6 Kohonen Network

learning objectives
— concept of “topology”

— “mapping” a dataset from a space of high
dimension to a space of lower dimension

— how a neural network (the Kohonen net) can do
mapping
— how “unsupervised” learning is used when you

don’t have a set of “correct” answers

— how topology is maintained in mapping, as in
representing the relationships between continents
on a globe, on a planar map

6.1 General

When we think of “data”, we ordinarily think of values,
magnitudes, signs, etc.; this is an algebraic view of a dataset. In
addition, there is an information science view, which focuses on the
relationships among data items. These relationships may exist entirely
within the given dataset, or may involve data in other datasets as well.

Complex information is always incomplete, to some extent. In
fact, we may choose to reduce the dataset, as when digital images are
compressed to reduce storage requirements. In dealing with missing
data, we must not forget their possible relationships. When we focus
on the relationships among data, rather than their algebraic attributes,
we say that we are dealing with the fopology of the information.
Figure 6-1 contrasts the concept of topology with the concept of
numerical values.

Efficiency is obviously crucial in bandling large amounts of
information; for a given level of hardware competence, efficiency is
generally achieved by compressing the data. Compression may be
thought of as a process of mapping a multidimensional input into an
output space of significantly smaller dimension (Figure 6-2).
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Figure 6-1: A completely new level of
information can be revealed by taking
into account the topology between the
numerals (b) instead of considering
their numerical values {a) only.
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Obviously, we want a maximum of compression and a minimum
of information loss; this is one ol the basic problems in information
and computer science in gencral, and in artificial intclligence and
neural nctwork research in particular. There are, of coursc, many
questions involved in this problem. For example: how can we make
the trade-off between reduction and  preservation when the
information has not yet been processed? Can we map information
onto a two-dimensional array of neurons? How can such a mapping be
performed or learned? How can the retained knowledge be retrieved
from the mapped information?

Teuvo Kohonen has introduced the very interesting concept of self-
organized topological feature maps, which are maps that preserve the
topology of a multdimensional representation within the new one- or
two-dimensional array of neurons (Reference 6-1). We will discuss
Kohonen's approach to neural networks, which attempts to preserve
the topology of the inpul information while mapping it into the neural
array.

The concept of topology (or better still, the concept of
“preservation of topology™) has become the essential feature ol the
Kohonen approach in neural network research. As he has pointed out
in his book {Reference 6-2) the mapping of multidimensional
information into a two-dimensional plane ol neurons “seems to be a
fundamental operation in the formation of abstractions too!” Hc
argued that topological retations should be preserved in this mapping.

6.2 Architecture

The Kohenen network is probably the closest of alt artificial neural
network archiiectures and learning schemes 10 the biological neuron
network. As a rule, the Kohonen type of network is based on a single
layer of neurons urranged in a one-dimensional array or in a two-
dimensional plane having a well defined topology (Figure 6-3 and
Figure 6-4).

A defined topology means that each ncuron has a defined number
of neurons as nearest neighbors, second-nearest neighbors, cte. To be
in accordance with the previous cases the ncurons for the Kohonen
layer are visualised by circles (Figure 6-3). However, from the
didactic as well as from the mathematical point of view the
visualisation of neurons in the Kohonen network is more natural in the
form of columns (Figure 6-4, above). The advantage ol a scheme with

Figure 6-2: The topology of the five
Ringers {t. i, m, r, s) and the palm (p}
{above) Is preserved or “mapped” onto
a square planc ol (13 x 13) neurons
(below) using the Kohonen algorithin,
which will be explained later.

Figure 6-3: Two-dimensional layout
of the Kohonen neural network.



column-like neurons is its clear presentation of the weights in
individual neurons and how the weights handling the same input
variable are connected together in the network. It can easily be seen
that weights affected by each variable are lying on a single and well-
defined level of weights. Each set of weights affected either by the
first, the second, or by the third input variable are forming a separate
level of weights. The levels of weights are superimposed onto each
other in a one-to-one-correspondence, hence the weights of each
neuron are obtained by looking at the weights in all levels that are
exactly aligned in a vertical column. There are as many weight levels
in each Kohonen network as there are input variables describing the
objects for which the network is designed. Because the input vector
consists of three variables, there are also three levels of weights in the
case shown on Figure 6-4.

The neighborhood of a neuron is usually arranged either in squares
or in hexagons, which means that each neuron has either four or six
nearest neighbors. The concept of “nearest neighbors™ needs some
elaboration, especially for those who have studied crystals or
coordination chemistry. For example, the square neighborhood is
often regarded as having eight and not four nearest neighbors (Figure
6-5). Certainly, the corner points in the rectangular grid are further
away from the central point compared to the actual first neighbors; but
we are interested in the topology, that is, the connections and not the
actual distances. In the Kohonen conception of neural networks, the
signal similarity is related to the spatial (topological) relations among
the neurons in the network.

The Kohonen concept tries to map the input so that similar signals
excite neurons that are very close together (in terms of spatial
distance); this similarity-to-distance relationship should be
generalized to include the entire range of similarity relations between
different signals as well. Kohonen learning represents an attemnpt to fit
the signal space onto the neural network by a kind of “smoothing™ or
“reshaping” procedure.

The aim of Kohonen learning is to map similar
signals to similar neuron positions.

A practical point: we need to ensure that each neuron in the net has
the same number of first-, second-, etc. neighbors (Figure 6-6); but the
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weight level No. 1 /
weight leve] No. 2

weight level No. 3

Figure 6-4: Neurons can as well be
drawn as little boxes (above). The
three inputs are coming from the side
to all neurons at the same time.
Schematically all neurons (small
boxes) can be “packed” into a larger
box or “brick” in which neurons are
represented as columns (below),

a) [ ] o4 —0—0 *

Figure 6-3: Square (a) and hexagonal
(b) layout of neighbors.
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net is a finite object, with edges. What about the neurons at the edges?
Well, this wouldn’t be a problem if the net were, say, a torus.

Figure 6-7 shows how a plane can be wrapped into a toroid: first,
the upper edge (or the row of neurons located there) wraps around and
links to the lower edge, and then the left edge joins the right one, Of
course, we don’t actually manipulate the net; we simply convert the
indices of edge neurons so that they appear to wrap around (Figure 6-
8).!

The coordinates (indices) of the neurcns located in the k-th
neighboring ring (Figure 6-6) around a particular neuron will be
labeled (x,,;.y,,2);. The following example shows how, for an
(11 x 20)-neuron plane, we would calculate the coordinate pairs of all
neurons in the forth neighboring ring around neuron (3, 2). (“¢” is
used to designate the central neuron:

(In applications, the following algorithm for finding the neighbors
at a certain topological distance from the center may be executed
more efficiently because the entire neighborhood can be found by
going through these loops.)

L. The modulus (written MOD(A, M) in some programming languages, or “u
mod pr” in ordinary mathematical notation) is a function of (wo parameters
and m. It represents the remainder afier division of the firsl parameter by the
second. For example, 8 mod 3 (read “eight modulo three™) = 2, Usually. the
length or width of the ncural network layout appears as the parameter m.
Using the modulo function, any index no matter how large can he converted
into what the position would be il the corresponding axis wrapped around to
form a loop.

i 1\ ‘central neuron

L\ " first neighborhood
\ "~ second neighborhood
- third neighborhood

Figure 6-6: The square neighborhood
15 usually regarded as having 8, 16, 24,
ctc. neighbors in concentric
neighborhoods.



p=1l
g=20
x=3
y= 2
r= 4

form/ =—rtorbyl
form2=-rtorbyl
xml=modx+mi+p-1,p)+1
ym2=mod(v+m2+g—-1,g)+1
if (m! =r or m2 = r) then
the element (xm/, ym2) is in the r-th ring
else
the element is in the neighborhood ring
determined by max(xmli, ym2)*
end if
next m2
next mi

*max{a, b) is the larger of the values g and b

In a Kohonen network, as always, we can speak of two layers: the
input and the output layers. Only one layer is active. This active layer
is usually arranged as a two-dimensional grid or “brick™ of neurons
(PFigure 6-3 and Figure 6-4), but can also be arranged as a linear array
(Figure 6-9). The toroidal wrapping in one-dimension is even simpler
compared to the two-dimensional wrapping of neurons (Figure 6-7):
the linear array becomes a circle.

Both mentioned layouts of neurons in a Kohonen layer — the one-
dimensional (array) and the two-dimensional (plane) — are not the
only possible solutions in this type of neural network application.
Clearly, the layouts can be generalised to three- and higher-
dimensional structures of neurons provided that the results from such
complex networks can explain or solve the problem investigated in a
more effective or plausible way.

All neurons in the active layer obtain the same multidimensional
input. The most characteristic feature of the active layer in a Kohonen
network is that it implements only a local feedback; that 13, the output
of each neuron is not connected to al! other neurons in the plane (as in
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Figure 6-7: Wrapping a two-
dimensional plane into a toroid.
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86 Kohonen Network

the case of Hopfield network), but only to a small number that are
topologically close to it. Such local feedback of possible corrections
has the result that topologically close neurons behave similarly when
similar signals are input.

6.3 Competitive Learning

In competitive learning, only one ncuron from those in the active
layer is selected after input occurs; no matter how close the other
neurons are Lo this best one. they are left out of that cvele. (This is also
referred to as the “winner takes it all” method.)

The network selects the winner “¢” (for “central”™) according to
one of two criteri; ¢ is the neuron having either:

The largest output in the ¢ntire network:

M
out ¢« max (out,) = max Z WX
¢ i JETsT
(6.1)

i=1

or the weight vect(-)r Wj(wj-], Wids een Wiy} MOST
similar to the input signal X, (x|, X2, ... x,,,):

» 1
. 2
ouf ¢ min Z (),“. — wﬂ.) J’

i=1 : (6.2)

j=1L2 ., n

(The index j refers to a particular neuron; n is the number of

neurons;, m is the number of weights per neuron: s identifies a
particular input.} See also Section 7.4,

Index ; that specifies the actual neuron in the Kohonen layer
depends on the layout of the nctwork. There is no problem if the
neurons are arranged in a one-dimensional array consisting of n
neurons. In such a case, the index j simply runs from 1 to », while the
closest neighbors to the sclected neuron ¢, arc the neurons with
indices j = ¢ — [ and j = ¢ + 1, the neurons of the second neighborhood
have indices j=c— 2 and j = ¢ + 2, and so on. In the case of a two-
dimensional layout of the Kohonen network, index ; has to be
understood as describing the location of the particular neuron in a

Figure 6-8: Elements of the fourth
neighboring ring lor the third neuron
in the sccond row; ring scgments
found by “wrapping” (modulus
function) are unhatched.

- T O -

b)

Figure 6-4: Kohonen network
represented as a linear array of neurons
(a). The tocal feedback connections
are clearly seen: only the two neurons
thal are closest to each other reccive
the feedback when it occurs. The
toroidal condition makes the array a
circle (h).



two-dimensional plane. Usually, a two-dimensional location of
neurons in the network is described by two indices: one describing the
abscissa and the other one the ordinate axis of the position of the
neuron. This means that the neuron j in a two-dimensional Kohonen
layout having r neurons (ordered into an nl x n/ = n network with
nl rows and nf columns) can be found in the

ml = [ (j-1)/(n2)]+1 column (x coordinate) runs from | to n2

and in the

m2 = j— (mln2) row (y coordinate) runs from 1 to n/

The mathematical expression[ a | means the largest integer not
exceeding the value of a.

From now on, in all equations where index j occurs and whenever
the two-dimensional Kohonen network architecture is applied (which
is true in all examples) the index j will actually define the position of
the j-th neuron in the ml-th column and m2-th row within the
Kohonen network having # = nf x nl neurons,

It must be added that rectangular neuron layouts with n/ # n2 are
seldom used. In most cases the Kohonen layers are quadratic, i.e.,
nl = n2. The quadratic layout minimizes the distortion of the 2D
projection space that always occurs when projection from the multi-
dimensional space of input vectors is applied.

After finding the neuron ¢, that best satisfies the selected criterion,
its weights w,; are corrected to make its response larger and/or closer
to the desired one. This means that if a certain signal x; coming to the
weight w,; has produced too large an output, the weight should be
diminished, and vice versa.

The weights w;; of neighboring neurons must be corrected as well.
These corrections are usually scaled down, depending on the distance
from ¢; for this reason, the scaling function is called a topology
dependent function:

a() =ald,~d) (6.3)

where d,. — d; is the fopological distance between the central neuron ¢
and the current neuron j, while the extent of the stimulation depends
on the function a(-). Figure 6-10 shows some of the forms that this
function can take; besides decreasing with increasing d,., it decreases
with each iteration cycle of the Kohonen learning process (see box on
the opposite page explaining the algorithm). In Kohonen learning one
can distinguish two different cases. The first one occurs when the
number of objects is so large that each object X enters the Kohonen

Competitive Learning
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88 Kohonen Network

network only once and probably many more do not enter the learning
procedure at all. while in the second case the number of objects for
training the network is small, hence, it is necessary to input the entire
set of objects again and again into the network, before it is properly
trained.

In rcal world applications the second casc occurs much more often.
In order to describe the number of training cycles necessary for
handling all objects by the network exactly once, the term called "one
epoch” of training has been delined. Therefore. the duration of
training is usually expressed in terms of epochs, meaning the number
of times all objecls have been processed by the network.

In view of this explunation and assuming the network is improving
during the learning procedure Equation (6.3) 1s muluplicd by another
monotonically decreasing function n():

f=miald -d) (6.4)

where ¢t is the number of objects entered into the tralning process (iff
the number of objects is very large)} or the number of epochs. The
parameter f can easily be associated with (tme, since the time used (or
training is proportional to both - to the number of objects entering the
network or to the number of epochs. N{¢#) can be expressed as:

i —1
) - max
n (I) - (“nmxiunﬂn}[ — + amin (65)
X

where 1, is either the total number of objects that will be input into
the network until learning is completed or the maximum number of
epochs predetined at the beginning of training. The two constants a,,,
and ¢, define the upper and lower limit between which the
correction Nn(f) is decreasing from the beginning to the end of
training.

Duc 1o its destimulation of the border of the sclected neigh-
borhood, the “Mexican hat” function (Figure 6-10c¢)) enhances the
“contrast” on the borders of the developing regions in the output
plane. This makes it very uscful, but it too much contrast s applied
“emply” spaces (“no man’s land”) can develop in the map on the
borders between the categories.

The size of a neighborhood for the scaling function need not be
permancnt; it may well be changed during the learning period.
Usually, it shrinks, which means that fewer neurons will have their

a) a
amcu‘
d, d
b ba
amu\‘
|
ol
d. d
c) g
- aH’LCi‘X
] | .
T J Ty

Figure 6-10: Typical functions for
sculing corrections on neighbor-
weights: constant (a), triangular (b).
and Mexican hat {¢).
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In summary, the algorithm for one cycle of Kohonen
learning is as follows:

— an m-dimensional object X enters the network;

— the responses of all neurons (each having m
wetghts) are calculated;

— the position ¢ is found for the neuron whose output

is Jargest or most similar to the input;

— the weights of neuron ¢ are corrected to improve
its response for the same input X on the next cycle;

— the weights of all neurons in the (arbitrarily
defined) neighborhood of the c-th neuron are
corrected by an amount that decreases with
increasing topological distance from c;

— the next m-variate object X, is input and the
process repeated.

weights comrected as the process goes on. Additionally, the maximum
value of the scaling constant can be lowered.

The corrections of the weights wy; of the j-th neuron lying within
the region defined by the function f depend on the criterion used to
select the central neuron ¢. We will describe in detail how to correct
weights for one of these (Equation (6.2)):

w2 W (acd,-d) (x[.— wj([.”ld)) (6.6)

(Here, x; is a component of the input X; the central neuron is
designated ¢, and the one being corrected is j; a particular weight of
neuron j (and a particular input) is designated by ¢; 1 is (related to)
which iteration cycle this is.)

Whether the difference x; — wf—?ld) is positive or negative, i.e.
whether x; is greater or smaller than the weight wj(;?ld), w&?ew) will be
closer to x; than wjfm was.

The correction function for the maximum signal criterion
(Equation (6.1}} is evaluated similarly.

(new) (vld)
w

(old)
i =W, +n(r)a(dc—dj)(l—xiwﬁ ) (6.7)
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After the corrections have been made using Equation (6.6) or (6.7),
the weights should be normalized to a constant value, usually I:

wo= (6.8)

Because of the specific architecture and learning algorithm of
Kohonen networks, the oulputs do not play as significant a
quantitative role as in other networks. [ the only significance of the
output is to locate {(topologically) the neuron with the largest output,
then the actual magnitude of the output does not matter very much.
Generally, our only concern is to keep the outputs within given limits
in order to preserve the resemblance to actual biological neurons.

(In the case of criterion (6.2) and the associated correction (6.6),
normalization does not improve the quality of the resulis.)

If the quantitative size of the output hus little or no influence on the
performance ol the netl. then normalizing the weights only disturbs the
corrections. Besides, since the weights are corrected directly by
comparison with the input signals (which presumably arc normalized,
or al least scaled (o some reasonabie values), the weights will be
corrected to match them, and so will end up adjusted to normalized
values anyway.

In any case, some kind of precaution must be taken to prevent the
network output from “exploding”. In our experience, providing an
initial random distribution of weights (within the interval —0.1 10 +0.1
or —l/m to +1/m, where m is the number of weights) and scaling the
mput signals (and hence, the outputs}) between —1 and +!1 offers
sufficient guarantee.

It must be clear from all of this that scaling or normalizing inputs
must be performed very carefully.

In most cases. it should be the nature of the problem
rather than the method of solving it that dictatcs the
criteria  for normalizing (scaling and/or other
transformations) of the input variables.

Though at first scaling the input may seem to be harmless at worst,
this is nol necessarily so. Improper scaling, especially across different
variables, can change their internal relations and sirongly influence
the final results. Before applying normalization of any kind, check
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thoroughly that the transformed variables will stll adequately
describe your problem.

Always try the simplest transformations first, for example, simply
dividing all the variables by a value approximately equal to the total
system output; something like this may do the job quite as well as
more complex procedures.

Only one thing is more important than a complete
understanding of the method you are using for
handling data — a thorough knowledge and under-
standing of your data!

6.4 Mapping from Three to Two
Dimensions

To provide you with a feeling for mapping from a higher to a lower
dimension (what it locks like and how it can be done), we will work
out a very simple example in detail: topological mapping will be used
to transfer the entire surface of a three-dimensional sphere onto a
square, planar (15 x 15) matrix. The problem is schematically shown
in Figure 6-11.

A three-dimensional sphere of radius 1 is drawn around the
coordinate system and divided into 8 spherical triangles (1 to 4 in the
upper half and 5 to 8 in the lower half of the globe). 2000 points are
generated randomly on the sphere’s surface (approximately 250 on
each triangular area) and labeled according to the eight possible
combinations of coordinate signs (Table 6-1).

The Kohonen network used for this application is composed of
three neurons in the input layer (one for each coordinate} and 225
neurons in the active output layer, arranged in a {15 x 15) matrix. Each
of the three input neurons is connected to all 225 neurons on the
Kohonen layer, which means that altogether 675 weights have to be
trained for proper mapping. No bias weights are used.

Because the Kohonen network is square, the selection of square
neighborhood rings (Figures 6-4 and 6-5) is the most natural choice.
At the beginning, a neighborhood comprises seven rings of neighbors
around the selected (ceniral) neuron, which ensures that the
neighborhoods are adjacent (no “no man’s land")]. The number of

Figure 6-11: Topological mapping
from a three- into a two-dimensional
space.
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coordinales
label

x ¥ z

+ + + L
- + + 2
- - + 3
+ — + 4
+ + - 5
- + - 6
- - - 7
+ - - 8

Table 6-1:  Labeling eight triangular areas on the sphere.

corrections declines linearly from the inner to the outer rings of the
neighborhood. The maximum correction at the central neuron, oV
(Equation (6.4)) is 0.3, while in the 7t layer it is (1.5% of the central
value (= 0.005 x 0.3 = 0.0015). No decrease of the central value a'® is
made during the training; in other words, (¢} = consrani.

During training, the outer border of the neighborhood is reduced
by one ring of neighbors every time a fifth (400) of the total points has
entered the net. As before, the more distant ncighbors are corrected
proportionally less.

The selection of the central neuron is made by the criterion of
Equation (6.2) (the neuron whose weights are most similar to the
coordinates of the input points); hence, Equation {6.6) is used to
correct the werghts,

Remember, that the initial weights are random values betwcen
—0.1 and +0.1.

The result after entering 2000 points is shown in Figure 6-12. All
the triangle labels on the sphere cluster into irregular areas of the net
(“4” is shaded). These can be thought of as groups of neurons that
“specialize” in different labels; in other words, the weights have
evolved and differentiated so that, for example, all points from area
number “3” produce their best matches in the area numbered “3” in
the planar pattern in Figure 6-12.

You can get a feeling for how the weights change in the Kohonen
network by referring to Figure 6-13. Let’s say that a certain neuron
has weights of ({).5, ~0.7, 0.9); after the signal from one point (input:

1. Each ring is two neurons wider than the previous one. Hence, the width of n
neighborhoods is 2u+1, in this case 2 x 7+ 1 = 15, the (topologicaly width of
the network.

6 7606
60 7766
5555066007777 768%
555566607777 7608
555602667777 888
‘5555622777 7T7888
8855306222333 78888
855122333337 888
5512222333 8 8
5111222333 g 8
111122333
11112233
I 1112233
L1 2233 :
L 1113;
: I

Figure 6-12: Mapping 4 sphere into
two dimensions {see text).
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(0.8, —0.5, 0.33)) is received, the weight corrections are calculated
assuming that this is a central neuron and that @ (given by (6.1) with
d.—d;=0) equals 0.2. The changes of the weights are calculated from
the differences (input minus old weights: (0.3, 0.2, —0.57)) and the
scaling value a9 to give: 0.06, 0.04, and —0.11, respectively; hence,
the new weights are (0.56, —0.66, 0.79). It is obvious that all three
weights are closer to the input values, and that the changes are
proportional to the error. The largest correction is calculated for the
third weight, where the error is the largest of the three.

The Kohonen map shown in Figure 6-14 indicates that the
topology of the surface of the sphere is preserved in the planar map.
Figure 6-12 clearly shows that arca 4 is adjacent to 1, 3 and 8, and
shares corners with 5, 7, 2; it has no contact with 6, which is on the
opposite “side” of the sphere. These features also appear in Figure 6-
14 (if you remember to wrap it so that opposite edges come together).

The circles in Figure 6-14 correspond to the points where the axes
penetrate the globe (Figure 6-13); the circle at the bottom of Figure 6-
14 is the mapping of the north pole.

We can present our results more clearly by actually extending the
(15 x 15) network with redundant neurons (instead of “wrapping” the
array 1, 2, 3, ..., 15, we write it out as i, 2, 3, ..., 15,1, 2, 3, ., 15,
etc.). That is, we will use the original (15 x 15) neural network (Figure
6-14) as a tile to cover an area nine times larger than before (Figure 6-
15). (Close examination of Figure 6-15 shows that the pattern repeats
every 15 units.)

The topological relations (links) among the numbered areas can be
expressed as a connection table or as a connectivity matrix. Both
forms are shown below in Table 6-2. (The row or column for area 4
shows that it is adjacent to 1, 3 and 8.)

By comparing the topologies found on the sphere and on the
(15 x 15) neural network, we can see that they are identical, whichever
presentation form we use.

In addition to the longer borders between the numbered areas,
shorter borders (as short as one or two neurons) can be observed as
well. A closer look at the regions where such short borders are found
shows that at these locations four arcas converge in all cases. Such
areas correspond to the places where the coordinate axes enter or
leave the sphere (white circles, Figures 6-11 and 6-14). As expected,
there are six such areas in the obtained map.

input 0.8

old
weights .

Ry
X;— Wj,‘ 03 0.2 0.57
a(0) = 022006 [0.04 /0.1

new
weights 0.56

Figure 6-13: Correction of weights in
the Kohonen network (cf. Equation
(6.6)).

Figure 6-14: Topology of the
Kohonen map of the sphere, indicating
the border lines and common points of
the spherical triangles.
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Figure 6-15: The plane can be tiled by
repettion of patterns obtained on the
toroid. In a periodic pattern the most
important points can be seen more
casily.

area neighboring area area | | 2 3 4 5 6 7 8
no.
1 2 4 5 | 0 1 0 1 f ] 0 0
2 0t 3 6 2 I 0 | 0 0 | 0 0
3 2 4 7 3 0 1 0 1 0 ] | 0
4 | L3 8|41 0o 1 0o 0o o 0 1
5 1 6 8 5 i 0 0 0 0 1 0 |
6 2 3 7 6 0 I 0 0 1 0 | 0
7 3 6 8 7 0 } 1 0 0 1 0 1
8 1 4 5 7 8 0 0 0 I | 0 ] 0
Table 6-2:  The topelogical relations among the numbered areas shown in

Figure 6-12 can be recorded as a connection table (left) or as a
connectivity matrix (right),

Another notable feature of Figure 6-12 is the “empty region”,
which scparates the vertex where areas 1, 2, 3 and 4 come together
{the “north pole” of Figure 6-12) from the areas numbered 5, 6, 7 and



8, which are in the “southern hemisphere”. This same region can be
thought of as separating the south pole from the triangles in the
northern hemisphere; that is, there is only one such “empty region”, a
fact which is evident from the extended (tiled) representation of
Figure 6-15 (see Reference 6-9).

The actual results of the Kohonen topology preserving mapping
procedure always depend on the initial choice of weights (chosen
randomly in the region from —0.1 to 0.1 for this experiment), the
selected neighborhood, the correction function al(d, — dj), and the
initial value of correction a'”). However, the topology of the obtained
map (as expressed above) will generally be preserved, ie., the
procedure is very robust or stable regarding small changes in the
procedure.

6.5 Another Example

The mapping of two- and three-dimensional objects into a two-
dimensional plane of neurons is very instructive, because you can
visualize the results. However, in physics, chemistry, technology,
sociology, economics, and other disciplines, we have data sets
composed of more than three variables.

For example, wine producers analyze each wine for at least ten
components, and they have thousands of sets of data. Engineers
monitor a given technological process for even larger numbers of
parameters (temperature, pressure, flow-rate, etc.}.

All these sets of data can be regarded as m-tuplets or m-element
vectors, each component in a given set being the value of one variable
describing a certain wine, say, or a technological process. Such data
can be analyzed in many ways and by many methods. If large datasets
must be processed, Kohonen mapping can turn out to be quite
effective for at least the prescreening of data. For more information on
mapping, see Section 9.4,

In Part IV of this book, where some examples are worked out in
detail, a set of a few hundred chemical bonds is described using seven
different variables: electronic, energy, etc. (Chapter 11); that is, each
chemical bond in this collection is represented in a seven-dimensional
space.

There are quite a number of things that chemists would like to
know about these chemical bonds, such as whether or under what
conditions the bond is breaking.

Another Example
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This is a typical problem for complex staustical analysis, cluster
analysis, or any other standard data processing method. Unfortunately,
most of these standard methods are oo inefficient for handling tens of
thousands of datascts. Kohonen's competitive learning method offery
a very sitmple and cfficient (though maybe not well understood)
method that can at least shed some light on the problem.

For the next example, we have selected 200 chemical bonds
(seven-clement vectors). For 94 of these bonds we know that they
cither break very easily (58) under specified conditions or with great
difficulty or not at all (306), and the rest are bonds for which we do not
have the relevant information. The questions we would like to answer
are:

13 Can the casily breakable bonds and those that are hard (o break be
separated by this method?

2y If yes, how many variables are really needed to achieve this?

3) What can be said about the bonds that will overlap or “excite” the
same neuron even though they have different representations?

4} How stable or robust is the method?

There are of course many more questions that can be raised. but
not all of them are as important as those above. The Kohonen map of
this dataset is shown in Figure 6-16.

Because the map shown in Figure 6-16 has only 21 neurons, it is
clear that more than one of the 200 bonds must cxcite the same neuron.
At the same time, some neurons that are not excited at all will co-exist
with them in the network. The neurons excited by bonds that are
“casy” or “difficult” (to break) are marked as “+7 and -7,
respectively, while the neurons excited by the bonds for which we did
not have data are marked with asterisks (%),

As can be seen, only two neurons are excited by all three types of
bonds; a detailed analysis has shown that the parameters of these
bonds are actually very similar. There are of course many more
interesting details in this study. which may be found in Chapter 11.

6.6 Remarks

The Kohonen network has a very serious computational drawhack
that affects the performance of large scale applications running on
parallel (but not serial) computers. In order to find out which neuron

Figure 6-16: Kohonen network of (11
¥ |1} neurons that clusters breakable
and non-breakable bonds on the basis
of seven-dimensional data vectors.



(and neighborhood) is to be stimulated, the program must check all »
neurons; this is a serious restriction when large nets are to be trained.
Even on a parallel computer, this involves n/2 parallel comparisons,
which requires at least log,n steps; the relative advantage of
(expensive) parallel computers is thus compromised. On ordinary
machines, all calculations have to be done sequentially anyway, and
keeping track of the largest output does not affect the overall
performance very much.

The Kohonen network or a Kohonen layer can be built into a more
complex network as one of its constituent layers (Reference 6-4) or
implemented in combination with some other techniques (Reference
6-3). As we will see in the next chapter, Kohonen competitive
learning can be combined with the counter-propagation corrections to
form multilevel networks (Reference 6-7).

Remarks
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6.7 Essentials

the main goal of Kohonen neural networks is to map objects
from m-dimensional into n-dimensional space

this mapping preserves the essential topological features of
the data

the primary neuron for weight modification is chosen by
competition ...
... the algorithm modifies the weight of the neuron with the

most intense output, or whose weights are most similar io the
input signal ...

.. and smooths the map by also making modulated changes
to neurons in a defined “neighborhood™ of that one

the Kohonen learning procedure is unsupervised learning

the topology of the planar network can vary considerably
from application to application and there are different types
of neighborhood relations in the network

+ finding the best neuron
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