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PREFACE TO THE SECOND EDITION,

The first edition of this little book was published with small assurance of

success, for I had totally failed to induce any of the publishers of mechanical

books to undertake the work, or to encourage me in it. The field seemed to be

fully occupied, and the call for an addition to such a well worn subject was
so small that I could not induce any of the dealers to even place it in their

lists after I had published it at my own cost and risk of success.

My only encouragement was the fact, which I had demonstrated to my own
satisfaction, that not one of the books then accessible was of material assist-

ance in the actual construction of gear wheels, for they were either the

abstruse creations of learned professors, or were so far behind the present

practice as to be of small present value. I had to learn my business by dint

of practice and experience, and was obliged to teach my employes the sim-

plest details of the art by the same-process. I undertook to demonstrate my
opinion that a book on gearing by a man who could make a gear, would be

not only novel but useful, and I have succeeded beyond my expectations. I

have sold the first edition almost exclusively within the small field of my gear

trade, and the demand encourages me to issue a second edition of double the

size of the first.

The main part of the book is unchanged, the only alteration being in the

involute odontograph, which is now so arranged that interference is allowed

for by the table.

I have added my bevel gear chart, which has heretofore been a separate

publication. I have made no drawings for shaping bevel gear blanks since I

adopted this chart in my business, for it enables my employes to shape such

blanks more accurately, as well as more easily than is practicable by the

ordinary method. Naturally, some professional draftsmen do not approve of

this chart, for it dispenses with a material part of their assistance in the

workshop, but it will be appreciated by any machinist who will take the

pains to learn it.

I shall feel abundantly rewarded for my labor if my eff'orts shall contribute

to the destruction of the very prevalent but unfounded notion that the epicy-

cloidal gear tooth has any practical merit in comparison with the involute

form. The epicycloidal tooth curve, like the circular pitch system, is in ex-

istence by virtue of the force of "human inertia" and not by reason of

superiority.

The new matter in this book is protected by copyright, but I have been and

generally shall be pleased to permit its use in other works when proper refer-

ence to its origin is made.

Respectfully,

Boston, Mass., April, 1887.

GEORGE B. GRANT.
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THE TEETH OF

GEAR WHEELS.
INTRODUCTION.

Few mechanical subjects have attracted the attention of scientific men
to such an extent, or are so intimately connected with mathematics, as the
proper construction of the teeth of gear wheels, and, as a consequence, few
can show such an advance as has here been made, from the rough cog
wheel of not many years ago, to the neat cut gear of the present day.

It is not apparent wherein much further improvement is needed in our
knowledge of the theory of the subject, but it is evident that much remains
to be done towards its practical application, and to induce the working
mechanic to understand and use the improvements that have been developed
by the mathematician and the inventor. The theory seems to be full and
well nigh perfect, but the mill-wright and the machinist still clings to
imperfect rules and clumsy devices that should have been forgotten years*
ago, and few workmen have a clear knowledge of even the rudiments of the
science which it is their business to apply to practical purposes.

It is the mathematical and scientific character of the subject that makes
it so difficult to the practical man, who can understand but little of it as it

is commonly presented in elaborate treatises or encyclopaedias, and who
takes but little interest in the study of a matter that bristles with strange
characters and technical terms.

I have here undertaken to address the workman as well as the man of
science, and have felt obliged to leave out nearly everything that cannot be
treated in a plain, descriptive manner, to use language that any intelligent
man can understand, and to refer to more pretentious works than this for
demonstrations, or unessential details.

A volume of a thousand pages would not properly present the whole
subject, and this little pamphlet can deal only with the main principles and
prominent points. It is not a treatise, it is a hand-book that does not
pretend to cover the whole ground, and its principal object is to present
the new odontographs, which I believe to be superior to those heretofore
in ase for the purpose of designing the teeth of gear wheels.

FIRST PRINCIPLES.
The original gear wheel had pins or projections for

teeth, of any form that would serve the general purpose
and communicate an unsteady motion from one wheel to
another.

flQ. 2. FRICTION WHEELS.

The perfect gear wheel is the friction wheel, communicating
a smooth, uniform, rolling motion, by means of the frictional
icontact of its surface. It is, in fact, a gear wheel with a
great many very small, weak, and irregular teet^i.

The whole aim and object of the science of the teeth of gear
wheels is to increase the size and strength of these teeth with-
out destroying the uniformity of the motion they transmit,

and this is accomplished by studying the shape of the teeth, and giving their
bearing surfaces the curved outline that is found to produce the desired
result.

There are an infinite number of curves that' will meet the requirement,
but only two, the epicycloid and the involute, are of any practical impor-
tance, or in actual use.



THE EPICYCLOIDAL TOOTH.
The epicycloidal or double curve tooth

has its bearing surface formed of two
curves, meeting at the pitch line P,
which corresponds to the working cir-
cle of the perfect gear wheel of fig. 2.

If a small circle,a,be rolled around on
the outside of the pitch circle,p, a fixed

\ tracing point, a, in its edge, will trace
• out the dotted line called an epicycloid,

I
and a small part of this curve near the

• pitch line, usually one sixth of its full

Jii height,forms the face of the tooth.
s^y Similarly, if a small circle, B, be rolled

around on the inside of the pitch line,

its tracing point, b, will describe the
internal epicycloid, or hypocycloid, a
small portion of which is used for the

FIO. t. THE EPICYCLOIDAL TOOTH. flank Of thC tOOth.

#

FIG .4 WHOLE EPICYCLOIDAL TEETH.

If a projection be formed on the friction
wheel fig. 4, the curved outline of which
is a whole epicycloid E, and a depression
be formed in the wheel N having a whole
hypocycloid H for its outline, then, if both
curves have been formed by the same
describing circle B, it can be mathemati-
cally demonstrated that the two curves
will just touch and slide on each other»
without separating or intersecting, while
the two friction wheels roll together.
The reverse of this fact is also true, that,

if one wheel drives another by means of
an epicycloidal projection on it working
against a hypocycloidal depression in the
other, both curves being formed by the
same describing circle, the two wheels will
roll together as uniformly as if driven by

frictional contact, and it is this peculiar property of the epicycloid that gives
it its value for the purpose in hand.
The pressure acting between the two curves is in the direction of the

line dg, is direct only at the start, and becomes more and more oblique,
until, when the middle points, q q, come together, and beyond, there is no
driving action at all. This defect forbids the use of the whole curve and we
can use but a small portion of it near the pitch line. Another projection and
depression must be formed so near the first that they will come into work-
ing position before the first pair are out of contact, thus forming the theo-
retically perfect but incomplete gears of fig. 5.

Practical requirements still further
modify the apparent shape of the
tooth, for it is desirable that the
wheels shall work in either direction,
and that they shall be interchangea-
ble, so that any one of a set of several
shall work with any other of that set.

This can be accomplished only by
making the curves face both ways,
and by putting both projections and
depressions on each gear, thus form-
ing the familiar tooth of fig. 3.

no. 5. INCOMPLETE EPICYCLOIDAL TEETH.



THE INTERCHANGEABLE SET.
If all the curves of a set of several gears, both the faces and the flanks

of each gear, are described by the same rolling circle, the set will be
interchangeable, and any one v^^ill work perfectly with any other.

This is a property of the greatest practical importance, and interchangea-
ble sets should come into as universal use on heavy mill work as with cut p-ear-

ing. It is the only system that will allow the use of a set of ready made
cutters, and is therefore essential to the economical manufacture of cut
gear wheels.
The diameter of the rolling circle is usually made half the diameter of the

smallest gear of the set, and that gear will have straight radial lines for
flanks.

The set in almost universal use and adopted for all the odontographs, has
twelve teeth in its smallest gear, but there is a tendency to change this well
established system, and create confusion for which the writer can see no
adequate excuse, by the adoption of a pinion of fifteen teeth as the base
or smallest gear. It may be admitted that as large a base as possible should
be used, but the change from twelve to fifteen seems to be unwarranted
in view of the confusion it creates by the abrupt change from an old and
good rule to a new one that is a mere shade better, and the trouble it makes
with small pinions of eight to twelve teeth.

RADIAL FLANK TEETH.
If the internal curves, or flanks, of a pair of gears that are to run together

are on each radial straight lines described by a rolling circle of half its

pitch diameter, and the rolling circle that describes the flanks of one gear
is used to describe the faces of the other gear, then, the two gears will form
a pair fitted to each other and not interchangeable with other gears.

This style of gear is very often used under the erroneous impression that
it is the best possible form, and will give the least possible friction and
thrust on the bearings, but the saving in friction over the interchangeable
form would be an exceedingly difficult thing to measure by any practicable
method, although it can be mathematically demonstrated to be a fact, and
the slender roots of such teeth make them weaker and much inferior to the
others. The odontograph figures show both a pair of these gears, and the
same pair on the interchangeable plan, also, by the dotted lines on the former
figure, the shapes as they would be on the interchangeable plan. It is plainly
seen that the interchangeable faces are but a shade more rounding, while
their flanks are so curved that the teeth are much stronger at the roots. The
larger the describing circle, the less the theoretical thrust and friction, and
if the flanks were formed by a describing circle of more than half the diam-
eter of the gear, the teeth would be undercurved, the friction less, and their
strength less, than that of the radial flank tooth.
In practical matters it is a good plan to give first place to practical points,

and not to take too much notice of minute theoretical advantages, and
there is no good reason, that will bear the test of experiment, for adopting
the radial flank, non-interchangeable, and weak tooth, in preference to the
strong tooth of the interchangeable system.

THE PITCH.
The pitch is a term used to designate the size of the tooth, and is either

circular or diametral.

THE CIRCULAR PITCH or more properly the circumferential pitch,

is the actual distance from tooth to tooth measured along the curve of the
pitch line, and is expressed in inches, as f inch pitch, 1^ inch pitch, etc.

The table gives the proper pitch diameter of a gear of any given number
of teeth, and one inch circular pitch. The tabular numbers must be multi-
plied by any other pitch that is in use.
Formerly, the circular pitch was the only one known, but it has deser-

vedly gone out of use on cut gears, and it is hoped may soon be abandoned
altogether. It is a clumsy, awkward, and troublesome device on either large
or small work, having its origin in the ignorance of the past, and owing its



existence not to any perceptible merit, but to habit, and the natural per-
sistence of an established custom.
With the circular pitch the relation between the pitch diameter of the

gear, and the number of teeth on it, is fractional. If the diameter is a
convenient quantity, such as a whole number of inches, the pitch must be
an inconvenient fraction, and if the pitch is a handy part of an inch, the
diameter will contain an unhandy decimal.
With the circular pitch there is no one length of tooth that is better than

any other, and consequently there is no agreement upon that point. Each
maker is at liberty to chose his own distance at random, and whatever he
choses is as good as any other.

Its worst feature is that it leads to endless errors, for the average mechanic
appreciates convenience more than accuracy, and will stretch his figures to
suit his facts, with a botch as the common result.

A millwright figures out a diameter of 22.29 inches for a gear of one inch
pitch and 70 teeth, and failing to make such a clumsy figure fit his work or
his foot rule, and thinking a quarter of an inch or so to be of no importance,
he lets it go at 22 Avhole inches. The same process on its mate of 15 teeth
gives a 5 inch gear instead of one of 4.78 inches diameter, and the pair will

never run or wear together properly. His only alternatives are to adopt
the clumsy true diameters, or else use the clumsy figure .988 inch for his
pitch.
Again, he is apt to apply a carpenter's rule directly to the teeth of the

gear he is to repair or match, and naturally takes the nearest convenient
fraction of an inch as his measurement, when the real pitch may be just
enough diiferent to spoil the job.

There is no reason whatever for using the circular pitch, unless the w^ork

to be done is to match work already in use.

THE DIAMETRAL PITCH is an immense improvement on the old
fashioned circular pitch. It is not a measurement, but a number, or ratio.

It is the number of teeth on the gear, for each inch of its pitch diameter,
and its merit is that it establishes a convenient and manageable relation

between these two principal elements, so that the calculations are of the
simplest description and the results convenient and accurate.

The product of the pitch and the pitch diameter is equal to the number of
teeth, and the number of teeth divided by the pitch is equal to the pitch diame-
ter. A gear of 15 inches diameter and 2 pitch has 30 teeth, and a gear of 27
teeth of 4 pitch has a pitch diameter of 6f inches.

The rule that the length of the tooth is two pitch parts of an inch, f or ^
an inch for 4 pitch, f or 1 inch for 2 pitch, etc. is so simple and so much bet-

ter than any other that it is never disputed, and is in universal use.

The circular and diametral pitches are connected by the relation

cxp=3.1416.

or, the product of the circular and the diametral pitch is the number 3.1416-

THE ADDENDUM.
For reasons expressed above we can use but a small part of the epicy-

cloidal curve near the pitch line, limiting it by a circle drawn at a distance
inside or outside of the pitch line called the addendum. The outside limit

need not be the same as the inside limit, but it is customary to make them
equal.
When the diametral pitch is used, the length of the addendum is always

one pitch part of an inch, as Jthinch for 4 pitch, ^rd inch for 3 pitch, etc. If

we use the same proportion for circular pitches the addendum will be 3 xix^
circular pitch, and the value -Jrd of the circular pitch may be adopted as the
most convenient for use.

THE CLEARANCE.
Theoretically, the depression formed inside the pitch line should be ODly as

deep as the projection outside of it is high, but to allow for practical defects

in the making or in the adjustment of the teeth, and to provide a place for



dirt to lodge, the depression is always deeper than theory requires by an
amount called the clearance. The amount of the clearance is arbitrary, but
the sixteenth part of the depth of the tooth is a convenient and customary
measure, or ^^^th of the circular pitch, and 1 divided by 8 times the diametral
pitch. The following tables will be convenient and save calculation:

CLEARANCE FOR CIRCULAR PITCHES.

Circular pitch.

Clearance.
i

.02
t

.03 .03 .04

1

.04 .05
H
.05

If
.06 .06

If
.07

2

.08 .09
2i
.10

8

.12

CLEARANCE FOR DIAMETRAL PITCHES.

Diametral pitch.
|

Clearance.
6

.02

5

.03

4 Si
.03 .04

H
.04

3

.04

2-

.05 .05

9i

.06

2

.06

If
.08 .09 .10

1

.12

THE BACKLASH.
When wooden cogs or rough cast teeth are used, the inevitable irregular-

ities require that the teeth should not pretend to fit closely, but that the
spaces should be larger than the teeth by an amount called the backlash.
The amount of the backlash is arbitrary, but it is customary to make it

about equal to the clearance.
Cut gears should have no allowance for backlash, and involute teeth need

less backlash than epicycloidal teeth.

PITCH DIAMETERS.
WO±l ONE IlSrCIi CIRCTJI.^1?, I>ITCII.

For Any Other Pitch, Multiply by that Pitch.

T. P.D. T. P.D. T. P.D. T. P.D.

10 3.18 33 10.50 56 17.83 79 25.15
11 8.50 34 10.82 57 18.15 80 25.47
12 3 82 35 11.14 58 18.47 81 25.79
13 4.14 36 11.46 59 18.78 82 26.10
14 4 46 37 11.78 60 19.10 83 26.43
15 4.78 38 12.10 61 19.42 84 26.74
16 6.09 39 12.42 62 19.74 85 27.06
17 5.40 40 12.74 63 20.06 86 27.38
18 5.73 41 13.05 64 20.38 87 27.70
19 6.05 42 13.37 65 20.69 88 28.02
20 6.37 43 13.69 66 21.02 89 28.34
21 6 69 44 14.00 67 21.33 90 28.65
22 7.00 45 14.33 68 21.65 91 28.97
23 7.32 46 14.65 69 21.97 92 29.29
24 7.64 47 14.96 70 22.29 93 29.60
25 7.96 48 15.28 71 22.60 94 29.93
26 8.28 49 15.60 72 22.92 9.5 30.25
27 8.60 50 15.92 73 23.24 96 30.56
28 8.90 61 16.24 74 23.50 97 30.88
29 9.23 52 16 56 75 23.88 98 31.20
30 9.55 53 16.87 76 24.20 99 31.52
31 9.87 54 17.19 77 24.52 100 31.84
32 10.19

;

55 17.62 78 24.83



FIQ. 6. THE EPICYCLOID.

THE EPICYCLOID.
THEORETICAL FORMATION.

The true epicycloid, shown by fig. 6,

is perpendicular to the pitch line at
the origin a, and forms an endless
series of lobes about it, as in fig. 3.

The most convenient and simple
process for drawing it, is to step it off

with the dividers. Several describing
circles, M^ to M^, are drawn at ran-
dom ; steps are made, as shown by
the figure, from the origin a^ to past
each tangent point, a^ to a^, and then
the same number back, around each
circle, to locate the several points, b^
to b^, on the curve, which is then
drawn by hand through the points,
and is accurately in place if the steps
are small.

By the mechanical method for drawing the
curve, the describing circle, B, is rolled around
the pitch circle A, and a tracing point or pencil
P, draws the curve. A steel ribbon s, is fastened
to the templets at each end, and assists in keep-
ing them in place.
This process is the main principle of the epicy-

cloidal engine, which carries a scribing tool, or
a rotary cutter at p, to trace or cut out a tem-
plet that is then used in forming gear teeth or
gear cutters.

It is, of course, the most accurate method
known, but it is not available for ordinary pur-
poses, for unless the templets are well made and
skillfully handled, the resulting curve will be

poorly drawn, and the method, although simple in principle, may be consid-
ered difficult in its practical application.

PRACTICAL FORMATION.
Of course nothing but the perfect curve will answer its purpose with per-

fect accuracy, but the epicycloid is a peculiar curve which cannot be accu-
rately drawn by any simple process, or with common instruments, particu-
larly when the teeth are small, and it is customary to use arcs of circles or
other curves, which approximate as nearly as possible to the true curve.
Such an arc can be made to agree with the curve so closely that it is a need-

less refinement to be more particular for most practical purposes, such as
drafting teeth, making wooden cogs or patterns for cast teeth, or even the
templets for shaping gear cutters and planing bevel gear teeth.

Some makers of rough cast or heavy planed gearing go to great expense
to construct the (supposed to be) theoretically true epicycloid, by means of
rolling circles. This practice looks very much indeed like accuracy, but if

he had an absolutely true curve as a templet, supposing he could make such
a thing, the maker of this class of work could not produce from it a work-
ing tooth more nearly perfect than if the templet was properly constructed
of circular arcs. It is labor lost to lay out teeth to the thousandth of an
inch, that must be constructed with ordinary hand or machine tools, or
shaped with a chisel and mallet.
Furthermore, it is a question if the delicate processes and epicycloidal

engines used for the finest cut gear work, can serve practical purposes and
construct templets to work from, better than intelligent and skillful

hand-work. It is a fact that the best work in this line is made from tem-
plets that are laid out by theory, but dressed into shape and perfected by
hand and eye processes.

THE EPICYCLOIDAL ENGINE.



ODONTOGRAPHS.
Many arbitrary or "rule of thumb" methods for shaping gear teeth have

been proposed, but they are generally worthless, and reliance should be placed

only on such as are founded on the mathematical principles of the curve to

be imitated. Of these only three are known to the writer.

THE WILLIS ODONTOGRAPH is a method for finding the
center m of the circle which is tangent to the epicycloid a b c, at the point b,

where it is cut by a line b m, which passes through the adjacent pitch point
k, and makes the angle gkf==75^ with the radial line kf.

The radius used, is not the line m b, but the more convenient line m a.

The instrument is nothing whatever but a piece of card or sheet metal
cut to the angle of 75'', which is laid against the radial line kf, as a guide
for drawing the line k m. The center distance k m, to be laid off along the
line thus drawn is given by a table that accompanies the instrument.
No instrument is necessary, for the line km may be placed by drawing the

arc f g with a radius of one iiich, and laying ofE the chord f g=1.22 inch. The
tabular distance km can be readily computed from

^1 mi — 9 OQ

ko m,

2.03

c

2.03

t+12
t

t-12

in which c is the circular pitch in inches, and t is the number of teeth in

the gear.
The Willis odontograph, as found in use, is confined to the single case of

an interchangeable series running from twelve teeth to a rack, but for any
possible pair of gears the angle becomes

g k f = 90° — J^°
s

and
^ ^ 6.28

ko mo =

180"

180°

t ^

t + s*

. _*_.
6.28 ' t— s* "'"

s

in which t is the number of teeth in the gear being drawn and s the number
in the mate.
The accuracy of the Willis circular arc will be examined further on.



THE IMPROVED WILLIS ODONTOGRAPH.
EPICYCLOIDAL TEETH.

TWELVE TO RACK. INTERCHANGEABLE SERIES.

FOR ONE For one inch
NUMBER OF DIAMETRAL PITCH. CIRCULAR PITCH.
TEETH

For any other pitch, divide For any other pitch, mul-
IN THE GEAK. by that pitch. tiply by that pitch.

Faces. Flanks. Faces. Flanks. 1

Exact. Intervals. Rad. Dis. Rad. DIs. Rad.

.73

Dis. Rad. Dis.

12 12 2.30 .15 oo oo .05 OO OO
13i 13-14 2.35 .16 15.42 10,25 .75 .05 4.92 3.26

15i 15-16 2.40 .17 8.38 3.86 .77 .05 2.66 1.24m 17-18 2.45 .18 6.43 2.35 .78 .06 2.05 .75

20 19-21 2.50 .19 5.38 1.62 .80 .06 1.72 .52

23 22-24 2.55 .21 4.75 1.23 .81 .07 1.52 .39

27 25-29 2.61 .23 4.31 .98 .83 .07 1.36 .31

33 30-36 2.68 .25 3.97 .79 .85 .08 1.26 .26

42 37-48 2.75 .27 3.69 .66 .88 .09 1.18 .21

58 49-72 2.83 .30 3.49 .57 .90 .10 1.10 .18

97 73-144 2.93 .33 3.30 .49 .93 .11 1.05 .15

290 145-rack. 3.04 .37 3.18 .42 .97 .12 1.01 .13

THE IMPROVED WILLIS ODONTOGRAPH.
I have carefully calculated the distances mi n^ and mg Ug of the circles of

centers from the pitch line, and also the radii a^ mi and ag mg, and have
arranged them in the table above, so that the data resulting from the usual
process can be obtained without the usual labor.

This improved Willis process will produce exactly the same circular arc
as the usual method, with the same theoretical error, but its operation is

simpler and less liable to errors of manipulation.
By the usual process it is necessary to draw two radial lines, and to lay off

a line at an angle with each. The tabular distances laid off on these lines,

will locate the two centers. The two circles of centers are then drawn
through them, and the dividers set to the radii to be used.
By the new process the circles of centers are drawn at once without pre-

liminary constructions, at the tabular distances from the pitch line, and the
table also gives the radii to be taken on the dividers. No special instru-
ment is required, no angles or special lines are drawn to locate the centers,
and the chance of error is much less.

This process, however, is not as correct, and is no simpler or more con-
venient than the new odontographic process given further on.



ROBINSON'S TEMPLET ODONTOGRAPH.
This ingenious instrument, the invention of Prof. S. W. Robinson of the

Ohio State University at Columbus, is based on the fact that some part of

a certain curve of uniformly increasing curvature, called the logarithmic
spiral, can be made to agree with the true curve of a gear tooth with a degree
of approximation that is very precise.

It is a sheet metal templet having a graduated curved edge a c, shaped to
a logarithmic spiral, and a hollow edge a b shaped to its evolute, an equal
logarithmic spiral.

To apply the instrument, draw a radial line from the pitch point d on
the pitch line, and another from e, the center of the tooth, and then draw
tangents d g and n e f , square with the radial lines.

The instrument is then so placed that a certain graduation, given by
accompanying tables, is at the point h on the tangent nef, while the grad-
uated edge ac, is at the pitch point d, and the hollow edge ab, just touches
the tangent line nef at k, and then the face of the tooth is drawn with a pen
along the graduated edge. The flank is similarly located by placing the
instrument so that a certain other graduation is at the pitch point d, while
its hollow edge touches the tangent line g d.

The full theory of this instrument would be out of place here, but may be
found in No. 24 of Van Nostrand's Science Series, or in Van Nostrand's Mag-
azine for July, 1876.
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A NEW ODONTOGRAPH.

TJaving frequently to apply the Willis Odontograph, it occurred to me
that the process would be much simplified and much time and labor saved
if the location of the circles of centers and the lengths of the radii were
computed and tabulated, thus forming the improved Willis method already
described.

It was then evident that the process would be precisely the same, and the
result much improved, if the centers tabulated were the centers of the near-

est possible approximating circles, rather than of the Willis circles, and I
have embodied this idea in the following tables.

I have carefully computed, by accurate trigonometrical methods, and have
tabulated the location of the center of the circular arc that passes through
the three most important points on the curve, at the pitch line a, fig. 9,

at the addendum line k, and the point e, half way between.
The tables locate this center directly, giving its distance from the pitch

line, and from the pitch point.
The circles of centers are drawn at the tabular distances "dis" inside and

outside the pitch lines, and all the faces and flanks are drawn from centers
on these circles, with the dividers set to the tabular radii "rad."
The tables are arranged in an equidistant series of twelve intervals. For

ordinary purposes the tabular value for any interval can be used for any
tooth in that interval, but for greater precision it is exact only for the
given ''exact" number, and intermediate values must be taken for inter-
mediate teeth.
The tables are arranged for both the diametral and circular pitch sys-

tems. The former is much the more manageable and should be used when
the work is not to interchange with work already made on the latter
system.
The first table, giving an interchangeable set, from twelve teeth upwards,

is the one for general use.
The second, or radial flank table, is inserted because teeth are sometimes

drawn that way, but, as before explained, they are weak, not interchange-
able, and but a mere shade more direct in their action than the interchange-
able style.

ACCURACY OF THE ODONTOGRAPH.
The assertion is often made that no circular arc can be made to do duty for

the epicycloid, except for rough work, but it can be shown that the state-
ment is not true if applied to the new method, for few mechanical processes
can be made to work closer to a given example, than this arc is close to the
true curve.

Figure 9 shows the true curve, and both the
new and the Willis approximating arcs, the
actual proportions being exagerated to show the
errors more clearly.

The Willis arc runs altogether within the true
curve, while the new arc crosses it twice.
We will take, for an example, the case of a

twelve tooth pinion, which will show the errors
at their greatest, and calculate them with great
care for a tooth of three inch circular pitch, which
is twice the size of the figure on page 18, and
may be considered a very large tooth.

Pig g

^ The distance from pitch line to addendum line
is divided into eight equal spaces by parallel cir-

cles, and the distance along each circle, in ten thousandths of an inch, from
the true curve to each odontographic arc, is as follows;
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At a
" b
•' c
'' d
'' e
U f

GRANT.
.0000

+ .0088

+ .0091

+.0056
.0000

-.0036
-.0061
-.0046
.0000

WILLIS.

.0000 inches
+.0175 "

+.0244 "

+.0283 "

+.0288 '•

+.0297 "

+.0308 "

+ .0342 "

+.0397 "

Average, .0042 .0260 "

It is seen that the new arc is in no place one hundredth of an inch in error,

and that for a tooth of four pitch, a large size for cut work, its average

error is one thousandth of an inch. A greater accuracy than this would be
of no practical value.

The twelve tooth gear, for which the errors of both arcs were com-
puted, shows them at their maximum value, for, as the number of teeth in

the gear increases, the errors diminish, and for several locations their values

for the new arc at c, which is the point of greatest error, are as follows

:

For t = 12 = .009 inches.
" 20 " .008 "
" 40 '• .006 ''

" 100 " .004 "
'' 300 '' .002 *•

and the errors of the Willis arc are subject to the same rule.

The error of the Willis arc is plainly shown, at its greatest value, by the
figure on page 13, where the dotted faces of the pinion teeth are correctly
located by the Willis method.
To further test the accuracy of the new method, construct the same tooth

face several times by the samejprocess, using either the method by points,
or the usual Willis process. Unless the work is most carefully performed,
it will be found that the several results will not agree with each other by
amounts that are noticeable, while by the new method they will be sub-
stantially the same curve.
The new arc is most nearly correct at the most important point, the

upper part of the curve, just where the Willis arc is most out of place, or
where the true curve, unless drawn by some delicate and costly apparatus,
in most likely to be out of place.

CIRCULAR AND DIAMETRAL PITCHES COMPARED.

CIR. P. DM. P.

6 .52

5h .58

5 .63

ih .70

4 .78

3i .90

3 1.05

21 1.15

2h 1.25

H 1.40

2 1.57

11 1.80

U 2.10

u 2.50

1 3.14

1 4.20

h 6.28

DM. P. CIR. P.

h 6.28

1 4.20

1 3.14

u 2 50

u 2.10

.
11 1 80

2 1.57

2i 1.25

3 1.05

3i .90

4 .78

5 .63

6 .52

7 .45

8 .39

9 .35

10 .31
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THE NEW ODONTOGRAPH.

GENERAL DIRECTIONS.
Draw the pitch line and divide it for the pitch points mag. Take from

the tables, multiply or divide, as the case may require, by the pitch in use,
and lay off, the addendum a b and a c, the clearance e f , the backlash s g',

the face distance ad, and the flank distance ac. Draw the addendum line

through b, the root line through e, the clearance line through f, the line

of face centers through d, and the line of flank centers through c. Set the
dividers to the face radius, and draw all the faces ab from centers A. Set
to the flank radius, and draw all the flanks a k from centers B. Round the
flanks into the clearance line. The flanks of a gear of twelve teeth are
straight radial lines.

ODONTOGRAPH TABLE.
EPICYCLOIDALr TEETH.
INTERCHANGEABLE SERIES.

From a PiNioif of Twelve Teeth to a Rack.

1

FOR ONE FOR ONE INCH |

NUMBER OP

TEETH
DIAB3

For ar

[ETRAL P tTCH.

dde by For£

.CUI.AR PITCH.
1

ly other pjtch, di my other pitch, multiply 1

IN THB GEAR.
that pitch. by that pitch. 1

Faces. Flanks. Faces. Flanks. 1

Exact. Intervals. Rad. Dis. Rad. Dis. Rad. Dis. Rad. Dis.

12 12 2.01 .06 CO CO .64 .02 CO oc
13i 13-14 2.04 .07 15.10 9.43 .65 .02 4.80 3.00

15i 15-16 2.10 .09 7.86 3.46 .67 .03 2.50 1.10

I7h 17-18 2.14 .11 6.13 2.20 .68 .04 1.95 .70

20 19-21 2.20 .13 5.12 1.57 .70 .04 1.63 .50

23 22-24 2.26 .15 4.50 1.13 .72 .05 1.43 .36

27 25-29 2.33 .16 4.10 .96 .74 .05 1.30 .29

m 30-36 2.40 .19 3.80 .72 .76 .06 1.20 .23

42 37-48 2 48 .22 3.52 .63 .79 .07 1.12 .20

58 49-72 2 60 .25 3 33 .54 .83 .08 1.06 .17

97 73-144 2.83 .28 3.14 .44 .90 .09 1.00 .14

290 145-rack. 2.92 .31 3.00 .38 .93 .10 .95 .12
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A PRACTICAL EXAMPLE

OF THE WORK OF THE NEW ODONTOGRAPH.

INTERCHANGEABLE SERIES.

Example.—A gear of 24 teetli, and a gear of 12 teeth, of li circular
pitch.
Data.—Take from the table the numbers to be used, which are as follows

when multiplied by li.

For 24 teeth, face rad, = 1.08 face dis, = .07.
" 24 '' flank '' = 2.15 flank " — .54.
" 12 " face " ^ ,96 face " = .03.
" 12 '' flank " =: oo flank "=00

Also take from the proper tables the pitch diameters 5.73 and 11.46 inches,
the addendum, .5 inch, and clearance, .06 inch.
Process.—Draw the two pitbh lines, and divide for the pitch points. Draw

the addendum, root, and clearance lines of both gears.
Draw the circles of centers, .03 inside the pitch line of the 12 tooth gear,

and .07 inside of that of the other. Draw the circles of flank centers, .54

outside the pitch line of the 24 tooth gear, and draw straight radial flanks
for the 12 tooth gear.

Draw the faces of the 12 tooth gear with the radius. 96, and draw the faces
of the 24 tooth gear with the radius, 1.08, and the flanks with tlie radius 2.15.

Kound the flanks into the root line, and allow backlash by thinning the
teeth according to judgement.
The dotted faces of the 12 tooth gear show them as they would be laid

out by the Willis odontograph, and the figure also shows the two centers
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RADIAL FLANK SYSTEM.
TEETH NOT INTERCHANGEABLE.

Gears on this system must work together in pairs, each gear being fitted to

its mate and to no other. See page 3. The process is the same that has been
described on page 12 for the interchangeable set.

RADIAL FLANK SYSTEM.
Explanation of the Table,—The upper number in each square is the

face radius, the lower is the center distance.
The centers are mostly insid the pitch line, but some are on^the line, and

those having the negative sign are outside of it.

The tabular numbers are for one inch circular pitch, and must be multi-
plied by any other circular pitch in use. For the value for any diametral
pitch, multiply the tabular number by 3.14, and then divide by the diame-
tral pitch in use.
Example.—A gear of 12 teeth, paired with a gear of 24 teeth. Circular

pitch 1^ inches.
Data.—Take from the table for 12 teeth into24,face radius =.68 and cen-

ter distance = 0, and for 24 teeth into 12. radius = 72, and distance == .05.

These multiplied by 1^ give the values for use on the drawing, 12 rad. =1.02,
12 dis = 0, 24 rad. = 1.08, and 24 dis. = .07.

The addendum is one third the pitch, = ^ inch, and the proper tables give
the clearance =.06, and the pitch diameters = 5.73 and 11.46 inches.
Process.—Draw the two pitch lines 5.73 and 11.46 inches in diameter and

space them for the teeth.

Lay off the addendum, .5 inch, and the clearance, .06 inch, and draw the

addendum, root, and clearance lines.
.^ , ,.

Draw all the faces of the twelve tooth gear, from centers on its pitch line,

with the radius 1.02. Draw all the faces of the 24 tooth gear from centers

on a line .07 inch inside its pitch line, with the radius 1.08 inches. Draw
straight radial lines for the flanks of all the teeth.
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ODONTOGRAPH TABLE.
EPICirCI.OII>AIi TEETH.

RADIAL FLANK TABLE.

FOR ANT POSSIBLE PAIR OF GEARS, NOT INTERCHANGEABLE.

Multiply by the Circulab Pitch.

Divide by the Diametral Pitch, and then multiply by 3.14.

mm
rSETH
BEING

Exact.

BSR OF
IN GEAR
DRAWN.

Intervals.

NUMBKR OF TEETH IN THE MATE.

,o 13 15 17 19 22 25 30 37 49 73 145
^^ 14 16 18 21 24 29 36 48 72 144 rack

12 12
.64

.02

.64

.01

.65

.01

.66

.01

.67 .68 .69

-.01
.70

-.01
.71

-.02
.73

-.02
.74

-.03
.75

-.03

13i 13-14
.65

.02

.66

.02

.67

.01

.68

.01

.69

.01

.70 .72 .74
-.01

.75
-.01

.76

-.02
.78

-.02
.79

-.03

15i 15-16
.67

.03

.68

.02

.69

.02

.70

.01

.72

.01

.74

.01

.75 .78 .79

-.01
.82

-.02
.84

-.02
.84

-.03

m 17-18
.68

.04

.70

.03

.71

.02

.73

.02

.75

.01

.77

.01

.78

.01

.82 .84

-.01
.87

-.01
.89

-.02
.90

-.03

20 19-21
.70

.04

.72

.04

.74

.03

.76

.02

.79

.02

.81

.01

.83

.01

.87 .90 .93

-.01
.96

-.02
.96

-.03

23 22-24
.72

.05

.74

.04

.76

.04

.79

.03

.82

.02

.85

.03

.84

.02

.87

.01

.91

.01

.94 .98
-.01

1.01
-.02

1.03
-.03

27 25-29
.74

,05
.76

.05

.79

.04

.82

.04

.87

.02

.92

.02

.96

.01

.99 1.03
-.01

1.07
-.02

1.10
-.03

33 30-36
.76

.06

.79

.05

.83

.05

•OO
.04

.90

.03

.94

.03

.98

.02

1.02

.01

1.06 1.11 1.17
-.01

1.23
-.02

42 37-48 .79

.07

.83

.06

.86

.05

.90

.05

.96

.04

.98

.04

1.03

.03

1.08 1.14
.03 .02

1.20 1.25 1.37
-.01

58 49-72
.83

.08

.87

.07

.91

.07

.96

.06

1.02

.06

1.05

.05

1.10
.04

1.17 1.24
.04 .03

1

1.30
.02

1.43 1.58

97 73-144
.90

.09

.93

.08

.97

.08

l.Ol

.07

1.07

.07

1.11

.06

1.18

.06

1.28

.05
1

!

L34
.04

1.47

.03

1.65

.02

2.03

290 145 rack
93
.10

.96

.09

1.00

.09

1.05

.09

LIO
.08

1.16

.08

1.24

.07

1.37

.07

150
.06

1.70

.04

2.12 2.90

1

.03 .021
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THE INVOLUTE TOOTH.

With the exception of the epicycloid, the only curve in extensive use for
the working face of a gear tooth, is the involute.

THE INVOLUTE CURVE.
As the rolling circle A of fig. 3 increases in size, it finally, when of infinite

, ^ diameter, becomes the straight line d g of fig.

15, while the epicycloid traced by a fixed point
in the circle becomes the involute.
The involute is, therefore, not a new or sep-

arate curve, but simply a particular case of the
epicycloid. It is the infinite form of the epicy-
cloid.*
As the rolling circle of infinite diameter is the

same thing as a straight line, the involute can
be formed by a fixed tracing point in a cord
which is unwound from a circle, called its "base
circle," which has been wrapped or "involved"

Fio. 15. THE INVOLUTE. ^"^ it, aud from this property it derives its name.

ITS UNIFORM ACTION.

j

If the two circles A and B, fig. 16, are separ-
ated by the distance a b, and work together by
means of two external epicycloids C and D, the
motion communicated will be irregular, for the
conditions of uniformity are that the two cir-

cles shall touch, and that the external curve
of one shall work with the internal curve of the
other. See page 2 and figure 4.

The amount of this irregularity will depend
on the proportion between the separating dis-

tance a b and the diameter of the rolling circle

which describes the epicycloids. If the pro-
portion is very small, the irregularity will be
very small, and if the rolling circle has an in-

finitely great diameter, the proportion and the
irregularity will be infinitely small, that is, zero. Therefore, involutes
will work together with perfect regularity and are suitable curves for gear
teeth.

ITS ADJUSTIBILITY.

If the rolling circle is infinitely large, the proportion between the separat-
ing distance and it will always be zero, and it will not be altered by any finite

alteration of the former, and therefore the uniformity of the action of
involute teeth is not in any way dependent upon, or affected by any change of
the separating distance. The action will be perfect as long as the curves
remain in contact, and this is a property of the greatest practical value,
which gives the involute a great advantage over every other known or pos-
sible curve.
The curve of any gear tooth must of necessity be a " rolled curve " formed

by a fixed object attached to the plane of or moving with some curve that
rolls upon the base curve of the tooth, and, as the involute is the infinite

form of any rolled curve, it is the only form that can possess this property
of adjustibility.

* The exact nature of the involute curve is more fully treated of in a paper in the appendix,

on the Normal Theory of the Gear Tooth Curve.

EPICYCLOIDS.
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ITS UNIFORM PRESSURE AND FRICTION.

The point of contact of the two involutes C and D will always be upon the

straight line of action mn, the common tangent of the two base circles,

commencing at its point of tangency with one circle, and ending at the same
point on the other.

The direct pressure between the two teeth will always be in the direction

of the line of action, and uniform both in direction and in amount, a prop-

erty that is peculiar to the involute curve, and which contributes greatly to

the smooth action and even wear of involute teeth. Friction is substan-

tially in proportion to direct pressure, and when the pressure is uniform,

the friction will be uniform, and no part of the curve will be more likely to

wear away than any other part. The durability of a tooth, particularly

when doing heavy work, depends on the uniformity of the friction as well

as upon its absolute amount.

THEORETICAL CONSTRUCTION.
To draw the involute curve through the pitch point a of two pitch circles

A and B, draw the line of action m n at any desired angle with the line of
centers, usually 75°, and then draw
the base circles C and D, touching the
line of action at e and d, where the
perpendicular radial lines e g and f d
meet it. From a, step off any num-
ber of short steps along the line of
action and around the base line to any
point s, then draw any number of
tangent lines b c, t v, then step off the
distances sbc, stv, sb, etc., each
equal to s d a, and the points c, v, b,

etc. , will be points of the curve. Any
line, as w c X drawn through c at right
angles to he, will be tangent to the
curve. The working part of the
curve must not be extended beyond
the circle k e p through the point of
contact of the line of action m n and

the base line C, for beyond that point it will interfere with the radial flank
of the tooth it works with.
The curve is generally limited by the addendum line zy, at an arbitrary

distance from the pitch line B, and ends at b on the base line D, where it i»

l^erpendicular to the base line. It is continued within the base line by &,

radial line as far as the root line z y, and is then rounded into the clearance
line.

The matter under epicycloidal teeth, pages 3, 4, and 5, regarding the pitch,

addendum, clearance, and backlash, will apply as well to involute teeth.

ANGLE OF ACTION.
The angle mag may be less, but not greater, than the value found from

the formula
1800

mag = 90° — -^
in which s is the number of teeth in the smallest gear in the pair. If the
angle is greater than this the motion will not be continuous, as each pinion
tooth will pass out of action before the next one is in position to act.

INTERCHANGEABLE SETS.
Any number of involute gears from base circles of different diameters will

work together correctly and interchangeably if all are of the same i^itch, and
have the same angle of action.

If we put s = 12 teeth, we find
180°

m ag = 90° — -y^ = 75°

FIG. 17. CONSTRUCTION.
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THE OLD RULE.

the value for the common twelve to rack interchangeable set, and if we use
fifteen as the smallest number of teeth in the set, we have an angle of action
of 78°.

PRACTICAL CONSTRUCTION.
When the involute is to be brought into use, we meet with the same diffi-

culties as with the epicycloid, for its theoretically correct construction is

not easily and accurately accomplished, and we must adopt some short cut
of approximative accuracy.
The principle of the epicycloidal engine of fig. 7 may be applied to the

construction of the involute, the ribbon s being drawn tight and straight as
it is unwound from the base circle, but the same difficulties prevent its use
for ordinary purposes.

THE OLD RULE.

A defective rule in common use draws the whole curve from base line to
addendum line, as one circular arc. The angle
mag is laid off at 75°, sometimes at 75^^°, the
distance a c is made equal to one quarter of the
pitch radius a g, and the tooth curve is drawn
from c as a center.

This rule is simple, to be sure, but it gives the
faces shown by the dotted lines of the figure on
page 23, and is abominably wrong and worth-
less.

If it would round off the points of the teeth
of a large gear, it would be useful to correct
interference, but it greatly rounds the teeth of
a small gear that needs little or no correction,
and gives the curve on a large gear in nearly its

theoretical position, without the allowance for
interference that must be made.

It is not to be wondered that the involute tooth is in small favor with
practical mechanics who use this bungling method, and who do not under-
stand that the trouble is not in the involute system, but in its defective
application.

A NEW METHOD.
In devising a method for drafting the involute tooth, I have borne in

mind that a minute degree of accu-
racy is not the essential requirement,
for although substantial accuracy
must be secured, simplicity and con-
venience are qualities that must also
be considered.
The method, in general terms, and

given in full on pages 22 and 23, is to
give, by a table, the distance of the
base circle B, see fig. 19, inside the
pitch circle P, and to give by the same
table, the distances or radii a c and a d
from the pitch point a to centers c and
d on the base line. The face arc aw is

drawn from the center d and the flank arc a v from the center c.

The table, page 22, is for one diametral pitch, and covers the common
twelve to rack interchangeable set. Interference must be corrected, when
necessary, as explained below in detail.

INTERFERENCE.
As indicated above, the involute face will interfere with the radial flank

of the mating tooth if the addendum is greater than a certain amount, and
as the addendum in common use for the interchangeable set generally

exceeds this limit, we must gererally make corrections to avoid this trouble.

THE NEW METHO
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Figure 20 shows the interference, its effect, and its correction.
The working face of the involute

should be limited at i by the circle

k p through the tangent point e, but
if the usual addendum continues it

beyond that line, to s, the extension
s i will interfere with the radial tlank
c f , and the uniformity of the action
will be destroyed.
To correct it we must cither

weaken and spoil the shape of the
mate tooth by undercutting the
flank c f by an epitrochoidal line c g,
or we may, and much better, round
off the point of the tooth by an epi-
cycloidal curve i h.

The amount of this interference will depend on, and increases with, the
angle of action, and also depends upon the number of teeth in each gear. It

is greatest on a large gear or rack that runs in a small pinion, and least on
a pinion rmming in a large gear. When the angle of action is 75° there
is no interference when both gears of a pair have thirty or more teeth, or

INTERFERENCE.

Interference Table
For one diametral pitch and 3 1-7 inch cir-

cular pitch. Angle of action, 75°.

Number of Teeth in the Mate.
13 15 17 19

12 14 16 18 21

12

13-14

15-16

17-18

19-21

22-24

C 25-29

30-30

u 37-48
o

I 49-72

73-144

145-00

.58

.01

.56

.02

.54

.02

.53

.02

.51

.02

.50

.02

.49

.03

.47

.03

.45

.03

.44

.04

.42

.05

.40

^06

.67

.01

.66

.01

.64

.01

.62

.02

.60

.02

.58

.02

.57

.02

.55

.02

.53

.02

.52

.03

.49

.04

.46

.05

.75

.01

.72

.01

.69

.01

.67

.01

.65

.02

.63

.02

.61

.02

.59

.02

.56

.03

.53

.04

.75

.01

.72

.01

.69

.01

.66

.02

.63

.02

.60

.02

.73

.01

.70

.01

.67

.01

when an equal pair have twenty-one or
more teeth. When otij gear has more,
and the other has less than thirty teeth,
the larger may need correction, but the
smaller never will.

The amount of the interference, the
correction to be made by rounding olf the
point of the tooth, is very small and may
generally be neglected on small pinions.

It is given by the lower hgures in the
table, which shows that it is never more
than a sixteenth of an inch on a large
tooth of one diametral, or three inch
circular pitch, and not over two or tliree

hundreths of an inch on a gear of that
pitch having few teeth. The table also
shows by the upper figures the limit
point or distance i x above the pitch line
where the interference commences.
The tabular numbers must be divided

by the diametral pitch that may be in use,
and for any circular pitch it is sufficient
to divide the tabular number by 3 and
then multiply by the pitch.
The table takes no notice of an inter-

ference of less than ahundredth of an inch
on a tooth of three inch circular pitch.
When, as is usually and should always

be the case, the gear being drawn belongs
to the twelve to rack interchangeable set,
the interference should be computed for
a mate gear of twelve teeth, or by the first

vertical column of the table. In this case
the error will not be perceptible if the
limit distance to point of first interfer-
ence be always assumed to be half the
addendum.
When the work is upon a rough cog

wheel or mill gear, or upon a pattern for
a cast gear, the only correction needed
for interference, is a slight rounding off
of the points if it is a rack or very large
gear, and a mere touch on the point of a
gear of few teeth.



20

EPICYCLOIDAL vs. INVOLUTE TEETH.
A COMPARISON.
The epicycloidal tooth is in much greater use and favor than the involute

form, particularly for heavy work, both vs^riters and mechanics generally
preferring it, and seldom giving the preference to its rival. It is difficult to
account for this favor except, as in the case of the circular pitch system, on
the ground that the epicycloid was adopted in the infancy of mechanical
science, and holds its place by virtue of prior possession, for the involute
has certainly the advantage from every practical point of view.
Space will not permit an extended discussion with the necessarily bulky

demonstrations, but, if the two curves be closely and carefully examined
under the same conditions within the limits of either the twelve tooth or the
fifteen or higher tooth interchangeable series, with the customary adden-
dum, which limitation will cover nine-tenths of the gears in actual use, it

will be found that they compare as follows

:

I. Adjustibility. Involute teeth alone can possess the remarkable and
practically invaluable property, that they are not confined to any fixed
radial position with respect to each other, for, as long as one pair of teeth
remains in action until the next pair is in position, tlie perfect uniformity
of the action of the curve is not impaired.
The shafts may be at the proper distance apart, or not, as happens, and

they may change position by wearing, or variably as when used on rolls, or
may be forced together to abolish backlash, and, in fact, the curve is won-
derfully adapted to the variable demands, and will accommodate itself to
errors and defects that cannot be avoided in practice.
Epicycloidal teeth must be put exactly in place and kept there, and the

least variation in position, from bad workmanship in mounting, or by wear
or alteration of the bearings in use, will destroy the uniformity of the
motion they transmit. When perfectly mounted and carefully kept in
order, epicycloidal teeth are as good as any in this respect, but for most
practical purposes they are decidedly inferior.

This virtue of the involute is always recognized by writers, but is seldom
given the position its importance demands, for it is only as a result of expe-
rience in making and using gears, that its importance can be seen at its full

value.
II. Uniformity. The direct force exerted by involute teeth on each

other, is exactly uniform, both in direction and in amount, and this property
ensures a uniform wearing action of the teeth, a nearly uniform thrust on
the shaft bearings, and a steadiness and smoothness of action that cannot be
claimed for epicycloidal teeth under any circumstances.
The direct pressure acting between epicycloidal teeth is variable in

amount and very variable in direction, and consequently the friction and
wearing action between the teeth, as well as the thrust on the bearings, is

variable between wide limits.

III. Friction. The measure, for purposes of comparison, of the loss of
power by friction, is the product of the direct pressure between the teeth,
multiplied by their rate of sliding motion on each other.
This measure is always in favor of the involute by a decided advantage,

although the advantage is usually claimed for the epicycloid, both as to
maximum values and average values, and as this is an important point, it

should have great weight in deciding between the two forms of teeth, for
the element of friction is of chief importance in determining the life of a
gear in continual and heavy service.
The epicycloid is mostly in use for heavy gearing from a mistaken view of

this point, it being generally taught that its friction is the least.

IV. Thrust on Bearings. Here the advantage is with the epicycloidal

tooth, but not by a large amount, and not in a matter of first consequence.
The thrust on the bearings due to the action of the teeth on each other is

but a fraction of the whole thrust due to the power being carried, and as
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the average thrust of the teeth is but little in favor of the epicycloid, and as

the maximum thrust is always from that form of tooth, the two forms may
be said to be well balanced in this respect. Moreover, the thrust of the

involute is but slightly variable, while that of the epicycloid varies from
large values at the points of first and final action to nothing at all at the

line of centers, and must give rise to a rattling and uneven action.

y. Strength. The weakest part of a tooth is at its root, and as the

involute tooth spreads more than the epicycloidal tooth, it is stronger at that
point and has a considerable advantage.

YI. Appeabance. This is a small point and a matter of opinion, but
is worth mention. The involute is a simple and graceful single curve, while
the epicycloid is a double and not mechanically a neat curve, and, as gener-

ally drawn, has a decided bulge or even a plain corner where the two halves
join at the pitch line.

In GrENERAL. As the involute has the advantage of the epicycloid, in
nine actual cases out of ten, with respect to adjustibility in position, in
uniformity of wear and action, in loss of power and change of shape by
friction, in strength, and in appearance, and is but a shade, if any, inferior

with regard to the thrust on the bearings, it may be, and should be accorded
first place for any and every practical purpose. The writer can imagine no
possible case, unless it be in connection with a pinion of very few teeth,
where the epicycloid would have either a theoretical or a practical advan-
tage over the involute.
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ODONTOGRAPH TABLE.
INVOLUTE TEETH.

Corrected for Interference,

Interchangeable Set.

DIVIDE BY THE MULTIPLY BY THE
DIAMETRAL CIRCULAR

TEETH. PITCH. PITCH.

Face Flank Face Flank
Radius. Radius. Radius. Radius.

12 2.70 .83 .86 .27

13 2.87 .93 .91 .30

U 3.00 1.02 .95 .33

15 3.15 1.12 1.00 .36

16 3.29 1.22 1.05 .40

17 3.45 1.31 1.09 .43

18 3.59 1.41 1.14 .46

19 3.71 1.53 1.18 .50

20 3.86 1.62 1 22 .53

21 4.00 1.73 1.27 .67

22 4.14 1.83 1.32 .60

23 4.27 1.94 1.36 .63

25 4.56 2.15 1.45 .70

28 4.82 2 37 1.54 .77

31 5.23 2.69 1.67 .88

34 5 77 3.13 1.84 1.00

38 6.30 3.58 2.01 1.16

44 7.08 4.27 2.26 1.38

52 8.13 5.20 2.59 1.70

64 9.68 6.64 3.09 2.18

83 12.11 8.93 3.87 2.90

115 16.18 12.80 5.16 4.15

200 25.86 22.30 8.26 7.30

For intermediate teeth use proportionally intermediate values when great
accuracy is desired, but for drafting purposes use the nearest value, thus :

—
35 is at one-quarter of the distance from 34 to 38, and the proper values for

accurate work are : face radius, 5.90 inches, and flank radius 3.24 inches.

The table is not carried beyond 200 teeth, as the higher numbers are rarely

used and the radii are then very great. For drafting purposes use values for

200 teeth for all higher numbers.
The base distance, the distance from pitch line to base line, is always one-

sixtieth of the pitch diameter.

SPECIAL PROCESS FOR RACK TEETH.
See the cut on the opposite page.
The flank of the tooth and one-half of the face is a straight line at an angle

of 75 degrees, five-sixths of a right angle, with the pitch line.

Draw the outer half of the face of the tooth, one-quarter of its whole length,

as a circular arc from a center on the pitch line and with a radius of
2.10 inches divided bv the diametral pitch.

.67 inches multiplied by the circular pitch.

The point must be rounded over in this way to avoid interference, if the

rack is to mesh with any pinion having less than 28 teeth.
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A PRACTICAL EXAMPLE.

INVOLUTE TEETH.
INTERCHANGEABLE SET.

Example.—A rack, and a pinion of twelve teeth, of two diametral pitch.

Pinion. — From the tables we have, after dividing by 2, the face radius 1.35

inches, flank radius .42 inches, and clearance .06 inches, The pitch diameter
is 6 inches, and the addendum is .5 inches. The base distance, one-sixtieth
of the pitch diameter, is .10 inches.

Draw the pitch line and divide it for the pitch points, allowing for backlash
if required. Lay oS the addendum and the clearance, and draw the adden-
dum line, root line, and clearance line.

Draw the base line .10 inches inside the pitch line.

With the face radius, 1.35 inches, and from centers d on the base line, draw
all the face curves from addendum line to pitch line. With the flank radius,
.42 inches, and from centers b on the base line, draw all the flanks from the
pitch line to the base line.

The flanks inside the base line are straight radial lines.

For fifty or more teeth draw the flank curve from pitch line to root line.

Rack.— Draw by the special rule, the radius for the point being 1.05 inches.

Note.— The dotted lines on the pinion teeth show the work of the common
rule for involute teeth, as explained on page 18 and given by most of the
*' gear charts " and works on practical mechanism. The same rule draws the
rack tooth with a point that is not rounded. The " old rule " is as worthless
as it is simple.
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BEVEL GEARS.
In laying out the teeth of a bevel gear but one new point needs to be con-

sidered. The working pitch diameter a b c is not to be used, but the teeth
are to be drawn on the conical pitch diameter adc, developed or rolled out
as in fig. 25.

The conical diameter adc may be found from a drawing, or if the gears
are of some common proportion, from the following table by multipljdng
the true pitch diameters by the tabular numbers given for that proportion.

TABLE OF CONICAL PITCH DIAMETERS
OF BEVEL GEARS.

Proportion. Larger Gear. Smaller Gear.

1 tol 1.41 1.41

2 " 1 2.24 1.12

3 « 2 1.80 1.20
• 3 " 1 3.16 1.05

4 " 3 1.67 1.25

4 " 1 4.12 1.03

5 " 4 1.60 1.28

5 " 3 1.94 1.17

5 " 2 2.69 1.08

5 « 1 5.10 1.02

6 " 5 1.56 1.30

6 " 1 6.08 1.01

7 " 1 7.07 1.01

8 " 1 8.06 1.01

9 " 1 9.06 1.01

10 ^ 1 10.05 1.01

Examples.—A miter gear, proportion 1 to 1, of 4 pitch, 6" diameter, and
24 teeth, has a conical diameter of 6" x 1.41 = 8.46", and there are 24 x 1.41

=: 33.8 teeth on the full circle of the developed cone.
A pair of bevel gears of 3 to 1 proportion, 48" and 16" diameters, 36 and 12

teeth, have conical diameters 48" x 3.16 = 151.68". and 16" x 1.05= 16.80",

and there are 36 x 3.16 = 113.76, and 12 x 1.05 = 12.60 teeth on the full cir-

cles of the developed cones.
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INTERNAL GEARS.
The internal gear, sometimes called the ** annular" gear, is drawn by the

rules for spur gears, the teeth of a spur gear being the spaces between the
teeth of an internal gear of the same pitch diameter, with the backlash and
clearance reversed in position.

Involute teeth should end at the base line, the radial part of the flank
being omitted, or well rounded over if it is desirable to preserve the appear-
ance of the full tooth.

Interna] teeth will interfere, even if properly drawn, unless the gear is

considerably larger than the pinion running in it. If drawn for the common
twelve to rack interchangeable set, there should be at least twelve more
teeth in the gear than in the pinion, and if the difference is less, the teeth
must be " doctored " or rounded over until they will pass, and there must
be a difference of two teeth in any case.
Involute teeth have a decided advantage over epicycloidal teeth for inter-

nal gearing, their action being much more direct, with less sliding 2iiid

friction.
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STRENGTH AND HORSE-POWER OF CAST GEARS.

There are about as many different rules for this purpose, and contradictory re-

sults, as there are writers upon the subject. I have preferred not to discuss the

theory, but to adopt without question tlie method given by Thomas Box in his Prac-

tical Treatise on Mill Gearing, because that engineer has most carefully considered

the practical points in view, and because his formulse agree almost exactly with a

great mauy cases in actual practice.

STRENGTH OF A TOOTH. —For worm gears, crane gears, and slow-moving
gears in general, we have to consider only the dead weight that the tooth can lift

with safety.

If we allow the iron to be subjected to but one tenth of its breaking strain, we
can use the formula: — W = 350 c f

,

in which W is the dead weight to be lifted, c is the circular pitch, and f the face,

both in inches.

For the wooden cogs of mortise wheels, use 120 instead of 350 as a factor in the

formula.

When the pinion is large enough to insure that two teeth shall always be in fair

contact, the load, as found by this rule, may be doubled.

Example. —A cast-iron gear of 3" circular pitch and 6" face will lift

W = 350 X 3 X 6 = 6300 lbs.

HORSE-POWER OF A GEAR.— For very low speeds we can use the

formula,
HP for low speed = .0037 d n c f

,

in which d is the pitch diameter, c the circular pitch, and f the face, all in inches,

and n is the number of revolutions per minute.

Example. — The horse-power of a gear of three feet diameter, three inch

pitch, and ten inch face, at eight revolutions per minute, is,

HP = .0037 X 36 X 8 X 3 X 10= 32.

For ordinary or high speeds, where impact has to be considered, it is found that

the above formula gives too high results, and we must use the formula,

HP at ordinary speeds = .012 c^ f \/du.

Example. - A gear of three feet diameter, three inch pitch and ten inch face,

at one hundred revolutions per minute, will carry but

HP = .012 X 9 X 10 X VlOO X 36 = 05 horse-power,

instead of the 400 horse-power found by the rule for low speeds.

At ordinary or high speeds a wooden cog, on account of its elasticity, will carry

as much as or more power than a cast-iron tooth, and we can use .014 instead of .012

in the formula.

"When in doubt as to whether a given speed is to be considered high or low, com-

pute the horse-power by both formulse, and use the smallest result.

For bevel gears the same rules will apply, if we use the pitch diameter and the

pitch at the center of the face.

Some rules in use take no account of the face of the gear, but assume that the

tooth should be able to bear the whole strain upon one corner.

A tooth that does not bear substantially along its whole face, at several points at

least, is a very poor piece of work, and it would be better to straighten the tooth

than to force the rule to follow it.
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HORSE POWER OF CUT GEARS.
The rules given above for the horse power of gears apply only to gears

with rough cast teeth ; and in applying them we must consider the speed of
the gear as well as its real strength.

One of the chief sources of weakness in a cast gear, is that the continual
pounding of the teeth on each other crystalizes the metal so that its strength
is gone long before it is worn out.

There are no recorded tests on the horse power of cut gears, but it is gen-
erally agreed among those not personally interested in the sale of cast gear-
ing, that a cut gear is much more durable, and that it will carry more power
than a cast gear, with the same factor of safety.

In the absence of experimental data, we can only proceed by judgment and
inference. It is well settled that the continual pounding of cast gearing is a
source of weakness that must be allowed for, and it may be assumed that

that source is avoided in the use of cut gears having a smooth and even
action.

Until practical tests have been made we can consider that the rule that

applies to cast gears for slow speeds where impact need not be considered,
can safely be applied at higher speeds to cut gears where there is no impact
to be allowed for ; and we have the formula :

—
Horse power of cut gears at ordinary speeds = .0037 dncf.

Applying this formula to the case of a gear of 36 inches diameter and 3

inch circular pitch, at 100 revolutions per minute, it is found that the cut
gear will safely carry six times the power that can be trusted to the cast gear.

But it must be admitted that all that is known concerning the real horse
power of a cut gear is a matter of inference, and it is to be hoped that the
growing use of cut gearing for conveying heavy powers will furnish data of
a more practical and trustworthy nature. Until such data is at hand it may
safely be assumed that a cut gear has from two to three times the carrying
power of a rough cast gear of the same size.

CONFUSION OF RULES.
The disagreement of standard authorities and the thorough confusion of

rules on this subject, is well shown in an interesting paper by J. H, Cooper,
in the Journal of the Franklin Institute for July, 1879, in which that engineer
has industriously collected twenty-four formulae from Tredgold, Buchanan,
Fairbairn, Box, Moleswoith, Haswell, Nystrom and others, and applied them
to the practical case of a gear of 60 inches diameter, 7h inches face, and 3
inches pitch, at 60 revolutions per minute. Cooper found twenty-two diflFer-

ent results for this one example, as follows :— 46.31, 47.06,50.27, 53.18,56.09,
56.55, 63.62, 66.17, 66.27, 67.96, 68.56, 73.49, 80.78, 84.37, 86.75, 86.80, 86.96,
138.23, 147.27, 163.00, 294.53, and 295.59. Here is variety to suit all tastes,
and if a gear is not strong enough for a given purpose according to Fair-
bairn, it will certainly fill the bill according to Haswell. Diligent enquiry
by myself among the cast gear makers of the United States gave the
same result as to variety and confusion. I could get little but opinions
that were not founded on experiment, and the opinions were of the most in-

definite and unsatisfactory character.

All cast gear makers are agreed that a cast gear is more durable than a cut
gear, and all cut gear makers are equally certain that a cut gear is more du-
rable than a cast gear.

The stock argument of the makers of cast gearing is that the one-hundredth
of an inch thickness of hard scale on a cast tooth makes it more durable
than a cut gear from which the scale has been removed. But, from that
point of view, they find it very hard to explain why a mortise gear, with
soft hickory cogs, is quite as durable as a cast gear with hard teeth.
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Sample Plate of Involute Teeth,

12

14

16

Printed from cut segments of 4 to 48

diametral pitch.
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CHART AND TABLES
FOR

BEVEL GEARS.
A NEW, SIMPLE, AND ACCURATE METHOD FOE FINDING THE ANGLES

AND DIAMETERS OF ANY PAIR OF BEYEL GEARS BY SIMPLE

CALCULATION, AND WITHOUT DRAFTING INSTRU-

MENTS OR SPECIAL TOOLS.

Not one macliinist in a dozen will admit that he does not know how to
properly shape a bevel gear blank, but when put to the test, not one in a
score can do it well without an amount of fussing with drafting instru-
ments, and a deal of studying and figuring that looks ridiculous to one who
has studied the subject and knows how simple it really is when it is once
thoroughly understood.
The average bevel gear blank can be relied upon to be wrong in i ts face

angle, or its outside diameter, or both, even when it has been shaped by a
competent and intelligent general workman, and the simple explanation is

that the only reliance is generally a hurried and poorly made drawing from
which the angles and diameters must be found by measurement, and used
with many chances of error.
This method proceeds by simple calculation, avoiding the use of drafting

instruments, and it will be found to be not only much more accurate, but at
the same time much easier and quicker than any other method. The work-
man who can remember the numbers 1.41 and 81 and the angle 45° needs
no further assistance on miter gears, and on other proportions needs the
table only to supply equally simple data, while two to five minutes is suffi-

cient time for any set of calculations after the method has been learned.
This matter is of more importance than is generally supposed, for bevel

gears unlike spur gears must be exactly correct in diameters and angles,
or no amount of perfection in the cutter or care in the cutting will prevent
a botch.
To be learned this Chart must be studied. If it is not worth

while to give it two or three hours of careful attention it is not worth while
to keep it at all. It is simple and easy to learn but it cannot be taken in at
a glance, or comprehended in ten minutes.
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EXPLANATION OF THE METHOD.
The measures that must be

tiven in advance are the pitch
iameters AB and AD, and

the numbers of teeth or the
diametral pitch, and the meas-
ures that must be determined
before the blank can be shap-
ed are,

1st, the ontside diameters
„ m n and p q, each equal to the
*\ j£*t'^/{?^«'*«;_^«|pitch diameter plus a small
>'\\

I / * increment.
2d, the center angles ACM

andACN.
3d, the face angles cCM

and bCN", each equal to the
center angle plus a small in-

crement.
v^

j I
.-§[ / 4th, the cutting angles aCM

and dCN, each equal to the
center angle minus a small
increment.
Of course all these can be

*ii; -Tj»^ found by first making a draw-
ing and then measuring the diameters and angles, but, although the
process is simple enough, and perhaps preferable in some cases in the hands
of a draftsman who has the proper tools to use and the skill and knowledge
to use them properly; still it is not well adapted to ready and general use
in the shop.
Unless made with good instruments that are handled with great care, a

drawing is not accurate enough for the purpose, and its results, particularly
as to angles, are not apt to be well carried out on the work. It is easy
enough to find the proper face angle by a drawing, but not as easy to
measure that angle and transfer it to the iron blank.
This method is entirely one of simple calculation, with no instrument but

the pen, and no tools to apply its results in the shop but the ordinary scratch-
ing dividers and the scale. It is not only more accurate, but, after a few
hours work with the table on various examples, it will be easier to work
and quicker than the graphical method.

PROCESS IN DETAIL.

First find the proportion of the gears by dividing the diameter of the
larger gear by that of the smaller, and then use the values in the table
opposite that proportion.
The diameter increments are found by dividing the tabular increments by

the pitch, and the ontside diameters are found by adding the increments to
the pitch diameters.
The angle increment is found by dividing the tabular increment by the

number of teeth in the larger of the two gears. The face angle is the
center angle plus the angle increment, and the cutting angle is the center
angle minus one and one-sixth of the increment.
Example.—Given pitch diameters 6'' and 4'', pitch 8, teeth 48 and 32.

The proportion is 6 to 4, or 3 to 2, or 1.5 to 1, and the table gives at 1.5 the
center angles 56.3° and 33.7°, and the angle increments f| = 2°, and 1^ of 2°

= 2.3°, from which we find the face angles 56.3° -|- 2° = 58.3°, and 33.7° + 2°

= 35.7°, and the cutting angles 56.3°— 2.3° = 54°, and 33.7° — 2.3° = 31.4°.

1.11 1.66

The diameter increments are = .14, and = .21, and from thesewe
8 8

find the outside diameters 6. H- .14 = 6.14", and 4. -f .21 = 4.21".

When the proportion falls between two tabular proportions we must use tab-

ujiar angles and increm ents that are proportionally between the tabular values.

All diameters should be figured to the nearest hundredth of an inch, and
all angles to the nearest tenth of a degree.
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PRACTICAL APPLICATION IN THE SHOP.

The best tool for shaping a bevel gear is a compound and graduated

slide rest which can be set directly to the angles, but as such an appliance

is seldom to be found, and then seldom in good order, the work must gen-

erally be done by the use of angle templets.

To use the angle templet, lay one edge against a straight shaft or mandrel
held between centers, or against the tail spindle, and adjust a side tool or

scraper to the other edge. If

the back of the templet be cut
square with one edge it can be
used by placing it against the
face plate.

Be careful with the back
angle, for the back of the tooth
is not square with its face, and
if it is turned square or in any
way out of truth, the corners
of the teeth will not fit true in

the spaces of the mate gear,

and the appearance of the job
will be spoiled. The true back
angle of each gear is the cen-
ter angle of the other gear of
the pair.

SHAFTS NOT AT RIGHT ANGLES.
When, as sometimes happens, the shafts are not at right angles, a simple

preliminary drawing must be made. Lay off the shaft angle by means of

the table of chords, draw two lines parallel to the shafts at the distances of

the half pitch diameters, and from their intersection draw a conical line to

the center.
Measure the center angle between either shaft and the conical line, and the

proper increments will be found in the table at that center angle. If the
center angle is less than 45°, the tabular angle increment must be divided
by the number of teeth in the gear, as usual, and then divided by the
tabular proportion.
Example.—It is found that the center angle of a gear of 8 pitch and 40

teeth is 35°, and this in the table gives the

94
angle increment

1.43 X 40

1.63
1.6°, and the diameter increment = .20

Proceed separately with the'bther gear of the pair by measuring and using
its center angle.

ERRORS IN DIAMETER.
It will often happen that the outside diameter will be turned too small, or

that a casting will not quite turn to the desired size. In this case the
diameter should be left as large as possible, and then the other, or mate
gear, should be turned under size, to keep the correct proportion between the

pitch diameters.
For example, if the smaller gear of a pair that are proportioned two to

one is found to be ^^2 inch under size, the larger gear must be turned twice
as much, or ^ inch under size.

Great care must be taken to have the smaller gear of an unequal pair very
near to size, for any inaccuracy can be balanced only by a proportionally
larger inaccuracy of the mate gear. If the smaller gear of a pair that are
proportioned six to one is as much as y\j of an inch under size, the larger
gear must be turned 3%, or ^ inch under size, and this is enough to change
the number of teeth the proportion and the face, and spoil the work. The
only remedy in such a case is to cut shallow teeth on the pinion, so that its

pitch diameter is unchanged.
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ANGLE TEMPLETS.

To make an angle templet by the use of
the table of chords, draw an arc ad on
paper or sheet metal with the dividers set
to six inches. Then set the dividers to the
chord of the angle and lay it off on the arc,

as at b c. Cut to the lines b o and c o.

Similarly, an angle drawn on paper can
be measured by drawing an arc across it

at a radius of &', measuring the chord,
and comparing with the table.

TABLE OF CHORDS OF ANGLES,
AT RADIUS OF SIX INCHES.

Degrees Chord. Tenths. Degrees Chord. Tenths. Degrees Chord. Tenths.

1 .10 31 3.20 61 6.10
2 .20 32 3.31 62 6.19

3 .31 33 3.41 63 6.28
4 .42 34 3.51 64 6.36
5 .52 35 3.61 65 6.45

6 .62 36 3.71 66 6.54

7 .73 37 3.81 67 6.62
8 .84 38 3.91 68 6.71

9 .94 39 4.01 69 6.80
10 1.04 40 4.10 70 6.89

11 1.15 41 4.20 71 6.97
12 1.26 42 4.30 72 7.06
13 1.36 .1—.01

.3—.02

.2—.03

.4—.04

43 4.40 .1—.01
.2—.02
.3—.03
.4—.04

73 7.14 .1—.01
.2—.02
.3—.02
.4—.03

14
15

1.46

1.57

44
45

4.50
4.60

74
75

7.22

7.31

16 1.67 46 4.69 76 7.39

17 1.77 ..5—.05 47 4.79 .5—.05 77 7.47 .5—.04
18 1.87 .6—.06 48 4.88 .6—.05 78 7.55 .6—.05
19 1.98 .7—.07 49 4.98 .7—.06 79 7.63 .7—.06
20 2.08 .8—.08

.9—.09
50

51

5.08 .8—.07
.9—.08

80 7.71 .&-.06
,9—.0721 2.18 5.17 81 7.79

22 2.29 52 5.26 82 7.87
23 2.39 53 5.35 83 7.95
24 2.49 54 5.45 84 8.03
25 2.59 55 5.54 85 8.11

26 2.70 56 5.63 86 8.18
27 2.80 57 5.72 87 8.26
28 2.90 58 5.82 88 8.34
29 3.00 59 5.91 89 8.41

30 3.10 60 6.00 90 8.48

The table gives the length of the chord at six inches from center, for any
degi-ee. For tenths of a degree, add the value in the small table of the
same column.
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TABLE OF

INCREMENTS AND ANGLES
FOR

BEVEL GEARS.

Proportion.

Diameter Increment.

Divide by pitch.

Larger Smaller
Gear. Gear.

Angle
Increment

Divide
by number
of teeth in

larger gear

Center Angles.

Larger Smaller
Gear. Gear.

1.00
1.05

1.10

1.11

1.13

1.14

1.15

1.17

1.20

1.25

1-1

10-9
9-8

1.41

1.37

1.35

1.34

1.33

1.41

1.42

1.44

1.46

1.47

1.49

1.50

1.52

1.54

1.56

81
84
86
87
87

45.0

46.4
47.7
48.0
48.5

45.0

43.6
42.3
42.0
41.5

8-7

7-6
6-5
5-4

1.32

1.31

1.30
1.28

1.25

88
89
89
90
91

48.7
49.0
49.5
50.2
51.3

41.3
41.0
40.5

39.8
38.7

1.29

1.30

1.33

1.35

1.40

9-7

4-3

7-5

1.24

1.22

1.20

1.18

1.16

1.58

1.59

1.60

1.61

1.62

91

92
93
93
94

52.2

52.4

53.1

53.5
54.5

55.0
55.4
56.3

57.2

37.8

37.6
36.9
36.5

35.5

1.43

1.45

1.50

1.55

10-7

3-2

1.15

1.13

1.11

1.09

1.63

1.65

1.66

1.67

94
95
95
96

35.0
34.6

33.7
32.8

1.60
1.65

1.67

1.70

1.75

1.80

1.85

1.90

1.95
2.00

8-5

5-3

7-4

9-5

2-1

1.07

1.05

1.03

1.01

.99

.97

.95

.93

.91

.89

1.68

1.70
1.72

1.73

1.74

96
97
98
99
100

101
101
101
102
102

58.0
58.8
59.1

59.5

60.3

61.0
61.6
62.2

62.8

63.5

32.0
31.2

30.9
30.5

29.7

1.75

1.76

1.77
1.78

1.79

1.80

1.81

1.82

1.83

1.84

1.85

1.86

1.86

1.87

1.87

1.88

1.89

1.91

1.92

1.92

1.92

1.93

1.93

1.94

1.94

29.0
28.4

27.8

27.2

26.5

2.10
2.20

2.25

2.30

2.33

9-4

7-3

5-2

8-3

3-1

10-3

7-2

4-1

.87

.84

.82

.80

.78

.76

.75

.73

.71

.69

103
103
104
104
105

105
106
106
107
107

108
108
109
109
109

64.6
65.5

66.1

66.5

66.8

25.4
24.5

23.9

23.5

23.2

2.40

2.50
2.60

2.67

2.70

2.80
2.90

3.00

3.20
3.33

67.4
68.2

68.9
69.5

69.7

70.3
71.0

71.6

72.7

73.3

73.6

74.1

74.5
75.2

76.0

22.6

21.8

21.1

20.5

20.3

.67

.65

.63

.60

.58

.56

.54

.52

.50

.49

19.7

19.0

18.4

17.3

16.7

3.40
3.50

3.60

1 3.80

110
110
110
111
111

16.4

15.9

15.5

14.8

14.0
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APPENDIX.

A FEW PAPERS ON THE

TEETH OF GEARS,
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'^AMERICAN MACHINIST"

AND OTHER PERIODICALS.

These papers are not of a popular or so-called, practical character,

but they may be of interest to the student.



I am now putting in tools, and shall

soon be ready to furnish

HEAVY
BEVEL GEARS
WITH PLANED TEETH,

For mill gearing and heavy

machinery.



THE NORMAL THEORY

GEAR TOOTH CURVE

The usual method of presenting the gear

tooth curve for the examination of the student,

is to devote almost exclusive attention to the

minute details of the cycloidal system, to

hurry over the involute system, and to get the

general tooth curve, without regard to any

special form, into the smallest possible com-

"fhe result, to the student, is a more or

less intimate knowledge of the cycloid, with

a fixed idea that it is the only tooth curve

worth his serious attention, a smattering,

generally wrong at that, with regard to the

involute, and little or no acquaintance with

the curve in its general and most interesting

condition.

The subject should be begun at the begin-

ning, and the beginner should learn what an
" odontoid," or pure tooth curve is, what it

does, and how it does it, before he is plied

with epicycloids, logarithmic spirals, and the

less important details of its special forms.

When properly treated, the gear tooth curve

is not difl&cult to explain or understand, and

is one of the most interesting and im-

portant applications of mathematics to prac-

tical mechanics.

THE NORMAL.

A normal to any curve is a straight line

iV^, Fig. 1, which is at right angles with it at

the point of intersection.

T4g:2

Curve andnortnalis

Rolling ivlieels

EOLLINQ WHEELS.

If two friction wheels. Fig. 2, roll on each

other, their pitch lines touching at the pitch

point 0, they are, for the instant, revolving

about centers A and B, which are in A B^
the common normal or line of centers of the

two curves at their common point.

ENVELOPING TEETH.

If teeth of any arbitrary shape, Fig. 3, are

fastened to one rotating wheel JL, they can
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be made to form teeth on a blank disk fast- gate and others are not, the property is evi-

ened to the other wheel B, which are the dently due to some peculiarity of their shape.

bounding curves, or

different positions.

Fig.3

envelopes " of all their Conjugate enveloping teeth will form the

originating teeth by the same process, re-

versed, on a new wheel blank like the original,

but if not conjugate they will not always re-

produce the originals.

Mg,4:

Enveloping teeth

These enveloping teeth can be formed by

scribing lines about the originating teeth at

short intervals of their motion, and then cut-

ting out all the lines ; or, if they are cutting

tools, which reciprocate vertically, see Fig.

13, they will cut them out as the friction

wheels roll together.

CONJUGATE TEETH.

If the originating teeth be passed again

through the enveloping teeth they have

formed, the friction wheels rolling together as

at first, they will not, of course, interfere with

them or cut them again. With originating

teeth of certain shapes they will entirely

separate at times, and touch each other at

other times, while teeth of certain other

shapes will have the peculiar property that

they will continually touch each other, and

not separate at all from the first touch to the

last.

The latter property is evidently of the

greatest mechanical value, for teeth that have

it can be used to forcibly transmit a uniform

motion from one rotating wheel to another,

without the feeble and uncertain assistance of

the friction wheels.

Such teeth are said to be " conjugate" to

each other, and their curves are called

*' odontoids," and, as some forms are conju-

KormaX intersection

THE LAW OP NOBMAL INTEESECTION.

If the two odontoids, N' and Jf, Fig. 4, are

conjugate they are always in driving contact.

They must always be tangent and not inter-

sect at some one point P, and they must have

a common normal, P, at that point, which
will intersect the line of centers, A B, at

some point 0.

The two wheels have a common velocity,

P Q, of their common point of contact, P,

along the common normal P 0, and any com-

mon point 0, on that normal, has the same

common velocity in the same direction.

The two wheels can have a common velocity

on the line of centers only at their common
pitch point; therefore, the point is that

pitch point, and the first and most important

law of the action of the odontoid is

:

T/ie normal to the point of contact of an
odontoid with any other odontoid, always passes

through the pitch point
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THE ODONTOID. for Want of a more expressive term, may be

This law determines the general nature of called " consecutive," and our general defini-

the odontoid. *ion is :

If KP'8, Fig. 5, is an odontoid the points ^f^V ^'^^^^ hamng consecutwe normals to tJie

KO' 0\ etc., of the pitch line will pass the V^ick line is a prcuiticahle odontoid.

pitch point consecutively, each one in its

order, without a break, or a return in the Fig.6 ,A.

order from the first point K to the last one
"^

used.

FigM

The odontoid

Semicircular teeth

For an example of a curve that is not an

odontoid, although it is often treated as such,

the semicircular teeth of the rack of Fig. 6

form enveloping teeth on the pinion which

are circles of the same radius. All the nor-

mals to the circle intersect the pitch line at

When any point, P,' of the odontoid be- the center/, and the tooth will not touch the

comes the point of contact P, the normal space until the centers / and g come together

from it must pass through the pitch point 0, at 0. Then all the normals satisfy the law,

and, as contact must be continuous, there a^d the tooth fits and coincides with the

must be a normal to the odontoid from every space.

point of the pitch line. The absence of normal intersections on any

It is also a feature of any practicable odon- part of the pitch line shows that the teeth will

toid that its point of contact continually shifts separate when that part is passing the pitch

on it, a new point on the curve coming into point, and the junction of two or more normal'

contact as each point on the pitch line comes intersections will show that the teeth will co-

to the pitch point, without a break or a return incide at that place.

in the consecutive order. It has been stated that any assumed and

When there aremany normals from nearly the arbitrary rack tooth, within the limitation

same point on the curve, that point is in ex- that it is " bounded by four similar and equal

cessive use, and such a curve, although possi- lines in alternate reversion, * * * will

ble, is not useful. When the normals cross form an interchangeable set."* The semi-

each other there will be a cusp formed on the circular rack tooth is clearly within the given

odontoid, and it is impracticable. limitation, but it is not an odontoid, and will

As both ends of each normal must come not form an interchangeable set. The conju-

into position in order, one after the other, gate tooth curve is subject to a law that is very

they must be arranged as in Fig. 5, elastic, butby no means indefinite, and which
one after the other, without a crossing, and is seldom clearly given and often is given

without a blank interval. This arrangement, wrong by writers on this subject.

MacCord's Kinematics, section 283, and again at section 408. No conic section is an odontoid unless

the focus is inside tlie pitcli line, but they will all meet Prof. MacCord's requirement.
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Fig. 7

SiifnJilar odontoid's

INTERCHANGEABLE ODONTOIDS.

FACES AND FLANKS.

The odontoid is on one side only of its pitch

line and will be conjugate only to a similar

odontoid on the same side of any companion

pitch line, all being faces on one gear and

flanks on the other.

Face gears and flank gears will work to-

gether but two face gears or two flank gears

will not. To make a completely interchange-

able set it is therefore necessary to provide

each gear with both faces and flanks, all being

similar odontoids, as in Fig. 8.

Fig,9

Unreversible teeth

If any number of odontoids, Fig. 7, are

formed on the same side of a set of pitch

lines that will all roll together at the pitch

point 0, and all the odontoids conform to the

requirement that the normal arcs K, nor-

mals P' K and normal angles P' K S shall

all be the same, they maybe called " similar "

odontoids.

As any two of these pitch lines with their

odontoids roll together, the points K will
,, T J. ^1 .

EEVEKSIBLE GEAES.
pass over the same arcs and come together to

the pitch point at the same time, and as ^^ ^^^ ^^^ ^^^^^ a b and cd of the tooth of

the normals and normal angles are equal, the ^^g- ^ are not similar odontoids, the teeth

two points P' will come together at P. The ^^y still belong to an interchangeable set, for

two odontoids are therefore always in driving
^'^^ ^^^^1^^ sides will always come together, no

contact, without regard to the curvature of

the pitch lines, and the general law of inter-

changeability is:

A II similar odontoids will work in intercJiange-

aUe contact with each other.

Fig.8

Figi

Coinjylete teeth

Whole teeth

matter how the gears are interchanged. But if

one gear of such a set is turned over, re-

versed face for face, the unlike odontoids a b

and c d will come together, and it is neces-
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sary, to have the set reversible, that all four

odontoids ab c and d, bounding the tooth,

shall be similar.

TRUNCATED TEETH.

When the point of contact P of the whole

tooth, Fig. 10, is near the pitch line, its

action on the mating tooth is nearly a direct

push, but it becomes more and more oblique,

with a wedging or crowding, as well as a

pushing action, until, at the apex q there is

no driving action at all, and the driven gear

will stop unless both gears are so large that

the next tooth is then in position, as in

Fig. 8.

Truncated teeth

To avoid this oblique action and at the same

time allow the use of gears of few teeth, it is

customary to truncate or cut off the apex of

the curve, as shown by Fig. 11, hyaline,

called the addendum line, at an arbitrary dis-

tance from the pitch line.

The sides of the teelh are then brought as

near together as is consistent with the re-

quired strength and we have the familiar tooth

in universal use.

FORMS OF TOOTH-CURVES.

The face curve, commonly the external

curve, is a lobe m, Fig. 12, which gener-

ally returns to the pitch line, but the flank

or internal curve may take a variety of

shapes, generally a loop d or h, but

sometimes a straight diameter A;, a point at

0, a loop Of,& cusp a n, or & double cusp

a' b c.

When the flank is undercurved as at A, a

Tooth curves

weak tooth is formed that should be avoided,

and when it is nearly a point at 0, it is sub-

ject to such excessive wear as to be impracti-

cable.

When a cusp, a n, or a' b c is formed,

the action is mathematically perfect at all

points, but practically is limited to the first

branch from to a. The contact changes, at

the cusp, from one side of the line to the

other, and is therefore impracticable with

real teeth. The cusp always sets a limit to

the addendum of the tooth that is working

with it, for that tooth, as it continues in

mathematical contact with the second branch,

will interfere with and cut away the first

branch.

m" Fig. IS mO

%
pM^-J, —W"^

^1 l-w^W^^^^
fc^^B=^'fe^^^^^^^^^S^-H^

#=^'=~^—^^^^ 1—=— ^ —^^
'Hhe conjngator

We
will form or

THE OONJUGATOR.

have seen. Fig. 3, that any odontoid

* develop," an enveloping curve,
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that is also an odontoid and conjugate to it.

The same process provides a simple and exact

method for forming templets and cutter-

shapers, in the application of the theory to

practical purposes.

The conjugator, Fig. 13, is here the connect-

ing link between theory and practice, for if

the gear-cutter, or templet, must be shaped
by hand and eye processes, theoretical pre-

cision would be lost, and the perfection of the

finished product would depend, as usual,

more on personal skill than on original prin-

ciples.

A rack tooth is first formed on a steel cut-

ting tool Ay which is fastened to a slide F
that reciprocates vertically on a stand, JS, on

a plane table, H. A straight-edge, (7, is

fastened to the table in the position of the

pitch line of the rack tooth, and an arc, K,
representing the pitch line of the tooth to be

formed, is rolled against it^ A steel band,

D D, keeps the arc firmly in position on the

straight edge, weights G G G keep it in

position on the table, and a screw, M, serves

to slowly roll it.

A sheet metal blank, B, for a templet, a

bar of steel for a cutter-shaper, or a complete

gear blank for a complete gear wheel, is

fastened to the arc K.

Now give the tool A a reciprocating motion,

and slowly roll the blank B past it. An
odontoid will be formed on the blank that is

conjugate to the rack tooth, and, if it is

formed of odontoids that are similar and

symmetrical with respect to the pitch line C,

all the odontoids made by it will be inter-

changeable.

The plane table, straight-edge and arc,

slide and stand, can be accurately shaped by

ordinary methods, but the shaping and plac-

ing of the tool A requires considerable skill.

The chief requirement is that the rack tooth

shall be formed of four equal odontoids,

a, b, c, d, Fig. 14, placed symmetrically with

respect to the pitch line P, and reversed with

respect to the line of centers Q. If the four

curves are odontoids, all the formed curves

will be odontoids, but the set will not be

mutually interchangeable unless they are also

Con^ttgating tooth

equal to each other and properly placed on

the pitch and center lines. It is also desir-

able, although not essential, that at their

junction the curves should be tangent to the

same straight line T.

It is a matter of merely secondary practi-

cal importance that the originating curves

should conform to some exact predetermined

shape, for as long as they are odontoids the

system will be perfect, if formed by the

conjugator. If they are cycloids, the cy cloidal

system will be formed ; but if the cycloidal

outline is imperfectly followed, the system

may still be mechanically perfect.

The tool A should be extended beyond the

addendum line, as shown by dotted lines, so

that the finished gear will have the usual

clearance added to the working depth of the

space.

A rack tooth is chosen for the originating

form on account of its simplicity. If the

straight-edge (7 is replaced by a circular arc,

the flank curves of the tool A would not be

like the face curves, and an interchangeable

set could be obtained only by great skill in

their formation.

If the stand E tips a little out of a right

angle with the table E, the cutter-shaper B
will be formed vnth a clearance or " relief,"

and its deviation from a correct form will be

slight. If the blank B is held on a slide that

will move radially to the arc K while the cut
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is being made, a relief will be given to the which will be parallel, we have ZM N'

-

shaper without injury to its form.

Internal teeth

INTEKNAL GEAB8.

We have seen, Fig. 7, that similar odon-

toids are conjugate and interchangeable,

whether the pitch lines curve the same or

opposite ways.

When the two lines curve the same way, as

in Fig. 15, the smaller gear will work inside

the larger, which is then an internal gear.

The theory and its application are, in the

main, the same as with external gears, the

only prominent distinction being the direction

of the curvature of one of the lines.

INTEKFEEENOE OE INTERNAL TEETH.

With internal teeth we must guard against

interference, for the face of the pinion is

likely to interfere with the face of the gear in

a certain position P'.

When the teeth come in contact at P', their

common normal N' P' M' must pass through

the pitch point 0. Drawing N' A and M' P,

AN' M' , and the normal angles are equal. As

the two odontoids are similar, and the normal

angles are equal, the normals P N' and P' M'

are equal, and the point of contact bisects

the chord M' N'

.

The normal of contact PO = P N'=^P' M'

is therefore equal to c, the center distance

A P, multiplied by the cosine of the normal

angle F, or

PO
cos V

and, if we draw the addendum at that value

of P 0, the teeth will clear each other,

just as they would otherwise interfere. If we

know the form of the odontoid in use, we can

express cos V in terms of P 0, and thence

deduce the exact value of the latter that will

let the teeth clear each other at the given

center distance.

In case the face or the flank odontoids are

not similar, the system is still interchangeable

to the extent that any pinion will work in any

gear, and in that case, the requirement to

avoid interference is that the sum of the nor-

mals P N' -\-P' M' = P0+ Q must not

be greater than M' N'

.

LIMITING DIAMETERS.

Knowing the minimum value of
P O

for
cos V

any odontoid that may be in use, we can

determine the least center distance between

two gears that will work together, for that

P O
value of ^ is the required least center dis-

cos V
tance.

If

DOUBLE CONTACT.

COS V cos V

is always equal to 2 c, the two faces will

always be in driving contact, and, as the face

of the pinion is also always in driving contact

with the flank of the gear, we have a case of

double contact as far as the truncation of the

tooth will permit.
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OQ successive positions of the point of contact of
If - —^f- is given, we can assume a value for , . ., •.-.., ,• j . •-,

cos Y & ' an odontoid with the mating odontoid.

P O As each normal, P K, Fig. 19, comes to
-^^^-thatwillsatisfy the requirement, so that

^^^ ^^^^^ ^^.^^ ^^ ^^^ p^.^^ ^^ ^^^^^^^ p
it is always possible to obtain double contact locates one point, P', of the line of contact, and

by choosing special odontoids.

Double contact is a curious but not a very

valuable feature of gear teeth.

Fig* 1^

Fig. 18

Gases of intevference

Internal gears may interfere from other

causes, an odontoid from one crossing an

odontoid from the other if the center distance

is too small.

For example, if the tooth of the

pinion of Fig. 16 is cut down to the pitch

line to avoid the ordinary interference, they

may still interfere as shown, the flank of the

pinion interfering with the face of the gear.

Similarly if the gear face is cut down, the

pinion face may interfere with the gear flanks,

as shown by Fig. 17.

The pinion face, when it cannot interfere

with the gear face from the ordinary cause,

may still cross it, as shown by Fig. 18.

The only remedy for interference is to

shorten the addendum, to increase the center

distance, or to use odontoids that curve quick

enough to pass.

The

LINE or CONTACT.

line of contact " is the locus of the

Mnes of Contact

the four similar odontoids of the complete

tooth form the complete line of contact

B' C.

It generally takes the form of an hour-

glass curve, is at right angles with the odon-

toid at 0, and at right angles with the line of

centers at D'.

As all normals, on all similar odontoids,

have the same length for the same normal

angle, it follows that a system of any number

of similar odontoids has a single and common
line of contact, which has equal face and

flank lobes.

A definite line of contact is formed by any

definite odontoid, but a given line of contact
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will not indicate a corresponding definite

odontoid. All odontoids, similar or not,

which have the same normal for the same

normal angle, will form the same line of con-

tact without regard to the value of the normal

arc.

As the normal, PK^ must intersect the pitch

line a second time at Jf, there must be a sec-

ondary line of contact, the locus of the point

Pwhen if is at 0.

If the odontoid intersects the pitch line at

any angle except a right angle, the first

normal will have its second intersection at F,

so that the secondary line of contact begins at

t/and ends at F, where J=0 F.

The first intersection locates points P' and

Q' on the primary line of contact, and the

second intersection locates points P" and Q"

on the secondary line of contact, where

P K== P', = P' K",Lq=OQ'= E" Q",

P Q' = P" Q" = P"' Q"\ and b K" = h M'.

The secondary line will pass entirely around

the pitch line, having apices bX a J)= B'

&ndbc=0 O.

When the odontoid intersects the pitch line

at a right angle, the first normal is a tangent

to the pitch line at the pitch point, and hav-

ing but one intersection, all the lines of con-

tact will commence at that point.

The secondary line must have the same

property as the primary as a locus of con-

tact, but as it depends on the pitch line, it

does not follow the same law with respect to

similar odontoids.

The secondaries of two pitch lines in ex-

ternal contact cannot come together, but the

face secondary of an internal gear can inter-

fere ^^ith the face secondary of its pinion as

in Fig. 20, and serve to indicate the state of

the ordinary interference between the gears.

Where the lines separate, the teeth are clear

of each other, h ; where the lines cross or coin-

cide there will be double driving contact be-

tween the teeth, k ; and where one line passes

inside the other after crossing it, there will be

an interference, m, unless avoided by trunca-

tion.

The crossing point of the two secondary

Intea^ferewce

lines of contact will determine the maximum
addendum allowable on each gear face.

When, as is always possible by choosing

the proper odontoids, the two secondaries

coincide completely, or over any desired dis-

tance, there will be double contact. In all

such cases we have D' C = a b, or the sum
of the diameters of the lines of contact must

be equal to the difference of the pitch diame-

ters. In fact, the same rule applies to all

chords through 0, c d being always equal to

efin cases of double contact.

EOLLED CUBVES.

If a rolling curve or "roller," P K, be

rolled on a pitch line, Ky & point, P, upon it

will trace out a rolled curve, P.

As the line P K, from the tracing point P
to the point of contact K, is always rotating,

for the instant, about iT as a center, the

curve P will always be at right angles to it

at Py and it is, therefore, always a normal to

the curve. As each one of the normals is

separate from the preceding and following,

and the normal intersections with the pitch
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line ure consecutive, the rolled curve is a true is the pole of a spiral it may cross at an

odontoid. As the length of the normal P K, angle. Fig. 22.

the normal angle P K S, and the normal arc Although rolled curves and odontoids are

PK= K, are in no way dependent upon identical, they cannot readily be considered

the same, for the cycloid is the only

odontoid worth noticing that can be con-

veniently handled in shape of a rolled curve.

Fig. 23

V////A

Moiled curve

the curvature of the pitch line K, they are

the same for the same arc K on all curves,

and therefore all odontoids traced on the

same side of any number of different pitch-

curves by the same point on the same roller

are similar odontoids.

Moiling sptvals

"When the tracing point is any ordinary

point on the roller, the curve traced will be at

right angles to the pitch curve, but when it

Moiled segment

The involute can be formed by rolling a

logarithmic spiral on the pitch line, but that

feature is a mere curiosity without practical

value, while the circular segmental tooth of

Fig. 23, a perfect and very simple odontoid,

can be formed only by a roller that is a

curious combination of polar spirals that can

be discussed only by the use of the higher

mathematics.

The properties of the odontoid can gen-

erally be more easily developed and clearly

explained if it is considered as a special case

of the enveloping curve, than if it is treated

as a rolled curve, while, for practical pur-

poses, the conjugator, founded on the normal

theory, has the advantage of any device that

is founded on the rolled curve theory.



APPLICATION OF THE THEORY

TO

PARTICULAR CASES

The Segmental System.—If a circular arc

be drawn from a center A, Fig. !?4, on a line

at an angle, E A^ with a rack pitch line,

F, its normals P Kio the pitch line, will

satisfy the law of the odontoid, and the seg-

ment D F will be a rack tooth that will

form an interchangeable or conjugate set of

teeth.

If the radius A \b infinite, the segment

is a straight line M N^ dX right angles at

with A, and the common involute system

will bo formed. Therefore the involute tooth

is a special form, the infinite form, of the

segmental tooth.

The segment has exactly the valuable prop-

erties of the involute at the pitch line, and

approximately away from it, the approxima-

tion being closer as the radius A ib longer.

The involute tooth is often, but not prop-

erly, regarded as the special case of the

cycloidal tooth for a rolling circle of infinite

diameter. Regarded simply as a curve, the

involute is an infinite cycloid, but regarded

as a gear tooth curve it is not, for, as shown
by Fig. 37, infinite cycloids have a mathe-

matical but not a practicable contact, and

cannot bear properly, unless the conditions of

the movement are so far strained that one is
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reversed on its pitch line, and then the pitch

lines are separated.

FOEM OF THE SEGMENTAL ToOTH.—The face

of any segmental tooth, on any circle with

center at C, will be a lobe, d'f , where e' d'

=e d, and Oe' f'=0 ef. It is always at right

angles at with a.

The flank curve D' F' is at right angles

at O with Ay has the same height B' E'

,

and the same base E F' at the rack face.

If a, O and A are in the same line, the face

and flank will join at 0, and be a single

curve.

no cusp will be apparent, but the slightest

increase of the proportion will separate the

points.

In the most convenient system, where

A0E=1^° 28' 40 ", and sin. AOE=^, the

cusps will appear whenever the segment

and pinion radii are in the proportion

^=V.i= 1.687.

OA
As the proportion — increases, the sec-

06
ond branch Q' R will increase so that the curve

will take the form OQ R' D" , and when OA

Fig. 2S
Cusps of

Segmental Flanlcs

Cusps of Segmental Flank.—When the ra-

dius A, Fig. 25, is small, compared with

the radius 00, the pinion flank takes the

form shown by Fig. 24; but as the pro-

OA
portion

Yjp increases, a value will be reached,

OA
when ^ =2^' sin. AOE, at which a double

cusp, Q' R, will form. At exactly that point

the two points Q' and R will coincide, and

is infinite the second branch, Q' Z, then an

involute, is infinite.

The Segmental Delineatob.—The seg-

mental curve can be formed by the ** conjuga-

tor" previously described, and shown by Fig.

13, and it can be drawn by the special

delineator, shown by Fig 26.

A thin wooden wheel, C, turns on a pin at

its center, and a rack, B, rolls on it, being

held to it by a strip, aOc, of thin brass or



THE NORMAL THEORY OF THK GEAR TOOTH CURVE.

strong paper attached to both. It is kept

in position by a guide, H.

A fixed bar G, projecting over the wheel,

carries a pin 0, placed exactly at the point of

contact of wheel and rack. A rule E turns

about a pin A in the rack B, and carries a

pointed tracing pin or pencil point at P. The

pins A and P are in line, and all three are

always at the same distance from the straight

edge of the rule E, The pin P will pass

undei and come in line with the pin 0.

As the rack is rolled on the wheel, the rule

will turn about the pin A and slide on the

pin 0. The point P will trace segment of

The action is practicable until the point of

contact arrives at the first cusp (^ of Fig. 27
;

but beyond that, when it is on the second

branch (^ JR, the flank curve is inside the rack

face, and the action is impracticable.

There will also be an actual interference

with the first branch, "When the point of

contact is on the second branch, the rack

face will cross the first branch at J, and

therefore the addendum must terminate the

rack tooth at the point Q that conjugates

with the cusp Q'.

The difference between theoretical and

practical contact is illustrated by the two ma-^^

a circle P 8 with respect to the rack, but on

the wheel will trace out the segmental flank

0' Q R D'.

If the pin A is carried by an arm on the

other side of the rack pitch line, the face of

the pinion tooth will be drawn, but, as the

form of the face is very simple, the utility

of the instrument is confined to the flank

curve.

Interfeeenoe or Segmental Teeth.—The
action of the segmental rack tooth on a flank

that is conjugate to it, when the proportion is

such that a cusp is formed, is always mathe-

matically perfect, but not always practicable or

capable of mechanical use.

Fig, 26

Segmental Delineator

chines, the conjugator of Fig. 13 and the de-

lineator of Fig. 26. A full rack tooth on the

conjugator will form the first branch correct-

ly, but when the cusp is reached will return

on it and cut it away, while the delineator,

having but one acting point, will follow the

theory and trace out all three branches.

Least Number op Teeth.—Therefore, if the

addendum is fixed, and it usually is, interfer-

ence will generally set a limit to the diameter

of the smallest pinion with which a rack tooth

having the given addendum will work, with-

out bearing on the second branch of the

pinion flank.

The diametral pitch being unity, a the ad-
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dendum EX^ Fig. 25, Z>, the segment radius

OA, and F, the angle of obliquity AOE^ the

smallest possible number of teeth is

2a sin V^ "

(1)
(l+sinv)-

If 5= 00 for the common involute system

,

«=1, and sin. F=.25, this formula gives i=

Interference of
Segmental Teeth

32. Therefore, the common involute system

cannot have an addendum of unity on an in-

terchangeable set having gears vrith less than

thirty-two teeth. When the set includes 12

teeth, as is usual, the addendum must be

shortened, or the points must be rounded

over, as at QQE, Fig. 27.

If we have given the angle of obliquity,

the addendum, and the number of teeth in

the smallest pinion, the largest possible seg-

ment radius that can be used is

&=-
a

V2a sin. V
sin. V (2)

This, for the common case, where «=1, t=.

12, and sin. F=.25, gives J=10.34 as the ra-

dius for the usual twelve-tooth system. A ra-

dius of 13.91 will allow 15 teeth, 16.95 will

allow 16.95 teeth, 23.58 will allow 20 teeth,

and a short radius of 8.44 will admit a 10-

tooth pinion.

The Natubal Set.—There is one particular

proportion of segment radius to pinion ra-

dius, that might be considered the natural

limit to the interchangeable system, and that

is the proportion at which the cusp first ap-

pears. If that, or a smaller proportion is

chosen, there is no limit set to the addendum,

and no interference is possible, for the second

branch of the curve never appears.

For that point we have the relation

5=3f t sin. V, (3)

so that, by choosing some value of t as the

lower limit, we can find h for the whole set.

If sin. F=.25, we find 6=||«, giving 6=8yV
for a ten-tooth set, 5= 10|^ for a twelve-tooth

set, ^»=12|^ for a fifteen-tooth set, 5=27 for a

thirty-two-tooth set, and so on.

If we use the plan previously explained,

and calculate by formula (2), we can get a

greater value for it, but in that case the ad-

dendum is limited to its chosen value.

As the addendum is always limited in prac-

tice, almost always being unity, formula (2)

appears to be better adapted to practical

purposes than formula (3).

CoEREOTED INVOLUTE TooTH.—We havc sccn

that the true involute tooth, when sin. V—
.25, cannot be used for an interchangeable set

Stunted Involute

that includes gears with less than thirty-two

teeth, if the addendum is unity.

It is, however, customary to use the full

addendum on a set that includes twelve teeth,

with the result that it must be corrected (?)

for interference by rounding over the comers

as in Fig. 27.



THE NORMAL THEORY OF THE GEAR TOOTH CURVE.

Formula (1) will apply to the involute if

Z>=oo . In that case -r=o, and

(4)

If t=12, and sin. F=:.25, we have a=^, so

that the common involute, Fig, 28, is limited

to the addendum ab=^^, and the additional

bc=^ of the full addendum must be cut off or

got out of the way by rounding off as much
of it as would interfere with a twelve-tooth

pinion.

This additional five-eighths is not inter-

changeable, is not a tooth curve, and is kept

on merely to give the appearance of a whole

tooth. What usually appears to be a full ad-

dendum, is really stunted to but little more
than its third part.

pitch

line"*

Action of
Corrected Involute Tooth

The only true correction, the only device

that will allow of a full addendum of unity,

retain the true involute for any part of it, and
permit a rack to run in a pinion of less than

thirty-two teeth, would be to correct the rack

tooth by rounding over the point as in Fig.

29, to give the flank the same correction, so

that the condition of interchangeability is

satisfied, and then to form a conjugate set

from the corrected rack tooth. The result

would be a mixed action : true involute, near

the pitch line, and epicycloidal or otherwise

away from it.

This plan would have the serious defect that

the corrected part bd must be a very defective

odontoid, with a jerky and very nearly im-

practicable action ; for, to obtain the neces-

sary correction between b and d the curve

must turn so quickly that its normal intersec-

tions with the pitch line must be crowded

within a narrow limit mn.

Therefore , it would not appear to be advisable

to correct the involute at all, for low-numbered

pinions, but to discard it altogether, or to

keep up appearances, as at present, by a

merely ornamental and deceptive extension to

nearly three times its effective length.

If it is discarded, its valuable peculiarities

will be lost, and therefore its substitute

should be the curve that is nearest like it, and

most nearly has its properties.

Evidently, the nearest possible approach to

the involute, is the segment that has the same

angle of obliquity, and the longest radius

that will admit the required addendum on
the required smallest pinion, as found by
formula (2).

Figs. 29 and 30 serve to compare the action

of the corrected involute with the segmental

tooth. The action of the segment. Fig. 30,

is exactly the same as that of the involute at

pitch

line

Action of
Segmental Tooth

a, and its rapidity gradually increases to the

finish at n. The corrected involute action,

Fig. 29, is uniform from a to m, and finishes

with a sudden jerk from m to n.
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If the correction should be curved enough

to cause any of the normals to meet on or

outside of the pitch line, the action would be

wholly impracticable.

The Cycloidal System.—The cycloidal

system is generally, but not properly,

called the " epicycloidal " system. It is

no more epicycloidal than it is hypocy-

cloidal, for the faces are of the one form,

and the flanks of the other. It is simpler and

easier, as well as more correct, to apply the

name cycloidal to both face and flank, and to

the whole system, as is sometimes done.

As before stated, the cycloidal system can

be more easily developed and studied by the

"rolled curve" theory than by th« narmal

angles at and F, with a base, OF, equal in

length to the circumference of the roller.

As with all rolled curves, the line PR, from

the tracing point to the tangent point, is al-

Fig, 31

1£ JE K
The Cycloid

ways a normal to the curve, and therefore, to

draw a normal to any given point P, strike

a circle through the point having a diameter

Fig. 32

Cycloidal Teeth

theory, because its roller, the circle, is the

simplest of all curves. But, in this place,

the former theory will not be used further

than to define the nature of the cycloid,

which is the generating odontoid that forms

the system.

The Cycloid.—If a circle A, Fig. 31, is

rolled on the straight line OF, a fixed point

P, in it will trace out a transcendental curve,

OPDF, called the cycloid.

It is a lobe, having a height, DE, equal to

the diameter of the roller, and is at right

equal to the height DE, and tangent to the

base line, and draw the normal PK to the

point of tangency.

As the arrangement of the normals is con-

secutive, the curve is an odontoid, and all

curves formed from it will be similar odon-

toids that Aiill work interchangeably with it.

The simple process for drawing the normal

makes it easy to form the conjugate face or

flank belonging to any pitch circle. The

flank cycloid Odf, Fig. 32, forms a face on

the pinion, which is always a lobe Od'f at
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right angles at with the pitch line, and

meeting it again at/', where Oe' f'=Oef.

The face cycloid ODF forms a flank,

OD' F\ on the pinion, that is at right angles

with the pitch line at 0, meets it again at F'
,

where OD' F'=ODF, and which takes vari-

ous forms, according to the size of the pin-

ion compared with that of the cycloid.

When the radius OC, of the pinion, is

greater than the height ED of the cycloid,

the flank will be a concave lobe, OD' F'.

When the radius 00 is equal to the height

FD, as in Fig. 33, the flank will be a straight

diameter OF',

When the radius is less than the height, as

in Fig. 34, the flank will be a convex lobe.

As an undercurved flank, as in Fig. 34, is

weak, it is customary to so limit the radius

of the pinion that it shall never be less than

the height of the originating cycloid.

As the proportion of ED to 00 still further

increases, the flank is still more undercurved

.

until when 0C= ^ ED, we have the base, OF,

equal to the circumference of the pinion ; and

the flank is concentrated to a single point at

0. The wearing action is also concentrated

at the single point, and such a tooth, al-

though practicable, is quite useless.

If the height of the cycloid is greater than

the diameter of the pinion. Fig. 35, the flank is

a lobe, entirely external to the pitch line; and

although the contact is still mathematically

perfect, it is no longer practicable, for it is

on the inside of the cycloid, as shown at P'.

n
Cycloidal Involute

If the proportion is carried to its extreme,

the height being infinite as compared with

the diameter of the pinion, as in Fig. 36, the
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cycloid becomes the straight line OD^ and the

pinion flank is the involute OD' . From this it

is plain that the involute, in the form of an

infinite cycloidal odontoid, is not a practi-

cable gear tooth curve, the action between

two gears being, as in Fig. 37, always on the

straight line AOB at the crossing of the two

tooth curves.

.. i .y B

i

•

N

V
Fig. 37

y
Infinite Cycloidal Teeth

Cycloidal Lines op Contact.—The pri-

mary lines of contact, in the case of the cycloid,

are circles. Fig. 38, of the same diameters as

the heights of the originating cycloids.

The secondary lines of contact are also

circles. The diameter is equal to the pitch

diameter plus or minus the height of the

cycloid.

Intebnal Interference.—With cycloidal

teeth we cannot have a partial interference,

as with segmental teeth, which can be

remedied by truncation of the teeth, for

the exterior secondary of the pinion is either

entirely inside the interior secondary of the

gear or entirely outside of it, except in

the case of entire coincidence. If the differ-

ence between the pitch diameters is greater

than the sum of the heights of the originat-

ing cycloids, there can be no interference,

but if it is less there will be a continual inter-

ference that can be remedied only by the en-

tire removal of the face of one of the teeth.

The condition of non-interference can be

conveniently expressed by the rule that the

difference between the numbers of teeth on
the gears must not be less than the half sum
of the numbers of teeth on the base gears.

This, for the common interchangeable sys-

tem, requires that there should be a differ-

ence between the gears at least as large as the

base gear. For example, in the fifteen tooth

set there must be at least fifteen more teeth

in the gear than in the pinion.*

Double Internal Contact.—When the

condition of non-interference is exactly satis-

fied, there is a case of double contact, for

then the two secondaries coincide. In a case

of double contact of interchangeable teeth,

the coinciding secondaries must exactly bisect

the chord c dof Fig. 20, for the primaries are

equal, and their chord e f ia exactly bisected

in that case. As the circle is the only curve

that will bisect all the chords c d, it follows

that the cycloidal system is the only one that

can have double contact, and at the same time

be interchangeable.

Practical Construction.—The practical

application of the conjugating process, in the

case of the cycloid, presents the difl&culty

that the originating rack tooth must be an

exact cycloid, which condition can be met

only by special mechanism.

The originating segmental tooth has an

outline that is formed of arcs of circles, and

that of the involute is composed of straight

lines, and both can be easily shaped. But

the difficulty in the practical application of

the cycloidal system is not by any means the

greatest objection to it in comparison with

its simpler and superior rival.

*The discovery of the law of internal interference, as far as it relates to cycloidal teeth, is generally

credited to Prof. C. W. MacCord ; but, in claiming that discovery, the professor could not have been aware
of its previous publication, by A. K. Mansfield, in the Journal of the Franklin Institute for Januai-y, 1877.
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Lines of Contact



Table for the Teeth of Gears.
Diannetral

Pitch 4 5 6 7 8 10 12 14 16 20 24 28 32 36 40 48

Circular
Pitch

.785 .628 .524 .448 .392 .314 .262.224 .196 .157 .130 .112 .098 .087 .078 .065

Thickn'ss
of Tooth
at P. Line

.393 .314 .262 .224 .196 .157 .131 .112 .098 .079 .065 .056 .049 ,043 .039 .038

for out-
side diam

.500 .400 .333 .286 .250 .200 .167 .143 .125 .100 .083 .071 .063 .056 .050 .042

Depth
of Teeth.

.539 .431 .359 .307 .270 .216 .180 .154 .135 .108 .090 .077 .067 .060 .054 .045

Clearance .039 .031 .026 .021 .020 .016 .013 .011 .010 .008 .007 .006 .005 .004 .004 .008

dard

es.

Iron 2i 2 If H n 1 f H 1 } f

Stan

fac

Brs. ^ t A XV i i t\ t\ i i

Strength 700 450 300 220 170 110 77 65 43 30 20

The diametral pitch is the number of teeth in the gear for each inch
of its pitch diameter. The circular pitch is the distance from tooth to
tooth, center to center, measured along the pitch circle.

The strength of a tooth is the number of pounds weight that a cast iron
tooth of the standard face will bear safely on its point. For other faces
the strength is in proportion to the face. The factor of safety used is ten,

and, therefore, the tooth would probably bear five times, and might possi-

bly bear ten times the given strain.



The comparative EFFICIENCY of the TEETH of

GEARS.

[Reprinted from the Journal of the Franklin Institute, May, 1887.]

The effect of friction between the teeth of gears is not well

understood, and the popular impression, even among educated

engineers, concerning the comparative efficiency of the two forms

of teeth in common use—the involute and the cycloidal—is that

the latter is much the most economical, and, therefore, much better

adapted for use for the transmission of heavy power.

This impression is entirely wrong, the reverse of the provable

facts, and it is based not entirely on fancy but partly on the

teaching of authorities that are undoubtedly competent.

It is with no small feeling of timidity, that I venture to contra-

dict the declared and apparently proved opinions of such high

authorities as Reuleaux, Herrmann and others, and I would not

dare to assert a contrary view if I did not feel able to prove it, by

evidence that will bear the closest examination. I will give the

demonstration in great detail, so that it can be followed by any

one who is familiar with the common processes of analysis.

By the work done by a gear wheel, I mean the work done by

the friction of sliding between the teeth. I shall leave out the

small rolling friction between the teeth, and I shall not consider

the friction of the shaft bearings.

The work lost by the rubbing of two surfaces on each other is

the product of the normal force acting between the two surfaces,

by the distance through which the resistance is overcome, and by

the coefficient of friction for the material in use.

To determine the work done by a pair of gear teeth, we must

determine these three factors or their product, and this may be

done in two different ways : by a graphical process, and by an

analytical method. The two processes are entirely independent of

each other beyond the given premises, and their agreement upon

a common result is a substantial proof of the accuracy of both.

Graphical Process.—In Fig. z, the two tooth curves have rubbed

upon each other, while the point of contact between them has

moved from C X.0 A on the line of action, AD, and they have



done work that is the product of the coefificient of friction,/, by
the difference, zy, of the lengths of the curves that have passed the

point of contact, and, for graphical purposes, of the average force,

S', that has acted between the two teeth.

If we make a drawing, showing the two teeth in several posi-

tions, preferably at equal intervals of their action, we can deter-

mine the work done within the limits of each interval by multi-

plying together the factors as found by measurement. The total

work done between any two points is the sum of these products

for all the intervals between the points.

In Fig. 2, this process is applied to an exaggerated example of

a pair of cycloidal teeth. The gears, with radii h and h, have ten

Fig. I. Analytical Process.

and twenty teeth, the tangential force, P, between the two gears

is assumed to be constant and unity, and the coefficient of friction

is assumed to be one-tenth. The describing circle, with radius

0M= Tf has three teeth, so that a gear of six teeth would have

radial flanks and be the base or smallest gear of the interchange-

able set to which the two gears belong.

The pitch and describing circles are divided into equal inter-

vals, Oa, ah, he, etc., of one-twelfth of the whole tooth arc, or cir-

cular pitch, 01, commencing at the line of centres, and the work

done over each of these small intervals is to be determined.

Make a templet of an epicycloid on the gear h, and of a hypo-

cycloid within the gear ky and draw curves from each of the divi-

sions of the pitch lines. Each pair of curves should meet on the



corresponding division of the describing circle. Measure the dif-

ferences between the lengths of these curves (see column 2 of the

table), and by subtracting each total difference from the next

larger, find the partial length of curve passed over during each

interval, as tabulated at column 3.

Draw a line at an arbitrary distance, representing unity, from the

line of centres and parallel with it, and draw lines, OSa, OSb, OSCj

etc., through the centres of the intervals. The length of each line

(column 4) can, with small error, be assumed to be the average

normal force for its interval. These normal forces can be very

Fig. 2. Graphical Process.

easily computed, for each one is the reciprocal of the cosine of the

angle POS. The angle for the first normal is 2^°, and there are

5° between each of the following normals:

Multiplying together the normal for each interval, the partial

curve for that interval, and the coefficient of friction, we obtain

the loss for each interval as tabulated at column 5. By summa-
tion we obtain the total loss to and including each interval, as

tabulated at column 6.

For the involute tooth, we have a constant normal force,S= 1-15,

the total work done, column 10, up to any interval is the product



of that force by the total curve, column 9, for that interval. The
figure is so similar to Fig. ^, that it need not be given here.

The graphical process will determine the general result, and

show that while the two curves are substantially equal in efficiency,

the advantage is a very little in favor of the involute. If we wish

a precise comparison between these two curves, no graphical

process can be used, and we must resort to analysis.

Analytical Process.—In Fig. 7, the two tooth curves are odon-

toids of any possible form, and they will secure a uniform velocity

ratio between the pitch lines. They slide on each other, the point of

contact moving along the line of action, AD. At any time they

are at a distance J. = 6 from the pitch point, 0, and are pressed

together with a normal force, /S', which is equal to the constant

tangential force, P, divided by the cosine of the angle of obliquity,

P J. = F, and this normal force is always in the direction of the

pitch point O.

While the normal, O A, turns through an elementary angle, the

arc of which is d V, the two curves will rub on each other over an

elementary distance, A B =s A ' d V=b • d V, and they will

do the elementary work

dW=^fP'TB'8'^f ^'b'd V.
eo8 V

At the same time the wheel h will turn through the elementary

angle, the arc of which is

k ± h

in which the positive sign is for external, and the negative sign is

for internal contact.

Therefore, we have the total work done by friction, while the

wheel h is turning through an angle, the arc of which is x.

X

o

and this cannot be carried further until we know the form of tooth

curve to be used, and can determine h and cos Fin terms of x.

First take the involute tooth.



The distance A = b is equal to hx . cos F, and we have the

total work done
X

k ^
which integrates to

2 k 2
'

or, if we use the arc on the pitch line, w = hxy we have

, fP k±h 2

2 kh

for the value of the work done by the friction of involute teeth

while moving from the pitch point over any arc, w, on the pitch

circle.

It is a singular fact that this loss of power is the same for all

values of the angle of obliquity. All involute systems are equal

in efficiency, without regard to the angle of obliquity.

Then take the cycloidal tooth.

h hWe have 6 = 2 r . sm — x, and gos V = cos — a?, giving
2 r 2 r

the total work.

which integrates to

E = —/P . ^^4 r" nat log cos ^,•^ kh ^ 2r'

the value of the total work of a pair of cycloidal teeth.

To compare the cycloidal with the involute tooth for the same

arc of action from the pitch point, divide E by /.

„ 8 r^ nat log cos —

-

E^^ ^ 2r-

As this is unity for w = O and greater than unity for any

finite value of w, it follows that the efficiency of the involute is

mathematically superior to that of the cycloidal curve, in all cases

and under all circumstances, without regard either to the angle of

obliquity of the involute, the size of the describing circle of the

cycloidal curve, or the arc of action, and provided only that the



comparison is made over the same arc of action. (See column

13 of the table.)

In both of these formulae it is seen that h and h can exchange

places without affecting the result for external contact, and there-

fore the work done is the same, for the same arc of action, on both

sides of the line of centres, the tangential force being constant.

For a comparison between external and internal gears, we have

_^ ^ lor E Ext ^ h -^h
B lor E Int. k— h

so that the internal gear is much the most economical, particularly

when the two gears are nearly of the same size.

When k = 2hvjQ have -g- = 3. That is, if the internal gear

is twice the size of its pinion, the work lost is but one-third of that

lost when both gears are external.

Small improvement can be made by putting a small pinion in-

side, rather than outside of a large gear, as is often done at great

expense on boring mills and large face plate lathes. A six-inch

pinion and a six-foot gear will give ^- = 1*18 an advantage of no

great value.

It is seen from the above that the work being done increases

very rapidly with the arc of action ; with the square of that arc in

the case of the involute, and in a still greater proportion for

cycloidal teeth, and hence that arc should always be made as

small as possible.

Strength should be secured by a wide face rather than by a

large tooth, for the face of the gear has no influence on its effi-

ciency.

The two formulae for E and I can be very easily applied to any

particular example, and the results obtained much more quickly,

as well as more accurately than by the graphical method.

For application to the given example, where h = 10, ife = 5,

f= 1, and P =3 1, we have

^ = 6-2] 70 IC— log cos (5 n)°]

/ = -01028 rv"

in which n is the number of any interval, C, is the characteristic



with the sign changed, and hg cos contains only the mantissa oi

the common logarithmic cosine of 5 n°.

It is seen from the tabulated value of E and I obtained by com-

putation, columns 7 and 11, that the graphical and analytical pro-

cesses agree very closely, the errors being shown by columns

8 and 12. As before stated, this agreement is a strong indication

of the accuracy of both.

Prof. Reuleaux* finds that the two curves are exactly equal

when compared over the same arc of action, and Prof. Hermannf

finds the same result by a different process. In both cases the

result was arrived at by making an approximation, for reasons not

given but probably to simplify the work.

If the actual determination of the work done is the end in view,

the approximations can be allowed, as the result is then close

enough for all practical purposes. But, if the object is a close com-

parison between the two curves, the slightest difference must be

accounted for, and neither Reuleaux's nor Herrmann's formulae will

answer the purpose.

Herrmann remarks, *< It is evident, moreover, that the friction

of involute teeth will be somewhat greater than that of cycloidal

teeth, the angle y being smaller for the former than for the latter."

This may be " evident," but it is not provable, and the state-

ment that the angle y, which is the complement of the angle of

obliquity, is smaller for the involute, is not correct. Up to the half

tooth point it is so, but beyond that point the reverse is true. At
the half tooth point the two forms always have the same angle of

obliquity if they belong to interchangeable sets which have the

same base gear.

Further, it does not follow that the work of friction is the greater

when the angle of obliquity is the greater, for the work of friction

depends on two variable factors, the normal pressure, which indeed

increases with that angle, and the length of the curve that is rubbed

over. Within the half tooth point this curve is the shortest for

the involute, so that the work done is the smallest although the

other factor is the greatest.

* Transactions of the American Society of Mechanical Engineers, vol. viii,

1886. The result, without the demonstration, is also given in Reuleav^'s Kon-
sirukteur, § 213.

f Klein's translation of Herrmann's revision of IVeisbach's Mechanics of

Engineering and Machinery^ vol. iii, \ 79.



As Herrmann states, " This difference is insignificant for the

tooth profiles ordinarily employed," but the general impression,

which it is the object of this paper to contradict, is that the differ-

ence is very significant and in favor of the cycloidal tooth.

Reuleaux goes further, and, after finding that the two curves are

exactly the same for the same arc of action, gives several practical

examples, which show the involute to be decidedly inferior, the

difference being from sixty to eighty per cent.

This result is correct for the conditions of Reuleaux's examples,

but it seems to me that those conditions are not correct if the object

is to compare the two curves, for he does not take them on the

same terms. He takes the involute with a long arc of action, and

compares it with a cycloidal tooth having a short arc, and of course

the involute is then inferior.

Example for ^ = io* ^ = y r = 1-5 /= -i and P= i.

^

Cycloidal Teeth. Involute Teeth.
Obliquity, 30°. 5= i^is.

i

Total
Curve

Par-
tial

Curve
Normal
Force.

Par-
tial

Work

Total Work.

Total
Curve

Total Work.

1
Graph Anal's Error Graph Anal's Error.

E
I

I •010 •010 I '0009 •0010 -001 1 -00103 •0001 •02 •0023 •00103 •0013 I 002

2 035 •025 1-0087 -0025 0036 -00413 •0005 •04 •0046 00411 •0005 I 004

3 •085 •050 10243 •0510 •0086 •00937 -0008 •08 -0092 •00924 I 013

4 •155 •070 1-0485 •0735 •0160 -01679 •0008 15 •0173 -01645 •0008 I 021

5 •245 •090 1-0824 •0975 •0257 •02656 •0009 -22 0254 •02570 •0003 1033

6 •355 •no 1-1274 -1240 0382 -03884 •0006 •32 -0370 •03701 1-049

7 •485 •130 1-1857 1540 •0536 -05386 0003 •44 •0508 •05038 0004 1-069

8 •630 •145 1-2604 •1825 •0718 -07196 •0002 •57 -0658 •06580 1-094

9 790 •160 1-3563 •2170 •0935 -09357 •0001 •73 •0831 •08328 0002 ri24

10 •965 •17s 1-4802 •2590 •I 194 •I 1932 -0001 •90 •1039 •1028

I

•OOII i-i6i

II I 150 •185 1-6426 •3040 •1498 •15008 •0003 1^09 1259 •12440 -0015 1^206

12 1-350 •195 1-8615 •3630 •1861 •18715 •ooii X-30 •1501 •14805 •0020 1364

I 3 3 4 5 6 7 8 9 10 II 12 13

The work done increases rapidly with the distance of the point

of contact from the line of centres, and the result of Reuleaux's

method is to compare one curve that is at work a considerable dis-

tance from the line with another that is nearer to it.

This is clearly shown by the figures of Reuleaux's comparative

examples, for in each case the losses are almost exactly proportional

to the arcs of action.



For the purpose of comparison, the two teeth should be taken

under precisely the same circumstances, and they should commence

work and stop work together. They should have the same arc of

action rather than the same addendum, for the addendum has very

little to do with the gear except by its effect on the maximum arc

of action.

When taken under similar circumstances, involute and cycloidal

gear teeth are practically equal with regard to the work done by fric-

tion, the difference being always slightly in favor of the involute.



THE LIMITING NUMBERS OF GEAR TEETH.

The treatment of the subject of the limiting numbers of gear teeth is usually

so difficult that the student is obliged to take the results as he finds them ; for

it is a great work of time and patience to follow out the process, and prove the

results to be either true or false.

The following processes are easily derived from the trigonometrical condi-

tions of the problem, but I will here give the results only.*

Assume the arc of recess to be a times, and the thickness of the tooth to be

h times the circular pitch, and the diametral pitch to be unity. Let d be the

number of teeth in the driver, and/ the number in the follower.

For the cycloidal system, assume the diameter of the describing circle to

be q times the diameter of the follower, and the limiting nimibers of teeth

will be involved in the following equation;

—

/g ^ 1
^ --aGOO/ h\ .

360'. raeo" / 6 \ ,
360° a n

. 360°/

4)

<i>

which is insoluble in general terms, but from which either/ or q can easily be

separated, for any particular case, by a few numerical trials.

For a common example, assume the driver to have six teeth, the arc of re-

cess to be equal to the pitch, the tooth to be equal to the space, and the flanks

of the follower to be radial. This gives a = l,h — ^,q= ^, and d = 6; so

that the formula becomes

12
f =

I sm 4" cos \ —p 1
720° , (2)

To solve this, put / equal to two numbers as near truth as can be estimated,

say 140 and 160. This gives 140 = 140.171, and 160 =- 159.193, the opposite

errors showing that / is between the two chosen points.

Interpolating in proportion to the two errors, we get 148.5 as our first

approximation.

Trying 143 and 144 in the same way, we get 143.491 as a second approxima-

tion, and 144 as the required nearest larger integer.

If the chosen points had been 120 and 180, the first approximation would have

been 144.5, and a second trial would have fixed 144 as the nearest integer.

When the driver is a rack, we must use the formula

2

q sm
60

7

^~
. 360° a

^^^

and when the rack is driven we must use

2 a

360° / _^\ (4)360^^ /
tan —^ ( a

which are simpler than the unlimited formula.

This subject I have treated in full, with illustrations and examples, in a paper in the
Scientific American Supplement, Vol. XXIII., 1887.



When the involute system is to be treated, the problem is a double one

;

for the action on one side of the line of centers will set one limit, while that

on the other side will set another.

If we know Q,, the angle of obliquity, we have

/ = 2 « 7r cot ^ (5)

so that the problem is reduced to finding the value of Q for the given condi-

tions.

The solution is exact, and not dependent, as with cycloidal teeth, on a pro-

cess of trial and error.

On the approach side we have the formula

i2,n Q = -^(l — a\ (6)

and on the recess side the formula

cos Q = A cot W+h + S/pcot W-p'^ + i
(^^

^ l + cot2 Tf

in which p = ^ (8) and W = —5— I a r-
)^ 2 air ^ d \ 2 /

(9)

The approach will set a minimum value for Q, and the recess will determine

a maximum. The maximum must evidently be no less than the minimum.
When the involute rack follows, we have the same case as for a cycloidal

pinion and rack, see (4) ; but when the rack drives we can use

cos ^ = ^ 1 _ JL (10)
V 2 a

The direct solution is somewhat tedious in application, and may be simplified

by the use, on the recess side, of the formula

^ ^ sin TT ^_^
""' « = cos {Q+W) ^^1^

which can be easily worked by the above-described process of trial and error.

This supposes the involute to be for the interchangeable system, but when
it can be allowed to be non-interchangeable the angle of obliquity on the

approach need not be the same as that on the recess. The interchangeable

involute tooth will not permit as small pinions as the non-interchangeable

cycloidal tooth, but when both forms are taken on the same terms, both non-

interchangeable, the advantage of the cycloidal tooth is destroyed.



STANDARD FACES FOR GEAR WHEELS.
It is desirable for the sake of uniformity and interchangeability, to have a

regular system or law of fixed relation between the size of the teeth and the
width of the face of a gear wheel.
Such a law is recognized and in general use in a loose way, is a law of

common sense, in fact, for it is almost invariably the custom to adopt a
coarse tooth for a wide face, and although the practice is far from uniform,
an examination of a great many cases, selected at random, will show that
the "base," or product of the face and pitch, will average very near the
number ten for cut iron gears.

It is obvious that a fixed law should accommodate itself to actual practice
as nearly as possible, and, adopting ten as a base as rigidly as a proper re-

spect for standard pitches, and convenient fractions for the faces will permit,
we can construct the following table for cut iron gears.

Face Pitch Base

i 20 10

f 16 10

f 12 9

1 10 10

li 8 10

If 6 10^

24 4 10

For small cut gears, which are usually made of brass, the weaker metal
requires a coarser base, aud we can use the number six for the standard.

Face Pitch Base

i 48 6

T^ 32 6

i 24 6

A 20 6i

f 16 6

T^^ 14 H
i 12 6

In the same way for cast gears we can construct a system on the number
three as a base, as follows :

—

Face Circular Pitch Base

H i B

2 . f 2f
3 13
4 li H
H H 3

5 If 2f
e 2 3

7 2i 3^
8 2i 31

8 2f m
9 3 3



THE EQUIDISTANT SERIES.
The shape of a tooth is not the same on two gears of different sizes, for

its curvature continually decreases and the curve flattens as the number of
teeth in the gear increases.

When the teeth are formed by a rotary milling tool, we must use a cutter
of lixed shape ; when formed by planing, a fixed guide is employed ; and
when drawn by an odontograph, fixed tabular data are used ; and obviously,
if we require the greatest possible accuracy we must have a different shape
of cutter, or guide, or a separate tabular number, for each separate tooth,
and at least two hundred in a set to cover the ordinary range of work. As
this would be an expensive and clumsy system, it is customary to make one
fixed shape do duty for several teeth, being just right for one tooth of a
given interval, and approximately so for several teeth either way.
This set of fixed intervals is known as the equidistant series, as it so dis-

tributes the errors that the greatest error is the same in all the intervals.

The equidistant series was invented by Willis, but he gives no rule for
arranging it, and the example he gives was apparently found by some
experimental method.
In the American Machinist for Jan. 8th, 1881, I proposed the location of

the dividing points of the series by the formula

, a n
n-s4-—

in which a is the first and z the last tooth, usually twelve and infinity, of a
series of n intervals, s is the number, in the series, of any particular inter-
val, and t is the last tooth in the interval s.

This formula uniformly distributes, not the differences in form, but what
is for all practical purposes the same thing and much more easily handled, the
differences in the lengths of the addendum arcs. It is general in its nature,
and independent both of the form of the tooth and of its length, which have
but a minute effect on the required series. Any method that recognizes
these small differences must necessarily require more intricate and
difficult trigonometrical work than the slightly increased accuracy will war-
rant.*

* In his treatise on Kinematics, Prof. C. W. MacCord has treated my formula in such a summary
and unjust manner, that in replying to him I do not feel bound by the usual rules of courtesy, but am at

liberty to state the facts in plain words, without fear or favor.
He not only refers to my process with an evident attempt at ridicule, but he positively mangles the

facts. He is careful to show its defects and to exagerate their importance, while he is equally careful

to slight and conceal its real merit. His motive is evident when he next proposes as a substitute a
"locus" method which he claims is "the perfect solution of the problem," which will give a series

thatis "exact to a single tooth," and the value of which he assumes but does not attempt to prove.
It is, in fact, an arbitrary approximation, and so wonderfully intricate, clumsy, and inaccurate, that the
result, determined by it with great care by its own expert inventor, does not divide the locus curve to a
single tooth, or in some parts, within several teeth, or distribute the errors of form any more uniformly
than does the method it was intended to displace. A full (and free) discussion of this matter may be
found in several letters published m the American Machinist in 18S4. The locus method gives a result

almost identical (for cases in actual use) with the series found by my formula, and if the slight differ-

ence can be proved to be in its favor, as has not been done, it is of imperceptible importance, and no
offset whatever to the excessive intricacy of the method.

I did not claim perfection for my formula, or imagine it worth the notice that has been taken of
it, and I would not in ordinary cases criticise the work of any other writer, but as I have been used
with unusual and unprovoked severity, 1 find it necessary to publish this note in self defence. Both
sides of the question are now accessible to any one who may be interested, and all I ask or expect is

that my work shall be treated with ordinary fairness, and allowed whatever merit it really has.



For the ordinary series of eight interrals, to cover from 12 to oo the form-
ula becomes

and if we put s successively equal to 1, 2, 3, 4, 5, 6, 7, and 8, we get the
series of last teeth

13f , 16, 191, 24, 32, 48, 96 and oo

,

the resulting equidistant series being

12 to 13, 25 to 32,

14 to 16, 33 to 48,

17 to 19, 49 to 96,

20 to 24, 97 to a rack.

Similarly, if we apply the formula from a=24 to z=co ,for n=12, we get the
series adopted above for the involute odontograph table, and it requires but
a few figures and a simple operation to apply it to any other case.

POSITION OF THE "PERFECT" TOOTH.
The "perfect" tooth, whose shape does duty for the whole interval, can

best be placed, not at the center of the interval, but by assuming the inter-

val to be a short series of two intervals, and adopting the intermediate
value. The proper fixed shape for the interval from c to d is that of the
tooth found by the formula

For the interval from 145 to 288 the perfect tooth is the 193rd, instead of the
216th at the center. *

MAXIMUM ERROR OF THE SERIES.
The odontograph gives the correct position of the perfect tooth only, and

the point of the tooth at either end of the interval is out of position by the
very small amount found by the formula

eiTor^—
pn

in which p is the diametral pitch, and n is the number of intervals in the
series. The odontograph table I have given for epicycloidal teeth has
twelve intervals, and the greatest error in the position of the point of any
tooth drawn by the table is

error=— = "^ inch.
12P p

This becomes .015 inch for one diametral pitch, and .005 inch for one inch
circular pitch and in direct proportion for other pitches.

For involute teeth this formula becomes

error ,= -23^

pn

and for the given table having twenty-four intervals the greatest error is

.006 inch for one diametral pitch, and .002 inch for one inch circular pitch.

It is thus seen that the number of intervals used is sufficient for all prac-
tical purposes, particularly if the error is still further reduced by adopting
intermediate tabular numbers for intermediate numbers of teeth.

* In the practical use of this series it is now the best custom to make the cutter for any
interval true to the first tooth of that interval, for the reason that a tooth that is too much
curved is better than one that is even a little too flat.



CONIC PITCH LINES.

The utility of the conic sections, used as the pitch lines of gear wheels, lies

in the fact that under certain conditions they will roll together in perfect

rolling contact when mounted upon fixed centers.

We can put all the conic sections under one law as to each of several fea-

tures when rolling together, as follows :

Any two equal conic sections will roll together in perfect rolling contact
when fixed on centers at their opposite foci.

Their moving foci will move at a fixed distance apart.

The two curves will make a continuous and complete revolution on each
other.

The point of contact of the the two curves will be at the intersection of the
line of the fixed foci with the line of the moving foci.

The common tangent to the two curves at their point of contact will pass
through the point of intersection of the two axes.

There are four conic sections, varying principally as to their focal distance.
The circle, having an infinitely small focal distance : the ellipse, having a finite

and positive focal distance ; the parabola, having an infinitely great focal

distance ; and the hyperbola, having a finite and negative focal distance.

Any two curves that will roll together may be used as the pitch lines of
gear wheels, and therefore we can have gears with either circular, elliptic,

parabolic, or hyperbolic pitch lines.

In either case the moving foci may be connected by a link that will hold
the two gears together when in motion, and this link will act in the most di-

rect and advantageous manner when most needed, when the action of the

teeth becomes so oblique as to be of little service.

The four cases are illustrated by the four figures

Fig. I
CIBCVLAli GEABS

Case I.— When the focal distance is infinitely small the curves are circles,
as in figure I. The link is here simply a fixed bar connecting the two centers,
for the two foci are combined in one point at the center.



ving focus

Fig. IT
JEXTilPTIC GEABS

Case II. When the focal distance is finite and positive, the curves are
ellipses that will roll together if fixed on centers at their opposite foci, as in
Fig. II. The link is a moving bar connecting the two moving foci.

Ua x<ig. III
:baba.bolic gbabs

Case III. When the focal distance is infinitely great the curves are parab-
olas. One parabola turns about its focus while the other turns about its
opposite focus, but, as the opposite focus is at an infinite distance the sec-
ond parabola must move in a straight line at right angles to the line of centers,
as in Fig III. The link becomes a bar of infinite length, and cannot be prac-
tically applied. The revolution is complete but of infinite extent, so that it
cannot be practically accomplished.



Case IV. When the focal distance is finite and negative, the curves are
hyperbolas. The opposite focus about which one hyperbola turns is now on
the other side of the curve, which becomes a negative or internal pitch line,

as in Fig IV. The link is of finite length and can be practically applied.
The revolution is complete, for as soon as one pair of curves separate, the
other pair come together, and the motion is continued.

The utility of circular gears is universal, and elliptic gears have many
applications, but no use is apparent for parabolic or hyperbolic gears. A use
for them will probably be found when their existence and properties become
well known, and they are certainly of interest to the student of mechanism.

»»»•«< < <

THE CONIC COMPASS.

Various instruments have been invented for mechanically forming or draft-

ing the circle, ellipse, parabola, and hyperbola. The common compass or
dividers for the circle, the elliptic trammell for the ellipse, and the clumsy
but simple devices by which either of the curves can be imperfectly drawn by
the aid of a string and pins, are well known. But I am not aware that there
is a known single instrument that will draw all of the curves by changes
in its setting and not in its construction.

The instrument here described may be called the conic compass because it

will draw either of the conic sections, and in its arrangement and method of
operation resembles a common compass.

The instrument is founded on the theory that a conic section is the figure

of the intersection of a plane with a circular cone or with a hyperboloid of
revolution.



THE COIVIC COMPASS.
A pencil rod S is so held that as it revolves it always represents an element

of a cone with vertex at 0, and its two pencils P and Q will always be in the
surface of the cone. The paper represents the intersecting plane, and the
line traced by the pencil on the paper must be the intersection of the plane
and cone.
The stand ^has a sleeve fixed adjustably on it at the point J, that can be

set at any axial angle O B D. The rod jff'is free to turn in its sleeve, but is

longitudinally fixed in it by the adjustable collar L. The sleeve B is adjust-

ably fixed on the rod K, so that it can be set at any conical angle BOB. The
pencil rod /iS slides in the sleeve B, and the pencil points are preferably in a
line P Q that intersects the axial line A B.
To use the instrument, turn the rod K and keep the pencil point P on the

paper.
If the axial angle B Dis set to a right angle, the pencil will trace a circle

C; if the axial angle B D is greater than the conical angle P O P, an ellipse

D P will be formed. If the axial and conical angles are equal, a parabola
will be traced ; and, if the conical angle is the greatest, one pencil P will

trace one branch Pof a hyperbola, and the other pencil Q will draw its other
branch G.

The instrument will act with theoretical precision if the parts are nicely

made and mounted, and the only exact requirement is that the rods S and K
shall move freely in their sleeves without shaking. Ordinary inacuracies in

other respects will afiect the position of the curve on the paper but will not
afi"ect its form.
This instrument will be the well known elliptic compass if the rod S is

fixed in the sleeve P, and the rod Kis free to slide in its sleeve ; but it will

not then draw the parabola or hyperbola.

If the pencil line P ^ is set at right angles with the rod K, both branches
of the hyperbola will coincide in the straight line XX.
Graduated arcs at the joints and J, and a heavy stand H, would make the

instrument more useful. The engraving shows the instrument in its simplest
condition.
This device was suggested to me by two articles published in the Scientific

American Supplement by Professor MacCord, describing two ingenious in-

struments, one for the parabola and the other for the hyperbola, and it seems
that the same articles at the same time caused the invention of a conicograph
by Andrew C. Campbell of Bridgeport, Conn. His interesting account of it

at present lies buried in the transactions of the American Society of Mechan-
ical Engineers, Vol. 8, 1886.

The conic sections may also be described by certain complicated modifica-

tions of the Pcaucellier cell. See "Linkages" by DeRoos, VanNostrand's
Science Series, No. 47.



BOOKS ON GEARING.
Those who are interested in this study can continue it to an almost

unlimited extent, for the subject is a large one. Among the many works the

following are the best known or the most dilligently advertised :
—

Professor Willis' PRINCIPLES OF MECHANISM is by all means the

most noted work on this art. It is now much behind the age, but still of the

greatest value to the student. It is out of print.

Professor Klein's Translation of Professor Herrmann's Revision of Pro-
fessor Weisbach's MECHANICS OF ENGINEERING AND MACHINERY
may be considered the standard woi-k of the day upon the scientillc principles

of mechanism. But it is intensely scientific in its method, and unreadable to

those who have not a mathematical training. Its treatment of the teeth of
gears is particularly valuable and original. Wilev, $5.00.

Beale's PRACTICAL TREATISE ON GEARING is one of the very few
so-called practical books that are really practical. It is a book by a man
who can make a gear wheel, and is of service to to those who have gear
wheels to make. It can be recommended from cover to cover, except in the

adoption of certain processes for drafting the teeth of gears that are not as

handy, as simple, or as accurate as odontographic methods. Published by
the Brown & Sharpe Mfg. Co., Providence, R. I. $2.10.

Professor McCord's KINEMATICS is confined almost exclusively to

gear wheels. It contains much interesting and original mattei-, but in

many places is altogether too difficult for the mechanic. It has been ad-
vertised by its publishers as a treatise on "practical mechanism", but it is

neither a treatise on mechanism in general or a piactical treatise on anything
in particular. Its author is a college professor, and his work is very learned,

in spots. A part of the work is devoted to the very practical purpose of ad-

vertising the gear cutters of the Pratt & Whitney Co. Wiley, $5.00.

Cromwell's TREATISE ON TOOTHED GEARING is very complete in its

treatment of the strength and proportions of gear wheels, but it is decidedly
"off" on the theory of the teeth, and contains statements that are palpably
wrong. It cannot be recommended to the learner. Wiley, $2.00.

MILL GEARING by Thomas Box, is of great value to the engineer, but it

has very little to say on the theory of gear teeth. I know of no better work
on the proportioning and strength of gear wheels. Spon, $3.00.

MACHINERY AND MILLWORK by Professor Rankine is a college text

book on the whole subject of mechanism. It is a standard work, but would
be of little service to the practical man. Griffin, London.
Hawkins' TREATISE ON THE TEETH OF WHEELS is a good example

of the kind of modern ( ?) reading that is furnished by some of our prominent
publishers. The latest edition is dated 1868, and the publisher's advertise-
ment, dated 1886, states that it contains "details of the present practice of
Millwrights," etc. Of the 102 pages 78 ai e devoted to a literal translation from
Camus, who died in 1768, and could not have written much on the state of
the art in 1886. The remaining twenty-four pages, written not later than
1840, are by Hawkins, and consist in great part of an elaborate and
long-winded discussion of the difficult question whether the describing
circle of an epicycloidal tooth should be the full size or half the size of
the pitch line of the mating gear. There are seventeen plates of ancient
engravings, and many items that would be of interest to the student of
the history of mechanism. As a teacher of the modern practice it is a com-
plete humbug, and I can recommend it to those who wish to keep well in

the rear of the art. Spon, $2.00.

Professor Robinson's TREATISE ON THE TEETH OF GEARS treats
briefly of the general theory of gear teeth. Its principal object is to
explain the Robinson Odontograph. Van Nostrand, 50 cents.
ELEMENTARY MECHANISM by Professors Stahl and Woods is a recent

work of general merit. It is cleaily written, up with the times, and can be
recommended to the student or to the mechanic. Van Nostrand, $2.00.
APPLETON'S CYCLOPEDIA is one of the best sources of information on

this subject. The part relating to gearing was published in pamphlet form
by Reed & Tenney of Providence, R. I.

Too much cannot be said against the average "gear chart" or cardboard
odontograph. It is generally a flimsy combination of the Willis odontograph
in it^ worst form with rules and processes that should have been forgotten
years ago.



»>B, & 0. Technological School. "Walter L. Webb, Instructor in Drawing
writes : "I am now teaching your method to our class in machine drawing,
and am very glad to be able to give them a method at once so simple and
accurate." " and at first found it difficult to work up satisfactory proofs with-
out introducing mathematics beyond the reach of the most of our students.
Your book was a great help to me in making the proofs practical without
being too mathematical." "it is undeniably the most simple method that
makes any pretension to accuracy."

The American Machinist. "The author of this book is well known as

a practical constructor of gearing, and, to the readers of The American
Machinist, as a contributor to its columns on this subject. In the present
work he gives, in a clear and concise manner, information that will be appre-
ciated by machinists, mechanical engineers, and draftsmen. The forms of gear-
teeth, manner of construction, horse-power, strength, the curves in use, and
their properties, are fully explained, etc."

LeflfePs Mechanical News. "A small but eminently useful and copiously
illustrated work. It is a valuable assistant to the machinist, millwright, mechan-
ical engineer, draftsman, or student who wishes to be accurately informed on
one of the most difficult and least understood branches of machine construction
and design."

Iron-Trade Review. " This intricate subject is treated in a plain, practical

style ; and at the low price offered, $1.00, the book ought to find its way to the
library of every machinist."

Professor S. W. Robinson. " I am surprised at the wonderful simplicity

of your ' New Odontograph ' over the ordinary rule which we all carry in the
pocket

;
your table, a small and simple one, being the only thing required for

enabling one to use it. Your handbook is to be liighly commended for novelty
and for the precision of the results to be attained by its aid."

Professor Robinson, of the State University of Ohio, is the inventor of the
Robinson Odontograph, and is well known as an expert on this subject.

Industrial America. "It should be owned by every machinist, millwright,

draftsman, etc. Illustrations accompany the explanations, and valuable tables

assist greatly the designing of teeth for any purpose. Several odontographs,
among them a new one devised by the author, are shown, and their operation

described."

Joshua Rose says, " Your little book, so far as I have had time to examine it,

strikes me very favorably, and I sincerely wish you the best of success with it."











All descriptions of Gear Wheels made or cut to order.

Any kind, Spur, Bevel, Miter, Rack, Ratchet, Worm, in-

ternal, etc.

Any size from a quarter inch to six feet diameter.

Any quantity from a Single Gear to thousands.

Gears for Machine Work, Gears for Model Work, Gears

for Light or Heavy Machinery.

BRASS AND IRON

GEAR WHEELS
GEAR CUTTING

OF ALL DESCRIPTIONS.

Send for Illustrated and Descriptive Pamphlet and Price List

GEORGE B. GRANT,
66 Beverly Street, BOSTON.

Many sizes of ready-made Gears are kept in stock for

immediate delivery.

Brass Gears of all kinds for Models and light Machinery

kept in stock and sent free by mail at low prices.

Superior Spur, Bevel and Miter Gears with cast teeth.

Cut Iron Gears, not ready-made, but that can be made to

order at short notice from patterns and castings, always on

hand.
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GEAR CUTTING,

Standard Gear Wheels,
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water motors.
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