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PREFACE 

Nonmathematicians often perceive mathematics as a self-contained, 

inaccessible body of knowledge that was essentially completed many 

years, or even many centuries, ago. Mathematics is seen as being iso- 

lated from most disciplines, especially from the humanistic endeavors 

of theology, philosophy, literature, and art. The concerns of mathema- 

ticians are imagined to have little in common with those of human- 

ists. But this understanding of mathematics is wrong on two counts: 

Mathematical objects and goals continue to évolve, and mathematics 

is not now, and never has been, as separated from the more humanistic 

disciplines as it might appear. 

In fact, at least since the sixth century B.C., theologians, philoso- 

phers, writers, poets, and artists have appealed to mathematical ideas 

and principles to inspire their work and further their arguments. For 

example the irrationality of the square root of two and the Pythago- 

rean theorem have been used to support theological and philosophical 

conclusions. At other times, these appeals have been not to precise the- 

orems but to general mathematical concepts, such as the continuum or 

orthogonality, to provide the intellectual underpinnings for an artistic 

style or an aesthetic theory. 

This book offers an examination of the evolution of a few mathe- 

matical concepts—number, geometric truth, infinity, and proof—and 

of the roles they have played in our continuing attempts to understand 

the cosmos and our place in it. Using examples from ancient through 

modern times, this book reveals the central role mathematical notions 

have played in the history of ideas. Moreover, some of the examples 

used here illustrate how subtle mathematical relationships, such as 

the one between a line segment and the points it contains, have chal- 

lenged both mathematicians and humanists. Through these historical 

examples, we discover that mathematical ideas are not esoteric ones, 

divorced from other intellectual or artistic pursuits, but are dynamic 

ones intrinsic to almost every human endeavor. 

The research for this book began during a visit to Williams College 

in January 2000. I thank both the mathematics faculty at Williams, es- 
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pecially Edward Burger, and the students in my monthlong course for 

providing me with an intellectually stimulating environment. I also 

thank my editor Trevor Lipscombe and acquisitions assistant Bron- 

wyn Madeo at the Johns Hopkins University Press and my copy editor 

Anne R. Gibbons for their expertise and good judgment. My colleague 

Eric Stade provided invaluable assistance with many of the book’s illus- 

trations. I extend my gratitude to Billy Collins for his generous permis- 

sion to reprint portions of his poem “Questions about Angels.” Finally, I 

thank my wife, Vesa, for her companionship, encouragement, and sup- 

port. I could not have completed this project without her. 

“Lysergic Acid,” from Allen Ginsberg, Collected Poems, 1947-1980 

(New York: HarperCollins, 1984). Reprinted by permission of 

HarperCollins Publishers. 

“Tonight I Can Write,” from Pablo Neruda, Selected Poems, translated 

by Nathaniel Tarn, Anthony Kerrigan, W. S. Merwin, and Alastair 

Reid, edited by Nathaniel Tarn (London: Jonathan Cape, 1970). 

Reprinted by permission of the Random House Group. 

“Avatars of the Tortoise” and “The Library of Babel,” from Jorge Luis 

Borges, Labyrinths: Selected Stories and Other Writings, translated 

by James E. Irby (New York: New Directions, 1964). Reprinted by 

permission of New Directions Publishing Corp. and Pollinger 

Limited. 

“Questions about Angels,” from Billy Collins, Questions about Angels 
(Pittsburgh: University of Pittsburgh Press, 1999). Reprinted by 
permission of the University of Pittsburgh Press and Billy Collins. 
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Music has long... provided the metaphors of choice 

for those puzzling over questions of cosmic concern. 

From the ancient Pythagorean “music of the spheres” 

to the “harmonies of nature” that have guided inquiry 

through the ages, we have collectively sought the 

song of nature in the enue wanderings of celestial 

bodies and the riotous fulminations of subatomic 

particles. With the discovery of superstring theory, 

musical metaphors take on a startling reality, for 

the theory suggests that the microscopic landscape is 

suffused with tiny strings whose vibrational patterns 

orchestrate the evolution of the cosmos. 

— Brian Greene, The Elegant Universe (1999) 

In the same year that Columbus discovered the New World and Leon- 

ardo sketched the first flying machine, Franchino Gafori opened his 

influential Theorica Musice with a discussion of the musical discover- 

ies of a sixth-century B.C. mathematician and mystic, Pythagoras of 

Samos. Although Pythagoras is now remembered primarily as a math- 

ematician or early music theorist, he was one of the most important 

philosophers for the Renaissance, and his ideas have continued to in- 

fluence Western scientific, metaphysical, and artistic thought. Indeed, 

had Pythagoras’ influence been limited to the Renaissance it is unlikely 

the twentieth-century writer Arthur Koestler would have written that 

Pythagoras’ “influence on the ideas, and thereby on the destiny, of the 

human race was probably greater than that of any single man before 

or after him.” 

Pythagoras’ importance to the history of ideas, and so his impact on 

“the destiny of the human race,” is not a consequence of his discover- 

ies in music or mathematics. Although those discoveries are signifi- 

cant, Pythagoras’ influence derives from his philosophical speculations, 
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many of which follow from two metaphysical ideals. The first of these 

is that the cosmos is not a contingent collection of beings, objects, and - 

bodies but has an underlying mathematical structure; the second is 

that the fundamental principle, or force, organizing the cosmos is har- 

mony, rather than chaos or coincidence. Taken together, these two be- 

liefs yield alluring equivalencies of truth with order, beauty with har- 

mony, and harmony with mathematical proportion, all of which have 

guided the development of natural philosophy, theology, literature, art, 

and mathematics for more than two and a half millennia. 

MUSIC AND TRUTH 

Heard melodies are sweet, but those unheard 

Are sweeter. 

— John Keats, “Ode on a Grecian Urn” (1820) 

The only evidence Pythagoras needed to corroborate his certainty of 

the essential roles of harmony and mathematics in the workings of the 

cosmos was his serendipitous discovery of a correspondence between 

harmonious sounds and mathematical ratios. While there are many 
variations of this story, the one most widely circulated throughout Eu- 
rope, before and during the Renaissance, was given by the early fifth- 
century Roman philosopher Macrobius (395-423). Pythagoras hap- 
pened to hear the hammerings of a few blacksmiths and noticed that 
the different blacksmiths’ hammers made different sounds: “Thinking 
that the difference might be ascribed to the strength of the smiths [Py- 
thagoras] requested them to change hammers. Hereupon the differ- 
ence in tones did not stay with the men but followed the hammers.”? 

Pythagoras then had hammers made of various weights and em- 
barked on an investigation of the relationship between the weights of 
hammers and the sounds they make when striking an anvil. He discov- 
ered that two hammers would produce harmonious sounds only when 
the weights of the hammers were proportional, that is only when the 
ratios of their weights equaled a ratio of two whole numbers, such as 
*/ or 3/4. Macrobius also described how Pythagoras experimented with 
large and small bells, with glasses of water filled to various levels, with 
strings stretched taut by light and heavy rocks, and with hollow pipes 
of differing lengths. In each case, harmonious sounds were produced 
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when the appropriate quantities, the size of the bells or the weights of 

the rocks stretching the strings, were in the same proportions as the 

weights of the blacksmiths’ hammers. 

This narrative was illustrated by a woodcut in Gafori’s text, which 

attributed the original encounter with the blacksmiths to the biblical 

figure Tubal-cain. According to this pictorial narrative, as a final act of 

experimentation Pythagoras turned to a musical instrument called a 

monochord, which medieval drawings depict as having a movable 

bridge and a string, or strings, stretched across a wooden sound box. 

This arrangement allowed the musician, or Pythagoras, to control the 

pitch of the plucked string by controlling the length of its vibrating 

segment. Pythagoras measured the lengths of these vibrating strings; 

he found that harmonious sounds are produced by the same mathe- 

matical ratios he had discovered in the blacksmiths’ shop. 

This may seem to be a rather small discovery, as we now understand 

the physics of a vibrating string and that a string’s pitch is associated 

with the frequency of its vibration. We also understand that what we 

perceive as harmony is partly determined by our culture; different tun- 

ings or scales have appeared at different times in different societies. So 

the significance of Pythagoras’ discovery is not that he quantified what 

the musicians of sixth-century B.C. Greece must have already known, 

at least intuitively. Pythagoras’ influence derives from the nature of 

his reasoning and from his ultimate appeal to beauty or harmony as 

sources of truth. 

As a first example of his speculations, consider what Pythagoras 

made of his modest musical discovery. Pythagoras could have simply 

noted the correspondence between mathematical ratios and musical 

harmonies and accepted that the reason for such a correspondence 

eluded explanation. (This is what Isaac Newton did in the seventeenth 

century when he discovered his law for the gravitational attraction be- 

tween two bodies, which required action at a distance, but offered no 

explanation for gravity’s existence.) Instead, Pythagoras sought a rea- 

son for what he had discovered. He concluded that mathematical ratios 

and musical harmonies are not simply connected; they are equivalent. 

It is not just that strings vibrating in certain ratios give rise to musical 

harmonies, but the harmonious sounds are mathematical ratios. Stated 

in Pythagoras’ most extreme terms, mathematical relations not only 
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tell us how to produce harmonious sounds but the sounds themselves 

are mathematical entities. 

This could easily have been the limit of Pythagoras’ inferences, and 

insofar as both music and mathematics are ethereal, almost other- 

worldly entities, Pythagoras’ ideas would have forever remained de- 

tached from the material world. But Pythagoras went further: He used 

the equivalence of musical harmonies and mathematical ratios to con- 

nect mathematics with the workings of the universe. This connection 

depends on a discovery every child has made—if a string is tied to a 

rock and the rock is whirled overhead it produces a sound. From this ob- 

servation, Pythagoras concluded that the movements of celestial bod- 

ies are associated with sounds, and as these sounds are in the heavens, 

they must be the purest imaginable musical tones. Reasoning from his 

belief that musical notes are mathematical entities, Pythagoras con- 

cluded that it was not the motion of the planets that made heavenly 

music but the music that moved the planets. 

These sounds are the music of the spheres, which the contemporary 

physicist and mathematician Brian Greene suggests provided the Py- 

thagoreans with a metaphor for understanding celestial motions. And 

it is reasonable to assume that lacking our modern, scientific language, 

Pythagoras would give a metaphoric explanation for planetary motion. 

But Pythagoras was speaking literally; he believed that music choreo- 

graphed the movements of the sun, moon, planets, and stars. From this, 

he concluded that an understanding of celestial motions could be ob- 
tained through an understanding of their guiding music. Using his ear- 
lier conclusion, that musical harmonies are mathematical, Pythagoras 

argued that celestial motions could be entirely understood through a 
study of numbers and their ratios. 

This is not simply the modern view that mathematical tools and 
techniques can aid in the analysis of almost any phenomena or that 
knowledge can be gained through the study of a mathematical model 
of a physical or social system. Pythagoras inferred from his under- 
standing of musical harmony and celestial motion that every aspect 
of the physical world is mathematical and can be understood through 
mathematical principles. For Pythagoras, mathematics did not provide 
a model for understanding physical phenomena; instead, there is a cor- 
respondence between the physical and the mathematical worlds and 
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we can learn about the material world through the study of mathemat- 

ics. Put slightly differently, mathematics was not just called upon to 

explain the world; rather, the mathematical world with its objects and 

relations is one and the same as the physical world. 

Even if Pythagoras had ended his metaphysical speculations with 

his postulation of the existence of the music of the spheres and not 

gone on to conclude that mathematical principles guide cosmology, he 

still would have been a significant figure for the Renaissance, and his 

ideas would have continued to influence poets and artists. As early as 

the sixth century, the Roman philosopher Boethius (c. 480-c. 526) in- 

corporated the Pythagorean understanding of music into a more ex- 

pansive scheme. In his De Musica Boethius described three different 

types of music: musica instrumentalis, musica mundana, and musica 

humana.’ The first of these is the ordinary music Pythagoras studied 

following his visit to the blacksmiths’ shop; the other two derive from 

the Pythagorean belief that music resides at the core of all material and 

human activity. Musica mundana is an extension of the Pythagorean 

music of the spheres to the entire cosmos; musica humana is the music 

of our souls, which is essential to our spirituality and existence. 

Because musica mundana and musica humana are inaudible, and 

associated with the heavens and our souls, poets and theologians have 

repeatedly appealed to these unheard melodies to express the power 

of their art or belief, for example, in the poem of the English poet John 

Keats (1795-1821) that introduces this section. A century after Gafori’s 

book appeared, the English poet Philip Sidney (1554-86) invoked the 

exquisite beauty of musica mundana to defend poetry against Puritan 

attacks. The Puritans’ disagreement was not with poets who attempted 

to describe divine magnificence or the place of humanity in the cos- 

mos, but by the late sixteenth century, some critics saw English poetry 

as nothing more than rhyming entertainment in the form of ribald 

comedies and satirical pieces. The Puritans, reacting to the base appeal 

of this poetry, embraced Plato’s fourth-century B.C. suggestion that po- 

etry be banned from the Republic; it was left to the poets themselves 

to either defend their art as a whole or explain the difference between 

salacious rhyming prose and great literature. 

Sidney embraced all poetry. In an essay published after his death, 

The Defense of Poesy (1595), now commonly referred to as An Apology 
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for Poetry, Sidney equated understanding poetry to hearing the Py- 

thagorean music of the spheres and wrote that those who do not ap- 

preciate poetry are dull and are denied the most sublime of all earthly 

pleasures; poetry connects the human spirit with the heavens. He went 

even further, saying that if “you cannot hear the planet-like music of 

poetry; if you have so earth-creeping a mind that it cannot lift itself 

up to look to the sky of poetry ... [then] when you die, your memory 

[should] die from the earth for want of an epitaph.”® 

William Shakespeare also appealed to the music of the spheres as 

evidence for the harmonious working of the cosmos. Toward the end of 

The Merchant of Venice, Lorenzo and his lady, Jessica, are in the garden 

at night. Lorenzo says to Jessica, 

Look how the floor of heaven 

Is thick inlaid with patines of bright gold. 

There’s not the smallest orb which thou behold’st 

But in his motion like an angel sings, 

Still quiring to the young-ey’d cherubins. 

In the next three lines Lorenzo speaks of the music in our souls, our mu- 

sica humana, which we cannot hear because of our mortal nature. 

Such harmony is in immortal souls; 

But whilst this muddy vesture of decay 

Doth grossly close it in, we cannot hear it.® 

The English poet John Donne (1572-1631), in one of his later poems, 
“Hymn to God, My God, in My Sickness,” wrote of preparing himself for 
death by preparing his soul’s harmony, his musica humana, to match 
the musica mundana in the heavens: 

Since Iam coming to that Holy room, 

Where, with Thy choir of saints for evermore, 

I shall be made Thy music; as I come 

Itune the instrument here at the door, 

And what I must do then, think here before.” 

Augustine adapted Pythagoras’ equivalence of music and number to 
explain the pleasure obtained from musica instrumentalis. According 
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to the twentieth-century Renaissance scholar S. K. Heninger, “Augus- 
tine assumes that there are numbers in the soul, archetypal patterns, 

and the soul is pleased ... when sounds reiterate these numbers. A 

sympathetic vibration is produced resulting in delight to the soul.”® We 

feel pleasure from this resonance; our delight emerges from the har- 

mony between the external musica instrumentalis and our elemental 

musica humana. While this may seem to be an arcane aesthetic theory, 

especially since modern music theory and psychology have attempted 

to obtain a rational understanding of music, it is still allowed that our 

experiences with music are emotional. Indeed, Susanne Langer, in 

her influential, mid-twentieth-century aesthetic theory, published as 

Feeling and Form (1953), attempted to explain why our most_basic re- 

sponses to music are necessarily emotional and not rational or intellec- 

tual. According to Langer, the forms of music match innate structures 

of our emotional lives. In Langer’s words, “Music is a tonal analogue of 

emotive life.” These innate structures are remarkably similar to Au- 

gustine’s numbers, and this is not a coincidence: these theories are evi- 

dence of the lasting influence of Pythagorean ideals. 

The Beat poet Allen Ginsberg (1926-97) anticipated that we should 

perhaps add a fourth type of music to Boethius’ list, the subatomic mu- 

sic of modern string theory. In his poem “Lysergic Acid” (1959) Ginsberg 

sought to hear these harmonies through a drug-induced mystical expe- 

rience: 

I allen Ginsberg a separate consciousness 

I who want to be God 

I who want to hear the infinite minutest vibration of eternal 

harmony’® 

A quarter century after Ginsberg wrote “Lysergic Acid,” physicists af- 

firmed that the properties of the smallest-imaginable objects in the 

cosmos are determined, in part, by their vibrations. In the current the- 

ory, a string cannot exist without its vibrational mode, and since vibra- 

tions are the source of music, these different vibrational patterns can 

be imagined to produce different musical notes. In this most modern of 

all theories of matter, the string and the music are inseparable; music 

determines the structure of matter. According to Greene, modern sci- 
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entists have rediscovered the Pythagorean harmony; the sounds Gins- 

berg sought to hear by altering his consciousness, string theorists seek 

to quantify, and hear, through rational, empirical investigation. 

THE PHILOSOPHY OF PYTHAGORAS 

Discourse not of Pythagorean things without light. 

— lamblichus, “Protrepticae Orationes ad Philosophiam” 

(3rd century) 

Our discussion of the mathematical accomplishments, or philosoph- 

ical positions, of Pythagoras must begin with a small disclaimer. At the 

core of this study is an examination of the influence of Pythagorean 

principles on the history of the idea of truth. A complication in carrying 

out this analysis is that if Pythagoras wrote anything it has not sur- 

vived; our knowledge of his ideas comes from the writings of his fol- 

lowers, his presumed influence on other philosophers, and the claims 

of later commentators. Consequently, there cannot be a clear delinea- 

tion of Pythagoras’ personal philosophy from those of others, and so 

when we speak of Pythagorean ideas or principles, as we have already 

done, we do so without intending to ascribe them to Pythagoras him- 

self. 

What is known is that Pythagoras established a colony in Elea, Italy, 

a full two centuries before Plato founded his academy in Athens, and 

this colony became the center of Pythagoras’ religious teachings and 

then the home for a cult that survived him. Some of these details come 

to us from a poem in which the Roman poet Ovid (43 B.C—A.D.17) sur- 

veyed the history of the world from its origin out of chaos to the reign 

of Julius Caesar: 

There was a man here, Samian born, but he 

Had fled from Samos, for he hated tyrants 

And chose, instead, an exile’s lot. His thought 

Reached far aloft, to the great gods in Heaven, 

And his imagination looked on visions 

Beyond his mortal sight. 

Pythagoras’ religion was a mixture of mystical beliefs and concrete, 
strangely specific, commandments known as symbola. This section be- 
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gan with symbolon number 12 from a list of 39 compiled by the third- 
century Syrian Neoplatonist lamblichus. A sampling from that list re- 
veals the range of topics Pythagoras is said to have addressed: 

no. 3. Sacrifice and worship barefoot. 

no. 7. When the winds blow, worship the noise. 

no. 8. Cut not fire with a sword. 

no. 15. Urin[ate] not, being turned towards the Sun. 

no. 22. Wear not a ring. 

no. 35. Take not a woman that hath gold, to get children of her. 
no. 37. Abstain from beans” 

Many of these symbola might at first appear to be whimsical; how- 
ever, they came to be greatly admired. In his highly regarded Life of Py- 

thagoras (1706), the classical scholar André Dacier wrote that a sym- 

bolon “has an Advantage over a Proverb, as being more concise and 

figurative, and containing a Moral more delicate and perfect.”"3 Some of 

these symbola can be given straightforward interpretations. For exam- 

ple, in the first century Plutarch took symbolon number 8 to mean not 

to provoke a man who is already angry.’* Some symbola are less clear, 

and consequently have been analyzed by many authors. In the late sec- 

ond or early third century, Diogenes Laertius, the biographer of Greek 

philosophers, wrote that Aristotle, in a lost book, On the Pythagoreans, 

had given several different interpretations of symbolon number 37 

“abstain from beans”: “Pythagoras enjoyn’d abstaining from [beans]... 

because they resembl'd...the Gates of Hell, as wanting Knees, the Sym- 

bols of Mercy and Compassion; ... or because they are made use of in 

all Governments, by many Persons, where the Magistrates are chosen 

by Lots.” Plutarch believed that this symbolon spoke to the tradition of 

using beans as a means of voting: Eating a bean or two would unfairly 

skew the results.*© Cicero, however, believed that beans were singled 

out because “this food is very flatulent, and contrary to that tranquility 

of mind which a truth-seeking spirit should possess.””” 

Pythagoras’ symbola do not appear to have influenced later reli- 

gious thinkers, but two of his religious beliefs did—the transmigration 

of souls and monotheism. The first of these, metempsychosis, is the be- 

lief that every creature is endowed with a soul that following death, re- 

turns to earth, possibly within an entirely different species. The specific 
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details of Pythagoras’ version of metempsychosis are not known; we do 

not know which individuals had souls that returned or if souls cycled 

through both animal and plant life. We also do not know if this was an 

endless cycle or if there was some ultimate resolution. 

Later authors offered their interpretations of the transmigration of 

souls. A century after Pythagoras, the influential philosopher Empe- 

docles described a reincarnation cycle, “For I have already become a boy 

and a girl, and a bush and a bird and a fish [corrupt text] from the sea.”** 

(Empedocles used metempsychosis to argue in favor of vegetarianism; 

since souls return in the form of various animals, it would be possible 

for a father to kill, and eat, his reincarnated son.) Plato also offered a ver- 

sion of metempsychosis, theorizing that every soul has an associated 

star. “To ensure fair treatment for each,” every soul’s first incarnation 

is as a man. If that person lives a good life, the soul returns to its star. 

Otherwise, until it subdues “all that multitude of riotous and irrational 

feelings which have clung to it,” the soul is reincarnated as a woman, 

then as “some animal suitable to [its] particular kind of wrongdoing.” 

In Metamorphoses, Ovid explained that 

All things are always changing, 

But nothing dies. The spirit comes and goes, 

Is housed wherever it wills, shifts residence 

From beasts to men, from men to beasts, but always 

It keeps on living.?° 

The other aspect of Pythagoras’ religion, his monotheism, is more 
closely related to his conception of mathematics—it is, in large part, 
a consequence of his understanding of numbers. For Pythagoreans, 
and all early Greek mathematicians, a number was what we now call 
a whole number, one of the quantities 1, 2, 3, and so forth. (The early 
Greeks did not accept negative numbers or have a symbol for zero.) Py- 
thagoras did not even accept 1 as a number; he thought of it as some 
sort of a primitive element, generating numbers through the opera- 
tion of addition: 1+ 1 = 2,1+1+41 = 3. As we will see in chapter 10, 
this concept of number persisted until the seventeenth century when 
the geometric continuum was adopted as a model for the collection of 
numbers (yielding the familiar number line). 

For the Pythagoreans, just as one had meaning beyond being a num- 
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ber so did two, three, four, and each of the other entities one generated. 
The belief that numbers have meanings was still widely held in the Re- 
naissance. In the sixteenth century, the French poet Salluste du Bartas 
(1544-90) presented an overview of the Renaissance understanding of 
the Pythagorean conception of numbers. He began with the meaning 
of one: 

the right 

Root of all Number; and of Infinite: 

Loves happinesse, the praise of Harmony, 

Nurc’rie of All, and end of Polymny: 

No Number, but more then a Number yet; / 

Potentially in all, and all in it.”2 

Salluste du Bartas’ association of one with “the Infinite” was not based 

on the simple observation that one generated all the counting numbers 

and that the list of counting numbers is without end, rather it indicated 

that one was considered to be the mystical source of everything; one 

was “Potentially in all” while having “all in it.” We examine this use of 

“the Infinite” in chapter 3 where we label it the metaphysically infi- 

nite. 

Salluste du Bartas also provided the meanings of two, “One’s heire 

apparent / As his first-borne; first Number, and the Parent / Of Female 

pairs,” of three, “Th’ eldest of odds, .. ./The first that hath beginning, 

midst, and end,” and of four: 

a full and perfect summ, 

Whose added parts just unto Tenne doe come; 

Number of God’s great Name, Seasons, Complexions, 

Winds, Elements, and Cardinall Perfections.” 

Since one was not a number, two was considered to be the first number 

and the “Parent Of Female pairs.” Three was considered to be the first 

odd number and was the number of the male and of harmony. Four 

was not only the number of the square, but it was the number of “God's 

great Name,” because after writing God’s Hebrew name, J-E-H-O-V-A-H, 

and removing the conventionally less significant vowels, God's name 

consists of the four letters J-H-V-H. 

Salluste du Bartas also hinted at a central idea in Pythagorean num- 
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ber theory—that representing a number as a combination of other 

numbers can reveal additional properties of the number. According to 

Salluste du Bartas, “The Ten, which doth all Numbers’ force combine.” 

By this he meant that through the representation 10 =1+2+3+4we 

discover that ten combines the origin of all numbers, female, male, and 

divinity or perfection.?? The Pythagoreans themselves adopted ten as 

their sacred number and represented it as the five-pointed star that has 

ten vertices. 

FIGURE 1.1. The ten vertices are the five corners of the 

interior pentagon plus the five points of the star. 

Ten also derived a geometric comprehensiveness from the equation 

10 = 1+2+3+4.To understand this it is necessary to understand the 

Pythagorean, geometric meaning of each number. Geometrically, one 

was the number of the dimensionless position of a point; two for a seg- 

ment or line, three for a polygon, or figure in the plane, and four for 

volume and shape. 

One Two Three Four 

FIGURE 1.2. The line segment connects two points; the triangle, 

three points; and the tetrahedron, four points. 

So, ten contained, or manifested, all dimensions and was inclusive of all 

geometric forms. Ten shared this property with the cosmos and so was 

assumed to have cosmological significance. 

The Pythagoreans knew about the sun, the moon, and the planets 
Mercury, Venus, Mars, Jupiter, and Saturn. In addition to these seven 
observable bodies, the Pythagoreans also thought of the earth and 
the sphere of the stars as heavenly bodies. This yielded a total of nine 
bodies, one short of the divine ten. The Pythagoreans needed to ad- 
just the observed cosmology to fit the mathematical divinity of ten. In 
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his Metaphysics Aristotle wrote that as the Pythagoreans thought the 

number ten was perfect, “they say that the bodies which move through 

the heavens are ten, but as the visible bodies are only nine, to meet this 

they invent a tenth—the ‘counter-earth.’”” 

In the sixth century Simplicius (c. 490-c. 560), who continued to 

study philosophy in Athens although it had been forbidden in 529, ex- 

plained why this counterearth had never been seen: The Pythagoreans 

did not believe the earth was at the center of the universe “but that 

there is a fire in the centre of the universe. And they say that the coun- 

terearth, which is an earth, moves around the centre... and they say 

that the earth comes after the counterearth and it, too, moves around 

the centre. ... [The counterearth] is not seen by us because the body of 

the earth always stands in front of us.”*° Thus, for the Pythagoreans, all 

heavenly bodies, including the earth, rotated around a central fire. This 

central fire was not considered to be a body; instead it was the driving 

force for the universe, and it has never been seen because the inhabited 

portion of the earth, conveniently, always faces the other direction. The 

counterearth was always on the opposite side of the central fire from 

the earth. 

Pythagoras’ universe, with its moving earth, did not survive into 

the Renaissance, but his number mysticism did. From the first century 

through the Middle Ages and Renaissance, the significance of the num- 

ber four was explored through catalogs of the ways it relates to, and 

possibly guides, the world. Salluste du Bartas alluded to this when he 

wrote that four is the “Number of God’s great Name, Seasons, Complex- 

ions, Winds, Elements, and Cardinall Perfections.” In the first century 

A.D. the Greek Theon of Smyrna (c. 70-c. 135) listed various categories 

that were organized into precisely four possibilities, as if these distinc- 

tions were not entirely linguistic. Furthering Pythagorean number 

mysticism, he found exactly ten categories: 

Numbers: 1, 2, 3, 4. 

Magnitudes: point, line, surface (i.e., triangle), and volume (e., 

pyramid). 

Simple Bodies: fire, air, water, and earth. 

Figures of Simple Bodies: pyramid, octahedron, icosahedron, cube. 

Living Things: seed, growth in length, in breadth, in thickness. 
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Societies: man, village, city, nation. 

Faculties: reason, knowledge, opinion, sensation. 

Parts of the Living Creature: body and the three parts of the soul. 

Seasons of the Year: spring, summer, autumn, winter. 

Ages: infancy, youth, manhood, old age.”® 

By the sixteenth and seventeenth centuries, the importance of four had 

been extended to metaphysics (with its four basic principles: essence, 

being, power, and motion), to physiology (with the four humors: phlegm, 

yellow bile, black bile, and blood, and with the four temperaments: san- 

guine, choleric, melancholic, and phlegmatic), and to physics (with the 

four natural motions: up, down, forward, and circular). Even in modern 

psychology there are considered to be four basic personality types: sens- 

ing judges, sensing perceivers, intuitive thinkers, and intuitive feelers. 

For the mystic/visionary Romantic poet William Blake (1757-1827), 

four stood for perfection. The twentieth-century poet Ezra Pound (1885— 

1972) wrote that four stood for Creation.”’ In his poem “Numbers,” Rob- 

ert Creeley (1926-2005) offered non-Pythagorean descriptions of each 

of the numbers from zero through nine. Creeley wrote that four “is a 

square, / or a peaceful circle,” an allusion to the ancient problem of try- 

ing to convert a circle into a square using entirely geometric methods.?8 

(If it were possible to “square the circle,” then the circle and square 
would have the same associated number and be mystically equivalent. 
The inability of the Greeks, or anyone else, to accomplish this construc- 

tion enshrouded it in mysticism. Mathematicians demonstrated the 
impossibility of squaring the circle in the nineteenth century, but this 
proof required an understanding of number significantly more sophis- 
ticated than that of the Greeks and is taken up in chapter 9.) 

For now, let's see why the Pythagoreans might have imagined that 
numbers were geometric, and hence material, objects. There are many 
ways to represent a whole number. A number can be indicated by 
marks: 

one| two|| three ||| four ||l| five || 

or by pebbles, or dots. Putting aside for the moment the Pythagorean be- 
lief that the material and mathematical worlds are one and the same, it 
is possible to see how representing whole numbers by arrangements of 
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pebbles may have led the Pythagoreans to believe numbers have geo- 
metric shapes—four pebbles could be used to illustrate a square and 
five pebbles could be used to illustrate a pentagon. Although these geo- 
metric configurations would be flat, some numbers can be given three- 
dimensional representations. The most familiar of these are numbers 
that can be represented as cubes, that is, numbers that represent the 
number of dots needed to form a geometric cube, such as the eight dots 
in Figure 1.3. 

FIGURE 1.3.A cube can be formed using 8 = 23,27 = 3°, or 64 = 43 dots. That these 

numbers are called cubes, just as the numbers 4 = 22,9 = 37, and 16 = 4? are called 

squares because they can be arranged to make squares, is a holdover from Pythagoras. 

From their geometric representations it is easy to imagine that 

numbers are geometric objects, and since geometric objects are mate- 

rial entities, numbers are as well. This is especially easy to believe for 

numbers having three-dimensional representations. Because numbers 

are real, and mathematical reality and physical reality are the same, 

the Pythagoreans believed matter consists of whole numbers. How- 

ever, the whole numbers themselves are not material and the points 

have no size, but numbers give rise to substance because they are as- 

sociated with material, geometric arrangements. 

It is possible to continue this reasoning: If numbers have meaning 

and are the essential constituents of matter, then every material object 

has an associated number. Although, in his Metaphysics, Aristotle was 

highly critical of the belief that numbers ascribe properties to material 

entities, it was generally held to be correct for two thousand years. In 

his exploration of the relationship between wisdom and mathemati- 

cal truths, Augustine wrote, “Every material object, however mean, has 

its numbers.” And, according to Augustine, these numbers enable us to 

judge objects “since we perceive the numbers that are stamped upon 

them?” 

As late as the seventeenth century Galileo still felt compelled to ad- 
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dress the possibility that numbers have meaning. In Galileo’s Dialogue 

Concerning the Two Chief World Systems, which compared the Aristo- 

telian and Copernican cosmologies (which are examined in chapters 4 

and 5), Simplicio asked whether or not three is perfect because “there 

is no passing beyond the three dimensions, length, breadth, and thick- 

ness; and that therefore the body, or solid, which has them all, is per- 

fect?”*° Galileo, through Salviati, replied that “whatever has a begin- 

ning, middle, and end may and ought to be called perfect. .. . [But] I 

feel no compulsion to grant that the number three is a perfect number, 

nor that it has a faculty of conferring perfection upon its possessors. I 

do not even understand, let alone believe, that with respect to legs, for 

example, the number three is more perfect than four or two.”3+ 

The extension of number properties to objects in the material world 

is the basis for a now-obscure form of divination known as geomancy. 

The origin of geomancy is unclear, although it has been attributed to 

Eurytas, an early follower of Pythagoras. A reading proceeds in two 

steps: the individual seeking information, or guidance, randomly pro- 

duces an array of stones, or points, then the geomancer gleans the 

significant patterns from this array and interprets them. This process 

evolved into a more formal system wherein each meaningful configu- 

ration came to consist of four rows, each containing one or two points 

(there are sixteen such possibilities). 

Heinrich Agrippa (1486-1535) illustrated these figures in his three- 
volume study of occult sciences, Three Books of Occult Philosophy, and 
associated each with an element (earth, air, fire, or water), with one 

or two of the known heavenly bodies (the moon, sun, Mercury, Venus, 
Mars, Jupiter, or Saturn), and with one of the twelve astrological signs.?2 

Two of these figures are Puella and Rubeus, below. 

° ° ° 

° ° ° 

° ° ° 

° ° ° 
FIGURE 1.4. In Agrippa’s text, Puella (/eft), was associated with Venus, 
Taurus, and water, and Rubeus (right), with Mars, Scorpio, and fire. 
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In “The Knight's Tale,” Geoffrey Chaucer (c. 1343-1400) appealed to 
these two geomancy figures to connect the actions on earth with the 
heavens: 

The statue of Mars upon a carte stood 
Armed, and looked grym as he were wood, 
And over his heed ther shynen two figures 
Of sterres, that been cleped in scriptures, 

That oon Puella, that oother Rubeus— 

This god of armes was arrayed thus.?3 

Although Pythagoras’ number mysticism did not survive, his ascrib- 
ing meaning to each of the counting numbers/1, 2, 3, and so forth, set 

them apart from other numerical entities such as 2 or -1 and so hin- 
dered the attempts of mathematicians, philosophers, and even theolo- 
gians to answer the question “what is a number?” But the Pythagoreans 
themselves discovered a conflict between their assumption regarding 

the centrality of the counting numbers and one of their most basic geo- 

metric truths. 

PYTHAGOREAN MATHEMATICS 

Greek mathematics is usually identified with geometry. Euclid’s 

third-century B.C. codification of geometric principles in his Elements 

has been widely studied since its translation into Latin in the twelfth 

century. Yet, Euclid’s Elements was not just about geometry. Four of its 

thirteen books were devoted to the study of ratio and proportion, and to 

the properties of whole numbers. For Pythagoras, geometry and num- 

ber theory were not unrelated areas. He believed that the only num- 

bers were the whole numbers and that any two geometric magnitudes 

could be compared using whole numbers or their ratios; so a study of 

geometric magnitudes required a study of numbers and of ratios and 

proportions. The Pythagoreans themselves discovered that the conjunc- 

tion of the beliefs that the only numbers are whole numbers and that 

all geometric relationships can be expressed using numbers is unten- 

able. Specifically, the Pythagoreans learned that if the whole numbers 

are the only allowable numbers, then there are geometric lengths that 

cannot be compared, and conversely, if numbers suffice to compare all 

geometric lengths then there are numbers other than whole numbers. 
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What was wrong with the Pythagorean view of mathematics was 

not so much its understanding of geometric objects and principles, but 

rather its conception of geometric measurement. This can be illustrated 

with an example from elementary geometry. Two triangles are similar 

if they have the same shape, in other words if one of them looks like 

the other one only magnified. Imagine that two triangles are known to 

have the same shape and that two sides of the first triangle are known, 

but only one side of the second triangle is known: 

| pe 
7 Ss 

FIGURE 1.5. Two triangles having the same shape, where the 

length of a side of one of the triangles is not known. 

The question is, What can be concluded about the magnitude S? The 

only way to find S, without simply measuring it with a ruler, is to use 

results from geometry concerning similar triangles. The Greeks knew 

that in two similar triangles the ratios of corresponding sides are equal; 

so using this result for the triangles above yields, in modern notation, 
71 = 7/3. To the Pythagoreans, this proportion was the last step in com- 
ing to an understanding of S; the proportion told the Pythagoreans that 
the relationship between the unknown base and 7 is the same as the 
relationship between 2 and 3. The modern point of view is to think of $ 

as a number and cross-multiply to obtain: $ = 4s. 

The Pythagoreans would not have accepted the modern measure- 
ment of ™/s because it is not a whole number. However, the Pythago- 
reans assumed that it was possible to assign a whole number to any 
mathematical length, such as the length S. The only catch is that it 
might be necessary to use a different ruler. To see this idea at work, 
consider the two triangles in Figure 1.5. The lengths of the sides of 
these triangles have been measured with a particular ruler, which is 
taken to be one unit long. If we were to remeasure the sides of these 
two triangles using a rule whose length is one-third the length of the 
original ruler then the measurements of these triangles would be 
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9 Rulers 
6 Rulers 

21 Rulers 14 Rulers 
FIGURE 1.6. If geometric lengths can be measured using fractions, then, by using 

a different ruler, the lengths can be measured using whole numbers. 

The Pythagoreans went beyond this work with similar triangles 
to make a fundamental assumption: that any two lengths could be 
comeasured with a single ruler; that is, there will always be a ruler that 

allows you to simultaneously assign whole-number lengths to any two 
geometric lengths. This belief is the Pythagorean commensurability as- 
sumption and is so important to the evolution of the concept of num- 

ber that it is worth displaying: 

Given any two segments, the ratio of their lengths 

equals a ratio of whole numbers. 

This rather technical-sounding statement is an expression of the Py- 

thagorean faith in order and harmony as the organizing principles of 

both the material and mathematical worlds. 

Empirical, or mathematical, evidence has frequently been at odds 

with aesthetic values; the Pythagoreans themselves discovered the very 

geometric relationship that undermined their commensurability as- 

sumption. And it is possible to describe what the Pythagoreans discov- 

ered without an appeal to any sort of mathematical calculation: The 

measurements of the side and diagonal of a square always violate the 

commensurability assumption. No matter which ruler is used, the mea- 

surement of one of these lengths will always require a less-than-full 

portion of the ruler. If a ruler precisely measures the length of a side of 

a square, L, then it will not quite capture the length of a diagonal of a 

square, D, and if a ruler precisely measures D it will not exactly measure 

L. The reason for this is the mathematical result uncovered by the Py- 

thagoreans: the ratio of the length of a side to the length of the diagonal, 

L/D, can never equal the ratio of two whole numbers. In our language, 

this is the statement that L/D is not a rational number; this ratio of 

geometric lengths is something the Greeks did not accept as a number. 

The spirit of this book is not just to describe conflicts between math- 
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ematical and aesthetic, theological, scientific, or artistic ideas, but 

where possible to explain the mathematical reasons for these conflicts. 

The explanation of how the Pythagoreans established the incommen- 

surability of the side and diagonal of any square removes the mystery 

from the result—it is simply a mathematical deduction requiring a 

short calculation based on what Johannes Kepler (1571-1630) would 

later call “the golden theorem of Pythagoras on the squares of the sides 

in a right-angled triangle” and what is known to us as the Pythagorean 

theorem.*4 

The Pythagorean theorem establishes a simple relationship between 

the lengths of the three sides of any triangle, provided one of its angles 

equals 90 degrees. If A and B denote the lengths of the two shorter sides, 

and C denotes the length of the side opposite the 90 degree angle, then 

A? +B? =C?. 

B 

FIGURE 1.7. The Pythagorean theorem states that in a right triangle with legs of lengths A 

and B, and with a hypotenuse of length C, the relationship A? + B? = C? always holds. 

The Pythagorean theorem is one of the first results in geometry 

whose truth is not immediately self-evident. The reason the Pythago- 

rean theorem is true is because we can construct a convincing argu- 

ment to support it. This argument is based on a simple geometric con- 

struction. The first step is to take four copies of the above triangle and 

one copy of a square whose sides are all C units long and rearrange the 

four triangles and the C by C square: 

ee, 

FIGURE 1.8. The three angles within the circle add up to 180 degrees, as they 
are the three angles in the original triangle. So if the four triangles are 
glued to the central square the five figures will form a larger square 

(because the sides of this larger figure will be straight lines). 
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The deduction of the Pythagorean theorem from the square in Figure 

1.8 then depends on the following observation: The total area con- 

tained in the original four triangles and C by C square is the same as 

the area of the larger square they comprise. If these two areas are cal- 

culated and equated, a bit of algebra leads to the formula known as the 

Pythagorean theorem: A? + B* = C?. What will be important later in this 

book is not this demonstration but the knowledge that it depended on 

the angles in the original triangle adding up to 180 degrees. 

The Pythagoreans now had two ways to examine the relationship 

between the square’s side and diagonal, the Pythagorean theorem and 

the commensurability assumption. Combining these two relationships 

it is possible to obtain a single equation / 

27 

where a and b are whole numbers. But a bit of experimentation shows 

that no matter which whole numbers a and bare tried, (4/b)? will never 

be precisely equal to 2. Looking at one hundred or even one thousand 

examples does not show that there are not some exotically large whole 

numbers a and b with 2 = (4/b)?, but the Pythagoreans themselves 

proved mathematically that no such whole numbers can exist. In our 

notation, the Pythagoreans discovered that the square root of two does 

not equal any fraction; in modern terminology, the square root of two 

is an irrational number. 

This irrationality of the square root of 2 told the Pythagoreans that 

it is impossible to capture the relationship between the side and diago- 

nal of a square through the use of whole numbers and ratio and pro- 

portion. The side and diagonal of a square are an example of what was 

not supposed to exist, incommensurable geometric magnitudes. 

GEOMETRY AND NUMBER 

While the discovery of incommensurable lengths undermined the 

Pythagorean conception of mathematics, it did not weaken the Pythag- 

oreans’ faith in the equivalence of physical and mathematical reality. 

Thus, this discovery did not precipitate a crisis, except for Hippasus 

(born c. 500 B.C.), who is said to have been drowned at sea after uncov- 

ering it. But the existence of incommensurable lengths did force the 

Greeks to acknowledge a conflict between their assumptions that the 
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only numbers are whole numbers and that all geometric lengths can be 

understood through whole numbers and their ratios. Rather than sim- 

ply expand their concept of number, and accept that some quantities 

are outside the realm of the harmonious ratios of whole numbers, the 

Greeks chose to pursue geometry without numbers, thus separating 

the study of mathematics into two subjects: arithmetic (the study of 

properties of numbers) and geometry. Having abandoned the original 

Pythagorean principle, all is number, the Greeks turned to geometry 

for both their understanding of the material world and their aesthetic 

theory. 



There are natural Causes of Beauty. Beauty is a 

Harmony of Objects, begetting Pleasure by the 

Eye. There are two Causes of Beauty—natural and 

customary. Natural is from Geometry. ... Always the 

true test is natural or geometrical Beauty. 

Geometrical Figures are naturally more beautiful 

than other irregular [figures]; in this all consent as to 

a Law of Nature. 

— Sir Christopher Wren, “Appendix: Of 

Architecture,” Parentalia (1750) 

Chapter 1 examined the influence of the presumed equivalence of the 

material and mathematical worlds on attempts to understand the cos- 

mos, and in particular on the belief that the universe is guided by har- 

moniously interacting mathematical structures. But there is another 

conception of reality that has greatly influenced our attempts to un- 

derstand the universe that also relies on mathematical perfection. This 

view of reality is the belief that beyond the world of our experience, 

there is another, more real, possibly more important world. The mate- 

rial world is contingent and mutable; absolute beauty, or truth, resides 

only in the other inaccessible realm. In his important book The Great 

Chain of Being (1936), A. O. Lovejoy labeled this belief otherworldliness 

and gave it the following definition: “(It is] the belief that both the gen- 

uinely ‘real’ and the truly good are radically antithetic in their essential 

characteristics to anything to be found in man’s natural life.”* 

This chapter explains how otherworldliness and Pythagorean prin- 

ciples blended to yield one of the most mathematically appealing of all 

attempts to comprehend the tangible world. The geometric conce
ption 

of matter given by Plato in the fourth century B.C. Plato’s theory is not 

just a historical curiosity; it relies on two ideas the twentieth-century 

physicist Werner Heisenberg pointed out still influence the course of 

scientific investigations: “the conviction that matter consists of minute 
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indivisible units” and “the belief in the purposely directive power of 

mathematical structures.”? 

By way of contrast, Pythagoras’ belief in numbers as the basic con- 

stituents of matter does not manifest either of Heisenberg’s principles; 

Pythagoras’ numbers were not material objects governed by mathe- 

matical principles but geometric configurations whose properties were 

determined through number mysticism. 

GEOMETRIC BEAUTY 

In 1817 Keats attended an exhibit of marble sculptures that Thomas 

Bruce, the Seventh Earl of Elgin, had arranged to bring to England from 

the Parthenon. Among these sculptures was Three Goddesses. 

PLATE 2.1. Three Goddesses (Hestia, Dione, and Aphrodite) (frieze from the 

east pediment of the Parthenon). Phidias (c. 490-430 B.C.). British Museum, 

London. Photo: Scala/ Art Resource, New York. 

Upon viewing these statues, Keats was seized by the realization that 
material beauty can provide a portal to the hidden truths of a more sig- 
nificant world beyond our experience. He published his reaction to the 
exhibit a few days later in his poem “On Seeing the Elgin Marbles.” 

My spirit is too weak—mortality 

Weighs heavily on me like unwilling sleep, 
And each imagin’d pinnacle and steep 
Of godlike hardship, tells me I must die 

Like a sick eagle looking at the sky. 
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Yet ‘tis a gentle luxury to weep 

That I have not the cloudy winds to keep 

Fresh for the opening of the morning’s eye. 

Such dim-conceived glories of the brain 

Bring round the heart an undescribable feud; 

So do these wonders a most dizzy pain, 

That mingles Grecian grandeur with the rude 

Wasting of old Time—with a billowy main— 

A sun—a shadow of a magnitude. 

In a letter to his friend Benjamin Bailey, Keats explained what he be- 

lieved to be the source of these statues’ power: ‘What the imagination 

seizes as Beauty must be truth—whether it existed before or not-—for 

I have the same Idea of all our Passions as of Love they are all in their 

sublime, creative of essential Beauty.”? Keats concluded a later poem, 

“Ode on a Grecian Urn,” with a clear expression of this aesthetic theory 

in a famous equivalence: 

When old age shall this generation waste, 

Thou shalt remain, in midst of other woe 

Than ours, a friend to man, to whom thou say’st, 

“Beauty is truth, truth beauty,—that is all 

Ye know on earth, and all ye need to know.”* 

Pythagoras began with the axiom 

reality is mathematical 

and with an unshakable belief in harmony as the organizing principle 

of the cosmos. Combining Pythagoras’ axiom with Keats’ equivalence 

beauty is truth, truth beauty 

yields the Pythagorean principle 

truth is mathematically harmonious. 

This is the aesthetic value adopted by Greek artists and architects, and 

espoused by Wren (1632-172 3) in the quotation that introduces this 

chapter. 

Wren was the architect whose ideas remade the profile of London 

following the destructive fire of 1666. In his architectural theory, Wren 

distinguished natural beauty from customary beauty; natural beauty 
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arises from geometric harmony, and customary beauty from culture 

and experience. Geometric beauty is more important than customary 

beauty precisely because mathematical truths are more fundamental 

than coincidental, material ones. For example, Wren believed the Gothic 

designs of the great cathedrals of Europe were chaotic and confused, 

and the use of nooks and crannies conformed to custom and not to 

natural beauty (for example, in the Milan cathedral, late fourteenth to 

early sixteenth century, or in the Notre Dame cathedral in Paris, twelfth 

century). Wren’s Saint Paul’s Cathedral has clearer lines; its geometric 

form is more evident and manifests the more fundamental beauty 

Wren sought. Wren, however, was not an otherworldly thinker; Wren 

simply accepted what mathematicians, cosmologists, artists, and sci- 

entists alike have continued to accept—the profundity of mathemati- 

cally harmonious truths. 

There is another aspect of Wren’s architectural theory that is, per- 
haps, more psychological than philosophical, the notion that specific 
geometric forms are particularly attractive, and so profound. The Py- 
thagoreans also held some geometric forms to be more beautiful than 
others; to appreciate the mathematical aesthetics underlying these 
forms it is necessary to return briefly to Pythagorean mathematics. 

PYTHAGOREAN GEOMETRY 

Pythagorean, and more generally Greek, geometry had two compo- 
nents: the deduction of new geometric truths from known ones and 
the explicit construction of geometric figures and relationships. For 
the Greeks, a geometric construction was more appealing, and so more 
acceptable, if it could be performed using only a straightedge and a 
compass, that is by either drawing a line segment or an arc. Measure- 
ment was not allowed, the Pythagorean discovery of incommensurable 
lengths had made it suspect. 

In The Secret of the Universe (1596), Kepler referred to the Pythago- 
rean theorem as “the golden theorem of Pythagoras.” Kepler continued 
with the assertion that there is another “treasury of geometry, on the 
line divided in the extreme and mean proportion.”> The second geomet- 
ric result Kepler so admired illustrates the sort of balance and harmony 
the Pythagoreans sought to establish through geometric methods. The 
precise result may not at first seem to be especially attractive—the Py- 
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thagoreans developed a geometric procedure for dividing any segment 

into two pieces whose lengths satisfy a special relationship. Specifi- 

cally, given the segment from a point A to a point B, the Pythagoreans 

showed how to find a point P on the segment so that the lengths of the 

segments AB, AP, and PB satisfy a special relationship: the proportion 

AP/AB = PB/AP. The modern point of view is to take the location of P as 
an unknown, view the proportion AP/AB = PB/AP as an equation, and 

use the rules of algebra to solve the equation. (The Pythagoreans did 

not have algebraic techniques; Arab mathematicians invented algebra 

a millennium later.) 

Part of the Pythagoreans’ interest in the proportion AP/AB = PB/AP 

is its connection with their sacred star, below. In’this star each line that 

crosses one of the longer segments divides it into its extreme and mean 

ratio. Specifically, the point P divides the side AB into its extreme and 

mean proportions, as does the point Q. Thus, according to the Pythago- 

reans, the star is beautiful, in part, because it manifests these math- 

ematical proportions. 

FIGURE 2.1 The Pythagorean sacred star. 

The extreme and mean proportionals are also precisely those that 

give rise to the so-called golden rectangle. The ratio PB/AP is the same 

as the ratio of the width to length of any golden rectangle; so a golden 

rectangle can be formed by taking any segment, finding the point P 

giving the extreme and mean ratio, and bending the segment at P to 

form two sides of a rectangle. Golden rectangles, which are purported 

to be the most visually pleasing of all rectangular forms, can be dis- 

cerned in both architecture and art. In architecture, golden rectangles 

can be superimposed on photographs of the Parthenon and the United 

Nations building in New York. Representations of golden rectangles are 

not quite as evident in art, but several authors have claimed to have 

found them, for example in Seurat’s Circus Sideshow (below) and Mon- 

drian’s Place de la Concorde (1943). For a convincing refutation of these 
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claims see Mario Livio’s book The Golden Ratio: The Story of Phi, the 

World’s Most Astonishing Number. 

PLATE 2.2. Circus Sideshow, 1887-88. Georges Seurat (1859-91). Oil on canvas, 

391/4 x 59 in. (99.7 x 149.9 cm). Bequest of Stephen C. Clark, 1960 (61.101.17). 
Photo: Bruce Schwarz. The Metropolitan Museum of Art, New York. Image © 

The Metropolitan Museum of Art / Art Resource, New York. 

PLATO’S THEORY OF CREATION 

God pour‘ the Waters on the fruitfull Ground 

In sundry figures; some in fashion round, 

Som square, som cross, som long, som lozenge-wise, 

Some triangles, som large, som lesser size. 

— Salluste du Bartas, “The Third Day of the First Weeke,” His Devine Weekes and 

Workes (16th century) 

Plato’s Pythagoreanism is expressed almost exclusively in the Ti- 
maeus, which he is said to have written after traveling to Italy to meet 
with two of the remaining Pythagoreans (the astronomer Timaeus 
and the mathematician Archytas). In the Timaeus, Plato discusses an 
impressive array of topics, including cosmology, a theory of matter, hu- 
man psychology, and the lost culture of Atlantis. Plato’s understanding 
of matter was tied to its origin, and as his theory must accommodate 
the principles of his creation myth, it is natural to begin there. 

Before the Timaeus, the creation of the universe was based on an or- 
ganic model involving either birth or growth; part of Plato’s originality 
lies in his assertion that there was a single creator for all things. The 
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Creator, or Maker, first established a structure for the heavens and then 

produced the substance of the material world. In performing these acts, 

the Creator employed mathematical principles: Number mysticism 

and harmony determined the form of the heavens; aesthetics and ge- 

ometry, the structure of matter. 

To form the cosmos, the Creator positioned circles of world soul 

around the earth at distances determined by the squares and the cubes 

of the so-called Pythagorean numbers one, two, and three (so using 

the numbers 1'= 12. = 17,4 = 27,9 = 37,8 = 23, and 27 = 37). The Creator 

filled the rings between these circles with more strips of world soul at 

distances determined by mathematically harmonious values. Plato de- 

scribed these distances in terms of mathematical ratios, writing that 

the Creator fills the intervals between the original circles by inserting 

“two mean terms in each interval, one exceeding one extreme and be- 

ing exceeded by the other by the same fraction of the extremes, the 

other exceeding and being exceeded by the same numerical amount.”” 

Having established a cosmic framework for the universe, the Creator 

turned to the construction of its material. To understand the Creator's 

role here it is necessary to recall that Plato distinguished between two 

worlds—the world of perfect forms and the imperfect world of expe- 

rience. The otherworldly realm of forms, of mathematical objects and 

truths, is the world of being; the objects in the material world are weak 

approximations of their perfect, real forms. The Creator modeled the 

construction of matter on mathematically beautiful forms from the 

world of being, attaching triangles together to produce harmonious 

geometric structures for the four elements: earth, air, fire, and water. 

Plato did not explain the origin of the Creator, but he did say that 

the Creator’s power derived from his goodness. Because the Creator is 

good, he combined chaotic substance in mathematical proportions to 

produce the universe and the basic components of matter. This Creator 

shares attributes with the Western, Christian God. This is not so mucha 

coincidence as an indication of Plato’s influence. By the fourth century, 

Augustine had already noted this connection; he praised Plato, along 

with the third-century Neoplatonists, for their conception of a creator 

of all things. In The City of God, a description of the world’s history
 from 

Genesis to Last Judgment, Augustine wrote that because of God's “im- 

mutability” and “simplicity,” the Platonists “realized that God is the 

Creator from whom all other beings derive, while he is himself un- 
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created and underivative.” Augustine equated Plato’s Creator and the 

Christian God, and went on to explain how a pagan could have ob- 

tained such knowledge without access to Scripture by quoting the 

Bible, Romans 1:19-20: “What can be known of God has been revealed 

among them. God in fact has revealed it to them. For his invisible reali- 

ties, ... have been made visible to the intelligence through his created 

works, as well as his eternal power and divinity.” 

In a letter to Saint Jerome, Augustine even took up the analogy of 

God creating the world as a musician makes music, so mirroring Plato’s 

placement of the strips of world soul: “If a man who is skilled in com- 

posing a song knows what lengths to assign to what tones, so that the 

melody flows and progresses with beauty by a succession of slow and 

rapid tones, how much more true is it that God permits no periods of 

time in the birth and death of His creatures—periods which are like the 

words and syllables in the measure of this temporal life—to proceed ei- 

ther more quickly or more slowly than the recognized and well-defined 

law of rhythm requires, in this wonderful song of succeeding events.” 

In Plato’s theory, the Creator's ability to form order from chaos 

emerged from his goodness. When transferred to Christian thought, 

this goodness was often associated with benevolence and with the 

preference for order over disorder. Late in the sixteenth century, in “An 

Hymn in Honour of Love” (1596), the poet Edmund Spenser (1552-99) 

appealed to Plato’s description of the Creator's role to describe God’s 

creation of order from elemental chaos. Before God’s intervention, 

The earth, the air, the water, and the fire, 

Then ’gan to range themselves in huge array, 

And with contrary forces to conspire 

Each against other, by all means they may, 

Threat’ning their own confusion and decay: 

Air hated earth, and water hated fire, 

Till Love relented their rebellious ire.1° 

For both Plato and Spenser, the world was created from chaos. In the 
Timaeus the chaotic world of the receptacle of becoming did not belong 
to our world; it was apart from the material world of experience. In 
Spenser's poem the chaotic world was the material world before the 
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intervention of the Christian God. Unlike Plato’s Pythagorean world, 

the one Spenser’s Creator produced from the primordial material of 

the receptacle of becoming did not necessarily have to be harmoni- 

ous; an omnipotent God could just as well have created a hell on earth 

as a sympathetic cosmos. As Spenser explained in the next stanza of 

his poem, God chose to make the cosmos harmonious, and he did so 

through an application of his benevolence, which Spenser called love. 

For a discussion of parallels between Plato’s Creator and Renaissance 

poetic theories, and views of the poet, see this chapter's postscript. 

THE NATURE OF SUBSTANCE 

Plato’s description of the building blocks for matter accommodated 

three Greek theories: that everything is essentially mathematical, that 

all matter consists of some primary substance or substances, and that 

all objects are made up of indivisible atoms. To appreciate how seam- 

lessly Plato integrated these ideas into a unified whole, this section be- 

gins with a brief overview of primary-substance and atomic theories. 

The seventh-century B.C. natural philosopher Thales proposed that 

water was the essential component, the arche or first principle, of all 

matter. To the modern-day mind this sounds absurd. But in light of the 

ancients’ limited scientific knowledge the choice of water is not that 

farfetched. Thales understood that if there were only a single funda- 

mental substance it must be malleable and capable of moving from 

place to place, and water satisfies these requirements. 

The primary-substance theory was continued by Anaximander 

(c. 610-546 B.C.), for whom it was air, and by Heraclitus (c. 500 Bch), for 

whom it was fire. These two theories were more nuanced than Thales’. 

Anaximander understood that if there were only one substance, it 

would fill up all of space in a uniform manner and no object could 

be discriminated from any other; he introduced the idea that matter 

emerges from a homogeneous existence through the attraction and 

repulsion of opposites. Heraclitus introduced another concept, which 

became part of Plato’s theory, that of transformation: 

As all things change to fire, 

and fire exhausted 

falls back into things.** 
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A generation before Plato, Empedocles had augmented this model 

by taking earth, air, fire, and water as the fundamental elements. For 

Empedocles, nature composed the material of the world as a painter 

composes a picture: 

As when painters adorn votive offerings, 

men well-learned in their craft because of cunning, 

and so when they take in their hands many-coloured pigments, 

mixing them in harmony, some more, others less, 

from them they prepare forms resembling all things, 

making trees and men and women 

and beasts and birds and water-nourished fish 

and long-lived gods, first in their prerogatives. 

There were two forces at work in Empedocles’ theory, love and strife; 

these two forces were as primitive as are the elements, earth, air, fire, 

water (this theory should be thought of as having six components, the 

two forces plus four elements). Love combines elements, and so pro- 

duces harmony; strife moves elements apart, and so produces chaos 

and disorder. 

The third idea Plato blended into his theory of matter was borrowed 
from two of his contemporaries, Leucippus and Democritus. Leucippus, 
followed by Democritus, proposed that all matter consisted of atoms. 
For them, an atom was an indivisible piece of matter perpetually in 
motion within empty space. Leucippus’ atoms were unlimited in shape 
and number. Democritus contributed to this atomic theory by develop- 
ing its epistemological implications. According to Democritus, “In real- 
ity we know nothing; for truth is in the depths.” 

Democritus believed that the only properties of matter we can per- 
ceive are ephemeral ones we impose on short-lived arrangements of 
atoms: “By convention sweet and by convention bitter, by convention 
hot, by convention cold, by convention colour; but in reality atoms and 
void."** Foreshadowing Allen Ginsberg’s desire to understand reality 
by hearing the harmonies of the “minutest vibration[s],” Democritus 
wrote that there are two forms of knowledge, one “genuine” (the one 
Ginsberg sought) and the other “bastard”: “To the bastard form belong 
all of these, sight, hearing, smell, taste, touch, but the other is genuine 
and separate from this. When the bastard form can no longer see any- 
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thing smaller or hear or smell or taste or perceive by touch, but to a 

finer degree...” Thus, according to Democritus, we can have genuine 

knowledge of an object, or of matter, only through an understanding of 

its constituent atoms. 

There is no sense of mathematical perfection in the Leucippus/ 

Democritus atomic theory. Their atoms had an unlimited number of 

forms and they did not necessarily move along mathematically harmo- 

nious paths. To asometimes-Pythagorean like Plato an atomic theory of- 

fering chaotic motion and chaotic shapes as the basis of all matter was 

no more acceptable than Anaximander’s appeal to the chaotic interac- 

tion of opposites. Moreover, Plato did not quite embrace the Leucippus/ 

Democritus early manifestation of the reductionist principle, that 

knowledge comes from explaining events, or objects, by relating them 

to a variety of forms or laws. Instead, Plato suggested that the form of 

an atom influences its properties, but the true nature of material was 

not to be found through an investigation of its constituent atoms, be- 

cause these are only approximations of perfect, otherworldly forms. 

Nonetheless, Plato adopted part of the Leucippus/Democritus atomic 

theory; he postulated that there are four, not necessarily indivisible, 

atoms, one for each of the fundamental elements, earth, air, fire, and 

water, but their otherworldly forms were understood entirely through 

mathematical principles. 

Plato began the development of his theory of matter with a meta- 

physical question: How do we know matter exists? Given Plato’s ten- 

dency to be an otherworldly idealist, his response was surprisingly 

empirical: We know matter exists because we can see it and feel it. Of 

these experiences, the first requires that there be light, the second that 

there be a component of tangibility. Before Robert Boyle’s experiments 

with luminous bacteria and fungi in the seventeenth century, fire was 

the only known source of light. Fire was thought to produce candle- 

light, sunlight, and lightning, so Plato explained that light, that is, fire, 

must be a fundamental element. Tangibility was more problematic as 

it has multiple manifestations, sand, stone, trees, and cats, for example. 

Rather than explore what these material objects have in common, Plato 

only sought to find the element that distinguished them, and every- 

thing terrestrial, from the heavens. Plato took Empedocles’ multipur- 

pose earth as this element. 
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Next, instead of appealing to our experiences with the atmosphere, 

wind, and sea to conclude the cosmos contains Empedocles’ other two 

elements, air and water, Plato took a more mystical and geometric ap- 

proach. Plato claimed that “it is not possible to combine two things 

properly without a third to act as a bond to hold them together,” but 

he did not appeal to a metaphysical force, such as Empedocles’ love. 

Instead, Plato wrote that “the best bond is one that effects the closest 

unity between itself and the terms it is combining; and this is best done 

by a continued geometrical proportion.”’® 

In our discussion of the extreme and mean proportional, we found a 

point P dividing a line segment AB into two segments, whose lengths 

satisfy a certain proportion. This problem has an analogue for numbers: 

Given two whole numbers a and b, find a whole number x, between a 

and b, so that 4/x= X/b. (If we let r equal this ratio, that is, if we let r = 

a/x = X/b, a bit of arithmetic reveals that x = (1/r) x a and b = (1/7)? x 

a; in this situation the numbers a, x, and b are said to be in continued 

geometric proportion since they are part of a geometric sequence.) For 

arbitrary whole numbers a and }, it is not possible to find an appropri- 

ate whole number x, but it is possible to find such an x when a and b 

are squares (i.e., if a and b each equals a whole number squared). In this 

case x = Vab. 
Plato apparently knew this mathematical result, because he ap- 

pealed to the Pythagorean idea that square numbers are flat two-di- 
mensional objects, while cubes are solid three-dimensional objects, to 
justify requiring two bonding agents between elements, instead of one: 
“If then the body of the universe were required to be a plane surface 
with no depth, one middle term would have been enough to connect it 
with the other terms, but in fact it needs to be a solid, and solids always 

have two connecting middle terms.””” Translated into the language of 
ratio and proportion, Plato used the mathematical result that if a and b 
are whole numbers, which are cubes (solids), then it is always possible 
to find whole numbers x and y, between a and b, so that 

ax =X/y =Y/d. 

In this case x = *Va’b and y = 3>Vab’. (Again, if we let r equal this ratio, 
r= 4/x =X/y = Y/b , then the numbers a, x, y, and b will be in continued 
geometric proportion: x = (1/r) x a,y = (1/r)? xa, and b = (1/r)3xa.) 
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Thus mathematics led Plato to the conclusion that there must be 

four elements, or at least provided him with some justification for us- 

ing four elements. According to Plato, the Creator “placed water and air 

between fire and earth, and made them so far as possible proportional 

to one another, so that air is to water as water is to earth.”** 

Although Plato imitated the Leucippus/Democritus theory of indi- 

visible atoms, contrary to that theory, Plato’s elements were not immu- 

table. In Plato’s chemistry, fire consumes earth, or at least some mani- 

festations of earth such as wood, and water extinguishes fire. This is an 

elaboration of Heraclitus’ view: 

Air dies giving birth / 

to fire. Fire dies 

giving birth to air. Water 

thus, is born of dying 

earth, and earth of water.” 

Plato viewed these processes as transformations and gave an explicit 

cycle for the four fundamental elements: 

water —> earth - air — fire - air > water 

Plato explained this cycle as: Water solidifies to become earth; earth dis- 

solves and evaporates to become air; through combustion air becomes 

fire, which when extinguished and allowed to condense becomes air; 

finally, air contracts and condenses to “cloud and mist,” which, when 

compacted, becomes water.”° 

This left Plato with the following challenge—to uncover forms of the 

four primary elements that both mirror their properties and accommo- 

date, or explain, the transformation cycle. The same mathematical re- 

sult upon which Plato based his theory ultimately undermined it. 

THE GEOMETRY OF PLATO’S MATTER 

Because each of the four elements in Plato’s theory transforms into 

another, he did not speak of the constituents of matter as “peing a 

thing” but of “having a quality,” and the (mathematical) forms of these 

elements determine their qualities.”? Nonetheless, Plato established a 

geometric shape for each of them and attempted to base the transfor- 

mation cycle on geometric principles. As earth, air, fire, and water are 
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the basis of all material existence the aesthetics Plato inherited from 

the Pythagoreans led him to believe that these elements’ true forms 

must be mathematically beautiful. Rather than take number mysticism 

as a basis for that beauty, Plato chose harmony as manifested through 

geometric symmetry. 

There are an unlimited number of highly symmetric solids; they 

range from the familiar cube to one of those mirrored balls, spinning 

from the ceiling of a discotheque. Among this multitude of possible 

surfaces Plato sought the most beautiful four. Without acknowledging 

it, Plato made several restrictive assumptions concerning the shape of 

these fundamental surfaces: 

every face (or side) must be the same regular polygon (in a regular 

polygon all sides have the same length and every angle has the 

same measurement); 

adjacent faces must all meet in the same angle; and 

every corner of the surface must look like every other corner of the 

surface. 

These restrictions mean that if the solid is viewed from one side, or cor- 

ner, it will look the same as when viewed from any other side, or corner. 

There are only five such highly symmetric, geometric objects, a 
mathematical result known to Plato (see Figure 2.2). Three of these five 
solids have faces that are equilateral triangles (the tetrahedron, octahe- 
dron, and icosahedron); one has faces that are squares (the cube); one 
has faces that are regular pentagons (the dodecahedron). 

oS BR 
Tetrahedron Octahedron oa 

Cube Dodecahedron 

FIGURE 2.2. The five so-called Platonic solids. 
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The mathematical result that there are only five so-called Platonic sol- 

ids is fairly easy to establish, but all we really need to know, for later 

reference, is that the Greek proof that there are only five Platonic solids 

depends on the same geometric relationship as the Pythagorean theo- 

rem (see chapter 1): 

The sum of the angles in any triangle equals 180 degrees. 

By considering the qualities of these solids, such as their stability or 

sharpness, Plato associated them with earth, air, fire, and water. As re- 

gards their stability Plato wrote: “Let us assign the cube to earth; for it is 

the most immobile of the four bodies and the most retentive of shape; 

... similarly we assign the least mobile of the other figures to water, the 

most mobile to fire, and the intermediate to air.” He then reaffirmed 

this association by appealing to each solid’s sharpness: “we assign . .. 

the sharpest to fire, the next sharpest to air, and the least sharp to wa- 

ter.”2? Thus, Plato assigned the cube to earth, the tetrahedron to air, the 

octahedron to fire, and the icosahedron to water. The dodecahedron be- 

came the cosmos. 

In this association the cube, tetrahedron, and so forth are not thought 

of as solid three-dimensional objects, as if they were carved out of some 

substance, but as hollow surfaces. The twelve-sided dodecahedron was 

assumed to represent (or be) the cosmos with its twelve signs of the 

zodiac. Plato explained that “the [Creator] used [the dodecahedron] for 

embroidering the constellations on the whole heaven.”?? 

PLATO’S GEOMETRIC CHEMISTRY 

Chapter 1 describes how the discovery of a mathematical relation- 

ship, or a deduced mathematical result, can undermine an aestheti- 

cally appealing conception of either the mathematical or material 

world. The Pythagorean discovery that V2 cannot be written as any 

fraction, or its geometric consequence that there are incommensurable 

geometric lengths, should have told the Pythagoreans that it was not 

possible to maintain the equivalence of mathematics and reality and 

still take harmony as the central organizing principle of each. Instead, 

they took a narrower view of mathematics; one based on the primacy 

of geometry and geometric methods. Plato understood this; even so, 

there is a mathematical conflict embedded in Plato’s theory of matter. 
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This conflict does not involve a subtle assumption about the nature of 

geometric measurement but is a consequence of the axioms of Greek 

geometry. 

Plato’s transformation cycle relied on decomposition and rearrange- 

ment: The geometric surface corresponding to an element in the cycle 

decomposes into polygons and these polygons rearrange into the geo- 

metric shape of the next element in the cycle. This works for those steps 

in the cycle where one triangular-faced solid transforms into another, 

for example for the air to fire, fire to air, or air to water transformations. 

Since the number of triangles needed to form each of these elements 

is different, this yields a primitive form of stoichiometry. In the trans- 

formation of air into fire, imagine having a large quantity of air, hence 

many octahedrons. Each octahedron has eight sides, each of which con- 

sists of an equilateral triangle. A single element of air decomposes into 

eight equilateral triangles, any four of which can combine to form the 

solid representing fire—the four-sided tetrahedron. So in the cycle each 

air transforms into two fires. Symbolically: Air = 2 Fire. Plato also em- 

ployed his geometric chemistry to explain what happens “when water 
is broken up by fire or again by air.’* The twenty equilateral triangles 

from the decomposed water-icosahedron recombine to form one four- 
sided fire-tetrahedron and two eight-sided air-octahedrons. Symboli- 
cally: Water = Fire + 2 Air. 

But Plato needed to explain how the square faces of earth’s cube 
could rearrange to become the triangular faces of air’s octahedron. Pla- 
to’s insight was that each face of the cube could be imagined to consist 
not simply of a square but of two triangles, obtained when the square 
is cut along a diagonal. If we adopt this point of view, when an earth- 
cube decomposes into polygons it decomposes not into eight squares 
but into sixteen triangles, and these triangles are then supposed to re- 
combine to form the triangular faces of air. 

It is here that Plato's aesthetically pleasing transformation cycle 
breaks down. The same mathematical result that ensures the rarity, 
and so significance, of the symmetric solids representing earth, air, fire, 
and water, prohibits this earth-to-air transformation. Specifically, be- 
cause the sum of the angles in any triangle equals 180 degrees it is im- 
possible to recombine the triangles from earth to obtain the equilateral 
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triangles that constitute air. (This is because each earth-triangle has 

two 45-degree angles and one 90-degree angle while each air-triangle 

has three 60-degree angles.) 

The failure of his geometric mechanism to account for his entire 

transformation cycle did not convince Plato to admit something might 

be wrong with his Pythagorean theory of matter. Instead, Plato offered 

an ad hoc explanation for the earth-to-air step of his transformation 

cycle—after earth decomposes into triangles, they remain in limbo 

waiting to re-form into earth-cubes.” 

THE QUALITIES OF MATTER ; 

Air is moist and warm and, although opposed to water, the cold to the warm, 

nevertheless has a common bond of moisture. Moreover, fire, being hot and dry, 

spurns the moisture of air, but yet adheres to it because of the warmth in both. 

— Macrobius, Commentary on the Dream of Scipio (c. 400) 

Plato’s student Aristotle shared neither his teacher's Pythagorean 

tendencies nor his otherworldliness. In his Physics, Aristotle attempted 

to explain the relationships between the four elements through their 

empirical qualities rather than through their hidden mathematical 

structures.” In this approach, each of the four elements had a charac- 

teristic temperature, hot or cold, and a characteristic feel, moist or dry. 

Fire is hot and dry and water is cold and moist. It is less evident, but in- 

arguable, that earth is cold and dry and airis hot and moist. (During the 

late Middle Ages and Renaissance, the four elements were commonly 

arranged around a circle or a square, with adjacent elements sharing a 

property, and opposite qualities, and consequently opposing elements, 

on opposite sides of the figure.) The proportional relationships between 

two elements were then determined by whether there was an inter- 

mediate element sharing a quality with each. For example, air shares 

moistness with water and water shares coldness with earth, support- 

ing Plato’s claim, from the Timaeus, that “air is to water as water is to 

earth.”?” 

Macrobius, in the same text in which he described Pythagoras’ dis- 

covery of mathematical ratios within musical harmonies, explained 

the physical consequences of the relations assigned to the elements: 
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“And so it happens that each one of the elements appears to embrace 

the two elements bordering on each side of it by single qualities: wa- 

ter binds earth to itself by coldness, and air by moisture; air is allied 

to water by its moisture, and to fire by warmth; fire mingles with air 

because of its heat, and with earth because of its dryness; earth is com- 

patible with fire because of its dryness, and with water because of its 

coldness.”** Macrobius went on to appeal to the mystical geometric 

properties of four and to Plato’s appeal to mathematical proportions: 

“These different bonds would have no tenacity, however, if there were 

only two elements; if there were three the union would be but a weak 

one; but as there are four elements the bonds are unbreakable, since 

the two extremes are held together by two means.””? 

Another way to interpret the relationships among the elements is 

to think of the qualities as being more basic than the elements. In this 

theory, the qualities combine to form the elements; earth is the only 
element that is both cold and dry and so is viewed as being the combi- 
nation of coldness and dryness. Similarly, water is the combination of 
coldness and moistness; air, of moistness and heat, and fire, of heat and 

dryness. 

This alternate point of view was fully developed in the Renaissance, 
and in his epic poem Paradise Lost (1667), John Milton (1608-74) called 
upon the opposition of qualities in his description of hell. When Satan 
arrives at the gates of hell, 

in sudden view appear 

The secrets of the hoary deep; a dark 

Illimitable ocean, without bound, 

Without dimension, where length, breadth, and highth, 
And time, and place, are lost; where eldest Night 
And Chaos, ancestors of Nature, hold 

Eternal anarchy, amidst the noise 

Of endless wars, and by confusion stand: 
For hot, cold, moist, and dry, four champions fierce, 

Strive here for mastery, and to battle bring 

Their embryon atoms.?° 

Milton’s understanding of hell was a further development of Spen- 
ser’s idea that God’s love enabled, or caused, him to produce order from 
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chaos. Not only are the souls in hell unable to experience God’s love, 

they are forced to eternally suffer chaos (the absence of harmony). 

THE MODERN ATOM 

It is fair to ask: Which point of view is correct? Does the structure of 

matter determine its properties or do universal qualities come together 

to, in effect, produce matter? The obvious answer, taking Heisenberg’s 

claims into account, is that Plato was essentially correct, but not in the 

details. The less obvious answer is that Aristotle, and later Renaissance 

thinkers, were also correct. The brief history of the atom illustrates 

this. 

Owing mostly to the power of Aristotle’s natural philosophy, the 

atomic theory for matter was not widely accepted either in the Middle 

Ages or Renaissance. However, as observation, theology, and Aristotle's 

physical theories became more and more divergent, other ideas were 

occasionally entertained. Chapter 10 describes the fourteenth-century 

attempts of some Scholastics to revive atomism in defense of theologi- 

cal principles, but these Scholastics were in a minority. The reintroduc- 

tion of atomic theory into mainstream intellectual discourse is usually 

attributed to John Dalton, in the early nineteenth century, but it was 

Pierre Gassendi (1592-1655) who revived atomic theory by making it 

more acceptable to the theologians of his time. 

Before Gassendi, atomism was associated with atheism and pagan- 

ism because of its pre-Christian origin. Moreover, the acceptance of at- 

oms both contradicts what was the generally accepted conception of 

infinity and leads to seemingly irresolvable paradoxes. Gassendi did 

not overcome the Aristotelian objections to atoms, but he did make at- 

oms somewhat theologically acceptable by claiming that they are sol- 

ids created by God and that they are moved through divine influence. 

Almost two centuries later, in 1803, Dalton introduced an atomic 

theory manifesting both the Platonic and Aristotelian ideas. Dalton’s 

atoms were indivisible, mathematically perfect spheres with measur- 

able masses and, more importantly for Dalton, had qualities that would 

now be called chemical properties. The chemical property of an atom 

was not determined by its shape but by an invisible quality, its mass. 

The atoms of a particular element all had the same mass, and atoms of 

different elements had different masses. 
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Not until early in the twentieth century was the atom viewed as 

rings of electrons revolving around a positively charged central particle, 

and then as rings of electrons revolving around a nucleus consisting of 

both positively charged and neutral particles. In this model, the proper- 

ties of an atom were determined by how it combines the qualities of 

the electron, proton, and neutron, and how the qualities of the electron, 

in particular, contribute to the properties of the atom was determined 

by the geometry of the electron rings around the nucleus. 

Two developments led to a model significantly more difficult to vi- 

sualize than this solar system one. The first was the realization that the 

atomic world is not quite as deterministic as had been thought. This 

knowledge came from the development of quantum mechanics. In this 

theory, electrons do not stay in predetermined orbits; their position can 

only be given probabilistically. Any particular electron could, theoreti- 

cally, be anywhere in the universe at any given moment; the atom just 

tends to look like the early twentieth-century model. The second real- 

ization was that things that were thought to be indivisible are not. This 

began with the splitting of the atom, but that was only the first step, 

the next was the divisibility of an atom’s constituent parts. 

By the middle of the twentieth century, the atom consisted of elec- 

trons, protons, and neutrons. Each of these particles was considered to 

be indivisible. But by the late twentieth century, these particles were 

no longer thought to be the most basic. Many more particles had been 

discovered; there were three families each consisting of four differ- 

ent particles. The electron remained, but the proton and neutron were 

each seen to consist of three quarks: The proton was made up of two 
up-quarks and one down-quark, the neutron of one up-quark and two 
down-quarks. Everything in our terrestrial world is made of electrons, 
up-quarks, and down-quarks; the other particles, neutrinos, muons, and 

the like, exist only in the heavens in the solar wind and cosmic rays. 

Now, even these particles are no longer imagined to be the basic 
components of the cosmos. That role has been turned over to strings, 

unimaginably short segments of matter, for lack of a better concept. 
All strings are of the same stuff, yet they have different properties. The 
property of a string is determined by qualities, mass and energy, and 
these qualities are determined by geometry and music. How twisted a 
string is determines its mass; how rapidly it vibrates determines its en- 
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ergy level. Geometry and music produce the properties of matter from 

entities so small they defy three-dimensional conceptualization. 

POSTSCRIPT: PLATO’S MAKER AND POETIC THEORY 

By the time Sidney equated the ability to hear the music of the 

spheres with the ability to rise above the muck of our daily existence 

and appreciate the beauty, and reality, of poetry, the role of the poet 

had been elevated to that of a Platonic Creator. “The Greeks called him 

[poieten], which name hath, as the most excellent, gone through other 

languages. It cometh of this word ... which is ‘to make’; wherein I know 

not whether by luck or wisdom we Englishmen have met with the 

Greeks in calling him a maker.”*? f 

In late sixteenth-century poetic theory, the poet-as-maker took the 

raw material of our existence and formed it into understandable sub- 

stance. Sidney, contrasting the poet with the astronomer, geometer, 

natural philosopher, grammarian, and others, concluded: “Only the 

poet, disdaining to be tied to any ... subjection, lifted up with the vigor 

of his own invention, doth grow, in effect, into another nature, in mak- 

ing things either better than nature bringeth foorth, or, quite anew, 

forms such as never were in nature.”** This view of the poet-as-maker 

was widely held, and an entire poetic theory emerged from this inter- 

pretation of the role of the poet. Ben Jonson expressed this concisely: 

“{Poetry is] the queen of arts, which had her original from heaven, re- 

ceived thence from the Hebrews and had in prime estimation with 

the Greeks, transmitted to the Latins and all nations that professed 

civility.”* 

In her study of seventeenth-century poetry, The Divine Science, the 

modern literary scholar Leah Jonas explained that Jonson’s statement 

captures all of the central points of that century’s poetic theory: “(1) the 

heavenly origins of poetry, (2) the priority of poetry among the arts and 

sciences, (3) the coincidence of poetry and civilization.’ 

It is only fair to note that Italian poetic theory was already well de- 

veloped by the end of the sixteenth century and it offered a less oth- 

erworldly view of the poet. In an influential seven-volume description 

of poetic theory, Poetics, the sixteenth-century Italian literary theorist 

Julius Caesar Scaliger provided a more mundane definition of poetry 

and the poet: “The poetical art is a science, that is, it is a habit of produc- 
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tion in accordance with those laws which underlie that symmetrical 

fashioning known as poetry. So it has three elements—the material 

[subject], the form [type], and the execution [style].”* 

In Scaliger’s theory the poet is a maker not in the sense of creating 

new matter or a new reality but in presenting a new vision of reality 

through verse. A poem must be written “in accordance with those laws 

that underlie that symmetrical fashioning.” The style of the prose de- 

termines whether the text is a poem; the excellence of a poem is deter- 

mined by its subject matter. Scaliger went so far as to provide a ranking 

of the types of poetry, in decreasing order of significance, from hymns 

to songs “sung in praise of brave men” to epics, tragedies and comedies, 

satires, and pastorals.*© 

The English theorists were more generous in what they took to be 

poetry but still separated mere verse from poetry. Sidney wrote, “[Verse 

is] but an ornament and no cause to poetry, since there have been many 

most excellent poets that never versified, and now swarm many versi- 

fers that need never answer to the name poets.”?” 

There were political reasons not to equate rhyming verse with po- 

etry: Sidney could only deflect the Puritan attacks by redefining poetry 

and excluding the ribald and salacious public verse from consideration. 

Having taken the term “poetry” to mean something different than 

was in common usage, Sidney had to differentiate between a poem (or 

poet) and that which is not a poem (or poet). Instead of delineating the 
differences, Sidney offered three type of poets: The poet who makes in 
the sense of Plato’s Creator; the poet who is a seer or visionary and pre- 
sents new ways of understanding the material world; and the poet 
who is a teacher who philosophizes. Other writers, whatever they are, 
are not poets, and among poets, those who dip into the poetic analogue 
of Plato’s receptacle of becoming and create beauty are the ones who 
provide us access to the truths held by the music of the spheres. 



There is a concept which corrupts and upsets all 

others. I refer not to Evil, whose limited realm is that 

of ethics; I refer to the infinite. I once longed to compile 

its mobile history. The numerous Hydra... would 

lend convenient horror to its portico. ... Five or seven 

years of metaphysical, theolégical and mathematical 

apprenticeship would allow me (perhaps) to plan 

decorously such a book. it is useless to add that life 

forbids me that hope or even that adverb. 

— Jorge Luis Borges, “Avatars of the Tortoise” (1932) 

The twentieth-century Argentinean writer Jorge Luis Borges (1899- 

1986) began his essay “Avatars of the Tortoise” with the above quo- 

tation, acknowledging the complexity of the concept of the infinite. 

Underlying Borges’ introductory paragraph was his realization that 

infinity is not a monolithic idea. Almost every intellectual, spiritual, or 

artistic enterprise has, at some time in its history, appealed to the infi- 

nite, and within each discipline the infinite has been used at different 

times, in different ways. The infinite has been invoked by philosophers 

to describe the true nature of a reality forever outside our direct experi- 

ence, and by theologians to contrast the divine from the earthly, and 

so place God beyond human comprehension. For poets, the infinite has 

represented mystical insight and truth that cannot be gained through 

rational analysis or scientific theories. Even mathematicians have ap- 

pealed to the infinite to both reject and defend certain mathematical 

processes and conclusions. Indeed, the ambivalence of mathematicians 

toward the acceptance of infinite processes or collections is at the heart 

of this book. 

The purpose of this chapter is to complete in a few pages a portion 

of the task Borges imagined would take him “five or seven years” just 
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to plan—to delineate one use of the infinite from others in order to 

establish a foundation for understanding the evolution of its mathe- | 

matical meaning. And although Borges was right in asserting that it is 

not possible to offer a definition for the infinite covering every usage, 

it is possible to distinguish between different types of appeals to the 

infinite and so appreciate its influence on mathematics, philosophy, 

religion, science, and art. A first step toward accomplishing this is to 

isolate three, mostly distinct, categories of the infinite: the qualitative, 

the quantitative, and the poetic. 

POETIC INFINITY 

For, though the Lord of all be infinite, 

Is his wrath also? Be it, man is not so, 

But mortal doom. How can he exercise 

Wrath without end on man whom death must end? 

Will he draw out, 

For angers sake, finite to infinite 

In punish‘d man, to satisfy his rigour 

Satisfied never? 

— Milton, Paradise Lost (1667) 

Milton employed infinite (or infinity) in two ways—as an attribute 
of God and as a measure of God’s power. In the first instance, infinite 
expresses a quality, and in the second, a quantity. These two senses of 
the infinite may appear to be related in that Milton could have been 
referring to God's size or extent when he wrote, “the Lord of all be in- 
finite,” but he was doing something else. Milton was using infinity in 
an entirely qualitative, metaphysical manner. Milton’s metaphysically 
infinite God is infinite in the sense of being a unified, indivisible reality 
or being, something transcendent, complete, and independent of expe- 
rience. 

Milton’s two uses of infinite must be distinguished from what we 
have already labeled poetic infinity. When Vincent van Gogh (1853-90) 
wrote, “a child in the cradle ... has the infinite in its eyes,” he was not 
using “infinite” in either of the ways we ascribed to Milton.: Rather, 
van Gogh’s infinite was meant to evoke innocence, clarity of vision, 
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and mystical understanding. Poetic infinity can sometimes be taken to 

be a metaphysical infinity, as in the first four lines of William Blake’s 

(1757-1827) poem “Auguries of Innocence” (c. 1803): 

To see a World in a grain of sand, 

And a Heaven in a wild flower, 

Hold Infinity in the palm of your hand, 

And Eternity in an hour.’ 

But Blake’s infinity was more than metaphysical. Here infinity is used 

in a manner that includes both the metaphysically infinite and the 

mathematically infinite, but it also refers to knowledge and mystical 

insight. When you “Hold Infinity in the palm of your hand” you have a 

complete, intuitive understanding of the cosmos and your place in it. 

Half a century later, Alfred Tennyson (1809-92), without directly 

using the term, sought in the infinite not mystical insight but a meta- 

physical understanding of a Christian God and man’s place in the 

universe: 

Flower in the crannied wall, 

I pluck you out of the crannies, 

[hold you here, root and all, in my hand— 

Little flower—but if I could understand 

What you are, root and all, and all in all, 

I should know what God and man is.? 

Poetic infinity can also be used to evoke powerful emotions. Our last 

example of poetic infinity is one of its most effective uses; it is from 

Pablo Neruda’s (1904-73) poem “Tonight I Can Write” (1924). The poem 

begins, “Tonight I can write the saddest lines,” and then Neruda ex- 

plains that he has lost a woman he once loved, who also once loved 

him. In the last stanza of the poem, Neruda tells us that his former lover 

will be another’s. 

Another's. She will be another’s. Like my kisses before. 

Her voice. Her bright body. Her infinite eyes.* 

With the phrase “Her infinite eyes,” Neruda reveals to the reader how 

he felt both about her and the eternity he faces knowing they were 

once together and never will be again. 
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The remainder of this chapter examines the evolution of the concept 

of the metaphysically infinite and the earliest theory of mathematical 

infinitude. This separation of the metaphysical infinite from the math- 

ematical is slightly problematic, as metaphysical infinity has properties 

that reflect the mathematical, and the two are sometimes confused or 

used interchangeably. For example, in the thirteenth century Thomas 

Aquinas (1225-74) described God as being infinite in both senses. To 

Aquinas, God was metaphysically infinite because he was self-suffi- 

cient and perfect, but he was also mathematically infinite because to 

be finite is to be less than can be imagined, and so less than perfect. 

These two notions of infinity also were combined in Anselm of Can- 

terbury’s eleventh-century definition of God—God is that than which 

no greater can be conceived. (From this definition Anselm deduced the 
existence of God, because if God did not exist then the thought that 
God exists represents a conception of a greater entity.) Despite this tra- 

dition of blurring the distinction between metaphysical infinity and 
mathematical infinity, understanding their differences is necessary to 
appreciate the role of theological discussions in the evolution of math- 
ematical thought. 

A SHORT HISTORY OF METAPHYSICAL INFINITY 
The concept of the metaphysically infinite has been invoked to ad- 

dress different philosophical and religious difficulties in Western 
thought for at least twenty-five centuries. In Hellenistic Greece the 
metaphysically infinite emerged in attempts to answer: What is the 
nature of matter and/or reality? In medieval Europe, it played a signifi- 
cant role in answering: What is God? In post-Renaissance philosophy, 
it has periodically appeared in attempts to answer: How do we know 
anything? The first era ended when Aristotle untangled mathematical 
infinity from metaphysical infinity; the second started with the post- 
Neoplatonist reconciliation of Aristotle’s natural philosophy and theo- 
logical ideals; and the third began with seventeenth-century attempts 
to integrate the Copernicus-Galileo cosmology with Christian faith. 

The Pythagorean universe was governed not just by the harmonious 
interaction of mathematical structures but also by finite, and orderly, 
whole numbers and their ratios. However, there was another sixth- 
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century B.C. conception of reality, the philosopher Anaximander’s view 
that everything, all matter and space, emerged from, and consists of, 

a primordial chaotic material. The fundamental material behind the 
order and structure of the world was both the chaos of nonexistence 

and the fundamental element of all matter. Where the Pythagoreans 

embraced the simplicity of mathematical beauty and harmony, Anaxi- 

mander invoked the pejorative to apeiron. 

Like Pythagoras’ whole numbers, Anaximander’s substance existed 

in physical form—it was the material from which all other material 

was made. Anaximander did not offer a mechanism to explain how 

unorganized chaos transformed itself into flowers, rocks, birds, and 

oceans, but the Pythagoreans did not offer such a mechanism either. 

In Anaximander’s theory the construction of the material world some- 

how involved the interaction of opposites. Anaximander described 

what makes up all things, not why it is so or how it happens. 

Anaximander’s metaphysically infinite substance shares features 

with Milton’s God—both were unbounded, unknowable sources of ev- 

erything, and both were more real than the material world of human 

experience. But Anaximander’s substance was not endowed with the 

positive attributes of Milton’s God. More sophisticated appeals to meta- 

physical infinity were given by Parmenides of Elea (born c.515 B.C.) and 

then by Melissus of Samos (born early fifth century B.C.). Parmenides 

was a Pythagorean who rejected the idea that the world consists of a 

system of structures within space. In the view of the earlier Pythago- 

reans, reality emerged from the harmonious interaction of these finite, 

orderly mathematical structures within a limitless, unbounded void. 

The void itself was indefinable; it was unordered and without shape or 

meaning. Parmenides did not question the centrality of mathematics in 

the structure of the cosmos; indeed it was Parmenides’ concern with or- 

der that moved him to challenge the earlier Pythagorean model. What 

Parmenides could not accept was the description of reality as some- 

thing existing within a void. To Parmenides, this reference to a void al- 

lowed for the possibility that chaos (in the form of nothingness) could 

be essential to the workings of the external world, conflicting with the 

Pythagorean assumption that order was the unifying principle of na- 

ture. To remedy this defect, Parmenides proposed that reality did not 
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exist in a void; instead it must be a whole having nothing outside of 

itself. 

Parmenides’ avoidance of emptiness also influenced his conception 

of the fundamental nature of reality—he concluded that reality is a ho- 

mogeneous, static entity. To understand how Parmenides reached his 

conclusion we must adopt a slightly novel view of how motion occurs. 

Instead of viewing a change in position as a movement through space, 

think of it as a passage from one state to another. In this view, change 

is a transition from an existing situation to one that does not yet exist; 

a condition that does not exist is a physical void waiting to be filled. 

Thus, change is movement from existence into nothingness, and since 

this nothingness cannot exist, motion is impossible. From this conclu- 

sion Parmenides argued that all states must simultaneously coexist ev- 

erywhere. Reality must be everywhere the same. Similarly, Parmenides 

argued that reality must be eternal: It always has existed and always 

will exist because a beginning requires movement from nothingness 

and an ending requires movement into nothingness. 

Of course, Parmenides could not deny that the observable world is 
forever in flux, and that change is the rule rather than the exception. 
This forced him to postulate a radical distinction between reality (the 
world as it is) and appearance (the world as we see it). Parmenides 
concluded that everything we perceive is illusionary. Reality is a com- 
plete, eternal, homogenous whole that exists beyond our finitude—re- 
ality is a metaphysically infinite entity. Parmenides called this reality 
what-is. 

Parmenides offered his description of what-is in poetic form. Only 
154 lines of his poem On Nature remain, but this remnant describes 

_a mystical journey in which Parmenides meets a benevolent goddess. 
The poem begins with Parmenides’ journey: 

The mares that carry me as far as my heart ever aspires sped me on, 
when they had brought and set me on the far-famed road of the god, 
which bears the man who knows over all cities. ... And the goddess 
greeted me kindly, and took my right hand in hers, and addressed 
me with these words: “Young man, you who come to my house in 
the company of immortal charioteers with the mares which bear 
you, greetings. ... It is proper that you should learn all things, both 
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the unshaken heart of the well-rounded truth, and the opinions of 

mortals, in which there is no true reliance.”> 

Parmenides learns from the goddess that what-is is a static, unmoving 

entity. Depending on how one translates the term ateleston, what-is is 

either perfect, bounded, or balanced—perhaps all three. 

Parmenides’ Pythagorean inclination to equate mathematical and 

physical reality led him, through the goddess, to give what-is a geo- 

metric representation: “For it must not be any larger or smaller here 

than there. For (1) neither is there what-is-not, which might prevent 

it reaching the same distance; (2) nor is there any way that what-is 

could be more than what-is here and less there, since itis allimmune to 

plundering: for equal to itself on all sides, it has equal being within its 

limits.” According to this passage, what-is is a solid entity that cannot 

be different in one direction from another. Although what-is has sides, 

it extends the same distance in any direction, presumably from a cen- 

ter, and so is the most mathematically perfect of all forms—a sphere. 

This description of what-is as a sphere might lead us to visualize it as 

a bounded, three-dimensional object existing in some ambient space, 

but this is the wrong image. Parmenides’ point was that what-is can- 

not be visualized. Anything we visualize, or even imagine in our mind’s 

eye, is merely appearance. What-is can only be known through mysti- 

cal insight. 

Half a century later, Melissus attempted to give a clearer description 

of what-is. He accepted Parmenides’ radical appearance/reality distinc- 

tion; his only significant departure from Parmenides’ view concerned 

the spatial attributes of metaphysical infinity: “It has no [spatial] be- 

ginning or end, but is infinite. For if it had come to be it would have 

a [spatial] beginning (for it would have begun the process of coming- 

to-be at some time) and end (for it would have ended the process of 

coming-to-be at some time). But since it neither began nor ended [the 

process], and always was and always will be, it has no [spatial] begin- 

ning or end.”’ This quote from Melissus is significant: He takes mathe- 

matical (quantitative) infinitude as a property of a metaphysical infin- 

ity. This is one of the earliest examples of the blurring of the distinction 

between the qualitatively and quantitatively infinite. 

So, in a relatively brief period, from the early sixth century to the 
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middle of the fifth century B.C., the idea of metaphysical infinity 

evolved from being Anaximander’s substance, to Parmenides’ unified, 

homogenous reality beyond our reach, then to Melissus’ measure of re- 

ality’s size. 

THE WHOLE IS GREATER THAN THE PART 

Infinity turns out to be the opposite of what people say it is. It is not “that which 

has nothing beyond itself” that is infinite, but “that which always has something 

beyond itself.” 

— Aristotle, Physics (4th century B.C.) 

Aristotle (384-322 B.C.) has been called the first philosopher of the 

infinite, and his ideas about the infinite were shaped, in part, by his 

desire to clearly delineate mathematics from natural philosophy. Ar- 

istotle did not equate the mathematical and material worlds, as had 
the Pythagoreans; he believed, instead, that mathematical objects were 
abstractions based on the material world. Indeed, this separation of the 
material and mathematical worlds is no more evident in any of Aristo- 

tle’s theories than in his theory of infinity. 

Instead of examining the concept of infinity solely in the realm of 
pure mathematics, Aristotle sought to answer a more straightforward 
question: Is anything in nature, in the material world of space and time, 
infinite? In book 3 of his Physics, Aristotle dismissed Anaximander’s as- 
sertion that infinity is a substance through an appeal to one of the most 
fundamental, and ultimately incorrect, assumptions about the nature 
of both material and mathematical objects: The whole is greater than 
the part. Aristotle’s argument begins: Any substance must have parts 
(or portions) and each of these parts must be of the same substance. 
If infinity is a substance then a portion of it is also infinity, and so by 
taking a portion of infinity one appears to obtain a greater and a lesser 
infinity. But there is only one size of infinity, so this conclusion conflicts 
with the self-evident truth that the whole is greater than a part.’ 

Aristotle also rejected Parmenides’ and Melissus’ conception of the 
metaphysically infinite. For each of them, the metaphysically infinite 
was not only static, it was a whole that has no part outside it. Aristo- 
tle thought this understanding of the infinite was exactly backward. 
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For Aristotle, the infinite is not that which is whole but that which can 
never be a whole. From this, Aristotle concluded that the metaphysi- 
cally infinite cannot exist and infinite may only be applied quantita- 
tively; infinitude might be the measure of something, either a magni- 

tude or a collection, but it cannot be one of its qualities. 

MODERN METAPHYSICAL INFINITY 

This infinite and immobile space which is so certainly discerned in the nature of 

things will seem... to be something not merely real but divine. 

— Henry More, “Enchiridion metaphysicum” (1671) 

The belief in a transcendent, metaphysically {nfinite reality did not 

completely disappear with Aristotle’s pronouncements. The second- 

century philosopher Plotinus was one of the first to challenge Aristotle’s 

rejection of metaphysical infinity. Plotinus resurrected the otherworld- 

liness of Parmenides and Plato, reestablishing the possible existence of 

a metaphysical infinity. For Plotinus, and this will sound familiar, there 

was a transcendent realm beyond our experience and the world of our 

senses. It was a self-sufficient, perfect, omnipotent entity. At times 

Plotinus referred to this entity as something underlying our reality, as- 

sociating it with Parmenides’ what-is; at other times, Plotinus idealized 

the entity as the One, associating it with Plato’s realm of ideals. What 

is most significant is that Plotinus not only resurrected the metaphysi- 

cally infinite but also endowed it with creative, positive attributes, free- 

ing it from the unknowable chaotic darkness of early Greek thought 

and allowing for its later incorporation into a description of the Chris- 

tian God. Plotinus wrote, “The One is perfect because it seeks nothing, 

and possesses nothing, and has need of nothing; and being perfect, it 

overflows, and thus its superabundance produces an Other.”’ Plotinus 

then explains why the One produced the multitude of existing things: 

“Whenever anything reaches its own perfection, we see that it can- 

not endure to remain in itself, but generates and produces some other 

thing. Not only beings having the power of choice, but also those which 

are by nature incapable of choice, and even inanimate things, send 

forth as much of themselves as they can: thus fire emits heat and snow 

cold.” In the third century Augustine imported Plotinus’ conception of 
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metaphysical infinitude into Christian theology, and by the time Mil- 

ton wrote Paradise Lost the metaphysical infinitude of the Christian 

God was unquestioned. 

And the metaphysically infinite had other manifestations, both in 

cosmology and in philosophy. Early in the seventeenth century, Galileo 

discovered unseen stars and, he thought, planets. Space was suddenly 

vast, incomprehensible. One of the first English poets and philosophers 

to consider the consequences of these astronomical discoveries was 

Henry More (1614-87). More was one of a small group of influential 

Platonists at Cambridge University in the middle of the seventeenth 

century. As Marjorie Hope Nicolson explained in her book Mountain 

Gloom and Mountain Glory, “More transferred to space some twenty 

attributes formerly associated with God.” The excerpt from More that 

heads this section continues with, “The divine names and titles which 

precisely harmonize with it ... are these which severally belong to 

Metaphysically Primal Being.” More then listed the twenty attributes 

of space, which included simplicity, incorruptibility, and incomprehen- 

sibility." More was not equating space with his Christian God; it is sim- 

ply that both are metaphysical infinitudes. The connection between 

the two emerged from More’s belief that in our contemplation of the 
metaphysically infinite space, we are contemplating God. 

Later in the seventeenth century, Joseph Addison (1672-1719) made 
this same connection. Addison wrote of the pleasures we obtain from 
our encounters with the vast or unbounded: “Our Imagination loves to 
be filled with an Object, or to grasp at any thing that is too big for its Ca- 
pacity. We are flung into a pleasing Astonishment at such unbounded 
Views, and feel a delightful Stillness and Amazement in the Soul at 
the Apprehension of them.” The awe we feel when we view limitless 
terrestrial vistas or an overwhelming sequence of mountains upon 
mountains inspires us to understand the enormity of God’s Creation. 
This, to Addison, was instinctual: God created us so that our realization 
of the vastness of terrestrial and heavenly space would lead us to a con- 
templation of the unlimited God. Without the overtly Christian compo- 
nent, this theme was taken up by the Romantic poets of the eighteenth 
century. 

Also in the eighteenth century, Immanuel Kant (1724-1804) based 
his entire metaphysics on the distinction between appearance and 
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reality. Echoing Parmenides, Kant proposed that we gain knowledge 

about the metaphysically infinite reality when we receive information. 

Although we are quantitatively finite beings in an overwhelmingly 

metaphysically infinite world, we obtain knowledge about the world 

by letting it impinge upon our senses, thus receiving information that 

we interpret through our preexisting framework. 

In Kant’s view, we gain increasingly accurate knowledge of the 

metaphysically infinite real world through a mathematically infinite 

process. When we receive information from (for lack of a better expres- 

sion) the real world, owing to our finite nature, the information we re- 

ceive must be partial and limited. We cannot take in the metaphysically 

infinite whole all at once. This observation led Kant to address how we 

can obtain any knowledge, if all we receive are small, imperfect bits of 

data. The key to Kant’s model is our awareness that what we are re- 

ceiving is finite and conditioned by the context of our observation. But 

knowing this context means that we possess additional information, 

so we know more than the information we received. This sets up an 

infinite regression, because this larger quantity of information itself 

is conditioned by some context, which means we have even more in- 

formation or clearer knowledge. This is an endless process that we can 

never complete. 

As anexample, consider how Kant, in his Critique of Judgment (1790), 

explained how it is that we can gauge the size of something: “The mag- 

nitude of the measure has to be assumed as a known quantity, if, to 

form an estimate of this, we must again have recourse to numbers in- 

volving another standard for their unit.”* In other words, Kant believed 

that whenever we conceive of the size of something, we must already 

have in mind a particular unit of measurement. That unit itself can 

only be understood in terms of another unit of measurement (probably 

of a smaller magnitude) that we already understand. Thus, according to 

Kant, we can only understand any particular measurement through re- 

course to an endless number of smaller and smaller units of measure- 

ment, and each unit is comparable with the one below it in the hierar- 

chy: “Since in the estimate of magnitude we have to take into account 

not merely the multiplicity (number of units) but also the magnitude 

of the unit (the measure), and since the magnitude of this unit in turn 

always requires something else as its measure and as the standard of 
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its comparison, and so on, we see that the computation of the magni- 

tude of phenomena is, in all cases, utterly incapable of affording us any 

absolute concept of a magnitude, and can, instead, only afford one that 

is always based on comparison.” Kant claimed that all measurements 

are commensurable in the informal sense that they are all comparable, 

but the smallest common unit that could be used to measure any two 

things can never be achieved. This is because to comprehend the small- 

est of all possible units, we would have to first understand a yet smaller 

(or somehow more fundamental) unit of measurement and so on. This 

seeming infinite regression of comparisons is precisely what separates 

the finite from the infinite. For Kant the sublime is that which in com- 

parison everything else is small. It is not only that the infinite (sublime) 
is something that cannot be compared with anything else; the infinite 
is that which requires no comparison. Our perception of it inspires the 

same awe as Addison’s vistas. 

The question for us is whether Kant was discussing a mathemati- 
cal infinity or a metaphysical infinity. Kant did not think an absolutely 
great quantity, or object, could exist in nature. Indeed, he said there is 
nothing in nature that is so large that it cannot be viewed as infinitely 
small, when compared with something else. This is consistent with his 
infinite chain of magnitudes. The infinite for Kant was the metaphysi- 
cally infinite, something complete and beyond comparison, something 
beyond measurement and so beyond our experience. 

Kant’s theories for how we come to know anything, because in his 
view there was an insurmountable obstacle between what reality is 
and how we experience it, have continued to influence modern philo- 
sophical thought. Even those who disagree with Kant’s basic appear- 
ance/reality distinction have addressed his ideas (even if only to re- 
ject them). We will not follow this historical development, which runs 
through Hegel (1770-1831), Husserl (1859-1938), Bergson (1859-1941), 
and Wittgenstein (1889-1951); of these, Bergson’s philosophy, discussed 
below, is the most relevant to modern mathematics because it has com- 
ponents of both Kant and Plato. 
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AN INTRODUCTION TO QUANTITATIVE INFINITY 

The universe (which others call the Library) is composed of an indefinite and perhaps 

infinite number of hexagonal galleries, with vast air shafts between, surrounded 

by very low railings. From any of the hexagons one can see, interminably, the upper 

and lower floors. 

— Jorge Luis Borges, “The Library of Babel” (1941) 

Now that we have an appreciation of the persistence of the meta- 

physically infinite in philosophy and theology, we return to Aristotle’s 

conception of the mathematically infinite. But before examining Aris- 

totle’s subtle, and later controversial, conclusions about infinite quanti- 

ties, it is helpful to examine one of his less subtle, but also ultimately 

controversial, conclusions about infinitude. The most natural candidate 

to be an infinite entity is the entirety of the existing universe. “Exist- 

ing” is used here to modify universe to avoid the issue of an endlessly 

evolving cosmos. 

As Aristotle’s conception of infinitude excluded the possibility that 

an existing entity, or collection of entities, could be infinite, because an 

existing object, or collection, is complete and thus does not have any 

part outside itself, the Aristotelian universe must be finite. This conclu- 

sion was based entirely on Aristotle’s definition of infinite, but it also 

follows from the basic principles of his physics. 

Not everyone in the ancient or medieval worlds agreed that the 

entire universe was a finite, completed entity, and this is perhaps the 

most easily challenged of all of Aristotle’s conclusions about infinity. As 

early as the fifth century B.C., the Greek mathematician Archytas, who 

was one of the two Pythagoreans Plato is said to have visited before 

writing the Timaeus, had questioned whether a finite universe was 

possible. Archytas reasoned as follows: If space is not infinite, then the 

universe must be finite and if the universe is finite then it is bounded. 

Archytas then asked what would happen if someone, standing at the 

boundary of the universe, were to reach out with his hand. Accord- 

ing to Archytas, one of two things could happen: Either the person’s 

hand would go beyond the universe, and thus the universe could not 

be finite, or something would stop the person's hand, and that some- 

thing must be the surface containing the universe. But surfaces have 
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two sides, so there must be something beyond the boundary of the 

universe. 

Archytas’ argument appeals to our intuition that a surface divides 

space into two parts, so if the universe were contained within a surface 

it would be natural to ask what lay beyond the surface. To Aristotle, this 

question has no meaning. His solution, to what we perceive as a pos- 

sible objection to having a finite, bounded universe, was to maintain 

that if something is limited, it is not necessary that it be limited in rela- 

tion to something else.** This is a very modern mathematical idea, but 

it was never taken as a thorough refutation of Archytas’ proof. 

Lucretius (first century B.C.) appealed directly to common sense to 

refute Aristotle’s refutation of Archytas’ argument, “It is a matter of ob- 

servation that one thing is limited by another.”?* This position was im- 

plicit in his argument against a bounded universe: “Suppose for a mo- 
ment that the whole of space were bounded and that someone made 
his way to its uttermost boundary and threw a flying dart.... Whether 
there is some obstacle lying on the boundary line that prevents the dart 
from going farther on its course or whether it flies on beyond, it cannot 
in fact have started from the boundary.” Lucretius’ argument relies on 
our intuition that the universe is the same everywhere, and that the 
laws of physics hold uniformly throughout the cosmos. The belief that 
the geometry of the universe is uniform is precisely the one overturned 
in the nineteenth and twentieth centuries with the discovery of non- 
Euclidean geometries and the realization that infinite and bounded 
are not necessarily mutually exclusive attributes. (This is discussed in 
chapter 8.) 

In his story “The Library of Babel” Borges indicated that reasoning 
that the geometry of the space we have experienced must necessarily 
be the geometry of all of space has led the Library’s inhabitants to con- 
clude that it was endless: “Those who judge [the Library] to be limited 
postulate that in remote places the corridors and stairways and hexa- 
gons can conceivably come to an end—which is absurd.”2” The story’s 
narrator rejects, as absurd, the idea that the universe (Library) could be 
finite, because every hexagonal room that has been entered has been 
identical to the others before it, and there has always been a next hexa- 
gon. The geometry of the Library must be everywhere the same. 

If Borges was the first author to import the quantitatively infinite 
into his writing, the twentieth-century graphic artist M. C. Escher 
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(1898-1972) may be fairly labeled the first artist to systematically ex- 

plore the quantitatively infinite visually. Escher’s Cubic Space Division 

provides a visual analogue of Borges’ Library. 

the ee 

PLATE 3.1. Cubic Space Division, 1952. M. C. Escher (1898-1972). 

© 2007 The M. C. Escher Company-Holland. All rights reserved. 

Escher thought this print accurately represented what he took to be 

the infinitude of both space and time. He explained, “[The artist] must 

divide his Universe in distances of a specific length, in compartments 

that repeat themselves in endless series.” And according to Escher, this 

subdivision represents the endlessness of time, “At every border cross- 

ing between one compartment and the next, [the artist’s] clock ticks.”** 

Although Aristotle did not believe space was infinite, Escher’s print, 

and his explanation of it, illustrates an important feature of Aristotle’s 

infinity that is addressed in the next section. 

ARISTOTLE’S TWO INFINITIES 

Aristotle rejected the existence an infinite material object, but he of- 

fered two ways in which an entity, whether it is material or not, could 

be infinite. In keeping with Aristotle’s definition of an infinite entity, 

“not ‘that which has nothing beyond itself’... but ‘that which always 
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has something beyond itself,’” these two conceptions of infinitude pro- 

vide two ways in which, no matter how much of the entity is encom- 

passed, or accounted for, some part of it would have been missed. This 

accounting of the entity associates the concept of infinite with process, 

perhaps with each tick of the clock, to steal an image from Escher. Ac- 

cording to Aristotle, an entity is infinite if no matter how much of it 

has been listed, counted, accounted for, or contained (or imagined to 

have been listed, counted, accounted for, or contained) the entity will 

not have been entirely captured. The nature of the process used to 

obtain this accounting of the entity leads to Aristotle’s two ways in 

which an entity can be infinite; according to Aristotle’s Physics an en- 

tity can be infinite by addition or infinite by division.® These two forms 

of infinitude are most easily understood by considering mathematical 

objects. 

A mathematical example of an entity that is infinite by addition is 
the collection of counting numbers, 1, 2, 3, and so forth. Aristotle knew 

what everyone else knew, that there is not a largest counting number (if 
you have a candidate add 1 to it). Since no list of counting numbers will 
itself be unending, any such list must necessarily be finite, containing 
only ten, ten thousand, or 10 billion entries. But no matter how many 

of the counting numbers have been listed, the list will not be complete; 

there will always be a counting number not on the list (for example the 
number obtained by adding all of the numbers on the list). 

The other way Aristotle conceived something could be infinite is 
that it could be subdivided endlessly. A mathematical example of such 
an object is a line segment connecting two points A and B. (We exam- 
ine challenges to this conception of a line segment in chapter 10.) It is 
possible to divide the line segment into two equal parts, and then to 
divide one of these two pieces into two equal parts, and to continue 
this process indefinitely. The intuition here is that any line segment, 
no matter how short, can be divided into two pieces, and so the process 
will never terminate. 

Buried in the last sentence is again the idea of process, which Aris- 
totle deftly used to avoid falling into the apparent trap set by the fol- 
lowing example. Every other counting number is even—the even num- 
bers are of course 2, 4, 6, 8, and so forth. Another way to view this list of 
even numbers is as 2=2x1,4=2x2,6=2x3,8=2.x4,and so forth. 
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This way of representing the even numbers reveals the mathematical 
observation 

Every counting number can be used to produce a 

unique even number. 

To obtain an even number just multiply the given counting number by 

2. This means that the list of consecutive counting numbers and the 

consecutive even numbers are related by what medieval philosophers 

called a correlation correspondence and modern mathematicians call a 

one-to-one correspondence: 

counting numbers: 12345, 6 7... 

even counting numbers: 2 4 6 8 10 12 14... 

If the first list, the list of all counting numbers, could be completed 

then it would be an unending, infinite list with two contradictory prop- 

erties: 

1. It would appear to be of the same size as the collection of even 

counting numbers (because of the one-to-one correspondence). 

2. It would contain the list of all even counting numbers. 

So, assuming the existence of the complete, infinite list of counting 

numbers yields two infinite lists, one of which is a part of the other. 

This appears to contradict the basic tenet that 

the whole is greater than the part 

since both the whole and the part are infinite, and so assumed to be the 

same. 

Aristotle’s solution was not to accept this part-being-as-large-as-the- 

whole situation. Instead, he did not allow the existence of the complete 

list of all counting numbers—the process of accounting for the count- 

ing numbers will never be completed. Aristotle did not say that such a 

collection was infinite, but that it was potentially infinite by addition. 

The analogous situation holds for the infinite divisibility of a line 

segment. Suppose a line segment, connecting two points A and B, is di- 

vided into two pieces, at a point C, and then each of the two pieces is 

divided into two pieces. Further suppose that this process is continued 

until it stops. Then the unlimited number of divisions of the segment 
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AC are among the unlimited number of divisions of the entire segment 

AB; thus, one infinity is contained in another. As before this violates 

the principle the whole is greater than the part. Thus, Aristotle did not 

allow this subdivision to continue until it has been done an unlimited 

number of times; it was just a process that never stopped. As much as 

this conclusion confused many medieval thinkers, Aristotle concluded 

not that a line segment contains an infinite number of subdivisions but 

that a line segment could be subdivided indefinitely. Using Aristotle’s 

terminology, a line segment is potentially infinite by division. 

TIME AND SPACE—INFINITUDE IN THE 

MATERIAL WORLD 

Of quantities some are discrete, others continuous. ... Discrete are number and 

language; continuous are lines, surfaces, ... time and place. 

— Aristotle, Categories (4th century B.C.) 

Since Aristotle did not equate the material and mathematical 

worlds, mathematical evidence did not necessarily tell him whether 

anything in the material world of human existence could be infinite. 

To investigate whether or not a material object, including a perhaps- 

evolving universe, could be infinite by addition, Aristotle applied one of 
his physical theories and one of his philosophical principles. Aristotle’s 
understanding of existence depended on the idea that that which can 
be conceived of as existing must exist; existence is a property of being. 
So, if a material entity or collection could be infinite by addition then 
it would have to already exist as a completed whole. Thus, according 
to Aristotle's thinking, neither the universe nor the Library in Borges’ 
short story could be indefinite; each would have to be either finite or 
infinite. If either the universe or the Library were to exist as a complete 
infinite structure, its existence would violate Aristotle’s assertion that 
something could be infinite only if no matter how much of it has been 
delineated some part will have been left out. Thus Borges’ Library could 
not exist, and a material entity could not be infinite by addition. In 
particular, neither the universe nor anything in it could be infinite by 
addition. 

However, Aristotle maintained that both space and time were in- 
finite by division, and he forever linked the infinite divisibility of the 
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two by the following simple argument from his Physics.2° Consider two 

moving objects A and T, A being the faster of the two. In the time, t,, 

that A moves a given distance, d,, T will move a shorter distance, de 

And in the shorter time, t,, that A moves the distance, d,, T will move a 

still shorter distance, d,. And so on, ad infinitum. It follows that if there 

were a shortest distance, then there would be a shortest increment of 

time, and if there were a shortest increment of time, then there would 

be a shortest distance. So just as there are shorter and shorter intervals 

of time there must be shorter and shorter distances in space. (Aristotle 

would have put this in precisely the opposite way, because for him time 

did not exist without motion. Since motion at a constant velocity can 

be imagined to be over as short a distance as deSired, time can be imag- 

ined to have as short an interval as desired.) 

Because Aristotle argued that a void could not exist, matter and 

space were coincident; since space is potentially infinite by division, so 

is matter. An immediate consequence of this is the rejection of any sort 

of an atomic theory; Aristotle’s conception of the infinite forces him 

to reject both the Leucippus/Democritus and the Platonic theories of 

matter. 

In several other prints, for example in Smaller and Smaller, below, 

Escher represented infinity by suggesting the infinite divisibility of 

space. 

PLATE 3.2. Smaller and Smaller, 1956. M. C. Escher (1898-1972). 

© 2007 The M. C. Escher Company-Holland. All rights reserved. 
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In Smaller and Smaller the outer ring of lizards fills half of the space be- 

tween the center of the print and its outer edge; the next ring of lizards 

fills half of the space between the center of the print and the inside 

edge of the outer ring of lizards. This halving process is repeated with 

the next ring of lizards, and then the next. This stepwise process will 

never completely fill the canvas because there will always be a gap be- 

tween the innermost ring and the center of the print. 

Escher felt that this “centripetal reduction is ... unsatisfactory be- 

cause of the arbitrary outward limitation.”*? To overcome this, Escher 

experimented with reversing the pattern from Smaller and Smaller 

in a series of prints, having the larger images in the center of the cir- 

cle and reducing them in size as they approach the boundary of the 

circle. See, for example, Figure 8.1 in the discussion of non-Euclidean 

geometry. 

ZENO OF ELEA 

[The] point of philosophy is to start with something so simple as not to seem worth 

stating, and to end with something so paradoxical that no one will believe it. 

— Bertrand Russell, “The Philosophy of Logical Atomism” (1918) 

Embedded in the link between the infinite divisibility of space and 
the infinite divisibility of time is Aristotle’s response to one of the most 
subtle proponents of Parmenides’ view that reality is a unified, homo- 
geneous whole beyond our perception. This proponent was Zeno of 
Elea (born c. 490 B.C.), who appealed to presumed properties of math- 
ematical infinity to prove Parmenides’ assertion that reality must be 
a homogenous, metaphysical infinity. In providing his analysis of the 
nature of reality, two centuries before Aristotle rejected the metaphysi- 
cally infinite, Zeno had further intertwined the metaphysically and 
mathematically infinite. 

Each of Zeno’s demonstrations purports to show that motion is im- 
possible, and because we observe and experience what we perceive 
as motion, the world of our perception is an illusion. The real reality 
must be a unified, static whole beyond what we can ever know. What is 
remarkable about Zeno’s so-called paradoxes is that whether space or 
time is assumed to be infinitely divisible or not, that is, continuous or 



An Introduction to Infinity | 65 

discrete, one of them will seem to establish the impossibility of physi- 

cal motion. 

The first of Zeno’s best-known paradoxes is called “the Dichotomy”: 

To get from Point A to Point B you first have to go half of the way, 

and then half of the remaining distance, and then half of the new re- 

maining distance, and so on. You can never reach Point B because at 

any moment you are some fixed distance away from Point B and you 

have to travel half of that remaining distance before you can travel 

the entire remaining distance. 

The Dichotomy supported Parmenides’ distinction between the per- 

ceived world and what-is in two ways. First, tHis paradox was not in- 

tended to demonstrate that the motion we experience is impossible, 

but that motion is an illusion, because the physical act underlying what 

we perceive as motion is impossible. Motion appears to occur, but can- 

not, so reality and appearance are not the same. 

The second, subtler, way in which the Dichotomy supports Par- 

menides’ philosophy resides in what it tells us about the nature of 

what-is. The Dichotomy shows that Parmenides’ metaphysical infin- 

ity must be static, not only because motion requires a transition from 

an existing state to a nonexisting state, but because motion requires 

the completion of an endless number of tasks. Thus, Zeno establishes a 

property of metaphysical infinity by appealing to our naive notion of 

mathematical infinity—that it is unattainable. 

If the moral of the Dichotomy can be summarized as 

motion is impossible because it requires the movement to 

each of an unlimited number of places 

then it appears to depend on the assumption that space is continuous, 

and so there can be no end to the possible positions between any two 

positions. 

Aristotle examined the Dichotomy under his assumption that both 

time and space are infinite by division. Aristotle pointed out that the 

conclusion of the Dichotomy rests on three premises: 

1. To move from any place to any other place, it is necessary to 

move half of the way first. 
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2. The number of these half steps is endless. 

3. It is impossible to complete an endless number of tasks.” 

Aristotle accepted each of these premises, but resolved Zeno’s paradox 

by examining the very nature of motion. Since, for Aristotle, time was 

infinite by division, there cannot be two adjacent instants; we cannot 

compare the position of a moving object from one moment to the next. 

Thus, motion does not occur at an instant, but over an interval of time. 

Similarly, an object cannot be at rest at a single moment, but only over 

an interval of time. So, in the Dichotomy, movement from A to B does 

not require movement to each of the “halfway” points, as the first prem- 

ise might lead you to believe. Indeed, for Aristotle, when something is 

in motion it is never at a position; for us to be able to say that some- 

thing is in a particular position, it must remain there over an interval 

of time and so be at rest and not in motion. This means that movement 

from A to B does not involve motion to each “halfway” point, but move- 

ment through each “halfway” point. 

Another paradox Zeno offered has become known as “Achilles and 

the Tortoise”: 

Suppose Achilles is going to race a tortoise, and to make it a fair race 
the slower tortoise is given a head start. When Achilles starts to run, 

the tortoise will be at some position along the track. When Achil- 
les reaches the place where the tortoise was at the beginning of the 
race, the tortoise will have moved a little bit, and by the time Achilles 

reaches that point the tortoise will have moved a bit farther. Achil- 
les can never reach the tortoise because every time he arrives at the 
place where the tortoise was the tortoise will have moved ahead a 
bit farther. 

The original paradox, as reported by Aristotle, is less prosaic: “The slow- 
est runner will never be caught by the fastest runner, because the one 
behind has first to reach the point from which the one in front started, 
and so the slower one is bound always to be in front.”23 

In his essay “Avatars of the Tortoise,” Borges uses Achilles and the 
Tortoise to introduce the idea of infinite regression, more formally 
known as regressus in infinitum. Borges examines several philosophi- 
cal applications of this principle, which were summarized by the novel- 
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ist John Barth (b. 1930) in “The Literature of Exhaustion.” According to 

Barth, Borges “carries through” the history of philosophical uses of infi- 

nite regression: “pointing out that Aristotle uses it to refute Plato’s the- 

ory of forms, Hume to refute the possibility of cause and effect, Lewis 

Carroll to refute syllogistic deduction, William James to refute the no- 

tion of temporal passage, and Bradley to refute the general possibility 

of logical relations.”** Borges could have also included a discussion of 

Kant’s description of how we understand the magnitude of something. 

(Not all these applications are relevant to the main themes of this 

book.) 

The infinite regression is not immediately evident in Achilles and 

the Tortoise, as this paradox is simply a restatefnent of the Dichotomy, 

with Achilles racing toward a moving target. Viewed this way Aristo- 

tle’s resolution of the Dichotomy also resolves Achilles and the Tortoise. 

Another of Zeno’s paradoxes, the Arrow, seems more apt. In Aristotle’s 

version, the connection between infinite regression and the Arrow is 

still hidden: “If it is always true that a thing is at rest when it is op- 

posite to something equal to itself, and if a moving object is always in 

the now, then a moving arrow is motionless.”” The phrase “opposite to 

something equal to itself” should be interpreted as it is in a space equal 

to its volume. 

Aristotle’s examination of the nature of motion also resolved this 

paradox, but not its modern incarnation, below, which is the one Borges 

examined in his essay. Aristotle wrote that the conclusion that the mov- 

ing arrow is motionless “depends on assuming that time is composed 

of nows.””6 If time consists of a sequence of adjacent moments, nows, 

instead of being infinitely divisible, then a moving arrow would have 

to be at one position at one moment, then in another position at the 

next moment. But as space is infinitely divisible, there are intermediate 

positions between the arrow’s first and second positions, but the arrow 

can never occupy any of those positions because there is no intermedi- 

ate time between two moments. 

The modern reformulation of the Arrow, which is a reversal of the 

Dichotomy, more clearly depends on infinite regression: 

In order for an arrow to move from your bow to a target, it must first 

move to the halfway point between the bow and the target. Before 
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it can accomplish that motion, the arrow must first move halfway 

from the bow to the halfway point to the target. Yet again, before it 

can move to this second intermediate point it must move halfway 

from the bow to that point. Thus, the arrow can never be in motion, 

because before it can move to any point beyond its stationary posi- 

tion on the bow it must move one-half of that distance, and before 

that one-half of that distance, and so forth. 

Aristotle did not address the Arrow in this form, whose conclusion also 

depends on assuming that time is made up of “nows.” But even if time 
is infinitely divisible, it is not evident what happens to put a stationary 

arrow into motion. 

Henri Bergson, one of the more modern proponents of the position 
that reality is metaphysically infinite, addressed this paradox. Bergson 
allowed for another way of knowing or exploring reality. According to 
Bergson, there are “two profoundly different ways of knowing a thing. 
The first implies that we move round the object; the second that we en- 
ter into it. The first depends on the point of view at which we are placed 
and on the symbols by which we express ourselves. The second neither 
depends on a point of view nor relies on any symbol.”2” 

Bergson called knowledge obtained by intellect “relative,” and knowl- 
edge obtained by intuition “absolute.” The reality we can learn of only 
through intuition is Bergson’s version of metaphysical infinity. Bergson 
turned to the Arrow to illustrate how an application of logical analy- 
sis, or intellect, could lead us astray. According to Bergson, continuity 
is a basic concept of reality, a concept that we understand completely 
through intuition. The mathematical, logical preoccupation with the 
concept of a point leads us to believe that continuity should somehow 
be built up from points. This is an example of the intellect imposing a 
condition on reality that it does not possess—the motion of the arrow 
in the paradox cannot be reduced to points. The arrow does not stop 
at intermediate positions, at intermediate times, according to Berg- 
son (and Aristotle); instead the arrow’s motion is a continuous, seam- 
less flow. The analogy Bergson used was that of what was then called 
a cinematograph but to us is known as a motion picture projector. 

According to Bergson, a mathematician analyzing motion, as move- 
ment from point to point, is attempting to understand the world by 
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using the analogy of movie film. While watching a movie, for example 

of Achilles chasing a rabbit around a stadium track, we are watching 

a finite number of still photographs projected in sequence onto the 

screen at a rate of thirty frames per second. To us, Achilles’ motion looks 

smooth—continuous. But of course it is not, it is a finite sequence of 

instances. Our eyes do not work instantaneously; it takes time (dura- 

tion) for us to perceive an image. If a sequence of images is flashed onto 

the movie screen at a rate of one per second we feel as if we are watch- 

ing a slide show. If the rate is increased to two images per second then 

to three images then to four, the slides’ images remain on the screen 

for shorter and shorter intervals of time. There is some point at which 

we no longer perceive the individual slides as a static image. At this 

point, Achilles’ motion appears to be continuous. Depending on several 

variables, for example, the brightness of the image, our visual acuity, 

Achilles’ motion will evolve from jumpy to smooth at about twenty 

frames per second. Bergson said that imagining that motion occurs as 

observed in the cinematograph, even when the motion occurs in an un- 

imaginably large number of frames per second, is imposing ideas from 

the unreal world of mathematics onto reality. 

Neither Bergson’s appeal to intuition nor an application of Aristo- 

tle’s analysis of Zeno’s other paradoxes resolves the Arrow. Both Aristo- 

tle and Bergson appealed, in slightly different guises, to the concept of 

continuity, but the Arrow depends on the discontinuity between being 

at rest and being in motion, and the seeming impossibility of making 

that transition. Confronted with having to explain how something at 

rest can be put in motion, and overcome the objection presented by 

the Arrow, a possibly exasperated Bertrand Russell (1872-1970) said, 

“When a body moves, all that can be said is that it is in one place at 

one time and in another at another. ... Motion consists merely in the 

fact that bodies are sometimes in one place and sometimes in another, 

and that they are at intermediate places at intermediate times.’** As 

evidence of the inconclusiveness of these philosophically inclined dis- 

cussions of motion, we offer two twentieth-century pieces of art that 

seem to represent these contrary views. The first of these is Marcel Du- 

champ’s painting Nude Descending a Staircase (No. 2). 
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PLATE 3.3. Nude Descending a Staircase (No. 2), 1912. Marcel Duchamp (1887-1968). Oil 
on canvas, 577/s x 35% in (147 x 98.2 cm). The Louise and Walter Arensberg Collection, 
1950. Philadelphia Museum of Art, Philadelphia. Photo: The Philadelphia Museum of 
Art /Art Resource, New York. © 2007 Artist Rights Society (ARS), New York / ADAGP, 

Paris / Succession Marcel Duchamp. 

In this painting Duchamp illustrated motion by allowing time to be an 
element in his painting—it appears as if Duchamp were viewing mo- 
tion as a sequence of discrete steps. Partly in response to Duchamp’s 
painting, Umberto Boccioni (1882-1916) wrote in one of his manifestos 
on futurist art (1913): “It seems clear to me that this succession is not to 
be found in the repetition of legs, arms, and faces, as many people have 
idiotically believed, but is achieved through the intuitive search for the 
one single form which produces continuity in space.”?? Boccioni’s sculp- 
ture Unique Forms of Continuity in Space seems to illustrate his view of 
motion as a continuous process. 



An Introduction to Infinity | 71 

PLATE 3.4. Unique Forms of Continuity in Space, 1913. Umberto Boccioni (1882-1916). 

Galleria d’Arte Moderna, Milan, Italy. Photo: Scala / Art Resource, New York. 

As important as Zeno’s paradoxes, and the philosophical examinations 

of them, were to the evolution of the mathematical ideas, theologi- 

cal discussions were even more significant. And as we see in the next 

chapters, these discussions examined not only the concept of infinity 

but also the properties of geometric objects and the meaning of proof. 



[Is] there any one so senseless as to believe that there 

are men whose footsteps are higher than their heads? 

or that the things which with us are in a recumbent 

position, with them hang in an inverted direction? that 

the crops and trees grow downwards? that the rains, 

and snow, and hail fall upwards to earth? 

— Lactantius, The Divine Institutes (early 

4th century) 

One morning, in the third century B.C., the Greek astronomer Eratos- 

thenes (276-194 B.C.) did a seemingly curious thing; he stuck a straight 

stick into the ground, as perpendicular to the earth as he could, and 

watched its shadow shift as the sun moved across the morning sky. 
Eratosthenes was in Alexandria, Egypt, so the sun stayed in the south- 
ern sky as it arched toward its apex. At midday, Eratosthenes very care- 
fully measured the angle between the tip of the stick and the tip of its 
shadow. With this single measurement, Eratosthenes knew he could 
determine the size of the earth. 

Eratosthenes’ calculation of the earth’s circumference relied on an 
assumption about the mathematical properties of parallel lines. The 
parallel lines in this experiment are rays of sunlight, and although rays 
of sunlight are not exactly parallel, if the sun is very far from the earth 
then they are close to being parallel. To see this, imagine standing on 
the sun at the point from which two rays emanate. If you were to aim 
a very strong telescope at one spot on the earth, and then turn it to an- 
other spot on the earth, you would barely need to make any adjustment. 
The change in the direction of your telescope would be immeasurably 
small, and the smaller the angle between two lines the closer they are 
to being parallel. So, although it is not absolutely correct, Eratosthenes 
assumed for the sake of his calculation that two rays of sunlight travel- 
ing through space moved along parallel paths. 
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For Eratosthenes to have made this assumption, he needed to know 

that the distance from the sun to the earth is fairly large. If the sun were 

a close-by, small disc, Eratosthenes’ assumption that rays of sunlight 

are essentially parallel when they strike the earth would be grossly in- 

correct. By just looking at the sky it is impossible to tell whether the 

sun is a small disc relatively close to earth or a large disc at a great dis- 

tance. But almost no one thought the sun was very close to earth. As 

far back as the sixth century B.C., Anaxagoras had suggested that the 

sun was a disc twenty-eight times as large as his proposed cylindri- 

cal earth, and since it appears to be rather small in the sky, it must be 

relatively far away. However, Eratosthenes’ assumption that the sun is 

not too nearby probably came from the work of his older contemporary 

Aristarchus (310-c. 230 B.C.), whose ingenious use of the properties of 

similar triangles led to estimates for the distances between the earth, 

moon, and sun. We briefly describe Aristarchus’ work, if only to empha- 

size its geometric character, later in this chapter; first we explore the 

meaning of Eratosthenes’ experiment. 

THE FLAT EARTH 

Another crucial component in Eratosthenes’ experiment was his 

knowledge of a well in Syene, the modern Aswan, which is directly be- 

neath the midday sun twice a year. Such a seemingly difficult-to-verify 

fact could be established because at the moment the bottom of the 

well is fully illuminated the sun is directly overhead. Eratosthenes also 

needed to know precisely when the sun reached its apex over Syene; 

since Syene is, more or less, due south of Alexandria, when the sun is 

directly above the well it is at its highest point in the Alexandrian sky. 

Under the assumption that the sun is very far from earth, the very ex- 

istence of the shadow of the stick demonstrates that the surface of the 

earth is not flat. 

ae ee 
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FIGURE 4.1. If the earth were flat and the sun far away, then at any time of 

day parallel rays of sunlight would strike the earth at the same angle. 
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So at midday, when Eratosthenes measured the angle, since the sun 

was directly over the well in Syene it would also be directly over his 

stick. Thus, the stick would not cast a shadow, and so there would not 

be an angle to measure; the existence of the shadow confirmed what 

was already believed—that the earth is not flat. 

The Pythagoreans, Plato, and Aristotle had all believed the earth was 

a sphere. Although the belief that the earth is a sphere might be driven 

by the belief that the earth is a geometrically perfect, three-dimensional 

shape, there is visual evidence to support this belief. One piece of evi- 

dence comes from watching a ship as it moves away from port, toward 

the horizon. The ship appears not only to shrink in size, but to slowly 

sink into the sea. Another piece of evidence is more cosmological. If you 

believe, as the Greeks generally did, that the moon and the sun revolve 

around the earth, then it is easy to conclude that when there is a lunar 

eclipse the earth is between the sun and moon. And since whenever 

the moon enters the earth’s shadow the shadow is circular, it is reason- 

able to guess that the earth is most likely a sphere. 

In On the Heavens, Aristotle cited the shape of the earth’s shadow on 

the moon during an eclipse to support his view that the earth is spheri- 

cal, “in eclipses the outline is always curved: and, since it is the inter- 

position of the earth that makes the eclipse, the form of this line will 

be caused by the form of the earth’s surface, which is therefore spheri- 

cal.”* Aristotle continued with further physical evidence: A change in 
latitudes affects which stars can be seen in the night sky. He noted that 
different stars are visible when the night sky is viewed from Egypt 
and from “northerly regions,” which means that the earth is not flat. 
Further, since different stars are visible if you make even a relatively 
small shift in your north-south position, the earth cannot be very large 
(at least when compared with the distances to the stars). Aristotle of- 
fered additional evidence that the earth is a sphere—the existence of 
elephants both to the west and east of Greece, “about the pillars of Her- 
cules and the parts about India, suggesting that the common charac- 
teristic of these extremes is explained by their continuity.” 

Despite the visual evidence and Eratosthenes’ experiment, the belief 
that the earth is flat did not completely disappear; it did, however, be- 
come the minority view. Among the Greeks who play an important role 
in the history of mathematical ideals, only Democritus questioned the 
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dominant view that the earth is a sphere. According to Aristotle, De- 

mocritus gave “the flatness of the earth as the cause of its staying still. 

... This seems to be the way of flat-shaped bodies: for even the wind 

can scarcely move them because of their power of resistance.”? 

In the first millennium only a few writers argued that the earth was 

flat. Of particular relevance to the nature of proof are two Christian 

apologists, Lactantius Firmianus, early in the fourth century, and Cos- 

mas Indicopleustes, in the sixth century. Between 303 and 311, Lactan- 

tius wrote what is considered to be his most important treatise, The Di- 

vine Institutes. In this work, Lactantius discussed what he perceived to 

be the flaws in pagan beliefs—that is, the errors of non-Christian writ- 

ers, especially the Greeks. This work contains seven books; the titles of 

the first four books reveal part of its focus: 

Book 1. Of the False Worship of the Gods 

Book 2. Of the Origin of Error 

Book 3. Of the False Wisdom of Philosophers 

Book 4. Of True Wisdom and Religion 

One of the ideas from pagan thought Lactantius sought to undermine, 

in book 3, was the belief that the earth is round, which allowed for the 

possibility of the other side of the earth being inhabited by antipodes. 

Lactantius asked whether anyone could be so senseless as to believe in 

the existence of these humans. 

The sixth-century writer Cosmas Indicopleustes should have known 

that the earth is not flat. Early in his life Cosmas traveled extensively, 

there is evidence that he sailed both the Mediterranean and Red Seas; 

his surname (“India-voyager”) suggests that he had been to India, so he 

should have been aware of the physical evidence cited by Aristotle. But 

later in life, Cosmas converted, or returned, to Christianity, began a mo- 

nastic life, and defended his interpretation of the Bible against ancient, 

pagan beliefs in his Christian Topography.* 

Cosmas’ Topography was divided into twelve books, including: 

Book 1. The Places and Figures of the Universe; Heresy of Affirming 

That the Heavens Are Spherical, and That There Are Antipodes; 

Pagan Errors as to the Cause of Rain and of Earthquakes 

Book 4. A Recapitulation of the Views Advanced; Theory of Eclipses; 

Doctrines of the Sphere Denounced 
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Among Cosmas’ arguments for the flatness of the earth was his at- 

tempt to counter the conclusion that the shape of the shadow on the 

moon during a lunar eclipse tells us something about the shape of the 

earth. His explanation for the roundness of the shadow of the earth de- 

pended on his description of the earth. According to Cosmas the earth 

is a flat rectangle with a high central mountain and the circular edge 

of the shadow that appears on the moon during a lunar eclipse is not 

caused by the earth itself but by the earth’s central mountain. 

Cosmas concluded with an appeal to belief as the ultimate source of 

truth: “To enquire further into these matters we have no leisure; for such 

knowledge is unprofitable to us who have access to a more profitable 

knowledge, which imparts to our soul a good and beneficent hope which 

God hath promised he will give to those who believe in him, while those 

who act unjustly he has doomed to perdition.”® Later, Cosmas added 

book 6, “Regarding the Size of the Sun,” wherein he defended his con- 

clusions: “After my work had been finished, some questioned us about 

the figure of the world, saying: ‘How can the sun possibly be hidden, as 

you hold, by the northern parts of the earth, which according to you are 

very high, while he is many times larger than the earth? For in the case 

of the sphere which we advocate, however much greater the sun may 

be than the earth, he will always, when giving light to one part of her 

surface, leave the other in shadow. To those so questioning us we have 

made a very brief reply, that such a thing is false and a pure fiction.”® 

Cosmas then used the existence of the shadow in Eratosthenes’ ex- 
periment to prove that the sun must be a small, nearby disc. His argu- 
ment is that because the earth is flat, if the sun were far away, then at 
any moment, all shadows would be cast at the same angle. Since this is 
not the case, the sun must be so close to the earth that rays of sunlight 
are not nearly parallel. Eratosthenes’ argument can be paraphrased as: 
Since the sun is far away, the existence of the stick’s shadow in Alexan- 

dria, when the sun is directly over the well in Syene, demonstrates that 
the earth is not flat. Cosmas’ argument can be paraphrased as: Since 
the earth is flat, the existence of the stick’s shadow in Alexandria, when 
the sun is directly over the well in Syene, demonstrates that the sun 
must be close to the earth. As Figure 4.2 illustrates, both Cosmas’ and 
Eratosthenes’ arguments are correct; their conclusions are consistent 
with their different assumptions. 
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4 

FIGURE 4.2. Both Eratosthenes’ and Cosmas’ assumptions about the shape of the 

earth and the distance from the earth to the sun are consistent with shadows 

being cast at different angles by three posts that are placed far apart. 

Cosmas also used the differences in the lengths of these shadows to 

argue that the sun is considerably smaller than the earth. Once he had 

established that the sun is small and nearby, the conclusion that the 

shadow of the earth’s central mountain could cause an eclipse is rea- 

sonable. 

In his book Inventing the Flat Earth (1991) Jeffrey Burton Russell ex- 

amined the origins of the belief that during the Middle Ages the earth 

was thought to be flat. Neither Lactantius nor Cosmas was widely 

read in Europe, so Russell does not trace this modern assumption 

back to them. None of Cosmas’ Topography was translated into Latin 

until 1706, and Lactantius was all but ignored until the Renaissance. 

However, there is one important reference to Lactantius, in Coperni- 

cus’ On the Revolutions (1543). Copernicus knew the church would not 

welcome his proposition that the earth revolves around the sun, so he 

wrote a preface to Pope Paul III. In the preface Copernicus surveyed the 

history of the heliocentric universe and warned, “there will be bab- 

blers who claim to be judges of astronomy although completely igno- 

rant of the subject.” A few lines later he gave Lactantius as an example: 

“It is not unknown that Lactantius, otherwise an illustrious writer 

but hardly an astronomer, speaks quite childishly about the earth's 

shape.”’ 
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According to Russell, many of the early modern references to the 

belief that the earth is flat appear in fiction. For example, in Somer- 

set Maugham’s Of Human Bondage (1915) one of the characters says, 

“Saint Augustine believed that the earth was flat and the sun turned 

around it.” However, Augustine seemed to accept that the earth might 

be a sphere; he just was not convinced that this meant that the entire 

earth was inhabited. As Augustine put it, “As for the fabled ‘antipodes,’ 

...even if the world is supposed to be a spherical mass, or if some ratio- 

nal proof should be offered for the supposition, ... even if the land were 

uncovered, it does not immediately follow that it has human beings 

on it.”® After reiterating that human existence began at a single place 

on earth, Eden, Augustine continued that “it would be too ridiculous to 

suggest that some men might have sailed from our side of the earth to 

the other ...so that the human race should be established there.” 

Another fictional reference to the belief that the earth is flat ap- 

peared in Washington Irving’s Life and Voyages of Christopher Colum- 

bus (1828). Irving wrote that before Columbus left on his voyage, he 

met with a group of theologians, and inquisitors, in Salamanca, Spain. 

According to Irving, this group argued that the world is flat. Probably 

no such meeting was ever held and no such group ever existed. 

EUCLID’S ELEMENTS 

Eratosthenes’ experiment depended on a special property of parallel 

lines. Both to understand Eratosthenes’ experiment, and to appreciate 

the impact of the principles of Greek geometry on theology, art, and 

later mathematics, it is important to have at least a passing familiarity 

with Euclid’s Elements (3rd century B.C.). 

Geometry, as it is presented in the Elements, is a deductive system. Its 

assumptions about geometric objects, and the relationships between 

them, are stated explicitly; additional properties of geometric objects 

are deduced from those assumptions using the commonly accepted 

rules of logic. Among these logical rules are the generally accepted syl- 

logisms, for example the well-known modus ponens 

Socrates is a man. 

All men are mortal. 

Therefore Socrates is mortal. 
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Euclid began book 1 of his Elements with twenty-three definitions, 

five common notions, and five postulates. Euclid’s list of definitions 

begins: 

1. A point is that which has no part. 

2. Aline is breadthless length. 

and ends with 

23. Parallel straight lines are straight lines which, being in the 

same plane and being produced indefinitely in both directions, 

do not meet one another in either direction. 

Euclid’s five common notions are the basic principles of mathemat- 

ics; they include at least one assumption that has already played a sig- 

nificant role in our review of mathematical ideas in theology: 

1. Things that equal the same thing also equal one another. 

2. If equals are added to equals, then the wholes are equal. 

3. If equals are subtracted from equals, then the remainders are 

equal. 

4. Things that coincide with one another are equal to one another. 

5. The whole is greater than the part. 

The five postulates of Euclidean geometry are statements about the 

properties of geometric objects whose truths are supposed to be based 

on observation or intuition. Euclid’s first three postulates mirror our ex- 

pectations for how a line or circle could be constructed: 

1. It is possible to draw a straight line from any point to any point. 

2. It is possible to extend a finite straight line continuously in a 

straight line. 

3. It is possible to describe a circle with any center and radius. 

Euclid’s fourth postulate, 

4. Allright angles are equal to one another 

may seem like a theorem rather than an assumption, but Euclid did not 

want to use angular measurement, at least in part because the Pythag- 

orean discovery of incommensurable lengths had made the concept of 

measurement suspicious. So for Euclid, a right angle is not defined as 
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being a 90-degree angle but an angle formed when two lines cross in 

such a way as to produce four equal angles. So, according to Euclid’s 

fourth postulate, all angles formed in this way are equal. 

Euclid’s final postulate is less simply stated, and over time it came 

to be seen as being either unnecessary or false. This is Euclid’s parallel 

postulate, and it gives a criterion for when two lines are parallel: 

5. If two lines, L, and L, are crossed by a third line [as in Figure 4.3] 

and if angle no. 1 and angle no. 2 add up to less than two right 

angles [less than 180 degrees in our language] then the lines L, 

and L, will cross when they are extended sufficiently far to the 

right. 

Ly 

FIGURE 4.3. The parallel postulate states that if angle no. 1+ angle no. 2 

does not equal 180 degrees, then the lines L, andL, are not parallel. 

The intuition behind this postulate is clear, if we imagine that in Figure 

4.3 angle no. 2 equals 90 degrees and angle no. 1 is less than 90 degrees, 

this postulate then asserts that the two lines L, and L., if extended suf- 

ficiently far, will cross somewhere off to the right. 

This postulate owes its awkwardness to the Greek avoidance of in- 

finity—a line is infinite by addition in that it can be extended indefi- 

nitely but it is not an existing infinitude. Using only the definition of 
parallel lines, it is not possible to determine whether or not two partic- 
ular lines are parallel—just because two lines have been extended and 
found not to yet intersect does not mean they will not intersect if they 
are extended further. It would take the completion of an infinite pro- 
cess, the complete extension of two lines, to determine that two lines 
never meet, and so are parallel. The ingenuity of Euclid’s parallel postu- 
late, and its companion theorem that if angle no. 1 and angle no. 2 add 
to 180 degrees then the lines L, and L, are parallel, is that it reduces the 
question of whether or not two lines are parallel to the examination of 
two angles. 
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The geometric property of parallel lines Eratosthenes called upon in 

his experiment is a consequence of Euclid’s parallel postulate. This is 

because if the lines L, and L, are parallel then, in our language 

angle no. 1+ angle no. 2 = 180 degrees, and 

angle no. 2 + angle no. 3 = 180 degrees 

from which it follows that angle no. 1 = angle no. 3. We will describe 

how Eratosthenes exploited this equality, once we understand how he 

knew the sun was very far from earth, and so rays of sunlight are, es- 

sentially, parallel. 

WHY THE SUN IS FAR AWAY 

There are some, King Gelon, who think that the number of the sand is infinite in 

multitude; and I mean by the sand not only that which exists about Syracuse and 

the rest of Sicily but also that which is found in every region whether inhabited or 

uninhabited. ... I will try to show you by means of geometrical proofs, which you 

will be able to follow, that, of the numbers named by me... some exceed not only 

the number of the mass of sand equal in magnitude to the earth filled up in the 

way described, but also that of a mass equal in magnitude to the universe... . 

Aristarchus of Samos brought out a book consisting of some hypotheses, in which 

the premisses lead to the result that the universe is many times greater than that 

now so called. 

— Archimedes, “The Sand Reckoner” (3rd century B.C.) 

In the above excerpt from “The Sand Reckoner,” in which Archime- 

des (c. 287-c. 212 B.C.) devised a scheme for representing large numbers 

using the limited Greek symbols, Aristarchus is said to have proposed 

that the universe is quite large. The premises Aristarchus used to reach 

this conclusion were that the earth revolves around the fixed sun and 

that the center of the sphere of stars is at the sun. Thus, as the earth 

moves around the sun it is sometimes closer to the stars than at other 

times. However, the stars never seem to change in size. From this it fol- 

lows that the stars are very far from earth. 

Aristarchus thought not only that the stars are very far away but 

also that the earth is not very close to the sun. To reach this conclusion, 

Aristarchus employed simple geometric principles and an ingenious 

geometric experiment. It was well known that the moon is closer to 
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the earth than the sun is, because, for example, the moon occasionally 

passes between the earth and sun. And Aristarchus understood that 

the relative positions of the sun, moon, and earth caused the various 

phases of the moon, and that when exactly one-half of the moon is il- 

luminated, at either the first quarter or third quarter, the positions of 

these three bodies can be diagramed as: 

Moon 

Earth & 

FIGURE 4.4. The triangle behind Aristarchus’ calculation of the relative 

distances of the earth to the moon and the earth to the sun. 

At the moment precisely one-half of the moon is illuminated, when 

viewed from earth, the angle at the moon will equal 90 degrees. If, at 

that moment, an observer on the earth were to measure the angle at 

the earth, formed by looking at the sun and then at the moon, it would 

be possible to use similar triangles to find the relative distances from 

the earth to the moon and from the earth to the sun. Aristarchus mea- 

sured this angle and found it to be, roughly, 87 degrees (as indicated in 

Figure 4.4). From this one measurement, and properties of similar tri- 

angles, Aristarchus was able to conclude that the sun is between eigh- 

teen and twenty times farther from the earth than the moon is. 

The earth-to-sun distance is now known to be roughly 390 times as 

great as the earth-to-moon distance, and Aristarchus could have dis- 

covered a similar, larger estimate because there are not any theoretical 

flaws in his reasoning. If it had been possible for Aristarchus to exactly 

measure the 87-degree angle, at precisely the moment one-half of the 

moon is illuminated, he would have found that it is approximately 

89/2 degrees. Alas, that precise moment can never be determined be- 

cause the moon is not a perfect sphere, and the measurement of the 

angle will never be exact, but will necessarily fall into a small range of 

possibilities. 

Aristarchus’ estimate for the ratio of the earth-to-moon and earth- 
to-sun distances shares a feature with almost all ancient, medieval, 

and Renaissance cosmic measurements—it is relative. Just know- 
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ing that the sun is eighteen to twenty times farther away from earth 

than the moon does not give the distance to either body. If the moon 

is fifty miles from earth, then the sun is between 900 and 1,000 miles 

from earth. On the other hand, if the moon is 10,000 miles from earth 

then the sun is between 180,000 and 200,000 miles from earth. In the 

first case the sun is fairly close to earth, and Eratosthenes’ assumption 

that rays of light travel from the sun to the earth along parallel paths 

is measurably incorrect. Fortunately for Eratosthenes, Aristarchus did 

not stop with his estimation of the relative distances of the moon and 

sun from the earth. By studying the shadow of the earth during a lunar 

eclipse and the shadow of the moon during a solar eclipse, Aristarchus 

was able to attach values to these distances and to the size of the sun 

and moon. For example, he estimated that the distance to the sun was 

780 earth-diameters and the diameter of the sun was 7 earth-diame- 

ters. Just from knowing that ships had already traveled great distances, 

Eratosthenes knew the earth must be large in human terms; so, using 

Aristarchus’ estimate, that the sun is 780 earth-diameters away, he 

knew the sun is very far from earth. 

ERATOSTHENES’ EXPERIMENT 

Eratosthenes’ calculation was based on the Greek understanding of 

the behavior of parallel lines—that when two parallel lines cross an- 

other line, as below, the indicated angles, a and f, are equal. 

Center of the earth 

FIGURE 4.5. A schematic representation of Eratosthenes’ experiment. 

The stick Eratosthenes stuck in the earth was perpendicular to the 

earth’s surface; so, if it were to be extended into the interior of the earth 

it would pass through the earth’s center. Similarly, if the ray of sunlight 

striking the well at Syene were extended into the earth, it too would 

pass through the earth’s center. In Figure 4.5 the top horizontal line 
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represents the ray of sunlight that hits the stick at Alexandria and pro- 

duces the stick’s shadow; the bottom horizontal line represents the ray 

of sunlight that is perpendicular to the surface of the earth at Syene; 

and the slanted line represents Eratosthenes’ stick (the last two lines 

are drawn as if they extend to the center of the earth). 

Eratosthenes needed to calculate the angle B, which represents 

how much of the circumference of the earth is contained in the por- 

tion from Syene to Alexandria. But Eratosthenes could not measure the 

angle P directly, as it is located at the center of the earth. Instead, on the 

appropriate day, at the appropriate moment, Eratosthenes measured 

the angle a, which, because of the assumed properties of parallel lines, 

equals the angle f. 

Using his estimate for the angle a, which in our language was 7/2 

degrees, Eratosthenes concluded that the ratio of the distance from the 

well to his stick to the circumference of the earth equaled the ratio of 

7 Y2 degrees to 360 degrees. This ratio yields an estimate for the circum- 

ference of the earth in the Greek measurement system of 50 x 5,000 

stades = 250,000 stades, just over half as large as the 400,000 stades Ar- 

istotle claimed for the earth in On the Heavens. We are not certain how 

to convert a Greek stade into feet, but a reasonable estimate is that one 

stade equals just a bit more than 600 feet.” Using this estimate, Eratos- 

thenes would have calculated the circumference of the earth as being 

28,732 miles. This is at least on the same scale as the current estimate 

of just under 25,000 miles. 

A SHORT OVERVIEW OF THE GEOMETRIC COSMOS 

From man or angel the great Architect 

Did wisely conceal, and not divulge 

His secrets to be scann‘d by them who ought 

Rather admire; or, if they list to try 

Conjecture, he his fabric of the heavens 

Hath left to their disputes; perhaps to move 

His laughter at their quaint opinions wide 

Hereafter, when they come to model heaven 

And calculate the stars; how they will wield 

The mighty frame; how build, unbuild, contrive, 
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To save appearances; how grid the sphere 

With centric and eccentric scribbled o’er, 

Cycle and epicycle, orb in orb. 

— Milton, Paradise Lost (1667) 

It is no more reasonable to treat the heavens as a single entity than 

it is not to differentiate stones from turtles. And the longer you look at 

the heavens, the subtler they become. Anyone observing the sky for a 

few days will notice that it contains three types of objects: the sun, the 

moon, and the multitude of stars. Because the moon obscures the sun 

during a solar eclipse, the moon must be closer to the earth than the 

sun, and because at sunrise and sunset the backdrop of stars is behind 

the sun, the sun must be closer to the earth than the stars. This at least 

provides an ordering—moving away from earth you would encounter 

the moon then the sun and then the stars. 

At first, all of the stars appear to move in unison, maintaining their 

relative positions as they cycle across the sky. Beyond the sun there 

appears to be a single realm. But a more patient observer, someone 

watching the sky for a few months, will notice that occasionally a star 

will break rank. When this happens, the rogue star seems to have an 

independent motion; it is as if it has free will. By watching the night 

sky over a longer period of time, for years instead of months, one rec- 

ognizes that there are only five different wanderers (planets) and that 

they follow different, mathematically imperfect paths. Distinguishing 

these five planets from the backdrop of stars yields a universe with its 

nine observable bodies: earth, sun, moon, five planets (Mercury, Venus, 

Mars, Jupiter, and Saturn), and the fixed stars. 

In Aristotelian physics, a natural motion is any motion free of in- 

terference, for example the motion of a freely falling body, the sun or, 

presumably, a comet. The reason natural motions occur, according to 

Aristotle, is that every body in the universe has a natural place; that 

is, every body has a preexisting and permanent preferred position. Ar- 

istotle even offered a not-at-all-enlightening operative definition of a 

body’s place in his Physics: 

1. The tendency is for the place of a body to contain the body. 

2. The place of a body is the position from which any motion of the 

body is to be measured."* 
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Aristotle appealed to the obvious, at least to him, truth that the uni- 

verse seeks order and so any body not in its place will naturally move 

toward it. 

As mathematical perfection was an unacknowledged requirement 

for the acceptance of an idea as a truth, any natural motion was either 

in a straight line or around a circle. Aristotle’s two principles defining 

the place of a body imply that if a body is not in its place it will move to- 

ward its place either along a line or along a circle, and the movement of 

a body can only occur when it is not in its place. Each of these types of 

motion requires a center—a natural linear motion is either toward or 

away from a center and a natural circular motion is around the center 

of the circle. 

Of all of these natural motions, one was assumed to be superior and, 

thus, necessarily the one in the heavens. In a short passage in the Ti- 

maeus Plato had written that the Creator allotted to the universe the 

one of the seven physical motions “which most properly belongs to in- 

telligence and reason,” which, according to Plato, was uniform circular 

motion.” The circle was thereby ensconced as the most geometrically 

perfect form—the one associated not with earthly matter but with the 

fabric of the cosmos—and circular motion displaced the six types of 

straight motion—up and down, forward and back, right and left—as 

the most divine. 

The only way Aristotle could reconcile the movement of the sun 

around the earth and the movement of a released stone toward the 

ground, was to propose that there is a single center for all natural mo- 

tions, necessarily at the center of the earth. Thus, all celestial motions 

had to be in perfect circles around the center of the earth. This reason- 

ing led Aristotle to abandon the mathematical perfection of the Py- 

thagorean cosmos, consisting of ten bodies moving in perfect circles 

around the central fire. Aristotle replaced the Pythagorean description 

of the universe with an earth-centered and highly problematic one. 

It is another tenet of Aristotle’s physics, and his theory of motion, 

that all natural motions are uniform. And, he argues, “Only circular 

movement can be continuous and eternal.”3 Thus all celestial motions 

are uniform, circular ones. The most glaring challenge to this claim is 

the irregularity of planetary motions. During their movement across 

the sky three of the planets, Mars, Jupiter, and Saturn, occasionally 



The Flat Earth and the Spherical Sky | 87 

stop and reverse direction, move backward for a few days or months 

against the backdrop of stars, then again reverse direction and resume 

their original course. Eventually each of these planets traverses the sky 

and then disappears for a few or many months before reappearing. 

The other two planets, Mercury and Venus, are more obedient. They 

never reverse direction and they never move far from the horizon, but 

they never traverse the sky. These observed behaviors mean that ei- 

ther the geometry of the planetary paths, or the speed and direction 

of their motions, is not in accord with Aristotle’s Pythagorean physical 

principles. Rather than abandon the mathematically perfect model for 

the universe, with all heavenly bodies moving along perfect earth-cen- 

tered circles with uniform velocities, the Greek$ sought a mathemati- 

cal solution to the conflict between observed and theorized planetary 

behavior. 

To understand how the Greeks reconciled observation with theory, 

and so truth with their assumptions about the role of beauty in the 

uncovering of truth, it is important to recall that for them there was 

no vacuum in space. Celestial objects were not imagined to be mov- 

ing through emptiness, but through the material heavens, so it was not 

unreasonable to postulate that the sun, moon, planets, and stars were 

attached to spheres that revolved around the center of the earth. But 

which heavenly bodies belong to which spheres? The Greeks reasoned 

that the slower a planet appears to move across the sky, and so the lon- 

ger it takes to traverse the backdrop of stars, the farther it is from earth. 

This is an entirely reasonable assumption if you believe that mathe- 

matical perfection requires the planets to all move at the same speed. 

Prolonged observation reveals that a complete orbit of Saturn, Jupiter, 

or Mars, requires thirty, twelve, or two years, respectively. This led the 

Greeks to believe that Saturn is the farthest planet from earth, beyond 

the orbit of Jupiter, which is beyond the orbit of Mars. 

The length-of-orbit approach fails when applied to Mercury or Ve- 

nus because they are always near the horizon, always within a few de- 

grees of the sun. Aristotle adopted the sequence from Plato’s Republic, 

putting Venus closer to earth than Mercury. This gives the sequence of 

bodies (listed from closest to earth to farthest from earth): 

moon, sun, Venus, Mercury, Mars, Jupiter, and Saturn.” 
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Beyond Saturn is an outermost sphere of fixed stars. This celestial 

sphere appears to rotate on an axis passing through the earth’s north 

and south poles, which accounts for the nightly procession of the back- 

drop of stars across the sky. The moon, sun, and planets are all con- 

tained within this bounded world, and each of them belongs to its own 

sphere rotating around the earth. 

In this view, the universe consists of a sequence of concentric 

spheres, centered at the earth. Unfortunately this mathematically pure 

model, along with the assumption that all celestial motions are uni- 

form (or at least regular), does not explain the wanderings of the plan- 

ets. There were successive elaborations of this nested-spheres model. 

The first two were offered by Eudoxus, a student of the Pythagorean 

Archytas, and by Aristotle, and the third by the astronomer Ptolemy 

in the second century A.D. Eudoxus proposed an ingenious solution to 

the problem of the wandering planets: The motion of each planet is 

determined by the rotation of more than one sphere. The idea is that 

for each planet, there is a system of concentric spheres, with the planet 

attached to one of these spheres; these spheres rotate around the earth, 

in such a way that the resulting motion matches observation. By posit- 

ing the existence of twenty-seven spheres, Eudoxus accounted for all 

observed planetary motions. 

Eudoxus was at least partially Platonic in his outlook so he thought 

of this system of concentric spheres only as a mathematical construc- 

tion that described the observed heavenly motions. The spheres were 

not material; they were as idealized as are all objects in the other, Pla- 

tonic world. Because Aristotle had already rejected Plato’s otherworldli- 

ness, when he adapted Eudoxus’ model to fit with his physics, he con- 

ceived of these spheres as invisible material bodies. 

Aristotle’s universe contained thirty-three earth-centered concentric 

spheres: four for Saturn, four for Jupiter, and five each for the moon, Ve- 

nus, Mercury, the sun, and Mars. This physical system needed a mecha- 

nism for all of its motion, and the mechanism Aristotle offered was the 

rotation of the celestial sphere of the stars by the unmoved mover. As 

the celestial sphere rotates, it forces the smaller spheres that control 

the motions of the sun, moon, and planets to rotate as well. To accom- 

plish this transfer of motion, Aristotle postulates the existence of an 
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additional twenty-two unrolling spheres that move the spheres associ- 

ated with each heavenly body. The image to have is of rotating gears 

that cause other gears to rotate. 

This model could not accommodate either the increasingly accurate 

records of planetary motions (especially for the motions of Venus and 

Mercury) or the slow movement of the celestial sphere. Thus, in the 

second century, Ptolemy (83-161 A.D.) introduced yet another struc- 

ture of rotating mathematical spheres to explain the heavens. Ptolemy 

adapted an idea attributed to the Greek astronomer Hipparchus (second 

century B.C.) to give a more accurate accounting for planetary motions. 

In this scheme, each perfectly spherical heavenly body is attached to a 

sphere whose center is in the celestial region, called an epicycle, and as 

the epicycle rotates around its center, that center moves around earth 

in a perfect circle. 

Center of orbit 

Earth 

FIGURE 4.6. An illustration of the geometry behind Ptolemy’s epicycles. 

This is an amazingly sophisticated system, having one scheme for Mer- 

cury and another for the other four planets, the sun, and the moon. Yet 

for each heavenly body, all of these motions are uniform in that the rate 

of change in the measurement of angle at the point Q is constant. This 

accounts for the apparent changes in the direction and speed of the 

planets through an application of harmonious Pythagorean principles 

but does not conform to Aristotle’s theory of natural motion. Equally as 

important, the movements of this system cannot be determined by a 

system of real, or imagined, sphere-gears, as was Aristotle’s. 
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This is but one of the problems with Ptolemy’s model for the universe 

that theologians and natural philosophers struggled with in the thir- 

teenth through seventeenth century. Just as Cosmas’ conclusion that 

the sun is not too far away can be deduced from his assumption that 

the earth is flat, theological solutions to conflicts between observation 

and belief are plausible when seen as part of their axiomatic system. 



It is therefore better that a proposition which cannot be 

demonstrated be received as an axiom, or that one of 

the two opposite solutions of the problem be accepted 

on authority. 

— Maimonides, Guide for the Perplexed 

(12th century) / 

In the sixth century, the poet, politician, philosopher, and perhaps mar- 

tyr Boethius (c. 480-c. 525), who had already translated portions of Eu- 

clid’s Elements into Latin, introduced a variant of the axiomatic method 

to theology. In one of his writings, “How Substances Are Good in Virtue 

of Their Existence without Being Substantial Goods,” which is known 

as “De hebdomadibus,” Boethius provided an axiomatic foundation 

for his arguments. In the prologue, in order to “explain a little more 

clearly,” Boethius wrote: “I have put forward first terms and rules on 

the basis of which I will work out all the things that follow, as is usu- 

ally done in mathematics.”’ Boethius then presented nine axioms that 

were intended to support his theological conclusions. Two examples 

will suffice to illustrate the nature of these axioms. 

Boethius’ first axiom explains that a self-evident truth is “a state- 

ment that anyone approves once it has been heard.” Of these self-evi- 

dent truths Boethius delineated two types: those that rely on common 

sense (Boethius gave the example: “If you take away equals from two 

equals, what remain are equals”) and those that “the learned but not 

the uneducated acknowledge” (Boethius’ example: “Things that are in- 

corporeal are not in a place”). Boethius’ second axiom is an example of 

the latter type, “Being and that which is are different.” 

The reason we said that Boethius introduced a variant of the axiom- 

atic method to theology, rather than that he introduced the axiomatic 

method to theology, is because he did not attempt to deduce his con- 

clusions from his axioms. Rather, Boethius explained that “a careful 
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interpreter” could reach the same conclusions as he reached through 

an application of the detailed deductive reasoning he did not provide. 

Boethius may be viewed as the first in a distinguished line of Chris- 

tian thinkers who maintained that the deductive method, or logic, 

played a role in discussions of faith. This line included Anselm of Can- 

terbury (1033-1109), Peter Abelard (1079-1142), and to a lesser extent, 

Peter Lombard (c. 1095-1160). Each of these theologians appealed to 

logic or deductive analysis differently. For example, Anselm gave his 

definition of God as that “than which nothing greater can be conceived” 

in his Proslogion (1074). (In Anselm’s words, “even the fool is convinced 

that something exists in the understanding, at least, than which noth- 

ing greater can be conceived.”)? 

Abelard, who is known for his entanglement with Heloise that led 

to his castration, is considered to be one of the profoundest thinkers 

of his era. Modern philosophers still remark upon the originality and 

insightfulness of his writings on logic, ethics, and metaphysics, espe- 

cially his theory of universals. Here we are interested in his approach 

to theology. Abelard did not believe that the conclusions of theologians 

should go unexamined. To illustrate why he believed this, he wrote his 

influential Sic et Non (1120), in which he listed a large number of prop- 

ositions, such as “that to God all things are possible,” and offered theo- 

logical arguments both for and against the proposition. Abelard stated 

his purpose in writing Sic et Non in its prologue: “There are many seem- 

ing contradictions and even obscurities in the innumerable writings of 

the church fathers. Our respect for their authority should not stand in 

the way of an effort on our part to come at the truth. ... The master key 

of knowledge is, indeed, a persistent and frequent questioning.”* Abe- 

lard even went so far as to invoke the authority of Aristotle, “the most 

clear-sighted of all the philosophers,” claiming that he had maintained 

that by “doubting we come to examine, and by examining we reach 

the truth.”® 

As might have been anticipated from these short excerpts, some 

theologians, especially those who took a more intuitive or mystical 

view of religion, did not accept the appropriateness of applying logical 

analysis to questions of faith. Indeed, both Abelard’s conclusions and 

his approach to faith were challenged by one of the most powerful re- 

ligious thinkers of the time, Bernard of Clairvaux (1090-1153). Bernard 
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appealed to the Council of Soissons to censure Abelard, and on June 3, 

1140, they condemned nineteen propositions they attributed to him. 

The Council ordered Abelard to remain silent; the pope eventually re- 

scinded this order; Abelard died in April 1142. 

This tension between “rational” and “mystical” approaches to faith 

increased as translations of Aristotle’s ideas and the philosopher Aver- 

roes’ twelfth-century commentaries on them began to appear in Eu- 

rope in the thirteenth century.° Theologians soon recognized the antag- 

onism between Aristotle’s natural philosophy and logic and Christian 

theology. An indication of this recognition is the Edict of Paris of 1210 

that proscribed lecturing on Aristotelian ideals. Despite this edict, by 

the 1240s Aristotle’s physics was being taught “at the two intellectual 

and theological centers of the day, Oxford University and the University 

of Paris. By 1255 Aristotelian natural philosophy was firmly established 

at both of these institutions. One of the benchmark dates in the strug- 

gle between Aristotelianism and theology is March 19, 1255. On that 

day, the faculty of arts at the University of Paris placed Aristotle’s writ- 

ings at the center of the curriculum. This, in effect, split the university’s 

faculty into two groups: a philosophical faculty, who found knowledge 

(but perhaps not truth) in the works of Aristotle and others, and a theo- 

logical faculty, who sought only to teach truth as revealed through the 

Bible. This split was not a full-blown schism, because the philosophi- 

cal faculty also took the Bible as the source of ultimate truth, but their 

willingness to consider the argumentation of Aristotelian natural phi- 

losophy did exacerbate the conflict between natural philosophy and 

theology. 

Not all thirteenth-century theologians were concerned about Aris- 

totelian ideas undermining their faith. Two theologians, Albertus Mag- 

nus (Albert the Great, c. 1193-1280) and Aquinas, wrote commentaries 

on works of Aristotle with few references to God, or God’s power. Ac- 

cording to the modern medieval scholar Edward Grant, Albertus wrote 

his commentary of Aristotle’s Physics because “his Dominican brothers 

had implored him’ to provide an account of physics so that they would, 

in Albertus’ words, “have a complete science of nature and that from it 

they might be able to understand in a competent way the books of Aris- 

totle.”” His attitude toward the supposed antagonism between natural 

philosophy and theology can be inferred from his justification for com- 
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menting on Physics: There was not one. This is also evident in Albertus’ 

commentary on De Caelo, wherein he questioned whether there could 

be other worlds, meaning inhabited heavenly bodies. Albertus indi- 

cated that God could produce more worlds, if he were so inclined, but 

then argued that nature itself, through natural processes, could not. 

Aquinas attempted to mend the antagonism between philosophy 

and religion by asserting that God had revealed both supernatural and 

philosophical truths. As an example, Aquinas said that God revealed 

his existence to us, so there is some knowledge that we obtain directly 

from God. On the other hand, it is possible to obtain knowledge through 

logical argumentation; for example, it is possible to philosophically 

conclude that God exists—Aquinas gave five such proofs. Thus truth 

could indeed be found in strictly philosophical texts. 

The philosophical movement can best be understood through an 

examination of the ideas of Siger of Brabant (1240-74), a member of 

the faculty of arts during a tumultuous period. While the theologians 

sought to uncover concealed truths, Siger annunciated a principle that 

guided the philosophers: “It should be noted by those who undertake 

to comment upon the books [of Aristotle] that his opinion is not to be 

concealed, even though it be contrary to the truth.”* Thus the philoso- 

phers saw a value in examining ideas even if they conflicted with pre- 

sumed theological truths. 

For more conservative theologians, even Aquinas went too far to- 

ward admitting that knowledge, and so truth, could be found outside 

faith. They saw that the acceptance of either Siger’s or Aquinas’ views 

would force theologians into endless attempts to reconcile conflicts be- 

tween these two possible sources of truth, all the while recognizing the 

authority of the Bible. Perhaps they even sensed that some philosophi- 

cal explanations might prove to be more satisfying than appeals to 

faith. One reaction to Aquinas’ accommodation of philosophical ideas 

came in 1272, when the faculty of arts in Paris decreed that no faculty 

member should presume to dispute any purely theological matter. The 

motion the faculty passed also addressed the question as to whether 

there could be two paths to truth: “If any [faculty member] reads or 

disputes any difficult passages or any questions which seem to under- 

mine the faith, he shall refute the arguments or texts as far as they are 

against the faith or concede that they are absolutely false.” 
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This decree undoubtedly left many issues unresolved, and it offered 

no guidance on how to address them. Scholastics were asking ques- 

tions upon which the Bible had no opinion, yet felt it necessary to re- 

solve them in a manner consistent with biblical interpretation. This 

precarious balancing act was overturned a few years later when Bishop 

Etienne Tempier of Paris issued the infamous condemnation of 1277. 

This condemnation listed 219 errors of thinking, or belief, for which 

someone could be excommunicated. Two errors listed in the condem- 

nation addressed the split among the faculty at the university: 

Error 40. There is no higher life than philosophical life. 

Error 154. [The] only wise men of the world gre philosophers.?° 

Besides anointing the theologians as the only thinkers with access to 

truth, the condemnation of 1277 resolved the fundamental question of 

whether God’s power enables him to do things contrary to principles of 

Aristotelian natural philosophy. God’s power was absolute. 

Despite the condemnation of 1277, discussions of Aristotelian prin- 

ciples continued throughout the Middle Ages, and sometimes came 

dangerously close to heresy. And although theology was not as axioma- 

tized as Boethius might have hoped for, Scholastics frequently appealed 

to the principles of Aristotelian logic to support their conclusions. The 

twentieth-century philosopher John Carnes has written on the paral- 

lels between theology and axiomatic systems. In his book Axiomatics 

and Dogmatics Carnes compares theology with science, at least science 

as it is imagined to proceed according to one widely accepted model. 

This is the so-called received view of science, which according to 

Carnes, holds that a scientific theory 

is formulated in terms of an axiomatized, logical structure; 

consists of language that embodies logical terms, observational 

terms standing for observed or observable phenomena, and 

theoretical terms peculiar to the theory under consideration; and 

provides correspondence rules connecting the theoretical 

vocabulary with observational vocabulary.™* 

Any axiomatized, logical structure includes what Carnes called 

primitive, or undefined, terms; a set of unproven but presumably self- 
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evident, true statements; and a set of rules for inferring new true state- 

ments from the axioms. Both Euclid and Anselm attempted to provide 

definitions for their most fundamental terms, for Euclid a point and for 

Anselm God. But saying that a point is that which has no part does not 

tell you what it is, just as saying God is that than which no greater can 

be conceived, only tells you what God is not. Neither of these expres- 

sions is a definition, each is a property of an entity whose existence 

is already assumed and whose essence is understood. Other important 

primitive elements in medieval theology are souls, heaven, and angels. 

Of these, angels most deserve our attention. 

QUESTIONS ABOUT ANGELS 

Of all the questions you might want to ask 

about angels, the only one you ever hear 

is how many can dance on the head of a pin. 

No curiosity about how they pass the eternal time 

besides circling the Throne chanting in Latin 

or delivering a crust of bread to a hermit on earth 

or guiding a boy and girl across a rickety wooden bridge. 

Do they fly through God's body and come out singing? 

Do they swing like children from the hinges 

of the spirit world saying their names backwards and forwards? 

Do they sit alone in little gardens changing colors? 

— Billy Collins, “Questions about Angels” (1999) 

The contemporary American poet Billy Collins speculates on the 

types of questions a modern person might ask about the nature of an- 

gels and juxtaposes them with the apocryphal one of how many could 

dance on the head of a pin: 

the medieval theologians control the court. 

The only question you ever hear is about 

the little dance floor on the head of a pin.” 

Although there is no evidence that any notable theologian or philoso- 

pher ever attempted to provide an estimate for the number of danc- 

ing cherubs confined to a small space, nor that anyone ever imagined 
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trying, this question is typical of the sorts of questions that occupied 

Western thought in the late Middle Ages and early Renaissance. 

What is striking about such questions is their naive intertwining of 

physical theories, mathematical assumptions, and metaphysical be- 

liefs. For example, the question of 

whether angelic power could produce a vacuum in nature 

juxtaposes one assumption of medieval Christian thought, that angels 

exist, and can act, with an assumption of Aristotelian natural philoso- 

phy, that a vacuum cannot exist in nature. It is evident in the very pos- 

ing of this question that medieval Scholastics struggled with conflicts 

between their theology, the concept of an all-powerful God, and their 

understanding of, for lack of a better word, physics. 

Edward Grant has cataloged many of the questions the Scholastics 

did address. These appear as an appendix in his book Planets, Stars, and 

Orbs. Many of these queries deal indirectly with the conflict between 

Christian and Aristotelian philosophies, such as the question about the 

power of angels to produce a vacuum (question 322 in Grant’s list) and 

the question 

whether there is something beyond the sky. (question 54) 

Others are relatively straightforward questions about the material 

world: 

Whether the nonstarry part of the heaven is visible to us. 

(question 136) 

Whether celestial bodies cause sound by their motions. 

(question 222) 

Whether it is possible that a vacuum can exist naturally. 

(question 308) 

The aspect of the Scholastic attempts to answer these questions that 

is most relevant to the ideas of this book is their reliance on deductive 

reasoning. Proof was their purported method for uncovering truth. The 

Scholastics based all of their reasoning on three central axioms—the 

unerring truth of Christian theology, the essential correctness of Aris- 

totelian natural philosophy, and the soundness of mathematics. Work- 

ing from these axioms, the Scholastics attempted to reconcile both 
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observed and imagined conflicts between the theological and philo- 

sophical cosmologies. These arguments forced them into examinations 

of their understanding of mathematics, infinity, beauty, and truth, and 

because religious faith was the ultimate source of truth, changed the 

dominant conception of each. 

WHETHER THE EMPYREAN HEAVEN IS A BODY 

(QUESTION 107) 

By the end of the Middle Ages, the generally accepted cosmology 

was a theological adaptation of the one developed by Ptolemy in the 

second century A.D. The structure of this theological cosmos was de- 

scribed in Dante’s Divine Comedy (early fourteenth century); Dante’s 

cosmos retains the basic structure of Ptolemy’s, but it is not differenti- 

ated into just the terrestrial and celestial realms. Theological regions 

dominate this universe. Beneath our feet, inside the spherical earth, 

lay the delineated circles of hell; on the portion of earth opposite Jeru- 

salem are the levels of purgatory. Heaven begins with the moon and 

continues beyond to a fixed sphere of the stars to a crystalline sphere, 

and depending on the answer to question 107, perhaps to a material 

paradise beyond the stars. This is the immobile empyrean paradise. 

In The Divine Comedy, Beatrice takes the narrator, presumably Dante, 

ona tour of the cosmos. After Beatrice educates Dante about the nature 

of hell and purgatory, in books 1 and 2, book 3, Paradise, begins with 

their ascent into the heavens. Both hell and purgatory are connected to 

earth, so there was no physical impediment to Dante and Beatrice tour- 

ing them, but heaven is distinct from earth. Dante is concerned with 

how he is to ascend into the heavens; Beatrice’s explanation reveals 

an important difference between Ptolemy’s heavens and the one pre- 

sented by Dante: 

Among themselves all things 

Have order; and from hence the form, which makes 

The universe resemble God. In this 

The higher creatures see the printed steps 

Of that eternal worth, which is the end 

Whither the line is drawn. All natures lean, 

In this their order, diversely, some more, 
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Some less approaching to their primal source. 

Thus they to different havens are moved on 

Through the vast sea of being, and each one 

With instinct given, that bears it in its course. 

So not only are there souls in hell and purgatory, all heavenly regions 

are occupied. The planetary spheres are not lifeless, geometrically 

driven objects, but the realm of both human souls and angels. The 

closer a sphere to the earth, that is the farther from the empyrean para- 

dise, the less perfect the souls or angels who reside there. For example, 

in Dante’s first heaven, the sphere of the moon, reside both the souls of 

people who broke their vows and the guardian angels of individuals. 

Theologians and the angels who combat evil occupy the fourth heaven, 

the sphere of the sun. The crystalline sphere is the last sphere revolving 

around the earth, and therein reside the angels that revel in God’s di- 

vine love. The empyrean paradise is reserved for only the purest souls, 

those who are worthy of the complete understanding that comes from 

proximity to God. To be in the empyrean paradise an individual must 

indeed have been devout, such as the Virgin Mary. Dante also places 

Bernard of Clairvaux, now Saint Bernard, in the empyrean even though 

Bernard had led the failed Second Crusade (1147-49) in which Dante’s 

great-great-grandfather was killed. 

In Dante’s universe it is not only the heavens that are organized 

along geometric lines. Just as the spheres of the planets differentiate 

the sky into separate regions, hell and purgatory are partitioned into 

levels. In the Divine Comedy, Dante systematically describes the delin- 

eations of hell, purgatory, and heaven. 

HELL 

If anyone says or thinks that the punishment of demons and of impious men is only 

temporary, and will one day have an end, and that a restoration will take place of 

demons and of impious men, let them be anathema. 

— The Seven Ecumenical Councils of the Undivided Church, “Decree of Synod of 

Constantinople” (553) 

The hell described in Milton’s Paradise Lost is a world where “Night / 

And Chaos, ancestors of Nature, hold / Eternal anarchy, amidst the noise 
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/ Of endless wars, and by confusion stand.” Although chaos remains 

the dominant attribute of Dante’s hell, in the Divine Comedy there is 

an order to the degrees of chaos. Hell is visualized as a deep pit with 

different levels; these are circular cliffs located at successively lower 

depths along the pit’s perimeter. These levels are known as the nine 

circles of hell. The first circle is not hell proper but limbo. This is a place 

where virtuous pagans and unbaptized children spend their eternity. 

These souls are not subjected to any physical torment, but instead they 

suffer only through being removed from God’s glory. In The Inferno, 

Dante lists some of limbo’s inhabitants: Dante sees Aristotle “amid the 

philosophic train. / Him all admire, all pay him reverence due.” Dante 

continues: 

There Socrates and Plato both I marked, 

Nearest to him in rank; Democritus, 

Who sets the world at chance, Diogenes, 

With Heraclitus, and Empedocles, 

And Anaxagoras, and Thales sage.* 

The second circle of hell is the first level of the fire-and-brimstone 

hell of modern fundamentalism. Minos, the mythological king of Crete 

who was known for his wise judgment, sits here, awaiting the arrival 

of the souls to which he assigns a torment particular to their sin. Mi- 

nos sends poets back to the first circle, retains the carnal—those who 

gave in to excessive desire—and sends the more sinful to an appropri- 

ate lower level with a specialized torment. The ninth circle of hell is not 

a circle but the bottom of the pit. It is the home of Satan and is reserved 

for only the most sinful. 

As Dante travels with Beatrice he describes the different circles of 

hell and their inhabitants, which are summarized below. 

CIRCLE OF HELL INHABITANT’S SIN POSSIBLE TORMENT 

first paganism hopelessness 

second lust whirled by murky wind 

third gluttony half buried in garbage 

fourth hoarding, wasting — eternal conflict 

fifth wrath, sullenness war in swamp 

sixth heresy flames 
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seventh violence . immersed in boiling blood 
eighth fraud, flattery hung by their heels and 

burned 
ninth treachery frozen in ice 

Dante's purgatory is also organized into levels. Many of the souls in 
purgatory have given into the same vices as the souls of hell, but these 
are the souls of the saved. Depending on its vice, a soul is assigned to 
one of seven levels and is subjected to a sort of deprogramming. Once a 
soul has been purged of its vice it ascends to heaven. 

WHETHER THE SPOTS APPEARING IN THE MOON ARISE 

FROM DIFFERENCES IN PARTS OF THE MOON OR FROM 

SOMETHING EXTERNAL (QUESTION 141) 

This to the lunar sphere directs the fire; 

This moves the hearts of mortal animals; 

This the brute earth together knits, and binds. 

Nor only creatures, void of intellect, 

Are aimed at by this bow; but even those, 

That have intelligence and love, are pierced.” 

—Dante, Paradise (14th century) 

Despite the complexity of Dante’s cosmos, the universe, like Aristo- 

tle’s and Ptolemy’s, is essentially divided into two realms, the tangible 

terrestrial world and the inaccessible celestial world. All heavenly bod- 

ies are nonterrestrial, and the earth and its objects are terrestrial, but 

that does not provide a clear boundary between the two. 

Aristotle attempted to clarify the differences between heaven and 

earth by describing the nature of the matter each contains. In the Di- 

vine Comedy these differences are based on the nature of its inhabit- 

ants. The Aristotelian terrestrial world consists of all matter that is 

composed of the four primary elements earth, air, fire, and water—an 

object or body is terrestrial only if it is made up of these elements. Aris- 

totle postulated that the objects in the celestial world were made up of 

some fifth, unknowable element. 

But it was apparent to Aristotle, and everyone else, that some ter- 

restrial matter does not remain earthbound; fire is inclined to move 
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into the heavens. Aristotle did not view the rising of fire (smoke) as ex- 

ceptional behavior for one of the primary elements, but as an extreme 

case among a range of possible behaviors—for example, water always 

sought to lie below air. Each of these tendencies is explained through 

Aristotle’s theory of heavy and light. In this theory the four elements 

are arranged, from heaviest to lightest: earth, water, air, fire. This or- 

dering more or less agrees with observation; if there is no interference 

then water lies between earth and air, and fire resides somewhere 

above air. However, fire’s unfortunate inclination to move upward, to- 

ward and possibly into the heavens blurs the distinction between the 

terrestrial and heavenly worlds based on their fundamental elements. 

Perhaps it could have been postulated that fire transforms into celestial 

matter, but even this would obscure the separation of the earth from 

the sky. Aristotle sidestepped this problem by simply maintaining that 

fire does not move into the heavens but remains in the region just be- 

low the position of the moon. 

Aristotle’s theory of heavy and light presented him with the follow- 

ing difficult question: If fire is the lightest of all of the elements why is it 

still present on earth at all? Why haven't all of the fire-elements drifted 

off into the sublunar region? There are two parts to Aristotle’s answer, 

and they both involve the distinction between terrestrial and heavenly 

space. The first part of Aristotle’s solution is his observation that in the 

terrestrial world, change and decay are pervasive. Accepting Plato’s 

transformation cycle, if not its geometric basis, Aristotle believed that 

fire is continually being remade from air; more fire is always available. 

This still does not address the problem presented by fire’s continual rise 

toward the heavens, which brings us to the second part of Aristotle's 

answer. Although he did not use this terminology, the earth-air-fire- 

water system is a closed system. The moon’s orbit provides a barrier 

through which fire cannot escape. Fire remains within the system to be 

further transformed. 

Just beyond the ring of fire there is evidence that something is wrong 

with all of the cosmologies we have discussed; this evidence is spots on 

the moon, what we call “the man in the moon.” Dante saw these mark- 

ings during his initial ascent into the heavens and asked Beatrice, “But 

tell, I pray thee, whence the gloomy spots / Upon this body?” These 

markings conflict with the assumption that all heavenly bodies are 
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perfect spheres, and these markings provide visible evidence that the 

mathematically inspired mechanisms for planetary movements can- 

not be correct. 

According to Plutarch, Pythagoras, whose sense of mathematical 

perfection came to dominate cosmology, accounted for the spots on the 

moon by declaring that the moon was terrestrial. The Pythagoreans af- 

firm “that the Moon appears to us Terraneous [terrestrial], by reason 

it is inhabited as our Earth is, and in it there are Animals of a larger 

size, and Plants of a rarer beauty than our Globe affords, and that the 

Animals ... are fifteen degrees superior to ours; that they omit nothing 

Excrementitious; and the days are fifteen times longer.”?® 

Since, for Aristotle, the heavens began just’beyond the realm of fire, 

the moon was a transitional body, neither entirely heavenly nor en- 

tirely terrestrial. Averroes claimed that Aristotle dismissed the moon’s 

imperfection by maintaining that the moon is composed of some com- 

bination of fire and the heavenly fifth element. The spots on the moon 

are places where these two elements are not homogeneously mixed. 

Thus the moon is intermediate between heaven and earth. 

Theologians and Scholastics also addressed the difficulties presented 

by the man in the moon. In 1627 the Italian theologian Raphael Aversa 

(1589-1671) surveyed nine different explanations for the lunar spots. 

These can be broadly characterized as: 

1. The spots are illusions, depending on shadows or reflections. 

2. The spots are the result of terrestrial events. 

3. The spots are intrinsic to the composition of the lunar 

surface.’” 

Plutarch had suggested that the lunar spots could be caused by vapors 

interposed between the earth and the moon, but Aversa rejected ex- 

planation number 1 because the spots are unchanging and appear the 

same from all points on earth (at least as far as he knew). The first-cen- 

tury Roman encyclopedist Pliny the Elder (2 3-79) had concluded that 

terrestrial vapors rose from earth and adhered to the lunar surface, af- 

fecting the moon’s luminosity or reflectivity. But Aversa believed that 

terrestrial vapors, or material, could never penetrate the region of the 

heavens, so he dismissed Pliny’s explanation. This leaves the third pos- 

sibility; the lunar spots are on the moon, or at least manifestations of 
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some property of its surface. The details of this explanation of the spots 

depended, in part, on how the advocate answered the following: 

Whether all the planets, except the sun, receive their light from 

the sun or from themselves. (question 231) 

Because of its phases, the moon was not considered to be strictly 

self-luminous, so the above question was transformed to another: Is the 

moon solely reflective, or does it possess some property of luminosity? 

This second possibility is best understood through a short quotation 

from Averroes: “It has been demonstrated that if the moon acquires the 

power of lighting up from the sun, it is not from reflection. .. . If it il- 

luminates, it is by becoming a luminous body itself. The sun renders it 

luminescent first, then the light emanates from it in the same way that 

it emanates from the other stars; that is, an infinite multitude of rays 

are issued from each point of the moon.”® 

Whether the moon is entirely reflective or strangely luminescent, as 

explained by Averroes, we are left to explain how a perfectly uniform 

heavenly body could have parts with different properties. There are 

also two answers to this: That the variation is caused by parts of the 

moon being of different densities or that the moon is an uneven mix- 

ture of two or more elements. Beatrice refutes both of these in Dante’s 

Paradise. In rejecting the first explanation Beatrice says: 

If rarity were of that dusk the cause, 

Which thou inquirest, either in some part 

That planet must throughout be void, nor fed 

With its own matter; or, as bodies share 

Their fat and leanness, in like manner this 

Must in its volume change the leaves. The first, 

If it were true, had through the sun’s eclipse 

Been manifested, by transparency 

Of light, as through aught rare beside effused. 

But this is not.?° 

Beatrice then rejects the second possibility, by asserting that the reflec- 

tion of light would be the same off of the thick and thin sections, and so 

the differences would not be visible to us. 

Aversa reached the same conclusion as Averroes, whose explana- 
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tion for the lunar spots dominated medieval thinking: The light from 
the sun excites the various parts of the moon, which then become lu- 
minescent, but not all portions become equally luminescent. The parts 
that become the least luminescent are the ones that we see as the lunar 

spots. This is not due to different densities but, somehow, to different 

portions of the moon having different opacity. 

It became the accepted view that the moon is somewhere between 

heaven and earth and thus shares properties with both. This, in itself, 

presented philosophical difficulties. Central to Aristotle’s cosmology, 

and then Christian theology, are the uniqueness of the earth and the 

perfection of the heavens. If the man in the moon is visible evidence 

that the surface of the moon shares some features with the surface of 

the earth, then the uniqueness of the earth, as the only world, is chal- 

lenged. If, on the other hand, the man in the moon is evidence for some 

uneven mixing of heavenly materials, then the perfection of the heav- 

ens is challenged. 

WHETHER THE HEAVENS OR PLANETS ARE MOVED BY 

INTELLIGENCES OR INTRINSICALLY BY A PROPER FORM 

OR NATURE (QUESTION 195) 

The existence of the man in the moon challenged not only the as- 

sumed perfection of all heavenly bodies but also the mechanics of 

Ptolemy’s system of epicycles. This is because Ptolemy’s model, al- 

though using circular orbits in a fundamentally different manner from 

Aristotle’s, is still based on Aristotle’s celestial physics. A central tenet 

of Aristotelian physics is that neither the moon nor any other heavenly 

body can rotate about its own axis. It is one of those curious pieces of 

intellectual history that Aristotle used one observation that is contrary 

to the underlying principles of his cosmology, the existence of the man 

in the moon, to support his position that no heavenly body can rotate 

on its own axis. 

Aristotle argued that since the moon moves around the earth, as de- 

scribed in his model, then the moon could not rotate because the man 

in the moon always faces the earth. If the moon rotated as it revolved 

around the earth, the man in the moon could not always aim inward. 

Thus the moon must move as if it is firmly attached to the circle of its 

orbit. 
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Rotating Moon Non-Rotating Moon 

FIGURE 5.1. These two drawings illustrate the movement of the moon around the earth 

in Aristotle’s model. In the drawing on the left, if the moon were to rotate on its axis 

as it revolves around the earth, then the man in the moon would not always face the 

earth. The drawing on the right illustrates that if the moon does not rotate on its axis, a 

rotation Aristotle’s physics prohibits, then the man in the moon always faces the earth. 

However, if we adopt both Ptolemy's model of epicycles and the Ar- 

istotelian principle that the moon cannot rotate about a central axis, 

then whichever side of the moon faces the center of the epicycle will 

always face the center of the epicycle. This means that the lunar spots 

will sometimes face away from earth, which could only be resolved in 

Ptolemy's model by allowing the moon to rotate as indicated by the 

sequence in Figure 5.2. 

& 

y 
FIGURE 5.2. Ptolemy’s use of epicycles requires that the moon rotate on 

its axis in order for the man in the moon to always face the earth. 

This rotation of the moon undermines the universal validity of Aris- 
totelian physics. Any theologian or philosopher attempting to answer 
question 195 (above), which was addressed by Aquinas among others, 
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would have to appeal to the presumed properties of angels, and these 
would have to be either self-evident or previously deduced. According 
to Grant, “The properties attributed to [angels] were usually those that 

Aristotle had attributed to the prime mover .. . immobility, indivisibil- 

ity, and absence of magnitude. Although angels possessed consider- 

able power, they could not exceed the finite powers conferred on them 

at the Creation.” Those who worried about such matters sought to ex- 

plain the different intensities of the stars, the mechanism for the mo- 

tion of epicycles, and the troubling existence of the man in the moon. 

One fail-safe solution was to invoke God’s will, usually as carried out by 

angels. 

For example, in the following lines from Paradise, Beatrice offers the 

standard explanation for the different intensities of the stars in the ce- 

lestial sphere and why they twinkle—these differences are caused by 

the differences among the angels (intelligences) residing in this eighth 

sphere. The light from each star shines through an angel’s body, and 

as the angels have different powers, they diffuse the light to different 

degrees. 

the soul, that dwells within your dust, 

Through members different, yet together formed, 

In different powers resolves itself; e’en so 

The intellectual efficacy unfolds 

Its goodness multiplied throughout the stars; 

On its own unity revolving still. 

Different virtue compact different 

Makes with the precious body it enlivens, 

With which it knits, as life in you is knit. 

From its original nature full of joy, 

The virtue mingled through the body shines, 

As joy through pupil of the living eye. 

From hence proceeds that which from light to light 

Seems different, and not from dense or rare. 

This is the formal cause, that generates 

Proportioned to its power, the dusk or clear.”* 

Beatrice also explains that the moon appears to have spots because of 

the differences in the powers of the angels that occupy its sphere. 
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Epicycles were perhaps more troubling because geometry was the 

preferred mechanism for planetary motion. Aristotle had attributed all 

initial cosmic motion to an unmoved mover, and although he described 

celestial motion by appealing to a system of gears moving gears, this is 

not the image Aristotle presented in his Metaphysics. There he attrib- 

uted to each planetary orb an “immovable mover,” an external, perhaps 

spiritual, mover responsible for its movement. The mover of the celes- 

tial sphere is the “first immovable mover,” what became known as the 

primary or unmoved mover. 

In Dante’s cosmos the unmoved mover is God, and the movements 

of epicycles are explained by the continuing intervention of God in the 

workings of the universe. God does not cause the heavenly motions di- 

rectly, but through the angels associated with each body. For example, 

as Dante and Beatrice approach the sphere of Venus, having just visited 

Mercury, Dante says: 

To those celestial lights, that towards us came, 

Leaving the circuit of their joyous ring, 

Conducted by the lofty seraphim.” 

These angels then begin to sing to Dante and Beatrice, telling them of 

their role in the workings of the cosmos. The angels sing that they are 

the ones 

To whom thou in the world erewhile didst sing; 

“O ye! whose intellectual ministry 

Moves the third heaven”: and in one orb we roll, 

One motion, one impulse, with those who rule 

Princedoms in heaven; yet are of love so full, 

That to please thee ‘twill be as sweet to rest.?? 

Medieval Scholastics debated whether these angels were external or 

internal movers, whether they were different from or intrinsic to the 

heavenly spheres, and whether they had power independent of God. In 

each of these cases, angels appeared to have the ability to overrule the 

principles of Aristotelian physics and do the impossible. Divine inter- 

vention in heavenly motions freed Dante from the rules of Aristotelian 

physics; the laws for heavenly motion were ultimately metaphysical, 

thus faith based. 
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POSTSCRIPT: THE SIZE OF THE COSMOS: 

INFINITY RECONSIDERED 

It has been proved that the distance between the centre of the earth and the outer 

surface of the sphere of Saturn is a journey of nearly eight thousand seven hundred 

solar years. Suppose a day’s journey to be forty legal miles ... and consider the great 

and enormous distance! 

— Maimonides, Guide for the Perplexed (12th century) 

The existence of epicycles, which were thought to be material ob- 

jects and so could not overlap, forced Ptolemy to reconsider earlier esti- 

mates for the size of the universe. In Ptolemy's cosmos, some epicycles 

were fairly large, certainly larger than the objects they moved. To fit all 

of these epicycles into the heavens, Ptolemy had to posit a larger uni- 

verse. Also, since there are no gaps between the Ptolemaic spheres of 

the heavenly bodies, as there cannot be a vacuum in space, the moon's 

greatest distance from the earth had to equal Mercury's least distance; 

Mercury's greatest distance had to equal Venus’ least distance, and so 

on. There are two distances for each body since, in Ptolemy’s model, ev- 

ery heavenly body moves around the earth on an epicycle, not along a 

perfectly circular orbit, and so has a closest and farthest distance from 

earth. The unit of measurement e.r. is the radius of the earth. 

CLOSEST GREATEST 

DISTANCE FROM DISTANCE FROM 

HEAVENLY BODY _—_ EARTH (ine.r.s) EARTH (in e.r.s) 

moon 33 64 

Mercury 64 166 

Venus 166 1,079 

sun 1,160 1,260 

Mars 1,260 8,820 

Jupiter 8,820 14,187 

Saturn 14,187 19,865 

fixed stars 20,000 20,000 

There are two “gaps” in this table: between the sphere of Venus and 

the sphere of the sun and between the sphere of Saturn and the fixed 

stars. According to Albert van Helden, Ptolemy obtained the first gap by 
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using the nesting of spheres to find the greatest distance to Venus and 

the second gap by using Aristarchus’ eclipse diagram to find the least 

distance to the sun. Ptolemy knew he could have used his data to close 

up the gap between Venus and the sun, but not the gap between Saturn 

and the fixed stars.” 

The Arab astronomers of the late first millennium knew of Ptolemy’s 

Almagest several hundred years before its transmission to Europe. They 

made improvements to Ptolemy’s estimates, and in their work they 

converted the unit one earth radius into miles. They estimated that 1 

degree around the earth was 567/s miles; hence the circumference of 

the earth was calculated to be 360 x 562/3 = 20,400 miles. Thus it was 

generally accepted that the sun was, on average, 3,926,450 = 1210 x 

3,245 miles away (the modern estimate is approximately 93,000,000 

miles, so 23 to 24 times farther). More significantly, the fixed stars were 

imagined to be 64,900,000,000 (= 20,000 x 3,245) miles from earth. 

Archimedes, and then others, devised schemes for representing 

large numbers; for example in the table above these distances were re- 

corded in terms of the radius of the earth, e.1.s, instead of in miles, but © 

these numbers were still incomprehensible. Some writers attempted 

to translate these numbers into a more understandable language. For 

example, in The Guide for the Perplexed, Maimonides wrote, “In order to 

obtain a correct estimate of ourselves, we must reflect on the results of 

the investigations which have been made into the dimensions and the 

distances of the spheres and the stars.” He then went on with the esti- 

mate for the distance from earth to Saturn that introduced this section 
(a distance that would take a walking person 8,700 years to traverse). 
Maimonides then argued that the celestial sphere must be very thick, 
since the “body of each of these stars is more than ninety times as big 
as the globe of the earth,” further adding to the size of the universe.25 

In the thirteenth century, Goussouin de Metz composed a poem 
“Image du Monde” (1246), in which the Arab astronomer al-Farghani’s 
ninth-century version of Ptolemy’s Almagest is taken as fact. Goussouin 
calculated how long it would take Adam to walk from the earth to the 
sphere of the fixed stars had he started at the moment of Creation and 
walked twenty-five miles per day. Taking the year of Adam’s creation 
as 5199% B.C., Goussouin calculated that Adam would have reached 
the stars in 1958. 
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When Copernicus moved the sun to the center of all planetary or- 

bits, both the size and structure of the cosmos were forever changed. 

A heliocentric universe was not new with Copernicus; Aristarchus had 

already suggested this. Aristarchus had envisioned precisely the same 

arrangement as Copernicus: the planets, including the earth, orbit the 

sun, and the moon orbits the earth. To account for the motion of the 

stars, Aristarchus’ earth rotated on an axis. But by the third century 

A.D., the principles of Aristotelian physics were already firmly en- 

trenched, and because of Aristotle’s theory of place, the concept of a 

moving earth was especially unacceptable. After all, it was argued, if 

the earth were moving an object would lag behind when dropped, thus 

moving along a curve as it fell to the ground; the clouds would trail off 

into the heavens. 

Copernicus knew the shortcomings of Ptolemy’s view of the cosmos, 

and of the continued conflict between that model and the principles of 

Aristotle’s physics. He experimented with Aristarchus’ heliocentric uni- 

verse and decided that putting the sun in the center of the universe cor- 

rected some of the errors of Ptolemy’s system. Copernicus did not give a 

reason for why the entire cosmos revolved around a stationary sun, he 

knew any such speculation would put him into a direct confrontation 

with the then-current theology. And because he still thought planetary 

motion was uniform and circular, Copernicus was forced to retain some 

of the spheres-revolving-around-spheres aspects of Ptolemy's model of 

epicycles. Having the planets revolve around the sun allowed Coper- 

nicus to model all of the planets on a simpler system of epicycles than 

in Ptolemy’s model. By the sixteenth century the Ptolemy-based model 

required seventy-seven spheres in order to account for the increasingly 

accurate celestial data. Copernicus’ model required only thirty-four 

spheres. 

Philosophically the Copernican model was radical, not just because 

it moved the earth away from the center of the universe, but also be- 

cause it expanded the size of the universe. Since the earth is now mov- 

ing around the sun, it is closer to different portions of the sphere of 

stars at different times during its orbit. This means, as the criticism of 

the Copernican model went, that we should be able to discern changes 

in the brightness of any particular star as the earth orbits the sun. To 

meet this objection, Copernicus correctly concluded that the sphere of 
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stars is so distant that any variation in the size, and hence brightness, 

of a star is imperceptible. 

Moving the sun near the center of all planetary movements forced 

Copernicus to recalculate the distances of the planets from the earth, 

and at first glance these calculations appear to be in conflict with Co- 

pernicus’ larger universe. What they show is that the solar system is 

smaller than Ptolemy had believed. Saturn is significantly closer to 

earth, but the distance from Saturn to the backdrop of fixed stars is 

four hundred times as far. Thus in the sixteenth century the medieval 

estimate for the size of the universe, which was just under 65 million 

miles, was replaced by one of more than 25 billion miles. 

In one his poems, “Considering the Void,” former president Jimmy 

Carter expresses the same distress others have felt while contemplat- 

ing cosmic distances and the multitude of stars in the universe. In 

Ptolemy’s cosmology the number of stars was a comfortable 1,022. In 

his poem Carter refers to “an infinity of Suns,” but allows that the num- 

ber might only be a “thousand billion” (i.e., 1,000,000,000,000).”° Per- 

haps even more disturbing is the thought that the universe, and pos- 

sibly the number of stars in it, might not be a measurable quantity. The 

philosopher Martin Buber (1878-1965) attributed his contemplation of 

infinite space or time with challenging his sanity: “A necessity I could 

not understand swept over me: I had to try again and again to imagine 

the edge of space, or its edgelessness, time with a beginning and an end 
or time without beginning or end, and both were equally impossible, 
equally hopeless. ... Under an irresistible compulsion I reeled from one 
to the other, at times so closely threatened with the danger of madness 

that I seriously thought of avoiding it by suicide.”?’ 

Although very few ancient philosophers contemplated an infinite 
cosmos, some did. For example, Democritus and Lucretius both argued 
that the universe must be infinite. By the Middle Ages some writers 
saw the Aristotelian prohibition on the existence of a material infini- 
tude to be at odds with the existence of a metaphysically infinite, abso- 
lutely powerful God. This prohibition seemed to limit both God’s mate- 
rial (or physical) scope and God’s ability to create. The Scholastics who 
saw this conflict were compelled to either resolve or refute it. 

The dominant theological view in the Middle Ages was that God’s 
creative powers did not end with Genesis, so Aristotle’s finite, complete 
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space, although it was consistent with theology, appeared to limit God. 

In the thirteenth century Walter Burley (c. 1275-1344) examined this 

conflict and concluded that God’s creative ability had no limit and yet 

Aristotle’s rejection of infinite magnitudes was correct.”* Burley pro- 

posed that the belief that God could create a magnitude, or quantity, 

greater than any specified one, does not necessarily mean that God can 

create an existing, infinite quantity. For example: Could God create an 

endless sequence of boxes within boxes; that is, starting with a single 

small box can God create a slightly larger box containing that first box, 

then another box containing the first two nested boxes, and so obtain 

an endless sequence of boxes within boxes? Burley concluded that no 

matter how many nested boxes have been créated, God could create 

another box containing the original collection of boxes. However, God 

cannot create an actual existing infinite chain of boxes within boxes. 

Burley thus agreed with one Aristotelian principle, that there cannot 

exist an infinite entity, but disagreed with another, that neither mat- 

ter nor space can be created nor destroyed. Burley’s God had created a 

finite universe that is potentially infinite by addition. 

In the thirteenth century, Aquinas took up the question of whether 

God could create an infinite magnitude. Indeed, Aquinas offered the 

entirely sensible opinion that not being able to do the physically im- 

possible is no limitation on God’s power: “If the infinite can exist in ac- 

tuality, according to the nature of things ...I state that God can create 

an actual infinity. But if actual existence is repugnant to infinity due to 

its own ground, then God would not be able to produce this existence, 

no more than He would be able to make it that man were not a rational 

animal.”?° 

Gregory of Rimini (c. 1300-1358) understood that Burley’s reason- 

ing could be amended to prove that God can indeed create an existing 

infinite quantity by importing the concept of time underlying Zeno’s 

Dichotomy paradox into God’s creative processes. A central assump- 

tion is that God’s omnipotence means that he can create an entity, for 

example an angel, in as short an interval of time as desired. Gregory 

appealed to this process to demonstrate that God could produce an 

infinite collection of angels. Suppose an arrow is shot at a target (and 

contrary to Zeno’s paradox the arrow does begin to move). While the ar- 

row moves from the bow to halfway to the target, God creates an angel. 
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Then, while the arrow moves from that position to halfway to the tar- 

get, God produces another angel. As there are an unlimited number of 

these increasingly short time intervals, by the time the arrow hits the 

target God will have produced an unlimited number of angels. (This 

argument describes how an omnipotent God could create an infinite 

number of angels; it can be modified to demonstrate that an omnipo- 

tent God could create both an infinite collection and an infinitely large 

physical object. Instead of creating an angel at each step in the process, 

as the arrow moves from the bow to its target, God could create a cu- 

bic foot of stone. Thus God will have created both an infinite quantity, 

the number of blocks of stone, and an infinitely large material object, 

for example a tower built by piling these stones one atop the other.) 

Gregory’s point was that it is logically possible to have a mathemati- 

cally infinite quantity, and therefore there is nothing inherent in the 

natural world to prohibit it. 

There were philosophical reasons for imagining that God had to 

have created an infinite cosmos. Part of the dominant view of God was 

derived from Plotinus, who had endowed the metaphysically infinite 

One with benevolent attributes. Plotinus also gave voice to a concept 

concerning the natural world that combines ideas from Plato, pleni- 

tude, and from Aristotle, continuity, that eventually led some philoso- 

phers and Scholastics to conclude that the universe must be infinite. 

According to Lovejoy, Plato put forth in the Timaeus the idea that in 

the world, “the range of conceivable diversity of kinds of living things 
is exhaustively exemplified.”* This idea was extended to the concept of 
plenitude that Lovejoy defined as the belief that “the extent and abun- 
dance of the creation must be as great as the possibility of existence 
and commensurate with the productive capacity of a ‘perfect’ and inex- 
haustible Source.”?* 

Although Aristotle did not agree with this principle, he did contrib- 
ute the second idea to Plotinus’ attribute of One—continuity. Accord- 
ing to Aristotle, nature “passes so gradually from the inanimate to the 
animate that their continuity renders the boundary between them in- 
distinguishable.” Plotinus combined plenitude with continuity and 
articulated the existence of what became known as the chain of being, 
the idea that the universe is “composed of an immense .. . number of 
links ranging in hierarchical order from the meagerest kind of existents 
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... up to...the Absolute Being.”** Thus the stage was set for the debates 

concerning whether or not God could have, or more to the point, should 

have, created only a finite universe, and what is the position of humans 

in the hierarchical order of beings. 

In the fifteenth century, Nicolas de Cusa (1401-64) argued that be- 

cause God is infinitely powerful, he would have created an infinite cos- 

mos containing infinitely many stars. Nicolas de Cusa further argued 

that each of these stars must necessarily have planets (worlds) orbiting 

them, and that these worlds must necessarily be inhabited. One hun- 

dred fifty years later, Giordano Bruno (1548-1600) appealed to pleni- 

tude to support his belief that the universe is infinite, and contains infi- 

nitely many worlds: hi 

I do not insist on infinite space, nor is Nature endowed with infi- 

nite space for the exaltation of size or of corporeal extent, but rather 

for the exaltation of corporeal natures and species, because infinite 

perfection is far better presented in innumerable individuals than 

in those which are numbered and finite. .. . But since innumerable 

grades of perfection must, through corporeal mode, unfold the di- 

vine incorporeal perfection, therefore there must be innumerable 

individuals, those great animals, whereof one is our earth, .. . and 

to contain these innumerable bodies there is needed an infinite 

space.** 

For espousing a view contrary to the dominant one, Bruno was burned 

at the stake in February 1600. 



From these unequal motions of the planets, 

mathematicians have called that the great year, in 

which the sun, moon, and five wandering stars, 

having finished their revolutions, are found in their 

original situation. 

~~ Cicero, On the Nature of Gods (45 B.C.) 

Before the development of the clock we sensed our daily lives not as a 

continuous series of moments, one following the other as we moved 

from the past to the future, but as disconnected episodes not adher- 

ing to any discernable pattern or logic. Our world was punctuated by 

terrestrial events, the increasing and decreasing turbulent flow of riv- 

ers and streams, the development then dissipation of clouds, the un- 

explainable earthquakes that occasionally reshaped the landscape. 

The only observable physical regularities resided in the heavens; the 

movements of heavenly bodies provided a background against which 

the longer cycles of our lives could be gauged. There was no notion of 

independently measuring time to understand the celestial cycles; the 

heavenly cycles provided the only reliable standard. 

These astronomical cycles could be taken as curiosities; every so of- 
ten the planets line up in a special way, or Mars passes behind a full 
moon. But the regularity of these cycles, the observation that every- 
thing in the sky moves according to some predictable, repeating cycle, 
has given them special meaning. For example, the Pythagoreans would 
have taken the perceived regularity of heavenly motions as evidence 
for their view that mathematical/musical harmonies guide all physi- 
cal processes. Others have interpreted these cycles metaphysically: The 
movements of the planets through the major constellations are the 
basis for astrology, both the ancient Chaldean form, where the skies 
foretold fortunes and events, and the modern form, where the skies tell 
us whether or not we are going to have a good day. Thus these small 
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cycles in time were imagined to determine either individual or cultural 

fates. 

Plato saw a different sort of meaning in the cyclic patterns in the sky; 

he thought that the regularity of celestial motions not only measured 

time but also was/inseparable from its existence. For Plato, the heav- 

enly movements did not just provide us with a timepiece; they gener- 

ated time. And owing to the cyclic nature of the movements, Plato con- 

cluded that time itself must be cyclic: “Only a very few men are aware 

of the periods of [the planets] ... so bewildering are they in number 

and so amazing in intricacy. ... None the less it is perfectly possible 

to perceive that the perfect temporal number and the perfect year are 

complete when all eight orbits have reached their total of revolutions 

relative to each other.” The eight orbits Plato refers to are those of the 

five visible planets, the sun, the moon, and the celestial sphere. 

In the quote that opens this chapter, Cicero refers to mathematicians 

who called Plato’s perfect year the “great year.” Mathematicians are in- 

volved in these speculations because any two commensurable cycles can 

be combined mathematically to form a longer, common cycle. And in 

the material world the Pythagorean commensurability assumption— 

given any two mathematical lengths we can find a ruler that allows us 

to simultaneously measure these two lengths with whole numbers— 

holds because all measurements are rational. In our measurement of 

heavenly cycles, the ruler we are using is sun-cycles, or days; if the cycle 

of some planet is some number of days plus a little bit, then that little 

bit will always be a fraction. It follows from this that any two heavenly 

cycles may be combined to form a longer cycle whose length is a whole 

number of days. This process works for any number of cycles; we can 

always find a larger number that they will all divide evenly. This means 

that if we knew the cycles of the sun, moon, planets, and stars we could 

find a night in the future when the sky will look exactly like it did last 

night. More to the point, just believing that celestial bodies follow regu- 

lar cycles, without having any idea how long the cycles are, tells us that 

someday everything in the sky will be in precisely the same position as 

today, or as any day in the distant past. 

The lengths of each of these grand, cosmic cycles depend entirely 

on two things: Which cycles are thought to be important and the per- 

ceived lengths of these individual cycles. The sun’s cycle is most easily 
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discerned. It is not that the sun’s cycle is the shortest of all of the celes- 

tial cycles; such a conception of the length of its cycle would require 

an independent means of measurement. It is that the regularity of the 

sun’s repeating movement from sunrise to sunset resonates with our 

diurnal pattern; it provides a rhythm against which both our lives and 

other heavenly cycles could be most easily understood. Thus the sun's 

cycle, one day, is not so much an independent cycle as the pulse of the 

cosmos. 

Of the other heavenly cycles, the one most easily measured is the 

moon's. For one thing the moon follows an unmistakable, repeating 

pattern. Its phases are orderly: a thin crescent grows to a full moon, 

then wanes to an absence from the sky; the moon reappears as a cres- 

cent curled opposite the earlier one. Over a few nights the crescent fills 

in, it grows to be a quarter of the disc, then half, and eventually to an- 

other full moon. It is inconceivable that anyone could not notice at least 

the general pattern, that the full moon reoccurs every so often, and in 

between, the moon appears to have different shapes, and more impor- 

tantly, that this pattern has a regularity when measured against the 

sun’s beat. If we record, or remember, the nights in which there are full 

moons, we will notice that they occur every twenty-nine or thirty days. 

The average of the lengths of these periods is roughly twenty-nine and 

a half days. 

This sun-moon relationship is the most easily observed connection 

between celestial bodies, both because the sun and moon dominate 

their skies and because, in human terms, their cycles are relatively 

short. By watching the night sky over longer periods of time, and being 

patient, other connections can be made. The next most distinguished 
celestial objects are the five planets that are visible to the unaided eye, 
and the most visible of these is Venus. It is usually in the sky, hovering 

above the horizon at either dawn or dusk. 

Venus appears as a morning star for many days, disappears for a 
while, then reappears as an evening star before disappearing; Venus 
then reappears in the morning sky. (Pythagoras is credited with being 
the first person to realize that the morning star and evening star are 
the same planet.) Venus is in the early morning sky for roughly 263 
consecutive days; Venus then disappears. For an average of 50 days Ve- 
nus is invisible to us; it then reappears early one evening on the west- 
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ern horizon. Venus is in the evening sky, making each evening’s first 
appearance in a different place, for roughly 263 consecutive days. Then, 
suddenly Venus is gone, invisible for 8 days, after which it reappears 
as a morning star. This entire cycle, from Venus’s first appearance in 
the morning sky to its next first appearance in the morning sky, takes 
around 584 days. 

Suppose, for example, Venus has its first appearance as a morning 
star on the longest day of the year, the summer solstice. Venus will have 
its next first appearance as a morning star 584 days later, then again 

584 days after that, and so forth. From the first morning-star appear- 
ance on the summer solstice, the number of days until Venus makes its 

next few first morning-star appearances are “ 

584, 1,168, 1,752, 2,336, 2,920, 3,504, 4,088, and so forth. 

This cycle repeats indefinitely. What about the summer solstice? The 

solar year is approximately 365 days long so the number of days until 

the next summer solstices are 

305,730, 1,095, 1,460,.1,825, 2,190, 2,555, 

2,920, 3,285, 3,650, and so forth. 

If we compare the Venus-cycle and solstice-cycle lists, we see that 

they have a number in common, 2,920. This means that Venus will 

make its next first-appearance as a morning star on the summer sol- 

stice after 2,920 days. If we were to continue these lists, counting the 

days into the future when Venus will make its first early-morning ap- 

pearance and when the sun will achieve its northernmost point in the 

sky, we would find other numbers on both lists such as 5,840 and 8,760. 

These last two numbers are simply whole number multiples of 2,920. 

Plato did not give an estimate for the length of a perfect year, but 

first-century A.D. Greek astronomers put it at thirty-six thousand 

years; it has also been given as forty-nine thousand years. This notion 

of a great year, which is coincidental with viewing time as being cyclic, 

was not limited to the Greeks or to the Aegean. The Mayans called their 

great year “the Long Count”; it is a period after which time begins again. 

But the Mayans took a different cycle of Venus into account when de- 

termining their Long Count. They noticed that after completing one of 

its 584-day cycles, Venus does indeed start another 584-day cycle but 
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the next one is noticeably different. Venus is still in the morning sky 

for 263 days, but its position along the horizon and the shape of its path 

through the sky are different. The Mayans also noticed that there is a 

pattern to the different 263-day paths Venus will follow in the morning 

sky. There are five distinct paths and Venus always follows them in the 

same order. 

According to contemporary astroanthropologist Anthony Aveni, the 

Mayans thought of this entire sequence of five paths as Venus’ cycle, 

not as five of the shorter 584-day cycles.* Thus, to the discerning Ma- 

yan eye, Venus’ full cycle was 5 x 584 = 2,920 days long. To account 

for Venus’ role in determining the length of the Long Count, the Ma- 

yans would have used 2,920 days instead of 584. (Coincidentally, if the 

Greeks had used this longer Mayan estimate for Venus’ cycle it would 

not have made their great year any longer. This is because the length 

of the Greek great year was also a multiple of 2,920.) Moreover, the Ma- 

yans determined the length of their Long Count by taking into account 

cycles the Greeks did not acknowledge. In Mayan cosmology, there are 

thirteen cosmological spheres, and twenty named days. The Long Count 

was measured by combining two cycles: The cycle of Venus, which they 

took to be 2,920 days long and their 260-day ritual cycle (based on their 

twenty named days and thirteen cosmological spheres, 260 = 20 x 13). 

So the Mayan long count was 2,920 x 260 = 759,200 days, or 2,080 years 

long. 

REFUTING CYCLIC TIME BY EMBRACING IRRATIONALITY 
Whatever is imagined to happen when the celestial bodies return 

to some previous configuration, the belief that this happens imposes a 
cyclic structure on time that violates the most fundamental principles 
of Christian faith—the uniqueness of Christ as the only son of God and 
the uniqueness of biblical events. Christ’s birth, crucifixion, resurrec- 

tion, and predicted Second Coming are historical events that are corner- 
stones of Christian faith. If time is cyclic, it does not necessarily mean 
that specific events are repeated, but for some people it diminishes the 
significance of these biblical events, because these occur in but one of 
some possibly enormous number of cycles. 

Not all Scholastics were willing to simply appeal to Scripture or, even 
less likely, to mystical insight to support positions of faith, and since 
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the lengths of these cycles of time were determined by mathematical 

methods, some turned to mathematics to refute their existence. John 

Duns Scotus (c. 1265-1308) is credited with being the first to take this 

approach.* Scotus used the now-familiar incommensurability of the 

side and diagonal of a square and argued as follows: Suppose there are 

two planets that travel along a square with the same velocity, one mov- 

ing around the perimeter of the square and the other moving back and 

forth along the diagonal. (Scotus knew this is not how planets move, 

but he was trying to show that it is not necessarily the case that plan- 

etary cycles are commensurable. Once Scotus proved that it is logically 

possible for two cycles to not be commensurable, he appealed to the 

authority of the Bible.) For simplicity, assume’ that the length of each 

side of the square is 1 unit, so, by the Pythagorean theorem, the length 

of the diagonal is V2 units. Next suppose that the two square-bound 

planets are both at a corner, A, of the square at the same time, and that 

they are both at A at some later time. An analysis of the motions of 

these two planets is easily carried out using the familiar equation: dis- 

tance = rate x time. When the two planets return to A they will have 

traveled the same period of time, and as these planets are traveling at 

the same rate, the above equation implies that they will have traveled 

the same distance. Thus some multiple of V2 units, for example, m x 

V2, equals some multiple of 1 unit, for example, n x 1. It follows that V2 

= N/m, which contradicts what the Pythagoreans had shown eighteen 

hundred years earlier. From this Scotus concluded that these two plan- 

ets will never be in the same position at the same time again, and so 

time need not necessarily be cyclic. 

The shortcoming of Scotus’ reasoning, even if we ignore the geomet- 

rically improbable shapes of his planets’ orbits, is that the two planets 

are moving with the same velocities. But even if Scotus had been more 

daring and allowed one planet to move twice as fast or one-third as fast 

as the other, he still would have been able to conclude that the planets 

will never return to the same relative positions because the lengths of 

their orbits are incommensurable. 

Scotus chose his example because he knew that if the spheres that 

determine celestial motions have radii that are commensurable dis- 

tances, and if they all move at commensurable speeds, then the mo- 

tions in the sky are cyclic. In other words, Pythagorean perfection in 
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both the structure and physics of the heavens means that time could 

be cyclic. Thus, despite Scotus’ argument using mathematically imper- 

fect planetary paths, other Scholastics sought to disprove the possibil- 

ity that the sky follows a precisely repeating pattern without appeal- 

ing to mathematical constructions. 

According to Grant, Johannes de Muris (c. 1290-c. 1351) addressed 

whether or not the velocities of any two planets must be commensu- 

rable in his Quadripartitum numerorum (Fourfold Division of Numbers 

[1343]).* De Muris correctly argued that if two planets move with the 

same velocity around circles with incommensurable radii, then the two 

planets will never return to the same relative positions. Like Scotus be- 

fore him, de Muris presented no evidence to support his argument; he 

simply gave the logical argument that it is possible for two planets to 

have incommensurable cycles and, therefore, for time not to be cyclic. 

Even if these arguments did not completely dispel the idea that time 

could be cyclic, they did make incommensurability more acceptable. 

The existence of incommensurable geometric magnitudes, or incom- 

mensurable natural velocities, in the heavens absolved the Scholastics 

of having to defend the biblical account of time against the significance 

of the evidently commensurable cycles in the sky.5 

ANOTHER VIEW OF CYCLIC TIME: HISTORICAL TIME 

Poetry, like the world, may be said to have four ages, but in a different order: the first 

age of poetry being the age of iron; the second, of gold; the third, of silver; and the 

fourth, of brass. 

— Thomas Love Peacock, “The Four Ages of Poetry” (1820) 

Mathematical refutations of repeating cycles in the heavens did not 
end the speculation that time, or at least some aspects of it, were cyclic. 
Thomas Love Peacock (1785-1866) found cycles in the evolution of po- 
etry within any particular culture; Oswald Spengler (1880-1936), in the 
rise and fall of any civilization; and William Butler Yeats (1865-1939), 
in the course of human existence. Each of these writers offered fairly 
detailed descriptions of these cycles. 

Peacock’s cyclic view of poetry was a reversal of the Greek idea 
that because time is cyclic, and so there is a period of rebirth, there is 
a natural decline in any culture. A civilization will progressively move 
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from its original mythical golden age through equally mythical silver, 

bronze, and then iron ages. In Peacock’s theory, poetry does not decline 

but becomes more refined, and eventually pretentious; he offered a de- 

scription for each period. For example, in the iron age poets are “rude 

bards [who] celebrate in rough numbers the exploits of ruder chiefs, in 

days when every man is a warrior, and when the great practical maxim 

of every form of society [is] to keep what we have and to catch what 

we can.” In English poetry Peacock gave as examples “the rhymes of 

minstrels and the songs of the troubadours.” The golden age of poetry 

“begins when poetry begins to be retrospective; when something like 

a more extended system of civil polity is established” as in the poetry 

of Shakespeare. In the silver age, poetry “is characterized by an exqui- 

site and fastidious selection of words, and a laboured and somewhat 

monotonous harmony of expression: but its monotony consists in this, 

that experience having exhausted all the varieties of modulation, the 

civilized poetry selects the most beautiful.” Alas in the last period, the 

brass age in which Peacock thought he was living, poetry rejects 

“the polish and the learning of the age of silver, and taking a retrograde 

stride to the barbarisms and crude traditions of the age of iron, pro- 

fesses to return to nature and revive the age of gold. This is the second 

childhood of poetry.”® 

Just as Peacock saw pretension in the poetry of his time, particularly 

in the poetry of William Wordsworth (1770-1850), Spengler and Yeats 

thought they saw increasing chaos in their time and incorporated that 

into their theories. They both offered their theories in 1925, Spengler in 

his book The Decline of the West, and Yeats in his book A Vision. 

Spengler’s cyclic understanding of civilization is mythical and im- 

precise, but it describes how all nations pass through three stages: 

1. the emergence from barbarism wherein the society invents gods 

and heroes 

2. aheroic period when human nobility and virtuous behavior is 

understood to be divine in origin 

3. the emergence of reason as a foundation for society and its laws 

This last step allows for the eventual decline of the nation because it 

allows society to become comfortable and to pursue luxury. During 

this period, the society is either conquered by another or saved by the 
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emergence of a strong leader who steers the culture toward its earlier 

values. Either way, the cycle begins anew. 

Spengler’s view of civilization was not so much tied to specific 

stages as to its destiny. Roughly speaking, civilization is the destiny of 

a culture and decline is the destiny of a civilization. With this model 

in mind, Spengler concluded his two-volume study with the following 

paragraph: 

For us, however, whom a Destiny has placed in this Culture and at 

this moment of its development—the moment when money is cel- 

ebrating its last victories, and the Caesarism that is to succeed ap- 

proaches with quiet, firm step—our direction, willed and obligatory 

at once, is set for us within the narrow limits, and on any other terms 

life is not worth living. We have not the freedom to reach to this or 

to that, but the freedom to do the necessary or to do nothing. And 
a task that historic necessity has set will be accomplished with the 

individual or against him.’ 

Yeats’ cyclical view of history is also mythical, but in contrast to Spen- 
gler’s, the lengths of the cycles are exact. For Yeats, there was a large 
cycle to history based on the 36,000-year Platonic perfect year; this 
cycle is subdivided into 2,000-year periods, each of which has a mythi- 
cal beginning and end. The first 2,000-year period began with the first 
“annunciation,” which Yeats described in his poem “Leda and the Swan” 
(1928). 

This first period had ended with the birth of Christ, and nineteen cen- 
turies later the second 2,000-year period was approaching its end. Yeats 
wrote in “The Second Coming” his oft-quoted lines, “Things fall apart; 
the center cannot hold; / Mere anarchy is loosed upon the world”? 

ETERNAL TIME 

[The] sum total of the universe is everlasting, having no space outside it into 

which matter can escape and no matter that can enter and disintegrate it by 

force of impact. 

— Lucretius, The Nature of the Universe (50 B.C.) 

We saw in chapter 3 that Lucretius offered a rebuttal to Aristotle’s 
conception of the universe as being finite, and because Lucretius be- 



Time, Infinity, and Incommensurability | 125 

lieved the universe to be infinite he concluded that the universe is ever- 

lasting. It follows, of course, that future time must be infinite. 

Although Aristotle’s theory of infinity led him to conclude that the 

universe must be finite, implicit in his natural philosophy is the in- 

finitude of time in both directions. Aristotle’s conception of motion led 

him to believe in the infinite divisibility of both time and space. But the 

infinite divisibility of time presented Aristotle with a philosophical dif- 

ficulty: What is meant by the present? Because Aristotle believed there 

are an endless number of moments between any two events, how was 

one to understand now. After all, why are not all of the unlimited num- 

ber of moments between the past and the future jammed up against 

one another excluding any particular sense of how? Aristotle’s solution 

to this philosophical dilemma was both simple and brilliant: “Now” is 

precisely that moment that separates the past from the future. One 

consequence of this conception of the present is that time must be in- 

finite by addition into the future; a more troublesome consequence is 

that time must also be infinite into the past. 

First, consider the reason there must be an infinite past. Since now 

is defined to be the moment separating the past from the future, at any 

given moment there must have been an earlier moment. That is, there 

could not be a first moment because that moment would have then 

been the present, separating the past from the future. Just as there was 

yesterday, there was a day before yesterday and a day before the day 

before yesterday. This conclusion is contrary to our intuition, in our 

daily experiences processes have a beginning, perhaps even an initial 

cause, and if there has been an infinite past it is at least logically pos- 

sible for there to be a current process that had no beginning. 

Aristotle’s proof that there must exist an infinite past was not the 

only one given by either him or his later adherents. The contemporary 

historian Herbert Davidson has surveyed these proofs and pointed out 

that many of them are based on either the nature of the world or on 

the nature of God; he further categorized the proofs based on the world 

into two types—those intended to establish the eternity of the uni- 

verse and those intended to establish the eternity of matter (or at least 

some material that existed before the creation of the universe).? Of the 

proofs seeking to establish that the physical universe must be eternal, 

six can be traced back to Aristotle. One of these, the one above, relies on 
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the nature of time; of the others, four rely on the Aristotelian principle 

that matter cannot be created, and one on the nature of motion. 

Davidson also isolated three forms of the proof of the eternity of 

the physical universe based on assumptions about the nature of God; 

only the first form is discussed here. These proofs argue that no given 

moment in the undifferentiated pre-Creation universe could have 

suggested itself to the Creator as the proper moment for creating the 

universe—and there are two versions of this argument associated with 

the topics of this book. 

One version leads back to Parmenides’ metaphysically infinite real- 

ity. In this worldview, no moment is distinguishable from any other, so 

no moment could be the one where Creation begins. Davidson para- 

phrased the second version, attributed to the fifth-century Neoplatonist 

philosopher Proclus: “If the world were created, the creator would, up 

to the moment of creating the world, have been a ‘potential creator,’ 

and something would have had to ‘activate’ him. But the activating fac- 

tor would, before inducing the creator to create the world, have been 

a ‘potential’ activating factor, and hence would have stood in need of 

a prior factor to activate it as well.”?° This led Proclus to conclude that 

assuming the Creator created the physical universe leads to an infinite 

regression of causes—and this is taken as an absurdity. 

PROOFS IN SUPPORT OF A FINITE PAST 

Aristotle... may perhaps ask us how we know that the Universe has been created. 

... We reply, there is no necessity for this ... but only its possibility. ... When we have 

established the admissibility of our theory, we shall then show its superiority. 

— Maimonides, Guide for the Perplexed (12th century) 

In his Guide for the Perplexed, Maimonides discussed God’s role in 
the creation and design of the universe. According to Maimonides, it is 
easier to explain the intricate motions of the heavenly spheres through 
an appeal to a creator of the universe rather than through an applica- 
tion of Aristotle’s natural philosophy. Yet others attempted to establish 
that the universe had to be created, not through appeal to the structure 
or contents of the universe, but by refuting the possibility that time 
could be infinite into the past, which would imply that the biblical ac- 
count of Creation could not be correct. 
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John Philoponus (c. 490-570) offered several arguments against an 
infinite past; A. W. Moore summarized one of these arguments in his 
book The Infinite: “However many men there were before Socrates, 

there have been more by now.... So if the numbers here were infinite, 

one infinity would be greater than another. But this is absurd. So the 

numbers must be finite. The world must be finitely old.”"" Before we 

examine this proof, it is important to recognize one of its assumptions: 

However long the world has existed it has been inhabited by humans. 

Of course, the biblical account has the world and humans created 

within the same week. Indeed, it was assumed that the earth existed 

for humans. 

Although Philoponus’ argument predates the Scholastics by seven 

centuries, his argument is a quintessential Scholastic one: It invokes 

one Aristotelian principle, that there cannot be a lesser and a greater 

infinity, to reject another Aristotelian principle, that time must be in- 

finite into the past. Not all men would ever actually exist at the same 

moment. There would never be an existing infinitude of men, but there 

would be an existing infinity of souls. Medieval theologians did not see 

human souls as immaterial bodies without position, but as eternal rem- 

nants of human existence forever residing in a material heaven, hell, or 

possibly purgatory; so, for the Scholastics, an infinite past, producing 

more and more dead souls, would present an existing infinitude. 

Even if they were willing to accept that God could allow for the ex- 

istence of such an infinite collection, the existence of infinitely many 

souls could be dismissed through an appeal to another Aristotelian 

principle: If time were infinite into the past, there would now be an 

existing infinitude of human souls (residing in some region of the ma- 

terial universe). A few years from now, after more deaths, there would 

be more souls and so a larger infinitude of souls; the existence of these 

souls would violate the fundamental principle that the whole is greater 

than the part. 

The principle that there cannot exist an infinite collection was so 

strongly held that it even applied to immaterial entities. Bonaventure 

(1221-74) offered two arguments against an infinite past based on the 

observation that if time were infinite into the past, the sun would have 

by now completed infinitely many revolutions around the earth. Fol- 

lowing this observation Bonaventure rejected an infinite past by call- 

ing upon two Aristotelian principles. The first of these is that an infi- 
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nite process cannot be completed. Thus, according to Bonaventure, it 

is impossible for infinitely many revolutions to have been completed; 

so if there were an infinite past the present would never have been 

reached. The second Aristotelian principle is the now very familiar one 

that there cannot be two sizes of infinity. This principle is violated be- 

cause, if the sun has by now completed infinitely many revolutions of 

the earth, then, after tomorrow, it will have completed a larger infini- 

tude of revolutions. 

SCRIPTURAL TIME 

Tis too late to be ambitious. The great mutations of the world are acted, or time 

may be too short for our designs. ... We whose generations are ordained in this 

setting part of time, are providentially taken off from such imaginations. 

— Sir Thomas Browne, Hydriotaphia (1658) 

Augustine wrote in The City of God that time came into existence 

with God’s creation of the cosmos and will come to an end. According 

to Augustine, time is linear, moving inexorably from Creation to the 

Last Judgment, and for Augustine this brief period was divided into six 

stages: Creation to Deluge, Deluge to Abraham, Abraham to David, Da- 
vid to Babylonian Captivity, Babylonian Captivity to the Birth of Christ, 
and the Birth of Christ to the Last Judgment. Time itself ends after the 
Last Judgment, because time depends on change and there is not any 

change in the eternal existence following death. 

Not only was it generally recognized that time was not infinite into 
the past, the earth was thought to be fairly young. Early in the seven- 
teenth century, Archbishop James Ussher (1581-1656) gave the best- 
known estimate for the date of the beginning of the world—Sunday, 
October 23, 4004 B.C. To discover this precise date Ussher worked back- 
ward through the three cycles, which were the basis for the calendar of 
his day, the Julian calendar. These cycles were a twenty-eight-yearlong 
sun-cycle, a nineteen-yearlong lunar cycle, anda fifteen-yearlong indic- 
tion cycle. His goal was to find the precise date for some biblical event 
and then to use the narrative from the Bible to work backward from 
that point to Creation. Ussher was able to give a date for the end of 
Nebuchadnezzar’s reign and the beginning of Evilmerodach’s. He then 



Time, Infinity, and Incommensurability | 129 

counted backward, using generations from the Bible, to arrive at 4004 
B.C. (Ussher also calculated that Adam and Eve had been expelled from 

paradise on November 10, 4004 B.C., and that Noah’s ark had settled on 

Mount Ararat on May 5,1491B.C.). 

In A History of the Warfare of Science with Theology in Christendom 

(1896), Andrew White described a more precise estimate for the date, 

and time, of Creation. According to White, in 1644, before Ussher pub- 

lished his dates, John Lightfoot, the vice chancellor of the University of 

Cambridge, claimed that as a result of “his most profound and exhaus- 

tive study of the Scriptures,” that “heaven and earth, centre and circum- 

ference, were created all together, in the same instant, and clouds full 

of water, [and that] this work took place and rman was created by Trin- 

ity on October 23, 4004 B.C., at nine o’clock in the morning.”” 

It is not difficult to imagine that there might be an endless future, 

by simply extrapolating from our daily experience of time, which ap- 

pears to occur as a succession of moments one after another. Indeed, it 

is more difficult for us to imagine that time might stop at some point 

in the future than it is for us to imagine that it continues. Aristotle 

coupled this observation with the one that says every process or effect 

must have a cause to conclude time must be infinite by addition into 

the future; his physics did not allow for a mechanism that could stop 

time or destroy the universe. 

But as the above quotation from Sir Thomas Browne (1605-82) re- 

veals, even in the seventeenth century there was a pervasive view that 

not only was time not infinite into the future but also that the end 

of the world was not too far off. No proof was necessary. There was a 

widely held belief that external evidence supported the notion that the 

end was near. One source of evidence was the earth’s topography, what 

Marjorie Hope Nicolson has called “mountain gloom.”” This is the no- 

tion that mountains on the surface of the earth are evidence of more 

than just a lack of perfection; they are evidence of decay. And if there is 

decay in God’s harmonious universe, then we must be near the end of 

time. 

That mountains are deviations from the expected smoothness of 

the earth’s sphere is, of course, a Pythagorean view, but it is one that 

predated the sixth century B.C. According to etymologists, early Greeks 
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gave names to mountains indicating fear or wildness, although these 

same Greeks must have also viewed mountains with some reverence 

since their gods resided on Mount Olympus. The Romans continued 

this mixed view of mountains, seeing them as being both hostile and 

protective (the Alps separated Italy from the barbarians to the north). 

There is also a theological tradition, probably a consequence of Neo- 

platonist Pythagoreanism, that mountains are somehow imperfec- 

tions in need of explanation. This belief takes two forms: One that the 

earth was originally smooth and round and the other that God created 

mountains and valleys when he created earth. This latter position is 

that of Calvin (1509-64), and was later held by Milton and Salluste du 

Bartas. In this tradition, on the third day of Creation God created earth 

and, on earth, the Garden of Eden. Eden did not encompass the entire 

planet but was some small portion of the surface. Calvin even provided 

a map of Eden complete with mountains. According to Milton: 

God said, 

Be gather’d now, ye waters under heaven, 

Into one place, and let dry land appear. 

Immediately the mountains huge appear 

Emergent, and their broad bare backs upheave 

Into the clouds, their tops ascend the sky.“ 

Salluste du Bartas’ description of the emergence of the earth from 
chaos on the third day of Creation begins with mountains “whose high 
horned tops” are submerged under the seas: 

Untill th’ All-Monarch’s bounteous Majesty 

(Willing t’ enfeoff man this World’s Empery) 

Commanding Neptune straight to marshall forth 

His Floods a-part, and to unfold the Earth. 

Luther (1483-1546) espoused the other, darker theological view of 
mountains; the tradition that led Browne to see decay everywhere and 
to feel the end of time was at hand. The deluge, the flood that Noah 
rode out on the ark, climaxed man’s sin. This flood led to the exis- 
tence of mountains. A companion theory to Luther's is that God cre- 
ated mountains when he expelled Adam and Eve from Paradise. Both 
of these views associate the existence of mountains with humanity’s 
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failure, that is, with sin. This position manifested itself in the poetry of 
Andrew Marvell (1621-78) and of Donne. Marvell wrote: 

Here learn ye Mountains more unjust, 

Which do abrupter greatness thrust, 

Which do, with your hook-shoulder’d height, 

The earth deform and heaven fright." 

In “An Anatomy of the World: The First Anniversary” (1611), the of- 

ten pessimistic John Donne called mountains “warts ...in the face / Of 

th’ earth.”!” Just as mountains revealed decay on earth, evidence of de- 

cay was also visible in the heavens. A new star seemed to form in 1572, 

and another in 1604. Then Galileo discovered what could be taken as 

further evidence for heavenly decay; with his telescope he saw moun- 

tains on the moon and spots on the sun. 

POSTSCRIPT: TWO PARADOXES OF TIME 

We end this chapter with two paradoxes concerning infinite time. 

The first, according to Moore, is credited to the philosopher Ludwig 

Wittgenstein (1889-1951) and considers one consequence of time be- 

ing infinite into the past.** We adapt Wittgenstein’s original paradox 

for our purposes. Suppose someone sets about the task of reciting the 

counting numbers and on the first day begins: “One, two, three, four.” 

They will not be able to complete this project in a day, or a week, or 

even in their lifetime. So, on their deathbed this person stops their reci- 

tation with the dying words, “1 trillion, 7 million twelve.” A heartbroken 

relative then takes up the project, and eventually passes the task on 

to someone else. As generations follow generations, each making its 

way through more and more of the counting numbers, the reciters will 

eventually pass 1 billion million and then 1 trillion billion, but they will 

never reach a last number because there is not one. 

When this idea is reversed, imagining someone reciting the count- 

ing numbers in reverse order, the existence of an infinite past yields a 

paradoxical conclusion. One day a man could walk up to you and say, 

“Listen carefully, we have been carrying on this project for a very, very 

long time and I need someone to witness that we have finally finished.” 

The man then continues, “Five, four, three, two, one,” and cheers ecstati- 

cally. You ask him what that was all about and he replies, “We have just 
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finished reciting the counting numbers backward.” No person ever said 

the largest counting number because there is not one, but each and 

every number had been spoken at some past time. Whichever count- 

ing numbers someone had recited in the 1340s, someone in the 1330s 

would have recited larger ones. This is extraordinary, but if the world 

(and our species) has an infinite past, this project has no beginning; 

each generation inherits the task from the one of its parents. It has sim- 

ply always been. 

The second paradox, which Russell described in 1901, relies on the 

possibility that time will be infinite into the future.? Laurence Sterne 

(1713-68) exploited this paradox in his eighteenth-century novel The 

Lives and Opinions of Tristram Shandy, Gentleman. Sterne’s novel is Tris- 

tram’s telling of his life story, but Tristram’s narrative is not sequential. 

Tristram keeps getting distracted from his story: He reviews histories 

and events that occurred before his birth and he often comments on 

the progress he is making in writing his memoir. He does not even 

tell these stories in chronological order. In book 4, Tristram tells the 

reader: 

I will not finish .. . till ] have made an observation upon the strange 
state of affairs between the reader and myself. ...1 am this month 
one whole year older than I was this time twelve-month; and having 
got, as you perceive, almost into the middle of my fourth volume— 
and no farther than to my first day’s life—'tis demonstrative that I 
have three hundred and sixty-four days more life to write just now, 
than when I first set out; so that, instead of advancing as a common 
writer, in my work, with what I have been doing at it—on the con- 
trary, lam just thrown so many volumes back.?° 

It took Tristram two years to write the interrupted details of the first 
two days of his life, leading us to believe he will never complete the 
narrative of his childhood, let alone of his entire life. If Tristram contin- 
ues writing his life story at the rate of two days every two years, cor- 
responding to the rate of one day per year, he will only be able to write 
about the first sixty or seventy or eighty days of his lifetime. The para- 
dox is what happens if Tristram were to live forever. Although Tristram 
will have related an increasingly insignificant portion of his life—after 
365 years he will have told us about only his first year—the assump- 
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tion that Tristram lives forever allows him to tell us about each and 

every day of his life. By covering one day every year he will be able to 

describe his second birthday in his 730th year; he will write about his 

730th birthday in his 365 x 730 = 266,450th year. Although the narra- 

tive will never be completed, Tristram will eventually write the details 

of any particular day of his life. 



[The] space in which we live and act is not what is 

treated in art at all. The harmoniously organized space 

in a picture is not experiential space, known by sight 

and touch, by free motion. ... It is an entirely visual 

affair.... This purely visual space is an illusion. 

~ Susanne Langer, Feeling and Form: A Theory of 

Art (1952) 

Einstein’s twentieth-century physical theories connect four of the most 

enigmatic of all concepts: space, time, gravity, and light. Although each 
of these abstractions is essential to our understanding of the natural 
world, and we cannot even imagine a world without these components, 
each one had to be discovered. Before Newton gave his famous law for 
the gravitational attraction between two bodies, objects simply sought 
their natural position, Aristotle’s “place” for the object. Before the devel- 
opment of reliable timepieces, time was not continuous, and it did not 
flow from the past to the future with the present wedged in between; 
time was a succession of events. Before the Greeks asked how it is that 
we see things, light was an attribute of fire, and not the mechanism for 
vision. And attempts to explain vision with light assisted in the artistic 
discovery of space. 

Early theories of vision did not involve light, but some sort of visual 
force. To the atomists, all objects in the physical world emit eidola, pic- 
ture-like effluxes that enter the eye. Each object carries with it its im- 
ages; Our eyes are passive receptors. The early Pythagoreans criticized 
this process, called intromission, asking, how could the image of a large 
object enter our small eyes? The Pythagoreans offered an alternative 
theory of vision—they believed that our eyes emit a visual force that 
produces the images we see. They did not offer an explanation for how 
the visual force striking an object produced an image at its source, but 
Plato addressed this issue. Plato claimed that the fire coming from our 
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eyes interacted with a force being given off by the object; this interac- 

tion transmitted an image of the object back into the eye. It was Aristo- 

tle, the empiricist, who brought light into the theory of vision. Aristotle 

maintained that the presence of light caused the medium between the 

viewer and the object, either air or water, to produce an image of the 

object. This is very close to the modern theory that our eyes collect light 

rays bouncing off the object (and our brain processes this information 

to form an image). 

This chapter examines the connection between the geometric un- 

derpinnings of how vision is imagined to work and how artists paint 

a scene, design a building, or more generally represent space. The goal 

of an artist, at least of a nonabstract one, is to represent a scene or ob- 

ject so that a viewer will understand what is being represented. To ac- 

complish this, the artist must take into account not only what is known 

about how we see things but also how the artist thinks the viewer will 

respond to his or her representation. And depending on which theory 

of vision the artist has in mind, the representation may or may not look 

convincing to the modern eye. 

EUCLID’S OPTICS 

The theory of vision given by Euclid in his Optics dominated intel- 

lectual thought throughout the Middle Ages. Euclid’s geometric treat- 

ment of vision, with some minor modifications, was widely accepted in 

Europe until the Renaissance. Basic to Euclid’s theory was his introduc- 

tion of the visual cone, a cone formed by visual rays emitting outward 

from a fixed point inside the eye. Euclid’s theory of how these visual 

rays yield mental images of the objects they encounter is not impor- 

tant to understanding how Greco-Roman and then medieval optics 

influenced artistic representations of space. The most artistically influ- 

ential aspect of Euclid’s theory is its geometric explanation of how we 

perceive the size of an object within the visual cone. 

In Euclid’s theory, the collection of visual rays falling on an object, 

for simplicity of explanation the vertical line segment A (below) forms 

an angle a at their source: 
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Eye 

FIGURE 7.1.In Euclid’s theory our perception of the size of an 

object is determined by its visual angle. 

This is the visual angle associated with the object. Euclid’s basic prin- 

ciple is then: 

Two objects that give rise to the same visual angle 

are perceived to have the same size. 

Euclid’s visual-angle equivalence for the apparent sizes of objects 

agrees with our commonsense notion that the farther away an object, 
the smaller it appears. This connection between distance and appar- 
ent size follows from Euclid’s geometry and an application of his basic 

principle. Consider Figure 7.2: 

FIGURE 7.2. The visual angle of an object is reduced if the 

object is moved farther from the eye. 

In this drawing the viewer's eye is represented by the point £, and the 
object being observed is the line segment A, which is first perceived 
at a distance d from the viewer, then at a larger distance D from the 
viewer. When the segment A is located at the shorter distance d from 
the viewer's eye, it has an associated visual angle of b; when the seg- 
ment A is moved farther from the viewer, to a distance D, then the new 
visual angle of A, the angle a, must be smaller than b. It follows from 
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Euclid’s basic equivalence that once A has been moved, it will appear to 

the viewer to be smaller. 

Although Euclid’s connection between the visual angle of an object 

and its apparent size is aligned with common sense, it is contrary to 

a fundamental principle of perspective painting. Consequently, the ac- 

ceptance of Euclid’s optics possibly forestalled the development of a 

method for convincingly representing three-dimensional space for fif- 

teen centuries. The precise difficulty with Euclid’s emphasis on the vi- 

sual angle lies not in how the apparent size of an object changes when 

it moves away from the viewer horizontally, but when it moves in a 

fixed plane perpendicular to the central ray in the visual cone. If object 

A is first viewed directly opposite the viewer, ahd is then displaced up- 

ward, A would then be farther away from the viewer, and hence have 

a smaller apparent size (the same reasoning works if A is shifted later- 

ally). Before examining how this simple observation violates one of the 

fundamental principles of perspective painting let’s consider the im- 

pact of Euclid’s optics on the artists and architects who may have tried 

to employ its principles. 

EUCLID’S OPTICS AND ARTISTIC REPRESENTATIONS 

An artist trying to represent a scene, or object, while thinking of size 

in Euclid’s terms, must make a choice, because the visual angle and ap- 

parent size equivalence posits a discrepancy between what is thought 

to be seen and what measurement shows exists. A simple example il- 

lustrates this conflict. According to Euclid’s theory, if you were to stand 

at a fixed distance from a row of fence posts, the posts that are shifted 

to the left or right will appear to be smaller than the middle pickets. 

Thus, the row of fence posts will appear to you as 

FIGURE 7.3. An exaggerated view of how an ordinary fence should 

appear to an observer in Euclid’s theory. 



138 | What Is a Number? 

Although measurement would show that all of the posts are the same 

height, the artist would imagine that the viewer would see the fence as 

we have drawn it above. The artist must decide whether to represent 

the fence posts as they appear or to draw a version of the fence posts 

so that what is thought to be seen will be interpreted correctly. The lat- 

ter choice, of representing an object so that it will be correctly inter- 

preted, explains two different aspects of Greco-Roman and medieval 

art—reverse perspective, wherein a rectangular surface is drawn with 

a wider back edge, and entasis in columns, the construction of columns 

with a slight bulge in their center. Each of these two stylistic innova- 

tions results from a different method for representing an object so that 

the viewer will correctly interpret it. 

First, suppose a carpenter, who accepts Euclid’s basic principle, 

is hired to construct a fence and his employer insists that the fence 

look perfect. The carpenter interprets his employer's instruction to mean 

that he wants all of the fence posts to appear to be of the same length. 
Since the farther a fence post is from the center post, the smaller it will 
appear to a viewer, the craftsman constructs the fence with fence posts 
whose lengths increase with their distance from the center post: 

FIGURE 7.4. How an artist might represent an ordinary fence in order for 
the viewer to understand that the fence is properly constructed. 

Then, according to Euclid’s theory, the fence will appear to have fence 
posts with equal lengths. 

An artist representing any object could import the reasoning of the 
carpenter into a painting. The carpenter’s reasoning as represented in 
Figure 7.4 would lead the artist to employ reverse perspective, as, for 
example, in representing the presumably rectangular top of the well in 
this detail from a Byzantine icon. 

Alternatively, if the carpenter were to construct the fence taking 
into account the expectations of the viewer that the fence is being con- 
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PLATE 7.1. The Woman and the Well (detail from Jesus and the Samaritan Woman at the 

Well). Byzantine icon, late 16th century. Overall size 38.5 x 48 cm. Paul Canellopoulos 

Collection, Athens, Greece. Photo: Erich Lessing / Art Resource, New York. 

structed so as to be correctly interpreted, it would have a different shape 

than the fence in Figure 7.4. Such a viewer would expect that since the 

end fence posts should appear shorter than the center fence post, they 

must really be taller than the center post; the carpenter would have to 

compensate for both the effects of distance on size, and for the adjust- 

ments the viewer will assume have been made. This means that the 

end fence posts must be made shorter than the center post—the viewer 

will know that the fence posts are all of equal lengths. 

This is not an entirely theoretical discussion; these principles have 

been applied in both art and architecture. For example, if a tall, rect- 

angular door is constructed without any adjustments the viewer will 

assume the door has been constructed so that it appears rectangular. 

The viewer will realize, or expect, that since the top of the door should 

appear to be narrower, as it takes up a smaller visual angle than the 

base, the door must really spread outward toward the top. So, an archi- 
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tect, or artist, must compensate for both the effects of distance on size 

and for the adjustments the viewer will assume have been made. This 

logic leads to the representation/construction of a tall, relatively nar- 

row door with a top that is narrower than its bottom. The viewer will 

imagine that this door is rectangular; its top edge is smaller because it 

is farther away. 

The first-century B.C. Roman architect Vitruvius (c. 70-c. 25 B.C.) 

prescribed how to adjust the measurements for a doorway in a tem- 

ple in order that it appear to be rectangular. After describing how to 

determine the width of the base of a doorway from its height—if the 

height of a doorway is divided into 12 parts the base should be 54/2 

of these parts wide—Vitruvius offered the precise scaling to be used 

(his assumption being that the farther an object is from the viewer the 

smaller the necessary adjustment): “At the top, [the door’s] width should 

be diminished, if the aperture is sixteen feet in height, by one-third the 

width of the door-jamb; if the aperture is from sixteen to twenty-five 

feet, let the upper part of it be diminished by one-quarter of the jamb; if 
from twenty-five to thirty feet, let the top be diminished by one-eighth 

of the jamb. Other and higher apertures should, as it seems, have their 
sides perpendicular.”? 

Examples of Vitruvius’ scaling factors are given below: 

HEIGHT OF DOOR RATIO OF DOOR’S TOP WIDTH TO 

(in ft) DOOR’S BOTTOM WIDTH 

< 16 jigs} 

16=25 3:4 

25-30 7:8 

over 30 Aledl 

This formula tells an architect who wants to design a twenty-four-foot- 
tall door, which must necessarily be eleven feet wide at its base accord- 
ing to Vitruvius’ earlier rule, that the two sides of the door should not 
be perpendicular to the floor but slant inward forming an eight-and-a 
quarter-foot-wide opening at the top of the door. 

The contemporary art historian Kim Veltman relates the details of 
an art competition, the goal of which was to design the most appealing 
statue of Minerva.’ The statue was to be placed ona high pillar so that 
it would be viewed from below, with viewers looking up at both the 
pillar and Minerva. According to the story, two sculptors, Phidias and 
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Alcamenes, entered the competition. When viewed at ground level, Al- 
camenes’ statue was seen to be a beautiful and perfectly proportioned 
figure; Phidias’ Minerva was distorted, her head and shoulders were 

too small for the rest of her figure, as would be the top edge of a door 
constructed according to Vitruvius’ guidelines. After the two statues 

were seen on the pillar, Phidias’ small-headed Minerva was the more 

appealing; he won the contest. 

The idea that an artist or architect must take into account the view- 

er's expectation that some adjustment has been made, in order that an 

object be interpreted correctly, can also lead to the principle of enta- 

sis in columns, wherein a tall, rectangular column is designed with a 

slight outward bulge in its middle. To follow this reasoning we begin 

with the assumption that we are viewing a column whose middle por- 

tion is roughly at eye level. Suppose the column is constructed in the 

form of a simple, tall rectangle. Since both the top and base of the col- 

umn are farther away from the viewer than the center, the viewer will 

assume that the column has been constructed to appear as a rectangle 

and thus must be wider at both the top and bottom than in the middle. 

To adjust for this, the column should be constructed to be narrower at 

both the top and bottom, that is with a bulge in the middle, in order 

that the viewer understand that the column is a rectangle. 

There is another, less mathematical and psychological, explana- 

tion as to why Greco-Roman columns were constructed to be biconvex: 

when designers looked at older buildings, which had originally been 

constructed with rectilinear columns, the weight of the structure had, 

over time, compressed the columns to produce a bulge in each. These 

later architects simply copied this style. 

ALHAZEN’S THEORY OF VISION 

In the eleventh century, Alhazen (965-1039) offered a theory of vi- 

sion that at first seems similar to Euclid’s but is significantly different 

in ways that allowed for the development of single-point perspec- 

tive painting. The conceptual shift concerns the medium of vision it- 

self. Alhazen assumed that the visual rays emanate from the objects 

in the physical world, instead of from within the eye. His reasoning is 

straightforward: When we look at a very bright object such as the sun 

we experience pain. This seems to be inconsistent with the model of 

visual rays emanating from the eye, unless one wants to attribute to all 
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physical objects some sort of reflectivity principle, such as that bright 

objects simply have more of this mysterious property than dim objects. 

But some objects, a flickering candle for example, vary in brightness 

from moment to moment. This means that this mysterious property 

would have to be variable. 

Alhazen’s understanding of the mechanism of vision does have one 

difficulty that he had to overcome—if all objects are emitting visual rays 

in all directions, then our eyes should be overwhelmed by the barrage 

of images. Alhazen’s answer to this objection, which contains in it one 

of the two ideas that led to the discovery of the single-point perspective 

method of painting, is that the lens of the eye only admits those rays 

that meet it at a right angle. By the eleventh century, the basic physical 

structure of the eye was understood, and it had been known for a mil- 

lennium that refracted light had a diminished intensity. Alhazen took 

these elements into account in developing his theory of vision, which 

involves the following idealized view of how light enters the eye. 

Eye 

Axis Visualis 

FIGURE 7.5. In Alhazen’s theory the light along the axis visualis is not 

refracted, so vision is clearest along that axis. 

The only light that is not refracted, and so not diminished in inten- 
sity, is the light reaching the eye along the axis visualis. Thus, there is 
a clearest line of sight, and vision becomes less clear the farther the 
visual rays are from that axis. 

The existence of the axis visualis is but one aspect of Alhazen’s the- 
ory of vision relevant to the impressive fifteenth-century innovations 
in representing three dimensions on a two-dimensional surface. The 
other, which is not entirely unrelated to the first, is Alhazen’s distinc- 
tion between immediate and contemplative perception. Immediate 
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perception is a person's initial, relatively vague impression of an object 
or scene. Contemplative perception is clearer; through a process Alha- 

zen labeled certification a more detailed and accurate mental image of 

a scene is created over time. It was already understood that if light, or 

visual rays, did not travel instantaneously, their velocity was impercep- 

tibly fast. So Alhazen imagined the time required for certification to be 

relatively short, but not immediate. 

Thus, Alhazen’s explanation for how someone observing a can- 

vas creates a mental image of the painting appeals to his conclusion 

that sight along the axis visualis provides the clearest, and therefore 

most powerful, image. To obtain the clearest possible image, the ob- 

server should remain stationary, so that the image is formed through 

contemplative perception. Giotto di Bondone (c. 1267-1337) seems to 

have been the first artist to understand that painting a scene as if the 

viewer were to be in a fixed position would allow for a more believable 

representation of three-dimensionality. One only needs to compare his 

Meeting at the Golden Gate with other paintings of the period to appre- 

ciate Giotto’s almost geometric representation of space and depth. 

PLATE 7.2. Meeting at the Golden Gate, 1304-6. Giotto di Bondone (c. 1267-1337). 

Scrovegni Chapel, Padua, Italy. Photo: Scala / Art Resource, New York. 
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Although Giotto was the first painter to sense the importance of 

painting a scene as if the viewer remained stationary, the first artist to 

understand the geometry behind the depth artists began to achieve in 

the fifteenth century was Filippo Brunelleschi (1377-1446). In the early 

1420s Brunelleschi is said to have demonstrated the power of assum- 

ing the painting is being viewed from a preferred spot in establishing 

an impressive three-dimensionality in a two-dimensional painting. 

Brunelleschi’s demonstration occurred on the Piazza del Duomo, in 

Florence, and involved a perspective painting with a small hole in the 

canvas at the vanishing point. A mirror was held parallel to, and fac- 

ing, the painting. People on the plaza were invited to look through the 

back of the painting and observe its reflection in the mirror. Why? Be- 

cause Brunelleschi’s setup effectively forced the observers to view the 
painting from a precisely determined fixed point, which allowed for 
the greatest appreciation of the painting’s geometric framework. This 
framework was formalized a decade after Brunelleschi performed his 
experiment by Leon Battista Alberti (1404-72) in his influential book 
De Pictura (1435). 

In De Pictura, Alberti settled many of the geometric technicalities 
that must be incorporated into a painting to provide a convincing rep- 
resentation of three-dimensional space, and all of his geometric con- 

clusions follow from his unifying conception for what a painting is. As 
the contemporary art historian Lew Andrews so succinctly puts it in 
his book Story and Space in Renaissance Art, Alberti “likens a painted 
picture to an open window: A picture, in his view, should be made to 
seem as if it were a pane of transparent glass through which we look 
into an imaginary space extending into depth.”? Another way to state 
Alberti’s idea is to imagine that the painting is a fixed pane of glass, 
which is called the picture plane, interposed between the viewer and 
the scene. The two central geometric tenets of the single-point per- 
spective method follow from this conception of a painting as a picture 
plane: 

1. objects of the same size in a plane parallel to the picture plane 
will have the same size in the painting, and 

2. any two parallel lines that are perpendicular to the picture plane 
will appear to converge toward each other. 
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This first principle is contrary to Euclid’s equivalence of the apparent 
size of an object and its visual angle. The second principle implies that 

the artist must choose a vanishing point for the painting and all paral- 

lel lines drawn toward the horizon must converge to this point. Both of 

these principles follow from an application of Euclidean geometry; the 

imposition of the picture plane between the viewer and the scene is the 

new idea that presents the artist with the necessary theoretical tools. 

But to employ this idea in its purest form, an artist must become a bit 

of a geometer. In order to give, for example, a convincing portrayal of a 

large, tiled plaza with people positioned throughout, the artist needs to 

address two fairly subtle geometric questions: 
/ 

1. How large should the figures appear when placed in 

intermediate positions between the plane of the painting and 

the vanishing point? 

2. How much should the tiles in the floor be foreshortened to 

yield an image of a floor of rectangular tiles reaching toward 

the horizon? 

While the solution to the second question is geometrically interesting, 

it is not germane to the discovery of space. But the solution to the first 

question is relevant because it clearly illustrates the difficulty with Eu- 

clid’s visual angle theory. It is easier to answer this question if it is re- 

formulated as: How should we represent objects that are measurably 

the same size, all of which lie in a fixed plane perpendicular to the line 

of sight of the viewer? The answer to this question depends on three 

pieces of information: the distance of the object from the picture plane, 

the size of the object, and the imagined distance of the viewer from the 

picture plane. 

To see why the painted size of an object depends on each of these 

numbers, suppose the viewer is standing ten feet from the imagined 

picture plane and he is observing an object, w, that is twenty feet be- 

yond the picture plane. (In Figure 7.6 x denotes the apparent size of the 

object w.) 
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10 20 

FIGURE 7.6. How large an artist should draw an object depends both 

on the distance of the presumed viewer from the canvas and the 

imagined distance of the object from the picture plane. 

It is easy to relate the numbers by using the observation that the two 

triangles have the same shapes, because their angles are all the same, 

thus the ratios of corresponding sides are equal. This yields 

X/w = 19/40+20) = 1/30 = Y/s. 

If we multiply through by w we find that x = 3 w; so w appears to be 

one-third as large as it is. If we double the distance of w from the pic- 

ture plane, so its distance from that plane is now 40 feet, we again use 

similar triangles to find 

X/w = 10/(49+40) = 1%s0 = Ys. Thus x = Vs w 

SO w appears to be one-fifth as large as it is (and should be drawn at 
one-fifth of its true size). 

From this small calculation, we see that if we imagine doubling the 
distance of an object from the picture plane, its size is not halved (in 
this example it decreases by 40 percent). If we double the distance of w 
from the viewer, while leaving the picture plane fixed, then the size to 
the object is halved. Thus the two distances, the distance of the viewer 
from the picture plane and the distance of the object from the picture 
plane, must be taken into account to calculate the relative sizes of ob- 
jects in a painting. 

Leonardo da Vinci (1452-1519) devoted a great deal of time to this 
matter, producing tables for the relative sizes of objects at varying dis- 
tances from the picture plane. The rule he developed, which is to be ap- 
plied to compute how large an object should be drawn in order that it 
appear to be of the correct size, is known as the inverse-distance law. Its 
fundamental principle is easily understood: The size of an object in the 
picture plane will be determined by its distance from the picture plane 
measured in terms of the distance of the viewer from the picture plane. 



Medieval Theories of Vision and the Discovery of Space | 147 

If the object is the same distance from the picture plane as the observer, 
the object in the picture plane will be one-half of its measured size. If 
the object is twice as far from the picture plane as the observer, its size 
will be one-third of its measured size; if the object is three times as far 

from the picture plane as the viewer its size will be one-fourth of its 

measured size. We saw in the example above that when the object is 

four times as far from the picture plane as the viewer then its size will 

be one-fifth of its measured size. 

CONTINUOUS NARRATIVE 

Art is either plagiarism or revolution. / 

— Paul Gauguin (c. 1880) 

The standard view of Renaissance art, as espoused, for example, by 

the early twentieth-century art theorist Dagobert Frey is that once the 

single-point perspective method took hold, the sequential imagery of 

the continuous narrative only remained as something of a bad habit. 

Andrews explained that in Frey’s theory, having several temporally dis- 

joint scenes within the same frame was “incompatible with the spa- 

tial innovations and representational logic of the quattrocento.”* Frey's 

argument continues: Once this incompatibility was recognized, artists 

dropped the technique of continuous narrative. The reason for this is 

the assumed superiority of the unified, almost photographic space that 

single-point perspective provided. It is not only the space of the paint- 

ing that is photographic, but its time as well. A well-executed single- 

point perspective painting presents a frozen-in-time, geometrically 

convincing, three-dimensional image. According to Frey, “Simultane- 

ous unity of content in painting is scientifically attained in perspec- 

tive.” Frey then goes on to say, “Simultaneity in perceiving a picture 

also requires a synchronization of what is represented; by grasping the 

picture spatially as a unit we also assume the depicted events to be si- 

multaneous.”° 

Assuming Frey is correct, what is to be made of paintings that were 

produced after the principles of single-point perspective were under- 

stood, such as the panel from Lorenzo Ghiberti’s design for the east 

doors of the baptistery in Florence (Plate 7.3) and a painting by Benozzo 

Gozzoli (Plate 7.4). 
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PLATE 7.3. Story of Jacob and Esau (panel from Gates of Paradise, 1425-52). 

Lorenzo Ghiberti (1370-1455). Museo dell’Opera del Duomo, Florence, Italy. 

Photo: Scala/ Art Resource, New York. 

PLATE 7.4. Arrival of St. Augustine in Milan, 1464-65. Benozzo Gozzoli (1420-97). 
Sant Agostino, San Gimignano, Italy. Photo: Scala / Art Resource, New York. 

Both of these, with representations of scenes taking place at different 
times, seem to violate the instantaneous, pictorial nature of single- 
point perspective paintings. The standard theory tells us that these 
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works are simply a holdover from the earlier technique. Andrews has 

offered another explanation. Andrews’ position is that artists never 

completely accepted that the temporal aspects of a painting are in- 

tricately linked to its portrayal of space. This is easily seen in Gozzoli’s 

painting: Augustine is shown in the foreground with a servant helping 

him remove his riding clothes, kneeling before an Islamic scholar in the 

background, and being greeted by Ambrose (right). 

These portrayals of several events within the full three-dimensional 

space the single-point perspective style offers us are a break from me- 

dieval continuous narrative paintings, where several events are pre- 

sented on the same panel but not in the same unified space. But this 

seems to be a strange juxtaposition of represéntations. The space of 

the painting must be viewed from a predetermined point and thus be 

seen as static and unchanging, while the time of the painting is plastic 

and changing. We are not the first to have noticed this disparity; early 

in the sixteenth century Leonardo da Vinci investigated the assumed 

rigidity of the space in a painting. Leonardo and Piero della Francesca 

(c. 1412-92) before him investigated this from slightly different points 

of view. They were both interested in the geometric underpinnings of 

single-point perspective, and specifically in the relationship between 

the perceived depth within the painting and the believability of its por- 

trayal of space. They both reduced this relationship to the simple mat- 

ter of the location of the vanishing point in the canvas. 

To understand Leonardo’s and Piero’s discoveries we must think of 

the vanishing point not as a point on the canvas but as a point located 

behind the canvas. To explain this idea we return to Alberti’s conception 

of a painting as a pane of glass interposed between the viewer and the 

scene. If we imagine examining the picture plane between the viewer 

and the scene from above, then we have the following schematic view 

of the situation: 

Idealized Vanishing Point 

Picture Plane 

Viewer 

FIGURE 7.7. The preferred position for the viewer of a single-point 

perspective painting is directly opposite the vanishing point. 
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In his experiment in the Piazza del Duomo, Brunelleschi exploited the 

following observation: The preferred location of the viewer of the paint- 

ing is at the point obtained by reflecting the vanishing point through 

the picture plane (see Figure 7.7). 

If the vanishing point is low on the canvas, the lines in the paint- 

ing will appear to converge at a point that is relatively nearby and the 

ideal position of the viewer is very close to the canvas. If the painting 

is sufficiently wide, the objects in the foreground corners will appear 
slightly distorted. Moreover, and this is more relevant to our discussion 
of continuous narrative, our view of the space within the painting is 
very sensitive to our position. If the viewer moves slightly from the pre- 
ferred spot close to the canvas, the three-dimensionality of the space 

will be less convincing. 

However, if the vanishing point is very high on the canvas, the lines 
in the painting will appear to converge at a very distant vanishing 
point and the viewer's optimal position is relatively far away from the 
painting. With such a “distant” vanishing point, there will be no evi- 
dent distortion of objects in the foreground corners. What this means 
is that if the viewer moves a little, there will be not be a significant 
change in the scene. 

Piero was mostly interested in eliminating any distortion from a sin- 
gle-point perspective painting. He concluded (theorem XXX) that the 
vanishing point must be placed high enough on the canvas so that its 
distance from the bottom of the canvas must be at least half the width 
of the canvas.° He also prescribed that the angle at the vanishing point, 
in the overhead view above, must be less than 90 degrees. 

Leonardo was more interested in the viewer's understanding of the 
painting. For Leonardo, the location of the vanishing point prescribed 
in Piero’s theorem XXX liberates the viewer. While there is a preferred 
location from which a single-point perspective painting should be ob- 
served, that location is not a single point. Due to the distance of the 
viewer from the canvas, there is some latitude in the preferred location; 
the preferred viewing spot is within a region, not at a point. Thus the 
space is not static, something to be passively viewed from only one posi- 
tion. Instead, it is dynamic, we can move through it by changing our po- 
sition slightly. If the relationship of the viewer to the space ofa painting 
is dynamic, there is no reason that the time of a painting must be static. 

Whatever rigidity of method was called for in the early Renaissance, 
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very few artists strictly adhered to all aspects of the prescribed geome- 

try (two who did were Masaccio in his painting Trinity, and Piero in his 

painting Flagellation). But one aim of art is to be revolutionary, not to 

copy from others, and as soon as the principles of single-point perspec- 

tive were understood, they were challenged. Indeed, rigid, mathemati- 

cal rules for an artist to follow were not prescribed again until the early 

twentieth century (see chapter 9). 

FRACTURING SPACE AND MULTIPLE POINTS OF VIEWS 

The transition from the strict single-point perspective method to 

modern, abstract art, once it started, was rapid. Although the rules of 

the single-point perspective painting were immediately violated, these 

violations did not challenge the single-point perspective’s conception 

of space. Then, in the nineteenth century the very nature of space was 

questioned, and once this examination began artists were liberated from 

any Euclidean restraints. The evolution of abstract art took less than a 

century. The impact of the discovery of non-Euclidean geometries and 

then the fourth dimension on literature and art are illustrated in the 

next chapter; for now we restrict our attention to two early examples 

of artistic affronts to the standard method of representing space. 

The first example, below, is from the French painter Edouard Manet 

(1832-83). (It is considered to be his last major piece.) 

PLATE 7.5.A Bar at the Folies-Bergére, 1882. Edouard Manet (1832-83). Courtauld Institute 

Galleries, London. Photo: Foto Marburg / Art Resource, New York. 
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On first viewing, this painting appears to be a straightforward depic- 

tion of a young woman, behind the bar, looking directly at you. Behind 

the girl is a large mirror, parallel to the bar; in the mirror the viewer 

sees a reflection of the bar scene as well as the back of the girl. A sche- 

matic top view of this scene is 

Mirror 

€@p Woman 

a 
G@p Person in front of woman 

«ep (OD? cep CO) cep COD 
Patrons in bar 

FIGURE 7.8. A top view of the bar in Manet’s Bar at the Folies-Bergére that 

does not take into account the image in the mirror behind the woman. 

However, assuming that Manet painted this scene according to the 
commonly accepted principles, the location of the woman’s reflection 
reveals that this cannot be the top view of the scene. The woman’s re- 
flection should be directly behind her and not be visible to the viewer; 
Manet has represented the scene as if the mirror were not parallel to 
the bar—it is skewed so the woman’s reflection appears on the right- 
hand side of the painting: 

a
i
 

Mirror 

Op Woman 

See ee cr 

@€@Pp Person in front of woman 

FIGURE 7.9. A top view of the bar in Manet'’s Bar at the Folies-Bergére that 
takes into account the image in the mirror behind the woman and the 

apparent relationship between the viewer and the woman. 

However, in the painting the bar and the mirror appear to be, more 
or less, parallel, so to see the woman’s reflection where Manet has 
placed it, the viewer must be standing to the right of the woman: 
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Mirror 

q€@p Woman 

Ee eee ee) is: 
@€@py Person in front of woman 

FIGURE 7.10.A top view of the bar in Manet’s Bar at the Folies-Bergére that 

takes into account both the image in the mirror behind the woman and the 

apparent relationship between the bar and mirror. 

This placement of the figures is contrary to the view we have of the 

womans face and body. j 

The only solution to this dilemma is to accept that Manet painted 

A Bar at the Folies Bergére as if it is being simultaneously viewed from 

two different positions, one directly in front of the woman and the 

other from the right-hand side of the painting. 

A more extreme, but less obvious, example of a scene having been 

painted as if it were being simultaneously viewed from more than one 

position is Paul Cézanne’s Still Life with Fruit Basket, below. The objects 

PLATE 7.6. Still Life with Fruit Basket, 1888-90. Paul Cézanne (1839-1906). Oil on canvas, 

65 x 81cm (RF. 2819). Musee d’Orsay, Paris. Photo: Erich Lessing / Art Resource, New York. 
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on the table are slightly distorted, but many of these distortions are 

resolved if the position of the viewer is allowed to change, depending 

on which object is being viewed. For example, if the body of the bas- 

ket were being viewed from the position of the reader, then its han- 

dle would be viewed from someplace to the right of the canvas, and 

although this is harder to see, the large jar next to the basket would be 

viewed from somewhere to the left of the canvas.’ 

Manet and Cézanne were modern painters, working three centuries 
after Leonardo’s investigations liberated the viewer from having to re- 
main in a fixed place in order to appreciate the three-dimensionality 
of a painting. The jump from allowing the viewer to move slightly 
from one position to another to allowing the viewer to be in several 
positions simultaneously is a huge one. What allowed for this concep- 
tual leap was a two-century reexamination of our assumptions about 
space, which included the discovery of mathematical geometries dif- 
ferent from the one presented in Euclid’s Elements and Einstein’s dis- 
covery of the fundamental connection between space and time. These 
are discussed in the next chapter. 
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You must note this: If God exists and if He really did 

create the world, then, as we all know, He created it 

according to the geometry of Euclid and the human 

mind with the conception of only three dimensions in 

space. Yet there have been and still are geometricians 

and philosophers, and even Some of the most 

distinguished, who doubt whether the whole universe, 

or to speak more widely, the whole of being, was only 

created in Euclid’s geometry; they even dare to dream 

that two parallel lines, which according to Euclid can 

never meet on earth, may meet somewhere in infinity. 

— Dostoyevsky, The Brothers Karamazov (1879) 

Early in the eighteenth century, more than two millennia after Eratos- 

thenes measured the length of a single shadow and then determined 

the shape and size of the earth, the mathematician Carl F. Gauss (1777— 

1855) is said to have performed another geometric experiment. Gauss 

placed some of the most accurate surveying equipment of his day on 

three mountaintops and measured the angles in the triangle formed 

by the peaks. Gauss, of course, knew the result from geometry that 

Plato had used in his theory of matter, and that played a hidden role 

in Eratosthenes’ experiment: The angles in any triangle sum to 180 de- 

grees. When Gauss found that the angles in his surveyed triangle added 

up to slightly more than 180 degrees, he could have used the known 

geometric result to estimate the precision of the equipment. But this 

had already been determined by measuring angles whose measure- 

ments were known. Gauss was not checking the accuracy of mechani- 

cal devices; he was testing the hypothesis that Euclidean geometry is 

a science and that its results are not only mathematically correct but 

are empirically verifiable. Unfortunately Gauss's experiment was in- 

conclusive because the discrepancy between his result, of just less than 
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180 Ya degrees, and 180 degrees, fell within the known margin of error 

of his equipment. 

ARE EUCLID’S POSTULATES TRUE? 

In 1968 the artist Walter de Maria (b. 1935) drew two parallel chalk 

lines in the flat Mojave Desert. The two lines in de Maria’s Mile-Long 

Drawing were twelve feet apart and, contrary to the title of the installa- 

tion, two miles long. All that remains are photographs of the drawing; 

in these, the two chalk lines appear to be parallel and yet to converge 

as they move toward the horizon, meeting at some vanishing point 

beyond the distant hills. The previous chapter examined how Renais- 

sance painters imported this visual illusion onto canvas to obtain 

convincing portrayals of three-dimensional space. But despite appear- 

ances, parallel lines are not supposed to intersect, and although it is 

not immediately evident, Gauss’s experiment was designed to test this 

supposition. 

The connection between the angles in a triangle and the behavior of 
parallel lines is fairly subtle, and the total angle measurement of the an- 
gles ina triangle is intimately connected with the existence, or nonexis- 
tence, of parallel lines. Euclid, of course, never assumed that the angles 

in a triangle sum to 180 degrees, he deduced this result from his postu- 
lates. Furthermore, if the parallel postulate is replaced by the assump- 
tion that the sum of the angles in a triangle always equals 180 degrees, 
then the statement of the parallel postulate can be deduced as a theo- 
rem.Inthis sense the parallel postulate and the sum-of-the-angles result 
are equivalent; the truth of either one implies the truth of the other. 

Between the third century B.C. and the seventeenth century, a fun- 
damental shift occurred in the way geometric objects, and in particular 
parallel lines, were conceived. This shift can be seen in the poet Mar- 
vell’s appeal to the nature of parallel lines to express a necessarily un- 
requited love: 

My love is of a birth as rare 

As 'tis for object strange and high; 

It was begotten by despair, 

Upon impossibility. 
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Unless the giddy heaven fall, 

And earth some new convulsion tear, 

And, us to join, the world should all, 

Be cramped into a planisphere. 

As lines, so loves oblique may well 

Themselves in every angle greet: 

But ours, so truly parallel, 

Though infinite, can never meet.’ 

According to Marvell, parallel lines are nonintersecting, existing infini- 

tudes, and by the time of Gauss’s experiment this conception of parallel 

lines was the accepted one. ; 

We cannot test whether two parallel lines are two finite entities that, 

no matter how far they are extended, will never intersect or whether 

they are two existing infinitudes. But there are other aspects of Euclid’s 

Elements that can be examined, such as whether the angles in any tri- 

angle sum to 180 degrees. But instead of climbing mountain peaks, as 

Gauss did, it is possible to test the truth of this result through a simple 

experiment involving triangles. 

For a triangle drawn on a piece of paper, within the error of your 

measurement, the triangle’s three angles will sum to 180 degrees. 

Imagine drawing a larger triangle, and instead of drawing it on paper, 

you draw it on the surface of the earth, perhaps in a large field. If the 

angles in this large triangle were to be measured, the sum of the angles 

still would be (as far as could be discerned) 180 degrees. But in an even 

larger triangle, one that covers most of France, for example, the angles 

will add to slightly more than 180 degrees. Finally, imagine drawing a 

huge triangle with one vertex on one of the Galapagos Islands, another 

vertex on the north shore of Lake Victoria in Africa, and its third at the 

North Pole. Both the Galapagos Islands and the north shore of Lake Vic- 

toria are pretty much on the equator, so the base of this triangle lies, 

more or less, along the equator. If you were to stand at one of this tri- 

angle’s equatorial vertices and look toward the vertex at the North Pole 

your line of sight would be perpendicular to the equator. (This angle 

will not be exactly 90 degrees because the earth is not a perfect sphere 

and the triangle’s vertices are not precisely on the equator, but it will 

be close.) This means that this extraordinarily large triangle has a 90- 
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degree angle at each equatorial vertex. And because Lake Victoria is 30 

degrees east of Greenwich and the Galapagos Islands are 90 degrees 

west of Greenwich, the angle at the North Pole measures 120 degrees; 

so the sum of the angles in the triangle is 90 + 90 + 120 = 300 degrees, 

much greater than the expected 180 degrees. (By taking the two equa- 

torial positions farther apart, the angle at the North Pole can be made 

to be any number less than 180 degrees; so a triangle could have its an- 

gles sum to any number less than 90 + 90 + 180 = 360 degrees. Indeed, 

it is a theorem from spherical geometry that the angles in any triangle 

drawn on a sphere will exceed 180 degrees.) 

The discovery that the sum of the angles of a triangle drawn on ne 

surface of the earth always exceeds 180 degrees does not imply that 

Euclidean geometry is wrong (or that there is some fundamental flaw 

in our deductive methods). The assumption that because the earth is 

curved, figures drawn on its surface need not adhere to Euclidean ge- 
ometry is a valid one. But the complication to this claim is that expe- 
rience tells us that the earth is flat, and any attempt to give a simple 
definition of flatness encounters the same difficulty Euclid did when 
he wrote: 

A plane surface is a surface that lies 

evenly with the straight lines on itself. 

According to this definition, a flat surface is one on which it is possible 
to draw straight lines. But Euclid’s definition of a straight line does not 
offer any insight into the nature of a flat plane because all it says is 
that a straight line does not waver, that is, each point on a line lines up 
evenly with the other points on the line. So the definition of a plane 
is given in terms of a straight line, and the definition of a straight line 
depends on our intuition or experience. Although we think we under- 
stand what Euclid means by a straight line, if someone were to pre- 
sent us with a curve on a piece of paper we would not have any way of 
checking whether it is straight or not. (The way we would like to check 
the straightness of the curve would be to hold a ruler along it, but this 
leads to an unending digression because we have no way of verifying 
that the ruler is straight. This dilemma is similar to the one Kant ex- 
pressed concerning how we can understand the size of any magnitude 
[see chapter 3].) 
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The most accomplished of all Greek mathematicians, Archimedes, 

offered an alternative definition of a straight line that, in principle, can 
be verified: 

A line is the shortest distance between two points. 

Using Archimedes’ definition of a line, it is possible to avoid Euclid’s 

reliance on straight to define flat, and on flat to define straight, how- 

ever it does rely on measurement. Nonetheless, the real advantage of 

this shift in point of view is that the concept of a line does not depend 

on straightness, which cannot be checked, but on distance, which can 

be checked. So it is reasonable to define the line segment defined by 

two points on a sphere as the arc on the sphére connecting the two 

points, which has the shortest length. The line defined by two points is 

then obtained by extending the shortest arc between them around the 

sphere. This process always yields a circle dividing the sphere into two 

equal hemispheres (for example the equator is a line in this sense). 

From this description of lines, as circles on the surface of the earth 

whose centers are the center of the earth, it is easy to prove that in 

the geometry on the sphere, any two different lines will intersect. In 

particular, Euclid’s parallel postulate does not hold for this geometric 

system, and so, as the large triangles drawn on the earth illustrated, 

neither does the sum-of-the-angles-in-a-triangle result. Note also that 

one consequence of what we know about the geometry on the surface 

of a sphere is that de Maria’s two chalk marks on the floor of the Mojave 

Desert either have to intersect, if they are extended sufficiently far, or, if 

they are to remain twelve feet apart cannot both be lines. 

Gauss understood that when a triangle is drawn on a curved sur- 

face, its angles could sum to a value other than 180 degrees. This is 

why Gauss designed his experiment as he did. Although the moun- 

tains themselves are on the surface of the earth, the triangle formed 

by their peaks is suspended in space—free of the earth’s curvature. Yet, 

having freed his triangle from the curvature of the earth, Gauss faced a 

technical difficulty: How to determine the sides of an airborne triangle 

whose vertices are miles apart. To accomplish this Gauss appealed to 

an entirely reasonable misconception about light—that it travels in a 

straight line. 
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THE GEOMETRY OF SPACE 

Escher’s print Smaller and Smaller (Plate 3.2), provides an artistic 

representation of infinite divisibility, and Escher’s print Circle Limit III 

(below) appears to do the same thing. 

PLATE 8.1. Circle Limit III,1959. M.C. Escher (1898-1972). 

© 2007 The M.C. Escher Company-Holland. All rights reserved. 

But there are important differences between the mathematical ideas 
underlying these two prints, which Escher alluded to in a lecture in 
1964: “Instead of finishing with a square limit, one can also, and per- 
haps better, end with a circular outline. But this is no easy question, but 
a complicated, non-Euclidean problem.” 

Smaller and Smaller is based on the same mathematical idea as 
Zeno’s paradox, that it is possible to divide a magnitude in half, then 
in half again, repeating this division indefinitely. The images in Circle 
Limit III become smaller and smaller, moving from the center to the 
edges of the print, but their sizes are determined not through succes- 
sive halving but by using non-Euclidean geometry. To make any sense 
of this last sentence it is necessary to reexamine what it means for a 
curve to be straight, and this reconsideration is aided by a closer look at 
Gauss’s experiment. 

Gauss’s mountaintops were 43, 53, and 123 miles apart, so he could 
not apply Archimedes’ conception of a straight line to determine his tri- 
angle’s sides. Instead, Gauss appealed to a physical assumption based 
on Olaf Roemer’s discovery in 1675 that light is not instantaneous, the 
principle of least time: 
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When light travels from one point to another, it always 

follows the path requiring the least time. 

Combining the principle of least time with Archimedes’ conception of a 

line, Gauss assumed that light travels in a straight line. So, when Gauss 

looked from one vertex to another, his line of sight was along a line seg- 

ment and so along a side of the triangle. Unfortunately, there are two 

flaws in such simplistic reasoning—one, which Gauss could accommo- 

date, is the basis of the geometry in Escher’s print, and the other, which 

Gauss could not have imagined, is a consequence of Albert Einstein’s 

general theory of relativity. 

It is possible to understand the non-Euclidean geometry Escher re- 

ferred to above through an examination of one important consequence 

of the principle of least time. The seventeenth-century mathemati- 

cian Pierre Fermat (1601-65) first espoused this important principle, 

not to explain why light travels in a straight line but why it does not. 

A straight stick, partly in air and partly in water appears to bend, and 

Fermat knew the cause of this illusion is the bending of the light travel- 

ing from the submerged portion of the stick to the observer's eye. Fer- 

mat used his principle to precisely calculate the path of light traveling 

from a medium of one density into a medium of a different density: 

How much the path of light bends is determined by the relationship 

between the two densities. 

Suppose light travels from a point B, in water, to a point A, in air. 

There are many possible paths light could travel from B to A. It could 

travel along the straight line from B to A, or, in order to spend as little 

time in the water as possible, where it travels more slowly than in air, it 

could follow the dashed path below: 

A “J 

B 

FIGURE 8.1. wo possible paths light could travel when traveling from a 

point B, in water, to a point A, in air. Fermat showed mathematically that the 

path light follows in moving from B to A lies somewhere between these two. 
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Before applying the refraction of light to provide a basis for the ge- 

ometry of Escher’s print, let’s first reconsider the apparent bending of 

a stick when it is partly in air and partly in water. In Figure 8.2 a ray 

of light traveling from the end of the stick to the viewer's eye (at V) 

refracts and follows the indicated path. What the viewer sees is the im- 

age of the end of the stick at the point where the ray of light exits the 

water, so the end of the stick will appear to be at C. 

Stick 

olm 
FIGURE 8.2. How the refraction of light makes a stick that 

is partly in water appear to be bent. 

The arcs in Escher’s print do not contain any sharp corners, so it is 
not immediately clear what role the refraction of light plays in their 
geometry. Before exploring this connection, let’s see how refraction can 
lead to spectacular sunsets over the ocean. Because the density of the 
earth’s atmosphere is greater at the surface of the earth than above it, 
a ray of light striking the atmosphere at an angle will be refracted (and 
so bent) as it moves from a region with a lesser density into one with 
a greater density. Nicole Oresme (c. 1320-82) appears to have been the 
first to realize that light could be continuously refracted as it passes 
through a medium with a uniformly varying density? This means 
that at sunset, although the sun is below the horizon, it is still visible. 
The sunset lasts longer than the viewer expects because when the sun 
moves the relatively great distance from position A to its indicated po- 
sition below the horizon, it seems to move only the shorter distance 
from A to its apparent position—the sun takes too much time to finally 
disappear below the horizon. 
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A 

\\ 7 
The Sun Appears To Be Here == 

Observer 

FIGURE 8.3. How the continuous refraction of light as it passes through 

the atmosphere can cause a sunset to last longer than expected. 

Underlying Fermat’s explanation for the bending of light is the as- 

sumption that although light is not instantaneous, its velocity through 

a medium of uniform density is constant—the denser the medium the 

slower light passing through it. Light refracts when it abruptly changes 

its velocity. A ray of sunlight at sunset is bent many, many times and 

follows a path that is not exactly curved but consists of many short, 

straight segments. If these segments are short enough, light’s path 

appears to be a smooth curve (see Figure 8.3). This is the idea Escher 

needed. 

Imagine you live inside Escher’s disc (you are admittedly very flat, 

but play along), and that in this world, the path of a ray of light is taken 

to be a line segment. However, and you have no way of knowing this, 

the speed of light is not constant because the density of the space in the 

disc continually increases toward the disc’s boundary. This property of 

light gives straight lines an unusual shape (although they will still be 

straight to you). To see what a line looks like to an observer from above 

the disc you can perform an experiment. . 

Suppose you are at point A, below, and you shine a flashlight toward 

point B. Viewed from above your beam of light will follow one of the 

three paths indicated in Figure 8.4. 
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FIGURE 8.4. Three possible paths light could follow when traveling 

from point A to point B in a non-Euclidean disc. 

Taking into account the behavior of light inside this disc, it is not too 

difficult to determine which of these paths is the correct one. Path no. 
3 can be most easily excluded. If a ray of light were to travel along path 
no. 3 it would have to go farther than along path no. 2 and would travel 
slower than if it were on path no. 2 (because path no. 3 travels closer to 
the edge of the disc where light travels more slowly). So path no. 2 is 
more likely than path no. 3. What leads to the arcs in Escher’s woodcut 
(and you have to do a rather serious calculation to discover this) is that 
light traveling along path no. 1 will get from A to B faster than light 
traveling along path no. 2. Even though path no. 1 is longer than path 
no. 2, along the middle portion of path no. 1, when the light is farthest 
from the edge of the disc, light is traveling so much faster than along 
path no. 2 that the trip along path no. 1 takes less time. Geometrically, a 
line segment through two points, in this world, is part of the circle that 
passes through these two points and meets the edge of the disc at two 
right angles. 

Escher referred to this geometry as being non-Euclidean, and he did 
so because in this world Euclid’s parallel postulate does not hold. In 
Figure 8.5 the line L crosses the other two lines at less than 90-degree 
angles, yet the two lines never intersect: Since the parallel postulate is 
not true, then neither is the result that the sum of the angles in any 
triangle equals 180 degrees. (In this non-Euclidean world the angles in 
any triangle will add to less than 180 degrees.) 
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L 

FIGURE 8.5. Why the parallel postulate does not hold for lines in a non-Euclidean disc. 

When Gauss measured the angles between the rays of light form- 

ing his triangle he did not need to account for the refraction of light 

because the density of the air between the mountain peaks was more 

or less uniform. What Gauss could not account for was Einstein’s dis- 

covery. According to general relativity, space would be flat, that is, it 

would satisfy the postulates of Euclidean geometry, if it did not contain 

any matter or energy. But matter and energy curve space; space is not a 

static medium containing the planets and stars, but a plastic one bent 

by massive bodies. It is possible that two lines, rays of light, can appear 

to be parallel, and even be parallel according to Euclid’s parallel postu- 

late, but after traveling a few miles, or light-years, bend and cross or 

merge into a single line and forever travel toward the universe's edge. 

Alternatively, in some triangles the angles sum to more than 180 de- 

grees and in some to less than 180 degrees—this total does not depend 

on the triangle but on its location. 

John Wheeler, one of the twentieth-century’s leading physicists, 

provided an alternative perspective on the curvature of space: “There is 

nothing in the world except empty curved space. Matter, charge, elec- 

tromagnetism, and other fields are only manifestations of the bending 

of space. Physics is geometry.”* In Einstein’s theory, bodies curve space; 

in Wheeler’s theory, curved space produces bodies. Like the contrasting 

Renaissance views of matter—one, that earth, air, fire, and water have 

qualities that determine their chemical properties, and the other, that 

qualities combine to form earth, air, fire, and water—Einstein’s and 

Wheeler's positions are complementary. Either the curvature of space 

or the existence of material bodies can be thought to precede the other; 

so on this point Pythagoras was right—geometry and the material cos- 

mos are inseparable. 
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THE FOURTH DIMENSION 

Picasso’s Les Demoiselles d‘Avignon, below, is frequently cited as the 

first modern painting. Les Demoiselles d‘Avignon looks as if it could have 

been composed by first painting the five women, with their primitive 

masklike faces, onto a piece of glass, then shattering the glass and at- 

tempting to reconstruct the original painting from the salvageable 

pieces. But there is more to Picasso’s painting than that, and to compre- 

hend what Picasso achieved it is helpful to compare it with Cézanne’s 

Still Life with Fruit Basket (Plate 7.6). Cézanne’s still life offers a more or 

less straightforward representation of each of the objects on the table; 

it is just that different objects are represented as if viewed from dif- 

ferent positions. Les Demoiselles d‘Avignon is truly multidimensional; 

the components of the painting could not be rearranged to yield a con- 

vincing three-dimensional image because Picasso has painted his fig- 

ures not just from multiple perspectives but as if they are being viewed 

through different lenses. Each figure has more than three dimensions; 

Picasso reveals qualities of each figure that are beyond our perception; 

qualities that are hidden from ordinary view. As likely a candidate as 
Les Demoiselles dAvignon is for being the first modern painting, it also 

marks Picasso’s movement toward cubism. 

rea 
PLATE 8.2. Les Demoiselles dAvignon, Paris, June-July 1907. Pablo Picasso (1881-1973). 

Oil on canvas, 8’ x 7’8”. Acquired through the Lille P. Bliss Bequest (333.1939). 
The Museum of Modern Art, New York. Digital image © The Museum of Modern 
Art/ Licensed by Scala / Art Resource, New York. © 2007 Estate of Pablo Picasso / 

Artists Rights Society (ARS), New York. 
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In their book Cubism and Culture Mark Antliff and Patricia Leighton 
describe parallels between the prose style of Gertrude Stein (1874-1946) 
and cubist paintings (specifically Braque’s Violin and Palette [1909] and 
Picasso's Portrait of Wilhelm Uhde [1910]).5 While Braque and Picasso 
provide multidimensional views of their subjects, Stein uses nuance in 
language to offer multiple points of view. The difference, of course, is 
that the experience of reading unfolds in sequential time. The reader 
moves from sentence to sentence, as in the first few lines of Stein’s 1912 
description of Picasso: “One whom some were certainly following was 
one who was completely charming. One whom some were certainly fol- 

lowing was one who was charming. One whom some were following 

was one who was completely charming. One whom some were follow- 

ing was one who was certainly completely charming.”® When viewing 

a painting, the viewer’s eyes are not necessarily drawn to the elements 

of the painting in the order the painter may have intended. A writer 

has more control. In Stein’s few lines above, she sequentially invokes 

subtle changes in wording to evoke a multidimensional understanding 

of Picasso’s charisma. 

A more dramatic example of a multidimensional written image is 

the contemporary writer Robert Coover’s short story “The Babysitter” 

(1969). This story is told through a series of paragraph-long descrip- 

tions of a teenage girl’s evening caring for small children. The discon- 

nected descriptions are told from the point of view of the girl, one of 

the children, the father of the children, and a couple of teenage boys. 

Each paragraph reports both the inner thoughts of one or more char- 

acters and their version of the actions of the girl. Like Picasso’s Les De- 

moiselles dAvignon, it is not possible to cut and paste Coover’s story into 

a traditional narrative; it is not even possible to discern which actions 

are real and which are not. “The Babysitter” offers a cubist version of 

one evening—just as its characters’ realities are combinations of both 

external reality and their own private thoughts, the reader’s under- 

standing of the story’s reality is shaped (and shattered) by those combi- 

nations. ; 

“The Babysitter” illustrates an essential assumption of the cubist ap- 

proach to art or literature—there is more to material reality than can be 

captured through a photograph or narrative. For the visual artist, this 

means that objects have attributes, maybe even physical ones, beyond 

our immediate perception. The artist Max Weber (1881-1961) offered 
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a geometric explanation for this discrepancy between perception, or 

representation, and reality (and in the process appealed to what was 

described in chapter 3 as being poetic infinity): “Two objects may be of 

like measurements, yet not appear to be of the same size, not because 

of some optical illusion, but because of a greater or lesser perception of 

[the] fourth dimension, the dimension of infinity.”’ This could be taken 

as the cubist manifesto. Cubists are not simply attempting to represent 

the psychological dimension that greatly influenced both literature 

and art following the work of Freud; this additional dimensionality is 

physical. 

It is fairly easy to comprehend what it means to say that an object 

has a certain physical dimension, and it is natural to begin with a dis- 

cussion of objects that are zero-dimensional. Elementary geometry 

trains us to say a point is zero-dimensional, but that does not assist us 

in understanding dimensionality. The simplest way to understand the 

concept of dimension is to first imagine that there can be a point with- 

out size, a line segment without width, and a square without height. 

Given these assumptions, consider what it means to say that the in- 

terior of a square, or a triangle, or a circle is two-dimensional. If these 

different-looking objects are to share the property of being two-dimen- 

sional, that property cannot be intrinsic to their shapes. To visualize 

this property, imagine each figure, a square, triangle, or circle, not as a 
drawing on a piece of paper, or a bent piece of wire, but as an infinitesi- 

mally thin object (a square can be visualized as a postage stamp with- 

out thickness, a circle as a flat coin). 

The dimensions of an object can be understood by imagining the 
world of a being living inside it. Someone living inside a square, say 
at point P below, can clearly move from P to any other point, O, in the 
square while staying within the square. To fix our ideas, imagine that 
our being travels from P to Q by moving to the right then up, or by mov- 
ing up then to the right. 

Q $9 Q) 

P———» P 
FIGURE 8.6. Two possible paths from P to O in a two-dimensional square. 
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“Up” and “to the right” are independent because no amount of move- 
ment in one of these directions will in any way involve movement in 
the other. (There is another, shorter path, from P to Q, the diagonal path. 

But the diagonal direction is not independent of the up and right direc- 

tions because a diagonal trip from P to Q can be achieved by combining 

the two.) You can get from any point in the square to any other point in 

the square by a sequence of up/down and right/left moves. (It is impor- 

tant to realize that up and down are the same directions of motion, if 

we allow for walking backward, and so think of moving down as mov- 

ing up in a negative direction.) The world inside a square is a small two- 

dimensional space because it is possible to move from any position to 

any other position through a combination of the two independent di- 

rections, and so the square is a two-dimensional object. 

This is not Weber’s point of view. In Weber’s conception of dimen- 

sion, the square is not two-dimensional because a creature living in- 

side it can move in either of two independent directions. Rather, a 

square is two-dimensional because it has two independent types of 

existence—it has a length (right/left nature) and a width (up/down 

nature). This language also suffices to describe what it means for an 

object to have three dimensions; it has an additional mode of existence 

(perhaps height), but fails to explain what it means for an object to be 

four-dimensional. 

Although a mathematician would probably not embrace Weber's 

mysticism to explain how an object could be four-dimensional, Weber 

nonetheless helps us imagine how there could be another, concealed, 

fourth dimension. Imagine that space has not only three spatial di- 

mensions but also a dimension of color, and that space can be any color 

of the continuous spectrum. Also imagine that spaces of all different 

colors exist simultaneously. Imagine further that just as an object can 

change its location it can change its color—when it takes on a new hue 

it is immediately transported to the space of that hue. The one catch in 

this world is that if an object has moved into a certain color world, such 

as the blue world, then it can only perceive or be perceived by other 

blue entities. A person living in the blue world would not be aware of 

any other colored world; if two blue people are standing side by side 

and one of them moves ever so slightly away from a pure blue hue, he 

will disappear. 
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The physical analogy to have in mind is that of a creature restrained 

to life in a two-dimensional plane, as in Edwin Abbott's book Flatland: 

A Romance of Many Dimensions (1884). These entities would have no 

awareness of the third, up-down, dimension. If one of the creatures in 

this world were to levitate above the plane, ever so slightly, he would 

suddenly become invisible to everyone else. Even though the levitated 

creature could be within a few three-dimensional inches of another 

creature, the plane-based creatures would have no awareness of the 

other one. 

But this levitated creature would be completely aware of any other 

similarly levitated creatures. There is an entire two-dimensional world 

situated a few inches above the original one. And since these creatures 

can rise any distance above the original two-dimensional world, there 

will be a continuum of two-dimensional worlds stacked one upon the 

other. Taken together, all of these two-dimensional worlds constitute a 

world in which the creatures can move not only forward/backward, or 

left/right, but also up/down—taken together this continuum of two- 

dimensional worlds forms a three-dimensional world. 

This description of dimension, which can also be used to establish 

a connection between zero- and one-dimensional spaces, or one- and 

two-dimensional objects, was alluded to by Duchamp in a discussion 

of the theory underlying his much-discussed piece The Bride Stripped 

Bare by Her Bachelors, Even (The Large Glass) (1915-23): This method in- 

volves “the repetition of a line ... in order to generate the surface. [The 
same idea explains] passing from plane to volume [or from] the n-dim’1 
continuum to form the n + 1 dim’l continuum.” There are two ways to 
interpret Duchamp’s explanation for how a series of one-dimensional 
lines can yield a two-dimensional surface, and these reflect two differ- 

ent assumptions about the nature of the continuum. (These are exam- 
ined in chapter 10.) If a continuum is thought to consist of indivisibles, 
then placing a series of lines parallel to each other can form a surface 
(Figure 8.7, left). (The apparent measurable gaps between the vertical 
lines in this drawing are a consequence of our inability to represent 
adjacent indivisibles.) Alternatively, as illustrated on the right, if a con- 
tinuum is seen as being infinitely divisible, then the lateral movement 
of a line can sweep out a surface. 
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FIGURE 8.7. Two ways in which a line can be used to produce a plane. 
If the line consists of indivisibles (left), then drawing a line perpendicular to 

each indivisible produces a plane. Alternatively, if a line is infinitely divisible a 
plane can be swept out by moving the line in a lateral direction. 

Applied to objects, this second approach ee how a point can be 
moved to trace (and so form) a line segment, a line segment can be moved 
to form a square, and a square can be moved to form a cube. And al- 
though moving the cube in a new direction to form a four-dimensional 

hypercube cannot be visualized, it can be understood by analogy. 

The American poet and impresario Walter Arensberg (1878-1954) 

described this last connection between dimensions, but in reverse, in 

his poem “Arithmetical Progression of the Verb ‘To Be’” (1917): 

On a sheet of paper 

dropped with the intention of demolishing 

space 

by the simple subtraction of a necessary plane 

draw a line that leaves the present 

in addition 

carrying forward to the uncounted columns 

of the spatial ruin 

now considered as complete 

the remainder of the past. 

The act of disappearing 

which in the three-dimensional 

is the fate of the convergent 

vista 

is thus 

under the form of the immediate 
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arrested in a perfect parallel 

of being 

in part. 

While cubists may have attempted to represent the fourth dimen- 

sion as a hidden physical reality, other artists sought to capture the 

fourth dimension through expressing feelings and emotions over ob- 

jects and things. In his discussion of the fourth dimension, Weber also 

made this connection, “[The fourth dimension] is somewhat similar 

to color and depth in musical sounds. It arouses imagination and stirs 

emotion. It is the immensity of all things.”?° 

The Russian painter Kazimir Malevich (1878-1935), in explaining 

the central tenet of his approach to painting, used the same language 

as Weber: “[The] appropriate means of representation is always the one 

which gives fullest possible expression to feeling as such and which 

ignores the familiar appearance of objects.” Malevich then explains 

how in his “desperate attempt to free art from the ballast of objectiv- 

ity” he began to paint pictures consisting of a black square on a white 

background: “The black square on the white field was the first form in 

which nonobjective feeling came to be expressed. The square = feeling, 

the white field = the void beyond this feeling.” This artistic philosophy 

has an earlier poetic analogue. Pure poetry (poésie pure) is so called not 

because it sought to represent Platonic ideals or otherworldly truths, 

but because it aspired to provide through language the same sensation 

as music. Edgar Allan Poe (1809-49), according to whom poetry is dis- 
tinguished from prose in its appeal to lyricism over objectification, first 
enunciated the concept of pure poetry. The nineteenth-century French 
symbolist poets Baudelaire, Mallarmé, and Valéry incorporated Poe’s 
idea into an entire poetic theory that sought to bring poetry closer to 
music and so closer to representing other dimensions of reality than 
the three of our senses. Poe’s lyricism can be seen in the opening stanza 
of “The Raven” (1845): 

Once upon a midnight dreary, while I pondered, weak and weary, 
Over many a quaint and curious volume of forgotten lore, 
While I nodded, nearly napping, suddenly there came a tapping, 
As of some one gently rapping, rapping at my chamber door. 
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Tis some visitor,” I muttered, “tapping at my chamber door— 

Only this and nothing more.” 

PLASTIC TIME 

[He] let his gaze wander to the swirling water of the stream racing madly beneath 

his feet. A piece of dancing driftwood caught his attention and his eyes followed it 

down the current. How slowly it appeared to move! What a sluggish stream! 

— Ambrose Bierce, “An Occurrence at Owl Creek Bridge” (1891) 

The illusion that the sun moves more and more slowly as it sets to- 

ward the horizon, or the companion observation that at sunrise the 

sun first moves very slowly then accelerates to its expected pace, il- 

lustrates the independence of experienced time from measured time. 

Writers were among the first artists to explore this independence. In 

the American writer Ambrose Bierce’s (1842-c. 1914) story “An Occur- 

rence at Owl Creek Bridge,” both the overall narrative and individual 

passages describe a man’s shifting experiences of time. At the begin- 

ning of the story, the man is about to be executed by being hung from 

a bridge over Owl Creek; the noose is already around his neck when he 

notices “the stream racing madly beneath his feet.” Moments later it 

is “a sluggish stream.” The man is dropped from the bridge, and time 

slows as the rope tightens on his neck; he is aware of pain shooting 

through his limbs and of increasing pressure in his skull. Suddenly the 

man hears a loud noise and plunges into the water below. The current 

moves him away from the soldiers on the bridge. The man eventually 

swims ashore, and after two days arrives back at his plantation. Just 

as he is about to embrace his wife: “a blinding white light blazes all 

about him, with a sound like the shock of a cannon—then all is dark- 

ness and silence!” The rope has pulled taut and snapped the man’s 

neck. 

James Joyce (1882-1941) went farther than Bierce in involving the 

element of time in literature. In Joyce’s first novel, A Portrait of the Art- 

ist as a Young Man (1916), the passage of time is integrated into the 

style of writing. The novel begins: “Once upon a time and a very good 

time it was there was a moocow coming down along the road and 

this moocow that was coming down along the road met a nicens little 
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boy named baby tuckoo.” The grammar, diction, and complexity of the 

writing mirror the narrator’s intellectual development from childlike 

to scholastic. The reader is propelled through the time of the novel by 

both the narrative and its style. 

In Ulysses (1922) Joyce employs time in an entirely different manner; 

time is expanded both in the structure of the narration and in particu- 

lar passages. The narration chronicles Leopold Bloom’s movement from 

encounter to encounter, and from pub to pub, throughout a single day 

(June 16, 1904). The day, and the novel, ends with Molly Bloom’s notori- 

ous soliloquy. Although time moves from the past to the future, its pace 

is not constant. 

Finnegans Wake (1939) is Joyce’s last, and most ambitious, novel. 

It begins with the sentence fragment “riverrun, past Eve and Adam’s, 

from swerve of shore to bend of bay, brings us by a commodius vicus 

of recirculation back to Howth Castle and Environs” and ends with a 

sentence fragment that can be attached to the beginning of the open- 

ing sentence fragment: “A way a lone a last a loved a long the[.]” The 

novel's structure is cyclic; the narration does not move from the past to 

the future. The reader could start anywhere in the novel. 

It took visual artists longer than writers to present time as an in- 
dependent element in their art. While medieval and Renaissance art- 
ists employed continuous narrative, and thereby incorporated various 
views of the same story within a fixed space (e.g., Gozzoli’s Arrival of St. 
Augustine in Milan, Plate 7.4), they did not portray time in their paint- 
ings. Their use of multiple scenes was simply a convention allowing the 
painter to tell a story without executing several paintings. By the twen- 
tieth century, artists had begun to attempt to represent time. Instead 
of using multiple points of view for a single scene, or multiple repre- 
sentations of some chronology, artists sought to represent or draw our 
attention to time. Two early examples of this, both from 1912, are Du- 
champ’s Nude Descending a Staircase (No. 2) (Plate 3.3) and Giorgio de 
Chirico’s Enigma of the Hour, below. 

Duchamp and de Chirico (1888-1978) used time in entirely differ- 
ent ways. Duchamp described his painting as being a study of how to 
represent movement. The figure is not presented to illustrate different 
scenes from a single narrative, as in the use of continuous narrative, 
but to illustrate a single act—the movement of the body through space. 



The Shape of Space and the Fourth Dimension | 175 

PLATE 8.3. Enigma of the Hour, 1912. Giorgio de Chirico (1888-1978). Mattioli Collection, 

Milan, Italy. Photo: Scala / Art Resource, New York. © 2007 Artists Rights Society (ARS), 

New York /SIAE, Rome. 

Duchamp’s painting can almost be said to illustrate duration, the span 

of time required for any physical act. De Chirico’s goal was different; 

he sought to undermine our confidence that we can understand the 

relationship between the perception of time and the reality of time. 

In Enigma of the Hour physical time and measured time are in con- 

flict. Although the clock reads 2:54, presumably in the afternoon, the 

shadows indicate that it is either sunrise or sunset. Time is an indepen- 

dent dimension—bound neither to our expectations nor to physical 

space. 

In his special theory of relativity (1905) Einstein proved that time's 

independence from experience is not just psychological. If one thou- 

sand clocks were all set to the same time, dispersed across the universe 

to various comets and planets, and then compared after a few earth 

days, none of them would very likely agree. The faster the velocity of 

the clock over the few days it was away from earth, the slower it would 

have run. A clock moving near the speed of light would have ticked off 

only a few seconds—a person accompanying the clock would hardly 

have aged at all. 
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POSTSCRIPT: GEOMETRY WITHOUT ANGLES 

The result that the sum of the angles in any triangle equals 180 de- 

grees was used to develop Plato’s theory of matter, because it follows 

from this result that there are exactly five Platonic solids. However, 

there is another way to discover these solids that has nothing to do 

with the measurement of angles; it has more to do with examining the 

properties of geometric objects that remain if the object is stretched 

but not torn. Over the past 150 years, mathematicians have developed 

this important type of geometry, known as topology. It has been invalu- 

able to mathematical research since its inception. 

To understand how topological considerations can lead us back to 

the five Platonic solids, consider, for example, an ordinary cube that has 

been deformed slightly. This new object retains some properties of the 

cube, but not others. In particular, a slightly deformed cube still has six 

sides, and each side has four edges, even though the sides are no longer 

perfect squares. Also, three edges will still meet at each corner of the 

deformed cube. The defining property of this object is not that its sides 

are squares, but that its edges have the properties described in the pre- 

vious sentences; so, we will view this deformed cube not as a solid, but 

as a collection of twelve edges (as if our original cube had been made 

out of pipe cleaners instead of solid squares). Before we consider the 

connected edges of the other Platonic solids, we examine a simpler ob- 

ject—a doodle on a piece of paper. 

We begin with what we mean by a doodle. To form a doodle we can 

start with a point (a vertex) inside a rectangle and add arcs. The only 

rules are that every arc must begin and end with a vertex, and if two 

arcs cross there is a vertex where they cross. The two possible outcomes 

of this process of beginning with the single point P and adding arcs, are 

given by doodle 1 and doodle 2, below. Doodle 3 and doodle 4 represent 

doodles constructed by literally “doodling” on a piece of paper and then 

putting a vertex wherever two lines cross and at the end of any dan- 

gling lines. 
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Doodle 1 Doodle 2 

Doodle 3 sDoodle 4 

FIGURE 8.8. Four possible doodles with edges and vertices. 

Each of the above figures consists of points (vertices) and arcs (edges), 

and what is less immediate but apparent once it is pointed out is that 

each figure subdivides the interior of the rectangle into regions. For ex- 

ample doodle 2 consists of four vertices and four edges, and separates 

the rectangle into two regions. The information for each of the figures 

in Figure 8.8 is given below. 

Edges Vertices Regions 

doodle 1 2 2 2 

doodle 2 4 4 2 

doodle 3 6 6 2 

doodle 4 4 3 3 

There is a simple, and unexpected, formula relating the number of 

edges, EF, and the number of vertices, V, of the doodle, and the number 

of regions, R, into which the doodle subdivides the rectangle. Leonhard 

Euler (1707-83) discovered this formula in the eighteenth century, and 

it says that for any doodle inside a rectangle 

R+V=E+2 

This amazing formula does not just apply to doodles inside a rectangle, 

provided we count the number of regions the doodle defines properly. 

If we imagine that our figure is drawn on any surface, for example on 

a sphere, then the formula still holds as long as we remember to count 
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the “outside” region (for example a triangle on the surface of a sphere 

defines two regions—an inside and an outside). 

The reason this formula is correct is easy to grasp. We visualize con- 

structing a doodle from the simplest ones by adding edges and ver- 

tices. The most basic doodle is a single point without any edges. This 

doodle has one vertex, no edges, and defines one region (all of it being 

“outside”). Thus Euler’s formula holds because when we plug in the ap- 

propriate numbers, R + V=E+2 becomes1+1=0+ 2. Imagine how we 

can form a more complicated doodle from the simple dot: We can add 

an edge that loops back to the single vertex (doodle 5, below), or we can 

add an edge that has our original vertex on one end, and a new vertex 

on the other, recalling that every edge must begin and end at a vertex 

(doodle 6, below). 

Doodle 5 Doodle 6 

FIGURE 8.9. The two possible doodles that can be formed by adding a 

single edge to a doodle consisting of a single vertex but no edge. 

When we go from the original dot to doodle 5, we have added one edge 

and one region. Since the relationship R + V = E + 2 holds for the original 

doodle, it must hold for the doodle in doodle 5, since both R and E are 

increased by one (so we obtain the equation for the doodle in doodle 5 

by adding one to each side of the equation for the original doodle). Sim- 

ilarly, when we go from the original doodle to the one in doodle 6 we 

have added one edge and one vertex, so beginning with the equation 

R+V =E + 2, which holds for the original doodle, we see that it must 

also hold for doodle 6 since we are just adding one to each side. As any 

doodle can be constructed by beginning with a single vertex and then 

adding edges one at a time, Euler’s formula holds for all doodles since it 

holds for a single point. 

It is possible to rediscover the five Platonic solids using Euler's for- 

mula. The crucial step is to visualize a Platonic solid as a doodle on the 

surface of a sphere. What is needed is a complete determination of all 

doodles on the sphere that satisfy 
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1. every region is enclosed by the same number of edges, and 
2. the same number of edges meet at every vertex. 

It is important to observe that for a doodle to represent a solid made up 
of polygons, every region must be enclosed by at least three edges, and 
at least three edges must meet at every vertex. Assuming these restric- 
tions, it is not too hard a calculation to discover that there are only five 
doodles on a sphere satisfying the two conditions, above. These five 
doodles correspond to the five Platonic solids. 



There is an old and a new consciousness of time. 

The old is connected with the individual. 

The new is connected with the universal. 

The struggle of the individual against the universal is 

revealing itself in... the art of the present day. 

— De Stijl (1918) 

In 1917 the artist Theo van Doesburg (1883-1931) published the first 

edition of De Stijl [The Style], a journal dedicated to promoting aesthetic 

values based on isolating, and then representing, the basic geometric 

components of art and architecture. The first number of the second 

volume contained “Manifest 1... 1918,” in Dutch, French, English, and 

German. The manifesto began with the proclamation above; the third 

proclamation read: “The new art has brought forward ...a balance be- 

tween the universal and the individual.” This manifesto concluded with 

the signatures of a group of artists, not all of whom had met. 

Signatures of the present collaborators: Antony Kok, Poet 

Theo Van Doesburg, Painter Piet Mondriaan, Painter 

Robt. Van ‘T Hoff, Architect G. Vantongerloo, Sculptor 

Vilmos Huszar, Painter Jan Wils, Architect? 

One manifestation of this “balance between the universal and the 

individual” that the members of De Stijl sought was art and architec- 

ture based on the mathematical principle of orthogonality—vertical 

and horizontal elements meeting at 90-degree angles. About the time 

“Manifest I’ appeared above their signatures, both van Doesburg and 

Piet Mondrian (1872-1944) were basing their paintings on grids of ver- 

tical and horizontal lines. However, there were subtle, and eventually 

irreconcilable, differences between the way in which these two artists 

conceived of their art; to understand this it is important to understand 

the different ways they employed the grid in their paintings. 
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Mondrian’s paintings consisted of a black grid of intersecting lines 
that subdivided the canvas into rectangles of various sizes. Mondrian 
painted each of these rectangles a single color, either a primary color, 
black, white, or grey. In van Doesburg’s paintings the grid was not de- 
fined by black, intersecting horizontal and vertical lines. Rather the grid 
was represented by the spaces between painted rectangles (planes)— 
the colored rectangles did not have borders. 

PLATE 9.1. Composition VIII (The Cow), c.1918. Theo van Doesburg (1883-1931). Oil on 

canvas, 143/4 x 25 in. Purchase (225.1948). The Museum of Modern Art, New York. Digital 

image © The Museum of Modern Art/Licensed by Scala / Art Resource, New York. 

This might not seem like much of a difference but it implies that van 

Doesburg saw the grid as a tool for expressing relationships between 

the colored planes, while, for Mondrian, the grid was an element of 

the painting. Mondrian sought harmony through the geometry of the 

painting and through the use of primary colors. Van Doesburg main- 

tained that such harmony could only be achieved through “colors far 

removed from each other, colors of unequal value, contrasting colors, 

dissonants, achieving a unity through the relationship from color to 

color.”? 

Van Doesburg further drifted from the use of the rectangular grid 

in 1925 when he displayed paintings with diagonal as well as vertical 

and horizontal elements. 
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PLATE 9.2. Counter-Composition VI, 1925. Theo van Doesburg (1883-1931). Oil on canvas, 50 

x50 cm. Tate Gallery: London. Photo: Tate, London / Art Resource, New York. 

Of his use of the diagonal, van Doesburg wrote: “By assuming a new 

direction in relation to the direction[s] already known... [we] make our 

consciousness accessible to a new polarity.”? The official split between 

Mondrian and van Doesburg occurred in the spring of 1925—not so 

much over van Doesburg’s introduction of diagonals as much as over 

his insistence that the diagonal was needed to achieve what Mondrian 

felt he had already achieved through the use of vertical and horizon- 

tal elements. (Mondrian himself had experimented with diagonal ele- 

ments but not in combination with horizontal and vertical lines.) 

Another signatory of the De Stijl manifesto was the painter and 

sculptor Georges Vantongerloo (1886-1965). The youngest member of 

De Stijl, Vantongerloo, at least initially, adhered more stringently to the 

vertical-horizontal principle than either Mondrian or van Doesburg, 

but by 1926 his conception of the role of geometry in his artwork was 

much more expansive. Vantongerloo sought what he called the “unity” 

of a piece of art. In his Reflections III (1926) he wrote: “The principle of 

unity consists in finding the elements of some geometrical form or 

algebraic equation and creating a new geometrical form which has 

the elementary form as the basis of its unity.’* These “new geometric 

forms” arising from both geometry and algebra are the inspirations for 

two of Vantongerloo’s pieces: 



PLATE 9.3. Composition Derived from the Equation y=ax? + bx + 18 with Green, Orange, 
Violet (Black), 1930. Georges Vantongerloo (1886-1965). Oil on canvas, 47 x 26% in (119.4 

x 68.2 cm). Solomon R. Guggenheim Museum, New York (51.1299). © 2007 Artist Rights 

Society (ARS), New York/ProLitteris, Zurich. 

/ 

PLATE 9.4. Construction of Volumetric Interrelationships Derived from the Inscribed Square 

and the Square Circumscribed by a Circle, 1924. Georges Vantongerloo (1886-1965). 

Cement cast painted white. Height: 1173/6 in (30 cm). The Solomon R. Guggenheim 

Foundation, Peggy Guggenheim Collection, 1976 (76.2553.59). © 2007 Artist Rights 

Society (ARS), New York/ProLitteris, Zurich. 
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In executing these two pieces Vantongerloo did not follow math- 

ematical formulas or patterns. Vantongerloo wrote about his creative 

process, “Clearly the important thing here is to know how to create. 

Creation is not a formula but a principle. ... As this principle has unity 

as a basis ...it is universal, immutable, infinite, eternal.”® So rather than 

work with formulas, Vantongerloo sought to represent unity in his art, 

and as he wrote elsewhere, this unity could be found through the dis- 

covery of relationships. In Vantongerloo’s painting Composition Derived 

from the Equation ... (Plate 9.3), the relationship appears to be between 

areas and color. In the sculpture (Plate 9.4) the relationship seems to 

be between volumes. What is not clear from just looking at these two 

pieces but is implicit in their titles is that behind each of these works 

lies a different answer to the question “what is a number?” 

AN INTRODUCTION TO ALGEBRA 

So far, we have only discussed mathematical ideas associated with 

geometry, or with whole numbers and their ratios, and the only equa- 

tions that have appeared here, except for the one expressing the rela- 

tionship given by the Pythagorean theorem, have been equalities of 

two ratios, for example 1/2 = 2/4. But mathematics consists of more than 

just geometry and proportions, it includes among its many subdisci- 

plines algebra, which concerns itself with the study of equations such 

as the one in the title of Vantongerloo’s painting. 

The history of algebra not only provides a framework within which 

the history of almost all mathematical ideals can be understood, but it 

is especially important in the development of the modern concept of 

number. Indeed, it is easier to see the evolution of the idea of number 

in attempts to find solutions to algebraic equations than in attempts 

to provide numerical equivalents for all geometric magnitudes—had it 

not been for the invention of algebra the notion of number would still 

be a very limited one. 

In order to understand the algebraic concept of a number, it is useful 

to first understand how algebraic equations were understood in Euclid- 

ean geometry. In Greek mathematics, a simple equation such as 2 x L = 

10 was not written symbolically, but it could have been given rhetori- 

cally. More importantly, in aiding our understanding of Vantongerloo’s 

piece, such a relationship was viewed as a statement about areas. The 
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unknown quantity L was thought to be the unknown length of the base 
of a rectangle, whose height is 2 and whose area equals 10 (since the 
area of a rectangle equals its height times its base: area = 2 x L = 10). 

Similarly, a more elaborate algebraic equation, such as (a + b)? = 

a* + 2ab + b?, was also viewed as a statement about areas of squares and 

rectangles. This equation reflects the geometric result shown in Figure 

9.1: the area of the large square equals the sum of the areas of the two 

smaller squares and the two smaller rectangles. 

b b@ ax b/ 

a axb a? 

b a 

FIGURE 9.1.A geometric justification for the algebraic relationship (a + b)? = a? + 2ab + b?. 

The area of the large, all-encompassing square is (a + b)? and the sum of 

the areas of the small, enclosed squares and rectangles is a? + 2ab + b’. 

The equality-of-areas interpretation of this equation is the one given 

in Euclid’s Elements, and his statement of this result reveals how awk- 

ward it was to express algebraic identities without algebraic notation: 

“If a straight line is cut at random, the square on the whole is equal 

to the squares on the segments and twice the rectangle contained by 

the cut segments.” This result says that two different areas, based on 

a given line, are equal. The first is the area of the square whose sides 

equal the length of the segment, the large square above. The second 

area is the sum of four areas, based on the pieces obtained when the 

segment is divided arbitrarily into two pieces. These four areas consist 

of a square whose sides are determined by one of the pieces, a square 

whose sides are determined by the other of the two pieces, and two 

copies of the rectangle formed by using one of the pieces for its height 

and one of the pieces for its base. These four areas, which are the fig- 

ures inside the large square in Figure 9.1, can be recombined to make 

the large square. 
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Not until the third century A.D. did Greek mathematicians move 

from examining only algebraic identities involving geometric quanti- 

ties to studying algebraic equations without regard for their geometric 

content. This shift in point of view is evident in the work of the math- 

ematician Diophantus. Diophantus sought solutions to equations, in- 

volving one or more unknowns, where the solutions were whole num- 

bers. Diophantus did allow for the use of fractions; he thought of them 

as parts of a whole and not as numbers existing independent of some 

whole. For example, 1/2 was not seen as being a number but as one-half 

of a whole. 

Diophantus is also credited with introducing a symbolic notation 

for these equations. As an example, Diophantus discussed the then 

already-ancient problem of finding whole numbers X, Y, and Z that are 

solutions to the equations X? + Y* = Z?, in other words whole numbers 

that can be the sides of a triangle with a right angle. (By the Pythago- 

rean theorem, if X, Y, and Z are the sides of the triangle, where Z repre- 

sents the side opposite the right angle, then they satisfy X* + Y? = Z? 

[see chapter 1].) 

In the first millennium A.D., Arab and Hindu mathematicians made 

the greatest advances in algebra. The most relevant of these advances, 

to our first examination of Vantongerloo’s painting, are the accomplish- 

ments of Arab mathematicians at the House of Wisdom (in Baghdad)— 

especially those of Abu Ja’far Muhammad ibn Musa al-Khwarizmii (c. 

780-847). Al-Khwarizmi wrote two texts that greatly influenced the 

development of mathematics in medieval Europe. The second, Treatise 

on Calculation with Hindu Numerals (c. 825), showed how to represent 

counting numbers with the numerals 1 through 9, using 0 as a place 

holder (for example, 1066). This text also included procedures for calcu- 

lating with these numerals, procedures that have come to be known by 

a title derived from al-Khwarizmi’s name—algorithm. 

The first text, Compendious Book on Calculation by Completion and 
Balancing (c. 820), showed how to solve certain algebraic equations. 
The Arab scholars in Baghdad had access to most Greek mathematics 
and they knew that the Greeks had understood algebraic identities and 
algebraic equations. One of al-Khwarizmi’s greatest accomplishments 
was his thorough examination of quadratic equations. Al-Khwarizmi 
sought positive solutions to these equations, whether those solutions 
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were whole numbers, rational numbers, or even irrational numbers. 

Having this as his goal, al-Khwarizmi determined which quadratic 

equations had positive solutions; he found these equations could be 

put into one of six forms: 

1, aX? =bX 

2, 0k52C 

3. bX =c 

4. aX? +bX=c 

5. aX?+c=bX 

6. aAX*=bX +c 

each of which is viewed as an equality of areas. For example, the equa- 

tion X? = 7 would be interpreted as “find the side of a square, so that 

the area of the square is seven square units,” while the equation % X? 

= 7 would be interpreted as “find the side of a square so that one-half 

of its area is seven square units.” Stated in terms of equality of areas, 

each of these problems is one that the Greek mathematicians would 

have considered; the Greeks just would not have allowed the symbol ¥2 

in an equation. Notice that al-Khwarizmi did not consider the famil- 

iar equation (at least to us and to Vantongerloo) aX? + bX +c = 0, with 

positive a, b, and c, because this equation does not appear to be a state- 

ment about areas (three areas cannot be added to give an area equaling 

ZeYO). 

Al-Khwarizmi indicated how to find solutions to these equations, 

and his method for solving these equations is what connects Van- 

tongerloo’s painting to him. To see this connection, consider how al- 

Khwarizmi solved the equation X? + 10X = 39. Al-Khwarizmi’s method 

is to begin with the left-hand side of the equation X” + 10X and view 

it as a combination of two areas: X? is the area of a square whose sides 

are of length X, and 10X is the area of a rectangle whose length is 10 

and height is X. The plus sign in the equation X? + 10X = 39 is an indi- 

cation that these two areas should be combined, ideally into a square, 

whose total area is 39. 

But two geometric figures, such as a rectangle and a square, cannot 

easily be merged into a single square. Following the ideas that were de- 

veloped in Euclid’s Elements, al-Khwarizmi combined these two areas 

by first imagining the 10 by X rectangle as two 5 by X rectangles: 
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3 note ore Poo ne Ss 

10 ) 5 

FIGURE 9.2. In order to solve algebraic equations geometrically, it is necessary 

to rearrange areas, for example, by decomposing the area of a single 

rectangle into the sum of the areas of two smaller rectangles. 

Combining the area for X? with these two areas we almost obtain a 

square; it is missing the 5 by 5 square: 

FIGURE 9.3. To solve the original equation X? + 10X = 39 we need the area 

of the combined areas of the three solidly outlined areas to equal 39. 

We want the total area contained in the three solidly outlined regions 

to equal 39, so that the area of the entire square should be 39 + 25 = 64. 

Thus we will have found a solution to the original equation if we can 

find a solution to the new equation: X?+5X+5X+25 = 39425 =64, 

which is the same as (X + 5)* = 64. Since 8 x 8 = 64 the solution is X+ 5 

=8soX=3. 

This example was specifically chosen so that the numbers worked 
together to yield a final answer, X = 3, which is a whole number. But the 
geometry does not usually yield such a simple solution. If the original 
equation were changed very little, for example to X? + 10X = 40, the 
geometric technique employed above requires us to solve the equation 
(X + 5)? = 40 + 25 = 65. Taking the square root of both sides then gives 
the equation: X + 5 = 65, so X = 65 — 5, which is an irrational, positive 
quantity. 
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ALGEBRAIC RELATIONSHIPS 

At least superficially, Vantongerloo’s painting Composition Derived 

from the Equation y = ax? + bx + 18 with Green, Orange, Violet (Black) re- 

veals that, like the Greeks’ and al-Khwarizmi’s geometric method for 

finding a solution to an algebraic equation, Vantongerloo thought of his 

equation as a relationship between areas. So in this example perhaps 

the “new geometric form” Vantongerloo sought to create was nothing 

other than the ancient geometric solution to the algebraic equation 

aX* + bX + 18 = 0. Unfortunately, there is no evidence that Vantonger- 

loo was thinking of the Greek and Arab geometric methods for solv- 

ing algebraic equations, and he alludes to another way of viewing an 

equation such as Y = aX* + bX + 18 later in Reflections III: “The Greeks 

spoke to us of proportion. In the new art we speak of relations: relation 

within the work and in relation to Unity.”® We can infer from this that 

Vantongerloo did not view an equation as being static. He understood 

that an equation such as Y = aX* + bX + 18 establishes a dynamic rela- 

tionship between two entities, for example between X and Y. 

To understand this shift from a static point of view to a dynamic 

point of view, consider the equation Y = aX? + bX + 18. When X = 1 the 

value of Yis determined (in terms of the coefficients a and b), and when 

X = 2 another value of Y is determined. These are two static pieces of 

information about the relationship Y = aX? + bX + 18, but Vantonger- 

loo sought to understand not just the relationships between particu- 

lar values of X and Y but the meaning of the relationship itself. This 

is precisely what René Descartes (1596-1650) had made possible with 

his invention of coordinate geometry. Descartes, of course, realized that 

the relationship between X and Y can be visualized by graphing X ver- 

sus Yon the coordinate axes. Descartes’ idea was simple, but it was also 

profound: To each algebraic relationship, or equation, it associates a 

geometric object. A simple relationship such as Y = 2X +1 corresponds 

to a line, while a quadratic relationship such as Y = X? - 1 corresponds 

to a parabola. (Some of these geometric objects would have been recog- 

nizable to the Greeks. They had studied both lines and so-called conic 

sections, which include circles, ellipses, and parabolas, but a simple 

equation like Y = X* + 1 would have had no meaning to them because 
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while X? represents the area of a square, interpreting the meaning of 

X* would require thinking in four dimensions.) 

Vantongerloo sought to artistically interpret the relationship this 

equation establishes between X and Y by moving beyond Descartes’ 

basic graphical representation. Vantongerloo wrote that he wanted to 

“reveal the incommensurable” in the geometric object underlying the 

equation. He wrote in his “Introductory Reflections”: “The coordinates 

X and Y are imposed upon us solely because they are convenient and 

not because they are indispensable. All of this is too rigid for freedom. 

We must escape.”” Vantongerloo escaped by reinterpreting the area re- 

lationships implicit in the algebraic relationship Y = aX’ + bX + 18. We 

can obtain what might be a glimpse into Vantongerloo’s thinking when 

we note that he provided a sculptural interpretation of the slightly dif- 

ferent equation Y = -aX? + bX + 18 as a combination of rectangular 

blocks. 

It is apparent that Vantongerloo saw other implicit relationships 

between X and Y. It is also apparent that Vantongerloo’s painting pro- 

vides us with an example of the creativity he referred to in his Reflec- 

tions III rather than information about solutions to algebraic equations. 

Yet understanding solutions to algebraic equations is so important to 

understanding the modern conception of number that we briefly leave 

Vantongerloo and return to the history of algebra. 

ALGEBRA REVISITED 

The most important figure in bringing algebra to Europe was Leon- 

ardo of Pisa (c. 1170-1240), also known as Fibonacci. Fibonacci did 

not interpret all algebraic equations as geometric relationships; he 

went so far as to propose that irrational quantities be treated as num- 

bers rather than geometric magnitudes. One of Fibonacci’s greatest 

achievements was to show that even allowing geometric magnitudes 

involving square roots, such as V2 or 7 + ¥28, to be numbers, there 

were still algebraic equations without solutions. Without explain- 

ing how he found it, Fibonacci produced a solution to the equation X? 

+ 2X? + 10X = 20, and then showed that this number was not a num- 

ber that can be expressed in the form of irrational numbers arising in 

geometry. 

The first European mathematician to make significant contributions 
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toward solving algebraic equations was Girolamo Cardano (1501-76). 
Cardano’s Ars Magna (1545) illustrated the power of algebraic tech- 
niques for solving practical problems, and greatly extended the types 
of algebraic equations that could be solved (although he did not extend 
the concept of number). Cardano himself was quite impressed with his 
accomplishments, as the title page of the book indicates: 

THE GREAT ART 

OR 

THE RULES OF ALGEBRA 

BY GIROLAMO CARDANO 

OUTSTANDING MATHEMATICIAN, PHILOSOPHER AND PHYSICIAN 

The book begins: “In this book, learned reader, you have the rules of al- 

gebra. It is so replete with new discoveries, and demonstrations by the 

author—more than seventy of them—that its forerunners [are] of little 

account,” and ends with 

WRITTEN IN FIVE YEARS, MAY IT LAST 

AS MANY THOUSANDS 

THE END OF THE GREAT ART ON 

THE RULES OF ALGEBRA 

BY GIROLAMO CARDANO. 

Between these two extravagances, which are more restrained in the 

original Latin, Cardano provided formulas for solving cubic and biqua- 

dratic equations, that is equations such as X? + X = 6 and X* + 3X* = 4. 

(A formula for solving “quadratic” equations had more or less been es- 

tablished by the Babylonians and transferred to Italy through the Arab 

mathematicians.) 

The reason Cardano wrote in his introduction that the book involves 

more than seventy discoveries and demonstrations is that he consid- 

ered all possible combinations of powers of the unknown, X, as had al- 

Khwarizmi. This permitted him to employ geometric arguments where 

appropriate. Even with these various forms for equations, Cardano was 

led to fictitious solutions, such as square roots of negative numbers. 

These may be seen in one of Cardano’s sample problems, which seems 

innocent enough: 



192 | What Is a Number? 

Find two numbers that add up to 10 and 

give 40 when they are multiplied together. 

If we denote these unknowns by X and Y, then our requirement that 

when we multiply them we get 40 can be expressed as the equation: 

XY = 40. The problem also asks that the numbers add to 10, so X + Y= 

10. This last equation relates X and Yin a simple fashion: Solving it for 

Y we obtain Y = 10 - X. If we then substitute this expression for Y into 

the equation XY = 40, we obtain the equation: X(10 — X) = 40. The qua- 

dratic formula, which was understood by Cardano, says that the two 

numbers are: X = 5 +V—15 and Y = 5-V-15. Although the square root of 
the negative fifteen was not something he considered to be a number, 

Cardano wrote, “Putting aside the mental tortures involved, multiply 

[these quantities]. Hence the product is 40.” Cardano continued with 

what has become one of his most widely misquoted sentences, “So pro- 

gresses arithmetic subtlety the end of which, as is said, is as refined as 

it is useless.”® 

This comment from Cardano should be contrasted with one in an- 

other important book on algebra published less than a century later, 

Albert Girard’s L’Invention nouvelle en l’algebra (1629).? Concerning the 

square roots of negative numbers, Girard posed the rhetorical question, 

“Of what use are these impossible solutions?” He then answered that 

they are important for three things, “for the certitude of the general 

rules, for their utility, and because there are no other solutions.”?° In 

arguing for the acceptance of these numbers, Girard did not appeal di- 

rectly to their beauty, he based his arguments on more practical consid- 

erations. But his last reason for their acceptance, “because there are no 

other solutions,” is an aesthetic consideration. It is based on the math- 

ematical notion of elegance, which is examined in chapter 12. 

Mathematicians eventually took Girard’s advice, but not until the 

nineteenth century, and adopted the following definition: 

A number is a solution to an algebraic equation. 

Notice that this definition includes all the positive and negative count- 
ing numbers (for example —3 is the solution to X + 3 = 0) and all of the 
positive and negative rational numbers (7/3 is the solution to 3X — 2 = 0) 
and so encompasses all of the most commonly encountered numbers. 
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But it also included the possibly troublesome V-1 and the solutions to 
Cardano’s problem above. 

A GEOMETRIC DEFINITION OF NUMBER 

Number is that which expresseth the quantitie of each thing. 

— Simon Stevin, “Disme: The Art of Tenths” (1585) 

Our examination of Vantongerloo’s painting Composition Derived 

from the Equation y = ax? + bx + 18 with Green, Orange, Violet (Black) 

and its superficial similarity to al-Khwarizmi’s geometric solutions to 

his six types of quadratic equations led us into a discussion of algebra 

and to the definition of a number: A number’is a solution to an alge- 

braic equation. But there was another, competing definition of number, 

and Vantongerloo’s sculpture Construction of Volumetric Interrelation- 

ships Derived from the Inscribed Square and the Square Circumscribed by 

a Circle is associated with its evolution. This is the concept of number 

deriving from geometric magnitudes. 

In “Reflections III” Vantongerloo illustrated the geometry behind his 

sculpture by drawing a side view of the sculpture superimposed over a 

square and two concentric circles: 

FIGURE 9.4. In Vantongerloo’s drawing the sculpture is contained in the above square. 

In Figure 9.4 the square is not centered on the circles but is partly in- 

scribed within the outer circle and partly inscribed inside and circum- 

scribed outside the inner circle. Vantongerloo’s square is an artistic hy- 

brid of Figure 9.5. 
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FIGURE 9.5.A square contained between two concentric circles. 

This last drawing can be associated with one of the greatest math- 

ematical accomplishments of antiquity, Archimedes’ estimate for the 

geometric magnitude Tt. 

We have already used the result from Greek geometry that when- 

ever two triangles have the same shape the ratios of their correspond- 

ing sides are equal. Greek geometry had a similar result for circles: 

Given any two circles, the ratios of their circumferences and diameters 

are equal. So if one circle has circumference C,, and diameter d,, and 

another has circumference C,, and diameter d,, we have the following 

equality: 

Way = “2/a2, 

This is an expression for the equality of ratios of geometric magnitudes, 

and Greek mathematicians were perfectly comfortable accepting this 

equality as a universal truth without having to think of either of these 
ratios, say “/a, as a number. All the Greeks would have said is that the 

ratio of the circumference to diameter of a circle is independent of the 
circle. But for us, the relationship between the circumference and di- 

ameter of a circle is given by the formula 

circumference = mt x diameter 

so the ratios “/4 and “/a are equal because they each equal the 
number TL. 

This formula was not known to Greek mathematicians, and could 
not have been, because it violates their conception of geometry and 
number. The very existence of our formula assumes that rt is a number 
and that both the circumference and diameter of a circle, two geomet- 
ric magnitudes, could be quantified by numbers. Put differently, for us 



What Is a Number? | 195 

the above formula is a simple—even beautiful—relationship between 
three numbers, and this formula may be freely used to find the diam- 
eter of a circle given its circumference or its circumference given its di- 
ameter. 

One of Archimedes’ many mathematical achievements was to ob- 
tain an estimate for the ratio of the circumference of a circle to its di- 

ameter—our tt. Archimedes’ estimate of 1 was based on two observa- 

tions. The first is that given a circle with circumference C, it is possible 

to approximate C by the perimeter of a polygon inscribed inside, or cir- 

cumscribed around, the circle: 

FIGURE 9.6. In these drawings, the circumference of the circle is approximated by the 

perimeters of inscribed and circumscribed pentagons and hexagons. Approximating the 

circle by an inscribed and circumscribed square may have inspired Vantongerloo. 

The second observation is that the more sides the polygon has, the 

better it approximates the circle. If you estimate the circumference of 

a circle by the perimeter of an inscribed polygon, and then by the pe- 

rimeter of an inscribed polygon with twice as many sides, and then by 

the perimeter of an inscribed polygon with twice as many sides again, 

you will obtain better and better approximations of the circumference. 

There is no intrinsic limit as to how well the circumference may be 

approximated by perimeters of polygons; any obstacle to obtaining a 

very, very good estimate of the circumference emerges from the com- 

putational difficulty of the problem. (Although the perimeter of a poly- 

gon with a modest number of sides, such as four or eight or sixteen, is 

easy to compute, the calculation becomes more and more difficult as 

the number of sides increases.) The point is that although using this 

process you will never obtain the circumference, you will obtain better 

and better approximations of it. Archimedes carried out this calcula- 

tion for inscribed, and circumscribed, polygons with ninety-six sides 

and, in modern notation, concluded that 

310 <1 < 3. 
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As recently as the sixteenth century, 1 was not a considered to be a 

number but a geometric magnitude that could be estimated by the ra- 

tios of numbers. While negative and irrational numbers were only slowly 

accepted as numbers, there arose in surveying and astronomy the need 

for numbers to represent more accurate measurements. The standard 

way to represent, for example, the measurement of an angle, is to use 

degrees, minutes, and seconds (where sixty minutes equals one degree, 

60’ = 1°, and sixty seconds equals one minute, 60” = 1’). But this method 

is both awkward and limited. If we want to add two angles together, 

such as 5°50’44” and 7°25’54”, we cannot just add together the num- 

bers of degrees, minutes, and seconds and write 12°75’98”. Instead, we 

must take into account that 60’ = 1° and 60” = 1’ to obtain the correctly 

represented answer of 13°16’38”. Moreover, with more precise mea- 

surements, we might need to introduce halves of seconds, then tenths 

of seconds, and maybe even 71/s32 of a second; the numbers we need to 

use could become more and more complicated, to the point of being 

almost incomprehensible. A new method for representing these mea- 

surements was needed, and such a method was developed by the Dutch 

mathematician Simon Stevin (1548-1620) in the sixteenth century. 

In 1585 Stevin published a remarkable book, The Arithmetic of Simon 

Stevin of Bruges, along with a twenty-nine-page appendix “De Thiende” 

(translated into English as “Disme: The Art of Tenths”). In Arithmetic 

Stevin made two important contributions. First of all, Stevin freely 

worked with negative numbers and realized that subtracting a posi- 

tive number is the same as adding a negative number. In other words, 

70 minus 40 is the same as 70 plus negative 40, that is, 70 - 40 = 70 + 

(-40). 

Stevin’s second contribution was to extend the concept of number 

beyond the positive counting numbers and their ratios. Stevin took 

quantity, or magnitude, as a basis for numbers. For Stevin a number 

was “the quantity of each thing,” which means that a number is any 

magnitude associated with a quantity, for example a geometric length. 

Just as geometric magnitudes can vary continuously, so can positive | 

numbers. Since, for Stevin, the negative numbers were simply the num- 
bers that when added to another number give the same result as sub- 
traction, the collection of all of Stevin’s numbers was, in effect, what we 

call our number line. 
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Stevin was aware of the prevalent Pythagorean belief that unity 

generates number, and thus all numbers are produced from “one,” and 

he was not insensitive to possible philosophical objections to his con- 

ception of number." So Stevin adopted the Pythagorean perspective 

that all numbers are generated from some initial quantity, but replaced 

the discrete nature of generation of all numbers from unity by the con- 

tinuous, geometric generation of all numbers from naught—conceived 

to be a point that he represented by the symbol 0. This one bold step re- 

united numbers with geometric magnitudes and removed mysticism 

from the answer to the question “what is a number?” With this shift in 

point of view, the formerly troublesome tt and the square root of two 

could be accepted as numbers. ; 

In the appendix “De Thiende” Stevin made the breakthrough that 

was needed for any practical use of the numbers from his continuum; 

he showed that each number could be represented in terms of pow- 

ers of ten (and powers of one-tenth) using only the digits 0, 1, 2, 3, 4, 5, 

6, 7, 8, and 9. Again, using our more codified notation, Stevin showed 

that every number can be written as a decimal, for example, Y2 = .5 

and 63/4 = 6.75. The advantages of this system are readily apparent 

whenever a calculation is performed, just compare the ease of add- 

ing the three fractions Y2 + 3/s + Y20 or the equivalent decimals .5 + .6 

+ .05. Perhaps more importantly for us, Stevin showed that decimals 

could be used to approximate irrational quantities as closely as desired. 

For example, V2 is approximately 1.4, but a better approximation is 

1.4142 and an even better approximation is 1.41421356. This process 

will never terminate because irrational numbers cannot be repre- 

sented in Stevin’s decimal system as finite expressions such as .234 or 

9999: 

Thus we aré led to a second definition of a number: 

A (positive) number is the length of a geometric magnitude. 

SQUARING THE CIRCLE 

The Greeks felt they better understood a geometric magnitude if it 

could be represented as the area of a square, so they developed meth- 

ods for transforming different geometric figures into squares. But the 

Greeks only allowed certain methods for transforming one area into 
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another. In our language these transformations had to be accom- 

plished using only a compass, for drawing circles, and a straightedge, 

for drawing line segments. (The Greeks did not allow for the use of a 

ruler; remember that measurement was suspect.) Using these two tools, 

mathematicians showed that it is possible to transform any triangle 

into a square, and that it is possible to take two or more squares and 

transform them into a single square. Combining these ideas they could 

transform the area of any polygon into a square. (Any polygon can be 

decomposed into triangles; recall Plato’s geometric chemistry. Each of 

these triangles can be transformed into a square, and these squares can 

be combined into a single square.) This idea offered the Greeks another 

way to understand tt: Start with a circle whose radius equals one unit, 

so whose area equals m1, and transform it into a square. 

Alas, neither the Greeks nor anyone following them was able to dis- 

cover the geometric construction that permits “squaring the circle.” 

Partly because of the problem’s apparent simplicity and partly because 

of the mystical connotations of the circle both professional and ama- 

teur mathematicians almost continuously studied this problem. The 

inability of anyone to accomplish this construction shrouded it in mys- 

tery. E. W. Hobson summarized these views in his book Squaring the 

Circle: A History of the Problem (1913): “The man of mystical tenden- 

cies has been attracted to the problem by a vague idea that its solution 

would, in some dimly discerned manner, prove as a key to a knowledge 

of the inner connections of things far beyond those with which the 

problem is immediately connected.” 

Appeals to the failure of anyone to square the circle have made their 
way into literature. The earliest reference the author knows of was in 
the poetry of John Donne. In his poem “Upon the Translation of the 
Psalms by Sir Philip Sidney and the Countess of Pembrooke, His Sister” 
(1631) Donne wrote: 

Eternal God—for whom who ever dare 

Seek new expressions, do the circle square, 

And thrust into straight corners of poor wit 

Thee, who art cornerless and infinite.3 

According to the scholar Roberto Bertuol, Donne’s reference was a criti- 
cism of “man’s attempt to put God, who is ‘cornerless and infinite,’ into 
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‘strait corners of poore wit’: that is, to understand God by means of our 
rational faculties.”4 

Later in the seventeenth century, the admittedly minor poet Marga- 
ret Cavendish (1623-73) appealed to squaring the circle to condemn, 
also in Bertuol’s words, “men’s striving to rationalize unknown ele- 

ments such as nature’s secrets and fancy by means of mathematics.”25 

Cavendish began her poem “The Circle of the Brain Cannot Be Squared” 

(1653) with 

A Circle round divided in four parts 

Hath been great Study ’mongst Men of Arts; 

Since Archimed’s or Euclid’s time, each Brain, 

Hath on a Line been stretch’d, yet all in vain." 

While Donne’s appeal was to man’s futility in rationalizing God, Cav- 

endish’s appeal was to man’s futility in undertaking to mathematize 

nature and mind. 

The mysterious relationship between a square and a circle contin- 

ues to be employed by writers, in order to express both hidden truths 

and madness. In the short story “Goddess,” Albert Wachtel invoked the 

dogged examination of this relationship to signal that one character, 

the mother in the story, is unable to cope with the society into which 

she has been thrust. When confronted with new knowledge, or a novel 

situation, that challenges what she believes or understands, the woman 

walks in ritualistic concentric circles and squares. The center of these 

combined geometric figures provides the woman with both physical 

safety and mental solace. 

The reason neither the mother in Wachtel’s story nor anyone else 

was able to square the circle is not because the square and circle have 

some incompatible mystical properties, it is because of the differences 

between the algebraic and geometric conceptions of number. In 1882 

the German mathematician Ferdinand von Lindemann (1852-1939) 

established that neither mt, nor the square root of m, is an algebraic 

number and thereby demonstrated the impossibility of squaring the 

circle. . 

The connection between algebraic numbers and geometric construc- 

tions is fairly simple. Using Descartes’ coordinate system, squaring the 

circle means to take the circle centered at the origin whose radius equals 
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1 and produce a line segment whose length is V1, for example the line 

segment from (0,0) to (Vm, 0). However, if we begin with the circle whose 

radius is the line segment from (0,0) to (1, 0), using equations for lines 

and circles it is possible to show that any of the allowed, Greek, geomet- 

ric constructions will lead to geometric magnitudes whose lengths are 

numbers involving combinations of square roots of rational numbers, 

and combinations of square roots of square roots of rational numbers, 

and so forth. All of these numbers are numbers in the algebraic sense. 

When Lindemann proved that the square root of t does not equal any 

algebraic number, he showed that no allowable geometric construction 

will ever permit you to begin with a line segment one unit long and 

construct a square whose area equals Tt (i.e.,a square whose sides equal 

the square root of tt). But even more importantly for us and our attempt 

to answer the question “what is a number?” Lindemann’s result implies 

that the algebraic and geometric concepts of number do not coincide. 

Pi is anumber in the geometric sense, but not in the algebraic sense. 

THE MODERN CONCEPT OF NUMBER: PART ONE 

This section’s title is intended to indicate that it will not provide a 

definitive answer to the question “what is a number?” This is because a 

complete answer to that question depends on the modern understand- 

ing of mathematical infinity, which is the central topic of chapter 11. 

However, in this short section it is possible to provide an answer that 

will satisfy most working mathematicians. 

So far we have offered two definitions for a number that overlap, but 

do not coincide: 

A number is a solution to an algebraic equation. 

And 

A number is the length of a geometric magnitude. 

Each of these definitions includes the counting numbers, fractions, 
some irrational numbers such as V2 and, if we accept the negatives 
of geometric magnitudes, the negatives of each of these values, but 
there are algebraic numbers that have no geometric interpretations, 
such as \-1, and geometric lengths that cannot be obtained algebra- 
ically, such as tt. This possibly confusing situation is clarified if we take 
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a slightly different point of view, the one almost universally taught in 

our schools, and begin with the number line, which is represented as a 

horizontal line with zero marked in the center—the positive numbers 

are to the right of zero and negative numbers to the left of zero. In the 

next chapter we examine the evolution of the relationship between a 

line and the points it contains, but here we take the naive point of view 

that each point on the number line corresponds to a number, and each 

of these corresponds to the length of a geometric magnitude—the line 

segment between zero and the point (or its negative, if the point is to 

the left of zero on the number line). 

Although many of these points also correspond to solutions of al- 

gebraic equations, the algebraic number V-1 cannot be located on the 

number line because it cannot be interpreted as a distance. One way to 

introduce this quantity into the picture is to extend the number line to 

a number plane by taking another axis perpendicular to the traditional 

number line; this new axis is taken to represent multiples of \-1: 

FIGURE 9.7. In the (complex) number plane each point can be completely described by 

its two coordinates. Here P = (2.5, 2.5V¥—1) and Q = (-2,-3V-1). 

Early in the nineteenth century Gauss established an amazing fact 

about the number plane. To appreciate Gauss’s result, we need to under- 

stand how to interpret points in this plane; the points P and Q, above, 

can be described by analogues of x-coordinates and y-coordinates. Yet 

there is another way to imagine these points—not as given by coor- 

dinates but as resulting from additions: P = 2.5 + 2.5V-1 and Q = -2 

— 34-1. In this interpretation, it can be shown that each of the points, P 

and O, corresponds to an algebraic number: P is a solution to the equa- 

tion 2X2 - 10X + 25 = 0 and Qis a solution to the equation X* + 4X + 13 
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= 0. However, not all points in the plane correspond to solutions to al- 

gebraic equations, for example the number tt + \-1. Gauss’ great theo- 

rem, which is so important that it is called the fundamental theorem of 

algebra, is 

every algebraic number corresponds to 

a point in the number plane. 

In other words, the solutions to any polynomial equation, such as 3X° 

— 9X3 +1 =0,can all be written in the form a + bv-1, where a and b are 

numbers from Stevin’s number line. Even more is known: the numbers 

a and b will themselves be algebraic numbers. Thus the fundamental 

theorem of algebra says that if we introduce into our number system 

only one algebraic number that does not correspond to a geometric 

magnitude, V-1, which is a solution to X? = —1, we can find the solutions 

to any algebraic equations by combining this number with algebraic 

numbers that are geometric magnitudes. Our possible discomfort with 

solutions to polynomial equations involving \—1 is somewhat relieved 

by their ultimate reliance on geometric magnitudes. 



As for what I have done as a poet... I take no pride in 

it whatever. ... But that in my century I am the only 

person who knows the truth in the difficult science of 

colours—of that, I say, lam not a little proud. 

~~ Goethe, Conversations of Goethe with 

Eckermann and Soret (1875) 

When Stevin based his concept of number on that of a geometric mag- 

nitude, he relied on his understanding of a mathematical continuum 

to provide an intuition for number. Stevin agreed with Aristotle and 

took the continuum to be infinitely divisible; so, just as any geometric 

length can be divided into two others, between any two numbers there 

will be a third. All that is needed for a number to correspond to a geo- 

metric magnitude is for a line to contain points. The simplicity of this 

point of view glosses over the relationship between a line segment and 

points, and examinations of this relationship were important for both 

the invention of calculus and the establishment of the modern theory 

of mathematical infinity. 

Georges Seurat’s painting Circus Sideshow (Plate 2.2) was used to 

illustrate the purported appearance of the beautifully proportioned 

golden rectangle, but the most striking feature of Seurat’s painting is 

not its geometric foundation. The first thing anyone notices is Seurat’s 

painting style, known as the pointillist style, wherein paint is applied 

to the canvas not in strokes but in small dots of primary colors. While 

viewing Circus Sideshow, or almost any of Seurat’s other paintings, we 

might imagine that Seurat was saying something about the funda- 

mental nature of reality or our perception of it; however Seurat was not 

attempting to make a philosophical statement. Alternatively, we might 

guess that Seurat was exploring the wave/particle duality of light, hav- 

ing come down on the side of those who maintained that a ray of light 

consists of a stream of particles, but this position had fallen out of favor 
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in the nineteenth century. Instead, Seurat’s technique was more practi- 

cal; his goal was to produce especially vivid colors, colors he did not be- 

lieve he could obtain through mixing primary colors on his palette and 

then applying them to the canvas. Seurat was not exploiting the dual 

nature of a ray of light but the dual nature of color. These dualities have 

analogues in mathematics—there are two dualities concerning the na- 

ture of geometric magnitudes and another concerning the nature of 

points—but before we examine these, we briefly sketch two theories of 

light and color. 

In the seventeenth century Isaac Newton (1642-1727) held a glass 

prism up to a window and observed the effect this filtering had on light. 

With his experiment, Newton discovered that the pure, white light en- 

tering the prism emerged as a spectrum of colored light, and the colors 

were always arrayed in the spectrum in the same order, from just barely 

visible red to orange, followed by yellow, green, blue, indigo, and violet. 

In order to confirm what he thought this meant, Newton then took two 

prisms and let the spectrum of colors emerging from one prism strike 

the other prism. What happened was that pure, white light emanated 

from the second prism: The first prism broke white light down into 

its constituent colors and the second prism recombined these colors 

to form white light. Indeed, that is exactly what Newton concluded— 

white light is a mixture of colored light. 

There was a competing theory of color, going back at least to Aris- 

totle, in which colors were thought to consist of combinations of light 

and dark. In this theory, which was developed by Johann Goethe (1749- 

1832) in his History of the Theory of Colors (1810), white light is more 
basic than colored light. Colored light is obtained by adding dark tones 
to the white light. One of Goethe’s most influential conclusions was 
that our perception of a particular color depends on its context. Two ad- 
jacent colors interact—an effect called simultaneous contrast. The far- 
ther the two colors are apart on the color wheel, the greater the effect 
they have on each other. Newton probably would have attributed this 
phenomenon to some peculiarity of human physiology, but Goethe at- 
tributed this to the interaction of the colors themselves. More precisely, 
Goethe attributed simultaneous contrast to the interaction of the light 
and dark in the particular colors. 

Goethe’s theory was further elaborated upon early in the nineteenth 
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century by the French chemist Michel-Eugéne Chevreul (1786-1889). 

Chevreul was asked to investigate why certain dyes used in coloring 

carpeting and tapestries were not yielding colors as vivid as was hoped 

for. He discovered that some of the colors in the textiles were dull not 

because of the particular dyes being used, but because of the juxtaposi- 

tion of colors. This insight led Chevreul to formulate a theory of color 

interactions that was much more subtle then Goethe’s. For example, 

Chevreul discovered that adjacent dots of blue and yellow are perceived 

as a more vivid green than a splash of green paint that has been ob- 

tained by mixing blue and yellow paints on a palette. In effect, the eye, 

or more precisely the brain, averages the primary colors and perceives 

the intermediate ones. Chevreul published his results in The Laws of 

Contrast of Colour in 1839.1 

One of the first artists to acknowledge Chevreul’s influence on his 

work was the British painter Joseph Mallord William Turner (1775- 

1851). Turner is known for his use of contrasts, such as in his Shade 

and Darkness—The Evening before the Deluge (1843), and some of these 

contrasts are obtained by applying small splashes of primary colors 

onto his larger brush strokes. Half a century later, Seurat did not use 

any brush strokes; he employed only small dots of pure color. 

The dual nature of light is more widely known than the dual nature 

of color. Newton had proposed that a ray of light is made up of a stream 

of corpuscles, but there was the competing view, espoused by Newton's 

contemporary Robert Hooke (1635-1703), that a ray of light is a wave. 

Then, in 1801, Thomas Young (1773-1829) rediscovered something 

Newton had overlooked—light passing through a narrow slit produces 

a wavelike interference pattern. (Francisco Grimaldi [1618-63] had dis- 

covered this in the seventeenth century but his work was not widely 

known.) Young’s experiment showed that a ray of light does not behave 

like a stream of particles but like a wave oscillating through space—or 

the proposed ether. The mathematics behind the wave theory of light 

was fully developed late in the nineteenth century by James Maxwell 

(1831-79), which could have settled the matter. Whatever the nature 

of light, it was assumed that Maxwell's equations would provide a suf- 

ficiently predictive model. However, just a few years later, early in the 

twentieth century, Einstein revitalized the particle theory of light with 

his explanation of the photoelectric effect. With Einstein's discovery 
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came the understanding that light can, simultaneously, behave like a 
stream of discrete particles and like a continuous wave. Which of these 
qualities is detected depends on which aspect of light is being consid- 
ered. 

Whether light should be thought of as a stream of particles or as 
a vibrating wave, and whether colored light should be thought of as 
a constituent of white light or a mixture of white and black light, de- 
pends on what is being sought. Newton’s particle theory did not help 
physicists understand the propagation of light, and Goethe's theory of 
color did not provide a basis for quantifying the differences between 
red and violet. But the particle theory does explain the interaction of 
light with matter, and simultaneous contrast does offer a basis for a 
theory of color that can be exploited by artists. 

NAIVE MATHEMATICAL GEOMETRY 
The most basic of all geometric objects are line segments and points, 

and given their central roles in geometry, it would seem that they would 
be the best understood of all geometric entities. Surprisingly, they are 
not now nor have they ever been. Both a line segment and a point pos- 
sess dual natures, which are analogous to both the dual nature of light 
and the dual nature of color. The best way to begin to understand the 
relationship is to return to Euclid’s Elements. 

Euclid’s definition, or perhaps description, of a point is essentially 
that of an indivisible atom: 

A point is that which has no part. 

Whether this statement offers a definition or a description of a point, 
it does capture the idea that a point is the smallest imaginable math- 
ematical entity. Euclid defined a line segment in two steps. Euclid first 
defined a line, which can be either straight or curved: 

A line is a breadthless length. 

Euclid then explained what it means for a “line” to be “straight”: 

A straight line is a line that lies evenly with the points on itself. 

Euclid did not claim that points comprise a line; the concept of a geo- 
metric length does not depend on that of a point. A “length” is an un- 
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defined concept. All that Euclid acknowledges is that a line has “points 

on itself.” 

This leads naturally to questions that appear to be mathematical 

analogues of 

How marty angels can dance on the head of a pin? 

But these questions are not frivolous, they are relevant to understand- 

ing the evolution of mathematical thought, and during the Middle 

Ages and Renaissance, these questions were thought to be relevant to 

understanding the material world. 

If we postpone for now questions about the nature of points or lines, 

the next question is 4 

Does a line segment simply contain 

points or is it made up of points? 

The follow-up question, regardless of how the first one is answered, is 

How many points are in a line segment? 

In order to overcome both Pythagoras’ equivalence of the math- 

ematical and material worlds and Plato’s otherworldliness, Aristotle 

took mathematical objects to be abstractions from the physical world. 

And because they are abstractions from t
he physical world, mathemat- 

ical objects were thought to be relevant to our understanding of the 

physical world. Aristotle, and anyone adopting his physics, believed 

that there was a correspondence between physical magnitudes and 

geometric magnitudes. So, whatever the nature of the continuum in 

one realm, it would be the same in the other. 

Aristotle answered both of the above questions. His answer to the 

second was that the collection of points contained in a line segment 

was potentially infinite by division. To answer the first question, Aris- 

totle sought to clarify the relationship between 
the points contained 

in a line segment and the line segment itself. Aristotle thought of a 

line segment as a continuum having an existence beyond the points it 

contained, and in his Physics, Aristotle gave an argument intended to 

show that a continuum cannot be made up of small objects having
 no 

parts. His argument is known as the contact argument: If a continuum 

is made up of indivisible elements, then these elements must be in 
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contact with one another. They cannot be joined together side by side 
so as to produce, say, a line, because if they have sides then they have 
parts and are not indivisible. So, Aristotle continued, these indivisibles 
must be wholly in contact with one another, and if two indivisibles are 
joined whole to whole they occupy the same space. Thus no number of 
indivisibles can be put together to produce anything but an accumula- 
tion of indivisibles in the same place. 

Transferred over into the physical world, Aristotle’s contact argu- 
ment does not refute the possibility that there could exist physically 
indivisible atoms that are somehow bound together to produce mate- 
rial substance. In the Leucippus/Democritus atomic theory, atoms were 
physically indivisible pieces of matter. They were not conceptually 
indivisible in that they were units without parts; they simply had the 
material property of being indivisible. The contact argument argues 
against the possibility that conceptually indivisible entities, like Eu- 
clid’s points, could hold together to form anything. Physical atoms were 
rejected by Aristotle’s physics, not by his understanding of mathemati- 
cal lines, and since Aristotle’s natural philosophy was the dominant 
one, almost everyone rejected the existence of atoms. 

THE DUAL NATURE OF LINE SEGMENTS 
Neither Aristotle’s answers to the two questions above nor his con- 

ception of a point went unexamined. By adopting views contrary to Ar- 
istotle’s, mathematicians of the Renaissance and Enlightenment made 
very significant progress in understanding geometric entities that 
were not available to the Greeks, such as areas enclosed by fairly ex- 
otic curves. Mathematicians embraced these views not for their philo- 
sophical purity, but for their utility. Before the Renaissance, long before 
any significant mathematical progress had been made in Europe, the 
nature of geometric magnitudes was examined for mostly theological 
reasons. We examine some of these fourteenth-century debates in the 
next section, but in order to appreciate the difficulties theologians, and 
then mathematicians, faced, let’s first examine one duality in the mod- 
€rn conception of a line segment. 

The modern point of view is that points make up a line—in fact, a 
line is defined as a collection of points satisfying a certain property. 
(There is a circularity in this reasoning because the property that the 
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points satisfy is that they make up a line segment; thus a line segment 

is ultimately an undefined concept.) And although a line is made up of 

points, it does have an existence beyond those points; for example, it 

has a length, which is something that could not be predicted from the 

individual points. However, each point in a line somehow knows it is 

contained within a line; it knows how to behave in order that the ag- 

gregate of all points holds together to form a line. This strange property 

of the points contained in a line segment has an analogy in the rela- 

tionship between photons and the light ray that contains them. 

In The Elegant Universe, Brian Greene provides a very clear explana- 

tion of how we can demonstrate that a ray of light has an existence be- 

yond the photons it contains. The experiment, which is an elaboration 

of the one Young used in 1801 to show that light behaves like a wave, 

shows that photons in a beam of light somehow “know” that they have 

not only an individual but also a collective existence. The basic outline 

of this experiment is simple—it involves shining light through a metal 

plate having two vertical slits cut through it. If the ray of light consisted 

of a beam of particles, then we should observe the pattern on the left in 

Figure 10.1. 

’ 
. : . F 
. ’ . ’ 
. ’ . 

’ 
. ’ . 

. # . , 

. ’ ‘ , 

. ‘ . ‘ 

. ‘ . ’ 

. ’ . ‘ 

. 
. ’ 

FIGURE 10.1. Two possible patterns that could be 

produced by light shone through two parallel slits. 

But this is not what the experiment showed. When Young shone light 

through a plate with two vertical slits he saw the pattern on the right. 

This pattern is the wave interference pattern that is obtained, for ex- 

ample, when two stones are simultaneously dropped into a pond; what 
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the pattern indicates is that the ray of light passing through the slit on 

the left, and the ray of light passing through the slit on the right, inter- 

fere with each other. The two rays of light act like waves, rather than 

like what we imagine to be straight lines. 

In the next stage of the experiment, the ray of light was focused on 
the plate with two parallel slits, but the light is sent to the plate one 
photon at a time. Since there are no two photons being sent simulta- 
neously, they should not interfere with each other; so, after sending a 
large number of these photons we would expect a pattern such as the 
first one above. But this is not what happens. Each photon knows it is 
part of a greater entity and so each behaves in the way it should, given 
its lot in life. The pattern that emerges is the second one; this pattern 
shows that the photons act like they are being interfered with, even 
though they are not. 

The mathematical analogue of this experiment can only be imag- 
ined. In this experiment we would start with a line segment, lift points 
from the line segment one at a time, and throw them onto a piece of 
paper. The points would not form a random pattern on the paper, but 
would instead line themselves up. The more points we take from the 
original line segment, and throw at the paper, the more fully the line 
segment will have been transferred. 

This first duality associated with line segments concerned the na- 
ture of the continuum and is analogous to the wave/particle duality 
of light rays. But just as there is a second duality associated with color, 
there is a second duality associated with points—points can be thought 
of as dimensionless dots or as indivisible elements (with or without 
meaningful size). Each of these conceptions of a point has a place in 
modern mathematical thought; before we discuss this we return to the 
fourteenth century. 

THE FOURTEENTH-CENTURY DEBATES 
Several reasons have been offered for the fourteenth-century re- 

emergence of atoms. The least intriguing of these is the assertion that 
the syllogistically oriented philosophers and Scholastics of the late 
Middle Ages were simply looking for loopholes, or logical flaws, in Ar- 
istotle’s reasoning; the antagonism between philosophy and theology 
continued well past the Condemnation of 1277. This view underesti- 



The Dual Nature of Points and Lines | 211 

mates the role of religion as a motivation in these discussions and im- 

plies that the Scholastics had no emotional connection to their conclu- 

sions. More attractive explanations for the return of atomism associate 

it with the Scholastic attempts to reconcile Aristotelian principles with 

theology, leading to arguments for the consistency of ideas contrary to 

Aristotle’s with those of his that were widely accepted. 

One difficulty with Aristotelian principles that proponents of the 

existence of atoms of indivisible physical elements sought to overcome 

concerned the nature of angels. Angels were believed to consist of an 

incorruptible substance. Implicit in the purity of angelic substance was 

the belief that this substance could not be a combination of the still-ac- 

cepted fundamental terrestrial elements: earth, air, fire, or water. More 

generally, the incorruptibility of angelic substance meant that it could 

not be made up of more basic materials or parts. Thus, whatever the 

imagined state of the material existence of angels, they were not only 

physically indivisible entities, but could not even be imagined to be di- 

visible. Thus angels were seen to be conceptually indivisible. 

Alas, this understanding of angels presented theologians with a 

quandary. In his analysis of the nature of motion, Aristotle had demon- 

strated that if space and time were infinitely divisible, then a conceptu- 

ally indivisible entity would be unable to move. Aristotle reasoned as 

follows: Suppose, for the sake of argument, that indivisibles exist, and 

imagine that there is an indivisible located at a position ab that then 

moves to position bc. (In Figure 10.2 the indivisible is represented by 

the triangle.) 

ea 

a b c a b c 

FIGURE 10.2. The movement of an indivisible element from position ab to position bc. 

Aristotle then posed the question: Where is the indivisible during the 

time interval between when it was at ab and when it is at bc? Aris- 

totle’s answer was that the indivisible must be in some intermediate 

position, wherein it is partly at ab and partly at bc. This means the indi- 

visible has distinguishable parts, the part that at the intermediate time 

is at ab and the part that at the intermediate time is at bc, and so the 
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indivisible is not a unity. It is supposed to follow that a conceptually 

indivisible entity cannot move.’ 

The atomist response to Aristotle’s simple argument was not to re- 

fute it but to point out a presumed fallacy in Aristotle’s reasoning. It 

was almost universally held that time was infinitely divisible, the be- 

lief that there might exist indivisible pieces, or units, of time having 

been espoused only by some Epicureans, followers of the third-century 

B.C. philosopher Epicurus, and by modern physicists. Assuming the in- 

finite divisibility of time, Aristotle’s argument could not be dismissed 

on the grounds that there were not some intermediate moments be- 

tween when the indivisible was at ab and when it was at bc. What was 

wrong with Aristotle’s reasoning, according to the atomists, was that 

there is no intermediate position between position ab and position bc. 

They simply asserted that space is not infinitely divisible, so at any mo- 

ment the indivisible was either at ab or at bc—the triangle instanta- 

neously switches from position ab to position be. 

Another theological argument for the existence of indivisibles relied 
on God's omniscience: If a continuum, or chunk of matter, were to be 

infinitely divisible, then even God could not know how many parts it 
had. Augustine’s contention in The City of God that God could see an 
infinitude as a completed whole did not address the problem of how 
many parts infinite divisibility would produce.4 This conundrum elic- 
ited various responses. It was argued that the infinite divisibility of 
matter did not mean that at some time it could be infinitely divided. It 
was also argued that the infinite divisibility of matter meant that it did 
not have parts, and so there were not any objects for God to count. But 
the simplest way to address this was to conclude that this was not an 
issue because matter simply is not infinitely divisible; matter consists 
of finitely many indivisible parts. These two theological arguments 
lead to the conclusion that a physical continuum, whether it is a chunk 
of space or a piece of matter, is made up of a finite number of indivis- 
ible elements. 

Although the atomists may have been motivated by theological con- 
siderations, they often based their arguments for the existence of at- 
oms on mathematical or, less often, philosophical principles. What is 
especially interesting is that all of these discussions were intended to 
either defend or refute the existence of conceptually indivisible units, 
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as opposed to the physically indivisible atoms of the Leucippus/De- 

mocritus atomic theory. In the fourteenth century a material atom was 

infinitely small, without size or mass, and so more like a mathematical 

point than a piece of matter. As the scholar Laurence Eldredge asserted 

in his discussion of the meaning of “point” in Middle English literature, 

whatever principles were used to frame the argument, the atomists 

were not as convincing as the infinitists.° 

A MATHEMATICAL REFUTATION OF INDIVISIBLES 

The claim that a physical continuum can be made up of finitely many 

indivisibles was fairly easily challenged—it was challenged by an ap- 

peal to the same idea that Duns Scotus used to prove that time cannot 

possibly be cyclic—the incommensurability of the side and diagonal 

of a square. Without acknowledging the generally accepted correspon- 

dence between material and mathematical continua, in the thirteenth 

century Roger Bacon (1214-92) sought to undermine the claim that a 

chunk of matter is composed of finitely many indivisibles by showing 

that a finite line segment cannot be made up of finitely many indivis- 

ible mathematical entities—mathematical atoms: “If lines are com- 

posed of atoms, the diagonal of a square and its side will have the same 

ratio as the number of whole atoms making up these lengths; therefore 

these lengths are commensurable, contrary to what the mathemati- 

cians teach.” The details of Bacon’s argument are simple: Let D denote 

the length of the diagonal of the square, let L denote the length of a side 

of the square, and assume that each indivisible element has size e. If 

the side of the square contains M points and the diagonal of the square 

consists of N points, then the length of the diagonal is N x ¢, and the 

length of the side is Mx. Thus D = Nxe,andL=Mxeé,so 

Dy = (NX&)/(M xe) = N/M. 

Rewriting the equation, above, without the middle term we obtain 

D/L = N/M. 

Through this argument, Bacon has shown that if every line segment is 

made up of finitely many indivisibles, then the diagonal and side of a 

square are commensurable. But this is precisely what the Pythagore- 

ans had shown to be false. (This can be rephrased numerically. Suppose 
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Bacon’s square had sides of length 1; if segments consist of points, then 

V2 = M/N. Thus V2 is a rational number, contrary to the Pythagorean 

discovery.) 

The preceding incommensurability argument shows that a line seg- 

ment cannot be composed of a finite number of indivisibles. However, 

as there cannot be an existing infinite collection, a line segment, or a 

chunk of space or matter, cannot consist of an infinite number of indi- 

visibles. Thus we are left with Aristotle’s infinitely divisible conception 

of a continuum. 

Atomists attempted to refute each of the arguments: That the num- 

ber of indivisibles that make up a line segment is related to its length 

and that there cannot exist an infinite collection. Walter Chatton 

(c. 1290-1343) addressed the first claim and Henry of Harclay (c. 1270- 

1317) the second. 

CHATTON’S GEOMETRIC WAVES 

Chatton deserves recognition for his creativity in countering geomet- 

ric arguments such as Bacon’s. Chatton was an atomist, and Chatton’s 
adoption of the existence of indivisibles emerged from his desire to avoid 
the possible existence of a greater and lesser infinity. Chatton imag- 
ined that if two unequal continuous magnitudes were infinitely divis- 
ible, then they must contain the same number of parts, which, for Chat- 
ton, implied that the magnitudes must necessarily be the same size. 

First, let’s review the argument Chatton had to overcome, which pur- 

ports to show that if circles are made up of finitely many indivisibles, 
then all circles must contain the same number of indivisibles and so must 
have the same size. The entire argument is illustrated in Figure 10.3. 

FIGURE 10.3. Radial lines between two concentric circles that show 
there is a correspondence between the points on the 

smaller circle and the points on the larger circle. 
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The radial lines are drawn as follows: Draw a line from the common 

center of the two circles through each point on the smaller circle. Each 

of these lines will intersect the larger circle at a point. Once this opera- 

tion has been completed, there will be a line connecting every indivis- 

ible on the smaller circle with an indivisible on the larger circle. This 

process cannot miss any of the indivisibles on the larger circle; if it did, 

then a line drawn from that point to the common center of the two 

circles would intersect the smaller circle in a point that has not been 

accounted for. Thus, so the argument goes, these two circles contain the 

same number of indivisibles and so must be of the same size. 

We saw in chapter 4 that it is possible to arrive at conflicting conclu- 

sions by appealing to the same evidence if you start with different as- 

sumptions. In order to prove that the sun is close to the earth, Cosmas 

assumed that the earth is flat and appealed to exactly the same evi- 

dence, the stick’s shadow, that convinced Eratosthenes that the earth 

is not flat. The mathematical argument above purported to show that 

if the circles consist of finitely many indivisibles, then they would have 

to be the same size. Chatton reversed this argument; he used the two 

concentric circles to prove that if the circles do not consist of finitely 

many indivisibles, then they must be the same size. 

Chatton first argued that if the circles consisted of infinitely many 

indivisibles, then they would have to be the same size, else we would 

have two sizes of infinity. Chatton then argued that if the circles were 

infinitely divisible, then, as there is only one size of infinity, the two cir- 

cles would contain the same number of divisions, so points, and so the 

two circles must be the same size. In making his argument, Chatton ap- 

pealed to the process of division and maintained that if, in the process 

of dividing the circles, there is a correspondence between the divisions 

of one circle and the divisions of the other, then the two circles must, 

ultimately, have the same number of divisions. In other words, we must 

be able to extrapolate from the correspondence between the divisions 

of the two circles, which emerges in the process of subdividing them, 

to a conclusion about what happens when the process of division has 

been completed. Thus, Chatton assumed that the process of subdivid- 

ing the circles could be completed, so at some time all of the parts will 

independently exist. 

Once Chatton had determined that a geometric continuum consists 
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of a finite number of points, he needed to undermine Bacon's mathe- 

matically sound argument. This is where Chatton showed his creativity: 

Chatton claimed that geometric shapes are not the two-dimensional 

objects we imagine them to be but are three-dimensional and occupy 

space. In this way, geometric objects have attributes, or parts, beyond 

what we had believed; for example, a surface has not only length and 

width but also a front and a back. So a point on a line might appear 

to be in the same plane as the line but could lie behind the line or in 

front of it. Chatton concluded that any drawing seeming to show the 

side and diagonal of a square to be commensurable, or even to contain 

the same number of points, is an illusion. (One way to think about this 

is to imagine that the diagonal is a wavy line, with peaks and troughs 

above and below the plane of the drawing.) This means that we can 

never know how many indivisibles are on a line segment, so we cannot 

conclude anything about the ratio of the number of indivisibles on the 

side and diagonal of a square. 

HARCLAY’S INFINITE COLLECTIONS 

Not all proponents of atomic theories were so willing to offer inno- 
vative mathematical or theological arguments. A good example of a 
fourteenth-century philosophical argument for the existence of atoms 
is the one given by Henry of Harclay, who became chancellor of Ox- 
ford University in 1312. Atoms were necessary to Harclay’s philosophi- 
cal understanding of existence. In his view, anything that exists in the 
material or mathematical world must be a singular entity; something 
that cannot exist independent of being part of something else does not 
have the property of existence itself. In the process of subdividing a 
continuum, one must obtain parts, and if these parts can be subjected 
to further division then these parts have existence beyond being a 
piece of the larger object. From this, Harclay concluded that if matter is 
infinitely divisible, one must obtain smaller and smaller pieces whose 
only existence comes from their being parts of a larger whole, contrary 
to the very nature of existence. 

Harclay understood that finitely many points could not make upa 
segment, so he was led to accept the conclusion that a continuum must 
contain infinitely many points. Then, as two line segments can be of 
different lengths, if each contains infinitely many points, there must 
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be different sizes of infinity. Harclay simply accepted this conclusion. 

However, Harclay had to address Aristotle’s contact argument, which 

showed that indivisibles could not make up a continuum. Harclay dis- 

missed Aristotle’s argument with the claim that atoms do not contact 

each other whole to whole, and so never amount to anything larger 

than a single indivisible, but reside near one another, mysteriously, “in 

respect to distinct locations.”” This was perhaps every bit as convinc- 

ing as Aristotle’s original argument that atoms cannot make a whole 

because if they are in contact they are either coincidental or have parts. 

And Harclay gave a theological reason for why a line segment must 

consist of points sitting side by side: “It is certain that God knows ev- 

ery point that can be designated in a continuum. Take, then, the first 

inchoative point on a line. God perceives that point and any point in 

this line different from it. ... It follows, then, that either up to that more 

immediate point which God sees there intervenes some line ... or one 

does not.”8 

In other words, there cannot be a line segment connecting the first 

point God perceives on the line segment and the next point on the line 

segment that God perceives. The first point God sees and the second 

point God sees are adjacent. (It is important to note that Harclay’s con- 

ception of a geometric continuum is contrary to one of the most basic 

tenets of Euclidean geometry, that two points always determine a line. 

The Euclidean axiom is not that two nonadjacent points determine a 

line, but that any two points determine a line.) 

MATHEMATICS AND INDIVISIBLES 

None of these arguments about the nature of either matter or line 

segments were definitive. One early fourteenth-century infinitist of- 

fered perhaps the strongest rejection of the atomists’ indivisibles by 

invoking the law of sufficient reason in a form that has come to be 

known as Occam’s razor. William of Ockham (c. 1288-c. 1348) refuted 

all of the atomists’ arguments with a single observation: There is no 

need to assume that a continuum is made up of points because every- 

thing in mathematics and physics works out perfectly well without 

that assumption. 

But Harclay’s conception of a line segment—that it consists of a 

string of infinitely many points, like beads on a taut line—is reflected 
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in the thinking of several important Renaissance mathematicians. 

Three of particular note are Galileo Galilei (1564-1642), Johannes Kep- 

ler (1571-1630), and Bonaventure Cavalieri (1598-1647). Galileo is, of 

course, better known for his conclusions about the physical world, but 

he was a professor of mathematics and also made contributions to 

mathematics. For our purposes his most important contribution was 

the point of view he passed on to his student Cavalieri. 

Galileo, with Harclay, believed that a geometric continuum is made 

up of a string of infinitely many indivisible points. Galileo was, of 

course, a very pragmatic person; when he saw spots on the sun he sim- 

ply accepted it as fact. Indeed, his entire conception of science was to 

seek to answer not why but how. As an application of his temperament 

in mathematical thinking, consider how Galileo is said to have resolved 

the paradox of the two circles. When asked why the two circles are not 

the same size, he is said to have responded that there must be larger 

gaps between the indivisibles in the larger circle than in the smaller 

one. 

Cavalieri took on the project of applying the theory of indivisibles to 

solve geometric problems. In his Geometry Advanced by a Thus Far Un- 

known Method, Indivisibles of Continua (1635) Cavalieri proposed what 
has become known as “Cavalieri’s principle.” Imagine starting with 
fourteen thin, rectangular strips of paper, all the same size, and arrang- 
ing them into two groups of seven, as in Figure 10.4. 

SS SS 
FIGURE 10.4. Cavalieri’s conception of solid objects as 

being made up of infinitesimally thin rectangles. 

If we view each of these groupings as a two-dimensional area, then 
they would be equal since they are composed of the same number of 
identical rectangles. Cavalieri’s principle is the reversal of this process, 
where areas are imagined to consist of infinitely many horizontal line 
segments. 
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FIGURE 10.5. Cavalieri’s principle says that if two areas 

have equal cross sections then they are equal. 

If the corresponding segments from the two areas were the same 

length, then the two areas would be equal. One consequence of this 

point of view was Cavalieri’s conclusion that an area or volume would 

require an infinite (or indefinite) number of indivisible elements; for 

example, an area would consist of infinitely many parallel lines, but he 

did not explain what he meant by this. 

Kepler took a slightly different view of geometric objects; he adopted 

a point of view that had been espoused by Nicolas de Cusa in the fif- 

teenth century. According to de Cusa, and Kepler, a line segment, or a 

curve, is made up of infinitely many infinitesimal lengths (not points). 

An infinitesimal is not conceptually indivisible, like Cavalieri’s indivis- 

ibles, but just infinitely small. Kepler illustrated the utility of his point 

of view by using infinitesimals to find the area of a circle: Since the arc 

of a circle is made up of infinitely many infinitesimal lengths, drawing 

radii from the center of the circle to the two ends of each infinitesimal 

reveals that the interior of the circle consists of infinitely many trian- 

gles. These triangles can be rearranged with their infinitesimally short 

bases along a straight-line segment; the length of this segment will 

be the circumference of the circle. Since the area of a triangle is deter- 

mined by its base and height, the total area contained in the triangles 

arranged along the segment can be found, and it equals the area of the 

circle. 

In the last third of the seventeenth century, both Newton and Gott- 

fried Leibniz (1646-1716) combined extensions of the ideas of Cavalieri 

and Kepler to establish what is now known as calculus. We will only 

consider how the techniques of calculus permit calculations of areas 

bounded by curves, but its range of applicability is substantial, includ- 

ing relating acceleration, velocity, and distance traveled for a freely 

falling body, finding tangent lines to curves (needed to design lenses), 

maximizing and minimizing quantities (such as determining the opti- 
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mal angle of inclination of an artillery cannon), and finding lengths of 

curves (for example how far a planet has traveled in a few days). 

Both Newton and Leibniz based their theory of calculus, at least so 

far as the calculation of areas goes, on ideas that were formalized in the 

nineteenth and twentieth centuries. The nineteenth-century point of 

view is illustrated in Figure 10.6. 
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FIGURE 10.6. Approximating the area under a curve using rectangles. 

The area under the curve, where the y-coordinate of each point on the 
curve is given by a formula y = f(x), is approximated by the sum of the 
areas of the rectangles in Figure 10.6. Newton imagined that the base 
of each rectangle was small and then, relying on the infinite divisibil- 
ity of the continuum, calculated what happened when x became zero. 
Leibniz, on the other hand, thought of the base of each rectangle as an 
indivisible, so the area under the curve was approximated by an in- 
finite sum of these areas. To obtain the precise area under the curve, 
Leibniz worked almost algebraically with these infinitesimals. Aston- 
ishingly, especially to those who were critical of either approach, both 
of these calculations seemed to work! In the nineteenth century, math- 
ematicians finally established the theoretical foundation for Newton’s 
approach (see chapter 11); not until the middle of the twentieth cen- 
tury was Leibniz’s method fully understood (see chapter 12). 

A SECOND DEFINITION OF MATHEMATICAL INFINITUDE 
Aristotle had defined an infinite collection as one that always has 

some part outside itself; a collection is infinite if no matter how much 
of it has been accounted for, it is not completely accounted for. What 
emerged from Gregory of Rimini’s analysis of the arguments put forth 
by Burley was a new understanding of the quantitatively infinite that 
was remarkably close to the modern view (see chapter 5). Aristotle’s 
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actual/potential distinction was replaced with a subtler one. Before of- 
fering a simple explanation of this differentiation, we phrase it as the 
Scholastics did. In the mid-thirteenth century, Peter of Spain, who may 
have gone on to become Pope John XXI, provided the following defini- 
tion: “Infinite is taken in two ways; in one way it is taken categoremati- 
cally, significantly as a general term, and thus it signifies the quantity 

of the thing which is subject of predicate, as when one says, the world 

is infinite. ...In another way it is taken syncategorematically, not inso- 

far as it indicated the quantity of the thing which is subject or predi- 

cate, but insofar as the subject is related to the predicate, and in this 

way there is distribution of the subject and [it is] a distributive sign.” 

The quotation is written in the impenetrable Scholastic style, per- 

haps accounting for the five-hundred-year gap between these pre- 

liminary discussions of the infinite and the nineteenth-century break- 

through, but its meaning can be clarified through an example. Consider 

the sentence, “This rocket travels infinitely fast.” There are two ways in 

which this sentence can be understood and both depend on how the 

word infinitely is being used. The first meaning, wherein “infinitely” 

is being used categorematically, is that the rocket travels faster than 

anything that travels with a finite velocity. That is, no time passes 

while the rocket moves from one place to another. The second mean- 

ing is that given any velocity, be it one mile per hour, 1 billion miles 

per hour, or 1 billion billion miles per hour, the rocket can travel faster 

than the specified velocity. In this second interpretation, “infinitely” is 

being used syncategorematically. In the first interpretation, “infinitely” 

is understood as exceeding all finite magnitudes or quantities; in the 

second, as exceeding any given or specified magnitude or quantity. 

This distinction between the syncategorematically and categore- 

matically infinite was not available to Aristotle because a basic tenet of 

Aristotelian physics is that whatever can be said, or imagined, to exist 

potentially will exist actually, and that whatever cannot exist actually 

cannot exist potentially. This is precisely the principle Aristotle invoked 

to deny the existence of a vacuum. Applied in the present context, this 

principle becomes: If a body can potentially become greater in size than 

any given magnitude, and so be syncategorematically infinite, it would 

then be, in actuality, greater than any given magnitude, and so would 

be an existing infinitude and thus be categorematically infinite. 
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Gregory went on to reinforce the acceptance of this distinction by 

reformulating it: A categorematically infinite magnitude is that which 

is larger than any finite magnitude and a syncategorematically infinite 

multitude is “more considerable” than any finite magnitude. In his con- 

ception of the categorematically infinite, Gregory anticipated the dis- 

coveries mathematicians made more than five hundred years later: The 

categorematically infinite transcends finitude. The reason this is such 

an important idea is that it allowed Gregory to reject the powerfully 

intuitive notion that one infinity cannot be larger than another, and 

the important step was for Gregory to reconsider the very notion of a 

whole and a part. Gregory wrote that there are two ways to consider 

the terms whole and part. We restrict our attention to infinite multi- 

tudes although the same terms apply to infinite magnitudes: “Accord- 

ing to the first way, any multitude is a whole with respect to another 

multitude when the first multitude contains the second ... and when 

it contains, in addition, an object or objects distinct from all and each 

of these. ... According to the second way, in order for a multitude to be 

whole with respect to another multitude, it has first to contain the sec- 

ond multitude, as in the first way; in addition it has to contain a deter- 

minate number of things of determined magnitudes ... which are not 

contained in the contained magnitude.” Gregory then applied these 

concepts to the Aristotelian principle that there cannot exist a greater 

and a lesser infinity: “In [the first] way, an infinite multitude can be 
a part of another infinite multitude. ... In the second way, an infinite 
multitude cannot be either whole or part of another infinite multitude 

[because there cannot be a determinate number of things contained 
in the whole but not the part].”° Alas, Gregory never provided a clear 
meaning for an infinite multitude, and so his belief that one infinity 
could be contained in another infinity was not accepted and was not 
even understood until the nineteenth century. 



Self-evidence is often a mere will-o’-the-wisp, which 

is sure to lead us astray if we take it as our guide. 

For instance, nothing is plainer than that a whole 

always has more terms than a part, or that a number 

is increased by adding one to it. But these propositions 

are now known to be usually false. 

— Bertrand Russell, “Recent Work on the Principles 

of Mathematics” (1901) 

In the above quotation Russell refers to the purportedly self-evident 

truth—the whole is always greater than a part—that led to the para- 

doxes surrounding the infinite. But Russell also mentions another 

seemingly obvious truth and alludes to it not being universally correct, 

that when one is added to a number the result is a larger number. In- 

deed, by looking at examples, such as by adding one to the numbers 3, 

or Ya, or V2, it does seem to be the case that the result is always a larger 

number. So Russell must have something else in mind; he reveals what 

that is in the next sentence: 

Most numbers are infinite, and if a number is infinite you may add 

ones to it as long as you like without disturbing it in the least.’ 

To understand the mathematics behind Russell’s claims, we will reex- 

amine the meaning of the counting numbers. We will see that Russell's 

conception of number depends on the same idea as the modern inter- 

pretation of Stevin’s decimal system and the fractals of modern chaos 

theory. The underlying principle is that it is possible to complete some 

processes that require an unlimited number of tasks. We begin with 

geometry. 
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GEOMETRIC MAGNITUDES (REVISITED) 

Stevin’s sixteenth-century identification of numbers with geometric 

magnitudes did not provide a system of numbers sufficient for solving 

all algebraic equations, but it did offer a number system that allowed 

for the comparison of the lengths of any two geometric magnitudes. Of 

course, even the ancient Greeks allowed for the comparison of any two 

geometric magnitudes, they just did not do this by attaching numerical 

quantities to the lengths. However, two things happened to undermine 

our certainty that we understood geometric magnitudes. The first was 

the discovery that the geometry of space is not the one handed down 

to us by the Greeks, which definitively separated the mathematical and 

material worlds. The second was the complementary realization that 

our misleading intuitions about physical space do not necessarily lead 

to a well-founded notion of a straight line or flat surface. Thus, Stevin’s 

concept of number, which requires the unquestioned reliability of geo- 

metric truth, might suddenly seem less convincing. 

Rather than devolve into another philosophical discussion, we tackle 

the simplest problem associated with defining numbers to be geomet- 
ric magnitudes: Given a line segment connecting two points, how do we 
determine its length? Thanks to Descartes’ introduction of coordinate 
geometry in the seventeenth century, this problem does have a simple 
solution in Euclidean geometry. “Given two points” means we are given 
the position of two points, and therefore their coordinates, from which 
it is easy to calculate the length of the line segment between them. But 
just because we can measure a line segment, does this mean that ev- 
ery geometric magnitude will have a well-defined length? For example, 
how does one calculate the length of a portion of a parabola? 

It is basic to Stevin’s concept of number that a portion of the parab- 
ola has a well-defined length; it just might not be easy to determine. 
(Recall how much work Archimedes had to do in order to estimate the 
circumference of a circle whose diameter is one unit, and so Tt.) In or- 
der to estimate the length of any curve, it has to be imagined as lying 
in Descartes’ coordinate plane (so each point on the curve is described 
by an x-coordinate and a y-coordinate). Then the process of estimating 
the length of the curve is reminiscent of Archimedes’ estimation of the 
circumference of a circle, and we illustrate this process below. 
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Archimedes estimated tt by using polygons to approximate the cir- 

cumference of a circle whose diameter is one unit, so whose circumfer- 

ence is 1. Archimedes started with polygons having 6 equal sides and 

then successively doubled the number of the sides of the inscribed, and 

circumscribed, polygons to 12, 24, 48, and 96. Let’s just think about the 

inscribed polygons. At each stage in the process of successively dou- 

bling the number of sides of the polygons, the length of the perimeter 

of each successive polygon is a better approximation of 1, but the value 

will never precisely equal tt because the polygon will never exactly be 

the circle. Even if Archimedes’ procedure is continued, and the perim- 

eters of inscribed polygons with 192, 384, and 768 sides are calculated, 

the value will never equal T. ; 

The length of any curve that is not “infinitely long” can also be esti- 

mated by adapting Archimedes’ method for estimating m1. Suppose we 

have a curve in the plane that connects two points, for example, a curve 

that looks like a large S. We assume, keeping in mind Stevin’s definition 

of number, that the curve has a well-defined length, which we denote 

by L. To obtain a first estimate of L we cannot use inscribed polygons, 

both because the way the curve twists and because the curve has no in- 

side. Instead, we reinterpret Archimedes’ inscribed polygons by think- 

ing of each inscribed polygon not as a polygon but as a collection of line 

segments approximating the circle. And since we know how to calcu- 

late the length of a line segment, we can get an approximation of the 

length of the circle. 

We use this idea of approximating line segments to calculate the 

length of a portion of a parabola; we will choose more and more, 

shorter and shorter line segments at each stage. Archimedes started 

with six line segments, the sides of a hexagon, but we begin more con- 

servatively, with one line segment. The first thing we have to do is view 

the parabola in the Cartesian plane. The parabola is given by the equa- 

tion Y = X?; we will find the length, L, of the parabola that connects the 

points (0, 0) and (1, 1). This may be accomplished by first estimating 

the length by approximating the arc by the line segment connecting 

the points (0, 0) and (1, 1), as on the left below, and then by approximat- 

ing the arc by two line segments, one connecting the points (0, 0) and 

(.5, .25), and another connecting the points (.5, .2 5) and (1, 1), as on the 

right below: 
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FIGURE 11.1. It is possible to approximate the length of the parabola Y = X? between the 

points (0, 0) and (1, 1) by using line segments. On the left, one segment is used, and on the 

right, two segments are used. The more segments used the better the approximation. 

The first segment has length V2, which has an unending decimal repre- 

sentation that begins with the digits 1.41421. The sum of the lengths of 

the two segments on the right is a better approximation of the length 

of the arc; this sum is again an unending decimal but it starts with the 

digits 1.46040. Repeating this process one more time, and estimating 

the length of parabola using four line segments, yields the estimate 

1.47428. 

If we could (somehow) successively double the number of segments 

and produce these sequences of segments at a faster rate, and even 

more unlikely, compute the sum of their lengths at a faster and faster 

rate, we would in the end have calculated L. One of the great accom- 

plishments of Newton and Leibniz is that they showed how this seem- 

ingly impossible task could be accomplished, at least for curves that are 

defined by fairly simple formulas. Instead of taking their approach, we 
want to consider how it could even be imagined to be possible to ob- 
tain these increasingly accurate approximations to what should be the 
length of L. 

ZENO’S PARADOX (REVISITED) 

In Zeno’s thought experiment the Dichotomy, it is impossible for 
anything to move from one position to another, say from A to B, be- 
cause the movement is incremental, and at each step the new incre- 
ment is less than what would be needed to complete the journey. We 
examine this paradox one last time under two different assumptions 
concerning the way in which you move when going from A to B. We 
first assume that you move from halfway point to halfway point and 
take the same amount of time for each step, and second, we assume 
that you travel at a constant rate. For clarity we suppose you are trying 
to move from A to B where those points are ten miles apart. 
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First analysis: We first assume that to move from A to B you must 

take an endless number of steps, and each one requires the same 

amount of time (say one hour). We imagine that you do not linger at 

any of the halfway points, so after moving from one halfway point to 

the next you immediately move to the next one after that. Then the 

following chart illustrates the progress you would make with your first 

five steps: 

STEP NUMBER DISTANCE TRAVELED (inmi) ELAPSED TIME (in hr) 

1 5 1 

2 7Y2 2 

3 83a ye 3 

4 93g 4 

5 9Mh6 5 

What have we discovered? It will take you forever to complete your 

journey because each step takes one hour, and there are an endless 

number of them. To take your first 1 million steps will take 1 million 

hours, or just over 114 years. There is no limit to how much time your 

trip will take; for example, 1 million years after you start you will have 

taken more than 8.7 billion steps, so you would be very, very close to B, 

but not quite there yet. 

Second analysis: If you are moving at the constant rate of five miles 

per hour, then the distance = rate x time formula shows that it will 

take you two hours to travel the ten miles from A to B. But let’s dis- 

sect your motion into increments, and calculate how long it takes you 

to go halfway from A to B, then halfway from that position to B, and 

so on. To move from halfway point to halfway point you will have to 

travel 5 miles, then 2¥2 miles, then 14% miles, and so forth. Since you 

are moving at the constant rate of five miles per hour, your movement 

over these increasingly shorter distances will take less and less time. 

The table below shows your progress over the first five intervals: 

DISTANCE TRAVELED (inmi) ELAPSED TIME (in hr) 

5 a 

7TY.2 42 

83/4 1%, 

9% 1% 

91h, 11/6 
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Moving at the constant rate, your total elapsed time is increasing as 

you move from A to B, but it appears to be getting closer and closer to 

two hours (the time we would expect it to take you to move ten miles 

while traveling at five miles per hour). That is, of course, what happens, 

and the chart is misleading as to the nature of your motion; this was 

precisely Bergson’s complaint (see chapter 3). 

We now take these two views of motion back to the process of re- 

peatedly doubling the number of sides of polygons inscribed in a circle 

and then carry it over to producing more and more, successively shorter 

line segments approximating the curve. If we assume that it takes the 

same amount of time for the polygon to morph from having a particu- 

lar number of sides to twice as many sides, then we are in the situation 

described in our first analysis of motion. However, if we take the second 

point of view, that these successive polygons are produced in increas- 

ingly short intervals of time (just as God created angels in Gregory’s ex- 

ample in chapter 4), then it is possible to produce an unlimited number 

of approximating polygons. 

Recall the simplicity of Gregory’s argument: Assume an arrow is 

shot at a target that is 10 feet away. While the arrow moves from the 

bow to the halfway point, 5 feet from the target, God inscribes a hexa- 

gon inside the circle. While the arrow moves from the position 5 feet 

from the target to the next halfway point, 21/2 feet from the target, God 

doubles the number of sides of the inscribed hexagon and produces 

an inscribed twelve-sided figure. Then, while the arrow moves to the 

next halfway point, God doubles the number of sides of the polygon 

to obtain an inscribed twenty-four-sided figure. By the time the arrow 
reaches the target, it will have moved an unlimited number of shorter 

and shorter distances, and therefore, God will have created an unlim- 
ited number of inscribed polygons (with increasingly more sides). Al- 
though there was no last polygon created by God in this process, this 
sequence of polygons can be visualized as all being contained inside 
the circle and becoming better and better geometric approximations 
to it until the polygons and circle are virtually indistinguishable. (This 
also happens in the first analysis of motion, except that there is an in- 
trinsic limit to how closely the polygons approximate the circle in our 
lifetime or in 1 million years. Just observing the process unfold we 
would not know if it was going to continue or simply stop after the ap- 
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pearance of the 1-millionth polygon. Of course this 1-millionth polygon 
and the circle would be indistinguishable to us. The advantage of the 
second approach is that all of these polygons will have been produced, 
so no matter what magnification we use, the polygons and circle will 

be indistinguishable.) 

A mathematician would say that the sequence of polygons con- 

verges to the circle. What is central to the meaning of this phrase is that 

although no polygon ever equals the circle, the polygons are becoming 

better and better approximations of the circle and there is no limit as 

to how good these approximations can be. This is what also appears to 

be happening when we use more and more, shorter and shorter line 

segments to approximate the parabola. But how do we know that the 

curve at each stage, which consists of many short line segments, is geo- 

metrically approximating the original curve? To understand why these 

curves are indeed better and better approximations to the original 

curve, we need to look more closely at this idea of convergence, and in- 

stead of working with curves we first consider sequences of numbers. 

CONVERGENCE 

In the second table above, the total time that has elapsed as the body 

repeatedly moves halfway from A to Bis, in hours, 1,14/2,1%/4,1%/, 115/16, 

and so forth. Since the body moves through an unlimited number of 

halfway positions, there is no end to this listing of elapsed times. How- 

ever, even though these numbers are becoming larger and larger, they 

are getting closer and closer to the value of 2, and there is no barrier 

between them and 2. Put differently, if we look at the differences, 2 — 

1% = Y2o,2-13/4 = V4, 2-1% = ¥, we see that the differences between 

these numbers are becoming smaller and smaller, and they are ap- 

proaching zero. 

This concept involves two things: a sequence of numbers and a num- 

ber they appear to be converging to. But there is another way to look 

at the sequence that can tell us if it converges to something without 

telling us what it converges to. It is an existence criterion. The intuition 

behind this criterion is that if a sequence is getting closer and closer 

to some number, then the numbers in the sequence must be getting 

closer and closer to each other. In the above example, the numbers are 

all getting closer and closer to 2, and the differences between succes- 



230 | What Is a Number? 

sive terms, 134-12 = Ya, 172-13 = Ye, 1 Ac — 1% = Me, and so forth, 

are getting closer and closer to zero. In this point of view, the numbers 

are converging to something because they are successively changing 

less and less. This means that we know the original numbers converge 

to something, without necessarily knowing what it is. This is a remark- 

able insight into the idea of convergence; it was made by the mathema- 

tician Augustin-Louis Cauchy (1789-1857), and convergence was the 

concept needed in the nineteenth century to provide the theoretical 

basis for Newton’s version of calculus. 

The convergence of a sequence of numbers is fairly easy to under- 

stand because it is possible to tell when two numbers are close to each 

other—their difference will be small, so approximately zero. Trans- 

ferred back to the geometric realm, convergence is harder to describe, 

as there are no easily explained numbers we can associate with “the 

difference between two polygons” or “the difference between two 

curves.” But Cauchy’s idea applied in the geometric realm can help us 

out. We consider this idea in our approximations of both the circle and 

the parabola. 

As the polygons inside the circle develop more and more sides, it is 

clear that once the number of sides is astronomically large, when the 

number of sides is doubled they change very little in shape. If you think 

of a point on one polygon having to move to a new position to become 

a point on the subsequent polygon, it is not too hard to imagine that 

the point does not have to move very far at all. Indeed, with the produc- 
tion of each successive polygon, the points will have to move less and 
less. As was the case with numbers, just knowing that the points on the 
successive polygons are closer and closer together demonstrates that 

these polygons have to converge to something. 

We just happen to know, ahead of time, that these polygons converge 
to the circle. Another point of view is not to think of them as being con- 
tained inside the circle and getting closer and closer to it, but to think 
of this sequence as defining the circle. This is the concept of plenitude, 
which led de Cusa and Bruno to claim that there must exist infinitely 
many worlds, imported into mathematical thinking. Just knowing that 
the polygons form a convergent sequence of geometric objects, in that 
they are geometrically closer and closer together, means that they must 
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converge to something. In this case, the object the polygons converge to 
is the circle; taking this point of view, the sequence of polygons defines 
the circle. 

Similarly, as we use more and more line segments to estimate the 

length of the parabola, when we take one estimate and then obtain 
the next one by using more points, the line segments are increasingly 
close together. The points on the original line segments are very close 

to the points on the successive line segments. Using Cauchy’s ideas, this 

means that the line segments converge to something—in this case the 

original parabola. 

THE KOCH CURVE d 

One reason geometric convergence is such an important notion is 

that it permits mathematicians to study, and even produce, compli- 

cated geometric objects, and mathematicians can study these objects 

by examining the properties of a sequence of simpler geometric ob- 

jects converging to the complicated object. Not all properties of the ob- 

jects in the approximating sequence will carry over to the object they 

converge to. In Archimedes’ example all of the converging objects have 

sides and corners while the circle they converge to is smooth, but the 

polygons’ perimeters helped Archimedes understand the circumfer- 

ence of the circle. 

To see these ideas at play we begin with a curve that was described 

by Niels Fabian Helge von Koch (1870-1924) in 1906, now called the 

Koch curve. We first have to confess that we cannot even draw a Koch 

curve, so complicated is it, but we can describe simpler geometric ob- 

jects that converge to it. The process of constructing these simpler geo- 

metric objects is iteration of the following geometric process: Given a 

line segment, as on the top in Figure 11.2, replace it with the bent seg- 

ment, on the bottom, which is obtained by replacing the middle third 

of the original line segment with two sides of an equilateral triangle. 
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> 
FIGURE 11.2. The first step in developing the Koch curve is to replace the 

middle third of a line segment with a bent segment consisting of 

two segments, each the length of the removed middle third. 

The next curve is obtained by then replacing the middle third of each 

of the four straight segments in the second figure in Figure 11.2 by two 

sides of an equilateral triangle. 

FIGURE 11.3. The process applied to the line segment in Figure 11.2 is 

then applied to each of the four segments in the bent segment. 

If this process is repeated two more times we get the configurations in 

Figure 11.4. " 
FIGURE 11.4. Repeating the process of replacing each straight segment 

with a bent segment leads to successively more jagged curves. 

It is fairly clear that the curve is more jagged after each iteration, but 
its points do not move too much from one iteration to the next. In fact 
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the difference between the fiftieth and fifty-first curve cannot be seen. 
Using our naive understanding of convergence, and appealing to math- 
ematical plenitude, this sequence of curves will converge to some- 
thing—that something is the Koch curve. 

An important observation to make is that in each step a straight 
segment is replaced by a bent segment that will be four-thirds as long 
(because the middle third is replaced by two pieces of that length). 

This tells us something about the Koch curve—it does not have a finite 

length, because if the original segment’s length is one unit, then the 

successive curves have lengths: 

second-curve: 4/3 = 1.333... f 

third curve: 16 = 1.777... 

fourth curve: ®4/27 = 2.370... 

fifth curve: 2561 = 3.1604... 

sixth curve: 1924/243 = 4.213... 

It is possible to show that these numbers are simply becoming larger 

and larger without any bound; they do not form a convergent sequence. 

And although the Koch curve has an infinite length (ie., a nonfinite 

length), it is contained in the small one-by-one square constructed on 

the original segment. So it is bounded and infinite. This means that the 

Koch curve must not look like any curve we have previously seen. The 

Koch curve is so jagged that once we have developed a more formal 

definition of the dimension of a geometric object than we used in chap- 

ter 8, we will see that it is not even one-dimensional. To understand 

this last statement, we reconsider what we mean by the dimension of 

a geometric object. 

NEW WAYS TO THINK ABOUT DIMENSION 

The dimension of an object can be described in two ways that will 

make it possible to calculate the dimension of the Koch curve. Each of 

these notions of dimension relies on a process. One is based on subdi- 

viding the edges of the object in order to produce more (albeit smaller) 

copies of the same shape, and the other is to think about gluing cop- 

ies of the object together to get a single larger copy of the same object. 

These two approaches lead to the same number for the dimension of an 

object, but the second is slightly easier to visualize so we explain it here. 
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In order to calculate the dimension of an object using this approach, 

we have to answer the following, basic question: How many copies 

of a given object are required to produce a larger object of the same 

type? There is some ambiguity in the terms used in this question, so 

we first consider the simplest possible example, a line segment that is 

one inch long, and ask, how many copies of this line segment does it 

take to make a line segment twice as long or three times as long? The 

answer is that two copies of this segment can be used to produce a line 

segment twice as long and three copies of this segment can be used to 

produce a line segment three times as long. 

We can apply these same ideas to a square. We begin with a aniail 

square, for example a square that is one inch by one inch. We need to 

be clear about what it means for a square to be twice as large, or three 

times as large, as a given square. By this we do not mean a square hav- 

ing twice the area, or three times the area, of the original square; we 

mean twice as large, or three times as large, in the sense of magnifica- 

tion. It will take four squares to produce a square twice as large, in this 

sense, and nine squares to produce a square three times as large: 

FIGURE 11.5. Four small squares of equal size may be used to construct a 

square two times as large; nine small squares of equal size may be used 

to construct a square three times as large. 

Next let's see how these constructions reflect what we already be- 
lieve—that a line segment is one-dimensional and that a square is two- 
dimensional. For the line segment we had the correspondence: 

MAGNIFICATION FACTOR NUMBER OF COPIES NEEDED 

2 2 

3 2 

For the square we discovered the correspondence: 

MAGNIFICATION FACTOR NUMBER OF COPIES NEEDED 

2 4 

3 9 
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The dimensions of the line segment and square can then be uncovered 
from an equation that formally defines the dimension of an object: 

(magnification factor)#mension — 

number of copies of objects needed 

Applying this formula to the data we discovered for the line segment 
and the square, we see that, as expected, the line segment is one-di- 

mensional and the square is two-dimensional. (Note that this concept 

of dimension can only be applied to objects that can be constructed out 

of smaller versions of the same object; it cannot be applied to all curves 

or to objects like circles.) i 

We could also use this formula to rediscover that the dimension of 

the cube is three, but instead we move on to an attempt to use it to 

calculate the dimension of the Koch curve. Although the Koch curve 

is defined as the curve obtained through completing the infinite pro- 

cess described above, we can examine what happens at each step of 

that process to develop an understanding of the dimension of the com- 

pleted object. 

We start with a simple part of the Koch curve, the bent segment in 

Figure 11.2, and ask how many copies of this basic piece would it take 

to make a larger piece? To think about the meaning of this question, 

look back at the process by which the geometric approximations of the 

Koch curve were formed. The next curve in the iteration process can be 

imagined to be made up of four copies of the original Koch-segment, 

and this curve is three times as large as the original curve, since it is 

three times as wide and three times as tall. Notice that it is not pos- 

sible to use copies of the original segment to produce a curve of the 

same type that is twice as large; the process of producing a larger curve 

always requires replacing each segment with four segments. Thus 

when the magnification factor is three we require four copies of the 

original segment, and so the dimension of the Koch curve satisfies the 

equation: 

3dimension of Koch curve — 4 

It follows that the dimension of the Koch curve is an unending decimal 

that begins: 1.26185. This means that the Koch curve is so jagged that 

its dimension is larger than one, but less than two. 
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SNOWFLAKES, COASTLINES, AND JACKSON POLLACK 

Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark 

is not smooth, nor does lightning travel in a straight line. 

— Benoit Mandelbrot, The Fractal Geometry of Nature (1982) 

In 1967 the mathematician Benoit Mandelbrot (b. 1924) published 

a paper with the provocative title “How Long Is the Coast of Great Brit- 

ain: Statistical Self Similarity and Fractional Dimension,” wherein he 

suggested that jagged curves, like the Koch curve, might indeed appear 

in nature. Mandelbrot did not suggest that such regularity would be 

discovered, but that under increased magnification, something like the 

coastline of Britain would simply look more and more jagged, as does 

the Koch curve. The measurement of the coastline of Britain would de- 

pend on the length of the ruler used. If the ruler is too long, say one 

mile, then it will not capture the indentations of small coves. The 

shorter the ruler used, the larger and more accurate the measurement. 

Below are the different measurements one would obtain for the length 

of the coastline of Britain if one were to use measuring sticks of differ- 

ent lengths. 

RULER LENGTH (inkm) LENGTH OF COASTLINE (in km) 

500 2,600 
100 3,800 

54 5,770 
17 8,640? 

We can extrapolate from these data that for rulers shorter than 17 kilo- 

meters the coastline’s length would be even longer. 

The complexity of the coastline of Great Britain cannot be deter- 
mined by examining a sequence of increasing lengths; dimension 
measures its complexity. But the notion of dimension discussed above 
is only applicable to mathematically generated fractals, not to existing, 
material curves. However, there is a way to define the dimension of a 
fractal, which relies on the fractal’s being a very complex curve with an 
endless number of twists and turns that can be experimentally deter- 
mined. 

If we imagine looking at the Koch curve through a microscope, it 
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looks jagged whether the magnification scale is ten, one hundred, or 
Jimmy Carter's “thousand billion.” The same holds, to a degree, with 
some physical curves, such as the edge of a snowflake or the coastline 
of Great Britain. The motivation for this third description of dimension 
of a complicated curve is that while it agrees with the previous calcula- 

tion of the dimension of a mathematical fractal, it provides a way to 

measure the dimension of a leaf or a Jackson Pollack painting. 

Briefly, this dimension depends on how jagged the curve is when 

it is viewed under greater and greater magnification. The idea behind 

this concept of dimension, and we are only going to give the idea to in- 

dicate that it is something that could be calculated for a physical object, 

is to begin by covering the curve with a square grid. Then the curve will 

pass through some but not necessarily all of the squares in the gird. 

When smaller squares are used to make the grid, the curve will again 

pass through some of the squares but not all of them. If this process 

is repeated over and over, using smaller and smaller squares, a rela- 

tionship will emerge between the number of squares the curve passes 

through and the size of the squares. The dimension of this curve will be 

an exponent in this relationship. The grid-dimension of the Koch curve 

is 1.269 (close to the precise value obtained above); the grid-dimension 

of an oak leaf is 1.7. 

In 1999 Richard Taylor, Adam Micolich, and David Jonas published an 

article titled “Fractal Expressionism.” The researchers applied this grid 

method not to mathematical curves or to geological formations but to 

some paintings of Jackson Pollack (1912-56). Pollack’s paintings do not 

have fractal-like properties because they are abstract but because of 

Pollack’s painting method. As Taylor, Micolich, and Jonas wrote, “There 

were two revolutionary aspects to the way in which Pollack painted 

and both have the potential to introduce chaos” and lead to fractal pat- 

terns. The first was how Pollack positioned himself in relation to the 

canvas. Pollack placed the blank canvas in a horizontal position and 

he moved his body over the canvas—sometimes suspended above the 

canvas by a harness that allowed him to freely move in different direc- 

tions. Pollack’s body moved like a leaf floating on a river whose position 

changes in response to slight variations in conditions. The second “rev- 

olutionary aspect” of Pollack’s method was not entirely revolutionary, 

but it was unorthodox. Pollack did not use brush strokes but dripped 
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the paint onto the canvas in a continuous flow. This introduced another 

chaotic element into Pollack’s painting, that of fluid flow.’ 

Using the grid method the article’s authors were able to demonstrate 

that, over time, Pollack apparently refined the fluidity his method al- 

lowed, and the fractal dimensions of his paintings increased. 

PAINTING DATE FRACTAL DIMENSION 

Untitled: Composition with 

Pouring II 1943 about 1 

Number 14 1948 1.45 

Autumn Rhythm: Number 30 1950 1.67 

Blue Poles: Number 11 LOSZ. 172? 

Although you cannot determine the fractal dimension of a curve just 

by looking at it, Pollack’s paintings do seem to become increasingly 

complex over time. 

INFINITY 

Earlier in this chapter, the Koch curve was expressed as the limit of a 

convergent sequence of geometric curves. And each of these curves had 

to be constructed, so for the Koch curve to have any meaning we have 

to be able to construct, or imagine constructing, the unlimited number 

of geometric objects that converge to it. Of course this cannot be done 

physically. But by imagining these constructions being completed over 

the increasingly shorter time intervals, as an object moves from one 

halfway point to another halfway point in traveling from A to B, we can 

at least have an idea of how this process could be completed. 

The acceptance of the completion of certain infinite processes is cen- 
tral to the modern theory of mathematical infinity. What is at stake is 
how to answer the question 

What does it mean to say that a collection of 

mathematical objects is infinite? 

We already know Aristotle’s response, a collection is infinite if no mat- 
ter how much of the collection has been contained or described, some 
if it will have been left out. According to this definition we have already 
encountered several collections that are potentially infinite by addition, 
for example the counting numbers, 1, 2, 3, 4,... and the even counting 
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numbers 2, 4, 6, 8.... We can describe other endless collections, such as 

the collection of all decimals consisting only of nines after their deci- 

mal point, .9, .99, .999, and so forth, or of all decimals that start with 

a nine after the decimal point, .91, .997, .9084, and so forth. But if we 

imagine these collections as being completed, then we run up against 

the paradoxes of having greater and lesser infinities. In the fourteenth 

century Gregory of Rimini saw no difficulties with this containment 

of one infinite collection inside another, but before the late nineteenth 

century most mathematicians were at least uncomfortable with these 

violations of the whole is greater than the part. 

Georg Cantor (1845-1919) overcame the paradoxes following from 

the assumption that the whole is greater than ‘the part, by appealing 

to the completion of infinite processes to develop a convincing theory 

of mathematical infinity. It was Cantor’s theory that led to Russell's al- 

lusion to infinite numbers at the beginning of this chapter. Central to 

Cantor’s theory is a reevaluation of what it means to count objects. 

There is an important, almost hidden, idea in our calling the num- 

bers 1, 2, 3,...the counting numbers that was not fully appreciated 

until the nineteenth century. This is one of the many examples in the 

history of ideas where some important principle was not noticed until 

someone pointed it out, and once the principle has been articulated, 

it becomes difficult to understand why it was not always understood. 

Ideas of this sort can prove to be the most fertile of all, and the one im- 

plicit in our notion of counting has led to a satisfactory understanding 

of the mathematically infinite. 

, We begin with an imaginary tale. Suppose that you are assigned the 

task of counting the number of animals in a room. As soon as you walk 

into the room you realize that it is swarming with cats. There are cats 

crawling over all of the furniture, swinging from the drapes, and chas- 

ing each other in furious circles around the room's perimeter. So you 

start counting, the orange tabby sleeping in the chandelier is cat num- 

ber 1; the long-haired black cat staring into the corner is cat number 2; 

the two white cats chasing each other up and down the drapes are cats 

number 3 and 4. By the time you have reached cat number 17, another 

orange tabby, you realize that cat number 1, the orange tabby that had 

been sleeping in the chandelier, has disappeared. So you don't know if 

cat number 1 and cat number 17 are the same orange tabby or not, and 
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since there are easily a dozen orange tabbies in the room, you decide to 

take another approach. 

You leave the room, fighting off the cats trying to get out, and re- 

trieve a roll of masking tape and a marking pen. You then return to the 

room with your tape and pen, determined to obtain an accurate count 

of the cats in the room. You tear off a piece of tape, write a 1 on it and 

stick it to the head of the cat that is already sleeping on your foot. Then 

you peel off another piece of tape, write a 2 on it, and stick it to the head 

of another cat. You continue this process, labeling cats 3, then 4, and so 

forth. Amazingly, not one of the cats tries to remove the tape from its 

head. You finally tape the number 56 to the black cat inside the empty 

aquarium and look around the room. Every cat has a piece of tape on 

its head. You know that you were careful neither to skip any number 

nor to use any number twice when you were writing numbers on the 

pieces of tape. Using the hidden idea, of which you are totally unaware, 

you conclude that there are 56 cats in the room. 

The hidden idea is what mathematicians have come to call a one- 

to-one correspondence. We will elaborate on this concept when we for- 

malize our definition of a mathematically infinite collection, but for 

now let’s just see where it is hidden in your cat-counting nightmare. 

What you have effectively done by placing the consecutively numbered 

pieces of tape on the cats’ heads is to find a way to associate the list of 
numbers 1 through 56 with the collection of cats in such a way that 
each number corresponds to one and only one cat and no cat has been 
missed. Such an association between the collection of numbers and the 
collection of cats is a one-to-one correspondence between the collec- 
tions. To understand the power of this simple concept in understand- 
ing quantity abstractly, let’s briefly return to your attempt to count the 
cats. 

Suppose that when you leave the room to retrieve the tape and 
marking pen, you can only find tape. This means that you cannot write 
any numbers on the pieces of tape. It is still possible to count the cats 
in the room, it will simply take an additional step. Upon reentering the 
room, you tear a piece of tape from the roll and stick it onto a randomly 
chosen cat’s head. You then tear another piece of tape from the roll and 
stick it onto another cat’s head, and then you stick a piece of tape to yet 
another cat’s head. You continue this process until every cat has a piece 
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of tape stuck to its head. Satisfied that you did not miss any cats, you 
reverse this process and remove the pieces of tape from each and every 

cat’s head and leave the room holding all of the pieces. You clearly do 

not know how many cats are in the room, but you do know that there 

is a one-to-one correspondence between the cats in the room and the 

pieces of tape in your hand. (This is because every piece of tape corre- 

sponds to one and only one cat, and every cat corresponds to one and 

only one piece of tape.) If you want to determine the number of cats 

in the room, you simply need to count the pieces of tape you have. In 

other words, to find out how many cats there are in the room, you do 

not have to count the cats; you only need to count the pieces of tape. 

The significance of establishing a one-to-one correspondence be- 

tween the items in two collections is that it is possible to conclude that 

the two collections are the same size without having to assign a num- 

ber to these quantities. This is precisely the idea needed to compare in- 

finities. 

SET THEORY 

We are now able to reconsider an earlier paradox of counting. If we 

start to count the even counting numbers, 2, 4, 6, and so forth, the be- 

ginning of our count looks as follows: 

eae eee 3 2 APP ON” HOms. 

Cees. On Ome Oar. 

FIGURE 11.6. A pairing between the counting numbers and the even counting numbers. 

This was seen to be a paradox because it appears to indicate that there 

are just as many even counting numbers as there are counting num- 

bers. And as the collection of even numbers is contained in the collec- 

tion of counting numbers, this correspondence appears to violate the 

fundamental principle that the whole is greater than the part. 

But if we want to admit the existence of infinite collections into 

mathematics, then the correspondence above violates the extension of 

the principle the whole is greater than the part to infinite collections, 
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that there cannot exist a greater and a lesser infinity. Thus, following 

Aristotle, we could deftly dispose of this paradox by allowing only po- 

tentially infinite collections, even in the world of mathematical objects 

and relationships. Still respecting Aristotelian ideas, we restate Aristo- 

tle’s definition of a collection being potentially infinite by addition us- 

ing the concept of a one-to-one correspondence as: 

A collection is potentially infinite by addition if it cannot be 

put into a one-to-one correspondence with any finite collection of 

counting numbers, such as 1,2,...,7 or1,2,...,981. 

But such a definition does not tell us anything new. It simply says that 
a collection is potentially infinite by addition if it is unending. The way 
to give a positive formulation for a collection to be infinite, and not just 
potentially infinite, is to allow for the completion of infinite processes. 
This means that we want to view the above correspondence, between 
the counting numbers and the even counting numbers, as a completed 
pairing. And to arrive at this, we need a somewhat more formal notion 
of a collection. 

One of the most significant conceptual leaps in the history of math- 
ematics was taken in the nineteenth century when mathematicians 
gave a precise definition of a collection of objects, and so provided the 
language for discussing the whole and the part, which Gregory of Ri- 
mini did not provide. What mathematicians uncovered is the concept 
of a set; a concept so all-encompassing that it led many mathemati- 
cians and philosophers to declare that mathematics is nothing but 
the study of sets. The concept of a set is both straightforward and ulti- 
mately paradoxical. The most common definition is that a “set is a col- 
lection of objects.” 

Cantor used the concept of a set in order to make sense of the math- 
ematically infinite, and Cantor defined a set as “any collection into a 
whole M of definite and separate objects m of our intuition or thought.”® 
Implicit in Cantor’s vague but more useful definition of a set is that if 
Wwe are, somehow, presented with a set, M, and an object, m, we must 
be able to determine whether or not m is one of the objects in M. This 
is the law of the excluded middle in disguise. If our set M is defined to 
be the collection of all objects that satisfy some property P, then M is 
only unambiguously described if, for any object under consideration, 
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P either holds for the object, in which case that object is in M, or P does 

not hold for the object, in which case the object is not in M. This concep- 

tion of a set is problematic, ultimately leading to paradoxes that under- 

mined the late nineteenth-century and early twentieth-century hopes 

to reduce all of mathematics to logic and set theory. But some version 

of the idea that a set is a collection of objects, which is defined in sucha 

way that we can always tell whether or not a particular object is in the 

set, remains. 

The concept of a set allows us to accomplish what Augustine said 

only God could do and what we based on process in the last chapter—it 

permits us to see, or at least speak of, an infinite collection as a com- 

pleted whole. We can think of the counting numbers 1, 2,3,4...as an 

endless list, or we can imagine collecting them all together into a single 

set. We simply let W be the set whose elements are all of the count- 

ing numbers. W contains nothing more and nothing less than all of the 

counting numbers. The question of whether or not W has been com- 

pleted is meaningless; if an object is a counting number it is in W, and if 

an object is not a counting number it is not in W. The set Whas the same 

sort of existence of any line segment, angle, or pair of parallel lines. 

A DEFINITION OF THE MATHEMATICALLY INFINITE 

Using the language of sets we can now give a provisional, positive 

definition of an infinite set: 

A set is infinite if it can be put into a one-to-one correspondence 

with the set of all counting numbers. 

This definition of an infinite set needs to be modified, but it is an im- 

portant first step. What is so important about this definition is that 

it takes the existence of the one-to-one correspondence between the 

counting numbers and the even counting numbers, which has been 

seen to be paradoxical, as the justification of the claim that the set of all 

even counting numbers is infinite. 

If this were the only progress Cantor made toward understanding 

the mathematically infinite, we would not still be discussing his work 

well over a century later. All we have done so far is to simply extend 

Aristotle’s definition of potentially infinite by addition to infinite by 

allowing ourselves to imagine that we have completed the listing of 
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all of the elements in a particular collection. But Cantor did more than 

this with his theory of sets and use of one-to-one correspondences, and 

to understand Cantor's achievement, we return to the one-to-one cor- 

respondence between the collection of all counting numbers and the 

collection of even counting numbers. 

We viewed this correspondence as a process of sequentially asso- 
ciating the counting numbers with the even counting numbers and 
imagined that this process could be completed. All that we needed was 
an unambiguous way to know which counting number corresponds 
to which even counting number. The association could also be made 
mathematically formal: A counting number n corresponds to an even 
counting number 2 x n. Having this rule would allow us to represent 
this correspondence as 

CMS 4 ae SO: Wore 1 

2) 4 Oe Omen OMmie Ree O OCT. 

FIGURE 11.7.A mathematical description of the one-to-one correspondence 
between all of the counting numbers and all of the even counting numbers. 

But some one-to-one correspondences are harder to describe by amath- 
ematical rule, so we rely on our intuition that the correspondence is 
unambiguous and could, if necessary, be continued indefinitely. A few 
examples will suffice to illustrate this point. 

Let’s start with the set obtained by taking the counting numbers 1, 2, 
3,...and adding in 0, so the set is 0, 1, 2, 3, 4.... This is clearly an infinite 
set, but can we prove it is infinite by finding a one-to-one correspon- 
dence between this new set and the set of all counting numbers? We 
start with a list of all counting numbers above a list of the numbers 

0,1, 2... Ube CaS Aries Br IBin ges 

Oe et, a Gee 
FIGURE 11.8. A one-to-one correspondence between the collection of all counting 

numbers and the collection of all counting numbers with zero included. 
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The arrows describe a one-to-one correspondence between these two 

collections, and so, according to the definition of an infinite set, the set 

containing the numbers 0, 1, 2, 3,... is an infinite set. 

It is possible to adopt this visualization idea to show that the set of 

all integers, ...,—2,~1,0,1,2,...and the set of counting numbers can be 

put into a one-to-one correspondence. The idea here is slightly differ- 

ent in that we do not list both collections, but only the collection of all 

positive and negative integers. We then describe how to systematically 

associate them with the counting numbers. We begin by listing the in- 

tegers in two rows, and we count them by following the arrows (so, for 

example, 0 is the first integer, 1 is the second integer, and —1 is the third 

integer): Aaa Shick: 

1 2 3 4 5 

FIGURE 11.9. A systematic way to count the collection of all positive 

and negative whole numbers. The count follows the arrows: zero is first; 

one is second; minus one is third, and so forth. 

Following the arrows yields the correspondence 

AGAR S eA Fe EO EY) Ge ei 

OPEN Riea E20 2 Bes=8 Ars 

FIGURE 11.10. The one-to-one correspondence between the counting 

numbers and the collection of all positive and negative whole 

numbers emerging from the counting process in Figure 11.9. 

A subtler listing shows that a one-to-one correspondence can also be 

found between the collection of counting numbers and the collection 

of all fractions. Since the collection of all fractions is clearly an infinite 

one, our definition of an infinite set—as a set having a one-to-one cor- 

respondence with the collection of counting numbers—seems to be 

sound. However, the next example reveals our provisional definition’s 

shortcomings. 
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We consider the set of all decimals between 0 and 1, for example .2, 

406, and .2626262626. ... This is clearly an unending set, so it should 

be infinite, according to our definition of an infinite collection above. So 

assume that there is a one-to-one correspondence between all of these 

decimals and the counting numbers. For example, this correspondence 

might start out as 

1. <-————» 783656392758 

2. <}— > 13131313... 

3. <}-—— > 7362527239373 

4. <4-———_ .00000000000000000001 

FIGURE 11.11. The beginning of a possible counting of all decimals between O and 1. 

We claim that any such list must miss some decimal between 0 and 1. 
Here is the argument: Suppose we have a listing of all of the numbers 
between 0 and 1, perhaps beginning as the above list does. It is then 
possible to describe a number, B, which is between 0 and 1, and cannot 
possibly be on the list. We describe B by successively describing each of 
its decimal digits. 

Let B have its first decimal digit be different from the first decimal 
digit of the number labeled 1, so the first decimal digit of B is something 
other than 7. Let it be 8, so B begins: B = .8. Next add a second decimal 
digit to B so it cannot possibly equal the second number on the sup- 
posedly complete list. This means that we need to choose the second 
decimal digit of 8 to be something other than the second decimal digit 
of the decimal numbered 2, so something other than 3, for example, 
7,s0 B now has two decimal digits: B = .87. Next choose the third deci- 
mal digit of 8 to be something other than the third decimal digit of the 
decimal numbered 3, so something other than 6, for example, 5. So B’s 
decimal expansion starts out B = .875, which means that it cannot be 
equal to any of the first three numbers on our list. Continue to choose 
the decimal digits of B by the rule. Choose B’s kth decimal digit so that 
it is not equal to the kth decimal digit of the number on our list that is 
numbered k. Assuming the completion of this infinite process, we will 
have found a number B not on the list. 

This process works no matter whatever the initial list looks like. 
Thus, no such list can ever contain all of the decimals between 0 and 1. 
There are two possible conclusions: 
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1. the collection of decimals between 0 and 1 is not an infinite set, or 

2. our definition of an infinite set is not sufficient. 

Since we would like to let any nonfinite set be infinite (since any non- 

finite set is infinite in the Aristotelian sense), the first possibility must 

be rejected. Thus we need to reexamine our provisional definition of an 

infinite set to obtain one that shows that both the collection of all even 

counting numbers and the collection of decimals between 0 and 1 are 

infinite sets. 

A PARADOXICAL DEFINITION OF AN INFINITE SET 

Using an idea going back to Gregory of Rimini, we say that a set is 

infinite if it seems to violate the principle that the whole is greater than 

the part. In our language: 

A set is infinite if it can be put into a one-to-one 

correspondence with a part of itself. 

According to this definition, if we can concoct a seemingly paradoxical 

one-to-one correspondence between a set and a collection contained in 

the set, as we did between the counting numbers and the even count- 

ing numbers, then the set must be infinite. Clearly under this definition 

the counting numbers are infinite. Though we will not prove this next 

statement, there is a one-to-one correspondence between the decimals 

between 0 and 1 and the collection of all real numbers. Thus, under 

this definition of an infinite set, the collection of all real numbers is 

infinite. 

Cantor showed that this definition leads to different sizes of infini- 

ties. We only describe two of them. To begin with there are all of those 

infinite sets that can be put into a one-to-one correspondence with 

the set of counting numbers. Yet there are many entirely ordinary in- 

finite sets that cannot be put into a one-to-one correspondence with 

the counting numbers; many of these seem to have a one-to-one cor- 

respondence with the real numbers. So these two sizes of infinity are 

the size of the collection of all counting numbers and the size of the 

collection of all real numbers. 

A single symbol, such as ~ obscures this difference, so Cantor intro- 

duced two new infinity symbols, &, and c, for the first and second of 
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these infinities, respectively. These symbols are not numbers in our ear- 

lier senses: They are neither geometric magnitudes nor algebraic num- 
bers. These are precisely two of the infinite numbers Russell referred to 
in the quote that opened this chapter. Russell's reason for calling these 
entities numbers is based entirely on their utility; just as 7 represents 
the number of days in the week, and 1,000,000,000,000 (1,000 billion) 

the possible number of stars in Jimmy Carter’s cosmos: X , represents 
the number of counting numbers and c the number of real numbers. 

If we accept X, and c as numbers, then Russell’s claim that it is not 
true “that a number is increased by adding one to it” makes sense. 
Looking back at the counting numbers, we saw that when we added 
one more number to the set (we added 0), the new and old set can be 
put into a one-to-one correspondence with each other. Thus, they both 
have a cardinality of &,. Similarly adding another element to the real 
numbers, such as V-1, will not change their cardinality one iota. 

Cantor went further than the collection of counting numbers, giving 
rise to X,, and the collection of real numbers, giving rise to c. He proved 
that there is an unending tower of larger and larger infinities. In this 
sense, the counting numbers are the smallest infinite set. We will not 
explain how Cantor moved beyond the real numbers, but once he de- 
scribed this process, he produced larger and larger infinities simply by 
iterating it. The hierarchy of infinities is endless. 

POSTSCRIPT 

[It] is just as impossible to get to essence by accumulating accidents as to reach 1 by 
adding figures to the right of 0.99. 

— Sartre, The Emotions: Outline of a Theory (1948) 

Jean-Paul Sartre’s claim that it is impossible to “reach 1” by append- 
ing more nines to the decimal .99 or .999999 or even 999999999999 is 
correct, because implicit in his assertion is the assumption that some- 
one, or something, will physically write each of those nines. It seems 
reasonable to extrapolate from this interpretation that Sartre (1905- 
80) is correct and that it is impossible to ever “reach 1” using nines. 
This extrapolation is both correct and incorrect, and this dichotomy de- 
pends on whether we reject or accept the completion of certain infinite 
processes. If we are going to allow for the completion of infinite pro- 
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cesses, then it is fair to try to understand an unending decimal, such as 

999 ...., where there is an unending sequence of 9s to the right of the 

decimal point. Before we address this, let us reconsider what we even 

mean by a decimal. 

Consider the decimal .234, which seems simple enough. To under- 

stand the meaning of this decimal, in Greek terms, we need to see it 

as a ratio of two whole numbers. Since each position after the decimal 

point has a special meaning, it is possible to translate the symbols .234 

back into the standard fraction notation. In any decimal expansion of a 

number, the first position after the decimal point represents a number 

of one-tenths; the second position after the decimal point represents a 

number of one-hundredths; the third position after the decimal point 

represents the number of one-thousandths; and so on. Thus .234 can be 

expressed as a sum of three fractions: 

234 = (2 x Yao) + (3 x Yoo) + (4 x 4,000) = 2/0 + 00 + 4/,000. 

A common denominator for these three fractions is 1,000 so .234 = 

234/ 000. 

The reverse process, of beginning with a fraction and finding a 

decimal that represents it, might seem to be a daunting task. What it 

entails is starting with a fraction, such as 71/so and expressing it as a 

sum of fractions whose denominators are 10, 100, 1,000, 10,000, and so 

forth. Fortunately this is a relatively easy process; it involves perform- 

ing a division of the denominator of the fraction into the numerator. 

This process is not important here, but what it implies is important. 

The fraction 21/so = .42, a nice, finite decimal, because 

21/sq = 42/100 = 4% 00 + 2/oo = 4/00 + 2/100 = .42. 

But not all numbers are so easily expressed as a decimal because 

not all fractions are equivalent to a fraction whose denominator is a 

power of ten. For example we cannot have any equality of fractions 

1/3 = N/,000,000, or any other denominator that is a 1 followed only by 

zeros. This means that 1/3 cannot be expressed as a sum of a few frac- 

tions whose denominators are powers of ten. If we try the long-division 

approach, dividing the denominator into the numerator, we discover 

that the decimal for 1/3 begins .33333 and the process never ends. Thus, 

the decimal expansion for 1/3 would have to have an unlimited number 
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of 3s after the decimal point. If we want to have representations for 

all geometric magnitudes, we have to accept as a decimal something 

we cannot even write down: decimals with an unlimited number of 

nonzero digits. Thus, we are left with the following dilemma concern- 

ing Stevin’s decimal notation, which further argues for the acceptance 

of complete infinite processes: If we want all simple fractions to have 

decimal representations we have to accept the completion of infinite 
processes. And, in a slight digression, we explain why accepting unend- 

ing decimals implies that 1 = .99999999.... 

There are several ways to see that 1 and .999 ..., where in every po- 
sition past the decimal point we have a 9, represent the same length. 
Perhaps the most direct way is to use the idea that if two numbers are 
not equal then there must be some number between them, for exam- 
ple their average. (If we conceive of numbers as being points on the real 
line this is the statement that the continuum is infinite by division.) So 
we assume that .999 ... and 1 are different and then take an arbitrary 
number between them, which we denote byt: 

.9999...<t<1 

The idea is to try to understand what the decimal representation for 
t must look like. Since .9 < .999...and .999...< t, we know that: .9 <t 
and so .9<t<1. This inequality tells us that the first number after the 
decimal place in t will be a 9, so t = .9xxxxxx. Next, we use the fact that 
.99 < .999 ... to obtain: .99 <t <1, and so the second number after the 
decimal point in t is also a 9, ie., t = 99xxxxx. Continuing in this way 
we may repeat this process to find that the third decimal digit of tisa 
9, and the fourth decimal digit of t is 9, and as far as we go each of t’s 
decimal digits will be a 9. Stated slightly differently: t is a decimal in 
which every decimal digit is a 9. Thus t and .999 ... are indistinguish- 
able, so there is no such t strictly between 1 and .999.... That is, these 
two numbers must be equal. 



The year is 2002 and here we are at a symposium 

on Foundations and the Ontological Quest. The first 

thing to say is how bleak the present situation is. In 

foundational studies of mathematics ... we have 

been stuck for seventy years; despite numerous books, 

articles, and meetings there has been no real progress. 

— Edward Nelson, “Syntax and Semantics” (2002) 

As mathematicians realized that geometry is just as likely to be non- 

Euclidean as Euclidean, that numbers could transcend both algebraic 

and geometric definitions, that there is an unending hierarchy of math- 

ematical infinities, and that a curve could be bounded and have infinite 

length and even have a dimension that defies intuition, they began to 

reexamine the most fundamental aspects of their enterprise. Late in 

the nineteenth century and early in the twentieth century, mathema- 

ticians again sought to answer a question that had plagued the Py- 

thagoreans, medieval atomists, Gregory of Rimini, and Gauss: What are 

mathematical truths, and how do we find them? 

We begin with a more formal version of the first part of this ques- 

tion: 

What does it mean for a mathematical statement to be true? 

The most easily understood definition of the truth of a statement is one 

derived from Aristotle: 

The truth of a sentence consists in its agreement with reality. 

The sentence “the moon is made of cheese” is true if it happens to be 

the case that the moon is made of cheese. This statement’s truth can be 

empirically verified, at least in theory. Transferring this naive notion of 

truth into the realm of mathematics presented mathematicians with 

a serious difficulty. It is not clear that there is a reality against which a 
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statement can be compared, and if there is such a reality it may not be 

immediately accessible. 

The twentieth-century philosopher W. V. Quine (1908-2000) began 
his influential article on ontology “On What There Is” by considering 
the question, “What is there?” This question covers a multitude of spe- 
cial cases, each of which examines a different aspect of reality or faith. 
Quine knew that each of the questions Do angels exist? Do unicorns 
exist? Do trees exist? and Do parallel lines exist? presupposes a differ- 
ent sort of existence. But Quine’s answer to his initial question covered 
all of these cases, and was both absolutely correct and not at all en- 
lightening; Quine wrote, this question “can be answered ...in a word— 
‘Everything’—and everyone will accept this answer as true. However 
... there remains room for disagreement over cases.” 

Mathematicians have not always given the same answer to the ques- 
tions “do mathematical objects exist” or the assumption-laden “which 
mathematical objects exist?” They have certainly disagreed over cases. 
This is not the place to enter into a detailed discussion of the philoso- 
phy of mathematics, but in order to understand the modern conception 
of mathematical beauty and mathematical truth, a certain familiarity 
with three early twentieth-century philosophies of mathematics is in- 
formative. Put simply, these three views of mathematics can be distin- 
guished by how they answer the question, which mathematical objects 
exist? The three answers, which are the basis for these philosophies, are 
all of them; some of them; and none of them. The mathematicians who 
would have given these answers are known, respectively, as logicists, 
intuitionists, and formalists. 

Later in his article, Quine wrote, “Classical mathematics . . . is up to 
its neck in commitments to an ontology of abstract entities,” and he 
gave the example of a prime number greater than one million.? Both 
the logicists and intuitionists believed such a prime number existed, 
but that is just about the limit of their agreement. The logicists, as rep- 
resented by Bertrand Russell and Alfred Whitehead (1861-1947), be- 
lieved there was a Platonic realm in'which mathematical objects ex- 
ist; the intuitionists, as represented by the Dutch mathematician L. E. J. 
Brouwer (1881-1966), believed that the integers were the only math- 
ematical objects whose existence was assured. As the mathematician 
Leopold Kronecker (1823-91) is widely quoted as having said, “God 
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made the whole numbers, all the rest is the work of man.”? (Kronecker 

so fiercely held this philosophy that he vigorously opposed Cantor’s at- 

tempt to obtain a teaching position at the University of Berlin because 

Cantor’s theory of infinite sets required the completion of infinite pro- 

cesses.) 

The formalist point of view was decidedly not Platonic. The founder 

of this school was David Hilbert (1862-1943) who has been quoted as 

saying that mathematics “is nothing more than a game played accord- 

ing to certain simple rules with meaningless marks on paper.”* The for- 

malist point of view was that the game being played was the deduction 

of theorems from axioms, without regard to the content of the axioms. 

We may, if we so choose, give mathematical meaning to the symbols 

used, but that is not necessary. 

With this brief overview of the three main schools of mathematical 

thought we return to the original question: 

What does it mean for a mathematical statement to be true? 

For mathematicians believing there is a Platonic realm of mathemati- 

cal existence for all mathematical objects, mathematics is discovered, so 

there is a simple definition of mathematical truth based on Aristotle’s: 

A mathematical statement is true if it 

agrees with the Platonic reality. 

With this definition, truth can be found, at least in principle, in two 

ways—either through revelation or analysis. 

But for both the intuitionists and formalists, mathematics is not dis- 

covered so much as it is invented. For the intuitionists, this invention is 

based on constructing new objects from the integers, for example the 

rational numbers or algebraic numbers; for the formalists, this inven- 

tion is based on the ideas we attach to our symbols. For both intuition- 

ists and formalists, the Aristotelian definition of truth is inappropri- 

ate. And having been misled by their intuitions about parallel lines 

and self-evident truths such as “the whole is greater than the part,” all 

mathematicians were hesitant to accept revealed truths, or at least hes- 

itant to admit that they accepted revealed truths. So mathematicians 

had a choice—they could, as some chose to do, endlessly debate the ex- 

istence, or nonexistence, of mathematical objects, or they could settle 
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on an operational definition of mathematical truth. The definition of 

truth they settled on is the same one that is implicit in Euclid’s presen- 

tation of geometry: 

A mathematical statement is true if it can be derived 

(using commonly accepted principles of argumentation) from 

mathematical statements that are already known to be true. 

Although mathematicians might quibble about which statements are 

“already known to be true” and about the “commonly accepted prin- 
ciples of argumentation,” they generally accept this operational defini- 

tion of a mathematical truth. 

Alas, there are several intrinsic, logical difficulties with this defini- 
tion of mathematical truth, one concerning the rules of logic that are 
among the “commonly accepted principles of argumentation” and an- 
other concerning the nature of all axiomatic, deductive systems. The 
first of these could be said to be linguistic: It is the problem of formal- 
izing deductive rules. Indeed this difficulty was part of what drove 
Russell, Whitehead, and Hilbert to formalize the rules of inference. An 
example of this difficulty was illustrated in Borges’ “Avatars of the Tor- 
toise,” where he attributed it to Lewis Carroll (1832-98). Borges wrote 
that at the end of their “interminable” race, in Zeno’s paradox Achilles 
and the Tortoise, the two competitors begin to discuss geometry: 

They study this lucid reasoning: 

a) Two things equal to a third are equal to one another. 
b) The two sides of this triangle are equal to MN. 
c) The two sides of this triangle are equal to one another. 

The tortoise accepts the premises a and b, but denies that they 
justify the conclusion. He has Achilles interpolate a hypothetical 
proposition: 

a) Two things equal to a third are equal to one another. 
b) The two sides of this triangle are equal to MN. 
c) Ifa and bare valid, z is valid. 

z) The two sides of this triangle are equal to one other. 

Having made this brief clarification, the tortoise accepts the 
validity of a, b and c, but not of z. Achilles, indignant, interpolates: 
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d) if a,b and care valid, z is valid. 

And then, now with a certain resignation: 

e) Ifa, b,c and d are valid, z is valid’ 

Achilles cannot win this debate. If the tortoise chooses not to accept 

the first use of modus ponens, no single, additional statement will ever 

satisfy him. Achilles will be forced into an infinite regression of addi- 

tional logical axioms. 

This is not an idle point; indeed, the leading twentieth-century pro- 

ponent of intuitionism, Brouwer, did not accept one commonly accepted 

principle of argumentation, proof by contradiction, because it was not 

constructive. Brouwer believed that a mathematical object should be 

accepted only if it could be constructed, or found, in a finite number 

of steps. To give but one example of a number Russell and Whitehead 

would accept and Brouwer would not, we use the decimal expansion 

for mt. Since tt is not a rational number, its expression as a decimal is 

unending and never settles into a repeating pattern—somewhere in 

its decimal expansion tt may or may not contain the consecutive digits 

123456789. We let k denote the number of decimal digits of m before 

this sequence of numbers appears. If it never appears we let k be 0. So 

k is either an even counting number, an odd counting number, or 0. Us- 

ing k, we let P = (-1)*. Since k is either even, odd, or 0, the formula for P 

tells us that it is either +1 or -1. Brouwer would not accept the existence 

of the number P, unless you could determine the value k. And if the 

sequence 123456789 happens never to appear in m, then k cannot be 

determined in a finite number of steps. 

Nonetheless, for the rest of this chapter we will assume that every- 

one accepts the same deductive procedures, because the other difficul- 

ties with our operational definition of mathematical truth are more 

serious—they show that mathematical certainty cannot be obtained 

through the deductive method, even if everyone were to agree on a 

common list of axioms and rules of logic. 

CONSISTENCY AND COMPLETENESS 

The discovery/invention of non-Euclidean geometry led mathemati- 

cians to scrutinize Euclid’s Elements even more closely than they had 

before. Over time, mathematicians realized that Euclid had employed 
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some axioms without either stating them or acknowledging that he 

was not stating them. We give but one example: A line segment that 

crosses one side of a triangle, not at a vertex, must, when extended, 

cross another side of the triangle. When this assertion is illustrated 

(Figure 12.1) it seems to be obvious. 

FIGURE 12.1.An example of a seemingly obvious geometric truth that 

cannot be deduced from Euclid’s axioms: A line that intersects one side of a 

triangle, not at a vertex, must intersect the triangle at another point. 

However, this result cannot be deduced from Euclid’s postulates and 
definitions. The formalist mathematician Hilbert provided a new set 
of axioms for Euclidean geometry. In Hilbert’s scheme (there have been 
others) Euclidean geometry rests on twenty-one axioms. These include 
the one above, as well as others concerning betweenness and connect- 
edness. 

Hilbert’s understanding of the meaning of his axioms of geome- 
try was not the same as Euclid’s. For Euclid, axioms were self-evident 
truths about geometry that were based on our experience with physi- 
cal space; for Hilbert, they were the beginning point for the deduction 
of new results that were logical consequences of the axioms. Hilbert 
did not claim his axioms necessarily had anything in common with 
our assumptions about the geometry of our world; they were simply 
the starting assumptions for one of an unlimited number of possible 
mathematical systems. This is the view Hilbert expressed when he said 
that mathematics “is nothing more than a game played according to 
certain simple rules with meaningless marks on paper.” 

But Hilbert should not be viewed as someone who thought math- 
ematics was meaningless; he just felt that the only certainty we could 
have would come from formally deducing results from clearly stated 
axioms (without regard to the mathematical intuitions that led to the 
axioms in the first place). In Hilbert’s view, the most important prop- 
erty for a list of axioms is not that it corresponds to some mathematical 
reality, whose existence he rejected, but that the results deduced from 
the axioms on the list should not contradict one another. This is the no- 
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tion of the consistency of a set of axioms; it is the idea that there is not 

embedded deep within the list of axioms some contradictory assump- 

tions that will eventually lead to contradictory theorems. 

This is an important place where Hilbert differs from more Pla- 

tonically inclined mathematicians. For Platonists, such as Russell and 

Whitehead, an axiom is true if, harking back to Aristotle’s definition of 

truth, “it agrees with (the Platonic) reality.” If all of the axioms are true, 

then any statements deduced from them will be true, and so the list of 

axioms will automatically be consistent. They believed that there could 

not be any contradictory results or relations in the Platonic realm. But 

Platonically inclined mathematicians do not have any way to check 

the validity of what are perceived to be self-evident truths, and so they 

too sought to establish the consistency of their axioms. If their axioms 

were consistent, they, at least possibly, could be true. 

Consistency is not the only property Platonic mathematicians ex- 

pect of their system of axioms. These axioms should also be diverse 

enough to allow for the eventual deduction of all truths about the 

realm of mathematics. This attribute is called the completeness of the 

list of axioms. Hilbert was not overly concerned with the completeness 

of his axiomization of Euclidean geometry since, for him, the true state- 

ments are those, and only those, that can be deduced from the axioms. 

Completeness was the original goal of the logicist program. Employ- 

ing the concept of set in a fundamental way, Russell and Whitehead 

sought to base mathematics on logic—they even sought to reduce 

mathematics to logic. Although Russell and Whitehead were both Pla- 

tonists, they gave definitions for mathematical notions in terms of sets. 

It took them many pages to define the number “one.” From these ba- 

sic definitions, Russell and Whitehead hoped to remove any ambiguity 

from mathematics and thus obtain greater certainty. 

KURT GODEL 

The great tragedy of Science—the slaying of a beautiful hypothesis by an ugly fact. 

— Thomas Huxley, “Address to the British Association for the Advancement of 

Science” (1870) 

Long before mathematicians became concerned with the consis- 

tency or completeness of general axiomatic systems, writers had exam- 
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ined the analogues of these ideas in fiction. These examinations were 

performed not just by literary theorists but by the writers themselves. 

This exploration of the limits of fiction through fiction is called metafic- 

tion, and looking at two examples will help to elucidate what was at 

stake for mathematicians. 

In order to illustrate the parallels between metafiction and Hilbert’s 

and Russell’s concerns with axiomatic systems, one has to take a fairly 

naive view of what narrative fiction is all about. In particular, we will 

have to make the questionable assumption that in a work of fiction 

there is a reality being described by the narration, or at least a reality 

the author wants to convey to the reader. We posit the following cor- 

respondences: 

FICTION MATHEMATICS 

the text od a collection of mathematical 

statements 

statements from the cod axioms 

text the reader 

believes are true 

conclusions of the reader <> deduced mathematical 

about the reality results 

underlying the text 

the reality behind or the Platonic realm of 
the text mathematics 

Writers have explored the relationships between each of the four ar- 
eas in the left-hand column, as well as their relationship with the real 
world, but the only ones that will concern us are the relationships be- 
tween “statements from the text the reader believes are true” and the 
next two, “conclusions of the reader about the reality underlying the 
text” and “the reality behind the text.” 

If the axioms of the text are consistent, then a diligent reader should 
be able to draw true conclusions about the text. But in Coover’s “The 
Babysitter” we saw that it would not be possible for the reader to know 
whether or not his conclusions are consistent (see chapter 8). The 
reader of “The Babysitter” cannot know which of the narrations in the 
story contradict one another, so the reader cannot even know what is 
happening with the characters. 
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The completeness, or rather incompleteness, of the axioms (of the 

text) has been portrayed in fiction almost since its inception. It is sim- 

ply the observation that the reader cannot know everything about the 

story behind the narration, no matter how detailed the narration is. 

One technique writers have used to make the reader aware of this defi- 

ciency is called frame-breaking. This occurs when the author interrupts 

the narrative to make some comment. We have already seen one exam- 

ple of this. In the novel Tristram Shandy the protagonist not only tells 

his story but also discusses the process of writing his story (see chapter 

6). A more modern example of frame-breaking occurs in the novel The 

French Lieutenant's Woman, by John Fowles. In order to emphasize that 

the reader can never know the entire truth, Fowles offers two endings 

to the story and he does not tell us which he intends the reader to be- 

lieve. The film version of The French Lieutenant’s Woman masterfully 

offers these alternate endings by telling two stories in parallel. 

But mathematicians were not so willing to incorporate ambigui- 

ties into theorems, which, after all, represent truths. Hilbert attempted 

to prove the consistency of his list of axioms for Euclidean geometry. 

He could not. But in 1904 Hilbert used Descartes’ coordinate geometry 

to demonstrate that if there is a consistent set of axioms for arithme- 

tic then his axioms for Euclidean geometry are consistent. Late in the 

nineteenth century the mathematician Giuseppe Peano (1858-1932) 

had axiomatized arithmetic; however, neither Hilbert nor anyone else 

could demonstrate the consistency of Peano’s axioms. This left math- 

ematicians with the unsettling knowledge that someday, mathemati- 

cians might prove theorems in geometry, or arithmetic, that contradict 

one another. 

Twenty-seven years after Hilbert had shown that the consistency of 

arithmetic would imply the consistency of Euclidean geometry, a young 

mathematician published a paper that forever undermined mathe- 

matical certainty. In his paper “On Formally Undecidable Propositions 

in Principia Mathematica and Related Systems,” Kurt Godel (1906-78) 

showed that both the Russell-Whitehead attempt to reduce mathemat- 

ics to logic, in Principia Mathematica (1910), and Hilbert’s attempt to 

axiomatize mathematics were doomed. Godel showed that there are 

features inherent to axiomatic systems that limit their access to truth. 

(As Godel was a Platonist, his results probably did not overly disturb 
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him; his research had only revealed that the world of mathematics is 

too rich to be fully understood through axiomatic systems.) 

One of Gddel’s theorems, and it really is a theorem, was that the 

proposition “the axioms of arithmetic are consistent” can neither be 

proved nor disproved unless one works in a larger system. This is an ex- 

ample of what is referred to in the title of Gddel’s paper as an “undecid- 

able proposition.” As a practical matter this means that results deduced 

from any list of axioms for arithmetic might not all be true (since two 

might contradict each other). Thus a mathematician is always in the 

position of a person reading a work of fiction, never knowing if the au- 

thor has provided a consistent narrative. 

Géddel’s second theorem doomed Hilbert’s program. What Gédel 

proved, if you believe, as Gédel did, that there is some Platonic realm 

of mathematical objects and relationships, is that there are true math- 
ematical statements that will never be uncovered through the applica- 
tion of deductive reasoning within an axiomatic system. Two examples 
will illustrate how Gédel’s theorems manifest themselves in mathema- 

ticians’ search for mathematical truth. 

The first example is based on Cantor's especially elegant conception 
of mathematical infinity. Cantor’s use of completed infinite processes 
led to a meaningful way to discriminate between different sizes of in- 
finite sets. Although both the set of all counting numbers and the set 
of all numbers in the continuum are infinite, Cantor's theory makes 
it possible to say that the number of numbers in the continuum, c, is 
greater than the number of counting numbers, Xx: Symbolically, 

Nec 

The set of all counting numbers and the set of all numbers on the num- 
ber line are familiar to us, but we know of other infinite sets, such as the 
collections of all even counting numbers, the collection of all numbers 
whose decimal expansions involve only 0s and 1s, and the collection of 
all algebraic numbers. Cantor’s method makes it possible to compare 
the cardinalities of each of these infinities with X, and c, and this work 
leads to the surprising result that each of their cardinalities is either x, 
or c. Indeed, if you look at any run-of-the-mill infinite set, its cardinality 
will be one of the two infinities & » Or c. Anyone working through many 
examples probably would reach the conclusion that there is no infinite 
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set whose cardinality is greater than X, yet less than c. This conclusion 

is now known as the continuum hypothesis. 

Cantor attempted to prove this result but could not. Gddel also at- 

tempted to establish that there is no cardinal number between &, and 

c, and like Cantor, Godel could not find a proof. But Godel then took 

another approach; he wanted to know whether or not the continuum 

hypothesis was a reasonable thing to even believe. What Godel proved 

was that if the standard axioms of set theory are consistent, and if the 

continuum hypothesis is assumed to be true, then you will not be able 

to deduce a contradiction. In other words the continuum hypothesis is 

consistent with the other axioms. In the 1960s the mathematician Paul 

Cohen (1934-2007) supplemented Godel’s theorem with a theorem of 

his own: Cohen showed that if you assume the continuum hypothesis 

is false, you still will never be led to a contradiction. Putting these two 

results together, mathematicians were led to a disappointing conclu- 

sion: Gddel and Cohen had shown that mathematicians could not use 

their commonly accepted axioms to determine whether the continuum 

hypothesis is true or false. There can be two different types of mathe- 

matics—one where the continuum hypothesis is true and one where 

the continuum hypothesis is false. 

Thus, Godel’s incompleteness theorem is not just a theoretical cu- 

riosity; it shows that there are simply stated mathematical questions 

whose answers cannot be provided within the framework of the com- 

monly accepted axiomatic system. Modern mathematicians are in 

much the same position as the early Greeks—our assumptions do not 

allow us to fully understand infinite collections. Cantor’s conception of 

mathematical infinitude answered some questions, such as why the 

notion that the whole is greater than the part does not extend beyond 

finite collections to infinite ones, but introduced new questions, such 

as, “is the continuum hypothesis true?” 

Our second example also deals with the existence of mathemati- 

cal entities associated with infinity—not with the infinitely large, but 

with the infinitely small indivisibles (infinitesimals), which were in- 

vestigated by Abraham Robinson (19 18-74) in the 1960s. To appreciate 

Robinson’s work on infinitesimals, we need to understand the modern 

view of axiomatic systems, and the simplest example comes not from 

Euclidean geometry but from the axioms for the counting numbers as 
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given by Peano. Peano’s axioms are considered to be a minimal list of 
true statements about the integers, and if this appealingly short list 
is complete then all true statements about the integers can be derived 
from it. Although they should be stated in formal, mathematical sym- 
bols, Peano’s five axioms are essentially the five assumptions 

Axiom 1.1 is a counting number. 

Axiom 2. Every counting number n has a successor, usually denoted 
byn+1. 

Axiom 3. Every number, except 1, has a predecessor. 
Axiom 4. Two different numbers cannot have the same successor. 
Axiom 5. The axiom of mathematical induction: Suppose we are 

presented with a collection of counting numbers, which we will 
denote by S. If we can show that J is in S and that S contains 
the successor of each number in it, then S contains all of the 

counting numbers. 

These axioms describe what we think of as the positive, counting 
numbers, they begin with 1, which has as its successor 2, which has the 
successor 3, and so on. Thus we obtain the sequence: 

132535455 >65758 59510... 

If we only assume the first two axioms we could have a repetitive list 
of successors: 

L>2>3 515253 5157-53-51 -5 

25335152753 515253>5 

which is a finite system consisting of the three symbols 1, 2, and 3. Note 
that in this system 3 is a predecessor of 1, symbolically 3 + 1 = 1, which 
the third axiom prohibits. 

However, even assuming each of the first three axioms, it would still 
be possible to have a repeating list of successors 

13253 54 52.5345) 59 5 

4325335452353 5435 

and so a finite system. This system consists of the symbols 1, 2, 3, and 4. 
The symbol 2 has two predecessors, 1 and 4, something that is prohib- 
ited by the fourth axiom. 
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The last axiom seems to tell us that, as in the Pythagorean number 

system, 1 is the generator of all counting numbers; in other words that 

there cannot be a counting number w not contained in the list: 

Te a > Ol 7718 9 LOE E 

But it does not. There is nothing in these five axioms to prohibit the ex- 

istence of, for example, a counting number w that is larger than all the 

counting numbers that can trace their origin back to 1. In other words, 

there is nothing to exclude the existence of an infinitely large element. 

Thus Peano’s axioms allow for what are called nonstandard models, 

which means they allow for mathematical systems that do not match 

our intuition for what the standard counting numbers are. These non- 

standard models are important for the discovery of new truths about 

the counting numbers, since the counting numbers are a small part of 

any of them. So, working within this system, a mathematician might 

be able to use the additional elements in the model to prove things 

about the counting numbers. 

It is not too difficult to understand how Abraham Robinson estab- 

lished a model for the axioms of the real numbers that allows for in- 

finitesimals, once we see how the real numbers are obtained from the 

counting numbers. For simplicity, we only discuss positive numbers. 

The positive rational numbers (the positive fractions) are obtained by 

taking all ratios of the counting numbers; the positive rational num- 

bers consist of all numbers of the form 4/b, where a and b are posi- 

tive counting numbers. To obtain the positive real numbers, we employ 

the idea of convergence from chapter 11; a real number is obtained in 

much the same way as a mathematical fractal is obtained—a real num- 

ber is defined to be the thing you get when you look at a convergent 

sequence of rational numbers. Using this process, if we start with the 

standard model for the counting numbers, 1, 2, 3,... we end up with 

what we think of as the usual positive real numbers—numbers that 

correspond to the lengths of geometric magnitudes. However, if we 

start with a nonstandard model for the counting numbers, for example 

one that contains a number w that is larger than any standard (ordi- 

nary) counting number, we obtain the positive rational number 7/w. 

This rational number satisfies the property 
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For any “standard” counting number n, Yw< Yn. 

It can be deduced from the axioms that Yw is a positive quantity that is 
smaller than the length of any geometric magnitude. So Yw is truly an 
infinitesimal. Then, defining the real numbers to be all of the entities 
obtained from convergent sequences of nonstandard rational numbers, 
we obtain a system of numbers with an unlimited number of quanti- 
ties between any two “standard” numbers. In particular, we obtain an 
unlimited number of infinitesimally small quantities. 

If these infinitesimal quantities are interpreted geometrically, then 
Robinson has rediscovered what Nicolas de Cusa, Kepler, and Leibniz 
believed: that a line segment or curve consists of infinitely many in- 
finitely short segments. Kepler had used these to establish geometric 
theorems, such as the formula that the area of a circle equals one-half 
of its radius times its circumference, and Leibniz had used infinitesi- 
mals to develop his version of calculus. 

Even though Robinson showed that the existence of infinitesimals 
does not contradict any of the generally accepted axioms of mathemat- 
ics, few working mathematicians accept them as being “real” geomet- 
ric magnitudes. 

These two examples illustrate what Nelson was referring to when 
he wrote that no real progress has been made on the question of ontol- 
ogy. For example, mathematicians have no guidance on whether they 
should accept the existence of infinitesimals, and as Gédel and Cohen 
showed, they will never have any guidance on whether there can be an 
infinite set whose cardinality is wedged between X, and c. By appeal- 
ing to plenitude, mathematicians embrace most objects they uncover. 
However, infinitesimals have not entirely taken hold, possibly because 
they defy intuition—they seem to allow for the existence of geometric 
magnitudes shorter than any rational length. But mathematicians do 
not dwell on this. Nelson went so far as to conclude his article with, 
“In mathematics, the ontological quest is misconceived and should be 
abandoned.”¢ 

If the ontological quest is to be abandoned, why are there so many 
mathematicians sitting in their offices working so hard? Of course, that 
question has a different answer for each mathematician, and it would 
have a great deal to do with their individual histories, but a safe gen- 
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eralization is that they mostly work so hard not because they are con- 

cerned with ontology but because they are concerned with truth. 

TRUTH 

The criterion of the modern artist is Truth rather than Beauty, and to this extent 

modern art is still Reeping pace with natural science. 

— Herbert Read, “Human Art and Inhuman Nature” (1955) 

If logical analysis of mathematical concepts and the relationships 

between them can never reveal all mathematical truths, how will they 

ever be known? Before considering this question, it is important to de- 

scribe what a working mathematician does—a mathematician seeks 

not only to prove mathematical truths but also to develop an under- 

standing of some part of the mathematical world. This understanding 

almost never comes from a proof, it comes from examining examples 

and looking for patterns. 

Suppose you are a mathematician and you become fascinated with 

right triangles, whose sides all have lengths that are whole numbers, 

such as the three triangles in Figure 12.2. 

5 10 
13 

3 6 5 

4 8 W 

FIGURE 12.2. Three right triangles whose sides are all whole numbers. 

You work very hard and discover more and more of these triangles. 

There seems to be no limit to how many such triangles you can pro- 

duce. Some of them have the same shapes, such as the three-four-five 

triangle and six-eight-ten triangles above, but among the unlimited 

number of such triangles there also seem to be an unlimited number 

of different shapes. Being a mathematician, you naturally ask yourself 

the question any mathematician would ask: How many triangles are 

there whose sides are all whole numbers? 

Having posed this question, you stop your work for the day and pre- 

pare your morning classes. The next day at lunch you happen to men- 

tion your question to another colleague who answers, “There are an 
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unlimited number of whole-number-sided right triangles, and there 

are even formulas for the lengths of their sides.” Your colleague writes 
the formulas on a napkin and hands it to you. You are impressed, and 
maybe a bit deflated, but you thank your colleague and continue with 
your day. However, you are not satisfied with your colleague’s formulas, 
because your original question was not only how many triangles are 
there whose sides are all whole numbers, but how many triangles are 
there whose sides are all whole numbers and why? It is the why your 
colleague's formulas fail to address, and this is the part of the question 
that separates an artist from a craftsman and a mathematician from a 
computer. 

In an attempt to answer the why portion of your question, you re- 
turn to your desk and continue experimenting. Drawing more triangles 
is not going to help; you are already overwhelmed by the range of num- 
bers appearing as sides to right triangles, so you need to try something 
else. This is where the mathematician becomes a creative artist; you 
need a new idea, and you need to find another way to think about right 
triangles. You decide to try something new—you decide to put all of 
the triangles you have found into forms that will allow you to compare 
them. In particular, you know that each triangle in Figure 12.2 is simi- 
lar to a triangle whose hypotenuse equals one unit, so you write down 
all of these triangles. The original triangles that had the same shape 
reduce to the same triangle, but as before, you find that there are an 
unlimited number of different shapes: 

1 40/41 
1 1 

12/13 9/41 4/5 
FIGURE 12.3. Three right triangles whose hypotenuse equals 

one unit and whose two legs are rational numbers. 

Still in an experimental mode, you superimpose these triangles over 
each other: 
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FIGURE 12.4. Right triangles, as in Figure 12.3, inside a circle whose radius equals one unit. 

The top vertices of these triangles seem to form an arc and you realize 

that they all lie on a circle whose radius is one unit. In an instant you 

verify that they do indeed all lie on a circle. (It is a consequence of the 

Pythagorean theorem.) You have uncovered a deep connection: Each 

right triangle, with integral sides, corresponds to a point whose coordi- 

nates are fractions that lie on the circle whose radius equals one. More- 

over, each point on the circle whose coordinates are fractions yields a 

right triangle whose sides have integral lengths. The reason there are 

an unlimited number of integral right triangles is because of properties 

of the circle—you already know from some other investigation that 

there are an unlimited number of points on the circle whose coordi- 

nates are rational numbers (and the formulas for finding these points 

are exactly the ones your colleague had handed you earlier). 

A mathematician would call this connection between integral-sided 

right triangles and points on the circle with rational coordinates beau- 

tiful. And mathematicians associate beauty not only with formulas 

or even with geometry—any mathematical relationship can be con- 

sidered to be beautiful. In the above example, the simplicity and de- 

finitiveness of the connection between the triangles and the points on 

the circle make it beautiful. It is such a surprising connection that even 

without having any formulas for points on the circle, you knew the mo- 

ment you uncovered it that you had found some deeper, hidden truth. 

An aesthetic adjective has emerged as the one mathematicians attach 

to such beauty; it is elegance. 

ELEGANCE 

In his book The Elegant Universe, Brian Greene wrote: “[Einstein 

felt] that general relativity describes gravity with such a deep inner 

elegance, with such simple yet powerful ideas, that he found it hard 
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to imagine that nature could pass it by. General relativity, in Einstein’s 
view, was almost too beautiful to be wrong.” Just as physical ideas can 
be elegant, with the “simple yet powerful ideas” of general relativity 
being but one of its manifestations, mathematics has an aesthetic of 
elegance of its own. Mathematical elegance takes several forms, and 
mathematicians do not always agree on the aesthetic appeal of a par- 
ticular discovery or conjecture. But three types of relationships are al- 
most universally held to be elegant: 

1. those that are especially simple yet definitive, such as Euler’s 
formula relating the number of vertices, edges, and regions ofa 
doodle (see chapter 8), 

2. those that provide a framework within which the previously 
incomprehensible becomes comprehensible, such as Cantor’s 
theory of mathematical infinity based on the simple notion of a 
one-to-one correspondence (see chapter 11), and 

3. those that reveal hidden connections between previously 
unrelated objects, such as the relationship between right 
triangles and points on a circle that leads to a description of all 
integral right triangles. 

The elegance of a result does not depend on having its proof—its el- 
egance is intrinsic to it, and the elegance of a result implies that the 
result must be true. Many mathematicians will disagree with this last 
sentence, but in the past thirty years major mathematical prizes have 
been awarded to mathematicians, at least in part, for their insights— 
another code word for having discovered an elegant mathematical 
relationship. Two of these discoveries involved the elucidation of a 
previously unknown, or unappreciated, relationship between very ab- 
stract mathematical objects—these are the discoveries of Robert Lang- 
lands in the 1960s and Paul Vojta in the 1980s. Langlands and Vojta 
both proceeded like our industrious, right-triangle-obsessed math- 
ematician. They worked out examples, proved theorems that became 
special cases, and then in a moment of revelation perceived that there 
might be a more general relationship in the background. By working 
out even more examples and deducing more results, they gained more 
insight. The details of the discoveries of these mathematicians are too 
advanced for us to discuss them here, but they have both been used to 
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uncover new truths in number theory by exploiting their proposed cor- 

respondences. 

A third insight was the proposal that there exists a unified frame- 

work within which to mathematically examine both the geometry of 

space and quantum mechanics. This was Edward Witten’s suggestion 

in the 1990s: that the different versions of string theory that had been 

proposed could all be taken to be manifestations of a single underly- 

ing theory, his M-theory. Physicists were overwhelmed by the simplic- 

ity of Witten’s vision. The physicist John Schwarz is quoted in Greene’s 

book as saying that the “mathematical structure of string theory was 

so beautiful and had so many miraculous properties that it had to be 

pointing toward something deep.”® Physicists hope that it might some- 

day be possible to test Witten’s vision experimentally, to demonstrate 

that its mathematical beauty is a manifestation of physical truth. But 

mathematicians have no physical reality against which to test the in- 

sights of Langlands and Vojta; they have already been tested and each 

of them is so definitive that its truth is assumed. 

PROOF AND TRUTH 

Since the gold standard for the widespread acceptance of a mathe- 

matical result is a proof, a final example illustrates that the conception 

of what a mathematical proof is is subtler than most mathematicians 

are willing to admit. 

Each of the earlier examples dealt with ontology; our last example 

concerns itself more with the question of what is a proof. In the 1970s 

two mathematicians, Kenneth Appel and Wolfgang Haken, announced 

they had established the four-color theorem, which had withstood the 

efforts of many talented mathematicians since it had first been formu- 

lated a century earlier. The four-color theorem is simple to state: Take 

a map of countries or regions where each country or region consists 

of only one piece (unlike, for example, Michigan) and color the map so 

that countries or regions having a common border are different colors. 

(If two regions only meet at a point, such as Arizona and Colorado, they 

can have the same color.) The four-color theorem states that it is possi- 

ble to color any such map using four or fewer colors. The simple “map” 

in Figure 12.5 requires four colors, since each region touches all of the 

other regions, and so illustrates that sometimes four colors are needed. 
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FIGURE 12.5. This “map” of four countries demonstrates that some maps require four 
colors to color all of the regions so that no two adjacent regions are the same color. 

In their attempts to prove the four-color theorem, mathematicians 
had discovered that there is a small set of configurations of countries, 
at least one of which must be present in any map (these are known 
as unavoidable configurations). For example, any map you look at will 
contain at least one country with five or fewer neighbors. The proof of 
this type of a result is not unlike that of Euler's formula for doodles (see 
chapter 8). Mathematicians came to understand that if each of these 
unavoidable configurations could be colored with four colors, then so 
could any map, so the hunt was on to find them all. (This is not entirely 
accurate as all mathematicians needed to find were the reducible un- 
avoidable configurations; for a somewhat nontechnical description of 
the history of this search the reader should consult Robin Wilson’s book 
Four Colors Suffice.)? This is precisely what Appel and Haken, did in 
1976, but their proof used a computer in an essential way. Not only did 
the computer check that these reducible unavoidable configurations 
can be colored with four colors, but the computer was programmed to 
find the configurations. 

The proof of the four-color theorem does not show mathematicians 
why the theorem is true; it does not offer any insights into the nature 
of maps. Rather it is simply a checking of cases. This inelegance alone 
would have left many mathematicians with the feeling that we just do 
not understand the four-color theorem. But here the situation is even 
worse; no mathematicians will ever be able to study the proof to gain 
any insights. The answer to the question of why the four-color theorem 
is true can only be answered with “because.” 

What are needed to resolve the continuum hypothesis, to make in- 
finitesimals more acceptable, or to increase the comfort level of math- 
ematicians with the proof of the four-color theorem are new insights, 
a la Langlands and Vojta. Only an elegant idea, whether it concerns the 



Elegance and Truth | 271 

nature of infinite sets or of maps drawn on a piece of paper, can change 

the present impasse. Mathematicians have probably gone as far as they 

can with their present assumptions, both implicit and explicit. They are 

a bit like the Italian algebraists who acknowledged, but did not accept, 

imaginary solutions to algebraic equations. However, it is an article of 

faith that no portion of the Platonic realm of mathematics can forever 

remain mysterious; we only have to await the announcement by some 

solitary researcher of a new insight into elusive mathematical truth. 
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antipodes, 75,78 

Apology for Poetry, An (Sidney), 5-6 

Aquinas, 106; and Aristotle, 93-94; and 

God’s power, 113 

arche, 31 



292 | Index 

Archimedes: definition of a straight 

line, 159-61; estimation of pi, 194- 

95, 224-25, 231; and representing 

large numbers, 81, 110; The Sand 

Reckoner, 81 

Archytas, 28, 88; and infinite universe, 

57-58 

Arensberg, Walter, 171 

Aristarchus, 110; earth-moon-sun 

distances, 73, 82-83; and the helio- 

centric universe, 111; and the size 

of the universe, 81 

Aristotle: and Abelard, 92; and con- 

tact argument, 207-8, 217; and 

continuity, 67-68, 114; and cosmol- 

ogy, 86-89, 101, 103, 105-8; and 

indivisibles, 211-12; and infinite 

by addition or division, 60; and 

infinite divisibility of space, 62-66, 

125; and infinite divisibility of the 

continuum, 62, 203, 207, 214; and 

infinite divisibility of time, 62-66, 

125; and infinite future, 129; and 

infinite past, 125-26; and infinite 

potentially, 61-62, 243; and infin- 

ity, mathematical, 48, 52,57, 61, 

220-21, 238, 242: and infinity, 

metaphysical, 52-53, 64; and infin- 

ity, physical, 57-58, 62, 113,125;in 

limbo, 100; and matter, properties 

of, 101-2; and matter, qualities of, 

39, 41; and the meaning of num- 

bers, 15; and motion, natural, 86, 

89, 105; and motion, nature of, 

66-68, 211; and now, 125; and the 

place of an object, 85-86, 111, 134; 
and Plato, 39, 67, 88; and Pythago- 

ras, 9, 13, 52, 74, 87; and the shape 

of the earth, 74-75; and the spots 

on the moon, 103; and theology, 

92-94, 210-11; and theory of color, 

204; and theory of vision, 135; and 

truth, 251, 257; and Zeno’s para- 

doxes, 64-73. Works: Categories, 62; 

Metaphysics, 13, 15; Physics, 39, 52, 

60, 63, 85, 93, 94, 207 

arithmetic, 22, 192, 196; axioms for, 

259-60, 261-62: nonstandard 

models of, 262-63 

Arithmetical Progression of the Verb 

“To Be” (Arensberg), 171 

Arrival of St. Augustine in Milan 

(Gozzoli), 148, 174 

Arrow, The (paradox), 67-69; and the 

completion of infinite processes, 

113-14, 228 

astrology, 16, 116 

ateleston, 51 

Atlantis, 28. See also Plato: The Timaeus 

atomists, 212-14 

atoms: arguments against, 213-14, 

and Aristotle, 63; and Democri- 

tus /Leucippus, 32-33, 35; indi- 

visible, 31, 41; modern theory of, 

41-43; and Plato, 33-39; shapes of, 
and Democritus, 32-33; shapes of, 

and Plato, 36 

Augustine, Saint: and antipodes, 78; 

The City of God, 29, 128, 212; and 

the flat earth, 78; on God seeing 
an infinite collection as a whole, 
212, 243; and letter to St. Jerome, 

30; and the nature of time, 128; 

and numbers in objects, 15; and 
numbers in the soul, 6-7; and Plato 

29-30; and Plotinus, 53-54 

Avatars of the Tortoise (Borges), 45, 
66, 254 

Aveni, Anthony, 120 

Averroes, 103-4 

, 



Aversa, Raphael, 103-4. See also moon, 

spots on 

axioms, 96, 253, 255, 257-64; for 

arithmetic, 259; and Carnes, 95; by 

Euclid, 256; for geometry, 38; by 

Hilbert, 256; and theology, 97; for 

theology (Boethius), 91 

axis visualis, 142—43. See also vision, 

theory of 

Bacon, Roger, 213-14, 216. See also 

atoms 

Bailey, Benjamin, 25. See also Keats, 

John 

Bar at the Folies-Bergére, A (Manet), 

151-53 

Barth, John, The Literature of Exhaus- 

tion, 67. See also regression, infinite 

beans, 9 

Beatrice, 98; and angels, 107-8; and 

the spots on the moon, 102, 104 

beauty: and mathematics, 27, 29, 36, 

195; and poetry, 43, 123; and truth, 

23-25, 87, 252, 265, 268-69. See 

also elegance; Keats, John; Plato; 

Pythagoras and Pythagoreans; 

Wren, Christopher 

Bergson, Henri, 56, 68-69, 228 

Bernard of Clairvaux, 92,99 

Bible, 30, 75, 93-95, 121, 128-29 

Bierce, Ambrose, 173. See also time: in 

literature 

Blake, William: Auguries of Innocence, 

47; and four, 14; The Four Zoas, 

275n2; and poetic infinity, 47 

Boccioni, Umberto, 70; Unique Forms 

of Continuity in Space, 71 

Boethius: and axiomatic theology, 

91-92, 95; De hebdomadibus, 91; 

De Musica, 5,7 
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Bonaventure, 127-28 

Borges, Jorge: Avatars of the Tortoise, 

45-46, 66, 254; and infinite regres- 

sion, 254-55; and infinity, 45-46; 

Library of Babel, 57-59, 62 

Boyle, Robert, 33. See also light 

Braque, Georges, Violin and 

Palette, 167 

Brothers Karamazov, The (Dos- 

toyevsky), 155 

Brouwer, L. E.J., 252,255 

Browne, Thomas, 128, 129-30. See also 

time: scriptural 

Brunelleschi, Filippo, 144, 150 

Bruno, Giordano, 115, 230 

Buber, Martin, 112. See also time: 

infinite 

Burley, Walter, 113, 220 

Calvin, John, 130 

Cantor, Georg, 239, 242, 248, 253, 261, 

268; and definition of a mathemati- 

cally infinite collection, 243-44; 

and definition of a set, 247; and dif- 

ferent sizes of infinity, 247-48, 260 

Cardano, Girolama, 191-93; Ars 

Magna, 191 

Carnes, John, 95. See also axioms: and 

theology 

Carroll, Lewis (Charles Dodgson), 67, 

254. See also regression, infinite 

Carter, Jimmy, 112, 237, 248; Consider- 

ing the Void, 112 

cartesian plane, 225 

cathedrals, 26 

Cauchy, Augustin-Louis, 230-31 

Cavalieri, Bonaventure, 218-19; Ge- 

ometry Advanced by a Thus Far 

Unknown Method, Indivisibles of 

Continua, 218. See also indivisibles 
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Cavendish, Margaret, 199; The Circle of 

the Brain Cannot Be Squared, 199. 

See also squaring the circle 

celestial bodies, 4, 97, 117-18; and 

distances from earth, 109-12; 

motions of, 86-89, 105, 108, 117 

celestial region, 98, 101-2 

celestial sphere, 110, 117 

central fire, 13, 86. See also cosmology: 

Pythagoras and 

certification, 143. See also Alhazen 

Cézanne, Paul, Still Life with Fruit 

Basket, 153-54 

chain of being, 23, 113; and continuity, 

114. See also plenitude 

chaos, 49; and creation, 30, 40-41, 

130; in hell, 40, 100. See also Anaxi- 

mander; harmony, and beauty 

Chatton, Walter, 214-16 

Chaucer, Geoffrey, 17. See also 

geomancy 

chemistry, Plato’s geometric, 37-39 

Chevreul, Michel-Eugéne, 205. See also 

color, theory of 

Christ, 120, 128 

Cicero, 9, 116, 117; On the Nature of 

Gods, 116 

circle(s): concentric, paradox of, 193, 

215, 218; in cosmology, 29, 86-87, 

89, 105; of hell, 98, 100; and pi, 194— 

95, 200, 224-25: and right triangles, 

267-68; squaring, 14, 197-99 

Circle Limit III (Escher), 161 

Circle of the Brain Cannot Be Squared, 

The (Cavendish), 199 

Circus Sideshow (Seurat), 27-28, 203 

Cohen, Paul, 261, 264 

Collins, Billy, Questions About Angels, 
96 

color, 210; and the fourth dimension, 

169, 172; and Mondrian and Van 

Doesburg, 181, 184; and Seurat, 

203-4 

color, theory of: Aristotle and, 204; 

Chevreul and, 205; Goethe and, 

204; Newton and, 204, 206; Turner 

and, 205 

Columbus, Christopher, 1, 78 

commensurability: and geometric 

lengths, 19-21, 49, 79; and plan- 

etary orbits, 117, 120-22. See‘also 

time: cyclic 

commensurability assumption, 

Pythagorean, 19, 117 

completeness, 255, 257, 259, 261. See 

also Godel, Kurt; Russell, Bertrand 

Composition Derived from the Equa- 

tion y = ax? + bx + 18 (Vantonger- 

loo), 183-84, 189, 193 

Composition VIII (The Cow) (Van 

Doesburg), 181 

Condemnation of 1277, 95, 210 

configurations, unavoidable and 

reducible, 270. See also four-color 

theorem 

consistency, 255, 257, 259. See also 

Godel, Kurt; Hilbert, David 

construction, geometric, 26, 29, 49 

Construction of Volumetric Interrela- 

tions Derived from the Inscribed 
Square and the Square Circum- 

scribed by a Circle (Vantongerloo), 
183,193 

continuity: and Aristotle, 114; and 

Bergson, 68-69; in nature, 114 

continuum, infinite divisibility of, 

61-62, 203, 207-8, 210-20, 250; 

infinitude of, 290; and numbers, 10 

197, 203 

continuum hypothesis, 261, 270 

, 



convergence, 229-33, 263 

Coover, Robert: The Babysitter and cub- 

ism, 167; and meta-fiction, 258 

Copernicus, Nicolaus: and the helio- 

centric universe, 77/111; On the 

Revolutions, 77; and the size of the 

universe, 111-12 

correspondence: correlation, 61; one- 

to-one, 61, 240-48, 268 

Cosmas Idicopleustes, 75-77, 90, 215; 

Christian Topography, 75. See also 

earth (the element): flat 

cosmology: Aristotle and, 105; Coper- 

nicus and, 77, 111-12; Dante and, 

98-99; Mayan, 120; Ptolemy and, 

98, 112; Pythagoras and, 12 

Council of Soissons, 93. See also 

Abelard, Peter 

Counter-composition VI (Van Does- 

burg), 182 

counter-earth, 13. See also cosmology: 

Pythagoras and 

crystalline sphere, 98, 99 

cube, 13, 15, 34, 171, 176; and air, 36-39 

Cubic Space Division (Escher), 59 

cubism, 166-67 

cycle(s): commensurable (and cyclic 

time), 117, 120-22; of history, 

122-24; indiction, 128; of narrative, 

174; of poetry, 122-23; of time, 117, 

119-20, 122; of Venus, 118-20. See 

also time: cyclic 

Dacier, Andre, 9. See also Pythagoras 

and Pythagoreans: and symbola 

Dalton, John, 41. See also atoms: mod- 

ern theory of 

Dante: The Divine Comedy, 98-108, 

277n14; and Ptolemy, 98; and theo- 

logical regions, 98-101 
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De Chirico, Giorgio: Enigma of the 

hour, 174-75; and time, 174-75. See 

also time: in art 

decimals, 187, 249-50 

Decree of Synod of Constantinople, 99 

De Cusa, Nicolas, 115, 219, 230, 264 

De Maria, Walter, Mile-Long Drawing, 

156,159 

Democritus: and Aristotle, 63; and 

atoms, 32-33, 35, 220, 225; and infi- 

nite universe, 112; and knowledge, 

32-33; in limbo, 100; and Plato, 

33, 35; and the shape of the earth, 

74-75 

Demoiselles d‘Avignon, Les (Picasso), 

166-67 

De Muris, Johannes, Fourfold Division 

of Numbers, 122. See also time: 

cyclic 

De Pictura (Alberti), 144 

Descartes, René, 189-90, 199, 224, 259 

De Stijl, 180, 182 

diagonal: as an element in a painting, 

182; of a square, 19-21, 38, 121, 213, 

216. See also Bacon, Roger; time: 

cyclic; Van Doesburg, Theo 

Dichotomy, The (paradox), 65-67, 113, 

226, 248 

dimension: Arensberg’s description of, 

171; Duchamp’s description of, 179; 

of a fractal, 236-38; of the Koch 

curve, 235; of an object, 168-69, 

233-35; of a point, 12, 168; and ten, 

12; Weber's description of, 167-68 

Diogenes Laertius, 9. See also Pythago- 

ras and Pythagoreans: and symbola 

distance: between planetary spheres, 

109-12; from earth, to moon and 

sun, 81-83; to the stars, 109-10, 

gal 
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Divine Comedy, The (Dante): and an- 

gels’ role in heavenly motions, 108; 

and Aristotle and others in limbo, 

100, 277n14; and description of 

hell, 99-101; and different powers 

of angels, 107; and the inhabitants 

of heavenly spheres, 98-99; and the 

lunar sphere, 101; and the spots on 

the moon, 107 

dodecahedron, 36-37; and the 

cosmos, 37 

Donne, John: An Anatomy of the 

World: The First Anniversary, 131; 

Hymn to My God, in My Sickness, 6; 

and mountains, 131; and musica 

humana and musica mundana, 6; 

and squaring the circle, 198; Upon 

the Translation of the Psalms by Sir 

Philip Sidney and the Countess 

Pembrooke, 198-99 

Dostoyevsky, Fyodor, The Brothers 

Karamazov, 155 

duality, 203, 208, 210 

Duchamp, Marcel: Bride Stripped Bare 

by Her Bachelors, Even (Large Glass), 

170; and dimension, 170; and mo- 

tion, 174-75; Nude Descending a 

Staircase (No. 2), 70,174 

earth (the element): Aristotle’s place 

for, 102; and chaos, 30-31; and 

geomancy, 16-17; Plato’s geometric 
form for, 29, 35-39; asa primary 

element, 31-35; qualities of, 40,211 
earth (the planet): age of, 128-31; as 

center of universe, 85-89, 98-103, 

105-6, 109-12; distance to the sun 

from, 81-83; flat, 73-78; in Plato’s 

cosmology, 29; in Pythagorean 

cosmology, 12-13; shape of, 98; size 

of,/72 

eclipses, 74-77, 104, 110; and the 

shape of the earth, 83, 85 

Eden, 78, 130 

eidola, 134. See also vision, theory of 

Einstein, and relativity, 134, 154, 161, 
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elegance, and mathematical truth, 

192, 267-69 

elephants, 74. See also Aristotle: and 

the shape of the earth 

elements: earth, air, fire, and water, 29; 

Plato’s mathematical descriptions 

of, 35-36; primary, 29, 32-35; quali- 

ties of, 39-40, 102 

Elements (Euclid), 17, 78-81, 157, 206, 

255-56; and algebra, 185, 187; 

axioms for, 78-79, 255-57; and 

Boethius, 91 

Elgin Marbles (poem by Keats), 24 

Elgin Marbles (sculptures), 23 

Empedocles: and earth, air, fire, and 

water, 32, 33; in limbo, 100; and 

love and strife as elements, 34: 

and metempsychosis, 10 

empyrean heaven / paradise, 98, 99 
Enigma of the Hour (de Chirico), 174, 175 
entasis, 138. See also perspective, 

reverse 

epicycle, 109, 111; defined, 89; 

difficulties with, 105-8 

Eratosthenes: experiment by, 72-74, 

76; and Cosmas, 77; and size of the 

earth, 84 

Escher, M. C.: Circle Limit III, 160; Cubic 

Space Division, 59; and non-Euclid- 
ean geometry, 160-64; Smaller and 

Smaller, 63-64, 160 



Euclid, 156; and definition of a straight 

line, 158; Elements, 17, 78-81, 154, 

157,185, 206-7; Optics, 135; and 

theory of vision’s possible influ- 

ence on art, 137-44; and visual 

angle, 135-37, 145 

Eudoxus, 88 

Euler, Leonhard, formula of, 177, 178, 

268, 270 

Eve, and Adam, 129, 130,174 

Fermat, Pierre, 161, 163 

Fibonacci (Leonardo of Pisa), 190 

fire: Aristotle’s place for, 102; as a 

primary element, 29-39; Plato's 

geometric form for, 37; and spots 

on the moon, 102-3 

Flagellation (Piero della Francesca), 

isl 

formalism, 252-53, 256 

four, and number mysticism, 11, 14 

four-color theorem, 269-70 

fourth dimension: and art, 166, 172; 

and Weber, 168-69, 172 

Fowles, John, The French Lieutenant’s 

Woman and frame-breaking, 259 

fractal, 236-37; dimension of, 233-35; 

and Pollack, 237-38. See also infin- 

ity: of processes; Koch curve 

Freud, Sigmund, 168 

Gafori, Franchino, 1, 3, 5; Theorica 

Musice, 1. See also Pythagoras and 

Pythagoreans: and music 

Galileo, 48, 54; Dialogue Concern- 

ing the Two Chief World Systems, 

16; and indivisibles, 218; and the 

meaning of number, 15-16; and 

mountains on the moon, 131; and 
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the paradox of concentric 

circles, 218 

Gassendi, Pierre, 41. See also atoms: 

modern theory of 

Gauguin, Paul, 147 

Gauss, Carl F: experiment by, 155-57, 

159, 161, 165; and the fundamental 

theorem of algebra, 210-2; and 

non-Euclidean geometry, 160 

Genesis, 29, 112 

geomancy, 16-17; The Knight's Tale, 17 

geometry, non-Euclidean: and 

Escher, 160-61; and parallel lines, 

164-65. See also Gauss, Carl F: 

experiment by 

Ghiberti, Lorenzo, Story of Jacob and 

Esau, 147-48 

Ginsberg, Allen, 32; Lysergic Acid, 7 

Giotto di Bondone, 143-44 

Girard, Albert, 192. See also square 

root: of negative numbers 

God: and creation of order from chaos, 

29-31; and creation, 28, 40-41, 126, 

130, 228; in The Divine Comedy, 

98-100; infinite properties of, 45— 

49, 53-54, 112; and number mysti- 

cism, 11; omniscience of, 212, 217; 

and Plato’s Creator, 29-31; power 

Of, 46) 95 eld 2S S15 

Gédel, Kurt, 259-61, 264; and consis- 

tency and incompleteness, 260 

Goethe, Johann, 203; History of the 

Theory of Colors, 204; and theory of 

color, 204-6 

Goussouin of Metz, 110. See also dis- 

tance: to the stars 

Gozzoli, Benozzo, 147-49; Arrival of St. 

Augustine in Milan, 148, 174 

Grant, Edward, 93, 97, 107, 122, 277-79 
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Greene, Brian, 4; and Einstein, 267; 

The Elegant Universe, 1, 209; and 

Ginsberg, 7 

Gregory of Rimini: and God’s ability to 

create an infinitude, 113-14, 228; 

and infinity, 220, 222, 239; andthe 

relationship between whole and 

part, 242, 247 

Guide for the Perplexed, The (Maimo- 

nides): and distances to stars, 109- 

10; and faith, 91; and finite past 

harmony, and beauty, 2-4, 23, 26, 49, 

181; and the cosmos, 19, 25, 29; 

and matter, 32, 36 

heaven. See empyrean heaven/ paradise 

Heisenberg, Werner, 23-24, 41 

hell: circles of, 98, 99-101; gates of, 9, 

40; inhabitants of, 41; location of, 98 

Heloise and Abelard, 92 

Henry of Harclay, 214, 216-17 

Heraclitus, 31, 35, 100 

Hilbert, David: and the axioms for 

Euclidean geometry, 256, 259; and 

formalism, 253-54, 257-58, 260 

Hipparchus, 89 

Hippasus, 21. See also Pythagoras and 

Pythagoreans: and discovery of 

incommensurable geometric 

magnitudes 

Huxley, Thomas, 257 

Hymn to My God, in My Sickness 

(Donne), 6 

Iamblichus, 8-9 

icon, Byzantine, 138-39 

icosahedron, 13; and water, 36-38 

imaginary numbers, 210, 271 

incommensurability: of geometric 
lengths, 21, 26, 37, 79; of geometric 

objects (according to Vantonger- 

loo), 190; of planetary orbits, 121- 

22. See also diagonal: of a square 

indivisibles: atoms, 24, 31-33, 41-42, 

208; and Cavalieri and Leibniz, 

218-20; and infinitesimals, 261; 

points and the continuum, 170-71, 

206-8, 210-18 

induction, mathematical, 262 

infinitesimals, 218-20, 261, 264. See 

also Robinson, Abraham 

infinity: by addition, 60-62, 80, 113, 

129, 238, 242-43; categorematic 

and syncategorematic, 221-22; of 

collections, 59-61, 113-14, 212-17, 

241-42; different sizes of, 126-28, 

216-17, 243-47; by division, 60, 

62-63, 65-66, 207, 250; greater 

and lesser, 127, 214, 249; material, 

62-65; mathematical, 47-48, 55, 

57, 239-40, 243-48; metaphysical, 

47-55, 64-65, 68, 275; poetic, 46-47, 

168; of processes, 45, 55, 238-39; 

quantitative, 57-59. See also Aristo- 

tle; Cantor, Georg 

intelligences. See angels 

intromission, 134. See also vision, 

theory of 

intuitionism, 252-53, 255 

Jonson, Ben, 43 

Joyce, James. Works: Finnegans Wake, 
174; A Portrait of the Artist as a 

Young Man, 173; Ulysses, 174. See 

also time: in literature 

Jupiter, 12, 16, 85-88, 109 

Kant, Immanuel, 54, 67,158; Critique 

of Judgment, 55-56 

Keats, John: and the Elgin Marbles, 



24-25; Ode on a Grecian Urn, 2,5; 

On Seeing the Elgin Marbles, 24 

Kepler, Johannes, 264; and the con- 

tinuum and infinitesimals, 219; 

and the extreme and mean pro- 

portional, 26; and the Pythagorean 

theorem, 20, 26 

Knight's Tale, The (Chaucer), 17. See 

also geomancy 

Koch curve, 231-33; dimension of, 

25331 

Kronecker, Leopold, 252-53. See also 

intuitionism; ontology 

Lactantius Firmianus, 72, 75,77; The 

Divine Institutes, 72. See also earth 

(the planet): flat 

Langer, Susan: and music, 7; and 

space, 134 

Langlands, Robert, 268-70 

Last Judgment, 29, 128. See also 

Augustine, Saint; time: scriptural 

law of the excluded middle, 242 

Leibniz, Gottfried, 219-20, 226, 264 

Leonardo da Vinci, 149-50, 154; and 

the inverse-distance law, 146 

Leucippus. See Democritus 

Library of Babel, The (Borges), 57-58 

light: and fire, 33; and the principle 

of least time, 161; rays of, 83; re- 

fraction of, 142, 162-63; speed of, 

143, 163, 175; and the spots on the 

moon, 103-5; and straight lines, 

159, 161; and vision, 134-35; wave/ 

particle duality of, 203-10 

limbo. See Divine Comedy, The: and 

Aristotle and others in limbo 

Lindemann, Ferdinand, 199-200. See 

also pi; squaring the circle 

line: Archimedes’ definition of, 159; 
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Euclid’s definition of, 158, 206, 224; 

infinity of, by division, 80; number, 

10, 196, 201-2; and its points, 203, 

205-10, 213-17; 

logicist, 252, 257. See also Russell, Ber- 

trand 

Long Count, 119-20. See also time: cyclic 

love: in Empedocles’ theory of matter, 

32, 34; and God, 30, 31, 40-41, 99 

Lovejoy, A. O., 23,114; The Great Chain 

of Being, 23 

Lucretuis: The Nature of the Universe, 

124; and universe, eternal, 124; and 

universe, infinite, 58,112 

Luther, Martin, 130. See also mountains 

Lysergic Acid (Ginsberg), 7 

Macrobius, 2, 39,40; Commentary on 

the Dream of Scipio, 39 

Maimonides. See Guide for the Per- 

plexed, The 

Malevich, Kazimir, 172 

Mandelbrot, Benoit, 236 

Manet, Edouard, A Bar at the Folies- 

Bergére and multiple points of 

view, 151-54 

Man in the Moon. See moon: spots on 

Mars: distance from earth to, 109; and 

geomancy, 16-17; motion of, 86-88 

Marvell, Andrew: The Definition of 

Love, 156-57; and parallel lines, 

157; Upon the Hill and Grove at 

Billborow, 131 

Masaccio, Trinity, 151 

matter: and atoms, 32-33, 208; infinite 

divisibility of, 63, 212-17; nature of, 

31-35, 48-52; qualities of, 39-41; 

and string theory, 7-8, 42-43. See 

also Plato: and geometry of pri- 

mary elements 
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Maxwell, James, 205 

Meeting at the Golden Gate (Giotto), 143 

Melissus, 49, 51-52. See also infinity: 

metaphysical 

Merchant of Venice, The (Shake- 

speare), 6 

Mercury, 87-88; distance from earth 

to, 109 

metafiction, 258. See also Coover, Rob- 

ert; Fowles, John; Sterne, Laurence 

metaphysical infinity, 47-55, 64-65, 

68,275 

metempsychosis, 9-10 

Milton, John. See Paradise Lost 

Minerva, statue of, 140-41 

Minos (king), 100 

modus ponens, 78, 255 

Mondrian, Piet, 180-82; Place de la 

Concorde, 27 

monochord, 3. See also Pythagoras and 

Pythagoreans: and music 

monotheism, 9-10 

moon: as the beginning of the heav- 

ens, 101; beyond the realm of 

fire, 101-3; luminosity of, 104-5; 

as made of cheese, 252; spots on, 

101-8 

Moore, A. W., 127,131 

More, Henry, 53,54, 275n11 

motion: continuous, 70-71; natural, 14, 

85-86. See also Aristotle: and Zeno’s 

paradoxes 

mountains: and Addison, 54; and Cal- 

vin and Luther, 130; and Donne, 

131; and the end of time, 131; 

Greek and Roman views of, 130; 

and Marvell, 131 

mover, unmoved, 88, 107-8. See also 

Aristotle 

music, 4-7; of the spheres, 1, 4-6, 44 

musica, humana, instrumentalis, and 

mundana, 5-7 

narrative, continuous, 147, 149-50, 

174-75 
Neoplatonism, and Augustine, 29 

Neruda, Pablo, Tonight I Can Write, 47. 

See also infinity: poetic 

Newton, Isaac: and calculus, 219-20, 

226, 230; and color, 204-6; and 

gravity, 3,134 

Nicolas de Cusa, 115, 219, 230, 264. See 

also universe: infinite 

Nude Descending a Staircase (No. 2) 

(Duchamp), 69-70, 174 

number: algebraic definition of, 

192; counting, 11, 17, 60-61, 132, 

219-48, 255, 261-64; generation of, 

11, 197; geometric definition, 193, 

200; geometric shapes of, 14-15; 

imaginary, 210, 271; irrational, 21, 

187-88, 192, 196-97; line, 10, 196, 

201-2; and material objects, 15-16; 

and mysticism, 13, 17, 24, 29, 36; 

plane, 201-2; Stevin’s definition of, 

193, 197; whole, 10, 15, 48-49. See 

also Kronecker, Leopold; Pythagoras 

and Pythagoreans: and commensu- 

rability assumption 

Occurrence at Owl Creek Bridge, An 

(Bierce), 173. See also time: plastic 

Ockham, William of, 217 

octahedron: and fire, 37-38; geometric 

13, 36 

one: as generator of all numbers, 11, 

197; and Plotinus, 53,114 

one-to-one correspondence, 61, 240- 

48, 268 

ontology, 252, 264 

? 



Oresme, Nicole, 162 

otherworldliness, 23, 26, 29, 39, 

I2: 207 

Ovid: and Pythagoras, 8; and reincar- 

nation, 10 

painting: multiple points of view in, 

151-54; pointillist, 203; and single- 

point perspective, 142-47, 149-51 

Paradise Lost (Milton): and chaos in 

hell, 40; and creation of mountains, 

130; and epicycles, 84-85; and 

God’s power, 46 

paradox: Achilles and the Tortoise, 

66-67, 69, 254-55; The Arrow, 

67-69, 113-14; of concentric circles, 

214-15; The Dichotomy, 65-66, 

113, 226, 248; of even counting 

numbers, 60-61; Tristram Shandy, 

132-33; Wittgenstein’s, 131-32. 

See also Zeno 

parallel lines: and the angels in a 

triangle, 156; definition of, 79; in 

Eratosthene’s experiment, 72-73, 

83-84; in Euclidean geometry, 80; 

and Marvell, 156-57; in Mile Long 

Drawing, 156 

parallel postulate, 80-81, 156, 159, 

164-65 

Parmenides: and metaphysical infin- 

ity, 49-55, 126; On Nature, 50-51; 

and reality, 64; and what-is, 50-51; 

and Zeno, 64-65 

Parthenon: and the Elgin marbles, 24; 

and the golden rectangle, 27 

past: and Aristotle’s conception of 

now, 125; finite, 126-29; infinite, 

124-26; paradox of infinite, 131-32. 

See also time: infinite 

Peacock, Thomas Love, 122-23 
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Peano, Giuseppe, 259, 262-63. See also 

arithmetic: axioms for 

perception, immediate versus contem- 

plative, 142-43 

perfect year, 117,119, 124. See also 

time: cyclic 

perspective, reverse, 138; in The 

Woman and the Well, 139 

Peter of Spain, 221. See also infinity: 

categorematic and syncategore- 

matic 

Phidias, 140-41; Three Goddesses, 24 

Philoponus, 127. See also time: cyclic 

photon, 209-10 

pi, 194-200, 224-25. See also squaring 

the circle 

Picasso, Pablo, 166, 167; Les Demoiselles 

d’Avignon, 166; Portrait of Wilhelm 

Uhde, 167 

picture plane, 144-47, 149-50 

Piero della Francesca, 149-51; Flagella- 

tion, 151; Theorem XXX, 150 

plane, flat: Euclid’s definition of, 

158-59 

planets, 85-89; causes for motions of, 

angels, 108; causes for motions of, 

spheres-turning-spheres, 89, 108; 

and Copernicus, 111-12; and cyclic 

time, 116-18, 121-22; and music 

of the spheres, 4; order of, from 

earth, 87 

Plato: and Academy, 8; and Atlantis, 

28; and Christian God, 29-31; and 

Creator (Maker), 28-31, 88; and 

Creator and poetic theory, 43-44; 

and cyclic time, 117, 119, 124; and 

geometry of primary elements, 

35-39; in limbo, 100; and metem- 

psychosis, 10; and motion, 86; and 

nature of matter, 23, 28, 31-39; and 
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Plato (continued) 

otherworldiness, 39, 53, 88, 207; 

and plenitude, 114; Republic, 87; 

and stiochiometry, 38; The Timaeus, 

28, 30, 39,57, 114; and transforma- 

tion cycle, 35, 38-39, 102,172; and 

vision, 134 

Platonic mathematics, 252-53, 257-58, 

260, 271 

Platonic solids: and doodles, 176, 178- 

79; and Plato’s association with 

earth, air, fire, and water, 36-37 

plenitude: and Bruno, 230; in math- 

ematics, 233, 264; and Plato, 114 

Pliny the Elder, 103. See also moon: 

spots on the 

Plotinus, 53,114. See also one 

Plutarch: Pythagorean symbola, 9; and 

the spots on the moon, 103 

Poe, Edgar Allan: and pure poetry, 172; 

The Raven, 172 

poetic infinity, 46-47, 168 

poetic theory: and Plato’s Maker, 43; 

and Poe, 172; and Scaliger, 43-44 

poetry: cycles of, 122-23; position of, 

among disciplines, 43-44; pure, 172 

point, a, 13; definition of, 96; and re- 

lationship with continuum, 201, 

203-4, 206-10, 215-20; zero dimen- 

sional, 12 

pointillist painting, 203 

Pollack, Jackson, 237-38. See also 

fractals 

polygons: approximating a circle, 195, 

225, 228-31; regular, 36 

principle of least time, 160-61. See also 

light: refraction of 

Proclus, 126. See also past: finite 

proportion, 2, 29-30; continued geo- 

metric, 34; between elements, 36, 

39-40; extreme and mean, 26-27; 

and ratio, 17, 21 

Ptolemy: Almagest, 110; and Dante, 

98, 101; and epicycles, 88-89, 

105-6; and gaps between heavenly 

spheres, 109-10; and the number 

of stars, 112; and the size of the 

universe, 109 

Puella, 16-17 

purgatory, 98-99, 101, 127 

Pythagoras and Pythagoreans: and 

central fire, 13, 86; and commen- 

surability assumption, 19; and cos- 

mology, 12-13; and counter-earth, 

13; and discovery of incommen- 

surable geometric magnitudes, 

20-21; and geometry, 26-28; and 

harmony, 2-4, 25; influence of, 1, 

3-17; and mathematics, 17-21; 

and music, 1-8; and music of the 

spheres, 4-6, 44; and number mys- 

ticism, 10-17; philosophy of, 1-5, 

8-17; and the spots on the moon, 

103; and symbola, 8-9; and theory 

of vision, 134; and Venus, 118 

quantum mechanics, 42, 269 

Quine, Willard van Orman, 252. See 

also ontology 

ratios: extreme and mean, 26-28, 34; 

and harmonious sounds, 2-4; 

and proportion, 34; of whole num- 

bers, 19 

Read, Herbert, 265 

receptacles of becoming and being, 
30-31, 44. See also Plato: The Timaeus 

rectangle, golden, 27-28 

regression, infinite, 56, 67, 126, 255. See 
also Borges, Jorge 



Robinson, Abraham, 261, 263-64. See 

also arithmetic: axioms for 

Rubeus, 16-17 

Russell, Bertrand: and infinity, 223, 

239, 248; and motion, 69; and 

philosophy of mathematics, 252, 

254-55, 257-59; and the point of 

philosophy, 64; and the Tristram 

Shandy paradox, 132; and the 

whole as greater than the part, 223 

Salluste du Bartus: and Genesis, 28, 

130; and number mysticism, 11-13 

Sand Reckoner, The (Archimedes), 81 

Sartre, Jean Paul, The Emotions, 248 

Satan, 40, 100 

Saturn: distance from earth to, 109, 

112; gap beyond, 109-10; move- 

ment of, 85-87 

Scaliger, Julius, 43-44 

Scholastics, the: and Aristotle, 95, 97, 

210-11; and atoms, 41; and cosmol- 

ogy, 103, 108, 112, 114; and logic, 91— 

92; questions addressed by, 95, 97 

Scotus, John Duns, 121-22, 213. See 

also time: cyclic 

sets: Cantor's definition of, 242-43; 

infinite, 243-48, 260-61, 264 

Seurat, Georges, 203-5; Circus Side- 

show, 27-28 

Shakespeare, William, 6, 123; The 

Merchant of Venice, 6 

Sidney, Philip, The Defense of Poesy, 

5-6, 43-44 

Siger of Brabant, 94 

single-point perspective painting, 

142-47, 149-51 

Smaller and Smaller (Escher), 63-64, 160 

souls: and angels, 96, 99; in Dante’s 

cosmology, 99-101; and metem- 
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psychosis, 9-10; and music, 5, 6; 

numbers within, 7 

space: curved, 165; the edge of, 112; 

empty, 32, 87, 109; fractured, 151- 

54; and gravity, 279-80; infinitely 

divisible, 62-64, 67,125, 211; math- 

ematically infinite, 59,112, 115; 

metaphysically infinite, 54 

Spengler, Oswald, 122-24 

Spenser, Edmund, An Hymn in Honour 

of Love, 30-31 

square root:of negative numbers, 191, 

192; of negative one, 193, 200-202, 

248; of pi, 199-200; of two, 21, 197 

squaring the circle, 14, 197-99 

stade, 84. See also Eratosthenes 

star, Pythagorean, 12, 27 

stars: distance to, 109-10; number 

of, in the cosmos, 112; reason for 

twinkling of, 107; sphere of, 98; and 

the unmoved mover, 88. See also 

celestial sphere 

Stein, Gertrude, 167 

Sterne, Laurence, 132 

Stevin, Simon: The Arithmetic of Simon 

Stevin of Bruges, 196; and deci- 

mals, 197, 223, 250; and definition 

of number, 193, 196, 197, 202-3, 

224-25 

Still Life with Fruit Basket (Cézanne), 

153-54, 166 

Story of Jacob and Esau (Ghiberti), 148 

string theory, 42; and music, 1, 7-8 

sun: as the center of the universe, 

111-12; distance from earth to, 

72, 76-77, 81-83, 109; position of, 

among heavenly bodies, 85-98, 99, 

109-11; role of, in eclipses, 74-77, 

83-85, 109-11; size of, 73, 76-77, 83; 

and the spots on the moon, 105 
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sunset, 85, 118; lingering, 162-63, 175. 

See also light: refraction of 

symbola, 8-9 

Tempier, Bishop Etienne, 95 

ten; 12=13 

Tennyson, Alfred, 47. See also infinity: 

poetic 

tetrahedron, 12, 36; and air, 37-38 

Thales, 31; in limbo, 100. See also water 

theology: and Aristotle, 92-96, 112-13; 

axioms for, 91; and logic, 91-92; 

and science, 95-96 

Theon of Smyrna, 13. See also four, and 

number mysticism 

three, 11-12, 16 

Three Goddesses (Phidias), 24 

Timaeus, The (Plato), 28, 30, 39,57, 114 

Timaeus (astronomer), 28 

time: to apeiron, 49; in art, 69-70, 147, 

149-50, 174-75; cyclic, 116-22; Epi- 

curians and, 212; eternal, 124-28: 

historical, 122; infinite, 112-24, 

infinite divisibility of, 62-66, 212; 

in literature, 167, 173-74; para- 

doxes of, 131-33; plastic, 173-76; 

principle of least, 160-61; role of, in 

Zeno’s paradoxes, 64-69; scriptural, 

128-31. See also infinity 

Tonight I Can Write (Neruda), 47 

topology, 176 

transformation: Heraclitus’s concep- 

tion of, 31; Plato’s cycle of, 35, 

38-39, 102 

triangles: drawn on a sphere, 157-58; 

and Hilbert’s axiom, 256; and the 

Pythagorean theorem, 20-21; role 

of, in Plato’s geometric chemistry, 

38-39; similar, 18-19, 254; sum 

of angles in, 37-38, 155, 164-65; 

used by Plato’s Creator, 29. See also 

Aristarchus; Eratosthenes: experi- 

ment by; Gauss, Carl F: experiment 

by 
Tristram Shandy (novel by Sterne), 

IS 2259 

Tristram Shandy (paradox), 132-33 

truth: and beauty, 23-26, 87, 98, 265; 

and belief, 76, 91-98; and insight, 

45,271; mathematical, 15, 17, 20, 

26, 194, 251-57, 263, 265; and mu- 

sic, 2-7; and order, 2, 86; and proof, 

269-71; revealed, 253; self-evident, 

574, 6), 28) 

Turner, Joseph, Shade and Darkness— 

The Evening before the Deluge, 

205 

two, 11-12, 14 

Unique Forms of Continuity in Space 

(Boccioni), 70-71 

universe: and Aristotle, 57-58; and 

Copernicus, 111-12; creation of, 28; 

and Dante, 98-108; earth-centered, 

13, 86, 88; eternal, 124, 125-26; 

finite verses infinite, 57-58, 62, 

124-25; heliocentric, 77; infinite, 

57, 15: mathematically harmoni- 

ous structure of, 4, 23, 48, 87; order- 

ing of bodies in, 87; and Ptolemy, 

88-89, 105-10; and Pythagoras, 

13; spheres of, 88; Ussher’s date for 

creation of, 128 

Ussher, Archbishop, 128-29 

Van Doesburg, Theo: Composition VIII 
(The Cow), 182; and de Stijl, 180; 

and diagonals in paintings, 181-82 
Van Gogh, Vincent, 46. See also infin- 

ity: metaphysical 



vanishing point, 144-45, 149-50, 156. 

See also painting: and single-point 

perspective 

Vantongerloo, Georges, 180; and alge- 

braic relationship between areas, 

186-87, 189; and Archimedes’ 

estimation of pi, 193; Composition 

Derived from the Equation y = ax? + 

bx + 18, 182; Construction of Volu- 

metric Interrelations Derived from 

the Inscribed Square and the Square 

Circumscribed by a Circle, 182, 193; 

and the incommensurable, 190; 

and the principle of unity, 182, 184 

Venus: angels singing after Beatrice’s 

arrival at, 108; cycle of, in sky, 118- 

20; distance from earth to, 109-10; 

in Mayan cosmology, 120; as morn- 

ing and evening star, 118-19; and 

Puella, 16-17 

Virgin Mary, 99 

vision, theory of: by Alhazen, 141-43; 

by Euclid, 135-36 

visual angle, and apparent size, 136- 

37,139,145. See also vision, theory 

of: by Euclid 

Vitruvius, 140-41 

void: and Aristotle, 63; and Democri- 

tus, 32; and Parminedes, 49-50 

Vojta, Paul, 268-69 

Wachtel, Albert, Goddess, 199. See also 

squaring the circle 
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water: Aristotle’s place for, 102; asa 

fundamental element, 31-32; and 

geomancy, 16; Plato’s geometric 

form for, 35-39; qualities of, 39-41 

Weber, Max, 167, 169, 172. See also 

fourth dimension 

what-is, 50-51. See also Melissus 

Wheeler, John, 165 

Whitehead, Alfred, 252, 254-55, 

257,259 

whole is greater than the part: 

axiom, 79, 223; and infinity, 52, 

61-62, 217, 247 

Witten, Edward, 269 

Wittgenstein, Ludwig, 56; and paradox 

of an infinite past, 131 

Woman and the Well, The, 139 

Wren, Christopher, 23, 25-26. See also 

beauty 

Yeats, William Butler, 122-24; A 

Vision, 123 

Young, Thomas, 205, 209. See also light 

Zeno: and Aristotle, 65-66; and Berg- 

son, 69; and Borges, 66-67; and 

Escher, 160; and Gregory of Rimini, 

113; paradoxes of, 64-69, 226, 254; 

and Parmenides, 64-65. See also 

Achilles and the Tortoise; Arrow, 

The; Borges, Jorge; Dichotomy, The 

zodiac, 37 
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MATHEMATICS 

Mathematics often seems incomprehensible, a melee of strange 

symbols thrown down on a page. But while formulae, theorems, and 

proofs can involve highly complex concepts, the math becomes trans- 

parent when viewed as part of a bigger picture. What Is a Number? 

provides that picture. 

Robert Tubbs examines how mathematical concepts like number, 

geometric truth, infinity, and proof have been employed by artists, 

theologians, philosophers, writers, and cosmologists from ancient 

times to the modern era. Looking at a broad range of topics—from 

Pythagoras’ exploration of the connection between harmonious 

sounds and mathematical ratios to the understanding of time in both 

Western and pre-Columbian thought—Tubbs ties together seemingly 

disparate ideas to demonstrate the relationship between the some- 

times elusive thought of artists and philosophers and the concrete 

logic of mathematicians. He complements his textual arguments with 

diagrams and illustrations. 

This historic and thematic study refutes the received wisdom that 

mathematical concepts are esoteric and divorced from other intel- 

lectual pursuits—revealing them instead as dynamic and intrinsic to 

almost every human endeavor. 

Robert Tubbs is an associate professor of mathematics at the Univer- 

sity of Colorado, Boulder, and the coauthor of Making Transcendence 

Transparent: An Intuitive Approach to Classical Transcendental Number 

Theory. 
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