Part 11
One-Layer Networks

4 Hopfield Network

learning objectives

— Hopfield networks, though extremely simple, are
capable of auto-association

— how neural nets are designed (architecture)
— simple data representations: binary and bipolar

— how a simple network is trained (stabilized) by
iteration

— how a network trained to recognize images can
recognize them even when they are corrupted

— the number of neurons needed for a given dataset

4.1 General

In 1982, the American physicist J. J. Hopfield brought neural
network research back from the anathema to which it had been pushed
in the seventies and early eighties. His paper (Reference 4-1), as a
milestone on the way into the new era of neural network research,
introduced nonlinear transfer functions for the evaluation of the final
output from neurons.

The Hopfield neural network performs one of the most interesting
tasks the brain is able to do: auto-association (Figure [-3), by means
of which a stored image {or any other information representable by a
multivariable vector or matrix) is regenerated from partial or
corrupted data. In other words, you perform auto-association
whenever you recognize a friend after seeing, say, only his/her eyes.

Such procedures are clearly desirable not only in science but in
areas as diverse as art, law, and economics. In art and science, it offers
the possibility of reconstructing original images from blurred copies
(NASA uses “image enhancement” techniques, for example, to
increase the number of pixels in astronomical photographs); it could
serve a similar purpose, say, in deciphering the Dead Sea Scrolls.

56 Hopfield Network

A “betler” auto-association procedure is one which can produce a
given degree of reconstruction from a “worse™ original.

Besides auto-association, the Hopficld nct can solve optimization
problems (such as the famous “traveling salesman problem” — see
Reference 4-3). However, we will not go into that here.

4.2 Architecture

The Hopfield neural net is a one-layer ncural network. It consists
ol as many neurons as there are mput signals, cach neuron having, of
course, the same number of weights as there are input signals. This
means that the Hopfield network for jn-variate signals (group of m
individual signals) is a quadratic (square) (m x m)-variatc matrix of
weights.

Figure 4-1 shows us a design for a Hopfield net that can learn the
auto-association of (4 x 4)-pixel images. The image is input as a 16-
variable array, and so the Hopfield net has 16 neurons, each having 16
weights.

The original Hopfield neural network treats the binary signals as
bipolar ones (having values of +1 or —1 only). It actually does not
matter which notation is used for storing the images; however, the
image should be represented in bipolar notation. In order to avoid
confusion, and because compulers store black and white pixels as bits
(binary digits, 0 or 1), a simple transformation for each binary signal
x; can be introduced before entering the Hopfield network:

hipolar hinary

4.1)

X = 2X -1

bipotar hinary

(X} Xoy opX) = (2x,-1,2x,-1,...2x,_— 1)

The transformation 2x; — 1 in Equation (4.1) is a programmer’s
trick to enlarge the interval of x; values by a factor of 2, and to shift
the entire interval one unit lower on the axis: from (0 — 1 to (1) — (+1).

4.3 Transfer Function
Because the trunsfer function in the Hopfield net is a bipolar

version of the hard-limiter, hl, (Equation (2.24)) the input signals must
be in bipolar notation:

4 x4
pixel
pattern

input [[l]

active
neurons

output

Figure 4-1: Hopficid net for learning
associations of (4 x 4)-pixel images.
The network has one tayer with 16
newrons,

Ht
i " bipolar
hl(Net)) = sign(Ner) = Slgr{ 2 Wi] (4.2)

i=1

where the function sign(u) means the algebraic sign of the argument u.
Each term 1n the summation NetJ,-, the net input of the j-th neuron, is
the product of a weight wy; of the j-th neuron and the input signal
xPPolar fed into it. The superscript bipolar is to remind us that the
input signal must lie between +1 and —1. From now on, it will be
omitted.

To use the binary representation, Equation (4.2) should be slightly
modified:

hl (Netj) = Sign[2 wﬁ(fommy— 1):| 4.3)

4.4 Weight Matrix

How is the association learned in a Hopfield network? Very
simply. Assume that each image is stored in the computer as an m-
variable vector X of bipolar values (pixels):

X = (X Xy Xy s X,) (4.4)
obtained by substituting white and black pixels by —1 and +1,
respectively, and by taking the 4-pixel lines in sequence from the top
row to the bottom row of the (4 x 4) image.

Now, first, we have to calculate the weights so that they will be
appropriate for the image patterns that are to be learned by the
Hopfield network. Say there are p images; the weights wy are
calculated as follows:

p
Wy = szjx” it j=i
(4.5)
w. =0 it j=i

Analyzing the value of wj;, we see that it increases by 1 if the j-th
and /-th pixel in a given pattern s are equal (i.e. both are white or both

Weight Matrix

57

58 Hopfield Network

black), and it decreases by 1 if they are different. The more identical
pairs of pixels j and / exist in the p patterns, the larger is the weight;
the maximum absolute value that each wj; can reach is p, the number
of patterns in the set.

Hence, a mew pattern is learned {that is, one cycle of weight
modification takes place) simply by adding or subtracting 1 from cach
wi, depending on whether the j-th and the i-th pixel are equal or
different. (It doesn’t get much easier than that")

Let us calculate a simple example. Figure 4-2 gives us four 16-
variable patterns, actually (4 x 4)-pixcl images, showing four arbitrary
patterns. We would like these four patterns to be learned by the
Hopfield net (Figure 4-3) by association.

The reader is encouraged to go through this example, or similar
ones, by himself. To this purpose, the program HOPF is provided on
the website of this book

hitp:fwww2.cec.uni-erlangen. de/ANN-book/

On this site, also the datafiles for the patterns used in the example
discussed here can be found. See Appendix for further details.

Equation (4.5) “stores” all of the patterns in the weight matrix W,
in the sense that each element of W is actually influenced by all
patterns X (x|, X9, .oy Xgs - Xyp)o (Since the weight matrix W
“contains” all patterns, then presumably the patterns can be
“retrieved” from it!)

A new pattern X" can be added to the matrix by simply adding
the product of the corresponding cemponents of X% (o cach
clement of the weight matrix W:

UpdaledW - Wj(fnc‘ W _ Wj(t-”h” + xj(m»w)xi{ Hew)

It is cvident from Equation (4.5) that the matrix of weights is
quadratic (because both / and j run from | to m), and symmetric over
the main diagonal, which is set to zcro. You should carry out the
calculation of the weight matrix (or at least try to evaluate a few
weights), and then compare your results with the complete weight
matrix shown below. See also Figure 4-3; note that the first index, j. of
w;; is assoctated with the output and the second, 7, refers {0 the input.

i
As an example, wy 4 18 calculated to be

=D+ + (=D (=1} + (1} (+ D) + {(+ D (=1) = 0

Wyg =

pattern no. 1:
X=(0,0,1,1,0,0,1,1,1,1.0,0,1,1,0,0)

pattern no. 2:
X»=(0.0,0,0,0,0,0,0.1.1,1,1,1,0,0,0)

pattern no. 3:
X=(1,1,1,1,0,0,0,1,0,0,0,1,1,1,1,1}

pattern no. 4:
X,4=(1,0,0,0,1,0,0,0,1,0,0,0,1,1,1.1}

Figure 4-2: (4 x 4)-pixel images to be
memorized by a Hopfield net can be
represented as 16-variable veclors,
given in binary notaton. {Before
entering the Hopficld net they are
converted into bipolar representation
using the transtormation of (4.1).)

X 00] i 0011 1100 1100
-l—l I -1-111 1 1-1-1" 1 1-1-1

input OO LILICIL

Hopfield woa=0-]

net 4

Q

T 9997 ??? R

output -1-1 11 ~-1-1 11 1-1-1 I 1-1-1

What are some of the things W can tell us about the learned
images? For one thing, the value —4 for wyg; indicates that in all
images, the first and tenth pixels are different from each other.
Similarly, the value of w ;¢ = 4 indicates that all four (1,16)-pairs of
pixels have the same color. Figure 4-2 shows that the first and last
pixel in patterns X| and X, are white, while they are both black in X3
and X,.

The (16 x 16) matrix W, below, represents 16 neurons, each having
16 weights. Because it is symmetric across the main diagonal, it does
not matter whether we imagine the organization of the neurons to be
by column or by row; that is, each row or column of the matrix is a set
of 16 weights which belong to one neuron.

Once the patterns to be stored in a Hopfield network are known,
“learning” consists simply of calculating the weight matrix W
according to Equation (4.5). A very interesting thing about the
particular W shown above is that each of the four patterns X, X;, X5
or X, (Figure 4-2) from which W was generated, are recognized
exactly when put back into the net; that is, each one produces a 16-
variable signal identical to the input. This, of course, is what we
hoped for, but it is surprising that it was achieved all at once. With
larger Hopfield networks (that can learn hundreds of different
images), exact recognition of the “training” patterns comes only after
a number of iterations. We will now examine the process of iteration
during learning.

Weight Matrix 59

Figure 4-3: The Hopfield net shown in
conventional notation. Each neuron
has 16 weights (“synapscs™}
moenitoring the 16 input signals.

60 Hopfield Network

1 2 3 4 5 6 7 & 91011 1213 1415 16

02002 0-20-2-4-210 0 2 : 1
; 200 2 2 0 2 0 2-4-2 0 2=20 2 2 } 2
0 2 0 4-2 0 4-2 0-2 0 0 2 0 0 3

0 2 4 0-2 0 4-2 0-2 0 0 2 0 0 4

2 0-2-2 0 2 02 0-2 0-2-2 0 2 2 5

0 2 0 0 2 0 2 0-2 0 2 0-4-2 0 0 6
-2 0 2 2 0 2 0 2 02 0-2-2 0-2-2 7
W= 204 4-2 0 2 0-2 -2 0 2 0 8
2 4 -2-2 0-2 0-=2 0 2 0-2 2 0-2= 9
4 -2 0 0-2 0 2 0 0 2 0 0 -2-4 -4 10
2 0-2-2 0 2 02 2.0 22422 11
0 2 0 0-2 0-2 0-2 02 0 0=2 00 12
0-2 0 0-2-4-2 0 2 0-2 00 2 00 13
200 2 2 02 0 2 0-2-4-2 2022 14

L 4 2 0 0 2 02 0-2-4-2 00 20 f 15
L4020 002 02 024200 240 16

4.5 Tteration

When, during training, the network produccs an output that is not
equal to the input {(which is what usually happens). this output is input
again. The input in the next iteration, X+ is taken from the output
of the present one, Qut'");

(r+ 1}

X = Outm

Generally, a pattern more similar to the input will emerge. This
procedure is repeated (without changing the weights) until identical
outputs are produced in two consecutive steps (Figure 4-4).

(r

(t}

out'’ = ou" Y = x

NOTE: While the outputs are converging lowards something, there is
no guarantee that this “something” is the signal which was input to the
net at the beginning {the original}. As a matter of fact, the iterative
procedure can have many different outcomes:

1) the final output is identical to the initial input;

2) the final output is identical to some other paticrn stored in the net;

first L

input:

I e
next
input:
present
outpui

output

Figure 4-4: Iteration. Cycling of a
multivariate signal from the net’s
output (o the input, then through the
el again until an output identical to
the input is obtained.

3) the final output is not equal to any of the patterns used in the
evaluation of weights;

4) the final output is as described in 1), 2) or 3), but with the pixels
color-inverted (black for white, white for black) — that is, a
negative image. This can happen, if the input signal has more than
50% wrong pixels from one of the originals.

Or, if convergence is not achieved:

5) the final output may oscillate between two or more patterns
(possibly inverted) which are not equal to any of the original
patterns.

If the Hopfield network produces the original input signal, we
refer to it as a stable or stabilized network.

Note that these cycles do not change the weights!

In order to appreciate how difficult it is to get a “balanced” set of
inputs to form a stabilized Hopfield net, you should program your own
small nets and test them with different images. The main trick is to
select images with approximately the same number of black and white
pixels, as evenly distributed over the entire area as possible.

Clearly, only outcome 1) is of much practical use. But, you may
ask, what good is a device for reproducing the same image that was
input to it? The reproduction of all originals is only an initial test,
determining whether the net is stabilized.

The idea of the Hopfield net is that the stabilizing effect of weights
will force the net to produce the original image even from a corrupt,
incomplete, dim, or blurred image. How far such an associaticn of an
incomplete input with the original one will go is hard to predict; in
some cases, even an image with more than 30% of the pixels
corrupted or missing will produce the original.

The necessary condition for a successful association is that the
network be stable from the beginning.

Let us explore this feature of the Hopfield net using our recent
example. Instead of inputting the original four patterns, let’s corrupt
the originals by 2, 5 and 13 randomly selected pixels and put it into the
Hopfield network (in an image with 16 pixels, these represent errors of
13%, 31% and 81%: the propertions of the 16 pixels whose colors are
opposite of what they should be). The numbers of iterations required

Treration

61

62 Hopfield Network

pitteen patern pattern pattern
no. 1 no. 2 no. 3 ne. 4
R T - I
2-pixel n . ||
error ; j
e w3 L
iterations b 2 l 2
S-pixel | L ‘ e
£ il i) i3
4 4 5 3
1 3-pixel
error

- i ol
-8 3

"
=

e

to get 4 stable output in each of these cases are given in Figure 4-5.
However, two images with the same percentage of corrupted pixels
nor will they
necessarily converge towards the same pattern. The larger the degree

may not require the same number of iterations,

of corruption, the more unpredictable the outcome.

Figure 4-6 shows unpredictable output for the middle case (31%
errors). You might think the stability of the output would get worse as
the proportion of errors gets larger, but this is not the case.

If more than 50% of the pixels are corrupted, the retrieved image is
likely to become the negative of the original (a 95% corrupt picture is
actually the negative of the original corrupted by 5%]). Therefore, it is
not hard to understand the bottom row of Figure 4-5, in which an 81%
(13 pixels) corrupted image produces a negative of the original.

4.6 Capacity of the Hopfield Network

The Hopticld net may scem very attractive for some applications,
but there are severe restrictions on the number of images (patterns)
that such a network is able to {carn. In general, the net should contain
about seven neurons for cach pattern to be learned (and recognized):

Figure 4-5: Qutputs obtained by the
Hopficld network of Figure 4-3 from
inputs with 2, 5, and 3 crrors,
compared to the original patterns (lop
row). Numbers of itcrations needed for
each stable output are given below
cach output.

original

input
corrupted -
original
no. of output
iterations

C refd
> il A
¢ fe A
L
s el
o

ii’ﬁ

Figure 4-6: Some possible outputs
{last pattern in each column) if the
original patlern has 5 corrupted pixels.
The outcome is unpredictable: it may
be the original {first column}, some
other pattern (second columny, the
negative of an actual pattern (third
column), or it may oscillate between
two patterns {fourth column}. Note
that the number of Jterations required
differs from case to case.

Capacity of the Hopfield Network

Nneururzs - 7Nimagex (40)

(In our preceding example, the number of neurons was only four times
the number of images. This will be explained at the end of this
section; for details, see Reference 4-12.)

Equation (4.6) has two consequences. First, it shows that the
minimum resolution of the images depends on how many there are. In
terms of the previous example, Equation (4.6) requires that each of
one hundred 2-dimensional images, which would require 700 neurons,
be represented on a grid of at least 700 pixels, or, for a square image, a
grid of about (27 x 27) pixels.

Second, Equation (4.6) determines the size of the weight matrix.
Since a Hopfield network generates a quadratic matrix, learning
(recognizing, associating) 100 images requires a mafrix containing
7007 = 490,000 weights.

This brings up an obvious problem: since each number in a
computer is represented by four bytes (floating points) or two bytes
{short integers), a Hopfield net for recalling 100 images (on a (27 x 27)
grid) will require one or two Mbyte of memory space for the weight
matrix. However, there is an even worse aspect of this problem.
Recalling any image requires as many as 2 million multiplications and
2 million additions (performed sequentially, on most computers) for
each iteration cycle! And the space and time requirements grow
quadratically as the size of the problem grows!

Equation (4.6) is valid for a random sample only; as a
consequence, the number of patterns to be stored in a Hopfield net
need not depend only on the number of neurons. By a careful
arrangement or selection of patterns, we can increase the capacity of
the Hopfield network above 0,14 images/neuron, up to maximum of
about (.25. Our example, storing four images on a grid of 16 pixels, is
about the maximum we can achieve on such a grid.

63

o4 Hopfield Network

4.7 Essentials

— the number of input data is equal to the number of output
data

— there is no refinement ol weights in the Hopficld netwaork;
the weights are calculated from the patterns

— the stored patterns are retrieved from the network by a
*circutar” Aow of signals; the output becomes the next input

— the network is able to “retrieve”™ the uncorrupted patterns
cven il the inputs are corrupted

— the number of patterns that can be stored simultaneously in
the Hopfield network is relatively small

« binary to bipolar vector conversion

hipalar hivar
(X Xy ety d 0 = (2 = L 20, = 20, - 1) T
(4.1
* Hopfield network:
weights
I
Wy = Z A if j#i
s=1
and
'Wff = 0 l]L] =1
4.5)
output

"
- R hipotar
hl (NcJIJ.) = sign (Nerj.) = blgn{ z WX] (4.2)

=1

* requirement or capacity

Nﬂl’h’r(’!h\' — T‘VJIH'IH},’(’;\ (4-(})

References and Suggested Readings 63

4.8 References and Suggested Readings

4-1.). I. Hopfield, “Neural Networks and Physical Systems With
Emergent Collective Computational Abilities”, Proc. Natl.
Acad. Sci. USA 79 (1982) 2554 — 2558.

4-2. I.]. Hopfield, “Neurons With Graded Response Have Collective
Computational Abilities”, Proc. Natl. Acad. Sci. USA 81 (1984)
3088 — 3092,

4-3.). J. Hopfield and D. W. Tank, “Neural Computation of
Decisions in Optimization Problems”, Biol. Cybern. 52 (1985)
141 - 152,

4-4.]. J. Hopfield and D. W. Tank, “Computing with Neural
Circuits: A Model”, Science 233 (1986) 625 - 633.

4-5. I. 1. Hopfield and D. W. Tank, “Simple Neural Optimization
Networks”, IEEE Trans CS, CAS-33, 533 — 541.

4-6. R. P Lippmann, “An Introduction to Computing with Neural
Nets”, IEEE ASSP Magazine, April 1987, 4 — 22,

4-7. R.). McEliece, E. C. Posner, E. R. Rodemich and S. S.
Venkatesh, “The Capacity of Hopfield Associative Memory”,
[EEE TIT, IT-33 (1987) 461 — 482,

4-8. I.]. Hopfield, D. I. Feinstein and R. G. Palmer, “Unlearning has
a Stabilizing Effect in Collective Memories”, Nature 304 (1988)
158 - 159,

4-9. 1. A. Anderson and E. Rosenfeld, Eds., Newrocomputing:
Foundations of Research, MIT Press, Cambridge, MA, USA,
19%8.

4-10. M. Tusar and J. Zupan, “Neural Networks”, in Software
Development in Chemistry 4, Ed.: J. Gasteiger, Springer Verlag,
Bertin, FRG, 1990, pp. 363 — 376.

4-11. H. Ritter, T. Martinetz and K. Schulten, Neuronale Netze, Eine
Einfiihrung in die Neuroinformatik selbstorganisierender
Netzwerke, Addison-Wesley, Bonn, FRG, 1990.

4-12. D.J. Amit, H. Gutfreund and M, Sompolinski, “Storing Infinite
Number of Patterns in a Spin-glass Model of Neural Networks”,
Phys. Rev. Lert. 55 (1985) 1530 — 1533.

