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Chapter 1

Basic Concepts

1.1 Talking about Sound and Music1

note: Are you really free to use this online resource? Join the discussion at Opening Measures2 .

Music is the art of sound, so let's start by talking about sound. Sound is invisible waves moving through
the air around us. In the same way that ocean waves are made of ocean water, sound waves are made of the
air (or water or whatever) they are moving through. When something vibrates, it disturbs the air molecules
around it. The disturbance moves through the air in waves - each vibration making its own wave in the air -
spreading out from the thing that made the sound, just as water waves spread out from a stone that's been
dropped into a pond. You can see a short animation of a noise being created here3.

Surf rolling down a beach, leaves rustling in the wind, a book thudding on a desk, or a plate crashing on
the �oor all make sounds, but these sounds are not music. Music is sound that's organized by people on
purpose, to dance to, to tell a story, to make other people feel a certain way, or just to sound pretty or be
entertaining.

Music is organized on many di�erent levels. Sounds can be arranged into notes4, rhythms5, textures6

and phrases7. Melodies8 can be organized into anything from a simple song to a complex symphony. Beats9,
measures10, cadences11, and form12 all help to keep the music organized and understandable. But the most
basic way that music is organized is by arranging the actual sound waves themselves so that the sounds are
interesting and pleasant and go well together.

A rhythmic, organized set of thuds and crashes is perfectly good music - think of your favorite drum solo
- but many musical instruments are designed speci�cally to produce the regular, evenly spaced waves that
we hear as particular pitches (musical notes). Crashes, thuds, and bangs are loud, short jumbles of lots of
di�erent wavelengths. The sound of surf, rustling leaves, or bubbles in a �sh tank are also white noise, the
term that scientists and engineers use for sounds that are mixtures of all the di�erent wavelengths (just as
white light is made of all the di�erent wavelengths, or colors, of light).

1This content is available online at <http://cnx.org/content/m12373/1.8/>.
2http://openingmeasures.com/open-education/40/are-the-education-resources-at-Connexions-really-free/
3See the �le at <http://cnx.org/content/m12373/latest/blah.swf>
4"Duration: Note Lengths in Written Music" <http://cnx.org/content/m10945/latest/>
5"Rhythm" <http://cnx.org/content/m11646/latest/>
6"The Textures of Music" <http://cnx.org/content/m11645/latest/>
7"Melody": Section Melodic Phrases <http://cnx.org/content/m11647/latest/#s2>
8"Melody" <http://cnx.org/content/m11647/latest/>
9"Time Signature": Section Beats and Measures <http://cnx.org/content/m10956/latest/#s1>

10"The Sta�": Section The Sta� <http://cnx.org/content/m10880/latest/#s1>
11"Cadence in Music" <http://cnx.org/content/m12402/latest/>
12"Form in Music" <http://cnx.org/content/m10842/latest/>
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Figure 1.1

A tone (the kind of sound you might call a musical note) is a speci�c kind of sound. The vibrations that
cause it are very regular - all the same size and same distance apart. Musicians have terms that they use to
describe tones. But this kind of (very regular) wave is useful for things other than music, so scientists and
engineers also have terms that describe tonal sound waves. It can be very useful to know both the scienti�c
and the musical terms and how they are related to each other.

For example, the closer together the waves of a tonal sound are, the higher the note sounds. Musicians
talk about the pitch13 of the sound, or name speci�c notes14, or talk about tuning (Section 2.4). Scientists
and engineers, on the other hand, talk about the frequency (Figure 1.6: Wavelength, Frequency, and Pitch)
and the wavelength (Figure 1.6: Wavelength, Frequency, and Pitch) of the sound. They are all essentially
talking about the same thing. The scienti�c terms aren't necessary for the musician, but they can be very
helpful in understanding and talking about what's happening when people make music.

The Concepts and Where to Find Them

• Wavelength - An introduction to wavelength, frequency, and pitch is presented in Frequency, Wave-
length, and Pitch (Section 1.3). You can �nd out more about the (Western) musical concept of pitch
in Pitch: Sharp, Flat, and Natural Notes15.

• Wave Size - The other measurement you can make of regular, tonal waves is the size of each individual
wave - its "height" or "intensity" rather than its wavelength. In sound waves, this is a measurement of
the loudness of the sound. Amplitude (Section 1.4) is a short discussion of wave size. Musicians have
many terms to discuss what they call Dynamics16.

• Types of Waves - There are two basic types of waves. Most diagrams show transverse waves which
"wave" up-and-down as they move left-and-right. These are easier to show in a diagram, and most
of the familiar kinds of waves - light waves, radio waves, water waves - are transverse. But sound is
made of longitudinal waves, which "wave" in the same direction that they move. These are harder to
draw, and a little harder to imagine, than transverse waves, but you will �nd some helpful suggestions
at Transverse and Longitudinal Waves (Section 1.2).

• Standing Waves - Most natural sounds are not tones. In order to produce the extremely regular
vibrations that make tonal sound waves, musical instruments, se3e Standing Waves and Musical In-

13"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
14"Duration: Note Lengths in Written Music" <http://cnx.org/content/m10945/latest/>
15"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
16"Dynamics and Accents in Music" <http://cnx.org/content/m11649/latest/>
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struments (Section 3.1) and Standing Waves and Wind Instruments (Section 3.2). To �nd out more
about how the waves created in an instrument are related to each other musically, see Harmonic Series
(Section 2.2) and Tuning Systems (Section 2.4).

• Sound and Ears - For a brief description of what happens when a sound reaches your ear, see Sound
and Ears (Section 1.5.2)

• The Math - Students struggling with the math needed for these ideas can look at Musical Intervals,
Frequency and Ratio (Section 2.1) and Powers, Roots, and Equal Temperament (Section 2.3).

Suggestions for Presenting These Concepts in the Classroom

• Decide which of the concepts you will be presenting to your class, and prepare your lec-
tures/presentations accordingly. You will probably need about one class period for each related set
of concepts. Sound and Ears (Section 1.5.2) is particularly geared towards younger students. The
concepts in Frequency, Wavelength, and Pitch (Section 1.3), Transverse and Longitudinal Waves (Sec-
tion 1.2), and Amplitude (Section 1.4) can be presented to just about any age. Standing Waves and
Musical Instruments (Section 3.1), Standing Waves and Wind Instruments (Section 3.2), Harmonic
Series (Section 2.2) and Tuning Systems (Section 2.4) are probably best presented to older students
(middle school and up). Musical Intervals, Frequency and Ratio (Section 2.1) and Powers, Roots, and
Equal Temperament (Section 2.3) can be used either to remind older students of the math that they
have learned and its relevance to music, or as extra information for younger students working on these
math concepts.

• Include suggested activities, worksheets, and demonstrations whenever possible, particularly for
younger students.

• Younger students will bene�t from the activities and worksheets in Sound and Music (Section 1.5.1).
• Worksheets that cover the basic concepts for older students are available here. Download and copy

these PDF �les as handouts for your class: Sound Waves handout17 and Waves Worksheet18. There is
also a Worksheet Answer Key19. In case you have any trouble with the PDF �les, these handouts are
also included as �gures at the end of this module, but they will look better if you print out the PDF
�les.

• Use the exercises in the modules for class participation and discussion.

17See the �le at <http://cnx.org/content/m12373/latest/waves1.pdf>
18See the �le at <http://cnx.org/content/m12373/latest/waves3.pdf>
19See the �le at <http://cnx.org/content/m12373/latest/waves4.pdf>
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Figure 1.2
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Figure 1.3
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Figure 1.4
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1.2 Transverse and Longitudinal Waves20

note: Are you really free to use this online resource? Join the discussion at Opening Measures21 .

Waves are disturbances; they are changes in something - the surface of the ocean, the air, electromagnetic
�elds. Normally, these changes are travelling (except for Standing Waves); the disturbance is moving away
from whatever created it.

Most kinds of waves are transverse waves. In a transverse wave, as the wave is moving in one direction,
it is creating a disturbance in a di�erent direction. The most familiar example of this is waves on the surface
of water. As the wave travels in one direction - say south - it is creating an up-and-down (not north-and-
south) motion on the water's surface. This kind of wave is very easy to draw; a line going from left-to-right
has up-and-down wiggles. So most diagrams of waves - even of sound waves - are pictures of transverse
waves.

But sound waves are not transverse. Sound waves are longitudinal waves. If sound waves are moving
south, the disturbance that they are creating is making the air molecules vibrate north-and-south (not
east-and-west, or up-and-down. This is very di�cult to show clearly in a diagram, so most diagrams, even
diagrams of sound waves, show transverse waves.

note: It's particularly hard to show amplitude (Figure 1.8) in longitudinal waves. Sound waves
de�nitely have amplitude; the louder the sound, the greater the tendency of the air molecules to be
in the "high" points of the waves, rather than in between the waves. But it's easier show exactly
how intense or dense a particular wave is using transverse waves.

Longitudinal waves may also be a little di�cult to imagine, because there aren't any examples that we
can see in everyday life. A mathematical description might be that in longitudinal waves, the waves (the
disturbances) are along the same axis as the direction of motion of the wave; transverse waves are at right
angles to the direction of motion of the wave. If this doesn't help, try imagining yourself as one of the
particles that the wave is disturbing (a water drop on the surface of the ocean, or an air molecule). As
it comes from behind you, a transverse waves lifts you up and then drops you down; a longitudinal wave
coming from behind pushes you forward and then pulls you back. You can view animations of longitudinal
and transverse waves here22, single particles being disturbed by a transverse wave or by a longitudinal
wave23, and particles being disturbed by transverse and longitudinal waves24. (There were also some nice
animations of longitudinal waves available as of this writing at Musemath25 .)

20This content is available online at <http://cnx.org/content/m12378/1.9/>.
21http://openingmeasures.com/open-education/40/are-the-education-resources-at-Connexions-really-free/
22See the �le at <http://cnx.org/content/m12378/latest/Waves.swf>
23See the �le at <http://cnx.org/content/m12378/latest/Pulses.swf>
24See the �le at <http://cnx.org/content/m12378/latest/Translong.swf>
25http://www.musemath.com
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Transverse and Longitudinal Waves

Figure 1.5: In water waves and other transverse waves, the ups and downs are in a di�erent direction
from their forward movement. The highs and lows of sound waves and other longitudinal waves are
arranged in the "forward" direction.

1.2.1 Presenting These Concepts in a Classroom

Watching movies or animations of di�erent types of waves can help younger students understand the di�er-
ence between transverse and longitudinal waves. The handouts and worksheets at Talking about Sound and
Music include transverse and longitudinal waves. Here are some classroom demonstrations you can also use.

1.2.1.1 Waves in Students

Procedure

1. You will not need any materials or preparation for this demonstration, except that you will need some
room.

2. Have most of the students stand in a row at one side of the classroom, facing out into the classroom.
Let some of the students stand across the room from the line so that they can see the "waves".

3. Starting at one end of the line, have the students do a traditional stadium "wave". If they don't know
how, have them all start slightly bent forward with hands on knees. Explain that the student on the
end will lift both arms all the way over their heads and then put both down again. Each student should
do the same motion as soon as (but not before) they feel the student beside them do it.

4. If they do it well, the students watching should see a de�nite transverse wave travelling down the line
of students.

5. Starting with the same end student, next have the line make a longitudinal wave. Have the students
start with their arms out straight in front of them. As the wave goes by, each student will swing both
arms �rst toward, and then away, from the next student in line.

6. Let the students take turns being the �rst in line, being in line, and watching the line from the other
side of the room. Let them experiment with di�erent motions: hopping in place, swaying to the left
and right, taking a little step down the line and back, doing a kneebend, etc. Which kind of wave does
each motion create?
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1.2.1.2 Jumpropes and Slinkies

Materials and Preparation

• Rope - A jump-rope is ideal, or any rope of similar weight and suppleness
• Coil - A Slinky toy works, or any metal or plastic coil with enough length and elasticity to support a

visible longitudinal wave
• Pole - A broomstick is �ne, or a dowel, rod, pipe, or any long, thin, rigid, smooth cylinder.
• You may want to practice with these items before the demonstration, to make certain that you can

produce visible traveling waves.

Procedure

1. Load the slinky onto the broomstick and stretch it out a bit. Have two people holding the broomstick
horizontally at waist level, as steadily as possible, or secure the ends of the broomstick on desks or
chairs.

2. Holding one end of the slinky still, have someone jerk the other end of the slinky forward and back
along the broomstick as quickly as possible. This should create a longitudinal wave that travels down
the slinky to the other end. (If the other end is being held very tightly, but without interfering with
its coils, you may even be able to see the wave re�ect and travel back up the slinky.)

3. Secure or have someone hold one end of the jumprope very still at waist height. Stretch the jumprope
out taut, horizontally.

4. Have the person at the other end of the jumprope suddenly jerk the end of the rope up and down
again. You should see a transverse wave travel to the other end of the rope. If the other end is secured
very tightly, you may even be able to see a re�ection of the wave travel back to the other end.

5. With both of these setups, you can experiment with sending single pulses, multiple waves, or even
try to set up standing waves. In fact, a jumprope is usually used to make a sort of three-dimensional
standing wave of the fundamental (p. 35) of the rope length. Try making the standing wave in two
dimensions, going just up-and-down (without the forward and back part of the motion). With a good
rope and some practice, you may be able to get a second harmonic (Section 2.2) standing wave, with
one side of the rope going up while the other side goes down, and a node in the middle of the rope.

1.3 Frequency, Wavelength, and Pitch26

note: Are you really free to use this online resource? Join the discussion at Opening Measures27 .

Any sound that you hear as a tone is made of regular, evenly spaced waves of air molecules. The most
noticeable di�erence between various tonal sounds is that some sound higher or lower than others. These
di�erences in the pitch28 of the sound are caused by di�erent spacing in the waves; the closer together the
waves are, the higher the tone sounds. The spacing of the waves - the distance from the high point of one
wave to the next one - is the wavelength.

All sound waves are travelling at about the same speed - the speed of sound. So waves with a longer
wavelength don't arrive (at your ear, for example) as often (frequently) as the shorter waves. This aspect
of a sound - how often a wave peak goes by, is called frequency by scientists and engineers. They measure
it in hertz, which is how many wave peaks go by in one second. People can hear sounds that range from
about 20 to about 17,000 hertz.

The word that musicians use for frequency is pitch. The shorter the wavelength, the higher the frequency,
and the higher the pitch29, of the sound. In other words, short waves sound high; long waves sound low.
Instead of measuring frequencies, musicians name the pitches30 that they use most often. They might call

26This content is available online at <http://cnx.org/content/m11060/2.12/>.
27http://openingmeasures.com/open-education/40/are-the-resources-at-connexions-really-free/
28"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
29"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
30"Clef" <http://cnx.org/content/m10941/latest/>
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a note "middle C" or "2 line G" or "the F sharp in the bass clef". (See Octaves and Diatonic Music31

and Tuning Systems (Section 2.4) for more on naming speci�c frequencies.) These notes do have de�nite
frequencies (Have you heard of the "A 440" that is used as a tuning note?), but musicians usually �nd it
easier just to use the note names.

Wavelength, Frequency, and Pitch

Figure 1.6: Since the sounds are travelling at about the same speed, the one with the shorter wavelength
will go by more frequently; it has a higher frequency, or pitch. In other words, it sounds higher.

1.3.1 Ideas for Introducing These Concepts in the Classroom

• For younger students, the "Strings Instruments" and "Wind Instruments" activities in Sound and
Music (Section 1.5.1) give children a chance to create higher and lower pitched sounds. There are also
handouts and worksheets for younger students covering basic acoustics terms, including frequency and
wavelength.

• For older students, there are more advanced handouts and worksheets in Talking about Sound and
Music (Section 1.1) that cover acoustics concepts, including frequency, wavelength, and pitch.

• If it can be arranged, a demonstration with a real musical instrument (or two) should be popular. A
live show-and-tell-style demonstration would be most memorable, although a video or a recording with
pictures will do. Include a discussion on why and how instruments produce higher and lower sounds.
Have the musician demonstrate low and high notes, and explain and demonstrate how the sounding
part of the instrument is being made shorter or longer to get di�erent notes. Point out that smaller,
shorter instruments make shorter waves and higher sounds, and larger, longer instruments make longer
waves and lower sounds. Ask the students if they are listening to a small, high-sounding instrument,
or a large, low-sounding one.

31"Octaves and the Major-Minor Tonal System" <http://cnx.org/content/m10862/latest/>
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1.4 Sound Amplitude and Musical Dynamics32

note: Are you really free to use this online resource? Join the discussion at Opening Measures33 .

When sound waves come as a very regular, pitched tone, there are two useful measurements you can make
that tell you something about both the sound waves and about the tone they are making. One measurement
is the distance between one wave and the next. This is the wavelength (Figure 1.6: Wavelength, Frequency,
and Pitch), which is also related to the frequency (Figure 1.6: Wavelength, Frequency, and Pitch) and the
pitch34 of the sound. The other measurement you can make is the size of each individual wave - its "height"
or "intensity" rather than its length. This is the amplitude of the wave, and it determines the loudness of
the sound.

Wavelength and Amplitude

Figure 1.7: The wavelength is the distance between the "crests" of two waves that are next to each
other. The amplitude is how high the crests are.

You may want to note that sound waves are not the type of waves shown in the �gure above. (Please
see Transverse and Longitudinal Waves (Section 1.2) for more on this.) Rather than piling up high in the
crests of the waves, as water on the surface of the ocean does, the air molecules in sound waves pile into the
waves. So the bigger the amplitude of the wave, the more air molecules are in the "crest" of each wave, and
the fewer air molecules are left in the "low" spots. The amplitude of the wave is still measuring the same
thing - how much change there is during one wave - but this is more di�cult to show clearly in a diagram
with sound-type longitudinal Waves (Section 1.2) waves.

32This content is available online at <http://cnx.org/content/m12372/1.7/>.
33http://openingmeasures.com/open-education/40/are-the-resources-at-connexions-really-free/
34"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
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Figure 1.8: It's easier to spot di�erences in amplitude at a glance when �gures use transverse (Sec-
tion 1.2) waves.

Engineers and scientists call how big a wave is its amplitude. They measure the amplitude of sound
waves in decibels. Leaves rustling in the wind are about 10 decibels; a jet engine is about 120 decibels.

Musicians call the loudness of a note its dynamic level. Forte (pronounced "FOR-tay") is a dynamic
level meaning "loud"; piano is a dynamic level meaning "soft". Dynamic levels don't correspond to a
measured decibel level. For example, an orchestra playing "fortissimo" (which basically means "even louder
than forte") sounds much louder than a string quartet playing "fortissimo". (See Dynamics35 for more of
the terms that musicians use to talk about loudness.)

35"Dynamics and Accents in Music" <http://cnx.org/content/m11649/latest/>
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Amplitude is Loudness

Figure 1.9: The size of a wave (how much it is "piled up" at the high points) is its amplitude. For
sound waves, the bigger the amplitude, the louder the sound.

1.5 Presenting Concepts to Younger Students

1.5.1 Sound and Music Activities
36

1.5.1.1 Introduction

Di�erent musical instruments produce sounds in very di�erent ways, but all of them take advantage of some
of the fundamental properties of sound - the physics of sound - to make a variety of interesting and pleasant
sounds. You will �nd here a Strings Activity (Section 1.5.1.3: Strings Activity), Wind Instrument Activity
(Section 1.5.1.4: Wind Instruments Activity), Percussion Activity (Section 1.5.1.5: Percussion Activity),
and Resonance Activity (Section 1.5.1.6: Instrument Body Activities), as well as worksheets (Figure 1.10)
appropriate for younger students. All of these explore some basic concepts (Section 1.5.1.2: Terms and
Concepts) of sound wave physics (acoustics) while demonstrating how various musical instruments produce
sounds.

Goals and Standards

• Goals - The student will develop an understanding of the physical (scienti�c) causes of musical sounds,
and be able to use appropriate scienti�c and/or musical terminology to discuss the variety of possible
musical sounds.

• Music Standards Addressed - National Standards for Music Education37 standard 8 (understanding
relationships between music, the other arts, and disciplines outside the arts)

• Other Subjects Addressed - In encouraging active exploration of the e�ects of physics on music and
musical instruments, these activities also address National Science Education Standards38 in physical
science and in science and technology.

• Grade Level - 3-8

36This content is available online at <http://cnx.org/content/m11063/2.12/>.
37http://menc.org/resources/view/national-standards-for-music-education
38http://www.nap.edu/readingroom/books/nses/overview.html#content
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• Student Prerequisites - If younger students are not ready to conduct their own lightly-supervised
investigations, these activities should be done as full-classroom demonstrations.

• Teacher Expertise - Teacher expertise in music is not necessary to present this activity. The teacher
should be familiar and comfortable with basic acoustics terms and concepts (see Acoustics for Music
Theory39).

• Time Requirements - Reserve one (approximately 45-minute) class period for each activ-
ity/discussion, and one class period to �nish discussions, draw conclusions, do worksheets, and reinforce
terms and concepts. If you have a longer period of time and a large area to work in, you may want to
set up each experiment as a "work station" and have student groups move from one station to another.

You can do any one or any combination of the activities. While doing them, introduce whichever of the terms
and concepts you think will bene�t your students. You can either use only the scienti�c terms, or only the
musical terms, or both. To reinforce the concepts and terms with younger students, follow the activities with
the worksheets in the Terms and Concepts (Section 1.5.1.2: Terms and Concepts) section below. For older
students, present the relevant information from Frequency, Wavelength, and Pitch (Section 1.3), Amplitude
and Dynamics (Section 1.4), and Transverse and Longitudinal Waves (Section 1.2), and include the worksheet
and handout from Talking About Sound and Music (Section 1.1).

1.5.1.2 Terms and Concepts

During or after your activities, introduce the following terms and concepts to the students. Worksheets
to help you do this with younger students are available here as PDF �les: Terms Worksheet40, Matching
Worksheet41, Answer sheet42. (Or you may copy the �gures (Figure 1.10).) With younger students, you
may also want to study Sound and Ears (Section 1.5.2). For older students, use the worksheet and handout
in Talking About Sound and Music (Section 1.1). For more detailed information on this subject, you may
also see Talking about Sound and Music (Section 1.1), Frequency, Wavelength, and Pitch (Section 1.3),
Amplitude and Dynamics (Section 1.4), Transverse and Longitudinal Waves (Section 1.2), Standing Waves
and Musical Instruments (Section 3.1), Standing Waves and Wind Instruments (Section 3.2), or Acoustics
for Music Theory43. Use the discussion questions during and after the activities to help the students reach
conclusions about their investigations.

Terms and Concepts

• Sound Waves - When something vibrates, it makes a sound. The vibrations travel out in all directions
from the "something" in the same way that ripples travel out from a pebble that has been dropped
in water. But instead of being waves of water, these are waves of vibrations of air: sound waves.
Because it is the air itself that is vibrating, sound waves, unlike water waves, are invisible.

• Frequency - or Pitch - Think of water waves again. They can be close together or far apart. If
they are close together, there are more of them; they are more frequent. Frequency is the term that
scientists and engineers use to describe how many pulses of a sound wave arrive at your ear in one
second. Musicians use the term pitch. A sound with a higher frequency (more waves) has a higher
pitch, and sounds higher.

• Amplitude - or Dynamic Level - Water waves can also be great, big, tall waves, or small ripples.
The size of a wave is called its amplitude. In sound waves, the bigger the wave, the louder the sound
is. Musicians call the loudness of a sound its dynamic level.

39"Acoustics for Music Theory" <http://cnx.org/content/m13246/latest/>
40See the �le at <http://cnx.org/content/m11063/latest/soundhandout.pdf>
41See the �le at <http://cnx.org/content/m11063/latest/soundhandout2.pdf>
42See the �le at <http://cnx.org/content/m11063/latest/soundhandout3.pdf>
43"Acoustics for Music Theory" <http://cnx.org/content/m13246/latest/>
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Figure 1.10
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Figure 1.11
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Figure 1.12



18 CHAPTER 1. BASIC CONCEPTS

1.5.1.3 Strings Activity

Objectives and Assessment

• Objectives - The student will construct a simpli�ed version of a stringed instrument, using rubber
bands as strings, and will use the instrument to explore the e�ects of various string characteristics on
frequency and amplitude.

• Evaluation - Assess student learning using worksheets or answers to discussion questions.

Materials and Preparation

• Most students will be able to do this experiment alone or in small groups. If you do not want students
working with thumbtacks, plan to use boxes or pans as instrument bodies.

• You will need lots of rubber bands, as many di�erent lengths and thicknesses and tightnesses as you
can �nd. If you are using boxes, the rubber bands must be long enough to stretch around a box.

• You will also need either small, sturdy cardboard or plastic boxes or containers, with or without lids,
OR pieces (about 8" X 10" or so) of thick, �at cardboard, OR square or rectangular baking pans, one
for each student or group.

• If you are using �at cardboard, you will also need thumbtacks or push pins.
• If you are using a lidded box, pencils, pens, or other objects approximately the size and shape of a

pencil (a couple for each instrument) will be useful.
• You may want scissors that are strong enough to cut the cardboard or plastic.
• If a stringed-instrument player is available for a show-and-tell, you may want to include this after

the activity, to demonstrate and reinforce some of the main points. Any stringed instrument (guitar,
violin, harp, etc.) will do.

• For older or more independent students, you may want to make copies of the discussion questions.44

Figure 1.13

Procedure
44See the �le at <http://cnx.org/content/m11063/latest/StringQuestions.pdf>
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1. Each student or group should choose a variety of rubber bands (3-6, depending on the size of their
"instruments") to start with.

2. If you are using �at cardboard, stretch each rubber band between two thumbtacks so that it is tight
enough to give a particular pitch.

3. If using a box or baking pan, stretch the rubber bands around the box or pan.
4. Have the students pluck each rubber band separately and listen carefully to the "twang". They are

listening for which ones sound higher and which sound lower.
5. To try many di�erent thicknesses and tightnesses, students can trade rubber bands with each other or

trade o� from the central pile if there are enough.
6. Students with the thumbtack instruments can vary length and tightness by changing the distance

between the thumbtacks.
7. Students with box or pan instruments can vary tightness by pulling on the rubber band at the side of

the box while plucking it at the top. Students with lidded box instruments can vary length by slipping
a pencil under each end of the rubber bands on the top of the box and then varying the distance
between the pencils, or even holding the rubber band down tightly with a �nger between the pencils,
in the same way as a real string player.

8. Students with box instruments can also see if the body of the instrument makes any di�erence to the
sound. Can they play the instrument with the lid o� and with it on? Does cutting a hole in the lid
change the sound? Does it make it easier to play? Does adding the pencils change the sound or make it
easier to play? Do di�erent boxes make a di�erent sound with the same rubber bands? Do cardboard
boxes sound di�erent from plastic ones?

9. Ask younger students the discussion questions while they are experimenting. Allow them to check and
answer immediately. Summarize the answers for them on the board, or remind them and let them write
them down when they are done experimenting. Give older students a list of the discussion questions
before they begin.

Discussion Questions

• Do thicker rubber band "strings" sound higher or lower than thinner ones? (Answer: thicker should
sound lower.)

• Do tighter strings sound higher or lower than looser ones? (Tighter should sound higher.)
• Do shorter strings sound higher or lower than longer ones? (Shorter should sound higher.)
• Do there seem to be di�erences in how loud and soft or how dull or clear a string sounds? If so, what

seems to cause those di�erences?
• What determines whether the sound of a string is loud or soft?
• What happens to the sound if they pluck with one �nger while touching the string lightly with another

�nger? (No "twang"; the touch stops the vibrations.) If their instrument design allows it, what
happens when they hold the string tightly down against the instrument and then pluck it? (The
shorter vibrating length should give a higher pitch.)

• After their experiments, can they explain what happens when a player holds a string down with a
�nger? What if the same string is held down in a di�erent spot?

• Based on their observations, do the students feel they could tell which strings of an instrument are the
low strings just by looking at them closely? (For an extra activity, arrange for them to try this with a
real instrument.)

• Can the students come up with possible reasons why the thickness, length, and tightness of a string
a�ect its frequency/pitch in the way that they do? (For example, why does a shorter string have a
higher frequency/pitch?) (It may help on length to remind them that the longer the waves are, the
less frequent they will be.)

1.5.1.4 Wind Instruments Activity

Objectives and Assessment
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• Objectives - The student will explore the e�ects of air column size (and shape) on the frequency and
amplitude of standing waves in the air column, using empty glass bottles, and water if necessary to
vary air column size.

• Evaluation - Assess student learning using worksheets or answers to discussion questions.

Materials and Preparation

• If you do not want your students working with glass jugs and water, plan to do this as a demonstration.
• You will need several narrow-necked bottles, all the same size and shape OR several narrow-necked

bottles of varying sizes and shapes. Bottles should be empty and clean. Make sure before the class
begins that your bottles give a clear, reasonably loud sound when you blow across the top of them. If
necessary, practice getting a sound. Large glass jugs with an inner lip diameter of approximately one
inch work well.

• If using bottles of the same size, you will also need water to �ll them to varying depths. If you are
using this approach, food coloring is very useful to clearly show the depth of the water.

• If plastic recorders are available to your students, or a player of a woodwind45 or brass46 instrument
is available for a show-and-tell, they can be used for an extra demonstration.

• For older or more independent students, you may want to make copies of the discussion questions.47

Figure 1.14

Procedure

1. If using same-size bottles and water, �ll each bottle to a di�erent depth (for example, an inch in one
bottle, two inches in another, three inches in a third and so on). If you have food coloring, add a few
drops to the water in each bottle so it is easy to see the depths.

2. Make the air in a bottle vibrate by blowing steadily across the top of the bottle.
3. "Play" each bottle in turn, and arrange them in order from the highest sound to the lowest.
4. If you have the time and inclination, you can even try to "tune" the bottles by adding or pouring out

water.

45"Orchestral Instruments": Section Woodwinds <http://cnx.org/content/m11897/latest/#s12>
46"Orchestral Instruments": Section Brass <http://cnx.org/content/m11897/latest/#s13>
47See the �le at <http://cnx.org/content/m11063/latest/WindQuestions.pdf>
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5. If recorders or a wind instrument are available, demonstrate how covering and uncovering the holes on
the instrument changes the pitch. Explain that the main vibration in the instrument is happening in
the air inside the instrument (just like the air in the bottles), in between the mouthpiece and the �rst
hole that the air can escape from..

Discussion Questions

• If using bottles of di�erent shapes and sizes, how does the size of the bottle a�ect the pitch/frequency?
Does the shape of the bottle seem to a�ect it?

• Does the size and shape of the bottle seem to a�ect anything else, like the loudness of the sound or
the tone quality?

• What do you think explains these e�ects?
• If using water in bottles, how does the amount of water a�ect the pitch/frequency? Why? (You may

need to remind the students that it is the air in the bottle that is vibrating; more water means a
smaller space for the air; smaller space means shorter waves and higher frequency/pitch).

• How is a bottle "instrument" the same as a wind48 instrument, and how is it di�erent?
• If demonstrating with instruments: How does opening and closing the holes of the instruments change

the pitch? Why? (Answer: the shorter the distance between the mouthpiece and the �rst open hole,
the shorter the waves and the higher the pitch/frequency. Opening and closing other holes further
down the instrument from the �rst open hole may have no discernible e�ect - they are not changing
the length of the vibrating column of air - or if they are a�ecting the vibrating air a little, they may
change the sound enough to make it more or less in tune.) If a brass instrument is used, what is the
e�ect of opening a valve or extending the slide? (Opening valves actually lengthens the instrument,
by opening up extra tubing, lowering the pitch.)

1.5.1.5 Percussion Activity

Objectives and Assessment

• Objectives - The student will assist in constructing a "found objects" chime, and will use the instru-
ment to explore the e�ects of various object characteristics on frequency and amplitude.

• Evaluation - Assess student learning using worksheets or answers to discussion questions.

Materials and Preparation

• Each working group will need a dowel, rod, or small beam, around 4-6 feet long, held at both ends
about �ve feet o� the ground.

• Each group will need a variety of objects of di�erent sizes and materials. Forks, spoons, spatulas,
rulers, wind chimes, lengths of chain, lengths of pipe or bamboo or tubing, are all easy to line up below
the dowel because they are long and thin. Objects that have holes or handles (slotted spoons, pan lids)
making it easier to keep them tied on, are also a good idea. Objects that are metal, hardwood, hard
plastic, hollow, and/or made in a single piece are most likely to make easy-to-hear, interesting sounds.

• It may be easier to answer some of the discussion question if some of the objects are similar objects in
a variety of sizes, for example small medium and large metal spoons.

• You will need enough string to hang the objects from the dowels, and may need tape to keep the
objects on the string. Keep in mind, though, that tape will probably dampen the vibrations of the
object so that it won't "ring" as long.

• You will need something the students can use to strike the objects; a wooden spoon, short stick, pen
or pencil, or ruler. Or they can experiment with using di�erent objects as "drumsticks". Which do
the students prefer and why?

48"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/>
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• For older or more independent students, you may want to make copies of the discussion questions.49

Figure 1.15

Procedure

1. Have the students hang the objects securely from the dowel.
2. The students should then strike the objects one at a time, listening carefully to the sound each object

typically makes.

Discussion Questions

• Does the size of the object seem to a�ect its pitch/frequency? Its loudness?
• Does the shape of the object seem to a�ect its pitch/frequency? Its loudness?
• Does the object's material seem to a�ect its pitch/frequency? Its loudness?
• Can you tell what e�ects the thickness of an object has on its sound?
• What seems to a�ect how long a sound lasts?
• What objects make the sounds that you like best? Which do you think would make good percussion

instruments? Why?
• Which of these e�ects do you think you can explain in terms of waves and the vibrations the objects

must be making?

1.5.1.6 Instrument Body Activities

Objectives and Assessment

• Objectives - The student will construct a simple megaphone, and will use the megaphone and a music
box in several simple investigations to explore the e�ects that the body of an instrument has on its
sound.

• Evaluation - Assess student learning using worksheets or answers to discussion questions.

Materials and Preparation

49See the �le at <http://cnx.org/content/m11063/latest/PercussionQuestions.pdf>
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• Decide whether each step of this investigation will be a teacher demonstration or an individual or
small-group activity.

• You will need a music box.
• You will need several large, �at surfaces of di�erent types of materials - di�erent types of wood and

metal as well as plastic and softer surfaces will be particularly instructive. A box or drawer made of
hardwood is optional.

• You will also need large sheets of paper, construction paper, newspaper, soft, pliable plastic or foam
or poster board, and some tape, OR a megaphone. If you have a variety of megaphone materials, have
di�erent students use di�erent materials to see if material choice a�ects the sound.

• For older or more independent students, you may want to make copies of the discussion questions.50

Procedure

1. Wind the music box and let everyone listen to it while holding it in your hand.
2. Place the box on di�erent surfaces and listen to the di�erence it makes in the sound. Continue to wind

it as necessary to hear a long example of each surface. If you can, place the music box inside a wooden
box or drawer.

3. If you do not have a real megaphone to demonstrate, let the students make their own megaphones by
rolling the paper into a cone shape, open at both ends. Tape it if necessary to hold the shape.

4. Let them talk or sing into their megaphones and otherwise experiment with how the megaphone changes
sounds. Experiment with di�erent megaphone sizes and shapes (narrow or widely �aring).

Discussion Questions

• What e�ect does each surface have on the sound from the music box? What is causing these e�ects?
(Answer: some surfaces will vibrate with the music box if they are touching. See Resonance51.)

• Why do instruments have bodies; why aren't they just a bunch of strings or a reed or a membrane to
beat on?

• Why would an instrument maker choose to make an instrument body out of wood (like a violin or
piano)? Why might metal be chosen (as in brass and many percussion instruments)? Of the other
materials you experimented with, would you make instruments out of them? What kind of instrument
with each material? Why?

• How does a megaphone shape change a sound? Does it matter whether the megaphone is narrow or
�aring?

• How do you think the megaphones would have changed if they had been made of wood or of metal?
• Would a violin sound louder if you were sitting right in front of it or next to it? What about a trumpet?

What's the di�erence?
• Based on your observations, what do you think the shape of the instrument does to the sound of a tuba,

trumpet, trombone, clarinet, or saxophone? What about �utes and bassoons (which do not �are)?

note: Thanks to everyone who participated in the survey! It was very useful to me, both as a
researcher and as an author, to get a better picture of my readers' goals and needs. I hope to begin
updating the survey results module52 in April. I will also soon begin making some of the suggested
additions, and emailed comments are still welcome as always.

1.5.2 Sound and Ears
53

note: Are you really free to use this online resource? Join the discussion at Opening Measures54 .

50See the �le at <http://cnx.org/content/m11063/latest/InstrumentQuestions.pdf>
51"Resonance and Musical Instruments" <http://cnx.org/content/m13537/latest/>
52"A Survey of Users of Connexions Music Modules" <http://cnx.org/content/m34234/latest/>
53This content is available online at <http://cnx.org/content/m12365/1.3/>.
54http://openingmeasures.com/open-education/40/are-the-education-resources-at-Connexions-really-free/
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1.5.2.1 Introduction

The ear is the sense organ that picks up sound waves (Section 1.3) from the surrounding air and turns them
into nerve impulses that can be sent to the brain. The sound waves carry lots of information - language,
music, and noises - all mixed up together. The task of the ear is to turn the signals in these waves of bouncing
air molecules into electrical nerve signals, while keeping as much of the information in the signal as possible.
(Then it's the brain's job to sort the signals and make sense out of them.) It's not easy to turn one kind of
signal into another kind without losing information, but the ear is well designed for the task.

note: The human ear also has some other functions not related to hearing; those won't be
discussed here.

When something vibrates, the vibrations can travel as waves through solids, liquids, and gases. Even
animals that have no ears can often feel these vibrations. But in order to understand language and hear
music, the brain has to be given more information than just "there's a vibration". It needs to know the
frequency (Figure 1.6: Wavelength, Frequency, and Pitch) and amplitude of all the waves that the ear is
collecting. Interestingly, the ear sends this information to the brain very accurately by turning the sound
waves in the air (vibrations in a gas) into vibrations in bones (solid), and then into waves in a �uid in the
inner ear (a liquid), before they become (electrical) nerve signals. This might seem like a lot of unnecessary
translation, but it allows the sense of hearing to be both sturdy and very sensitive, as explained below.

1.5.2.2 Parts of the Ear

The ear has three main sections. In the outer ear, the sound waves are still moving in air. In the middle
ear, the sound waves are being conducted by three small bones. In the inner ear, the waves are moving
through the �uid-�lled cochlea.

The Ear

Figure 1.16: The parts of the ear that aren't involved in hearing have been left out.

1.5.2.2.1 The Outer Ear

The part of the human ear that you can see is simply a sound wave collector. Its shape helps to funnel
the sound waves into the auditory canal (or ear canal) so that you get plenty of signals from even soft
sounds, particularly ones from the direction that you are looking at. At the other end of the ear canal is the
eardrum (or tympanic membrane). This is a membrane that is stretched tight, like the membranes on
the tops of drums (including tympani). And thin, taut membranes are very good at vibrating, which is why
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they can be found both on drums and inside ears. The eardrum picks up the vibrations in the ear canal and
vibrates with them.

1.5.2.2.2 The Middle Ear

On the other side of the eardrum are the three tiny bones of the middle ear, the hammer, the anvil, and
the stirrup. They are named for their shapes. Vibrations in the eardrum are passed to the hammer, which
transmits them to the anvil, which makes the stirrup vibrate against the oval window of the cochlea. Bone
is a very good conductor of vibrations, and the bones of the middle ear are specially arranged so that they
can amplify (make louder) very quiet sounds. On the other hand, if things get too loud, tiny muscles in
your middle ear can relax the eardrum a bit. A relaxed eardrum doesn't vibrate as much (think of a relaxed
rubber band as opposed to a taut one), and this helps to keep things from getting damaged.

1.5.2.2.3 The Inner Ear

The cochlea is a �uid-�lled spiral (shaped something like a snail shell) about the size of a pea. Vibrations
in the stirrup make waves in the �uid that travel down the spiral. In the �uid, in a long strip following the
spiral, is the organ of Corti. This organ is covered with (about 20,000) tiny, incredibly sensitive hairs that
are waving around inside the Cochlear �uid. Each of these hairs is a nerve ending that is picking up speci�c
information about the vibrations in the �uid. At the end of the organ of Corti, the nerves are bundled
together as the auditory nerve, which brings the information to the brain.

note: The fragile, sensitive hairs on the organ of Corti would never stand up to the rough
conditions in the ear canal. Even protected in the Coclear �uid, they don't last forever, especially
the ones that can sense the highest-frequency vibrations. That is why most people begin to lose
their sense of hearing as they grow older.

1.5.2.3 Presenting this Module to Children

You can present the information above in the form of a classroom lecture/presentation to elementary or
middle school classes. Here are some suggestions for making the presentation more interactive and engaging.

• Locate a poster or large diagram of the ear to use as a visual aid.
• If you don't have a poster, or if the printing on it is small, write the names of the parts of the ear on

the board as you discuss them.
• Make copies of this PDF �le worksheet55 for a class handout. Have the students label the parts of the

ear during or after your presentation.
• When you discuss the outer ear, have the students make their own simple funnels out of paper and

tape. Have each student hold the small end of the funnel up to an ear to see if it helps the ear collect
sounds even better, especially in the direction that the funnel is pointing. A very simple version of this
is to simply cup the hands behind the ears.

• You may want to have a classroom discussion on why it might be useful to have ears that "focus"
on the sounds that are directly ahead of you. If the class is also studying animals, you can bring in
pictures of various ears. Which are large and which small? Which are pointed straight ahead? How
would that be useful? Which can swivel in di�erent directions? How would that be useful? If they
cannot come up with any ideas, give them a hint by asking which animals are hunters and which are
hunted. You may also want to discuss animals that pick up vibrations with parts of their bodies that
are very unlike human ears. You can even turn this into a class project by asking students to research
and report on di�erent animals (reptiles, elephants, and insects are particularly interesting).

55See the �le at <http://cnx.org/content/m12365/latest/earworksheet.pdf>
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• For the eardrum, you can simply use rubber bands to demonstrate that things vibrate more clearly
when they are taut. Or if you want to be more adventurous (and messy), stretch a sheet of thick
cellophane or thin rubber, leather, hide, or close-woven fabric across the opening of a bowl, can, or
small tub, and sprinkle some rice over it. Try hitting your stretched membrane with a stick when it
is relaxed, fairly taut, and very taut. When is it best at transmitting the vibrations and making the
rice jump? Can you get it taut enough to act like an eardrum - so taut that even a loud sound nearby
(say, hitting a di�erent can) will make it vibrate and the rice jump?

• When discussing vibrations in bone, let them talk while pressing their �ngers gently on the back of
their jawbones (below the ears). They should be able to feel the vibrations from their own speech in
the bone almost as well as when they press against their throats, where the sounds are being produced.
But they probably won't feel any vibrations from their noses, cheeks, outer ear, or hair. You can point
out that: a lot of what you hear when you hear your own voice is coming to your ear through your
jawbone. That's why your voice sounds so di�erent to you when you hear a recording of it.

• When discussing the Cochlea and organ of Corti, ask if the students have seen underwater plants
moving back and forth in the waves. If you really want to be hands-on, you can get a tank of water,
hang some long thin ribbons or plant fronds in it, and let them make waves and watch the "hairs"
move.



Chapter 2

The Physics and Math of Intervals and

Tuning

2.1 Musical Intervals, Frequency, and Ratio1

note: Are you really free to use this online resource? Join the discussion at Opening Measures2 .

In order to really understand tuning, the harmonic series, intervals, and harmonic relationships, it is very
useful to understand a little bit about the physics of sound and to be comfortable discussing ratios, fractions,
and decimals. This lesson is a short review of some basic math concepts for students who want to understand
some of the math and physics principles that underlie music theory.

Ratios, fractions, and decimals are basically three di�erent ways of saying the same thing. (So are
percents, but they don't have anything to do with music.)

Example 2.1

If you have two apples and three oranges, that's �ve pieces of fruit altogether. You
can say:

• The ratio of apples to oranges is 2:3, or the ratio of oranges to apples is 3:2.
• The ratio of apples to total fruit is 2:5, or the ratio of oranges to total fruit is 3:5.
• 2/5 of the fruit are apples, and 3/5 of the fruit are oranges.
• There are 2/3 as many apples as oranges, and 1 and 1/2 times (or 3/2) as many oranges as

apples.
• There are 1.5 times as many oranges as apples, or there are only .67 times as many apples as

oranges.
• 0.4 (Four tenths) of the fruit is apples, and 0.6 (six tenths) of the fruit is oranges.

note: You should be able to see where the numbers for the ratios and fractions are coming from.
If you don't understand where the decimal numbers are coming from, remember that a fraction
can be understood as a quick way of writing a division problem. To get the decimal that equals a
fraction, divide the numerator by the denominator.

Example 2.2

An adult is walking with a child. For every step the adult takes, the child has to take
two steps to keep up. This can be expressed as:

1This content is available online at <http://cnx.org/content/m11808/1.7/>.
2http://openingmeasures.com/open-education/40/are-the-resources-at-connexions-really-free/
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• The ratio of adult to child steps is 1:2, or the ratio of child to adult steps is 2:1.
• The adult takes half as many (1/2) steps as the child, or the child takes twice as many (2/1)

steps as the adult.
• The adult takes 0.5 as many steps as the child, or the child takes 2.0 times as many steps as

the adult.

Exercise 2.1.1 (Solution on p. 55.)

The factory sends shirts to the store in packages of 10. Each package has 3 small, 3 medium, and
4 large shirts. How many di�erent ratios, fractions, and decimals can you write to describe this
situation?

What has all this got to do with music? Quite a bit, as a matter of fact. For example, every note in
standard music notation is a fraction of a beat, and every beat is a fraction of a measure. You can explore
the relationship between fractions and rhythm in Fractions, Multiples, Beats, and Measures3, Duration4 and
Time Signature5.

The discussion here will focus on the relationship between ratio, frequency, and musical intervals. The
interval6 between two pitches depends on the ratio of their frequencies (Figure 1.6: Wavelength, Frequency,
and Pitch). There are simple, ideal ratios as expressed in a harmonic series (Section 2.2), and then there is
the more complex reality of equal temperament (Section 2.4.3: Temperament), in which the frequency ratios
are not so simple and are best written as roots or decimals. Here is one more exercise before we go on to
discussions of music.

Exercise 2.1.2 (Solution on p. 55.)

The kind of sound waves that music is made of are a lot like the adult and child walking along
steadily in the example above (Example 2.2). Low notes have long wavelengths, like the long stride
of an adult. Their frequencies, like the frequency of the adult's steps, are low. High notes have
shorter wavelengths, like the small stride of the child. Their frequencies, like the frequency of a
child's steps, are higher. (See Sound, Physics and Music (Section 1.3) for more on this.)

You have three notes, with frequencies 220, 440, and 660. (These frequencies are in
hertz, or waves per second, but that doesn't really matter much; the ratios will be the
same no matter what units are used.)

1. Which note sounds highest, and which sounds lowest?
2. Which has the longest wavelength, and which the shortest?
3. What is the ratio of the frequencies? What is it in lowest terms?
4. How many waves of the 660 frequency are there for every wave of the 220 frequency?
5. Use a fraction to compare the number of waves in the 440 frequency to the number of waves

in the 660 frequency.

It is easy to spot simple frequency relationships, like 2:1, but what about more complicated ratios? Remem-
ber that you are saying the ratio of one frequency to another IS (equals) another ratio(or fraction
or decimal). This idea can be written as a simple mathematical expression. With enough information and
a little bit of algebra, you can solve this equation for any number that you don't have.

If you remember enough algebra, you'll notice that the units for frequency in this equation must be the
same: if frequency #1 is in hertz, frequency #2 must be in hertz also. In all the examples and problems
below, I am going to assume all frequencies are in hertz (waves per second), but you can use any frequency
unit as long as they are both the same. Most musicians don't talk about frequency much, and when
they do, they rarely mention units, but just say, for example, "A 440".

3"Fractions, Multiples, Beats, and Measures" <http://cnx.org/content/m11807/latest/>
4"Duration: Note Lengths in Written Music" <http://cnx.org/content/m10945/latest/>
5"Time Signature" <http://cnx.org/content/m10956/latest/>
6"Interval" <http://cnx.org/content/m10867/latest/>
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Figure 2.1: Remember that ratios, fractions and decimals are all just di�erent ways of writing the
same idea. If you write the ratio as a fraction it becomes easy to use in simple algebra equations.

Example 2.3
Say you would like to compare the frequencies of two sounds. Sound #1 is 630 and sound #2 is
840. If you use the expression given above and do the division on a calculator, the answer will be a
decimal. If you simply reduce the fraction to lowest terms, or if you know the fraction that these
decimals represent, you can see that you have a simple ratio of 3:4. Notice that if you switch the
frequencies in the expression, the ratio also switches from 3:4 to 4:3. So it doesn't really matter
which frequency you put on top; you will get the right answer as long as you keep track of which
frequency is which.

Figure 2.2

Sound waves in the real world of musical instruments often do have simple ratios like these. (See Standing
Waves and Musical Instruments (Section 3.1) for more about this.) In fact, a vibrating string or a tube of
vibrating air will generate a whole series of waves, called a harmonic series (Section 2.2), that have fairly
simple ratios. Musicians describe sounds in terms of pitch7 rather than frequency and call the distance

7"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
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between two pitches (how far apart their frequencies are) the interval8 between the pitches. The simple-
ratio intervals between the harmonic-series notes are called pure intervals (Section 2.4.2.1: Pythagorean
Intonation). (The speci�c names of the intervals, such as "perfect �fth" are based on music notation and
traditions rather than physics. If you need to understand interval names, please see Interval9.)

Example 2.4

Figure 2.3: You can use a harmonic series (Section 2.2) to �nd frequency ratios for pure intervals
(Section 2.4.2.1: Pythagorean Intonation). For example, harmonics 2 and 3 are a perfect �fth10 apart, so
the frequency ratio of a perfect �fth is 2:3. Harmonics 4 and 5 are a major third apart, so the frequency
ratio for major thirds is 4:5. Harmonics 4 and 1 are two octaves apart, so the frequency ratio of notes
two octaves apart is 4:1.

Perhaps you would like to �nd the frequency of a note that is a perfect �fth higher or lower than
another note. A quick look at the harmonic series here shows you that the ratio of frequencies of a
perfect �fth is 3:2.

note: It does not matter what the actual notes are! If the ratio of the frequencies is 3:2, the
interval between the notes will be a perfect �fth.

The higher number in the ratio will be the higher-sounding note. So if you want the frequency of
the note that is a perfect �fth higher than A 440, you use the ratio 3:2 (that is, the fraction 3/2). If
you want the note that is a perfect �fth lower than A 440, you use the ratio 2:3 (the fraction 2/3).

8"Interval" <http://cnx.org/content/m10867/latest/>
9"Interval" <http://cnx.org/content/m10867/latest/>

10"Interval": Section Perfect Intervals <http://cnx.org/content/m10867/latest/#s21>
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Figure 2.4: Remember that it is important to put the ratio numbers in the right place; if #2 is the
higher frequency, then #2 must be the higher number in the ratio, too. If you want #2 to be the lower
frequency, then #2 should be the lower ratio number, too. Always check your answer to make sure it
makes sense; a higher note should have a higher frequency.

In this example, I have done the algebra for you to show that you are really using the same
equation as in example 1, just rearranged a bit. If you are uncomfortable using algebra, use the
red expression if you know the interval but don't know one of the frequencies.

Pure intervals (Section 2.4.2.1: Pythagorean Intonation) that are found in the physical world (such as
on strings or in brass tubes) are nice simple ratios like 2:3. But musicians in Western musical genres
typically do not use pure intervals; instead they use a tuning system called equal temperament (Section 2.4.3:
Temperament). (If you would like to know more about how and why this choice was made, please read Tuning
Systems (Section 2.4).) In equal temperament, the ratios for notes in equal temperament (Section 2.4.3:
Temperament) are based on the twelfth root of two. (For more discussion and practice with roots and equal
temperament, please see Powers, Roots, and Equal Temperament (Section 2.3).) This evens out the intervals
between the notes so that scales are more uniform, but it makes the math less simple.

Example 2.5
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Figure 2.5

Say you would like to compare a pure major third from the harmonic series to a equal temper-
ament major third.

Figure 2.6

By comparing the ratios as decimal numbers, you can see that a pure major third is quite a bit
smaller than an equal temperament major third.
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Exercise 2.1.3 (Solution on p. 55.)

A note has frequency 220. Using the pure intervals of the harmonic series, what is the frequency
of the note that is a perfect fourth higher? What is the frequency of the note that is a major third
lower?

Exercise 2.1.4 (Solution on p. 56.)

The frequency of one note is 1333. The frequency of another note is 1121. What equal temperament
interval will these two notes sound like? (Hint: compare the frequencies, and then compare your
answer to the frequencies in the equal temperament �gure above. (Figure 2.5))

2.2 Harmonic Series11

note: Are you really free to use this online resource? Join the discussion at Opening Measures12 .

2.2.1 Introduction

Have you ever wondered how a trumpet13 plays so many di�erent notes with only three valves14, or how
a bugle plays di�erent notes with no valves at all? Have you ever wondered why an oboe15 and a �ute16

sound so di�erent, even when they're playing the same note? What is a string player doing when she plays
"harmonics"? Why do some notes sound good together while other notes seem to clash with each other?
The answers to all of these questions will become clear with an understanding of the harmonic series.

2.2.2 Physics, Harmonics and Color

Most musical notes are sounds that have a particular pitch17. The pitch depends on the main frequency
(Figure 1.6: Wavelength, Frequency, and Pitch) of the sound; the higher the frequency, and shorter the
wavelength, of the sound waves, the higher the pitch is. But musical sounds don't have just one frequency.
Sounds that have only one frequency are not very interesting or pretty. They have no more musical color18

than the beeping of a watch alarm. On the other hand, sounds that have too many frequencies, like the
sound of glass breaking or of ocean waves crashing on a beach, may be interesting and even pleasant. But
they don't have a particular pitch, so they usually aren't considered musical notes.

11This content is available online at <http://cnx.org/content/m11118/2.17/>.
12http://openingmeasures.com/open-education/40/are-the-education-resources-at-Connexions-really-free/
13"Trumpets and Cornets" <http://cnx.org/content/m12606/latest/>
14"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/#p2f>
15"The Oboe and its Relatives" <http://cnx.org/content/m12615/latest/>
16"Flutes" <http://cnx.org/content/m12603/latest/>
17"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
18"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
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Frequency and Pitch

Figure 2.7: The higher the frequency, the higher the note sounds.

When someone plays or sings a note, only a very particular set of frequencies is heard. Imagine that each
note that comes out of the instrument is a smooth mixture of many di�erent pitches. These di�erent pitches
are called harmonics, and they are blended together so well that you do not hear them as separate notes
at all. Instead, the harmonics give the note its color.

What is the color19 of a sound? Say an oboe plays a middle C. Then a �ute plays the same note at
the same loudness as the oboe. It is still easy to tell the two notes apart, because an oboe sounds di�erent
from a �ute. This di�erence in the sounds is the color, or timbre (pronounced "TAM-ber") of the notes.
Like a color you see, the color of a sound can be bright and bold or deep and rich. It can be heavy, light,
murky, thin, smooth, or transparently clear. Some other words that musicians use to describe the timbre of
a sound are: reedy, brassy, piercing, mellow, thin, hollow, focussed, breathy (pronounced BRETH-ee) or full.
Listen to recordings of a violin20 and a viola21. Although these instruments are quite similar, the viola has
a noticeably "deeper" and the violin a noticeably "brighter" sound that is not simply a matter of the violin
playing higher notes. Now listen to the same phrase played by an electric guitar22, an acoustic guitar with
twelve steel strings23 and an acoustic guitar with six nylon strings24. The words musicians use to describe
timbre are somewhat subjective, but most musicians would agree with the statement that, compared with
each other, the �rst sound is mellow, the second bright, and the third rich.

Exercise 2.2.1 (Solution on p. 56.)

Listen to recordings of di�erent instruments playing alone or playing very prominently above
a group. Some suggestions: an unaccompanied violin or cello sonata, a �ute, oboe, trumpet, or
horn concerto, native American �ute music, classical guitar, bagpipes, steel pan drums, panpipes,

19"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
20See the �le at <http://cnx.org/content/m11118/latest/timvl.mp3>
21See the �le at <http://cnx.org/content/m11118/latest/timvla.mp3>
22See the �le at <http://cnx.org/content/m11118/latest/electricGUITARS.wav>
23See the �le at <http://cnx.org/content/m11118/latest/12stringGUITARS.wav>
24See the �le at <http://cnx.org/content/m11118/latest/nylonGUITARS.wav>
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or organ. For each instrument, what "color" words would you use to describe the timbre of each
instrument? Use as many words as you can that seem appropriate, and try to think of some that
aren't listed above. Do any of the instruments actually make you think of speci�c shades of color,
like �re-engine red or sky blue?

Where do the harmonics, and the timbre, come from? When a string vibrates, the main pitch you hear is
from the vibration of the whole string back and forth. That is the fundamental, or �rst harmonic. But
the string also vibrates in halves, in thirds, fourths, and so on. Each of these fractions also produces a
harmonic. The string vibrating in halves produces the second harmonic; vibrating in thirds produces the
third harmonic, and so on.

note: This method of naming and numbering harmonics is the most straightforward and least
confusing, but there are other ways of naming and numbering harmonics, and this can cause confu-
sion. Some musicians do not consider the fundamental to be a harmonic; it is just the fundamental.
In that case, the string halves will give the �rst harmonic, the string thirds will give the second
harmonic and so on. When the fundamental is included in calculations, it is called the �rst partial,
and the rest of the harmonics are the second, third, fourth partials and so on. Also, some musicians
use the term overtones as a synonym for harmonics. For others, however, an overtone is any
frequency (not necessarily a harmonic) that can be heard resonating with the fundamental. The
sound of a gong or cymbals will include overtones that aren't harmonics; that's why the gong's
sound doesn't seem to have as de�nite a pitch as the vibrating string does. If you are uncertain
what someone means by the second harmonic or by the term overtones, ask for clari�cation.

Vibrating String

Figure 2.8: The fundamental pitch is produced by the whole string vibrating back and forth. But the
string is also vibrating in halves, thirds, quarters, �fths, and so on, producing harmonics. All of these
vibrations happen at the same time, producing a rich, complex, interesting sound.

A column of air vibrating inside a tube is di�erent from a vibrating string, but the column of air can
also vibrate in halves, thirds, fourths, and so on, of the fundamental, so the harmonic series will be the
same. So why do di�erent instruments have di�erent timbres? The di�erence is the relative loudness of all
the di�erent harmonics compared to each other. When a clarinet25 plays a note, perhaps the odd-numbered

25"Clarinets" <http://cnx.org/content/m12604/latest/>
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harmonics are strongest; when a French horn26 plays the same notes, perhaps the �fth and tenth harmonics
are the strongest. This is what you hear that allows you to recognize that it is a clarinet or horn that is
playing.

note: You will �nd some more extensive information on instruments and harmonics in Standing
Waves and Musical Instruments (Section 3.1) and Standing Waves and Wind Instruments (Sec-
tion 3.2).

2.2.3 The Harmonic Series

A harmonic series can have any note as its fundamental, so there are many di�erent harmonic series. But the
relationship between the frequencies (Figure 1.6: Wavelength, Frequency, and Pitch) of a harmonic series is
always the same. The second harmonic always has exactly half the wavelength (and twice the frequency) of
the fundamental; the third harmonic always has exactly a third of the wavelength (and so three times the
frequency) of the fundamental, and so on. For more discussion of wavelengths and frequencies, see Frequency,
Wavelength, and Pitch (Section 1.3).

Harmonic Series Wavelengths and Frequencies

Figure 2.9: The second harmonic has half the wavelength and twice the frequency of the �rst. The third
harmonic has a third the wavelength and three times the frequency of the �rst. The fourth harmonic
has a quarter the wavelength and four times the frequency of the �rst, and so on. Notice that the fourth
harmonic is also twice the frequency of the second harmonic, and the sixth harmonic is also twice the
frequency of the third harmonic.

26"The French Horn" <http://cnx.org/content/m11617/latest/>
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Say someone plays a note, a middle C. Now someone else plays the note that is twice the frequency of
the middle C. Since this second note was already a harmonic of the �rst note, the sound waves of the two
notes reinforce each other and sound good together. If the second person played instead the note that was
just a litle bit more than twice the frequency of the �rst note, the harmonic series of the two notes would
not �t together at all, and the two notes would not sound as good together. There are many combinations
of notes that share some harmonics and make a pleasant sound together. They are considered consonant27.
Other combinations share fewer or no harmonics and are considered dissonant28 or, when they really clash,
simply "out of tune" with each other. The scales and chords of most of the world's musics are based on
these physical facts.

note: In real music, consonance and dissonance also depend on the standard practices of a musical
tradition, especially its harmony practices, but these are also often related to the harmonic series.

For example, a note that is twice the frequency of another note is one octave29 higher than the �rst note.
So in the �gure above, the second harmonic is one octave higher than the �rst; the fourth harmonic is one
octave higher than the second; and the sixth harmonic is one octave higher than the third.

Exercise 2.2.2 (Solution on p. 56.)

1. Which harmonic will be one octave higher than the fourth harmonic?
2. Predict the next four sets of octaves in a harmonic series.
3. What is the pattern that predicts which notes of a harmonic series will be one octave apart?
4. Notes one octave apart are given the same name. So if the �rst harmonic is a "A", the second

and fourth will also be A's. Name three other harmonics that will also be A's.

A mathematical way to say this is "if two notes are an octave apart, the ratio (Section 2.1) of their frequencies
is two to one (2:1)". Although the notes themselves can be any frequency, the 2:1 ratio is the same for all
octaves. And all the other intervals30 that musicians talk about can also be described as being particular
ratios of frequencies.

A Harmonic Series Written as Notes

Figure 2.10

Take the third harmonic, for example. Its frequency is three times the �rst harmonic (ratio 3:1). Remem-
ber, the frequency of the second harmonic is two times that of the �rst harmonic. So the ratio (Section 2.1)
of the frequencies of the second to the third harmonics is 2:3. From the harmonic series shown above, you
can see that the interval31 between these two notes is a perfect �fth32. The ratio of the frequencies of all

27"Consonance and Dissonance" <http://cnx.org/content/m11953/latest/>
28"Consonance and Dissonance" <http://cnx.org/content/m11953/latest/>
29"Octaves and the Major-Minor Tonal System" <http://cnx.org/content/m10862/latest/>
30"Interval" <http://cnx.org/content/m10867/latest/>
31"Interval" <http://cnx.org/content/m10867/latest/>
32"Interval": Section Perfect Intervals <http://cnx.org/content/m10867/latest/#s21>
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perfect �fths is 2:3.

Exercise 2.2.3 (Solution on p. 56.)

1. The interval between the fourth and sixth harmonics (frequency ratio 4:6) is also a �fth. Can
you explain this?

2. What other harmonics have an interval of a �fth?
3. Which harmonics have an interval of a fourth?
4. What is the frequency ratio for the interval of a fourth?

note: If you have been looking at the harmonic series above closely, you may have noticed that
some notes that are written to give the same interval have di�erent frequency ratios. For example,
the interval between the seventh and eighth harmonics is a major second, but so are the intervals
between 8 and 9, between 9 and 10, and between 10 and 11. But 7:8, 8:9, 9:10, and 10:11, although
they are pretty close, are not exactly the same. In fact, modern Western33 music uses the equal
temperament (Section 2.4.3.2: Equal Temperament) tuning system, which divides the octave into
twelve notes that are spaced equally far apart. The positive aspect of equal temperament (and the
reason it is used) is that an instrument will be equally in tune in all keys. The negative aspect
is that it means that all intervals except for octaves are slightly out of tune with regard to the
actual harmonic series. For more about equal temperament, see Tuning Systems (Section 2.4.3:
Temperament). Interestingly, musicians have a tendency to revert to true harmonics when they
can (in other words, when it is easy to �ne-tune each note). For example, an a capella choral group
or a brass ensemble, may �nd themselves singing or playing perfect fourths and �fths, "contracted"
major thirds and "expanded" minor thirds.

2.2.4 Brass Instruments

The harmonic series is particularly important for brass instruments. A pianist or xylophone player only gets
one note from each key. A string player who wants a di�erent note from a string holds the string tightly in
a di�erent place. This basically makes a vibrating string of a new length, with a new fundamental.

But a brass player, without changing the length of the instrument, gets di�erent notes by actually playing
the harmonics of the instrument. Woodwinds also do this, although not as much. Most woodwinds can get
two di�erent octaves with essentially the same �ngering; the lower octave is the fundamental of the column
of air inside the instrument at that �ngering. The upper octave is the �rst harmonic.

But it is the brass instruments that excel in getting di�erent notes from the same length of tubing. The
sound of a brass instruments starts with vibrations of the player's lips. By vibrating the lips at di�erent
speeds, the player can cause a harmonic of the air column to sound instead of the fundamental.

So a bugle player can play any note in the harmonic series of the instrument that falls within the player's
range. Compare these well-known bugle calls to the harmonic series above (Figure 2.10: A Harmonic Series
Written as Notes).

33"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
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Bugle Calls

Figure 2.11: Although limited by the fact that it can only play one harmonic series, the bugle can still
play many well-known tunes.

For centuries, all brass instruments were valveless. A brass instrument could play only the notes of one
harmonic series. The upper octaves of the series, where the notes are close together, could be di�cult or
impossible to play, and some of the harmonics sound quite out of tune to ears that expect equal temperament.
The solution to these problems, once brass valves were perfected, was to add a few valves to the instrument.
Three is usually enough. Each valve opens an extra length of tube, making the instrument a little longer,
and making available a whole new harmonic series. Usually one valve gives the harmonic series one half
step lower than the valveless intrument, another one whole step lower, and another one and a half steps
lower. The valves can be used at the same time, too, making even more harmonic series. So a valved brass
instrument can �nd, in the comfortable middle of its range (its middle register), a valve combination that
will give a reasonably in-tune version for every note of the chromatic scale34. (For more on the history of
valved brass, see History of the French Horn35. For more on how and why harmonics are produced in wind
instruments, please see Standing Waves and Wind Instruments (Section 3.2))

note: Trombones use a slide instead of valves to make their instrument longer. But the basic
principle is still the same. At each slide "position", the instrument gets a new harmonic series. The
notes in between the positions aren't part of the chromatic scale, so they are usually only used for
special e�ects like glissandos (sliding notes).

34"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/#p0bb>
35"The French Horn": Section History <http://cnx.org/content/m11617/latest/#s2>
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Overlapping Harmonic Series in Brass Instruments

Figure 2.12: These harmonic series are for a brass instrument that has a "C" fundamental when no
valves are being used - for example, a C trumpet. Remember, there is an entire harmonic series for every
fundamental, and any note can be a fundamental. You just have to �nd the brass tube with the right
length. So a trumpet or tuba can get one harmonic series using no valves, another one a half step lower
using one valve, another one a whole step lower using another valve, and so on. By the time all the
combinations of valves are used, there is some way to get an in-tune version of every note they need.

Exercise 2.2.4 (Solution on p. 57.)

Write the harmonic series for the instrument above when both the �rst and second valves are
open. (You can use this PDF �le36 if you need sta� paper.) What new notes are added in the
instrument's middle range? Are any notes still missing?

note: The French horn37 has a reputation for being a "di�cult" instrument to play. This is also
because of the harmonic series. Most brass instruments play in the �rst few octaves of the harmonic
series, where the notes are farther apart and it takes a pretty big di�erence in the mouth and lips
(the embouchure38, pronounced AHM-buh-sher) to get a di�erent note. The range of the French

36See the �le at <http://cnx.org/content/m11118/latest/sta�paper1.pdf>
37"The French Horn" <http://cnx.org/content/m11617/latest/>
38"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/#p2a>



41

horn is higher in the harmonic series, where the notes are closer together. So very small di�erences
in the mouth and lips can mean the wrong harmonic comes out.

2.2.5 Playing Harmonics on Strings

String players also use harmonics, although not as much as brass players. Harmonics on strings have a very
di�erent timbre39 from ordinary string sounds. They give a quieter, thinner, more bell-like tone, and are
usually used as a kind of ear-catching-special-e�ect.

Normally when a string player puts a �nger on a string, he holds it down tight. This basically forms a
(temporarily) shorter vibrating string, which then produces an entire harmonic series, with a shorter (higher)
fundamental.

In order to play a harmonic, he touches the string very, very lightly instead. So the length of the string
does not change. Instead, the light touch interferes with all of the vibrations that don't have a node at that
spot. (A node is a place in the wave where the string does not move back-and-forth. For example, the ends
of the string are both nodes, since they are held in place.)

String Harmonics

Figure 2.13

The thinner, quieter sound of "playing harmonics" is caused by the fact that much of the harmonic series
is missing from the sound, which will of course be heard in the timbre (p. 34). Lightly touching the string
in most spots will result in no sound at all. It only works at the precise spots that will leave some of the
main harmonics (the longer, louder, lower-numbered ones) free to vibrate.

39"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
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2.3 Powers, Roots, and Equal Temperament40

You do not need to use powers and roots to discuss music unless you want to talk about frequency relation-
ships. They are particularly useful when discussing equal temperament. (See Tuning Systems (Section 2.4.4:
A Comparison of Equal Temperament with the Harmonic Series).)

Powers are simply a shorthand way to write "a certain number times itself so many times".
Example 2.6

Figure 2.14

Roots are the opposite of powers. They are a quick way to write the idea "the number that, multiplied by
itself so many times, will give this number".

Example 2.7

Figure 2.15

Roots and powers are relevant to music because equal temperament divides the octave into twelve equal
half steps. A note one octave higher than another note has a frequency that is two times higher. So if you
divide the octave into twelve equal parts (half steps), the size of each half step is "the twelfth root of two".

40This content is available online at <http://cnx.org/content/m11809/1.4/>.
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(Notice that it is not "2 divided by twelve" or "one twelfth". For more on this, see Equal Temperament
(Section 2.4.4: A Comparison of Equal Temperament with the Harmonic Series).)

Example 2.8

Figure 2.16

Exercise 2.3.1 (Solution on p. 57.)

Using a scienti�c calculator, �nd

1. The frequency ratio of a half step (the twelfth root of 2), to the nearest ten thousandth (four
decimal places).

2. The frequency ratio of a perfect fourth (�ve half steps, or the twelfth root of 2 raised to the
�fth power), to the nearest ten thousandth.

3. The frequency ratio of a major third (four half steps), to the nearest ten thousandth.
4. The frequency ratio of an octave.

note: Thanks to everyone who participated in the survey! It was very useful to me, both as a
researcher and as an author, to get a better picture of my readers' goals and needs. I hope to begin
updating the survey results module41 in April. I will also soon begin making some of the suggested
additions, and emailed comments are still welcome as always.

41"A Survey of Users of Connexions Music Modules" <http://cnx.org/content/m34234/latest/>
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2.4 Tuning Systems42

2.4.1 Introduction

The �rst thing musicians must do before they can play together is "tune". For musicians in the standard
Western music43 tradition, this means agreeing on exactly what pitch44 (what frequency45) is an "A", what
is a "B �at" and so on. Other cultures not only have di�erent note names and di�erent scales, they may even
have di�erent notes - di�erent pitches - based on a di�erent tuning system. In fact, the modern Western
tuning system, which is called equal temperament, replaced (relatively recently) other tuning systems
that were once popular in Europe. All tuning systems are based on the physics of sound46. But they all are
also a�ected by the history of their music traditions, as well as by the tuning peculiarities of the instruments
used in those traditions.

note: To understand all of the discussion below, you must be comfortable with both the musical
concept of interval and the physics concept of frequency. If you wish to follow the whole thing but
are a little hazy on the relationship between pitch and frequency, the following may be helpful:
Pitch47; Acoustics for Music Theory48; Harmonic Series I: Timbre and Octaves49; and Octaves
and the Major-Minor Tonal System50. If you do not know what intervals are (for example, major
thirds and perfect fourths), please see Interval51 and Harmonic Series II: Harmonics, Intervals and
Instruments52. If you need to review the mathematical concepts, please see Musical Intervals,
Frequency, and Ratio (Section 2.1) and Powers, Roots, and Equal Temperament. Meanwhile,
here is a reasonably nontechnical summary of the information below: Modern Western music uses
the equal temperament (Section 2.4.3.2: Equal Temperament) tuning system. In this system, an
octave53 (say, from C to C) is divided into twelve equally-spaced notes. "Equally-spaced" to a
musician basically means that each of these notes is one half step54 from the next, and that all half
steps sound like the same size pitch change. (To a scientist or engineer, "equally-spaced" means
that the ratio of the frequencies of the two notes in any half step is always the same.) This tuning
system is very convenient for some instruments, such as the piano, and also makes it very easy to
change key55 without retuning instruments. But a careful hearing of the music, or a look at the
physics of the sound waves involved, reveals that equal-temperament pitches are not based on the
harmonics56 physically produced by any musical sound. The "equal" ratios of its half steps are the
twelfth root of two, rather than re�ecting the simpler ratios produced by the sounds themselves,
and the important intervals that build harmonies can sound slightly out of tune. This often leads
to some "tweaking" of the tuning in real performances, away from equal temperament. It also leads
many other music traditions to prefer tunings other than equal temperament, particularly tunings
in which some of the important intervals are based on the pure, simple-ratio intervals of physics.
In order to feature these favored intervals, a tuning tradition may do one or more of the following:
use scales in which the notes are not equally spaced; avoid any notes or intervals which don't work

42This content is available online at <http://cnx.org/content/m11639/1.22/>.
43"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
44"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
45"Acoustics for Music Theory": Section Wavelength, Frequency, and Pitch <http://cnx.org/content/m13246/latest/#s2>
46"Acoustics for Music Theory" <http://cnx.org/content/m13246/latest/>
47"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
48"Acoustics for Music Theory" <http://cnx.org/content/m13246/latest/>
49"Harmonic Series I: Timbre and Octaves" <http://cnx.org/content/m13682/latest/>
50"Octaves and the Major-Minor Tonal System" <http://cnx.org/content/m10862/latest/>
51"Interval" <http://cnx.org/content/m10867/latest/>
52"Harmonic Series II: Harmonics, Intervals, and Instruments" <http://cnx.org/content/m13686/latest/>
53"Octaves and the Major-Minor Tonal System" <http://cnx.org/content/m10862/latest/>
54"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/>
55"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
56"Harmonic Series I: Timbre and Octaves" <http://cnx.org/content/m13682/latest/>
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with a particular tuning; change the tuning of some notes when the key57 or mode58 changes.

2.4.2 Tuning based on the Harmonic Series

Almost all music traditions recognize the octave59. When note Y has a frequency60 that is twice the frequency
of note Z, then note Y is one octave higher than note Z. A simple mathematical way to say this is that the
ratio (Section 2.1) of the frequencies is 2:1. Two notes that are exactly one octave apart sound good together
because their frequencies are related in such a simple way. If a note had a frequency, for example, that was
2.11 times the frequency of another note (instead of exactly 2 times), the two notes would not sound so good
together. In fact, most people would �nd the e�ect very unpleasant and would say that the notes are not
"in tune" with each other.

To �nd other notes that sound "in tune" with each other, we look for other sets of pitches that have
a "simple" frequency relationship. These sets of pitches with closely related frequencies are often written
in common notation61 as a harmonic series62. The harmonic series is not just a useful idea constructed
by music theory; it is often found in "real life", in the real-world physics of musical sounds. For example,
a bugle can play only the notes of a speci�c harmonic series. And every musical note you hear is not a
single pure frequency, but is actually a blend of the pitches of a particular harmonic series. The relative
strengths of the harmonics are what gives the note its timbre63. (See Harmonic Series II: Harmonics, Intervals
and Instruments64; Standing Waves and Musical Instruments (Section 3.1); and Standing Waves and Wind
Instruments (Section 3.2) for more about how and why musical sounds are built from harmonic series.)

Harmonic Series on C

Figure 2.17: Here are the �rst sixteen pitches in a harmonic series that starts on a C natural. The
series goes on inde�nitely, with the pitches getting closer and closer together. A harmonic series can
start on any note, so there are many harmonic series, but every harmonic series has the same set

of intervals and the same frequency ratios.

What does it mean to say that two pitches have a "simple frequency relationship"? It doesn't mean that
their frequencies are almost the same. Two notes whose frequencies are almost the same - say, the frequency
of one is 1.005 times the other - sound bad together. Again, anyone who is accustomed to precise tuning
would say they are "out of tune". Notes with a close relationship have frequencies that can be written as a

57"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
58"Modes and Ragas: More Than just a Scale" <http://cnx.org/content/m11633/latest/>
59"Octaves and the Major-Minor Tonal System" <http://cnx.org/content/m10862/latest/>
60"Acoustics for Music Theory": Section Wavelength, Frequency, and Pitch <http://cnx.org/content/m13246/latest/#s2>
61"The Sta�" <http://cnx.org/content/m10880/latest/>
62"Harmonic Series I: Timbre and Octaves" <http://cnx.org/content/m13682/latest/>
63"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
64"Harmonic Series II: Harmonics, Intervals, and Instruments" <http://cnx.org/content/m13686/latest/>
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ratio (Section 2.1) of two small whole numbers; the smaller the numbers, the more closely related the notes
are. Two notes that are exactly the same pitch, for example, have a frequency ratio of 1:1, and octaves, as
we have already seen, are 2:1. Notice that when two pitches are related in this simple-ratio way, it means
that they can be considered part of the same harmonic series, and in fact the actual harmonic series of
the two notes may also overlap and reinforce each other. The fact that the two notes are complementing
and reinforcing each other in this way, rather than presenting the human ear with two completely di�erent
harmonic series, may be a major reason why they sound consonant65 and "in tune".

note: Nobody has yet proven a physical basis for why simple-ratio combinations sound pleasant
to us. For a readable introduction to the subject, I suggest Robert Jourdain's Music, the Brain,

and Ecstasy

Notice that the actual frequencies of the notes do not matter. What matters is how they compare to
each other - basically, how many waves of one note go by for each wave of the other note. Although the
actual frequencies of the notes will change for every harmonic series, the comparative distance between the
notes, their interval66, will be the same.

For more examples, look at the harmonic series in Figure 2.17 (Harmonic Series on C). The number
beneath a note tells you the relationship of that note's frequency to the frequency of the �rst note in the
series - the fundamental. For example, the frequency of the note numbered 3 in Figure 2.17 (Harmonic
Series on C) is three times the frequency of the fundamental, and the frequency of the note numbered �fteen
is �fteen times the frequency of the fundamental. In the example, the fundamental is a C. That note's
frequency times 2 gives you another C; times 2 again (4) gives another C; times 2 again gives another C (8),
and so on. Now look at the G's in this series. The �rst one is number 3 in the series. 3 times 2 is 6, and
number 6 in the series is also a G. So is number 12 (6 times 2). Check for yourself the other notes in the
series that are an octave apart. You will �nd that the ratio for one octave67 is always 2:1, just as the ratio
for a unison is always 1:1. Notes with this small-number ratio of 2:1 are so closely related that we give them
the same name, and most tuning systems are based on this octave relationship.

The next closest relationship is the one based on the 3:2 ratio, the interval68 of the perfect �fth69 (for
example, the C and G in the example harmonic series). The next lowest ratio, 4:3, gives the interval of a
perfect fourth70. Again, these pitches are so closely related and sound so good together that their intervals
have been named "perfect". The perfect �fth �gures prominently in many tuning systems. In Western71

music, all major and minor chords contain, or at least strongly imply, a perfect �fth. (See Triads72 and
Naming Triads73 for more about the intervals in major and minor chords.)

2.4.2.1 Pythagorean Intonation

The Pythagorean system is so named because it was actually discussed by Pythagoras, the famous Greek
mathematician and philosopher, who in the sixth century B.C. already recognized the simple arithmetical
relationship involved in intervals of octaves, �fths, and fourths. He and his followers believed that numbers
were the ruling principle of the universe, and that musical harmonies were a basic expression of the mathe-
matical laws of the universe. Their model of the universe involved the "celestial spheres" creating a kind of
harmony as they moved in circles dictated by the same arithmetical relationships as musical harmonies.

In the Pythagorean system, all tuning is based on the interval of the pure �fth. Pure intervals are the
ones found in the harmonic series, with very simple frequency ratios. So a pure �fth will have a frequency

65"Consonance and Dissonance" <http://cnx.org/content/m11953/latest/>
66"Interval" <http://cnx.org/content/m10867/latest/>
67"Octaves and the Major-Minor Tonal System" <http://cnx.org/content/m10862/latest/>
68"Interval" <http://cnx.org/content/m10867/latest/>
69"Interval" <http://cnx.org/content/m10867/latest/#p21b>
70"Interval" <http://cnx.org/content/m10867/latest/#p21b>
71"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
72"Triads" <http://cnx.org/content/m10877/latest/>
73"Naming Triads" <http://cnx.org/content/m10890/latest/>



47

ratio of exactly 3:2. Using a series of perfect �fths (and assuming perfect octaves, too, so that you are �lling
in every octave as you go), you can eventually �ll in an entire chromatic scale74.

Pythagorean Intonation

Figure 2.18: You can continue this series of perfect �fths to get the rest of the notes of a chromatic
scale; the series would continue F sharp, C sharp, and so on.

The main weakness of the Pythagorean system is that a series of pure perfect �fths will never take you to
a note that is a pure octave above the note you started on. To see why this is a problem, imagine beginning
on a C. A series of perfect �fths would give: C, G, D, A, E, B, F sharp, C sharp, G sharp, D sharp, A sharp,
E sharp, and B sharp. In equal temperament (which doesn't use pure �fths), that B sharp would be exactly
the same pitch as the C seven octaves above where you started (so that the series can, in essence, be turned
into a closed loop, the Circle of Fifths75). Unfortunately, the B sharp that you arrive at after a series of pure
�fths is a little higher than that C.

So in order to keep pure octaves, instruments that use Pythagorean tuning have to use eleven pure �fths
and one smaller �fth. The smaller �fth has traditionally been called a wolf �fth because of its unpleasant
sound. Keys that avoid the wolf �fth sound just �ne on instruments that are tuned this way, but keys in
which the wolf �fth is often heard become a problem. To avoid some of the harshness of the wolf intervals,
some harpsichords and other keyboard instruments were built with split keys for D sharp/E �at and for G
sharp/A �at. The front half of the key would play one note, and the back half the other (di�erently tuned)
note.

Pythagorean tuning was widely used in medieval and Renaissance times. Major seconds and thirds are
larger in Pythagorean intonation than in equal temperament, and minor seconds and thirds are smaller.
Some people feel that using such intervals in medieval music is not only more authentic, but sounds better
too, since the music was composed for this tuning system.

More modern Western music, on the other hand, does not sound pleasant using Pythagorean intonation.
Although the �fths sound great, the thirds76 are simply too far away from the pure major and minor thirds
of the harmonic series. In medieval music, the third was considered a dissonance and was used sparingly -
and actually, when you're using Pythagorean tuning, it really is a dissonance - but most modern harmonies
are built from thirds (see Triads77). In fact, the common harmonic tradition that includes everything from
Baroque78 counterpoint to modern rock is often called triadic harmony.

Some modern Non-Western music traditions, which have a very di�erent approach to melody and har-
mony, still base their tuning on the perfect �fth. Wolf �fths and ugly thirds are not a problem in these

74"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/#p0bb>
75"The Circle of Fifths" <http://cnx.org/content/m10865/latest/>
76"Interval": Major and Minor Intervals <http://cnx.org/content/m10867/latest/#list22a>
77"Triads" <http://cnx.org/content/m10877/latest/>
78"Music of the Baroque Period" <http://cnx.org/content/m14737/latest/>
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traditions, which build each mode79 within the framework of the perfect �fth, retuning for di�erent modes
as necessary. To read a little about one such tradition, please see Indian Classical Music: Tuning and
Ragas80.

2.4.2.2 Mean-tone System

The mean-tone system, in order to have pleasant-sounding thirds, takes rather the opposite approach from
the Pythagorean. It uses the pure major third81. In this system, the whole tone (or whole step82) is
considered to be exactly half of the pure major third. This is the mean, or average, of the two tones, that
gives the system its name. A semitone (or half step83) is exactly half (another mean) of a whole tone.

These smaller intervals all work out well in mean-tone tuning, but the result is a �fth that is noticeably
smaller than a pure �fth. And a series of pure thirds will also eventually not line up with pure octaves, so
an instrument tuned this way will also have a problem with wolf (p. 47) intervals.

As mentioned above, Pythagorean tuning made sense in medieval times, when music was dominated
by �fths. Once the concept of harmony in thirds took hold, thirds became the most important interval84;
simple perfect �fths were now heard as "austere" and, well, medieval-sounding. So mean-tone tuning was
very popular in Europe in the 16th through 18th centuries.

But �fths can't be avoided entirely. A basic major or minor chord, for example, is built of two thirds,
but it also has a perfect �fth between its outer two notes (see Triads85). So even while mean-tone tuning
was enjoying great popularity, some composers and musicians were searching for other solutions.

2.4.2.3 Just Intonation

In just intonation, the �fth and the third are both based on the pure, harmonic series interval. Because chords
are constructed of thirds and �fths (see Triads86), this tuning makes typical Western harmonies particularly
resonant and pleasing to the ear; so this tuning is often used (sometimes unconsciously) by musicians who
can make small tuning adjustments quickly. This includes vocalists, most wind instruments, and many string
instruments.

As explained above (p. 47), using pure �fths and thirds will require some sort of adjustment somewhere.
Just intonation makes two accommodations to allow its pure intervals. One is to allow inequality in the
other intervals. Look again at the harmonic series (Figure 2.17: Harmonic Series on C).

79"Modes and Ragas: More Than just a Scale" <http://cnx.org/content/m11633/latest/>
80"Indian Classical Music: Tuning and Ragas" <http://cnx.org/content/m12459/latest/>
81"Interval": Major and Minor Intervals <http://cnx.org/content/m10867/latest/#list22a>
82"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/>
83"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/>
84"Interval" <http://cnx.org/content/m10867/latest/>
85"Triads" <http://cnx.org/content/m10877/latest/>
86"Triads" <http://cnx.org/content/m10877/latest/>
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Figure 2.19: Both the 9:8 ratio and the 10:9 ratio in the harmonic series are written as whole notes.
9:8 is considered a major whole tone and 10:9 a minor whole tone. The di�erence between them is
less than a quarter of a semitone.

As the series goes on, the ratios get smaller and the notes closer together. Common notation87 writes
all of these "close together" intervals as whole steps (whole tones) or half steps (semitones), but they are of
course all slightly di�erent from each other. For example, the notes with frequency ratios of 9:8 and 10:9
and 11:10 are all written as whole steps. To compare how close (or far) they actually are, turn the ratios
into decimals.

Whole Step Ratios Written as Decimals

• 9/8 = 1.125
• 10/9 = 1.111
• 11/10 = 1.1

These are fairly small di�erences, but they can still be heard easily by the human ear. Just intonation uses
both the 9:8 whole tone, which is called a major whole tone and the 10:9 whole tone, which is called a
minor whole tone, in order to construct both pure thirds and pure �fths.

note: In case you are curious, the size of the whole tone of the "mean tone" system is also the
mean, or average, of the major and minor whole tones.

The other accommodation with reality that just intonation must make is the fact that a single just-
intonation tuning cannot be used to play in multiple keys. In constructing a just-intonation tuning, it
matters which steps of the scale are major whole tones and which are minor whole tones, so an instrument
tuned exactly to play with just intonation in the key of C major will have to retune to play in C sharp major
or D major. For instruments that can tune almost instantly, like voices, violins, and trombones, this is not a
problem; but it is unworkable for pianos, harps, and other other instruments that cannot make small tuning
adjustments quickly.

As of this writing, there was useful information about various tuning systems at several di�erent websites,
including The Development of Musical Tuning Systems88 , where one could hear what some intervals sound
like in the di�erent tuning systems, and Kyle Gann's Just Intonation Explained89 , which included some
audio samples of works played using just intonation.

2.4.3 Temperament

There are times when tuning is not much of an issue. When a good choir sings in harmony without instru-
ments, they will tune without even thinking about it. All chords will tend towards pure �fths and thirds,
as well as seconds, fourths, sixths, and sevenths that re�ect the harmonic series. Instruments that can bend

87"The Sta�" <http://cnx.org/content/m10880/latest/>
88http://www.midicode.com/tunings/index.shtml
89http://www.kylegann.com/tuning.html
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most pitches enough to �ne-tune them during a performance - and this includes most orchestral instruments
- also tend to play the "pure" intervals. This can happen unconsciously, or it can be deliberate, as when a
conductor asks for an interval to be "expanded" or "contracted".

But for many instruments, such as piano, organ, harp, bells, harpsichord, xylophone - any instrument
that cannot be �ne-tuned quickly - tuning is a big issue. A harpsichord that has been tuned using the
Pythagorean system or just intonation may sound perfectly in tune in one key - C major, for example -
and fairly well in tune in a related key90 - G major - but badly out of tune in a "distant" key like D �at
major. Adding split keys or extra keys can help (this was a common solution for a time), but also makes
the instrument more di�cult to play. In Western music91, the tuning systems that have been invented and
widely used that directly address this problem are the various temperaments, in which the tuning of notes
is "tempered" slightly from pure intervals. (Non-Western music traditions have their own tuning systems,
which is too big a subject to address here. See Listening to Balinese Gamelan92 and Indian Classical Music:
Tuning and Ragas93 for a taste of what's out there.)

2.4.3.1 Well Temperaments

As mentioned above (p. 47), the various tuning systems based on pure intervals eventually have to include
"wolf" intervals that make some keys unpleasant or even unusable. The various well temperament tunings
that were very popular in the 18th and 19th centuries tried to strike a balance between staying close to pure
intervals and avoiding wolf intervals. A well temperament might have several pure �fths, for example, and
several �fths that are smaller than a pure �fth, but not so small that they are "wolf" �fths. In such systems,
tuning would be noticeably di�erent in each key94, but every key would still be pleasant-sounding and
usable. This made well temperaments particularly welcome for players of di�cult-to-tune instruments like
the harpsichord and piano.

note: Historically, there has been some confusion as to whether or not well temperament and
equal temperament are the same thing, possibly because well temperaments were sometimes referred
to at the time as "equal temperament". But these well temperaments made all keys equally useful,
not equal-sounding as modern equal temperament does.

As mentioned above (Section 2.4.2.2: Mean-tone System), mean-tone tuning was still very popular in
the eighteenth century. J. S. Bach wrote his famous "Well-Tempered Klavier" in part as a plea and ad-
vertisement to switch to a well temperament system. Various well temperaments did become very popular
in the eighteenth and nineteenth centuries, and much of the keyboard-instrument music of those centuries
may have been written to take advantage of the tuning characteristics of particular keys in particular well
temperaments. Some modern musicians advocate performing such pieces using well temperaments, in order
to better understand and appreciate them. It is interesting to note that the di�erent keys in a well temper-
ament tuning were sometimes considered to be aligned with speci�c colors and emotions. In this way they
may have had more in common with various modes and ragas95 than do keys in equal temperament.

2.4.3.2 Equal Temperament

In modern times, well temperaments have been replaced by equal temperament, so much so in Western
music96 that equal temperament is considered standard tuning even for voice and for instruments that are
more likely to play using just intonation when they can (see above (Section 2.4.2.3: Just Intonation)). In
equal temperament, only octaves97 are pure (Section 2.4.2.1: Pythagorean Intonation) intervals. The octave

90"The Circle of Fifths" <http://cnx.org/content/m10865/latest/>
91"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
92"Listening to Balinese Gamelan: A Beginners' Guide" <http://cnx.org/content/m15795/latest/>
93"Indian Classical Music: Tuning and Ragas" <http://cnx.org/content/m12459/latest/>
94"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
95"Modes and Ragas: More Than just a Scale" <http://cnx.org/content/m11633/latest/>
96"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
97"Octaves and the Major-Minor Tonal System" <http://cnx.org/content/m10862/latest/>
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is divided into twelve equally spaced half steps98, and all other intervals99 are measured in half steps. This
gives, for example, a �fth100 that is a bit smaller than a pure �fth, and a major third101 that is larger than
the pure major third. The di�erences are smaller than the wolf tones (p. 47) found in other tuning systems,
but they are still there.

Equal temperament is well suited to music that changes key102 often, is very chromatic103, or is harmon-
ically complex104. It is also the obvious choice for atonal105 music that steers away from identi�cation with
any key or tonality at all. Equal temperament has a clear scienti�c/mathematical basis, is very straightfor-
ward, does not require retuning for key changes, and is unquestioningly accepted by most people. However,
because of the lack of pure intervals, some musicians do not �nd it satisfying. As mentioned above, just
intonation is sometimes substituted for equal temperament when practical, and some musicians would also
like to reintroduce well temperaments, at least for performances of music which was composed with well
temperament in mind.

2.4.4 A Comparison of Equal Temperament with the Harmonic Series

In a way, equal temperament is also a compromise between the Pythagorean approach and the mean-tone
approach. Neither the third nor the �fth is pure, but neither of them is terribly far o�, either. Because
equal temperament divides the octave into twelve equal semi-tones (half steps), the frequency ratio of each
semi-tone is the twelfth root of 2. If you do not understand why it is the twelfth root of 2 rather than, say,
one twelfth, please see the explanation below (p. 52). (There is a review of powers and roots in Powers,
Roots, and Equal Temperament if you need it.)

Figure 2.20: In equal temperament, the ratio of frequencies in a semitone (half step) is the twelfth root
of two. Every interval is then simply a certain number of semitones. Only the octave (the twelfth power
of the twelfth root) is a pure interval.

In equal temperament, the only pure interval is the octave. (The twelfth power of the twelfth root of two
is simply two.) All other intervals are given by irrational numbers based on the twelfth root of two, not nice
numbers that can be written as a ratio of two small whole numbers. In spite of this, equal temperament
works fairly well, because most of the intervals it gives actually fall quite close to the pure intervals. To
see that this is so, look at Figure 2.21 (Comparing the Frequency Ratios for Equal Temperament and Pure

98"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/>
99"Interval" <http://cnx.org/content/m10867/latest/>

100"Interval" <http://cnx.org/content/m10867/latest/#p21b>
101"Interval": Major and Minor Intervals <http://cnx.org/content/m10867/latest/#list22a>
102"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
103"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/#p7f>
104"Beginning Harmonic Analysis" <http://cnx.org/content/m11643/latest/>
105"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/#p7e>
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Harmonic Series). Equal temperament and pure intervals are calculated as decimals and compared to each
other. (You can �nd these decimals for yourself using a calculator.)

Comparing the Frequency Ratios for Equal Temperament and Pure Harmonic Series

Figure 2.21: Look again at Figure 2.17 (Harmonic Series on C) to see where pure interval ratios come
from. The ratios for equal temperament are all multiples of the twelfth root of two. Both sets of ratios
are converted to decimals (to the nearest ten thousandth), so you can easily compare them.

Except for the unison and the octave, none of the ratios for equal temperament are exactly the same as
for the pure interval. Many of them are reasonably close, though. In particular, perfect fourths and �fths
and major thirds are not too far from the pure intervals. The intervals that are the furthest from the pure
intervals are the major seventh, minor seventh, and minor second (intervals that are considered dissonant106

anyway).
Because equal temperament is now so widely accepted as standard tuning, musicians do not usually even

speak of intervals in terms of ratios. Instead, tuning itself is now de�ned in terms of equal-temperament,
with tunings and intervals measured in cents. A cent is 1/100 (the hundredth root) of an equal-temperament
semitone. In this system, for example, the major whole tone discussed above measures 204 cents, the minor
whole tone 182 cents, and a pure �fth is 702 cents.

Why is a cent the hundredth root of a semitone, and why is a semitone the twelfth root of an octave? If
it bothers you that the ratios in equal temperament are roots, remember the pure octaves and �fths of the
harmonic series.

106"Consonance and Dissonance" <http://cnx.org/content/m11953/latest/>
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Frequency Relationships

Figure 2.22: Remember that, no matter what note you start on, the note one octave higher has 2
times its frequency. Also, no matter what note you start on, the note that is a perfect �fth higher has
exactly one and a half times its frequency. Since each of these intervals is so many "times" in terms
of frequencies, when you add intervals, you multiply their frequencies. For example, a series of two
perfect �fths will give a frequency that is 3/2 x 3/2 (or 9/4) the beginning frequency.

Every octave has the same frequency ratio; the higher note will have 2 times the frequency of the lower
note. So if you go up another octave from there (another 2 times), that note must have 2 x 2, or 4 times
the frequency of the lowest note. The next octave takes you up 2 times higher than that, or 8 times the
frequency of the �rst note, and so on.

In just the same way, in every perfect �fth, the higher note will have a frequency one and a half (3/2)
times the lower note. So to �nd out how much higher the frequency is after a series of perfect �fths, you
would have to multiply (not add) by one and a half (3/2) every time you went up another perfect �fth.

All intervals work in this same way. So, in order for twelve semitones (half steps) to equal one octave, the
size of a half step has to be a number that gives the answer "2" (the size of an octave) when you multiply
it twelve times: in other words, the twelfth root of two. And in order for a hundred cents to equal one
semitone, the size of a cent must be the number that, when you multiply it 100 times, ends up being the
same size as a semitone; in other words, the hundredth root of the twelfth root of two. This is one reason
why most musicians prefer to talk in terms of cents and intervals instead of frequencies.

2.4.5 Beats and Wide Tuning

One well-known result of tempered tunings is the aural phenomenon known as beats. As mentioned above
(p. 45), in a pure interval (Section 2.4.2.1: Pythagorean Intonation) the sound waves have frequencies that
are related to each other by very simple ratios. Physically speaking, this means that the two smooth waves
line up together so well that the combined wave - the wave you hear when the two are played at the same
time - is also a smooth and very steady wave. Tunings that are slightly o� from the pure interval, however,
will result in a combined wave that has an extra bumpiness in it. Because the two waves are each very even,
the bump itself is very even and regular, and can be heard as a "beat" - a very regular change in the intensity
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of the sound. The beats are so regular, in fact, that they can be timed; for equal temperament they are on
the order of a beat per second in the mid range of a piano. A piano tuner works by listening to and timing
these beats, rather than by being able to "hear" equal temperament intervals precisely.

It should also be noted that some music traditions around the world do not use the type of precision
tunings described above, not because they can't, but because of an aesthetic preference for wide tuning. In
these traditions, the sound of many people playing precisely the same pitch is considered a thin, uninteresting
sound; the sound of many people playing near the same pitch is heard as full, lively, and more interesting.

Some music traditions even use an extremely precise version of wide tuning. The gamelan107 orchestras
of southeast Asia, for example, have an aesthetic preference for the "lively and full" sounds that come from
instruments playing near, not on, the same pitch. In some types of gamelans, pairs of instruments are
tuned very precisely so that each pair produces beats, and the rate of the beats is the same throughout the
entire range108 of that gamelan. Long-standing traditions allow gamelan craftsmen to reliably produce such
impressive feats of tuning.

2.4.6 Further Study

As of this writing:

• The Just Intonation Network109 has much information about Just Intonation, including some audio
examples.

• Kyle Gann's An Introduction to Historical Tunings110 is a good source about both the historical back-
ground and more technical information about various tunings. It also includes some audio examples.

• The Huygens-Fokker Foundation has a very large on-line bibliography111 of tuning and temperament.
• Musemath112 has several animations illustrating equal temperament and the math necessary to under-

stand it.
• Alfredo Capurso, a researcher in Italy, has developed the Circular Harmonic System (c.ha.s), a tempered

tuning system that solves the wolf �fth problem by adjusting the size of the octave as well as the �fth.
It also provides an algorithm for generating microtonal scales. You can read about it at the Circular
Harmonic System website113 or download a paper114 on the subject. You can also listen to piano
performances using this tuning by searching for "CHAS tuning" at YouTube.

note: Thanks to everyone who participated in the survey! It was very useful to me, both as a
researcher and as an author, to get a better picture of my readers' goals and needs. I hope to begin
updating the survey results module115 in April. I will also soon begin making some of the suggested
additions, and emailed comments are still welcome as always.

107"Balinese Gamelan" <http://cnx.org/content/m15796/latest/>
108"Range" <http://cnx.org/content/m12381/latest/>
109http://www.justintonation.net/
110http://www.kylegann.com/histune.html
111http://www.huygens-fokker.org/docs/bibliography.html
112http://www.musemath.com
113http://www.chas.it/
114http://math.unipa.it/∼grim/Quaderno19_Capurso_09_engl.pdf
115"A Survey of Users of Connexions Music Modules" <http://cnx.org/content/m34234/latest/>
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Solutions to Exercises in Chapter 2

Solution to Exercise 2.1.1 (p. 28)

• Ratio of small to medium is 3:3. Like fractions, ratios can be reduced to lowest terms, so ratio of 1:1
is also correct.

• Ratio of small to large, or medium to large, is 3:4; ratio of large to either of the others is 4:3.
• Ratio of small or medium to total is 3:10; ratio of large to total is 4:10.
• 3/10, or 0.3, of the shirts, are small; 3/10, or 0.3 of the shirts are medium, and 4/10, or 0.4 of the

shirts, are large.
• There are 3/4 as many small or medium shirts as there are large shirts, and there are 4/3 as many

large shirts as small or medium shirts.
• If you made more ratios, fractions, and decimals by combining various groups (say ratio of small and

medium to large is 6:4, and so on), give yourself extra credit.

Solution to Exercise 2.1.2 (p. 28)

Figure 2.23: For every one wave of frequency 220, there are two of 440, and 3 of 660.

1. 660 sounds the highest; 220 lowest. (440 is a "tuning A" or A 440", by the way. 220 is the A one
octave lower, and 660 is the E above A 440.)

2. 220 has the longest wavelength, and 660 the shortest.
3. 220:440:660 in lowest terms is 1:2:3
4. 3
5. There are only 2/3 as many waves in the 440 frequency as in the 660 frequency.

Solution to Exercise 2.1.3 (p. 33)
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Figure 2.24

Solution to Exercise 2.1.4 (p. 33)

Figure 2.25

Solution to Exercise 2.2.1 (p. 34)
Although trained musicians will generally agree that a particular sound is reedy, thin, or full, there are no
hard-and-fast right-and-wrong answers to this exercise.
Solution to Exercise 2.2.2 (p. 37)

1. The eighth harmonic
2. The �fth and tenth harmonics; the sixth and twelfth harmonics; the seventh and fourteenth harmonics;

and the eighth and sixteenth harmonics
3. The note that is one octave higher than a harmonic is also a harmonic, and its number in the harmonic

series is twice (2 X) the number of the �rst note.
4. The eighth, sixteenth, and thirty-second harmonics will also be A's.

Solution to Exercise 2.2.3 (p. 38)

1. The ratio 4:6 reduced to lowest terms is 2:3. (If you are more comfortable with fractions than with
ratios, think of all the ratios as fractions instead. 2:3 is just two-thirds, and 4:6 is four-sixths. Four-
sixths reduces to two-thirds.)

2. Six and nine (6:9 also reduces to 2:3); eight and twelve; ten and �fteen; and any other combination
that can be reduced to 2:3 (12:18, 14:21 and so on).
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3. Harmonics three and four; six and eight; nine and twelve; twelve and sixteen; and so on.
4. 3:4

Solution to Exercise 2.2.4 (p. 40)
Opening both �rst and second valves gives the harmonic series one-and-a-half steps lower than "no valves".

Figure 2.26

Solution to Exercise 2.3.1 (p. 43)

1. 1.0595
2. The twelfth root of 2, to the �fth power, is approximately 1.3348
3. The twelfth root of 2, to the fourth power, is approximately 1.2599
4. The twelfth root of 2, to the twelfth power, is 2
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Chapter 3

Standing Waves and Instruments

3.1 Standing Waves and Musical Instruments1

note: Are you really free to use this online resource? Join the discussion at Opening Measures2 .

3.1.1 What is a Standing Wave?

Musical tones (p. 59) are produced by musical instruments, or by the voice, which, from a physics perspective,
is a very complex wind3 instrument. So the physics of music is the physics of the kinds of sounds these
instruments can make. What kinds of sounds are these? They are tones caused by standing waves produced
in or on the instrument. So the properties of these standing waves, which are always produced in very speci�c
groups, or series, have far-reaching e�ects on music theory.

Most sound waves, including the musical sounds that actually reach our ears, are not standing waves.
Normally, when something makes a wave, the wave travels outward, gradually spreading out and losing
strength, like the waves moving away from a pebble dropped into a pond.

But when the wave encounters something, it can bounce (re�ection) or be bent (refraction). In fact, you
can "trap" waves by making them bounce back and forth between two or more surfaces. Musical instruments
take advantage of this; they produce pitches4 by trapping sound waves.

Why are trapped waves useful for music? Any bunch of sound waves will produce some sort of noise.
But to be a tone - a sound with a particular pitch5 - a group of sound waves has to be very regular, all
exactly the same distance apart. That's why we can talk about the frequency6 and wavelength7 of tones.

1This content is available online at <http://cnx.org/content/m12413/1.12/>.
2http://openingmeasures.com/open-education/40/are-the-education-resources-at-Connexions-really-free/
3"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/>
4"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
5"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
6"Acoustics for Music Theory" <http://cnx.org/content/m13246/latest/#p2b>
7"Acoustics for Music Theory" <http://cnx.org/content/m13246/latest/#p2a>
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Figure 3.1: A noise is a jumble of sound waves. A tone is a very regular set of waves, all the same size
and same distance apart.

So how can you produce a tone? Let's say you have a sound wave trap (for now, don't worry about what
it looks like), and you keep sending more sound waves into it. Picture a lot of pebbles being dropped into a
very small pool. As the waves start re�ecting o� the edges of the pond, they interfere with the new waves,
making a jumble of waves that partly cancel each other out and mostly just roils the pond - noise.

But what if you could arrange the waves so that re�ecting waves, instead of cancelling out the new waves,
would reinforce them? The high parts of the re�ected waves would meet the high parts of the oncoming
waves and make them even higher. The low parts of the re�ected waves would meet the low parts of the
oncoming waves and make them even lower. Instead of a roiled mess of waves cancelling each other out, you
would have a pond of perfectly ordered waves, with high points and low points appearing regularly at the
same spots again and again. To help you imagine this, here are animations of a single wave re�ecting back
and forth8 and standing waves9.

This sort of orderliness is actually hard to get from water waves, but relatively easy to get in sound
waves, so that several completely di�erent types of sound wave "containers" have been developed into
musical instruments. The two most common - strings and hollow tubes - will be discussed below, but �rst
let's �nish discussing what makes a good standing wave container, and how this a�ects music theory.

In order to get the necessary constant reinforcement, the container has to be the perfect size (length)
for a certain wavelength, so that waves bouncing back or being produced at each end reinforce each other,
instead of interfering with each other and cancelling each other out. And it really helps to keep the container
very narrow, so that you don't have to worry about waves bouncing o� the sides and complicating things.
So you have a bunch of regularly-spaced waves that are trapped, bouncing back and forth in a container
that �ts their wavelength perfectly. If you could watch these waves, it would not even look as if they are
traveling back and forth. Instead, waves would seem to be appearing and disappearing regularly at exactly
the same spots, so these trapped waves are called standing waves.

note: Although standing waves are harder to get in water, the phenomenon does apparently
happen very rarely in lakes, resulting in freak disasters. You can sometimes get the same e�ect by
pushing a tub of water back and forth, but this is a messy experiment; you'll know you are getting
a standing wave when the water suddenly starts sloshing much higher - right out of the tub!

For any narrow "container" of a particular length, there are plenty of possible standing waves that
don't �t. But there are also many standing waves that do �t. The longest wave that �ts it is called
the fundamental. It is also called the �rst harmonic. The next longest wave that �ts is the second

8See the �le at <http://cnx.org/content/m12413/latest/Re�ectingWave.swf>
9See the �le at <http://cnx.org/content/m12413/latest/WaterWaves.swf>
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harmonic, or the �rst overtone. The next longest wave is the third harmonic, or second overtone,
and so on.

Standing Wave Harmonics

Figure 3.2: There is a whole set of standing waves, called harmonics, that will �t into any "container"
of a speci�c length. This set of waves is called a harmonic series.

Notice that it doesn't matter what the length of the fundamental is; the waves in the second harmonic
must be half the length of the �rst harmonic; that's the only way they'll both "�t". The waves of the
third harmonic must be a third the length of the �rst harmonic, and so on. This has a direct e�ect on the
frequency and pitch of harmonics, and so it a�ects the basics of music tremendously. To �nd out more about
these subjects, please see Frequency, Wavelength, and Pitch (Section 1.3), Harmonic Series (Section 2.2), or
Musical Intervals, Frequency, and Ratio (Section 2.1).

3.1.2 Standing Waves on Strings

You may have noticed an interesting thing in the animation (p. 60) of standing waves: there are spots where
the "water" goes up and down a great deal, and other spots where the "water level" doesn't seem to move
at all. All standing waves have places, called nodes, where there is no wave motion, and antinodes, where
the wave is largest. It is the placement of the nodes that determines which wavelengths "�t" into a musical
instrument "container".
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Nodes and Antinodes

Figure 3.3: As a standing wave waves back and forth (from the red to the blue position), there are
some spots called nodes that do not move at all; basically there is no change, no waving up-and-down
(or back-and-forth), at these spots. The spots at the biggest part of the wave - where there is the most
change during each wave - are called antinodes.

One "container" that works very well to produce standing waves is a thin, very taut string that is held
tightly in place at both ends. (There were some nice animations of waves on strings available as of this
writing at Musemath10 .) Since the string is taut, it vibrates quickly, producing sound waves, if you pluck
it, or rub it with a bow. Since it is held tightly at both ends, that means there has to be a node (p. 61) at
each end of the string. Instruments that produce sound using strings are called chordophones11, or simply
strings12.

10http://www.musemath.com
11"Classifying Musical Instruments": Section Chordophones <http://cnx.org/content/m11896/latest/#s21>
12"Orchestral Instruments": Section Strings <http://cnx.org/content/m11897/latest/#s11>
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Standing Waves on a String

Figure 3.4: A string that's held very tightly at both ends can only vibrate at very particular wavelengths.
The whole string can vibrate back and forth. It can vibrate in halves, with a node at the middle of the
string as well as each end, or in thirds, fourths, and so on. But any wavelength that doesn't have a
node at each end of the string, can't make a standing wave on the string. To get any of those other
wavelengths, you need to change the length of the vibrating string. That is what happens when the
player holds the string down with a �nger, changing the vibrating length of the string and changing
where the nodes are.

The fundamental (p. 60) wave is the one that gives a string its pitch13. But the string is making all
those other possible vibrations, too, all at the same time, so that the actual vibration of the string is pretty
complex. The other vibrations (the ones that basically divide the string into halves, thirds and so on)
produce a whole series of harmonics. We don't hear the harmonics as separate notes, but we do hear them.
They are what gives the string its rich, musical, string-like sound - its timbre14. (The sound of a single
frequency alone is a much more mechanical, uninteresting, and unmusical sound.) To �nd out more about
harmonics and how they a�ect a musical sound, see Harmonic Series (Section 2.2).

Exercise 3.1.1 (Solution on p. 77.)

When the string player puts a �nger down tightly on the string,

1. How has the part of the string that vibrates changed?
2. How does this change the sound waves that the string makes?

13"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
14"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
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3. How does this change the sound that is heard?

3.1.3 Standing Waves in Wind Instruments

The string disturbs the air molecules around it as it vibrates, producing sound waves in the air. But another
great container for standing waves actually holds standing waves of air inside a long, narrow tube. This
type of instrument is called an aerophone15, and the most well-known of this type of instrument are often
called wind instruments16 because, although the instrument itself does vibrate a little, most of the sound is
produced by standing waves in the column of air inside the instrument.

If it is possible, have a reed player and a brass player demonstrate to you the sounds that their mouthpieces
make without the instrument. This will be a much "noisier" sound, with lots of extra frequencies in it that
don't sound very musical. But, when you put the mouthpiece on an instrument shaped like a tube, only
some of the sounds the mouthpiece makes are the right length for the tube. Because of feedback from the
instrument, the only sound waves that the mouthpiece can produce now are the ones that are just the right
length to become standing waves in the instrument, and the "noise" is re�ned into a musical tone.

15"Classifying Musical Instruments": Section Aerophones <http://cnx.org/content/m11896/latest/#s22>
16"Orchestral Instruments": Section The Sections of the Orchestra <http://cnx.org/content/m11897/latest/#s1>
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Standing Waves in Wind Instruments

Figure 3.5: Standing Waves in a wind instrument are usually shown as displacement waves, with nodes
at closed ends where the air cannot move back-and-forth.

The standing waves in a wind instrument are a little di�erent from a vibrating string. The wave on a
string is a transverse wave, moving the string back and forth, rather than moving up and down along the
string. But the wave inside a tube, since it is a sound wave already, is a longitudinal wave; the waves do
not go from side to side in the tube. Instead, they form along the length of the tube.
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Longitudinal Waves in Pipes

Figure 3.6: The standing waves in the tubes are actually longitudinal sound waves. Here the dis-
placement standing waves in Figure 3.5 (Standing Waves in Wind Instruments) are shown instead as
longitudinal air pressure waves. Each wave would be oscillating back and forth between the state on
the right and the one on the left. See Standing Waves in Wind Instruments (Section 3.2) for more
explanation.

The harmonics of wind instruments are also a little more complicated, since there are two basic shapes
(cylindrical17 and conical18) that are useful for wind instruments, and they have di�erent properties. The
standing-wave tube of a wind instrument also may be open at both ends, or it may be closed at one end
(for a mouthpiece, for example), and this also a�ects the instrument. Please see Standing Waves in Wind
Instruments (Section 3.2) if you want more information on that subject. For the purposes of understanding
music theory, however, the important thing about standing waves in winds is this: the harmonic series they
produce is essentially the same as the harmonic series on a string. In other words, the second harmonic is
still half the length of the fundamental, the third harmonic is one third the length, and so on. (Actually, for
reasons explained in Standing Waves in Wind Instruments (Section 3.2), some harmonics are "missing" in
some wind instruments, but this mainly a�ects the timbre19 and some aspects of playing the instrument. It
does not a�ect the basic relationships in the harmonic series.)

17"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/#p1c>
18"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/#p1c>
19"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
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3.1.4 Standing Waves in Other Objects

So far we have looked at two of the four main groups of musical instruments: chordophones and aerophones.
That leaves membranophones20 and idiophones21. Membranophones are instruments in which the sound
is produced by making a membrane vibrate; drums are the most familiar example. Most drums do not
produce tones; they produce rhythmic "noise" (bursts of irregular waves). Some drums do have pitch22, due
to complex-patterned standing waves on the membrane that are reinforced in the space inside the drum.
This works a little bit like the waves in tubes, above, but the waves produced on membranes, though very
interesting, are too complex to be discussed here.

Idiophones are instruments in which the body of the instrument itself, or a part of it, produces the
original vibration. Some of these instruments (cymbals, for example) produce simple noise-like sounds when
struck. But in some, the shape of the instrument - usually a tube, block, circle, or bell shape - allows
the instrument to ring with a standing-wave vibration when you strike it. The standing waves in these
carefully-shaped-and-sized idiophones - for example, the blocks on a xylophone - produce pitched tones, but
again, the patterns of standing waves in these instruments are a little too complicated for this discussion.
If a percussion instrument does produce pitched sounds, however, the reason, again, is that it is mainly
producing harmonic-series overtones (Section 2.2).

note: Although percussion23 specializes in "noise"-type sounds, even instruments like snare drums
follow the basic physics rule of "bigger instrument makes longer wavelengths and lower sounds".
If you can, listen to a percussion player or section that is using snare drums, cymbals, or other
percussion of the same type but di�erent sizes. Can you hear the di�erence that size makes, as
opposed to di�erences in timbre24 produced by di�erent types of drums?

Exercise 3.1.2 (Solution on p. 77.)

Some idiophones, like gongs, ring at many di�erent pitches when they are struck. Like most drums,
they don't have a particular pitch, but make more of a "noise"-type sound. Other idiophones,
though, like xylophones, are designed to ring at more particular frequencies. Can you think of some
other percussion instruments that get particular pitches? (Some can get enough di�erent pitches
to play a tune.)

3.2 Standing Waves and Wind Instruments25

note: Are you really free to use this online resource? Join the discussion at Opening Measures26 .

3.2.1 Introduction

A wind instrument27 makes a tone (p. 59) when a standing wave (Section 3.1) of air is created inside it. In
most wind instruments, a vibration that the player makes at the mouthpiece28 is picked up and ampli�ed
and given a pleasant timbre29 by the air inside the tube-shaped body of the instrument. The shape and
length of the inside of the tube give the sound wave its pitch30 as well as its timbre.

20"Classifying Musical Instruments": Section Membranophones <http://cnx.org/content/m11896/latest/#s23>
21"Classifying Musical Instruments": Section Idiophones <http://cnx.org/content/m11896/latest/#s24>
22"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
23"Orchestral Instruments": Section Percussion <http://cnx.org/content/m11897/latest/#s14>
24"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
25This content is available online at <http://cnx.org/content/m12589/1.11/>.
26http://openingmeasures.com/open-education/40/are-the-education-resources-at-Connexions-really-free/
27"Orchestral Instruments": Section The Sections of the Orchestra <http://cnx.org/content/m11897/latest/#s1>
28"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/#p1b>
29"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
30"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
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You will �nd below a discussion of what makes standing waves in a tube (Section 3.2.2: What Makes
the Standing Waves in a Tube), wind instruments and the harmonic series (Section 3.2.3: Harmonic Series
in Tubes), and the types of tubes that can be used in musical instruments (Section 3.2.4: Basic Wind
Instrument Tube Types). This is a simpli�ed discussion to give you a basic idea of what's going on inside
a wind instrument. Mathematical equations are avoided, and all the complications - for example, what
happens to the wave when there are closed �nger holes in the side of the tube - are ignored. Actually, the
physics of what happens inside real wind instruments is so complex that physicists are still studying it, and
still don't have all the answers. If you want a more in-depth or more technical discussion, there are some
recommendations below (Section 3.2.5: Further Reading).

If you can't follow the discussion below, try reviewing Acoustics for Music Theory31, Standing Waves
and Musical Instruments (Section 3.1), Harmonic Series I32, and Wind Instruments: Some Basics33

3.2.2 What Makes the Standing Waves in a Tube

As discussed in Standing Waves and Musical Instruments (Section 3.1), instruments produce musical tones
by trapping waves of speci�c lengths in the instrument. It's pretty easy to see why the standing waves on a
string (Section 3.1.2: Standing Waves on Strings) can only have certain lengths; since the ends of the strings
are held in place, there has to be a node (p. 61) in the wave at each end. But what is it that makes only
certain standing waves possible in a tube of air?

To understand that, you'll have to understand a little bit about what makes waves in a tube di�erent
from waves on a string. Waves on a string are transverse waves34. The string is stretched out in one direction
(call it "up and down"), but when it's vibrating, the motion of the string is in a di�erent direction (call it
"back and forth"). Take a look at this animation35. At the nodes (each end, for example), there is no back
and forth motion, but in between the nodes, the string is moving back and forth very rapidly. The term for
this back-and-forth motion is displacement. There is no displacement at a node; the most displacement
happens at an antinode (p. 61).

Transverse Motion on a String

Figure 3.7

31"Acoustics for Music Theory" <http://cnx.org/content/m13246/latest/>
32"Harmonic Series I: Timbre and Octaves" <http://cnx.org/content/m13682/latest/>
33"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/>
34"Acoustics for Music Theory": Section Longitudinal and Transverse Waves

<http://cnx.org/content/m13246/latest/#s11>
35See the �le at <http://cnx.org/content/m12589/latest/TransverseNodes.swf>
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The standing waves of air in a tube are not transverse waves. Like all sound waves, they are longitudinal36.
So if the air in the tube is moving in a certain direction (call it "left and right"), the vibrations in the air
are going in that same direction (in this case, they are rushing "left and right").

But they are like the waves on a string in some important ways. Since they are standing waves, there are
still nodes - in this case, places where the air is not rushing back and forth. And, just as on the string, in
between the nodes there are antinodes, where the displacement is largest (the air is moving back and forth
the most). And when one antinode is going in one direction (left), the antinodes nearest it will be going in
the other direction (right). So, even though what is happening is very di�erent, the end result of standing
waves "trapped" in a tube will be very much like the end result of standing waves "trapped" on a string: a
harmonic series37 based on the tube length.

There will be more on that harmonic series in the next section (Section 3.2.3: Harmonic Series in Tubes).
First, let's talk about why only some standing waves will "�t" in a tube of a particular length. If the tube
were closed on both ends, it's easy to see that this would be a lot like the wave on the string. The air would
not be able to rush back and forth at the ends, so any wave trapped inside this tube would have to have
nodes at each end.

note: It's very di�cult to draw air that is rushing back and forth in some places and standing
still in other places, so most of the �gures below use a common illustration method, showing the
longitudinal waves as if they are simultaneously the two maximum positions of a transverse wave.
Here is an animation38 that may give you some idea of what is happening in a longitudinal standing
wave. As of this writing, there was a nice Standing Waves applet39 demonstration of waves in tubes.
Also, see below (Figure 3.13: Displacement Waves) for more explanation of what the transverse
waves inside the tubes really represent.

Fully Closed Tube

Figure 3.8: The standing waves inside the tube represent back-and-forth motion of the air. Since the
air can't move through the end of the tube, a closed tube must have a node at each end, just like a string
held at both ends.

Now, a closed tube wouldn't make a very good musical instrument; it wouldn't be very loud. Most of
the sound you hear from an instrument is not the standing wave inside the tube; the sound is made at the
open ends where the standing waves manage to create other waves that can move away from the instrument.
Physicists sometimes study the acoustics of a tube closed at both ends (called a Kundt tube), but most
wind instruments have at least one open end. An instrument that is open at both ends may be called
open-open, or just an open tube instrument. An instrument that is only open at one end may be called
open-closed, or a closed tube or stopped tube instrument (or sometimes semi-closed or half-closed).
This is a little confusing, since such instruments (trumpets40, for example) still obviously have one open end.

36"Acoustics for Music Theory": Section Longitudinal and Transverse Waves
<http://cnx.org/content/m13246/latest/#s11>

37"Harmonic Series I: Timbre and Octaves" <http://cnx.org/content/m13682/latest/>
38See the �le at <http://cnx.org/content/m12589/latest/PressureWaveNew.swf>
39http://www.physics.smu.edu/∼olness/www/05fall1320/applet/pipe-waves.html
40"Trumpets and Cornets" <http://cnx.org/content/m12606/latest/>
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Now, there's nothing stopping the air from rushing back and forth at the open end of the tube. In fact,
the waves that "�t" the tube are the ones that have antinodes at the open end, so the air is in fact rushing
back and forth there, causing waves (at the same frequency41 as the standing wave) that are not trapped in
the instrument but can go out into the room.

Open-Open and Open-Closed Tubes

Figure 3.9: There must be a (displacement) antinode at any open end of a tube.

What is it that requires the waves to have an antinode at an open end? Look again at the animation42

of what is happening to the air particles in the standing wave. The air at the nodes is not moving back and
forth, but it is piling up and spreading out again. So the air pressure is changing a lot at the nodes. But
at the antinodes, the air is moving a lot, but it is moving back and forth, not piling up and spreading out.
In fact, you can imagine that same wave to be an air pressure wave instead of an air displacement wave.
It really is both at the same time, but the pressure wave nodes are at the same place as the displacement
antinodes, and the pressure antinodes are at the same place as the displacement nodes.

An Air Displacement Wave is also an Air Pressure Wave

Figure 3.10: The nodes of the displacement wave, where the air is not rushing back-and-forth but is
doing the most piling-up-and-spreading-out, are the antinodes of the pressure wave. The antinodes of the
displacement wave, where the air is rushing back-and-forth the most, but is not piling up or spreading
out at all, are the nodes of the pressure wave. Both waves must have exactly the same frequency, of
course; they are actually just two aspects of the same sound wave.

41"Acoustics for Music Theory": Section Wavelength, Frequency, and Pitch <http://cnx.org/content/m13246/latest/#s2>
42See the �le at <http://cnx.org/content/m12589/latest/PressureWaveNew.swf>
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At an open end of the tube, there is nothing to stop the air rushing in and out, and so it does. What the
air cannot do at the open end is build up any pressure; there is nothing for the air to build up against, and
any drop in pressure will just bring air rushing in from outside the tube. So the air pressure at an open end
must remain the same as the air pressure of the room. In other words, that end must have a pressure node
(where the air pressure doesn't change) and (therefore) a displacement antinode.

note: Since being exposed to the air pressure outside the instrument is what is important, the
"open end" of a wind instrument, as far as the sound waves are concerned, is the �rst place that
they can escape - the �rst open hole. This is how woodwinds43 change the length of the wave, and
the pitch of the note. For more on this, please see Wind Instruments � Some Basics44.

3.2.3 Harmonic Series in Tubes

As explained in the previous section (Section 3.2.2: What Makes the Standing Waves in a Tube), the standing
waves in a tube must have a (displacement) node at a closed end and an antinode at an open end. In an
open-open tube, this leads to a harmonic series45 very similar to a harmonic series produced on a string
(Section 3.1.2: Standing Waves on Strings) that's held at both ends. The fundamental, the lowest note
possible in the tube, is the note with a wavelength twice the length of the tube (or string). The next possible
note has twice the frequency (half the wavelength) of the fundamental, the next three times the frequency,
the next four times, and so on.

Allowed Waves in an Open Tube

Figure 3.11: These are the �rst four harmonics allowed in an open tube. Any standing wave with a
displacement antinode at both ends is allowed, but the lower harmonics are usually the easiest to play
and the strongest harmonics in the timbre46.

But things are a little di�erent for the tube that is closed at one end and open at the other. The lowest
note that you might be able to get on such a tube (a fundamental that is unplayable on many instruments)
has a wavelength four times the length of the tube. (You may notice that this means that a stopped tube
will get a note half the frequency47 - an octave lower - than an open tube of the same length.) The next

43"Orchestral Instruments": Section Woodwinds <http://cnx.org/content/m11897/latest/#s12>
44"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/>
45"Harmonic Series I: Timbre and Octaves" <http://cnx.org/content/m13682/latest/>
46"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
47"Acoustics for Music Theory": Section Wavelength, Frequency, and Pitch <http://cnx.org/content/m13246/latest/#s2>
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note that is possible on the half-closed tube has three times the frequency of the fundamental, the next �ve
times,and so on. In other words, a stopped tube can only play the odd-numbered harmonics.

Allowed Wavelengths in a Stopped Tube

Figure 3.12: Again, these are the lowest (lowest pitch and lowest frequency) four harmonics allowed.
Any wave with a displacement node at the closed end and antinode at the open end is allowed. Note
that this means only the odd-numbered harmonics "�t".

Reminder: All of the transverse waves in Figure 3.8 (Fully Closed Tube), Figure 3.9 (Open-Open
and Open-Closed Tubes), Figure 3.11 (Allowed Waves in an Open Tube), and Figure 3.12 (Allowed
Wavelengths in a Stopped Tube) represent longitudinal displacement waves, as shown in Figure 3.13
(Displacement Waves). All of the harmonics would be happening in the tube at the same time,
and, for each harmonic, the displacement (Figure 3.13 (Displacement Waves)) and pressure waves
(Figure 3.14 (Pressure Waves)) are just two di�erent ways of representing the same wave.
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Displacement Waves

Figure 3.13: Here are the �rst three possible harmonics in a closed-open tube shown as longitudinal
displacement waves.
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Pressure Waves

Figure 3.14: Here are those same three waves shown as pressure waves.

3.2.4 Basic Wind Instrument Tube Types

The previous section shows why only the odd-numbered harmonics "�t" in a cylinder-shaped tube, but that
is not the whole story. There is one other tube shape that works well for wind instruments, and it abides by
slightly di�erent rules.

Just as on a string (Section 3.1.2: Standing Waves on Strings), the actual wave inside the instrument is a
complex wave that includes all of those possible harmonics48. A cylinder makes a good musical instrument
because all the waves in the tube happen to have simple, harmonic-series-type relationships. This becomes
very useful when the player overblows in order to get more notes. As mentioned above, woodwind players
get di�erent notes out of their instruments by opening and closing �nger holes, making the standing wave
tube longer or shorter. Once the player has used all the holes, higher notes are played by overblowing,
which causes the next higher harmonic of the tube to sound. In other words, the fundamental of the tube
is not heard when the player "overblows"; the note heard is the pitch of the next available harmonic (either
harmonic two or three). Brass players can get many di�erent harmonics from their instruments, and so do
not need as many �ngerings. (Please see Harmonic Series49 and Wind Instruments � Some Basics50 for more
on this.)

48"Harmonic Series I: Timbre and Octaves" <http://cnx.org/content/m13682/latest/>
49"Harmonic Series I: Timbre and Octaves" <http://cnx.org/content/m13682/latest/>
50"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/>
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For most possible tube shapes, a new set of holes would be needed to get notes that are in tune with
the lower set of notes. But a couple of shapes, including the cylinder, give higher notes that are basically in
tune with the lower notes using the same �nger holes (or valves). (Even so, some extra �nger holes or an
extra slide or valve is sometimes necessary for good tuning.) One other possible shape is basically not used
because it would be di�cult to build precisely and unwieldy to play. (Basically, it has to �are rapidly, at a
very speci�c rate of �are. The resulting instrument would be unwieldy and impractical. Please see John S.
Rigden's Physics and the Sound of Music, as cited below (Section 3.2.5: Further Reading) for more on this.)

Figure 3.15: The two shapes that are useful for real wind instruments are the cylinder and the cone.
Most real wind instruments are a combination of cylindrical and conical sections, but most act as (and
can be classi�ed as) either cylindrical bore or conical bore instruments.

The other tube shape that is often used in wind instruments is the cone. In fact, most real wind
instruments are tubes that are some sort of combination of cylindrical and conical tubes. But most can be
classi�ed as either cylindrical or conical instruments.

The really surprising thing is that stopped-tube instruments that are basically conical act as if they are
open-tube cylindrical instruments.

note: The math showing why this happens has been done, but I will not go into it here. Please
see the further reading (Section 3.2.5: Further Reading), below for books with a more rigorous and
in-depth discussion of the subject.

Compare, for example, the clarinet and the saxophone, woodwinds with very similar mouthpieces. Both
instruments, like any basic woodwind, have enough �nger holes and keys to play all the notes within an
octave. To get more notes, a woodwind player overblows, blowing hard enough to sound the next harmonic
of the instrument. For the saxophone, a very conical instrument, the next harmonic is the next octave51 (two
times the frequency of the fundamental), and the saxophonist can continue up this next octave by essentially
repeating the �ngerings for the �rst octave. Only a few extra keys are needed to help with tuning.

51"Octaves and the Major-Minor Tonal System" <http://cnx.org/content/m10862/latest/>
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The clarinet player doesn't have it so easy. Because the clarinet is a very cylindrical instrument, the next
harmonic available is three times the frequency, or an octave and a �fth52 higher, than the fundamental.
Extra holes and keys have to be added to the instrument to get the notes in that missing �fth, and then even
more keys are added to help the clarinetist get around the awkward �ngerings that can ensue. Many notes
have several possible �ngerings, and the player must choose �ngerings based on tuning and ease of motion
as they change notes.

So why bother with cylindrical instruments? Remember that an actual note from any instrument is a
very complex sound wave that includes lots of harmonics. The pitch that we hear when a wind instrument
plays a note is (usually) the lowest harmonic that is being produced in the tube at the time. The higher
harmonics produce the timbre53, or sound color, of the instrument. A saxophone-shaped instrument simply
can't get that odd-harmonics clarinet sound.

The shapes and sounds of the instruments that are popular today are the result of centuries of trial-and-
error experimentation by instrument-makers. Some of them understood something of the physics involved,
but the actual physics of real instruments - once you add sound holes, valves, keys, mouthpieces, and bells -
are incredibly complex, and theoretical physicists are still studying the subject and making new discoveries.

3.2.5 Further Reading

• Alexander Wood's The Physics of Music (1944, The Sherwood Press) is a classic which includes both
the basics of waves in a pipe and information about speci�c instruments.

• John Backus' The Acoustical Foundations of Music (1969, W.W. Norton and Company) also goes into
more detail on the physics of speci�c instruments.

• John S. Rigden's Physics and the Sound of Music (1977, John Wiley and Sons) includes most of the
math necessary for a really rigorous, complete explanation of basic acoustics, but is (in my opinion)
still very readable.

• Arthur H. Benade's Fundamentals of Musical Acoustics is a more technical textbook that gives some
idea of how acoustical experiments on instruments are designed and carried out. Those who are less
comfortable with the science/engineering aspect of the subject may prefer the two very thorough articles
by Benade in:

• The Physics of Music (W. H. Freeman and Co.), a collection of readings from the periodical Scienti�c
American.

52"Interval" <http://cnx.org/content/m10867/latest/#p21b>
53"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
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Solutions to Exercises in Chapter 3

Solution to Exercise 3.1.1 (p. 63)

1. The part of the string that can vibrate is shorter. The �nger becomes the new "end" of the string.
2. The new sound wave is shorter, so its frequency is higher.
3. It sounds higher; it has a higher pitch.

Figure 3.16: When a �nger holds the string down tightly, the �nger becomes the new end of the
vibrating part of the string. The vibrating part of the string is shorter, and the whole set of sound waves
it makes is shorter.

Solution to Exercise 3.1.2 (p. 67)

There are many, but here are some of the most familiar:

• Chimes
• All xylophone-type instruments, such as marimba, vibraphone, and glockenspiel
• Handbells and other tuned bells
• Steel pan drums
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