3  Linking Neurons into Networks

learning objectives
—  why networking is emphasized

— parallel processing

— organization of neurons into layers

— more about inputs and outputs

— architectures

— graphical representation of neural networks

— matrix notation of neural networks

3.1 General

In order to achieve realistic results, our model must conform to
certain facts. For example, we know (see Smith-Churchland,
Reference 3-7) that a neuron can fire again after approximately one
millisecond, 1073s. Since the reaction time of most vertebrates is
around one tenth of a second (10‘15), we conclude that whatever
happens in the brain to provoke a reaction must occur in less than 100
firing times. This is called the “hundred steps paradoxon”.

The most striking implication of this is that the brain possesses a
signal processing algorithm so powerful that it can handle the most
difficult tasks we can imagine in only 100 steps. Because even the
most powerful computers with their nanosecond (10_95) clock rates do
not come close to such performance, we must attribute the brain’s
magnificent performance to something unique about its structure and
functioning.

Since a single neuron approach, no matter how many weights such
a neuron has, cannot find solutions to complicated real-world
applications, this “unique something” must involve the way neurons
are interconnected; we have come to think of the brain as a massively
parallel processor. Hence, as we stated at the beginning of the book
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the emphasis in the phrase “neural networks™ is clearly on the word
“networks”. In the rest of the book we will explore networks of
neurons and their properties.

Our first exercise will be to organize a large number of neurons in
such a way that all of them receive the same input X for processing at
the same time (Figure 3-1, top). The production of a net input Net
(Equation (2.7)) and the transformed output ous (Equation (2.23)) then
occurs in all neurons simultaneously (Figure 3-1, sccond and third
part). As each neuron has a different set of weights, the otherwise
identical procedure for generating output will produce as many
different output signals as there are ncurons. (A network “learns” by
modifying its weights.)

Such a group of neurons producing a set of outputs simultaneously
is called a layer (Figure 3-1 bottom). As each neuron j produces its
own net input Net; and output signal out;, these individual signals of
one layer can be combined to vectors, the net input signal veclor, Net,
and the output vector, Qut. The output vecior, Qut, can be used as an
input vector, Inp or X, (0 another layer of neurons.

The practical advantage of the neural network upproach over
conventional methods is that layers can be implemented on a parallel-
operated computer chip.

Multilayer networks operate sequentially, i.e. the neurcns in a
layer do not receive the signals until the neurons from the previous
(“upper”) layer have producced them. Usually, no more than two or
three layers of neurons are considered, and so the sequential link does
not represent any subsiantial loss of (ime.

It should be noted, however, that until now neural neiwork
algorithms have generally been implemented on von-Neumann (i.c.,
sequential) computers; in such an implementation, the “simultancous
parallel” processing of a layer is actually performed sequentially.
“Parallelism” is understood to mean that the neurons in one layer
process information independently of each other. The output signals
of one layer will be transmitted to the next layer only when all
neurons of the first layer have finished their processing.

In this book, networks are drawn so that they “run” from top to
bottom; other books may do the opposite {see Section 2.6).
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Figure 3-2: Four steps in the
“evolution” from the biological to the
matrix represcntation of neural
networks,
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3.2 One Layer

In our current model, a layer is a group of neurons all of which
have the same number, m, of weights (synapses) and all receive the
same m-dimensional input signal simultaneously. (What we have
been calling a “layer” of neurons is often regarded as a “string”, i.e., a
linear arrangement of nevrons.)

Neurons or layers of neurons are usually drawn to resemble
biological neurons as well as possible: with circles acting as neural
cells, and a number of interconnecting lines representing dendrites
and axons. The synapses are placed somewhere along these lines.
However, programmers and mathematicians prefer to think of the
neural layer as a matrix of weights. Figure 3-2 shows a plausible way
of obtaining a matrix notation from the “biological” one.

In the matrix of weights W, the rows represent the neurons. Each
row j can be labeled as a vector W, representing a neuron J, consisting
of m weights wy, W; = (w;, wp, ..., Wip). All weights in the same
column i, wy; (f = 1, 2, ..., n), simultaneously obtain the same signal x;.
At a given moment, the entire input vector X = (xy, X, ..., x,,,) (which
may come from an external source (sensor or instrument), or from
another group of neurons) is input into the network, i.e. (o the matrix
W. Since all weights wj; in the entire matrix are simultancously
exposed to the corresponding input signals all products wy; x; are made
at the same time.

Figure 3-3 shows such a one-layer network composed of three
neurons, each having the same number (five) of randomly generated
weights. Each neuron in the layer obtains the same set of m signals
(X1 X3. X3, or Xy, 1); here, m = 5. The weight wy; is on the i-th

One Layer 41

Figure 3-3: One-layer neural network.
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position of the j-th neuron; for example, woy is the 3rd weight of the
2" neuron — see the circle above the second output neuron. The
rightmost weight on each neuron (full circles) is the bias.

To make the picture unambiguous, a small example is given in
Figure 3-4. A layer of three neurons is shown receiving signals from
four neurons. For such an arrangement there must be five weights in
cach neuron. Remember, the input signal is actually 4-variate; the fifth
input, which is always equal to 1. should be directed to the weight
labeled hias. In order to check your understanding of the subject, you
are encouraged to calculate the output values.

This example shows that the network responds continuously if the
weights are small; it produces a continuum of values of the net input
vector, Net, between +10 (see Table 3-1 and Tabie 2-2, first example,
column 3). On the other hand, if the absolute values of the weights are
much larger than 10, the network will act as a binary device, as we
will now show,

Figure 3-4: If the absolute values of
the neuron weights are so large that the
produced Ner values arc larger than
+10. then the output is almost binary.

Figure 3-3: An example of a layer
consisting of three neurons, each
having five weights. The weight calicd
bias ts marked as a full circle: the
value of the input signat 10 it is always
1.



Net sffNet)
=10 0.0000

-9 0.0001

- 0.0003

=7 0.0011

-6 0.0025

-5 0.0067

— 0.0180 interval for

-3 0.0474 giving

-2 0.1192 values

-1 0.3679 between 0
0 0.500 and 1, when
1 0.6321  the cut-offis
2 (.8808 setto 1%
3 0.9526 (0.01 or
4 0.9820 0.99)
5 09937
() 0.9975
7 (1.9989
8 0.9997
9 0.9999

10 1.0000

Table 3-1:  Outputs of the sigmoidal transfer function (2.30) for different Ner
values

Let us submit the same set of four inputs, that is, the S-variate
input vector X = (0.5, 0.6, 0.1, 0.4, 1.0) shown in Figure 3-4, to the
same neural network having weights larger than 10 or smaller than
—10 (the weights of the previous example, —0.5 to +0.4, multiplied by
100},

Figure 3-5 shows that now the outputs of the neurons are either
very close to 0 or very close to 1, quite in contrast to the results shown
in Figure 3-4,

To get a feeling of how large the values of Net should be to obtain
nonbinary output, some values of sfiNet) for =10 < Net < 10 are given
in Table 3-1. These data illustrate why one usually selects very small
randormn numbers for the initial weights, usually in the range of 0.1 or
even smaller. A rule of thumb is to set the m initial values of the
weights w;; in each neuron j so that

3 oyl = 1 o

i=1

One Laver
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The example corresponding to Figure 3-5 is important
because it shows that in certain circumstances it is
extremely difficult (and will take a large number of
iterations) to change the output of the network with
small corrections of weights, since the outputs will
discontinuously flip between 0 and 1.

3.3 Input

Until now we did not bother much about the mechanism by which
the signals actually enter the network. The lact that each signal x; of
the input vector X should come to all neurons in the first layer means
that somehow x; should be “distributed” over as many weights as there
are neurons in the layer. Graphically this is shown in Figure 3-6.

In order to make the flow of input data graphically consistent with
the flow of data within and between the layers of neurons, the crossing
points in the top row of Figure 3-6a where each input signal x; is
forked towards the weights should be considered “neurons”. These are
the small circles in Figure 3-6b; on the output side, they behave as
full-fledged neurons, able to send many signals of the same value to
their attached neurons, but on the other side, each has only one input
signal, x,.

Nor do these “input neurons” change the input signals x; at all,
which means that they have neither weights nor any kind of transter
funciion. The “input neurons™ only serve as distributors of signals and
do not play any active role in modifying them.

In order 1o stress this difference between the non-active input
“neurons” and the active ones, the former will be drawn throughout
this book as in Figure 3-6¢, as squares (and not as circles as many
other authors do). In addition, we will refer to them as input units and
noet as input neurons.
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Be very careful about labeling the non-active input,
active layer, and output layers of neurons. Be sure
you know exactly which layer of neurons the author
intends when he or she applies the terms “inputs” or
“outputs” to a particular layer. Many times in the
same equation the inputs and outputs are taken from
different layers.

In counting the number of layers to classify the architecture of a
network, we do not include the input layer.
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Figure 3-6:

a) Distribution of signals to the
neurons in the first active layer.

{b) The points where the input signals
are forked towards the neurons in the
active layer are marked with small
circles.

(¢) Representing a non-active layer of
neurens with squares.
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3.4 Architectures

The basic operation of a neuron is always the same: it collects a net
input, Net;, and transforms it into the output signal, out;, via one of the
transfer lunctions; the only thing we have to choose in advance is the
number of layers, and the number of neurons in each layer.

All the topological data about the network:

the number ol inputs and outputs

— thc number of layers

— the number of neurons in cach laver
— the number of weights in each neuren

— the way the weights are linked together within or between the
layer(s)

— which ncurons receive the correction signals

together form the architecture or design of the network. Almost any
ncework that is described as a “connected graph™ can be said to have a
neural network architecture; however, the acceptability of a given
network architecture is judged solely by the result it produces.

In spite of such wide-open options for designing a neural network.
there are some commonly accepted guidelines or restrictions. These
arc not imposed because of some fundamental requircments, but
simply becausc theotretical investigations can be carried oul much
more easily il the network has an imposed order of design rather than
random conncctions. The same is true for the problems that may
appear at the programming stage.

The most common features of neural networks will be described
briefly in the next paragraphs.

All neurons in one layer should obtain the same number of inputs,
including an additional input connected to the bias. The number of
weights tn each neuron is fixed by the number of signals produced in
the layer above it (Figure 3-7). (The network in this figure is referred
to as a (3 x4 x 2) network; the bias is not connected in this case.)

3.5 Hidden Layer; Output Layer

The layers below the passive input layer are usually referred to as
the hidden layers, because they are not directly connected to the

output ¥ i

Figure 3-7: Linking layers of neurons
together: two-layer design with input
layer, one hidden and one output layer.
Note that the number of weights in
each neuron in a given layer
corresponds 1o the number of signals
produced by the layer above it.
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outside world as the input units and the output neurons are. The layer
of neurons that yields the final signal(s) is called the output layer. For
now, we will simplify the figure of a neuron to a plain circle; you can
think of weights as being distributed over the upper half arc of the
circle.

In more complex neural network designs some of the signals might
be input to neurons in more than one layer, some of which may lie
much deeper in the network. The adjacent hidden layer might even be
skipped altogether for some signals. Figure 3-8 shows both these
possibilities in a multilayer neural network design: all neurons in the
second layer get an additional signal from the input, and one neuron in
the third layer gets a signal directly from the input (these links are
drawn with thicker lines). Without them, this would be an ordinary
three-layer (2 x 3 x 2 x 2) neural network.

In some cases, such “far-going” signals can be linked to only a few
neurons on a particular deeper layer or only to a single one. This
might cause problems in the correction algorithms because the
weights are usually corrected layer by layer.

On linear computers, the nonstandard links cause a considerable
slowdown of the computation because either the branching conditions
have to be checked at each step, or some additional pointers to the
proper weights have to be introduced.

3.6 Graphical Representation of Neural
Networks

Until now neural networks, consisting of layers of interconnected
neurons have been shown as lines of circles (layers), Jinked together
with arrows going from circles of one layer to the next. The arrows
represent the direction of flow of the signals; at the places where the
arrows touch the circles, the weights (synapses) are applied to them.
The circles represent the bodies of the neurons, where all incoming
signals are summed and the result then (nonlinearly) transformed into
one output signal, which is transmitted to all neurons in the next layer.

Although it contains some simplifications of how neurons really
work, this picture is quite adequate for describing artificial neural
networks (e.g. Figure 3-7). It works, for example, whether the signal
transformation actually takes place within the neuron’s body or within
the axon.
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Figure 3-8: Three-layer neural
network design with some signals
bypassing the layer immediately below
and linking to a deeper layer.
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Figure 3-9: Matrix model of a
network: the position of the weights
within the neuron and the neurons
within the layer.
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However, it is based on a4 model of biological ncurons: for
programming, a matrix representation would be more explicit and
precise.

The matrix representation considers a layer of n neurons, ¢ach
having m weights, as an (n x m)-variate weight matrix W. For a
multilayer network, each matrix (and thus its elements Wi} oblain a
superscripl [ {{ for layer) specifying the index of the layer. The
notation:

i
Wii (3.2)

refers to the i-th weight of the j-th neuron in the /-th layer (Figure 3-
9.

In the matrix notation, the input layer is actually a unit veclor (a
vector having all components equal to 1), and we do not need to draw
or show it at all (if for some reason we do, then the layer index has to
be 0). The weight matrix of the input layer, W' that “transmits™ m
signals is a vector containing the valuc 1, # times:

W=,

in agrecement with the fact that the weight matrix for the first active
layer of weights W' has a superscript of 1. It is evident that the last
(the output) layer will therefore always have a layer index equal to the
number of active layers in the network. This notation avoids a lot of
confusion regarding (he actual number of layers used in the given

(3.3)

application.

The matrix notation shows clearly that the input signals to the /-th
layer X' and outputl signals Out' from this layer are m- and n-
dimensional vectors, respectively. As mentioned above we must
remember that:

X = ow!
or: (3.4)
Out.’ - X."+ |

To apply an m-variate signal input (o a one-layer neural network
consisting of # neurons each having m weights, we multiply an mr-
variale vector X(x), x». ..., x,_, 1) with the (# x m)-variale weight
matrix W. The result is an n-variate net input vector Net (Ner|, Neta,

s Net,).

OutV=x' | |
Net! gut!
i |
| !’ |
H N
Wi rmrj-] ! ‘
j-th neuron |+ H e
| S | i
— — "/I
A
qu

| :
1 n',?,’,,n\ r:m,‘}, :

m-th neuron

Figure 3-10: Matrix representation of
a multilayer neural network, The
number of weights in cach layer is
determined by the number of outputs
from the layer above. However, the
number of neurens in the layer is
determined by the user {usually by trial
and error).
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Net = (Net|, Nets, ..., Nerj, oy Net,} =

[ N
Wi Wi e Wim | X1 )
W Wi .. Wom | | X2
- Wi Wiz N Wi X3
Wi A
Wpl  Wp2 v Wam *m-2
Y-t
1

Using extended notation, we can show how each component Netj is
calculated for layer [:

m
I [
Netj = 2 er‘xi

i=1

(3.5)

j=12,.,n

The index j spans the 7 neurons, while i spans the m weights in the
j-th neuron. The number of weights in the neuron is one more than the
number of input variables, x;; the remaining one input variable is the
bias, which is always equal to 1.

The matrix equation (3.6) is a concise description of all net inputs
in a one-layer network using the weight matrix W:

Net = WX (3.6)

In a multilayer network, the weight matrices representing the
layers are distinguished by the superscript /. For such a calculation the
[-th layer weight matrix elements w},- are used together with the input
to the I-th layer xf. Because the input to the /-th layer is usually the

output of the (/—1)-st layer, Equation (3.5) can be written as:
Net' = W'Xx! = wiQu"™!

or:
3.7

m
! ! -1
Netj = Z wﬂ.out‘.

i=1
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Out' is obtained from Net' by one of the transfer functions ((2.24),
(2.25), (2.29), or (2.30)). Let us apply the sigmoidal function (2.30)
here as an example:

Out' = sf(Net') (3.8)

From Equations (3.4) to (3.7), it can be concluded that the input
fayer W' (which has only one row of weights, all of them equal o |
and has no transfer function) will produce an output Our’ that is
exactly equal to the external input. Thus, the m-variate input vector X
that is input to the network can be labeled as output also:

X' = 0u

Some authors draw networks so that information flows from left to
right (Figure 3-11}, and some. from botiom to top {Figure 3-12}); but
Kohonen favors (as do we, cf. Figure 3-7) the “top-down™ design,
which means that any input is above the neuron and its output is
below. This corresponds to our everyday concept of “flow”, whether
in a liquid, a signal, or information. However, it must be said that
most authors today prefer the “bottom-up™ design (see Rumelhart’s
example, Figure 2-21d). This presumably originated with the
convention in information theory where the flow of signals starts at
the bottom. (If you lay the drawing in front of you on your desk, it
runs away from you.)

(3.9)

first output
layer layer

[Ty ey

Figure 3-11: Neurai network showing
the flow of signals from left o right.

Figure 3-12: Neural network showing
the flow of informution from bottom to
top.



3.7 Essentials

* selection of weights

2 'wji| =1

i=1

* indices of elements of the weight matrix

I-th layer
W J-th neuron
d i-th weight

» evaluation of the net input

i1

I [
Net. = W,.X.

J Jut
i=1

Out! = st (Nett)
m
l l -1
Netj = Z wﬁout!.
i=1

» evaluation of the output
Out' = sf(Net!)
* labeling inputs and outputs

Xl

or:

Out"™! input to the I-th layer

Out' = X' output from the /-th layer

(Out() is identical to the network input)

3.1

(3.2)

(3.5

(3.8)

(3.7

(3.8)

(3.4)

Essentials
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