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Preface

The main characters of this book are various geometric
figures or, as they are frequently called here, “sets of points”.
The simplest figures in their different combinations appear
first. They move, reveal new properties, intersect, combine,
form entire families and change their appearance, sometimes
to such an extent that they become unrecognizable. How-
ever, it is interesting to see old acquaintances in unusual
situations surrounded by the new figures which appear at
the end.

The book consists of approximately two hundred problems,
most of them given with solutions or comments. There is
a whole variety of problems, ranging from traditional
problems in which one has to find and make use of some set
of points, to simple investigations touching important
mathematical concepts and theories (for instance “the
cheese”, “motor-boat”, “bus” problems). Apart from ordinary
geometric theorems on straight lines, circles and triangles,
the book makes use of the method of coordinates, vectors and
geometric transformations, and especially often the language
of motion. A list of useful geometric facts and formulas
is given in Appendices I and II. Some of the tedious finer
points in the logic of the solutions are left to the reader.
The symbol (?) replaces the words “Exercise”, “Verify”,
“Is it clear to you?”’, “Think, why”, etc., depending upon
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where it is. The beginning and the end of solutions are
marked with the symbol [J while | means that the
solution or the answer to the problem is given at the end
of the book. The problems at the beginning of each section
are not usually difficult or else are analysed in detail in
the book. The rest of the problems do not have to be solved
in succession. One can, while reading the book, choose
those which seem more attractive. It is useful to verify
much of what is discussed in the problems through experi-
ment: it is best to draw a diagram or—even better—several,
with the figures in different positions. This experimental
approach not only helps one to guess the answer and for-
mulate a hypothesis but also often leads one to a mathe-
matical proof. In drawing the diagrams in the margins
the authors were convinced that almost behind every pro-
blem there is hidden an auxiliary problem of constructing
the points or lines which are stated in the problem. The
preliminary problem often appears to be more simple but
it is no less interesting than the problem itself!

The authors are deeply thankful to I. M. Gelfand whose
advice helped the entire work on the book, to I. M Yaglom,
V. G. Boltyansky and J. M. Rabbot, who read the manu-
seript, for their significant remarks. Since the publication of
the first edition (1970) of this book, it has been used in the
work of the Moscow University Correspondence mathemat-
ics school. The experience which the teachers of this school
shared with us and also the experience of our friends and
colleagues has been taken into consideration in the detailed
revision undertaken for the second edition.

We thought it necessary to furnish the book with an
additional appendix, Appendix III. This will assist in
systematic study of the book, and will help to reveal rela-
tionships between different sections of the book which are
not immediately apparent.

N. B. Vasilyev, V. L. Gutenmacher



Introduction

Introductory Problems

0.1. A ladder standing on a smooth
floor against a wall slides down. Along
what line does a cat sitting at the
middle of the ladder move?

Let us suppose our cat is calm and
sits quietly. Then. we can see behind
this picturesque formulation the fol-
lowing mathematical problem.

A right angle is given. Find the
midpoints of all the possible segments
of given length d, which have their
end-points lying on the sides of the
given angle.

Let us try to guess what sort of
a set this is. Obviously, when the
segment rotates with its end-points
sliding along the sides of the angle,
its centre describes a certain line.
(This is obvious from the first pictur-
esque statement of the problem.)
First of all, let us determine where
the end-points of this line lie. They
correspond to the extreme positions
of the segment when it is vertical or

9
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horizontal. This means that the end-
points 4 and B of the line lie on the
sides of the angle at a distance d/2
from its vertex.

Let us plot a few intermediate
paints of this line. If you do this
accurately enough, you will see that
all of them lie at the same distance
from the vertex O of the given angle.
Thus, we can say that

The wunknown line is an arc of
a circle of radius d/2 with centre at O.
Now we must prove this.

[0 We shall first prove that the
midpoint M of the given segment KL
(]| KL | = d) always lies at a distance
d/2 from the point O. This follows
from the fact that the length of the
median OM of the right-angled triangle
KOL is equal to half the length
of the hypotenuse KL. (One 'can
easily convince oneself of the validity
of this fact by extending the triangle
KOL up to the rectangle KOLT and
recalling that the diagonals KL and
OT of the rectangle are equal in
length and are bisected by the point
of intersection M.)

Thus, we have proved that the
midpoint of the segment KL always

lies on the arc AB of a circle with
centre O. This arc is the set of points
we were looking for.

Strictly speaking, we have to prove
also that an arbitrary point M _of the
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arc AB belongs to the unknown set.
It is easy to do this. Through any

point M of the arc AB we may draw
a ray OM, mark off the segment
| MT | = | OM | along it, drop per-
pendiculars TL and TK from the
point T to the sides of the angle and
the required segment KL with its
midpoint at M is constructed. [
The second half of the proof might
appear to be unnecessary: It is quite
clear that the midpoint of the seg-
ment KL describes a “continuous line”
with end-points A and B; it means
that the point M passes through the

whole of the arc 4B and not just
through parts of it. This analysis is
perfectly convincing, but it is not
casy to give it a strict mathematical
form.

Let us now consider the motion of
the ladder (from problem 0.1) from
another point of view. Suppose that
the segment KL (the “ladder”) is fixed
and the straight lines KO and LO
(“the wall” and “the floor”) rotate
correspondingly about the points K
and L so that the angle between them
is always a right angle. The fact that
the distance from the centre of the
segment to the vertex O of the right
angle always remains the same, reduces
to a well-known theorem: if two
points K and L are given in a plane,
then the set of points O for which the

1



™\

angle KOL equals 90° is a circle with
diameter KL. This theorem and also
its generalization, which will be giv-
en in the proposition E of Sec. 2,
will frequently help us in the solution
of problems. Let us return to pro-
blem 0.1 and put a more general
question.

0.2. Along what line does the cat
move if it does not sit at the middle
of the ladder?

In the figure a few points on one
such line are plotted. It can be seen
that it Is neither a straight line nor
a circle, i.e. it is a new curve for us.
The coordinate method will help us
to find out what sort of curve it is.

[J We introduce a coordinate system
regarding the sides of the angle as the
axes Oz and Oy. Suppose the cat sits
at some point M (z; y) at a distance a
from the end-point K of the ladder
and at a distance b from L (a + b =
= d). We shall find the equation
connecting the x and y coordinates
of the point M.

If the segment KL is inclined to
the axis Oz at an angle @, then y =
= b sin @ and 2 = a cos @; hence, for

any arbitrary ¢ (0 P "'21)
2 2
S+E=1 (1)

The set of points whose coordinates
satisfy this equation is an ellipse.

12
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llonce, the cat will move along an
ollipse. O

Note that when a = b = d/2, then
if the cat sits as above at the middle
of the ladder, and equation (1) becomes
the equation of a circle z2 + y* =
== (d/2)?. Thus, we get one more solu-
tion of problem 0.1, an analytical
solution.

The result of problem+0.2 explains
the construction of a mechanism for
drawing ellipses. This mechanism
shown in the figure is called Leonardo
da Vinci's ellipsograph.

Copernicus’ Theorem

0.3. Inside a stationary circle, an-
other circle whose diameter is half the
diameter of the first circle and which
touches it from inside rolls without
sliding. What line does the point K
of the moving circle describe?

The answer to the problem is aston-
ishingly simple: the point K moves
along a straight line—more correctly
along the diameter of the stationary
circle. This result is called Copernicus’
theorem.

Try to convince yourself of the
validity of this theorem by experi-
ment. (It is important here that the
inner circle rolls without sliding, i.e.
the lengths of the arcs rolling against
each other are equal). It is not diffi-
cult to prove, we need only to recall
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the theorem on the inscribed angle.

[0 Suppose that the point of the
moving circle, which occupies posi-
tion 4 on the stationary circle at the
initial instant, has come to the posi-
tion K, and that T is the point of
contact of the circle at the present
moment of time. Since the lengths of

the arcs KT and AT are equal and
the radius of the movable circle is
half as large, the angular size of the

arc KT in degrees is double that of

the arc AT. Therefore, if O is the
centre of the stationary circle, then
according to the theorem on the

P
inscribed angle (see p. 24), AOT =

PR
= KOT. Hence, the point K lies on
the radius A40.

This argument holds until the mo-
ment when the moving circle has
rolled around one quarter of the big-
ger circle (the circles then touch at the
point B of the bigger circle, for which

7\
BOA = 90° and K coincides with O).
After this, the motion will be contin-
ued in exactly the same way—the
whole picture will be simply reflected
symmetrically about the straight line
-BO and then, after the point K
reaches the opposite end 4’ of the
diameter AA’, the circle will roll
along the lower half of the stationary

14
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circle and the point K will return
to 4. O

Let us compare the results of pro-
blems 0.1 and 0.3. They are attractive
probably for the following reason.
Both problems deal with the motion
of figures (the first with the motion of
a segment, the second with the motion
of a circle). The motion is quite
complicated, but the paths of certain
points appear to be unexpectedly
simple. These two problems turn out
to be not only related in appearance,
but the motions themselves, discus-
sed in the problems also coincide
with each other.

Indeed, suppose a circle of radius
d/2 rolls along the inside of another
circle of radius d, and suppose KL
is a diameter of the moving circle
rigidly fixed to it. According to Co-
pernicus’ theorem the points K and
L move along stationary straight lines
(along the diameters AA’ and BB’ of
the bigger circle, respectively). Thus,
the diameter KL slides with its end-
points along two mutually perpendic-
ular straight lines, i.e. it moves just
like the segment in the problem 0.1.

One more interesting problem con-
nected with the motion of the seg-
ment KL: what set of points is covered
by this segment, or what is the union
of all the possible positions of the
segment KL during its motion? The
curve bounding this set is called the

15




astroid. 1t is possible to construct this
curve in the following way: make
a circle of diameter d/2 roll inside
another circle of diameter 2d and draw
the trajectory of any particular point
of the rolling circle. This trajectory
will be the astroid. We shall discuss
this curve and its close relatives in
Sec. 7 of our book where the reader
will make a more detailed acquaintan-
ce with the interconnection between
the problems which we have discussed.
However, before discussing such
intricate problems and curves, let us
pay thorough attention to the pro-
blems dealing with straight lines and
circles. Other types of lines will not
appear in the first five paragraphs.



I Set

of
Points

In this paragraph we shall discuss and
illustrate with a number of examples
the basic statements of the problems
which the book deals with and also
provide an arsenal of concepts and
methods used for solving them. The
paragraph ends with a set of various
geometric problems.

We shall first discuss the term
which is most often used in the book
and which is at the head of the para-
graph.

The concept of a “set of points” is
very general. A set of points could
be any figure, one point or several,
a line or a domain in a plane.

In many of the problems of our
book, it is required to find a set of
points which satisfy a certain condi-
tion. Answers to such problems are,
as a rule, figures known from school
geometry (straight lines, circles, some-
times pieces into which these lines
divide a plane, etc.). The main task

17 2—0410



is to guess what sort of a figure the
answer is. Thus, in problem 0.1 about
the cat, we have guessed the answer—
it was a circle, and in problem 0.3
};he answer turned out to be a straight
ine.

In solutions of some problems we
have to carry out a thorough investi-
gation. One has to establish the fol-
lowing:

(a) all the points satisfying the given
condition belong to the figure;

(b) all the points of the figure satisfy

the given condition.
Sometimes both of these statements
are obvious, the direct statement as
well as its converse, sometimes only
one of them. Sometimes it is even
difficult to guess the answer.

Let us investigate a few typical
problems.

1.1. A point O lies on a segment AC.
Find the set of points M for which

PO POS
MOC = 2MAC.

0 Answer: The union of the circle
with centre O and radius | A0 |
(omitting the point A) and the ray OC
(omitting the point O).

Let us establish this. Suppose, the
point M of the unknown set does not
belong to the straight line 40. We
shall prove that the distance | MO |
from the point M to the point O is
equal to | A0 |. Let us construct the
triangle OAM. According to the theo-
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rom on the exterior angle of a triangle,
tho angle MOC is equal in magnitude
to the sum of the two interior angles
not adjacent to it at A and M.

NN AN PO
OAM +AMO =MOC=2MAO.

I'rom the condition of the problem»
PN
it follows immediately that OAM =

P

AMO. Hence, AMOQO is an isosceles
triangle, i.e. |OM | = | 4O |.

We shall now prove the validity of
tho converse statement: any point M
of the circle described in the answer
salisfies the condition.

The triangle AMO is indeed iso-
sceles, the values of its angles A and M
are equal, and by the same theorem

. . PO
concerning the exterior angle, MOC =

PO
= 2MAC.
Suppose now the point M belongs

P
Lo the ray OC, M = O. Then, MOC =

N\
.= 2MAC = 0, and the condition is
satisfied.

The remaining points of the straight
line AO do not belong to the unknown
set. For them one of the angles MOC
and MAC is a straight angle while
the other is zero (about the point O
one can say nothing). O

19 o%
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1.2. Two wheels of radii r, and

ry (r; > r,)roll along a straight line 1.

Find the set of points of intersection M )

of their interior common tangents (see @
the figure). A

[0 Answer: A straight line, parallel ’
to L.

Note that the point M lies on the
axis of symmetry of the two circles,
i.e. on the straight line 0,0,, where O,
and O, are the centres of the circles.
Therefore, we can look for the set of
points of intersection of the straight
line 0,0, with one of the tangents 7, T',.

Let us consider an arbitrary com--
position of two circles and let us draw
their radii O,T, and O,T, to the points
of tangency. We see that the point M
divides the segment 0,0, in the ratio
r,/ry (the right-angled triangles MO, T,
and MO,T, are similar). It is clear
that the set of centres O; and the set

of centres O, are straight lines, paral- o M

lel to the straight line I. The set of ———@=———————

points M which divide the segments ——======"—"%-~

0,0,, with end-points on these straight 2
77777777 77777

lines, in the fixed proportion ry/r,, is
itself a straight line parallel to I

Thus, the set of points of intersec-
tion of the tangents is a straight line
parallel to the line ! and placed at
a distance 2ryry/(r; + r,) from this
line (?). O

The next problem demands a more
thorough investigation. We have to
divide the plane into several parts and

20



carry out a separate argument in each
of them.

1.3. Given a rectangle ABCD. Find
all points in the plane such that the
sum of the distances from each point
to two straight lines AB and CD
is equal to the sum of the distances
to the straight lines BC and AD.

O Let us denote the lengths of the
sides of the rectangle by a and b.
We consider first a rectangle which
is not a square: let a << b.

The points lying inside the rectangle
and also between the extensions of its
larger sides do not satisfy the require-
ments of the problem, since one sum
of the distances is equal to a and the
other is not less than b.

Let the point M now lie between
the extensions of the smaller sides of
the rectangle. Let us denote by y its
distance from the nearest of the larger
sides of the rectangle. Then its dis-
tance from the opposite side is equal
to y + a. For the point to satisfy the
requirement of the problem, the equal-

ity y + (y + a) = b must hold, from _&-a

which it follows that y = (b — a)/2.
Therefore, among the points located
between the extensions of the smaller
sides of the rectangle those and only
those which lie at a distance (b — a)/2
from the closer larger sides of the
rectangle satisfy the condition. The
set of points in this domain is the

21
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union of two segments EF and E'F’.

Finally, we shall consider an arbit-
rary point M lying in the angle be-
tween the extensions of the two neigh-
bouring sides BC and DC of the
rectangle. Let us denote by z and y
the distances from the point M to the
straight lines CD and BC, respectively.
Then one can express the requirement
of the problem as z + (z + b) =
=y+ @y +aory =z -+ (b — a)2.

Note that the numbers z and y can
be regarded as coordinates of the
point M in the coordinate system with
the axes Cz and Cy. In this coordinate
system the equation y =z 4+ (b —
— a)/2 defines a straight line parallel
to the bisector of the angle 2Cy. Thus
we have proved that among the points
lying in the angle under considera-
tion, those and only those which lie
on the straight line y =z + (b —
— a)/2 satisfy the requirement of the
problem. ,

We can use the same argument for
the remaining three angles. We have
thus analysed all the points of the
plane. The set of all the points which
satisfy the stated requirement is plot-
ted in the Figure.

We also have to consider the case
when the rectangle is a square, i.e.
when a = b, and to determine what
set the required set of points reduces to.

It can easily be seen that it will
be the union of the square and the

22
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oxlensions of its diagonals (?). O

Nowe that since a rectangle has two
ares of symmetry and the pairs of its
symmetrical sides in the given conditions
are totally identical, the unknown set
of points must also have those two axes
of symmetry. Therefore, in the solution
il was sufficient to consider only any
ono of the quadrants into which the
plane is divided by these axes, and
not the whole plane.

In the case of a square all four axes
of symmetry of the square are also
nxes of symmetry of the set we are
looking for.

A Family of Lines and Motion:
Together with sets of points we shall
nlso consider sets of lines or, as they
are frequently called, families of lines.

In a geometrical problem when we
have to deal with a family of circles
or straight lines, it is convenient to
imagine the family as a moving circle
or a straight line. We have already
formulated and solved our first pro-
blems in the language of motion, and
we shall use this language repeatedly
in what follows, since many problems
and theorems can be explained more
vividly using it..

We don’t have to look far for an
oxample. Let us return to problem 1.1.
The result we found there can be given
as follows:

Suppose the straight line AM ro-
Lates about the point A with constant,
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angular velocity o (i.e., it turns
through an angle of magnitude o in
unit time) and the straight line OM
rotates about the point O with angu-
lar velocity 2w; at the initial point
of time both lines coincide with the
straight line AO). Then the point of
intersection M of straight lines moves
along a circle with centre O.

From this we can obtain a well-known
theorem on the inscribed angle. If in
time ¢ the straight line AM rotates
from the position 4 M, to the position
AM, through an angle t, then the
straight line OM rotates through an
angle 2wt or, in other words, the
magnitude of the inscribed angle M A M,
is half the magnitude of the correspond-
ing central angle M,OM,.

One can formulate this theorem more
vividly as follows.

A Theorem About the Tiny Ring on
a Circle. A small ring is put on a wire
circle. A rod which passes through this
ring rotates around the point A of the
circle. If the rod rotates uniformly with
an angular velocity o, the ring in this
case moves uniformly around the circle
with an angular velocity 2.

Let us give one more example of
a theorem which may be formulated
in the language of motion.

Suppose the straight line ! describes
a uniform translation in a plane, i.e.
it moves in such a way that its direc-
tion remains unchanged and its point
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of intersection M with a certain sta-
lionary straight line m moves uniform-
ly along the line m. Then, the point
of intersection N of the line | with any
other stationary straight line n also moves
uniformly.! This is, in fact, a refor-
mulation of the geometrical theorem
which states that parallel straight
lines cut off proportional segments on
the sides of an angle. To make an anal-
ogy with the theorem about the ring
on a circle, we can express this in the
following way.

A Theorem About the Tiny Ring on
a Straight Line. A small ring is placed
at the point of intersection of two
straight lines. If one of the lines is
fixed and the other describes a uniform
translation (parallel to itself), the ring
also moves uniformly. We shall encoun-
ter various families of straight lines
later on.

When one has to deal with a family
of straight lines passing through a sin-
gle point or parallel to a fixed direction,
one or the other of these theorems about
tiny rings may be useful.

Construction Problems. In classical
construction problems (how to “const-
ruct a triangle”, “mark off a segment”,
“draw a secant”, “find a point”, etc.),
it is usually meant that the construc-
tion should be done with “ruler and
compasses” -only. In other words, we
can draw a straight line through any
two points, draw a circle of a given

A
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radius and similarly find points of
intersection of lines constructed.

For the solution of such problems,
it is convenient to consider circles and
straight lines as sets of points satisfying
a certain condition.

1.4. A circle is given with a point A
outside it. Draw a straight line !
through the point A touching the
circle.

O If X is the point where the
straight line I touches the circle, then
the angle OX 4 is rectangular. The set
of points M for which the angle OMA
is a right angle is, as we know, a circle
with the diameter OA.

Thus, one can carry out the const-
ruction of the straight line I as fol-
lows. Draw a circle with the segment
0OA as diameter.

Find a point of intersection X of
this circle with the given one (there
are two such points, they are sym-
metrical relative to the straight line
OA). Finally, draw a straight line [
through the points 4 and X. [

1.5. A point 4 and a circle are
given. Draw a straight line through
the point A so that the chord cut off
by the circle along this straight line
has a given length d.

O Let us look at the set of all
straight lines on which the circle
marks off a chord of the given length d.
These straight lines are tangents to

26
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n certain circle 6 whose centre coin-
cides with the centre O of the given
circle and whose radius is equal to
V' r* — d¥4, where r is the radius of
the given circle (?). The problem
thus reduces to the previous one: draw
through the point A a tangent to the
circle 8 with centre O.

The problem has two solutions if
the point A lies outside the circle 6,
a unique solution, if it lies on the
circle § and no solution at all, if it
lies inside the circle 6. O

Often, it is possible to find the
unknown set from the known one with
the help of some simple transformations
such as a rotation, symmeiry, parallel
displacement (or translation) or simi-
larity transformation. (This method is
especially useful in construction prob-
lems.) Let us recall how we construct
the image of a straight line or a circle
under a translation or a similarity
transformation.

For the straight line it is sufficient
to plot two points A’ and B’, the
images of two points A and B on the
line, and to draw a straight line
through the points 4’ and B’.

For a circle of radius r, it is suffi-
cient to plot the point O, the image
of its centre O, and to draw a circle
with centre O’ and the same radius
(if the transformation is a translation)
or of radius kr (if %k is the ratio of
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magnification of a similarity trans-
formation). We shall give some typi-
cal examples of problems where trans-
formations are used.

1.6. A point A and a circle are
given. Find a set of vertices M of the
equilateral triangles A NM which have
vertex N lying on the given circle.

0 Let N be an arbitrary point on
the given circle. If we rotate the
segment AN through 60° relative to
the point A4, then the point N comes
to the vertex M of the equilateral
triangle ANM. Hence, it is obvious
that if we rotate the circle as a rigid
figure about the point A through an
angle of 60°, then each point N of
the circle will come to the correspond-
ing third vertex M of the equilateral
triangle ANM.

Thus, all the points M lie on one
of the two circles obtained from the
given one by a clockwise or anticlock-
wise rotation about the point A4
through an angle of 60°.

In exactly the same way we can
show that each point M of the union
of the two circles (we obtained) is
the vertex of some equilateral triangle
ANM. O

1.7a. An angle and a point D lying
inside it are given. Construct a seg-
ment with its midpoint at the point D
and its end-points on the sides of the
given angle.

28




[0 Let us consider a set of segments
which have one end lying on the side
AC of the given angle (with vertex A4)
and their midpoint at the given
point D. The other ends of these seg-
ments are obviously contained in the
ray symmetric to the side AC of the
angle with respect to the point

The construction reduces to the
following: construct the point A’
symmetric about the point 4 with
respect to D, then draw through 4’
a straight line parallel to AC up to
the point of intersection £ with the
straight line AB to obtain the required
segment EF with its midpoint
at D. The problem always has a
unique solution.

It is interesting to note that this
very construction solves the following
problem.

1.7b. An angle and a point D lying
inside it are given. Draw through the
point D a straight line which cuts off
from the given angle a triangle with
minimum possible area.

0 We shall prove that the unknown
straight line is the same straight line
EF which we constructed in the pre-
vious problem, i.e. that segment be-
tween the sides of the angle which is
bisected by the point D.

Let us draw through the point D
a straight line M N different from EF,
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and prove that
Syan>>Skar- (1)

We can assume that the point M on
the side AB lies at a greater distance
from the vertex of the angle A than F
(the case when M lies closer to A4
than to E is analysed similarly, inter-
changing the roles of the sides AB
and AC). It is sufficient to verify that

Sepm = Sron, (2)

as inequality (1) follows readily from
this. But inequality (2) is immediate,
since the triangle EDM completely
contains the triangle EDN’ symmet-
ric to the triangle FDN relative to
the point D.

Set of Problems

1.8. Two points A and B are given.
Find the set of feet of the perpendi-
culars dropped from the point 4 onto
all possible straight lines passing
through the point B.

1.9. Given a circle and a point 4
in a plane. Find the set of midpoints
of the chords cut off by the given
circle on straight lines passing through
the point A. (Obviously, we should
consider all the possible cases; when
the point A lies inside the circle,
outside the circle and on the circle.)
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1.10. Given two points A and B.
Iind the set of points, each of which
is symmetric about the point 4 with
respect to some straight line passing
through the point B.

1.11. Construct a circle touching
two given parallel straight lines and
passing through a given point which
lies in between the straight lines.

1.12. Construct a circle of a given
radius r touching a given straight line
and a given circle.

1.13. A circle and two points 4, B
lying inside it are given. It isrequired
to inscribe a right-angled triangle in
the circle so that the two given points
lie on the sides forming the right angle.|

1.14. The points A and B are given.
The straight line AB touches two
circles, one at the point A, the other
at the point B, and the circles touch
each other at the point M. Find the
set of such points M. |

1.15. Four points are given in
a plane. Find the set of centres of the
rectangles formed by four straight
lines passing respectively through the
given points. |

1.16. The sides OP and OQ of the
rectangle OPMQ lie on the sides of
a given right angle. Find the set of
points M in the three following cases:

(a) the length of the diagonal PQ
is equal to a given value d;
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(b) the sum of the lengths of the
sides OP and OQ is equal to a given
value d;

(c) the sum of squares of the lengths
of the sides OP and OQ is equal to
a given value d.

1.17. Find the set of points, the
sum of the squares of the distances
from which to the four sides (or their
extensions) of a given rectangle is
equal to the square of the diagonal of
the rectangle.

1.18. A and B are two different
cities. Find the set of points M having
the following property: if one travels
in a straight line from M to B, then
the distance from M to A always goes
on increasing.

1.19. Suppose we know that in the
triangle ABC the length of the me-
dian AO is:

(a) equal to half the length of the
side BC;

(b) greater than half the length of
the side BC;

(c) less than half the length of the
side BC.

Prove that the angle A is respecti-
vely: (a) a right angle, (b) an acute
angle, (c) an obtuse angle.

1.20. A circle and a point L are
given in a plane. Find the set of mid-
points of the; segment LN, where N is
an arbitrary point on the given circle.
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1.21. Given a circle and a point
lying outside it. Draw through this
point a secant such that the length
of the segment of the secant outside
the circle is equal to the length of
the segment inside it.

1.22, Through a point of intersec-
tion of two given circles draw a straight
line on which these circles cut off
chords of equal length.

1.23. Find the set of vertices C of
the squares ABCD, where vertex A
lies on a given straight line and ver-
tex B is at a given point.

1.24. (a) Where can the fourth ver-
tex of a square be, if two of its verti-
ces lie on one of the sides of a given
acute angle and the third vertex on
the other side?

(b) Inscribe in a given acute triangle
ABC a square, two vertices of which
lie on the side AB.

1.25*. What line does the midpoint
of the segment between two pedestrians

walking uniformly along straight roads
describe? |

1.26*. Inside a given triangle ABC,
all possible rectangles are inscribed,
one side of which is on the straight
line AB. Find the set of centres of
all such rectangles.

1.27. A’ wooden right-angled triangle
moves ‘on a plane so that the ver-

33 3-—o0410

NG




tices of its acute angles move along the '

sides of a given right angle. How does
the vertex at the right angle of this
triangle move?

1.28*, Two flat watches lie on
a table. Both of them run accuratley.
Along what path does the midpoint M
of the segment connecting the end-
points of their minute hands move? |}

1.29*. Through the point of inter-
section A of two given circles, a straight
line is drawn which crosses these
circles once more at the points K and
L respectively. Find the set of mid-
points of the segment KL. |
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2 The

Alphabet

This section is a summary of theorems
on sets of points satisfying various
geometric conditions. We shall gra-
dually compile a whole list of such
theorems and conditions which can
be used in the solution of problems
of different types.

One can draw an analogy between
the geometric problems of finding a set
of points and the usual algebraic
problems of solving an equation (a sys-
tem of equations, an inequality). Solv-
ing an equation or an inequality
means finding the set of numbers
satisfying a certain condition. Just
as in the algebra course at school when
different equations (for example, tri-
gonometric, logarithmic) are usually
reduced to linear or quadratic equa-
tions, often even complicated geomet-
ric conditions turn out to be only new
properties of the straight line or the
circle.
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The analogy between algebraic prob-
lems and problems on finding sets of
points is not only a superficial one.
Using the method of coordinates one
type of problems can be converted
into the other. Using this method we
shall see that geometric conditions,
seemingly different at first sight, are
covered by general theorems.

We start our geometric alphabet
with the most simple assertions.

A. The set of points equidistant from
the two given points A and B is a straight
line perpendicular to the segment AB
and passing through its midpoint. We
shall call this straight line m the
perpendicular bisector of the segment
AB. It divides the plane into two half
planes. The points in one of the half
planes are closer to A4 than to B and
in the other closer to B than to A.
The points A and B are symmetric
relative to m.

B. The set of points equidistant from
two given intersecting straight lines
ly and 1, is two mutually perpendicu-
lar straight lines which bisect the an-
gles formed by the straight lines l,and L,.

These straight lines are the axes of
symmetry of the figure formed by the
straight lines I/; and [,. This set—
“the cross bisector” —divides the plane
into four regions. In the figure two
right angles—the set of points closer
to the straight line I, than to the
line Il;—are shown.
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C. The set of points whose distance
from the given straight line l is equal
to a given number h (h > 0) is a pair
of straight lines 1, 1,, parallel to 1 and
lying on opposite sides of .

The belt between the straight lines
l, and [, is the set of points which
are at a distance less than % from the
straight line I.

D. The set of points whose -distance
from the given point O is equal to
a given number r (r > 0) is a circle of
radius r with centre O.

(This is the definition of a circle.)

The circle divides the plane into
two parts: the internal and the exter-
nal. For points inside the circle, the
distance from the centre is less than r
and for points outside the circle it is
greater than r.

We shall give a few simple refor-
mulations of the conditions A, B, C,
D in the form of the following four
problems.

2.4. Find the set of centres of the
circles passing through the two given
points.

2.2, Find the set of centres of the
circles touching two given intersect-
ing straight lines.
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2.3. Find the set of centres of circles
of radius r touching a given straight
line.

2.4. Given two points A and B.
Find the set of such points M for
which the area S 4, p of the triangle
AMB is equal to a given number ¢ > 0.

We shall illustrate the proposition
B with a less trivial example—we
shall prove the theorem on the bisec-
tor of a triangle.

2.5. Let the “cross bisector” of the
straight lines AC and BC intersect
the straight line AB at the points E
and F. Prove that

|AE| _ | AF| | AC|

|EB|~ |FB|~ [CB|’
O Let M be one of the points E
or F. Note that
|AM|= Sacm
IMB|  Smcp *

(The triangles ACM and MCB have
the same height CH.)

The relation between the areas can
be expressed in a different way; since
the point M belongs to the cross
bisector, it is equidistant from the
straight lines AC and BC, hence,

Sacm __|AC| 0
Smcs  |CBY®

A Circle and a Pair of Ares. The
next step of our “alphabet” is one

38




more variant of the theorem on the
inscribed angle and on the ring on
a cicre which we have discussed in
Sec. 1. _

E°. Two intersectiog straight lines 1,
and lp rotate, lyin8 on a plane, about
two of thir points A and B with the
same angular velocity o (here, the value
of the angle between them obviously
remains constant). The trajectory of
the point of intersection of these straight
lines is a circle.

{1 Construct a circle &8 -passing
through three points: A, B and a par-
ticular position M, of the point of
intersection of the straight lines I,
and lz. According to the theorem “on
the ring on a circle” given in Sec. 1,
the point of intersection of the straight
line I, and the circle § moves uni-
formly along the circle § with angular
velocity 2w. The point of intersection
of lp with the circle 6 moves in
exactly the same way. As they are
coincident at a particular instant (at
the position M,), they also coincide
at any other instant of time. [

We shall give an alternative variant
of theorem -E, without using the
language 'of motion. )

E. The set of points at which the
given ‘segment. AB subtends an angle ;
of given value @ (i.e. the set of points M

PN
for which AMB = ) is a pair of arcs
with their end-points at A and B which
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aresymmetric about thestraight line AB.
The region bounded by these two
arcs is a set of points M for which

S\
AMB > ¢.

Note that if ¢ = 90°, then the set E
will be a circle with diameter AB.
We have already mentioned this fol-
lowing problem O0.1.

2.6. The chord AB of a given circle
is fixed, and the chord CD is displaced
without altering its length. Along
what path does the point of intersec-
tion of the lines (a) AD and BC, (b) AC
and BD move?

2.7. Given two points A and B,
find the set of vertices M and N of
parallelograms A MBN with the given

O
angle MAN = .

2.8a. A circle and two points A4
and B on it are given. Let M be an
arbitrary point on this particular
circle. A segment MN equal to the
segment BM in length is marked off
from the point M on the segment 4 M
produced. Find the set of points N.

O Let N be some point plotted in
the same way as in the previous
problem. Then | BM | = | NM | and

Py S PN
NBM = MNB. But since AMB =
RS PN PN
= MBN + MNB, then ANB =
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PN
= AMB/2. The value of the angle
AMB for all points M lying on one

of the arcs AB is constant (see E):

PN PN
AMB = ¢. Hence, ANB = ¢/2, i.e.

—_——

all these points lie on the arc AnB
containing the angle ¢/2. (The centre
of the arc lies at the midpoint of the

arc A’r-n\B of the given circle (?).)

Do all the points of the arc AnB
satisfy our requirements? No, not all
of them.

Note that when the point M runs

along the arc AnB from the point B
to the point 4, the chord 4 M rotates
about the point 4 from the straight
line AB up to the tangent to the given
circle at the point A. Hence, only

a part of the arc AnB and in parti-
cular the arc EnB (where E is the

point of intersection of the arc AnB
with the tangent at the point A)
belongs to the set we are looking for.
Note that we can take the point B
as belonging to our set (when M
coincides with B “the length of the
segment MB is equal to zero”). Strictly
speaking, the point £ does not belong
to our set; when the point M coincides
with the point A, the direction of the
straight line AM has no meaning.
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The points lying on the other side
of the line AB are treated in a similar
way.

Thus, the unknown set of points

consists of two arcs EnB and E'n'B. [J

We may solve problem 2.8a in
a different way, if we notice that the
points N and B are symmetric about
the straight line CM, where C is the

midpoint of the arc AmB. From this
it follows that the set of points N
reduces to the set of points found
in problem 1.10 for the points 4 and C.

We shall present a problem similar
to 2.8a for the reader to investigate
in the same way.

2.8b. The situation is the same as
in problem 2.8a; but the segment MN
is marked off in the opposite direc-
" tion on the ray MA.

Squares of Distances. We shall con-
sider two points A and B in a plane
and an arbitrary number c.

F. The set of points M, for which

|AM p—|BM |2 =c,

is a straight line perpendicular to the
segment AB (in particular, when ¢ =
= 0, we get the perpendicular bisec-
tor, see proposition A).

.G. Suppose | AB | = 2a. The set of
points M, for which

|AM |2 +|BM [2=c
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is:

(a) a circle with its centre at the
midpoint O of the segment AB and
of radiusr = )/ (¢ — 2a%)/2, when ¢ >
> 2a%

(b) a point O, when ¢ = 2a?%

(c) the empty set, when ¢ << 2a%.

It is not difficult to prove proposi-
tions F and G using the Pythagorean
theorem or by the method of coordi-
nates (?).

We shall not present a separate
proof for each statement, but deduce
them both as corollaries of a more
general theorem. But first we shall
illustrate them with a few examples.

2.9. Find the set of points for
which the tangents drawn to two
given circles are equal in length.

O Let O, and O, be the centres
of the given circles, r;, and r, their
radii (ry > ry), and let MT, and MT,
be the tangents to them drawn from
the paint M. Using the Pythagorean
theorem, the condition | MT, |? =
= | MT, > may be written as:

| MO, P —|OT [2=| MO, 2—| O,T, |?,
or
| MOy 2—| MO, |2 =r} —ri.

According to proposition F, the set
of points M belongs to the straight
line perpendicular to 0,0,.

43




If the circles intersect, this straight
line will pass through their points
of intersection. For, if A is one of
these points, then

|0, 42— |0 AR =r—1}

and, consequently, the point A lies
on this straight line. The required set
of points in this case is shown in the
figure; it is the union of two rays.

If the circles are concentric (and
r, > ry), the required set is empty.
If the circles coincide, all the points
are outside the circle. If the circles
are non-intersecting and non-concent-
ric, the answer will be a straight
line. O

The straight line discussed in prob-
lem 2.9 is called the radical axis of
the two circles. Suppose two non-inter-
secting circles are given. Then their
radical axis divides the complement
of the two circles into two regions:
the set of points M for which | MT, |>
> | MT, | and the set of points M
for which | MT, | < | MT, |.

2.10. Find the set of centres of the
circles which intersect each of two
given circles at diametrically opposite
points.

2.11. (a) The sum of the squares of
the lengths of the diagonals of a paral-

lelogram is equal to the sum of squares
of the lengths of its sides. Prove this.
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(b) If the diagonals of a convex
quadrilateral A M BN are mutually per-
pendicular, then | AM |* + | BN =
= | AN |> + | BM ]>. Prove this.}

O (a) Let the vertices A and B of
the parallelogram AMBN be at a dis-
tance a from its centre O, the vertices
M and N, at a distance r from O,
and ¢ =2(@%+7r%). As |OM|=
=V (c — 24?)/2, then according to
proposition G the sum of the squares
of the distances from the point M to
the points 4 and B is equal to c.
In the same way | AN |? + | BN |2 =
= ¢, hence

|AM |24 |BM 24| AN 2+ | BN |2 =
=2c=4(a2+r3)=|MN]R+|AB]2.O

We shall present now the general theo-
rem which contains propositions F, G,
A, D of our alphabet.

‘Theorem on the Squares of the Dis-
tances. The set of points M for which
the condition

MIMARA ) | MA P+ ... +
+7"n|MAn|2=H1 (1)

is satisfied, where A,, A,, ..., A, are
given points, Ay, Ay, . . ., A, B are given
numbers, is one of the following simple
geomelric figures:

1° If M 4+ A+ ... + A, 540,
may be a circle, a point or the emply
set.
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. IfM A+ A+ .. A, =0,
may be a straight line, the entire plane
or the empty set.

We shall give a proof of the theorem
using the method of coordinates.

O The square of the distances bet-
ween the points M (z; y) and
Ay (zx; ys) is calculated according to
the formula

|MAR=(z—zp)*+ (y —yr)’=
=22+ % — 22,2 — 2ypy + 2k + Yk

Consider the expression

M MAR+ Ay | MA R+ ... +
| MA, I

In order to write it in coordinates,
it is necessary to add several expres-
sions of the form

A (22 +y?—2pz—2qy + p*+¢7).

As a result, condition (1) may be
written in the form of the equation

d? +dy* +ax + by +c=0, (2

where d = A + Ay + . .. + Aj.
“We shall now prove that equation
(2) gives one of the figures enumerated
above.
1°. If d 5= 0, we can transform (2)
in the following manner:

2yt 2z ly1S=0
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or
a \2 b \2 b24a?—4dc
(2+27) +(v+m) ="
(2)
We can see that this gives us:

a circle with centre at the point
C (—a/2d; —b/2d), if the right-hand
side (2’) is positive;

a single point C (—a/2d; —b/2d), if
the right-hand side equals zero;

the empty set, if the right-hand side
is negative.

2°. If d = 0, equation (2) takes the
form

ar + by + ¢ = 0.

This will be:

a straight line, if a® + % £ 0,

the entire plane, if a = b = ¢ = 0,

the empty set, if a = b =0, ¢ %
#0. O

As a rule, in a particular example,
it is easy to determine which of these
cases is involved. Let us return again
to propositions F and G of our “alpha-
bet” which have not been proved yet.

Proof of F. The condition | MA |2 —
— | MB |* = ¢ is a particular case
of (1), where n =2, A, =1, A, =
= —1, from which d = 0, and hence
it determines either a straight line
or a plane, or the empty set.

Since the equation (z + a)? — (z —
— a)? = ¢ always has a single solu-
tion, = = c/4a, one point of the set
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is on the straight line AB. Therefore,
the required set is a straight line.
It is clear from symmetry considera-
tions that this straight line is perpen-
dicular to the straight line AB. [J

Proof of G. The condition | MA | +
+ | MB |? = ¢ is a particular case
of (1). Here A, =1, A, =1, d=*0,
and, therefore, the unknown set would
be either the empty set, a point, or
a circle. Since the points 4 and B
appear in the condition symmetrical-
ly, the centre of the circle lies at the
midpoint of the segment AB.

In order to find when the unknown
set is a circle and to determine its
radius, we find the points on the
straight line AB which satisfy the
condition | AM PP + | BM |2 = ¢. To
do this, note that the equation (z —
— a)® + (x + a)?> = ¢ has a solution
when ¢ > 242, and

z[=r=1V(c—24a?/2. O

2.12. Find the set of points, the
sum of the squares of the distances
of which from two opposite vertices
of a given rectangle is equal to the
sum of the squares of the distances
from the two other vertices.

O Answer: The entire plane. Let
us prove this. Let ABCD be the given
rectangle. Then we seek the set of
points M, for which | MA |*+
+ |MCP—|MBP—|MD|* =
= 0.
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In condition (1) put n = 4, A, =
=A =1, A=A, = —1 and A +
+ Ay + A3 + A, = 0. According to
the theorem, the required set is either
a straight line, or the empty set or
the entire plane.

We note that the vertices 4, B, C, D
of the rectangle itself satisfy the
condition. For example, the following
equality | A4 |*+| AC >— | AB |? —
— | AD |> = 0 (the Pythagorean theo-
rem) is valid for the point 4. Thus,
the required set is neither the empty
set nor a straight line. Hence, it
follows that the required set is the
entire plane. [J

From the result of problem 2.12,
it follows that if ABCD is a rectangle,
then for any point M of the plane
the following equality holds

|MAP+| MCp=| MBI +| MD?

Solve the following problem using this
fact.

2.13. A circle and a point A inside
it are given. Find the set of the fourth
vertices C of the rectangles ABCD,
whose vertices B and D belong to the
given circle.

2.14, Prove that [MA *— | MB |*=
=2 | AB | p (M, m), where m is the
perpendicular bisector of the segment
AB, and, | MA | > | MB |.

We add to our alphabet one more
proposition which is frequently used
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in geometry and is also a -corollary
from the theorem on the squares of the
distances. )

H. The set of points M for which

| MA || MB | =k, k>0, k=+1,

is a circle whose diameter belongs to
the straight line AB.

This set of points, the ratio of the
distances of which from the two given
points A and B is a constant, is called
the circle of Apollonius.

O Let us rewrite condition H in
the form
| MA P — K| MB |} =0.

This condition is a particular case
of the condition (1) where n = 2,
M =1, Ay, = —k® and hence if 1 —
— k? == 0, the required set will be
either a circle, or a point, or the
empty set. Since the equation
(@ + a)? =k (x — a)?
always has two solutions, when %2 5%
= 1, there exist two points M, and M,
of this set on the straight line 4B
and hence the unknown set is a circle.
As the condition is symmetric relative
to the straight line 4B, the diameter
of this circle is the segment M, M,. (]

Incidentally note that if A/ is
a4 point of the circle of Apollonius,
then the cross bisector of the straight
lines AM and MB intersects the line
AB in the points M, and M,. (This
follows from the theorem on the
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cross bisector in 2.5, since
| AMy V[| BMy | = | AM, |/| BM, |=
= |AM |/| BM |.)

This argument is used in the next
problem.

2.15. Two billiard balls 4 and B
are placed on the diameter of a cir-
cular billiard table. Ball B is hit in
such a way that after one rebound from
the side of the table it strikes ball A.
Find the trajectory of ball B, if the
stroke is not directed along the dia-
meter.

2.16. The points 4, B, C, D are
on a given straight line. Construct
a point M in the plane, from which
the segments AB, BC and CD are
seen at one and the same angle (i.e.
subtend the same angle at M).

Distances from Straight Lines. So
far in this chapter various properties
defining a circle are mainly used. In
the next two propositions of our
alphabet only straight lines (which
will appear in pairs) will appear.

We shall consider two intersecting
straight lines /; and [, in a plane and
a positive number c.

I. The set of points M, the ratio
o (M, L)p (M, l,) of whose distances
from the straight lines l, and 1, is
equal to ¢ is a pair of straight lines
passing through the point of intersection
of the straight lines 1, and 1,.

J. The set of points M, the sum

51 4




o (M, 1) +p(M,L) of w ose distan- .
ces from the straight lines 1, and 1, is '
equal to ¢ is the boundary of a rectangle
with diagonals lying on the lines I, and
l,.

Before proving these theorems let
us illustrate them by two examples.

2.17. Given a triangle ABC, find
the set of all points M for which
Samc =S5

O Let h and hy be respectively
the dxstances of the point M from the
straight lines AC and BC. Then,

AC | -hp BC|-h
SAMC=%, SBMC=I_#a

consequently h,/hy, = | AC |/| BC |.
Hence the required set of points M

is the set given in proposition I

for the lines AC and BC and ¢ =

= | AC |/| BC |. Thus it represents

a pair of straight lines passing through

the point C. We shall show that one

of the straight lines m contains the

median of the triangle, and the other, 4 " B

l, is parallel to the straight line 4B.

For this, it is sufficient to take

a single point on each of the straight

lines and verify that the condition

\.
t c\[,~

stated is fulfilled for them. c N

Let us denote by & the altitude of 1
the triangle drawn from the vertex C. s\
Let N be a point on the straight \
line I, then \
Sacy =[CN2|'h and Spey =|Cl;’]-h A B
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Hence S ,ocn = Sgpeny a d the straight
line ! belongs to the required set.

Let K be the midpoint of the side
AB, ie. |AK|=|KB|. Then
Sixc = | AK |-h/2 = | BK |-h/2 =
= Sgpke, and, consequently, the
whole line m belongs to the unknown
set. O

In analogy with the cross bisector
one may call the pair of straight lines
m and ! “the cross median” of the
vertex C of the triangle.

Proposition J can in essence be
reduced to the following problem.

2.18. Given an isosceles triangle
AOB. Prove that the sum of the
distances from the point M on its
base AB to the straight lines AO and
BO is equal to the length of the alti-
tude dropped onto a lateral side.

We shall not give geometrical proofs
of propositions I and J, although
they are not at all difficult. But we
shall give proofs using the language
of motion. (As was done above in pro-
position E°“A circle and a pair of
arcs”.) Let us first formulate a lemma
which generalizes the theorem on a tiny
ring on a straight line (page 24).

Lemma. A tiny ring M is placed
on two straight lines 1, and l, at their
point of intersection. If each straight
line describes a uniform translatory
motion, then the ring M moves uni-
formly along some straight line.
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O This straight line can be const-
ructed by marking two different posi-
tions M; and M, of the ring. The
points of intersection of the moving
straight lines with the stationary
line M,M, move uniformly. Since
these points coincide with each other
at two different points of time (when
the ring M passes through M, and M,),
they must always coincide. [

Proof of I. The set of points lying
at a distance ¢ from I, and a distance
ct from I; for some positive number ¢,
is the four vertices of a parallelogram
with its centre at the point O of
intersection of I/, and I,. For, the set
of points lying at a distance ¢ from I,
is a pair of parallel lines (see C) and
the set of points lying at a distance c?
from [, is also a pair of parallel lines
and their points of intersection are the
four vertices of the parallelogram.
These four points satisfy the condi-
tion stated in I, since

ctlt = c.

By varying the number ¢ from zero
to infinity, we get all the points of
the required set.

By regarding ¢ as “time”, we see
that the four straight lines constructed
above move uniformly (remaining pa-
rallel to I, and I,). By the lemma,
their points of intersection, the rings,
move along a straight line passing
through the point 0. J
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Proof of J. Draw two straight lines
at a distance ¢ from /; and two, at
a distance ¢ — ¢ from I, (0 <t < o).
The four points of intersection of these
straight lines belong to the required
set. When the “time” ¢ varies from
zero to ¢, the straight lines move uni-
formly and each of the four points
of intersection, by the lemma, moves
through a segment. The end-points of
these segments which correspond to
t =0 and t = ¢ lie on the straight
lines 1, and I, and are the vertices of
a rectangle. O

We shall now state a general theo-
rem which includes propositions B,
C, I, J of the alphabet. Consider the
set of points M for which

Mo (M, 1)+
+hpo (M, L)+ ... +h 0o (M, 1) =
= . 3)

Here 1, 1,, . . ., 1, are given straight
lines, and Ay, Ay, . . ., A,, p are given
numbers.

It is difficult to give an immediate
description of this set on the entire
plane. However, as we shall now see,
in each of the pieces into which the
straight lines 1, I,, ..., I, divide
the plane, set (3) is, as a rule, simply
a part of some straight line. Let us
denote one of these pieces by Q.

Theorem on the Distances from the
Straight Lines. The set of points which
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satisfy condition (3), belonging to Q,
is either (I) the intersection of Q with
a straight line, i.e. a ray, a segment or
even a whole straight line, or (2) the
whole of Q, or (3) the empty sel.

By finding the set on each of the
pieces, we shall find the entire requi-
red set (as in 1.3). We shall give
a proof of the theorem using the
method of coordinates.

[0 Suppose we want to find the set
of points on one of the pieces Q of
the plane into which the lines ,, I,, ...

, I, divide the plane. The piece Q
of the plane can be imagined as the
intersection of n half planes with

boundary lines I, I,, .. ., I,.

The equation apz -+ bpy + ¢, =0
of the straight line I, can be selected
such that inside the required half plane,
apt + bpy +cp >0 and  af +
+ b3 =1 (?); then for the point
M (z; y) in this half plane, p (M, ;)=
= apx + bpy + Cp.

In order to write the quantity
Mp (M, L) + Ao (M, L) + .

+ Anp (M, 1,) in coordinates, we
have to add several linear expressions
of the form Axapz + Apbry + Awcy. As
a result, condition (3) is expressed by
a linear equation
ar + by +c¢c =0.

" If a® + b® 54 0, this equation repre-
sents a straight line. If a = b = 0,
it represents either the entire plane
or the empty set. [
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An alternative proof of this theorem
can be found by reducing it using
problem 2.14 to the theorem on the
squares of the distances (?).

2.19. (a) A right triangle ABC is
given. Find the set of points for which
the sum of the distances from the
straight lines AB, BC and CA is
equal to a given number p > 0. |

(b) Given a rectangle ABCD. Find
the set of points for which the sum
of the distances from the straight lines
AB, BC, CD, DA is equal to a given
number p.

2.20.* (a) Three straight lines I,
l;, 1, intersect at a single point. The
value of the angle between each two
of them is equal to 60°. Find the set
of points M for which

p(M1 l0)=p(M1 li)+p(M’ l2)'

(b) An equilateral triangle ABC is
given. Find the set of points M for
which the distance from one of the
straight lines AB, BC, CA is half
the sum of its distances from the
remaining two lines. |

The Entire “Alphabet”. The set
of points satisfying a certain condi-
tion is denoted as follows: inside the
braces a letter is first written to denote
an arbitrary point of the set (in our
case, it is, as a rule, the letter M, but
it can be any letter); then there is
a colon which is followed by the
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condition which specifies the required
set of points.

Let us now summarize the sets of
our “alphabet”:

A. {M: | MA | = |MB |}.
{M: p (M, L)) =p (M, L)}
{M: p (M, 1) =h}.

{M: | MO | =r}.

N
{M: AMB = o).
(M: |AM * — | MB | = c).
(M: |AM P+ | MB ] = c}.
{M: | AM /| MB | = k}.
{M: o (M, L)lp (M, 1,) = k}.
{M: (M, L)+ p(M,1,) =c},

Recall that we have separated the
propositions of our “alphabet” with the
exception of E into two groups:

A,D, F, G, Hand B, C, I, J.

The sets in the first group are par-
ticular cases of the set

(M: A | MA]+
Fha | MA P+ .- 0 | MA, 2=},

and the sets in the second group are
particular cases of the set

{(M: Mp (M, 1))+
Fhop (M, L)+ o Ao (M, 1,)=
= u}.
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In Sec. 6 we shall add four more
“letters” to our “alphabet”

K. {M: |MA |+ | MB | =c¢c}.

L. {M: |MA|— |MB| =c}.

M. {M: | MA | =p (M, )}

N. {M: | MA |lp (M, 1) =c}.

These sets are ellipses, hyperbo-
las, parabolas. These curves also

fall naturally into a single group, the
quadratic curves.




3 Logical
Combinations

In this section we have -collected
various problems in which as a rule
combinations of several geometric con-
ditions are involved. In solving these
problems we shall learn to classify the
points and to consider logical relations
between conditions as operations on
sets.

Through a Single Point. In the
first problems we shall touch on the
traditional subject matter of geometry.
We shall prove some theorems on the
special points of a triangle with the
help of simple manipulations using the
sets of our “alphabet”. The whole
logic of the reasoning will as a rule
reduce to the use of transitivity of
equality: if a =b and b = ¢, then
a=c.

3.1. In a triangle ABC the midper-
pendiculars (perpendiculars at the mid-
points of the sides) intersect at a single
point (the centre of the circumscribed
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circle of the triangle also known as
the circumcircle).

0 The midperpendiculars m, and
m, of the sides AB and BC must
intersect at some point O. Since the
point O belongs to the midperpendi-
cular m,, then according to A (Sec. 2),
the equality |04 | = | OB | holds
true. In exactly the same way from
the fact that O belongs to the midper-
pendicular m,, it follows that | OB |=
= | OC |. Hence |04 | = | OC | and
consequently the point O belongs to
the midperpendicular m; of the side

We have thus proved that all the
three midperpendiculars intersect at
the point 0. O

3.2. The three altitudes of a triang-
le ABC intersect at a single point.
(This point is called the orthocenter
of the triangle.) (The line through
a vertex perpendicular to the opposite
side is called an altitude.)

OO0 Draw through each of the verti-
ces of the triangle a straight line
parallel to the side opposite the vertex.
These straight lines form a new
triangle A’B’C’, in which the points
A, B, C are the midpoints of its sides
while the altitudes of the triangle ABC
belong to perpendicular bisectors of
the sides 4'B’, B'C’, C'A’. Hence,
by 3.1 they are concurrent. [J

We shall give a second proof of 3.2,
similar to that of 3.1.
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O Let us consider each of the alti-
tudes as a set of points satisfying
a certain condition. For this we shall
use proposition F of the “alphabet”.

We know that the set

(M: |MAP — |MBP =d)

is a straight line perpendicular to 4B.
Choose d such that this straight line
contains the vertex C. To do this,
we must take d = |CA ? — |CB 2.
Thus, the straight line

he={M: | MA[2—|MB]2=|CAJ]2—
=|CB %},

contains the altitude of the triangle
dropped from the vertex C.

One can consider the straight lines
containing two other altitudes of the
triangle in a similar way.

ho={M: |MBR—|MC?=
=|AB]P—|AC [},
hy={M: |MC[t—[MA|*=
—|BC|—|BA3.

Suppose the first two straight lines
h, and h, intersect at the point H.
Then when M coincides with this
point both hold

|HA|>—|HB]2=|CA[2—|CB?,
|HB|—|HCt=|ABJ2—|CA 2.
62
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Adding these two equalities, we
obtain

| HA *— | HC |* = | AB |*—| CB].

Hence, the point H also belongs to
the third straight line 4,. O

3.3. Three bisectors of the angles
of a triangle ABC intersect at a single
point. (At the centre of the inscribed
circle of the triangle.) (This circle is
also known as the incircle of the
triangle.)

0O Let a, b and ¢ be the straight
lines to which the sides of the triangle
belong. The bisectors I, and I, of the
angles 4 and B must intersect at some
point O (inside the triangle). For this
point O the following equalities hold

0 (0,5) =p(0,¢) and

0 (0,a) = (0,0).

Hence, p (0, b) = p (0, a) and point
O belongs to the bisector I, of angle C
of the triangle. [

Note. The set of points M of the
plane for which p (M, ¢) = p (M, b)
and p (M, a) = p (M, ¢) consists of
four points: O, Oy, O, and O, the
points of intersection of the two “cross
bisectors”. Reasoning similarly as in
the solution of 3.3, we find that the
third “cross” (the cross bisector of the
straight lines a and b) also passes
through these points.
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From here it follows that the six
bisectors of the internal and external
angles of the triangle intersect in
threes at four points. One of these
points is the centre of the inscribed
circle and the other three are the
centres of the so-called escribed circles.

Note that, if in an arbitrary acute-
angled triangle 0,0,0; the points
A, B, C are the feet of its altitudes,
then O, O, and O, are the centres
of the escribed circles (or excircles) of
the triangle ABC. The altitudes of
the triangle 0,0,0; are therefore the
bisectors of the angles of the triangle
ABC.

3.4. The medians of a triangle inter-
sect at a single point, called the cent-
roid of the triangle (or the “cenire of
gravity” of the triangle).

This theorem can be proved by dif-
ferent methods.

The first proof, which we give here,
explains the term “the centre of gra-
vity” of the triangle.

0 Let us place three weights W ,,
Wg, We of the same mass, say 1 g,
at the vertices of the triangle ABC,
and find the position of their centre
of gravity. The centre of gravity of
the two weights W, and Wy lies at
the midpoint of the segment AB;
hence, the centre of gravity Z lies on
the corresponding median. We can
show in the same way that Z belongs
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to other two medians. Hence, all the
three medians intersect at the point
Z.

We shall also give a proof along
the same lines as the three previous
proofs.

[0 Suppose we are given a triangle
ABC. The points of the medians of the
triangle drawn from the vertices A4,
B, C satisfy the following conditions
(respectively) (see 2.17):

SAMB = SCMA! SAMB = SBMCv
SBMC':SCMA- (1)

It is clear that the third condition
follows from the first two, and so the
medians intersect at a single point
Z. O ’

Note. The set of points which satisfy
the conditions (1) is, according to 2.17,
a pair of straight lines which we could
call the “cross median”. Thus, three
such sets intersect at four points:
Z, A', B, C'. Note that the triangle
A’B’C’' is just the triangle considered
in the first proof of the theorem
on the altitudes in 3.2.

3.5. (a) Prove that for any three
circles the three radical axes of the
pairs of circles pass through a single
point or are parallel (see 2.9).

(b) Prove that, if three circles
.intersect in pairs, then the three
common chords of each pair of circles
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(or their continuations) pass through
a single point or are parallel. |

3.6. (Torricelli’s point). Prove that
in an acute-angled triangle ABC,
there exists a point T (Torricelli’s
point) at which all the sides subtend

PN
the same angle (i.e. such that ATB =

PN N\
= BTC = CTA).

3.7. Consider all the possible trian-
gles with a given base AB with the
vertex angle equal to @. Find the set
of:

(a) points of intersection of the
medians,

(b) points of intersection of the
bisectors, |

(c) points of intersection of the
altitudes. |

3.8. (a) Three straight lines a, b, ¢
(intersecting in pairs) pass through
three given points 4, B, Crespectively.
The lines rotate with angular velocity
®. Prove that at some moment of
time these straight lines pass
through a single point. |

(b) Prove that three circles sym-
metric to the circumcircle of the
triangle ABC relative to the straight
lines AB, BC and CA pass through
a single point, the orthocentre of the
triangle ABC. |

3.9. (Ceva’s Theorem). Points C,,
4,, B, are selected on the sides AB,
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BC, CA of the triangle. Prove that
the segments 44,, BB, and CC, are
concurrent (intersecting at a single
point) if and only if the condi-
tion:

[ACy| | BA,| ICBy|_
CiB| |AC| | B,4]

is satisfied. |

3.10. At the points C,, A,;, B,
lying respectively on the sides AB,
BC, CA of a given triangle ABC, per-
pendiculars to the sides are erected.

Prove that these three perpendicu-
lars are concurrent if and only if the
condition

|AC, |2+ |BA, 24| CB, ]2 =
=|AB |2 4| BC,|* 4| CA, |?

is satisfied.

Intersection and Union. We now
single out the basic operations which
we are making constant use of.

Suppose two or more sets of points
are given. The sei of all points belong-
ing simultaneously to all the given
sets is called the intersection of the
sets. The set of all points belonging
to at least one of the given sets is
.called the union of these sets.

When it is required in a problem to
find those points which simultaneously
satisfy several conditions, we find the
set of points satisfying each of the
conditions separately and then take

1
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the intersection of these sets. We meet
a similar situation in algebraic prob-
lems also. The set of solutions of the
system of equations

| f1(2)=0

L f2(2)=0

is in fact the intersection of the solu-
tion sets of the individual equations
making up this system.

If it is required in a problem to
find those points which satisfy at
least one of several conditions, we find
the sets of points satisfying separately
each of the conditions and then take
the union of these sets. This is what
we do when solving the equation
f () =0, when the left-hand side
may be factorized,

f(z) = f, (@) fa (2). )

We find the solution set of each of the
equations f; (z) =0, f, () =0 and
then take their union.

There is another concept which gives
rise to an algebraic association, name-
ly the partition (or subdivision) of a
domain. In order to solve the inequa-
lity f () > O orf (z) << 0, it is usually
sufficient to solve the corresponding
equation f (z) = 0. The points ob-
tained divide the domain of definition
of the function f (an interval or the
whole line) into pieces, in each of
which the function does not change a
sign. In exactly the same way, the sets
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of points of a plane for which various
inequalities hold are usually domains
bounded by lines on which the cor-
responding equalities are satisfied.
We have already seen many simple
examples of this type in Sec. 2.

We shall encounter more complicat-
ed partitions and combinations of
sets in the.next problem.

3.11. Let two points 4 and B be
given in a plane. Find the set of
points for which the triangle A MB is:

(a) a right-angled triangle,

(b) an acute-angled triangle,

(c) an obtuse-angled triangle.

O (a) The triangle AMB is a right-
angled triangle if one of the following

Py
three conditions is met: (1) AMB =
= 90° (2) BAM = 90°, (3) ABM =

= 90°.

The unknown set is, therefore, the
union of the followmg three sets:
(1) a circle with | AB | as diameter,
(2) a straighi line I, passing through
the point A and perpendicular to the
segment AB, (3) a straight line Ig
passing through the point B and per-
pendicular to the segment AB.

We must exclude from this union
the points 4 and B on the line AB
(they give rise to a “degenerate”
triangle AMB). O

O (b) The triangle AMB is an
acute-angled triangle, if the following
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three conditions are simultaneously
N PN
satisfied: (1) AMB < 90°, (2) BAM <

P
< 90° (3) ABM < 90°.

The required set is therefore the
intersection of the following three
sets: (1) the exterior of a circle with
the diameter AB (see Sec. 2, proposi-
tion D); (2) the half plane bounded
by I, containing the point B, with
the boundary line I, removed; (3) the
half plane bounded by Iz containing
the point A with the boundary line I,
removed.

The intersection is the strip between
the lines I, and lp from which the
circle with diameter 4B is removed. ]

J (c) Note that every point M of
the plane (not lying on the straight
line AB) satisfies one of the following
three conditions: either (a) A AMB
is a right-angled triangle, or (b)
AAMB is an acute-angled triangle
or (¢) AAMB is an obtuse-angled
triangle. Note moreover that these
conditions are, however, mutually
exclusive. Hence, all the points of the
plane which belong neither to (a) nor
to (b) must belong to the set (c).
This set is the union of a circle and
two half planes (with the line AB
removed). [

'3.12. In a plane two points A4 and B
are given. Find the set of points M
such that:
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(a) the triangle AMB is an isosceles
triangle,

(b) the side AB is the largest side
of the triangle AMB,

(c) the side AM is the largest side
of the triangle AMB.

3.13. A square with sides of unit
length is given on a plane. Prove that
if a point of the plane lies at a distance
of not more than 1 from each of the
vertices of this square, then it lies
at a distance of not less than 1/8 from
each side of the square.

O The set of points M at a distance
of not more than 1 from each of the
four vertices is the intersection of four
circles of unit radius, with centres at
the vertices of the square. It is
a quadrilateral bounded by four arcs.
Each of its vertices lies at a distance

of 1 —@ from the nearest side. Let

us check that this number is greater
than 1/8:

V3 1 7 V3 49

It is thus clear that all the points
of our set are at a distance of more
than 1/8 from the sides of the square.[]

3.4, Three straight lines passing
through a point O of the plane divide
the plane into six congruent angles.
Prove this if the distance of the
point M from each of the straight
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lines is less than 1 then the distance
| OM | is less than 7/6.

3.15. Given a square ABCD, find
the set of points which are nearer
to the straight line AB than to the
lines BC, CD and DA.

3.16. Given a triangle ABC, find
in the plane the set of points such
that the area of each of the triangles
AMB, BMC, CMA is less than that
of the triangle ABC.

3.17. Circles are drawn with the
sides of an arbitrary convex quadrilat-
eral ABCD as diameters. Prove that
they cover the whole quadrilateral.

7 Assume that inside the quadrilat-
eral there exists a point M lying
outside the circles. Then according to
Sec. 2 proposition E, all the angles
AMB, BMC, CMD and DMA are
acute and their sum is less than 360°,
which is impossible. ]

3.18*. A portion of a forest has the
form of a convex polygon of area S
and perimeter p. Prove that we can
find a point in the forest distant more
than S/p from the edge of the forest.

3.19*%, A square ABCD is given in
a plane. Find the set of points M

P S
such that AMB = CMD.
In problems that follow we have
to deal with the union of an infinite
_number of sets.
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3.20. (a) A point O is given. Consi-
der the family of circles of radius
3 cm whose centres are located at
a distance 5 cm from the point O,
and the family of circles of radius
5 cm whose centres are located at
a distance 3 cm from the point O.
Prove that the union of the first
family of circles coincides with the
union of the second one.

(b) Find the set of midpoints of the
segments which have one end lying
on one given circle and the other end
on another given circle.

O (b) Denote the radii of the given
circles by r; and r, and their centres
by O, and O,, Trespectively. Let us
first fix some point K of the first
circle and find the set of midpoints
of the segments which have one end
at the point K. This set will obviously
be a circle of radius r,/2 with its
centre Q at the midpoint of the seg-
ment KO,. (This circle is the result
of the similarity transformation of
the circle (0,, r,) with coefficient 1/2
and centre K.) Note that the point Q
lies at a distance r,/2 from the point P,
the midpoint of the segment 0,0,.

If we move the point K around the
circle (0,, ry), the point Q will move
around the circle of radius /2, with
centre at the point P. Thus, the
required set is the union of all circles
of radius r,/2 which have their centres
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lying on a circle of radius r,/2 with
its centre at the point P.

# What this union of an infinite num-
ber of circles turns out can be seen
in the figure.

Consequently, the set of all points
satisfying the condition of the prob-
lem, is a ring with external radius
(ry + r,)/2 and internal radius | r, —
— ry |/2. When r, = r, this set beco-
.mes a circle. [

3.21. A point O} is located on
a straight line I/, the boundary line
of a half plane. In this half plane n
vectors of unit length are drawn from
the point O. Prove that if » is odd,
the length of the sum of these vectors
is not less than 1. |

3.22. A straight road passes through
a village A surrounded by meadows
on all sides. A man can walk at the
speed of 5 km/h along the road and
at 2 km/h through the meadows. Find
out the set of points to which he can
walk from A in an hour.

The ‘“Cheese” Problem

3.23. Is it always possible to cut
a square piece of cheese with cavities
into convex pieces so that there is
only a single cavity in each piece?

Formulated mathematically, this
problem is as follows.
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Several pairwise non-intersecting
circles are located inside a square.
Is it possible to divide this square
into convex polygons such that in
each of them there is exactly one
circle?

[0 The answer turns out to be
always positive. In any particular
example when the number of circles
is not large one can easily divide the
square into convex polygons. But to
give a general proof, we must give
a method of partitioning the square,
which can be used for any number and
positioning of the circles.

Let us first consider a more simple
problem: the radii of all the circles
will be taken to be equal. We propose
the following method of partitioning
the square. We shall at first describe
it briefly in a single sentence.

Adjoin to each of the circles those
points of the square which are nearer
to this circle than to the other circles;
these sets will be the required convex
polygons (?) .

We shall explain this in more detail.
Denote the centres of the given circles
by Cy, C,, ..., Cp. Let C; be one of
these centres. Let us find the set of
points whose distance from C; is not
greater than the distance from the
other centres C;. The set of points
of the plane which are nearer to C,
than to C; (for a fixed J) is a half
plane bounded by the perpendicular
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bisector of the segment C;C; (see A).
We are interested in the points which
are nearer to C; than to the other
centres, i.e. the points belonging to
all such half planes corresponding to
the different C; (] 5= i). This set of
points which must be the intersection
of all these (n — 1) half planes, will
clearly be a convex polygon. (?)
Since each half plane contains the
point C; and the entire circle with
its centre at C; (The circles with
centres C; and C; do not intersect and
have equal radii), the intersection
also contains the circle with its centre
at C;. There is such a polygon

{M: | MC; | < | MC; | for all § = i}

for every centre C;. It is clear that
these polygons eever the entire square
and have no interior points in com-
mon. In order to determine to which
particular polygon the point M be-
longs, it is sufficient to answer the
question “which of the centres C; is
closest to the point M?" If there are
two or more such centres “closest to M”
then M lies on one of the perpendicu-
lar bisectors, i.e. on a boundary line
or line of partition of the polygons.
Thus, the square is divided into con-
vex polygons each of which contains
exactly one circle.

As a good example let us consider
the case when the centres of the circles
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are located at the nodes of a net formed
by similar parallelograms.

Our method of partition can be
simply described in the following way.

Draw the minor diagonals in all the
parallelograms of the net. This will
yield a net with the same nodes and
made from similar acute-angled trian-
gles. Inside each triangle draw the
midperpendiculars. The hexagons thus
obtained, form the required partition
of the square. Thus, we have ana-
lysed the case in problem 3.23 when
all the circles have equal radii.

In a general case, when the radii
of the circles are different, the square
can be divided in the following man-
ner. From each point located outside
the given circles draw tangents to all
the circles. The set corresponding to
the circle y will consist of the points
of the circle y and those points for
which the length of the tangent to the
circle y is less than the length of the
tangents to the remaining circles.
This set is the intersection of several
half planes containing the circle y.
The boundary lines of these half
planes will be the radical axes of the
circle y and each of the other circles
(see problems 2.9 and 3.5). In this
way the whole square will be repre-
sented as the union of convex polygons,
with no interior points in common
such that each polygon contains its
own circle. ]

77

NN
NESVAY

aVAVAN

W




4 Maximum
and
Minimum

This section starts with very simple
problems in which it is required to
find the greatest and the least possible
value of some quantity and ends with
complicated research problems. Maxi-
mum and minimum problems can
usually be reduced to the investiga-
tion of some function which is given
analytically. But here we have col-
lected problems where geometric con-
siderations prove to be more effec-
ve. You will see how in the solution
of similar problems different sets of
points are used.

4.1. At what angle to the bank of
the river should one direct a boat so
that it is taken by the current as little
as possible while crossing through the
river, if the speed of the current is
6 km/h and the speed of the boat in
still water is 3 km/h?

0 Answer: at an angle of 60°
We have to direct the boat so that its
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absolute velocity (the velocity rela-
tive to the bank) makes the largest
possible angle with the bank (?) (see

the Figure). Let the vector (_);1> be the

_
velocity of the river current and AM
be the velocity of the boat relative

— —_—
to the water. The sum OA 4+ AM =

—_—
= OM represents the absolute velo-
city of the boat. The length of the

—_
vector AM is equal to 3 and we can
direct this vector arbitrarily. The set
of possible positions of the point M
is a circle of radius 3, with centre
at the point 4. It is clear that among

— —
all the vectors OM, only OM,, which
is directed along the tangent to the
circle, makes the largest angle with
the bank.

We obtain a right-angled triangle
one leg of which is equal to half the
hypotenuse. Such a triangle has one
angle equal to 60°. O

4.2, From the triangles with given
base BC and 4 = ¢ select the one
having the radius of its inscribed
circle, the largest.

[0 Let us consider the points A
lying on one side of the straight

7\
line BC, for which BAC = ¢. The set
of centres of the inscribed circles of
the triangle ABC is the arc of a circle
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with end-points B and C (see 3.7b).
It is obvious that the isosceles triangle
will have the largest radius of the
inscribed circle. O

4.3. From all the triangles with
a given base and a given vertex angle
select the triangle with the largest
area.

4.4. Two pedestrians walk along two
mutually perpendicular roads, one at
a speed of u and the other at a speed
of v. When the first pedestrian crossed
the second pedestrian’s road, the sec-
ond pedestrian still had d kilometers
to go to reach the crossing. What will
be the minimum distance between
them? |

4.5. A straight road passes through
a village 4 surrounded by meadows
on all sides. A man can walk at
a speed of 5 km/h along the road and
at 2 km/h through the meadows (in
any direction).

Along what route should the man
walk to go in as fast a way as possible
from village A to cottage B, which is
situated at a distance of 13 km from
the village and at a distance of 5 km
from the road?

. 4.6. Two intersecting circles are
given. Draw a straight line through
the point of their intersection A such
that the distance between the points
of intersection (other than A) of the
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line and the circles is as large as pos-
sible. |

4.7. A point O is given in a plane.
It is required that one of the vertices
of an equilateral triangle lies at
a distance a from the point O and
a second vertex at a distance b.
What is the maximum distance from O
at which the third vertex can be situ-
ated?

O Answer: a + b. Let AMN be an .

equilateral triangle for which | 04 |=
=a and |ON | =b. In order to
answer the question we may restrict
ourselves to triangles having a vertex
fixed at a definite point A4; for, when
the triangle is rotated as a rigid body
about the point O, none of the dis-
tances alter. Thus, we consider the point
A fixed at a distance a from O while N
runs around the circle of radius b
with centre O. What position may the
point M occupy? The answer has
already been obtained in problem 1.9:
M lies on the circle obtained from the
given circle by rotating it through 60°
about the point A4*. The centre O’
of the rotated circle obviously lies at
a distance a from the point O (for,
£ 0O0'A is equilateral). The radius of
the rotated circle, as for the given
one, is equal to b. Therefore, the

* We may take any of the circles, obtained
by clockwise or anticlockwise rotation—
they will lie at the same distance from O.
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maximum distance from O to the
third vertex M is equal to a + b. O

The following interesting corollary
follows from this problem: the distance
from an arbitrary point of the plane
to one of the vertices of an equilateral
triangle is not greater than the sum
of the distances from it to the other
two vertices.

4.8. What is the maximum distance
at which the vertex M of a square
AKMN may lie from the point O,
if it is known that

(@) |04 | =|ON|=1;
(b) |OA | =a, |ON | = b?

4.9. From all the triangles with
a given base and a given vertex
angle, select the one having the larg-
est perimeter. |

Where to Put the Point?

440. A cat knows the three exits
A, B, C of a mouse’s hole. Where
should the cat sit so that its distance
to the furthest exit is a mini-
mum?

0 Let us consider circles of equal
radius r with their centres at the
points 4, B and C. The required point
K — the position of our cat—is deter-
mined as follows. We must find the
minimum radius r, for which these
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circles have a common point. This is
the required point K. For, if M is
any other point, then it lies outside
one of the circles and hence its distance
from one of the vertices is greater
than r,.

In the case of an acute-angled
triangle ABC, the point K is the
centre of the circumscribed circle, and
in the case of a right-angled or an
obtuse-angled triangle ABC the point
K is the midpoint of the largest side. [

O The point K can also be found
in the following way (?). Consider
the circle of minimum radius, con-
taining all three points. Then the
point K is its centre. [

We shall give another approach to
the solution of problem 4.10.

O Divide the plane into three sets:

(a) {M: | MA| > | MB |

and | MA | > | MC |},

(b) {M: |MB]> IMA]

d [MB| > | MC ),
© (M: |MC|> | MB |
and |MC|> | MA |}.

These are three angles, with their
sides lying on the perpendicular bisec-
tors of the sides of the triangle ABC.
If the cat.- M sits in the angle (a),
then the furthermost vertex from it
will be A4, if it sits in the angle (b)
then the furthermost vertex is B,
while, if it sits in (c), it is C.

If ABC is an acute-angled triangle,
then in each of the three cases the
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best thing for the cat to do is to sit at
the vertex of the corresponding angle
((a), (b) or (c)), i.e. it should sit at
the centre of the circumecircle.

If ABC is a right-angled or an
obtuse-angled triangle, then obviously
the best thing for the cat to do is to
sit at the midpoint of the largest side
of the triangle. [J

4.11. A bear lives in a part of a for-
est surrounded by three straight
railway lines. At which point of the
forest should he build his den so that
the distance from the nearest railway
line is a maximum?

4.12*, (a) Three crocodiles live in
a circular lake. Where should they
lie so that the maximum distance
from any point of the lake to the
nearest crocodile is as small as pos-
sible?

(b) The same problem when there
are four crocodiles.

The “Motor-Boat” Problem

4.13*. A searchlight is located on
a small island. Its beam lights up
the sea surface to a distance of a =
=1 km. The search light rotates
uniformly about a vertical axis at
a speed of one revolution in time
interval T =1 min. A motor-boat
which moves at a speed v must reach
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the island not being caught by the
searchlight beam. What is the mini-
mum value of v for which this is
possible?

[1 Let us call the circle of radius a
which is illuminated by the search-
light beam as the “detection circle”.
It is clear that for the motor-boat
the best thing to do is to enter this
circle at a point 4 through which the
beam of the searchlight has just
passed.

If the motor-boat heads straight for
the island, it will reach the island
in time a/v. In order that the beam of
the searchlight does not catch it in
this time, it is essential that the
beam does not complete a full revolu-
tion within this time, i.e. that the
inequality a/v << T should hold, from
which

v> a/T = 60 km/h.

Thus, we have shown that the mo-
tor-boat may reach the island unno-
ticed, when v > 60 km/h. But, of
course, it does not follow that 60 km/h
is the minimum value of the speed
of the boat for which this is possible,
i.e. that moving along the segment 40
is the best possible course which the
captain of the motor-boat can select.
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Indeed, as we shall see, this is not
the case at all.*

Note that the linear velocity of the
beam OP of the search light is dif-
ferent at different points: the nearer
the point is to the centre, the smaller
its velocity. The angular velocity of
the beam is equal to 2n/T. The motor-
boat can easily travel ahead of the
beam, around a circle of radius r =
= vT/2n, since the velocity of the
boat here is equal to the linear veloc-
ity of the corresponding point of the
beam. Outside the circle of radius r,
with centre O, the speed of the beam
is greater, and inside this circle (we
shall call it the “safe circle”) the
speed of the beam is less than wv.

If the motor-boat is able to reach
some point of the safe circle without
hindrance, then it can clearly reach
the island unnoticed.

One of the possible courses inside
the safe circle is a circle of radius r/2.
If the motor-boat K moves around
this circle with a speed v, then the
segment KO will rotate about O
with the same angular velocity with
which the boat would have moved
around a circle of radius r, i.e. with
the same angular velocity as the beam
of the search light (see problem 0.3).

* Before reading the solution further, try
to guess a route for the motor-boat to reach
the island with a smaller value of v.
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Hence, the boat will not be caught
by the beam.

Thus, the aim of the motor-boat is
to reach the safe circle!

If the motor-boat heads straight to
the search light along the radius A0
then it will be able to reach the safe
circle without being detected by the
beam of the search light, if

1 a o a

=51.7km/h.

We have been able to improve our
previous estimate of the minimum
speed of the motor-boat. But, we shall
see that even this is not the limit!

Now let us find the minimum value
of the speed v for which the motor-
boat can reach the island unnoticed.

The set of points in the detection
circle which the motor-boat can reach
in time ¢ is the region bounded by an
arc of radius vt, with centre at the
point 4. Of these points the motor-
boat may reach those unnoticed which
are located to the left of the beam OP.

Denote the set of these ‘reachable’
points by D. The diagrams show how
this set is changed with time until the
moment, when ... here two different
cases are possible.

(1) If the speed v is not sufficiently
high, then at some instant ¢, the set D
will be totally exhausted without the
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safe-circle being reached: this means
that in the time ¢, the boat will be
spotted, i.e. for this speed-value the
motor-boat will not be able to reach
the island. Note that at the last
moment ¢ = £, the beam OP will touch
the arc of radius v, with centre A
at some point L. Clearly the point L
is located outside the safe circle
(otherwise the motor-boat would be
able to reach the island). Moreover,
the greater the speed v, the longer is
the detection time £, and the nearer
the point L is located to the island.

(2) If the speed v is greater than
some value v,, then the set D extends
to the safe circle at some point of
time. This means that the motor-boat
can reach the island when v > v,.

The minimum value of the speed v,
corresponds to the case, when the beam
OP touches the arc of radius v?, right
on the circumference of the safe circle.
To find the value v,, denote the value
of the angle NO4 by B and use the
following equalities:

voT

[NO|=r= on | AN | =wvqt,,
[AN] __ 2n+f_ 2m
o = tenb = =T

| NO|=acosf.

From the first and last equations
we find that

v = (2ma cos B) /T,
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and from the first four equations we
obtain an equation for f:

2n+4 f=tanp.

We can only solve this equation
approximately, for instance with the
help of a computer. We get the value
of B to be approximately equal to
0.927/2, hence

Vo = 0.8a/T == 48 km/h.

When the speed is greater than v,
the motor-boat is able to reach the
safe circle. [

4.14.* (a) A boy is swimming in
the middle of a circular swimming
pool. His father, who is standing at
the edge of the swimming pool, does
not know how to swim, but can run
four times faster than his son can
swim. The boy can run faster than
his father. The boy wants to run
away. Is it possible for him to do so?

(b) At what ratio between the speeds
v and u (v is the speed at which the
boy swims, u is the speed at which
his father runs) will the boy be
unable to run away?




5 Level

Curves

In this section the problems and the
theorems of the previous section are
discussed, using a new terminology.
The concepts we are going to meet in
this section are functions defined on
a plane and their level curves. These
are useful especially in the solutions
of the maximum and minimum pro-
blems.

The “Bus’ Problem

5.4. A tourist bus is travelling
along a straight highway. A palace is
situated by the side of the highway,
at some angle to the highway. At what
point on the highway should the bus
stop for the tourists to be able to see
the facade of the palace from the bus
in the best possible way?

Mathematically the problem may
be formulated as follows.

" A straight line ! and a segment 4B,
which does not intersect it are given.
Find on the straight line I a point P
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for which the angle APB assumes its
maximum value.

Let us first have a look at how the
angle AMB changes, when the point
M moves along the straight line [.
In other words, let us look at the
‘behaviour of the function f which
relates each point M of the line to
the size of the corresponding angle

RS
AMB..

It is easy to draw a rough graph
of this function. (Remember that a
graph is drawn in the following way:
above each point M of our straight
line a point at a distance of f (M) =

PR
= AMB is plotted.)

The problem may be solved analy-
tically: introduce coordinates on the
straight line I, express the value of
the angle AMB in terms of the
z-coordinate of the point M and find
for what value of z, the function ob-
tained reaches its maximum. How-
ever, the formula for f (z) is quite
complicated.

We shall give a more elementary
and instructive solution. But to do
this we have to study how the value
of the angle AMB depends on the
position of the point A in the whole
plane (and not only on the straight
line ).

O A set of points M in the plane,
for which the angle A MDB assumes a
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given value ¢ is a pair of symmetric
arcs with their end-points at 4 and B
(see Sec. 2, proposition E). If these
arcs are drawn for different values of
¢ (where 0 < ¢ < m), we get a fa-
mily of arcs which cover the whole
plane except the straight line AB.
In the figure a few of these arcs are
drawn and on each of them is marked
its corresponding value of ¢. For
example, a circle with diameter AB
corresponds to the value ¢ = /2.
We shall now consider only the
points M on the straight line I. From
them we have to select that point
for which the angle AMB assumes
its maximum value. Through each
point there passes some arc of our

PN
family: if AMB = ¢, the point M
lies on the arc corresponding to the
value ¢. Thus, the problem is reduced
to the following: from all the arcs
crossing the line [, select the one
which corresponds to the maximum

AN
value of AMB = ¢.

We shall examine the part of the
straight line ! located to one side of
the point C, the point of intersection
of the straight line 4B with l. (We
shall not consider the case, when the
segment AB is parallel to the line I—
we leave that to the reader.) We shall
draw the arc c¢; touching this part of
the straight line and prove that the
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segment AB subtends the maximum
angle at the point of tangency P;.
Any point M of the straight line [,
except P,, lies outside the segment
cut off by the arc ¢;. As we know
(proposition E, page 40), from this

PN PR
it follows that AMB << AP,B.

It is obvious that on the other
side of the point C everything will
be exactly the same: the point P,,
at which the angle subtended by the
segment AB is a maximum, is also
the point of tangency of the straight
line with one of the arcs of our family.

We have thus proved that the re-
quired point P of our problem coin-
cides with one of the points P, or P,
at which the circles passing through
the points 4 and B touch the straight
line L

We should select as P the point for
which the angle PCA is an acute
angle. If the segment AB is perpendi-
cular to the line I, then from symmet-
ry considerations it is immediately
obvious that the points P, and P,
are completely equivalent; hence the
number of points, solving the prob-
lem, in this case is two. (However the
tourists, in any case must select that
point P; or P, from which the facade
of the palace is visible.)

Functions on a Plane. The main
idea of the solution of problem 5.1
is to investigate over the whole plane
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the function f which relates each
point to the corresponding angle value

AN N
AMB, i.e. (M) = AMB.

In the previous sections we have
already encountered various types of
function. Apart from the most simple
functions on a plane such as f (M) =
= |OM |, f (M) =p (I, M), { (M) =

PO
= ABM (where O, A, B are given
points and ! is a given straight line),
we considered the sums, the differ-
ences, and the ratios of such func-
tions, as well as other combinations
of them.

Level Curves. Most of the condi-
tions by which our sets of points were
defined, can be represented in the
following way. On a plane (or on
some region of it) a function f is given
and it is required to find the set of
points M for which this function
assumes a given value A, i.e.

{M: f (M) = h}.

As a rule, for every fixed number %
this set is- some line; thus the plane
is divided by the lines which are
called the level curves of the function f.
So, by solving problem 5.1 we.have
drawn the level curves of the function

S
f(M) = AMB.
Graph of a Function. Let us now

explain where the term “level curves”
comes from. For the functions defined
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on a plane, we may draw graphs in
exactly the same way as is done for
the functions y = f (z), defined on a
straight line, now the graph has to be
drawn in space. Let us suppose that
the plane on which our function f is
defined is horizontal, and for each
point M of this plane let us plot the
point located at a distance |f (M) |
above the point M, if f (M) > 0 and
at a distance |f (M) | below the
point M, if f(M) << 0. The points
plotted in such a manner usually
form some surface, which is called
the graph of the function f. In other
words, if we introduce a coordinate
system Ozy on the horizontal plane
and direct an axis Oz vertically up-
wards, then the graph of the function
will be the set of points with coordi-
nates (z, y, z), where z = f (M) and
(x; y) are the coordinates of the point
M on the plane. (If the function is
not defined for all the points of the
plane, but only in some region, then
the graph will be located only above
the points of this domain of defi-
nition.)

Hence, the level curve {M: f (M) =
= h} consists of those points M above
which the points of the graph are
located at the same level, namely, at
the height &.

On pages 98-99 we have shown
the graphs of the functions, whose
level curves represent the sets of our
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alphabet. Thus, we can see that the

PN
graph of the function f (M) = AMB
is a “mountain range” of height =
above the segment AB, from which
the graph gradually comes down to
zero. (Remember that we have con-
structed the graph of this function
at the very beginning of the solution
of problem 5.1, but only above a
particular straight line [.)

A function f of the form

F(M)=Mp (M, 1))+
+}"2p(M1 l2)+ +;"np(M1 ln)?

as mentioned in Sec. 2 (the theorem
on the distances from straight lines),
may be written as a linear expression

[ y) =az+ by +ec

on each of the pieces Q, into which
the plane is divided by the straight
lines 4, Ly, .. ., I,

Its graph will thus consist of pieces
of planes, either inclined or horizontal
(if @ = b = 0). This can be seen in
the examples of sets given in pro-
positions C, I, J of the “alphabet”.

The level curves of such a function
consist of pieces of straight lines,
while if the graph has a horizontal
plane, then one of the level curves
includes the whole piece Q of the
plane.
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A function f of the form
f(M)=2|MA 2+
g | MAg P+ ... +hg| MAL PR

when A + A, + ... 4+ A, =0, also
reduces to a linear function on the
whole plane (e.g. proposition F) and
in the general case, when A, + A, +
4+ ...+ A,5%0, to a function of
the form

f(M)=d|MAP,

where 4 is some point in the plane.
Its level curves are circles (see the
theorem on the squares of the distances
in Sec. 2), and the graph is the surface
of a paraboloid of rotation.

P

The functions f (M) = AMB and
f(M)=)|AM |/| BM | have perhaps
the most complicated graph of our
“alphabet”. Note that there is an
interesting relation between the maps
of the level curves of these functions;
if they are drawn on a single diagram,
then we get two different families of
circles, however, any circle of one
family crosses any circle of the other
family at right angles (?) Hence these
families are said to be orthogonal.

We shall give one more example of
a simple function, whose level curves
are rays issuing from a single point
and whose graph is a quite complica-
ted surface. The function is f (M) =
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Here the graphs of functions corresponding
to the propositions of “alphabet” are depicted
and under each of them there is a map of
the level curves. :

C. f (M) =p (M, 1). The graph is a two-
sided angle, the level curves are pairs of
parallel lines.

D. f (M) = | MO |. The graph is a cone,
the level curves are concentric circles.

P

E. f (M)= AMB. The graph is a moun-
tain with its peak in the form of a horizontal
segment, at the ends of which there are vert-
ical drops.

F. f(M)=|MA|2— | MB|% The
graph is a plane, the level curves are paral-
lel straight lines.

G. f (M) =| MA |*> - | MB |*. The graph
is a paraboloid of rotation, the level curves
are concentric circles.

H. f (M) = | MA |/| MB|. The graph
has a depression near the point A4 and,
near B it rises to infinity. The level curves
are nonintersecting circles, whose centres lie
on the straight line 4B, each pair of which
however has the same straight line, the per-
pendicular bisector of the segment AB, as
radical axis.

I. f (M) =p (M, 1))/p (M, 1,). The graph
is obtained in the following manner: consi-
der a saddle-shaped surface—the “hyper-
bolic paraboloid” passing through the straight
line !, and the vertical straight line passing
through the point of intersection O of [
and !,. The part of this surface lying below
the given plane is reflected symmetrically
relative to it. The level curves are pairs of
straight lines passing through the point O.

1. (M) =p (M, L)+ p (M, ). The
graph is a four-sided angle. The level curves
are rectangles with their diagonals belong-
ing to I, and [,.
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PN
= MAB (where 4 and B are given
points of a plane). Its graph above
each of the half planes into which the
straight line AB divides the plane,
is a spiral surface like the surface of
a screw which is called the kelicoid.

The Map of a Function. As we see,
for many functions, it is difficult to
draw their spatial graphs. It is easier,
as a rule, to visualize the behaviour
of the function on a plane by drawing
the map of its level curves.

The physico-geographical maps are
made in the following manner. Let
f (M) be the height of the surface
above the sea-level, at the point M.
Then the level curves {M: f (M) =
= 200 m}, {M: f (M) = 400 m}, etc.
are depicted. The regions between
these level curves are coloured with
different colours: for instance, the
region {M: 0 <<f(M)<< 200 m} is
coloured green, the region {M: f(M)>
> 200 m}—brown and the region
{M:f(M)<<0}—various shades of blue.

To make the map of a function one
must draw several level curves, as
many as are needed to be able to
judge from them where the other
curves are and mark each of them with
the value of the function they corre-
spond to (i.e. the value of 4).
~ If we decide to depict the level
curves at equal intervals of the func-
tion values 0, =4=d, =+2d, ..., then
we can estimate the inclination of

100




the graph from the density of the
level curves: where there are more
lines the inclination of the graph to
the horizontal plane is greater.
Boundary Lines. In the solution of
problem 3.23 (on “the cheese”) we con-
sidered a quite complicated function

{ (M) = min {| MC, |, | MC, |, .. .,
| MC, 1},

which gives for every point M of the
plane its minimum distance from the
given points C,, C,, . . ., C,. Strictly
speaking, in the solution of problem
3.23, we did not nced this particular
function so much, as the boundary
lines connected with it partitioning
the plane into polygonal regions. Let
us try to visualize the map of the
level curves and the graph of this
function. We shall start with the
simplest cases, n = 2 and n = 3.

5.2. (a) Two points C, and C, are
given in a plane. Draw the map of
the level curves of the function

f (M) = min {| MC, |, | MC, |}.

(b) Three points C,, C,, C4 are given
in a plane. Draw the map of the level
curves of the function f (M) =
= min {| MC, |, | MC, |, | MC, |}.

0 (a) Let us consider the set of
points M for which | MC, |= | MC, |.
This is, as we know, the perpendicular
bisector of the segment C,C,. This
perpendicular bisector divides the plane
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into two half planes. The points of
one half plane are closer to C; and
the points of the other, closer to C,.

Thus, in one half plane f (M) =
= | MC, |, and in the other f (M) =
= | MC, |. Hence, in the first half
plane, we must draw the curves of
the function f (M) = | MC, |, which
are circles and reflect this map sym-
metrically in the perpendicular bi-
sector.

(b) Consider the sets of points, where
| MC, | = | MC, |, where | MC, | =
= |MC,;| and where |MC,| =
= | MC;|. We looked at them in
problem 3.1. They are the three mid-
perpendiculars of the triangle C,C,C,
which intersect at a single point O.
The three rays formed by the mid-
perpendiculars with their initial point
at O, partition the plane into three
regions. Clearly in the region con-
taining the point C,, f (M) = | MC, |,
in the region containing the point C,,
f(M) =] MC, |, and in the region
containing the point C, f (M) =
= | MC,|. Thus, the map of the
function (M) = min {| MC, |,
| MC, |, | MC, |} is the union of
three maps, joined' along the lines
of partition, i.e. along the three
rays. O

The graph of the function
f (M) =
= min {| MC, |, | MC, |, ...,

Co l}

o vy n
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may be visualized in the following
manner. If a uniform layer of sand
is placed in a box and holes are made
in the bottom of the box at the points
C,, Cyy, ..., C, through which the
sand comes out, then around each
hole a “funnel” is formed. The surface
‘of all these “funnels” forms the graph
of the function f. (We must of course
use sand such that the angle of its
natural slope is equal to 45° and we
have to use a sufficiently thick layer
of it.)

Let us now return to problems 3.11
and 3.12. We can find in them also
functions defined on a plane.

5.3. Let the points 4 and B be
given in a plane. Draw the map of
the level curves of the functions

AN NN

(a) f(M)=max{AMB,BAM, MBA},
(b) f (M) = min {| AM |, | MB_|,
| AB [},
and describe their graphs.

Extrema of Functions. Let f be a
given function defined on a plane.
Imagine its graph as a hilly area.
The maximum values of f (M) cor-
respond to the heights of the “hill
tops” of its graph, and the minimum
values to the depths of the valleys
or depressions. On the map of the
level curves of a function, the hill
tops and the depressions are, as a
rule, circled by level curves. For
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instance, for the function f (M) =
= | MA |+ | MB |?, the minimum
point M, is the midpoint of the seg-
ment AB, and the level curves are
concentric circles with their centres
at the point M. ,

We get a more complicated picture

N

for the function f (M) = AMB. This
function assumes its maximum value
nt at all the points of the segment 4B,
and its minimum value 0, at the
remaining points of the straight line
AB. The transition from the maximum
to the minimum value at the points
A and B is not gradual (f is not defined
at these points): here the graph has
vertical drops.

At the beginning of the section we
used a map of level curves for the
solution of problem 5.1. This is also
a problem of finding a maximum,
but of a different type. The problem
may be stated generally in the fol-
lowing way: Find the mazximum™and
minimum values assumed on som.; curve
y by a function defined on a plane (in

the problem we looked at, y was a .,

straight line). The observation we
made in problem 5.1 also holds for
these similar problems: the maximum
(and minimum) values are usually as-
sumed at the points where y touches
the level curves of the function f.*

* Or at the point where the function f

itself reaches a maximum, if the curve ¥y
passes through such a point.
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Let us assume that the maximum
value of the function f on the curve y
is attained at the point P and is equal
to f (P) = c. Then the curve y cannot
enter the region {M: f (M) > c}—it
must entirely belong to the comple-
mentary region {M: f (M) < c}. The
point P lies on the line separating
these regions, i.e. on the level curve
{M: f (M) = c}. Thus, the curve ¥y
cannot cross the level curve
{M: f (M) =c}, i.e. it must touch this
line at the point P.

You have seen how this “tangency
principle” for finding an extremum
arose in the problems in Sec. 4.

In these problems we looked for the
maximum or minimum of the simple
functions:

PN
f(M)=p M, 1), [(M)=MOA,
f(M)=|MA|
on a given curve y. The level curves
corresponding to the extreme value

were touched by the curve y. As a rule,
this curve y was a circle.

Some of the following problems also
reduce to problems of finding the
maximum (or minimum) of a func-
tion on a given circle or straight
line.

5.4. (a) On the hypotenuse of a
given right-angled triangle, find the
point for which the distance between
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ts projections on the sides containing
the right angle is a minimum.

(b)* On a given straight line find
a point M such that the distance
between its projections on the sides
containing the given angle is a mini-
mum. |

5.5. Given a circle with centre O
and a point A4 inside it, find a point M
on the circle, for which the value of
the angle AMO is a maximum.

5.6. A and B are given points.
Find on a given circle y (a) a point M
such that the sum of the squares of
the distances from it to the points A
and B is a minimum.

(b) a point M such that the differ-
ence between the squares of its dis-
tances from the points A and B is
a minimum.

5.7. Given a straight line ! and a
segment AB parallel to it. Find the
positions of the point M on the
straight line [, for which the quantity
| AM |/| MB | assumes its maximum
or minimum value. |

5.8. A lake is situated between two
straight roads. Where should a sana-
torium be built on the edge of the
lake, so that the sum of the distances
from it to the two roads is a minimum?
Consider the cases when the lake is
(a) circular, (b) rectangular.

Note that in finding the maximum
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of a function of a single variable,
y = f (z), we are guided by the “tan-
gency principle”. Suppose we draw
the graph of the function f on a plane.
It will be some curve. To find the
maximum of the function f, we must
find the highest point of the graph.
It is clear that, to do this we must
draw a straight line parallel to the
axis Oz tangent to the graph. More-
over, the tangent should be drawn
in such a way that the whole graph
lies below this straight line.

i E—-
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6 Quadratic

Curves

Ellipses, Hyperbolas, Parabolas. So
far, we have limited ourselves to the
lines which are thoroughly studied
at school, namely, straight lines and
circles. All the propositions of our
“alphabet” from A to J involved them
alone. In this section we are going
to meet some other curves: ellipses,
hyperbolas' and parabolas. These
- curves, taken together, are’ called the
" “conic sections” or simply “conics”,
since they may all be obtained as the
intersection of a plane with the sur-
face of a cone, as is shown in the
figure on pages 122-123. N

Ellipses, hyperbolas and parabolas
will first be defined here geometrically,
as a continuation of our “alphabet”
from Sec. 2. They will appear later
as envelopes of families of lines.
Finally, using the method of coordi-
nates we shall find that these curves
may be defined by algebraic equa-
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tions of the second order. The proof
of the equivalence of these definitions
is not simple. However, they are all
useful, each new definition allows us
to solve a new class of problems with
less difficulty.

Thus, let us continue our “alphabet”
with the new propositions, K, L, M
and, a little later, N.

K. The Ellipse. Let us consider the
set of points M in a plane, the sum of
whose distances from two given points A
and B is equal to a constant.

Denote this constant (as is the
custom) by 2a and the distance | 4B |
between the points A and B by 2c.
Note that when a <{c this set is
of little interest: if a <<¢, then the
required set is empty, as there is not
a single point M on the plane for
which |AM |+ | MB | << |AB |;
when a = c¢ the set is the segment AB.

To see what happens when a*> c,
proceed as follows. Fix two nails at
A and B, put a loop of thread of length
2 (@ 4+ ¢) around them, stretch the
thread taut with a pencil, and draw
a line with the pencil keeping the
thread taut all the time. You will
get a closed curve. This curve is
called an “ellipse”. The points A and
B are called the foci of the ellipse.
From the definition of ellipse it is
clear that it has two axes of symmet-
ry, the straight line AB and the
straight line perpendicular to it pas-
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sing through the midpoint O of the
segment AB. The segments of these
straight lines lying inside the ellipse
are called its axes and the point O
is called the cenire of the ellipse.

By altering the length of the thread,
we can draw a whole family of ellipses
having the same foci, in other words,
we draw the map of the level curves
of the function

f(M)=|MA|+ |MB|

L. The Hyperbola. Let us consider
the set of points, the difference of whose
distances from two given points A and
B is equal in modulus to a constant
value 2a (a > 0).

Let, | AB | = 2c as before. If a >
> ¢, then the set L is empty, as there
is not a single point M in the plane,
for which | AM |— | MB |> | AB |
or | MB|— | MA|> | AB |. When
a = ¢, the set L is a pair of rays of
the straight line A B—we must exclude
the segment [AB] from the straight
line 4B.

In the case when a <<c¢, the set L
consists of the two lines (branches)
shown in the figure (one is the set
{M: | MA | — | MB | = 2a} and the
other— {M: | MB | — | MA | = 2a}.
This set is called a hyperbola and the
points A and B are called its foci.

From the definition of the set L,
it is clear that a hyperbola has two
axes of symmetry. The midpoint
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of the segment AB is called the centre
of the hyperbola.

In order to get the whoie map of
the level curves of the function

f(M)=1IMA|—|MB]||

we should also include the midperpen-
dicular of the segment AB (it corres-
ponds to the value f (M) = 0) in the
family of hyperbolas with foci at 4
and B.

M. The Parabola. The set of points
M, equally distant from a given point I’
and a given straight line I, is called
parabola.

The point F is called its focus, and
the straight line l—its directriz.

The parabola has a single axis of
symmetry, which passes through the
focus F and is perpendicular to the
directrix.

Let us summarize our initial re-
sults. We have added to our “alpha-
bet” the following sets:

K {M: |MA |4 | MB | = 2a},
L {M: || MA | — | MB ||| = 2a},
M {M: | MF | = p (M, l)}.

Now we know that if a problem
reduces to one of the sets M, K, or L,
then the answer will be a parabola,
an ellipse or a hyperbola respectively.
Of course, in an answer not only the

name of the curve but also its dimen-
sions and its position should be in-
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dicated, for instance, by giving the
foci and the number a.

6.1. The points A and B are given
in a plane. Find the set of points M
for which:

(a) the perimeter of the triangle
AMB is equal to a constant p,

(b) the perimeter of the triangle
AMB is not greater than, p,

(c) the difference | MA | — | MB |
is not less than d.

6.2. A segment AB and a point T
on it are given. Find the set of points
M for which the circle inscribed in
the triangle AMB touches the side
AB at the point T.

6.3. Find the set of centres of the
circles in the following cases. The
circles touch:

(a) a given straight line and pass
through a given point;

(b) a given circle and pass through
a given point inside the circle;

(c) a given circle and pass through
a given point outside the circle;

(d) a given circle and a given
straight line;

(e)* two given circles. |

6.4. On a hinged closed polygon
ABCD, for which |AD | = | BC | =
=a and |AB|=|CD |=0b, the
link AD is fixed.

Find the set of points of intersection
of the straight lines 4B and CD,
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(a) if a < b;

(b) if a > b.

6.5. (a) Two points A and B are
given in a plane. The distance be-
tween them is an integer n (in the
figure n = 12). All the circles with
integer value radii with their centres
at A and B are drawn. On the net of
points obtained, a sequence of nodes
(the points of intersection of the
circles) is marked, in which any two
neighbouring nodes are opposite ver-
tices of a curvilinear quadrilateral.
Prove that all the points of this
sequence lie either on an ellipse or
on a hyperbola.

(b) A straight line I is given in a
plane and on it a point F. All the
circles of integer value radii with | 2% A
centre F and all the straight lines | Z%2Z SN
parallel to I and lying at some integer | H¢ 7 R
value distance from ! are drawn. | Hi$itE
Prove that all the points of the | %

()

\

i

sequence of nodes of the net, con- | N\SSS——=2277F
structed as in problem (a), lie on a \ﬁ%s 77

parabola with focus F.

The surfaces obtained by rotating
a parabola, an ellipse or a hyperbola
in space about their axes of symmetry
are called respectively a paraboloid
of rotation, an ellipsoid of rotation or a
hyperboloid of rotation.

Foci and Tangents. Many interest-
ing problems concerning ellipses, hy-
perbolas and parabolas are connected
with the properties of the tangents to
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these curves. We shall obtain the
basic property of tangents to the
ellipse, by comparing two solutions
of the following simple construction
problem.

6.6. A straight line I is given to-
gether with two points 4 and B, one
on each side of it. Find on the straight
line I, a point X for which the sum
of the distances | AX | + | XB | from
the points 4 and B is a minimum.

O Consider the point A’ symmetric
to the point A relative to the straight
line I. For any point M of this straight
line |A'M | =|AM |. Hence the
sum |AM |+ |MB | = |A'M |+
+ | MB | assumes its minimum value
| A’B | at the point of intersection X
of the segment A’'B with the line ..

Note that the point X has the fol-
lowing property: the segments AX
and BX make equal angles with the
straight line 1.

If we had solved problem 6.6 by
the general scheme described in Sec. 5
using level curves, we would have
proceeded as follows. Construct the
family of ellipses corresponding to
the parameter ¢ with foci at 4 and B,
{M: |AM |+ | MB | = ¢}, and se-
lect from this family the particular
ellipse which is touched by the straight
line 1

Thus, the point X is a point of
tangency of an ellipse (with foci at A
and B) and the straight line l. For, all
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other points M of the straight line
apart from X are located outside the
ellipse, i.e. for them thesum | AM | 4+
-+ | MB | is greater.

Comparing the first solution with
the second, we get the so called focal
property of an ellipse: the segments
connecting the point X of an ellipse
with its foci make angles of equal
value with the tangent drawn to the
ellipse at the point X.

This property has an immediate
physical interpretation. If the sur-
face of a reflector (e.g. a head-light)
is made in the form of a portion of an
ellipsoid, and the lamp, taken to be
a point source of light, is placed at
one focus 4, then after reflection the
rays will converge at the other focus
B (the word “focus” in Latin means
“hearth”).

The focal property of the hyperbola
is completely analogous to that of the
ellipse: the segments connecting the
point X of a hyperbola with its foci
make angles of equal value with the
tangent at the point X. One can prove
this property by solving the following
problem in two different ways.

6.7. Suppose we are given a straight
line I and two points A and B on
opposite sides of it, where the point 4,
however, is located at a greater dis-
tance from I than the point B. Find
the point X on the straight line for
which the difference between the dis-
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tances |AX | — |BX | is a maxi-
mum.

One solution leads to the following
answer: if we denote the point sym-
metric to the point A relative to the
straight line I by A’, then the required
point X will be the point of inter-
section of the straight line A’'B with
1 (?). It is clear that for this point X,
the segments AX and XB make
angles of equal size with the straight
line 1.

The other solution (got by the
general scheme of Sec. 5) leads to the
answer: X is a point of tangency of
the straight line ! with a hyperbola
having its foci at 4 and B. Comparing
these two answers we arrive at the
focal property of a hyperbola.

There follows from the focal pro-
perties an interesting property which
has to do with the families of all
ellipses and hyperbolas having given
foci A and B.

Consider an ellipse and a hyperbola
passing through some point X. Draw
through the point X the straight
lines which make equal angles with
the straight lines AX and BX. These
straight lines are obviously perpen-
dicular to each other.
~ From the focal properties it follows
that one of the straight lines is a
tangent to the ellipse and the other, a
tangent to the hyperbola. Thus, the
tangents to.the ellipse and the hyper-
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bola are perpendicular to each other,
hence the families of ellipses and
hyperbolas with foci A and B form
two mutually orthogonal families (see
page 97); each of the curves of one
family intersects every curve of the
other family at a right angle.

These two families can be clearly
seen in the figure corresponding to
problem 6.5a if the “squares” are
coloured in alternately as on a chess-
board.

Focal Property of a Parabola. Sup-
pose a parabola has focus F and direc-
trix I, and suppose X is some point
on it. Then the straight line XF and
the perpendicular dropped from X onto
! make equal angles with the tangent
to the parabola at the point X.

Let us prove this. Suppose H is the
foot of the perpendicular dropped from
X onto I. By the definition of a para-
bola | XF | = | XH |. Therefore, the
point X lies on the perpendicular bi-
sector m of the segment FH.

We shall prove that the straight
line m is a tangent to the parabola.
To do this we must show that it has
only a single point in common with
the parabola (namely the point X),
and that the entire parabola is loca-
ted on one side of m. The line m divi-
des the plane into two half planes.
One of them consists of the points M
which are closer to / than to H.

We shall show that the parabola is
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located in this particular half plane,
i.e. for any point M of the parabola
(except the point X) | MF | < | MH |.
This is immediate as | MF | =
=p(M, l)and p (M, l)<<| MH | (the
perpendicular is shorter than an in-
clined line).

Note. For all the curves we met, the
tangent was defined as follows: the
tangent to the curve y at the point M,
is the straight line ! passing through
M, such that the curve y (or at least
a part of the curve contained in some
circle with its centre at M,) lies on
one side of the straight line L.

The focal property of a parabola
may be used in the following manner.
If a reflector is made in the form of
a paraboloid and a light source is
placed at the focus F, then we have
a projector: all the reflected rays will
be parallel to the axis of the para-
boloid.

6.8. Consider all the parabolas ha-
ving a given focus and a given vertical
axis. They naturally fall into two
families: the parabolas of one family
have their branches extending upwards
and those of the other have their
branches going downwards. Prove that
any parabola of one family is orthogo-
nal to any parabola of the other
family.

" These two families of parabolas can
be seen clearly if the “squares” in the
figure of problem 6.5b are coloured
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in alternately as on a chess-board.

The solutions of the following pro-
blems depend only on the definitions
of the curves and their focal proper-
ties.

6.9. (a) Suppose an ellipse with
foci A and B is given. Prove that
the set of points symmetric to the
focus A relative to all the tangents to
the ellipse is a circle.

(b) Prove that the set formed by
the feet of the perpendiculars dropped
from the focus 4 onto the tangents to
the ellipse is a circle.

O (a) Let I be a tangent to the
ellipse at the point X and let &
be a point symmetric to the focus A4
relative to I. Then, as we know (see
problem 6.6), the point X lies on a
straight line VB and the distance

INB|=|AX |+ | XB |

is constant. Denote this distance, as
before, by 2a. Thus, the distance
between NV and B is constant and the
required set is a circle with centre at
B and radius 2a.

(b) Let M be the foot of the per-
pendicular dropped from the point A
onto I. Clearly,

1
|AM =4 [AN|.

We know from problem 6.9(a) that
the set of points &V is a circle, so the
problem reduces to the following pro-
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blem. Suppose we are given a circle
of radius 2a, with centre at B and
a point A inside it. Find the set of
midpoints of the segments AN, where
N is an arbitrary point of the circle.
This set is a circle of radius a with
its centre at the midpoint O of the
segment AB. [

6.10. (a), (b). Prove the statements
of (a) and (b) of problem 6.9 for a
hyperbola.

6.11. Let there be given a parabola
with focus F and directrix I.

(a) Find the set of all points sym-
metric to the focus F with respect
to the tangents to the parabola.

(b) Prove that the set formed by
the feet of the perpendiculars drop-
ped from the focus F onto the tan-
gents to the parabola, is a straight
line parallel to I

6.12*%. (a) Prove that the product
of the distances from the foci of an
ellipse to any tangent is a constant
(not depending on the particular tan-
gent). |

(b) Find the set of points from which
an ellipse subtends a right angle (i.e.
the set of points where the pairs of
tangents to the ellipse meet at right
angles).

.6.13*. Solve problem 6.12 (a) for
a hyperbola.

6.14*. Solve problem 6.12 (b) for

a parabola.
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6.15*%. Suppose, the trajectory
P,P,P,Pg . .. of a ray of light inside
an elliptic mirror does not pass through
the foci A and B (P,, Py, P, . .. are
points on the ellipse). Prove that:

(a) if the segment P,P; does not
intersect the segment AB, then all
the following segments: P,P,, P,P,,
P.,P,, ... also do not intersect the
segment AB, and touch a single
ellipse with foci at 4 and B; |

(b) if the segment P P, intersects
AB, then all the following segments
p,p,, P,P;, PP, ... intersect the
segment AB, and the straight lines
pP,pP,, P,P,, P,Pg are all tangent to
a single hyperbola with foci at 4
and B. |

Curves as the Envelopes of Straight
Lines. So far, all the curves we have
met—circles, ellipses, hyperbolas, pa-
rabolas—arose as sets of points satis-
fying certain conditions. In the fol-
lowing problems, these curves are
generated in a different way: as enve-
lopes of families of straight lines.
The word “envelope” simply means
that the curve is touched by all the
straight lines of this family.

6.16. Suppose we are given a circle
with centre at O and a point 4. Through
each point M on the circle a straight
line perpendicular to the segment MA
is drawn. Prove that the envelope of
this family will be:
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The section of a cone by an arbitrary plane
(called a secant plane) not passing through
its vertex is an ellipse, a hyperbola or a parab-
olan(Fig. 1). If a sphere touching the secant
pla e is inscribed in a cone, then the point
of tangency will be the focus of the corres-
‘ponding section and the directrix will be
the line of intersection of the secant plane
with the plane of the circle along which
the sphere touches the cone.

The union of all straight lines which are
at an equal distance from a given straight
line I in space and which make a given acute
angle with ! is a surface known as a one-
sheet hyperboloid of rotation (Fig. 2). The
same surface can be obtained by rotating
a hyperbola around its axis of symmetry I.
The tangent plane to the hyperboloid at an
arbitrary point intersects the hyperboloid
along two straight lines. The remaining plane
sections of this surface, as of a cone, are
ellipses, hyperbolas and parabolas.

If the points P and N move uniformly
along two intersecting straight lines, then
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the lines PN are either parallel to each
other or (in the general case) touch a single
parabola &Fig. 3). If the points P and N
move uniformly along two skew lines in
space, then the union of all the lines PN
will be the surface of a hyperbolic parabo-
loid (saddle-shaped). The tangent plane to
the saddle at any point on it intersects it
along two straight lines; the remaining
plane sections of the saddle are hyperbo-
las or parabolas. The saddle-shaped surface
can also be obtained as the union of all
the straight lines intersecting two given
skew lines I, and I, and parallel to a given
plane (crossing the lines !; and 1,).

Figs. 4-6 illustrate problems 6.16 and
6.17. Note that on our diagrams, only the
families of straight lines are drawn, however,
the illusion is created that their envelopes:
a hyperbola, an ellipse or a parabola, as the
case may be are also drawn on them.
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(a) a circle, if 4 coincides with the
centre O;

(b) an ellipse, if 4 is located inside
the circle;

(c) a hyperbola, if A is located out-
side the circle. |

6.17. A straight line ! and a point A
are given. Through each point M of
the given line I, a straight line per-
pendicular to the segment MA is
drawn. Prove that the envelope of
this family of straight lines will be
a parabola. |

These families of straight lines are
depicted on pages 122-123. It is not
accidental that all of them have an
envelope: it can be proved that any
“sufficiently nice” family of straight
lines is either a set of parallel lines,
or a set of straight lines passing
through a single point, or in the
general case, a set of tangents to some
curve (the envelope of this family).

Equations of Curves. At the begin-
ning of this section we gave geomet-
rical definitions of an ellipse, a hyper-
bola and a parabola. We can obtain
much more information about these
curves, if the method of coordinates
is used.

Let us start with the parabola. The
analytical definition of a parabola as
a graph of the function

y = aa® 1)
is well known.
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We shall show how the geometric
definition of a parabola given above
results in this equation.

Let the distance from the point F
to the straight line I be equal to 2h.
Let us choose our coordinate system
Ozy so that the axis Oz is parallel to
! and distant equally from F and I,
and the axis Oy passes through the
point F (the axis Oy will obviously
be the axis of symmetry of the para-
bola). The equation obtained from
the geometric definition of a parabola
is easily transformed into (1):

Vatt(y—hp=|y+r|

/

a2+ y2—2yh + k2 =y + 2yh + h?,
f

\
y= z2/ (4h)

(it is sufficient to put a = 1/(4h)).

The graph of any function of the
form y = az® 4 bx + ¢ is also a pa-
rabola. It can be obtained from the
parabola y = aa2® by a parallel dis-
placement.

In a similarity transformation
(z; y) > (ax; ay) with coefficient a,
the parabola y = 2* becomes the para-
bola y = ax®. Thus all the parabolas
are similar to one another. But para-
bolas with different values of the
parameter a, are of course not con-
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gruent: the larger the value of a, the
“sharper the vertex” of the parabola.
Note that one can obtain the parabola
y = ax® from the parabola y = 2’
by a contraction (or extension) of one
of the coordinate axes, i.e. by the
transformation (z; y) » (z Y a; y) or
by the transformation (z; y) — (; y/a).

Let us now consider the case of an
ellipse and a hyperbola with foci at
A and B. If their axes of symmetry
are regarded as the axes Oz and Oy
of a rectangular coordinate system,
then the points 4 and B will have
coordinates A (—c; 0) and B (c; 0),
and we shall get the following equa-
tion for an ellipse:

V@+ep+i2+V @—cP+yt=
= 2a (where a>c¢). (2")

By eliminating the radicals, we
can express this equation in a more
convenient form:

%4.%}:1, where b=Va2——cz. (2)

We shall briefly look at how we can
get (2) from (2).

It can be seen from equation (2)
that an ellipse can also be obtained
in the following way: take a circle
of radius a

x2 + yz — a2
and contract it by the ratio a/b towards
the axis Oz. Under this contraction,
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the point (z; y) will be transformed
to the point (z; y’), where y’' = ybl/a.

(Substituting y = y'a/b in the equa-
tion of the circle, we get the equation
of an ellipse: 2—|—(y) ) Thus,

if you have a telev1smn set you can
get an ellipse without using a thread
and nails; you have only to switch
on the television set when the test
card is transmitted and to turn the
“Vertical control knob” for all the
circles to be converted into ellipses.
We can even do without a television
set: the shadow cast by a plate, held
at some angle on the top of a table,
is an ellipse.

Two ellipses are similar to each
other, if they have the same ratio b/a.

Taking the same coordinate system
as in the case of the ellipse, we get
the equation of a hyperbola

|V EFor+vi—V @—r+v?l=
=2a where a<c, (3")
or after simplification,

:—: Z: =1 where b= } c2—a2 (3)

In order to study the behaviour of
a hyperbola in the first quadrant
2> 0, y >0, let us plot the graph
of the function

b —
= -a—-sz—az.
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It is clear that this function is de-
fined when z > a and increases mo-
notonically. It is not so clear that as
z increases the hyperbola gets closer
and closer to the straight line y =

= % z, i.e., that it has this straight

line as an asympilote*.
In fact, the hyperbola has two
asymptotes: y = bz/a and y = —bz/a.
One often encounters another equa-
tion, whose solution set is referred to
as a hyperbola, and namely, the
equation

zy =d (4)
(where d is some number, d == 0).

We have to ask ourselves whether
this is some other curve or the same
one.

The curve is of course the same one.
To be more precise the equation zy =
= d describes a hyperbola with per-
pendicular asymptotes. The standard
equation (3) for such a hyperbola has
the form

2 2
2 L=,
2d 2d
* More exactly, this means that for any
arbitrary sequence z, tending to infinity,
the difference | — V 22 —a* — ‘bT z, | tends
to zero. This can be readily proved by using
the equality:

— 2
xr— x2—a2 = ———_i_‘-— .
v Vat—adtz
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but we get the equations of differ-
ent types, if we use different coordi-
nate systems. In one case we take the
asymptotes of the hyperbola as the
coordinate axes, in the other case, its
axes of symmetry (?).

We have shown above how we can
obtain an ellipse from the circle
2?2 -+ y? = a® by contraction. In exact-
ly the same way we can obtain the
':—: — Z—: =1 (with arbit-
rary a and b) from the hyperbola
with perpendicular asymptotes z* —
— y?2 = a®* by a cotraction towards
the axis Oz with coefficient a/b.

Two hyperbolas are similar, if they
have the ratio b/a equal, or, equiva-
lently, if they have the same angle 2y
between their asymptotes (tan y =
= bla).

The Elimination of the Radicals.

Suppose

2= ( Vet ry—V(e—o'+i? )2

hyperbola

2
(3)
(Yt PtV E—+? |2
2= 2 )
(2)

Then z, + 2z, = 2® 4 y® 4+ ¢2, 2,2, =
= ¢%2?, i.e. z; and z, are the roots of
the following quadratic equation:

22— @+ P+ ¥z + % =0. (5
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The roots of this equation are al-
ways non-negative and z; <{¢*> <z,
because the quadratic trinomial on
the left side of (5) is non-negative
whenzz = 0 and non-positive when
z = ¢

Note that (if z = 0, z =% ¢?), equa-
tion (5) may be rewritten as follows:
72 y3
T+ z—c? 1.

Let a®> <<c¢?, a >0 and (3’) hold.

Then z = a® is the smaller root of
(®), 0 <<z << ¢?, so, hence the equa-
tion
z3 y?
St oa=1 (6)
(provided that 0 << a << ¢) is equiva-
lent to (3’). Setting b = }/¢c* — a2,
we see that (3) <= (3').

Suppose a?>c% a >0 and (2')
holds. Then z = a? is the larger root
of (5), z>c¢* Hence equation (6)
is equivalent to (2') provided that
a > c. Setting b = )/ a® — ¢?, we ob-
tain (2) < (2').

This proof illustrates a method
which is frequently used for elimi-
nating radicals: consider together with
a given expression its conjugate expres-
sion which differs from it only in the
'sign before the radical.

The End of Our “Alphabet”. Final-
ly, let us consider one more function
on the plane, whose map of level

130



curves includes all the three types of
curves appearing in this section. This
will give us the last proposition of
our “alphabet”.

N. Let there be given a point F and
a straight line 1, not containing the
point F. The set of points, the ratio of
whose distances from F and 1 is equal
to a constant k, is an ellipse (when
k < 1), a parabola (when k = 1) or a
hyperbola (when k > 1).

Let us prove this. Let us introduce
a coordinate system as we did above
in the section on the parabola. The
equation of the required set

Y 224 (y—h)? —k
|y+h| )

When £ =1, as we have already
seen, this is equivalent to the equa-
tion of the parabola y = az?, where
a = 1/(4h). When 0 < k << 1 it can
be reduced to the form

2 —d)2

—+ W—d? _4 (an ellipse), )

a b2

and when & > 1, to the form

2 —d2
— 2+ 82 1 (a hyperbola), (8)
where in both cases

a=2kh/V|[kK2—1], b=2kh/|k2—1]|,
and
= h (K + 1)/(k* — 1).
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Equations (7) and (8) are obtained
from the standard equations (2), (3)
by a parallel displacement and an
interchange of x and y. Now, the
foci of the curves lie on the axis Oy,
and the centres are displaced to the
point (0; d). It may be verified that
the point F is the focus not only of
the parabola but also of all the ellipses
and hyperbolas. The straight line
l is called their directrix.

Thus, we have seen that the set of
level curves of the function

f (M) =p (M, F)lp (M, 1)

consists of a single parabola, ellipses
and hyperbolas.

We might have guessed that these
curves must be “conic sections” (see
pp. 108, 122) by reasoning as follows.
Consider two functions on a plane:
(M) =p (M, F) and f, (M) =
= kp (M, Il). The graph of the first
function (see p. 98) is the surface of
a cone, the graph of the second con-
sists of two inclined half planes (k is
the tangent of the angle of inclination
of these half planes to the horizontal).
The intersection of these two graphs is
an ellipse, a parabola or a hyperbola.
The projections on the horizontal
plane of these curves on an inclined
plane, give the required sets:

{(M:fy (M)=fy (M)} ={M:p(M,F)=
= kp (M, 1))
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When projected the form of the
curve changes, as if contracted to-
wards the straight line I (in the ratio
V k% + 1). Hence, our required curves
are also ellipses, hyperbolas and a
parabola.

As we have already repeatedly
found the curves discussed in this
section, the ellipse, the hyperbola and
the parabola, possess many common
or very similar properties. The rela-
tionship between these curves has a
simple algebraic explanation: all of
them are given by quadratic equa-
tions. Of course, the standard equa-
tions of these curves (1), (2), (3), (4),
i.e.

2
y=az?, S48 =1,
x2
?—?=1’ .’L‘y-':d,

are obtained, only in specially select-
ed coordinate systems. If the coor-
dinate system is chosen in some other
way, the equations may be more com-
plicated. However, it is not difficult
to prove that in any arbitrary coor-
dinate system, the equations of these
curves have the form

ax® + bay +cy* +dr+ey+f=0(9)

(where a, b, ¢, d, e, f are certain num-
bers and a® 4+ 5% + ¢2 £ 0). .

It is remarkable that the converse
is also true: any equation of the
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second degree p (z, y) = 0, i.e. any
equation of the form (9), determines
one of these curves. Let us formulate
the theorem more exactly.

Equation (9) defines an ellipse, a
hyperbola or a parabola, only if the
left-hand side does not decompose into
factors (if it did, we would get a pair
of straight lines) and assumes values of
both signs (if not, we would get a
single point, a straight line or the
empty setl). The origin of the general
name “quadratic curves” for ellipses,
hyperbolas and parabolas becomes
clear from this.

The important algebraic theorem on
second-degree equations which we have
formulated, is very helpful when look-
ing for point-sets satisfying a geo-
metrical condition: if we find that in
some coordinate system this con-
dition is expressed by a second-degree
equation, then the required set is an
ellipse, a hyperbola or a parabola.
(Of course, in the case of degeneracy,
we may get a pair of straight lines,
a circle which is a particular case of
an ellipse, a single point, etc.). One
only has to determine their dimen-
sions and the position in the plane
(the foci, the centre, the asymptotes,
ete.).

6.18. Find the set of points, the
sum of whose distances from two
given mutually perpendicular straight
lines is a distance ¢ greater than the
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distance from their point of inter-
section.

6.19. Given a straight line ! and
a point A in a plane, find the set of
points:

(a) the sum of whose distances from
A and ! is equal to c;

(b) the difference of whose distances
from A and ! is equal (in modulus)
to c;

(c) the ratio of whose distances
from A and [ is less than ¢, where ¢
is a positive constant.

6.20. Find the set of points

(a) the sum,

(b) the difference
of the squares of whose distances
from two given intersecting straight
lines [;, 1, is equal to a constant d.
Draw the map of the level curves of
the corresponding functions:

(a)f(M)=P2 (M’ ll) +92 (M1 lz)r

(b) 1 (M) =p*> (M, L) — p* (M, Ly).

6.21. Given a point ¥ and a straight
line ! in a plane, draw the map of
the level curves of the functions:

(@) f (M) = p* (M, F) 4 p* (M, 1),

(b) f (M) = p* (M, F) — p* (M, ).

6.22. The vertex O of a hinged
parallelogram OPMQ is fixed while
the sides OP and OQ rotate with an
equal (in value) angular velocity, in
opposite directions. Along what line
does the vertex M move?
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(0 Let |OP | =p, |0Q | = q. Since
OP and OQ rotate in opposite di-
rections, they will coincide at some
point of time. Take this as the initial
point of time ¢ = 0, and the coinci-
dent lines as the axis Oz (we take the
origin of the coordinate system to be
the point 0).

Let the sides OP and OQ rotate
with angular velocity ®. Then the
coordinates of the points, P, Q at the
time moment ¢ will be equal to

(p cos wt; p sin wt),

(g cos t; —q sin wt), respectively.
Heﬁce, the coordinates of the point

M (z; y) will be

z = (p + q) cos wt,

y = (p — q) sin ot

—> —> —>
(since OM = OP + 0Q). Therefore,
the point M describes an ellipse

=z oy
RN e il

In the solution of this problem we
obtained the ellipse as a set of points
(x, y) of the form

z =acos o, y = bsin ol (10)

(where t—is an arbitrary real num-
ber). Equations of this type, expres-
sing the coordinates (z, y) in terms
of an auxiliary parameter ¢ are called
parametric equations. In this partic-
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ular case, the variable parameter ¢
represents time.

6.23*. In a plane, two straight
lines, which pass through two fixed
points A and B, rotate about these
points with equal angular velocities.
What line does their point of inter-
section M describe, if the lines rotate
in opposite directions? |

6.24*. Find the set of points M in

S P
a plane, for which MBA = 2MAB,
where AB is a given segment in the
plane. |

6.25*. (a) Consider all the segments
cutting off a triangle of area S from
a given angle. Prove that the mid-
points of these segments lie on a
hyperbola H whose asymptotes are
the sides of the angle.

(b) Prove that all these segments
touch the hyperbola H. |

(c) Prove that the segment of a
tangent to the hyperbola cut off by
the asymptotes is bhisected at the
point of tangency. |

6.26*. (a) Given an isosceles tri-
angle ABC (] AC | = | BC |).

Find the set of points M in a plane
such that the distance from A to the
straight line AB is equal to the geo-
metric mean of the distances from M
to the lines AC and BC.

(b) Three straight lines intersect-
ing each other form an equilateral
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triangle. Find the set of points M
such that the distance from M to one
of these straight lines is equal to the
geometric mean of the distances {rom
it to the other two.

6.27*. A rectangle ABCD is given
in a plane. Find the set of points M

A\ AN
such that AMB = CMD.

Algebraic Curves. Obviously, the
sets of points which one may meet
in geometrical problems are not limit-
ed to straight lines and quadratic
curves. Let us give two examples.

The set of points, the product of
whose distances from two given points
F, and F, is equal to a given positive
number p, is called the oval of Cassini.
A whole family of these curves—the
family of level curves of the function
f(M)=p (M, Fy)p (M, F,)
is shown in the figure.

Equations of these curves may be
written as follows:

(@ —c)* + 1) (@ + )* + ¥*) = p*.

The oval of Cassini has the partic-
ularly interesting form of a “figure
eight”, when p = ¢%. When p << c?,
the curve consists of two separate
parts surrounding the points /; and
F,.
Here is the other example. Let a
point F and a straight line ! be given.
Denote the distance of a point M
from the point of intersection of the
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straight lines FM and I by q (M). The
set of points {M: q (M) = d} is called
the conchoid of Nicomedes. Its equa-
tion in the coordinate system where F
is the origin and [ is given by the
equation y + a = 0 is expressed as
follows:

@ + ) (y + a)* — d®y* = 0.

In general, the curve given by the
equation P (z, y) = 0, where P (z, y)
is a polynomial in = and y, is called
an algebraic curve. The degree of the
polynomial P (provided that it does
not factorize) is called the order of the
curve. Thus, the oval of Cassini and
the conchoid are the curves of the
fourth order. It is already clear from
these two examples that algebraic
curves (of order higher than 2) may
look somewhat peculiar, may pos-
sess singular points (the cusps,
as the conchoid when a = d, or the
points of self-intersection) and the
form of these curves may change sharp-
ly when the parameters are changed.
We shall meet some new curves in
the next section.
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7 Rotations

and
Trajectories

In this last section we shall present
the reader remarkable curves which
are naturally generated as trajectories
of points of a circle rolling along a
straight line or a circle. Their most
interesting properties are connected
with tangents. At the beginning of
the book, we said that the envelope
of the family of segments in problem
0.1 about the cat is a curve with
four cusps, the astroid. The reader
will find the explanation of this
fact here and will also see why the
light spot in a cup formed by reflected
rays has a characteristic singularity,
a cusp. The devotee of classical geo-
metry will find out about the connec-
tions between the nine-point circle
of a triangle, its Simson’s lines and
their envelope, the cycloid with three
cusps.

We shall first study one of the most
simple cycloids in detail.
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The Cardioid. Usually this curve
is defined as the path of a point
moving in the following way: a circle
rolls without slipping around a sta-
tionary circle of the same radius. The
locus of a point on the moving circle
is called a cardioid.

It is possible to give other geomet-
rical definitions of the cardioid. We
shall give two of them in the form of
a problem..

7.1. Prove that:

(a) the set of points symmetric to
a particular point A of a given circle
relative to all the possible tangents
to this circle is a cardioid;

(b) the set consisting of the feet of
the perpendiculars dropped from the
point 4 of a given circle onto all the
possible tangents to the circle is a
cardioid.

O (a) Let us consider a circle y
which touches a given circle § at the
point A and has the same radius as 8.
Let us roll the circle y around the
circle 6 and let us follow the path of
the point M of the moving circle
which at the initial point of time
coincides with the point 4.

We assume that the circle rolls
without slipping. This means that
at every instant the lengths of ares
AT and MT are equal (T is the
variable point of contact between the
circles). Hence the point M is sym-
metric to the point A with respect
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to the tangent drawn through the
point T.

In a single revolution the point T
runs around the whole of the cir-
cumference of the circle §, and M
around the entire cardioid.

(b) Clearly, we can obtain this set
from the one mentioned in (a) by a
similarity transformation with coef-
ficient 1/2 and centre A. Hence it is
also a cardioid of half the size of the
cardioid in (a). O

Using problem 7.1 we can plot as
many points of the cardioid as we
please and so draw it quite accurately.
This is a closed curve having at the
point A a characteristic singularity,
a “cusp”. Its shape resembles the cross-
section of an apple, somewhat in the
shape of a heart, from which its name
comes (Kardia—heart).

The next beautiful definition of a
cardioid, in which it is generated as
an “envelope of circles” also follows
from problem 7.1.

7.2*, A circle with a point 4 on it
is given. Prove that the union of all
the circles passing through the point
A having their centres lying on a
given circle is a region bounded by
a cardioid. |

Addition of Rotations. We are now
going to discuss ways of determining
the geometric properties of curves
with the help of kinematics. The car-
dioid will serve as an example. But
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before proceeding further, let us dis-
cuss the last sentence of the solution
to problem 7.1 (a).

We said that the point T returns
to the initial point A after one revo-
lution. As we are dealing with several
rotations this phrase needs to be
made more precise: what is a “revo-
lution”, i.e. what rotation are we
talking about?

What we meant was that the centre
P of the moving circle y (and there-
fore the point of tangency 7) makes
one revolution. But the circumference
of the circle y itself (we can visualize
it better as a circular plate) rotates
about its centre P quite quickly. Let
us look at this question.

7.3. Suppose the centre P of the
moving circle y, rolling along a sta-
tionary circle 6 of the same radius,
makes one revolution. How many
revolutions will the circle y make
about its centre P during this time?

O In order to follow the rotation
of the circle, let us draw some radius
PM in it, fix somewhere in the plane
a point E and consider a segment EN

—> —>

such that EN = PM. Our question
1s: how many revolutions will the.
segment EN make about its end-point
E while the segment OP rotates through
360°? In other words, what is the
ratio of the angular velocities of these
segments?
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To answer this question, it is suf-
ficient to consider iwo different po-
sitions of the moving circle. One can
see from the figure that when the
radius OP turns through 90° the
segment EN turns through 180°. Con-
tinuing further in the same way we
see that when the radius OP turns
through 360°, the segment EN will
turn through 720°, i.e. will make two
complete revolutions (the ratio of
angular velocities is equal to 2). This
gives us the answer to problem 7.3. [J

If we take the centre O of the sta-
tionary circle as the point £ in the
solution of problem 7.3 and mark off

— —
from it the segment OQ = PM, then
we obtain the parallelogram OPMQ.
In the uniform rolling of the circle
y around 6, the vertex O is motionless
and the sides OP and OQ rotate with
the angular velocities  and 2o res-
pectively (in the same direction).
Thus, we obtain another definition of
the cardioid using the convenient
model of a hinged parallelogram:
If the sides OP and OQ (|OP | =
=2 | 0Q |) rotate about the point O
with angular velocities ® and 20, the
locus of the fourth vertex M of the
parallelogram OPMQ is a cardioid.
It is now easy to give one more
method of constructing the points of
a cardioid, and to obtain some more
interesting properties of it.
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7.4. If on every straight line ! )
passing through the point 4 on a given |47\
circle 6 of radius r, we mark off from
the point of intersection Q of / and &
(4 5= Q) the segment QM of length
2r, then the set of all points M ob-
tained will be a cardioid.

[ For every position of the straight
line ! we may construct a parallelo-
gram OPMQ where Q and M are as
stated in the problem. Then, if the
straight line I rotates about the point
A with an angular velocity o, the
sides OP and OQ of the parallelogram
will rotate with exactly the necessary
velocities ® and 2w (according to the
theorem about the ring on a circle
in Sec. 1), and so the point M will
describe a cardioid. [

Try to construct a cardioid on a
large sheet of paper using problems
74 and 7.4 and convince yourself
that you obtain the same curve. Per-
haps the second method is even more
convenient. Note that in problem 7.4
we may mark off the segment QM
of length 2r from the point Q in both
directions. Doing this we obtain two
points A/, and M, of the cardioid.
They correspond to two opposite po-
sitions of the hinged parallelogram
(if the point Q makes one full revo-_
lution and returns to the initial point,
then the side OM will turn through
180° and M, will coincide with the
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point M,). This circumstance leads
to the following property.

7.5. Prove that each chord M, M,
of the cardioid, passing through its
cusp A has length 4r, and that the
midpoint of the chord lies on the
stationary circle (of radius r) that
generates the cardioid.

Here are two more problems, where
the second method of constructing a
cardioid is used.

7.6. A stick of length 2r moves in
a vertical plane so that its lower end
rests against the bottom of a hole in
the ground whose vertical cross-sec-
tion is a semicircle of radius r. The
stick rests against the edge of the
hole. Prove that the free upper end
of the stick moves along a cardioid.

7.7. A hoop of radius 2r rolls around
the outside of a stationary circle of
radius r without slipping. Prove that
the locus of a point on the hoop is
a cardioid.

0 One of the solutions of this
problem may be obtained if one
compares it with Copernicus’ theorem
0.3. We are in fact dealing here with
the same two circles, but the internal
circle of radius r is fixed, and the
external circle of radius 2r rolls around
it. In this situation, Copernicus’ theo-
rem shows that if we fix a stick to the
hoop along the diameter M,M,, then
while rolling the stick passes through
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a fixed point A of the stationary cir-
cle. At the same time, the midpoint Q
of the stick M, M, moves around the
stationary circle 8, and | M,Q | =
= |QM, | =2r, so we arrive at prob-
lem 7.4 and see that the points M,
and M, move on the same cardioid.

One can reason in a somewhat differ-
ent way, bringing the problem to that
of the hinged parallelogram. Let M
be the point of the hoop we are follow-
ing and Q its (variable) centre. We
shall construct the parallelogram
OPMQ. If the link OQ of the parallel-
ogram is rotated with the angular
velocity 2w, then the hoop and with
it the link QM rotates with the angular
velocity . O

The curve which we have just been
considering, the cardioid, is included
in a natural way in the family of
curves called conchoids of a circle or
Pascal’'s limagon. 1If in the statements
of problem 7.4 we mark off on the
straight line [, passing through the
point A the segment QM of some
constant length k (in either direc-
. tion), then we get one of these curves
for every &~ > 0. For &~ = 2r the curve
will be a cardioid. (Compare the defi-
nition of these curves with the defi-
nition of the conchoid in Sec. 6,
page 139.) It turns out that we can
give a kinematic definition of Pascal’s
limagon for every k. We do this in
the next problem.
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7.8. (a) Prove that the vertex M
of a hinged parallelogram, whose ver-
tex O is fixed and whose sides OP and
OQ rotate with angular velocities 20
and o, respectlvely, describes Pascal’s
limagon.

(b) A circle of radius r is fixed in
a plane. Around it rolls a circle of
radius r with a moving plane rigidly
fixed to it. Prove that every point of
this plane describes a Pascal’s lima-
con.

(c) As in (b) but instead of a moving
circle of radius r, we have a hoop of
radius 2r encircling the stationary
circle.

Now let us give some problems which
require us to look at the addition of
rotations where there is a different
ratio between the velocities than we
had in the case of the cardioid. We
shall be reminded of some of the
other cycloids shown in the figure
on pp. 150-151.

7.9. A circle of radius (a) R/2, (b)
R/3, (¢) 2R/3 is rolling around the
outside of a stationary circle of radius
R. In each case how many revolutions
will the circle make while its centre
describes one revolution about the
centre of the stationary circle? |

7.10. Solve the same problem but
with the circle rolling around the
inside.
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7.11. Between the axle of a bearing
6 mm in diameter and its stationary
ball race of 10 mm in diameter, ball
bearings of diameter 2 mm are locat-
ed. When the axis rotates the ball
bearings roll around the axle and the
ball race without slipping. Find out
with what angular velocity (a) the
ball bearings rotate, (b) their centres
run about the centre of the bearing
if the axle rotates with an angular
velocity of 100 revolutions per second.

7.12. Gears setting in motion a
grindstone are arranged as is shown
in the diagram. Find the ratio of the
radii of the moving wheels for which
the smaller wheel (the grindstone)
will revolve 12 times faster than the
handle OQ which sets it in motion.

Consider two points on a circle
rolling around another circle. It is
clear that they must describe con-
gruent paths. In particular, it is
possible that these two paths coincide,
the two points moving along the
same line one following the other.
This was the case, for instance, in the
solution of problem 7.7 where we saw
that the diametrically opposite points
of a hoop described the same cardioid.
We could have convinced ourselves
of this by simply noticing that the
paths of these points have their cusps
at the same point of the stationary
circle. We can use similar observa-
tions in the following problems.
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A k-cycloid is the cu.ve described by
the vertex M of a hinged parallelogram
OPMQ, whose vertex O is fixed and whose
links OP and OQ rotate about O, and where
the ratio wgp/woqg of the angular veloci-

ties is equal to k and the ratio | OP|/| 0Q|

of the lengths of the links is equal to4/| k|
(k 5= O, +1a _1)'

If two points L and N move uniformly
around a circle, so that the ratio or/on
of their angular velocities is equal to F,
then the envelope of the straight lines LN
will -be a k-cycloid (7.19).

The shapes of a k-cycloid and a (1/k)-
cycloid coincide (7.14).

The k-cycloid may also be defined as the
locus of a point of a circle of radius r which
rolls around another circle of radius
| &k — 1 | .r without slipping, externally when
k > 1 and internally when k& < 1.
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Usually k-cycloids are called epicycloids,
when &k > 0 and hypocycloids, when k < 0.
In diagrams 1-6 k-cycloids are depicted for
k= 3/8, —1/7, —3, —2, 2 and 3. The last
four have special names: the astroid, Steiner's
curve, the cardioid and nephroid. Several
families of segments related to these curves
are shown in diagrams 3-6. All the segments
in each diagram have equal lengths (7.4,
the theorem on two circles on page (154),
7.21).

In the last diagram 7, the locus of a point
of a circle rolling along a straight line is
gshown. This curve is known as the cycloid.
The envelope of the diameters of the rolling
circle is a cycloid of half the size (the theorem
on two circles),
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7.13. (a) Prove that the diametri-
cally opposite points M, and M, of
a circle of radius 2R/3 rolling around
the inside of a circle of radius R, de-
scribe one and the same Steiner's
curve.

(b) Prove that three points M,, M,
and M4 lying on a circle of radius
3R/4 at the vertices of an equilateral
triangle will describe the same curve,
an astroid, if the circle is rolled around
the inside of a circle of radius R.

(c) The same problem, as in (b)
where the radius is 3R/2 instead of
3R/4. In this case instead of an as-
troid we get a nephroid (and the mov-
able circle encircles the stationary one
like a hoop).

The three curves whose names we
have just met, the Steiner’s curve
(also called a deltoid), the astroid
(from astra—a “star”) and the neph-
roid (from nephros—“kidney”)—are ob-
tained in these problems in a some-
what different way from the way they
are defined on pp. 150-151.

We have already seen from the
example of the cardioid that a curve
may be obtained as the paths of points
on two different circles rolling around
the one stationary circle (compare the
first definition of the cardioid and
proeblem 7.7: in the first case the
centre of the moving circle is the
vertex P of a hinged parallelogram
OPQM, and in the second case the
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vertex Q). The following problem
shows us what ratios between the
radii of the circles we must take to
obtain congruent paths.

7.14*. (a) Prove that a point on a
circle of radius r, rolling around the
outside of a stationary circle of radius
R, and a point on a circle (hoop) of
radius R 4+ r encircling the circle
describe congruent paths.

(b) Prove that a point on a circle
of radius r, rolling around the inside
of a circle of radius R and a point on
a circle of radius R — r rolling inside
the same fixed circle describe con-
gruent paths.

To solve these problems we have to
learn how to calculate the ratios of
the velocities of quite complicated
rotations. We shall discuss how to do
this below but now let us go on to the
most interesting properties of cy-
cloids, i.e. to the properties of their
tangents.

A Theorem on Two Circles. Let us
formulate a curious rule, which al-
lows us to describe the family of tan-
gents to the trajectory of the point M
of circle of radius r which rolls without
slipping along a curve y. Let us roll
a circle of radius 2r along the same
line y, and suppose that a diameter
KL of this circle (considered fixed to
the circle), is chosen, in such a way
that at some instant its end-point K
and the point M coincide at the one
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point A on the line y. It so happens
that in this case, at any point of time
the diameter KL touches the path of
the point M. In other words, the
path is the envelope of all the positions
of the diameter KL.

We have called this very convenient
rule the “theorem on two circles”. We
shall discuss its proof later on but
first let us make things a little clearer.
If we roll the two circles mentioned
in the theorem simultaneously, so that
their points of tangency with the
curve y always coincide, then the
smaller circle will roll around the
bigger one without slipping. Then,
from Copernicus’ theorem, the point
M will move along a fixed diameter
KL of the bigger circle. Our theorem
on two circles asserts that the straight
line KL will be a tangent at the point
M to the locus of this point M.

Let us pass on to the examples. Let
us begin with the family of curves
which we spoke about in the introduc-
tion to the book. Suppose a circle of
radius r with the point M marked rolls
around the inside of a circle of radius
R = 4r. Roll together with it a circle
of radius 2r along with its diameter
KL (at the initial moment the points
K and M coincide with the point 4
on the stationary circle). According
to Copernicus’ theorem the end-points
of the diameter KL slide along two
mutually perpendicular diameters 44’

P
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and BB’ of the stationary circle. At
the same time, according to the theo-
rem on two circles, the diameter KL
during its motion touches the tra-
jectory of the point M, i.e. the en-
velope of the straight lines KL is an as-
troid with cusps at the points A, B,
A', B'.

The next problem is about the
cardioid.

7.15*%. A point B is given on a
circle. From it a ray of light falls on
any arbitrary point on the circle and
is then reflected from the circle (the
angle of incidence is equal to the
angle of reflection). Prove that the
envelope of the reflected rays is a
cardioid.

0 Let us denote the centre of the
“reflecting” circle by O and the point
diametrically opposite the point B
by C. Suppose the ray BP after being
reflected at the point P arrives at the
point N of the segment BC (we con-

AN
sider for the time being that PBC <

N N\ P
< 45°). Then PNC = BPN + PBN =

RS
= 3PBC. This means that, if we
rotate the ray BP with an angular
velocity ®, then the reflected ray
will rotate with an angular velocity
3w, and the point of reflection P will
move around the reflecting circle with
an angular velocity 20 (according to
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the “theorem about the tiny ring”
from Sec. 1). Clearly, this will also be

PO
the ratio when PBC > 45°.

We can get the family of straight
lines PN in which we are interested
in the following way. Let us roll a
circle of radius 2r, together with its
diameter KL, which at the initial
moment lies along the straight line
BC, around a fixed circle of radius
| OB |/3 with its centre at O. If the
centre P of the moving circle runs
(around the circle of radius 3r with
centre O) with an angular velocity
2w, then the diameter KL will rotate
with an angular velocity 3o (?) —
just as the reflected ray did.

By the theorem about two circles,
the envelope of the family of straight
lines KL will be the trajectory of the
point M of the circle of radius r
rolling around a circle of the same
radius r with centre O, i.e. a cardioid.
At the initial moment the point M
coincides with the point A dividing
the segment BC in the ratio 2:1. This
point will be the cusp of the car-
dioid. O :

We often see this “cusp”, in the
form of a spot of light formed by
reflected rays at the bottom of a cup
or a sauce-pan inclined to incident
rays from a lamp or the sun. How-
ever, in such cases it is more natural
to consider the pencil of incident
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rays as being parallel and not coming
from a single point on the circle.
We do not then get a cardioid, but
another curve with a similar cusp
also known to us.

7.16*%., Prove that if a parallel
pencil of rays falls on a mirror having
the form of a semicircle as is shown
in the diagram, then the reflected rays
touch half of a nephroid.

If the mirror were parabolic then
as we know from Sec. 6, the reflected
rays would come together at a single
point, the focus of the parabola. This
comparison explains the other name
of the nephroid: the focal line of a circle.

7.47. Find the set of points which
cover the fixed diameter of a circle
of radius r, rolling

(a) around the outside of a circle
of radius r;

(b) around the inside of a circle
of radius 3r/2.

A few more interesting problems
about families of tangents appear
below, after we discuss the kinematic
concepts used in the solution of the
last problems and in- the proof of the
theorem on two circles.

Velocities and Tangents. There are
more convenient ways of determining
the ratios of the angular velocities in
the complicated rotations we have
been considering than the quite prim-
itive method we used in solving
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problem 7.4. First of all there is the
rule for adding angular velocities
similar to the rule for the addition of
linear velocities when changing to a
new reference frame.

Let us take angles (and angular
velocities) corresponding to anticlock-
wise rotations as being positive, and
angles and rotations in a clockwise
direction as being negative.

Then if the straight line I, is
turned relative to the straight line
l, through angle ¢’ and [; turned
relative. to I, through an angle o,
then I, turns with respect to I, through
the angle ¢ + ¢'.

Thus, if the figure v, rotates with
respect to the “fized” figure vy, with
an angular velocity o', and y; with
respect to Y, with an angular velocity
w, then %3 rotates with respect to v,
with the angular velocity o + o’ (as
we formally deal with rotations of
circles, we shall suppose that some
radius is marked on each of them in
order to follow their rotations more
easily).

Let us show how we can apply this
rule. Let us first consider two circles
of radius r whose centres are fixed
at a distance 2r from each other. If
they rotate without slipping, then
their angular velocities are equal in
value and opposite.in sign: the first
has angular velocity —w and the
second has angular velocity ®. This
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is because the linear velocities of the
points of tangency of one and the
other circles are equal (the fact that
the circles rotate without slipping is
used here). Since the value v of the
linear velocity of the point M located
at a distance r from the centre of the
circle rotating with the angular veloc-
ity ®, is equal to v = or, then from
the equality of the linear velocities
we get the equality of the angular
velocities of the circles (in absolute
value).

Now let us pass to a reference frame
fixed to the first circle. We then have
to add ® to all angular velocities:
the angular velocity of the first circle
will be 0 while the angular velocity
of the second circle will be 2w. We
have already seen this in problem 7.4.

And now another example. Suppose,
the distance between the (fixed for
the time being) centres O and P of
two touching circles of radii R = 2r
and r is equal to r. Their angular
velocities will be o and 2w respec-
tively (the ratio of these values is
inversely proportional to the ratio
of the radii). In a reference frame
fixed to the larger circle, their angular
velocities are: —w and 0 (this was
the motion which we spoke about in
Copernicus’ theorem 0.3). In a refer-
ence frame fixed to the smaller circle,
their angular velocities are 0 and
(see problem 7.7).
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It is possible however, when deter-
mining the angular velocities, to
avoid the introduction of a rotating
reference frame. To do so, we must
clarify how to find the (linear) veloc-
ities of the points on a rolling circle
(a wheel). This question is of great
importance in the next section, which
deals with tangents to cycloids.

Thus, we return to the first example:
let us consider some position of a
circle of radius r, rolling around a
circle ol the same radius; denote by
T the point on the moving circle
coinciding at the moment considered
with the point of tangency of the
circles. Its velocity is equal to O
(since the rotation is without slip-
ping). How do we find the velocities
of the other points?

Let us use for this the following
theorem of M ozzi:

At any point of time, the velocities
of the points of a solid plate, which
moves in a plane are either those of a
body in translation (i.e. are all equal
in value and have the same direction)
or those of a rotating body, i.e. the
velocity of some point 7T is equal to
zero and the velocity of every other
point is equal in magnitude to
| MT | ® (where © is the angular
velocity of the plate) and is perpen-
dicular to the segment M T. This last
case in particular takes place for a
rolling circle and the point of tan-
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gency plays the role of the point T
(“the instantaneous centre of rota-
tion”). (This will be true, even for
an irregular wheel rolling on a bumpy
road.) Making use of this, we can
find the ratio of the angular velocity
®, of the rolling wheel to the angular
velocity w, with which its centre P
rotates about the centre O of the
stationary circle. To do this we ex-
press the linear velocity of the point
P in two different ways: on the one
hand, its value is equal to 2rw,, on
the other hand it is equal to ro,
since T is the instantaneous centre.
Hence, 2ro, = rog, and so o; = 20,.
The same argument for a circle of
radius r, rolling around the inside
of a circle of radius 2r so that its
centre moves (around a circle of
radius r) with the angular velocity
w, > 0, gives us the following. Denote
the angular velocity of the circle by
®,; and note that w, << 0. Expressing
the velocity of the point P in two
different ways we get: || =
= | wgr |, giving ©, = —o,.
Similar reasoning helps us when
studying other complex rotations.
But what is particularly important
for us is that Mozzi’s theorem allows
us to find the direction of the velocity
at every point of the figure: the velo-
city of the point M is directed per-
pendicularly to the segment M T join-

161 11—-0410




ing M with the instantaneous centire
of rotation T.

We shall give one more proof of
Copernicus’ theorem. Let the point M
be a point on a circle of radius r which
rolls inside a circle of radius 2r with
centre 0. At any point of time, the
velocity of the point M is perpendi-

cular to the segment T'M, where T is.

the point of contact of the circles
(and the instantaneous centre of rota-
tion of the smaller circle). Thus, the
velocities of the point are always
directed along the straight line MO
(since T and O are diametrically op-
posite points on the smaller circle).
Thus, the point M moves along a
diameter of the larger circle, which
is just what Copernicus’ theorem as-
serts.

We now give the proof of the
theorem on two circles. Let us simulta-
neously roll two circles of radii r and
2r along the curved (or straight) line ¥.
Let M and K be points on them which
coincide at the initial moment with
the point 4 of the line 9, and let T
be the common instantaneous centre
of rotation of the two circles (their
point of contact with y). The velocity
of the point M is directed perpendi-
_cularly to the segment MT.

Thus, the velocity of the point M
is directed along the diameter of the
larger circle, that is, M lies on a cer-
tain diameter KL of this circle, and
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in its motion, the straight line KL
touches the path of the point M. This
is just the theorem on two circles

Nole that here we have looked at
the definition of the tangent to a
curve in a new way. The tangent at
the point M to the path of a moving
point is the straight line passing through
the point M on the path whose direction
coincides with the direction of the velo-
city at the given point M.

We shall not give the proof of
Mozzi's theorem, but we shall point
out its geometrical analogue: any
displacement of a plane which can be
realized without turning the plane
over onto the other side (moving it
in any possible way in the plane), is
either parallel displacement or rota-
tion about some point I (Chasles’s
theorem). In connection with Mozzi's
theorem we shall stress one more thing.
In the case of the most general move-
ment of a plate in a plane the in-
stantaneous centre I' changes its po-
sition not only in the stationary
plane but also in the moving one (the
plate) during the process of move-
ment. In each case it describes some
curve, one is called the fixed centrode
and the other, the moving centrode.
For instance, during the rolling of
a wheel along a road, the fixed cent-
rode would be the road and the moving
centrode would be the rim of the
wheel. In kinematics a theorem is
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proved, which states that for every
“smooth” enough motion of a plane,
i.e. motion without “jerks”, the moving
centrode rolls along the fixed one without
slipping and at each moment their
point of contact is the instantaneous
centre of rotation.

Thus the general motion of a plate
in a plane reduces to the rolling of
an irregular wheel on a bumpy road.
From this point of view the subject
matter of our section could be sum-
marized as follows: the study of
motions for which both centrodes are
circles. With that we come to the end
of our digression into kinematics*. We
are now armed well enough to set
about discovering some most remark-
able properties of cycloids, those con-
nected with the families of tangents
to these curves.

7.18. Prove that the tangents to
a cardioid at the end-points of a chord
passing through the cusp of the car-
dioid are mutually perpendicular, and
that their point of intersection is
located at a distance 3r from the centre
of the stationary circle, where r is the
radius of this circle. |

* One can find more detailed and precise
explanations in any good text-book on
theoretical mechanics, for example, in the
wonderful Legons de Mécanique Analytique,
by the Belgian mathematician C. J. de
La Vallée-Poussin,
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7.49*. Two pedestrians L and N
walk at a constant speed around a
circle. The' ratio of their angular
velocities is k& (k is not 0, 1 or —1).
Find the envelope of all the straight
lines LN. |

7.20*%. A circle and a straight line
passing through its centre are given.
Prove that the union of all the circles
whose centres lie on the given circle
and which touch the given straight
line is a nephroid.

7.21*. Consider Steiner’s curve des-
cribed about a circle of radius 2r (the
inscribed circle). Prove that an ar-
bitrary tangent to this curve (at some
point M) intersects the curve in two
points K and L such that the segment
KL has a constant length 4r, and its
midpoint lies on the given inscribed
circle, the tangents to the curve at
the points K and L are mutually per-
pendicular and intersect at the point
N lying on the inscribed circle and
the segments KN and LN are bisected
by the inscribed circle. |

7.22*, Consider an astroid described
about a circle of radius 2r. Prove that
from an arbitrary point of the in-
scribed circle P, it is possible to draw
three straight lines PT,, PT,, PT,
tangent to the astroid such that they
form equal angles (of 60°) with each
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other and the three points of tangency
T,, T,, T4 are the vertices of a right-
angled triangle inscribed in a circle
of radius 3r, which touches the circle
described about the astroid.

The next and last problem in this
series, which also may be solved
using the language of motion, reveals
an unexpected connection between the
elementary geometry of a triangle and
a cycloid. This curve is called after
the geometer who discovered this
connection.

7.23*. A triangle ABC is given.
Prove that:

(a) the feet of the three perpendicu-
lars from any point on the circum-
circle of the triangle to lines AB, BC
and AC lie on a single straight line
(called Simson’s line);

(b) the midpoints of the sides of a
triangle, the feet of the altitudes and
also the midpoints of the segments of
the altitudes joining the orthocentre
to the vertices lie on a single circle
(called the nire-point circle);

(c) all the Simson’s lines of the
triangle ABC touch a single Steiner’s
curve, described about the nine-point
circle. |

Parametric Equations. All the pro-
‘perties of cycloids may also be proved
analytically. It is most convenient to
write their equations in parametric
form, expressing the coordinates (x; y)
of the point M through a parameter ¢
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(the time). We have already come
across these equations in problem 6.22.

Consider the locus of the fourth
vertex M of a hinged parallelogram
OP M(Q whose vertex O is at the origin

—_
of coordinates. (Note that OM =

— —>
= OP + 0Q). If the point P moves
around the circle of radius r; with its
centre at the origin O of coordinates
at an angular velocity ®; and the
point Q moves around the circle of
radius r, with centre O at an angular
velocity w,, then at the moment ¢
the coordinates of P will be (r; cos w,¢,
ry sin w,f), the coordinates of Q will
be (ry cos wyf, r,sin w,f), and the
coordinates of the fourth vertex M
of the parallelogram OPMQ will be:
I =r,c0S W} Ty COS W
y=rysin 0, 4 ry sin @yt
(at the initial point of time ¢ = 0,
the sides OP and OQ of the hinged
parallelogram are both directed along
the axis Oz).

In problem 6.22 we saw that when
w, = —®, the point M describes an
ellipse. In the general case, when we
have the ratios:

(01/(1)2:]‘:, Tz/rizlkl

the point M describes a cycloid (which
on page 150 we called the k-cycloid).

From the parametric equations by
eliminating £, we get in some cases
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simple equations connecting the coor-
dinates z and y. Consider as an exam-
ple the astroid. For this curve we
have r; = 3r,, 0, = —30,, We may
take ®, = 1, then w, = —3 and the
parametric equations of the astroid
will be (putting r, = r):
x=23rcost-rcos 3t
y =3rsin¢—rsin 3t.
or more simply (?):
x=4rcos¥, y=4rsin®.

Hence we get the following equa-
tion of the astroid:
22/3 - y2/3 — (4r)2/3,

We can define the astroid and the
other curves that we considered above
by algebraic equations. Try to verify

that the points (z; y) of these curves
satisfy the following equations:

(2% -+ y2—4r?)% +108r2x2y2==0
(astroid)
(22 +y2—2rz)2—4r2 (224 y2) =0
(cardioid)
(224 y2—4r2)® —10822r* =0
(nephroid)
(224 y2 +0r2)2 4 87 (3y2 — 22) —
—108rt=0 (Steiner’s curve).

Thus, the astroid and the nephroid
are curves of the sixth order, and the
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cardioid and Steiner’s curve are of
the fourth order.

It can be proved that when ((:)TI' =k

is rational, cycloids are algebraié (and
when k is irrational they are not; such
curves pass arbitrarily close to any
point of a ring with centre O and
bounded by circles of radii r; 4 r, and
| r, — ry |. They are said to “every-
where densely” cover this ring).
Comparing the equations of the
curves with their geometric proper-
ties we get new and interesting corol-
laries. Herej is an example where a
property of the astroid is used.

7.24. (a) Suppose we are given a
right angle and inside it a point K
which is distant ¢ and b from its sides.
Is it possible to draw through the
point K a segment of length d with its
end-points on the sides of the right
angle?

(b) A canal, whose banks are paral-
lel straight lines, has a right angled
turn in it. Before the turn the width
of the canal is a, and after the turn
it is b. For what values of d can a thin
log of length d pass round such a
turn?

0 (a) Let us take the sides of the
right angle as the coordinate axes.
The segment of length d must touch
an astroid whose cusps are at a
distance d from the centre. The
equation of such an astroid is: 2?3 +
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+ y¥® = @¥3. If the point K lies
inside the region bounded by the
astroid and the sides of the angle then
the required segment exists (it is a
segment of the tangent to the astroid
passing through the point K). If K
lies outside this region, it does not.
Therefore, the necessary segment exists
if and only if a??® + 023 L d*3. O

Note that though we have found
how to “construct” the required seg-
ment when the condition a%3 + %3
< d%3 is satisfied using an astroid,
this problem cannot be solved using
ruler and compasses.

Conclusion. The remarkable curves
with which we have acquainted our-
selves in the last two paragraphs have
been known for more than two thou-
sand years. The basic properties of
ellipses, hyperbolas, and parabolas
were described in the work On Conics
by the ancient Greek mathematician
Apollonius of Perga, who lived at
about the same time as Euclid (third
century B.C.). Even in ancient times
astronomers studied the paths of the
complicated circular motions. This
is not surprising. If in a very rough
approximation the planets are con-
sidered to be rotating around the Sun
along circles in a single plane, then
the observed motions of another plan-
et from the Earth will be some com-
plicated circular motion. The de-
scription of planetary motions using
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complicated cycloid curves was sub-
ject to more and more modifications as
the number of astronomical observa-
tions increased until Johannes Kepler
established that with high accuracy
the trajectories of the planets are
ellipses with the Sun located at one
of the foci.

A wide range of problems from
physics, mechanics and mathematics
were connected with particular curves.
These provided a “whet stone” for
sharpening the powerful analytical
tools invented in the seventeenth
century by Descartes, Leibniz,'Newton,
Fermat and others. These methods
enabled the transition from particular
problems connected with specific curves
to general laws possessed by whole
classes of curves. Needless to say
that we cannot do without analytical
methods when designing complicated
mechanisms and constructions. How-
ever, the intuitive representations to
which this book is devoted sometimes
prove useful, even in problems not at
all connected with geometry. It is
not without reason that research or
computational results are frequently
represented in the form of graphs or
families of lines.



Answers,
Hints,
Solutions

1.13. Note that the vertices M of the right-angled triangles 4 MB
with hypotenuse AB lie on the circle with the diameter AB.

1.14. Let us draw the common tangent through the point of con-
tact M of the circles. Let it cross 4B at the point O. Then | 40 | =
= | OB | =|OM| (the lengths of the tangents from the point O
to the circles are equal).

1.15. Answer: The union of three circles. Let 4, B, C and D
be the given points. Draw a straight line I through the point A4, a line
parallel to ! through the point C, and straight lines perpendicular to
l through the points B and D. As a result we get a rectangle.

Let L be the midpoint of the segment AC and K the midpoint

S

of the segment BD. Then it is easy to see that LM K = 90°, where M
is the centre of the rectangle. Rotating ! about the point A and rotating
the other straight lines correspondingly, we find that the set of the
centres M of the constructed rectangles is a circle with the diameter K L.

Since the four points 4, B, C, D may be divided into two pairs
in three different ways: (4, C) and (B, D); (4, B) and (C, D); (4, D)
and (B, C), the entire set required consists of three circles.

1.25. Answer: Along a straight line. If the pedestrians P and Q
move along parallel straight lines, then, clearly, the midpoint of
the segment PQ also moves along a parallel straight line.

Suppose the straight lines intersect at the point O. Regard O

as the origin. Then the velocities z;; and ;; of the pedestrians are vectors
directed along straight lines, and their values are equal to the lengths
of the paths walked by the pedestrians in unit time. Let the first pedes-
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trian be situated at the point P at time ¢, and the second one at the

point Q. Then 0P =a —l—?uz and 6—6 = l—;—l— £, (the vectors zand b
define the initial positions of the pedestrians when t = 0).
The midpoint of the segment PQ is at the point M where

—>
O‘TWZOP—;OQ a+b+tv1+v2

We find that it also moves along some straight line with a constant
- -

velocity l—’l—-l—z_—?ﬁ . In order to find this line, it is sufficient to mark the

midpoint of the initial positions of the pedestrians and their positions
after, say, unit time.
We may replace the vector calculations by the following geometric
argument.
If P,P,; and Q,Q, are any two (non-parallel) segments, then the
segment M,M,, where M, and M, are the midpoints of the segments
PyQ, and P,Qy, is a median of the triangle Ly M(N, where L; and N,

9

o

)

Fig. 1

are the fourth vertices of the parallelograms PyPoMyL, and'Q,Q M N,
(see Fig. 1; in the construction depicted, P;L,Q,N, is a parallelogram,
and P,Q, "and N,L, are its diagonals).

It is now clear that if instead of Pl and 01 we take po1nts on the

lines QoQ; and PyP,, such that P P = tP,,P1 and 000 tQOQI,
and the triangle LM N (with the medlan M,M) is drawn, as before,
then this triangle may be obtained simply by a 51m11ar1ty transfor-
mation with coefficient ¢ and centre M, from the triangle N M,L,
(with the median MoMl), i.e. the point M will lie on the straight line

MOMI and MoM tMOMl

1.28. Let us use Fig. 1 to problem 1.25. If the segments Py P,
and Q,Q, rotate uniformly about the points Py and Q, with equal angu-
lar velocities (1 revolution per hour), then the triangle NyMyL,
also rotates, along with its median M, as a rigid body about the point
M, with the same angular velocity.
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1.29. Answer. A circle. Let us translate this problem into the lan-
guage of motion. Draw the radii O;K and O,L. Let the straight line
KL rotate with a constant angular velocity o.

Then according to the theorem “about the ring” the radii 0K
and O0,L will rotate uniformly with the same angular velocity 2o,
i.e. the size of the angle between the radii O;K and O,L remains
constant. Thus the problem reduces to the previous one.

2.11. (b) Use proposition F.

2.19. Answer: If h is the height of the triangle ABC, then the re-
quired set is: empty when p < h, the entire triangle (Fig. 2) when
u = h, the contour of a hexagon (Fig. 3) when p > h.

2.20. (b) See Fig. 4.

3.5. (b) The problem reduces to 3.5 (a) and is simply solved
by “embedding in space”: if three spheres are constructed with their
centres in the plane a on the given circles (in the horizontal plane o)

Fig. 2 Fig. 3

and looked at from above, then we see three circles in which the spheres
intersect (their projections on the horizontal plane are our three

Fig. 4

chords) and also their point of intersection (its projection is the required
point of intersection of the chords).
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PN ¢ . o )
3.7. (b)INote that A MB = 90° + 5 where M is the centre of

the inscribed circle of the triangle. According to E the set of points M
is a pair of arcs together with their end-points 4, B.

3.7. (c) Answer: The required set is a pair of arcs (see figures 5, a,
b, g)b of the corresponding cases:} (a) ¢ < 90°, (b) ¢ = 90°, (c) ¢ >
> 90°).

Let I, and I be two intersecting straight lines passing through the
points A and B respectively and let k£, and kp be the straight lines
passing also through 4 and B, such that ks | lp, kp 1 1,. If the

908

Fig. 5

* lines 7, and lp rotate about their points 4 and B, then k, and kg
also rotate about their points A and B with the same constant angular
velocity. According to proposition E°, the point of intersection of
ks and kg moves in a circle.

Note that when the point of intersection of the straight lines
l, and lg describes an arc of the circle y, the point of intersection of
the straight lines k, and k5 also describes an arc of a circle symmetric
to the circle y relative to the straight line AB.

3.8. (a) Let a, b, c be straight lines passing through the points
A, B, C respectively; K, L and M are the points of intersection of
the straight lines a and b, b and ¢, a and ¢ respectively. According to
proposition E° of the “alphabet” the point K traces out a circle with
chord AB, and the point L traces out a circle with chord BC. Let H
be the point of intersection of these circles other than B.

When the straight line b (line KL) while rotating passes through
the point H, then the points K and L coincide with M, hence the straight
lines a and ¢ also pass through H. (The particular cases when these
two circles touch at the point B or coincide should be treated separate-
ly. In the first case the point M coincides with B, in the second the
points K, L and M always coincide: “it is possible to put a single tiny
ring around all three straight lines a, b and ¢”).

By the way, note that during this rotation the triangle KLM
remains similar to itself. When all the straight lines intersect at a
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single point H, it degenerates to a point and it attains its maximum size
when a, b and ¢ are perpendicular to the straight lines AH, BH
and CH respectively. At this instant its vertices assume positions
diametrically opposite to the point H on their paths (circles).

3.8. (b) Suppose the straight lines A4, BH and CH start to rotate
with the same angular velocity about the points A, B and C (H is
the orthocentre of the triangle ABC). Then the point of intersection
of each pair of straight lines describes one of the circles mentioned in
the statement of the problem.

3.9. Consider three sets of points M lying inside the triangle:
{M; Samp _ kl} {M: Spmc _ kz} {M: Samc _p,
Spmc ’ Samc ’ SamB

These three segments (see proposition I) are concurrent when and
only when kik.kg =1

3.10. Consider three sets:
{M: |MA2—|MB2=hy}, {(M:|MB|2—|MC |2=h,},
(M: | MCP—| MA=hy)

These three straight lines (see proposition F) are concurrent if
and only if Ay + hy + kg = 0.

3.21. Draw the set of end-points M of all the possible vectors

—> —
OM =O0E,+0OE,+ ... +0E,

@
Fig. 6

(where O_E,- are the unit vectors mentioned in the statement of the
problem, first for » = 1, then for n = 2 and so on (Fig. 6).

4.4. Answer: The minimum distance between the pedestrians is
equal to du/V u® I 2.

Suppose the first pedestrian P walks with velocity —x-;, the second,
Q, with velocity ;(the lengths u and v of these vectors are known).
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Consider the relative motion of P in the pedestrian Q reference frame.
-

This will be a uniform motion with a constant velocity u — _z:(see 1.3).
In the “initial” position, when P lies at the point Py where the
roads cross, Qo is a distance | QyP¢| = d from P, in the direction

S
of the vector —v. Thus, in order to find the answer, it is sufficient to
draw through the point P, a straight line I parallel to the vector
-

u — ;(it is the path of P in its relative motion in the reference frame
of Q), and to determine the distance | Q,H | of the point Q, from the
straight line ! (H is the projection of Qqon I). Since the triangle Q,P H

is similar to the triangle formed by the vectors u, Zand u — :((QOPO) 1
L u, (QoH) L (u — v)), we have

L Qol 1] QoPol = 1| — 7 | = ull)/ & T o~

4.6. From the centre O, of one of the circles, drop a perpendicular
O, N onto the secant ! passing through the point 4, and from the centre
0, of the other circle drop a perpendicular O,M onto the straight
line O;N. Then the length of | O,M | is half the distance between
the points of intersection of the secant ! and the circles (other than 4).

4.9. Answer: An isosceles triangle. Use 2.8 (a).

5.4. (b) Prove that if the segment KL of constant length slides
at its end-points along the sides of a given angle 4, then the point
M of intersection of the perpendiculars erected at the points K and L
to the sides KA and LA of the angle moves around a circle with centre
A (recall the discussion of Copernicus’ theorem 0.3 in the introduction).

5.7. The following fact helps us to construct these points: the level
curves of the function f (M) = | AM |/| MB | are orthogonal to the
circles passing through the points 4 and B (page 97).

6.3. (e) Answer: A hyperbola, if the given circles do not intersect
one another (perhaps touching); the union of a hyperbola and an ellipse,
if they intersect; an ellipse, if one circle lies inside the other (perhaps
touching). The foci of the curves lie at the centres of the given circles.

In order to reduce the number of different cases that must be consid-
ercd the position of the third circle, with respect to the first two, we
can use the following general rule: circles of radii r and R with their
centres a distance d apart, touch each other,ifr+- R = dor|R — r| =
= d.

6.12. (a) For a given tangent construct the tangent symmetric to
it with respect to the centre of the ellipse.
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Use 6.9. (b) and the theorem which states that the product of the
segments of a chord drawn through a given point inside a circle is
independent of the direction of the chord.

6.15. Construct in the case (a) an ellipse (in the case (b) a hyper-
bola) with foci at 4 and B, touching the first link P,P,, and prove
that it also touches the second link P;P,. To do this use the fact that
A A'P\B =~ /A AP,B’, where A’ is the point symmetric to 4 relative
to PyP; and B’ the point symmetric to B relative to P{P,. The tan-
gents will be the perpendicular bisectors of the segments 44’ and
BB’ (6.9 (a), 6.10 (a)).

6.16. (c) We construct the set of points N for which the mid-
point of the segment AN lies on the given circle. This is a circle.
Denote its centre by B, its radius by R. The set of points which are
located nearer to the point A than to any point N of the constructed
circle is the intersection of the half planes containing A which are
bounded by the perpendicular bisectors of the segment AN. This
set may be written as follows:

{M:|MA|—|MB|<R),
i.e. its boundary is a branch of a hyperbola.

6.17. Compare the hint to 6.16 with the proof of the focal prop-
erty of a parabola.

6.23. Choose the origin at the midpoint of the segment AB, and
the z-axis so that at some points of time both rotating straight lines
are parallel to Oz. If we write the equations of the straight lines for
time t, find the coordinates of their point of intersection and then
eliminate t (as in the solution to 6.22), then we obtain the equation
of a hyperbola in the form (4) (page 128).

6.24. Imagine two straight lines rotating about the points 4
and B in different directions so that the second one has twice the angu-
lar velocity of the first. It is not difficult to guess that their point of
intersection moves along a curve, like a hyperbola having asymptotes
which form angles of 60° with the straight line AB and for which the
point of intersection C with the segment 4B divides AB in the ratio
JAC|/| BC | = 2.

The answer to this problem is in fact a branch of a hyperbola.
The following simple geometrical proof reduces the problem to prop-
osition N of the “alphabet”.

Construct the point M’ symmetric to M with respect to the mid-
perpendicular ! of the segment 4B, and note that the ray BM' is the
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bisector of the angle ABM, and | MM'|= | MB|, so that
| MB |lp (M, 1) = 2.

6.25. (a) If Lthe coordinate system is selected in-such a way that
the sides of the angle are given by the equations y = kz and y = —k=z,
z > 0, then the area of the triangle OPQ, where P and Q lie on the
sides of the angle, is k2?2 — y?/k, where (z; y) are the coordinates of
the midpoint of the segment PQ.

(b) Use the result of problem 1.7 (b).
(c) Result follows from (a) and (b).

7.2. This union may be considered as the set of those points M
for each of which there can be found a point P on the circle such that
| MP | < | PA |or as the set of points M for which the perpendicular
bisector of the segment MA has a point in common with the circle.
Compare this problem with 6.16-6.17.

7.9. Answer: (a) 3; (b) 4; (c¢) 2.5, The ratio of the angular veloc-
ities may be found in the same way as was done in the examples on
pages 158-161.

7.13. (a) The arc of a circle of radius R between two cusps of
Steiner’s curve (120°) has the same length as the circumference of
a semicircle of radius 2R/3.

7.14. (b) Both curves may be obtained as the paths of the vertex
M of a hinged parallelogram, with side lengths R — r and r and the
ratio of the angular velocities o,/ w, is equal to —r/(R — r) (the angular
velocities have opposite signs, see page 158).

7.18. Use 7.7 and Mozzi's theorem.
7.19. Answer: a k-cycloid (see page 150).
7.21. Use 7.13 (a), Mozzi's theorem and the theorem on two circles.

7.23. Let M be a point on the circle described, moving around
it with angular velocity ®. Then: '

(1) the points My, M, an M3, symmetric to the point M relative
to the straight lines BC, CA and AB move around the circle (with
angular velocity — o);

(2) these three circles intersect at a single point H, the orthocentre
of the triangle ABC (3.8(b));

(3) each straight line M;M (i = 1, 2 or 3) rotates with angular
velocity (—w/2) about H;

(4) three points M,, M,, M, lie on a single straight line I, pass-
{ng t;lrough I (i.e. the three straight lines M;M are in fact a single
ine ly);
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(5) the midpoints of the segments MM; (i = 1, 2, 3) and the mid-
oint K of the segment MH lie on a single straight line, the Simson
ine;

(6) the point K moves around the circle y similar to the circle

described with magnification ratio 1/2 and centre of similitude H;

(7) the circle y passes through the 9 points mentioned in part (b)

of problem 7.23;
(8) the envelope of the straight lines l,; is a Steiner’s curve touching
the circle y.



Appendix |

Method

of
Coordinates

As soon as a coordinate system Ozy is chosen on a plane, a pair
of numbers is defined corresponding to each point in the plane—the
coordinates of the point. The correspondence between the points of
the plane and the pairs of numbers is one to one (to each point in the
plane there corresponds a pair of numbers and vice versa).

1. The distance between the’ points 4 (zy; y;) and B (ag; y,) is
determined by the formula

|AB|= ]/(xl—z2)2+(y1—y2)2

2. The set of points (z; y), whose coordinates satisfy the equation
(x — a)> + (y — b)2 = r2 (where a, b and r are given numbers, r > 0)
is a circle of radius r with its centre at the point (a; b). In particular,
2?2 -+ y2 = r? is the equation of a circle of radius r with its centre at
the origin.

3. The midpoint of the segment between the points A (zy; y,)
T3+ U1t ¥s
2 ’ 2

and B (x,; y,) has the coordinates In general,
the point dividing the segment AB in the ratio p : ¢ (where p and ¢
q%1+Ppry  qY1+ pYe

. . g q+p
These formulae assume a particularly simple form, if p and ¢ are select-
ed so that ¢ + p = 1.

4. The set of points whose coordinates satisfy the equation az 4
+ by 4+ ¢ = 0 (where a, b, ¢ are numbers, and where a and » do
not vanish simultancously, i.e. a®2 4 4% 5= 0) is a straight line. Con-
versely, each straight line may be defined by an equation of the form

are given positive numbers) has the coordinates
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az + by -+ ¢ = 0. In this case the numbers a, b and ¢ are determined
for the given straight line uniquely, apart from a constant of propor-
tionality: if they are all multiplied by the same number % (k = 0),
then the equation kaz + kby -+ kc = O thus obtained also determines
the same straight line.

The straight line divides the plane into two half planes: the set
of points (z; y) for which az + by 4+ ¢ > 0, and the set of points
(z; y) for which az + by + ¢ < 0.

5. The distance p (I, M) of the point M (z,; y,) from the straight
line I, given by the equation az + by + ¢ = 0, is given by the formula
P (A’[, l) == ————I ax0+by0+c l

V a2 b2
This formula assumes a particularly simple form if a2 4+ b2 = 1.

Any equation az - By 4+ v = 0 (a® 4- B2 + 0) of a straight line
may be reduced to this particular form,iby multiplying it by either

of the numbers -———1———01'

Vet B Vet p




Appendix li

A Few Facts
from

School
Geometry

I. Proportional segments

1. A theorem on proportional segments. 1f several segments are
marked off on a straight line I; and parallel straight lines intersecting
l, are drawn through their end-points, the parallel lines then cut off
on l, segments proportional to the segments marked off on I,.

2. A straight line parallel to one side of a triangle and intersecting
its other two sides, cuts off from the triangle a triangle similar to it.

3. A theorem on the bisector of an angle of a triangle. The bisector
of an angle of a triangle divides the opposite side into segments which
have the same ratio as the adjoining sides.

4. A theorem on proportional segments in a circle. 1f two chords A B
and CD of a circle intersect at the point E, then
| AE|.| BE|=| DE|-| CE|

5. A theorem on a tangent and a secant. If through a point 4 outside

a circle a tangent A7 and a secant cutting the circle at the points
B and C are drawn, then

|AT 2= AC|-| BC|
Notes

1. The theorem on proportional segments is reformulated in the
language of motion (pages 24-25) as the “thcorem about the ring-on
a straight line”. A more general assertion deduced from the theorem
about the ring, is the lemma on page 53.
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3. The theorem on the bisector of an angle of a triangle has been
proved in problem 2.5 (page 38) in a more general form for the “cross-
bisector” which is defined in proposition B of our alphabet (page 36).

5. The theorem on a tangent and a secant is not referred to any-
where in the book directly but it is closely related to the problems on
the radical axis (page 44).

I1. Distances. Perpendiculars

1. The distance from a point A to the foot of the perpendicular
passing through A to the straight line  is less than the distance from
the point 4 to any other point on .

2. A line tangent to a circle is perpendicular to the radius drawn
to the point of contact.

3. Of two oblique lines drawn from a given point to a given straight
line I the one which has the larger projection on the straight line !
is greater.

4. (a) If a point lies on the perpendicular bisector of a segment,
then it is equidistant from the cnd-points of the segment.

(b) If a point is equidistant from the end-points of a segment, then
it lies on the perpendicular bisector of the segment.

These two theorems may be combined in a single statement: the
set of all points equidistant from the end-points of a segment is the
perpendicular bisector of the segment.

5. (a) If a point lies on the bisector of an angle, then it is equidis-

tant from the sides of the angle.
(b) If a point included in an angle (smaller than a straight angle)

is equidistant from the sides of the angle, then it lies on the bisector

of the angle. .
From (a) and (b) it follows that: the set of all points contained in

an angle (smaller than a straight angle) cquidistant from the sides
of the angle is the bisector of the angle.

6. One and only one circle can be inscribed in a triangle. This
circle is called the incircle.

7. About a triangle one and only one circle can be circumscribed.
This circle is called the circumcircle.

Notes

. 1-2. These statements may serve as simple illustrations of the
tangency principle formulated in Sec. 5 (page 104). Let a straight line
v and a point A be given. Construct the family of concentric circles—
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the level curves of the function f (M) = | AM |. The point on ¥y
at which the function f attains its minimum value is the point of tan-
gency of one of the circles of our family with the straight line 7.

3-4. The general statement of 4 is proposition A (page 36) of the
“alphabet”. The perpendicular bisector is often called the midper-
pendicular. Statement 3 is essentially contained in the statement of
proposition A on the division of the plane into half planes.

£5. A more general statement is formulated in] proposition B of
the “alphabet”, where the term “cross bisector” is introduced (page 36).

6. The centre of an inscribed circle is determined in problem 3.3
(page 63).

7. The centre of a circumscribed circle is determined in prob-
lem 3.1 (page 60).

III. The cirecle

1. The radius perpendicular to a chord bisects the chord.

2. A theorem on tangents. I1f from a point 4 two tangents A T,
and AT, are drawn to a circle (7; and T, are the points of contact),
then | AT, | = | AT, |.

3. A theorem on the circumscribed quadrilateral. A circle can be
inscribed in a convex quadrilfateral if and only if the sum of the lengths
of two opposite sides of the quadrilateral is equal to the sum of the
lengths of the other two opposite sides.

4. The set of all the vertices of a right-angled triangle with a given
hypotenuse 4B is a circle of diameter 4B (with the points 4 and B
excluded).

5. A theorem on an inscribed angle. The magnitude of an inscribed
angle (in degrees) is equal to half the magnitude (in degrees) of the
intercepted arc. (In other words, the angle at the centre is double the
angle at the circumference, when the rays forming the angles meet
the circumference in the same two points.)

6. An angle formed by a tangent and a chord through the point
of contact has half as many degrees as the arc intercepted by this angle.

7. An angle with its vertex inside a circle has half as many degrees
as the sum of the two arcs, one of which is enclosed between the sides
of this angle and the other between the sides produced.

An angle formed by two secants intersecting;outside a circle is
equal in degrees to one-half the difference between the intercepted
arcs contained by the angle.
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8. A theorem on the inscribed quadrilateral. About a quadrilateral,
a eircle can be circumscribed if and only if the sum of its two opposite
angles (in degrees) is equal to 180°.

Notes

4. This statement is discussed on page 11 in connection with the
problem about the cat.

5. The theorem on the inscribed angle is reformulated in the lan-
guage of motion (page 24) as the “theorem about the ring on a circle”.
A more general statement deduced from the theorem about the ring
is proposition E° of the “alphabet”.

6-7. Problem 2.6 touches on these theorems.

IV. Triangles

1. A theorem on the exterior angle. An exterior angle of a triangle
is equal to the sum of the non-adjacent interior angles.

2. A theorem on the midperpendicular. The three medians of a triangle
are concurrent in a point which divides each of them in the ratio
2 :1 (measuring from the vertex).

3. A theorem on the altitudes of a triangle. The three altitudes of
a triangle are concurrent.

4. Pythagorean Theorem. The square of the hypotenuse of a right
triangle is equal to the sum of the squares of the legs.

5. The legs of a triangle are proportional to the sines of the opposite
angles.

6. The area of a triangle is equal to one-half of the product of:

(a) the base and the altitude upon that base;
(b) two sides and the sine of the angle between them.

Notes

2-3. The proofs of these theorems are given on pages 61-65 in the
solutions of problems 3.2 and 3.4 (the fact that a median divides the
o;her median in the ratio 2 : 1 may be obtained from the solution
of 3.4).
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Appendix il

A Dozen
Assignments

This appendix is intended for readers who after first going quickly
through tﬁe book and trying to solve the problems that appealed to
them find that they are not able to manage some of them, but still
want to understand them, and are ready to work through the book
systematically “with pencil and paper at hand”.

The twelve assignments given below cover the contents of the book
in different directions. They stress the relationships hidden at first
glance between the various problems.

The assignments are constructed in the same way as is usual in
the correspondence mathematical school of Moscow State University.
First the subject-matter of an assignment explained and the pages of
the book containing the theorems or exercises which should be care-
fully and thoroughly studied, are given. Then there is a series of exer-
cises, in which the “obligatory” problems are differentiated {rom
the supplementary by the sign ||. Some of the problems are provided
with explanations. As far as the solutions go, we advise you to try
to write them out concisely without unnecessary details, clearly stat-
ing the basic steps involved and any references to theorems from your
geometry course. Do not forget about particular cases: sometimes
they have to be analysed separately (as in problem 1.1, when the
point M lies on the straight line AC or in problem 1.3 in the case
of a square). Although we are not suggesting that readers should
give superfluous details when investigating and rigorously analysing
all special cases, but we do advise them to precisely formulate the
result in full, as is the custom among mathematicians.

1. Name the “Letters”

The aim of this exercise is to make a first acquaintance with our
“alphabet”, i.e. with the theorems dealing with sets of points which
are useful in the solution of the later problems.
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Go through Sec. 2 and make a list of the propositions from A
to J of the “alphabet” on a separate sheet of paper. Against each letter
write down the formula (see page 58) and draw the corresponding
diagram.

2.4, 2.2, 2.3, 2.4, 1.16 (a), (b), 5.4 (a), 1.11, 1.12 | 2.13,' 2.15,
2.16, 3.6.

Remarks

In the first five problems it is only required to state in the answer
the appropriate letter of the “alphabet”.

Problem 1.16 (a) helps one to solve problem 5.4 (a) without any
calculations.

In “construction” problems, everything reduces to the construction
of a certain point—the centre of a circle, etc. The required point is
obtained as the intersection of two sets from the “alphabet” (see 1.4).
It is essential to name these sets (propositions of the “alphabet”) and
indicate how many answers the given problem has.

The short solution to 2.13 is based on the result of 2.12.

2. Transformations and Constructions

In the solutions of the problems making up this assignment, you
have to use the various geometric transformations of the circle and
the straight line which are discussed on pages 27-28 and which often
appear in the book (6.9 (a), (b), 7.1 (a), (b)).

1.20, 1.21, 1.22, 1.23, 1.24 (a), (b) || 3.7 (a), 4.8 (a).

Remarks

1.22. See the solution to problem 1.7 (a).
1.23. See the solution to problem 1.6.
1.24 (a). Give the answer only.

3.7 (a). Use the fact that the centroid divides the median in the
ratio 2 : 1, measuring from the vertex.

4.8. Read the solution to problem 4.7.

In all these exercises we suggest that you make sketches of all
necessary constructions. Write your solutions concisely, paying atten-
tion to the sets and transformations used. Indicate how many solutions
a problem has.
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3. Rotating Straight Lines

This assignment basically concerns the different variants of the
theorem on the inscribed angle and its corollaries.

Go through the book in the following order: problem 0.1 (about
the cat), problem 1.1, the theorem about the ring on a circle (pages 23-
24), the propositions” E° and E of the “alphabet” (pages 39-40). Note
that the theorem about the ring (and the problem about the cat)
should not be understood literally: the imagined “ring” is simply the
point of intersection of the straight line and the circle; if we make
a wire model, then after a single rotation (in either direction) the ring
would become stuck.

7 61.8, 1.9, 1.10, 1.13, 1.18, 2.6 (a), (b) || 1.27, 2.7, 2.8 (b), 4.6, 7.5,

Remarks

1.9. Draw diagrams for the different positions of the point 4,

1.10. Draw a straight line through the point B, plot the point 4’
symmetric to the point A with respect to this straight line, and then
draw the segment BA’.

Show the sets of points in the answers to problems 1.8 and 1.10,
in the one diagram. By what transformation can one get the set in
1.10 from the one in 1.8?

1.13. State how many answers the problem has.

1.27. Carry out an experiment using an ordinary set square. Hint:
circumscribe a circle about the wooden triangle, join the vertices
of the right angles and use the theorem on the inscribed angle.

2.6. Imagine that the movable chord is moving uniformly arounad
the circle.

2.8. (b) The solution is analogous to 2.8. (a). Sort out the second
variant of the solution of this problem, given on page 42.

4. Straight Lines and Linear Relations

This assignment deals with problems in which no curves but only
straight lines appear.

Go through the book in the following order: problems 1.2 and 1.3
about the “bicycle” and the rectangle (pages 20-23), the theorem about
the ring on a straight line (pages 24-25) and the important lemma
(page 53) which extends it, and also propositions F, I, J of the “alpha-
bet” and the general theorems on the distances to straight lines and the
squares of distances (pages 42-56).®

189



1.24 (a), (b), 2.18, 2.19 (b), 3.9,% 3.14, 3.15, 3.16 || 1.26, 1.27,
2.14, 2.20 (a), 3.18.

Remarks
2.18. See solutions to 2.5 and 2.17.

2.19 (b). Find out how the answer depends on the dimensions of
;he r?ctangle a X b and the parameter u (see the answer to problem
.19 (a)).

3.14-3.16. See proposition C of the “alphabet”.

1.27. Let a and b be the lengths of the legs of the wooden tri-
angle. Find the ratio of the distances from its free vertex to the sides
of the given right angle.

2.20. It is sufficient to give the answer and a diagram.
3.18. Read the solution to 3.17.

5. The Tangency Principle (Conditional Extremum)

The assignment consists of problems on finding maxima and
minima. Every problem may be reduced to one in which it is required
to find the point on some line (as a rule one of the sets from the “alpha-
bet”), at which some function reaches its maximum or minimum value.
Read the solutions to problems 4.1, 4.2 and 4.7 (pages 78-82), the
solution to problem 5.1 and the rest of Sec. 5, particularly pages 103-105.
Study (or redraw) the maps of the level curves on pages 98-99.

4.3, 4.9, 5.4 (a); 5.5, 5.6 (a), (b), 5.8 || 4.8, 5.4 (b), 5.7.

Remarks
5.4 (a) See problem 1.16 (a).

6. Partitions

In this assignment we find various sets of points satisfying in-
cquality conditions and also the set operations (intersection, union),
corresponding to the logical combinations of the conditions. Many
propositions of our “alphabet” of Sec. 2 have conditions of the follow-
ing type: the line consisting of the points M for which f (M) = «a
divides the plane into two domains, one in which 7 (M) < a and
the other in which f (M) > a (here f is some function on the plane,
see page 93). In exactly the same way, if f and g are two functions
on a plane, then the set of points M, where f (M) = g (M) partitions
the plane into regions, in some of these f (M) > g (M) while in others
f (M) < g (M). Go through the text of Sec. 3 (pages 67-68), and the
solutions to problems 3.11, 3.23 tabout the cheese).
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b 1.19, 3.12, 3.14, 5.3 (a), (b), 3.15, 3.16 || 3.18, 3.19, 4.11, 4.12 (a),
).

Remarks

1.19. Draw the segment BC and indicate the set of points of the
vertices A of the triangles A BC, for which each of the conditions (a),
(b), (c) is fulfilled; use second paragraphs of propositions D and E
of the “alphabet”.

3.14. Read the solution to 3.13.
3.15-3.16. Use proposition C, and in problem 3.16 recall 2.4.

3.18. Construct for each side of the polygon the strip as in propo-
sition C corresponding to » = S/p. Can these sets cover the whole
of our polygon of area S?

4.11-4.12. Read the solution to 4.10.
7. Ellipses, Hyperbolas and Parabolas’

The aim of this assignment is to acquaint ourselves with the first
definitions of these curves, given in propositions K, L, M of our
“alphabet”. Go through Sec. 6 and list the propositions of “alphabet”.
For each ‘letter’ write down the formula and draw the corresponding
d}ilagram (problems 6.5 (a), (b) of this exercise will help you to do
this).

6.1 (a), (b), (c), 6.2, 6.3 (a), (b), (c), (d), 6.4 (a), (b), 6.5 (a), (b),
6.10 (a), (b), 6.11 (a), (b) || 6.8, 6.12 (a), (b), 6.13 (a), 6.14, 6.24.
Remarks

6.1 (a), (b), (c). Indicate how the answer depends on the parameter
(put | AB | = 2).

6.2. Use the theorem on the segments of the tangents to a circle.

6.4 (b). Consider positions of the quadrilateral ABCD for which
the link BC crosses AD.
The following problems deal with the focal properties of the curves.

6.10 (a). The proof is on the same lines as in the solution to 6.9 (a),
and is also based upon problem 6.7.

6.11 (a). Compare the definition of a parabola (proposition M
of the “alphabet”) and its focal property.

6.8. The proof is similar to the proof of the orthogonality of equi-
focal ellipses and hyperbolas (pages 116-117).
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8. Envelopes, Infinite Unions

In this assignment the problems are all quite complicated. In
each problem an entire family of straight lines or circles is considered.
If the union of the lines of this family is taken, a whole region of the
plane is obtained. It often happens that the boundary of this region
is the envelope of this family of lines—a curve (or a straight line)
which touches all the lines of the family. (For example, in the solu-
tion to problem 1.5 on page 27, we used the fact that the envelope of
the family of chords of equal length of the given circle is a circle con-
centric to the given circle.) We urge you to draw a diagram for each
problem; it is not necessary, however, to draw the envelopes. If you
draw a large enough number of lines of the family, then the envelopes
appear automatically (as in the diagrams on pages 122-123).

Read the text on pages 121, page 15, the solutions to 3.20 (b),
6.6, 6.7 and the proof of the focal property of a parabola (pages 117-118).

1.30, 3.20 (a), 3.22, 4.5, 6.16 (a), (b), 6.17 || 6.15 (a), 6.25 (a),
(b), 7.2, 7.20.

Remarks

3.20. Tmagine this union as the set of vertices M of a hinged paral-
lelogram OPMQ with sides 3 cm and 5 cm; compare this method with
Sec. 7 (pages 152-153).

3.22, If in the first ¢ minutes the man walks along the road and
then 60 - ¢ minutes through the meadow, where can he reach? Now
take the union of the sets obtained for all ¢ from 0 to 60.

4.5. What set provides the answer to problem 3.22, if 1 hour is
replaced by T hours? Find for what value of T this set contains the
point B.

7.20. The family of tangents to the nephroid has been considered

in problem 7.16. Also recall here problems 7.1 (a), 7.2 on the cardioid,
and the theorem about two circles (pages 153-155).

9. Tangents to Cycloids

This assignment includes a series of problems in which one has to
prove that the envelope of some family of straight lines is a cycloid.
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The solutions of most of them are based on the theorem about two cir-
cles. Read the statement and the examples of the application
of this theorem on pages 153-157 and also analyse its proof
(pages 158-162). ’

7.47(a), (b), 7.16, 7.18, 7.19 || 7.21, 7.22, 7.23.

Remarks

7.17. Find along what curve the end-points of the diameters move,
and what curve is their envelope. (Compare the result with the last
diagram on page 151.)

7.16. Using the theorem about two circles, describe the family of
tangents to the nephroid. Read the solution to problem 7.15.

10. Equations of Curves

The method of coordinates allows one to formulate general theo-
rems, which generalize particular geometric observations in a natural
way (go through the general theorems in Sec. 2, pages 45-47, 55-56,
Sec. 6, pages 124-134). The representation of curves in the form of
equations gives us the possibility of solving geometric problems in
the language of algebra. In this assignment there are exercises on the
method of coordinates and problems in which it is used in a natural
way. Most of the problems are related to second-order curves. In some
problems it is necessary to change over from parametric equations to
algebraic ones (see the solution to 0.2, pages 12).

1.16 (c), 6.18, 6.19 (a), (b), (c), 6.20 (a), (b), 7.24 (b) || 6.21 (a),
(b), 6.23, 6.25 (a), 6.26 (a), (b), 6.27.

Remarks

In the problems on the distances to points and straight lines you
must carefully investigate how the answer depends on the parameter.
For each of these problems, you must draw the corresponding diagram —
the family of curves. It is convenient to draw the ellipse according to
the given equation, representing it as a compressed circle (page 126)
and the hyperbola by drawing its asymptotes and marking its vertices
(the points of the hyperbola closest to its centre).

In problem 6.26, if we limit ourselves to points M lying inside
the triangle, then a beautiful geometric solution may be given using
the similarity of triangles, and also the theorems on the inscribed angle
and the angle between a tangent and a chord.
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11. Geometrical Practical Work

In this assignment you have to construct diagrams which illus-
trate the most interesting definitions and properties of curves. This
will enable you to look at the book from a new point of view.

Problems can be considered in the light of the assertion: “geometry
is the art of reasoning correctly on an incorrect diagram”. But some-
times it is sensible to have the same approach to geometry as to phys-
ics: an exact diagram is a geometrical experiment. This point of view
helps us analyse difficult statements about whole families of lines or
complicated configurations or to discover some new regularity.

We advise you to repeat (sometimes with additions) those diagrams
which depict interesting families of straight lines and circles. To make
these illustrations, from the techaical point of view, is a compara-
tively simple task, but all the same accuracy and a certain inventiveness
are required to make them beautiful. On a large sheet of paper these
drawings will look considerably more significant than our little dia-
grams in the margins.

1. The astroid (page 16). Try to make the midpoints of the segments
be distributed uniformly around the circle on which they lie. The larger
the number of segments are drawn, the better will their envelope, the
astroid, be seen.

2. Orthogonal families of circles (page 97). The first family is the
family of all possible circles passing through the points A and B (see 2.1).
The second family is the family of circles whose centres lie on the
straight line AB; if M is the centre of one of them, then its radius is
the segment of the tangent drawn from the point M to the circle with
diameter AB.

3. Ellipses, hyperbolas and parabolas (page 113). The method of
construction is mentioned in problems 65 (a), (b). Colour the “squares”
obtained alternately with two different colours as on a chess-board
(see page 16 and the remarks on problem 6.8). Make another copy of
each of the diagrams to problems 6.5 (a), (b), and mark on them with
ink the families of ellipses, hyperbolas and parabolas.

4. Second-order curves as the envelopes of straight lines (pages 122-123,
figures 4-6). The! method of construction {follows from
6.16 and 6.17.

5. Rotating straight lines. Make your own diagram illustrating
proposition E° of the “alphabet” (the lower diagram on page 39). Draw
a circle and divide it into 12 equal parts. Draw straight lines through
one of the points of division 4 and the other points of division and also
the tangent to the circle at the point 4: (one gets a bundle of 12 straight
lines dividing the plane into 24 angles of equal size). By moving a pen-
cil around the circle we can see that whenever we go from one point
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of division M to the next, the straight line 4 M turns through the
same angle. Choose another point of division B (say, the fourth point
from A4) and construct for it a bundle of 12 straight lines similar to
the one for the point 4. Mark for each point of division M, the acute
anglei[between the straight lines AM and BM. (All these angles are
equall)

From theorem E°, it follows that if all the 23 straight lines con-
structed are produced to their points of intersection, then all the 110
points of intersection thus obtained (not counting the points 4 and B)
lie on 11 circles, 10 on each circle (?)

Colour the “squares” of the net obtained as on a chess-board.
You will then see immediately the family of circles passing through
the points 4 and B and the family of hyperbolas (better, take a bundle
of 24 but not 12 straight lines). For, if straight lines passing through
the points 4 and B rotate in opposite directions with equal angular
velocities, then their point of intersection will move along a hyper-
bola (6.23).

6. The conchoid of Nicomedes and the limagon of Pascal (pages 139
and 147). The conchoid of Nicomedes is obtained in the following man-
ner. A straight line and a point are given. On straight lines passing
through the given point, lay off from their points of intersection with
the given straight line segments of constant length d, in both direc-
tions. Draw the family of such conchoids (for various d).

The limagon of Pascal is obtained in a similar manner. Suppose
we are given a circle and a point on it. On straight lines passing through
the given point, lay off from their points of intersection with the circle
segments of constant length, in both directions.

7. Thecardioid and the'nephroid as the envelopes of the circles (page 142,
7.2 and page 165, 7.20).

8. The cardioid and the nephroid as the envelopes of refiected rays
(the drawings on pages 155, 157). It is convenient to construct these
drawings using the fact that the chord of the incident ray is equal in
length to the chord of the reflected ray.

9. Pedestrians on straight lines and circles. Copy figure 3 on page 123.
Sketch the cycloid curves (3-6 on pages 150-151) using problem 7.19,
for k = —3, —2, 2, 3.

RLet us investigate it for the case £k = —2. Divide a circle into,
say, 24 equal parts. Let the point of division 4 be the initial position
of pedestrians P and Q and suppose each of them moves uniformly
in the circle. Since ¥ = —2, they move in opposite directions and the
velocity of Q is twice as great as the velocity of P. Mark their positions
at equal intervals of time (when the point P passes through the respec-
tive point of division) and join them with the straight lines PQ (when
the pedestrians arrive together at a point of division, draw the tangent
to the circle). The envelope of these straight lines is Steiner’s curve.
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12. Small Investigations

Almost any problem on geometry is a subject for indeperident re-
search demanding inventiveness and an original way of thinking. In
this assignment we mark out four difficult problems in the solution of
which a whole range of different arguments must be used.

4.12 (a), (b), 4.14 (a), (b), 6.15 (a), (b), 7.23 (a), (b), (c).

The solution to problem 4.14 (b) is very similar to that of the
problem about the motor boat.

There are hints to the last two problems 6.15 and 7.23 at theend
of the book. It is possible to draw beautiful diagrams for the last
problem which depict the family of Simson’s lines of a triangle (the
envelope is a Steiner’s curve).



Notation

| AB | = p (A, B)—the length of the
segment AB (the
distance between
the points 4 and
B).

p (4, I) —the distance

from the point 4
-to the straight
line 1.

P

ABC—the value of the
angle ABC (in
degrees or radi-
ans)

AB—the arc of a cir-
cle with end-
points A and B.

A ABC—triangle ABC.
Sapc—the area of the

triangle ABC.
{M: f (M) = c}—the set of points
M, which satis-
fies the condition

f (M) =c.
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