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7  Counter-Propagation

learning objectives

— the first example of a network having more than
one layer

— how supervised learning is used when you have a
set of “correct” answers

— how data flows through a “counter-propagation”
network: the correct answers flow backwards

— content-dependent data storage and retrieval
(“associative memory”)

— lookup tables and models, and how neural nets can
serve as either

~ how input data are prepared by “normalization”

— application of counter-propagation to simulate a
simple tennis match

— usefulness of counter-propagation for creating
lookup tables

7.1 Transition from One to Two Layers

The neural networks we have discussed up to now have had only
one layer of neurons. The input signal is transferred to the active
neuron layer via the input net, but this layer has more or less only a
formal meaning. From a design point of view, it is easy to connect one
neuron layer to a lower one, this one to still another one and so on.
What we need is only to determine the number of neurons in one layer
and the way the outputs of the neurons in this layer are connected to
the synapses (weights) in the layer below.

The neurons of two layers can be fully, partially or randomly
connected (Figure 7-1). Full connection means that each neuron in
one layer is connected to all the neurons in the layer below. This is the

partial

random

Figure 7-1: Connection of neurons
among layers: full, partial and random.
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most common scheme used in artificial neural networks. Partial and
random connection are sel{-explanatory. The partial scheme 1s used
when some aspect of the problem suggests it. When the neurons are
connected randomly. the concept of layers becomes meaningless; the
designer can determine only the average number of neurons to be
connected between the two layers.

Once the links arc made and the weights are determined, the
signals can flow from the input through many layers towards the
output very quickly. This calculation is a natural application for
parallel computers, because each neuron processes data independently
of all the others; hence (if enough processors are available). the
calculations in one layer can be done simultaneously, i.e., in the time
it takes to evaluate one signal on a scquential compuler.

While it is easy to connect the layers of neurons among
themselves, determining the appropriate weights for a given problem
is much more difficult.

In the counter-propagation approach to modifying weights, the
known answers will be sent towards the inputs back through the
network to correct the weights of the neuron. As in all supervised
learning schemes, the weights are adapted by comparing the actual
output with an ideal output. The output of the counter-propagation
network is not obtained from the weights of one output neuron (as in
a Kohonen network) or as an output vector from all neurons (as in a
back-propagation network — Chapter 8). Rather, the output is taken
from all weights between one, the winning neuron of the Kohonen
network, and all output neurons.

7.2  Lookup Table

Due to the nature of counter-propagation network learning, which
will be explained in detail later on, we can treat the trained counter-
propagation network as a lookup table (we can call it a multi-
dimensional spreadsheet as well), which is an area of memory where
the answers to certain complex questions are ordered in such a manner
that we can readily find the “box” with the right answer.

For example, calculating the sine or cosine of an angle can be very
time-consuming when it occurs within deeply nested loops; scientific
programs often store values of the sine, tabulated at some convenient
interval, and vuse the angle argument as an index to retrieve the proper
value from this lookup table.



Thus, we calculate an address rather than a value from the input
data. There are other situations, too, where lookup table is useful, for
example, cases where the value to be retrieved is only a weak function
of the input (i.e., where there is a wide degree of tolerance in the
answers} or (which is equivalent to this) when corrupted input has to
be used. We have already discussed the problem of retrieving the
answer to a corrupted input in Chapters 4 and 5; the procedure for
finding the sought answer on the basis of imperfect or fuzzy data is
called content-dependent retrieval. It requires that only similar inputs
cause a given box to be selected (the definition of “similar” being up
to the user).

There are other content-dependent retrieval methods (e.g., the hash
algorithm: Reference 7-8, or three-distance clustering: Reference 7-
9). See the literature for a detailed discussion.

The concept of the lookup table is distinct from the concept of a
model, where the goal is to obtain a “function” or a procedure that will
yvield an answer that is different for each different set of variables; for
example, instead of obtaining the sine of an angle by lookup table, we
might call the sine subprogram, which approximates (models) the
actual value by a series expansion. (Figure 7-2).

These two methods differ not only in application goals, but in the
realm of data to which they can be applied. Modeling typically
requires only a few data (the sine, for example, requires only an angle
argument and the coefficients of the series expansion), whereas a
lookup table requires much more (depending on the resolution, maybe
several hundred sine values).

That is, in constructing (or training) a model, the number of
experiments needs to be larger than the number of parameters
describing the model. However, a lookup table requires at least one
experiment for each possible or expected answer. In order to fill all the
boxes with information, a relatively dense distribution of input data
(experiments) over the entire variable space is required.

The counter-propagation network is not well suited for modeling;
other techniques, such as “back-propagation of errors” (see the next
Chapter), can be employed much more efficiently. Counter-
propagation is best used to generate lookup tables, where all the
required answers {within some limits) are known in advance.

The larger the lookup table or the better the model, the smaller are
the differences between the ideal and the supplied answers. However,
a model can, in principle, yield an infinite number of answers, while a
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lookup table can only provide as many answers as it has boxes. The
counter-propagation lookup table is optimum if some of the input
variables are missing, or if the input data are vague or very fuzzy.
Remember that, in general, counter-propagation lookup tables are
very robust, while models, especially those simulating high-order
polynomial multivariate functions, can show unstable hehavior for
corrupted or fuzzy input data.

7.3 Architecture

The counter-propagation neural network will be our first exampie
of a neural network architecture which has two active layers of
neurons: a Kohonen layer and an output layer (Figure 7-3.). The
inputs are fully connected to the Kohonen network, where competitive
learning (Chapter 6} is performed; that is, cach unit in the input layer
is linked to all neurons in the Kohonen layer.

We will label the weights connceting the input unit i with the
Kohonen neuron j as wj; cach ncuron in the Kohonen layer is
described by a weight vector W,

The neurons of the Kohonen layer are in turn connected to the
neurcns in the output layer. In principle, this is complete (full)
connection. In practice, however, after each input, only a certain
neighborhood of a given neuron is connected to the output neurons
(Figure 7-4), and only the weights linking these neurons are allowed
to change. The weights connecling the j-th neuron in the Kohonen
layer with the -th neuron in the output layer are labeled ry;. and the
weight vector belonging to a given output neuron is labeled R,.

The goal of constructing a lookup table immediately sets require-
ments on the architecture of the counter-propagation network. A good
way to store numerous sets of answers is as the weights of the output
neurons that receive signals from the Kohonen layer (Figure 7-4).

A given answer is not stored as a set of weights in
one ncuron, hut holographically, as one component
of the weights of all the output neurons.

Such an organization requires the number of neurons in the
Kohaonen layer to be equal o the number of answers we would like to
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Figure 7-3: The layout of a counter-
propagation network.
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store, and the number of neurons in the output layer to be equal to the
number of variables comprising the output answer.

For example, one thousand answers, each consisting of four
variables, requires a Kohonen network with one thousand neurons,
and an output layer with four. The input layer should have the same
number of units as there are input variables.

Because the counter-propagation network is described in the litera-
ture as requiring normalized input data, the standard architectures are
shown with an additional normalizing neuron, which provides a
position for an extra input (2 normalizing variable comparable to the
bias); this is determined in such a way that the magnitude of the new,
augmented input vector X is equal to unity (Figure 7-5):

X = (x], X5, .._,xm) - X (xl, Xy e Xy X

m+l)

and

3 2 2 2 2 3
Ix1 = ,\/(x]+x2+...+xm+xm+1) =1

from which it follows that x,, ; should be:

R 2
X, = ,\/lw(xl+)(2+...+xm) = «/(1—|\X|12]

The normalization procedure, however, is not strictly required,
unless the learning strategy selects the neuron with the largest cutput;
if it selects the neuron mest similar to the input vector, the counter-
propagation algorithm works without any normalization or renormali-
zation procedures. This is explained below, using an example.

The normalizing variable is in some respects similar to the bias
described in Chapter 2. The purpose of both is to change the actual
input vector X into an X' so that the calculated net input values (see
Section 2.6 for details) lie within the range where the methods work
best. Such an adjustment requires the additional weight at each neuron
as well as the normalization of weights at the beginning and
renormalization at the end of each cycle of training,.

(7.1)

7.4 Supervised Competitive Learning

Supervised learning requires sets of pairs (X, ¥,) for input: the
actual input into the network is the vector X, and the corresponding

input

Kohonen
layer

output
layer

Figure 7-4: The answer (response) toa
given input is stored as a weight vector
connecting the selected neuron in the
Kohonen network and all output
neurons {bold). W,_.is the vector of
weights of the winning neuron ¢.

X'Cry g %2 X430

Figure 7-5: If the third variable x5 is
added to the two-dimensional objects
X, (x4, x), this third variable is easily
determined in such a way that all
three-dimensional points X (xq, x.2,
x,;3) will fie on the surface of a three-
dimensional plane.
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target, or prespecified answer, is labeled Y. The goal of any
supervised learning is to form a black box that will give the correct
answers Y, for cach vector X, from the training sct (see Figure 5-2).
Afier the training has been completed successfully, it is hoped that the
black box will give correct predictions for any new object X.

It is hard to formalize the types of predictions which can be
accomplished by a counter-propagation network; they can be of very
different types. The simplest are those classitying maultidimensional
objects X into proper categories. More complex predictions involve
content-dependent retrievals, where incomplete or fuzzy data are
entered and the originals are recovered. For this kind of retrieval,
counter-propagation is the optimum method. Still another type is
modeling a complex multivariate, nonlinear function yielding a low-
dimensional answer (usually 1D or 2D).

The problem with the counter-propagation network is that it needs
large quantities of data covering all possible answers. Also the
number of different answers the counter-propagation method can
yield is limited by the size of the network; if there arc not too many
different answers in the given problem domain, the network may be
small, but problems that require large numbers of different solutions
cannat be solved satisfactorily.

Recall that the first active layer in the counter-propagation
architecture is a Kohonen layer. After each input of an m-variate input
X, one neuron is selected as the “winner” exactly as shown in the
previous chapter, either by choosing the neuron with the largest output
signal our,.:

"
out, = max (our) = max[ M’jﬂx.\'l‘}
, (6.1)

or by choosing the neuron j with the corresponding weight vector W;
(Wffl’ Wi, ey ij) most similar to the input X (x|, 1o, ..., X0

"
out ¢« min Z (x”mw’j,.) 2} 62)

i=1

F=L2 .., n
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The choice between these strategies is more or less a matter of
personal preference, because they show almost identical performance;
neither has a decisive advantage over the other.

However, remember that when Equation (6.1) is used, the input
vector X and the weights must be normalized so that their magnitudes
are equal to 1. The normalization has two effects on the economy of
the method; first, it requires an additional weight on each Kohonen
neuron; and second, it requires an additional loop inside the correction
algorithm in order to renormalize the corrected weights.

Since the method requires a large number of neurons in the
Kohonen layer, an additional weight at each of them significantly
increases the memory requirements. Morsover, large Kohonen
networks require large neighborhoods of neurons o be corrected at
the beginning of each pass; since this loop occurs in the innermost
part of the algorithm, the time requirements are increased as well.

The benefit of normalization is that a numeric overflow of the
weights is not possible; there is a significant danger of this occurring
when inputs and weights are not normalized.

After the winning neuron has been selected, two types of
corrections are made:

first, the correction of weights Wi within the neurons of the

Kohonen layer
second, the correction of weights in the output layer.

Corrections of the first type (Figure 7-6) are made using Equation
(6.6):
(new) (old} (old)
i =wy o +T (t)a(d, - dj) in —W; ) (6.6)
The neighborhood-dependent function a(d, — d; and the
monotonically decreasing function m(t) are discussed in Chapter 6 in
connection with competitive learning in the Kohonen network.

After the corrected weight vector Wj(-"ew) (w}few) , wjg""” -
w},’f"”’)) has been obtained, it has to be renormalized. If the selection

of the winning neuron is made according to the largest output criterion
(6.1), the renormalization (Equation (7.1)) is mandatory:

(new)

(rew)
W,FnettJ) _ WJ‘ _

i - 2
Wl

(7.2)

input

Kohonen
layer

neighborts

Figure 7-6: The first type of weight
corrections affects the weights
between the input and the Kehonen
layer.
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Otherwise (il the most similar neuron criterion, (6.2), is used) it is
optional. Note that in Equation (7.1), the dimension m of the input K(])horﬂeﬂ
veclor X_and thus that of the weight vector W; should be larger by one input [ 1 ayer W
than if (6.2) is used. ! : /Twmnmg

. . . ) | Reuron

The second type of correction affects the weights between the

Kohonen layer and the output layer. (In Section 7.3 we used “¢” as the o= ¢

symbol for these weights, In the following discussion, R, is the weight rows .| {17

vector for neuron k; the (row) vectors R, together make up the output R, T -

weight matrix R, whose columns will be designated C.) outpu{w}\m” output
The unswers are not stored in Ry Because only onc ncuron is layer ~ APSWeT

activated in the Kohonen layer, per input component, the result vector

musft consist ol one wc‘lght\ from each ()L.llpul neuron. This 1s Figure 7-7: The outputs of the
equivalent to a column C; of the output weight matrix R (the /7 counter-propagation network are
reminds us that the vector C; is actually associated with the Kohonen  stored in the columns C; and not in the

neuron j (Figure 7-7)). rows R, of the outpul weight matrix.

Remember, when correcting output weights, that the
weights are corrected within the column vector
and not within the row vector R;!

input
Kohonen
. . layer .
Equation (7.3) shows how output weights are to be corrected: e
\ output
(Hew) {old) (afd}
i = tninald —d) ( v ] (7.3) layer

As before, ¢ is the index of the winning Kohonen neuron: f is the
index of the neighboring neuron being corrected; i runs over all the _ o
weights linking the Kohonen neuron j with the output neurons i Each [:)li:]l—]nilli 1:?2:?:;tll?:;;):;tigs:;;
of the n output neurons represents one component {(variable) of the ¢ . weights,
target vector ¥ = (y|, vy, ..., ¥,
Figure 7-8 shows the weights and neurons to which the weights are
connected in the entire procedure. The extent of the correction
depends on the topological distance of the corrected neuron from the
winning one, and the thickness of the lines used to draw them is in
proportion to the degree of correction.
Therefore, the corrected weights ¢;; need not be normalized.
because they represent the result that should be used laier as the
output from the counter-propagation network.
Recall that, unlike the other networks we have studied before, the
output from a counter-propagation network is obtained from one
Kohonen network.
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A counter-propagation network serving as a lookup table can be
visualized as two boxes, one on top of the other (Figure 7-9). The two
boxes may be of different height but they have the same length and
width. The upper box represents the Kohonen layer and the lower one
the output layer. The neurons are packed as columns in the boxes and
are accessed by the indices j' and j” describing the top plane of the
box. The position of the Kohonen neuron most excited or most similar
to the input object X is referenced by these coordinates j” and . The
position (', f”) also determines the position of the vertical column in
the output box where the corresponding answers are stored.

In Figure 7-9 we have labelled the winning neuron ¢ by the indices
J and j” to indicate its position in the box and still retain the image of
a two-dimensional Kohonen network. (In the equations in this Chapter
we have combined the two indices j' and j” into one index j, as is
usually done.)

The Kohonen network is usually implemented as this box implies,
as a three-dimensional array, w;,;~;, where j' runs from 1 to the length
of the map, j~ from | to the width of the map, and i indicates the
number of input signals.

You may wonder why the results that are stored as weights on the
output neurons are not just replaced by the actual targets instead of
undergoing the tedious iteration involved in Kohonen mapping. This
would be a valid observation if only binary vectors were involved,
since in this case there is no need to adapt the output weights
according to any scheme; they are either zero or one and can be
substituted directly:

™ =, 74)
where y; is the desired target answer. There is no need to look at the
neurons in the neighborhood of the winning one; the substitution is
made only for the weights connecting the winning neuron ¢ with all #
output neurons (index ¢ instead of j).

When nonbinary values are used as components of the target
vector, we have to be aware that different inputs with slightly different
targets may excite the same winning neuron and thus yield the same
answer. Thus, the similarity of inputs shows in the similarity of
outputs. The correlation between the input and the output variables as
well as correlations within each group can easily be obtained by
inspecting the resulting weights after the lookup table is genecrated.

Figure 7-9: Counter-propagation
network shown as two boxes. The
upper box contains the weights W of
the Kohonen network, while the lower
one contains the weights C of the
output layer.
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These correlation maps arc the most outstanding result of the counter-
propagation network and will be discussed in more detail in the next
chapter.

7.5 Learning to Play Tennis

In this cxample, we will demonstrate various capabilities of the
counter-propagation network.,

First, the counter-propagation network is capable of dealing with
vectors (objects) representing real values on the input side as well as
on the output (target) side.

Second, a lookup table can be formed from a comparably large set
of experimental data and can be utilized as a substitute for a
mathematical model (that is, an explicit functional relationship).

Third, the correlations among difterent variables can be obtained
from the resulting layer of cutput weights.

In real life, learning tennis requires a court and a lot of practice.
The more different strokes you learn, the better your play. The two
prime lactors in teonis are getting to the right part of the court (in
time), and returning the ball to an exact spot on your opponent’s side.

Obviously, there are a lot of technical details. such as the speed
and spin of the hall, or analyzing your opponent’s weaknesses: but for
now, let’s assume that only these two issues (where you are, and how
you hit the ball) are involved.

To “compute”™ your response, you need two data: your opponent’s
position and how he swings the racket. From these two data to
estimate the trajectory of the ball (where it will land) and how to hit it.

For simplicity, we will assume that both players can move only on
the service lines of the tennis court (bold lines in Figure 7-10). The
players will be labeled as X and Y (trainer and trainee). Their
positions on the service line are marked as x and y.

The input data that the trainee Y obtains for learning are the
position x of the trainer X and the angle B at which the ball is flying
against her. Therefore, the input X can be regarded as a two-
dimensional vector:

X= (P

The trainee must position herself at position v (where the ball will
cross the service line), holding her racket at the angle ¥ which will
return the ball towards position z. We will simplify further by

Figure 7-10: Model of a tennis court:

x and ¥ are the positions ol players X

and ¥, who move only along (heir
service lines.



assuming that z is fixed at the rightmost point of X’s service line
(Figure 7-11). The desired learning target is thus a two-dimensional
vector Y:

Y= (nv

The position of the trainer will be selected randomly between 0
and a (the width of the court). The range of the angle [ at which he
can send the ball depends on his position x; if he is at the point x =0,
then tanf} can vary between 0 and a/b (& is the length of the court),
while at the position x = a, tan} can range between —a/% and 0. For a
general position x of the trainer, tanf} varies between —x/b and (a — x)/
b, so

forany xe [0, q]
tanfe [x/b, (a~-x)/b]

If the trainee is a complete newcomer, her answers will be random;
but if her best answer is always corrected towards even better
performance, she will tend to select better and better answers. (Unlike
a real tennis instructor, we must calculate the “right” answers using
appropriate equations and then compare the trainee’s answers with
them.).

Figure 7-12 illustrates how the answer Y(y, y) is calculated for each
X(x, B). First we can see that:

tanf = (y—x)/b

with which the first output vy of the target ¥(y, v) can eastly be
calculated:

y = x+ btanf

Next, the angle v between the racket plane and the service line
should be estimated. From Figure 7-12 we see that:

1+¢ =05+
This gives us:
¥y=05@B-9
With:
tang = (z-y)/b
we obtain:

y=05{B-arctan[ (z—y)/b]} (7.3)
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Figure 7-11: The variables (x, $§) and
(v, y) representing the input (trainer’s
stroke) and desired output (trainee’s
response).
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Thus, the output ¥(y. Y} can be calculated {rom the input
parameters X(x, B) and the dimensions of the tenais court a, b, and
using Equation (7.5) iz is the location to which the trainee wants lo ¥ oy
send the ball). Since in this example z is always equal w a. the goal of pm:c of the racket ’:4 i
the training is, in cffect, to teach the traince how 1o hil the extreme ¥ :
right corner of the trainer’s part of the court, regardless of where she

is, or where the ball is coming from.

This can all be accomplished by the counter-propagation network, :
Initially, we construct a (2 x 625 x 2) counter-propagation network, as
shown in Figure 7-13. (The 625 neurons come from a (25 x 25} neuron
Kohonen layer used for competitive learning.) Then a number of input
vectors X = (r,. B, let us say 4000, are randomly selected, and to
cach of them a theorctically correct answer ¥ (v, ,v.} is assigned. The
set of pairs (X, ¥,) is then ready to be presented to the counter-

propagation network. After having all weights set to small random
numbers, the following procedure is launched:

~ input a vector X = (x,, B,)

e d ! -
— evaluate » sums in all # neurons in the Kohonen layer; a,

2 2 orthogenal to the
nutj = (xj_ - n-"“) + ([j_\ - u.f_l.z) plane uf‘ the racket

Ji=12,..n

Figure 7-12: The calculation of the
— select the winning neuron ¢ as the one having the minimum om‘j: response Yy, v) for each X(x, ().

out, = min { out |, outy, .., ()m”}

=12 ..~

— correct both weights in cach ncuron from a given neighborhood 2 Kohonen weights
. - . . in each neuron
around the winning neuron ¢ in the Kohonen layer (see Equation )

(6.6)):

(new) Taldd . i '(Ul’(f)
Wi =W, (Nald — a'j) (.xy W ) e .
Hew ‘old (ol E;j B o
1’1}‘(2 1) - H,._)”[).g_]’](f)ll(d(,*d')(ﬁ\.fw-:( j N
4 Je 4 - /= T 2 output weights

neuron in each ncuron
— at the beginning of the learning procedure, the product n(#) a (d,. —
d:'f-) is about 0.5 (Equation (6.5) with a,,,, = 0.5 and «,,,;,, = 0.01); tor Figure 7-13: 625-neuron nctwork for
cach other neuron this product decreases as a function of which  learning tennis,



neighbor-ring it is in, and how many iteration cycles have already
occurred.

— correct the two weights in the output layer leading from all neurons
in a given neighborhood of the winning neuron ¢ towards both
outputs (see Equation (7.3)):

(new) (old) {old)
it = ¢ +T](t)a(d(,—dj)(ys—cjl )

{rew) (old) Id)
cﬂ" = cﬂ“ +m (z)a(dc—dj)(ys—cj(; )

In the above correction, exactly the same value of the product 11(t) a
(d, — d;) can be employed as is used during the correction of the
Kohonen weights. But if you have some good reason, the correction
factor n(#) a (d,. — d}) can be changed later on:

— change the factor n(f) and the neighborhood range to which the
function a (d, — 4;) is applied, and go to the first step; repeat until all
pairs have been sent through the network.

The product M(1) a (d. — d)) is a kind of adjusting “dial” in the
method; you have to find by trial and error which values work best for
a given application. In our example, the entire (25 x 25) Kohonen
layer has 10 be encompassed initially. Of course, the weights of
neurcns lying in the 25" neighbor’s ring away from the winning
neuren will be changed very little; the correction can amount to only
one twentyfifth of the correction applied to the winning neuron’s
weights (Figure 7-14).

If there are 4000 input vectors, the neighborhood can be shrunk by
one ring after each 160 inputs; hence, in the last 160 inputs only the
weights of the winning neurons will be corrected and nothing else. Of
course, these corrections will be considerably smaller than at the
beginning because the factor 1(r) decreases as we continue to provide
inputs. In the present example, by the 4000™ input, 1} had decreased to
0.01 compared to the initial value of 0.5 (Figure 7-14).

Because the corrections of the output weights are implemented in
the same loop as the corrections of the Kohonen weights, the learning
procedure is quite efficient.

After 4000 inputs, the answers obtained by the (25 x 25) netwark
{which is able to store 625 answers) were quite encouraging. The root-
mean-square {RMS) error between the targets and the results given by
the counter-propagation network is (.33,

Learning to Play Tennis
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The RMS error is calculated from the general equation;

oo
2 2 (y.\'i_out‘\‘i) ’

s=1li=1

(7.0)

RMS =
1.1

I
where y,, i8 the i-th component of the desired target ¥, out; is the i-th
component of the output produced by the network for the s-th input
vector, x; is the number of inputs, and » is the number of output
variables.
In our case, this takes the following form:

K}

2 [ (-"‘.s‘ - C(‘l) : + (Ys - C{'2) 2:|

RMS = 4*=1

8000

¢ and ¢ 5 are the weights in the output layer selected by the winning
Kohonen neuron (¢) for the s-th input vector.

An RMS error of (.33 corresponds to a tolerance of 20.025 in the
position y and a tolerance of *1 arc degree in the angle v. It is
interesting to see what the correspondence is between this and the
player’s success rate. Table 7-1 shows the number of unsuccessful hits
for different RMS errors {an unsuccessful hit means that her/his
response misscs the calculated value by more than the tolerance

limits).
RMS error number of unsuccessful hits
per 1000
1.52 110 - 160
1.10 47 - 76
0.77 8- 18
0.62 1-8
0.43 1-5
(.35 0-5
(.26 0-2
0.14 0
Table 7-1:  Simulation of playing tennis; translation of RMS error into number

of unsuccessful hits.
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Figurc 7-14: How the neighborhood
and 1y change during the training.
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This requires us to create many counter-propagation networks
yielding different degrees of RMS error; for each one, a test of one
thousand randomly selecied inputs was repeated five times. Each net
gave almost identical RMS errors in the five repeated tests, but
different numbers of unsuccessful hits were recorded; hence, the
range of unsuccessful hits in Table 7-1.

Additional information can be found in Section 8.6, where the
tennis example is worked out more thoroughly.

7.6 Correlations Among the Variables

One of the most valuable properties of the counter-propagation
network is that the final values of the output-layer weights contain
information about the correlations (lack of functional independence)
among the input variables.

Let us consider both “planes” of output weights that were
generated during our tennis simulation experiment (Figure 7-15). The
architecture of the counter-propagation network for this example can
be represented as several square double pyramids. The two upper ones
represent the Kohonen weights: one receiving the positions x and the
other one the angles [, while the two upside down pyramids represent
the output weights: one yielding the positions y and the other one the
racket angles .

Computationally, all the pyramids can easily be separated and
written in the form of a square matrix. The position of each weight is
the position of the Kohonen neuron with which it is involved. In the
case of Kohonen weights, these matrices represent the already
familiar Kohonen maps (Section 6.4), showing topological
relationships among the input variables; there is one for each variable.

Similarly, in the case of the output weights, the upside-down
pyramids generate matrices containing the Kohonen maps of the
output variables. Figure 7-16 shows all four Kohonen maps obtained
in the present example. The upper two maps show the lines that
connect points with the same x-position (iso-x-position-lines) and the
lines with the same B-angle, while the lower two maps show the
output’s iso-y-position and iso-y-angle lines.

These maps tell us that for a given position of x only a certain
range of angles [ is possible, and vice versa, that a specific angle 1s
allowed only at a certain range of positions. The same is true for the
position y and the angle y for the trainee. That is, these variables are

Figure 7-15: The counter-propagation
network architecture for the tennis
simulation (2 inputs, 2 outputs)
visualized as four pyramids.
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correlated (not independent): the values of one depend on the value
of some other one.

These maps are even more useful because of their “vertical”
connectivity; if the maps are drawn on transparencies and overlaid
(Figure 7-17), a vertical line going through all maps gives the output
variables for a given sel of input variables. By recording all vaiues at
the intersections of the Kohonen maps with the vertical line travelling
along a selected iso-value line on the map of one variable, atl the plots
of the remaining variables are obtained at the constant value of the
selected cone. Tt is easy to program this intersection retrieval once the
complete output weights have been obtained.

The procedure of “following the vertical intersections” enables us
to obtain the answer to inverse questions, that is, questions relating to
an inverse mode] — very hard problems to solve by standard analytical
methods.

In the tennis example, such an inverse guestion would be: does a
(trainer’s} position x exist which would force the trainee standing at y
= 0.6 to hold the racket at an angle of (0 degrees in order to hit the
corner x = 1? To obtain the answer, the vertical line is put on the
beginning of the ¥ =0 line in the ¥ angle map (Figure 7-16d)). Then
the vertical line is moved along the v = () line until it encounters the

Figure 7-16: The four Kohonen maps
for the tennis simulalion problem
obtained on a {25 x 25) matrix alter
5000 random inpuls (positions x and v
between O and 1. angles B and yin
radians). The RMS error of the
answers is (135,
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start at the
¥=0line

Y

T

(.6-iso-y-line in the map above (Figure 7-16¢)). Then the intersections
of this line with Figures (a) and (b) give the values x =0.2 and B =
0.20. This means that if the trainer at x = 0.2 sends the ball at angle
0.20 radians, the trainee should be at y = 0.6 holding the racket with 7y
= ( in order to hit the corner x = | on the trainer’s side of the court.
Additionally, this-method allows you to determine whether some
conditions can be met at all (and still yield an acceptable solution) —a
quite important piece of information for many types of problems.

Figure 7-17: With the helpofa
vertical intersection line, the overlap
of all four maps enables the retrieval
of answers to inverse questions.
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7.7

Counter-Propagation

Essentials

the counter-propagation network is basically a two-layer
network

it consists of a Kohonen layer (influcnced by the inputs) and
an output layer (influenced by the targets)

it is trained very similarly to the Kohonen-type networks
the inpui data are usually normalized

it employs supervised learning, i.e. you must have a set of
“correct” answers

the answers are stored in the output layer as maps exactly
corresponding to the maps generated in the Kohonen layer

the output is taken from all weights between one Kohonen
neuron and all the output neurons

counter-propagation networks are used as lookup tables

there is a one-to-one correspondence between the neurons in
the Kohonen map and those in the output map
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* normalization

X = (x, %y 0x,) 2 X (X, Xy, 00X, 0, 1)

(7.1)
Xpo| = ,\/(l —x? +xi+ ot xi} = ’\/( 1 —||Xt|2)
« finding the best neuron ¢
largest output:
out . = max (out)) = max( 2 wﬁx“]
¢ s -1 (6.1)

best agreements with the weights:

m

out < min { 2 (x,;— wﬁ) 2} i=L2 ..~ (6.2)

i=1
corrections of weights:

» Kohonen weights

(new) {old) (old)
w;; =Wy +M (I)a(dc—dj)(xifwﬁ ) (6.6)
(new) (new)
W~(new) _ “{' _ WJ'
J 2
” Wj“ m (new) 2 (7-2)
2w
i=1
correction of output weights
{ ) {old) (oldy
cﬁ""w = cﬂ" +n(Ha(d,-d) (y,, - } (7.3)
RMS error
Hj "
2
Z 2 (ysi - outa‘i) (76)
RMS = s=1i=1
nn
decreasing learning rate
Lax— 1
n = (amax_amm) ¢ -1 ta, i (6.5)

max
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