contributions to differential geometry, integral equations, calculus of 

variations, and functions of a real variable. Thus a victim of the regime is pictured 

as one of the shining stars of Soviet science and, by implication, its loyal servant. 

In the last sentence a deliberate lie is told to cover up the brutal treatment he was 

accorded. 

The Luzin Affair 

Egorov’s student Luzin apparently did not take Kolman seriously, and this judg¬ 

ment cost him dearly. For Luzin was compromised. As a student he had made the 

friendship of Pavel Aleksandrovich Florenskii (1882-1937), a brilliant mathemati¬ 

cian, physicist, and philosopher. Florenskii wrote his dissertation on “The Idea of 

Discontinuity as an Element of a Worldview.” Despite the philosophical-sounding 
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title, the first part of the dissertation concerns singularities of algebraic curves. He 

never published it, however. Before he could begin his scientific career, religion 

won a complete victory in him, and he became a priest, though he continued to 

do scientific work. Kolman launched a vicious attack on him in 1933, and in 

that same year Florenskii was arrested and sentenced to 10 years at hard labor. 

Florenskii was a brave man who had been arrested by the Tsar’s police in 1906 for 

protesting the execution of the leaders of the 1905 revolt. Stalin’s interrogators, 

however, used methods of persuasion that civilized people would find difficult to 

believe (some of them are described in Solzhenitsyn’s Gulag Archipelago). As 

their victims were chosen for capricious and arbitrary reasons, there was seldom 

any case against them that would withstand rational scrutiny. The only way to pro¬ 

ceed with an appearance of legality (which was important to maintain the image 

of the regime for external propaganda) was to procure a confession. Under torture 

Florenskii confessed to being the leader of a Fascist organization called the Party 

of the Rebirth of Russia, which allegedly aimed at securing a German occupation 

of Russia. The plot that Florenskii described in his confession was to conclude 

a union between the Orthodox Church and the Roman Catholic Church through 

a certain German Jesuit representing the Pope. This preposterous fiction required 

that certain professors be implicated, and Florenskii was induced to name Luzin 

as one of them. 

Had Luzin been a typical obscure Soviet citizen, this betrayal would have sealed 

his fate. Luzin, however, was an acknowledged world leader in mathematics and 

had many intellectual friends in France and Germany. The authorities did not wish 

to arrest him without any evidence of wrongdoing, and the case against him was 

too far-fetched to be publicized. They therefore took a different approach. For 

some time Luzin was left alone. Then in 1936 he was “set up.” He was invited to 

a Moscow high school to observe the mathematics instruction and asked to write 

his observations in Izvestiya on June 27. All his life Luzin was a timid and polite 

man, incapable of any harsh criticism of students. He wrote a complimentary 

piece, called “A Pleasant Disillusionment,” explaining that he had expected the 

usual incompetence in mathematics that is rampant in high schools and had been 

pleasantly surprised to find the level of achievement much higher than he had 

believed. In so doing he fell into a carefully prepared trap. 

On July 2 the principal of the school wrote a “Response to Academician Luzin” 

in Pravda, in which he stated that Luzin had apparently forgotten that he was in a 

Soviet school and that he was expected to provide constructive criticism. Luzin’s 

polite words were made to seem like a sinister attempt to sabotage the school in 

its efforts to improve. The whole course of events had obviously been planned in 

advance. The following day Pravda ran an article with the title “Enemies mas¬ 

querading as Soviets,” which accused Luzin of a long history of abuses, especially 

being insufficiently critical of the works of other mathematicians, publishing his 

best works abroad (his treatise on analytic sets had been published in French in 

Paris and was financed by the Rockefeller Foundation), idealizing the West, and 

plagiarizing the results of his students. Although this article was unsigned and 

Kolman later denied having anything to do with it, he is the most likely author. 

Pravda continued to print articles denouncing Luzin for 2 weeks. In insti- 
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tutes all over Moscow emergency meetings were held to label him an enemy of 

the state. His first accuser at the University of Moscow was Sofya Aleksan¬ 

drovna Yanovskaya (1896—1966), a logician and a dedicated Marxist. Her de¬ 

nunciations were echoed by Luzin’s students Aleksandrov (1896—1982) and Kol¬ 

mogorov. Within a week the Academy of Sciences had no choice but to inves¬ 

tigate the matter. On July 7 a special commission was set up by the Presidium 

of the Academy. Luzin’s most vicious attackers were his student Aleksandrov, 

the algebraist Shmidt, and the analyst Sergei L’vovich Sobolev (1908-1989). De¬ 

spite the danger to themselves, two mathematicians—Sergei Natanovich Bemshtein 

(1880-1968) and Aleksei Nikolaevich Krylov (1879-1955)—defended Luzin, as 

did Academician Petr Kapitsa (1893-1984), a man whose courageous resistance to 

the Soviet regime was to be demonstrated on many occasions. Luzin also received 

support from abroad, especially from prominent French mathematicians, and this 

support may have influenced the outcome of the affair. 

It seemed that Luzin was doomed, yet by some mysterious deus ex machina 

never explained,7 the campaign against him abruptly stopped on July 13. The 

Presidium decided to reprimand him, and the case was closed. Luzin broke with 

all of his former students except two, Lyudmila Vsevolodovna Keldysh and Nina 

Karlovna Bari. He never forgave Aleksandrov and managed to block his election 

to full membership in the Academy of Sciences. (Aleksandrov was elected only 

after Luzin died in 1950.) 

Why Did Soviet Mathematics Flourish? 

It is a curious fact that the practical, applied focus of the Soviet regime and its tight 

control of the universities did not lead to the extinction of pure mathematics in the 

Soviet Union. In fact quite the opposite was the case. Despite clear evidence of 

discrimination against Jewish mathematicians during the Brezhnev era, the Soviet 

Union produced a large portion of the top mathematicians in the world for more 

than 50 years. In the halls of the Main Building at the University of Moscow there 

hangs a picture of the “Luzin tree,” a sort of genealogy of the students and “grand- 

students” of Luzin. The students of Luzin and their students played a prominent 

role in many important areas of mathematics. Of course there were many other 

outstanding mathematicians in Moscow not directly connected with Luzin. When 

these people are added to the Leningrad mathematicians and the mathematicians 

in other Soviet cities, the total amount of mathematical talent is prodigious. 

Part of the explanation for this flourishing of “useless” pure mathematics may 

lie in the nature of Marxist ideology, with its tendency to see the dialectic at 

work in every aspect of the universe, including pure thought.8 Undoubtedly also 

the regime expected to make some gains in engineering and productivity through 

7 In a recent article, Charles Ford and Sergei Demidov, hypothesize that the charge of spying for the 
Germans was inconsistent with Stalin’s ambition to form an alliance with Hitler. 

8In an earlier attack on Luzin at a 1931 conference in London, for example, Kolman claimed to have 
found a Marxian contradiction in Luzin’s space of irrational numbers, which combined the discrete 
and the continuous. 
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mathematical advances, but in any case a brilliant constellation of scholars is good 

for both internal and external propaganda. 

19.5.2 Mathematics in Nazi Germany 

Of the two major totalitarian societies of the twentieth century, both based on 

dogmatically held theories, the Communist regime was the more rational, and 

hence sustained itself the longer in the face of internal and external opposition and 

the increasingly obvious incompatibility of its basic principles with reality. Its most 

irrational aspect was the arbitrary terror used to impose wasteful and ineffective 

methods of production on the populace. What it held as its goals—prosperity and 

freedom for all—would not have been rejected by anyone; the only question is 

whether those goals are achievable and if so, by what methods. The Nazi regime, 

in contrast, was as near to insanity as any civilized society is likely to get. It 

was based on demonstrably absurd theories of race, for which the foundation of 

belief was envy and hatred. For that reason it had almost no support outside its 

homeland, and failed in a few years by provoking a war. The two regimes certainly 

resembled each other in their organization of brutality and oppression on a mass 

scale, and only in this macabre aspect was the Nazi regime more “rational.” It 

sought prosperity (not freedom) only for “Aryans” and attempted the destruction of 

non-Aryans; while the Soviet regime, claiming to seek prosperity for the proletariat 

and peasantry, pursued this aim by sending millions of proletarians and peasants 

to perish in labor camps. 

The German Universities 

The German universities rose to prominence during the nineteenth century, catching 

up in most respects with those in France. This blossoming of German culture 

coincided with the unification of the German confederacy under Bismarck. The 

German universities differed from those in Britain in being oriented toward research 

while those in Britain aimed at educating leaders for public service. (These are, 

of course, only general characteristics; in fact, both activities were present in both 

countries.) American universities in the early years followed the British model, 

but increasingly after the Civil War they patterned themselves on the German 

universities. German scholarship was widely admired, and by the end of the 

nineteenth century there was hardly any area of learning in which German scholars 

had not produced a definitive treatise. This period of German cultural upsurge was 

accompanied by several trends that led in different directions, and it was not clear 

at first what their combined effect would be. 

1. Enlargement of the professoriate. Just as Louis XIV had effectively made 

it impossible for Protestants to live in France in the seventeenth century, 

Catholics suffered civil disabilities in Britain until 1830 and somewhat longer 

in Germany. The position of Jews had been precarious in all European coun¬ 

tries for centuries. They had been expelled from England in the thirteenth 
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century and from Spain at the end of the fifteenth century. In the progres¬ 

sive nineteenth century there seemed reason to believe that these ancient 

prejudices were coming to an end. Particularly in the area of scholarship an 

ideal of universal humanity was widely felt. Jacobi was the first prominent 

Jewish professor in Germany and Weierstrass the first Catholic. In terms of 

its recognition of talent, one would believe that Germany in the nineteenth 

century was at least as tolerant of Jews as any other country in Europe. 

There was some awkwardness on a social level, but rarely does one read 

any outright antisemitism in the letters of the mathematicians of the time. 

In a letter to Gbsta Mittag-Leffler (1846-1927) written June 1, 1884 Sofya 

Kovalevskaya mentions that a certain young mathematician named Meyer 

Hamburger (1838-1909) is a Jew. She notes that he has very little contact 

with other mathematicians, “mostly because he dresses so badly.” This com¬ 

ment is revealing, showing that the social code was more concerned with 

manners than with ethnicity. Nevertheless, in his letters to Kovalevskaya 

Weierstrass made generalizations about Jewish mathematicians (his enemy 

Kronecker in particular) that border on prejudice. 

2. Nationalism. In order to unify the many German principalities into a single 

state Bismarck had to stimulate pride in identity as a German rather than 

a Bavarian or a Hessian or a Prussian. This kind of national pride, rein¬ 

forced by romantic philosophies, acted as a barrier to the encouragement of 

more universal human values. German patriotism found a seductive artis¬ 

tic expression in some of the operas of Richard Wagner, who was fiercely 

antisemitic. During World War I some patriotic German professors, among 

them Felix Klein, attempted to gain support for the German position among 

the world’s intellectuals. Most of the latter, however, belonged to one of the 

belligerent countries, and so the effort was ineffective. 

3. Technical focus. The German emphasis on research and the outstanding 

achievements of German scholars led to an overemphasis on merely tech¬ 

nical competence and an exaggerated confidence in the applicability of the 

methods of physical science. Attempts to analyze human society by regard¬ 

ing people as members of groups are useful only to the extent that they 

make it possible to understand individuals better. When the groups, which 

are merely ideal creations, come to be treated as the basic elements of so¬ 

ciety, the results are sometimes unpleasant. In fact the social sciences were 

relatively neglected in the German universities. Moreover Germany was not 

advancing toward democracy, as Britain was. Politics was not of interest to 

most German students since they were not planning to participate in a po¬ 

litical process. The attempt at a democratic revolution in Germany in 1848 

had failed because of lack of organization on the part of the democrats. 

Victims of the Nazis 

Hitler had very little interest in science, though he was fascinated by technology. 

He wanted education to be aimed at producing disciplined, self-sacrificing servants 
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of the State. For this end the most important subject was history, naturally a 

history dominated by the Nazi ideology and made up of tendentiously selected facts. 

Hitler’s program had been foreshadowed in Mein Kampf and some intellectuals 

were already planning to flee or resist when he came to power in 1933. Albert 

Einstein, the most prominent Jewish scientist in Germany, came under attack in the 

Nazi press immediately. Being in America when Hitler came to power, Einstein 

resigned from the Prussian Academy of Sciences and refused to return to Germany. 

He went instead to Belgium and waited to see what would happen in Germany. 

He soon found that his property in Germany had been confiscated and that there 

was a price on his head. 

The Nazis were not long in starting to rid Germany of “foreign” influences. 

The Law for the Restoration of the Career Civil Service was passed in April 1933, 

just 2 months after Hitler came to power. Since instructors at institutions of higher 

learning were considered civil servants, this law affected the universities. The basic 

purpose of the law was to rid the civil service of Communists and “non-Aryans.” 

Exceptions were allowed, insisted on by President Hindenburg, for non-Aryans 

whose appointments began before the war, or who had served in the war, or who 

had lost a father or son during the war. The definition of the term “non-Aryan” 

was at first rather vague. Since the law was primarily aimed at Jews, a person 

was said to be Jewish who had a parent or grandparent who practiced the Jewish 

religion. 

Since very few German professors were committed to political action, the main 

effect of this law was to prevent Jewish professors from teaching. In carrying out 

this policy the Nazis had strong support from students, who were organized by 

the Nazis into the German Students’ Association. A racial purification campaign 

began in April 1933 and reached its climax in May with public burnings of books 

by non-Aryans. There were some protests at first. A few liberal newspapers ex¬ 

pressed hope that Jews would be allowed to continue their work in Germany. Their 

voices were feeble, however. By the end of April the first dismissals of Jewish 

professors had begun with the termination of Richard Courant (1888-1972) and 

Emmy Noether at Gottingen. Courant was a student of Hilbert and succeeded to 

Klein’s position when the latter retired in 1921. Courant and several other mathe¬ 

maticians, including Otto Neugebauer and Hermann Weyl, met with the physicists 

Max Bom (1882-1970) and James Franck (1882-1964) at Franck’s home and 

considered mass resignations to protest the new laws. Neugebauer and Weyl were 

not Jewish, though Weyl’s wife was. Franck took public action and deliberately 

sacrificed his career in Germany. Courant was officially safe from the ethnic pro¬ 

visions of the law, having been wounded in the war, but he was under suspicion as 

a former Social Democrat. By the first week of May he was placed on leave with 

pay. Many outstanding scholars rallied to his support, including the physicists Max 

Planck (1858-1947), Wemer Heisenberg (1901-1976), Erwin SchrOdinger (1887— 

1961), and Arnold Sommerfeld (1868-1951). The mathematicians Kurt Friedrichs 

(1901-1982) and Hellmuth Kneser (1898-1973) appealed on his behalf directly to 

the central government, but to no avail. Courant later remarked that he knew by 

this time he would have to leave Germany, as his youngest son could not under¬ 

stand why he was not allowed to join the Hitler Youth. In August he accepted a 
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position in Cambridge. In a curious twist of fate, in October he was notified that 

the Civil Service Law did not apply to him, and his leave was canceled. He left 

Germany in November. 
The mere recital of the names of outstanding German mathematicians who were 

victims of the Nazis provokes a sense of bewilderment at the insanity of the Nazi 

regime. How could any country deliberately discard so much talent, especially 

a country that had always appreciated ability and done so much to develop it? 

From Gottingen the losses included the Jewish mathematicians Edmund Landau 

(1877-1938), who remained in Germany without a position until his death in 1938; 

Paul Bemays, Landau’s student and Hilbert’s assistant, whom we have mentioned 

above in connection with set theory; Courant and Noether, already mentioned; Hans 

Lewy (1904-1988), Courant’s student, who went first to Rome and then to Brown 

University, ending his career at the University of California; and Herbert Busemann 

(b. 1905), another student of Courant, who eventually moved to California. Weyl 

decided to leave for his wife’s sake and out of principle; he eventually came to the 

Institute for Advanced Study in Princeton. Neugebauer was under suspicion for 

his liberal politics. Although his interests were originally in analysis [he is the co¬ 

discoverer with Harald Bohr (1887-1951) of the Bohr-Neugebauer theorem about 

almost-periodic solutions of differential equations], his interests shifted toward the 

history of mathematics. He eventually came to Brown University and became 

the leader of America’s best-known school of history of mathematics. We have 

mentioned his work on the cuneiform texts in Chapter 3. 

Gottingen was purged of Jewish mathematicians, leaving a greatly impoverished 

group of scholars to continue its brilliant tradition, headed by the elderly Hilbert. 

In another of history’s ironic twists, Hilbert had suffered from pernicious anemia 

during the 1920s, a disease that had previously been fatal. He was one of the first 

victims to be saved by vitamin injections. During his illness he had received a 

blood transfusion from Courant, leading to the bitter joke that after 1933 there was 

only one good mathematician left in Gottingen and even he had Jewish blood. 

What happened in Gottingen was repeated all over Germany. In Bonn Otto 

Toeplitz (1881-1940), who had studied with Hilbert, was dismissed in 1933 and 

emigrated to Palestine; Felix Hausdorff, a multitalented genius, remained and was 

allowed to work, but in 1942, given the order to be deported to a concentra¬ 

tion camp along with his family, he committed suicide. From Munich Salomon 

Bochner (1899-1982) fled to England and eventually to Princeton, and Friedrich 

Hartogs (1874-1943) was forcibly retired. From Hamburg Emil Artin (1898— 

1962) left to become professor at Notre Dame and Princeton (in 1958 he returned 

to Hamburg), and the young Max Zorn (1906-1993) emigrated to the United 

States. From Halle Reinhold Baer (1902-1979) went on sabbatical and never 

returned, finishing his career in the United States. From Berlin Stefan Bergmann 

(1898-1977) emigrated first to the Soviet Union, then to the United States, as 

did Richard von Mises (1883-1953); Leopold LOwenheim (1878-1957) and Issai 

Schur (1875-1941) were forcibly retired. From Breslau Max Dehn (1878-1952) 

and Hans Rademacher (1892-1969) came to the United States. From Frankfurt 

Ernst Hellinger (1883-1950) and Otto Sz^sz (1884-1952) emigrated to the United 

States. In Freiburg Alfred Loewy (1873-1935) was forcibly retired in 1933 and 
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Ernst Zermelo, some of whose work was discussed above, resigned his honorary 

professorship in protest against the Nazis in 1935. In Giessen Ludwig Schlesinger 

(1864-1933) was forcibly retired and died shortly thereafter. In Tubingen Erich 

Kamke (1890-1961) was forcibly retired in 1937. Hans Reichenbach (1891-1953) 

fled from Stuttgart to Turkey and ultimately to the United States. Gabor SzegO 

(1895-1985) emigrated from KOnigsberg to St. Louis in 1935. Adolf Fraenkel 

emigrated from Marburg to Jerusalem in 1933. Carl Ludwig Siegel (1896-1981) 

took an extended leave of absence from Gottingen, spending the years from 1940 

to 1951 in Princeton. And so it went; every major German university lost talented 

professors. 

As the Nazi regime expanded and the danger of further expansion increased, 

so did the number of refugees. When Austria was annexed to Germany in 1938, 

Vienna lost Kurt GOdel, Eduard Helly (1884-1943), and Karl Menger (1912— 

1985). Bryn Mawr College acquired Olga Taussky from Vienna and Emmy Noether 

from Gottingen in 1934. When Germany occupied Czechoslovakia in 1939 Karl 

Loewner (1893-1968) left the German University in Prague and moved to the 

United States. Eduard Cech (1893-1960), a professor at Brno, was incarcerated 

from 1941 to 1945. Marc Kac (1914-1984) left the University of L’vov in the 

Ukraine to move to Cornell in 1938. When Poland was partitioned between Ger¬ 

many and the Soviet Union and the Baltic States were annexed to the Soviet Union, 

there were further losses. The Polish mathematician Antoni Zygmund (1900-1992) 

left Vilnius in 1939, the year before Lithuania was annexed to the Soviet Union. 

His student Joseph Marcinkiewicz (1910-1940) died in a Soviet prison the follow¬ 

ing year. 

Of the German mathematicians who remained some were Nazis; others were 

not. Among the prominent Nazi supporters was Oswald TeichmUller (1913- 

1943), who wrote the best mathematics that appeared in the Nazi-sponsored journal 

Deutsche Mathematik and died on the Eastern front. Hilbert, who never supported 

the Nazis, remained in Germany and died in 1943. To counter the propaganda 

damage done by the expulsion of so many first-rate mathematicians, the Nazi pub¬ 

lic relations organs touted the superiority of German mathematicians such as the 

recently deceased Felix Klein.9 Although the Western democracies benefited intel¬ 

lectually from the influx of immigrants, there were not enough university positions 

to absorb all of them. Until December 1941 America hoped to remain neutral and 

was very reluctant to accept the refugees. As a result, many wasted their talents 

earning a living in occupations in which they were seriously underemployed. A 

few scholars from Germany fled eastward to the Soviet Union rather than west¬ 

ward. Among them were Stefan Cohn-Vossen (1902-1936), who fled from Koln 

to Leningrad in 1934, and Emmy Noether’s brother Fritz (1884-1941), another 

talented mathematician, who became a professor at Tomsk, but was arrested, iron¬ 

ically accused of being a German spy, in 1937 and executed in 1941, during the 

German invasion of Russia. 

What is to be learned from this horrendous story? Readers may draw their 

9So far as one can tell from his writings, which were full of sympathy and tolerance, Klein would 

have been horrified to find his name used in this way. He was, incidentally, suspected of being Jewish, 

and a thorough investigation of his genealogy was conducted before he was made into a Nazi icon. 
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own conclusions. Our purpose is to sketch the colossal waste of human beings, 

the destruction and disruption of lives. That the Nazis did incalculable damage 

to their own country in their efforts to be rid of “foreign” influences in no way 

ameliorates the horror of the Nazi program. 

In comparison with the human cost of Nazism, the intellectual cost is trivial. 

Nevertheless, a comparison of German mathematical journals from the nineteenth 

century such as the Mathematische Annalen (edited by Felix Klein, among others) 

with those from the 1930s makes it clear how much had been lost. The regime 

supported a journal called Deutsche Mathematik, edited by Ludwig Bieberbach 

(1886-1982). This journal was published for six years, starting in 1936, until the 

disruption of the war made it unfeasible. It contained some articles of respectable 

profundity, such as those of Oswald Teichmtlller mentioned above, but was not 

even remotely comparable in quantity or quality with the Mathematische Annalen 

or the Journal fur die reine und angewandte Mathematik. 

19.5.3 Mathematics and American Scientific Policy 

The Nazi destruction of scholarship crippled the German war effort by just enough 

to prevent the development of nuclear weapons. The decay of uranium through 

fission had been demonstrated in 1939 by Otto Hahn (1879-1968), a loyal servant 

of the Nazi regime. (He received the Nobel Prize for this work in 1944.) Fortu¬ 

nately Germany had neither the scholars nor the resources to develop the atomic 

bomb; otherwise the war might have been considerably prolonged. As it was, the 

British and Americans were able to pool their resources in a joint project that came 

to fruition just as Germany surrendered. 

The American-Soviet rivalry after the end of the war and America’s assumption 

of the role of leader of the Western democracies had several consequences for 

American science and mathematics. Suspicion of Communism in the early and 

mid-1950s led to the dismissal of a few professors. D. J. Struik (b. 1894), the author 

of a standard work on the history of mathematics and a prominent differential 

geometer, was placed on leave from the Massachusetts Institute of Technology 

for his Marxist views. (By way of apology in the 1980s the Commonwealth of 

Massachusetts named him an outstanding citizen.) 

American fears of Communism were greatly exacerbated in October 1957 when 

the USSR launched the first artificial satellite. Less than 4 years later the USSR 

launched the first space ship with a human pilot. America was not able to match 

either of these feats until many months later, and the general belief was that the 

USSR was far ahead in space. The shock to American complacency and pride led 

to a vast increase in government support of science and an expansion of National 

Science Foundation programs of support for graduate students. The early 1960s 

were a period when money flowed easily to researchers in any area of science 

from a variety of sources. A great many researchers in pure mathematics were 

supported by agencies of the armed services such as the Air Force Office of 

Scientific Research and the Office of Naval Research. 

This period of prosperity for American universities came to an end for two 
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reasons. The first of these reasons was the Vietnam War, which was the most 

unpopular war of the twentieth century. Although discontent with the war was 

widespread, the demonstrations against it tended to be centered in the universi¬ 

ties, where there were large numbers of young men vulnerable to the draft. These 

demonstrations alienated the government and some of the public from the univer¬ 

sities. Against this background and the horrors of such atrocities as the My Lai 

massacre researchers had to search their consciences to decide what measures, if 

any, were justified by the aim of the war—to halt the spread of Communism in 

Asia—and whether those measures were being reasonably applied. It became a 

serious question for some mathematicians whether they ought to cooperate with 

the armed services at such a time. Needless to say, the armed services were not 

likely to look favorably on requests for funding from researchers who were known 

for denouncing the military. 

The second, less political reason for the decline in support for pure science 

was a philosophical debate over the soundness of such support. In the mid-1960s 

articles appeared in various newspapers and magazines pointing out that mathe¬ 

matics is not a science, and that, despite certain vague perceptions of the public, 

research into Riemannian manifolds had nothing to do with putting people on the 

moon. 

The perceived need for scientific research declined sharply in the years after 

1969, when America succeeded in sending several expeditions to the moon. The 

popular concern shifted from the space race to the problem of controlling pollution, 

in which science itself was suspect. At the same time the armed services, under 

pressure from Senators Mansfield of Montana and Proxmire of Wisconsin, were 

required to justify any support for research on the basis of practical military needs. 

The result was a precipitous decline in the level of funding for mathematical 

research. All these events helped to begin a debate on the role of government policy 

in science and the role of mathematics in that policy, a debate that continues today. 

The issue is at bottom one of public interest and individual interest. Does the 

country as a whole have an interest in the promotion of scientific research? What 

benefits does it bring that could not be obtained without government subsidy? Do 

citizens benefit from this research in a way that justifies taxing them to support it? 

19.6 The World of Mathematics Today 

Mathematical research is now a thriving enterprise in nearly every country in 

the world. Already by the end of the nineteenth century it was decided to hold 

international meetings. The first of these was held at Chicago in connection with 

the World’s Columbian Exposition in 1893, and the featured speaker was Felix 

Klein. This meeting is often referred to as the Zeroth International Congress. 

At the Second International Congress, held in Paris in 1900, the acknowledged 

leader in several areas of mathematics, David Hilbert, gave the keynote address, 

listing 23 important current problems that he hoped would be solved during the 

twentieth century. Hilbert’s calling attention to these problems made them the 

object of intensive research, and many were solved or shown to be unsolvable 
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in the course of the century. International congresses have been held regularly 

during the twentieth century except during the two world wars, and they are now 

a quadrennial event. 
With thousands of talented researchers working all over the world, duplication 

and priority disputes were bound to proliferate. To solve these problems more and 

more journals and mathematical societies were founded. The mathematical soci¬ 

eties of various countries became the clearinghouses for mathematical information, 

supplementing the mathematical sections of the Academies of Science. On this 

basis mathematics continued to grow every year except during the two world wars 

until it reached its present dimensions. 
The scale of this enterprise can be judged from the 1993-94 membership rolls 

of the three largest American societies: the American Mathematical Society (AMS: 

27,333 members), the Mathematical Association of America (MAA: 34,844 mem¬ 

bers), and the Society for Industrial and Applied Mathematics (SIAM: 7915 mem¬ 

bers), with a total membership of 57,075 for the three organizations. The members 

of these organizations are engaged in mathematics through research, teaching, and 

application. The number of articles written on new research is so large that no 

library could possibly afford to subscribe to all of the hundreds of journals in 

which it is printed. The Mathematical Reviews in America, the Zentralblatt fur 

Mathematik in Germany, and the Referativnyi Zhurnal Matematiki in Russia each 

publish reviews of some 50,000 books and articles per year, written by more than 

60,000 authors (many articles have more than one author). These articles and 

books are classified according to a scheme worked out by the American Mathe¬ 

matical Society and the publishers of the Zentralblatt fur Mathematik into 61 areas, 

each having from three to a dozen specialties, each with 5-20 subspecialties. A 

reviewer is often hard-pressed to say which of these minute areas constitutes the 

primary subject matter of an article. A typical research mathematician may attempt 

to keep up with current work in a few subsubspecialties. 

Obviously the centrifugal forces acting on modem mathematics are enormous. 

Like a carousel spinning out of control, mathematical research forces its practi¬ 

tioners farther and farther from one another. This problem was recognized al¬ 

ready in the early twentieth century, and attempts were made to remedy it by 

publishing fairly detailed surveys of the current state of various mathematical sci¬ 

ences. This project, the Enzykloptidie der Mathematischen Wissenschaften, pro¬ 

duced many thousands of pages of good exposition in German and was translated 

into French. However, the project was essentially hopeless, being aimed at a hypo¬ 

thetical broadly educated person, at a time when only a fairly profound specialist 

could begin to appreciate what was happening in a given area. One of the current 

attempts to preserve unity in mathematics, the Lecture Notes in Mathematics series 

published by Springer-Verlag, is aimed only at making specialized areas accessible 

to new researchers and nonspecialists. It now constitutes some 1500 volumes. As 

this example shows, one of the largest problems for modem mathematics is to get 

the known material organized in such a way that it is accessible to a person with 

a certain amount of core knowledge. 

Difficult though it is, this problem is being solved. The Mathematical Reviews 

keeps cross-indices of its reviews by subject and by author (the indices alone oc- 
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cupy about 3500 pages each year), and the reviews themselves can be accessed 

electronically. Since the mid-1980s titles and authors have been included in sev¬ 

eral data bases. These aids to research make the specialist’s job much easier. 

Researchers in many fields tend to form electronic-mail networks to keep in touch 

with current work all over the world. As a result, the hard copy of an article 

that appears in a printed journal becomes increasingly redundant. Being written as 

concisely as possible, a typical article is opaque to the nonspecialist or the student 

attempting to begin research in a field, while the specialist, in all likelihood, has 

already heard about the results and verified the proof based on a sketch of the 

method used. 

Thus the branches of mathematics grow longer and thinner each year, and 

some seem in danger of breaking off entirely. Yet there remains a common core of 

mathematics. All graduate schools in America require students to have a thorough 

knowledge of real analysis, complex analysis, and algebra before proceeding to 

do research in more specialized areas, and in each small area of research there 

are good expository works that trace a path from this common core to the current 

research. With these aids and a good advisor, students continually take up rather 

arcane research and add to the flood of new articles each year that fill journals 

published in many different countries. 

19.7 Problems and Questions 

19.7.1 Problems in Contemporary Mathematics 

Exercise 19.1 The most important property of a distance is the triangle inequality: 

d(x,y) < d(x,z) + d(z,y), which says that the distance from x to y does not 

exceed the distance from x to z plus the distance from z to y. Consider the set 

of continuous functions on [0,1], with the “distance” from a function f(x) to the 

function g(x) being defined in the following three ways: 

(a) d(f,g) = I \f(x) - 3(»| dx; 
Jo 
/ j' 1 \ 1 / 2 

(b) d(f,g) = (J I/O) ~g(x)\2dx) ; 

(c) d(f,g) = ( / I/O) " .90)1* dx) ■ 

Which of these functions d(f: g) satisfy the triangle inequality? 

Exercise 19.2 Bertrand Russell pointed out that some applications of the axiom 

of choice are easier to avoid than others. For instance, given an infinite collection 

of pairs of shoes, describe a way of choosing one shoe from each pair. Could you 

do the same for an infinite set of pairs of socks? 

Exercise 19.3 Prove that C = {.x : x £ x} is a proper class, not a set, that is, it 

is not an element of any class. 
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Exercise 19.4 Suppose the only allowable way of forming new formulas from old 

ones is to connect them by an implication sign, that is, given that A and B are 

well formed, [A => B] is well formed, and conversely if A and B are not both well 

formed, then neither is [A => B}. Suppose also that the only basic well-formed 

formulas are p, q, and r. Show that 

[p => r] [[p => q\ => r] 

is well formed but 
\\jp => r] => [r =>]] 

is not. Describe a general algorithm for determining whether a finite sequence of 

symbols is well formed. 

Exercise 19.5 Consider the following theorem. There exists an irrational number 

that becomes rational when raised to an irrational power. Proof: Consider the 

number 6 = V3 .If this number is rational, then we have an example of such a 

number. If it is irrational, then the equation 9^ = y/S = 3 provides an example 

of such a number. Is this proof intuitionistically valid? 

Exercise 19.6 Show that any two distinct Fermat numbers 22”' + 1 and 22" + 1, 

m < n, are relatively prime. (Use mathematical induction on n.) Apply this result 

to deduce that there are infinitely many primes. Would this proof of the infinitude 

of the primes be considered valid by an intuitionist? 

Exercise 19.7 Suppose you prove a theorem by assuming that it is false and de¬ 

riving a contradiction. What you have then proved is that either the axioms you 

started with are inconsistent, or the assumption that the theorem is false is itself 

false. Why should you conclude the latter rather than the former? Is this why some 

mathematicians have claimed that the practice of mathematics requires faith? 

19.7.2 Questions about Contemporary Mathematics 

Exercise 19.8 What are the advantages, if any, of building a theory by starting 

with abstract definitions, then later proving a structure theorem showing that the 

abstract objects so defined are really composed of familiar simple objects? 

Exercise 19.9 L.E. J. Brouwer, the leader of the intuitionist school of mathemati¬ 

cians, is also known for major theorems in topology, including the Brouwer fixed- 

point theorem, which asserts that for any continuous mapping / of a closed disk 

into itself there is a point x such that x = f(x). To prove this theorem, suppose 

there is a continuous mapping / for which f(x) ^ x at every point x. Construct 

a continuous mapping g by drawing a line from f(x) to x and extending it to 

the point g(x) at which it meets the boundary circle (see Fig. 19.2). Then g(x) 

maps the disk continuously onto its boundary circle and leaves each point of the 

boundary circle fixed. Such a continuous mapping is intuitively impossible (imag¬ 

ine stretching the entire head of a drum onto the rim without moving any point 
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Figure 19.2: The Brouwer fixed-point theorem. 

already on the rim and without tearing the head) and can be shown rigorously to 

be impossible (the disk and the circle have different homotopy groups). How can 

you explain the fact that the champion of intuitionism produced theorems that are 
not intuitionistically valid? 

Exercise 19.10 What are the possible advantages and disadvantages of eliminating 

or greatly reducing the volume of journals, instead placing all articles on electronic 

files that can be downloaded from various information systems? 

Exercise 19.11 On the basis of the geometric series 1/(1-hr) = 1—x+x2—x3+- ■ ■ 
Euler was willing to say that 1 - 5 + 25 - 125 + • • • = Later analysts 

rejected this use of infinite series and confined themselves to series that converge 

in the ordinary sense. However, Kurt Hensel (1861-1941) showed in 1905 that 

it is possible to define a notion of distance (the p-adic metric) by saying that an 

integer is close to zero if it is divisible by a large power of the prime number p 

(in the present case p = 5). Specifically, the distance from m to 0 is given by 

d(m, 0) = 5-A:, where 5fc divides m but 5k+1 does not divide rn. The distance 

between 0 and the rational number r = m/n is then by definition d(m, 0)/d(n, 0). 

Show that <7(1,0) = 1. If the distance between two rational numbers r and 8 is 

defined to be d(r — s,0), then in fact the series just mentioned does converge to 

\ in the sense that d(Sn, ^) —> 0, where Sn is the nth partial sum. 

What does this historical experience tell you about the truth or falsity of math¬ 

ematical statements? Is there an “understood context” for every mathematical 

statement that can never be fully exhibited, so that certain assertions will be ver¬ 

bally true in some contexts and verbally false in others, depending on the meaning 

attached to the terms? 

Exercise 19.12 Are there true but unknowable propositions in everyday life? Sup¬ 

pose your class meets on Monday, Wednesday, and Friday. Suppose also that your 

professor announces one Friday afternoon that you will be given a surprise exam at 

one of the regular class meetings the following week. One of the brighter students 

then reasons as follows. The exam will not be given on Friday, since if it were, 

having been told that it would be one of the 3 days, and not having had it on 

Monday or Wednesday, we would know on Thursday that it was to be given on 

Friday, and so it wouldn’t be a surprise. Therefore it will be given on Monday or 

Wednesday. But then, since we know that it can’t be given on Friday, it also can’t 

be given on Wednesday. For if it were, we would know on Tuesday that it was to 

be given on Wednesday, and again it wouldn’t be a surprise. Therefore it must be 

given on Monday, we know that now, and therefore it isn’t a surprise. Hence it is 

impossible to give a surprise examination next week. 
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Obviously something is wrong with the student’s reasoning, since the professor 

can certainly give a surprise exam. Most students, when trying to explain what is 

wrong with the reasoning, are willing to accept the first step. That is, they grant 

that it is impossible to give a surprise exam on the last day of an assigned window 

of days. Yet they balk at drawing the conclusion that this argument implies that 

the originally next-to-last day must thereby become the last day. Notice that, if the 

professor had said nothing to the students, it would be possible to give a surprise 

exam on the last day of the window, since the students would have no way of 

knowing that there was any such window. The conclusion that the exam cannot be 

given on Friday therefore does not follow from assuming a surprise exam within 

a limited window alone, but rather from these assumptions supplemented by the 

following proposition: The students know that the exam is to be a surprise and 

they know the window in which it is to be given. 

This fact is apparent if you examine the student’s reasoning, which is full of 

statements about what the students would know. Can they truly know a statement 

(even a true statement) if it leads them to a contradiction? 

Explain the paradox in your own words, deciding the question whether the 

exam would be a surprise if given on Friday. Can the paradox be avoided by 

saying that the conditions under which the exam is promised are true, but the 

students cannot know that they are true? 

Exercise 19.13 Mathematical research is like any other commercial commodity in 

the sense that people have to be paid to do it. We have mentioned the debate over 

taxing the entire public to support such research and asked the student to consider 

whether there is a national interest that justifies this taxation. A similar taxation 

takes place in the form of tuition payments to American universities. Some of 

the money is spent to provide the salaries of professors who are required to do 

research. Is there an educational interest in such research that justifies its increased 

cost to the student? 

19.8 Endnotes 

1. A detailed account of the development of set theory and the issues sur¬ 

rounding the axiom of choice can be found in the book by Gregory H. 

Moore, Zermelo’s Axiom of Choice: Its Origins, Development, and Influ¬ 

ence (Springer-Verlag, New York, 1982). 

2. Russell’s comments on Cantor’s proof that there is no largest cardinal number 

were made in an essay entitled “Recent work in the philosophy of mathe¬ 

matics,” International Monthly, 1901, and reprinted as “Mathematics and 

the Metaphysicians” in the book Mysticism and Logic (Longmanns, Green, 
& Co., London, 1921), p. 89. 

3. The comment that mathematicians have faith in the consistency of set theory 

can be found in the book Introduction to Set Theory, by J. Donald Monk 

(McGraw-Hill, New York, 1969), p. 22. 
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4. The brief sketch of Benjamin Banneker is based on his Almanac and the 

biography The Life of Benjamin Banneker by Silvio A. Bedini. (Charles 

Scribner’s Sons, New York, 1972). 

5. The account of Soviet mathematics is based on several sources, including Sci¬ 

ence in Russia and the Soviet Union by Loren Graham (Cambridge Univer¬ 

sity Press, 1993); “Dmitrii Egorov: Mathematics and Religion in Moscow,” 

by Charles Ford, The Mathematical Intelligencer, 13 (2), (1991), pp. 24-34; 

“Mathematics in Moscow in the 1930s,” by S.S. Demidov (manuscript); 

and Directives of the All-Union Communist (Bolshevik) Party on Public 

Education. A Collection of Documents from 1917 to 1947 an appendix to 

the journal Soviet Teacher, No. 2, assembled by Candidate of Pedagogical 

Sciences N. I. Boldyrev (Academy of Pedagogical Sciences of the Russian 
SFSR, Moscow/Leningrad, 1947) (in Russian). 

6. The account of Nazi mathematics is based on Scientists under Hitler by Alan 

D. Beyerchen (Yale University Press, 1977) and Midwives to Nazism by 

Alice Gallin (Mercer University Press, 1986). The list of refugees from the 

Nazis was culled from Lexikon Bedeutender Mathematiker (Biographisches 

Institut, Leipzig, 1990). Other information came from the article “Jewish 

Mathematicians at Gottingen in the Era of Felix Klein” by David Rowe, in 

Isis, 77 (288), (1986), pp. 422-250 and the article “Fritz Noether—Opfer 

zweier Diktaturen,” by Karl-Heinz Schlote, in Schriftenreihe fur Geschichte 

der Naturwissenschaften, Technik, und Medizin, 28 (1), (1991), pp. 33-M3. 

7. More information on African-American mathematicians and women mathe¬ 

maticians, in particular Charlotte Angas Scott and Julia Bowman Robinson, 

can be found in A Century of Mathematics in America, Part III, edited by 

Peter Duren, (American Mathematical Society, Providence, RI, 1989). 

8. The information on African mathematics is partly derived from a conversa¬ 

tion with Prof. Madieyna Diouf of University Chesikh Anta Diop in Dakar. 
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Answers to Selected Exercises 

Exercise 1.2. Addition, subtraction, and multiplication are constantly used when 

making out tax returns; in that context division also occurs, although disguised as 

multiplication by a percent. Obviously also one uses addition when deciding how 

much carpet to buy to cover the floors in several rooms of a house (add the areas 

of the individual rooms, plus an allowance for wastage), addition and subtraction 

in balancing a checkbook, multiplication when computing the area of a rectangular 

floor or wall to be covered or painted, and division when “splitting” a restaurant 

check equally among a group of diners. 

These operations involve proportion when, for example, deciding how much 

paint or varnish to buy for a given job. For example, if one gallon covers 300 

square feet, the following proportion is used: 

paint required : 1 gallon = area to be covered : 300 square feet. 

A second example, less pleasant, concerns fines for speeding. The fine is 

usually court costs plus a certain amount per mile of excess speed. A third example 

comes from “tax brackets.” The additional tax due within each income bracket is 

(approximately) proportional to the additional income in that bracket. 

Exercise 1.5. All the numbers that we use in everyday life, including especially 

those that we enter into computers, are expressible using a finite number of binary 

digits. In other words, they are rational numbers expressible using denominators 

that are powers of 2. Yet human thought makes powerful use of geometry, and 

geometry requires incommensurables. Those who wish to comprehend as much as 

possible of the universe will wish to reconcile these two powerful modes of thought, 

the discrete and the continuous. The problem of creating a constructive foundation 

for analysis has occupied some very good mathematicians in the twentieth century. 

Those whose desire to feel is stronger relative to their desire to understand—the 

philosopher Henri Bergson, for example—tend to reject discrete concepts entirely, 

implicitly denying the possibility that continuity can be analyzed logically. The 

right-brain/left-brain dichotomy that has engaged the popular imagination lately 

seems to mirror this dispute, but not enough is known at present to draw any 

definite conclusions. 

Exercise 1.11. The author can think of no answer to this question other than to 

introduce a standard of constant velocity and use the proportionality between time 

475 
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and distance in such a motion in order to infer elapsed time from the distance 

covered. The current standard is based on vibrations of atoms; in the past the mo¬ 

tion of stars and the swinging of a pendulum were accepted as examples of steady 

motion from which elapsed time could be inferred. It is a difficult epistemological 

question whether this proportionality is more than a human convention, that is, 

whether it expresses a relation between real objects. We are on the safer ground of 

common sense when we compare the different standards to see if they are consis¬ 

tent. (They are not; according to the atomic standard, the stars are slowing down.) 

Congruence of time intervals must be simply defined to mean that equal numbers 

of standard time units elapse during the intervals. 

Exercise 1.17. Despite the apparent difficulty of this problem, the solution is 

surprisingly easy and is achieved by imagining that the four lines containing the 

outside vertices are walls and moving the way a tennis ball would bounce off these 

walls. 

Exercise 2.2. Using modem symbols, we write 

* 1 42 

* 2 84 

4 168 

* 8 336 
* 16 672 

Result 27 1134 

Exercise 2.4. When each of the fractions in the sum is multiplied by 45, the 

results are respectively 11 4, 5 2 8, 4 2, 1 2, and 1. The fractional parts here are 

4, 8, 2, 2, and 2, which total 1 2 4 8. Hence the magnified sum is 23 2 4 8, while 

3 magnifies to 30. Thus we are lacking 6 8, and so we must “calculate with 45 to 

obtain 6 8.” The scribe was apparently guided by the knowledge that 45 = 9 x 5 

and so used a procedure similar to the following: 

1 45 

_9_ 5 * 

45 1 * 

360 8 * 

When the last the entries in the left-hand column are combined, it is easy to 

remember that the tenn 45 is 8 times 360, so that 45 + 360 is 9 times 360, which 
is 40. 

Exercise 2.7. Solution. We first ask how the number 97 pops out here. The 

number 16 is merely a reasonable starting point, which might easily have been 

different. Having chosen that point and performed the indicated operations on it, 

the scribe would have found 36 3 4 28 (since the last two terms represent what in 

our language is the fraction |). Thus the scribe would be trying to complement 3 

4 28 to get 1. Following the standard procedure for doing such things, the scribe 
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might have used a common denominator of 84, and the expression 3 4 28, when 

multiplied by 84, yields 80. It would then be easy to recognize that 4 parts out of 

84 were lacking, that is, that the twenty-first part was needed. The problem would 

then be to “calculate with 1 3 2 7 so as to obtain 21.” In other words one would 

like to perform a calculation having the two rows 

1 1 5 2 7 _ 

result 21 

If we assume that the scribes had an intuitive grasp of the fact that the rows of 

these computations are proportional, we must believe that with the large number 

of computations they performed they could not help realizing that one can “in¬ 

terchange means and/or extremes,” so that the same “result” would occur if the 

computation became 

21 1327 
result 1 

This last row can be achieved by proceeding as follows: 

21 1 3 2 7 
1 21 14 10 2 3 

1 48 2 

At this point, since we are seeking a 1 in the bottom row of the right-hand column, 

it is natural to double the row, then divide it by 97. Dividing 2 by an odd number 

is precisely what the table allows one to do. (Indeed this computation suggests 

that division as we know it may have been thought of as multiplying by the 

corresponding part.) 

Thus one needs the double of the 97th part. The rest is then simply a matter 

of looking in the table of doubles. 

Exercise 2.11. The frustum can be thought of as the remainder after a smaller 

pyramid is chopped off of the top of a larger one. The heights of the two pyramids 

are, say g and g + h, and the proportion between g and h is derived from 

9 = a 
g + h b ’ 

so that g = ah/(b — a). Since the volume of a pyramid is ^ times the area of the 

base times the height, we find the volume of the frustum to be 

1 (b2(g + h) - n2g) = 1 (.g(b2 - a2) + b2h) 

= — (ah,(b + a) 4- b2h) 

= ^(a2 + ah -f b2). 

Exercise 2.15. One imaginative possibility is that the user is a bureaucrat charged 

with licensing a jug for the sale of beer. Suppose the jug is emptied into the 
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standard state-approved jug three times and then when one-third of the jug is 

added, the standard jug is filled to the brim. What volume should be assigned to 

the jug? 

Exercise 3.2. By the principles used on the tablets, the average of the two numbers 

is |, and their semidifference is 

//5\2 56 _ [T _ 1 

V V27 9 ~ V 36 “ 6' 

The two numbers are therefore | ± which is to say | and |. 

Exercise 3.6. One possible answer is accident: the author was looking for only one 

solution, and this is the one found. A more substantive answer is that the method 

of solving the problem, which involved adding 2 units to the “width,” would in 

the second case lead to a width that was larger than the length, contradicting the 

meaning of the word length. 

Exercise 3.7. Let us be frank! There are no applications of quadratic equations 

in everyday life. Certain linear problems of great practical value—input/output 

analysis, for example—may lead to the need to solve higher-degree equations in 

order to find eigenvalues and eigenvectors, but that is a technical use. Similarly, 

one might wish to solve the problem of analyzing the motion of a heavy body 

thrown upward from a certain height h with velocity v. According to the simplified 

Newtonian model, neglecting air resistance, among other things, its height in meters 

at time t seconds after it is thrown will be h + vt — 4.912, where h is in meters and 

v in meters per second. Then any question as to the time at which the object will 

have a given height H becomes a quadratic equation. One can hardly consider such 

questions “practical,” yet they might have occurred to someone of a speculative 

bent. 

Exercise 4.1. The division algorithm yields the following quotients and remain¬ 

ders. The last nonzero remainder is the greatest common divisor (819). 

189,189 = 13-13,923 + 8190 

13,923 = 1 • 8190 + 5733 

8,190 = 1 • 5733 + 2457 

5,733 = 2-2457 + 819 

2,457 = 3-819. 

This computation can be conveniently performed on paper by working from 

right to left: 

3 2 1 1 13 

2457 5733 8190 113,923 189,189 
2457 4914 5733 8,190 139,23 

0 819 2457 5,733 49,959 

41,769 

8,190 
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Figure A.l. Angle inscribed in a semicircle. 

Exercise 4.5. Side AD is common to triangles ADE and ADB. Since AD is the 

bisector of ACAB, BD _L AB, and DE X AC, it follows that triangles ADE 
and ADB are congruent by angle-angle-side. Since ACDE must equal ACAB 
(because both must be complementary to AC in their respective right triangles), 

it follows that ACDE is congruent to AC, hence that triangle DCE is isosceles. 

Therefore EC = ED = BD. We have AB = AE by the congruence of triangles 

ADB and ADE. 
Starting the Euclidean algorithm with the pair (AC,AB), we get (AC — 

AB, AB) = (AC - AE, AB) = (EC, AB) = (BD, BC). Since BC > BD, our 

next pair is (BC — BD,BD) = (CD,BD) = (CD,DE), which, as asserted, 
form the diagonal and side of a square. 

Exercise 4.9. The proof that opposite angles are equal is obvious; each forms a 

straight angle with each angle of the other opposite pair. 

The proof that the base angles of an isosceles triangle are equal is most simply 

achieved by imagining the triangle picked up and turned over, so that each base 

angle lies on the space previously occupied by the other. 

The proof that a circle is bisected by a line through its center is proved by 

imagining the disk folded along the line through the center, so that the two halves 

of the circle coincide. They must do so, since any chord perpendicular to the 

diameter is bisected by the diameter. (That fact in turn can easily be seen by 

drawing the radii to the endpoints of the chord and observing the two congruent 

right triangles that result.) 

The proof that two triangles are equal if two sides and the included angle of 

one are congruent to two sides and the included angle of the other is proved by 

imagining the two included angles made to coincide, and then picking up one 

triangle and turning it over if necessary to assure that the endpoints of the sides of 

the angle must also coincide. Since the third side of each triangle is determined 

by those two endpoints, the third sides will then coincide as well. 

The theorem that an angle inscribed in a semicircle is a right angle may have 

come from the simpler facts that a circle is bisected by a diameter and that angles 

inscribed in equal arcs are equal. For example, given an angle ACB inscribed 

in a semicircle with diameter AB, complete the circle and draw the chord CD 
perpendicular to AB, meeting AB in point E. Then angles BCE and EAC 

are inscribed in equal arcs BD and CB. They are therefore equal, and since 

ACAE + AACE must total one right angle (these angles being the two acute 

angles of the right triangle ACE), angle BCE and angle ACE must also total 

one right angle. (See Fig. A.l.) 
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Exercise 4.12. A person who speaks truthfully and frankly is said to be a straight- 
talker. Uncomplicated people who are regarded as dull are sometimes said to be 

one-dimensional. A broadly educated person is said to be well-rounded. Words 

such as rectitude, coming from the Latin, have similar roots. Topological notions 

enter ethics in such words as integrity (wholeness) and duplicity, the image being 

that a person of integrity is consistent and can be relied upon, while a duplicitous 

(two-faced) person may appear to be of one opinion in one context and an opposite 

opinion in some other. 

Exercise 4.15. Both are important mathematical activities, each serving as a 

stimulus to the other. When intuition discovers an important new insight, the 

attempt begins to formulate it in the most precise and economical terms possible 

and to find a rigorous proof. Often the discovery of lapses in rigor leads to new 

mathematical research of great importance. Failure to prove a proposition can 

mean that examples in which the contrary proposition holds can be found. A 

prominent example was the discovery by Niels Henrik Abel in the 1820s that a 

series of continuous functions could converge to a discontinuous function, contrary 

to a claim of Augustin-Louis Cauchy. An even more spectacular example is the 

discovery of non-Euclidean geometry, which resulted from failures to prove the 

parallel postulate. 

Exercise 5.1. The difference of the squares of two numbers is wellknown to be the 

product of the sum and the difference of the two numbers. If the smaller square 

is 1, while the larger one is odd, it follows that the difference of the two squares 

is the product of two successive even numbers. Since one of these two successive 

even numbers is a multiple of 4, it follows that their product is a multiple of 8. 

Exercise 5.4. Given a line segment of length a to be divided into mean and extreme 

ratio, the problem is to find two segments whose difference is a and whose product 

is a2. Let one of the segments be z and the other z — a. The required condition 

is that z(z - a) = a2, which yields the proportion z — a : a = a : z, which 

then extends to give z — a : a = a : z = 2a — z : z — a. This last extension 

follows since z — a : z = 1 — (a : z) = 1 — ((z — a) : a) = 2a — z : a, so that 

z — a : a = (z — a : z)(z : a) = (2a — z : a)(a : z — a) = (2a — z : z — a). 
Since 2a — z is the length of the segment left when the segment of length a — z is 

subtracted from the segment of length a, we see that the larger segment has to the 

given segment the same ratio that the given segment has to the shorter, and that 

the shorter has to its complement in the given segment, that is, the given segment 

has been divided into mean and extreme ratio. 

As mentioned, the shorter of the two segments will provide the point at which 

the line is to be divided. 

Exercise 5.6. The assertion that ZFCE < ZACD relies on the figure, in partic¬ 

ular on the qualitative fact that points A and F lie on the same side of line BD. 
If two lines could intersect in more than one point, then point F might very well 

be on the other side of line BD. This is exactly what happens, for example, if A 

is the pole of a great circle containing the arc BC on a sphere and the arc BC 
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is longer than one-fourth of a great circle. Doubling the great-circle arc BE will 

bring the point F into the opposite hemisphere from A. Even if we exclude the 

possibility that lines can intersect in more than one point, the figure could still 

be qualitatively wrong. In particular, we could not assert that B and F are on 

opposite sides of the line containing A and C, since removing a line may fail to 

divide the plane into two disconnected half-planes. Regarding antipodal points 

of the sphere as identical, for example, produces a geometry in which two lines 

(great circles) intersect in only one point, but then the point F is identified with 

its antipodal point, and one of these is in the same hemisphere as B relative to 

the great circle containing A and C. The second point of intersection of the great 

circle containing B and F with the great circle containing B and C (the point 

antipodal to B) is now identified with B, and the point F lies on the arc from B 
to E shown in the figure. 

Exercise 5.13. It is the author’s opinion that, taken on his own ground, Socrates 

would win this debate. The modern “construction” of the real numbers would have 

too many nonconstructive elements for him to accept, no matter how clearly they 

were explained. The formalist idea that one could “interpret” line segments as 

numbers and thereby turn a line into a field, would not be acceptable to Socrates 

on metaphysical grounds. For Socrates, if Plato reports him truly, numbers were 

entities having a real existence in a perfect world, as were line segments. To call 

a line segment a number would have seemed to Socrates to be a factual error. 

But unless one allows either this approach or the nonconstructive definition of a 

real number as a Dedekind cut or an equivalence class of Cauchy sequences, it is 

difficult to find an acceptable definition that allows real numbers to be used for 

analytic geometry. 

The most promising common-sense approach is to define a real number as a 

decimal or binary expansion, make the usual identifications for numbers having 

two such expansions (or else simply exclude expansions that end in an infinite 

string of Os), and attempt to describe an algorithm for adding and multiplying such 

expansions. The algorithm, however, is very cumbersome. 

Exercise 5.17. It is precisely because Euclid was systematic and stated explicitly 

what others may have considered obvious that attention was focused on the parallel 

postulate and the possibility of questioning its validity arose. Although it is natural 

to imagine that people would be in doubt about a proposition until it is proved, 

experience shows that doubts often require a long time to surface. Proof is indeed 

used to allay doubt, but only after it has arisen, and in some cases doubt was 

not even present in the early stages of the search for a proof. For example, 

mathematicians took for granted that the parallel postulate was true for many 

centuries, but ultimately the failure to prove it led to the conclusion that it could 

be denied without contradiction. 

Set theory gives a good example of the opposite side of this coin. There the 

attempt to reach ultimate clarity in the formulation of mathematical concepts led 

to the creation of a “foundation” for mathematics that is subject to far more doubt 

than the propositions allegedly derived from it. 
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Exercise 6.1. Suppose we could square a segment of a circle whose central angle 

we knew. Since the segment together with the isosceles triangle enclosed by the 

radii to the vertices of the segment form a sector, we could then square that sector. 

Then, having the ratio of the central angle of that sector to a full revolution as a 

ratio of two lines, we take the square root of that ratio (specifically, square the 

rectangle that each of the two lines forms with any given line, then take the ratio 

of the sides of the resulting two squares). Then the side of the required square 

(equal to the whole circle) is the fourth proportional whose first three terms are 

the square roots just constructed and the side of the square equal to the sector. 

Exercise 6.3. It is apparent that each of these right triangles will have an angle 

inscribed in an arc subtended by a chord equal to the side of the polygon. Hence 

the triangles are all similar. This means that the lines BB', CC', KK' and DM 
are proportional to the successive line segments on the line AA' as far as M. We 

can therefore add numerators and denominators, getting the expression 

BB' + CC' + • ■ • + KK' + EM 

~AM ’ 

which equals each of these ratios. Finally, if A'B is joined, we obtain yet another 

right triangle A'BA with an angle inscribed in the arc AB, and hence yet another 

similar triangle, as asserted. 

Exercise 6.5. If add the line CO to the figure in the text, we see that the triangle 

CAO is a right triangle. Hence AO2 is the mean proportional between its hy¬ 

potenuse and the segment of the hypotenuse on the same side of the altitude OS as 

AO, that is, we have proved that CA ■ AS = AO2. The rest is mere substitution of 

equals for equals, using at the last step the facts that MN = 2MS, OP = 2OS, 
and QR = 2SQ. 

Exercise 6.10. This is routine algebra. Transposing everything to the left-hand 

side and completing the square leads to 

C C2 \ 

ix+w) 
c2 

4/0 

which then becomes 

[x - (c/2k)2] y2 

(C/2k)2 (C/2\/k,)2 

Exercise 6.11. In general, any rectangle deficient by a square has area equal to the 

product of the two line segments into which it divides the line segment to which it 

is applied. Apollonius is asserting that (what we call) the foci are points at which 

this product is one-fourth the product of the major axis and the latus rectum. By 

the geometric way in which the ellipse is defined, it is clear that the square of the 

ordinate at the midpoint of the major axis (that is, the square on half of the minor 

axis) will be exactly one-fourth of the rectangle on the major axis and the latus 

rectum. (Simply put, if l is the latus rectum, and a and b are half of the major and 
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minor axes respectively, then 2b2 = al. Note that for a circle, where a and b are 

both equal to the radius, this formula gives l as the diameter of the circle.) Hence 

the assertion follows. 

Exercise 6.12. The distance from a general point (x, y) to the line ax + by = c is 

well-known to be |ax A-by — c\/y/a2 + b2. Hence the general equation is 

r 
\y\ = -yI = g\ax - yI, 

Vu + 1 

where r is the ratio of the two distances and q = r/fa2 + 1. By squaring both 

sides, transposing the left-hand side to the right, and then factoring the difference 

of the two squares, we obtain the equation 

[aqx + (1 - q)y][aqx - (1 + q)y\ = 0, 

which represents a pair of lines through the intersection of the two given lines. A 

pair of intersecting lines is considered a degenerate hyperbola. 

Exercise 6.17. The difference between the two numbers is less than 0.0000305675, 

that is, the gain in accuracy achieved by using as the value of n rather than 

is less than 0.001%. Such a small gain is certainly not worth the extra labor. 

In mathematics simplicity of a result is very important. For most applications 

both inside and outside of mathematics, y- gives satisfactory precision. There 

is nothing practical to be gained, even when “practicality” is extended to mean 

usefulness in a mathematical argument, by introducing the more cumbersome ex¬ 

pression. 

Exercise 6.20 To extend Cavalieri’s principle to the computation of lengths, one 

could define the “zero-dimensional volume” of the point of intersection of two 

lines as the cosecant of their angle of intersection, so that two lines intersecting 

at a right angle would have an intersection of zero-dimensional volume 1 and two 

lines that coincide would have an intersection whose zero-dimensional volume is 

infinite, as one would expect. Note that the cosecant is the same for any of the 

four angles formed by two intersecting lines, so that this concept is unambiguously 

defined. For two intersecting curves one could define the volume to be the volume 

of the intersection of their tangents at the point of intersection. 

This definition would then give consistent results for lines and curves in a 

plane. Incidentally, it provides a theorem about plane curves: Let y = f(x) and 

y = g(x) be plane curves having continuously turning nonvertical tangents at 

each point x = c for all c £ [a, b] If for all c £ [a, b] the cosecant of the angle of 

intersection of the curve y = f(x) with the vertical line x = c bears the ratio r 

to the cosecant of the angle of intersection of the curve y = g(x) with the same 

line, then the length of the former is r times the length of the latter. The proof 

is the observation that the cosecant of the angle in question is the secant of the 

angle between the tangent line and the horizontal, that is, it is + (/'(c))2 and 

yj 1 + (<7'(c))2 for the two curves, and the integrals of these two functions give 

the arc lengths of the two curves. 
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The need to consider this case points to a perhaps unnoticed assumption in 

the original statement of the principle and a possibility of generalizing it. The 

unnoticed assumption was that the sections of the given figures are taken inside a 

space of the same dimension as the figures themselves. The possibility of consid¬ 

ering, for example, one-dimensional sections of two-dimensional figures in three- 

dimensional space requires some convention such as the one just introduced for 

zero-dimensional sections of one-dimensional figures in two-dimensional space. 

Exercise 7.3. By the commensurable case, the weight mA would balance the 

weight A placed at distance of CD from the fulcrum if placed at a distance of 

(1 /m)CD from the fulcrum. Hence the smaller weight nB would rise if placed 

this distance from the fulcrum, A being at the distance CD on the opposite side 

of the fulcrum. Since weight B balances A at the distance CD when B is placed 

at distance CE, it follows that nB will balance A at distance CD when placed 

at distance (1 /n)CE. Therefore if nB is placed at distances (1 /m)CD and 

(1 /n)CE, the weight placed at the former distance will rise. That distance must 

therefore be the smaller distance, that is, we find 

—CD < -CE, 
m n 

and therefore, multiplying this inequality by mn, that nCD < mCE, as required. 

(We have used here the obvious fact that if X at distance d balances Y at distance e 

and Z at distance /, then Y at distance e also balances Z at distance /. Archimedes 

did not state this fact, but it is easy to prove.) 

Exercise 7.4. The inequality in question is obtained from the inequality in the text 

by setting EB = c/tana and EG = c/tan/?, where c = AB = DG. It asserts 

that 
a tan a 

(3 tan /3 

when a < f3. In our terms this inequality asserts that the function f(x) = is 

strictly increasing, and it follows easily from calculus, since the equation f'(x) > 0 

is easily converted to x > sin x cos x, which is obviously true. 

Euclid would have had to spend some time learning our trigonometry (which 

he would probably have objected to on the grounds that it assigned numbers to line 

segments and thereby ignored the problem of incommensurables). He might even 

have been forced to restrict our trigonometric functions to the literal sense of ratios 

of line segments before he would agree to this statement. The use of trigonometry 

is an anachronism that distorts the history of the mathematics. However, it is 

sometimes useful as the starting point for understanding the situation in which an 

ancient mathematician was working, although Euclid himself would not have seen 

this situation in the same way. 

Exercise 7.6. Intersect the cissoid with the parabola y2 = 9ax. The x coordinate 

of the point of intersection satisfies the equation 

.x3 -f 6ax2 + 12a2 X = a3. 
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By adding 8a3 to both sides, we see that this equation becomes x + 2a = \/9a. 
Since x is determined as the length of the perpendicular to the y axis from the point 

of intersection of the cissoid and the parabola and a was a given length, it follows 

that the length \/9a is determined. The length \/3a is the mean proportional 

between this length and a. 

Exercise 7.12. The lines from the earth to the center of the epicycle and to the sun 

on November 1 form a triangle when taken together with the radius of the epicycle. 

The radii of the epicycle and deferent can be taken as 1 and 24, respectively, and 

the angle between them as 180c 360 
365.24 x 123 = 58.76°. The law of cosines then 

gives the third side of this triangle as 23.50. The law of sines then gives the angle 

opposite the radius of the epicycle as 2.09°. Subtracting this amount from the 

121.24° of progress made by the center of the epicycle, we find that the sun has 

reached a point 99.19° + 121.24° — 2.09° = 218.34° along the ecliptic from the 

vernal equinox. (The observed value was 218.64° in 1964, so that the theoretical 

error was 0.3 degrees, or 18 minutes of arc.) 

Exercise 7.17. Very often nonmathematicians do not fully appreciate the economy 

of logic that results from a close argument. It is possible that Vitruvius simply 

did not notice that his argument was redundant on this point. A more substantive 

possibility is that if the crown is known or suspected to be an alloy of gold and 

silver, the relative amounts of each can be determined by the exact amounts of 

water displaced by equal weights of the two metals. Thus Archimedes could 

determine precisely the sum by which the goldsmith bilked the king. 

Exercise 8.2. Even with the anachronistic introduction of the modem symbol 

x, Diophantus’ solution looks strange. He really starts with the smallest piece 

mentioned, one-sixth of the second quantity, then expresses the two quantities in 

terms of this piece. His procedure for finding that smallest piece, however, is 

essentially the one we would use, namely the equation lOx + 80 = 100. Note 

that not having a second letter for an unknown actually simplified the solution for 

Diophantus, since he was forced to choose as his unknown a common currency for 

all the quantities mentioned. When we do the problem the modem way, we focus 

on x and y and miss the fact that ?y/6 is a more natural unknown for the problem. 

Exercise 8.4 Very little is left to do, given the explanation accompanying the 

problem. We merely observe that 

(65)* 2 = (63)2 + (16)2 = (60)2 + (25)2 = (56)2 + (33)2 = (52)2 + (39)2. 

We now choose 

65 65 
c = 

2 • 63 • 16 + 2 • 60 • 25 + 2 • 56 • 33 + 2 • 52 • 39 12, 768 

The first of the four numbers is then 

2 • 63 • 16 • (65)2 8,517,600 

(12,768)2 “ 163,021,824' 
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The other three numbers are the ones given in the text and are found in the same 

way. 

Exercise 8.8. The crucial step would have been to interpret numbers as ratios of 

lines rather than simply as lines. As we saw, Pappus came close to taking that 

step, but he did not pursue the matter or link it with the solution of geometric 

problems by Diophantus’ methods (if he was even aware of those methods). 

Exercise 9.2. After the transactions are performed, the three people own the 

following sets of animals: (1) five thoroughbred horses, one draft horse, and one 

camel; (2) one thoroughbred horse, seven draft horses, and one camel; and (3) 

one thoroughbred horse, one draft horse, and eight camels. If all three of these 

menageries represent equal wealth, the prices of the animals can be compared by 

imagining that each of them gives away one animal of each kind. The three then 

possess respectively four thoroughbred horses, six draft horses, and seven camels, 

and these all represent equal wealth. 

Since the animals represent wealth, such reasoning can be used to establish the 

relative value of any three different currencies, given collections of mixed curren¬ 

cies of equal value. Whether such data actually occur in monetary transactions, 

however, is doubtful. It is more likely that the relative values of coins are known 

in advance and the problem is to mix currencies so as to obtain equal values. 

Exercise 9.3. If x must be an integer, the only solution is x = 11, since the only 

two square integers whose difference is twelve are 16 and 4. If x need only be 

rational, there are infinitely many possibilities. One can take x = [3r + (1/r)]“ — 

5 = 9r2 +1 + (1/r2), where r is any rational number. Obviously x + 5 is a perfect 

square, and x — 7 = 9r2 — 6 + (1/r2) = 

big[3r — (1/r)]2. 

Exercise 9.8. For a quadrilateral of sides a, 6, c, and d Brahmagupta’s formula 

can be written as the equation 

16A2 = 8abcd-\-2a2b2 A-2a2 c2 + 2a2 d2 -\-2b2 c2 + 2b2 d2 + 2c2 d2 — a4 — bA — c4 — d4. 

Now a necessary and sufficient condition for a quadrilateral to be inscribed in a 

circle is that one pair of opposite angles be supplementary. (It then follows that 

both pairs of opposite angles have this property, since the four angles taken together 

must sum to four right angles.) Considering a quadrilateral with sides of length 

a and b on one side of a diagonal of length e and sides of length c and d on the 

other side, the condition that the angles on opposite sides be supplementary says 

that their cosines must be negatives of each other. Using the law of cosines, we 

find 

a2 4- b2 — 2ab cos 6 = e2 = c2 + d2 — 2cd cos <p. 

Now if 6 and ip total two right angles, we must have 

cos 6 = — cos (/?, 

and therefore 

a2 + b2 - c2 - d2 = 2(ab + cd) cos 6, 
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so that 

cos 9 
a2 + 62 - c2 — d2 

2(ab + cd) 

Now the area of the quadrilateral is 

A = — (ah sin 9 + cd sin y>). 
JLj 

Hence the condition for the vertices to lie on a circle is that 

A — - (ab + cd) sin 6 = 

1 
- (ab 4- cd) \J 1 — cos2 6 —- 
2 

or 

/fab + cd^ ' (a2 + b2) — (c2 + d2)' 

V V 2 / 

)M(a2+62)_ 

4 J 

(c2 + d2)}2. 

Expanding the two squares in this last expression and gathering like terms results 

in precisely the formula of Brahmagupta. 

Exercise 9.11. When the Euclidean algorithm is applied in the case of the equation 

118.x = 1461 y + 72, the quotients are 12, 2, 1, 1, 1, 1, 1, so that we begin the 

kuttaka with the matrix 
12 
2 
1 

1 

1 . 

1 
1 

-72 

0 

which yields the general solution x = —18,144 + l,461r, y = —1,512 + 118r. 

Taking r = 13 gives the smallest positive solutions: x = 849, y = 22. 

Exercise 9.16 The sines and cosines used by Jyesthadeva are different for different 

values of r, in other words, what Jyesthadeva calls sin 6 is what we would think 

of as r sin 6, while his 6 itself is the length of an arc that subtends an angle whose 

radian measure is what we call 9. The suggested value of x gives tan 6 = x 

(where 9 represents the angle whose arc on a circle of radius r is the arc 9 in 

Jyesthadeva’s equation). Hence 

arctan x = x — 
x3 x5 

t + t + 

In order to get arctan 0.5 to ten decimal places, we need (0.5)2n+1/(2n + 

10] < IQ"10, that is, (2n + 1) • 22n+1 > 1010. When n = 14, this inequality 
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holds. Hence 14 terms of the series suffice. That 13 terms do not suffice follows 

from the fact that 

> io~10. 
1 1 

27 • 227 29 • 229 

In fact 

1 1 4-29 - 27 _ 89 1 

27 • 227 ~~ 29 ■ 229 “ 27 ■ 29 • 229 “ 29 • 27 • 229 > 9 • 229 ’ 

and 9 • 229 = 4,831,838,208 < 1010. 

Exercise 9.20. Every step suggested by the later commentator seems to flow 

naturally from the problem itself. The earlier conjecture based on Al-Hassar’s 

rule would be reasonable if only the suggested values of a and r could be made 

to seem natural. Both explanations are based on the fundamental approximation 

\/l T x ~ 1 4“ t>x. 

Exercise 9.28. The safest conclusion is that one should never trust a purely 

mathematical conclusion until it is checked by observation. When a large number 

of observations tend to support the general principles of large and complicated 

theories, however, one gains some additional comfort and confidence. In such 

a case a mathematical prediction gains its plausibility from the way in which it 

interlocks with a large number of known phenomena. 

It is seldom realized, for example, that the launching of the first artificial earth 

satellites in the 1950s amounted to a new test of Newtonian mechanics, on a larger 

scale than had been available previously. By the time this test was conducted, how¬ 

ever, no one was even interested in its value as a test of Newtonian mechanics. So 

many other scientific theories had been woven together with Newtonian mechanics 

by that time that any challenge to it (except the small corrections introduced by 

relativity and quantum mechanics) would have involved serious recasting of most 

of modem science. 

Exercise 10.1. Although the problem from the Nine Chapters is stated in terms 

of proportion and the problem from the Ahmose Papyrus in terms of an arithmetic 

progression, both use the same underlying mathematical construction, as we can 

see by stating both in modem algebraic language. First the problem from the Nine 

Chapters'. 

x 4- 2x 4- 3x + 4x 4- 5.x = 5; 

Next the problem from the Ahmose Papyrus, letting the “last” be first: 

a T (a 4- d) 4* {a, 4~ 2d) 4~ (ft 4~ 3d) 4~ (ft 4~ 4d) — 100 

7[ft/ 4- (ft + d)] — (ft/ 4- 2d) 4~ (ft 4~ 3d) 4- (ft/ 4- 4d). 

The difference between the two now becomes clear: The problem from the Nine 

Chapters gives implicitly (in the language of proportion) the statement that the 

first term and the common difference of the progression are equal (a = d = x). 

The Egyptian problem gives two independent conditions by which both the first 

term of the progression and the common difference can be determined. 
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Exercise 10.4. The left-hand side is the correction in the square-root algorithm, 

that is, it must be x(2p + x), where p is the previous approximation to y/~N. Thus 

p = 4. Assuming that the correction finishes the job, it follows that (p + x)2 = N, 

that is, that N = p2 + x(2p 4- x) = 16 + 65 = 81. Hence p 4- x = y/N = 9, and 

so x = 9 — p = 5. 

Exercise 10.9. The 7x7 board contains 49 equal squares. Removing the center 

square leaves an area of 48 squares, and symmetry shows that half of it lies inside 

the square on the hypotenuse and half outside. The total area inside this square is 

thus 25. 

Exercise 10.10. The interpretation of the problem is that a line tangent to the 

circular wall of the fort (the line joining the two people) forms the hypotenuse of 

a right triangle with right angle at the center of the fort. The legs of this triangle 

extend 16 steps eastward and 135 steps southward beyond the wall of the fort. Let 

the radius of the fort be r. The two portions into which the radius to the point 

of tangency divides the hypotenuse can be written in terms of r by using similar 

triangles: 
r(r 4- 135) r(r + 16) 

r 4- 16 r 4- 135 

The area of the triangle can then be computed either as half the hypotenuse times 

the altitude [r(aS-b)] or as half the product of the legs [(r 4-135) (r 4-16)]. Setting 

these two expressions equal to each other, doubling, using the relation just given 

for a and b, and clearing out the denominators, we obtain the quartic equation 

r4 - 8640r2 - 652,320r - 4,665,600 = 0. 

It is here that the Chinese have an advantage over us. This equation has only one 

positive root. At this point in our study we would have to guess it. However, in 

trying to locate it approximately we would search for two successive integer values 

of r between which the expression on the left changes sign, and that procedure 

would lead us to the root, so to speak “by accident.” We would notice, for 

example, that the left-hand side is negative when r = 100 and positive when 

r = 150 (choosing two values for which it can be computed rather easily). The 

Chinese were adept at numerical solutions and found the solution r = 120 in that 

way. To find the solution by radicals requires a technique that was invented in 

sixteenth-century Italy (see Chapter 14). 

Exercise 10.14. The chief advantage of the numerical procedure is that it applies 

to equations of all degrees. The only additional labor for a higher-degree equation 

is the additional time and complexity resulting from more coefficients and more 

multiplications to be performed. Rather surprisingly, that advantage is also its chief 

disadvantage. Looking for closed-form solutions leads to the interesting discovery 

that there are qualitative, not merely quantitative, differences in equations of dif¬ 

ferent degrees. In particular, the solutions can be obtained from the coefficients by 

a finite sequence of extractions of square and cube roots for equations of degree 

up to 4, but for fifth-degree equations and those of higher degree no such sequence 

of operations will solve every equation. 
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Exercise 11.1. By arranging the numbers in a circle or as three rows of 10 

and crossing them off sequentially, one finds them disappearing in the following 

sequence: 10, 20, 30, 11, 22, 3, 15, 27, 9, 24, 7, 23, 8, 26, 14, 2, 21, 16, 6, 4, 1, 

5, 13, 19, 12, 29, 18, 17, 28. The last one remaining bears number 25. 

There certainly is a method by which the answer can be found on a com¬ 

puter. One can, for example, define the following function of two integer variables 

inductively: 

/(n,0) = n, n — 1,..., 30. 

If f(n,k) > 10, then /(n, k + 1) = f(n,k) - 10; otherwise f(n,k + 1) = 

f(n,k) + 20 — k. The function f{n,k) gives the distance from the kth integer 

stricken from the list to the integer n at the time the kth integer is removed. If 

the computer is asked to print out the first value of k for which /(n, k) = 0, that 

value will be the order in which n is crossed off the list. 

Thus, for example, /(22,0) = 22, /(22,1) = 12, /(22,2) = 2, /(22,3) = 

2 + 20 — 2 = 20, /(22,4) = 10, /(22,5) = 0, reflecting the fact that 22 is the 

fifth number crossed off the list. This procedure needs some refinement for larger 

values of k, when the total number of integers remaining is less than 5. 

Exercise 11.5. Simply by subtracting the areas of the three smaller circles from 

that of the larger, we find that 480 = 4 • 120 = 7tD2 — 2nd2 — iv(d -f 5)2. This 

equation can easily be converted into the second of the stated equations. 

If we now draw the diameter of the largest circle that passes through the point 

of tangency of the two smallest circles, it also passes through the center of the 

third inside circle. Since the line joining the center of the outside circle to the 

center of one of the two smallest circles has length (D — d)j2, it follows from the 

Pythagorean theorem that the distance from the center of the outside circle to the 

point of tangency of the two smallest circles is 

D-d\2 2 

But the distance from the center of the third inside circle to the point of tangency 

of the two smallest circles is 

^/(d + 2.5)2- (!) . 

The distance between the centers of the outside circle and the third inside circle is 

precisely the difference in their radii. We therefore have 

{D-d)- 5 

= \[d2 + 20d + 25 - ^(£>-d)2-d2. 

If we square both sides of this equation and cancel wherever possible, we find 

d2 + 5d + 5£> = \J (3d2 + 20d + 25) (D2 
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Squaring again, gathering like terms, and using the equation already derived for 

D2 brings about the desired result. 

Exercise 11.7. In the case of a circle, as in the case of Cavalieri’s principle, the 

surface whose area is being found lies in a two-dimensional space. In general one 

can have some confidence in intuitive arguments of this type when the “ambient” 

space is of the same dimension as the figures being considered. There is, however, 

a qualitative difference between curves and surfaces. Curves can be rectified by 

inscribed polygons, regardless of the dimension of the ambient space. Surfaces in 

3-space, however, cannot always be approximated by inscribed triangles. 

Exercise 11.12. Although some of the geometric examples we have looked at in the 

exercises to this chapter and the one preceding may be of practical importance, the 

majority of those leading to higher-degree equations are not. The geometry seems 

to be included as decoration for the algebraic problem to be solved. In nearly every 

case one is trying to compute quantities that could be more conveniently measured 

directly, such as the radius of a fort or the height at which a bamboo shoot was 

broken. Even worse, many of the problems, such as the one involving adding the 

square root of a side of a triangle to the area of the triangle, are nonsensical from 

a practical point of view. It is likely that among a Japanese social elite knowledge 

of mathematical methods was a mark of refinement, just as knowledge of the plays 

of Shakespeare is in modem America. 

Exercise 12.1. Let x be the amount of money from the debt that is to be included 

in the estate. The estate therefore consists of x + 10 dirhems. The friend is to 

receive lx + 2 of the estate; when that amount is subtracted, \x -f 8 dirhems 

remain. After the extra dirhem is given to the friend, the estate consists of fx + 7 

dirhems. Half of this, or \x + 3^ dirhems is the share of each son. Since the 

indebted son is not to receive or owe any money, this amount must equal the 

portion of the estate coming out of his debt, so that lx + 3| = X. Transposing 

the \x, we obtain 3^ = |x. When both sides are multiplied by | (Al-Khwarizmi 

says, “each side is increased by | of itself’), we find x = 

In current American law (probably), the estate would consist of 20 dirhems. 

The friend would receive 5 dirhems, and each son would be entitled to 7.5 dirhems. 

The son who had borrowed 10 dirhems would therefore owe the estate 2.5 dirhems. 

Hence the 10 dirhems cash on hand would probably be divided in the proportion of 

3 : 2 between the other son and the friend, (6 for the son, 4 for the friend). As the 

debt was repaid, the son would get 1.5 dirhems, and the friend 1 dirhem. Note that 

in Al-Khwarizmi’s solution, the son gets a total of 5| dirhems, so he receives more 

money “up front” in the modern solution and still more when the debt is repaid. 

The friend would receive 4| dirhems under Al-Khwarizmi’s solution, so he also 

receives more money eventually under the modern solution, although he gets less 

immediately. The big loser in the modem solution is the indebted son, who has 

to come up with 2.5 dirhems, whereas he was debt-free under Al-Khwarizmi’s 

solution. 

Exercise 12.5. The given pair cannot be constructed from the formula, since n = 3 

already gives a number larger than 1210. It is easier to look at the known pairs 
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of amicable numbers and see which of them fit the formula than to test all three 

numbers in the formula for primality. After n — 2 and n — 4, the next n that 

actually yields an amicable pair is n = 7, which gives the pair 9,363,584 and 

9,437,056 (rediscovered by Descartes in the seventeenth century). 

Exercise 12.8. The suggested argument shows that the single equation that results 

when the two equations are combined must be divisible by the minimal polynomial 

for the roots over the rational numbers. Suppose a cubic polynomial with rational 

coefficients is not the minimal polynomial of one of its roots. It is then divisible 

by the minimal polynomial of that root. Either the minimal polynomial or the 

quotient obtained by dividing the cubic by the minimal polynomial is a rational 

polynomial of degree 1. Hence one root of the cubic must be rational. 

Exercise 12.9. The argument is fairly well sketched in the statement itself. Since 

at least one of the pair of opposite wheels is not moving along a straight line, 

whichever one it is must be subject so some unbalanced force. 

Exercise 12.14. The primary immediate value is the creation of beautiful math¬ 

ematical structures. These structures, it turns out, can later be used to analyze 

problems of practical importance in physics. (Both the solution of an equation and 

the structure of crystals depend on an analysis of symmetries.) 

The restricted scope of exact methods in comparison with numerical methods 

is thus more than compensated for by an enhanced understanding of the underlying 

mathematical reality. 

Exercise 13.2. The two given values of the ratios give d\ = 3h and d2 = Ah, 

it follows that d2 — d\ = h. The similarity with the method used in China and 

India is very strong. One does not measure any angles. The elimination of this 

labor is paid for by the need to make two measurements of distance. However, 

the explicit use of the ratio of height to distance is a slight deviation from the 

double-difference method. 

Exercise 13.4. Taking the Pythagorean triple 52 + 122 = 132, we form the 

product 41 • 169 = 6929. This number is necessarily the sum of two squares, 

namely 232 -f 802. Hence we also have 41 = ( |§ j + ( f§ 

The principle on which this method is based is the identity 

(a2 + b2)(c2 + d2) = (ac -f bd)2 + (ad — be)2. 

Hence if c2 + d2 = g2, we have 

Exercise 13.11. Starting from velocity 0, the velocity after 4 seconds will be 

4 • 9.8 = 39.2 meters per second. This will be the average velocity for the entire 

8 seconds, and so the body will fall 8 • 39.2 = 313.6 meters. 

Exercise 13.14. The general level of education in the Middle Ages was very low, 

even among the nobility, few of whom could read or write. However, among those 
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who did have this ability or who had studied at the cathedral schools, the general 

picture of the world was not so simple as these stories suggest. True, medieval 

maps of the world seem terribly unrealistic nowadays; yet, especially after the 

twelfth century, when Aristotle came to be used as a standard authority, the picture 

of the universe held by the educated was as realistic as in Hellenistic times. In 

particular, the author of the Practica geometriae certainly knows that the sphere 

of the stars is incomparably larger than the earth. 

Exercise 14.1. The reader will probably not care to preserve a pedantic accuracy 

in this problem. The quartic equation to be solved is 

44.442955568025 x 10“ V - 0.833336125a2 + 31,250 = 0. 

This equation suggests we work instead with u = a/100, which satisfies 

44.442955568025w4 - 8333.36125u2 + 31, 250 = 0. 

With sufficient accuracy, this equation can be rewritten, dividing out the leading 

coefficient, as 

u4 — 187.5i/2 + 703.149 = 0. 

The quadratic formula then gives 

u2 = 93.75 - \/8789.0625 - 703.149 = 93.75 - 89.92 = 3.83. 

Thus u = \/3.83 = 1.95, and so a = 195, approximately. 

Exercise 14.4. Note: cos41° = 0.75470958 = sin 49°, sin41° = 0.656059029 - 

cos 49°. The angle at the North Pole whose sides are the longitudinal lines of New 

York and Paris is 76°, and its cosine is 0.241921895. Hence the cosine of the arc 

from New York to Paris is 

cosa - (0.75470958)(0.656059029)(1.241921895) - 0.614917798, 

and so c = 52.05405237°. The distance is therefore about 3592 miles. 

Exercise 14.6. We want two numbers whose difference is 992 and whose product 
q 

is (y ) = 8000. Following the ancient method from Mesopotamia (see Chap¬ 

ter 3), we know that the average of the two numbers is the square root of the 

sum of their product and the square of half their difference, that is, the sum is 

\/8000 + (496)2 = 504. the two numbers are therefore 504 + 496 = 1000 and 

504 — 496 = 8. Hence the solution is \Zl000 — y/S = 10 — 2 = 8. It is easily 

verified that this solution is correct. 

Exercise 14.13. When the discriminant is zero, the formula produces the root 

and since y3 + py + q = (y + 2 y/qj2^ (jj — y/qj2^ (because p = — 3 y/q2/4), it 

follows that the formula picks out the single root —2 y/q/2 rather than the double 

root y/q/2. 
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Exercise 14.17. The three numbers are a, ar, and ar2, where r > 1, a > 0. In 

terms of the x and y mentioned above, a = x, ar = yfxy, and ar2 = y. Given 

that yfxy is known, we have only to square it, and we know the difference and 

product of y and x. Hence finding them involves only our now-fast friend the 

quadratic equation. 
Observe that a modem student would probably proceed in a slightly different 

way, somewhat as follows. We wish to find a and r given that we know ar and 

ar2 - a = a(r2 - 1). Hence let c = ar, d = a(r2 - 1). We then have the quadratic 

equation 
c(r2 — 1) = dr, 

that is, cr2 — dr — c — 0, so that r = (d + Vd2 + Ac2)/2c and a = c/r = 

(—d + Vd2 + 4c2)/2. Just to verify that this is right, suppose c = 9 and d = 12. 

Then a = 3\/l3 — 6, ar = 9, and ar2 = 3>/l3 + 6. 

Exercise 14.24. As we have seen, in solving quadratic equations, radicals leading 

to irrational or complex numbers arise only when the solutions are themselves 

irrational or complex numbers. If there is resistance to the idea of the square root 

of a negative number (and there was), one can argue that the formula has failed 

because no solution exists. 

In the case of the cubic equation, however, the formula requires complex num¬ 

bers even when real solutions indubitably exist. The apparent breakdown of the 

formula therefore requires some explanation. The result of trying to explain it was, 

ultimately, the creation of the subject of complex analysis. 

Exercise 14.26. The connection, which was mentioned earlier as part of the work 

of Roger Cotes (Chapter 15), is the formula 

ede = cos 6 + i sin 6, 

which implies 
eie — e~l° el6 + e~%e 

sm6=---, cos 6 =---, 

so that sin a cos— ^[sin(a + (3) + sin(o; — (3)\. This last identity is equivalent 
to the fact that ea+d — eaed. 

Thus, to take our previous example, if we wished to find the product 9753 x 

78642 using logarithms, we would find a and fd such that ea = 9753 and eP = 

78642. These values would be approximately 9.185330209 and 11.27266119. We 

would then take their sum (20.4579914) and find its exponential, which would be 

the product of the original numbers: 

20.4579914 
G 766995425.9. 

Since the trigonometric functions were discovered before the exponential functions, 

this convenient property was first noticed in the language of trigonometry. Once 

again, it is a question of the same message being carried by two different media. 

Exercise 15.2. The ellipse has the equation x2 =4y — 4y2. We shall take the 

reference axis to be the y-axis. The equation of a circle centered at the point (0, C) 
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2 
and passing through the point (l, |) is x2 + (y - C)2 = 1 + ( \ - C) . This leads 
to the equation 

4y-V + (y-C)2 = l + (i-C)2. 

That is, 

3j/2 + 2(C - 2)y — (C — §) = 0. 

This equation has a single root when its discriminant is 0, that is, when 

(C - 2)2 + 3(C - |) =0. 

This quadratic equation says 

C2-Cx\ = 0, 

and this relation holds if and only if C = A. The normal is therefore the line 

y = 2 • 

Exercise 15.4. Suppose the tangent intersects the x axis at (T, 0). The tangent then 

has slope l/[(3\/3/2) — T}. Between two nearby points (x, y) and (x + h,y + k) 

on the curve the secant has slope k/h. Hence we need — T)k = h. When 

we subtract the coordinates of the two neighboring points, we find 

2xh + h2 2yk -f k2 
~ + :-= 0, 

9 

which yields 8xh -f 4h2 = —lSyk — 9k2. Since y = 1 and x = we find, 

neglecting 4/i2 and 9k2, that 12\/3h = —18k, that is, h = ~^k. Comparing 

this result with the previously obtained relation between h and k, we see that 
3y/3 2 - T = -Y, that is, T = 2y/3. 

Exercise 15.8. At the point (x0,yo), where yo = f(xo), the equation of the 

tangent line is 

y - f(xo) = f'(x0)(x - .To). 

Setting x = 0 here, we find y = /(t0) — xof'(xo). Suppressing the subscripts 

now gives a new function of x defined in terms of /. The area under this new 

curve from x = 0 to x = a is 

■a • a ■a 

/(t) - xf'(x)dx f(x)dx— / xf'(x)dx. 
Jo Jo JO 

In the second integral we integrate by parts, taking u = x, dv = f'(x) dx, so that 

du = dx and v = /(x). The second integral then becomes 

t/(t) 
x=a 

x=0 

•a 

/(t) dx. 

Hence the area under the new curve is 

•a 

2 / / (x) dx - o f (a) = 2 
Jo 

•a 

L Jo 
f(x) dx - ^a/(a) 
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Since the expression ^af(a) represents the area under the line ay = f(a)x between 

x = 0 and x = a, we are done. 

Exercise 15.11. If we formulate “equality after an infinite time” so as to avoid 

the actually infinite, we find ourselves saying that for any prescribed difference 

there is a finite time after which the quantities will differ by less than that amount. 

In that respect, Newton’s “proposition” becomes a mere tautology. It says that 

quantities that become arbitrarily close to each other in a finite time must come 

closer than any prescribed difference in some finite time. Thus Newton’s solution 

of the difficulty of “indivisibles” is, like Eudoxus’ solution of the difficulty of 

incommensurables, an attempt to make a definition that fits intuition. Newton’s 

attempt to turn his definition into a theorem resembles Euclid’s attempt to define 

the term point. 

Exercise 15.13. We have mentioned previously (Exercise 6.20) that Cavalieri’s 

principle fails for curves in the plane unless one defines the zero-dimensional 

volume of the intersection of two curves as the cosecant of their angle of intersec¬ 

tion. If this definition is made, horizontal lines intersect the diagonal in a point 

of zero-dimensional volume esc 45° = y/2, and they intersect the staircase either 

in a point of zero-dimensional volume 1 or (for a finite number of lines only) in 

a line segment whose zero-dimensional volume is infinite. We can either argue 

that the principle is not valid because of these exceptional lines, or else argue 

that the exceptions are negligible because there are so few of them. In the latter 

case the ratio of the zero-dimensional volumes is y/2 : 1, and so the diagonal 

has one-dimensional measure (length) equal to \/2 times the length of the side, as 

required. 

In general, however, length, area, and volume have to be carefully defined in 

order to avoid paradoxes. We have come too close to disaster using this principle 
to be entirely confident of its validity. 

Exercise 16.1. The work of proving this result is mostly contained in a lemma 

that asserts that chords on a circle are parallel if and only if the two arcs between 

them are equal. That fact, in turn is proved by drawing the line joining alternate 

endpoints of the two chords. The alternate interior angles formed by this transversal 

are inscribed in the two arcs, and are equal if and only if the chords are parallel 

(see Fig. A.2). Hence if we imagine a hexagon ABCDEF inscribed in a circle so 

that sides AB and DE are parallel, we conclude that arcs BD and EA are equal. 

If in addition sides BC and EF are parallel, we conclude that arcs CE and FB 

are equal. By subtracting, we conclude that ED - BC=AB — EF. When we 

transpose the two negative terms to the opposite side, we find that arcs DF and 

AC are equal, and this says precisely that CD is parallel to FA. 

Exercise 16.2. The cheapest way to get this result is to use analytic geometry. 

The four lines can be thought of as having the equations y = aix, i = 1,2, 3, 4 

(see Fig. A.3). A line that intersects all of them has equation y = mx + b, where 

rn £ {a1? a2, a3, a4}. Solving this last equation simultaneously with each of the 



ANSWERS TO SELECTED EXERCISES 497 

Figure A.2: Parallel chords on a circle. 

Figure A.3: Cross ratio of four lines cut by two transversals. 

first four gives the four points of intersection as 

/ b aib \ 

V CL-i — m ’ a,i — m ) 

The standard distance formula in the plane then shows that the cross ratio is 

AC • BE) \CL\ — 0-3 | 10,2 — U4 

BC ■ AD |o2 — ac| |oi — 04 

which is independent of m and b. Thus the cross ratio of four concurrent lines 

depends only on those lines. Putting this fact another way, the cross ratio of four 

points on a line remains the same if projected to another line from a point. 

Exercise 16.6. The assumption m3 = 3n3 implies m3 — n3 = 2n3, that is, 

(m — n)(m2 + run + 772) = 2r?3. Now if p is a prime factor of n, it must 

divide either m — n or m2 + mn T n2. The first case implies that it divides 

771 = n -P (m — n); the second case implies that it divides 777 2, and hence also 

divides m. It follows that n = 1, and so the integer m satisfies m3 = 3, which is 

absurd. 

Exercise 16.7. The assumed equation implies that y3 = z3 — x3 = (z — x)(z2 + 

zx Ex2). Let a be any prime divisor of z — x. Then a ^ 3 and a does not divide 

zx. (If a divided zx, it would also divide either 'z or x, and hence, since it divides 

z — x, would divide both z and x .) Then a does not divide z2 + zx + x2, since 

if it did, it would also divide 3xz = z2 + zx + x2 — (x — z)2. Since a3 divides 
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y3, it follows that a3 must divide x - z. In this way we see that z - x = p3. The 

proofs that z - y = q3 and x + y = r3 are similar. 

We now have 

r3 — (p3 — q3) 

r3 + (p3 — g3) 

2 
r3 + (p3 + q3) 

and hence, when the equation x3 4- y3 = z3 is multiplied by 8, we obtain 

2r9 + 6r3(p3 - g3) = r9 4- 3r6(p3 + q3) + 3r3(p3 + q3)2 4- (p3 4- <?3)3, 

which easily converts into 

r9 - 3r6(p3 4- q3) + 3r3(p3 4- q3)2 — (p3 4- g3)3 = 24p3q3r3, 

that is, m3 = 3n3, where m = r3 — (p3 + q3) and n = 2pqr. Since the only 

solution of this last equation is m = n = 0, the assertion follows. 

Exercise 16.9. The value of any given shot is the same for both players at any 

time during the game. Although it might seem that the opponent would be entitled 

to more money as a reward for having undergone the risk of losing everything on 

the first three shots, that player is now betting the same stake on a game in which 

the chances of winning are much better than when the stakes were actually laid 

down. The “reward” for withstanding the risk is an improved chance of winning. 

If the stakes had been divided before the game was played, the share given to the 

shooter’s opponent would have been even smaller. Hence the desire of a rational 

opponent to see the game continue will be stronger after the shooter has made three 

unsuccessful shots than before those shots were made. Put another way, “buying” 

the last five shots after three have been made assures the buyer of winning the 

remaining portion of the stake, whereas the entire stake remains at risk if those 

shots are bought before the game starts. 

Exercise 17.2. Because of the solution of the previous problem, it is easy to see 

that the point P corresponding to any point Q on the logarithmic spiral can be 

constructed very simply, by drawing the ray from the origin to Q. At the point R 

where the ray intersects the unit circle r = 1, draw a tangent to the unit circle of 

length RQ ( = r — 1). The point P will be the end of that tangent. The reason is 

that the arc length from (1,0) to Q is r — 1, as shown in the previous problem, 

while the tangent to the spiral at each point makes an angle of 45° with the radius 

vector to that point, that is (xdx + y dy)2 = (x2 4- y2)((dx)2 4- (dy)2) cos2 45°. 

This last relation is easily proved by taking x = e6 cos 6 and y = ee sin 6, so that 

dx = e0(cos 6 — sin 6) and dy = e6>(sin 6 + cos 6). It is then easy to compute that 
both sides equal e4e(d6)2. 
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This geometric construction of P makes it possible to find the equation of 

the involute. The relations among the parts of the triangle OQP show that if 

P = (p cos <£>, p sin (/?) and Q = (r cos 0, r sin 6), then 

1 4- (r - l)2 = p2 

and 

tan(0 — p) = r — 1 = v^p2 — 1 

so that 

ip = 0 — arctan (yp2 — l) 

= In r — arctan (\J p2 — l) 

= In (1 + \]p2 — l) — arctan (\/p2 — l). 

Exercise 17.10. The expected payoff after playing 210,000 games is larger than 

29999 • 2 + 29998 • 4 + • • • + 22 • 29998 + 2 • 29999 + 210’000 = 10,000 • 210’000, 

which is the total amount of money paid for playing the games. The reasoning here 

is that half of the games (29999) can be expected to end after one flip of the coin, 

paying off $2, one-fourth (29998) can be expected to end after two flips of the coin, 

paying off $4, etc. The sum above thus accounts for 29999 -f 29998 H-b 2 + 1 = 

2ioooo _ 2 games. On the remaining game, you will win something, so that it 

is reasonable to expect a profit after playing 2100oo games. Since 210 > 103, 

however, this number represents over lO3000 games, and this is larger than the 

number of games than would have been played by now, even if every atom in the 

known universe had played a thousand games per second since the universe began. 

Moreover, you are likely to win big or lose big, depending on the number of games 

taking more or fewer flips to decide. 

To cut the paradox down to more manageable size, the risk of playing 1024 

games at $10 per game (which would require a stake of $10,240) would not be 

large. The fact that makes the risk in general unacceptable is that breaking even 

depends on the occurrence of rather rare events, such as winning $1,024 dollars at 

least once in 1,024 attempts. The probability of this win on each attempt is indeed 

^24, but the probability that it will occur at least once in 1,024 attempts is less 

than 64%. (The probability that this big win will not occur is about e_1, which is 

0.367879441, for any large number of games.) In the nearly 37% of tries in which 

this big win does not occur, it must be compensated for by more than two excess 

wins of $512 (since the actual profit in two wins of $512 is only $1004, which is 

$10 less than the profit in one win of $1024), or more than four excess wins of 

$256 (the actual profit in four such wins is only $984), or some combination of 

these and smaller wins. In fact, playing at $10 per game, you could expect to lose 

money on 898 of the 1,024 games and win only 126 of them. 

Exercise 17.14. The equation that results from these values of p, q, and r is 
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whose general solution is y(x) = A cosh fix A- Bsmhfix, when A < 0, y(x) = 

Ax + B if A = 0, and y(x) = A cos fix A- B sin fix if A > 0. Here fi = y/]Af. 

Because of the boundary conditions that y(0) = y(2n) and y'(0) = y'(2tt), the 

first two of these are impossible, and A must be the square of an integer. 

Exercise 17.22. The first problem is easily done: 4 = (2 + 0\/^3)(2 + 0\/-3) = 

(1 + \/^3)(l — One can easily show by consideration of cases that the 

factors here are all irreducible, that is, the only divisors of 2 and 1 ± \/—"3 are 

units (±1 or =t\/—1). 
Factorization is unique for numbers of the form m + n\/—2. This is because a 

division algorithm exists for these numbers analogous to the Euclidean algorithm. 

That is, given m + n\/—2 and p A- qV~2, there exist r A- s\/—2 and t + uy/^2 

such that 

m A- n\/-2 — (p + q\f^2)(r + s\^—2) + (t + iz\/—2), 

and £2 + 2w2 < p2 A- 2q2. [The quantity N(m + n\/—2) = m2 + 2n2 is analogous 

to absolute value—indeed N(m + n>/—2) zA the squared absolute value of the 

complex number m A- n\/—2.] This division algorithm with a remainder smaller 

than the divisor allows the Euclidean algorithm to proceed and find a greatest 

common divisor for each pair of numbers. To prove that the division algorithm 

exists, let r be the integer nearest to the rational number (m/p + 2nq)/(p2 -f 2q2) 

and s the integer nearest to (np — mq)/(jp2 + 2q2). (These rational fractions are 

the real and imaginary parts x and y of the exact quotient x + y\f^2 of the two 

numbers, regarded as complex numbers.) Then let 

t = m — (rp — 2 qs) 

u — n — (rq + ps). 

Thus 

m,p + 2 nq 

p2 A- 2q2 

np — m,q 

p2 + 2q2 + V’ 

where |e| < | and |r/| < 3- It then follows that 

t = 

u = 

From this we can easily compute that 

t2 A- 2u2 = (e2 + 27]2)(p2 + 2q2) < (p2 + 2q2). 

( m:p + 2 nq \ (np — mq 
) + m Pip2 + 2g2) 1 P£ + Hp2 + 2q2 

-ps + 2 qrj, 

( m:p + 2 nq \ (np — mq \ 

A p2 + 2q2 ) (i£ P\p2 + 2q2) -PiE 

—qe — pp. 

r = 

s = 
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The existence of a division algorithm of this sort is the fundamental element 

in the proof that any positive integer is a unique product of primes. The standard 

proof of that fact, which is based on the existence of a greatest common divisor 

of any two elements, can be found in any elementary book on number theory. 

Exercise 17.23. Given any points (.xi,yi), i = 1,...,8, and unspecified real 

numbers x and y, the system of 10 inhomogeneous equations in 8 unknowns 

t\ + 12 + • • • F *8 = 1 

t\X\ + *2^2 ~F -b t'8x8 = X 

*i2/i + *22/2 + • • • + tsys = y 

t\xiyi + *2^22/2 + • • ■ + t8x8l/8 = xy 

t\X \ + t2X 2 F -F hxl = X2 

*i2/i F *2y\ + ‘ ‘ + *82/1 = y2 

t\x\yi + t2xly2 + -- • + tsxlys = x<2i/ 

hxiy\ -F t2x2y2 + • • • + *8^82/1 = xy2 

t\x\ + t2X 2 + • * • F t8xl = Xs 

*l2/l + *22/1 + • • • + *82/1 = y3 

can be solved under certain conditions. Gaussian elimination will provide (in 

general) two solvability conditions in the form of linear combinations of the right- 

hand sides that must vanish. These two conditions are cubic equations in x and 

y. These conditions will certainly be satisfied by {x^yi) (since with these values 

of x and y the equations hold with ti = 1, tj = 0 for j / i). At this point we 

have derived a constructive procedure for determining (generally) two independent 

cubic equations satisfied by the given 8 points. 

The procedure tells us something more, however. It shows us why there is no 

contradiction in the fact that more than 8 points may satisfy the two given cubics. 

For, given any additional point (x,y) satisfying these two cubics, we see that all 

the powers of x and y that occur when these values are substituted into the cubic 

are linear combinations of the corresponding powers of the original 8 points, the 

same linear combination for each power. 

Exercise 18.3. The tangential path of sparks is due to the sudden cessation of 

the adhesive force that held the hot particles to the wheel or to the object being 

sharpened. Gravity does not cease abruptly when an object rises above the earth’s 

surface. 

If the earth’s rotation speeded up and the adhesive forces that hold it together 

continued to operate, a person standing on the equator weighing nothing would 

effectively be in orbit at an altitude of 0 kilometers above the earth. If the rotation 

speeded up still further and the person stayed above the same point on the surface, 

the orbit would enlarge its radius, that is, the person would rise higher above that 

point. 

Exercise 18.4. The difference between a sphere and a hoop lies in their moments 

of inertia about their axes. For a sphere of radius R and mass M, this moment is 
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Is = |Mi?2. For a hoop, regarded as a circle of the same mass and radius, it is 

Ic = MR2. Each of these bodies, starting from rest and rolling down an incline 

that descends by a distance h, will acquire kinetic energy E = Mgh. The center 

of each will be moving forward with velocity v and each will be spinning with 

angular velocity u related by 
v 

R 

(To see this, note that the time required for the body to spin once is 2n/cu, and 

this is precisely the time required for the center to advance by 2nR, that is, 

2tt/(jj = 2nR/v.) The velocity v is different for the two bodies, however, because 

the kinetic energy acquired is the sum of the translational and rotational energy, 

that is, 

Mgh = l-Mv2 + l-Iu2 = \(M+ E)v2. 

This last relation shows that v is independent of R (since I/R2 is independent of 

R) and also of M. It does, however, depend on the shape of the object. In fact, 

we find that 

for the sphere and 
v = 

for the hoop. Thus a sphere will require less time to roll down the incline than a 

hoop. If Galileo actually performed this experiment, it was a lucky circumstance 

that he chose to use only spheres and not solid cylinders or cylindrical hoops. 

Exercise 19.3. If C were an element of some class, it would be a set and therefore, 

according to the rules for set formation, it would be an element of itself if and 

only if it were not an element of itself. Since we cannot allow this situation to 

occur, we must forbid C to be an element of any set. 

Exercise 19.5. The proof is not intuitionistically valid, since it asserts that “p or 

g” is true without proving either that p is true or that q is true. (In the intuitionistic 

propositional calculus, if p V q is a theorem, then either p is a theorem or q is a 

theorem.) 

Exercise 19.6. Consider the numbers Gm = Fm — 1 = 22™, and observe that 

Gm+1 = G2m. Hence Gm+k = G2^ . This equality asserts that 

Fm,+k — 1 + {Fm ~ l)2 , 

from which it follows (by the binomial theorem) that 

Fm+k = Ft ~ + ■■■- 2hFm + 2 = QFm + 2, 

That is, each Fermat number, when divided by a smaller Fermat number, leaves a 

remainder of 2. Thus the only possible common divisors of two Fermat numbers 

are 1 and 2. Since all Fermat numbers are odd, 2 cannot be a common divisor. 
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Hence if we take all the prime divisors of Fermat numbers, we must obtain an 

infinite set of primes. This is short of exhibiting an algebraic formula that always 

generates a prime, but it does give an algorithm that always generates a prime. 

The algorithm proceeds as follows. Form the number Fm. Then divide Fm by 

each positive integer, starting with 3, until the first integer is reached at which the 

remainder is zero. Let that integer, which is necessarily prime and necessarily less 

than or equal to Fm, be pm. Increment m and continue. 

This algorithm ought to satisfy an intuitionist, who should confess that the 

primes are at least potentially infinite. 

Exercise 19.7. The words faith and should are slippery ones. The agnostic position 

is always available to both scientists and mathematicians: it is possible to explore 
the consequences of a proposition without affirming the proposition. This position 

is not available in other areas, and it contradicts the meaning of the word faith. 
Mathematicians who use set theory, for example, can state that they are using it 

only to derive theorems and make no claim as to its consistency. In that respect 

a mathematician need not assert that we should draw any conclusions at all from 

our proofs, other than the hypothetical conclusion that “if all our assumptions are 

true (and hence consistent with one another), then our conclusions are also true.” 

Thus it can be argued that the word faith is misapplied in both mathematics and 

science, at least as far as pure logic is concerned. 

Where logic is satisfied, however, human psychology is not. If mathematicians 

did not have considerable confidence in the consistency of set theory, they would 

not use it, any more than chemists and physicists would devote large amounts of 

time and effort seeking a reaction (cold fusion, for example) that they did not 

believe possible. Thus the word faith comes back on the psychological level. It is 

a rather anemic faith, however, compared with the robust affirmations required by 

religions. Confidence exists in various degrees, expressed as probabilities: One can 

bet odds of arbitrarily high levels on the correctness of the multiplication table. As 

to the proof of Fermat’s last theorem or the four-color conjecture, however, most 

mathematicians would probably not give odds of more than 1000 to 1. 
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This pragmatic, issues-oriented history traces the 
discovery, solution, and application of mathematical 
problems 

From the arithmetic of the ancient Egyptians to the intricacies of 
postcalcuius math, The History of Mathematics: A Brief Course 
focuses on how mathematics has developed over the centuries. 
Roger Cooke has selected the most intriguing and significant prob¬ 
lems in the history of mathematics and asked of each one: Why 
was it important? How was it solved? How was its solution 
applied? Did its solution lead to further advances in the field? 

The carefully selected topics in this book include 

• The nature and origins of mathematics 

• Early Western mathematics as practiced by the Egyptians, the 
Mesopotamians, the Greeks, and the Romans 

• Non-Western traditions, including Hindu, Chinese, Korean, 
Japanese, and Islamic mathematics 

• The development of modern mathematics from the Middle Ages 
to the calculus and other seventeenth-century discoveries to 
today's number theory 

• The relationship of modern mathematics to science 

• Contemporary issues in mathematics, including the role of 
women and minorities 

Th is readable, up-to-date study is ideal for undergraduate courses 
in mathematics and mathematics education. Everyone interested in 
the field will want to keep a copy of The History of Mathematics 
close at hand. 

ROGER COOKE is a professor in the Department of Mathematics 
and Statistics at the University of Vermont. For many years he has 
taught a general introduction to the history of mathematics. 
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