5 Adaptive Bidirectional
Associative Memory (ABAM)

learning objectives

— the differences between two types of learning
methods: supervised and unsupervised

— how signals (training data) may be sent forward
and backward through a network

— how a network “learns” by changing the weights
of its neurons

— how matrices are used to represent and modify
weights

- how a trained network can actually recognize
separated parts of a stored pattern

5.1 Unsupervised and Supervised Learning

When learning is unsupervised, the system is provided with a
group of facts {patterns) and then left to itself to settle down (or not!}
to a stable state in some number of iterations (Figure 5-1). Inherent in
any unsupervised learning system is an optimization (or decision)
criterion that is used for the evaluation of the result at the end of each
cycle. This, however, is a very general one, such as minimization of
energy or distance, maximization of profit, etc.

Thus, learning is basically an optimization procedure. An example
of this kind of learning is Aierarchical clustering, in which we have a
set of objects or patterns {X|} and two criteria, the distance between
two objects and the distance between two groups of objects. We want
a system which will, in response only to these conditions, organize the
objects into groups and the groups into a hierarchy. The result should
be a surprise, or at least not be influenced by our expectations.

Suppose, however, that we have some objects (patterns, say)
whose behavior (responses) in a given system are known. The two
types of data (the representation of the objects and their responses in

Figure 5-1: Unsupervised learning.
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the system) form pairs of what we might call inputs and targets. The
goal of supervised methods is to find a model — a general procedure —
that will correctly associate the inputs with the targets (Figure 5-2).

In a sense, the targets do not enter the learning procedure; they
only serve as a crilerion for how well the system has been trained.
According to this estimate, the decision is made whether the network
(specifically, the weights) need to be corrected (see Section 2.3). Of
course, the change or correction of each weight depends on the sive of
the error produced, which in turn depends on the target: but mainly the
correction is proportional {o the input.

At the moment we are not concerncd with how 1o change the
weights; let’s concentrate on the idea that the weights arc forced to
change to give a specific answer defined by the user.

When applying any supervised learning method, we have to
distinguish two cases that differ from each other in the way the larget
is related o the input; specifically, whether some intrinsic relationship
occurs between them, or they are just arbitrarily associated. Examples
of arbitrary associations are the number of eves most of us have, and
the symbol for that number (“14” in the binary system, “27 in others,
such as the decimal system}; or the sound you make when you smile
and force air between your teeth, and the letier “c” (¢f. Figure 5-3).

On the other hand, the pair “chemical structure™ and its “infrared
spectrum’™ have an intrinsic relationship. because the structure of the
molecule causes the spectrum whether or not we know the
mechanism.

Now, when considering both types of pairs, the unrelated and
related ones, it is cvident that supervised learning will be used for
different purposes with different types ol pairs. In the case of
unrelated pairs, it will mainty be used for identifying corrupted
patterns, while in the case of related pairs it will be used for building
models that can predict responses for different patterns from those
used in the learning process.

When the pairs are unrelated, it is obviously not possible to
genetalize the solution: it is hard to imagine that after lcarning to
associate the images of a cat. a dog and a fish with the letters “C”, *D”
and “F”. the system will produce an “H” for the image of a horse.
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Figure 5-2: Supervised learning.
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between objects: a number, and the
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But this conclusion requires a word of caution. At
one level, “cow’” and “milk™ are unrelated — they
don’t even have any letters in common — but at
another level, they are. That is, there might be no
generalization on the level at which the system was
trained, while one does exist on some higher (or, if
you prefer, lower) Jevel for which the system was not
intended to make predictions. If this turns out to be
true the ABAM net is worth considering. Below, we
will give some examples to demonstrate the point.

5.2 General

The word “associative” in the name adaptive bidirectional
associative memory (ABAM) indicates that it 1s a system that can
learn to associate patterns. In a way, ABAM resembles the Hopfield
network: both are one-layer neural networks, and both were
developed to manipulate binary (or bipolar) vectors and have
therefore an identical evaluation of the initial weights. After this,
however, the similarity breaks down.

The most important difference between the two networks lies not
in their architecture, but in the scope of the problems they can tackle
and how the networks (or weights) are adapted to these problems. The
entire Hopfield network (the number of neurons, and the number of
weights and their values), is determined once and for all after the
patterns or objects to be learned have been chosen. The size of the
image, i.e. the number of pixels in each pattern, determines the
number of neurons and the number of weights (see Section 4.2}, while
the number and the form of the selected patterns determine the values
of all the weights (see Equation (4.5)).

This does not work with the ABAM network. First, it is not
necessarily square, but can be rectangular if convenient. This is
because there can be fewer neurons in the output layer than there are
in the non-active input layer (Figure 5-4). This can save a lot of
computer memory, as well as computation time,

Second, although the initial setup of the weights is made in the
same way as for the Hopfield net (compare Equations (5.2) and (4.5)),
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Figure 5-4: The two directions of
signal propagation in an ABAM
network (cf. also Section 5.4).
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in the ABAM network they are used only in the first ileration step.
Atter this, they are changed (adapted).

This is what the "adaptive” in the name ABAM
stands for.

How and why are the weights changed?

Let us turn to the second question first. The weights in the ABAM
network are changed in order to give an exact and predetermined
response that is not the same as the input pattern. This means that the
ABAM network can learn to associate unrelated pairs of patterns,
Thus, the ABAM network is able 1o associate patterns with their
written or spoken descriptions, and, as in the case of the Hopfield
nctwork, the trained ABAM network will still be able to reproduce the
associated pattern even from corrupted input. Such pairs of patterns,
the inputs and the targets, are ¢ssential for supervised leurning.

5.3 ABAM Network

The ABAM network is a one-layer network. The number of
neurons in the active layer is often considerably smaller than the
number of inputs (Figure 5-3).

The first step. of course, is to generate the input vectors X, with
their corresponding outputs ¥ (targets). Let there be p pairs, each
consisting of one m-dimensional input and on¢ r-dimensional target
vector. lInitially, we will consider these vectors to be bipolar
{components, equal to +1). The pairs (X, ¥ ) can be written:

o= (g X ok X))
and e
Y‘5 = (¥, V2 Vi o Vi)

The initial weights, Wm), are calculated from the sct ol p pairs ol
24 rp

input and target vectors, { X, ¥}:

i

. .

Wi = z-"nv".\j (5.2)
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Figure 5-5: The architecture of the
ABAM network: it is very similar to
the Hopfield network, but usuatly has
many [ewer ncurons on the output side
than on the input.



The symbol {} denotes a group of objects, in our case a group of
pairs consisting of input and target vectors X and Y. Be sure to
distinguish this notation from that for a single pair of vectors (X, ¥,).

5.4 Learning Procedure

The basis of learning in the ABAM network is the fact that an
{m x n) matrix can be multiplied from two directions: in the standard
way by an m-dimensional vector, or in transposed form (reflected
across the main diagonal) by an n-dimensiconal vector. In the language
of neural networks, the side of the weight matrix W having the same
number of rows {or columns) as the input vector is called the input
side, and the other, the outpur side.

This leads to the very nice property that an “input” object X can
produce the “output” YU, or a “target” ¥ if inputted on the output
side can produce an “output” vector X1 on the, formally speaking,
input side of the weight matrix. (The quote around “input”, etc.,
reflect the fact that input and output are not fixed with respect to the
matrix any more. See Figure 5-6)

Thus, any pair of objects (X, Y) of different dimensions may be
paired up with another pair having the same dimensions (xV, ¥y,
Because both muitiplications can be regarded as sending signals (X or
Y) through the neural network in opposite directions, it is called
bidirectional.

Combining the procedure that generates the weight matrix W from
a set of pairs of objects {X, Y} (Equation (5.2)) with the bidirectional
procedure for generating pairs of vectors, we obtain an ilerative
learning scheme:

The iterative procedure (5.4) stops when the weight matrix W"
produces a set of pairs [ X\, Y} identical to the initial set { X, ¥}.

It must be emphasized that there is no guarantee that such a
weight matrix can be found for an arbitrary set of pairs. As with the
Hopfield network, extreme care should be used when selecting the
appropriate representations of input patterns and targets.

We will now describe the iterative procedure in detail. Each
iteration step t is composed of three parts:

— the generation of 4 new weight matrix W from the set of pairs

(X, ¥
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formal matrix multiplication
as written in vector algebra
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Figurc 5-6:

a) Multiplication of a weight matrix by
the input vector X in order to obtain
the output vector ¥.

(b) Multiplication of the transposed
matrix WT by the target vector Y in
order to obtain a vector X on the
“input” side of the matrix W.
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If we want to cut down the dimensions of the neural network, the
dimensions of the targets should be smaller than those of the input
vectors. For this example we have decided (o use five-element vectors
as targets. Figure 5-8 shows the inputs (X, X5, X3, X, and X5) and
their corresponding target patterns (Y|, ¥, ¥4, ¥4 and ¥5).

As usual, each input image is coded as a 25-element veclor,
beginning at the upper left and proceeding row by row Lo the lower
right. Each target is coded as 4 five-element vector of 1's and (’s; each
position in this vector identifies a different target. (Before entering the
ABAM network, these are converted into bipolar coding,)

Equation (5.2) produces the (25 x 5)-clement matrix shown in
Table 5-1. Fortunately, in this case the learning procedure (Equation
(5.4)) required no iteration. which means that the matrix W was nol
modified.

In applying the network, the output layer can be regarded as a
switch with five positions, depending on which pattern was input.

Okay, but so what? Many other conventional methods can do this
Just as well. What is interesting about this mechanism is that it
recognizes the input patierns (i.c., answers with the correct output
signals) even il corrupted patterns are input.

Changing one pixel out of 25 represents a 4% error. Now, this error
can occur at 25 different places; if we check the responscs (o all
possible 1-pixel errors on each of the 5 images, we get the very
interesting resulés given in Table 5-2.

original input patterns
X X, X X

[

2 -
g

produced outputs
10010

overlapped patierns
F :

.

X4 X4 Xas

10010 G1601

Figure 5-9: The cleven corrupted
patteras (from among alt 125 one-pixel
errors) thal caused the firing of two

pattern targel actual output
| 10000 10000 (24 times) 1008} (once)
2 01000 01000 (25 times)
3 OO TN 00100 (25 times)
4 00010 00010 (20 times) tHH010 (5 times)
5 00001 00001 (20 limes) 01001 (5 times}
Table 5-2:  Responses to all possible 1-pixel errors in the irnages shown n

Figure 5-8.

Although in all 125 cases the correct bit is sct in the output, an
additional bit is sel in eleven of them. So. we are led to ask if there is
anything special aboutl the eleven corrupted patterns that caused this
additional output neuron to fire. These are shown in Figure 5-9: one
has an error in X ;. live in X, and five in Xs.

(In the following, we will use the symbol X -

neurons instead ol one.



X, OR X, = X,

i (5.6)

to designate the overlap, or logical OR, of the patterns X; and X;.)

Look at the corrupted X, which activates the first and fourth bits
in the target; it is very similar to X 4, which is the overlap of the two
patterns X and X, shown at the bottom of Figure 5-9; the difference
between X 4 and the corrupted X is only two pixels.

Interestingly, all five corrupted X,'s activate these same two bits in
the output; the difference between X 4 and the five corrupted X,’s is
either two or four pixels. And finally the five corrupted X5’s shown in
the rightmost column of Figure 5-9 all activate the second and fifth
bits in the output. The corresponding pattern overlap is shown at the
bottom right of Figure 5-9; note its similarity to the five corrupted
inputs. The reader can verify the outputs of the images corrupted by
the 1-pixel errors by the use of program ABAM as described in
Paragraph 5.6.

So, even when the ABAM network makes errors, they are
reasonable ones. Encouraged by this, we can set up an additional
experiment to show the power of the method. Ten different
overlapping pairs (Figure 5-10} can be made from five different input
patterns; let us construct the bipolar 25-element representations of
these overlapped input patterns, input them to the matrix W and watch
the 5-e¢lement output.

The combination X , is shown explicitly below:

x’]"”;“”’ = (1.1.0,0,1, x’l’f’;‘”’“r = (L L-1L-1 1,
1,1,0,1,0, 1, 1,-1, 1,-1,
0.0.1,0.0, 1,1, 1,-1,-1,
0,1,0,1, 1, -1, §,-1, 1, 1,
1,0,0,1, 1) L-1L-1, 1, 1)

(5.7

In all ten cases the resulting output is exactly what we expected:
each input pattern triggered the two neurons associated with its
component images. In only one of the ten cases was a third, unrelated
neuron fired; this is the combination of the third and fifth object, i.e.,
X, 5. The additional bit which was triggered is bit No. 2. A three-bit
output corresponds to the overlap (logical OR} of three of the basic
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Figurc 5-10: The ten possible
combinations of two images from five
different patterns. The corresponding
output vector is shown below each
overlapped pattern.
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inputs; Figure 5-11 compares these with the actual input pattern that
triggers them; the difference is only one pixel.

This example, which can be exercised by the use of program
ABAM as described in Paragraph 5.6, shows four capabilities of the
ABAM neural network:

— it associates the five input patterns with the five largets, even for
corrupted inputs;

— it produces the original input vectors from the corresponding
outputs;

— itrecognizes the components of two ORed patterns; and

~ it produces the negative (complemented) target when negative
patterns are input (Figure 5-12).

By analogy with the biological bruin, these can be interpreted as:
— the ability to recognize learned images by activating the appropriate
neuron even if the trigger image is distorted or incomplete;

—~ the ability to associatc a complex pattern with a single neuron
{which is fired when that pattern is recognized);

— the ability to identify the parts of 4 complex pattern, and

— understanding the concept of a “negative” image.

5.6 Significance of the Example

Besides these demonstrated features of the simple ABAM
network, there is an even more significant lesson to be drawn from
this experiment. We have seen, on a small scale, whal we hope to
obtain from neural networks on a large scale. The effect we are talking
about can be linked to the warning (given in the last paragraph of
Section 5.1) that “hidden” relationships may exist among seemingly
unrelated patterns.

input pattern X5 ¢

output 01101

overlapping pattern

a

Xyss

Figure 5-11: The comparison of the
two-image input patiern X; s that fires
three bits, 011G1, with the corres-
ponding three-image pattern.

i B
-2
N

Figure 5-12: The set of five patterns
(teft} and their negatives (right).
Negative (complemented) inputs
produce the complements of the
corraspending outpuis.



We have taught the system to associate several pairs
of obviously unrelated patterns, and nothing more.
But the system has learned two general concepts that
we never taught it: analyzing a sum into its parts, and
complementing a result to match a complemented
input.

The result of this experiment and the generalizations we have
drawn from it, result from the (very careful) choice of patterns; there
is little chance that an arbitrary selection of patterns will produce an
ABAM net intelligent enough to resolve two ORed patterns.
However, it is worth mentioning that ABAM learning is at least
sometimes capable of generalization.

In spite of all such precautions, we must admit that this small
neural network (an “artificial brain”, if you like) consisting of only
five neurons with 25 weights each (125 synapses altogether) has done
a remarkably good job.

There are, of course, many questions about the performance of
such nets when applied to larger problems (more patterns or more
pairs of patterns), and we must always keep in mind that a net’s
response is always a result of the entire assembly of patterns. A neural
network is in this sense, holographic.

Intuition tells us that similar patterns should give similar
responses. In most cases this will be true. However, as mentioned
before, the way we think about “similarity” between the samples does
not necessarily correspond to the similarity found by the network,
leading to unexpected results.

Let us go back to Figure 5-9. We might expect that if a given error
in pattern X, causes the firing of the two neurons 1 and 4, an
analogous error in X, should also cause the firing of two neurons.
Figure 5-13 shows the error in X, analogous to the error in Xj.
However, this corrupted signal did not produce the two signal output
of firing neurons 2 and 5, as might have been expected. Why didn’t
this happen?

The reason for this is that we’ve confused “similarity” (a vacuous,
undefined term) with “symmetry”.

The patterns X| and X,, are related by symmetry (specifically, an
inversion center, denoted C;; that is, taking every puint in X; and

Significance of the Example

17
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moving it to the opposite side of the center point: produces X-); these
are different figurcs. and can not be superimposed. X, and X5 are
related in the same way. The OR of X; and X,. when subjected to this
operation, produces a figure which is congruent to itself. Thus, we say
that the ORed figure contains an inversion center, while the individual
figures, X, and X5, do not.

However, the symmetry relations between input and output
patterns are products of the entire ABAM matrix, which, in turmn,
results from all input patterns. In our example, since X| and X,
together possess €, they generate a C; in the network (i.e., they make
its responses symmetrical); X, and X5 do the same. But X5 is unique
in that it neither possesses the C; symmetry, nor can combine with
another member of the set to produce it; hence, X3 prevents the net
from having this symmetry.

This is also why the overlapping patterns X 3 and X, 5 bear no
similarity at all in spite of the fact that they were produced by
overlapping the object X; with two very “similar™ {(actually
“symmetrical”) objects X} and X». On the other hand. the patterns X | 4
and X; 5 appear similar to the eye because they are related by an
inversion center (or planc of symmetry).

Thus, the source of similar effects with corrupted patierns depends
on the actual symmetry of the original patterns and on the symmetry
of the composites (Figure 5-14}).

[n summary, our expectation that X, would behave like X, was
based on their symmetrical relationship; we did not take into account
the lack of symmetry (due to X3's contribution to the weights) of the
network itself,

Never trust your impressions about the relation between the
objects and their apparent symmetry; find someone who understands
symmetry (spectroscopist or a crystallographer is your best bet).

.

with error  with error

Figure 5-13: The images X, and X,
cach with a one-pixel error,

i b A

X3 Xoa X4 X5

Figure 5-14: The overlapping patterns
Xy 5 and X, 5 are not symmetric; X 4
and X5 5 arc symmetrically related.
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5.7 Essentials

— hetero-association is the main goal of the ABAM network

— the number of output data is usually smaller than the number
of input data

— learning, i.e. evaluation of weights, is supervised and
achieved by bidirectionat iteration, in which the input signals
flow towards the output side, forming output data, while the
output data are returned in the opposite direction towards the
input side forming new inputs

— corrupted input patterns can retrieve the corrected associated
patterns from the network

— in certain circumstances the ABAM network can generalize
what it has learned

* weights
(¢} :
w. = 2 xst.y”. 5.2)

g

= iterative learning

start:
(X, Y} — WO
xw® -yt
ywOT—- x
(XY D

XWD -
yWOT—= x@

X“;(t) - Y(r+1)
YW(r)T . X-(t+1)

so that (X9 Y91 = (X, V) (5.4)
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