2 Neuron

learning objectives
— neural networks in biology; neurons and synapses

— inputs, weights, outputs, and input-output con-
version (transfer) functions

— linear {earning machine
— delta-rule

— graphical representation of artificial neurons

2.1 Synapses and Input Signals

Whether artificial or computer simulated, a “neuren” is designed to
mimic the function of the neural cells of a living organism. Therefore,
we should look at a brief description of the biological neuron. For
further details, see textbooks on physiology or neurophysiology (e.g.
Color Atlas of Physiology).

The human nerve system consists of about 10'Y neural cells, also
called neurons. Although there are at least five different types of
neural cells, it suffices to present only one type. A typical neuron of
the motor complex consists of a cell body (soma) with a nucleus. The
cell body has two types of extensions: the dendrites and the axon.
Figure 2-1 shows a drastically simplified picture of such a neuron. The
dendrites receive signals and send them to the soma. A neuron has
substantially more dendrites than indicated in Figure 2-1, which are
also much more branched. Thus, the dendrites have quite a large
surface (up to 0.25 mmz) available to receive signals from other
neurons, The axon, which transmits signals to other neurons (or to
muscle cells), branches into several “collaterals™.

The axons and collaterals end in synapses. These synapses make
contact with the dendrites or the somata of other neurons. A motor
neuron has thousands of synapses; up to 40% of the surface of a
neuron is covered with such contact sites.

dendrites

Figure 2-1: Overly simplified scheme
of a motor neuron,

10 Neuron

The transfer of signals within the dendrites and the axon is
eleetrical, occurring through the transport of 10ns. However, the signal
is transmitted across the synapse by chemical substances. The electric
signal in the axon releascs a chemical substance, the neitrotransmitter
(for example, acctylcholing), which is stored in vesicles at the
presynaptic membrane. This necurotransmitter diffuses across the
synaptic gap and through the postsynaptic membrane into the dendrite
of the other neuron (Figure 2-2).

In the dendrite, the neurotransmitter generates a new electric signal
that is passed through the second neuron. Since the postsynaptic
membrane cannot release the neurotransmitter, the synapses can only
send the signal in one direction, and therefore function as gates: this is
an essential prerequisite for the transmisston of information. In
addition, other neurons can modify the transmission of signals at the
synapses.

The signals produced by the neurons, regardless of the species

producing them, are very similar and therefore almost indistinguish-
able, even when produced by a very primitive or a highly sophis-
ticated (from the evolutionary point of view) species. Kuffler and
Nicholls say in their book “From Neuron to Brain™ (page 4):
... these signals are virtually identical in all nerve cells of the body ...
[and] are so similar in different animals that even a sophisticated
investigator is unable to tell with certainty whether a photographic
record of a nerve impulse is derived from the nerve fibre of a whale,
mouse, monkey, worm, tarantula, or professor.”

To be very clear, the intensity of signals produced by the neurons
(the frequency of firing) can differ depending on the intensity of the
stimulus. However, the shape and overall appearance of different
signzls are very similar.

Why is this conclusion of neural network research so important? A
short (if not the most comprehensive) answer to this question is that
the similarity of signals clearly suggests that the real functioning of
the brain is not so much dependent on the role of a single neuron, but
rather on the entire ensemble of neurons — that is, the way the neurons
are interconnected.

Therefore, the emphasis in the phrase ‘“‘neural
network”™ is on “network” rather than on “neural™.

electric signal

Y ! axon

synapse

) neurotransmitter

Ay
k!

' dendrite

i electric signal

Figure 2-2: Schematic representation
of a synapse.

The synapses, through which the signals from neighboring neurons
enter into one particular neuron, represent barriers which will almost
certainly modulate a signal passing through them. The amount of
change depends on the so called synaptic strength. In artificial
neurons, the synaptic strength is called a weight, w. This situation is
shown schematically in Figure 2-3.

Without going into the physics and chemistry of membranes, we
can say that the synaptic strength determines the relative amount of
the signal that enters the body of the neuron through the dendrites.
Fast changes of the synaptic strengths, even between two consecutive
impulses, are regarded as a vital mechanism in the proper and efficient
functioning of the brain. The adaptation of synaptic strengths to a
particular problem is the essence of learning.

2.2 Weights

Because each neuron has a large number of dendrites/synapses
(Figure 2-1), many signals can be received by the neuron
simultaneously. The individual signals are labelled s; and the
corresponding synaptic strengths (weights), w,. Assuming that the
weight at each of the neuron’s numerous synapses can have a different
value at a given moment, we can estimate that the incoming signals
can add together into a kind of collective effect, or net input.

In reality we do not know exactly how the collective effect is
formed, nor do we know how large it is with respect to all input
signals. Therefore, some very crude simplifications must be made
when making a model of a neuron:

— the net input (called Ne#) is a function of all signals s; that arrive
within a given time interval, and of all synaptic strengths (weights,
w;); and

— the function linking these quantities is a simple sum of products of
the entering signals s; and the corresponding weights w,. Thus, we
can write:

Ner = w s, +w,yso+ . +ws,+ . +w s (2.1)

This is not the only way to represent the net input of the neuron;
some authors have proposed quite elaborate functions. However, it is

Weights 11

a signal with the
intensity s from
4 neigliboring
newron

- %

synapse with
the synaptic
strength w

=

signal p that

comes to the

neuron after pP=ws
passing the

synapse

Figure 2-3: The synaptic strength w
changes the intensity of the incoming
signal s.

12 Neuron

believed that the representation of Net may be relatively simple if we
intend to simulate a large assembly of neurons.

Some attentive readers may have noticed that until now we have
avoided talking about the “output” of the neuron. Since we do not
know what happens inside the neuron, we can not say to what extent
the net input is equal to the real outpul of the sending neuron, and to
what extent it is modified by the receiving cne. However, for reasons
that will become clear later, the present model calculates the actual
output of the neuron in two steps. At the moment, we are only
concerned with the first step of this calculation, the evaluation of the
sa called net input Ner!

This simple calculation using Equation (2.1} corresponds to the
schematic of Figure 2-4. The representation of the artificial neuron is
inspired by the structure ot a real neuron.

As an example, we will now calculate the nct input Vet of a neuron
having only four synapses with weights 0.1, 0.2, -0.3 and -(.02.
Because we have designed our artificial neuron to have only four
synapses, 1t can handle signals from only four contacting neurons
simultaneously {in this example, signals with intensities 0.7, (.5, 0.1,
1.0 — see Figure 2-5). Because the net input Net can not be identified
with the real output of the neuron, only the upper half of a circle
representing the neuron’s body is drawn. The lower half of this circle
(dashed line) reminds us that another step is needed o obtain the
output from the net input. This will be explained in Section 2.4.

As can be seen from this example, the net input of an artificial
neuron can have negative or positive values; because there is no
reason for limiting either the signs or the magnitudes of the weights,
the net inputs can have a very large range of values. This is especially
true if neurons with thousands of synaptic connections to surrounding
neurons are taken into account.

Rather than a group of signals 5. 50, 53, ..., 5, ..., 8, received by the
given newron from the surrounding m neurons, it is much more
convenient to combine them into a multivariaie signal: a multi-
dimensional vector X, whose components arc the individual signals:

L8] 890 8y Sy, b = X (0, x5, 000,) (2.2)

Using this notation, the 4-dimensional input vector X for our
previous example would be written as:

X=(07 05 0.1, 1.0) (2.3)

S 2 5 Sm
] J ¥
wy, Win,
N ws w; \:D
LYY
! \ SR !
\\» / 1/
{ Net

Net=wis) +wpsp + . +
+ WS + ...+ WS

Figure 2-4: Calculation of the net

input Met to an artificial neuron having

M SYnapses.

When we use the same line of reasoning, all the synaptic strengths
in a neuron can be described by using a multidimensional weight
vector W:

W = (w,w,, wy, . (2.4)
With only one neuron, the 4-dimensional weight vector of Figure
2-5 will look like this:

WwW=(0.1, 0.2, -0.3, -0.02) (2.5)

It is evident that each neuron should have at least as many weights
as attached neurons. In a biological neuron, a synapse with a certain
synaptic strength is immediately formed when an axon and a dendrite
link together; in a computer simulated one, the programmer has to
accommodate the corresponding number of weights.

2.3 Linear Learning Machine

The so-calted linear learning machine, a topic found in standard
textbooks on pattern recognition methods, introduces many valuable
concepts and techniques that may be used in more complicated ways
later.

The lincar learning machine, employing a linear transformation
(represented by Equation (2.1)) on a multivariate signal X using the
weight vector W o obtain a one-variable (univariate) signal, was very
popular in the sixities in many of the sciences including chemistry
(see Nilsson: Linear Learning Machines).

The learning machine procedure is mainly used for deciding
whether a given multivariate input signal X belongs to a certain
category (see Jurs and Isenhour, Analytical Chemistry, August 1971;
cf. Figure 2-10).

Such a multidimenstonal vector X can represent many things, such
as:

— an audio signal,

~ an optical image,

— aspectrum of any kind,

— a many-component chemical analysis,

— the status of a technological process at a given time,

Linear Learning Machine 13

07 05 -0 10
' @ ‘

l l Voo
0.1 -0.02
02 _KO; j/
Dy
018
i
i

Net=0.1x0.7 +
+0.2x05+
+(-0.3)x(-0.1)+
F(~0.02)x1.0=
=0.07+0.10 + 0.03 - 0.02 =
=0.18

Figure 2-53: Calculation of the net
input of a neuron with four synapses.

14 Neuron

— the sequence of amino acids in a protein,
X
— weather records for a certain location,

inpurs 0.5 07 ~03
— the market values of some stocks. *‘ v l,
Hence, the possibility of finding an appropriate weight vector W weights 93 05 96
that would produce correct decisions is very attractive. ‘I e T
The goal of the linear learning machine was to input a set of m- \\\ /
dimensional signals X, and find the appropriate vector W by slowly Ner Yo7
improving an initial guess, W through a number of corrections)
obtained by comparing the result with the correct decisions known in o
advance. In order to maintain simlarity with the neural network, the Y
result of this procedure is here called Net. Equation (2.6} a)
Net = w v + w8, + . tw s, + w5 (2.6) X,
inputs 0.1 -04 03
can be regarded as the dot product of two vectors: the weight vector W L & l
and the vector X containing m signals s, Because we prefer vector 0.2 0.6
notation to this extended one. the individual signals s; are labeled as weights '\T 0.5 7
the components .x; of a muitisignal input vector X: 5 T /j'
Net = wox +wyx, + . +wa + o tw, x, = WX (2.7) Net \~VUUU\‘\/
The input vector is linearly proportional to the corrected resull. S
Net; hence, the corrective procedure {2.7) 1s called a linear learning ¥
machine, b)
Now, the “input vector X™" is a set of signals: a multivariate object
described by scveral parameters. [n case there are more objects for X3
input, they are distinguished by an index s, e.g. X,. Therefore, the inputs 03 -0.1 -0.8
actual univariate signals coming (o the individual synapses are v L ¢

components of these multivariate objects having two indices xg;, the
first of which labels the multivariate object and the second ol which

0. 0
weights \|- E'ij \‘
labels the synapse to which this individual signal is linked. \\ /

From now on the components x,; will be called signals, and the W /
L . . ‘ : Net I-0A47Y
multivariate inputs will be called objects or vectors X, The e
multivariate space, where the objects are represented as radius vectors Tt
leading to points X, is called the measurement space. '
In Equations (2.6) and (2.7). the terms Ner, W and X are so named <)

to remind us of the corresponding feaiures in the artificial neuron.
R scals sduct of a weight vector W ¢ ‘ lavariz .
Net, the scalar PFL duc . a g .l : and a multiva _dte Figure 2-6: Dot products Net between
vector X, representing an arbitrary object in measurement Space, 18 2 yhe weight vector W= (0.2, 0.5, 0.6)
very convenient quantity for making decisions. Its sign can indicale to and three arbitrarily chosen input
vectors X . Xo and X5,

which of the two categories selected in advance, C; or C,, the object
X belongs.

Figure 2-6 shows how a vector W (0.2, 0.5, 0.6) can be used as a
decision vector to classify three different 3-dimensional objects X| =
{0.5,0.7, -0.3), X; = (0.1, =04, 0.3), X3 = (0.3, 0.1, -0.8).

Separating objects into classes based on whether Ner is positive or
negative is not the only possible division; Net can be easily divided
into three or more intervals to define three or more categories. For
example, a division into the intervals —ee to —a, —a to +a, and +a to +oo
can be used to decide to which of the three categories object X,
belongs. Most of the decisions are binary, i.e. decisions between two
categories, because all complex decisions can be composed of a series
of binary ones.

Let the weight vector W be selected so that all objects X,
belonging to category C; give the scalar product Net = WX positive,
and all objects X, from C; give Net = WX negative; then W can be
called a perfect decision vector. In principle, a perfect decision vector
can be found if the objects are linearly separable. However, practical
ways of obtaining a good (let alone perfect!) decision vector are hard
to come by, if the data are not linearly separable.

Usually W is obtained from an initial (presumably bad) guess w
by some kind of learning procedure. w0 g5 improved iteratively; an
iterative procedure in this context means that it WU*D is obtained
from WY, then W) should be a slightly better decision function
than W (Figure 2-7). In the literature there are many different
learning procedures in addition to the linear learning machine. Some
of these from the field of neural networks will be explained later on in
this book.

Figure 2-8 shows three decision vectors W,, W,, W; used in a
hierarchical manner to decide in which quadrant of the xy-plane an
input point is located.

If we could design a method for producing reliable dacision
vectors W, decision schemes of any complexity and size could be built
trom them, making binary decisions (the so-called piecewise linear
classifier). The tree of Figure 2-8 is composed of three decisions:
whether the point lies to the left or right of the ordinate axis, and (for
each of these cases) where it lies with respect to the abscissa. In this
case, the objects arc points in the xy-plane, and the weight vectors are
given in parentheses at the decision nodes of the tree. In order to make

Linear Learning Machine

15

X9 b
L
W
- . o
L J
L] []
-
1
L]
. I L J
I I
[] o
Winilfﬂl)
[] -)
L] 7
Xy k Wiinal)
N
A wu-+ 1y
A“ N [
Yo ™ w
: - i *
[} -
L]
2 .
.
. Whinitiah

‘Figure 2-7; Changing the decision
vector W towards a better position:
w1 i a better decision vector than
W because WO+ classifies only two
objects falsely, compared with five by
W The perfect decision vector W
should separate all objects of category
C, (full circles) from those of category

C, (empty circles).

16 Neuron

input are
coordinates
of any point
Xi=ix. %)
l
W, =(1.0) - decision no. 1;)
e \\\ is the point to the Net <02 Nerz 0
Net < ()/ Netz () left or to the sight _JK -
// \ of the y-axis? ’
Wo=(0, 1) /(3- W= (0, 1)} decision no. 2:
/ \.\ S is the point Nfi \Z\QL\\\\
’/ N ’/ above or below ST
* the x-axis? Net<0
| E ¥ e

a decision tree work properly, each binary decision {at any point in the
tree) must be produced and checked separately.

Try to calculate the decisions for some points. For example: take
the point P = (-3, 4) and make its dot product Ner with the weight
vector W Net = PW| = (-3, 4)(1. 0) = =3. The result ol Net
determines which branch of the trec in Figure 2-8 has o be followed:
in this case, Net < 0 gives the left-hand branch. Then a decision has (o
be made on the second level. Here. repeat the procedure with W5 1o
get the final result.

As mentioned above, we can take the decision function (whose
result, remember, is Nef), W be the dot product between the
representation of the object X and the weight vector W, The dot
product between two vectors can be regarded as a linear function:

v =uax+b (2.8)

where y is equal to Ner, ¢ and x are the magnitudes of the vectors W
and X, and b is a scalar constant that can be regarded as the offset of
this straight linc.

For compatibility with the notation of neural networks, we label
this offsel parameter as 0:

Net = WX +0 = WX WXy WX Lt X B =

RUom
111
= 2 wox, + O

i=1

Figure 2-8: A small decision hicrarchy
lor deciding in which quadrant a given
point lies.

Clearly, both vectors W and X must have the same number of
components.

Observe the similarity of Equations (2.9) and (2.6); they differ
only in the constant ¥, which actually generalizes the linear form.
Because we will meet this constant while discussing the neuron’s
transfer function (see Section 2.4), let us explain this in more detail.

Because ¥ is an arbitrary scalar constant, it can be written as a
product of two other constants, say w,., and 1. If the two scalar
constants are treated as the (m+1)-th components of the two vectors W
and X, Equation {2.9) can be rewritten as a scalar product of these two
new (m+1)-dimensional vectors. X is identical to the old representa-
tion of the object augmented by one dimension, the value of which is
always equal to 1 (the so-called augmented feature vector), while
W,qq 18 equal to 0.

Net = w x +Wwyx, + Waxq+ .. +W, X+ o=

=W X+ WXy F Waa ot x tw s = (2.1

WX

From now on, remember that both W and X are
(m+1)-dimensional.

This new component w,,,| has far-reaching significance in neural
network learning and adaptation (see Section 2.5 describing the
concept of “bias™).

As before, the sign of the calculated scalar product Ner defines the
category to which the object X belongs. If the dot product WX for a
certain vector X has the wrong sign with respect to the category of the
X’s, we calculate an increment for W as the difference between some
new, corrected weight vector W) and the old, uncorrected vector

wiold),
AW = “/(new) _W(oid) (2.11)

Since the correction of weights will be done in iterative steps (0, 1,
2ty 41, L), WO and WD actually refer to WD and WO,
respectively.

In order to achieve this correction we will use the so called delra-
rile, which states that, in order to improve the decision vector, the

Linear Learning Machine

17

18 Neuron

correction AW should be proportional 1o a cerlain parameter 8, (which
is proportional o the crror) and to the input X for which the wrong
answer was obtained. After correction, the new weight vector should
classify the vector X correctly or at least with a smaller error than
belore.

AW -~ 8X
ar:

5~AW/X (2.12)
ar

& =1(AW/X)

where & is the correction constant we are looking for, 1 is a constant
of proportionality and X is the input object wrongly classified by
W Our goal is to find a parameter & with which the new weight
vector W) will classify X correctly.

If the dot product Netr = WX has a wrong sign, the dot product
Net = WX must have the opposite sign:

(2.13)

(new)

(old)

W X =-W X

If(2.11) is substituted into (2.12);

§ = _n(w{new) _ W((JM))/X (214)

and if the right side of (2.14) is multiplied by X/X, we obtain:

5 - _n[w(m-) et)X/(X,X) (2.15)

In the denominator of (2.15) we obtained the dot product of the

vector X with itself:
m+ |

2
X X=3 (2.15a)
i=1
The expression (2.15a) is called the norm of the vector X and is
written as IX1I%. So the next expression is:

- . 2
5 - n[w(”””) _ptetd)X/”X“ (2.16)

This can be written as:

8 — n[W(n@W)X _ W{Ohj)X J/”XH" (2]7)

from which, by substitution of (2.13), the final expression for the
correction & is obtained:

5 = n(_ Wl y W(oId)X)/”XHZ

2.18
old) (2.18)

——onw " x/|x)

Using Equation (2.18), the correction AW = wirew) _ wleld) can
now be easily obtained:

AW = wi _w o _(271w“”‘”X/HXM2)X (2.19)

or in a more extended form:

W(m’w) _ W{Old) _[an(ﬂfd) X/HX||2 JX (2.20)

The delta-rule correction of W), (2.19) and (2.20), guarantees
that W™ will classify the object X correctly. However, the delta-rule
does not say anything about the other objects that were also classified
using W, some or all of them might now be classified falsely.

1t the proportionality constant 1} is set to 1, Equation (2.20) gives
the corrected decision vector W) as the mirror image of W©@
(Figure 2-9). Under certain circumstances, the corrections produced
by mirroring are small, but often the mirror image can change W%
considerably. Such large changes are not desirable, especially at the
end of iterative learning, because large changes in the decision vector
W mean that a number of previously correctly classified objects might
become classified falsely. Therefore, an adaptable correction can
sometimes be more appropriate.

An adaptable correction is obtained when, in Equations (2.18) to
(2.20), the constant 1 is replaced by a variable 1, smaller than 1:

or: (2.21)

AW = —(211W(”M)X/HX||2)X

Writing the correction —2WX/1X|1? as 8 and remembering that
X is an input object, we obtain the standard equation of the delta-rule
in its most widely known form:

AW =1 8 X (2.22)
Because the object X is the input it can also be called Inp:

AW =1 8 Inp (2.22a)

Linear Learning Machine 19

X,

/>\
pioid

Figure 2-9: The vector W™*) which
is the mirror image of W‘”MJ, classifies
the object X correctly into another
category.

20 Neuron

Equation (2.22) represents the most general torm of
the delta-rule for the correction of self-leamning
procedures; it will be intensivcly used in Chapter 8 to
describe the back-propagation of errors algorithm.

In general, a good binary decision vector W for any sub-decision
requires a lengthy iterative procedure. Such a procedure starts with an
arbitrary w) (which can contain random numbers) and a set of
objects {X,} all identically represented as m-dimensional objects for
which the decisions that should be made arc alrcady known. Using
this knowledge we can then decide whether the correction of a
currently active decision veclor W is necessary.

The learning starts with sequentially testing all objects X and
correcting W whenever needed. After finishing one pass over the
entire set of objects, the decision vector W has changed considerably;
hence, the objects previously classified correctly might be mis-
classified in the second pass. Therefore, the testing and correcting of
the decision vector should be repeated as long as there is at least one
eITOL.

The results obtained by the linear learning machine method can be
used in very complex decision processes. Jurs and Isenhour have used
this method to predict molecular formulas from mass spectra, using a
decision tree composed of 26 binary decistons. The scheme of the tree
was even used as the cover design for the August 1971 issuc of the
journal Analytical Chemistry (Figure 2-10).

In spite of some success, the complex decision schemes obtained
by lnear learning machines are generally not very satisfactory,
especially for large real-world problems. Therefore, after some initial
enthusiasm, serious criticisms of this method were published (see
Minsky and Papert); today, lincar lecarning machines are mainly vused
with very restricted sets of data, and for education.

2.4 Transfer Functions in Neurons
The present model of a neuron consists of two distinct steps in

obtaining output from the incoming signals. The first step, evaluation
of the net input Ner, was explained in the previous paragraph. We will

Seme Chancle) Appiications
bf Washlen hrickigenes 22 1

Figure 2-10: Cover design of the
August 1971 issue of Analytical
Chemistry, showing a decision tree
with 26 decisions for predicting a
molecular formula from the mass
spectrum.

Transfer Functions in Neurons

now have a closer look at the second step, in which a nonlinear
transformation of the net input signal Vet takes place.

We might come up with a model involving only a direct
transformation of the input signals to the cutput: However, such a
function would involve many input signals and many weights, and
would at the same time be nonlinear. Therefore, instead of one
complex transformation, which would be hard to justify and
computaticnally difficult, a two-step procedure was introduced. In
addition, these two steps seem more plausible in light of what we
know about the functioning of biological neurons.

It would not be very convincing to represent the output of an
artificial neuron as the weighted sum of the input signals, since the
resulting signal Net can be a) very large and b) negative. The latter
seems particularly unrealistic. After ail, the neuron either “fires” or it
does not; even though the firing frequency differs from stimulus to
stimulus, the idea of a negative firing frequency is just not reasonable.

We are forced, then, to make the net input to the neuron (Equation
2.10} undergo an additional, nonlinear transformation:

out = f{Ner) (2.23)

called a transfer function.

What can we do to the artificial neuron’s output signal cut in order
to make it more realistic? Because of the physical limitations on the
size and frequency of brain signals, these conditions are quite simple:
first, the final output signal of a neuron should be non-negative,
whatever its magnitude; and second, it should be continuous and
confined to a specified interval, say between zero and one. (In many
publications, such a transfer function is called a squashing function
because it squashes the output into a small interval.)

There are several functions satisfying the above conditions, but we
will take a closer look at only three of them.

Hard-limiter; The first transfer function we will look at is, as
Figure 2-11 shows, very simple indeed. It is called a hard-limiter, hl
for short. It can have only two values: zero or one. There is one
important point for this function, called the threshold value, 9. The
value output by the hard-limiter depends on where the threshold value
is set; thus, the threshold parameter ¥ decides whether the neuren will
fire or not.

21

22 Neuron

If the input value Net is 2 8, the output our will be one; otherwise it
will be zero. Mathematically. this function (the binary hard-limiter)
can be written:

|
i1l Nerz1t
out = hl{(Net,¥) =~ .
0 if Ner<?d
‘ (2.24)

or as an expression that lends itselt to easy programming:

out = hl{(Net, %) = 0.3 sign (Net — 31+ 0.5 (2.2da)

where the function sign(-} has only two vualues, +1 and —1, for
positive and negative arguments, respectively. If the threshold value 9
= (), then the hard-limiter (2.24) assigns 0 o all negative values of Ner
and +1 to all positive oncs. Since the hard-limiter is very convenient
for giving straight answers (yes or no), it is often used for final outputs
where definitc answers are required.

The hard-limiter giving & and 1 as oulput is not very suitable for
many applications. Therefore, a slightly modified form of (2.24)
giving +1 and —{ instead of 0 and 1 may be used for output. This
bipolar hard-limiter can be written:

[1 it Net=o
out = hl(Net,¥) = ‘ TR 5
- 1 el <
(2.25)
or:

out = hl(Net, 3) = sign{Ner—9)

The picture of the bipolar hard-limiter (Figure 2-12) is very similar
to the binary hard-limiter (Figure 2-11),

Threshold logic: The second form of the transfer {unction we will
discuss is the so-called threshold logic, tl, shown in Figure 2-13. In
some respects, it is simitar to the hard-limiter but has, in addition, a
swap interval, within which out is linearly proportional to Ner. The
width of this interval is determined by a parameter ¢ the interval
starts at ¥ and has a width of /o,

The calculation of the threshold logic function is very simple
because the functions max(a, #) and min{a, /), which determine the
maximum or minimum of two (or more) valucs between the two
parameters ¢ and b are easy to calculate.

Regardless of the value of the parameter ¢, max(Q). «) is always
larger than or equal to zero and min(l, «) is always less than or equal

4 out

B ’ 0 Net

Figure 2-11: A hinary hard limiter
hiNer, D). It 0 is set 1o less than zero
the timiter jumps Lo & value of | on the
ncgative side of the argument Ney, if &
is larger than zero the transition to 1
oceurs on the positive side.

Tom
I
|
il
Y 0 Ner
a7

Figure 2-12: A bipolar hard-limiter.

out

Figure 2-13: Threshold logic.

Transfer Functions in Neurons 23

to 1. Setting the value of a equal to Net and combining both functions,
the following expression is obtained:

y = max (0, min (1, Net)) (2.26)

y(Net) is called a threshold logic (Figure 2-13).

By substituting the more general expression o{/Net — 1) for Net, the
threshoid logic is obtained in a form that can be used as a transfer
function in neurons (Figure 2-14}):

out = tl(Net,o, %) =

227
=max {0, min[1, o (Net—3)]}

« is called the reciprocal width of the swap interval.

Table 2-1 shows how the threshold logic behaves for two different
sets of values of o and ©. The shaded area is the interval of values of
Net in which the t{Net, o, 1) function response is linear. It can be
seen that the size of the linear response interval is inversely
proportional to the parameter {01}); if positive, it shifts this interval
towards negative Net values, and vice versa.

This means that the linear transfer interval of the tl function starts
at . If one does not need the actual values of 8, Expression (2.27) can
be rewritten in a slightly modified form by the substitution:

ot = ¢ (2.28)

This actually does not change anything; it just puts the variable
expression into the more common form:

tl (Net, oo, ¥') = max [0, min (1, aNer —9")] (2.29)

Both the hard-limiter and the threshold logic are very convenient
for computer programs. The threshold logic, for example can be used
where a linear output is desired over the entire output signal range.
However, due to the fact that they may contain singularities, they are
of little theoretical use.

Sigmoidal function: The most widely used transfer function in
various neural network applications is the so called sigmoidal
Jfunction, sf, shown in Figure 2-15. It is somewhat time-consuming for
numerical calculation, especially if tens of thousands of neurons are
involved, but nevertheless it is used so often that it is worthwhile to
take a closer look at it:

4 out

Figure 2-14: The threshoeld logic as a
transfer function; the width of the
linear response as a function of input is
proportional to 1/o. The beginning of
the swap interval is located at 9.

Figure 2-15: Sigmoidal transfer
function.

24

Net
-10.0
-5.0
—3.0
—2.8

i 2.6
-24
2.2
-2.0
-1.8
-1.6
-1.4
-1.2
-1.0
—.8
—.6
—0.4

Tablc 2-t:

v =min(1, Net} or v = min| I, a{Net — | and

Neuron
) a(Ner—d)
v ol Net w=0.333, v oui
T =1
~10.0 0.0 - —10.0 300 =300 0.000
-5.0 0.0 ;. =50 —i.33 ~1.33 0.000
—3.0 0.0 ~3.0 -0.667 0667 0.000
28 0.0 28 —0600 0600 0.000
2.6 00 1 =26 —0.533 0533 0.000
-2.4 00 @ 24 0,467 0467 0.000 |
2.2 00 | -22 —0.400 —0400 0.000 !
2.0 0.0 ~2.0) —0.333 0333 0.000
-1.8 0.0 -1.8 0267 0267 0000
~1.6 0.0 -1.6 0200 0200 0.000
14 0.0 —1.4 0133 033 0.000
~1.2 0.0 —1.2 0,067 0067 0.000 :
~1.0 0.0 -1.0 0.000 0000 0.000 |
—0.8 0.0 0.8 0.067 0.067 0.067
0.6 0.0 0.6 0.133 0.133 0.133 |
0.4 0.0 0.4 0.200 0.200 0.200 !
0.2 0.0 0.2 0.267 0267 0.267
0.0 0.0 0.0 0.333 0333 0.333
0.2 0.2 0.2 0.400 0400 0.400
0.4 0.4 0.4 0.467 0467 0.467
0.6 0.6 0.6 0.533 0533 0.533
0.8 0.8 0.8 0.600 0.600 0.600
1.0 1.0 1.0} 0.667 0.667 0.677
1.0 1.0 1.2 0.733 0733 0.733
[0 1.0 |4 0.800 0.800 0.800
1.0 1.0 1.6 0.867 0.867 0.867
1.0 1.0 1.8 0.933 0933 0.933
1.0 1.0 2.0 1.000 1000 1.000
1.0 1.0 5.0 2.000 1000 LOOO
1.0 1.0 10.0 3.667 1000 1000

The threshold logic function if: effects of the parumeters o und ¥ on
the neuron’s output owt tor different net input values Ner. The left
side of Table 2-1 {columns | through 3) shows the _normalised* 1f
function with =1 and 9=0, therefore the swap of length 1 begins at

Ner=0 and becomes 1 at Met=1. To make the swap interval start at &,

use Equation (2.27): columns 4 ¢ 7. Equation (2.29) is used in
columns 8 to 11: the swap interval starts at &'/o., 1.e.: at
—1/0.333 = -3 in our casc. From the 7" and 11" columns it can be
seen that the swap interval is equal to /o For 06=0.333, the swap is
3 units long extending from —1 to 42 or from -3 to 0, depending on

or 1Y, respectively.

.

f

—i0.0
-50
-3.0
—2.8
-6
-2.4
-2.2
-2.0
—-1.8
-1.6
-1.4
-1.2
—1.0
-0.8
-0.6
—(1.4
~(.2

0.0
(.2
0.4
0.6
(.8
1.0
1.2
1.4
1.6
1.8
2.0
5.0
10.0

out = Ena-k{ (), min| 1. o Net '-—“1"}')'] }
out = max|0, min{ 1, aNer - 3]

auNer—1
o=().333,

W =1
—2.333
—.667

0.000
0.067
h133
(1200
0.267
(0333
0.400
467
(1533
3.600
(0.667
(733
0.800
(1867
(.933
1,000
1.067
1.133
1.200
1.267
1.333
1.400
1.467
1.533
1.600
1.667
2.667
3.333

cf. Equali()h (2.27)
cf. Equation (2.29)

3

2333

—0.667
0.000
0.067
0.133
0.200
(0.267
(.333
0.400
(1467
0.533
0.600
0.667
(0.733
0.800
0.867
0.933
1.000
1000
1.000
1.000
1000
L.OO0
1.000
1.000
1.000
1.000
1.000
1.000
1.000

Our

©0.000

0.000
0.000
0.067
0.133
(.200
(1267
0.333
(.400
0.467
0.533
0.600
(.667
0.733
0.800
0.867
0.933
1.000
1000
1000
£.000
£.000
£.000
1.000
1.000
1.000
1.000
1.000
1,000
1.00(0

Transfer Functions in Neurons 25

— ~max{0, min[1, a{Ner — 3}]}

| \ -
20 30 Nes

sf(Net,o, ™) = 1/ {1 +exp[-a(Net-®)]} (a)
or: (2.3

sf(Net,o, @) = L/ {1+exp[-(aNet=0}]} (b

Note the similarity between the pairs of Equations (2.27) / (2.30a),
and Equations (2.29} / (2.30b).

Table 2-2 is calculated using the sigmoidal function (2.30a) and
(2.30b) with the same input as Table 2-1. Because the same
parameters o, ¥ and 9 equal to 0.333, -1, and -1, respectively, were
used, the arguments oNetr — 3) and aNet — &' are the same in both
Tables. Thus, the two transfer functions can be easily compared.

Obviously, with the same pair of parameters and the same Net
values, the two equations have quite similar behavior; however, they
give the response in slightly different regions. Figure 2-16 compares
the behavior of the threshold logic and the sigmoidal function with
exactly the same parameters.

Beginners often believe that the transfer function (either Equation
(2.29) or (2.30)) is adjusted optimally if all net input signals fall into
the quasilinear region shown in Figure 2-13 and in Table 2-2; this
interpretation is completely false.

The fundamental assumption of modern neural
network theory is that the transfer signals are not
linearly dependent on the net input.

Figure 2-16: Comparison of the
threshold logic and sigmoidal transfer
functions if both have the same
parameters (0 = 0.1, ¢ = 5). Note that
in the case of ¢/ the swap starts at
Ner=1, while at exactly the same point
the sf has its inflection.

20

Net

10,0
-5.0
30
28
2.6
24
22
2.0
18
16
14
1.2
-1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

1.0
1.2
1.4
1.6
1.8
2.0
5.0

16.0

Tahlc 2-2:

Newron

ol

0.000
0.001
0.047
0.057
0.069
0.083
0.100
0.119
0.142
0.168
0.198
0.231
0.269
0.310
0.354
0.401
0.450
0.500
0.550
0.599
0.646
0.690
0.731
0.768
0.802
0.832
0.858
0.881
0.993
1000

aut

o= 10, Equat. Tab.2-1
V=00 (2.30a) col. 3

(L0
0.0
1.0
0.0
0.0
(.0
0.0
0.0
0.0
0.0
0.0
0.0
L0
0.0
0.0
0.0
0.0
0.0
0.2
0.4
0.6
0.8
1.0
L0
LO
1.0
1.0
1.0
.0

1.0

Comparison of the sigmoidal function output. sf. with the threshold
logic function, ¢ effects of the parameters o and ¥ on the ncuron’s

Net

-10.0
-5.0
-3.0
-2.8
-2.6
2.4
-2.2
=2.0
-1.8
-1.6
-1.4
-1.2
-1
—().8
-6
—h4
(3.2

0.0
(.2
(.4
(.6
0.8
P.0
1.2
14
1.6
1.8
240
5.0

10,0

o Ner - 13)

o=0.333.

t=-1

=3.000
—1.333
—0.667
—0.600
—0.533
—0.4067
—0.400
—0.333
-0.267
—0.200
—0.133
-0.067
0.000
0.067
0.133
0.200
0.267
0.333
0.400
0.467
0.533
0.600
0.667
0.733
(0.800
0.867
0.933
1.000
2.000
3.667

Sf (Net, o, B)

st (Net, o, 07}

ouf

out

Lguat. Tab. 2-1
(2.302) col.7 -

0.047
0.209
0.339
0.354
0.370
0.385
0.401
0418
0.434
0.450
0.467
¢.483
0.500
0.517
0.533
0.550
6.566
0.562
0.599
0.615
6.630
0.646
0.661
0.675
0.690
0.704
0.718
0.731
0.881
0.975

0.000°
0.000;
0.000!
0.000:
0.000
0.000!
0.000;
0.000.
0.000:
0.000;
0.000]
0.0001
0.000
0.067
0.133
0.200
0.267
0.333
0.400
0.467
0.533
0.600
0.677,
0.733
0.800'
0.867
0.933
1.000:
1.000
1.000

Net

—10.0
-3.0
-3.0
~2.8
-2.6
-2.4
-2.2
=20
-1.3
—1.6
- 1.4
-1.2
-1.0
—1.8
(1.6
-4
~-().2

0.0
0.2
0.4
(L6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
5.0
10.0

1/ { l+expl—oiNet — D]}
1/ { L+exp[—{aNet — 07} }

aNet - oui

out

a=0.333, Equat. Tab. 2-1
W =-t (2.30b) col 1]

2333 0.088

~0.667 0.339
0.000 0.500
0.067 0.517
0.133 0.133
0.200 0.556
0.267 0.566
0.333 0.562
0.400 0.599
0.467 0.615
0.533 0.630
0.600 0.646
0.667 0.661
0.733 0.675
0,800 2.690
0.867 0.704
0.933 0.718
1.000 0.731
1.067 0.744
1.133 0.756
1.200 0.768

1.267 0.780
1.333 0.791
|
1

1.533 0.822
1.600 0.832
1.667 0.841
2.667 0.935
4.333 0.987
cf. Equation {2.3()a)
¢f. Equation {2.30b)

output eut for different net input values, Ner. The swap interval, e,

the transition between output of zero and ong, is much broader for
the sigmoidal function compared to that of the threshold logic. It

can be clearly seen that the inflection of the sf, cur = (1.5, oceurs

always at the saimc position as the beginning of the swap of the

corresponding threshold logic function #f.

0.000
0.004)
0.000¢
0.067
0.133
0.200
0.267
0.333
0.400
0.467
0.533
0.600
0.667
0.733
0.800
0.867
0.933
1.000
1.004¢
1.004
1.0
1.004
1.004
1.004
1.0
1.00(0
1.0
1.004
1.0
1.004)

Of course, some neurons will show a linear relation between Net
and out; however, it is the nonlinearity of the transfer function that
makes the neural network so flexible for adjusting to different
learning situations. A linear relation between the net input and its
output may be desirable for some special cases, but nonlinearity
should usually prevail in a neural network.

In Figure 2-17, the input is assumed to be confined to the range
from A to B. In the topmost case the sigmoidal transfer function does
not produce an output at all (an output of zero means that the neuron
does not fire). In the second, the sigmoidal transfer function produces
a maximum output signal no matter what the net input is. In the third,
the response is almost linearly proportional to the input. In the fourth

Transfer Functions in Neurons
A B
}
out
L
|
— 1 i
0 Net
'
out
1
|
AL et

case, signals between B and B’ all produce maximum output, while
inputs between A and B” make full use of the transition interval of the
sigmoidal transfer function. And in the last example, all inputs
between A and A produce no output; only signals between A" and B
give a nonzero output.

Even those neurons whose transfer functions preclude firing at all
during the entire training pericd (Figure 2-17, top) can be of interest
in some applications; it is thought that their function is merely to wait
for some event not anticipated in the training phase that might
stimulate a response.

Instead of the mentioned Net input (Equation (2.13) and one of the
above transfer functions, more complex functions can easily be found.
However, we are looking for the simplest adequate description of a
neuron.

We previously mentioned the difficulties involving the derivatives
of the hard-limiter and the threshold transfer functions because they
contain singularities. Now, let’s have a look at the derivative of the
sigmoidal function (2.30), which will be used later (Figure 2-18). For
clarity we will write Equaticn (2.30) as:

sf(x) = 1/{1 +exp(-x)] (2.3

The derivative is obtained according to the rule for quotients. In
case your calculus is a bit rusty, we will carry out the derivation in
detail:

our
1
/
|
A
‘ 0 Net
B’
T \
our
i1
S
A
Ty Net

27

Figure 2-17: Different adaptations of
neural sigmoidal funetions for the
same range of signals; the inputs Ne!
arc all confined to the interval (A, B).

28 Neuron

d(sF(0) 7dx = 1/ [V +exp(=x}] {d[1 +exp(-x)] /dx} =
exp(—x) /[1 +expl—x)| =
=sf(x)exp{—x)/{l+exp(-x)] =

sty 4 [-1+1+exp(—x)]/[] +expi—x)]} =
sf{x) [—sf{x) +1] =

H

sf(x) [1 —st{x)] (2.32)

The above equation clearly shows that in the flat
regions of sf(x) {where sl(x) = 0 or sf(x) = 1), the
derivative is «ero. This fact will turn out to be very
important later, when we investigate when and where
neural networks learn best.

The swap interval between two states, exhibited by two of the
three transfer functions (the threshold logic and the sigmoidal
functions) is in sharp contrast to the hard-limiter’s yes/no- (trueflfalse-)
logic. The threshold and sigmoidal functions, (2.29) and (2.30), are
actually not logic elements at all. They may hold all states or values
between the two extreme assertions ves and no, or frue and fulse; this
possibility forms the link between artificial neural networks and
“fuzzy” logic, a field that has recently gained a lot of attention in
artificial intelligence and neural network research.

By changing the parameters o and ¥, the swap interval (the
“fuzziness”) of the decisions can be influenced. If the extent of
fuzziness can be influenced through the choice of learning procedure,
the results (predictions) obtained can be quantitatively evaluated: the
prediction abilities of such procedures would be much more “human-
like” than when complex decisions are based on hierarchical decision
trees in which each individuai decision has to be made in a logical
{ves/no) manner. The existence of the swap interval and “fuzzy” logic
in the transfer functicn is one of the greatest assets ot this model,

f sf{Net)

1

4 sT(Net)

Figure 2-18: The derivative of the
sigmotdal transter function.

2.5 Bias

The addition of an extra parameter, called bias, to the decision
function increases its adaptability to the decision problem it is
designed to solve. We will illustrate the importance of the bias
through the linear learning machine. However, the conclusions are
valtd for many other neural network models, in particular, for the
back-propagation algorithm (see Chapter 8). The example at the top of
Figure 2-19 shows that the family of straight line functions y = ox
cannot separate the class of points A, B and C from the class
represented by point D. On the other hand, it is easy to separate the
class (A, B, C) from the class (D) by introducing a constant ¥, the
bias, to the straight line decision function y = ox + 0, as shown in the
lower part of Figure 2-19.

We have seen that in order to describe an artificial neuron we must
know two types of parameters: the set of weights and the parameters
of the transfer function. There are as many weights as there are signals
entering the neuron. Generally, they are initialized as small random
numbers. The actual interval within which these random weights are
selected roughly depends on the number of weights in the neurcn; a
fair choice in applications where the normalization of weights is not
strictly required is to set the interval so that the squared sum of the
weights in one neuron is about J.5.

Now the problem is how to treat the parameters of the transfer
function. If we leave aside the swap interval of the transfer function
for a moment, the crucial point in all three transfer functions is the
threshold 8, i.e. the point where the neuron starts to react.

In this paragraph we will show that all parameters
determining the artificial neuron (weights, interval,
and threshold) can all be formally treated in exactly
the same way.

Let us review the two main equations that describe the functioning
of an artificial neuron:

Net = w x;+woXy + . +wx + . +tw,x, = WX 2.7

st(Net,o,) = I/ {1 +exp|-a(Net-9)]} (2.30a)

\§

Figure 2-19: Intraducing the bias, 0,
to the decision function separating D
from the points A, B and C.

30 Neuron

where:
— w; is the synaptic strength (the weight) of the synapse i,

- X

neuron at the synapse /,

is the signal coming from a connected neuron entering our

— m is number of synapses in our neuron, i.e., the number of input
signals,

- Net is the net input (accumatation of all inputs) formed within our
neuron,

— o is the reciprocal width of the swap interval (see Equation (2.27)),
and

— 1 is the threshold value of the sigmoidal transfer function sf (see
Equation (2.24a)).

The transfer function is so simple that we need to consider only its
argument, arg = WNer — 1%, to show our conjecture:

arg = ow o, + o row, x, — ot £2.33)

Because all parameters on the right hand side of Equation (2.33)

are unknown {although it is assumed that the signals x; will be known

after the lecarning period), we may substitute the products of two

unknown values aw; by the single value w;', and —® by &', Equation
(2.33) now becomes:

arg = w'x +whx,+ o+ v x (2.34)
Now, if we regard the scalar value % as a product of O and a
component x,,,, which is always equal to 1, we get the following

summation:

. _) R ' '
arg = W WX, LW Xt ﬁxm+ 1 (2.35)

If we label ' as w',,, ;. we actually have created a product of w',,,, |
and a signal x,,.; (always cqual to I}); since this is completely
analogous to the other products in the series, we can extend the

summation by one more element:
arg = w' x,+whu, + o+ w o x +w =

m+ | (2.36)

=Y i,
LA

i=1

Now, by inserting the evaluated arg (2.36) back into the sigmoidal
transfer function (2.30), and dropping the unnecessary “prime” on the
w’s, we obtain:

m+1
sf(Net, o,) = 1/{ 1+ exp[~ > w[.xi]} (2.37)

i=1

It is evident that the real output produced by the neuron, as
described by the sigmoidal function sf(Net, .,), depends only on the
{m+1)-dimensional weight vector W and the (in+1)-dimensional signal
X:

W= (wpw, ow o w,)

and (2.38)

X = (xl,xz, X, 1)

The extra weight which should be present in artificial neurons of
this design (and which always receives an input value of 1} is the bias.

We can regard the threshold value 1} and the constant
o simply as an additional “synaptic strength” called
bias to which a signal of value 1 is always
transmitted.

We will now explore the influence of the bias on a modification of
the example considered in Figure 2-8. Using W, (the decision vector
at the root of the decision tree in Figure 2-8) it is possible to decide
whether a point X(x,, x,) is above or below the abscissa, according to
the sign of the dot product W X:

if W,X 20 X is above or on the abscissa
if WX <0 X is below the abscissa

At this point we will explain how the decision vector W, is
obtained, using a slightly more complicated example. Let us assume
that we have four points X; =(3, 2), X5 =(-1,-1}, X4 =(1,-3) and X,
= (4, 1), of which the first two belong to the category C, and the other
two to C,. Plotting these four points into the xy-plane (Figure 2-20),

Bias

Figure 2-20: Four points in the xy-
plane belonging to two different
categories, X| and X; belong to C,
while X5 and X, belong to C,. The
separating line must be somewhere
between the two lines indicated.

31

32 Neuron

we realize that it should not be difficult to find a decision linc
separating these four points; it could be any line within the white area.

The solution could be obtained by writing down four trivial logical
statements:

if (X=X). then (XisinCy)
if (X=X,). then (XisinC))
il (X=X3). then (XisinC5,)
it (X=X,). then (XisinC,)

This is not a generally applicable procedure: it may not tell us
anything about other points in the plane. In other words, the above
procedure is not a model that can be used for predictions.

Using analytical geometry, we can write an equation for a straight
ling separating these four points. This line is a model, because it can
be used as a decision line for any point in the plane. However, we do
not favor the way it is obtained because, in a gencral case, complex
handling of multidimensional planes and lines is required.

Instead, we would like to obtain the result simply by learning from
a series of points (Ilcarning-by-example), and have it apply to any
point, not just these four.

That is, we would like to obtain a decision vector W which will
give a positive dot product WX, for points X; belonging to C;, and
negative for points belonging to C,. No matter how hard we try, we
cannot obtain a solution with a 2-dimensional W. However, Equation
(2.38) shows that flexibility of adaptation can be obtained by
augmenting the weight vector W by one additional weight w, ;. An
appropriate weight vector should therefore have three dimensions.

The only remaining question is: what weight vector should we
start with? The simplest guess is the vector (1, 1,).

Hence, we start with:

X =3, 2, 1. Xo=(-1,-1,1), category |. dot product =0
Xy=(1.-3, 1), Xy= (4, 1,1 category 2. dot product <)

and the starting weight vector wiO

wh= (1,

For correcting W we will use the delta-rule as introduced by
Equation (2.12), AW ~ 8X, through Equation (2.20)

(old) {ered)

AW = W _w o —(mw x| x|]X (2.20)

Bias 33

which is clearly identical to (2.12). Because the proportional
coefficient 8 is written as:

“x /11 J (2.39)
for each new vector X, AW can be calculated using equation (2.20) as
shown in Table 2-3.

Tt is evident that the first product, WX, will yield a positive result,
50 no correction is necessary. The next product WX,, which gives a
negative dot product, requires a correction of W because X belongs
to category C; (for simplicity we set n equal to 1). After this
correction has been made, the new W is multiplied by the vector X35;
since the wrong answer is produced by the multiplication, the
correction is made again. This training continues until the correct
prediction is achieved for all four points; a record of this is given in

o = —(2nW

Table 2-3.

c-aféé(_)-ry - ' sign predicted __2
i ofX; X; w WX, | of category result ” ‘“ & 5X; new W=W- 3§

: WX, (2.152)
1 ¢ (.2 px (100,100, 100)= 600 + <C©, OK -
2 C -1~ D* (100,100, 1.00) =—1.00 | — C, wrong 3.00 —0.67 (0.67, 0.67,-0.67) (0.33,0.33, 1.6
30C, [(1,-3, D* (033,033, 167)= 100 + €, wrong 11.00 0.18 (0.18,-0.55,0.18) (0.15, -0.88, 1.
4 C, |4 1, = (015,088 149 = 297 + C; wrong 1800 033 (1.33,0.33, 033 (-1.17,0.55, LI
o ' " end of the first cycle: 3 errors
T ¢, 3.2 D* (-1.17,055 1.16) = —1.25] = €, wrong 1400 —0.18 (-0.54, -0.36, -018) (-0.63,0.91, 1.3
2 Cp |11, D* (063,091,133 = 106 | + C, OK
3¢, [(1.-3, D* (-063,091,133) =202 - C, OK
4 C, |1, h* (063,081,133 =-029 - €, OK
o * end of the second cycle: 1 errer

I C, |3, 2 D+ (-063091,13H= 125 + C, OK
2 ¢y |11, D* (-0.63,091,133) = 106 + C, OK
3C, (=3 D* (063,091,133 =-202| - C, OK
4 Cy |4 1, D* (063,090,133 =-029 - C, OK

“end of the third cycle: 0 error -

final W (=0.63, .91, 1.33)

Table 2-3: Training events in the process of adaptation of the weight vector to
classity four objects correctly.

If the training had started with a different weight vector and/or a
different sequence of training objects, the resulting weight vector

34 Newron

would be slightly different, although it would correctly predict all four

i |
points. — J
As mentioned before, by adding the bias we have moved our I

™,
problem from the two-dimensional space. where the solution should L’-fé\/l -
be a line, to a three-dimensional space, where the solution is a planc.
The solution is defined by a vector W5 = (0,63, 0.91, 1.33) that is &
perpendicular to the decision plane (see Table 2-3). /"‘

The sequence of changes of the weight vector W shown in Table 2- 2. 13

3 is called learning and the entire procedure, a finear learning " 14 _i 59
machine. It 1s tedious to carry out even this very simple example by) 145\\ élo
hand, let alone cases with hundreds of points and tens of decisions. ;k l XS.
Therefore, the reader 18 encouraged to do a little programming. ~)‘:,l%,>

b)

A solution may be obtained in all linearly separable
cases by augmenting the decision vector W with an
additional component, the bias, and the vectors
representing objects with an additional component

equal to . | | T
output
With diffcrent initial guesses of the weight vector W, or different c)
sequence orders of the four objects for learning, we will get different
results. However, all of the final weight vectors W will be equally T
satisfactory for making a decision for any point. Not only X|, X5, X3. 0.5 EEEF“L
X4, but all the points above the line (X,X;) or below the line (X1X,) J,,"T\
(see Figure 2-20) will be classified in the categories C| and C,, +/ '2 N hidden
respectively. P T N —
/ ! \’"‘-—.,_,_7 \\
; +1 +7T

2.6 Graphical Representation of Artificial f inpur

Neurons d)

'}‘\l_th()ugh there exist d number of suggestions for replrcx‘scnlmg Figure 2-21: Representation of
artificial neurons, none of them seems o be completely satisfuctory. o hy: 1) McCulloch and Pitis, b)
Figure 2-21 shows some historically ordered examples of how Hebb, ¢) Kohonen, d) Rumelhart.
artificial neurons have been presented in the literature. Representing
the neurons by rectangles (Kohonen) has the advantage that they show
the connections of neurons in one layer, which makes it easy to
understand how the neurons obtain the same multidimensional signal
simultaneously. Additionally, it makes the vector represcnlation of the

Graphical Representation of Artificial Neurons 35

neuron’s weight vector W, composed of one row or one column of

weights, more visual. l

In this book, a neuron will be represented by a circle divided by a '
horizontal line into two halves representing the summation and \r
transfer functions. Figure 2-22 shows how the presentations of a

neuron was developed in this chapter. \w \]/

!
[A—
f ‘
N 2

r

output

Figure 2-22: Development of the
representation of a neuron in this
chapter.

36 Neuron

2.7 Essentials

* net input:
Net = WX +3=

= WX F WX WX kb X+ 4=

m
= Z wx, + O

i=1

+ transfer functions:
hard-limiter (binary)

hl (Net, 0) = 0.5 sign (Ner —)+ 0.5

hard-limiter (bipolar)
hi{Ner, %) = sign(Net-13)

threshold logic

th(Ner, 0, %) =max {0, min} 1, 0 (Net - %) |}

sigmoidal function

' m+ 1
sf(Net. o, §) = I/{l + exp(-y W’(f]}

i=1

* learning:
delta-rule

AW =ndX

delta-rule for I.LLM

(new) (old) (old

W =W m(znw)X/HXllzJX

(2.24)

(2.25)

{2.27)

(2.37)

(2.22)

(2.20)

References and Suggested Readings 37

2.8 References and Suggested Readings

2-1. S. Silbernagl and A. Despopoulos, Color Atlas of Physiology,
Thieme, Stuttgart, FRG, 1991; dtv-Atlas der Physiologie,
Thieme, Stuttgart, FRG, 1991,

2.2 §. W. Huffler and J. G. Nicholls, From Neuron to Brain — A
Cellular Approach to the Function of the Nervous System,
Sinauer Associates, Sunderland, MA, USA, 1986.

2-3. R. Forsyth and R. Rada, Machine Learning: Applications in
Expert Systems and Information Retrieval, Ellis Horwood Ltd.,
Chichester, UK, 1986, Chapters 1 and 2.

2.4, N. I. Nilsson, Learning Machines: Foundations of Trainable
Pattern Classifying Systems, McGraw-Hill, New York, USA,
1965, Chapter 3.

2-5. K. Varmuza, Pattern Recognition in Chemistry, Springer Verlag,
Berlin, FRG, 1980.

2-6. S. Watanabe, Pattern Recognition: Human and Mechanical,
Wiley, New York, USA, 1985.

2-7. 1. Zupan, Algorithms for Chemists, John Wiley, Chichester, UK,
1989, Chapter 8.

2-8. M. Minsky and S. Papert, Perceptrons: An Introduction to
Computational Geometry, MIT Press, Cambridge, USA, 1969.

2-9. P C.Jurs and T. L. Isenhour, “Some Chemical Applications of
Machine Intelligence”, Anal. Chem. 43 (1971) 20A — 36A.

2-10. D. O. Hebb, The Organization of Behavior, Wiley, New York,
USA, 1949.

2-11. W. S. McCulloch and W. Piits, “A Logical Calculus of the ldeas
Immanent in Nervous Activity”, Bull. Math. Biophys. 5 (1943)
115 - 133,

2-12. T. Kohonen, Self-Organization and Associative Memary, Third
Edition, Springer-Verlag, Berlin, FRG, 1989.

7.13. D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning
Internal Representations by Error Propagation”, in Parallel
Distributed Processing: Explorations in the Microstructures of
Cognition, Eds.: D. E. Rumelhart, J. L. McClelland, Vol. 3, MIT
Press, Cambridge, MA, USA, 1986, pp. 318 — 362.

2-14. 1. Gasteiger and J. Zupan, “Neuronale Netze in der Chemie™,
Angew. Chem. 105 (1993) 510 — 536; “Neural Networks in
Chemistry”, Angew. Chem. Int. Ed. Engl. 32 (1993) 503 — 527.

